
aa Engineer To Engineer Note EE-110
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Copyright 2000, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’
products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective
holders. Information furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is
assumed by Analog Devices regarding the technical accuracy of the content provided in all Analog Devices’ Engineer-to-Engineer Notes.

A Quick Primer on ELF and DWARF
Contributed by Ken Butler,
Assemblers and Simulator Products Manager

Introduction
The 4.1 VisualDSP® SHARC® and all newer
VisualDSP tools for other ADI DSPs will generate
ELF/DWARF-2 object files and executables. This
application note will help explain what this means
for users, especially users that have been using the
3.3 and 4.0 VisualDSP (SHARC) tools. It will also
explain why the change has been made.

ELF Object File Format
ELF (Executable and Linking Format) is an object
file format originally developed by Unix System
Laboratories. It was selected by the Tools
Interface Standards committee as the basis for a
portable object file format that works on a variety
of operating systems. Refer to the standard
“Executable and Linkable Format (ELF), Tools
Interface Standards (TIS), Portable Formats
Specification, Version 1.1.”

In the Analog Devices, Inc. (ADI) tools all linkable
objects (.doj) and all executable images (.dxe) are
stored as ELF files.

ADI started using ELF in the 4.0 VisualDSP tools
for SHARC. Presently, the only ADI software
development tools that do not use ELF are the
ADSP-218x tools that generate AEXE; this will
change with the 7.0 release of the ADSP-218x
tools.

DWARF debug information format
DWARF is a format for the information generated
by compilers, assemblers and linkers that are
necessary for symbolic source-level debugging. It

is a debugging information format that does not
favor the design of any compiler or debugger. It
was also designed to meet the debugging needs of
different languages in a unified manner. ADI uses
version 2 of the DWARF standard, sometimes
referred to as DWARF-2. Refer to the standard,
“DWARF Debugging Information Format, Tools
Interface Standards (TIS), Portable Formats
Specification, Version 1.1”.

In ADI tools, the debugging information produced
by the compiler and assembler is in DWARF-2
format. The VisualDSP debugger reads DWARF-
2 debug information.

The software development tools for the ADSP-
21160 (now in beta) and the ADSP-TS001 (now
in beta) are complete ELF/DWARF-2 toolsets.
The tools for the SHARC will be ELF/DWARF-2
starting with the 4.1 release. The ADSP-218x and
ADSP-219x tools will be ELF/DWARF-2 starting
with the 7.0 release. All toolsets for new processors
will be ELF/DWARF-2.

Previous formats
The 3.3 SHARC tools produced COFF object files
and executables. The debugging information was in
SDB. (A good reference for COFF and SDB is
“Understanding and Using COFF” by Gintaras R.
Gircys”, O’reilly & Associates). The 4.0
VisualDSP SHARC tools used ELF object files but
maintained the SDB format for debug information.
The 4.1 SHARC tools will be an ELF/DWARF
toolset. (The table below shows object and debug
formats for ADI tools).

The ADSP-218x tools use AEXE as an object file
format. The 7.0 release of theADSP- 218x tools
will be an ELF/DWARF toolset.

EE-110 Page 2
Technical Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com,

WEB: www.analog.com/dsp

Object File Implications
If you are starting a new program the object file
format and debug information format shouldn't
affect how you program at all. There are the
general advantages of using industry standard file
formats as described towards the end of this note.

If you have existing code targeted for a non-ADI
part, the object file format shouldn't affect you
either. You will need to recompile your C code,
translate and assemble any assembly code, and then
proceed.

If you are migrating from previous versions of ADI
tools, you may notice a difference. The
ELF/DWARF object format is richer in information
than the previous object formats. ADI will provide
object file converters (e.g., coff2elf that converts
from SHARC 3.3 COFF format to ELF, or
aexe2elf that converts from 218x AEXE format to
ELF) that will convert existing object files and
executables to the ELF/DWARF format.

ADI recommends using the latest tools to rebuild
from source. But in many cases users will have
libraries for which they may not have source code.
Using the object file converters

these users can convert their libraries to ELF and
proceed using the latest tools.

When the SHARC 4.0 tools were released, users
were able to convert COFF object files to ELF. In
addition, the VisualDSP debugger in the 4.0 release
was able to read and debug COFF object files
directly (without conversion). Users who had 3.3
generated files that contained debugging information
would find that the object file converter would
preserve the debugging information. This behavior is
unique to the 4.0 SHARC tools (and the 4.0.1
service pack). In general, most object file
converters will not preserve debug information.

A SHARC Example
If you had an object library of math routines that
were in COFF format, you would be able to run the
coff2elf conversion tool over the library to produce
an object library of math routines that were in ELF
format. You could then use the ELF/DWARF
tools for the rest of your development. You would
be able to use the math routines as before.

Converting an Existing Object File with Debug
Information
If you have an existing object file that already
contains debug information you have two choices.
If you have the source you can recompile to

The following table shows object and debug formats for ADI tools:
Toolset 3.3

SHARC
4.0
SHARC

4.1
SHARC

6.1 218x 7.0 218x 21160 TS001

Object
Format

COFF ELF ELF AEXE ELF ELF ELF

Debug
Format

SDB SDB DWARF NONE DWARF DWAR
F

DWAR
F

Object file
extension

.obj .doj .doj .obj .doj .doj .doj

Executable
extension

.exe .dxe .dxe .exe .dxe .dxe .dxe

EE-110 Page 3
Technical Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com,

WEB: www.analog.com/dsp

produce a file in the ELF/DWARF format. This file
would have debugging information that will be more
complete than the original file.

If you don't have source you can convert the file to
ELF/DWARF and continue development. You
would be able to link the file in and it will execute
correctly. In the debugger you would only have
symbol table information, you would not have
source level debugging information -- the latter
information is what is lost in the conversion from
COFF to ELF/DWARF. (On the other hand, your
ability to do source level debugging is already
limited since you don't have source).

Advantages of ELF Objects
The ADI tools changed the object file format in
order to better support our DSP architectures. On
the SHARC, the COFF file required extensions to
support the advanced linker support for overlay
linking and multiprocessor linking. For the 218x
tools, the object file support does not provide any
means of carrying debugging information with the
object file.

COFF can be extended (normally a vendor will
refer to their version of ECOFF -- Extended
COFF). However, every time you extend COFF
or make a variation on the extension you often need
to "retool" all of the existing tools that operate on
the ECOFF. In contrast, ELF has been designed so
it can be extended without affecting the existing
tools that produce or consume the ELF object file
format.

COFF also has some other artificial limitations
including a limit on section (segment) name lengths,
object file size (COFF is a 16-bit object file
format); and ELF is portable across different hosts.

An ELF file produced on a Sun/Solaris machine can
be simply transferred to a PC and read by tools on
that machine without any conversion. In order to
move this file in COFF, the user would have to run
a utility, CSWAP, that would fix up the file to
account for the different byte-ordering between the
Sparc and the PC.

By selecting a generalized standard object file
format ADI is able to use the same object file
format for all of the toolsets. This commonality
reduces the development time needed for building
any piece of the ELF/DWARF toolchain. In
addition, the tools are generally more robust as
maintenance and enhancements will be shared by all
tools.

Advantages of DWARF Debug Information
It's important to keep in mind that debug formats
and object files are independent. The 4.0 SHARC
tools did support the SDB format that was used by
the 3.3 tools. (This is why it was possible to debug
3.3 objects using the 4.0 tools). However there are
good reasons to change to a new debug format.
The existing format would have to change to
support debugging of overlays, and this was put into
the DWARF format. There is room in DWARF for
future expansion of debugging capability for features
like advanced language support (e.g., C++) or
debugging of optimized code.

Users will also notice more complete and robust
debugging information through using DWARF-2.
There were some aspects of C that weren't
adequately represented in the previous format that
are using DWARF-2.

For the ADSP-218x DSPs, adding a true debug
format to the ADSP-218x object file format will
greatly improve the capabilities of any 218x
debugger. The AEXE format does not include any

EE-110 Page 4
Technical Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com,

WEB: www.analog.com/dsp

kind of debugging information in the object file. The
debugger was able to reconstruct a lot of the
information from processing sources files and
compiler output, but this process was extremely
error-prone, and was guaranteed to be incorrect if
a source file had changed since a file was compiled.

Conclusion
The use of ELF and DWARF-2 for Analog
Devices DSP development tools results from user
demands for more and better tool set features. Use
of these formats results in a more robust
development development environment today, and
will help tool developers enhance the tool sets in
upcoming releases.

