
Engineer-to-Engineer Note EE-303

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Using VisualDSP++® Thread-Safe Libraries with a Third-Party RTOS
Contributed by Andy Millard Rev 1 – November 10, 2006

Copyright 2006, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
This document describes how to use the thread-safe C and C++ libraries provided with VisualDSP++®
4.5 with an RTOS other than VDK. This information is provided as a guide for users who have a firm
understanding of multithreaded programming principles and the procedures used in their multithreaded
operating system.

Thread-safe libraries are designed to work specifically with the VDK RTOS, which is the only
configuration supported by Analog Devices.

Overview
The C and C++ libraries that are shipped with VisualDSP++ 4.5 are available in various flavors, several of
which contain functions considered to be safe for use in a multithreaded environment. These thread-safe
versions of the libraries were developed as a requisite for the VDK kernel and are not intended to be used
in conjunction with any other RTOS. By replacing the VDK functions called from within the C and C++
libraries with equivalent functions from the alternative RTOS, adding the relevant support to the
initialization objects and modifying the Linker Description File (.LDF), it is possible to integrate the
libraries into another environment.

It is assumed that users wishing to use an alternative RTOS will be using initialization code provided by
the RTOS developer responsible for heap and stack initialization, file I/O, and other required components.
This overrides the behavior of the default initialization code provided with VisualDSP++. A customized
.LDF file provided with the RTOS must be used to include these new objects.

When using the multithreaded C run-time support library, the application must be linked against the
multithreaded C++ run-time support library. The C library requires the use of a C++ mutex class defined
in the C++ library.

 a

Using VisualDSP++® Thread-Safe Libraries with a Third-Party RTOS (EE-303) Page 2 of 7

Sections of this Document

This document contains the following sections.

 Changes from VisualDSP++ 4.0 to VisualDSP++ 4.5

 Locking and Unlocking Critical Sections in the C and C++ Libraries

 Thread-Local Storage

 Modifying the Linker Description File

 Initializing the C and C++ Libraries

Changes from VisualDSP++ 4.0 to VisualDSP++ 4.5
The underlying implementation of the thread-safe libraries has changed significantly between the
VisualDSP++ 4.0 and VisualDSP++ 4.5 releases. The previous releases used semaphores, and the new
implementation uses a mutex-based system.

The following functions are no longer called from the run-time libraries that are thread safe:
 CreateSemaphore__3VDKFUiN31

 DestroySemaphore__3VDKF11SemaphoreID

 PendSemaphore__3VDKF11SemaphoreIDUi

 PostSemaphore__3VDKF11SemaphoreID

 GetThreadID__3VDKFv

The following functions, which are described later in this document, were added in VisualDSP++ 4.5:
 RMutexInit__3VDKFPQ2_3VDK6RMutexUi

 RMutexDeInit__3VDKFPQ2_3VDK6RMutex

 RMutexAcquire__3VDKFPQ2_3VDK6RMutex

 RMutexRelease__3VDKFPQ2_3VDK6RMutex

Locking and Unlocking Critical Sections in the C and C++ Libraries
The C and C++ runtime support libraries provided with VisualDSP++ 4.5 use several VDK functions for
serialized access to critical sections of code, as follows.

void PushUnscheduledRegion__3VDKFv (void)

This function is called whenever a critical section is entered. The function ensures that the scheduler does
not assign control of the process to another thread while inside a critical section. Calls to
PushUnscheduledRegion can be nested. For details, refer to VisualDSP++ 4.5 Kernel (VDK) User’s
Guide[1].

 a

Using VisualDSP++® Thread-Safe Libraries with a Third-Party RTOS (EE-303) Page 3 of 7

void PopUnscheduledRegion__3VDKFv (void)

This function is called when leaving a critical section. Function calls can be nested. For details, refer to
VisualDSP++ 4.5 Kernel (VDK) User’s Guide[1].

void RMutexInit__3VDKFPQ2_3VDK6RMutexUi(void* mutex, unsigned int size)

This function constructs a mutex of size size. In calls from the thread-safe runtime libraries, the size is
5*sizeof(int). In the thread-safe libraries, the memory pointed to by mutex is allocated by a call to
malloc() before the pointer is passed to this function.

void RMutexDeInit__3VDKFPQ2_3VDK6RMutex(void* mutex)

This function destructs the mutex for the given mutex pointer. The memory allocated for the mutex is not
freed by the call to this routine and must be done independently.

void RMutexAcquire__3VDKFPQ2_3VDK6RMutex(void* mutex)

This function acquires the mutex pointed to by mutex.

void RMutexRelease__3VDKFPQ2_3VDK6RMutex(void* mutex)

This function releases the mutex pointed to by mutex.

The suggested approach for replacing these functions is to create them with the same names that will call
the appropriate functions in the alternative RTOS.

Note that the VDK mutex is implemented as a recursive mutex, i.e., one for which nested acquisitions by
the same thread are legal and safe.

The mutex implementation keeps track of both its current owner (if there is one) and the count of nested
acquisitions by that thread. The mutex is not released until the count falls to zero.

The VDK locking mechanisms that are called from the C and C++ libraries concern themselves with
disabling the scheduler only. They do not disable interrupts. This is left to the developers’ discretion when
calling these functions.

The C and C++ libraries are designed to be thread-safe only and are not re-entrant. As a consequence,
interrupt service routines should not call any C or C++ library functions as they may cause the library to
perform in an undefined fashion. More information on calling library functions from an ISR can be found
in the VisualDSP++ 4.5 C/C++ Compiler and Library Manual [2] [3] [4].

It is possible to replace these calls with calls to functions that disable the scheduler and disable interrupts.
This approach is not recommended as the library may be attempting to generate its own interrupt.

 a

Using VisualDSP++® Thread-Safe Libraries with a Third-Party RTOS (EE-303) Page 4 of 7

Thread-Local Storage
The C library supports and uses thread-local storage to preserve data between function calls for four sets
of data:

errno

The value of errno is thread-specific. Each thread uses thread-local storage to preserve the value of
errno.

strtok()

The strtok() function uses thread-local storage to preserve internal pointers between calls to the
function.

rand()

The rand() function uses thread-local storage to allow a program to define a seed value on a per-thread
basis.

time() and asctime()

The asctime() function and the time() family of functions use thread-local storage to allow calls to
these functions on a per-thread basis.

The routines detailed above rely on three functions in the VDK. Functions with identical functionality are
available in most RTOS.

bool AllocateThreadSlotEx__3VDKFPiPFPv_v(int *, void (*cleanupfunc)(void *))

This function allocates a new thread storage slot if one has not already been assigned. The VDK function
has several return values. Refer to the VDK API in the VisualDSP++ 4.5 Kernel (VDK) User’s Guide[1]
so that the alternative function can emulate the behavior of AllocateThreadSlotsEx.

void *GetThreadSlotValue__3VDKFi (int)

This function returns a pointer to that thread’s locally stored data. Refer to the VDK API in the
VisualDSP++ 4.5 Kernel (VDK) User’s Guide[1] for information on GetThreadSlotValue.

bool SetThreadSlotValue__3VDKFiPv (int, void *)

This function stores the data pointed to in the threads area of the slot. Refer to the VDK API in the
VisualDSP++ 4.5 Kernel (VDK) User’s Guide[1] for information on SetThreadSlotValue.

 a

Using VisualDSP++® Thread-Safe Libraries with a Third-Party RTOS (EE-303) Page 5 of 7

Modifying the Linker Description File
The Linker Description File (.LDF) used by VDK differs from the standard .LDF file because it links the
user's program using the thread-safe version of the C and C++ libraries by default.

The default .LDF file does not contain support for multithreaded libraries. Users wishing to use an
alternative RTOS must copy the standard .LDF file and modify it to link with the correct versions of the
libraries.

The multithreaded libraries for Blackfin® and SHARC® contain an mt extension in the library name; for
example, the ADSP-BF532 C library is named libc532mt.dlb with the ADSP-21060 C library named
libcmt.dlb. The multithreaded libraries for TigerSHARC® contain an _mt extension in their name; for
example, the ADSP-TS201 C library is named libc_TS201_mt.dlb.

Initializing the C and C++ Libraries
The following sections describe the areas of the supplied initialization code that must be modified to allow
use of the C and C++ libraries.

It is assumed that the source code for the initialization code used by the RTOS will be available.

Several sections of the default initialization code must be replicated in the initialization code of the RTOS
to ensure that the C and C++ libraries will function as expected. Details on these sections follow for each
of the Blackfin, SHARC, and TigerSHARC processor targets.

Blackfin

Start-Up Code
The start-up code in VisualDSP\Blackfin\lib\src\libc\basiccrt.s supports several configuration
options. The Blackfin installation includes numerous pre-assembled combinations. The default .LDF file
selects the crt*.doj file to link with, based on user-specified defines and ccblkfn options.

FIOCRT
The FIOCRT macro is true when we wish to use file I/O inside a program. Enabling this define ensures that
the _init_devtab routine is called to initialize your I/O method.

CPLUSCRT
The C++ ___ctorloop routine must be called. This routine ensures that C++ objects are created and
destroyed correctly. It also initializes behind-the-scenes garbage collection. The ___ctor_table variable
should also be declared in a similar manner to the declaration at the bottom of the default basiccrt.s
file.

FP/SP Initialization
The initialization code should ensure that the FP and SP registers are set to sensible values. It would be
expected than an alternative RTOS initialization routine would provide this as default.

 a

Using VisualDSP++® Thread-Safe Libraries with a Third-Party RTOS (EE-303) Page 6 of 7

SHARC

Start-Up Code
The start-up code’s source code is in one of the following files, depending on the target architecture:

 VisualDSP\21k\lib\src\crt_src\020_hdr.asm

 VisualDSP\21k\lib\src\crt_src\06x_hdr.asm

 VisualDSP\211xx\lib\src\crt_src\16x_hdr.asm

 VisualDSP\212xx\lib\src\crt_src\26x_hdr.asm

 VisualDSP\213xx\lib\src\crt_src\36x_hdr.asm

The SHARC installation includes numerous pre-assembled combinations. When using the default .LDF
file, the .LDF file selects the *hdr*.doj file to link with, based on user-specified defines and cc21k
options.

By default, several variants of pre-built start-up code are included in the release. By convention, the file
names of the pre-built start-up modules that that support C++ contain cpp, and the thread-safe versions
contain _mt in their names.

__cplusplus Define
The _lib_call_ctors routine will be included when this macro is defined. This routine ensures that
C++ objects are created and destroyed correctly. This routine is called when the __cplusplus define is
set when assembling the *hdr*.asm. The ___ctors variable should also be declared; this variable should
be defined within the .LDF file and should point to the start of the seg_ctdm section.

TigerSHARC

Start-Up Code
The start-up code’s source code is in the assembly source file that can be found in the following location:
VisualDSP\TS\lib\src\crt_src\ts_hdr.asm. The TigerSHARC installation includes numerous pre-
assembled combinations. When using the default .LDF file, the .LDF file selects the ts_hdr*.doj file to
link with, based on user-specified defines and ccts options.

By default, several variants of pre-built start-up code are included in the release. By convention, file
names for the pre-built start-up modules that support C++ contain cpp, thread-safe versions contain _mt in
their names, and byte-addressing mode start-up files contain _ba in their names.

It is assumed that users will have the source code for the initialization code that is used by the RTOS.

The following sections of code from the default initialization code must be replicated in the initialization
code of the RTOS to ensure that the C and C++ libraries will function as expected.

_CPLUSPLUS Define
The C++ routine ___ctorloop must be called to ensure that C++ objects are created and destroyed
correctly. This routine is called when the _CPLUSPLUS define is set while assembling ts_hdr.asm. This
routine will also initialize the heap and the I/O library, so these must be initialized before use. The
___ctor_table variable should also be declared in a manner similar to the declaration at the bottom of
the default ts_hdr.asm file.

 a

Using VisualDSP++® Thread-Safe Libraries with a Third-Party RTOS (EE-303) Page 7 of 7

vdkMainMarker

The C variable vdkMainMarker is declared within VDK to notify the run-time libraries as to when the
application enters a multithreaded state. vdkMainMarker is declared as:
int vdkMainMarker = 0;

The variable is assigned a value of 1 immediately before the program invokes the highest-priority boot
thread. Until the variable is set to a value of 1, no VDK locking functions are called by the run-time
libraries. This is implemented to avoid calling thread-specific functions from non-threaded code.

For use with any RTOS other than VDK, this variable should be declared with an initial value of zero and
set to one just before the program invokes the user boot thread. This applies to Blackfin, SHARC, and
TigerSHARC processors.

References
[1] VisualDSP++ 4.5 Kernel (VDK) User’s Guide. Rev 2.0, April 2006. Analog Devices, Inc.

[2] VisualDSP++ 4.5 C/C++ Compiler and Library Manual for Blackfin Processors. Rev 4.0 April 2006.
Analog Devices, Inc.

[3] VisualDSP++ 4.5 C/C++ Compiler and Library Manual for SHARC Processors. Rev 6.0 April 2006.
Analog Devices, Inc.

[4] VisualDSP++ 4.5 C/C++ Compiler and Library Manual for TigerSHARC Processors. Rev 3.0 April 2006.
Analog Devices, Inc.

Document History

Revision Description

Rev 1 – November 10, 2006
by Andy Millard

Initial Release

	Introduction
	Overview
	Sections of this Document

	Changes from VisualDSP++ 4.0 to VisualDSP++ 4.5
	Locking and Unlocking Critical Sections in the C and C++ Lib
	void PushUnscheduledRegion__3VDKFv (void)
	void PopUnscheduledRegion__3VDKFv (void)
	void RMutexInit__3VDKFPQ2_3VDK6RMutexUi(void* mutex, unsigne
	void RMutexDeInit__3VDKFPQ2_3VDK6RMutex(void* mutex)
	void RMutexAcquire__3VDKFPQ2_3VDK6RMutex(void* mutex)
	void RMutexRelease__3VDKFPQ2_3VDK6RMutex(void* mutex)

	Thread-Local Storage
	errno
	strtok()
	rand()
	time() and asctime()
	bool AllocateThreadSlotEx__3VDKFPiPFPv_v(int *, void (*clean
	void *GetThreadSlotValue__3VDKFi (int)
	bool SetThreadSlotValue__3VDKFiPv (int, void *)

	Modifying the Linker Description File
	Initializing the C and C++ Libraries
	Blackfin
	Start-Up Code
	FIOCRT
	CPLUSCRT
	FP/SP Initialization

	SHARC
	Start-Up Code
	__cplusplus Define

	TigerSHARC
	Start-Up Code
	_CPLUSPLUS Define

	vdkMainMarker

	References
	Document History

