
Engineer-to-Engineer Note EE-324 
 

a 
 

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.
 

 

System Optimization Techniques for Blackfin® Processors 
Contributed by Kaushal Sanghai Rev 1 – July 10, 2007 

 

Copyright 2007, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of 
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property 
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however 
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes. 
 

Introduction 
Efficient system resource utilization is critical for developing applications that demand high bandwidth on 
an embedded platform. Systems can often run out of bandwidth, even if the throughput requirements are 
within the limits of the system. The critical factors that result in lower than expected throughput are, more 
often than not, external memory access latencies and inefficient utilization of system resources. In order to 
fully exploit the capabilities of an embedded processor, it is important to understand its system 
architecture and the available system optimization techniques. This EE-Note serves as a quick reference to 
Blackfin® processor memory hierarchy and its system architecture. It also provides guidelines for using 
several optimization techniques to efficiently utilize the available system resources and discusses 
benchmark studies to evaluate and quantify the suggested optimization techniques. 

Blackfin Processor Architecture 
In this section, Blackfin memory hierarchy and system architecture is discussed. Each section begins with 
a description of a resource (memory, system bus, DMA controllers, etc.), followed by recommendations to 
use that resource more efficiently. The architecture is described mostly from a performance perspective, 
thus ignoring other details. Please refer to the appropriate Hardware Reference manual[1, 2, 3] for more 
details. 

Memory Hierarchy 

This section discusses the Blackfin processor’s memory hierarchy (Figure 1) and the relative tradeoffs 
between on-chip (L1 and L2) memory and off-chip (external) memory. Guidelines are also provided to 
efficiently map code and data into the memory hierarchy to achieve minimal memory access latencies. 

L1 Memory Description 
Blackfin processors provide separate instruction and data L1 memory spaces. L1 data memory is further 
divided into data bank A and data bank B. For higher performance, L1 memory is implemented as single-
ported sub-banks to allow for simultaneous access to multiple requesting elements (core, DMA, etc.). L1 
memory also provides SRAM and cache memory configurability to take advantage of application-specific 
workload characteristics. 



  a 

System Optimization Techniques for Blackfin® Processors (EE-324) Page 2 of 22 

L1 Code and Data Memory Sub-Banking 
L1 code memory is implemented as single-ported sub-banks, effectively making them dual-ported. 
Therefore, the core and DMA or system buses can access the L1 code memory simultaneously, as long as 
the accesses are not to the same sub-bank. Similarly, L1 data memory forms multi-ported sub-banks, 
allowing the following in a single core clock cycle: 

 Two 32-bit data address generator (DAG) loads 

 One pipelined 32-bit DAG store 

 One 64-bit DMA I/O 

 One 64-bit cache fill/victim access 

L1 SRAM/Cache Configuration 
By default, all of L1 memory is SRAM memory that provides direct access to the core. SRAM memory 
guarantees single-cycle access to an instruction or data item and is not subject to a cache miss. However, 
the limitation is the size of the available memory space. For applications where code and data is greater 
than the L1 memory space, part of L1 can be configured as cache to achieve lower memory access 
latencies. 

Figure 1. Blackfin processor memory hierarchy 

Cached memory can provide significant benefits for execution of code and data mapped to L2 or external 
memory. Cache performance depends on the temporal and spatial characteristics of the application. The 
disadvantage of cache memory is that it suffers from cache miss penalties, which increases memory 
access latencies, thus increasing external memory bandwidth requirements. Also, for streaming data, 

Core 

L1 Data Memory L1 Data Memory 

Unified L2 

External Memory 

On-chip 

Off-chip 

DMA

L1 Instruction 
Memory 

Single core cycle 
access latency  

Several core cycles 
access latency 

Several system cycles 
access latency 



  a 

System Optimization Techniques for Blackfin® Processors (EE-324) Page 3 of 22 

cache lines must be invalidated when new data is transferred in external memory. Invalidating cache lines 
is expensive and can significantly decrease performance. 

Guidelines 

Taking Advantage of Multi-Ported Sub-Banks 
As discussed above, memory contention occurs only if core and DMA accesses fall into the same sub-
bank in memory. Figure 2 illustrates a scenario where potential memory contentions can be avoided by 
efficiently mapping data objects in L1 memory. 

 
Figure 2. Efficient use of multi-ported sub-bank internal memory architecture 

Using L1 SRAM Only 
Fitting code and data in L1 SRAM provides the lowest memory access latency. If the total required 
memory for code and data is more than that available in L1 SRAM, map only the most frequently 
executed code and most frequently accessed data to L1 memory. For mapping code efficiently in L1 
SRAM, use the automated PGO linker tool, described in PGO Linker - A Code Layout Tool for the 
Blackfin Processors (EE-306)[8]. Data layout should still be handled by the programmer, although some 
techniques are suggested in the next few sections.  

L1 SRAM memory can also be used to map code and data items with real-time criticality, as SRAM 
memory provides guaranteed single-cycle access for all requests. Cache memory suffers from cache miss 
penalties; therefore, there is no deterministic access time to a requested code or data item. This can 
sometimes prove critical in meeting the real-time requirements of a system. 

Using L1 SRAM and Cache 
If the application code size is greater than L1 instruction SRAM space, using instruction cache will 
improve the average memory access latency. In the VisualDSP++ 4.5 tools, cache can be turned on using 
the Project Options dialog box or by appropriately defining the _cplb_ctrl constant in a project 
source file.  

Refer to Using Cache Memory on Blackfin Processors (EE-271)[9] for details regarding the use of cache 
memory on Blackfin processors. An example project within the VisualDSP++ installation folder 

DMA access 

Core accesses 

Core accesses 
Buffer 0 and 
Coefficients 
Buffer 1 and 
Coefficients 

Unused 

Unused 

DMA access Buffer 0 

Unused 

Buffer 1 

Coefficients 

Optimized Layout Unoptimized Layout 



  a 

System Optimization Techniques for Blackfin® Processors (EE-324) Page 4 of 22 

(VisualDSP++ 4.5/Blackfin/Examples/ADSP-BF533 EZ-Kit Lite/Cache/) also provides 
implementation details for enabling cache on Blackfin processors. 

Blackfin processors also provide alternate ways to move code and data more efficiently within the 
memory hierarchy. A DMA engine can be used to manage code and data instead of using the cache 
mechanism. By using DMA, code and data can be brought in ahead of time, consequently avoiding cache 
miss penalties and also saving any cycles lost due to cache line invalidation. DMA can also do memory 
transfers in the background while the core is processing, saving valuable core cycles. However, using 
DMA increases software development time and can be difficult for applications with irregular or random 
code and data access patterns. 

Using DMA to Avoid Cache Miss Penalties 
To use DMA effectively, it is important to know program behavior and data access patterns. Managing 
code and data is entirely the programmer's responsibility; therefore, software development time is 
expected to increase. To understand the feasibility of using DMA for managing data objects and obtain a 
more detailed explanation of the advantages over using cache, refer to Video Templates for Developing 
Multimedia Applications on Blackfin Processors (EE-301)[7]. For further details regarding the tradeoffs 
involved with cache vs. DMA, refer to The best way to move multimedia data[10]. 

L2 SRAM Description 
L2 memory on Blackfin processors can only be used as SRAM memory. L2 access times are longer than 
L1 but provide better performance than accessing off-chip SDRAM. Note that L2 memory is available 
only on the ADSP-BF561 and ADSP-BF54x Blackfin processors. Table 1 shows L2 memory performance 
in terms of core clock cycles (CCLK) and/or system clock cycles (SCLK). 

Access Type Number of Cycles Comments 

Direct core access instruction fetch (64-bit) 9 CCLKs  

Direct core access data fetch 9 CCLKs (1st 32-bit Fetch) 

2 CCLKs (2nd 32-bit Fetch) 

Can be 8-, 16-, or 32-bit access 

Cache line fill request 

Instruction and data (32-byte) 

15 CCLKs First 8 bytes available after 9 CCLKs, 
and 2 CCLKs for each successive 8 bytes  

L2 to L1 memory DMA transfers (8-byte) 2 CCLKs  

L2 system read 

(e.g., L2 to external memory transfer) 

1 SCLK + 2 CCLKs  

L2 system write 

(e.g., external memory to L2 transfer) 

1 SCLK  

Table 1. L2 memory performance 

Guidelines 
L2 SRAM can be used to map code and data that does not fit into L1 SRAM memory. If using the ADSP-
BF561 dual-core processor, L2 memory space can be used to map shared data objects between two cores. 



  a 

System Optimization Techniques for Blackfin® Processors (EE-324) Page 5 of 22 

L2 memory is also designed as multi-ported sub-banks. This enables simultaneous core and DMA 
accesses to L2 memory, provided that the accesses are to separate sub-banks. 
External Memory Description 

For ADSP-BF561 Blackfin processors, the SDRAM controller (SDC) supports 16- or 32-bit SDRAM 
memory bank widths; for ADSP-BF53x and ADSP-BF52x processors, the SDC supports a 16-bit SDRAM 
memory bank width. The SDRAM memory can transfer data at a maximum SCLK frequency of 133 MHz. 
The SDC provides a glueless interface to standard SDRAM memory devices with four internal memory 
banks and allows interleaved bank memory accesses. Arbitration logic is required for simultaneous core 
and DMA access to external memory. In this section, the SDRAM memory banking and its performance 
is discussed in detail. 

SDRAM Banking 
Standard SDRAM memory devices have internal memory banks. To take advantage of the internal banks 
of SDRAM, the SDC supports interleaved memory bank accesses. The SDC interface supports up to four 
internal memory banks. 

The SDRAM internal bank addresses consist of row addresses. The internal banks are divided into a set of 
memory pages, which are configured with the help of the SDC control registers. The number of pages is 
determined by the SDRAM configuration settings and the internal memory bank size. The SDC can only 
have one open page at a time in each of the internal banks. Opening a closed page in the internal memory 
bank requires pre-charge and activation commands. 

An access to an open page in memory is termed an on-page access. An on-page access does not require 
pre-charge or activation commands. If an access is to a closed page, it is termed an off-page access, which 
incurs an additional latency of the cycles required for the pre-charge and activation commands.  To 
increase SDRAM performance, it is essential to minimize off-page accesses. 

SDRAM Performance 
Table 2 gives the SDRAM performance for on-page accesses. 

Access Type Number of SCLK Cycles for a Word* Access 

Instruction/data cache line fill request 1.1 

Direct core instruction fetch 1.1 

DAG read access 8 

DAG write access 1 

MemDMA write access. (e.g., L1 to SDRAM memory transfer) 1 

MemDMA read access (e.g., SDRAM to L1 memory transfer) 1.1 

Table 2. External memory performance for on-page word accesses (*  32-bit for ADSP-BF56x processors, 16-bit for 
ADSP-BF53x and ADSP-BF52x processors.)  



  a 

System Optimization Techniques for Blackfin® Processors (EE-324) Page 6 of 22 

Table 3 shows the performance of external memory accesses for off-page accesses. 

Access Type Number of SCLK Cycles for a Word* Access 

Read tRP + tRCD + CL 

Write tWR + tRP + tRCD 

Table 3. External memory performance for off-page word accesses (*  32-bit for ADSP-BF56x processors, 16-bit for 
ADSP-BF53x and ADSP-BF52x processors.) 

In Table 3: 

tRP – Delay between a pre-charge and an activation command (1-7 SCLK cycles) 

tRCD – Delay between an activation and a first read/write command (1-7 SCLK cycles) 

tWR – Delay between a write and a pre-charge command (1-2 SCLK cycles) 

CL (CAS latency) – Delay between a read command and availability of data off-chip (2-3 SCLK cycles) 

Guidelines 

Minimizing Off-Page Accesses 
Off-page access latency is higher when code and data with high spatial locality are mapped across page 
boundaries of an internal memory bank. To minimize off-page accesses, map blocks of highly spatial code 
and data to the same page of an internal memory bank. To further take advantage of the fact that up to 
four memory pages can be open in the SDRAM memory space at a time, it is best to create spatial blocks 
of code and data four times the size of a page and map them across four different pages in each internal 
bank. 

If the spatial characteristics of the application are hard to determine, an application developer can evaluate 
the following approaches relative to the trade-offs specific to an application 

1. Measuring and utilizing the spatial characteristics for a mix of instructions and data is even more 
difficult. To ease the programming effort, in certain cases L2 and external memory can be used as 
separate code and data memory space. For example, if the application code (or the most frequently 
accessed code) can be mapped entirely in L1 or L2 memory, the entire external memory is available 
for mapping data objects. Mapping data objects only to external memory provides greater control and 
predictability for accesses to external memory. However, note that the tradeoff here is the increased 
data access latency. Figure 3 shows an example memory mapping. 



  a 

System Optimization Techniques for Blackfin® Processors (EE-324) Page 7 of 22 

L2 memory
(used to map only code)

Total application code 
size or 99% of the 
frequently accessed 
code = ~140KB 

Bank 0 Bank 1 Bank 2 Bank 3

Page 0 - Data

Page 1 - Data

Page 2 - Data

Page 3

Page 0 - Data

Page 1 - Data

Page 2

Page 3 

Page 0 - Data

Page 1 - Data

Page 2

Page 3 

Page 0 - Data

Page 1

Page 2 

Page 3 

Highly spatial data

Less frequently 
accessed data 
and/or data with low 
spatial locality

External memory

L1 code

L1 Data

L1 code and data SRAM memory 
space completely utilized

L2 memory
(used to map only code)

Total application code 
size or 99% of the 
frequently accessed 
code = ~140KB 

Bank 0 Bank 1 Bank 2 Bank 3

Page 0 - Data

Page 1 - Data

Page 2 - Data

Page 3

Page 0 - Data

Page 1 - Data

Page 2 - Data

Page 3

Page 0 - Data

Page 1 - Data

Page 2

Page 3 

Page 0 - Data

Page 1 - Data

Page 2

Page 3 

Page 0 - Data

Page 1 - Data

Page 2

Page 3 

Page 0 - Data

Page 1 - Data

Page 2

Page 3 

Page 0 - Data

Page 1

Page 2 

Page 3 

Page 0 - Data

Page 1

Page 2 

Page 3 

Highly spatial data

Less frequently 
accessed data 
and/or data with low 
spatial locality

External memory

L1 code

L1 Data

L1 code and data SRAM memory 
space completely utilized

 
Figure 3. Using external memory for data only 



  a 

System Optimization Techniques for Blackfin® Processors (EE-324) Page 8 of 22 

2. External memory can be divided such that code/data is mapped to separate internal memory banks. 
This is helpful if the spilled code from L1 and L2 memory can be mapped such that highly spatial 
code does not cross internal bank page boundaries. Figure 4 shows an example memory map. 

L2 memory
(map code and data)

Total application code 
size or 99% of the 
frequently accessed 
code >> 140KB 

Bank 0 Bank 1 Bank 2 Bank 3

Page 0 - Code

Page 1 - Code

Page 2 - Code

Page 3- Code

Page 0 - Data

Page 1 - Data

Page 2

Page 3 

Page 0 - Data

Page 1 - Data

Page 2

Page 3 

Page 0 - Data

Page 1

Page 2 

Page 3 

Highly spatial data

Less frequently 
accessed data 
and/or data with low 
spatial locality

External memory

L1 code

L1 Data

L1 code and data SRAM memory 
space completely utilized

L2 memory
(map code and data)

Total application code 
size or 99% of the 
frequently accessed 
code >> 140KB 

Bank 0 Bank 1 Bank 2 Bank 3

Page 0 - Code

Page 1 - Code

Page 2 - Code

Page 3- Code

Page 0 - Code

Page 1 - Code

Page 2 - Code

Page 3- Code

Page 0 - Data

Page 1 - Data

Page 2

Page 3 

Page 0 - Data

Page 1 - Data

Page 2

Page 3 

Page 0 - Data

Page 1 - Data

Page 2

Page 3 

Page 0 - Data

Page 1 - Data

Page 2

Page 3 

Page 0 - Data

Page 1

Page 2 

Page 3 

Page 0 - Data

Page 1

Page 2 

Page 3 

Highly spatial data

Less frequently 
accessed data 
and/or data with low 
spatial locality

External memory

L1 code

L1 Data

L1 code and data SRAM memory 
space completely utilized

 

Figure 4. Placing code in only one SDRAM internal memory bank page 



  a 

System Optimization Techniques for Blackfin® Processors (EE-324) Page 9 of 22 

3. Multiple buffers are typically maintained for peripheral data. These buffers can be mapped to separate 
internal banks. Figure 5 shows an example memory map. Also refer to Video Templates for 
Developing Multimedia Applications on Blackfin Processors (EE-301)[7] for alternate ways to manage 
multiple data buffers. 

L2 memory
(map code and data)

Total application code 
size or 99% of the 
frequently accessed 
code <140KB 

Bank 0 Bank 1 Bank 2 Bank 3

Page 0 Frame0

Page 1

Page 2

Page 3

Page 0 Frame1

Page 1 - Data

Page 2

Page 3 

Page 0 Frame2

Page 1 - Data

Page 2

Page 3 

Page 0 Frame3

Page 1

Page 2 

Page 3 

Highly spatial data

Less frequently 
accessed data 
and/or data with low 
spatial locality

External memory

L1 code

L1 Data

L1 code and data SRAM memory 
space completely utilized

L2 memory
(map code and data)

Total application code 
size or 99% of the 
frequently accessed 
code <140KB 

Bank 0 Bank 1 Bank 2 Bank 3

Page 0 Frame0

Page 1

Page 2

Page 3

Page 0 Frame0

Page 1

Page 2

Page 3

Page 0 Frame1

Page 1 - Data

Page 2

Page 3 

Page 0 Frame1

Page 1 - Data

Page 2

Page 3 

Page 0 Frame2

Page 1 - Data

Page 2

Page 3 

Page 0 Frame2

Page 1 - Data

Page 2

Page 3 

Page 0 Frame3

Page 1

Page 2 

Page 3 

Page 0 Frame3

Page 1

Page 2 

Page 3 

Highly spatial data

Less frequently 
accessed data 
and/or data with low 
spatial locality

External memory

L1 code

L1 Data

L1 code and data SRAM memory 
space completely utilized

 

Figure 5. Placing frame buffers in four different SDRAM internal banks  

Other Suggestions 
Typically, frequently accessed code and data objects have high spatial locality. Thus, one can form 
sections of frequently accessed code and data equal to four times the size of a page in an internal bank and 
map them across four separate pages in each of the internal banks. 

Another possibility is to try to avoid direct core accesses to external memory. A DAG access read, as 
noted in Table 2, takes eight SCLK cycles, which can result in significant bandwidth consumption for even 
small amounts of externally mapped data accesses. Thus, use cache or DMA to access data objects 
mapped to external memory. 

System Architecture 

This section discusses the Blackfin processor’s system architecture, which includes the system buses, 
DMA controllers, peripherals, and external bus arbiter, and provides guidelines for optimizing their usage. 
Note that the discussion is only from a performance standpoint and ignores other details. 



  a 

System Optimization Techniques for Blackfin® Processors (EE-324) Page 10 of 22 

System Buses 
The following system buses are connected to the DMA channels, peripherals, and core. 

Peripheral Access Bus (PAB) 
The PAB bus connects all off-core peripherals with the system MMR registers. Register read and write 
accesses on the PAB bus have a latency of three and two SCLK cycles, respectively. 

DMA Buses 
For the ADSP-BF561 processor, the following DMA buses connect the peripherals and the memory 
hierarchy. 

 DMA Access Buses (32-bit DAB1 and 16-bit DAB2) provide DMA data transfers to and from the 
peripherals. 

 DMA Core Buses (32-bit DCB1, DCB2, DCB3, and DCB4) provide DMA data transfer to/from the 
core (A and B) L1 memory, or DMA data transfer between L1 and L2 memory. 

 DMA External Bus (DEB) provides DMA data transfer to/from external memory. 

The transfer latency between peripherals and memory is two SCLK cycles for up to 32 bits per access, 
although any peripheral can access the bus every SCLK cycle to fully utilize the available bandwidth. 
Transfers between different levels of memory can be achieved at a latency of one SCLK cycle for every 32-
bit word. For transfers between L1 and L2 memory, 32-bit words can be transferred every CCLK cycle. 
Table 4 lists the performance for a memory-to-memory DMA transfer between different levels of the 
memory hierarchy. 

Source Destination Approximate SCLKs for n Words 

(from start of DMA to interrupt upon completion) 

32-bit SDRAM L1 Data memory n+14 

L1 Data memory 32-bit SDRAM n+11 

32-bit ASYNC memory L1 Data memory xn+12 

x is the number of wait states + setup/hold SCLK cycles 
(minimum x =2) 

L1 Data memory 32-bit ASYNC memory xn+9 

x is the number of wait states + setup/hold SCLK cycles 
(minimum x =2) 

32-bit SDRAM 32-bit SDRAM 10+(17n/7) 

32-bit ASYNC memory 32-bit ASYNC memory 10+2xn 

x is the number of wait states + setup/hold SCLK cycles 
(minimum x =2) 

L1 Data memory L1 Data memory 2n+12 

Table 4. Performance of the DMA buses for memory-to-memory transfers 

For ADSP-BF53x and ADSP-BF52x processors, the following DMA buses connect the peripherals and 
the memory hierarchy. 



  a 

System Optimization Techniques for Blackfin® Processors (EE-324) Page 11 of 22 

 DMA Access Buses (16-bit DAB) provide DMA data transfer to and from peripherals. 

 DMA Core Buses (16-bit DCB) provide DMA data transfer to and from L1 memory, or DMA data 
transfer between L1 and external memory. 

 DMA External Bus (DEB) provides DMA data transfer to/from external memory. 

The performance and transfer latency for the ADSP-BF53x processors remains the same as for the ADSP-
BF561 processor, but the maximum word size is 16 bits for every SCLK cycle. 

 

 
Figure 6. Internal bus structure for ADSP-BF53x/ADSP-BF52x Blackfin processors. For the ADSP-BF561 
processor, there are two cores, two DMA controllers, and a block of L2 memory. 

External Access Bus (EAB) 
The EAB allows the core to access off-chip memory directly. For ADSP-BF561 dual-core processors, 
transfers of 8-, 16-, or 32-bit words can be performed each SCLK cycle. For ADSP-BF53x processors, 
transfers of 8- or 16-bit words can be performed each SCLK cycle. The EAB runs at a maximum frequency 
of 133 MHz. 

Guidelines 

Utilizing Maximum Bus Width and Packing on Peripherals 
The system throughput can be greatly increased by using the maximum bus width for every transfer. 
Using 32-bit DMA access for ADSP-BF561 processors and 16-bit DMA access for ADSP-BF53x/ADSP-

DMA  
Controller 

CORE 

P 
E 
R 
I 
P 
H 
E 
R 
A 
L 
S 

L1 

 
EBIU 

 
External 
Memory 

PAB 

DAB 

EPB 

DCB 

DEB 

CCLK 

SCLK 

Instruction

Load Data
Load Data

Store Data



  a 

System Optimization Techniques for Blackfin® Processors (EE-324) Page 12 of 22 

BF52x processors combined with packing (if available on the peripheral interface) can free up the system 
buses for other activities, thereby greatly increasing the throughput of the system. For example, the PPI 
provides 32-bit packing for ADSP-BF561 processors and 16-bit packing for ADSP-BF53x/ADSP-BF52x 
processors. 

DMA Traffic Control 
Blackfin processors provide traffic control on all the system buses. If the traffic on the bus is switching 
directions too often, the result will be increased latencies due to bank turnaround times. Using the traffic 
control registers is one of the best ways to optimize the system bus traffic, consequently improving 
bandwidth utilization. The traffic period for each of the DMA buses can be specified to group transfers in 
one direction, thereby minimizing bank turnaround times. Figure 7 illustrates an optimized traffic pattern 
over the DAB bus. 

 

Figure 7. Optimizing DMA traffic over the system buses 

Figure 8 shows the DMA traffic control register. Each of the buses can be programmed to group up to 16 
transfers in one direction. Also, the memory DMA channels can be programmed for round-robin priorities 
using the traffic control register. 

The values for the traffic period should be evaluated on a per-application basis, depending on the 
number of peripherals and the amount of bus traffic within the system. As a rule of thumb, a traffic 
period value close to three is optimal when four or more peripherals are on a DMA controller, and a 
value close to seven is optimal in cases where three peripherals or less are used on a DMA controller. 
Also, note that the traffic period value for the DEB has the most significant impact on system 
performance; therefore, it should be evaluated more thoroughly. 

Also, a smaller value for memory DMA round-robin period will lower the throughput of DMA transfers, 
as the controller is switching between DMA channels every few words. In general, for most applications, 
a higher value balances the performance with equal sharing of resources. 

Memory 

PPI Rx
PPI Tx

Memory 

Unoptimized traffic Optimized traffic



  a 

System Optimization Techniques for Blackfin® Processors (EE-324) Page 13 of 22 

 

Figure 8. DMA traffic control register 

CCLK/SCLK Ratio 
The performance of the buses is affected by core-to-system clock frequency ratios. At ratios below about 
2.5:1, synchronization and pipeline latencies result in lower bus utilization in the system clock domain. At 
a clock ratio of 2:1, for example, DMA typically runs at 2/3 of the system clock rate. Full bandwidth can 
be utilized by implementing higher core-to-system clock ratios. 

DMA Architecture 

The DMA controller manages DMA activity between the peripheral interface and the on-chip and off-chip 
memories. Multiple peripheral DMA channels and memory DMA channels compete for memory 
resources. The access latency is improved by separating the buses on the peripheral DMA channel (DAB 
bus) and the memory-to-core accesses (DCB bus). Also, each peripheral maintains its own FIFO buffer, 
which further reduces the latency as compared to a fully pipelined peripheral-to-memory DMA transfer. 

A DMA transfer can be initiated in several modes: stop, auto-buffer, descriptor, etc. Refer to the DMA 
chapter in the processor's Hardware Reference manual for more information. In descriptor mode, the 
DMA controller fetches the contents to be loaded into the DMA channel registers from a descriptor object 
located in data memory space. A descriptor or descriptor array can hide delays due to MMR writes to the 
DMA registers. 

ADSP-BF561 processors have two DMA controllers, whereas ADSP-BF53x processors have only one. 
For processors with more than one DMA controller, each DMA controller is connected to two separate 
buses; therefore, transfers can be spread across DMA controllers to improve throughput. 

Guidelines 
1. Prioritizing peripherals with high data rates improves throughput. Change the default assignment of 

the peripherals assigned to the DMA controllers using the DMA peripheral map register. 



  a 

System Optimization Techniques for Blackfin® Processors (EE-324) Page 14 of 22 

2. If more than one DMA controller is available, spreading transfers across DMA controllers may reduce 
bandwidth requirements of the system. 

3. Using auto-buffer mode or descriptor mode can save system clock cycles. 

Bus Arbiter 

The EBIU arbitrates between core and DMA accesses to external memory. Before the arbitration policy 
for accessing external memory is addressed, it is important to note when a DMA request is termed urgent 
in the system. 

Urgent DMA 
Consider the following scenario where a peripheral channel is receiving data from an external device. On 
a peripheral receive (memory write), if the peripheral FIFO is full and DMA cannot access the bus to 
write the FIFO contents to memory, a buffer overflow condition is likely. In this situation, an urgent DMA 
request will be issued. 

Similarly, to protect against an underflow condition, an urgent DMA request will be issued on a peripheral 
transmit (memory read) if the peripheral FIFO is empty and DMA cannot get access to the bus to read 
from memory to fill the FIFO. 

For both situations above, an urgent DMA request is issued automatically by the DMA controller, thus no 
user intervention is required. On the ADSP-BF534/BF536/BF537 processors, if a DMA request becomes 
urgent, all pending DMA requests in the system are marked urgent. For the ADSP-BF531/BF532/BF533 
and ADSP-BF561 processors, pending requests are not turned urgent when an urgent request is raised. To 
turn all pending requests urgent on these processors, the CDPRIO bit in the EBIU_AMGCTL register can be 
set, which is described in more detail in the next section. 

Arbitration Scheme 
For external memory accesses, urgent DMA requests have the highest priority by default, followed by 
core requests and then by DMA requests. This priority scheme is programmable for external memory 
accesses as will be discussed in the guidelines section.  

For L1 and L2 memory, DMA and core requests follow a fixed arbitration. For internal memory accesses, 
arbitration is required only if the DMA and core accesses are to the same sub-bank of memory. If 
accessing the same sub-bank, DMA wins over core by default. For locked core accesses, DMA has to wait 
until the locked accesses are complete. 

Guidelines 
For external memory access, core requests have higher priority than DMA requests. This can severely 
impact throughput if there are several core accesses to external memory. This can be avoided by elevating 
all DMA accesses to urgent DMA requests, thus giving all DMA accesses higher priority than core 
accesses. This can be done setting the CDPRIO bit or the DMAPRIO bit in the EBIU_AMGCTL register. 

Other General Guidelines 

Theoretical estimation of the total bandwidth required by the application can provide a good starting point 
to study the feasibility of the system from a bandwidth perspective. In cases where system resources are 
inefficiently utilized, one may encounter buffer underflow or overflow, even if less than 20% of the total 
maximum theoretical bandwidth is utilized. 



  a 

System Optimization Techniques for Blackfin® Processors (EE-324) Page 15 of 22 

Often, buffer underflow/overflow errors go unnoticed during debugging efforts. By using the error 
interrupts supported by Blackfin processors, one can determine if the system is running out of bandwidth. 
The peripheral status registers indicate overflow or underflow errors. Note that the error interrupts are not 
turned on by default. On all Blackfin processors, error interrupts are mapped to IVG7 by default. It is the 
user’s responsibility to determine which peripheral is causing the error within the interrupt service routine. 

Error interrupts can be enabled like any other interrupt vector in an application. The error handler should 
specifically check the status registers of all the peripherals within the system to determine the exact cause 
for the error. 

System Optimization Techniques 
To summarize, the previously discussed techniques are listed below: 

1. Code and data layout techniques 

2. Packing and using the full bus width 

3. Efficient bank placement 

4. Optimizing  bus traffic using the DMA traffic control 

5. Maintaining higher CCLK/SCLK ratios 

6. Spreading data transfers across DMA controllers, when applicable 

7. Using programmable bus priority schemes 

These techniques are evaluated in this section, and each is quantified by considering specific test cases. 
The techniques are progressively added to a test case, and the throughput of the system is evaluated at 
each step. Note that code layout and data layouts are described in PGO Linker - A Code Layout Tool for 
the Blackfin Processors (EE-306)[8] and Video Templates for Developing Multimedia Applications on 
Blackfin Processors (EE-301)[7], respectively, and are not included in the analysis in this EE-Note. 

Evaluation Methodology 
To evaluate system bandwidth, two benchmarks are synthesized. The first benchmark is a simple program 
that performs only memory DMA reads and writes to external memory; no other activity is enabled on the 
system bus for this benchmark. The second benchmark is a more complex program with multiple memory 
DMA channels, peripheral DMA channels, and core activities within the system; this benchmark is used 
to demonstrate the benefits of the discussed optimization techniques. In the later part of this analysis, the 
effects of setting the traffic control register and CCLK/SCLK ratio on the bandwidth utilization is quantified 
separately. 

The goal of the analysis is to show how progressively the system performance can be improved using the 
various optimization techniques. To quantify the effects, the average throughput was chosen as a metric to 
evaluate the optimization techniques. The average system throughput was measured as follows: 

Average system throughput = (Number of data read or writes to external memory)/sec 



  a 

System Optimization Techniques for Blackfin® Processors (EE-324) Page 16 of 22 

The time interval for the system bus activity is configured using the internal core timer. The timer is set to 
generate an interrupt after one second has elapsed. The timer is started just before the peripherals/MDMA 
channels are enabled, and then the peripherals/MDMA channels are disabled within the core timer ISR. 
The amount of data transferred is measured with the respective counters in the interrupt service routines of 
the peripherals. An interrupt is generated on every buffer transfer, and the counter is incremented every 
time a peripheral/MDMA ISR is invoked. As all peripherals and MDMA channels are running in auto-
buffer mode, peripheral interrupt latency does not need to be accounted for in the final calculations for 
throughput. Note that the timer interrupt latency is ignored in the calculations. 

The benchmarks were evaluated on the ADSP-BF561 processor, but the inferences drawn from the results 
are applicable to all Blackfin processors unless otherwise stated. 

System Bandwidth Analysis 
Two benchmarks are discussed in this section: a simple memory DMA example and a realistic embedded 
application featuring video and audio input/output and file sharing. 

Example 1 - Memory DMA 

In this benchmark, buffers are transferred between L1 memory and external memory using a single pair of 
memory DMA channels. The DMA buffer is 8 KB, and the CCLK and SCLK are set to 600 MHz and 
120 MHz, respectively. Table 5 shows the throughput analysis for SDRAM accesses. Note that there is 
only one memory DMA channel running in the system, and no peripheral or core accesses are made to 
external memory. 

DMA Operation Packet  
Size 

Buffers 
Transferred 
Per Second 

Average 
Throughput 
(MB/s) 

% of Max 
Theoretical 
Throughput 
(of 480 MB/s) 

Write access 

L1 to external memory 

8 KB 57303 469  98% 

Read access 

External memory to L1 

8 KB 51165 419 87% 

Table 5. Throughput for DMA read and write accesses to the external memory 

The memory DMA channel is used in auto-buffer mode running uninterrupted until the core timer expires. 
In this benchmark, none of the system optimization techniques are used. However, as shown in Table 5, 
the throughput is close to the maximum theoretical bandwidth available. This is because there is no other 
activity on the external bus except for memory DMA channel 1 read/write accesses. Also, the accesses are 
to the same page in external memory, which avoids page miss penalties. The read from external memory 
is affected due to the CAS latency on every read cycle. Refer to Table 2 for external memory latencies for 
DMA read and write accesses. 



  a 

System Optimization Techniques for Blackfin® Processors (EE-324) Page 17 of 22 

Example 2 - Audio/Video with File Sharing 

For the second benchmark, a more likely application is analyzed, which includes the peripheral interface 
for video in/out, audio in/out, and some file sharing through a network or USB interface. This benchmark 
basically consists of additional interfaces to the established single memory DMA benchmark. The 
following peripheral assignments are used to interface with the external devices. 

External Device Peripherals Assigned DMA Controller (DMAC) Comments 

Video encoder PPI0 DMAC 1 ITU-656  format video input 

Video decoder PPI1 DMAC 1  

Audio in SPORT0 RX DMAC 2  

Audio out SPORT0 TX DMAC 2  

File write to PC  

(USB to ASYNC memory transfers) 

MDMA1_1 DMAC 1 Write to ASYNC memory 

Internal memory DMA transfers MDMA1_0 DMAC 1 To move data from external 
memory to L1 memory 

Table 6. Peripheral/DMA assignment for external devices interfaced to the system 

To evaluate the optimization techniques and suggested guidelines, the following four application 
scenarios are considered: 

Scenario 1: The scenario is set up as shown in Figure 9. This is the baseline scenario model, where none 
of the system optimization techniques have been used. 

 
Figure 9: Example scenario 1 (L2 memory not shown) 

Scenario 2: Memory DMA transfers (MDMA1_0 MDMA1_1) are moved to DMA controller 2 
(MDMA2_0 MDMA2_1). 

Scenario 3: Both DMA controllers are used for memory DMA transfers. 

Scenario 4: A tight core access loop is added to external memory. 

L1

External memory PPI Frame In PPI Frame Out 

MDMA1_0 

DMA0 DMA1 

Core A 

SPORT Frame In DMAx SPORT Frame 
Out

DMAx 

MDMA1_1 



  a 

System Optimization Techniques for Blackfin® Processors (EE-324) Page 18 of 22 

Note that MDMA channels can transfer 32-bit words to external memory each SCLK cycle, which results 
in maximum bus utilization. The MDMA channels run uninterrupted in auto-buffer mode, thereby 
utilizing any free bandwidth between peripheral DMA channel transfers. 

Peripheral Packet Size Packets Transferred 
Per Second 

MB/s 

PPI – In 

(30 MHz-NTSC video in) 

1716 * 525 = 900900 16 14 

PPI – Out 

(30 MHz - NTSC video out) 

1716 * 525 = 900900 9 8 

MDMA 8192 14 1 

SPORT_RX/TX 

(4 MHz) 

32 14649 0.1 

TOTAL 23 

Table 7: Throughput calculation for baseline scenario 1 

 

Optimization 
Technique 

Scenario 1 Scenario 2  

(Spreading to 2 DMA 
Controllers) 

Scenario 3  

(Using Both DMA 
Controllers) 

  MB/s Improvement MB/s Improvement MB/s Improvement 

Baseline 23 1x 23 1x 23 1x 

Bus width and 
PPI packing 

54 2.3x 148 6.4x 148 6.4x 

Efficient bank 
placement 

96 4.2x 348 15.2x 351 15.3x 

DMA traffic 
control 

230 10.0x 330 15.0x 342 15.5x 

Table 8. Throughput improvements with various optimization techniques for three different application scenarios. 

As can be seen from Table 8, using the full bus width and enabling packing can improve the performance 
by up to 2.3x for the first scenario and 6.4x in the second and third scenarios. Efficient bank placement 
can give an additional 8x (15.2x - 6.4x) improvement. By spreading the data transfers across two DMA 
controllers, the throughput is increased by a factor of five times the baseline throughput. DMA traffic 
control improves performance when traffic is scheduled on one DMA controller (demonstrated in the first 
scenario). By using two DMA controllers, the bandwidth utilization is maximized with only bus width 
packing and efficient bank placement; therefore, adding traffic control does not increase the throughput as 
much (scenarios 2 and 3). 



  a 

System Optimization Techniques for Blackfin® Processors (EE-324) Page 19 of 22 

A 4th scenario is also considered, which adds a tight core access to external memory, as shown in Table 9. 

Optimization Scenario 1 

 

Scenario 4 

 

  MB/s Improvement MB/s Improvement 

Baseline 23 1x 21 1x 

Bus width and PPI packing 54 2.3x 52 2.5x 

Efficient bank placement 96 4.2x 54 2.6x 

DMA traffic control 230 10.0x 55 2.6x 

Set CDPRIO  230 10.0x  195 9.3x 

Table 9: Throughput improvements by setting the CDPRIO bit when the core accesses external memory 

As can be seen from Table 9, a tight core access can virtually lock the system bus to not give any access 
to the DMA channels. None of the techniques would be effective if the DMA does not get access to the 
bus. By setting the CDPRIO bit, the throughput increases. 

Evaluating the Traffic Control Register 
As shown above, using DMA traffic control can greatly improve system throughput, but larger traffic 
period values can make other peripherals starve for data for longer periods of time. For example, consider 
when the PPI0 and PPI1 interfaces are used in an application, with PPI1 in receive mode and PPI1 in 
transmit mode. If the DEB traffic period is programmed to 16, either of the PPIs might have to wait for 16 
transfers before it can gain access to the bus again. This may cause the FIFO of the waiting PPI to 
underflow or overflow. 

To demonstrate this, the test case in the associated ZIP file[11] was used. In the project, two PPI channels 
and two MDMA channels on DMA controller 1 are used. In the test case, when traffic control is off, the 
PPI1 status register shows an underflow error. By setting the traffic control to 0x0777, the underflow error 
on PPI1 is eliminated because of the reduced bank turnaround times. In order to increase the throughput 
further, setting a more aggressive value of 0x07ff will again cause an underflow error on PPI1. This is 
because holding the PPI1 for a longer time causes its FIFO to starve for data, eventually resulting in an 
underflow. 

As discussed in the previous section, a general rule of thumb is to use a traffic period value of 0x7 for less 
than three peripherals on a DMA controller and a traffic period of 0x3 when four or more peripherals are 
running on a DMA controller. Also of interest is the fact that the DEB traffic period is more significant to 
the throughput performance than the DCB or the DAB bus traffic period, as the bank turnaround times on 
the external memory have higher penalties than turnarounds on L1 SRAM memories. 

The five most significant bits of the traffic control register control the MDMA round-robin period. Round-
robin allows equal sharing among the MDMA channels, such that a higher priority MDMA channel does 



  a 

System Optimization Techniques for Blackfin® Processors (EE-324) Page 20 of 22 

not block a lower priority channel. However, introducing round-robin lowers the DMA performance due 
to the additional latency in switching between the channels. Figure 10 shows the throughput performance 
versus the MDMA round-robin count for two MDMA channels running uninterrupted on DMA 
controller 1. The throughput is measured in the same way as the previous experiments. 

MDMA Round robin period vs. throughput

0

100

200

300

400

500

32 31 28 24 16 8 4 2 1 0

MDMA Round robin period

Av
er

ag
e 

th
ro

ug
hp

ut
 (M

B
/s

)

 

Figure 10. MDMA round-robin period vs. throughput 

As can be seen, as the round-robin count is decreased, the achievable throughput of the system 
subsequently decreases. Programming the round-robin period to zero results in maximum system bus 
utilization; however, in this case, the higher priority channel (MDMA1) will not allow the lower priority 
channel (MDMA2) to gain access to the bus until its current transaction is complete. 

Evaluating CCLK/SCLK Ratio 
The CCLK to SCLK ratio also affects the system throughput because, at lower core clocks, synchronization 
and increased latencies of the core buses result in reduced system bus utilization. Table 10 shows the 
effects of the CCLK/SCLK ratio on the system throughput.  The test case used is similar to the single 
MDMA channel to transfer an 8-KB DMA buffer between L1 and external memory, and the experiment is 
repeated for different CCLK/SCLK ratios for a read and a write access to external memory. 



  a 

System Optimization Techniques for Blackfin® Processors (EE-324) Page 21 of 22 

 

DMA 
Access 

CCLK/SCLK 
Ratio 

Transfers 
Per Second 

Average Throughput 

(Transfers/sec * buffer size) 

% of Theoretical 
Throughput 

(of 480 MB/s) 

5 57303 469 97.71 

4 46265 379 78.96 

3 46265 379 78.96 

2 33301 272 56.67 

Write 

1 23378 191 39.79 

5 51165 419 87.29 

4 51165 419 87.29 

3 51165 419 87.29 

2 38757 317 66.04 

Read 

1 29196 239 49.79 

Table 10: Effects of CCLK/SCLK ratio on system throughput 

As can be seen, the performance drops considerably below the 2:1 CCLK/SCLK ratio. The read is less 
sensitive, as the core bus latencies are hidden due to the additional CAS latency involved with a read 
access to external memory. The reduced bus utilization is due to DCB latencies, but this would be hidden 
if there were additional peripheral activities on the system bus, such that the DCB was not the bottleneck. 

Conclusion 
Blackfin processors provide several optimization techniques that can help to fully utilize the available 
bandwidth over the EBIU. The memory and system optimization techniques discussed in this application 
note will help produce efficient code/data layouts and optimize system performance. 



  a 

System Optimization Techniques for Blackfin® Processors (EE-324) Page 22 of 22 

References 
[1] ADSP-BF533 Blackfin Processor Hardware Reference. Rev 3.2, July 2006. Analog Devices, Inc. 

[2] ADSP-BF561 Blackfin Processor Hardware Reference. Rev 1.0, July 2005. Analog Devices, Inc. 

[3] ADSP-BF537 Blackfin Processor Hardware Reference. Rev 2.0, December 2005. Analog Devices, Inc. 

[4] Embedded Media Processing. David Katz and Rick Gentile. Newnes Publishers., Burlington, MA, USA, 2005. 

[5] Video Framework Considerations for Image Processing on Blackfin Processors (EE-276). Rev 1, September 2005. 
Analog Devices Inc. 

[6] VisualDSP++ 4.5 Device Drivers and System Services Manual for Blackfin Processors. Rev 2.0, March 2006.   
Analog Devices, Inc. 

[7] Video Templates for Developing Multimedia Applications on Blackfin Processors (EE-301). Rev 1, September 2006. 
Analog Devices Inc. 

[8] PGO Linker - A Code Layout Tool for the Blackfin Processors (EE-306). Rev 1, December 2006. Analog Devices Inc. 

[9] Using Cache Memory on Blackfin Processors (EE-271). Rev 1, June 2005. Analog Devices Inc. 

[10] The Best way to move multimedia data. David Katz and Rick Gentile. 
http://www.embedded.com/showArticle.jhtml?articleID=16700107. December 2003. Embedded.com. 

[11] Associated ZIP File. Rev 1, May 2007. Analog Devices, Inc. 

Document History 

Revision Description 

Rev 1 – July 10, 2007  
by Kaushal Sanghai 

Initial Release 

 

http://www.embedded.com/showArticle.jhtml?articleID=16700107

	Introduction
	Blackfin Processor Architecture
	Memory Hierarchy
	L1 Memory Description
	L1 Code and Data Memory Sub-Banking
	L1 SRAM/Cache Configuration
	Guidelines
	Taking Advantage of Multi-Ported Sub-Banks
	Using L1 SRAM Only
	Using L1 SRAM and Cache
	Using DMA to Avoid Cache Miss Penalties


	L2 SRAM Description
	Guidelines

	External Memory Description
	SDRAM Banking
	SDRAM Performance
	Guidelines
	Minimizing Off-Page Accesses
	Other Suggestions



	System Architecture
	System Buses
	Peripheral Access Bus (PAB)
	DMA Buses
	External Access Bus (EAB)
	Guidelines
	Utilizing Maximum Bus Width and Packing on Peripherals
	DMA Traffic Control
	CCLK/SCLK Ratio



	DMA Architecture
	Guidelines

	Bus Arbiter
	Urgent DMA
	Arbitration Scheme
	Guidelines

	Other General Guidelines

	System Optimization Techniques
	Evaluation Methodology
	System Bandwidth Analysis
	Example 1 - Memory DMA
	Example 2 - Audio/Video with File Sharing

	Evaluating the Traffic Control Register
	Evaluating CCLK/SCLK Ratio
	Conclusion
	 References
	Document History

