
Engineer-to-Engineer Note EE-185

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Fast Floating-Point Arithmetic Emulation on Blackfin® Processors
Contributed by Central Apps Rev 4 – August 23, 2007

Copyright 2007, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
Processors optimized for digital signal
processing are divided into two broad categories:
fixed-point and floating-point. In general, the
cutting-edge fixed-point families tend to be fast,
low power, and low cost, while floating-point
processors offer high precision and wide
dynamic range in hardware.

While the Blackfin® processor architecture was
designed for native fixed-point computations, it
can achieve clock speeds that are high enough to
emulate floating-point operations in software.
This gives the system designer a choice between
hardware efficiency of floating-point processors
and the low cost and power of Blackfin processor
fixed-point devices. Depending on whether full
standard conformance or speed is the goal,
floating-point emulation on a fixed-point
processor might use the IEEE-754 standard or a
fast floating-point (non-IEEE-compliant) format.

On the Blackfin processor platform, IEEE-754
floating-point functions are available as library
calls from both C/C++ and assembly language.
These libraries emulate floating-point processing
using fixed-point logic.

To reduce computational complexity, it is
sometimes advantageous to use a more relaxed
and faster floating-point format. A significant
cycle savings can often be achieved in this way.

This document shows how to emulate fast
floating-point arithmetic on the Blackfin
processor. A two-word format is employed for

representing short and long fast floating-point
data types. C-callable assembly source code is
included for the following operations: addition,
subtraction, multiplication and conversion
between fixed-point, IEEE-754 floating-point,
and the fast floating-point formats.

Overview
In fixed-point number representation, the radix
point is always at the same location. While this
convention simplifies numeric operations and
conserves memory, it places a limit the
magnitude and precision. In situations that
require a large range of numbers or high
resolution, a changeable radix point is desirable.

Very large and very small numbers can be
represented in floating-point format. Floating-
point format is basically scientific notation; a
floating-point number consists of a mantissa (or
fraction) and an exponent. In the IEEE-754
standard, a floating-point number is stored in a
32-bit word, with a 23-bit mantissa, an 8-bit
exponent, and a 1-bit sign. In the fast floating-
point two-word format described in this
document, the exponent is a 16-bit signed
integer, while the mantissa is either a 16- or a 32-
bit signed fraction (depending on whether the
short of the long fast floating-point data type is
used).

Normalization is an important feature of floating-
point representation. A floating-point number is
normalized if it contains no redundant sign bits

 a

Fast Floating-Point Arithmetic Emulation on Blackfin® Processors (EE-185) Page 2 of 9

in the mantissa; that is, all bits are significant.
Normalization provides the highest precision for
the number of bits available. It also simplifies the
comparison of magnitudes because the number
with the greater exponent has the greater
magnitude; it is only necessary to compare the
mantissas if the exponents are equal. All routines
presented in this document assume normalized
input and produce normalized results.

There are some differences in arithmetic
flags between the ADSP-BF535
Blackfin processor and the rest of the
Blackfin processors. All of the assembly
code in this document was written for
the non-ADSP-BF535 Blackfin
processors.

Short and Long Fast Floating-
Point Data Types
The code routines in this document use the two-
word format for two different data types. The
short data type (fastfloat16) provides one 16-bit
word for the exponent and one 16-bit word for
the fraction. The long data type (fastfloat32)
provides one 16-bit word for the exponent and
one 32-bit word for the fraction. The fastfloat32
data type is more computationally intensive, but
provides greater precision than the fastfloat16
data type. Signed twos-complement notation is
assumed for both the fraction and the exponent.

Listing 1 Format of the fastfloat16 data type

typedef struct {

 short exp;

 fract16 frac;

} fastfloat16;

Listing 2 Format of the fastfloat32 data type

typedef struct {

 short exp;

 fract32 frac;

} fastfloat32;

Converting Between Fixed-Point
and Fast Floating-Point Formats
There are two Blackfin processor instructions
used in fixed-point to fast floating-point
conversion. The first instruction, signbits,
returns the number of sign bits in a number (i.e.
the exponent). The second, ashift, is used to
normalize the mantissa.

Assembly code for both the short version
(fastfloat16) and the long version (fastfloat32) is
shown below.

Listing 3 Fixed-point to short fast floating-point
(fastfloat16) conversion

/**************************************
fastfloat16 fract16_to_ff16(fract16);

Input parameters (compiler convention):

R0.L = fract16

Output parameters (compiler
convention):

R0.L = ff16.exp

R0.H = ff16.frac

**************************************/

_fract16_to_ff16:

.global _fract16_to_ff16;

r1.l = signbits r0.l; // get the number
of sign bits

r2 = -r1 (v);

r2.h = ashift r0.l by r1.l; //
normalize the mantissa

r0 = r2;

rts;

_fract16_to_ff16.end:

 a

Fast Floating-Point Arithmetic Emulation on Blackfin® Processors (EE-185) Page 3 of 9

Listing 4 Fixed-point to long fast floating-point
(fastfloat32) conversion

/**************************************
fastfloat32 fract32_to_ff32(fract32);

Input parameters (compiler convention):

R0 = fract32

Output parameters (compiler
convention):

R0.L = ff32.exp

R1 = ff32.frac

**************************************/

_fract32_to_ff32:

.global _fract32_to_ff32;

r1.l = signbits r0; // get the number
of sign bits

r2 = -r1 (v);

r1 = ashift r0 by r1.l; // normalize
the mantissa

r0 = r2;

rts;

_fract32_to_ff32.end:

Converting two-word fast floating-point numbers
to fixed-point format is made simple by using the
ashift instruction.

Assembly code for both the short version
(fastfloat16) and the long version (fastfloat32) is
shown below.

Listing 5 Short fast floating-point (fastfloat16) to fixed-
point conversion

/**************************************
fract16 ff16_to_fract16(fastfloat16);

Input parameters (compiler convention):

R0.L = ff16.exp

R0.H = ff16.frac

Output parameters (compiler
convention):

R0.L = fract16

**************************************/

_ff16_to_fract16:

.global _ff16_to_fract16;

r0.h = ashift r0.h by r0.l; // shift
the binary point

r0 >>= 16;

rts;

_ff16_to_fract16.end:

Listing 6 Long fast floating-point (fastfloat32) to fixed-
point conversion

/**************************************
fract32 ff32_to_fract32(fastfloat32);

Input parameters (compiler convention):

R0.L = ff32.exp

R1 = ff32.frac

Output parameters (compiler
convention):

R0 = fract32

**************************************/

_ff32_to_fract32:

.global _ff32_to_fract32;

r0 = ashift r1 by r0.l; // shift the
binary point

rts;

_ff32_to_fract32.end:

 a

Fast Floating-Point Arithmetic Emulation on Blackfin® Processors (EE-185) Page 4 of 9

Converting Between Fast
Floating-Point and IEEE
Floating-Point Formats
The basic approach to converting from the IEEE
floating-point format to the fast floating-point
format begins with extracting the mantissa,
exponent, and sign bit ranges from the IEEE
floating-point word. The exponent needs to be
unbiased before setting the fast floating-point
exponent word. The mantissa is used with the
sign bit to create a twos-complement signed
fraction, which completes the fast floating-point
two-word format.

Reversing these steps converts a fast floating-
point number into IEEE floating-point format.

It is outside the scope of this document to
provide more detail about the IEEE-754 floating-
point format. The attached compressed package
contains sample C code to perform the
conversions.

The compressed package that
accompanies this document contains
sample routines that convert between the
fast floating-point and the IEEE floating-
point numbers. Note that they do not
treat any special IEEE defined values
like NaN, +∞, or -∞.

Floating-Point Addition
The algorithm for adding two numbers in two-
word fast floating-point format is as follows:

1. Determine which number has the larger
exponent. Let’s call this number X (= Ex, Fx)
and the other number Y (= Ey, Fy).

2. Set the exponent of the result to Ex.

3. Shift Fy right by the difference between Ex
and Ey, to align the radix points of Fx and Fy.

4. Add Fx and Fy to produce the fraction of the
result.

5. Treat overflows by scaling back the input
parameters, if necessary.

6. Normalize the result.

Assembly code for both the short version
(fastfloat16) and the long version (fastfloat32) is
shown below.

For the fastfloat16 arithmetic operations
(add, subtract, divide), the following
parameter passing conventions are used.
These are the default conventions used
by the Blackfin processor compiler.

Calling Parameters

r0.h = Fraction of x (=Fx)

r0.l = Exponent of x (=Ex)

r1.h = Fraction of y (=Fy)

r1.l = Exponent of y (=Ey)

Return Values

r0.h = Fraction of z (=Fz)

r0.l = Exponent of z (=Ez)

Listing 7 Short fast floating-point (fastfloat16) addition

/**************************************
fastfloat16
add_ff16(fastfloat16,fastfloat16);

**************************************/

_add_ff16:

.global _add_ff16;

r2.l = r0.l - r1.l (ns); // is Ex > Ey?

cc = an; // negative result?

r2.l = r2.l << 11 (s); // guarantee
shift range [-16,15]

r2.l = r2.l >>> 11;

if !cc jump _add_ff16_1; // no, shift y

r0.h = ashift r0.h by r2.l; // yes,
shift x

jump _add_ff16_2;

 a

Fast Floating-Point Arithmetic Emulation on Blackfin® Processors (EE-185) Page 5 of 9

_add_ff16_1:

r2 = -r2 (v);

r1.h = ashift r1.h by r2.l; // shift
the y value

a0 = 0;

a0.l = r0.l; // you can't do r1.h =
r2.h

r1.l = a0 (iu); // so use a0.x as an
intermediate storage place

_add_ff16_2:

r2.l = r0.h + r1.h (ns); // add
fractional parts

cc = v; // was there an overflow?

if cc jump _add_ff16_3;

// normalize

r0.l = signbits r2.l; // get the number
of sign bits

r0.h = ashift r2.l by r0.l; //
normalize the mantissa

r0.l = r1.l - r0.l (ns); // adjust the
exponent

rts;

// overflow condition for mantissa
addition

_add_ff16_3:

r0.h = r0.h >>> 1; // shift the
mantissas down

r1.h = r1.h >>> 1;

r0.h = r0.h + r1.h (ns); // add
fractional parts

r2.l = 1;

r0.l = r1.l + r2.l (ns); // adjust the
exponent

rts;

_add_ff16.end:

For the fastfloat32 arithmetic operations
(add, subtract, divide), the following
parameter passing conventions are used.
These are the default conventions used
by the Blackfin processor compiler.

Calling Parameters

r1 = Fraction of x (=Fx)

r0.l = Exponent of x (=Ex)

r3 = [FP+20] = Fraction of y
(=Fy)

r2.l = Exponent of y (=Ey)

Return Values

r1 = Fraction of z (=Fz)

r0.l = Exponent of z (=Ez)

Listing 8 Long fast floating-point (fastfloat32) addition

/**************************************
fastfloat32 add_ff32(fastfloat32,
fastfloat32);

**************************************/

#define FF32_PROLOGUE() link 0; r3 =
[fp+20]; [--sp]=r4; [--sp]=r5

#define FF32_EPILOGUE() r5=[sp++];
r4=[sp++]; unlink

.global _add_ff32;

_add_ff32:

FF32_PROLOGUE();

r4.l = r0.l - r2.l (ns); // is Ex > Ey?

cc = an; // negative result?

r4.l = r4.l << 10 (s); // guarantee
shift range [-32,31]

r4.l = r4.l >>> 10;

if !cc jump _add_ff32_1; // no, shift
Fy

r1 = ashift r1 by r4.l; // yes, shift
Fx

jump _add_ff32_2;

 a

Fast Floating-Point Arithmetic Emulation on Blackfin® Processors (EE-185) Page 6 of 9

_add_ff32_1:

r4 = -r4 (v);

r3 = ashift r3 by r4.l; // shift Fy

r2 = r0;

_add_ff32_2:

r4 = r1 + r3 (ns); // add fractional
parts

cc = v; // was there an overflow?

if cc jump _add_ff32_3;

// normalize

r0.l = signbits r4; // get the number
of sign bits

r1 = ashift r4 by r0.l; // normalize
the mantissa

r0.l = r2.l - r0.l (ns); // adjust the
exponent

FF32_EPILOGUE();

rts;

// overflow condition for mantissa
addition

_add_ff32_3:

r1 = r1 >>> 1;

r3 = r3 >>> 1;

r1 = r1 + r3 (ns); // add fractional
parts

r4.l = 1;

r0.l = r2.l + r4.l (ns); // adjust the
exponent

FF32_EPILOGUE();

rts;

_add_ff32.end:

Floating-Point Subtraction
The algorithm for subtracting one number from
another in two-word fast floating-point format is
as follows:

1. Determine which number has the larger
exponent. Let’s call this number X (= Ex, Fx)
and the other number Y (= Ey, Fy).

2. Set the exponent of the result to Ex.

3. Shift Fy right by the difference between Ex
and Ey, to align the radix points of Fx and Fy.

4. Subtract the fraction of the subtrahend from
the fraction of the minuend to produce the
fraction of the result.

5. Treat overflows by scaling back the input
parameters, if necessary.

6. Normalize the result.

Assembly code for both the short version
(fastfloat16) and the long version (fastfloat32) is
shown below.

Listing 9 Short fast floating-point (fastfloat16)
subtraction

/**************************************
fastfloat16 sub_ff16(fastfloat16,
fastfloat16);

**************************************/

.global _sub_ff16;

_sub_ff16:

r2.l = r0.l - r1.l (ns); // is Ex > Ey?

cc = an; // negative result?

r2.l = r2.l << 11 (s); // guarantee
shift range [-16,15]

r2.l = r2.l >>> 11;

if !cc jump _sub_ff16_1; // no,
shift y

r0.h = ashift r0.h by r2.l; // yes,
shift x

jump _sub_ff16_2;

_sub_ff16_1:

r2 = -r2 (v);

r1.h = ashift r1.h by r2.l; // shift y

a0 = 0;

a0.l = r0.l; // you can't do r1.h =
r2.h

r1.l = a0 (iu); // so use a0.x as an
intermediate storage place

_sub_ff16_2:

 a

Fast Floating-Point Arithmetic Emulation on Blackfin® Processors (EE-185) Page 7 of 9

r2.l = r0.h - r1.h (ns); // subtract
fractions

cc = v; // was there an overflow?

if cc jump _sub_ff16_3;

// normalize

r0.l = signbits r2.l; // get the number
of sign bits

r0.h = ashift r2.l by r0.l; //
normalize mantissa

r0.l = r1.l - r0.l (ns); // adjust
exponent

rts;

// overflow condition for mantissa
subtraction

_sub_ff16_3:

r0.h = r0.h >>> 1; // shift the
mantissas down

r1.h = r1.h >>> 1;

r0.h = r0.h - r1.h (ns); // subtract
fractions

r2.l = 1;

r0.l = r1.l + r2.l (ns); // adjust the
exponent

rts;

_sub_ff16.end:

Listing 10 Long fast floating-point (fastfloat32)
subtraction

/**************************************
fastfloat32 sub_ff32(fastfloat32,
fastfloat32);

**************************************/

#define FF32_PROLOGUE() link 0; r3 =
[fp+20]; [--sp]=r4; [--sp]=r5

#define FF32_EPILOGUE() r5=[sp++];
r4=[sp++]; unlink

.global _sub_ff32;

_sub_ff32:

FF32_PROLOGUE();

r4.l = r0.l - r2.l (ns); // is Ex
> Ey?

cc = an; // negative result?

r4.l = r4.l << 10 (s); // guarantee
shift range [-32,31]

r4.l = r4.l >>> 10;

if !cc jump _sub_ff32_1; // no,
shift Fy

r1 = ashift r1 by r4.l; // yes, shift
Fx

jump _sub_ff32_2;

_sub_ff32_1:

r4 = -r4 (v);

r3 = ashift r3 by r4.l; // shift Fy

r2 = r0;

_sub_ff32_2:

r4 = r1 - r3 (ns); // subtract
fractions

cc = v; // was there an overflow?

if cc jump _sub_ff32_3;

// normalize

r0.l = signbits r4; // get the number
of sign bits

r1 = ashift r4 by r0.l; // normalize
the mantissa

r0.l = r2.l - r0.l (ns); // adjust the
exponent

FF32_EPILOGUE();

rts;

// overflow condition for mantissa
subtraction

_sub_ff32_3:

r1 = r1 >>> 1;

r3 = r3 >>> 1;

r1 = r1 - r3 (ns); // subtract
fractions

r4.l = 1;

r0.l = r2.l + r4.l (ns); // adjust the
exponent

FF32_EPILOGUE();

rts;

_sub_ff32.end:

 a

Fast Floating-Point Arithmetic Emulation on Blackfin® Processors (EE-185) Page 8 of 9

Floating-Point Multiplication
Multiplication of two numbers in two-word fast
floating-point format is simpler than either
addition or subtraction because there is no need
to align the radix points. The algorithm to
multiply two numbers x and y (Ex, Fx and Ey,
Fy) is as follows:

1. Add Ex and Ey to produce the exponent of the
result.

2. Multiply Fx by Fy to produce the fraction of
the result.

3. Normalize the result.

Assembly code for both the short version
(fastfloat16) and the long version (fastfloat32) is
shown below.

Listing 11 Short fast floating-point (fastfloat16)
multiplication

/**************************************
fastfloat16 void mult_ff16(fastfloat16,
fastfloat16);

**************************************/

.global _mult_ff16;

_mult_ff16:

r3.l = r0.l + r1.l (ns);

a0 = r0.h * r1.h;

r2.l = signbits a0; // get the number
of sign bits

a0 = ashift a0 by r2.l; // normalize
the mantissa

r0 = a0;

r0.l = r3.l - r2.l (ns); // adjust the
exponent

rts;

_mult_ff16.end:

Listing 12 Long fast floating-point (fastfloat16)
multiplication

/**************************************

fastfloat32 void mult_ff32(fastfloat32,
fastfloat32);

**************************************/

#define FF32_PROLOGUE() link 0; r3 =
[fp+20]; [--sp]=r4; [--sp]=r5

#define FF32_EPILOGUE() r5=[sp++];
r4=[sp++]; unlink

.global _mult_ff32;

_mult_ff32:

FF32_PROLOGUE();

r0.l = r0.l + r2.l (ns); // add the
exponents

// perform 32-bit fractional
multiplication (taken from VisualDSP++
compiler implementation)

r2 = pack(r1.l, r3.l);

cc = r2;

a1 = r1.l * r3.l (fu);

a1 = a1 >> 16;

a1 += r1.h * r3.l (m), a0 = r1.h *
r3.h;

cc &= av0;

a1 += r3.h * r1.l (m);

a1 = a1 >>> 15;

r1 = (a0 += a1);

r2 = cc;

r1 = r2 + r1;

// normalize

r4.l = signbits r1; // get the number
of sign bits

r1 = ashift r1 by r4.l; // normalize
the mantissa

r0.l = r0.l - r4.l (ns); // adjust the
exponent

FF32_EPILOGUE();

rts;

_mult_ff32.end:

Summary
The two-word fast floating-point technique
described in this document can greatly improve
floating-point computational efficiency on the

 a

Fast Floating-Point Arithmetic Emulation on Blackfin® Processors (EE-185) Page 9 of 9

fixed-point Blackfin Processor platform. The
specific operations described above can be used
as standalone routines, or as starting points for
more advanced calculations specific to a

particular application. The compressed source
code package that accompanies this document
provides a starting for using the fast floating-
point method in new projects.

References
[1] Digital Signal Processing Applications: Using the ADSP-2100 Family (Volume 1). 1992. Analog Devices, Inc.

[2] The Art of Computer Programming: Volume 2 / Seminumerical Algorithms. Knuth, D.E. Second Edition,1969. Addison-
Wesley Publishing Company.

[3] IEEE Standard for Binary Floating-Point Arithmetic: ANSI/IEEE Std 754-1985. 1985. Institute of Electrical and
Electronicsd Engineers.

Document History

Revision Description

Rev 4 – August 23, 2007
by Tom L.

Corrected the mult_ff32 function; Updated formatting

Rev 3 – May 26, 2003
by Tom L.

Code updated to check for overflow conditions; New test cases added.

Rev 2 – May 12, 2003
by Tom L.

Updated according to new naming conventions

Rev 1 – February 19, 2003
by Tom L.

Initial Release

	Introduction
	Overview
	Short and Long Fast Floating-Point Data Types
	Converting Between Fixed-Point and Fast Floating-Point Formats
	Converting Between Fast Floating-Point and IEEE Floating-Point Formats
	Floating-Point Addition
	Floating-Point Subtraction
	Floating-Point Multiplication
	Summary
	References
	Document History

