
Engineer-to-Engineer Note EE-257

a

Technical notes on using Analog Devices DSPs, processors and development tools
Contact our technical support at dsp.support@analog.com and at dsptools.support@analog.com
Or visit our on-line resources http://www.analog.com/ee-notes and http://www.analog.com/processors

A Boot Compression/Decompression Algorithm for Blackfin® Processors
Contributed by Bob Nakib Rev 1 – December 9, 2004

Copyright 2004, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices’ Engineer-to-Engineer Notes.

Introduction
This application note describes a boot
compression/decompression algorithm for
ADSP-BF533 and ADSP-BF561 Blackfin®
processors.

The code included with this document was
verified using the VisualDSP++® 3.5 tools suite
for Blackfin processors. The project was run on
an EZ-KIT Lite® evaluation system for ADSP-
BF533 Blackfin processors (ADDS-BF533-
EZLITE, Rev 1.2) and on an EZ-KIT Lite
evaluation system for ADSP-BF561 Blackfin
processors (ADDS-BF561-EZLITE, Rev 1.1).

Purpose
Normally, loader files created by VisualDSP++
are not compressed, except possibly with a
simple run-length compression scheme used on
strings of 0s in the compiled code. For large
projects that must be stored in non-volatile
memory, compression provides significant
savings in hardware, such as on-board flash.
Decompression code can then be executed at
boot time by creating a 2nd-stage loader or
initialization code containing the decompression
algorithm. For more information regarding the
initialization code or any aspect of the booting
process, refer to ADSP-BF533 Blackfin Booting
Process (EE-240) [1].

Boot Compression/Decompression
Algorithm
This compression algorithm requires about
50 KB of overhead (extra) memory. Therefore, it
is useful only in applications of a significantly
larger size. The compression/decompression
functions are handled by a simple open-source
compression library called Zlib. For more
information, see

http://www.gzip.org/zlib/.

As an example, a compressed Blink application
is included with this EE-Note for your
convenience. It is suggested that you try the
following steps using the included Blink
application to familiarize yourself with the
compression process, then try programming the
last generated file (CompressedAppIntelHex
.ldr) with the Flash Programmer to verify
correct functionality. Figure 3 shows the entire
process.

Step 1

You must allocate an unused area of SDRAM
memory in your user-application to store the
uncompressed user-application loader image.
The .LDF file of your user-application project
must be modified to free a section of SDRAM
memory of appropriate size. This region must be
large enough to hold an entire loader build of
your user-application, allowing uncompress() to
deflate to that area in memory.

http://www.gzip.org/zlib/

 a

A Boot Compression/Decompression Algorithm for Blackfin® Processors (EE-257) Page 2 of 7

The user-application loader image will then be
loaded by the Boot ROM out of SDRAM.

For ADSP-BF561 processors, you must also free
L2 memory addresses 0xFEB1 FC00 through
0xFEB1 FFE7 by keeping them out of any section
in your user-application's .LDF file. These
addresses are reserved for the 2nd-stage boot
kernel. This is done in the .LDF file of the
example ADSP-BF561 Blink program.

Step 2

Set the UNCOMPR_ADDR field at the top of the
Init_code.c file (Init folder) to the intended
destination address for the output of the
uncompress function (that is, the starting address
of the reserved section or kept empty in the
SDRAM memory of your user-application in
Step 1). In the given example, this address is set
to 0x4000.

Step 3

Specify the user-application project to be built as
a Loader file (via Load page of Project
Options dialog box) and use SPI/ASCII/8-bit
format. Note that the SPI setting is a workaround
used to generate the output in ASCII format.

For ADSP-BF533 processors, specify the
following path to the initialization project file:
../Init/Debug/Init.dxe. (See Figure 1.)

For ADSP-BF561 processors, select Boot
kernel options from the Category list, select
Use boot kernel, and specify the path to the
kernel file as: ../Init/Debug/p0.dxe. Also,
under Additional options, insert:
./debug/p0.dxe.

When executed at the start of the boot process,
this object file initializes SDRAM memory, finds
the compressed user-application code, and
decompresses it to the appropriate area in
SDRAM memory.

Figure 1. Loader Options for ADSP-BF533 Processors

 a

A Boot Compression/Decompression Algorithm for Blackfin® Processors (EE-257) Page 3 of 7

Step 4

Build the Init code project first, and then build
your user-application. Ensure that the project to
be built is active (highlighted in the Project
window) and that project dependencies are set, if
necessary. This should create an .LDR file in the
Debug directory of your user-application.

Step 5

In the root folder, edit the compress.bat file
(use any text editor) to specify the path of the
target loader file that has just been built from
your user-application, as well as the desired level
of compression (see Table 1 in the Appendix for
compression levels). Note that the entered path
must be enclosed in double-quotes (") and must
use forward-slashes or double-backslashes. An
incorrectly specified path name or compression
level may cause undesirable results.

Step 6

Execute compress.bat (root folder) and ensure
the result of the compression (returned on line 6
of the Output window) is successful by matching

your return code with those listed in Table 2 in
the Appendix.

The Output window (Figure 2) returns important
values calculated during compression, notably:

 Source file size (line 1)

 Source buffer start address (line 2)

 Number of bytes used for the source buffer
(line 3)

 Application start address and number of
bytes used for the Init code buffer (line 4)

 Application size and output buffer start
address (line 5)

 Compression result (0 = success) and
compressed application size (line 6)

 Path of the output file (line 7)

If successful, a file called CompressedApp.ldr
is created in the same directory as your source
loader file (that is, the Debug directory of your
user-application). This ASCII format file
contains both the Init (decompression) code and
your compressed user-application code.

Figure 2. Compression Script Output Window, RESULT = 0 (SUCCESS)

 a

A Boot Compression/Decompression Algorithm for Blackfin® Processors (EE-257) Page 4 of 7

Step 7

Copy the CompressedApp.ldr file to the root
folder, where you should then execute
IntelHex.bat. This converts the compressed
application loader file into Intel hexadecimal
format and creates a new file called
CompressedAppIntelHex.ldr. This conversion
is necessary for the loader file to be understood
by the Flash Programmer.

Next, run the VisualDSP++ Flash Programmer
plug-in, specifying CompressedAppIntelHex.
ldr as the source file. This copies the
compressed loader image into flash memory,
starting at address 0x2000 0000. Upon reset, the
Boot ROM will begin booting from this address
in flash memory, loading the initialization code
into L1 SRAM memory. The initialization code
will set up SDRAM and then uncompress the
user-application image to the specified address in
SDRAM memory. Booting then proceeds from
the uncompressed user-application address. (see
Figure 3 below).

Allocating Memory Sections in
SDRAM
Listing 1 shows the default SDRAM sections
allocated in adsp-BF533_C.ldf and the default
linker file used for ADSP-BF533 Blackfin
processor C projects. (This file can be found
under the path:
…\Analog Devices\VisualDSP 3.5 16-Bit\
Blackfin\ldf

You can create your own sections and specify
start and end addresses for any section. By doing
so, you can control linker memory allocation
partially. (For proper data alignment, all address
blocks should be 32-bit addressable.)

However, if blocks of code or data are to be
placed into any user-defined section of memory
(by using the .section command, for example),

edit the block entitled SECTIONS. An example
appears in Listing 2.

(Line 285:)

MEM_SDRAM0 {
 TYPE(RAM) WIDTH(8)
 START(0x00004000) END(0x07FFFFFF)
}
MEM_SDRAM0_HEAP { TYPE(RAM)
WIDTH(8)
 START(0x00000004) END(0x00003FFF)
}

Listing 1. Default Section Allocation

(Line 285:)

MEM_SDRAM0 {
 TYPE(RAM) WIDTH(8)
 START(0x00004000) END(0x06FFFFFF)
}

NEW_SDRAM_SECTION {
 TYPE(RAM) WIDTH(8)
 START(0x07000000) END(0x07FFFFFF)
}

MEM_SDRAM0_HEAP {
 TYPE(RAM) WIDTH(8)
 START(0x00000004) END(0x00003FFF)
}
… … … …

SECTIONS
{
 my_section
 {
 INPUT_SECTION_ALIGN(4)
 INPUT_SECTIONS(
 $OBJECTS(my_section)
 $LIBRARIES(my_section)
)
} >NEW_SDRAM_SECTION

… … … …

Listing 2. User-Defined Section Allocation

For more information , refer to Guide to Blackfin
Processor LDF Files (EE-237) [2].

 a

A Boot Compression/Decompression Algorithm for Blackfin® Processors (EE-257) Page 5 of 7

1. Allocate an unused area of SDRAM memory in which to store your uncompressed user-application loader image.

2. Set the UNCOMPR_ADDR field at the top of the Init_code.c file (Init folder) to point to the start address of this reserved
memory area.

3. Build the Init code project.

4. Build your user-application. This should create an .LDR file in the Debug directory of your user-application.

5. Edit compress.bat to specify the path of the target loader file that has just been created, as well as the desired level of
compression.

6. Execute compress.bat.

7. Execute IntelHex.bat to convert your compressed application loader file into Intel hexadecimal format. This will create a
new file called CompressedAppIntelHex.ldr.

Now run the VisualDSP++ Flash Programmer, and specify CompressedAppIntelHex.ldr as your source file. At boot time, this
will initiate the following:

i – Boot ROM begins booting from the start of flash memory, at address 0x2000 0000. Init code is executed in L1 memory.

ii – Init code initializes SDRAM and decompresses the user-application code to the appropriate area in SDRAM memory.

iii – Init code completes execution, and booting proceeds from the uncompressed user-application address.

Figure 3. Boot Compress/Decompress Process

 a

A Boot Compression/Decompression Algorithm for Blackfin® Processors (EE-257) Page 6 of 7

Optional User Modifications
You can edit certain files or parameters in the
project folder manually. The following
guidelines describe the files or parameters that
may need modification.
Application Folder
Replace the sample Blink application project
with your user-application project.

Init Project
If you are not using an ADSP-BF533 or ADSP-
BF561 EZ-KIT Lite board, you may need to
modify the default linker sections in the .LDF file
of the Initialization project.

Init_code.c
Set the UNCOMPR_ADDR field to the intended
destination address for the output of the
uncompress function.

Compress.bat
The source file path and compression level may
be changed.

IntelHex.bat
The output file name (2nd parameter) may be
changed if desired.

Figure 4. Main Project Directory

 a

A Boot Compression/Decompression Algorithm for Blackfin® Processors (EE-257) Page 7 of 7

Appendix. Zlib Compression Levels and Return Codes
Below are the different compression levels and return codes used by the Zlib library. These values are
taken from the zlib.h file accompanying this EE-Note.

Compression Levels

Best Speed 1

Default Compression (-1)

Best Compression 9

Table 1. Compression Levels

Return Codes

Return codes for the compression/uncompression functions. Negative values are errors, positive values are
used for special but normal events.

Z_OK 0

Z_STREAM_END 1

Z_NEED_DICT 2

Z_ERRNO (-1)

Z_STREAM_ERROR (-2)

Z_DATA_ERROR (-3)

Z_MEM_ERROR (-4)

Z_BUF_ERROR (-5)

Z_VERSION_ERROR (-6)

Table 2. Return Codes

References
[1] ADSP-BF533 Blackfin Booting Process (EE-240). Rev 1. June 2004. Analog Devices, Inc.

[2] Guide to Blackfin Processor LDF Files (EE-237). Rev 1. May 2004. Analog Devices, Inc.

[3] zlib Home Site (http://www.gzip.org/zlib/). November 2003. Greg Roelofs and Jean-loup Gailly

Document History

Revision Description

Rev 1 – December 9, 2004
by B. Nakib and T. Lukasiak

Initial Release

http://www.gzip.org/zlib/
http://pobox.com/~newt/
http://gailly.net/

	Introduction
	Purpose
	Boot Compression/Decompression Algorithm
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7

	Allocating Memory Sections in SDRAM
	Optional User Modifications
	Application Folder
	Init Project
	Init_code.c
	Compress.bat
	IntelHex.bat

	Appendix. Zlib Compression Levels and Return Codes
	Compression Levels
	Return Codes

	References
	Document History

