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PREFACE

Thank you for purchasing and developing systems using an Analog
Devices Blackfin® processor.

Purpose of This Manual

Blackfin Processor Programming Reference contains information about the
processor architecture and assembly language for Blackfin processors. This
manual is applicable to single-core and dual-core Blackfin processors. In
many ways, they are identical. The exceptions to this are noted in
Chapter 6, “Memory”.

The manual provides information on how assembly instructions execute
on the Blackfin processor’s architecture along with reference information
about processor operations.

Intended Audience

The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. The manual assumes the audience has a
working knowledge of the appropriate processor architecture and instruc-
tion set. Programmers who are unfamiliar with Analog Devices processors
can use this manual, but should supplement it with other texts, such as
hardware and programming reference manuals that describe their target
architecture.
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Manual Contents

Manual Contents

This manual contains:

Chapter 1, “Introduction”
This chapter provides a general description of the instruction syn-
tax and notation conventions.

Chapter 2, “Computational Units”
Describes the arithmetic/logic units (ALUs), multiplier/accumula-

tor units (MAC:s), shifter, and the set of video ALUs. The chapter

also discusses data formats, data types, and register files.

Chapter 3, “Operating Modes and States”
Describes the operating modes of the processor. The chapter also
describes Idle state and Reset state.

Chapter 4, “Program Sequencer”

Describes the operation of the program sequencer, which controls
program flow by providing the address of the next instruction to be
executed. The chapter also discusses loops, subroutines, jumps,
interrupts, and exceptions.

Chapter 5, “Address Arithmetic Unit”

Describes the Address Arithmetic Unit (AAU), including Data
Address Generators (DAGs), addressing modes, how to modify
DAG and Pointer registers, memory address alignment, and DAG
instructions.

Chapter 6, “Memory”

Describes L1 memories. In particular, details their memory archi-
tecture, memory model, memory transaction model, and
memory-mapped registers (MMRs). Discusses the instruction,
data, and scratchpad memory, which are part of the Blackfin pro-
cessor core.

XXViil
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* Chapter 7-Chapter 19, “Program Flow Control”, “Load / Store”,
“Move”, “Stack Control”, “Control Code Bit Management”, “Log-
ical Operations”, “Bit Operations”, “Shift/Rotate Operations”,
“Arithmetic Operations”, “External Event Management”, “Cache
Control”, “Video Pixel Operations”, and “Vector Operations”
Provide descriptions of assembly language instructions and describe
their execution.

* Chapter 20, “Issuing Parallel Instructions”
Provides a description of parallel instruction operations and shows
how to use parallel instruction syntax.

e Chapter 21, “Debug”
Provides a description of the processor’s debug functionality,
which is used for software debugging. This functionality also com-
plements some services often found in an operating system (OS)
kernel.

* Appendix A, “ADSP-BF535 Considerations”
Provides a description of the status bits (flags) for the
ADSP-BE535 processor only.

* Appendix B, “Core MMR Assignments”
Lists the core memory-mapped registers, their addresses, and
cross-references to text.

* Appendix C, “Instruction Opcodes”
Identifies operation codes (opcodes) for instructions. Use this
chapter to learn how to construct opcodes.

e Appendix D, “Numeric Formats”
Describes various aspects of the 16-bit data format. The chapter
also describes how to implement a block floating-point format in
software.
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What's New in This Manual

This is Revision 2.2 of Blackfin Processor Programming Reference. This revi-
sion corrects minor typographical errors and the following issues:

* System reset code example in Chapter 3, “Operating Modes and
States”

e Description of the EVT_OVERRIDE register, RETI instructions need
not be first in nested interrupts, ITESTABT and DTESTABT bits in the
SEQSTAT register diagram, and complete table of hardware condi-
tions causing hardware interrupts in Chapter 4, “Program
Sequencer”

* Location of parity error handler in Chapter 6, “Memory”

Technical Support

You can reach Analog Devices processors and DSP technical support in
the following ways:

e DPost your questions in the processors and DSP support community
at EngineerZone™:
http://ez.analog.com/community/dsp

* Submit your questions to technical support directly at:
http://www.analog.com/support

* E-mail your questions about processors, DSPs, and tools develop-
ment software from CrossCore® Embedded Studio or
VisualDSP++®:
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Choose Help > Email Support. This creates an e-mail to
processor.tools.support@analog.com and automatically attaches
your CrossCore Embedded Studio or Visual DSP++ version infor-
mation and 1icense.dat file.

* E-mail your questions about processors and processor applications
to:
processor.support@analog.com or
processor.china@analog.com (Greater China support)

* In the USA only, call 1-800-ANALOGD (1-800-262-5643)

* Contact your Analog Devices sales office or authorized distributor.
Locate one at:
www.analog.com/adi-sales

* Send questions by mail to:
Processors and DSP Technical Support
Analog Devices, Inc.
Three Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

Supported Processors

The name “Blackfin” refers to a family of 16-bit, embedded processors.
Refer to the CCES or VisualDSP++ online help for a complete list of sup-

ported processors.

Product Information

Product information can be obtained from the Analog Devices Web site

and the CCES or Visual DSP++ online help.
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Product Information

Analog Devices Web Site

The Analog Devices Web site, www.analog.com, provides information
about a broad range of products—analog integrated circuits, amplifiers,
converters, and digital signal processors.

To access a complete technical library for each processor family, go to
http://www.analog.com/processors/technical_library. The manuals
selection opens a list of current manuals related to the product as well as a
link to the previous revisions of the manuals. When locating your manual
title, note a possible errata check mark next to the title that leads to the
current correction report against the manual.

Also note, myAnalog is a free feature of the Analog Devices Web site that
allows customization of a Web page to display only the latest information
about products you are interested in. You can choose to receive weekly
e-mail notifications containing updates to the Web pages that meet your
interests, including documentation errata against all manuals. myAnalog
provides access to books, application notes, data sheets, code examples,
and more.

Visit myAnalog to sign up. If you are a registered user, just log on. Your
user name is your e-mail address.

EngineerZone

EngineerZone is a technical support forum from Analog Devices, Inc. It
allows you direct access to ADI technical support engineers. You can
search FAQs and technical information to get quick answers to your
embedded processing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar
design challenges. You can also use this open forum to share knowledge
and collaborate with the ADI support team and your peers. Visit
http://ez.analog.com to sign up.
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Notation Conventions

Text conventions in this manual are identified and described as follows.

Example

Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
IDE environment’s menu system (for example, the Close command
appears on the File menu).

{this | that}

Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that]

Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,..] Optional item lists in syntax descriptions appear within brackets delim-
ited by commas and terminated with an ellipsis; read the example as an
optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this

symbol.

Caution: Incorrect device operation may result if ...

Caution: Device damage may result if ...

A Caution identifies conditions or inappropriate usage of the product

that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...

A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.
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Register Diagram Conventions

Register diagrams use the following conventions:

The descriptive name of the register appears at the top, followed by
the short form of the name in parentheses.

If the register is read-only (RO), write-1-to-set (W1S), or
write-1-to-clear (W1C), this information appears under the name.
Read/write is the default and is not noted. Additional descriptive
text may follow.

If any bits in the register do not follow the overall read/write con-
vention, this is noted in the bit description after the bit name.

If a bit has a short name, the short name appears first in the bit
description, followed by the long name in parentheses.

The reset value appears in binary in the individual bits and in hexa-
decimal to the right of the register.

Bits marked x have an unknown reset value. Consequently, the
reset value of registers that contain such bits is undefined or depen-
dent on pin values at reset.

Shaded bits are reserved.

To ensure upward compatibility with future implementations,
write back the value that is read for reserved bits in a register,
unless otherwise specified.

XXXIV
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The following figure shows an example of these conventions.

Timer Configuration Registers (TIMERx_CONFIG)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|0|o|o|o|o|o|o|o|o|o|o|0|o|0|0|Reset=0x0000

ERR_TYP[1:0] (Error Type) - RO TMODE[1:0] (Timer Mode)

00 - No error. 00 - Reset state - unused.

01 - Counter overflow error. 01 - PWM_OUT mode.

10 - Period register programming error. 10 - WDTH_CAP mode.

11 - Pulse width register programming error. 11 - EXT_CLK mode.
PULSE_HI

EMU_RUN (Emulation Behavior Select) 0 - Negative action pulse.

0 - Timer counter stops during emulation. 1 - Positive action pulse.

1 - Timer counter runs during emulation. L PERIOD_CNT (Period

TOGGLE_HI (PWM_OUT PULSE_HI Toggle Mode)— Count)

0 - The effective state of PULSE_HI 0 - Count to end of width.

is the programmed state. 1 - Count to end of period.

1 - The effective state of PULSE_HI IRQ_ENA (Interrupt

alternates each period. Request Enable)

CLK_SEL (Timer Clock Select) 0 - Interrupt request

This bit must be set to 1, when operat- disable.

ing the PPl in GP Output modes. 1 - Interrupt request enable

0 - Use system clock SCLK for counter. TIN_SEL (Timer Input

1 - Use PWM_CLK to clock counter. L Select)

OUT_DIS (Output Pad Disable) 0 - Sample TMRx pin or

0 - Enable pad in PWM_OUT mode. PF1 pin. )

1 - Disable pad in PWM_OUT mode. 1 - Sample UART RX pin

or PPI_CLK pin.

Figure 1. Register Diagram Example
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1 INTRODUCTION

Blackfin Processor Programming Reference provides details on the assembly
language instructions used by the Micro Signal Architecture (MSA) core
developed jointly by Analog Devices, Inc. and Intel Corporation. This
manual is applicable to all ADSP-BF5xx processor derivatives. With the
exception of the first-generation ADSP-BF535 processor, all devices pro-
vide an identical core architecture and instruction set. Specifics of the
ADSP-BF535 processor are highlighted where applicable and are summa-
rized in Appendix A, “ADSP-BF535 Considerations”. Dual-core
derivatives and derivatives with on-chip L2 memory have slightly different
system interfaces. Differences and commonalities at a global level are dis-
cussed in Chapter 6, “Memory”. For a full description of the system
architecture beyond the Blackfin core, refer to the hardware reference
manual for your processor. This section points out some of the conven-
tions used in this document.

The Blackfin processor combines a dual MAC signal processing engine, an
orthogonal RISC-like microprocessor instruction set, flexible Single
Instruction, Multiple Data (SIMD) capabilities, and multimedia features
into a single instruction set architecture.
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Core Architecture

The Blackfin processor core contains two 16-bit multipliers, two 40-bit
accumulators, two 40-bit arithmetic logic units (ALUs), four 8-bit video
ALUs, and a 40-bit shifter, shown in Figure 1-1. The process 8-, 16-, or
cccecec ¢ 32-bit data from the register file.

-
/ \
' |
| : | | |
' |
| SP
| 13 | 38 | B3 M3 v v FP |
| 2 | L2 | B2 M2 Vo P5 |
| M| 11| B M1 DAG1 P4 '
| 0 | Lo | Bo Mo P3 :
P2
DAz | A Ad 1 I
_DA0)32 | |
- T > | PO J
N
- _____TZ y
E 132 +32
g RAB PREG
w
=
e e i
<SD 432 , N
LD132 732 / \ \
—LDo,3 152 I |
yvly | ; \i + (| |
| | SEQUENCER |||
| |[RH] [RTL | |
| |[Rex] [ReL | | |
| |[ReH] [RsL | : ALIGN :
RaH| [RaL
) [EETE N AN s/ \&/ \&/ |1 |
| - - | |
| |[Rer] [Ra e | | DECODE |
| |[RiH] [RIL BARREL | | |
| |[Rox] [RoL SHIFTER | : LOOP BUFFER | |
| A A (.
40| 40
: T e o S Y L'\ contRoL
| UNIT
| |
\ /32 | 32 /
\ - + /
—————————— DATAARITHMETICUNIT — — — — — — — — — -
Figure 1-1. Processor Core Architecture
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The compute register file contains eight 32-bit registers. When perform-
ing compute operations on 16-bit operand data, the register file operates
as 16 independent 16-bit registers. All operands for compute operations
come from the multiported register file and instruction constant fields.

Each MAC can perform a 16- by 16-bit multiply per cycle, with accumu-
lation to a 40-bit result. Signed and unsigned formats, rounding, and
saturation are supported.

The ALUs perform a traditional set of arithmetic and logical operations
on 16-bit or 32-bit data. Many special instructions are included to acceler-
ate various signal processing tasks. These include bit operations such as

field extract and population count, modulo 232 multiply, divide primi-
tives, saturation and rounding, and sign/exponent detection. The set of
video instructions include byte alignment and packing operations, 16-bit
and 8-bit adds with clipping, 8-bit average operations, and 8-bit sub-
tract/absolute value/accumulate (SAA) operations. Also provided are the
compare/select and vector search instructions. For some instructions, two
16-bit ALU operations can be performed simultaneously on register pairs
(a 16-bit high half and 16-bit low half of a compute register). By also
using the second ALU, quad 16-bit operations are possible.

The 40-bit shifter can deposit data and perform shifting, rotating, normal-
ization, and extraction operations.

A program sequencer controls the instruction execution flow, including
instruction alignment and decoding. For program flow control, the
sequencer supports PC-relative and indirect conditional jumps (with static
branch prediction) and subroutine calls. Hardware is provided to support
zero-overhead looping. The architecture is fully interlocked, meaning
there are no visible pipeline effects when executing instructions with data
dependencies.
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The address arithmetic unit provides two addresses for simultaneous dual
fetches from memory. It contains a multiported register file consisting of
four sets of 32-bit Index, Modify, Length, and Base registers (for circular
buffering) and eight additional 32-bit pointer registers (for C-style
indexed stack manipulation).

Blackfin processors support a modified Harvard architecture in combina-
tion with a hierarchical memory structure. Level 1 (L1) memories typically
operate at the full processor speed with little or no latency. At the L1 level,
the instruction memory holds instructions only. The two data memories
hold data, and a dedicated scratchpad data memory stores stack and local
variable information.

In addition, multiple L1 memory blocks are provided, which may be con-
figured as a mix of SRAM and cache. The Memory Management Unit
(MMU) provides memory protection for individual tasks that may be
operating on the core and may protect system registers from unintended
access.

The architecture provides three modes of operation: User, Supervisor, and
Emulation. User mode has restricted access to a subset of system resources,
thus providing a protected software environment. Supervisor and Emula-
tion modes have unrestricted access to the system and core resources.

The Blackfin processor instruction set is optimized so that 16-bit opcodes
represent the most frequently used instructions. Complex DSP instruc-
tions are encoded into 32-bit opcodes as multifunction instructions.
Blackfin products support a limited multi-issue capability, where a 32-bit
instruction can be issued in parallel with two 16-bit instructions. This
allows the programmer to use many of the core resources in a single
instruction cycle.

The Blackfin processor assembly language uses an algebraic syntax. The
architecture is optimized for use with the C compiler.
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Memory Architecture

The Blackfin processor architecture structures memory as a single, unified
4G byte address space using 32-bit addresses, regardless of the specific
Blackfin product. All resources, including internal memory, external
memory, and I/O control registers, occupy separate sections of this
common address space. The memory portions of this address space are
arranged in a hierarchical structure to provide a good cost/performance
balance of some very fast, low latency on-chip memory as cache or SRAM,
and larger, lower cost and lower performance off-chip memory systems.

The L1 memory system is the primary highest performance memory avail-
able to the core. The off-chip memory system, accessed through the
External Bus Interface Unit (EBIU), provides expansion with SDRAM,
flash memory, and SRAM, optionally accessing up to 132M bytes of phys-
ical memory.

The memory DMA controller provides high bandwidth data movement
capability. It can perform block transfers of code or data between the
internal memory and the external memory spaces.

Internal Memory

At a minimum, each Blackfin processors has three blocks of on-chip mem-
ory that provide high bandwidth access to the core:

e L1 instruction memory, consisting of SRAM and a 4-way set-asso-
ciative cache. This memory is accessed at full processor speed.

e L1 data memory, consisting of SRAM and/or a 2-way set-associa-
tive cache. This memory block is accessed at full processor speed.

e L1 scratchpad RAM, which runs at the same speed as the L1 mem-
ories but is only accessible as data SRAM and cannot be configured
as cache memory.
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In addition, some Blackfin processors share a low latency, high bandwidth
on-chip Level 2 (L2) memory. It forms an on-chip memory hierarchy with
L1 memory and provides much more capacity than L1 memory, but the
latency is higher. The on-chip L2 memory is SRAM and cannot be config-
ured as cache. On-chip L2 memory is capable of storing both instructions
and data and is accessible by both cores.

External Memory

External (off-chip) memory is accessed via the External Bus Interface Unit
(EBIU). This 16-bit interface provides a glueless connection to a bank of
synchronous DRAM (SDRAM) and as many as four banks of asynchro-
nous memory devices including flash memory, EPROM, ROM, SRAM,

and memory-mapped I/O devices.

The PC133-compliant SDRAM controller can be programmed to inter-
face to up to 512M bytes of SDRAM (certain products have SDRAM up
to 128M bytes).

The asynchronous memory controller can be programmed to control up
to four banks of devices. Each bank occupies a IM byte segment regardless
of the size of the devices used, so that these banks are only contiguous if
each is fully populated with 1M byte of memory.

/0 Memory Space

Blackfin processors do not define a separate I/O space. All resources are
mapped through the flat 32-bit address space. Control registers for
on-chip I/O devices are mapped into memory-mapped registers (MMRys)
at addresses near the top of the 4G byte address space. These are separated
into two smaller blocks: one contains the control MMRs for all core func-
tions and the other contains the registers needed for setup and control of
the on-chip peripherals outside of the core. The MMRs are accessible only

in Supervisor mode. They appear as reserved space to on-chip peripherals.
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Event Handling

The event controller on the Blackfin processor handles all asynchronous
and synchronous events to the processor. The processor event handling
supports both nesting and prioritization. Nesting allows multiple event
service routines to be active simultaneously. Prioritization ensures that
servicing a higher priority event takes precedence over servicing a lower
priority event. The controller provides support for five different types of
events:

* Emulation — Causes the processor to enter Emulation mode, allow-
ing command and control of the processor via the JTAG interface.

e Reset — Resets the processor.

* Nonmaskable Interrupt (NMI) — The software watchdog timer or
the NMI input signal to the processor generates this event. The
NMI event is frequently used as a power-down indicator to initiate
an orderly shutdown of the system.

* Exceptions — Synchronous to program flow. That is, the exception
is taken before the instruction is allowed to complete. Conditions
such as data alignment violations and undefined instructions cause
exceptions.

* Interrupts — Asynchronous to program flow. These are caused by
input pins, timers, and other peripherals.

Each event has an associated register to hold the return address and an
associated return-from-event instruction. When an event is triggered, the
state of the processor is saved on the supervisor stack.

The processor event controller consists of two stages: the Core Event Con-
troller (CEC) and the System Interrupt Controller (SIC). The CEC works
with the SIC to prioritize and control all system events. Conceptually,
interrupts from the peripherals arrive at the SIC and are routed directly
into the general-purpose interrupts of the CEC.
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Core Event Controller (CEC)

The Core Event Controller supports nine general-purpose interrupts
(IVG15-7), in addition to the dedicated interrupt and exception events.
Of these general-purpose interrupts, the two lowest priority interrupts
(IVG15-14) are recommended to be reserved for software interrupt han-
dlers, leaving seven prioritized interrupt inputs to support peripherals.

System Interrupt Controller (SIC)

The System Interrupt Controller provides the mapping and routing of
events from the many peripheral interrupt sources to the prioritized gen-
eral-purpose interrupt inputs of the CEC. Although the processor
provides a default mapping, the user can alter the mappings and priorities
of interrupt events by writing the appropriate values into the Interrupt

Assignment Registers (IAR).

Syntax Conventions

The Blackfin processor instruction set supports several syntactic conven-
tions that appear throughout this document. Those conventions are given
below.

Case Sensitivity

The instruction syntax is case insensitive. Upper and lower case letters can
be used and intermixed arbitrarily.

The assembler treats register names and instruction keywords in a
case-insensitive manner. User identifiers are case sensitive. Thus, R3.1,
R3.L, r3.1, r3.L are all valid, equivalent input to the assembler.
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This manual shows register names and instruction keywords in examples
using lower case. Otherwise, in explanations and descriptions, this manual

uses upper case to help the register names and keywords stand out among
text.

Free Format

Assembler input is free format, and may appear anywhere on the line. One
instruction may extend across multiple lines, or more than one instruction
may appear on the same line. White space (space, tab, comments, or new-
line) may appear anywhere between tokens. A token must not have
embedded spaces. Tokens include numbers, register names, keywords,
user identifiers, and also some multicharacter special symbols like “+=7,
<« » <« »

/*7,0r |,

Instruction Delimiting

A semicolon must terminate every instruction. Several instructions can be
y

placed together on a single line at the programmer’s discretion, provided

each instruction ends with a semicolon.

Each complete instruction must end with a semicolon. Sometimes, a com-
plete instruction will consist of more than one operation. There are two
cases where this occurs.

* Two general operations are combined. Normally a comma sepa-
rates the different parts, as in

a0 = r3.h * r2.1 , al = r3.1 * r2.h ;

e A general instruction is combined with one or two memory refer-
ences for joint issue. The latter portions are set off by a “||”
For example,

token.

a0

r3.h % r2.1 || rl = [p3++]1 || r4 = [i2++]

s
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Comments

The assembler supports various kinds of comments, including the
following.

End of line: A double forward slash token (“//”) indicates the
beginning of a comment that concludes at the next newline
character.

General comment: A general comment begins with the token “/*”
and ends with “*/”. It may contain any characters and extend over
multiple lines.

Comments are not recursive; if the assembler sees a “/*” within a general
comment, it issues an assembler warning. A comment functions as white

space.

Notation Conventions

This manual and the assembler use the following conventions.

Register names are alphabetical, followed by a number in cases
where there are more than one register in a logical group. Thus,
examples include ASTAT, FP, R3, and M2.

Register names are reserved and may not be used as program
identifiers.

Some operations (such as “Move Register”) require a register pair.
Register pairs are always Data Registers and are denoted using a
colon, for example, R3:2. The larger number must be written first.
Note that the hardware supports only odd-even pairs, for example,
R7:6, R5:4, R3:2, and R1:0.
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* Some instructions (such as “--SP (Push Multiple)”) require a group
of adjacent registers. Adjacent registers are denoted in syntax by the
range enclosed in parentheses and separated by a colon, for exam-
ple, (R7:3). Again, the larger number appears first.

* Dortions of a particular register may be individually specified. This
is written in syntax with a dot (“.”) following the register name,
then a letter denoting the desired portion. For 32-bit registers, “.H
denotes the most-significant (“High”) portion, “.L” denotes the
least-significant portion. The subdivisions of the 40-bit registers

are described later.

»

Register names are reserved and may not be used as program identifiers.
This manual uses the following conventions.

e When there is a choice of any one register within a register group,
this manual shows the register set using an en-dash (“-”). For
example, “R7-0” in text means that any one of the eight data regis-
ters (R7, R6, R5, R4, R3, R2, R1, or RO) can be used in syntax.

* Immediate values are designated as “imm” with the following
modifiers.

e “imm” indicates a signed value; for example, imm7.

e The “u” prefix indicates an unsigned value; for example,
uimm4.

* The decimal number indicates how many bits the value can
include; for example, imm5 is a 5-bit value.

* Any alignment requirements are designated by an optional
“m” suffix followed by a number; for example, uimmiém? is
an unsigned, 16-bit integer that must be an even number,

and imm7m4 is a signed, 7-bit integer that must be a multiple

of 4.
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* DPC-relative, signed values are designated as “pcrel” with the
following modifiers:

* the decimal number indicates how many bits the value can
include; for example, pcrel5 is a 5-bit value.

* any alignment requirements are designated by an optional
<« »

m” suffix followed by a number; for example, pcrei13m2is a
13-bit integer that must be an even number.

* Loop PC-relative, signed values are designated as “7ppcrel”
with the following modifiers:

* the decimal number indicates how many bits the value can
include; for example, Tppcrels is a 5-bit value.

* any alignment requirements are designated by an optional

m” suffix followed by a number; for example, Tppcreliime
is an 11-bit integer that must be an even number.

Behavior Conventions

All operations that produce a result in an Accumulator saturate to a 40-bit
quantity unless noted otherwise. See “Saturation” on page 1-17 for a
description of saturation behavior.

Glossary

The following terms appear throughout this document. Without trying to
explain the Blackfin processor, here are the terms used with their defini-
tions. See the hardware reference manual for your processor for more
details on the architecture.
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Register Names

The architecture includes the registers shown in Table 1-1.

Table 1-1. Registers

Register

Description

Accumulators

The set of 40-bit registers Al and A0 that normally contain data that is being
manipulated. Each Accumulator can be accessed in five ways: as one 40-bit regis-
ter, as one 32-bit register (designated as A1.W or A0.W), as two 16-bit registers
similar to Data Registers (designated as A1.H, A1.L, A0.H, or A0.L) and as one
8-bit register (designated A1.X or A0.X) for the bits that extend beyond bit 31.

Data
Registers

The set of 32-bit registers (R0, R1, R2, R3, R4, R5, R6, and R7) that normally
contain data for manipulation. Abbreviated D-register or Dreg. Data Registers
can be accessed as 32-bit registers, or optionally as two independent 16-bit regis-
ters. The least significant 16 bits of each register is called the “low” half and is
designated with “.L” following the register name. The most significant 16 bit is
called the “high” half and is designated with “.H” following the name. Example:
R7.L, r2.h, r4.L, RO.h.

Pointer
Registers

The set of 32-bit registers (PO, P1, P2, P3, P4, P5, including SP and FP) that
normally contain byte addresses of data structures. Accessed only as a 32-bit reg-
ister. Abbreviated P-register or Preg. Example: p2, p5, fp, sp.

Stack Pointer

SP; contains the 32-bit address of the last occupied byte location in the stack.
The stack grows by decrementing the Stack Pointer. A subset of the Pointer Reg-
isters.

Frame Pointer

FP; contains the 32-bit address of the previous Frame Pointer in the stack,
located at the top of a frame. A subset of the Pointer Registers.

Loop Top

LT0 and LT1; contains 32-bit address of the top of a zero overhead loop.

Loop Count

LCO and LC1; contains 32-bit counter of the zero overhead loop executions.

Loop Bottom

LBO and LB1; contains 32-bit address of the bottom of a zero overhead loop.

Index The set of 32-bit registers 10, I1, 12, I3 that normally contain byte addresses of
Register data structures. Abbreviated I-register or Ireg.

Modify The set of 32-bit registers M0, M1, M2, M3 that normally contain offset values
Registers that are added or subtracted to one of the Index Registers. Abbreviated as Mreg.
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Table 1-1. Registers (Contd)

Register Description

Length The set of 32-bit registers L0, L1, L2, L3 that normally contain the length (in

Registers bytes) of the circular buffer. Abbreviated as Lreg. Clear Lreg to disable circular
addressing for the corresponding Ireg. Example: Clear L3 to disable circular
addressing for I3.

Base The set of 32-bit registers BO, B1, B2, B3 that normally contain the base address

Registers (in bytes) of the circular buffer. Abbreviated as Breg.

Functional Units

The architecture includes the three processor sections shown in Table 1-2.

Table 1-2. Processor Sections

Processor

Description

Data Address
Generator (DAG)

Calculates the effective address for indirect and indexed memory
accesses. Consists of two sections—DAGO and DAGI.

Multiply and Performs the arithmetic functions on data. Consists of two sections
Accumulate Unit (MACO0 and MAC1)—each associated with an Accumulator (A0 and Al,
(MAC) respectively).

Arithmetic Logical
Unit (ALU)

Performs arithmetic computations and binary shifts on data. Operates
on the Data Registers and Accumulators. Consists of two units (ALUO
and ALU1), each associated with an Accumulator (A0 and Al, respec-

tively). Each ALU operates in conjunction with a Multiply and Accumu-
late Unit.

Arithmetic Status Bits

The MSA includes 12 arithmetic status bits (status bits) that indicate spe-
cific results of a prior operation. These bits reside in the Arithmetic Status
(ASTAT) Register. A summary of the status bits appears in Table 1-3. All
status bits are active high. Instructions regarding P-registers, I-registers,
L-registers, M-registers, or B-registers do not affect status bits.
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See the hardware reference manual for your processor for more details on
the architecture.

Table 1-3. Arithmetic Status Bits

Bit Description
ACO Carry (ALUO)
AC0_COPY Carry (ALUO), copy
AC1 Carry (ALU1)
AN Negative
AQ Quotient
AV0 Accumulator 0 Overflow
AVS0 Accumulator 0 Sticky Overflow
Set when AVO is set, but remains set until explicitly cleared by user code.
AV1 Accumulator 1 Overflow
AVS1 Accumulator 1 Sticky Overflow
Set when AV1 is set, but remains set until explicitly cleared by user code.
AZ Zero
CC Control Code bit
Multipurpose bit set, cleared and tested by specific instructions.
\% Overflow for Data Register results
V_COPY Overflow for Data Register results. copy
VS Sticky Overflow for Data Register results
Set when V is set, but remains set until explicitly cleared by user code.

@ The ADSP-BF535 processor has fewer ASTAT bits and some bits

operate differently than subsequent Blackfin family products. For
more information on the ADSP-BF535 status bits, see Table A-1
on page A-3.
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Fractional Convention

Fractional numbers include subinteger components less than +1. Whereas
decimal fractions appear to the right of a decimal point, binary fractions
appear to the right of a binal point.

In DSP instructions that assume placement of a binal point, for example
in computing sign bits for normalization or for alignment purposes, the

binal point convention depends on the size of the register being used as

shown in Table 1-4 and Figure 1-2 on page 1-17.

This processor does not represent fractional values in 8-bit
registers.

Table 1-4. Fractional Conventions

Registers Size Format Notation ‘5 Té
gE |AE | Ea
40-bit registers Signed Fractional 9.31 1 8 31
Unsigned Fractional 8.32 0 8 32
32-bit registers Signed Fractional 1.31 1 0 31
Unsigned Fractional 0.32 0 0 32
16-bit registers Signed Fractional 1.15 1 0 15
Unsigned Fractional 0.16 0 0 16
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40-bit accumulator
[S] 8-hitjextension | 31-bit fraction |
32-bit register
[S] 31-bit fraction |
16-bit register half
[S] 15-bit fraction
binal point alignment j

Figure 1-2. Conventional Placement of Binal Point

Saturation

When the result of an arithmetic operation exceeds the range of the desti-
nation register, important information can be lost.

Saturation is a technique used to contain the quantity within the values
that the destination register can represent. When a value is computed that
exceeds the capacity of the destination register, then the value written to
the register is the largest value that the register can hold with the same sign
as the original.

e If an operation would otherwise cause a positive value to overflow
and become negative, instead, saturation limits the result to the
maximum positive value for the size register being used.

* Conversely, if an operation would otherwise cause a negative value
to overflow and become positive, saturation limits the result to the
maximum negative value for the register size.

The maximum positive value in a 16-bit register is 0x7FFF. The maxi-
mum negative value is 0x8000. For a signed two’s-complement 1.15
fractional notation, the allowable range is —1 through (1-2-15).
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The maximum positive value in a 32-bit register is 0x7FFF FFFF. The
maximum negative value is 0x8000 0000. For a signed two’s-complement
fractional data in 1.31 format, the range of values that the register can

hold are —1 through (1-2-31).

The maximum positive value in a 40-bit register is 0x7F FFFF FFFF. The
maximum negative value is 0x80 0000 0000. For a signed two’s-comple-
ment 9.31 fractional notation, the range of values that can be represented

is —256 through (256-2-31).

For example, if a 16-bit register containing 0x1000 (decimal integer
+4096) was shifted left 3 places without saturation, it would overflow to
0x8000 (decimal —32,768). With saturation, however, a left shift of 3 or
more places would always produce the largest positive 16-bit number,

0x7FFF (decimal +32,767).

Another common example is copying the lower half of a 32-bit register
into a 16-bit register. If the 32-bit register contains 0OxFEED 0ACE and
the lower half of this negative number is copied into a 16-bit register with-
out saturation, the result is 0x0ACE, a positive number. But if saturation
is enforced, the 16-bit result maintains its negative sign and becomes
0x8000.

The MSA implements 40-bit saturation for all arithmetic operations that
write an Accumulator destination except as noted in the individual
instruction descriptions when an optional 32-bit saturation mode can
constrain a 40-bit Accumulator to the 32-bit register range. The MSA per-
forms 32-bit saturation for 32-bit register destinations only as noted in the
instruction descriptions.

Overflow is the alternative to saturation. The number is allowed to simply
exceed its bounds and lose its most significant bit(s); only the lowest
(least-significant) portion of the number can be retained. Overflow can
occur when a 40-bit value is written to a 32-bit destination. If there was
any useful information in the upper 8 bits of the 40-bit value, then infor-
mation is lost in the process. Some processor instructions report overflow
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conditions in the arithmetic status bits, as noted in the instruction
descriptions. The arithmetic status bits reside in the Arithmetic Status
(ASTAT) Register. See the hardware reference manual for your processor for
more details on the ASTAT Register.

Rounding and Truncating

Rounding is a means of reducing the precision of a number by removing a
lower-order range of bits from that number’s representation and possibly
modifying the remaining portion of the number to more accurately repre-
sent its former value. For example, the original number will have N bits of
precision, whereas the new number will have only M bits of precision
(where N>M), so N-M bits of precision are removed from the number in
the process of rounding.

The round-to-nearest method returns the closest number to the original.
By convention, an original number lying exactly halfway between two
numbers always rounds up to the larger of the two. For example, when
rounding the 3-bit, two’s-complement fraction 0.25 (binary 0.01) to the
nearest 2-bit two’s-complement fraction, this method returns 0.5 (binary
0.1). The original fraction lies exactly midway between 0.5 and 0.0
(binary 0.0), so this method rounds up. Because it always rounds up, this
method is called biased rounding.

The convergent rounding method also returns the closest number to the
original. However, in cases where the original number lies exactly halfway
between two numbers, this method returns the nearest even number, the
one containing an LSB of 0. So for the example above, the result would be
0.0, since that is the even numbered choice of 0.5 and 0.0. Since it rounds
up and down based on the surrounding values, this method is called unbi-
ased rounding.
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Some instructions for this processor support biased and unbiased round-
ing. The RND_MOD bit in the Arithmetic Status (ASTAT) Register determines
which mode is used. See the hardware reference manual for your processor
for more details on the ASTAT Register.

Another common way to reduce the significant bits representing a number
is to simply mask off the N-M lower bits. This process is known as trunca-
tion and results in a relatively large bias.

Figure 1-3 shows other examples of rounding and truncation methods.

0 1 0 0 1 0 0 0 original 8-bit number (0.5625)
0 1 0 1 4-bit biased rounding (0.625)
0 1 0 0 4-bit unbiased rounding (0.5)
0 1 0 0 4-bit truncation (0.5)

0 1 0 0 1 0 1 0 original 8-bit number (0.578125)
0 1 0 1 4-bit biased rounding (0.625)

0 1 0 1 4-bit unbiased rounding (0.625)
0 1 0 0 4-bit truncation (0.5)

Figure 1-3. 8-Bit Number Reduced to 4 Bits of Precision
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Automatic Circular Addressing

The Blackfin processor provides an optional circular (or “modulo”)
addressing feature that increments an Index Register (Ireg) through a pre-
defined address range, then automatically resets the Ireg to repeat that
range. This feature improves input/output loop performance by eliminat-
ing the need to manually reinitialize the address index pointer each time.
Circular addressing is useful, for instance, when repetitively loading or
storing a string of fixed-sized data blocks.

The circular buffer contents must meet the following conditions:

* The maximum length of a circular buffer (that is, the value held in
any L register) must be an unsigned number with magnitude less
than 231,

* The magnitude of the modifier should be less than the length of
the circular buffer.

* The initial location of the pointer I should be within the circular

buffer defined by the base B and length L.

If any of these conditions is not satisfied, then processor behavior is not

specified.
There are two elements of automatic circular addressing:
* Indexed address instructions

* Four sets of circular addressing buffer registers composed of one
each Ireg, Breg, and Lreg (thatis, 10/B0/L0, I1/B1/L1, I12/B2/L2,
and 13/B3/L3)

To qualify for circular addressing, the indexed address instruction must
explicitly modify an Index Register. Some indexed address instructions use
a Modify Register (Mreg) to increment the Ireg value. In that case, any
Mreg can be used to increment any Ireg. The Ireg used in the instruction
specifies which of the four circular buffer sets to use.
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The circular buffer registers define the length (Lreg) of the data block in
bytes and the base (Breg) address to reinitialize the Ireg.

Some instructions modify an Index Register without using it for address-
ing; for example, the Add Immediate and Modify — Decrement
instructions. Such instructions are still affected by circular addressing, if

enabled.

Disable circular addressing for an Ireg by clearing the Lreg that corre-
sponds to the Ireg used in the instruction. For example, clear L2 to disable
circular addressing for register 12. Any nonzero value in an Lreg enables
circular addressing for its corresponding buffer registers.

See the hardware reference manual for your processor for more details on
circular addressing capabilities and operation.
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2 COMPUTATIONAL UNITS

The processor’s computational units perform numeric processing for DSP
and general control algorithms. The six computational units are two arith-
metic/logic units (ALUs), two multiplier/accumulator (multiplier) units, a
shifter, and a set of video ALUs. These units get data from registers in the
Data Register File. Comp utational instructions for
these units provide fixed-point operations, and each computational
instruction can execute every cycle.

The computational units handle different types of operations. The ALUs
perform arithmetic and logic operations. The multipliers perform
multiplication and execute multiply/add and multiply/subtract opera-
tions. The shifter executes logical shifts and arithmetic shifts and performs
bit packing and extraction. The video ALUs perform Single Instruction,
Multiple Data (SIMD) logical operations on specific 8-bit data operands.

Data moving in and out of the computational units goes through the Data
Register File, which consists of eight registers, each 32 bits wide. In opera-
tions requiring 16-bit operands, the registers are paired, providing sixteen
possible 16-bit registers.

The processor’s assembly language provides access to the Data Register
File. The syntax lets programs move data to and from these registers and
specify a computation’s data format at the same time.

Figure 2-1 provides a graphical guide to the other topics in this chapter.
An examination of each computational unit provides details about its
operation and is followed by a summary of computational instructions.
Studying the details of the computational units, register files, and data

Blackfin Processor Programming Reference 2-1



Using Data Formats

buses leads to a better understanding of proper data flow for
computations. Next, details about the processor’s advanced parallelism
reveal how to take advantage of multifunction instructions.

Figure 2-1 shows the relationship between the Data Register File and the
computational units—multipliers, ALUs, and shifter.

Single function multiplier, ALU, and shifter instructions have unrestricted
access to the data registers in the Data Register File. Multifunction opera-
tions may have restrictions that are described in the section for that
particular operation.

Two additional registers, AO and A1, provide 40-bit accumulator results.
These registers are dedicated to the ALUs and are used primarily for mul-
tiply-and-accumulate functions.

The traditional modes of arithmetic operations, such as fractional and
integer, are specified directly in the instruction. Rounding modes are set
from the ASTAT register, which also records status and conditions for the
results of the computational operations.

Using Data Formats

ADSP-BF5xx processors are primarily 16-bit, fixed-point machines. Most
operations assume a two’s-complement number representation, while oth-
ers assume unsigned numbers or simple binary strings. Other instructions
support 32-bit integer arithmetic, with further special features supporting
8-bit arithmetic and block floating point. For detailed information about
each number format, see Appendix D, “Numeric Formats”.

In the ADSP-BF5xx processor family arithmetic, signed numbers are
always in two’s-complement format. These processors do not use
signed-magnitude, one’s-complement, binary-coded decimal (BCD), or
excess-n formats.
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Figure 2-1. Processor Core Architecture

Binary String

\

SEQUENCER

ALIGN

DECODE

LOOP BUFFER

__ CONTROL

UNIT

The binary string format is the least complex binary notation; in it, 16 bits
are treated as a bit pattern. Examples of computations using this format
are the logical operations NOT, AND, OR, XOR. These ALU operations
treat their operands as binary strings with no provision for sign bit or
binary point placement.
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Unsigned

Unsigned binary numbers may be thought of as positive and having nearly
twice the magnitude of a signed number of the same length. The processor
treats the least significant words of multiple precision numbers as
unsigned numbers.

Signed Numbers: Two’s-Complement

In ADSP-BF5xx processor arithmetic, the word signed refers to two’s-com-
plement numbers. Most ADSP-BF5xx processor family operations
presume or support two’s-complement arithmetic.

Fractional Representation: 1.15

ADSP-BF5xx processor arithmetic is optimized for numerical values in a
fractional binary format denoted by 1.15 (“one dot fifteen”). In the 1.15
format, 1 sign bit (the Most Significant Bit (MSB)) and 15 fractional bits
represent values from —1 to 0.999969.

Figure 2-2 shows the bit weighting for 1.15 numbers as well as some
examples of 1.15 numbers and their decimal equivalents.

1.15 NUMBER DECIMAL

(HEXADECIMAL) EQUIVALENT
0x0001 0.000031
O0x7FFF 0.999969
OxFFFF —0.000031
0x8000 -1.000000

20| 21| 22| 23| 24| 275 | 26 | 2-7 | 2-8 | 279 | 2-10| 2-11[ 212|213 | 214 215

Figure 2-2. Bit Weighting for 1.15 Numbers
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Register Files

The processor’s computational units have three definitive register
groups—a Data Register File, a Pointer Register File, and set of Data
Address Generation (DAG) registers.

e The Data Register File receives operands from the data buses for
the computational units and stores computational results.

e The Pointer Register File has pointers for addressing operations.

e The DAG registers are dedicated registers that manage zero-over-
head circular buffers for DSP operations.

For more information on Pointer and DAG registers, see Chapter 5,

“Address Arithmetic Unit”.

In the processor, a word is 32 bits long; H denotes the high order
16 bits of a 32-bit register; L denotes the low order 16 bits of a
32-bit register; W denotes the low order 32 bits of a 40-bit accu-
mulator register; and X denotes the high order 8 bits. For example,
AO.W contains the lower 32 bits of the 40-bit A0 register; A0.L con-
tains the lower 16 bits of A0.W, and A0.H contains the upper 16 bits
of A0.W.
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Address Arithmetic Unit Registers

Pointer

Data Address Registers  Registers
A

10 LO BO Mo PO
[} L1 B1 M1 P1
12 L2 B2 M2 P2
13 L3 B3 M3 P3
P4

P5

| User SP |
Supervisor SP

L

Supervisor mode and user mode use separate stack pointer SP registers.
In supervisor mode, the user-mode's stack pointer is accessible through
the USP register.

Figure 2-3. Register Files

Data Register File

The Data Register File consists of eight registers, each 32 bits wide. Each
register may be viewed as a pair of independent 16-bit registers. Each is
denoted as the low half or high half. Thus the 32-bit register R0 may be
regarded as two independent register halves, R0O. L and RO.H.

For example, these instructions represent a 32-bit and a 16-bit operation:

R2 = R1 + R2; /* 32-bit addition */
R2.L = RI.H * RO.L; /* 16-bit multiplication */

2-6
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Three separate buses (two load, one store) connect the Register File to the
L1 data memory, each bus being 32 bits wide. Transfers between the Data
Register File and the data memory can move up to two 32-bit words of
valid data in each cycle. Often, these represent four 16-bit words.

Accumulator Registers

In addition to the Data Register File, the processor has two dedicated,
40-bit accumulator registers, called A0 and Al. Each can be referred to as
its 16-bit low half (An.L) or high half (An.H) plus its 8-bit extension
(An.X). Each can also be referred to as a 32-bit register (An.W) consisting of
the lower 32 bits, or as a complete 40-bit result register (An).

These examples illustrate this convention:

A0 = Al; /* 40-bit move */
Al .W R7; /* 32-bit move */
AO.H = R5.H; /* 16-bit move */
R6.H = A0O.X; /* read 8-bit value and sign extend to 16 bits */
39 0 39 0
A0 A1
39 32 31 0 9 32 31 0
A0.X A0.W A1.X A1.W
39 3231 16 15 0 9 32 31 1615 0
A0.X AO0.H AO0.L A1.X A1H A1.L

Figure 2-4. 40-Bit Accumulator Registers
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Register File Instruction Summary

Table 2-1 lists the register file instructions. In Table 2-1, note the mean-
ing of these symbols:

Allreg denotes: R[7:01, P[5:01, SP, FP, I[3:0], M[3:0],
B[3:01, L[3:01, AO.X, AO.W, Al.X, ALl.W, ASTAT, RETS, RETI,
RETX, RETN, RETE, LC[1:01, LT[1:0], LB[1:01, USP, SEQSTAT,
SYSCFG, EMUDAT, CYCLES, and CYCLES?.

Ax denotes either ALU Result register A0 or Al.
Dreg denotes any Data Register File register.

Sysreg denotes the system registers: ASTAT, SEQSTAT, SYSCFG, RETI,
RETX, RETN, RETE, or RETS, LC[1:0], LT[1:0], LB[1:01], EMUDAT,
CYCLES, and CYCLES?.

Preg denotes any Pointer register, FP, or SP register.
Dreg_even denotes R0O,R2,R4, or R6.
Dreg_odd denotes R1,R3,R5, or R7.

DPreg denotes any Data Register File register or any Pointer regis-
ter, FP, or SP register.

Dreg_lo denotes the lower 16 bits of any Data Register File
register.

Dreg_hi denotes the upper 16 bits of any Data Register File

register.
Ax.L denotes the lower 16 bits of Accumulator A0.W or A1.W.
Ax.H denotes the upper 16 bits of Accumulator A0.W or A1 .W.

Dreg_byte denotes the low order 8 bits of each Data register.

2-8
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* Option (X) denotes sign extended.

* Option (Z) denotes zero extended.

Computational Units

* *Indicates the status bit may be set or cleared, depending on the

result of the instruction.

e **Indicates the status bit is cleared.

e _ Indicates no effect.

Table 2-1. Register File Instruction Summary

Instruction

ASTAT Status Bits

AZ

AN

ACO
AC0_COPY
AC1

AV0
AVS

AV1
AV1S

CC

allreg = allreg ; 1

Ax = Ax;

Ax = Dreg ;

Dreg_even = A0 ;

Dreg_odd = Al ;

Dreg_even = A0,
Dreg odd = Al ;

Dreg_odd = Al,
Dreg_even = A0 ;

IF CC DPreg = DPreg ;

IF ! CC DPreg = DPreg ;

Dreg = Dreg_lo (Z) ;

*k

*ok [

Dreg = Dreg_lo (X) ;

*k

*k [

Ax.X = Dreg_lo;

Dreg_lo = Ax.X;

Ax.L = Dreg_lo;

Blackfin Processor Programming Reference
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Table 2-1. Register File Instruction Summary (Cont'd)

Instruction ASTAT Status Bits
AZ AN ACO AV0O |AV1 CC \'
ACO0_COPY |AVS |AVI1S V_COPY
AC1 VS
Ax.H = Dreg_hi ; - - - - — _ _
Dreg_lo = A0 ; * * - — _ _ *
Dreg_hi=Al; * * - - _ _ *
Dreg_hi=Al; * * - - _ _ *
Dreg_lo = A0 ;
Dreg_lo = A0 ; * * — _ _ _ *
Dreg hi=Al;
Dreg = Dreg_byte (Z) ; * o o - - - -
Dreg = Dreg_byte (X) ; * * o - - - -

1 Warning: Not all register combinations are allowed. For details, see the functional description of
the Move Register instruction in Chapter 9, “Move”.

Data Types

The processor supports 32-bit words, 16-bit half words, and bytes. The
32- and 16-bit words can be integer or fractional, but bytes are always
integers. Integer data types can be signed or unsigned, but fractional data
types are always signed.

Table 2-2 illustrates the formats for data that resides in memory, in the
register file, and in the accumulators. In the table, the letter & represents
one bit, and the letter s represents one signed bit.
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Some instructions manipulate data in the registers by sign-extending or
zero-extending the data to 32 bits:

* Instructions zero-extend unsigned data
 Instructions sign-extend signed 16-bit half words and 8-bit bytes

Other instructions manipulate data as 32-bit numbers. In addition, two
16-bit half words or four 8-bit bytes can be manipulated as 32-bit values.

In Table 2-2, note the meaning of these symbols:
* s =sign bit(s)
e d = data bit(s)

« »

e “” = decimal point by convention; however, a decimal point does
not literally appear in the number.

* Italics denotes data from a source other than adjacent bits.

Table 2-2. Data Formats

Format Representation in Memory Representation in 32-bit Register

32.0 Unsigned | dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd
Word dddd dddd dddd dddd

32.0 Signed sddd dddd dddd dddd dddd sddd dddd dddd dddd dddd dddd dddd
Word dddd dddd dddd dddd

16.0 Unsigned | dddd dddd dddd dddd 0000 0000 0000 0000 dddd dddd dddd
Half Word dddd

16.0 Signed sddd dddd dddd dddd ssss ssss ssss ssss sddd dddd dddd dddd
Half Word

8.0 Unsigned | dddd dddd 0000 0000 0000 0000 0000 0000 dddd
Byte dddd

8.0 Signed sddd dddd ssss ssss ssss ssss ssss ssss sddd dddd

Byte

1.15 Signed s.ddd dddd dddd dddd ssss ssss ssss ssss s.ddd dddd dddd dddd
Fraction
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Table 2-2. Data Formats (Cont’d)

Format Representation in Memory Representation in 32-bit Register
1.31 Signed s.ddd dddd dddd dddd dddd s.ddd dddd dddd dddd dddd dddd dddd
Fraction dddd dddd dddd dddd

Packed 8.0 dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd
Unsigned Byte | dddd dddd dddd

Packed 1.15 s.ddd dddd dddd dddd s.ddd s.ddd dddd dddd dddd s.ddd dddd dddd dddd
Signed dddd dddd dddd

Fraction

Endianess

Both internal and external memory are accessed in little endian byte order.
For more information, see “Memory Transaction Model” on page 6-71.

ALU Data Types

Operations on each ALU treat operands and results as either 16- or 32-bit
binary strings, except the signed division primitive (D1VS). ALU result sta-
tus bits treat the results as signed, indicating status with the overflow
status bits (AV0, AV1) and the negative status bit (AN). Each ALU has its
own sticky overflow status bit, AV0S and AV1S. Once set, these bits remain
set until cleared by writing directly to the ASTAT register. An additional v
status bit is set or cleared depending on the transfer of the result from
both accumulators to the register file. Furthermore, the sticky VS bit is set
with the vV bit and remains set until cleared.

The logic of the overflow bits (v, VS, AVO, AVOS, AV1, AV1S) is based on
two’s-complement arithmetic. A bit or set of bits is set if the Most Signifi-
cant Bit (MSB) changes in a manner not predicted by the signs of the
operands and the nature of the operation. For example, adding two posi-
tive numbers must generate a positive result; a change in the sign bit
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signifies an overflow and sets AVx, the corresponding overflow status bits.
Adding a negative and a positive number may result in either a negative or
positive result, but cannot cause an overflow.

The logic of the carry bits (AC0, AC1) is based on unsigned magnitude
arithmetic. The bit is set if a carry is generated from bit 16 (the MSB).
The carry bits (AC0, AC1) are most useful for the lower word portions of a
multiword operation.

ALU results generate status information. For more information about
using ALU status, see “ALU Instruction Summary” on page 2-30.

Multiplier Data Types

Each multiplier produces results that are binary strings. The inputs are
interpreted according to the information given in the instruction itself
(whether it is signed multiplied by signed, unsigned multiplied by
unsigned, a mixture, or a rounding operation). The 32-bit result from the
multipliers is assumed to be signed; it is sign-extended across the full
40-bit width of the A0 or Al registers.

The processor supports two modes of format adjustment: the fractional
mode for fractional operands (1.15 format with 1 sign bit and 15 frac-
tional bits) and the integer mode for integer operands (16.0 format).

When the processor multiplies two 1.15 operands, the result is a 2.30

(2 sign bits and 30 fractional bits) number. In the fractional mode, the
multiplier automatically shifts the multiplier product left one bit before
transferring the result to the multiplier result register (A0, A1). This shift of
the redundant sign bit causes the multiplier result to be in 1.31 format,
which can be rounded to 1.15 format. The resulting format appears in
Figure 2-5 on page 2-17.
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In the integer mode, the left shift does not occur. For example, if the oper-
ands are in the 16.0 format, the 32-bit multiplier result would be in 32.0
format. A left shift is not needed and would change the numerical
representation. This result format appears in Figure 2-6 on page 2-17.

Multiplier results generate status information when they update accumu-
lators or when they are transferred to a destination register in the register
file. For more information, see “Multiplier Instruction Summary” on

page 2-38.

Shifter Data Types

Many operations in the shifter are explicitly geared to signed (two’s-com-
plement) or unsigned values—logical shifts assume unsigned magnitude
or binary string values, and arithmetic shifts assume two’s-complement
values.

The exponent logic assumes two’s-complement numbers. The exponent

logic supports block floating point, which is also based on two’s-comple-
ment fractions.

Shifter results generate status information. For more information about
using shifter status, see “Shifter Instruction Summary” on page 2-54.

Arithmetic Formats Summary

Table 2-3, Table 2-4, Table 2-5, and Table 2-6 summarize some of the

arithmetic characteristics of computational operations.

Table 2-3. ALU Arithmetic Formats

Operation Operand Formats Result Formats
Addition Signed or unsigned Interpret status bits
Subtraction Signed or unsigned Interpret status bits
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Table 2-3. ALU Arithmetic Formats (Cont’d)

Computational Units

Operation Operand Formats Result Formats
Logical Binary string Same as operands
Division Explicitly signed or unsigned Same as operands

Table 2-4. Multiplier Fractional Modes Formats

Operation

Operand Formats

Result Formats

Multiplication

1.15 explicitly signed or
unsigned

2.30 shifted to 1.31

Multiplication/Addition

1.15 explicitly signed or
unsigned

2.30 shifted to 1.31

Multiplication/Subtraction

1.15 explicitly signed or
unsigned

2.30 shifted to 1.31

Table 2-5. Multiplier Arithmetic Integer Modes Formats

Operation

Operand Formats

Result Formats

Multiplication

16.0 explicitly signed or
unsigned

32.0 not shifted

Multiplication/Addition

16.0 explicitly signed or
unsigned

32.0 not shifted

Multiplication/Subtraction

16.0 explicitly signed or
unsigned

32.0 not shifted

Table 2-6. Shifter Arithmetic Formats

Operation Operand Formats Result Formats

Logical Shift Unsigned binary string Same as operands
Arithmetic Shift Signed Same as operands
Exponent Detect Signed Same as operands

Blackfin Processor Programming Reference
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Using Multiplier Integer and Fractional Formats

For multiply-and-accumulate functions, the processor provides two
choices—fractional arithmetic for fractional numbers (1.15) and integer
arithmetic for integers (16.0).

For fractional arithmetic, the 32-bit product output is format adjusted—
sign-extended and shifted one bit to the left—Dbefore being added to
accumulator A0 or Al. For example, bit 31 of the product lines up with bit
32 of A0 (which is bit 0 of A0.X), and bit 0 of the product lines up with bit
1 of A0 (which is bit 1 of A0.W). The Least Significant Bit (LSB) is zero
filled. The fractional multiplier result format appears in Figure 2-5.

For integer arithmetic, the 32-bit product register is not shifted before
being added to A0 or Al. Figure 2-6 shows the integer mode result
placement.

With either fractional or integer operations, the multiplier output product
is fed into a 40-bit adder/subtracter which adds or subtracts the new prod-
uct with the current contents of the A0 or Al register to produce the final
40-bit result.

2-16 Blackfin Processor Programming Reference



Computational Units

SHIFTED ZERO
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Figure 2-5. Fractional Multiplier Results Format
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Figure 2-6. Integer Multiplier Results Format
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Rounding Multiplier Results

On many multiplier operations, the processor supports multiplier results
rounding (RND option). Rounding is a means of reducing the precision of a
number by removing a lower order range of bits from that number’s repre-
sentation and possibly modifying the remaining portion of the number to
more accurately represent its former value. For example, the original num-
ber will have N bits of precision, whereas the new number will have only
M bits of precision (where N>M). The process of rounding, then, removes
N — M bits of precision from the number.

The RND_MOD bit in the ASTAT register determines whether the RND option
provides biased or unbiased rounding. For unbiased rounding, set RND_MOD
bit = 0. For biased rounding, set RND_MOD bit = 1.

@ For most algorithms, unbiased rounding is preferred.

Unbiased Rounding

The convergent rounding method returns the number closest to the origi-
nal. In cases where the original number lies exactly halfway between two
numbers, this method returns the nearest even number, the one contain-
ing an LSB of 0. For example, when rounding the 3-bit,
two’s-complement fraction 0.25 (binary 0.01) to the nearest 2-bit,
two’s-complement fraction, the result would be 0.0, because that is the
even-numbered choice of 0.5 and 0.0. Since it rounds up and down based
on the surrounding values, this method is called #nbiased rounding.

Unbiased rounding uses the ALU’s capability of rounding the 40-bit result
at the boundary between bit 15 and bit 16. Rounding can be specified as
part of the instruction code. When rounding is selected, the output regis-
ter contains the rounded 16-bit result; the accumulator is never rounded.
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The accumulator uses an unbiased rounding scheme. The conventional
method of biased rounding adds a 1 into bit position 15 of the adder
chain. This method causes a net positive bias because the midway value
(when A0.L/Al.L = 0x8000) is always rounded upward.

The accumulator eliminates this bias by forcing bit 16 in the result output
to 0 when it detects this midway point. Forcing bit 16 to 0 has the effect
of rounding odd A0.L/Al.L values upward and even values downward,
yielding a large sample bias of 0, assuming uniformly distributed values.

The following examples use x to represent any bit pattern (not all zeros).
The example in Figure 2-7 shows a typical rounding operation for A0; the
example also applies for Al.

UNROUNDED VALUE:

ADD 1 AND CARRY:

ROUNDED VALUE:

A0.X A0.W

Figure 2-7. Typical Unbiased Multiplier Rounding
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The compensation to avoid net bias becomes visible when all lower 15 bits
are 0 and bit 15 is 1 (the midpoint value) as shown in Figure 2-7.

In Figure 2-8, A0 bit 16 is forced to 0. This algorithm is employed on
every rounding operation, but is evident only when the bit patterns shown
in the lower 16 bits of the next example are present.

UNROUNDED VALUE:

ADD 1 AND CARRY:

A0 BIT 16 =1:

ROUNDED VALUE:

A0.X AO.W

Figure 2-8. Avoiding Net Bias in Unbiased Multiplier Rounding
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Biased Rounding

The round-to-nearest method also returns the number closest to the origi-
nal. However, by convention, an original number lying exactly halfway
between two numbers always rounds up to the larger of the two. For
example, when rounding the 3-bit, two’s-complement fraction 0.25
(binary 0.01) to the nearest 2-bit, two’s-complement fraction, this method
returns 0.5 (binary 0.1). The original fraction lies exactly midway between
0.5 and 0.0 (binary 0.0), so this method rounds up. Because it always
rounds up, this method is called biased rounding.

The RND_MOD bit in the ASTAT register enables biased rounding. When the
RND_MOD bit is cleared, the RND option in multiplier instructions uses the

normal, unbiased rounding operation, as discussed in “Unbiased Round-
ing” on page 2-18.

When the RND_MOD bit is set (=1), the processor uses biased rounding
instead of unbiased rounding. When operating in biased rounding mode,
all rounding operations with A0.L/A1.L set to 0x8000 round up, rather
than only rounding odd values up. For an example of biased rounding, see

Table 2-7.

Table 2-7. Biased Rounding in Multiplier Operation

A0/A1 Before RND Biased RND Result Unbiased RND Result

0x00 0000 8000 0x00 0001 8000 0x00 0000 0000

0x00 0001 8000 0x00 0002 0000 0x00 0002 0000

0x00 0000 8001

0x00 0001 0001

0x00 0001 0001

0x00 0001 8001

0x00 0002 0001

0x00 0002 0001

0x00 0000 7FFF

0x00 0000 FFFF

0x00 0000 FFFF

0x00 0001 7FFF

0x00 0001 FFFF

0x00 0001 FFFF

Blackfin Processor Programming Reference

2-21



Data Types

Biased rounding affects the result only when the A0.L/AL.L register con-
tains 0x8000; all other rounding operations work normally. This mode
allows more efficient implementation of bit specified algorithms that use
biased rounding (for example, the Global System for Mobile Communica-
tions (GSM) speech compression routines).

Truncation

Another common way to reduce the significant bits representing a number
is to simply mask off the N — M lower bits. This process is known as zrun-
cation and results in a relatively large bias. Instructions that do not
support rounding revert to truncation. The RND_MOD bit in ASTAT has no
effect on truncation.

Special Rounding Instructions

The ALU provides the ability to round the arithmetic results directly into
a data register with biased or unbiased rounding as described above. It also
provides the ability to round on different bit boundaries. The options
RND12, RND, and RND20 round at bit 12, bit 16, and bit 20, respectively,
regardless of the state of the RND_MOD bit in ASTAT.

For example:
R3.L = R4 (RND) ;

performs biased rounding at bit 16, depositing the result in a half word.
R3.L = R4 + R5 (RND12) ;

performs an addition of two 32-bit numbers, biased rounding at bit 12,
depositing the result in a half word.
R3.L = R4 + R5 (RND20) ;

performs an addition of two 32-bit numbers, biased rounding at bit 20,
depositing the result in a half word.
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Using Computational Status

The multiplier, ALU, and shifter update the overflow and other status bits
in the processor’s Arithmetic Status (ASTAT) register. To use status condi-
tions from computations in program sequencing, use conditional
instructions to test the CC status bit in the ASTAT register after the instruc-
tion executes. This method permits monitoring each instruction’s
outcome. The ASTAT register is a 32-bit register, with some bits reserved.
To ensure compatibility with future implementations, writes to this regis-
ter should write back the values read from these reserved bits.
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ASTAT Register

Figure 2-9 describes the Arithmetic Status (ASTAT) register for all Blackfin

processors, except the ADSP-BF535.

Arithmetic Status Register (ASTAT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

|o |o |o |o |o |o |o |o |o |o |o |o |o |o |o |0| Reset = 0x0000 0000

VS (Sticky Dreg Overflow) g

Sticky version of V

V (Dreg Overflow)

0 - Last result written from
ALU to Data Register File
register has not overflowed

1 - Last result has overflowed

AV1S (Sticky A1 Overflow)

Sticky version of AV1

15 14 13 12 11 10 9

|— AVO0 (A0 Overflow)
0 - Last result written to A0
has not overflowed
1 - Last result written to A0
has overflowed
AVO0S (Sticky A0 Overflow)

Sticky version of AVO

AV1 (A1 Overflow)

0 - Last result written to A1
has not overflowed

1 - Last result written to A1
has overflowed

[ofofofo]o]e]o

8 7 6 5 4 3 2 1 0
[ofofofofodefo]o]]

AC1 (ALU1 Carry) 4

0 - Operation in ALU1 does not
generate a carry

1 - Operation generates a carry

ACO (ALUO Carry)

0 - Operation in ALUO does not
generate a carry

1 - Operation generates a
carry

RND_MOD (Rounding Mode)

0 - Unbiased rounding
1 - Biased rounding

AQ (Quotient)

Quotient bit

Figure 2-9. Arithmetic Status Register

|— AZ (Zero Result)

0 - Result from last ALUO,
ALU1, or shifter operation
is not zero

1 - Result is zero

AN (Negative Result)

0 - Result from last ALUO,
ALU1, or shifter operation
is not negative

1 - Result is negative

ACO0_COPY
Identical to bit 12
V_COPY
Identical to bit 24

CC (Condition Code)

Multipurpose bit, used
primarily to hold resolution of
arithmetic comparisons. Also
used by some shifter instruc-
tions to hold rotating bits.
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The processor updates the status bits in ASTAT, indicating the status of the
most recent ALU, multiplier, or shifter operation.

The ADSP-BF535 processor has fewer ASTAT status bits, and some
status bits operate differently than the other Blackfin processors.

For more information on the ADSP-BF535 status bits, see
Table A-1 on page A-3.

Arithmetic Logic Unit (ALU)

The two ALUs perform arithmetic and logical operations on fixed-point
data. ALU fixed-point instructions operate on 16-, 32-, and 40-bit
fixed-point operands and output 16-, 32-, or 40-bit fixed-point results.
ALU instructions include:

Fixed-point addition and subtraction of registers
Addition and subtraction of immediate values
Accumulation and subtraction of multiplier results
Logical AND, OR, NOT, XOR, bitwise XOR, Negate
Functions: ABS, MAX, MIN, Round, division primitives

ALU Operations

Primary ALU operations occur on ALUO, while parallel operations occur
on ALU1, which performs a subset of ALUO operations.
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Table 2-8 describes the possible inputs and outputs of each ALU.

Table 2-8. Inputs and Outputs of Each ALU

Input Output
Two or four 16-bit operands One or two 16-bit results
Two 32-bit operands One 32-bit result

32-bit result from the multiplier | Combination of 32-bit result from the multiplier

with a 40-bit accumulation result

Combining operations in both ALUs can result in four 16-bit results, two
32-bit results, or two 40-bit results generated in a single instruction.

Single 14-Bit Operations

In single 16-bit operations, any two 16-bit register halves may be used as
the input to the ALU. An addition, subtraction, or logical operation pro-
duces a 16-bit result that is deposited into an arbitrary destination register
half. ALUO is used for this operation, because it is the primary resource for
ALU operations.

For example:
R3.H = R1.H + R2.L (NS)

adds the 16-bit contents of R1.H (R1 high half) to the contents of R2. L

(R2 low half) and deposits the result in R3.H (R3 high half) with no
saturation.
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Dual 16-Bit Operations

In dual 16-bit operations, any two 32-bit registers may be used as the
input to the ALU, considered as pairs of 16-bit operands. An addition,
subtraction, or logical operation produces two 16-bit results that are
deposited into an arbitrary 32-bit destination register. ALUO is used for
this operation, because it is the primary resource for ALU operations.

For example:
R3 = RL +[- R2 (S) :

adds the 16-bit contents of R2.H (R2 high half) to the contents of R1.H
(R1 high half) and deposits the result in R3.H (R3 high half) with

saturation.

The instruction also subtracts the 16-bit contents of R2. L (R2 low half)
from the contents of R1.L (R1 low half) and deposits the result in R3. L
(R3 low half) with saturation (see Figure 2-10 on page 2-39).

Quad 16-Bit Operations

In quad 16-bit operations, any two 32-bit registers may be used as the
inputs to ALUO and ALU1, considered as pairs of 16-bit operands. A
small number of addition or subtraction operations produces four 16-bit
results that are deposited into two arbitrary, 32-bit destination registers.
Both ALUO and ALUT are used for this operation. Because there are only
two 32-bit data paths from the Data Register File to the arithmetic units,
the same two pairs of 16-bit inputs are presented to ALU1 as to ALUO.
The instruction construct is identical to that of a dual 16-bit operation,
and input operands must be the same for both ALUs.

For example:
R3 = RO +|+ R1, R2 = RO -|- Rl (S) ;

performs four operations:
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* Adds the 16-bit contents of R1.H (R1 high half) to the 16-bit con-
tents of RO.H (RO high half) and deposits the result in R3.H with
saturation.

e AddsR1l.L to RO.L and deposits the result in R3.L with saturation.

» Subtracts the 16-bit contents of R1.H (R1 high half) from the 16-bit
contents of the R0.H (RO high half) and deposits the result in R2.H
with saturation.

* Subtracts R1.L from RO.L and deposits the result in R2. L with
saturation.

Explicitly, the four equivalent instructions are:

R3.H = RO.H + RI.H (S)
R3.L = RO.L + RI.L (S)
R2.H = RO.H - RI.H (S) ;
R2.L = RO.L - RI.L (S)

Single 32-Bit Operations

In single 32-bit operations, any two 32-bit registers may be used as the
input to the ALU, considered as 32-bit operands. An addition, subtrac-
tion, or logical operation produces a 32-bit result that is deposited into an
arbitrary 32-bit destination register. ALUO is used for this operation,
because it is the primary resource for ALU operations.

In addition to the 32-bit input operands coming from the Data Register
File, operands may be sourced and deposited into the Pointer Register
File, consisting of the eight registers P[5:01, SP, FP.

Instructions may not intermingle Pointer registers with Data
registers.
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For example:
R3 = R1 + R2 (NS) ;

adds the 32-bit contents of R2 to the 32-bit contents of R1 and deposits the
result in R3 with no saturation.
R3 = Rl + R2 (S)

adds the 32-bit contents of R1 to the 32-bit contents of R2 and deposits the
result in R3 with saturation.

Dual 32-Bit Operations

In dual 32-bit operations, any two 32-bit registers may be used as the
input to ALUO and ALUI, considered as a pair of 32-bit operands. An
addition or subtraction produces two 32-bit results that are deposited into
two 32-bit destination registers. Both ALUO and ALU1 are used for this
operation. Because only two 32-bit data paths go from the Data Register
File to the arithmetic units, the same two 32-bit input registers are pre-

sented to ALUO and ALUI.

For example:
R3 = Rl + RZ2, R4 = R1 - R2 (NS)

adds the 32-bit contents of R2 to the 32-bit contents of R1 and deposits the
result in R3 with no saturation.

The instruction also subtracts the 32-bit contents of R2 from that of R1
and deposits the result in R4 with no saturation.

A specialized form of this instruction uses the ALU 40-bit result registers
as input operands, creating the sum and differences of the A0 and Al
registers.
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For example:
R3 = A0 + A1, R4 = A0 - Al (S) ;

transfers to the result registers two 32-bit, saturated, sum and difference
values of the ALU registers.

ALU Instruction Summary

Table 2-9 lists the ALU instructions. For more information about assem-
bly language syntax and the effect of ALU instructions on the status bits,
see Chapter 15, “Arithmetic Operations”.

In Table 2-9, note the meaning of these symbols:

Dreg denotes any Data Register File register.

Dreg lo_hi denotes any 16-bit register half in any Data Register
File register.

Dreg_lo denotes the lower 16 bits of any Data Register File
register.

imm?7 denotes a signed, 7-bit wide, immediate value.
Ax denotes either ALU Result register A0 or Al.
DIVS denotes a Divide Sign primitive.

DIVQ denotes a Divide Quotient primitive.

MAX denotes the maximum, or most positive, value of the source
registers.

MIN denotes the minimum value of the source registers.

ABS denotes the absolute value of the upper and lower halves of a
single 32-bit register.

RND denotes rounding a half word.
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e RNDI12 denotes saturating the result of an addition or subtraction
and rounding the result on bit 12.

e RND20 denotes saturating the result of an addition or subtraction
and rounding the result on bit 20.

e SIGNBITS denotes the number of sign bits in a number, minus

one.

e EXPADJ denotes the lesser of the number of sign bits in a number
minus one, and a threshold value.

* * Indicates the status bit may be set or cleared, depending on the
results of the instruction.

e **Indicates the status bit is cleared.

e — Indicates no effect.

e dindicates AQ contains the dividend MSB Exclusive-OR divisor

MSB.

Table 2-9. ALU Instruction Summary

Instruction ASTAT Status Bits
AZ |AN |ACO AV0 |AV1 \' AQ

AC0_COPY |AVO0S |AV1S |V_COPY

AC1 A
Dreg = Dreg + Dreg ; * * * — — * -
Dreg = Dreg — Dreg (S) ; * * * - - * _
Dreg = Dreg + Dreg, * * * - - * -
Dreg = Dreg — Dreg ;
Dreg_lo_hi = Dreg_lo_hi + * * * — — * _
Dreg_lo_hi ;
Dreg_lo_hi = Dreg_lo_hi — * * * — — * _
Dreg_lo_hi (S) ;
Dreg = Dreg +|+ Dreg ; * * * - - * -

Blackfin Processor Programming Reference 2-31



Arithmetic Logic Unit (ALU)

Table 2-9. ALU Instruction Summary (Contd)

Instruction ASTAT Status Bits
AZ |AN |ACO AV0 [AV1 |V AQ

AC0_COPY |AVO0S [AV1S |V_COPY

AC1 \'A
Dreg = Dreg +|— Dreg ; * * * - - * -
Dreg = Dreg —|+ Dreg ; * * * - - * -
Dreg = Dreg —|- Dreg ; * * * - - * -
Dreg = Dreg +|+Dreg, * * - - — * -
Dreg = Dreg —|- Dreg ;
Dreg = Dreg +|— Dreg, * * — — — * —
Dreg = Dreg —|+ Dreg ;
Dreg = Ax + Ax, * * * — — * _
Dreg = Ax — Ax;
Dreg += imm7 ; * * * — — * _
Dreg = (A0 += Al ) ; * * * * - * -
Dreg_lo_hi = (A0 += Al) ; * * * * - * -
A0 += Al; * * * * - - -
AO J— Al ; * * * * _ _ _
DIVS ( Dreg, Dreg) ; * * * * - - d
DIVQ ( Dreg, Dreg ) ; * * * * - - d
Dreg = MAX ( Dreg, Dreg ) | * * — — - > -
V)
Dreg = MIN ( Dreg, Dreg) | * * - - - ok -
V)
Dreg = ABS Dreg (V) ; * ok - - - * -
Ax - ABS Ax; * Xk _ * * * _
Ax - ABS Ax) * Xk _ * * * _
Ax = ABS Ax;
Ax = —Ax; * * * * * * _
Ax = —Ax, Ax =—— Ax ; * * * * * * _
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Table 2-9. ALU Instruction Summary (Contd)

Instruction

ASTAT Status Bits

AZ

AN

ACO
AC0_COPY
AC1

AV0
AV0S

AV1
AV1S

AQ

Ax = Ax (S) ;

Ax=Ax (S), Ax=Ax(S);

Dreg_lo_hi = Dreg (RND) ;

Dreg_lo_hi = Dreg + Dreg
(RND12) ;

Dreg_lo_hi = Dreg — Dreg
(RND12) ;

Dreg_lo_hi = Dreg + Dreg
(RND20) ;

Dreg_lo_hi = Dreg — Dreg
(RND20) ;

Dreg_lo = SIGNBITS Dreg ;

Dreg_lo = SIGNBITS
Dreg_lo_hi ;

Dreg_lo = SIGNBITS An ;

Dreg_lo = EXPAD] ( Dreg,
Dreg_lo) (V) ;

Dreg_lo = EXPAD]
(Dreg_lo_hi, Dreg_lo);

Dreg = Dreg & Dreg ;

Hok

**/_

Dreg = - Dreg ;

*k

**/_

Dreg = Dreg | Dreg ;

*k

*ok [

Dreg = Dreg A Dreg ;

*k

ok [

Dreg =— Dreg ;
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ALU Division Support Features

The ALU supports division with two special divide primitives. These
instructions (DIVS, DIVQ) let programs implement a non-restoring, condi-
tional (error checking), addition/subtraction/division algorithm.

The division can be either signed or unsigned, but both the dividend and
divisor must be of the same type. Details about using division and pro-
gramming examples are available in Chapter 15, “Arithmetic Operations”.

Special SIMD Video ALU Operations

Four 8-bit Video ALUs enable the processor to process video information
with high efficiency. Each Video ALU instruction may take from one to
four pairs of 8-bit inputs and return one to four 8-bit results. The inputs
are presented to the Video ALUs in two 32-bit words from the Data Reg-
ister File. The possible operations include:

* Quad 8-Bit Add or Subtract

* Quad 8-Bit Average

* Quad 8-Bit Pack or Unpack

* Quad 8-Bit Subtract-Absolute-Accumulate
e Byte Align

For more information about the operation of these instructions, see

Chapter 18, “Video Pixel Operations”.
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Multiply Accumulators (Multipliers)

The two multipliers (MACO and MAC1) perform fixed-point multiplica-
tion and multiply and accumulate operations. Multiply and accumulate
operations are available with either cumulative addition or cumulative
subtraction.

Multiplier fixed-point instructions operate on 16-bit fixed-point data and
produce 32-bit results that may be added or subtracted from a 40-bit
accumulator.

Inputs are treated as fractional or integer, unsigned or two’s-complement.
Multiplier instructions include:

e Multiplication
* Multiply and accumulate with addition, rounding optional
* Multiply and accumulate with subtraction, rounding optional

e Dual versions of the above

Multiplier Operation

Each multiplier has two 32-bit inputs from which it derives the two 16-bit
operands. For single multiply and accumulate instructions, these operands
can be any Data registers in the Data Register File. Each multiplier can
accumulate results in its Accumulator register, Al or A0. The accumulator
results can be saturated to 32 or 40 bits. The multiplier result can also be
written directly to a 16- or 32-bit destination register with optional
rounding.

Each multiplier instruction determines whether the inputs are either both
in integer format or both in fractional format. The format of the result
matches the format of the inputs. In MACO, both inputs are treated as
signed or unsigned. In MACI, there is a mixed-mode option.
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If both inputs are fractional and signed, the multiplier automatically shifts
the result left one bit to remove the redundant sign bit. Unsigned frac-
tional, integer, and mixed modes do not perform a shift for sign bit
correction. Multiplier instruction options specify the data format of the
inputs. See “Multiplier Instruction Options” on page 2-40 for more
information.

Placing Multiplier Results in Multiplier Accumulator Registers

As shown in Figure 2-10 on page 2-42, each multiplier has a dedicated
accumulator, A0 or Al. Each Accumulator register is divided into three sec-
tions—A0.L/ALl.L (bits 15:0), AO.H/AL.H (bits 31:16), and A0.X/A1.X (bits
39:32).

When the multiplier writes to its result Accumulator registers, the 32-bit
result is deposited into the lower bits of the combined Accumulator regis-
ter, and the MSB is sign-extended into the upper eight bits of the register
(AO.X/AL.X).

Multiplier output can be deposited not only in the A0 or Al registers, but
also in a variety of 16- or 32-bit Data registers in the Data Register File.
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Rounding or Saturating Multiplier Results

On a multiply and accumulate operation, the accumulator data can be sat-
urated and, optionally, rounded for extraction to a register or register half.
When a multiply deposits a result only in a register or register half, the sat-
uration and rounding works the same way. The rounding and saturation
operations work as follows.

Rounding is applied only to fractional results except for the IH
option, which applies rounding and high half extraction to an inte-
ger result.

For the IH option, the rounded result is obtained by adding 0x8000
to the accumulator (for MAC) or multiply result (for mult) and
then saturating to 32-bits. For more information, see “Rounding
Multiplier Results” on page 2-18.

If an overflow or underflow has occurred, the saturate operation
sets the specified Result register to the maximum positive or nega-
tive value. For more information, see the following section.

Saturating Multiplier Results on Overflow

The following bits in ASTAT indicate multiplier overflow status:

Bit 16 (Av0) and bit 18 (AV1) record overflow condition (whether
the result has overflowed 32 bits) for the A0 and Al accumulators,
respectively.

If the bit is cleared (=0), no overflow or underflow has occurred. If
the bit is set (=1), an overflow or underflow has occurred. The AV0S
and AV1S bits are sticky bits.

Bit 24 (V) and bit 25 (VS) are set if overflow occurs in extracting the
accumulator result to a register.
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Multiplier Instruction Summary

Table 2-10 lists the multiplier instructions. For more information about
assembly language syntax and the effect of multiplier instructions on the
status bits, see Chapter 15, “Arithmetic Operations”.

In Table 2-10, note the meaning of these symbols:
* Dreg denotes any Data Register File register.

* Dreg lo_hi denotes any 16-bit register half in any Data Register
File register.

* Dreg lo denotes the lower 16 bits of any Data Register File
register.

* Dreg_hi denotes the upper 16 bits of any Data Register File
register.

* Ax denotes either MAC Accumulator register A0 or Al.

* * Indicates the status bit may be set or cleared, depending on the
results of the instruction.

e _ Indicates no effect.

Multiplier instruction options are described in “Multiplier Instruction
Options” on page 2-40.
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Table 2-10. Multiplier Instruction Summary

Instruction ASTAT Status Bits

AV0 AV1 \%

AV0S AV1S V_COPY

VS

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ; - - *
Dreg_hi = Dreg_lo_hi * Dreg_lo_hi ; - - *
Dreg = Dreg_lo_hi * Dreg_lo_hi ; - - *
Ax = Dreg_lo_hi * Dreg_lo_hi ; * * -
Ax += Dreg_lo_hi * Dreg_lo_hi ; * * -
An —= Dreg_lo_hi * Dreg_lo_hi ; * * -
Dreg_lo = (A0 = Dreg_lo_hi * Dreg_lo_hi) ; * * *
Dreg lo = ( A0 += Dreg_lo_hi * Dreg lo_hi ); |* * *
Dreg_lo = (A0 —= Dreg_lo_hi * Dreg_lo_hi); |* * *
Dreg_hi = (Al = Dreg_lo_hi * Dreg lo_hi ) ; * * *
Dreg_hi = (Al += Dreg_lo_hi * Dreg lo_hi); |* * *
Dreg_hi = (Al —= Dreg lo_hi * Dreg lo_hi); |* * *
Dreg = ( Ax = Dreg_lo_hi * Dreg_lo_hi) ; * * *
Dreg = ( Ax += Dreg_lo_hi * Dreg_lo_hi ) ; * * *
Dreg = ( Ax —= Dreg_lo_hi * Dreg_lo_hi) ; * * *
Dreg *= Dreg ; - - -
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Multiplier Instruction Options

The following descriptions of multiplier instruction options provide an
overview. Not all options are available for all instructions. For informa-
tion about how to use these options with their respective instructions, see
Chapter 15, “Arithmetic Operations”.

default

(IS)

(FU)

(Iy)

(T

(TFU)

(ISS2)

No option; input data is signed fraction.

Input data operands are signed integer. No shift
correction is made.

Input data operands are unsigned fraction. No shift
correction is made.

Input data operands are unsigned integer. No shift
correction is made.

Input data operands are signed fraction. When
copying to the destination half register, truncates
the lower 16 bits of the Accumulator contents.

Input data operands are unsigned fraction. When
copying to the destination half register, truncates
the lower 16 bits of the Accumulator contents.

If multiplying and accumulating to a register:

Input data operands are signed integer. When copy-
ing to the destination register, Accumulator
contents are scaled (multiplied x2 by a one-place
shift-left). If scaling produces a signed value larger
than 32 bits, the number is saturated to its maxi-
mum positive or negative value.

If multiplying and accumulating to a half register:

2-40
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When copying the lower 16 bits to the destination
half register, the Accumulator contents are scaled. If
scaling produces a signed value greater than 16 bits,
the number is saturated to its maximum positive or
negative value.

(IH) This option indicates integer multiplication with
high half word extraction. The Accumulator is satu-
rated at 32 bits, and bits [31:16] of the
Accumulator are rounded, and then copied into the
destination half register.

(W32) Input data operands are signed fraction with no
extension bits in the Accumulators at 32 bits.
Left-shift correction of the product is performed, as
required. This option is used for legacy GSM
speech vocoder algorithms written for 32-bit Accu-
mulators. For this option only, this special case
applies: 0x8000 x 0x8000 = Ox7FFF.

(M) Operation uses mixed-multiply mode. Valid only
for MACI versions of the instruction. Multiplies a
signed fraction by an unsigned fractional operand
with no left-shift correction. Operand one is signed;
operand two is unsigned. MACO performs an
unmixed multiply on signed fractions by default, or
another format as specified. That is, MACO exe-
cutes the specified signed/signed or
unsigned/unsigned multiplication. The (M) option
can be used alone or in conjunction with one other
format option.
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Multiplier Data Flow Details

Figure 2-10 shows the Register files and ALUs, along with the
multiplier/accumulators.

Each multiplier has two 16-bit inputs, performs a 16-bit multiplication,
and stores the result in a 40-bit accumulator or extracts to a 16-bit or
32-bit register. Two 32-bit words are available at the MAC inputs, provid-
ing four 16-bit operands to chose from.

TO MEMORY
A ALUs
A
32b 32b 32b
\A 4 VY
OPERAND OPERAND
ﬁ RO.H RO.L \ SELECTION SELECTION
R1| R1H R1.L
MAC1 MACO
R2 | R2H R2.L
R3 | R3H R3.L
R4 | R4H R4.L Al A0
R5| RsH R5.L SHIFTER
R6 | R6H R6.L
w R7.H R7.L /

32b

32b v

FROM MEMORY

Figure 2-10. Register Files and ALUs
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One of the operands must be selected from the low half or the high half of
one 32-bit word. The other operand must be selected from the low half or
the high half of the other 32-bit word. Thus, each MAC is presented with
four possible input operand combinations. The two 32-bit words can con-
tain the same register information, giving the options for squaring and
multiplying the high half and low half of the same register. Figure 2-11
show these possible combinations.

31 31

1

| Rm Rm
| 1 |

1

1 | Rp Rp
''y§y MACO ! MACO
- P

Figure 2-11. Four Possible Combinations of MAC Operations

The 32-bit product is passed to a 40-bit adder/subtracter, which may add
or subtract the new product from the contents of the Accumulator Result
register or pass the new product directly to the Data Register File Results
register. For results, the A0 and Al registers are 40 bits wide. Each of these
registers consists of smaller 32- and 8-bit registers—A0.W, A1.W, A0. X, and
Al.X.
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For example:
Al += R3.H * R4.H ;

In this instruction, the MAC1 multiplier/accumulator performs a multiply
and accumulates the result with the previous results in the Al
Accumulator.

Multiply Without Accumulate

The multiplier may operate without the accumulation function. If accu-
mulation is not used, the result can be directly stored in a register from the
Data Register File or the Accumulator register. The destination register
may be 16 bits or 32 bits. If a 16-bit destination register is a low half, then
MACO is used; if it is a high half, then MACI is used. For a 32-bit desti-
nation register, either MACO or MACI1 is used.

If the destination register is 16 bits, then the word that is extracted from
the multiplier depends on the data type of the input.

* If the multiplication uses fractional operands or the IH option, then
the high half of the result is extracted and stored in the 16-bit des-
tination registers (see Figure 2-12).

 If the multiplication uses integer operands, then the low half of the
result is extracted and stored in the 16-bit destination registers.
These extractions provide the most useful information in the resul-
tant 16-bit word for the data type chosen (see Figure 2-13).

For example, this instruction uses fractional, unsigned operands:
RO.L = R1.L * RZ2.L (FU) ;

The instruction deposits the upper 16 bits of the multiply answer with
rounding and saturation into the lower half of R0, using MACO. This
instruction uses unsigned integer operands:

RO.H = R2.H * R3.H (IU) ;
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A0.X AO.H AO.L
AO 0000 0000 | XXXX XXXX XXXX XXXX ‘ XXXX XXXX XXXX XXXX |

—

DESHINAION | XXX XXXX XXXX XXXX | XHXXHK XXXX XXX XXXX |
gister
A1.X A1H AlL

A1 0000 0000 | XXXX XXXX XXXX XXXX ‘ XXXX XXXX XXXX XXXX |

!

XK XXXX XXX XXXX | XXX XXXX XXXX XXXX |

Destination
Register

Figure 2-12. Multiplication of Fractional Operands

The instruction deposits the lower 16 bits of the multiply answer with any
required saturation into the high half of R0, using MACI.
RO = R1.L * R2.L

Regardless of operand type, the preceding operation deposits 32 bits of the

multiplier answer with saturation into R0, using MACO.

Special 32-Bit Integer MAC Instruction

The processor supports a multicycle 32-bit MAC instruction:
Dreg *= Dreg

The single instruction multiplies two 32-bit integer operands and provides
a 32-bit integer result, destroying one of the input operands.
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A0.X AO.H AO.L
AO 0000 0000 | XXXX XXXX XXXX XXXX ‘ XXXX XXXX XXXX XXXX |

l

DESHINAION | Y XXX XXXX XXXX XXXX | XHXXHK XXXX XXX XXXX |
gister
A1.X A1H AlL

A1 0000 0000 | XXXXXXXX XXXX XXXX ‘ XXXX XXXX XXXX XXXX |

v/\)

XK XXXX XXX XXXX | XXX XXXX XXXX XXXX |

Destination
Register

Figure 2-13. Multiplication of Integer Operands

The instruction takes multiple cycles to execute. For more information
about the exact operation of this instruction, refer to Chapter 15, “Arith-
metic Operations”. This macro function is interruptable and does not
modify the data in either Accumulator register A0 or Al.

Dual MAC Operations

The processor has two 16-bit MACs. Both MACs can be used in the same
operation to double the MAC throughput. The same two 32-bit input
registers are offered to each MAC unit, providing each with four possible
combinations of 16-bit input operands. Dual MAC operations are fre-
quently referred to as vector operations, because a program could store
vectors of samples in the four input operands and perform vector
computations.

An example of a dual multiply and accumulate instruction is
Al 4= R1.H * R2.L, A0 += R1.L * RZ2.H
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This instruction represents two multiply and accumulate operations.

* In one operation (MAC1) the high half of R1 is multiplied by the
low half of R2 and added to the contents of the A1 Accumulator.

* In the second operation (MACO) the low half of R1 is multiplied by
the high half of R2 and added to the contents of A0.

The results of the MAC operations may be written to registers in a num-
ber of ways: as a pair of 16-bit halves, as a pair of 32-bit registers, or as an
independent 16-bit half register or 32-bit register.

For example:
R3.H = (Al += RI.H * R2.L), R3.L = (A0 += R1.L * R2.L) ;

In this instruction, the 40-bit Accumulator is packed into a 16-bit half
register. The result from MAC1 must be transferred to a high half of a
destination register and the result from MACO must be transferred to the
low half of the same destination register.

The operand type determines the correct bits to extract from the Accumu-
lator and deposit in the 16-bit destination register. See “Multiply Without
Accumulate” on page 2-44.

R3 = (Al += R1.H * R2.L), R2 = (A0 += R1.L * RZ2.L) ;

In this instruction, the 40-bit Accumulators are packed into two 32-bit
registers. The registers must be register pairs (R[1:0], R[3:2], R[5:417,
R[7:6]).

R3.H = (A1 += R1.H * R2.L), AO += R1.L * R2.L ;

This instruction is an example of one Accumulator—but not the other—
being transferred to a register. Either a 16- or 32-bit register may be speci-
fied as the destination register.
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Barrel Shifter (Shifter)

The shifter provides bitwise shifting functions for 16-, 32-, or 40-bit
inputs, yielding a 16-, 32-, or 40-bit output. These functions include
arithmetic shift, logical shift, rotate, and various bit test, set, pack,
unpack, and exponent detection functions. These shift functions can be
combined to implement numerical format control, including full float-
ing-point representation.

Shifter Operations

The shifter instructions (>>>, >>, <<, ASHIFT, LSHIFT, ROT) can be used var-
ious ways, depending on the underlying arithmetic requirements. The
ASHIFT and >>> instructions represent the arithmetic shift. The LSHIFT,
<<, and >> instructions represent the logical shift.

The arithmetic shift and logical shift operations can be further broken
into subsections. Instructions that are intended to operate on 16-bit single
or paired numeric values (as would occur in many DSP algorithms) can
use the instructions ASHIFT and LSHIFT. These are typically three-operand
instructions.

Instructions that are intended to operate on a 32-bit register value and use
two operands, such as instructions frequently used by a compiler, can use
the >>> and >> instructions.

Arithmetic shift, logical shift, and rotate instructions can obtain the shift
argument from a register or directly from an immediate value in the
instruction. For details about shifter related instructions, see “Shifter
Instruction Summary” on page 2-54.

Two-Operand Shifts

Two-operand shift instructions shift an input register and deposit the
result in the same register.
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Immediate Shifts

An immediate shift instruction shifts the input bit pattern to the right
(downshift) or left (upshift) by a given number of bits. Immediate shift
instructions use the data value in the instruction itself to control the
amount and direction of the shifting operation.

The following example shows the input value downshifted.

RO contains 0000 B6A3
RO >>= 0x04

results in
RO contains 0000 OBG6A ;

The following example shows the input value upshifted.

RO contains 0000 B6A3 ;
RO <<= 0x04

results in
RO contains 000B 6A30 ;

Register Shifts

Register-based shifts use a register to hold the shift value. The entire
32-bit register is used to derive the shift value, and when the magnitude of
the shift is greater than or equal to 32, then the result is either 0 or —1.

The following example shows the input value upshifted.

RO contains 0000 B6A3
R2 contains 0000 0004
RO <<= R2

results in
RO contains 000B 6A30
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Three-Operand Shifts

Three-operand shifter instructions shift an input register and deposit the
result in a destination register.

Immediate Shifts

Immediate shift instructions use the data value in the instruction itself to
control the amount and direction of the shifting operation.

The following example shows the input value downshifted.

RO contains 0000 B6A3 ;
R1 = RO >> 0x04

results in
R1 contains 0000 OB6A ;

The following example shows the input value upshifted.

RO.L contains B6A3 ;
R1I.H = RO.L << 0x04 ;

results in
R1.H contains 6A30

Register Shifts

Register-based shifts use a register to hold the shift value. When a register
is used to hold the shift value (for ASHIFT, LSHIFT or ROT), then the shift
value is always found in the low half of a register (Rn.L). The bottom six
bits of Rn. L are masked off and used as the shift value.

The following example shows the input value upshifted.

RO contains 0000 B6A3 ;
R2.L contains 0004 ;
R1 = RO ASHIFT by R2.L ;
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results in
R1 contains 000B 6A30 ;

The following example shows the input value rotated. Assume the Condi-
tion Code (CC) bit is set to 0. For more information about CC, see
“Condition Code Status Bit” on page 4-19.

RO contains ABCD EF12
R2.L contains 0004
R1 = RO ROT by R2.L ;

results in
R1 contains BCDE F125 ;

Note the cC bit is included in the result, at bit 3.

Bit Test, Set, Clear, Toggle

The shifter provides the method to test, set, clear, and toggle specific bits
of a data register. All instructions have two arguments—the source register
and the bit field value. The test instruction does not change the source
register. The result of the test instruction resides in the CC bit.

The following examples show a variety of operations.

BITCLR ( RO, 6 )
BITSET ( R2, 9 )
BITTGL ( R3, 2 ) ;

CC = BITTST ( R3, 0 )

When programming, header files (containing #define statements) provide
constant definitions for specific bits in memory-mapped registers. It is
important to examine the definition techniques used in these header files,
because usually the constant definitions do not contain the position of the
bit. Rather, header files tend to define bit masks. A constant definition in
a header file working with bit masks might be set to 0x20 to describe bit
five in a register.
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The BITP0S command provided by the Blackfin processor assembler helps
when working with bit mask constant definitions and bit manipulation
instructions. The following assembly code uses a BITP0S command with a
BITTST instruction:

jfdefine BITFIVE 0x20
CC = BITTST ( R5, BITPOS ( BITFIVE ) )

Note that the BITPOS is calculated at program build time only, not at run
time. For detailed information about BITPOS, see Assembler and Preproces-
sor Manual.

Field Extract and Field Deposit

If the shifter is used, a source field may be deposited anywhere in a 32-bit
destination field. The source field may be from 1 bit to 16 bits in length.
In addition, a 1- to 16-bit field may be extracted from anywhere within a
32-bit source field.

Two register arguments are used for these functions. One holds the 32-bit
destination or 32-bit source. The other holds the extract/deposit value, its
length, and its position within the source. For example, if:

* RO contains 0xAABBCCDD
¢ R1 contains 0x33331008

where the second byte in R2 (0x10) indicates bit position 16 and the first
byte (0x08) indicates the length of the bit field, the zero-extending and
sign-extending version return the results:

R3

EXTRACT ( RO , RIL.L ) C Z ) ; /* returns 0xO000000BB */
R3 X )

EXTRACT ( RO , R1.L ) ( /* returns OxFFFFFFBB */
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In the deposit instruction uses the upper 16 bits of R1 as data bits. There is
a sign-extending version and a non-extending version of the instruction.
Zero-extension is not supported:

R4
R5

DEPOSIT ( RO , R1 ) ( X ) ; /* returns 0x0033CCDD */
DEPOSIT ( RO , R1 ) ; /* returns OxAA33CCDD */

For details, see “DEPOSIT” on page 13-10.

Packing Operation

The shifter also supports a series of packing and unpacking instructions.

If:
e RO contains 0x11223344
e R1 contains 0x55667788

Packing and unpacking operations return:

R2 = PACK(RO.L, RO.H); /* returns 0x33441122 */
R3 = PACK(R1.L, RO.H); /* returns 0x77881122 */
R4 = BYTEPACK(RO, R1); /* returns 0x66882244 */

The BYTEUNPACK instruction is silently controlled by the Ix registers. For
example, the instruction
(R6, R7) = BYTEUNPACK R1:0;

returns:
* R6=0x00110022, R7 = 0x00330044, if 10=0
e R6 =0x00880011, R7 = 0x00220033, if 10=1
* R6 =0x00770088, R7 = 0x00110022, if 10=2
* R6 =0x00660077, R7 = 0x00880011, if 10=3
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For details, see “BYTEUNPACK (Quad 8-Bit Unpack)” on page 18-42
and “PACK (Vector)” on page 19-48.

Shifter Instruction Summary

Table 2-11 lists the shifter instructions. For more information about
assembly language syntax and the effect of shifter instructions on the sta-
tus bits, see Chapter 14, “Shift/Rotate Operations”.

In Table 2-11, note the meaning of these symbols:

Dreg denotes any Data Register File register.

Dreg_lo denotes the lower 16 bits of any Data Register File
register.

Dreg_hi denotes the upper 16 bits of any Data Register File
register.

* Indicates the status bit may be set or cleared, depending on the
results of the instruction.

* 0 Indicates versions of the instruction that send results to Accu-
mulator A0 set or clear AVO.

* 1 Indicates versions of the instruction that send results to Accu-
mulator Al set or clear AV1.

** Indicates the status bit is cleared.
*** Tndicates CC contains the latest value shifted into it.

— Indicates no effect.
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Instruction ASTAT Status Bits

AZ |AN |ACO AV0 |AV1 CC |V

ACO0_COPY |AVOS |AV1S V_COPY
AC1 VS

BITCLR ( Dreg, uimm5 ) ; * * o - _ I Y
BITSET ( Dreg, uimm5 ) ; A o - - — |
BITTGL ( Dreg, uimm5 ) ; * * ok - — _ k[
CC = - |- |- - - * -
BITTST ( Dreg, uimm5 ) ;
CC-= - |- |- - - * -
IBITTST ( Dreg, uimm5 ) ;
Dreg = * * . _ _ T
DEPOSIT ( Dreg, Dreg ) ;
Dreg = * * . _ _ _ e
EXTRACT ( Dreg, Dreg ) ;
BITMUX ( Dreg, Dreg, A0 ) ; - - - - - _ _
Dreg_lo = ONES Dreg ; - |- |- - — - =
Dreg = PACK (Dreg_lo_hi, - |- |- - — - =
Dreg_lo_hi);
Dreg >>>= uimms5 ; = = ]C _ - N
Dreg >>= uimm5 ; * * - - _ - ok
Dreg <<= uimms5 ; . _ - N
Dreg = Dreg >>> uimm5 ; * * - - - - R
Dreg = Dreg >> uimmb5 ; * * - - - - R
Dreg = Dreg << uimmS5 ; * * - - - - |
Dreg = Dreg >>> uimm4 (V) ; * * - - _ - ok
Dreg = Dreg >> uimm4 (V) ; | * |* |- _ _ — [
Dreg = Dreg << uimm4 (V) ; | * |* |- _ _ e
Ax = Ax >>> uimm5 ; * * - RV Bl VAR S
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Table 2-11. Shifter Instruction Summary (Contd)

Instruction

ASTAT Status Bits

AZ

AN

ACO
AC0_COPY
AC1

AV0
AVO0S

AVl
AV1S

CC

Ax = Ax >> uimm5 ;

*k 0/_

*k 1/_

Ax = Ax << uimm5 ;

*0

*1

Dreg_lo_hi = Dreg_lo_hi >>>
uimm4 ;

Dreg_lo_hi = Dreg_lo_hi >>

uimm4 ;

Dreg_lo_hi = Dreg_lo_hi <<

uimm4 ;

Dreg >>>= Dreg ;

**/_

Dreg >>= Dreg ;

*ok |

Dreg <<= Dreg ;

*ok |

Dreg = ASHIFT Dreg BY
Dreg_lo ;

Dreg = LSHIFT Dreg BY
Dreg_lo;

**/_

Dreg = ROT Dreg BY imm6 ;

Dreg = ASHIFT Dreg BY
Dreg_lo (V) ;

Dreg = LSHIFT Dreg BY
Dreg_lo (V) ;

**/_

Dreg_lo_hi = ASHIFT
Dreg_lo_hi BY Dreg_lo ;

Dreg_lo_hi = LSHIFT
Dreg_lo_hi BY Dreg_lo ;

*ok |

Ax = Ax ASHIFT BY Dreg _lo ;

*0

*1

Ax = Ax ROT BY imm6 ;
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Table 2-11. Shifter Instruction Summary (Contd)

Instruction ASTAT Status Bits
AZ |AN |ACO AV0 |AV1 CC |V
ACO0_COPY |AVO0S |AV1S V_COPrY
AC1 A
Dreg = ( Dreg + Dreg ) << 1 ; * * * - - - *
Dreg = ( Dreg + Dreg ) << 2; * * * - - - *

Blackfin Processor Programming Reference
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3 OPERATING MODES AND
STATES

The processor supports the following three processor modes:
e User mode
* Supervisor mode
* Emulation mode

Emulation and Supervisor modes have unrestricted access to the core
resources. User mode has restricted access to certain system resources, thus
providing a protected software environment.

User mode is considered the domain of application programs. Supervisor
mode and Emulation mode are usually reserved for the kernel code of an
operating system.

The processor mode is determined by the Event Controller. When servic-
ing an interrupt, a nonmaskable interrupt (NMI), or an exception, the
processor is in Supervisor mode. When servicing an emulation event, the
processor is in Emulation mode. When not servicing any events, the pro-
cessor is in User mode.

The current processor mode may be identified by interrogating the IPEND
memory-mapped register (MMR), as shown in Table 3-1.

@ MMRs cannot be read while the processor is in User mode.
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Table 3-1. Identifying the Current Processor Mode

Event Mode IPEND

Interrupt Supervisor > 0x10
but IPEND[O], IPEND[11], IPEND[2], and
IPEND[3] = 0.

Exception Supervisor > 0x08

The core is processing an exception event if
IPEND[LO] = 0, IPEND[1] = 0, IPEND[2] = O,
IPEND[3] = 1,and IPEND[15:4] are O’s or 1.

NMI Supervisor > 0x04

The core is processing an NMI event if IPEND[0]
= 0, IPEND[1] = 0, IPEND[2] = 1, and
IPEND[15:2] are 0’s or 1’s.

Reset Supervisor = 0x02
As the reset state is exited, IPEND is set to 0x02, and
the reset vector runs in Supervisor mode.

Emulation Emulator = 0x01

The processor is in Emulation mode if
IPEND[O] = 1, regardless of the state of the
remaining bits IPEND[15:1].

None User = 0x00

In addition, the processor supports the following two non-processing
states:

e Idle state
e Reset state

Figure 3-1 illustrates the processor modes and states as well as the transi-
tion conditions between them.
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IDLE instruction
o( USER
4 Application

—A Level Code

Interrupt
or
Exception

System Code,

RTI, Event Handlers
RTX, RTN

|
|
| IDLE
|
|

instruction (" SUPERVISOR Emulation | |RTE
Event
Emulation
Event

Interrupt

| RST Inactive

RST
Active

)

Y

; EMULATION
I Emulation Event (1)

(1) Normal exit from Reset is to Supervisor mode. However, emulation hardware may
have initiated a reset. If so, exit from Reset is to Emulation.

Figure 3-1. Processor Modes and States

User Mode

The processor is in User mode when it is not in Reset or Idle state, and
when it is not servicing an interrupt, NMI, exception, or emulation event.
User mode is used to process application level code that does not require
explicit access to system registers. Any attempt to access restricted system
registers causes an exception event. Table 3-2 lists the registers that may
be accessed in User mode.
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Table 3-2. Registers Accessible in User Mode

Processor Registers

Register Names

Data Registers

R[7:01, A[1:01]

Pointer Registers

P[5:0], SP, FP, I[3:0], M[3:0], L[3:0], B[3:0]

Sequencer and Status Registers RETS, LC[1:0], LT[1:01, LB[1:0], ASTAT, CYCLES,

CYCLES2

Protected Resources and Instructions

System resources consist of a subset of processor registers, all MMRs, and
a subset of protected instructions. These system and core MMRs are
located starting at address 0xFFCO 0000. This region of memory is pro-
tected from User mode access. Any attempt to access MMR space in User
mode causes an exception.

A list of protected instructions appears in Table 3-3. Any attempt to issue
any of the protected instructions from User mode causes an exception

event.

Table 3-3. Protected Instructions

Instruction Description

RTI Return from Interrupt

RTX Return from Exception

RTN Return from NMI

CLI Disable Interrupts

STI Enable Interrupts

RAISE Force Interrupt/Reset

RTE Return from Emulation

Causes an exception only if executed outside Emulation mode
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Protected Memory

Additional memory locations can be protected from User mode access. A
Cacheability Protection Lookaside Buffer (CPLB) entry can be created
and enabled. See “Memory Management Unit” on page 6-52 for further
information.

Entering User Mode

When coming out of reset, the processor is in Supervisor mode because it
is servicing a reset event. To enter User mode from the Reset state, two
steps must be performed. First, a return address must be loaded into the
RETI register. Second, an RTI must be issued. The following example code
shows how to enter User mode upon reset.

Example Code to Enter User Mode Upon Reset

Listing 3-1 provides code for entering User mode from reset.

Listing 3-1. Entering User Mode from Reset

P1.L = T0(START) /* Point to start of user code */
P1.H = hi(START)

RETI = P1 ;

RTI ; /* Return from Reset Event */

START : /* Place user code here */
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Return Instructions That Invoke User Mode

Table 3-4 provides a summary of return instructions that can be used to
invoke User mode from various processor event service routines. When
these instructions are used in service routines, the value of the return
address must be first stored in the appropriate event RETx register. In the
case of an interrupt routine, if the service routine is interruptible, the
return address is stored on the stack. For this case, the address can be

found by popping the value from the stack into RETI. Once RETI has been
loaded, the RTI instruction can be issued.

Note the stack pop is optional. If the RETI register is not
pushed/popped, then the interrupt service routine becomes

non-interruptible, because the return address is not saved on the
stack.

The processor remains in User mode until one of these events occurs:
* An interrupt, NMI, or exception event invokes Supervisor mode.
¢ An emulation event invokes Emulation mode.

e A reset event invokes the Reset state.

Table 3-4. Return Instructions That Can Invoke User Mode

Current Process Activity Return Instruction to Use Execution Resumes at Address
in This Register

Interrupt Service Routine RTI RETI

Exception Service Routine RTX RETX

Nonmaskable Interrupt Service | RTN RETN

Routine

Emulation Service Routine RTE RETE

3-6
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Supervisor Mode

The processor services all interrupt, NMI, and exception events in Super-
visor mode.

Supervisor mode has full, unrestricted access to all processor system
resources, including all emulation resources, unless a CPLB has been con-
figured and enabled. See “Memory Management Unit” on page 6-52 for a
further description. Only Supervisor mode can use the register alias USP,
which references the User Stack Pointer in memory. This register alias is
necessary because in Supervisor mode, SP refers to the kernel stack pointer
rather than to the user stack pointer.

Normal processing begins in Supervisor mode from the Reset state. Deas-
serting the RESET signal switches the processor from the Reset state to
Supervisor mode where it remains until an emulation event or Return
instruction occurs to change the mode. Before the Return instruction is
issued, the RETI register must be loaded with a valid return address.

Non-OS Environments

For non-OS environments, application code should remain in Supervisor
mode so that it can access all core and system resources. When RESET is
deasserted, the processor initiates operation by servicing the reset event.
Emulation is the only event that can pre-empt this activity. Therefore,
lower priority events cannot be processed.

One way of keeping the processor in Supervisor mode and still allowing
lower priority events to be processed is to set up and force the lowest pri-
ority interrupt (IVG15). Events and interrupts are described further in
“Events and Interrupts” on page 4-31. After the low priority interrupt has
been forced using the RAISE 15 instruction, RETI can be loaded with a
return address that points to user code that can execute until 1VG15 is
issued. After RETI has been loaded, the RTI instruction can be issued to
return from the reset event.
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The interrupt handler for 1VG15 can be set to jump to the application code
starting address. An additional RTI is not required. As a result, the proces-
sor remains in Supervisor mode because IPEND[15] remains set. At this
point, the processor is servicing the lowest priority interrupt. This ensures
that higher priority interrupts can be processed.

Example Code for Supervisor Mode Coming Out of Reset

To remain in Supervisor mode when coming out of the Reset state, use
code as shown in Listing 3-2.

Listing 3-2. Staying in Supervisor Mode Coming Out of Reset

PO.L = To(EVT15) ; /* Point to IVG15 in Event Vector Table */
PO.H = hi(EVT15)

P1.L = To(START) ; /* Point to start of User code */

P1.H = hi(START)

[PO] = P1 ; /* Place the address of START in IVG15 of EVT */
PO.L = To(IMASK)

RO = [PO] ;

R1.L = To(EVT_IVG15)

RO = RO | RL ;

[PO] = RO ; /* Set (enable) IVG15 bit in IMASK register */
RAISE 15 ; /* Invoke IVG15 interrupt */

PO.L = To(WAIT_HERE)

PO.H = hi(WAIT_HERE)

RETI = PO ; /* RETI loaded with return address */

RTI /* Return from Reset Event */

WAIT_HERE : /* Wait here till IVG15 interrupt is serviced */
JUMP WAIT_HERE
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START: /* IVG15 vectors here */
/* Enables interrupts and saves return address to stack */
[--SP] = RETI

Emulation Mode

The processor enters Emulation mode if Emulation mode is enabled and
either of these conditions is met:

¢ An external emulation event occurs.
e The EMUEXCPT instruction is issued.

The processor remains in Emulation mode until the emulation service
routine executes an RTE instruction. If no interrupts are pending when the
RTE instruction executes, the processor switches to User mode. Otherwise,
the processor switches to Supervisor mode to service the interrupt.

Emulation mode is the highest priority mode, and the processor
has unrestricted access to all system resources.

Idle State

Idle state stops all processor activity at the user’s discretion, usually to
conserve power during lulls in activity. No processing occurs during the
Idle state. The Idle state is invoked by a sequential IDLE instruction. The
IDLE instruction notifies the processor hardware that the Idle state is
requested.

The processor remains in the Idle state until a peripheral or external
device, such as a SPORT or the Real-Time Clock (RTC), generates an

interrupt that requires servicing.
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In Listing 3-3, core interrupts are disabled and the IDLE instruction is exe-
cuted. When all the pending processes have completed, the core disables
its clocks. Since interrupts are disabled, Idle state can be terminated only
by asserting a WAKEUP signal. For more information, see “SIC_I'WR Regis-
ters” on page 4-36. (While not required, an interrupt could also be
enabled in conjunction with the WAKEUP signal.)

When the WAKEUP signal is asserted, the processor wakes up, and the STI
instruction enables interrupts again.

Example Code for Transition to Idle State

To transition to the Idle state, use code shown in Listing 3-3.

Listing 3-3. Transitioning to Idle State

CLI RO ; /* disable interrupts */
IDLE ; /* drain pipeline and send core into IDLE state */
STI RO ; /* re-enable interrupts after wakeup */

Reset State

Reset state initializes the processor logic. During Reset state, application
programs and the operating system do not execute. Clocks are stopped
while in Reset state.

The processor remains in the Reset state as long as external logic asserts
the external RESET signal. Upon deassertion, the processor completes the
reset sequence and switches to Supervisor mode, where it executes code
found at the reset event vector.

Software in Supervisor or Emulation mode can invoke the Reset state
without involving the external RESET signal. This can be done by issuing
the Reset version of the RAISE instruction.
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Application programs in User mode cannot invoke the Reset state, except
through a system call provided by an operating system kernel. Table 3-5
summarizes the state of the processor upon reset.

Table 3-5. Processor State Upon Reset

Item ‘Dcscription of Reset State

Core

Operating Mode Supervisor mode in reset event, clocks stopped
Rounding Mode Unbiased rounding

Cycle Counters

Disabled, zero

DAG Registers (I, L, B, M)

Random values (must be cleared at initialization)

Data and Address Registers

Random values (must be cleared at initialization)

IPEND, IMASK, ILAT

Cleared, interrupts globally disabled with IPEND bit 4

CPLBs

Disabled

L1 Instruction Memory

SRAM (cache disabled)

L1 Data Memory

SRAM (cache disabled)

Cache Validity Bits Invalid

System

Booting Methods Determined by the values of BMODE pins at reset

MSEL Clock Frequency See the description of the MSEL field of PLL_CTL register in

the specific processor hardware reference for the default setting.

PLL Bypass Mode

Disabled

VCO/Core Clock Ratio

See the description of the CSEL field of PLL_DIV register in

the specific processor hardware reference for the default setting.

VCO/System Clock Ratio

See the description of the SSEL field of PLL_DIV register in the
specific processor hardware reference for the default setting.

Peripheral Clocks

Disabled

Blackfin Processor Programming Reference
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System Reset and Powerup

Table 3-6 describes the five types of resets. Note all resets, except System

Software, reset the core.

Table 3-6. Resets

Reset Source

Result

Hardware Reset | The RESET pin causes a hard-

ware reset.

Resets both the core and the peripherals,
including the Dynamic Power Management
Controller (DPMC).

Resets the No Boot on Software Reset bit in
SYSCR. For more information, see “SYSCR
Register” on page 3-14.

System Software | Writing b#111 to bits [2:0]

Resets only the peripherals, excluding the RTC

Reset in the system MMR SWRST | (real time clock) and DPMC (dynamic power
at address 0xFFC0 0100 management controller) blocks. The DPMC
causes a System Software resets only the No Boot on Software Reset bit in
reset. SYSCR. Does not reset the core. Does not initi-

ate a boot sequence.

Watchdog Timer | Programming the watchdog | Resets both the core and the peripherals,

Reset timer appropriately causes a | excluding the RT'C block and most of the

Watchdog Timer reset.

DPMC. (The Watchdog Timer reset will not
work if the processor is in Sleep mode.)

The Software Reset register (SWRST) can be read
to determine whether the reset source was the
watchdog timer.
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Table 3-6. Resets (Cont’d)

Reset Source Result
Core Double- When enabled by the Resets both the core and the peripherals,
Fault Reset DOUBLE_FAULT bit in the | excluding the RT'C block and most of the

SWRST register, this reset is | DPMC.

caused by the core entering a | The SWRST register can be read to determine
double-fault state. whether the reset source was Core Double
Fault.

Core-Only Soft- | This reset is caused by exe- | Resets only the core.

ware Reset cutinga RAISE 1 instruction | The peripherals do not recognize this reset.
or by setting the Software
Reset (SYSRST) bit in the
core Debug Control register
(DBGCTL) via emulation soft-
ware through the JTAG port.
The DBGCTL register is not
visible to the memory map.

Hardware Reset

The processor chip reset is an asynchronous reset event. The RESET input
pin must be deasserted to perform a hardware reset. For more informa-
tion, see the product data sheet.

A hardware-initiated reset results in a system-wide reset that includes both
core and peripherals. After the RESET pin is deasserted, the processor
ensures that all asynchronous peripherals have recognized and completed a
reset. After the reset, the processor transitions into the Boot mode
sequence configured by the BMODE state.

The BMODE pins are dedicated mode control pins. No other functions are
shared with these pins, and they may be permanently strapped by tying
them directly to either Vpp or Vgg. The pins and the corresponding bits
in SYSCR configure the Boot mode that is employed after hardware reset or

System Software reset. See “Reset Interrupt” on page 4-50, and
Table 4-12 on page 4-75 for further information.
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SYSCR Register

The values sensed from the BMODE pins are mirrored into the System Reset
Configuration register (SYSCR). The values are made available for software
access and modification after the hardware reset sequence.

The various configuration parameters are distributed to the appropriate
destinations from SYSCR. Refer to the Reser and Booting chapter in the
hardware reference manual for your processor for details.

Software Resets and Watchdog Timer

A software reset may be initiated in three ways:
* By the watchdog timer, if appropriately configured

* By setting the System Reset field in the Software Reset register (see
Figure 3-2 on page 3-106)

* By the RAISE 1 instruction

The watchdog timer resets both the core and the peripherals. A System
Reset results in a reset of the peripherals without resetting the core and
without initiating a booting sequence.

The System reset must be performed while executing from Level 1
memory (either as cache or as SRAM). When L1 instruction mem-
ory is configured as cache, make sure the System reset sequence has
been read into the cache.

After either the watchdog or System reset is initiated, the processor
ensures that all asynchronous peripherals have recognized and completed a
reset.
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For a reset generated by the watchdog timer, the processors transitions
into the Boot mode sequence, as long as the processor is in the Full-On or
Active modes of operation. The Boot mode is configured by the state of
the BMODE and the NOBOOT (no boot on software reset) control bits.

If the NOBOOT bit in SYSCR is cleared, the reset sequence is determined by
the BMODE control bits. Note that the content of the SYSCR register varies
between family derivatives. For specific implementation, see the hardware
reference manual for your processor.

SWRST Register

A software reset can be initiated by setting the System Reset field in the
Software Reset register (SWRST). Bit 15 indicates whether a software reset
has occurred since the last time SWRST was read. Bit 14 and Bit 13, respec-
tively, indicate whether the Software Watchdog Timer or a Core Double
Fault has generated a software reset. Bits [15:13] are read-only and cleared
when the register is read. Bits [3:0] are read/write.

When the BMODE pins are not set to b#00 and the No Boot on Software
Reset bit in SYSCR is set, the processor starts executing from the start of
on-chip L1 memory. In this configuration, the core begins fetching
instructions from the beginning of on-chip L1 memory.

When the BMODE pins are set to b#00 the core begins fetching instructions
from address 0x2000 0000 (the beginning of ASYNC Bank 0).
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Software Reset Register (SWRST)

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
0xFFCO0 0100 |o|0|o|o|o|o|o|o|o|o |o|o|o|o|o|o|Reset=0x0000

I_|:‘SYSTEM_RESET
RESET_SOFTWARE

(System Software Reset)

(Software Reset Status)-RO 0x0 — Ox6 - No SW reset
0x7 - Triggers SW reset
0 - No SW reset since last L DOUBLE_FAULT
SWRST read ) (Core Double Fault
1 - SW reset occurred since Reset Enable)
last SWRST read
0 - No reset caused by
RESET_WDOG | Core Double Fault
(S_oftware Watchdog 1 - Reset generated upon
Timer Source)-RO Core Double Fault

0 - SW reset not generated
by watchdog

1 - SW reset generated
by watchdog

RESET_DOUBLE ——— |
(Core Double Fault Reset)-RO

0 - SW reset not generated by double fault
1 - SW reset generated by double fault

Figure 3-2. Software Reset Register

Software Reset

A Software reset is initiated by executing the RAISE 1 instruction or by set-
ting the Software Reset (SYSRST) bit in the core Debug Control register
(DBGCTL) via emulation software through the JTAG port. (DBGCTL is not
visible to the memory map.)

On some processors, a software reset affects only the state of the core. On
other processors, the boot code immediately resets the system when exe-
cuted due to a software reset. Note the system resources may be in an
undetermined or even unreliable state, depending on the system activity
during the reset period.
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Core and System Reset

To perform a system and core reset, use the code sequence shown in
Listing 3-4. As described in the code comments below, the system soft
reset takes five system clock cycles to complete, so a delay loop is needed.
This code must reside in L1 memory for the system soft reset to work

properly.
Listing 3-4. Core and System Reset

/* Issue system soft reset */

PO.L = LOCSWRST) ;
PO.H = HI(SWRST)
RO.L = 0x0007
WLPO] = RO ;

SSYNC

/* Wait for System reset to complete (needs to be 5 SCLKs). */
/* Assuming a worst case CCLK:SCLK ratio (15:1), use 5*15 = 75 *x/
/* as the Tloop count. */

Pl = 75;

LSETUP(start, end) LCO = P1

start:

end:

NOP

/* Clear system soft reset */
RO.L = 0x0000

WLPO] RO

SSYNC ;

RAISE 1
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Executing RAISE 1 on ADSP-BF60x Processors

Note that exact reset behavior and instructions vary between family
derivatives. The sequence in Listing 3-4 is only recommended for
devices not featuring the bfrom_SysControl () API function in

ROM.

Executing RAISE 1 on ADSP-BF60x
Processors

* Executing RAISE 1 does not assert core reset directly. It simply cre-
ates an interrupt at level 1.

e Use of EVT1 for the RAISE 1 interrupt vector is enabled by clearing
bit 15 of the EVT_OVERRIDE register.

Interrupts at level 1 will use EVT_OVERRIDE bit 15 to determine if
EVT1 or the reset address bus at the core pins is used as the vector
location

If RAISE 1 functionality is desired in the application, the following soft-
ware control is assumed for standard operation:

e After booting, EVT1 is programmed with the ISR location for soft-
ware interrupt level 1.

e Bit 15 of EVT_OVERRIDE is cleared.
e When a RAISE 1 is executed:

* The ISR goes through the appropriate mechanisms via the
RCU to shut off all core interfaces.

* The RCU then resets the core. This is seen by the core as an
external reset.
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4 PROGRAM SEQUENCER

This chapter describes the Blackfin processor program sequencing and
interrupt processing modules. For information about instructions that
control program flow, see Chapter 7, “Program Flow Control”. For infor-
mation about instructions that control interrupt processing, see

Chapter 16, “External Event Management”. Discussion of derivative-spe-
cific interrupt sources can be found in the hardware reference for the
specific part.

Infroduction

In the processor, the program sequencer controls program flow, constantly
providing the address of the next instruction to be executed by other parts
of the processor. Program flow in the chip is mostly linear, with the pro-
cessor executing program instructions sequentially.

The linear flow varies occasionally when the program uses nonsequential
program structures, such as those illustrated in Figure 4-1. Nonsequential
structures direct the processor to execute an instruction that is not at the
next sequential address. These structures include:

* Loops. One sequence of instructions executes several times with
zero overhead.

* Subroutines. The processor temporarily interrupts sequential flow
to execute instructions from another part of memory.

* Jumps. Program flow transfers permanently to another part of
memory.
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* Interrupts and Exceptions. A runtime event or instruction triggers
the execution of a subroutine.

* Idle. An instruction causes the processor to stop operating and
hold its current state until an interrupt occurs. Then, the processor
services the interrupt and continues normal execution.

LINEAR FLOW

ADDRESS:N

INSTRUCTION

N+1

INSTRUCTION

N+2

INSTRUCTION

N+3

INSTRUCTION

N+4

INSTRUCTION

N+5

INSTRUCTION

SUBROUTINE

CALL

-

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

RTS

LOOP

LOOP

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INTERRUPT

IRQ

—» INSTRUCTION

—» INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION

L RTI

N TIMES

VECTOR

Figure 4-1. Program Flow Variations
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INSTRUCTION
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INSTRUCTION

INSTRUCTION

INSTRUCTION
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The sequencer manages execution of these program structures by selecting
the address of the next instruction to execute.

The fetched address enters the instruction pipeline, ending with the pro-
gram counter (PC). The pipeline contains the 32-bit addresses of the
instructions currently being fetched, decoded, and executed. The PC cou-
ples with the RETx registers, which store return addresses. All addresses
generated by the sequencer are 32-bit memory instruction addresses.

To manage events, the event controller handles interrupt and event pro-
cessing, determines whether an interrupt is masked, and generates the
appropriate event vector address.

In addition to providing data addresses, the data address generators
(DAGs) can provide instruction addresses for the sequencer’s indirect
branches.

The sequencer evaluates conditional instructions and loop termination
conditions. The loop registers support nested loops. The memory-mapped
registers (MMRs) store information used to implement interrupt service
routines.

Figure 4-2 shows the core Program Sequencer module and how it inter-
connects with the Core Event Controller (CEC) and the System Interrupt
Controller (SIC). As the number of system interrupts vary among individ-
ual Blackfin processors, the number of registers in the SIC controller can
vary from the example in Figure 4-2.
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Figure 4-2. Program Sequencing and Interrupt Processing Block Diagram
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Sequencer Related Registers

Table 4-1 lists the non-memory-mapped registers within the processor
that are related to the sequencer. Except for the PC and SEQSTAT registers,
all sequencer-related registers are directly readable and writable by move
instructions, for example:

SYSCFG = RO
PO = RETI

Manually pushing or popping registers to or from the stack is done using
the explicit instructions:

[--SP] Rn ; /* for push */
Rn = [SP++]1 ; /* for pop */

Similarly, all non-memory-mapped sequencer registers can be pushed and
popped to or from the system stack:

[--SP] = CYCLES
SYSCFG = [SP++]

However, load/store operations and immediate loads are not supported.

Table 4-1. Non-memory-mapped Sequencer Registers

Register Name Description

SEQSTAT Sequencer Status register: See “Hardware Errors and
Exception Handling” on page 4-69.

Return Address registers: See “Events and Interrupts”

on page 4-31.
RETX Exception Return
RETN NMI Return
RETI Interrupt Return
RETE Emulation Return
RETS Subroutine Return
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Table 4-1. Non-memory-mapped Sequencer Registers (Contd)

Register Name

Description

Zero-Overhead Loop registers: See “Hardware Loops”

on page 4-23:

LCo, LC1 Loop Counters

LTo, LT1 Loop Tops

LBO, LB1 Loop Bottoms

FP, SP Frame Pointer and Stack Pointer: See “Frame and Stack
Pointers” on page 5-0.

SYSCEFG System Configuration register: See “SYSCFG Register”

on page 21-31.

CYCLES, CYCLES2

Cycle Counters: See “CYCLES and CYCLES2 Regis-
ters” on page 21-30.

PC

Program Counter. The PC is an embedded register. It is
not directly accessible with program instructions.

In addition to these central sequencer registers, there is a set of mem-
ory-mapped registers that interact closely with the program sequencer. For
information about the interrupt control registers, see “Events and Inter-
rupts” on page 4-31. Although the registers of the Core Event Controller
are memory-mapped, they still connect to the same 32-bit Register Access
Bus (RAB) and perform in the same way. Registers of the System Interrupt
Controller connect to the Peripheral Access Bus (PAB) which resides in
the SCLK domain. On some derivatives the PAB bus is 16 bits wide; on
others it is 32 bits wide. For debug and test registers see Chapter 21,

“Debug”.

4-6

Blackfin Processor Programming Reference




Program Sequencer

Instruction Pipeline

The program sequencer determines the next instruction address by exam-
ining both the current instruction being executed and the current state of
the processor. If no conditions require otherwise, the processor executes
instructions from memory in sequential order by incrementing the look-

ahead address.

The processor has a ten-stage instruction pipeline, shown in Table 4-2.

Table 4-2. Stages of Instruction Pipeline

Pipeline Stage Description

Instruction Fetch 1 (IF1) Issue instruction address to IAB bus, start compare tag of
instruction cache

Instruction Fetch 2 (IF2) Wait for instruction data

Instruction Fetch 3 (IF3) Read from IDB bus and align instruction

Instruction Decode (DEC) Decode instructions

Address Calculation (AC) Calculation of data addresses and branch target address

Data Fetch 1 (DF1) Issue data address to DAO and DA1 bus, start compare tag of
data cache

Data Fetch 2 (DF2) Read register files

Execute 1 (EX1) Read data from LDO and LD1 bus, start multiply and video
instructions

Execute 2 (EX2) Execute/Complete instructions (shift, add, logic, etc.)

Write Back (WB) Writes back to register files, SD bus, and pointer updates (also
referred to as the “commit” stage)
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Figure 4-3 shows a diagram of the pipeline.

Instr Instr Instr Instr Addr | Data Data Ex1 Ex2 WB
Fetch | Fetch | Fetch [Decode| Calc Fetch | Fetch
2 3 1 2

Instr Instr Instr Instr Addr | Data Data Ex1 Ex2 WB
Fetch | Fetch [ Fetch |[Decode| Calc Fetch | Fetch
1 2 3 1 2

Figure 4-3. Processor Pipeline

The instruction fetch and branch logic generates 32-bit fetch addresses for
the Instruction Memory Unit. The Instruction Alignment Unit returns
instructions and their width information at the end of the IF3 stage.

For each instruction type (16-, 32-, or 64-bit), the Instruction Alignment
Unit ensures that the alignment buffers have enough valid instructions to
be able to provide an instruction every cycle. Since the instructions can be
16, 32, or 64 bits wide, the Instruction Alignment Unit may not need to
fetch an instruction from the cache every cycle. For example, for a series of
16-bit instructions, the Instruction Alignment Unit gets an instruction
from the Instruction Memory Unit once in four cycles. The alignment
logic requests the next instruction address based on the status of the align-
ment buffers. The sequencer responds by generating the next fetch address
in the next cycle, provided there is no change of flow.

The sequencer holds the fetch address until it receives a request from the
alignment logic or until a change of flow occurs. The sequencer always
increments the previous fetch address by 8 (the next 8 bytes). If a change
of flow occurs, such as a branch or an interrupt, data in the Instruction
Alignment Unit is invalidated. The sequencer decodes and distributes
instruction data to the appropriate locations such as the register file and
data memory.

The Execution Unit contains two 16-bit multipliers, two 40-bit ALUs,
two 40-bit accumulators, one 40-bit shifter, a video unit (which adds 8-bit
ALU support), and an 8-entry 32-bit Data Register File.
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Register file reads occur in the DF2 pipeline stage (for operands).

Register file writes occur in the WB stage (for stores). The multipliers and
the video units are active in the EX1 stage, and the ALUs and shifter are

active in the EX2 stage. The accumulators are written at the end of the
EX2 stage.

The program sequencer also controls stalling and invalidating the instruc-
tions in the pipeline. Multi-cycle instruction stalls occur between the IF3
and DEC stages. DAG and sequencer stalls occur between the DEC and
AC stages. Computation and register file stalls occur between the DF2 and
EX1 stages. Data memory stalls occur between the EX1 and EX2 stages.

The sequencer ensures that the pipeline is fully interlocked and
that all the data hazards are hidden from the programmer.

Multi-cycle instructions behave as multiple single-cycle instructions being
issued from the decoder over several clock cycles. For example, the Push
Multiple or Pop Multiple instruction can push or pop from 1 to 14 Dregs
and/or Pregs, and the instruction remains in the decode stage for a num-
ber of clock cycles equal to the number of registers being accessed.

Multi-issue instructions are 64 bits in length and consist of one 32-bit
instruction and two 16-bit instructions. All three instructions execute in
the same amount of time as the slowest of the three.

Any nonsequential program flow can potentially decrease the processor’s
instruction throughput. Nonsequential program operations include:

* Jumps
e Subroutine calls and returns
* Interrupts and returns

* Loops
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Branches

One type of nonsequential program flow that the sequencer supports is
branching. A branch occurs when a JUMP or CALL instruction begins execu-

tion at a new location other than the next sequential address. For
descriptions of how to use the JUMP and CALL instructions, see Chapter 7,
“Program Flow Control”. Briefly:

A JUMP or a CALL instruction transfers program flow to another
memory location. The difference between a JUMP and a CALL is that
a CALL automatically loads the return address into the RETS register.
The return address is the next sequential address after the CALL
instruction. This push makes the address available for the CALL
instruction’s matching return instruction, allowing easy return
from the subroutine.

A return instruction causes the sequencer to fetch the instruction at
the return address, which is stored in the RETS register (for subrou-
tine returns). The types of return instructions include: return from
subroutine (RTS), return from interrupt (RTI), return from excep-
tion (RTX), return from emulation (RTE), and return from
nonmaskable interrupt (RTN). Each return type has its own register
for holding the return address.

A JUMP instruction can be conditional, depending on the status of
the CC bit of the ASTAT register. These instructions are immediate
and may not be delayed. The program sequencer can evaluate the
CC status bit to decide whether to execute a branch. If no condition
is specified, the branch is always taken.

Conditional JUMP instructions use static branch prediction to
reduce the branch latency caused by the length of the pipeline.

4-10
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Branches can be direct or indirect. A direct branch address is determined
solely by the instruction word (for example, JUMP 0x30), while an indirect
branch gets its address from the contents of a DAG register (for example,
JUMP(P3)).

All types of JUMPs and CALLs can be PC-relative. The indirect JUMP and
CALL can be absolute or PC-relative.

Direct Jumps (Short and Long)

The sequencer supports both short and long jumps. The target of the
branch is a PC-relative address from the location of the instruction, plus
an offset. The PC-relative offset for the short jump is a 13-bit immediate
value that must be a multiple of two (bit 0 must be a 0). The 13-bit value
gives an effective dynamic range of 4096 to +4094 bytes.

The PC-relative offset for the long jump is a 25-bit immediate value that
must also be a multiple of two (bit 0 must be a 0). The 25-bit value gives
an effective dynamic range of =16,777,216 to +16,777,214 bytes.

If, at the time of writing the program, the destination is known to be less
than a 13-bit offset from the current PC value, then the JUMP.S 0Oxnnnn
instruction may be used. If the destination requires more than a 13-bit
offset, then the JUMP.L Oxnnnnnnn instruction must be used. If the desti-
nation offset is unknown and development tools must evaluate the offset,
then use the instruction JUMP Oxnnnnnnn. Upon disassembly, the instruc-
tion is replaced by the appropriate JUMP.S or JUMP. L instruction.

Rather than hard coding jump target addresses, use symbolic addresses in
assembly source files. Symbolic addresses are called labels and are marked
by a trailing colon. See Assembler and Preprocessor Manual for details.

JUMP myTabel
/* skip any code placed here */
mylabel:
/* continue to fetch and execute instruction here */
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Direct Call

The CALL instruction is a branch instruction that copies the address of the
instruction which would have executed next (had the CALL instruction not
executed) into the RETS register. The direct CALL instruction has a 25-bit,
PC-relative offset that must be a multiple of two (bit 0 must be a 0). The
25-bit value gives an effective dynamic range of =16,777,216 to
+16,777,214 bytes. A direct CALL instruction is always a 4-byte
instruction.

Indirect Jump and Call (Absolute)

The indirect JUMP and CALL instructions get their destination absolute
address (branch target) from a data address generator (DAG) P-register.
For the CALL instruction, the RETS register is loaded with the address of the
instruction which would have executed next in the absence of the CALL
instruction.

For example:

JUMP (P3)
CALL (PO)

To load a P-register with a symbolic target label you may use one of the
following syntax styles. The syntax may differ in various assembly tools
sets.

Modern style:

PA4.H = hi(mytarget);
PA4.L = lo(mytarget);
JUMP (P4);

mytarget:
/* continue here */
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Legacy style:

P4.H = mytarget;

P4.L = mytarget;

JUMP (P4);
mytarget:

/* continue here */

Indirect Jump and Call (PC-Relative)

The PC-relative indirect JUMP and CALL instructions use the contents of a
P-register as an offset to the branch target. For the CALL instruction, the
RETS register is loaded with the address of the instruction which would
have executed next (had the CALL instruction not executed).

For example:

JUMP (PC + P3)
CALL (PC + PO)

Subroutines

Subroutines are code sequences that are invoked by a CALL instruction.
Assuming the stack pointer SP has been initialized properly, a typical sce-
nario could look like the following:

/* parent function */
RO = 0x1234 (Z); /* pass a parameter */
CALL myfunction;
/* continue here after the call */
[PO] = RO; /* save return value */
JUMP somewhereelse;
myfunction: /* subroutine label */
[--SP] = (R7:7, P5:5); /* multiple push instruction */
P5.H = hi(myregister); /* P5 used locally */
P5.L = lo(myregister);
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R7 [P5]; /* R7 used locally */
RO RO + R7; /* RO used for parameter passing */
(R7:7, P5:5) = [SP++]; /* multiple pop instruction */
RTS; /* return from subroutine */

myfunction.end: /* closing subroutine label */

Due to the syntax of the multiple-push, multiple-pop instructions, often
the upper R- and P-registers are used for local purposes, while lower regis-
ters pass the parameters. See the Chapter 5, “Address Arithmetic Unit” for
more details on stack management.

The CALL instruction not only redirects the program flow to the myfunc-
tion routine, it also writes the return address into the RETS register. The
RETS register holds the address where program execution resumes after the
RTS instruction executes. In the example this is the location that holds the
[P0]=R0O; instruction.

The return address is not passed to any stack in the background. Rather,
the RETS register functions as single-entry hardware stack. This scheme
enables “leaf functions” (subroutines that do not contain further CALL
instructions) to execute with less possible overhead, as no bus transfers
need to be performed.

If a subroutine calls other functions, it must temporarily save the content
of the RETS register explicitly. Most likely this is performed by stack oper-
ations as shown below.

/* parent function */
CALL function_a;
/* continue here after the call */
JUMP somewhereelse;
function_a: /* subroutine label */
[--SP]1 = (R7:7, P5:5); /* optional multiple push instruction */
[--SP] = RETS; /* save RETS onto stack */
CALL function_b; /* call further subroutines */
CALL function_c;
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RETS = [SP++]; /* restore RETS */
(R7:7, P5:5) = [SP++]; /* optional multiple pop instruction */
RTS; /* return from subroutine */
function_a.end: /* closing subroutine Tabel */
function_b:
/* do something */
RTS;
function_b.end:
function_c:
/* do something else */
RTS;
function_c.end:

Stack Variables and Parameter Passing

Many subroutines require input arguments from the calling function and
need to return their results. Often, this is accomplished by project-wide
conventions, that certain core registers are used for passing arguments,
where others return the result. It is also recommended that assembly pro-
grams meet the conventions used by the C/C++ compiler. See C/C++

Compiler and Library Manual for details.

Extensive arguments are typically passed over the stack rather than by reg-
isters. The following example passes and returns two 32-bit arguments:

_parent:
RO = 1;
R1 = 3;
[--SP] = RO;
[--SP] = RL;
CALL _sub;
R1 = [SP++]; /* Rl = 4 */
RO = [SP++1; /* RO =2 */
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parent.end:

sub:

[--SP] = FP; /* save frame pointer */
FP = SP; /* new frame */

[--SP] = (R7:5); /* multiple push */

R6 = [FP+47; /* R6 = 3 */

R7 = [FP+81]; /* R7 =1 */

R6 = R6 + R7; /* calculate anything */
R6 = R6 - R7;

[FP+4] = R5; /* Rb =4 %/

[FP+8] = R6; /* R6 = 2 */
(R7:5) = [SP++]; /* multiple pop */
FP = [SP++]1; /* restore frame pointer */
RTS;
_sub.end:

Since the stack pointer SP is modified inside the subroutine for local stack
operations, the frame pointer FP is used to save the original state of SP.
Because the 32-bit frame pointer itself must be pushed onto the stack first,
the FP is four bytes off the original SP value.

The Blackfin instruction set features a pair of instructions that provides
cleaner and more efficient functionality than the above example: the LINK
and UNLINK instructions. These multi-cycle instructions perform multiple
operations that can be best explained by the equivalent code sequences

found in Table 4-3.
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Table 4-3. Link and Unlink Code Sequence Equivalents

LINK n; UNLINK;
[--SP] = RETS; SP = FP;

[--SP] = FP; FP = [SP++];
FP = SP; RETS = [SP++];
SP += -n;

The following subroutine does the same job as the one above, but it also
saves the RETS register to enable nested subroutine calls. Therefore, the
value stored to FP is 8 bytes off the original SP value. Since no local frame
is required, the LINK instruction gets the parameter “0”.

_sub?2:
LINK 0;
[--SP]1 = (R7:5);

R6 = [FP+81; /* R6 = 3 */

R7 = [FP+12]; /* R7 =1 %/
Rb = R6 + R7;
R6 = R6 - R7;

[FP+8] = R5; /* R5 = 4 */
[FP+12] = R6; /* R6 = 2 */

(R7:5) = [SP++1;
UNLINK;
RTS;

_subZ2.end:

If subroutines require local, private, and temporary variables beyond the
capabilities of core registers, it is a good idea to place these variables on the
stack as well. The LINK instruction takes a parameter that specifies the size
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of the stack memory required for this local purpose. The following
example provides two local 32-bit variables and initializes them to zero
when the routine is entered.

_sub3:
LINK 8;
[--SP] = (R7:0, P5:0);

R7 =0 (2);
[FP-4] = R7;
[FP-8] = R7;

(R7:0, P5:0) = [SP++1];
UNLINK;
RTS;

_sub3.end:

For more information on the LINK and UNLINK instructions, see “LINK,

UNLINK” on page 10-18.

Conditional Processing

The Blackfin processors support conditional processing through condi-
tional jump and move instructions. Conditional processing is described in
the following sections:

* “Condition Code Status Bit” on page 4-19

e “Conditional Branches” on page 4-20

e “Branch Prediction” on page 4-21

*  “Speculative Instruction Fetches” on page 4-22

* “Conditional Register Move” on page 4-23
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Condition Code Status Bit

The processor supports a Condition Code (CC) status bit, which is used to
resolve the direction of a branch. This status bit may be accessed eight

ways:

A conditional branch is resolved by the value in cC.

A Data register value may be copied into CC, and the value in CC
may be copied to a Data register. For example,

RO = CC; /* RO becomes either 0 or 1 */

CC = RI;

The BITTST instruction accesses the CC status bit. For example,
CC = BITTST (RO, 31)

/* CC set to value of bit 31 in RO */

A status bit may be copied into CC, and the value in CC may be cop-
ied to a status bit. For example,

CC = AVO;

The CC status bit may be set to the result of a Pointer register com-
parison. For example,

CC = PO < P1

The CC status bit may be set to the result of a Data register compar-
ison. For example,

CC = R5 == R7;

Some shifter instructions (rotate or BXOR) use CC as a portion of the
shift operand/result. For example,

RO = rot R1 by RI.L
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e Test and set instructions can set and clear the CC bit. For example,
TESTSET (P5)

These eight ways of accessing the CC bit are used to control program flow.
The branch is explicitly separated from the instruction that sets the arith-
metic status bits. A single bit resides in the instruction encoding that
specifies the interpretation for the value of cC. The interpretation is to
“branch on true” or “branch on false.”

The comparison operations have the form CC = expr where expr involves a
pair of registers of the same type (for example, Data registers or Pointer
registers, or a single register and a small immediate constant). The small
immediate constant is a 3-bit (—4 through 3) signed number for signed
comparisons and a 3-bit (0 through 7) unsigned number for unsigned
comparisons.

The sense of CC is determined by equal (==), less than (<), and less than or
equal to (<=). There are also bit test operations that test whether a bit in a
32-bit R-register is set.

Conditional Branches

The sequencer supports conditional branches. Conditional branches are
JUMP instructions whose execution branches or continues linearly, depend-
ing on the value of the CC bit. The target of the branch is a PC-relative
address from the location of the instruction, plus an offset. The
PC-relative offset is an 11-bit immediate value that must be a multiple of
two (bit 0 must be a 0). This gives an effective dynamic range of —=1024 to
+1022 bytes.

For example, the following instruction tests the CC status bit and, if it is
positive, jumps to a location identified by the label dest_address:
IF CC JUMP dest_address
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Similarly, a branch can also be taken when the CC bit is not set. Then, use
the syntax:
IF I1CC JUMP other_addr ;

Take care when conditional branches are followed by load opera-
tions. For more information, see “Load/Store Operation” on

page 6-72.

Branch Prediction

The sequencer supports static branch prediction to accelerate execution of
conditional branches. These branches are executed based on the state of
the CC bit.

In the EX2 stage, the sequencer compares the actual CC bit value to the
predicted value. If the value was mispredicted, the branch is corrected, and
the correct address is available for the WB stage of the pipeline.

The branch latency for conditional branches is as follows.

* If prediction was “not to take branch,” and branch was actually not
taken: 0 CCLK cycles.

* If prediction was “not to take branch,” and branch was actually
taken: 8 CCLK cycles.

e If prediction was “to take branch,” and branch was actually taken:
4 CCLK cycles.

e If prediction was “to take branch,” and branch was actually not
taken: 8 CCLK cycles.

For all unconditional branches, the branch target address computed in the
AC stage of the pipeline is sent to the Instruction Fetch Address bus at the
beginning of the DF1 stage. All unconditional branches have a latency of
4 CCLK cycles.

Blackfin Processor Programming Reference 4-21



Branches

Consider the example in Table 4-4.

Table 4-4. Branch Prediction

Instruction Description

If CC JUMP dest (bp) This instruction tests the CC status bit, and if it is
set, jumps to a location, identified by the label, dest.
If the CC status bit is set, the branch is correctly pre-
dicted and the branch latency is reduced. Otherwise,
the branch is incorrectly predicted and the branch
latency increases.

Speculative Instruction Fetches

The pipeline architecture requires the program sequencer to speculatively
fetch instructions that may have to be discarded. A useful example for this
operation is the sequence:

CC = PO ==
if CC Jjump skip;
csync;
call (P0);
skip:

Even without the shown CSYNC instruction, the sequence is fully func-
tional. The call would not be taken if PO was zero. However, without
having the CSYNC instruction there, the instruction fetch from P0 would
still happen. Since address 0x0000 0000 resides in SDRAM memory
space, the sequence would trigger an instruction fetch from SDRAM that
could be unwanted. If the SDRAM controller has not been initialized
properly, the conditional instruction fetch would even trigger a hardware
error. Thus, the CSYNC instruction is recommended. See “Load/Store
Operation” on page 6-72 for details on related data load topics.
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Conditional Register Move

Register moves can be performed depending on whether the value of the
CC status bit is true or false (1 or 0). In some cases, using this instruction
instead of a branch eliminates the cycles lost because of the branch. These
conditional moves can be done between any R- or P-registers (including
SP and FP).

Example code:
IF CC RO = PO ;
IF ICC P1 = P2

Hardware Loops

The sequencer supports a mechanism of zero-overhead looping. The
sequencer contains two loop units, each containing three registers. Each
loop unit has a Loop Top register (LT0, LT1), a Loop Bottom register (LBO,
LB1), and a Loop Count register (LCO, LC1).

Two sets of zero-overhead loop registers implement loops, using hardware
counters instead of software instructions to evaluate loop conditions. After
evaluation, processing branches to a new target address. Both sets of regis-
ters include the Loop Counter (LC), Loop Top (LT), and Loop Bottom
(LB) registers.

Table 4-5 describes the 32-bit loop register sets.

Table 4-5. Loop Registers

Registers Description Function

LCo, LC1 Loop Counters Maintains a count of the remaining iterations of the loop
LTo, LT1 Loop Tops Holds the address of the first instruction within a loop
LBO, LB1 Loop Bottoms Holds the address of the last instruction of the loop
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When an instruction at address X is executed, and X matches the contents
of LBO, then the next instruction executed will be from the address in LT0.
In other words, when PC == LBO0, then an implicit jump to LT0 is executed.

A loopback only occurs when the count is greater than or equal to 2. If the
count is nonzero, then the count is decremented by 1. For example, con-
sider the case of a loop with two iterations. At the beginning, the count
is 2. On reaching the first loop end, the count is decremented to 1 and the
program flow jumps back to the top of the loop (to execute a second
time). On reaching the end of the loop again, the count is decremented to
0, but no loopback occurs (because the body of the loop has already been
executed twice).

The LSETUP instruction can be used to load all three registers of a loop unit
at once. Each loop register can also be loaded individually with a register
transfer, but this incurs a significant overhead if the loop count is nonzero
(the loop is active) at the time of the transfer.

The following code example shows a loop that contains two instructions
and iterates 32 times.

Listing 4-1. Loop Example

P5 = 0x20

LSETUP ( Tp.top, 1p.bottom ) LCO = P5 ;
Tp.top: R5 = RO + R1(ns) || R2 = [P2++] || R3 = [I1++]
Ip.bottom: R6 = Rb + R2 ;

When executing an LSETUP instruction, the program sequencer loads the
address of the loop’s last instruction into LBx and the address of the loop’s
first instruction into LTx. The top and bottom addresses of the loop are
computed as PC-relative addresses from the LSETUP instruction, plus an
offset. In each case, the offset value is added to the location of the LSETUP
instruction. See the instruction reference page, “LSETUP, LOOP” on
page 7-13, for operation details.
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The LCO and LC1 registers are unsigned 32-bit registers, each supporting

232 _1 iterations through the loop.

Table 4-6. Loop Registers

First/Last Address of the
Loop

PC-Relative Offset Used to
Compute the Loop Start Address

Effective Range of the Loop Start
Instruction

Top / First

5-bit signed immediate; must be
a multiple of 2.

0 to 30 bytes away from LSETUP

instruction.

Bottom / Last

11-bit signed immediate; must
be a multiple of 2.

0 to 2046 bytes away from
LSETUP instruction (the defined
loop can be 2046 bytes long).

When LCx =

0, the loop is disabled, and a single pass of the code executes.

If the loop counter is derived from a variable, care should be taken if the
variable’s range could include zero.

It is recommended to guard the loop against the zero count case

(LCx

P5

[P47;
cC P5 == 0;
IF CC JuMP
LSETUP (1p
Ip.top:
Ip.bottom:
Ip.skip:

.top,

/*

Ip.skip;

Ip.bottom) LCO

P5;

0) from a variable as shown in the following code example.

first instruction outside the loop */

The processor supports a four-location instruction loop buffer that
reduces instruction fetches while in loops. If the loop code contains four
or fewer instructions, then no fetches to instruction memory are necessary
for any number of loop iterations, because the instructions are stored
locally. The loop buffer effectively eliminates the instruction fetch time in
loops with more than four instructions by allowing fetches to take place
while instructions in the loop buffer are being executed.
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A four-cycle latency occurs on the first loopback when the LSETUP specifies
a nonzero start offset (1p.top). Therefore, zero start offsets are preferred,
that is, the 1p.top label is next the LSETUP instruction.

The processor has no restrictions regarding which instructions can occur
in a loop end position. Branches and calls are allowed in that position.

The assembler accepts an alternate syntax for the setup of hardware loops
as shown in Listing 4-2. The L0OP instructions is not a assembler mne-
monic and will be translated into the LSETUP style by the assembler.

Listing 4-2. Alternate Loop Syntax

LCO = RO;

LOOP myloop LCO;
LOOP_BEGIN myloop;
NOP;

LOOP_END myloop;

In this syntax a loop gets assigned a name. All loop instructions are
enclosed between the LOOP_BEGIN and LOOP_END brackets. Note that the
LOOP_END statement is placed affer the last loop instruction, while the label
1p.bottom shown in former examples is positioned a¢ the last loop
instruction.

If the processor transitions from User mode to Supervisor mode, the LSB
of the LBx registers will be set by the hardware. Similarly, if it transitions
from Supervisor mode to User mode, this bit will be cleared automatically.
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Two-Dimensional Loops

The processor features two loop units. Each provides its own set of loop
registers.

* LC[1:0] — the Loop Count registers
e LT[1:0] — the Loop Top address registers
* LB[1:0] — the Loop Bottom address registers

Therefore, two-dimensional loops are supported directly in hardware,
consisting of an outer loop and a nested inner loop.

The outer loop is always represented by loop unit 0 (LC0, LT0, LBO)
while loop unit 1 (LC1, LT1, LB1) manages the inner loop.

To enable the two nested loops to end at the same instruction (LB1 equals
LB0), loop unit 1 is assigned higher priority than loop unit 0. A loopback
caused by loop unit 1 on a particular instruction (PC==LB1, LC1>=2) will
prevent loop unit 0 from looping back on that same instruction, even if
the address matches. Loop unit 0 is allowed to loop back only after the
loop count 1 is exhausted. The following example shows a two-dimen-
sional loop.

fidefine M 32
jfdefine N 1024
P4 =M (Z);
P5 N-1 (Z);
LSETUP ( 1po.top, Tpo.bottom ) LCO = P4;
Ipo.top: R7 =0 ;
MNOP || R2 = [I0++] || R3 = [I1++]
LSETUP (1pi.top, Ipi.bottom) LCI1 = P5;
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Tpi.top: R5 = R2 + R3 (NS) || R2 = [10] || R3 = [I1++]
Tpi.bottom: R7 = R5 + R7 (NS) || [IO++] = R5;

R = R2 + R3;

R7 = R5 + R7 (NS) || [I0++] = R5;

Tpo.bottom: [I2++] = R7;

The example processes an M by N data structure. The inner loop is
unrolled and passes only N-1 times. The outer loop is not unrolled and
still provides room for optimization.

Loop Unrolling

Typical DSP algorithms are coded for speed rather than for small code
size. Especially when fetching data from circular buffers, loops are often
unrolled in order to pass only N-1 times. The initial data fetch is executed
before the loop is entered. Similarly, the final calculations are done after
the loop terminates, for example:

f#fdefine N 1024
global_setup:

I0.H = OxFF80; I0.L = 0x0000; BO = I0; LO = N*2 (Z);
I1.H = OxFF90; I1.L = 0x0000; Bl = I1; L1 = N*2 (Z);
P5 = N-1 (Z);

algorithm:

AO = 0 || RO.H = WLIO++] || RL.L = WLIL++];

LSETUP (1p,1p) LCO = P5;
1p:  AO+= RO.H * RL.L || RO.H = W[IO0++] || R1.L = W[Il++];
AO+= RO.H * R1.L;

This technique has the advantage that data is fetched exactly N times and
the I-Registers have their initial value after processing. The “algorithm”
sequence can be executed multiple times without any need to initialize

DAG-Registers again.
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Saving and Resuming Loops

Normally, loops can process and terminate without regard to system-level
concepts. Even if interrupted by interrupts or exceptions, no special care is
needed. There are, however, a few situations that require special
attention—whenever a loop is interrupted by events that require the loop
resources themselves, that is:

* If the loop is interrupted by an interrupt service routine that also
contains a hardware loop and requires the same loop unit

* If the loop is interrupted by a preemptive task switch

* If the loop contains a CALL instruction that invokes an unknown
subroutine that may have local loops

In scenarios like these, the loop environment can be saved and restored by
pushing and popping the loop registers. For example, to save Loop Unit 0
onto the system stack, use this code:

[--SPT = LCO;
[--SP]1 = LBO;
[--SP] = LTO;

To restore Loop Unit 0 from system stack, use:

LTO = [SP++1];
LBO = [SP++];
LCO = [SP++];

It is obvious that writes or pops to the loop registers cause some internal
side effects to re-initialize the loop hardware properly. The hardware does
not force the user to save and restore all three loop registers, as there might
be cases where saving one or two of them is sufficient. Consequently,
every pop instruction in the example above may require the loop hardware
to re-initialize again. This takes multiple cycles, as the loop buffers must

also be prefilled again.

Blackfin Processor Programming Reference 4-29



Hardware Loops

To avoid unnecessary penalty cycles, the loop hardware follows these
rules:

* Restoring LC0 and LC1 registers always re-initializes the loop hard-
ware and causes a ten-cycle “replay” penalty.

* Restoring LT0, LT1, LBO, and LB1 performs in a single cycle if the
respective loop counter register is zero.

e If LCx is non-zero, every write to the LTx and LBx registers also
attempts to re-initialize the loop hardware and causes a ten-cycle
penalty.

In terms of performance, there is a difference depending on the order that
the loop registers are popped. For best performance, restore the LCx regis-
ters last. Furthermore, it is reccommended that interrupt service routines
and global subroutines that contain hardware loops terminate their local
loops cleanly, that is, do not artificially break the loops and do not execute
return instructions within their loops. This guarantees that the LCx regis-
ters are 0 when LTx and LBx registers are popped.

Example Code for Using Hardware Loops in an ISR

The following code shows the optimal method of saving and restoring
when using hardware loops in an interrupt service routine.

Listing 4-3. Saving and Restoring With Hardware Loops

lThandler:

{Save other registers here>
[--SP]1 = LCO; /* save loop 0 */
[--SP] LBO;

[--SP] LTO;
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/* ... Handler code here ... */

/* If the handler uses loop 0, it is a good idea to have

it leave LCO equal to zero at the end. Normally, this will
happen naturally as a loop is fully executed. If LCO ==
then LTO and LBO restores will not incur additional cycles.
If LCO != 0 when the following pops happen, each pop will
incur a ten-cycle “replay” penalty. Popping or writing LCO
always incurs the penalty. */

LTO [SP++1;

LBO [SP++1;

LCO = [SP++]1; /* This will cause a “replay,” that is, a
ten-cycle refetch. */

/* ... Restore other registers here ... */

RTIL;

Events and Interrupts

The Event Controller of the processor manages five types of activities or
events:

*  Emulation

* Reset

* Nonmaskable interrupts (NMI)
* Exceptions

* Interrupts
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Note the word event describes all five types of activities. The Event Con-
troller manages fifteen different events in all: Emulation, Reset, NMI,
Exception, and eleven Interrupts.

An interrupt is an event that changes normal processor instruction flow
and is asynchronous to program flow. In contrast, an exception is a soft-
ware initiated event whose effects are synchronous to program flow.

The event system is nested and prioritized. Consequently, several service
routines may be active at any time, and a low priority event may be pre-
empted by one of higher priority.

The processor employs a two-level event control mechanism. The proces-
sor System Interrupt Controller (SIC) works with the Core Event
Controller (CEC) to prioritize and control all system interrupts. The SIC
provides mapping between the many peripheral interrupt sources and the
prioritized general-purpose interrupt inputs of the core. This mapping is
programmable, and individual interrupt sources can be masked in the

SIC.

The CEC supports nine general-purpose interrupts (IVG7 — IVG15) in
addition to the dedicated interrupt and exception events that are described
in Table 4-7. It is reccommended that the two lowest priority interrupts
(IvG14 and 1VG15) be reserved for software interrupt handlers, leaving
seven prioritized interrupt inputs (IVG7 — IVG13) to support the system.
Refer to the product data sheet for the default system interrupt mapping.
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Core Events

Event Source Core Event Name
Emulation (highest priority) EMU

Reset RST

NMI NMI

Exception EVX

Reserved -

Hardware Error IVHW

Core Timer IVTMR

Note the System Interrupt to Core Event mappings shown are the default
values at reset and can be changed by software.

System Interrupt Processing

Referring to Figure 4-4, note when an interrupt (Interrupt A) is generated
by an interrupt-enabled peripheral:

1. The SIC_ISR registers log the request and keep track of system

interrupts that are asserted but not yet serviced (that is, an inter-
rupt service routine hasn’t yet cleared the interrupt).

. The SIC_IWR registers check to see if it should wake up the core
from the idle state and/or Sleep mode based on this interrupt
request.

. The SIC_IMASK registers enable interrupts from peripherals at the
system level. If Interrupt A is enabled, the request proceeds to

Step 4.

. The SIC_IARx registers, which map the peripheral interrupts to a
smaller set of general-purpose core interrupts (IVG7 - IVG15),
determine the core priority of Interrupt A.
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Figure 4-4. Interrupt Processing Block Diagram

5. The CEC’s ILAT register adds Interrupt A to its log of interrupts
latched by the core but not yet actively being serviced.

6. The CEC’s IMASK register enables events of different core priorities.
If the 1VGx event corresponding to Interrupt A is enabled, the pro-
cess proceeds to Step 7.

7. The Event Vector Table (EVTx registers) is accessed to look up the
appropriate vector for Interrupt A’s interrupt service routine (ISR).

8. When the event vector for Interrupt A has entered the core pipe-
line, the appropriate IPEND bit is set, which clears the respective
ILAT bit. Thus, IPEND tracks all pending interrupts, as well as those
being presently serviced.
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9. When the interrupt service routine (ISR) for Interrupt A has been
executed, the RTI instruction clears the appropriate IPEND bit.
However, the relevant SIC_ISR bit is not cleared unless the inter-
rupt service routine clears the mechanism that generated Interrupt
A, or if the process of servicing the interrupt clears this bit.

It should be noted that emulation, reset, NMI, and exception events, as
well as hardware error (IVHW) and core timer (IVTMR) interrupt requests,
enter the interrupt processing chain at the ILAT level and are not affected
by the system-level interrupt registers (SIC_IWR, SIC_ISR, SIC_IMASK,
SIC_IARX).

If multiple interrupt sources share a single core interrupt, then the inter-
rupt service routine (ISR) must identify the peripheral that generated the
interrupt. The ISR may then need to interrogate the peripheral to deter-
mine the appropriate action to take.

System Peripheral Interrupts

The processor system has numerous peripherals, which therefore require
many supporting interrupts.

The peripheral interrupt structure of the processor is flexible. By default
upon reset, multiple peripheral interrupts share a single, general-purpose
interrupt in the core, as shown in the “System Interrupt” chapter in Black-
fin Processor Hardware Reference.

An interrupt service routine that supports multiple interrupt sources must
interrogate the appropriate system memory mapped registers (MMRs) to
determine which peripheral generated the interrupt.
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If the default assignments shown in the “System Interrupt” chapter in
Blackfin Processor Hardware Reference are acceptable, then interrupt ini-
tialization involves only:

e Initialization of the core Event Vector Table (EVT) vector address
entries

* Initialization of the IMASK register

e Unmasking the specific peripheral interrupts in SIC_IMASK that the
system requires

SIC_IWR Registers

The Blackfin processors may include one or more System Interrupt
Wakeup-Enable registers (SIC_IWR). These registers provide the mapping
between peripheral interrupt sources and the Dynamic Power Manage-
ment Controller (DPMC). Any of the peripherals can be configured to
wake up the core from its idled state or Sleep mode to process the inter-
rupt, simply by enabling the appropriate bit in a STC_IWR register. Refer to
the “System Interrupt” chapter in the hardware reference manual for your
processor. If a peripheral interrupt source is enabled in SIC_IWR and the
core is idled or placed in Sleep mode, the interrupt causes the DPMC to
initiate the core wakeup sequence in order to process the interrupt. Note
this mode of operation may add latency to interrupt processing, depend-
ing on the power control state. For further discussion of power modes and
the idled state of the core, see the Dynamic Power Management chapter in
the hardware reference manual for your processor.

By default, as shown in the “System Interrupt” chapter in the hardware
reference manual, all interrupts generate a wakeup request to the core.
However, for some applications it may be desirable to disable this func-
tion for some peripherals.
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The SIC_IWR register has no effect unless the core is idled or placed in
Sleep mode. The bits in this register correspond to those of the System
Interrupt Mask (SIC_IMASK) and Interrupt Status (SIC_ISR) registers.

After reset, all valid bits of this register are set to 1, enabling the wakeup
function for all interrupts that are enabled. Before enabling interrupts,
configure this register in the reset initialization sequence. The SIC_IWR
register can be read from or written to at any time. To prevent spurious or
lost interrupt activity, this register should be written to only when all
peripheral interrupts are disabled.

Note the wakeup function is independent of the interrupt mask
function. If an interrupt source is enabled in SIC_IWR but disabled
in SIC_IMASK, the core wakes up if it is idled or in Sleep mode, but
it does not generate an interrupt.

For a listing of the default System Interrupt Wakeup-Enable register set-
tings, refer to the “System Interrupt” chapter in the hardware reference
manual for your processor.

SIC_ISR Registers

The System Interrupt Controller (SIC) includes one or more read-only
status registers, the System Interrupt Status registers (SIC_ISR), shown in
the “System Interrupt” chapter in Blackfin Processor Hardware Reference.
Each valid bit in this register corresponds to one of the peripheral inter-
rupt sources. The bit is set when the SIC detects the interrupt is asserted
and cleared when the SIC detects that the peripheral interrupt input has
been deasserted. Note for some peripherals, such as general-purpose I/O
(GPIO) asynchronous input interrupts, many cycles of latency may pass
from the time an interrupt service routine initiates the clearing of the
interrupt (usually by writing a system MMR) to the time the SIC senses
that the interrupt has been deasserted.
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Depending on how interrupt sources map to the general-purpose interrupt
inputs of the core, the interrupt service routine may have to interrogate
multiple interrupt status bits to determine the source of the interrupt.
One of the first instructions executed in an interrupt service routine
should read SIC_ISR to determine whether more than one of the peripher-
als sharing the input has asserted its interrupt output. The service routine
should fully process all pending, shared interrupts before executing the
RTI, which enables further interrupt generation on that interrupt input.

When an interrupt’s service routine is finished, the RTI instruction
clears the appropriate bit in the IPEND register. However, the rele-
vant SIC_ISR bit is not cleared unless the service routine clears the
mechanism that generated the interrupt.

Many systems need relatively few interrupt-enabled peripherals, allowing
each peripheral to map to a unique core priority level. In these designs,
SIC_ISR will seldom, if ever, need to be interrogated.

The SIC_ISR register is not affected by the state of the System Interrupt
Mask register (SIC_IMASK) and can be read at any time. Writes to the
SIC_ISR register have no effect on its contents.

SIC_IMASK Registers

Blackfin processors have one or more System Interrupt Mask registers
(SIC_IMASK) shown in the “System Interrupt” chapter in Blackfin Processor
Hardware Reference. These registers allow enabling of any peripheral inter-
rupt source at the System Interrupt Controller (SIC), independently of
whether it is enabled at the peripheral itself.

A reset forces the contents of SIC_IMASK to all Os to disable all peripheral
interrupts. Writing a 1 to a bit location enables the interrupt.

Although this register can be read from or written to at any time (in
Supervisor mode), it should be configured in the reset initialization
sequence before enabling interrupts.
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System Interrupt Assignment Registers (SIC_IARX)

The relative priority of peripheral interrupts can be set by mapping the
peripheral interrupt to the appropriate general-purpose interrupt level in
the core. The mapping is controlled by the System Interrupt Assignment
register settings, as detailed in the “System Interrupt” chapter in Blackfin
Processor Hardware Reference. If more than one interrupt source is mapped
to the same interrupt, they are logically ORed, with no hardware prioriti-
zation. Software can prioritize the interrupt processing as required for a
particular system application.

For general-purpose interrupts with multiple peripheral interrupts
assigned to them, take special care to ensure that software correctly
processes all pending interrupts sharing that input. Software is
responsible for prioritizing the shared interrupts.

These registers can be read from or written to at any time in Supervisor
mode. It is advisable, however, to configure them in the Reset interrupt
service routine before enabling interrupts. To prevent spurious or lost
interrupt activity, these registers should be written to only when all
peripheral interrupts are disabled.

Core Event Controller Registers

The Event Controller uses three core MMRs to coordinate pending event
requests. In each of these MMRs, the 16 lower bits correspond to the 16
event levels (for example, bit 0 corresponds to “Emulator mode”). The
registers are:

* IMASK - interrupt mask
* ILAT - interrupt latch
e IPEND - interrupts pending

These three registers are accessible in Supervisor mode only.
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IMASK Register

The Core Interrupt Mask register (IMASK) indicates which interrupt levels
are allowed to be taken. The IMASK register may be read and written in
Supervisor mode. Bits [15:5] have significance; bits [4:0] are hard-coded
to 1 and events of these levels are always enabled. If IMASK[N] == 1 and
ILATIN] == 1, then interrupt N will be taken if a higher priority is not
already recognized. If IMASK[N] == 0, and ILATLN] gets set by interrupt N,
the interrupt will not be taken, and 1LATIN] will remain set.

Core Interrupt Mask Register (IMASK)
For all bits, 0 - Interrupt masked, 1 - Interrupt enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

O0XFFEO 2104 |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o | Reset = 0x0000 001F
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CNEAEN0N CNCAENC) CACNENEN IRENENEN

IVG15 J \—IVHW (Hardware Error)

IVG14 IVTMR (Core Timer)

IVG13 IVG7

IVG12 IVG8

IVG11 IVGo

IVG10

Figure 4-5. Core Interrupt Mask Register

ILAT Register

Each bit in the Core Interrupt Latch register (ILAT) indicates that the cor-
responding event is latched, but not yet accepted into the processor (see
Figure 4-6). The bit is reset before the first instruction in the correspond-
ing ISR is executed. At the point the interrupt is accepted, ILATIN] will be
cleared and IPENDLN] will be set simultaneously. The ILAT register can be
read in Supervisor mode. Writes to ILAT are used to clear bits only (in
Supervisor mode). To clear bit N from ILAT, first make sure that
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IMASKIN] == 0, and then write ILAT[N] = 1. This write functionality to
ILAT is provided for cases where latched interrupt requests need to be
cleared (cancelled) instead of serviced.

The RAISE instruction can be used to set ILAT[15] through ILAT[5], and
also TLAT[2] or ILAT[1].

Only the JTAG TRST pin can clear ILAT[0].

@ For an interrupt which is already being serviced, the ILAT bit of the

corresponding IVG will not be set if the interrupt is re-triggered at
the system source level. However, the corresponding bit in the
SIC_ISR register will remain set. Even if the ILAT bit for the partic-
ular IVG is not set, no interrupts are lost in this process; the
System Interrupt Controller would have acknowledged this info
internally to the Core Event Controller.

Core Interrupt Latch Register (ILAT)
Reset value for bit 0 is emulator-dependent. For all bits, O - Interrupt not latched, 1 - Interrupt latched

3130 20 28 27 26 25 24 23 22 21 20 19 18 17 16
OXFFEO 210C [oJofoJoJoJoJoJoJoJoJoJoJofoJoJo] Reset=oxo000000x

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofofofofofofofofofofofofofofo]x]

IVG15 J EMU (Emulation) - RO
IVG14 RST (Reset) - RO
IVG13 NMI (Nonmaskable Interrupt) - RO
IVG12 EVX (Exception) - RO
IVG11 IVHW (Hardware Error)
IVG10 L IVTMR (Core Timer)
IVG9 IVG7
IVG8

Figure 4-6. Core Interrupt Latch Register
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IPEND Register

The Core Interrupt Pending register (IPEND) keeps track of all currently
nested interrupts (see Figure 4-7). Each bit in IPEND indicates that the cor-
responding interrupt is currently active or nested at some level. It may be
read in Supervisor mode, but not written. The IPEND[4] bit is used by the
Event Controller to temporarily disable interrupts on entry and exit to an
interrupt service routine.

When an event is processed, the corresponding bit in IPEND is set. The
least significant bit in IPEND that is currently set indicates the interrupt
that is currently being serviced. At any given time, IPEND holds the current
status of all nested events.

Core Interrupt Pending Register (IPEND)
RO. For all bits except bit 4, 0 - No interrupt pending, 1 - Interrupt pending or active

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0xFFEO 2108 |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o |o | Reset = 0x0000 0010

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[ofofofofofofofofofofoftfofofo]o]

IVG15 J EMU (Emulation)

IVG14 RST (Reset)

IVG13 NMI (Nonmaskable Interrupt)
IVG12 EVX (Exception)

IVG11 Global Interrupt Disable
IVG10 0 - Interrupts globally enabled

1 - Interrupts globally disabled
Set and cleared by Event Con-

troller only
IVHW (Hardware Error)

IVTMR (Core Timer)
IVG7
IVG8

IVG9

Figure 4-7. Core Interrupt Pending Register
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Event Vector Table

The Event Vector Table (EVT) is a hardware table with sixteen entries
that are each 32 bits wide. The EVT contains an entry for each possible
core event. Entries are accessed as MMRs, and each entry can be pro-
grammed at reset with the corresponding vector address for the interrupt
service routine. When an event occurs, instruction fetch starts at the
address location in the EVT entry for that event.

The processor architecture allows unique addresses to be programmed into
each of the interrupt vectors; that is, interrupt vectors are not determined
by a fixed offset from an interrupt vector table base address. This approach

minimizes latency by not requiring a long jump from the vector table to
the actual ISR code.
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Table 4-8 lists events by priority. Each event has a corresponding bit in
the event state registers ILAT, IMASK, and IPEND.

4-44 Blackfin Processor Programming Reference



Table 4-8. Core Event Vector Table

Program Sequencer

Name Event Class Event Vector MMR Location |Notes
Register

EMU Emulation EVTO 0xFFEO 2000 Highest priority. Vec-
tor address is provided
by JTAG.

RST Reset EVT1 0xFFE0 2004

NMI NMI EVT2 0xFFEO 2008

EVX Exception EVT3 0xFFEO0 200C

Reserved Reserved EVT4 0xFFEO0 2010 Reserved vector

IVHW Hardware Error | EVT5 0xFFEO0 2014

IVTMR Core Timer EVT6 0xFFE0 2018

IvVG7 Interrupt 7 EVT7 0xFFE0 201C System interrupt

IVG8 Interrupt 8 EVT8 0xFFE0 2020 System interrupt

IVGY Interrupt 9 EVT9 0xFFEO 2024 System interrupt

IVG10 Interrupt 10 EVT10 0xFFEO0 2028 System interrupt

IVG11 Interrupt 11 EVT11 0xFFEO0 202C System interrupt

IVG12 Interrupt 12 EVTI12 0xFFEO 2030 System interrupt

IVG13 Interrupt 13 EVT13 0xFFEO0 2034 System interrupt

IVG14 Interrupt 14 EVT14 0xFFE0 2038 System interrupt

IVG15 Interrupt 15 EVT15 0xFFEO0 203C Software interrupt

For ADSP-BF60x processors, the system interrupt interface to the
core has been modified to connect up with the System Event Con-
troller (SEC). The SEC prioritizes system interrupts and provides a
single interrupt indicator to the core along with an interrupt ID.
System interrupts are directed to core IVG11. The interrupt ID is
latched in the CEC_SID register for use in the interrupt service
routine.

Blackfin Processor Programming Reference

4-45




Events and Interrupts

Event Vector Table Override

The event vector table override (EVI_OVERRIDE) register determines
the source of the vector address for the IVG7-IVG15 interrupt vectors.
For instance, if the bit in EVT_OVERRIDE that corresponds to IVG7 is
set, the IVG7 interrupt vectors to the same address to which the core
resets. (The address in location EVT7 is ignored when this override is

enabled.) The EVT entry for the Reset event (IVG1) is the address from

which the core starts executing after reset is deasserted.

Table 4-9. EVT_OVERRIDE Register Bits

Bit

Name

Description

15

IVG1

IVGI interrupt bit position
0 = Use EVT1 for the RAISE 1 interrupt vector
1 = Use Reset vector address for the RAISE 1 interrupt vector (default)

14:8

Reserved

IVG15

IVG15 interrupt bit position
0 = No action
1 = Enable override

IVG14

IVG14 interrupt bit position
0 = No action
1 = Enable override

IVG13

IVG13 interrupt bit position
0 = No action
1 = Enable override

IVG12

IVG12 interrupt bit position
0 = No action
1 = Enable override

IVG11

IVG11 interrupt bit position
0 = No action
1 = Enable override

IVG10

IVG10 interrupt bit position
0 = No action
1 = Enable override
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Table 4-9. EVT_OVERRIDE Register Bits

Bit

Name

Description

IVG9

IVGY interrupt bit position
0 = No action
1 = Enable override

IVGS

IVGS interrupt bit position
0 = No action
1 = Enable override

Return Registers and Instructions

@ Note: Using the EVT override lets other events use the Reset vector

address as their own vector address, instead of their default address
assignment. This approach eliminates the need for double indirec-
tion in order to jump to an externally supplied address on Reset.

Similarly to the RETS register controlled by CALL and RTS instructions,
interrupts and exceptions also use single-entry hardware stack registers. If
an interrupt is serviced, the program sequencer saves the return address
into the RETI register prior to jumping to the event vector. A typical inter-
rupt service routine terminates with an RTI instruction that instructs the
sequencer to reload the Program Counter, PC, from the RETI register. The
following example shows a simple interrupt service routine.

isr:
[,,

I:__

SP]
SP]

(R7:0, P5:0); /* push core registers */
ASTAT; /* push arithmetic status */

/* place core of service routine here */

ASTAT = [SP++]; /* pop arithmetic status */
(R7:0, P5:0) = [SP++]; /* pop core registers */
RTI; /* return from interrupt */

isr.end:
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There is no need to manage the RETI register when interrupt nesting is not
enabled. If however, nesting is enabled and the respective service routine

must be interruptible by an interrupt of higher priority, the RETI register

must be saved, most likely onto the stack.

Instructions that access the RETI register do have an implicit side effect—
reading the RETI register enables interrupt nesting. Writing to it disables
nesting again. This enables the service routine to break itself down into
interruptible and non-interruptible sections. For example:

isr:
[--SP] = (R7:0, P5:0); /* push core registers */
[--SP]1 = ASTAT; /* push arithmetic status */

/* place critical or atomic code here */
[--SP] = RETI; /* enable nesting */
/* place core of service routine here */
RETI = [SP++]; /* disable nesting */
/* more critical or atomic instructions */
ASTAT = [SP++]; /* pop arithmetic status */
(R7:0, P5:0) = [SP++]; /* pop core registers */
RTI; /* return from interrupt */
isr.end:

If there is not a need for non-interruptible code inside the service routine,
it is good programming practice to enable nesting immediately. This
avoids unnecessary delay to high priority interrupt routines. For example:

isr:
[--SP] = RETI; /* enable nesting */
[--SP] = (R7:0, P5:0); /* push core registers */
[--SP] = ASTAT; /* push arithmetic status */

/* place core of service routine here */
ASTAT = [SP++]; /* pop arithmetic status */
(R7:0, P5:0) = [SP++]; /* pop core registers */
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RETI = [SP++]; /* disable nesting */
RTI; /* return from interrupt */
isr.end:

See “Nesting of Interrupts” on page 4-60 for more details on interrupt
nesting.

Emulation Events, NMI, and Exceptions use a technique similar to “nor-
mal” interrupts. However, they have their own return register and return

instruction counterparts. Table 4-10 provides an overview.

Table 4-10. Return Registers and Instructions

Name Event Class Return Register |Return
Instruction
EMU Emulation RETE RTE
RST Reset RETI RTI
NMI NMI RETN RTN
EVX Exception RETX RTX
Reserved Reserved - -
IVHW Hardware Error | RETI RTI
IVITMR Core Timer RETI RTI
IvVG7 Interrupt 7 RETI RTI
IVGS Interrupt 8 RETI RTI
IVGY Interrupt 9 RETI RTI
IVG10 Interrupt 10 RETI RTI
IVG11 Interrupt 11 RETI RTI
IVG12 Interrupt 12 RETI RTI
IVG13 Interrupt 13 RETI RTI
IVG14 Interrupt 14 RETI RTI
IVG15 Interrupt 15 RETI RTI
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Executing RTX, RTN, or RTE in a Lower Priority Event

Instructions RTX, RTN, and RTE are designed to return from an exception,
NMI, or emulator event, respectively. Do not use them to return from a
lower priority event. To return from an interrupt, use the RTI instruction.
Failure to use the correct instruction may produce unintended results.

In the case of RTX, bit IPEND[3] is cleared. In the case of RTI, the bit of the
highest priority interrupt in IPEND is cleared.

Emulation Interrupt

An emulation event causes the processor to enter Emulation mode, where
instructions are read from the JTAG interface. It is the highest priority
interrupt to the core.

For detailed information about emulation, see the Blackfin Processor
Debug chapter in the hardware reference manual for your processor.

Reset Interrupt

The reset interrupt (RST) can be initiated via the RESET pin or through
expiration of the watchdog timer. This location differs from that of other
interrupts in that its content is read-only. Writes to this address change
the register but do not change where the processor vectors upon reset. The
processor always vectors to the reset vector address upon reset. For more
information, see “Reset State” on page 3-10.

The core has an output that indicates that a double fault has occurred.
This is a nonrecoverable state. The system can be programmed to send a
reset request if a double fault condition is detected. This detection is
enabled by the DOUBLE_FAULT bit in the SWRST register. Subsequently, the
reset request forces a system reset for core and peripherals.
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The reset vector is determined by the processor system. It points to the
start of the on-chip boot ROM, or to the start of external asynchronous
memory, depending on the state of the BMODE pins.

NMI (Nonmaskable Interrupt)

The NMI entry is reserved for a nonmaskable interrupt, which can be gen-
erated by the Watchdog timer or by the NMI input signal to the
processor. An example of an event that requires immediate processor
attention, and thus is appropriate as an NMI, is a powerdown warning,.

If an exception occurs in an event handler that is already servicing
an exception, NMI, reset, or emulation event, this will trigger a dou-
ble fault condition, and the address of the excepting instruction
will be written to RETX.

The NMI pin is level-sensitive and should always be pulled to its deasserted
state if unused. On some derivatives, the NMI input is active high and on
some it is active low. Refer to the specific data sheet for your processor.

On some derivatives, the NMI input is active high and on some it is active
low. Refer to the specific data sheet for your processor.

Exceptions

Exceptions are discussed in “Hardware Errors and Exception Handling”

on page 4-69.

Hardware Error Interrupt

Hardware Errors are discussed in “Hardware Errors and Exception Han-

dling” on page 4-69.
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Core Timer Interrupt

The Core Timer Interrupt (IVTMR) is triggered when the core timer value
reaches zero. For more information about the core timer, see the hardware
reference for your processor.

General-purpose Core Interrupts (IVG7-IVG15)

The System Interrupt Controller (SIC) can forward interrupt requests to
the core events IVG7-IVG15, referred to as general-purpose core inter-
rupts. General-purpose interrupts are used for any system event that
requires attention of the core. For instance, a DMA controller may use
them to signal the end of a data transmission, or a serial communications
device may use them to signal transmission errors.

Software can also trigger general-purpose interrupts by using the RAISE
instruction. The RAISE instruction forces events for interrupts IVG15-1VG7,
IVTMR, IVHW, NMI, and RST, but not for exceptions and emulation (EVX and
EMU, respectively).

It is a useful practice to reserve the two lowest priority interrupts
(1vG15 and 1VG14) for software interrupt handlers.

For system interrupts available on specific Blackfin processors, see the
hardware reference for that processor.

Interrupt Processing

The following sections describe interrupt processing.
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Global Enabling/Disabling of Interrupts

General-purpose interrupts can be globally disabled with the CLT Dreg
instruction and re-enabled with the STI Dreg instruction, both of which
are only available in Supervisor mode. Reset, NMI, emulation, and excep-
tion events cannot be globally disabled. Globally disabling interrupts
clears IMASK[15:5] after saving IMASK’s current state.

CLI Rb; /* save IMASK to R5 and mask all */
/* place critical instructions here */
STI R5; /* restore IMASK from R5 again */

See “Enable Interrupts” and “Disable Interrupts” in Chapter 16, “External
Event Management”.

When multiple instructions need to be atomic or are too time-critical to
be delayed by an interrupt, disable the general-purpose interrupts, but be
sure to re-enable them at the conclusion of the code sequence.

Servicing Interrupts

The Core Event Controller (CEC) has a single interrupt queueing element
per event—a bit in the ILAT register. The appropriate ILAT bit is set when
an interrupt rising edge is detected (which takes two core clock cycles) and
cleared when the respective IPEND register bit is set. The IPEND bit indi-
cates that the event vector has entered the core pipeline. At this point, the
CEC recognizes and queues the next rising edge event on the correspond-
ing interrupt input. The minimum latency from the rising edge transition
of the general-purpose interrupt to the IPEND output assertion is three core
clock cycles. However, the latency can be much higher, depending on the
core’s activity level and state.

To determine when to service an interrupt, the controller logically ANDs
the three quantities in ILAT, IMASK, and the current processor priority
level.
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Servicing the highest priority interrupt involves these actions:

1. The interrupt vector in the Event Vector Table (EVT) becomes the
next fetch address.

On an interrupt, most instructions currently in the pipeline are
aborted. On a service exception, all instructions after the excepting
instruction are aborted. On an error exception, the excepting
instruction and all instructions after it are aborted.

2. The return address is saved in the appropriate return register.

The return register is RETI for interrupts, RETX for exceptions, RETN
for NMlIs, and RETE for debug emulation. The return address is the
address of the instruction after the last instruction executed from
normal program flow.

3. Processor mode is set to the level of the event taken.

If the event is an NMI, exception, or interrupt, the processor mode
is Supervisor. If the event is an emulation exception, the processor
mode is Emulation.

4. Before the first instruction starts execution, the corresponding
interrupt bit in 1LAT is cleared and the corresponding bit in IPEND
1s set.

Bit IPEND[4] is also set to disable all interrupts until the return
address in RETI is saved.

Servicing System Interrupts

Interrupts that are signaled by peripherals may or may not be grouped in
the System Interrupt Controller. Unlike core interrupts, system interrupts
are level-sensitive. The peripherals do not release the request unless the
release is manually commanded by software.
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If multiple peripheral interrupts are assigned to the same IVG channel, the
IVG’s service routine is typically required to interrogate the SIC_ISR regis-
ters to determine the signaling peripheral module. Some modules further

group interrupts internally, and the modules typically provide an interrupt
status register that has to be interrogated by the service routine also.

It is good programming practice that an interrupt service acknowledges
the interrupt request back to the peripheral as early as possible. This
response allows the peripheral to sense further events as soon as possible.
The service routine must ensure that the requests are released before the
RTI instruction executes. Otherwise, the service routine is invoked imme-
diately after the execution of the RTI instruction.

Often, interrupt requests are cleared by write-one-to-clear (W1C) opera-
tions. Such a write command usually does not stall the core, rather it is
automatically latched and synchronized with the system clock (SCLK)
domain before it is emitted to the PAB bus. Depending on the
CCLK-to-SCLK frequency ratio, this process may require multiple CCLK
cycles before the W1C operation arrives to the peripheral. If the W1C
operation executes at the end of a service routine, it is recommended to
execute either an SSYNC instruction or additional PAB bus access before
the RTI instruction to ensure that the peripheral releases the request before
the RTI executes. Because the program sequencer and CEC controller
operate at the CCLK rate, the de-asserted request must still be synchro-
nized back to the CCLK domain. This synchronization may take another
SCLK cycle, which is not protected by the SSYNC instruction. Usually,
final register restoring and stack pop operations prevent this issue from
happening at all, but generic software should be tested for operation at
multiple CCLK-to-SCLK ratio selections. The additional PAB read prior
to the RTI instruction is the best way to ensure the event is cleared in the

SIC prior to exiting the ISR.
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Clearing Interrupt Requests

When the processor services a core event, it automatically clears the
requesting bit in the ILAT register and no further action is required by the
interrupt service routine. It is important to understand that the SIC con-
troller does not provide any interrupt acknowledgment feedback
mechanism from the CEC controller back to the peripherals. Although
the ILAT bits clear in the same way when a peripheral interrupt is serviced,
the signalling peripheral does not release its level-sensitive request until it
is explicitly instructed by software to do so. If the request is not cleared by
software, the peripheral keeps requesting the interrupt, and the respective
ILAT bit is immediately set again. This causes the processor to vector to
the service routine again as soon as the RTI instruction is executed.

Every software routine that services peripheral interrupts must clear the
signalling interrupt request in the respective peripheral. The individual
peripherals provide customized mechanisms for how to clear interrupt
requests. Receive interrupts, for example, are cleared when received data is
read from the respective buffers. Transmit requests typically clear when
software (or DMA) writes new data into the transmit buffers. These
implicit acknowledge mechanisms avoid the need for cycle-consuming
software handshakes in streaming interfaces. Other peripherals such as
timers, GPIOs, and error requests require explicit acknowledge instruc-
tions, which are typically performed by efficient W1C (write-1-to-clear)
operations.

Listing 4-4 shows a representative example of how a GPIO interrupt
request might be serviced on an ADSP-BF537 Blackfin processor.

Listing 4-4. Servicing GPIO Interrupt Request

ffinclude <defBF537.h>
.section program;
_portg_a_isr:

/* push used registers */
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[--sp] = (r7:7, p5:5);
/* clear interrupt request on GPIO pin PG2 */
/* no matter whether used A or B channel */

p5.1 = To(PORTGIO_CLEAR);
p5.h = hi(PORTGIO_CLEAR);
r7 = PG2;

wlp5] = r7;

/* place user code here */

/* sync system, pop registers and exit */
ssync;
(r7:7, p5:5) = [sp++];
rti;
_portg_a_isr.end:

The W1C instruction shown in this example may require several SCLK
cycles to complete, depending on system load and instruction history. The
program sequencer does not wait until the instruction completes and
continues program execution immediately. The SSYNC instruction ensures
that the W1C command indeed cleared the request in the GPIO periph-
eral before the RTI instruction executes. However, the SSYNC instruction
does not guarantee that the release of the interrupt request has also been
recognized by the CEC controller, which may require a few more CCLK
cycles, depending on the CCLK-to-SCLK ratio. In service routines consisting
of a few instructions only, two SSYNC instructions are recommended
between the clear command and the RTI instruction. However, one SSYNC
instruction is typically sufficient if the clear command is performed in the
very beginning of the service routine or the SSYNC instruction is followed
by another set of instructions before the service routine returns. Com-
monly, a pop-multiple instruction is used for this purpose, as shown in
Listing 4-4. Alternately, a read from any system MMR prior to executing
the RTT will guarantee that the write has completed and the interrupt con-
dition is cleared.
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The level-sensitive nature of peripheral interrupts enables more than one
of them to share the same IVG channel and, therefore, the same interrupt
priority. This is programmable using the SIC_IARx registers. Then, a com-
mon service routine typically interrogates the SIC_ISR register to
determine the signalling interrupt source. If multiple peripherals are
requesting interrupts at the same time, it is up to the service routine to
either service all requests in a single pass or to service them one by one. If
only one request is serviced and the respective request is cleared by soft-
ware before the RTI instruction executes, the same service routine is
invoked another time because the second request is still pending. While
the first approach may require fewer cycles to service both requests, the
second approach enables higher priority requests to be serviced more
quickly in a non-nested interrupt system setup
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Software Interrupts

Software cannot set bits of the ILAT register directly, as writes to ILAT
cause a write-1-to-clear (W1C) operation. Instead, use the RAISE instruc-
tion to set individual ILAT bits by software. It safely sets any of the ILAT
bits without affecting the rest of the register.

RAISE 1; /* fire reset interrupt request */

The RAISE instruction must not be used to fire emulation events or excep-
tions, which are managed by the related EMUEXCPT and EXCPT instructions.
For details, see Chapter 16, “External Event Management”.

Often, the RAISE instruction is executed in interrupt service routines to
degrade the interrupt priority. This enables less urgent parts of the service
routine to be interrupted even by low priority interrupts.

isr7/: /* service routine for IVG/7 */

/* execute high priority instructions here */
/* handshake with signalling peripheral */
RAISE 14;
RTT;

isr7.end:

isrl4: /* service routine for IVGl14 */

/* further process event initiated by IVG7 */
RTI;
isrld.end:

The example above may read data from any receiving interface, post it to a
queue, and let the lower priority service routine process the queue after
the isr7 routine returns. Since 1VG15 is used for normal program execu-
tion in non-multi-tasking system, IVG14 is often dedicated to software
interrupt purposes.
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“Example Code for an Exception Handler” on page 4-83 uses the same
principle to handle an exception with normal interrupt priority level.

Nesting of Interrupts

Interrupts are handled either with or without nesting, individually. For
more information, see “Return Registers and Instructions” on page 4-47.

Non-nested Interrupts

If interrupts do not require nesting, all interrupts are disabled during the
interrupt service routine. Note, however, that emulation, NMI, and
exceptions are still accepted by the system.

When the system does not need to support nested interrupts, there is no
need to store the return address held in RETI. Only the portion of the
machine state used in the interrupt service routine must be saved in the
Supervisor stack. To return from a non-nested interrupt service routine,
only the RTI instruction must be executed, because the return address is
already held in the RETI register.

Figure 4-8 shows an example of interrupt handling where interrupts are
globally disabled for the entire interrupt service routine.
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INTERRUPTS DISABLED
DURING THIS INTERVAL.

CYCLE: 1 2 3 4 5 6 m m+1 m+2 m+3 m+4
IF1 A9 [A10 10 " 12 ce A3 A4 A5 A6 A7
IF2 | A8 | A9 [ p0 o |1 ... A3 | A4 | A5 | A6
WLIF3 | A7 | As | A5 0 | ... A3 | A4 | A5
g DEC | A6 | A7 | A8~ A3 | A4
® A5 | A A
¥ AC 5 | A6 | a7 3
Z|DF1 | A4 | A5 | A6 RTI
w
o |DF2 | A3 | A4 | A5 In | RTI
o
EX1 | A2 | A3 | ad In-1 RTI
Ex2 | A1 | A2 | a3 Ih2 | In1 | 1, | RT
WB A0 | A1 A2 In-3 | In-2 | In1| In RTI

CYCLE 1: INTERRUPT IS LATCHED. ALL POSSIBLE INTERRUPT SOURCES DETERMINED.
CYCLE 2: INTERRUPT IS PRIORITIZED.

CYCLE 3: ALL INSTRUCTIONS ABOVE A2 ARE KILLED. A2 IS KILLED IF IT IS AN RTI OR CLI
INSTRUCTION. ISR STARTING ADDRESS LOOKUP OCCURS.

CYCLE 4: 10 (INSTRUCTION AT START OF ISR) ENTERS PIPELINE.

CYCLE M: WHEN THE RTI INSTRUCTION REACHES THE DF1 STAGE, INSTRUCTION A3 IS
FETCHED IN PREPARATION FOR RETURNING FROM INTERRUPT.

CYCLE M+4: RTI HAS REACHED WB STAGE, RE-ENABLING INTERRUPTS.

Figure 4-8. Non-nested Interrupt Handling

Nested Interrupts

If nested interrupts are desired, the return address to the interrupted point
in the original interrupt service routine (ISR) must be explicitly saved and
subsequently restored when execution of the nested ISR has completed.
Nesting is enabled by pushing the return address currently held in RETI
to the Supervisor stack ([--SP]1 = RETI), which is typically done early in
the ISR prolog of the lower priority interrupt. This clears the global inter-
rupt disable bit IPEND[4], enabling interrupts. Next, all registers that are
modified by the interrupt service routine are saved onto the Supervisor
stack. Processor state is stored in the Supervisor stack, not in the User
stack. Hence, the instructions to push RETI ([--SP] = RETI) and pop RETI
(RETI = [SP++1) use the Supervisor stack.

Blackfin Processor Programming Reference 4-61



Interrupt Processing

Figure 4-9 illustrates that by pushing RETI onto the stack, interrupts can
be re-enabled during an interrupt service routine, resulting in a short
duration where interrupts are globally disabled.

INTERRUPTS DISABLED INTERRUPTS DISABLED
DURING THIS INTERVAL. DURING THIS INTERVAL.
CYCLE: 1 2 3 4 5 6 7 8 9 10 M mtl mt2 m+3 m+d m+5
IF1 | A9 | At0 PUSH| M | 12 [ 13 | 14 [15 [ 16 |... A3 | A4 [ A5 | A6 | A7
IF2 | A3 | A9 | A0 PUSH| 1M [ 12 [ 13 |14 |15 |... A3 | A4 | A5 | A6
wl F3 | A7 A8 | A5 PUSH| 11 | 12 [ 13 |14 | ... A3 | A4 | A5
g DEC | A6 | A7 | A8 PUSH| 11 |12 |13 | ... A3 | A4
(2]
@ AC | A5 |As | AT PUSH| 11 | I2 RTI A3
§ DF1 | A4 | A5 | A6~ PUSH| 1 | ... |POP |RTI
o | DF2 | A3 | A4 | A5~ PUSH| ... | 1, |POP| RTI
o
EX1 | A2 | A3 | ad In1 | I, |PoP | RTI
EX2 | A1 | A2 | A5 In2 |In1 | 1, | POP| RTI
WB | A0 | A1 | A2 In-3 |In-2 | In1 | Iy [POP | RTI

CYCLE 1: INTERRUPT IS LATCHED. ALL POSSIBLE INTERRUPT SOURCES DETERMINED.

CYCLE 2: INTERRUPT IS PRIORITIZED.

CYCLE 3: ALL INSTRUCTIONS ABOVE A2 ARE KILLED. A2 IS KILLED IF IT IS AN RTI OR CLI INSTRUCTION. ISR STARTING

ADDRESS LOOKUP OCCURS.

CYCLE 4: 10 (INSTRUCTION AT START OF ISR) ENTERS PIPELINE. ASSUME IT IS A PUSH RETI INSTRUCTION (TO ENABLE NESTING).
CYCLE 10: WHEN PUSH REACHES DF2 STAGE, INTERRUPTS ARE RE-ENABLED.

CYCLE M+1: WHEN THE POP RETI INSTRUCTION REACHES THE DF2 STAGE, INTERRUPTS ARE DISABLED.

CYCLE M+5: WHEN RTI REACHES THE WB STAGE, INTERRUPTS ARE RE-ENABLED.

Figure 4-9. Nested Interrupt Handling

Example Prolog Code for Nested Interrupt Service Routine
Listing 4-5. Prolog Code for Nested ISR

/* Prolog code for nested interrupt service routine.

Push return address in RETI into Supervisor stack, ensuring that
interrupts are back on. Until now, interrupts have been
suspended.*/

ISR:

[--SP] = RETI ; /* Enables interrupts and saves return address to
stack */

[--SP] = ASTAT ;
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[--SP] = FP

[-- SP] = (R7:0, P5:0) ;

/* Body of service routine. Note none of the processor resources
(accumulators, DAGs, Toop counters and bounds) have been saved.
[t is assumed this interrupt service routine does not use the
processor resources. */

Example Epilog Code for Nested Interrupt Service Routine
Listing 4-6. Epilog Code for Nested ISR

/* Epilog code for nested interrupt service routine.

Restore ASTAT, Data and Pointer registers. Popping RETI from
Supervisor stack ensures that interrupts are suspended between
load of return address and RTI. */

(R7:0, P5:0) = [SP++]

FP = [SP++]
ASTAT = [SP++]
RETI = [SP++]

/* Execute RTI, which jumps to return address, re-enables inter-
rupts, and switches to User mode if this is the last nested
interrupt in service. */

RTI;

The RTI instruction causes the return from an interrupt. The return
address is popped into the RETI register from the stack, an action that sus-
pends interrupts from the time that RETI is restored until RTI finishes
executing. The suspension of interrupts prevents a subsequent interrupt
from corrupting the RETI register.

Next, the RTI instruction clears the highest priority bit that is currently set
in IPEND. The processor then jumps to the address pointed to by the value
in the RETI register and re-enables interrupts by clearing IPEND[4].
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Logging of Nested Interrupt Requests

The System Interrupt Controller (SIC) detects and forwards level-sensitive
interrupt requests from the peripherals. The Core Event Controller (CEC)
provides edge-sensitive detection for its general-purpose interrupts
(IvG7-1VG15). Consequently, the SIC generates a synchronous interrupt
pulse to the CEC and then waits for interrupt acknowledgement from the
CEC. When the interrupt has been acknowledged by the core (via asser-
tion of the appropriate IPEND output), the SIC generates another
synchronous interrupt pulse to the CEC if the peripheral interrupt is still
asserted. This way, the system does not lose peripheral interrupt requests
that occur during servicing of another interrupt.

Multiple interrupt sources can map to a single core processor general-pur-
pose interrupt. Because of this, multiple pulse assertions from the SIC can
occur simultaneously, before, or during interrupt processing for an inter-
rupt event that is already detected on this interrupt input. For a shared
interrupt, the IPEND interrupt acknowledge mechanism described above
re-enables all shared interrupts. If any of the shared interrupt sources are
still asserted, at least one pulse is again generated by the SIC. The Inter-
rupt Status registers indicate the current state of the shared interrupt
sources.

Self-Nesting of Core Interrupts

Interrupts that are “self-nested” can be interrupted by events at the same
priority level. When the SNEN bit of the SYSCFG register is set, self-nesting
of core interrupts is supported. Self-nesting is supported for any interrupt
level generated with the RAISE instruction, as well as for core level
interrupts.

As an example, assume that the SNEN bit is set and the processor is servic-
ing an interrupt generated by the RAISE 14; instruction. Once the RETI
register has been saved to the stack within the service routine, a second
RAISE 14; instruction would allow the processor to service the second
interrupt.
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When self-nesting is enabled, the processor sets the last bit of the RETI
register when it pushes it to the stack. When RETI is subsequently
popped, the last bit is checked. If set, the processor does not clear the
IPEND register. Thus, the corresponding IPEND bit is not cleared on
execution of RTT and no interrupts are lost in this process. Note that it is
the responsibility of the user to correctly push/pop the RETT register val-
ues to/from the Stack.

Self-nesting is not supported for system level peripheral interrupts such as

the SPORT or SPIL.
The SYSCFG register is discussed in “SYSCFG Register” on page 21-31.

Additional Usability Issues

The following sections describe additional usability issues.

Allocating the System Stack

The software stack model for processing exceptions implies that the
Supervisor stack must never generate an exception while the exception
handler is saving its state. However, if the Supervisor stack grows past a
CPLB entry or SRAM block, it may, in fact, generate an exception.

To guarantee that the Supervisor stack never generates an exception—
never overflows past a CPLB entry or SRAM block while executing the
exception handler—calculate the maximum space that all interrupt service
routines and the exception handler occupy while they are active, and then
allocate this amount of SRAM memory.

Latency in Servicing Events

In some processor architectures, if instructions are executed from external
memory and an interrupt occurs while the instruction fetch operation is
underway, then the interrupt is held off from being serviced until the cur-
rent fetch operation has completed. Consider a processor operating at
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300 MHz and executing code from external memory with 100 ns access
times. Depending on when the interrupt occurs in the instruction fetch
operation, the interrupt service routine may be held off for around 30
instruction clock cycles. When cache line fill operations are taken into
account, the interrupt service routine could be held off for many hundreds
of cycles.

In order for high priority interrupts to be serviced with the least latency
possible, the processor allows any high latency fill operation to be com-
pleted at the system level, while an interrupt service routine executes from
L1 memory. See Figure 4-10.

YAV AW AVANYAVAVAWAWA

OTHER PROCESSORS

FETCH / \
INSTRUCTION
DATA /

INTERRUPT SERVICED
OCCURRING HERE
HERE

BLACKFIN PROCESSOR

FETCH / \
INSTRUCTION
DATA /

INTERRUPT SERVICED
OCCURRING HERE
HERE

Figure 4-10. Minimizing Latency in Servicing an ISR
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If an instruction load operation misses the L1 instruction cache and gener-
ates a high latency line fill operation, then when an interrupt occurs, it is
not held off until the fill has completed. Instead, the processor executes
the interrupt service routine in its new context, and the cache fill opera-
tion completes in the background.

Note the interrupt service routine must reside in L1 cache or SRAM mem-
ory and must not generate a cache miss, an L2 memory access, or a
peripheral access, as the processor is already busy completing the original
cache line fill operation. If a load or store operation is executed in the
interrupt service routine requiring one of these accesses, then the interrupt
service routine is held off while the original external access is completed,
before initiating the new load or store.

If the interrupt service routine finishes execution before the load operation
has completed, then the processor continues to stall, waiting for the fill to
complete.

This same behavior is also exhibited for stalls involving reads of slow data
memory or peripherals.

Werites to slow memory generally do not show this behavior, as the writes
are deemed to be single cycle, being immediately transferred to the write
buffer for subsequent execution.

For detailed information about cache and memory structures, see
Chapter 6, “Memory”.
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ADSP-BF60x System Interrupt Interface

On ADSP-BF60x processors, an updated system interrupt interface has
been added to the core to connect to the System Event Controller (SEC).
The SEC prioritizes system interrupts and provides a single interrupt indi-
cator to the core along with an interrupt ID. System interrupts are
directed to core interrupt level 11. The interrupt ID is latched in the
CEC_SID register for use in the interrupt service routine. This CEC_SID
register (shown in Figure 4-11) exists only on the ADSP-BF60x
processors.

Core System Interrupt ID Register (CEC_SID)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
OXFFEO 2118 [ofofoJofoJoJoJofofoJoJofoJoJoo] Reset=oxo000000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

fo oo fofofo]ofofofeofofofofofo]
| |

SID[7:0]
System Interrupt ID

Figure 4-11. Core System Interrupt ID Register

System Interrupt Signaling

This interrupt signal identifies that a system interrupt is ready to be ser-
viced. The 8-bit CEC_SID field identifies the source of the system
interrupt. The ACK (which is generated by a write to the CEC_SID regis-
ter) output from the core signals the SEC so the core can accept a new
system interrupt. The SEC hardware guarantees that the interrupt signal
remains active until the ACK is returned.
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Hardware Errors and Exception Handling

The following sections describe hardware errors and exception handling.

SEQSTAT Register

The Sequencer Status register (SEQSTAT) contains information about the
current state of the sequencer as well as diagnostic information from the

last event. SEQSTAT is a read-only register and is accessible only in Supervi-
sor mode.

Sequencer Status Register (SEQSTAT)
RO

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16
Io |o |o |o Io |o |o |o Io |o |o |o Io |o |0 |o Reset = 0x0000 0000

HWERRCAUSE[4:2]
See description under
bits[1:0], below.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofofofofofofofofofofo]ofofo]o]e]
L |

HWERRCAUSE[1:0]
Holds cause of last hard-
ware error generated by

EXCAUSE[5:0]

Holds information about
the core. Hardware errors the last executed excep-
trigger interrupt number 5 i -
(IVHW). See Table 4-11. tion. See Table 4-13.
SFTRESET

0 - Last core reset was not a
reset triggered by software

1 - Last core reset was a reset
triggered by software, rather
than a hardware powerup reset

Figure 4-12. Sequencer Status Register (ADSP-BF5xx)
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Sequencer Status Register (SEQSTAT)

RO

31 30 29 28 27 26

25 24 23 22 21 20 19 18 17 16

Io |o |o |o Io |o |o |o Io |o |o |o Io |o |0 |o| Reset = 0x0000 0000

NSPECABT

Nonspeculative access
was aborted.

15 14 13 12 11 10

HWERRCAUSE[4:2]

See description under
bits[1:0], below.

4 3 2 1 0

o foJofofofoofofofo]ofofefo]o]o
L

HWERRCAUSE[1:0]
Holds cause of last hard-
ware error generated by
the core. Hardware errors
trigger interrupt number 5
(IVHW). See Table 4-11.

SFTRESET

0 - Last core reset was not a
reset triggered by software

1 - Last core reset was a reset
triggered by software, rather
than a hardware powerup reset

DTESTABT (DTEST ABORTED) __|

DTESTABT=1 indicates that a
DTEST_COMMAND was aborted.

ITESTABT (ITEST ABORTED)

ITESTABT=1 indicates that an
ITEST_COMMAND was aborted.

SYSNMI (System NMI Input Active)

PEIC (Parity Error on Instruction L1
Read for Core)

This signal is asserted if a parity error is
detected on an L1 instruction read
bound for the processor. Once asserted,
this signal remains asserted until all
causes are cleared by the processor.

PEDC (Parity Error on Data L1 Read
for Core)

This signal is asserted if a parity error is
detected on an L1 data read bound for

the processor. Once asserted, this signal

remains asserted until all causes are
cleared by the processor.

EXCAUSE[5:0]

Holds information about
the last executed excep-
tion. See Table 4-13.

L PEDX (Parity Error on Data L1 Read

for L2 Transfer)

This signal is asserted if a parity
error is detected on an L1 data read
bound for L2. Once asserted, this
signal remains asserted until all
causes are cleared by the processor
(see DTEST_COMMAND register).

PEIX (Parity Error on Instruction L1 Read
for L2 Transfer)

This signal is asserted if a parity

error is detected on an L1 instruction

read bound for L2. Once asserted,

this signal remains asserted until all
causes are cleared by the processor.

Figure 4-13. Sequencer Status Register (ADSP-BF60x)
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Hardware Error Interrupt

The Hardware Error Interrupt indicates a hardware error or system mal-
function. Hardware errors occur when logic external to the core, such as a
memory bus controller, is unable to complete a data transfer (read or
write) and asserts the core’s error input signal. Such hardware errors
invoke the Hardware Error Interrupt (interrupt IVHW in the Event Vector
Table (EVT) and ILAT, IMASK, and IPEND registers). The Hardware Error
Interrupt service routine can then read the cause of the error from the
5-bit HWERRCAUSE field appearing in the Sequencer Status register (SEQ-
STAT) and respond accordingly.

The Hardware Error Interrupt is generated by:
* Bus parity errors

e Internal error conditions within the core, such as Performance
Monitor overflow

e DPeripheral errors
e Bus timeout errors

The list of supported hardware conditions, with their related HWERRCAUSE
codes, appears in Table 4-11. The bit code for the most recent error
appears in the HWERRCAUSE field. If multiple hardware errors occur simulta-
neously, only the last one can be recognized and serviced. The core does
not support prioritizing, pipelining, or queuing multiple error codes. The
Hardware Error Interrupt remains active as long as any of the error condi-
tions remain active.

Note that a hardware error status cannot be cleared by software.
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In case of hardware error, the RETI does not store the address of the
instruction that caused the hardware error. The error could have been
caused by an instruction executed a number of core clock cycles before a
hardware error is registered. In such scenarios, it is recommended to use
the trace buffer to trace the instruction causing the hardware error.

A hardware error can be generated either by a core or DMA access.

In dual-core platforms, a hardware error generated by a core is registered
only in the core that generated the error. If a DMA generates an error in a
dual-core platform, the error is propagated to both cores.
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Table 4-11. Hardware Conditions Causing Hardware Error Interrupts

Hardware HWERRCAUSE |HWERRCAUSE |Notes / Examples

Condition (Binary) (Hexadecimal)

DMA Bus 0b00001 0x01 (BF535 only) The Compare Hit out-

Comparator put is routed directly to the Hardware

Source Error interrupt input. The Compare
Hit interrupt is maskable by writing
to the DMA Bus Control Comparator
register (DB_CCOMP).

System MMR 0b00010 0x02 (Not applicable to BF535) An error

Error can occur if an invalid System MMR
location is accessed, if a 32-bit regis-
ter is accessed with a 16-bit instruc-
tion, or if a 16-bit
register is accessed with a 32-bit
instruction.

External Memory | 0b00011 0x03 (Not applicable to BF535) An access

Addressing Error was attempted to reserved or unini-
tialized memory.

Performance 0b10010 0x12 Refer to “Performance Monitor Unit”

Monitor on page 21-19.

Overflow

Error from 0b10110 0x16 (BF535 only) An access to reserved or

D-cache A fill uninitialized memory was attempted.

buffer

Error from 0b10111 0x17 (BF535 only) An access to reserved or

D-cache B fill uninitialized memory was attempted.

buffer

RAISE 5 0b11000 0x18 Software issued a RAISE 5 instruction

instruction to invoke the Hardware Error Inter-
rupt (IVHW).

Reserved All other bit com-| All other values.

binations.
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Hardware Error Reporting on ADSP-BF60x
Processors

The discussion in the “Hardware Error Interrupt” on page 4-71 refers to
the class of hardware errors managed and reported by the core on IVHW
(EVT5). Additionally, the ADSP-BF60x provides for reporting of hard-
ware errors that occur in the system crossbar when communicating with
crossbar slave interfaces. To report errors occurring in these slave inter-
faces, the crossbar response signals are combined to generated a combined
“hardware error” indication that is routed to the SEC. This indication is
reported to the core through IVG11 (EVT11), as a “Core x Hardware
Error” vector in the system interrupt table. For more information about
interrupts for the ADSP-BF60x family, see the SEC chapter in
ADSP-BF60x Blackfin Processor Hardware Reference for the ADSP-BF60x
interrupt table.

Note that both write and read errors are considered imprecise and can be
reported after the transactions that cause them.

The defined codes that appear in the CHID field of the SEC_SSTAT register
for core-related read/write errors can be found in Table 4-12. For more
information about memory architecture, see Figure 6-4 on page 6-11 and

Figure 6-13 on page 6-34.

4-74 Blackfin Processor Programming Reference



Program Sequencer

Table 4-12. Code Definitions

Code Definition

0000 Read, MMR interface

0100 Write, MMR interface

0001 Read, Hi priority on Instruction Data Bus (MEM interface)
0101 Read, Low priority on Instruction Data Bus (MEM interface)
0010 Read, Hi priority on Port B (MEM interface)

0110 Read, Low priority on Port B (MEM interface)

0011 Read, Hi priority on Port A (MEM interface)

0111 Read, Low priority on Port A (MEM interface)

1000 Write, ADR<31> = 0, ADR<27:26> = 00 (MEM interface)
1001 Write, ADR<31> = 0, ADR<27:26> = 01 (MEM interface)
1010 Write, ADR<31> = 0, ADR<27:26> = 10 (MEM interface)
1011 Write, ADR<31> = 0, ADR<27:26> = 11 (MEM interface)
1100 Write, ADR<31> = 1, ADR<27:26> = 00 (MEM interface)
1101 Write, ADR<31> = 1, ADR<27:26> = 01 (MEM interface)
1110 Write, ADR<31> = 1, ADR<27:26> = 10 (MEM interface)
1111 Write, ADR<31> = 1, ADR<27:26> = 11 (MEM interface)

The priority of reported errors is (from highest to lowest):
1. Memory Port (L2/L3) Reads
2. Memory Port (L2/L3) Writes
3. MMR Port Reads
4. MMR Port Writes

In the event of simultaneous reported errors from the system (in the same
SYSCLK cycle), the highest priority error will be reported and the others
will be silently ignored.
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Exceptions

Exceptions are synchronous to the instruction stream. In other words, a
particular instruction causes an exception when it attempts to finish exe-
cution. No instructions after the offending instruction are executed before
the exception handler takes effect.

Many of the exceptions are memory related. For example, an exception is
given when a misaligned access is attempted, or when a cacheability pro-
tection lookaside buffer (CPLB) miss or protection violation occurs.
Exceptions are also given when illegal instructions or illegal combinations
of registers are executed.

An excepting instruction may or may not commit before the exception
event is taken, depending on if it is a service type or an error type
exception.

An instruction causing a service type event will commit, and the address
written to the RETX register will be the next instruction after the excepting
one. An example of a service type exception is the single step.

An instruction causing an error type event cannot commit, so the address
written to the RETX register will be the address of the offending instruc-
tion. An example of an error type event is a CPLB miss.

Usually the RETX register contains the correct address to return to.
To skip over an excepting instruction, take care in case the next
address is not simply the next linear address. This could happen
when the excepting instruction is a loop end. In that case, the
proper next address would be the loop top.
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The EXCAUSEL5:0] field in the Sequencer Status register (SEQSTAT) is writ-
ten whenever an exception is taken, and indicates to the exception handler
which type of exception occurred. Refer to Table 4-13 for a list of events

that cause exceptions.

If an exception occurs in an event handler that is already servicing
an exception, NMI, reset, or emulation event, this will trigger a dou-
ble fault condition, and the address of the excepting instruction
will be written to RETX.

Table 4-13. Events That Cause Exceptions

combination

Exception EXCAUSE |Type: Notes/Examples
[5:0] (E) Error
(S) Service
See Note 1.

Force Exception m field S Instruction provides 4 bits of EXCAUSE.

instruction EXCPT

with 4-bit m field

Single step 0x10 S When the processor is in single step mode,
every instruction generates an exception.
Primarily used for debugging.

Exception caused by a | 0x11 S The processor takes this exception when

trace buffer full condi- the trace buffer overflows (only when

tion enabled by the Trace Unit Control regis-
ter).

Undefined instruction | 0x21 E May be used to emulate instructions that
are not defined for a particular processor
implementation.

Illegal instruction 0x22 E See section for multi-issue rules in the

Blackfin Processor Programming Reference.
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Table 4-13. Events That Cause Exceptions (Contd)

aligned address viola-
tion

Exception EXCAUSE |Type: Notes/Examples
[5:0] (E) Error
(S) Service
See Note 1.

Data access CPLB pro-| 0x23 E Attempted read or write to Supervisor

tection violation resource, or illegal data memory access.
Supervisor resources are registers and
instructions that are reserved for Supervi-
sor use: Supervisor only registers, all
MMREs, and Supervisor only instructions.
(A simultaneous, dual access to two MMRs
using the data address generators generates
this type of exception.) In addition, this
entry is used to signal a protection viola-
tion caused by disallowed memory access,
and it is defined by the Memory Manage-
ment Unit (MMU) cacheability protection
lookaside buffer (CPLB).

Data access mis- 0x24 E Attempted misaligned data memory or

aligned address viola- data cache access.

tion

Unrecoverable event | 0x25 E For example, an exception generated while
processing a previous exception.

Data access CPLB miss | 0x26 E Used by the MMU to signal a CPLB miss
on a data access.

Data access multiple | 0x27 E More than one CPLB entry matches data

CPLB hits fetch address.

Exception caused by | 0x28 E There is a watchpoint match, and one of

an emulation watch- the EMUSW bits in the Watchpoint

point match Instruction Address Control register
(WPIACTL) is set.

Instruction fetch mis- | 0x2A E Attempted misaligned instruction cache

fetch. (Note this exception can never be
generated from PC-relative branches, only
from indirect branches.) See Note 2 for

ADSP-BF535 processor specific behavior.
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Table 4-13. Events That Cause Exceptions (Cont’d)

SOr resource

Exception EXCAUSE |Type: Notes/Examples
[5:0] (E) Error

(S) Service

See Note 1.
Instruction fetch 0x2B E Illegal instruction fetch access (memory
CPLB protection vio- protection violation).
lation
Instruction fetch 0x2C E CPLB miss on an instruction fetch.
CPLB miss
Instruction fetch mul- | 0x2D E More than one CPLB entry matches
tiple CPLB hits instruction fetch address.
Illegal use of supervi- | 0x2E E

Attempted to use a Supervisor register or
instruction from User mode. Supervisor
resources are registers and instructions that
are reserved for Supervisor use: Supervisor
only registers, all MMRs, and Supervisor
only instructions.

Note 1: For services (S), the return address is the address of the
instruction that follows the exception. For errors (E), the return
address is the address of the excepting instruction.

@ Note 2: During a misaligned instruction fetch exception on

ADSP-BF535 processors, the return address provided in RETX is
the destination address which is misaligned, rather than the address
of the offending instruction. For example, if an indirect branch to a
misaligned address held in PO is attempted, the return address in
RETX is equal to PO, rather than to the address of the branch

instruction.

If an instruction causes multiple exception, the exception with the highest
priority is first registered in the SEQSTAT. The exception priority is as listed
in the Table 4-14. If the highest priority exception is handled, the next
highest priority exception is registered and can be handled (and so on).
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For example, suppose that the following instruction generates an instruc-
tion CPLB miss (0x2C) exception and a data CPLB miss (0x26)
exception. On execution of this instruction, a instruction CPLB will be
first generated. After this instruction exception is handled by the user the
core will execute the instruction again and this time it will generate a data
CPLB exception.

[PO] = RO ;
/* generates an instruction CPLB miss and a data CPLB miss */

Table 4-14. Exceptions by Descending Priority

Priority Exception EXCAUSE
1 Unrecoverable Event 0x25
2 I-Fetch Multiple CPLB Hits 0x2D
3 I-Fetch Misaligned Access 0x2A
4 I-Fetch Protection Violation 0x2B
5 I-Fetch CPLB Miss 0x2C
6 I-Fetch Access Exception 0x29
7 Watchpoint Match 0x28
8 Undefined Instruction 0x21
9 Illegal Combination 0x22
10 Illegal Use of Protected Resource 0x2E
11 DAGO Multiple CPLB Hits 0x27
12 DAGO Misaligned Access 0x24
13 DAGO Protection Violation 0x23
14 DAGO CPLB Miss 0x26
15 DAG1 Multiple CPLB Hits 0x27
16 DAG!1 Misaligned Access 0x24
17 DAGTI Protection Violation 0x23
18 DAGI1 CPLB Miss 0x26
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Table 4-14. Exceptions by Descending Priority (Cont'd)

Priority Exception EXCAUSE
19 EXCPT Instruction m field

20 Single Step 0x10

21 Trace Buffer 0x11

Exceptions While Executing an Exception Handler

While executing the exception handler, avoid issuing an instruction that
generates another exception. If an exception is caused while executing
code within the exception handler, the NMI handler, the reset vector, or
in emulator mode:

* The excepting instruction is not committed. All writebacks from
the instruction are prevented.

e The generated exception is not taken.

* The EXCAUSE field in SEQSTAT is updated with an unrecoverable
event code.

* The address of the offending instruction is saved in RETX. Note if
the processor were executing, for example, the NMI handler, the
RETN register would not have been updated; the excepting instruc-
tion address is always stored in RETX.

To determine whether an exception occurred while an exception handler
was executing, check SEQSTAT at the end of the exception handler for the
code indicating an “unrecoverable event” (EXCAUSE = 0x25). If an unre-
coverable event occurred, register RETX holds the address of the most
recent instruction to cause an exception. This mechanism is not intended
for recovery, but rather for detection.

Blackfin Processor Programming Reference 4-81



Hardware Errors and Exception Handling

Exceptions and the Pipeline
Interrupts and exceptions treat instructions in the pipeline differently.

e When an interrupt occurs, all instructions in the pipeline are
aborted.

* When an exception occurs, all instructions in the pipeline after the
excepting instruction are aborted. For error exceptions, the except-
ing instruction is also aborted.

Because exceptions, NMIs, and emulation events have a dedicated return
register, guarding the return address is optional. Consequently, the PUSH
and POP instructions for exceptions, NMIs, and emulation events do not
affect the interrupt system.

Note, however, the return instructions for exceptions (RTX, RTN, and RTE)
do clear the Least Significant Bit (LSB) currently set in IPEND.

Deferring Exception Processing

Exception handlers are usually long routines, because they must discrimi-
nate among several exception causes and take corrective action
accordingly. The length of the routines may result in long periods during
which the interrupt system is, in effect, suspended.

To avoid lengthy suspension of interrupts, write the exception handler to
identify the exception cause, but defer the processing to a low priority
interrupt. To set up the low priority interrupt handler, use the Force
Interrupt / Reset instruction (RAISE).

When deferring the processing of an exception to lower priority
interrupt 1VGx, the system must guarantee that I1VGx is entered
before returning to the application-level code that issued the excep-
tion. If a pending interrupt of higher priority than IVGx occurs, it is
acceptable to enter the high priority interrupt before IVGx.
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Example Code for an Exception Handler

The following code is for an exception routine handler with deferred
processing.

Listing 4-7. Exception Routine Handler With Deferred Processing
/* Determine exception cause by examining EXCAUSE field in SEQ-

STAT (first save contents of RO, PO, P1 and ASTAT in Supervisor
SP) */

[--SP] = RO
[--SP] = PO
[--SP] = Pl
[--SP]1 = ASTAT ;
RO = SEQSTAT

/* Mask the contents of SEQSTAT, and leave only EXCAUSE in RO */
RO <<= 26

RO >>= 26

/* Using jump table EVTABLE, jump to the event pointed to by RO
*/

PO = RO ;

P1 = _EVTABLE ;

PO = P1 + ( PO KK 1)
RO =W L[ PO T (2)

Pl = RO ;

JUMP (PC + P1)

/* The entry point for an event is as follows. Here, processing
is deferred to low priority interrupt IVGl5. Also, parameter
passing would typically be done here. */

_EVENTI:

RAISE 15 ;

JUMP.S _EXIT

/* Entry for event at IVG14 */

_EVENTZ2:

RAISE 14
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JUMP.S _EXIT

/* Comments for other events */

/* At the end of handler,
return. */

_EXIT:

ASTAT = [SP++]
Pl = [SP++]

PO = [SP++]

RO = [SP++]
RTX

_EVTABLE:

.byte?2 addr_eventl;
.byte?2 addr_event?;

.byte2 addr_eventN;

/* The jump table EVTABLE
event. With offsets, this
table is small.

restore RO, PO, P1 and ASTAT, and

holds 16-bit address offsets for each
code is position independent and the

N +
| addr_eventl | _EVTABLE
LT +
| addr_event2 | _EVTABLE + 2
oo +
| |
N +
| addr_eventN | _EVTABLE + 2N
LT +
*/
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Example Code for an Exception Routine

The following code provides an example framework for an interrupt rou-
tine jumped to from an exception handler such as that described above.

Listing 4-8. Interrupt Routine for Handling Exception
[--SP] = RETI ; /* Push return address on stack. */
/* Put body of routine here.*/

RETI = [SP++] ; /* To return, pop return address and jump. */

RTI /* Return from interrupt. */
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5 ADDRESS ARITHMETIC UNIT

Like most DSP and RISC platforms, the Blackfin processors have a
load/store architecture. Computation operands and results are always rep-
resented by core registers. Prior to computation, data is loaded from
memory into core registers and results are stored back by explicit move
operations. The Address Arithmetic Unit (AAU) provides all the required
support to keep data transport between memory and core registers effi-
cient and seamless. Having a separate arithmetic unit for address
calculations prevents the data computation block from being burdened by
address operations. Not only can the load and store operations occur in
parallel to data computations, but memory addresses can also be calcu-
lated at the same time.

The AAU uses Data Address Generators (DAGs) to generate addresses for
data moves to and from memory. By generating addresses, the DAGs let
programs refer to addresses indirectly, using a DAG register instead of an

absolute address. Figure 5-1 shows the AAU block diagram.
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Figure 5-1. AAU Block Diagram

The AAU architecture supports several functions that minimize overhead
in data access routines. These functions include:

* Supply address — Provides an address during a data access

* Supply address and post-modify — Provides an address during a
data move and auto-increments/decrements the stored address for

the next move

* Supply address with offset — Provides an address from a base with
an offset without incrementing the original address pointer

* Modify address — Increments or decrements the stored address
without performing a data move

* Bit-reversed carry address — Provides a bit-reversed carry address
during a data move without reversing the stored address
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The AAU comprises two DAGs, nine Pointer registers, four Index regis-
ters and four complete sets of related Modify, Base, and Length registers.
These registers, shown in Figure 5-2 on page 5-4, hold the values that the
DAGs use to generate addresses. The types of registers are:

* Index registers, 1[3:0]. Unsigned 32-bit Index registers hold an
address pointer to memory. For example, the instruction R3 = [10]
loads the data value found at the memory location pointed to by
the register 10. Index registers can be used for 16- and 32-bit mem-
ory accesses.

*  Modify registers, M[3:0]. Signed 32-bit Modify registers provide
the increment or step size by which an Index register is post-modi-
fied during a register move. For example, the RO = [10 ++ M1]
instruction directs the DAG to:

— Output the address in register 10

— Load the contents of the memory location pointed to by 10
into RO

— Modify the contents of 10 by the value contained in the
M1 register

* Base and Length registers, B[3:0] and L[3:0]. Unsigned 32-bit
Base and Length registers set up the range of addresses and the
starting address of a buffer. Each B, L pair is always coupled with a
corresponding I-register, for example, 13, 83, L3. For more infor-
mation on circular buffers, see “Addressing Circular Buffers” on
page 5-12.

* Dointer registers, P[5:01, FP, USP, and SP. 32-bit Pointer registers
hold an address pointer to memory. The P[5:0] field, FP (Frame
Pointer) and SP/USP (Stack Pointer/User Stack Pointer) can be
manipulated and used in various instructions. For example, the
instruction R3 = [P0] loads the register R3 with the data value
found at the memory location pointed to by the register P0. The
Pointer registers have no effect on circular buffer addressing. They
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can be used for 8-, 16-, and 32-bit memory accesses. For added
mode protection, SP is accessible only in Supervisor mode, while
USP is accessible in User mode.

@ Do not assume the L-registers are automatically initialized to zero

for linear addressing. The I-, M-, L-, and B-registers contain ran-
dom values after reset. For each I-register used, programs must
initialize the corresponding L-registers to zero for linear addressing
or to the buffer length for circular buffer addressing.

Note all data address registers must be initialized individually. Ini-
tializing a B-register does not automatically initialize the I-register.

Address Arithmetic Unit Registers

Pointer
Data Address Registers  Registers
A

10 LO BO Mo PO
1 L1 B1 M1 P1
12 L2 B2 M2 P2
13 L3 B3 M3 P3
P4

P5

| User SP |
Supervisor SP

L e |

Supervisor only register. Attempted read or
write in User mode causes an exception error.

Figure 5-2. Address Arithmetic Unit

5-4
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Addressing With the AAU

The DAGs can generate an address that is incremented by a value or by a
register. In post-modify addressing, the DAG outputs the I-register value
unchanged; then the DAG adds an M-register or immediate value to the

I-register.

In indexed addressing, the DAG adds a small offset to the value in the
P-register, but does not update the P-register with this new value, thus
providing an offset for that particular memory access.

The processor is byte addressed. All data accesses must be aligned to the
data size. In other words, a 32-bit fetch must be aligned to 32 bits, but an
8-bit store can be aligned to any byte. Depending on the type of data
used, increments and decrements to the address registers can be by 1, 2, or
4 to match the 8-, 16-, or 32-bit accesses.

For example, consider the following instruction:
RO = [ P3++ 1

This instruction fetches a 32-bit word, pointed to by the value in P3, and
places it in RO. It then post-increments P3 by four, maintaining alignment

with the 32-bit access.
RO.L =W [ I3++ 1;

This instruction fetches a 16-bit word, pointed to by the value in 13, and
places it in the low half of the destination register, R0. L. It then

post-increments 13 by #wo, maintaining alignment with the 16-bit access.
RO =B [ P3++ 1 (Z) ;

This instruction fetches an 8-bit word, pointed to by the value in P3, and
places it in the destination register, RO. It then post-increments P3 by one,
maintaining alignment with the 8-bit access. The byte value may be zero
extended (as shown) or sign extended into the 32-bit data register.
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Instructions using Index registers use an M-register or a small immediate
value (+/— 2 or 4) as the modifier. Instructions using Pointer registers use
a small immediate value or another P-register as the modifier. For details,

see Table 5-3 on page 5-20.

Pointer Register File

The general-purpose Address Pointer registers, also called P-registers, are
organized as:

* OG-entry, P-register file P[5:0]

* Frame Pointer (FP) used to point to the current procedure’s activa-
tion record

* Stack Pointer (SP) used to point to the last used location on the
runtime stack.

P-registers are 32 bits wide. Although P-registers are primarily used for
address calculations, they may also be used for general integer arithmetic
with a limited set of arithmetic operations; for instance, to maintain coun-
ters. However, unlike the Data registers, P-register arithmetic does not
affect the Arithmetic Status (ASTAT) register status bits.

Frame and Stack Pointers

In many respects, the Frame and Stack Pointer registers perform like the
other P-registers, P[5:0]. They can act as general pointers in any of the
load/store instructions, for example, R1 = B[SP] (Z). However, FP and SP
have additional functionality.

The Stack Pointer registers include:
* a User Stack Pointer (USP in Supervisor mode, SP in User mode)

* a Supervisor Stack Pointer (SP in Supervisor mode)
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The User Stack Pointer register and the Supervisor Stack Pointer register
are accessed using the register alias SP. Depending on the current proces-
sor operating mode, only one of these registers is active and accessible as
SP:

* In User mode, any reference to SP (for example, stack pop
RO = [ SP++ 1 ;) implicitly uses the USP as the effective address.

* In Supervisor mode, the same reference to SP (for example,
RO = [ SP++ 1 ;) implicitly uses the Supervisor Stack Pointer as
the effective address.

To manipulate the User Stack Pointer for code running in Supervi-
sor mode, use the register alias USP. When in Supervisor mode, a
register move from USP (for example, RO = USP ;) moves the cur-
rent User Stack Pointer into R0. The register alias USP can only be
used in Supervisor mode.

Some load/store instructions use FP and SP implicitly:

* rpP-indexed load/store, which extends the addressing range for
16-bit encoded load/stores

* Stack push/pop instructions, including those for pushing and pop-
ping multiple registers

e Link/unlink instructions, which control stack frame space and
manage the Frame Pointer register (FP) for that space
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DAG Register Set

DSP instructions primarily use the Data Address Generator (DAG) regis-
ter set for addressing. The data address register set consists of these
registers:

* 1[3:0] contain index addresses
* M[3:0] contain modify values
* B[3:0] contain base addresses
e L[3:0] contain length values
All data address registers are 32 bits wide.

The I (Index) registers and B (Base) registers always contain addresses of
8-bit bytes in memory. The Index registers contain an effective address.
The M (Modify) registers contain an offset value that is added to one of

the Index registers or subtracted from it.

The B and L (Length) registers define circular buffers. The B register con-
tains the starting address of a buffer, and the L register contains the length
in bytes. Each L and B register pair is associated with the corresponding I
register. For example, L0 and B0 are always associated with 10. However,

any M register may be associated with any I register. For example, 10 may

be modified by M3.

Indexed Addressing With Index and Pointer
Registers

Indexed addressing uses the value in the Index or Pointer register as an

effective address. This instruction can load or store 16- or 32-bit values.
The default is a 32-bit transfer. If a 16-bit transfer is required, then the
W (16-bit word) designator is used to preface the load or store.
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For example:
RO =112 13

loads a 32-bit value from an address pointed to by 12 and stores it in the
destination register RO.

RO.H=WT[1I21;

loads a 16-bit value from an address pointed to by 12 and stores it in the
16-bit destination register R0.H.

[ P1 1 = RO ;

is an example of a 32-bit store operation.

Pointer registers can be used for 8-bit loads and stores.
For example:

B [ PI++ 1 = RO ;

stores the 8-bit value from the RO register in the address pointed to by the
P1 register, then increments the P1 register.

Loads With Zero or Sign Extension

When a 32-bit register is loaded by an 8-bit or 16-bit memory read, the
value can be extended to the full register width. A trailing Z character in
parenthesis is used to zero-extend the loaded value. An X character forces
sign extension. The following examples assume that P1 points to a mem-
ory location that contains a value of 0x8080.

RO = WLP1] (Z2) ; /* RO = 0x0000 8080 */
R1 = WLP1] (X) ; /* R1 = OxFFFF 8080 */
R2 = B[P1] (Z) ; /* RZ2 = 0x0000 0080 */
R3 = B[P1] (X) ; /* R3 = OxFFFF FF80 */
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Indexed Addressing With Immediate Offset

Indexed addressing allows programs to obtain values from data tables,
with reference to the base of that table. The Pointer register is modified by
the immediate field and then used as the effective address. The value of
the Pointer register is not updated.

Alignment exceptions are triggered when a final address is
unaligned.

For example, if P1 = 0x13, then [P1 + 0x11] would effectively be equal to
[0x24], which is aligned for all accesses.

Avuto-increment and Auto-decrement Addressing

Auto-increment addressing updates the Pointer and Index registers after
the access. The amount of increment depends on the word size. An access
of 32-bit words results in an update of the Pointer by 4. A 16-bit word
access updates the Pointer by 2, and an access of an 8-bit word updates the
Pointer by 1. Both 8- and 16-bit read operations may specify either to
sign-extend or zero-extend the contents into the destination register.
Pointer registers may be used for 8-, 16-, and 32-bit accesses while Index
registers may be used only for 16- and 32-bit accesses.

For example:
RO =W [ Pl++ 1 (2);

loads a 16-bit word into a 32-bit destination register from an address
pointed to by the P1 Pointer register. The Pointer is then incremented by
2 and the word is zero extended to fill the 32-bit destination register.

Auto-decrement works the same way by decrementing the address after
the access.
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For example:
RO =T[ I2--1;

loads a 32-bit value into the destination register and decrements the Index

register by 4.

Pre-modify Stack Pointer Addressing

The only pre-modify instruction in the processor uses the Stack Pointer
register, SP. The address in SP is decremented by 4 and then used as an
effective address for the store. The instruction [ --SP ] = RO ; is used for
stack push operations and can support only a 32-bit word transfer.

Post-modify Addressing

Post-modify addressing uses the value in the Index or Pointer registers as
the effective address and then modifies it by the contents of another regis-
ter. Pointer registers are modified by other Pointer registers. Index
registers are modified by Modify registers. Post-modify addressing does
not support the Pointer registers as destination registers, nor does it sup-
port byte-addressing.

For example:
RS = [ P1++P2 ] ;

loads a 32-bit value into the R5 register, found in the memory location
pointed to by the P1 register.

The value in the P2 register is then added to the value in the P1 register.
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For example:
R2 = W [ P4++P5 1 (Z) ;

loads a 16-bit word into the low half of the destination register R2 and
zero-extends it to 32 bits. The value of the pointer P4 is incremented by
the value of the pointer P5.

For example:
R2 = [ I2++M1 T

loads a 32-bit word into the destination register R2. The value in the Index
register, 12, is updated by the value in the Modify register, M1.

Addressing Circular Buffers

The DAGs support addressing circular buffers. Circular buffers are a range
of addresses containing data that the DAG steps through repeatedly,
wrapping around to repeat stepping through the same range of addresses
in a circular pattern.

The DAGs use four types of data address registers for addressing circular
buffers. For circular buffering, the registers operate this way:

e The Index (I) register contains the value that the DAG outputs on
the address bus.

e The Modify (M) register contains the post-modify amount (posi-
tive or negative) that the DAG adds to the I-register at the end of
each memory access.

Any M-register can be used with any I-register. The modify value
can also be an immediate value instead of an M-register. The size of
the modify value must be less than or equal to the length (L-regis-
ter) of the circular buffer.
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e The Length (L) register sets the size of the circular buffer and the
address range through which the DAG circulates the I-register.

L is positive and cannot have a value greater than 232 _1.1fan
L-register’s value is zero, its circular buffer operation is disabled.

e The Base (B) register or the B-register plus the L-register is the
value with which the DAG compares the modified I-register value
after each access.

To address a circular buffer, the DAG steps the Index pointer (I-register)
through the buffer values, post-modifying and updating the index on each
access with a positive or negative modify value from the M-register.

If the Index pointer falls outside the buffer range, the DAG subtracts the
length of the buffer (L-register) from the value or adds the length of the

buffer to the value, wrapping the Index pointer back to a point inside the
buffer.

The starting address that the DAG wraps around is called the buffer’s base
address (B-register). There are no restrictions on the value of the base
address for circular buffers that contains 8-bit data. Circular buffers that
contain 16- and 32-bit data must be 16-bit aligned and 32-bit aligned,
respectively. Exceptions can be made for video operations. For more infor-
mation, see “Memory Address Alignment” on page 5-16. Circular

buffering uses post-modify addressing.
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0X0
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0X1
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Figure 5-3. Circular Data Buffers

As seen in Figure 5-3, on the first post-modify access to the buffer, the
DAG outputs the I-register value on the address bus, then modifies the

address by adding the modify value.

If the updated index value is within the buffer length, the DAG

writes the value to the I-register.

If the updated index value exceeds the buffer length, the DAG sub-
tracts (for a positive modify value) or adds (for a negative modify
value) the L-register value before writing the updated index value

to the [-register.

0X0

0X1

0X2

—» 0X3

0X4

0X5

0X6

0X7

0X8
0X9

0XA

10

1"

THE COLUMNS ABOVE SHOW THE SEQUENCE IN ORDER OF LOCATIONS ACCESSED IN ONE PASS.
THE SEQUENCE REPEATS ON SUBSEQUENT PASSES.
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In equation form, these post-modify and wraparound operations work as
follows, shown for “I+M” operations.

e If M is positive:

Liew =log + M
if I,jq + M < buffer base + length (end of buffer)

Liew=log + ML
if I;jq + M = buffer base + length (end of buffer)

e If M is negative:

Inew = Iold +M
if I;1g + M 2 buffer base (start of buffer)

Lew=Ilogg+M+L
if I,14 + M < buffer base (start of buffer)

Addressing With Bit-reversed Addresses

To obrtain results in sequential order, programs need bit-reversed carry
addressing for some algorithms, particularly Fast Fourier Transform
(FFT) calculations. To satisfy the requirements of these algorithms, the
DAG’s bit-reversed addressing feature permits repeatedly subdividing data
sequences and storing this data in bit-reversed order. For detailed infor-
mation about bit-reversed addressing, see “Modify — Increment” on

page 15-36.

Modifying Index and Pointer Registers

The DAGs support operations that modify an address value in an Index
register without outputting an address. The operation, address-modify, is
useful for maintaining pointers.
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The address-modify operation modifies addresses in any Index and
Pointer register (1[3:01, P[5:01, FP, SP) without accessing memory. If the
Index register’s corresponding B- and L-registers are set up for circular
buffering, the address-modify operation performs the specified buffer
wraparound (if needed).

The syntax is similar to post-modify addressing (index += modifier). For
Index registers, an M-register is used as the modifier. For Pointer registers,
another P-register is used as the modifier.

Consider the example, 11 += M2 ;

This instruction adds M2 to 11 and updates I1 with the new value.

Memory Address Alignment

The processor requires proper memory alignment to be maintained for the
data size being accessed. Unless exceptions are disabled, violations of
memory alignment cause an alignment exception. Some instructions—for
example, many of the Video ALU instructions—automatically disable
alignment exceptions because the data may not be properly aligned when
stored in memory. Alignment exceptions may be disabled by issuing the
DISALGNEXCPT instruction in parallel with a load/store operation.

Normally, the memory system requires two address alignments:

* 32-bit word load/stores are accessed on four-byte boundaries,
meaning the two least significant bits of the address are b#00.

* 16-bit word load/stores are accessed on two-byte boundaries,
meaning the least significant bit of the address must be b#0.

5-16 Blackfin Processor Programming Reference



Address Arithmetic Unit

Table 5-1 summarizes the types of transfers and transfer sizes supported
by the addressing modes.

Table 5-1. Types of Transfers Supported and Transfer Sizes

Addressing Mode

Types of Transfers
Supported

Transfer Sizes

Auto-increment
Auto-decrement
Indirect

Indexed

To and from Data
Registers

LOADS:

32-bit word

16-bit, zero extended half word
16-bit, sign extended half word
8-bit, zero extended byte

8-bit, sign extended byte
STORES:

32-bit word

16-bit half word

8-bit byte

To and from Pointer
Registers

LOAD:
32-bit word
STORE:
32-bit word

Post-increment

To and from Data
Registers

LOADS:

32-bit word

16-bit half word to Data Register high half
16-bit half word to Data Register low half
16-bit, zero extended half word

16-bit, sign extended half word

STORES:

32-bit word

16-bit half word from Data Register high half
16-bit half word from Data Register low half

Be careful when using the DISALGNEXCPT instruction, because it dis-
ables automatic detection of memory alignment errors. The
DISALGNEXCPT instruction only affects misaligned loads that use
I-register indirect addressing. Misaligned loads using P-register
addressing will still cause an exception.
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Table 5-2 summarizes the addressing modes. In the table, an asterisk (*)
indicates the processor supports the addressing mode.

Table 5-2. Addressing Modes

32-bit

word

16-bit
half-

word

8-bit byte |Sign/zero

extend

Data
Register

Pointer
register

Data
Register
Half

P Auto-inc
[PO++]

*

P Auto-dec
[PO--]

P Indirect
[PO]

P Indexed
[PO+im]

FP indexed
[FP+im]

P Post-inc
[PO++P1]

I Auto-inc

[10++]

I Auto-dec
(10--]

I Indirect
(10]

I Post-inc

[I0++MO0]
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AAU Instruction Summary

Table 5-3 lists the AAU instructions. In Table 5-3, note the meaning of
these symbols:

Dreg denotes any Data Register File register.

Dreg_lo denotes the lower 16 bits of any Data Register File
register.

Dreg_hi denotes the upper 16 bits of any Data Register File
register.

Preg denotes any Pointer register, FP, or SP register.
Ireg denotes any Index register.

Mreg denotes any Modify register.

W denotes a 16-bit wide value.

B denotes an 8-bit wide value.

immA denotes a signed, A-bits wide, immediate value.

uimmAmB denotes an unsigned, A-bits wide, immediate value that
is an even multiple of B.

Z denotes the zero-extension qualifier.
X denotes the sign-extension qualifier.

BREYV denotes the bit-reversal qualifier.
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AAU instructions do not affect the ASTAT status bits.

Table 5-3. AAU Instruction Summary

Instruction

Preg = [ Preg ] ;

Preg = [ Preg ++ ] ;

Preg = [ Preg - | ;

Preg = [ Preg + uimm6m4 | ;

Preg = [ Preg + uimm17m4 ] ;

Preg = [ Preg — uimm17m4 ] ;

Preg = [ FP — uimm7m4 | ;

Dreg = [ Preg ] ;

Dreg = [ Preg ++ 1 3

Dreg = [ Preg -- ] ;

Dreg = [ Preg + uimm6m4 ] ;

Dreg = [ Preg + uimm17m4 ] ;

Dreg = [ Preg — uimm17m4 ] ;

Dreg = [ Preg ++ Preg ] ;

Dreg = [ FP — uimm7m4 ] ;

Dreg = [ Ireg ] ;

Dreg = [ Ireg ++ ] ;

Dreg = [ Ireg -- | ;

Dreg = [ Ireg ++ Mreg ] ;

Dreg =W [ Preg ] (2) ;

Dreg =W [ Preg ++ ] (Z) 5

Dreg =W [ Preg -- ] (2) 5

Dreg =W [ Preg + uimm5m2 ] (Z) ;

Dreg =W [ Preg + uimm16m2 ] (Z) ;
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Table 5-3. AAU Instruction Summary (Cont’d)

Instruction

Dreg =W [ Preg — uimml6m?2 ] (Z) ;

Dreg =W [ Preg ++ Preg ]| (Z) ;

Dreg = W [ Preg ] (X) ;
Dreg = W [ Preg ++] (X) 3
Dreg = W [ Preg - ] (X) ;

Dreg =W [ Preg + uimm5m?2 ] (X) ;

Dreg =W [ Preg + uimml6m?2 ] (X) ;

Dreg =W [ Preg — uimml6m?2 ] (X) ;

Dreg =W [ Preg ++ Preg ] (X) ;
Dreg hi =W [Ireg] ;

Dreg hi =W [ Ireg ++ ] ;

Dreg_hi =W [Ireg - ];

Dreg_hi =W [ Preg ] ;

Dreg_hi = W [ Preg ++ Preg ] ;

Dreg lo =W [Ireg ] ;
Dreg_lo = W [ Ireg ++] ;
Dreg_lo =W [Ireg --1;

Dreg_lo = W [ Preg ] ;

Dreg_lo = W [ Preg ++ Preg | ;

Dreg =B [Preg] (Z) ;

Dreg = B [ Preg ++ ] (Z) ;
Dreg = B [ Preg -] (Z2) ;

Dreg = B [ Preg + uimm15 ] (Z) ;

Dreg = B [ Preg — uimm15 ] (Z) ;

Dreg = B [ Preg ] (X) ;

Dreg = B [ Preg ++ ] (X) ;
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Table 5-3. AAU Instruction Summary (Cont’d)

Instruction

Dreg = B [ Preg -- ] (X) ;

Dreg = B [ Preg + uimm15 ] (X) ;

Dreg = B [ Preg — uimm15 ] (X) ;

[ Preg ] = Preg;

[ Preg ++ ] = Preg ;

[ Preg -- ] = Preg ;

[ Preg + uimm6m4 | = Preg ;

[ Preg + uimm17m4 ] = Preg ;

[ Preg — uimm17m4 ] = Preg ;

[ FP — uimm7m4 ] = Preg;

[ Preg ] = Dreg ;

[ Preg ++ ] = Dreg ;

[ Preg -- ] = Dreg ;

[ Preg + uimm6m4 | = Dreg ;

[ Preg + uimm17m4 ] = Dreg ;

[ Preg — uimm17m4 | = Dreg ;

[ Preg ++ Preg ] = Dreg ;

[FP — uimm7m4 ] = Dreg ;

[ Ireg ] = Dreg ;

[ Ireg ++ ] = Dreg ;

[ Ireg -- | = Dreg;

[ Ireg ++ Mreg ] = Dreg ;

W [ Ireg ] = Dreg_hi ;

W [ Ireg ++ ] = Dreg_hi;

W [ Ireg -- ] = Dreg_hi ;

W [ Preg ] = Dreg_hi ;
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Table 5-3. AAU Instruction Summary (Cont’d)

Instruction

W [ Preg ++ Preg ] = Dreg_hi;

W [ Ireg ] = Dreg_lo;

W [ Ireg ++ ] = Dreg lo;

W [ Ireg -- ] = Dreg_lo;
W [ Preg ] = Dreg_lo;
W [ Preg | = Dreg ;

W [ Preg ++ ] = Dreg ;

W [ Preg -- ] = Dreg ;

W [ Preg + uimm5m2 ] = Dreg ;

W [ Preg + uimm16m2 ] = Dreg ;

W [ Preg — uimm16m2 ] = Dreg ;

W [ Preg ++ Preg ] = Dreg_lo ;

B [ Preg ] = Dreg ;

B [ Preg ++ ] = Dreg ;

B [ Preg -- | = Dreg;

B [ Preg + uimm15 ] = Dreg ;

B [ Preg — uimm15 ] = Dreg ;

Preg = imm7 (X) ;

Preg = imm16 (X) ;

Preg += Preg (BREV) ;

Ireg += Mreg (BREV) ;

Preg = Preg << 2 ;

Preg = Preg >>2;

Preg = Preg >> 1;

Preg = Preg + Preg << 1 ;

Preg = Preg + Preg << 2 ;
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Table 5-3. AAU Instruction Summary (Contd)

Instruction
Preg —= Preg ;
Ireg —= Mreg ;

Many of the AAU instructions can be part of multi-issue opera-
tions. Data can be loaded and stored in parallel to arithmetical

operations. For details, see Chapter 20, “Issuing Parallel
Instructions”.
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6 MEMORY

Blackfin processors support a hierarchical memory model with different
performance and size parameters, depending on the memory location
within the hierarchy. Level 1 (L1) memories interconnect closely and effi-
cient with the Blackfin core for best performance. Separate blocks of L1
memory can be accessed simultaneously through multiple bus systems.
Instruction memory is separated from data memory, but unlike classical
Harvard architectures, all L1 memory blocks are accessed by one unified
addressing scheme. Portions of L1 memory can be configured to function
as cache memory. Some Blackfin derivatives also feature on-chip Level 2
(L2) memories. Based on a Von-Neumann architecture, L2 memories
have a unified purpose and can freely store instructions and data.
Although L2 memories still reside inside the core clock (CCLK) clock
domain, they take multiple CCLK cycles to access. The processors also
provide support of an external memory space that includes asynchronous
memory space for static RAM devices and synchronous memory space for

dynamic RAM such as SDRAM devices.

This chapter discusses the architecture and principles of on-chip memories
as well as memory protection and caching mechanisms. For memory size,
population, and off-chip memory interfaces, refer to Blackfin Processor
Hardware Reference.
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Memory Architecture

Blackfin processors have a unified 4G byte address range that spans a com-
bination of on-chip and off-chip memory and memory-mapped 1I/O
resources. Of this range, some of the address space is dedicated to internal,
on-chip resources. The processor populates portions of this internal mem-
ory space with:

e L1 Static Random Access Memories (SRAM)
e L2 Static Random Access Memories (SRAM)
e A set of memory-mapped registers (MMRs)

* A boot Read-Only Memory (ROM)

Figure 6-1 shows a processor memory architecture typical of most Black-
fin processors.

Overview of On-Chip Level 1 (L1) Memory

The L1 memory system performance provides high bandwidth and low
latency. Because SRAMs provide deterministic access time and very high
throughput, DSP systems have traditionally achieved performance
improvements by providing fast SRAM on the chip.

The addition of instruction and data caches (SRAMs with cache control
hardware) provides both high performance and a simple programming
model. Caches eliminate the need to explicitly manage data movement
into and out of L1 memories. Code can be ported to or developed for the
processor quickly without requiring performance optimization for the
memory organization.

Figure 6-1 shows the typical bus architecture of single-core Blackfin
devices that do not feature L2 memories on-chip. The bus widths on the
system side may vary.
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Figure 6-1. Processor Memory Architecture

The L1 memory provides:

* A modified Harvard architecture, allowing up to four core memory
accesses per clock cycle (one 64-bit instruction fetch, two 32-bit
data loads, and one pipelined 32-bit data store)

e Simultaneous system DMA, cache maintenance, and core accesses

*  SRAM access at processor clock rate (CCLK) for critical DSP algo-

rithms and fast context switching
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* Instruction and data cache options for microcontroller code, excel-
lent High Level Language (HLL) support, and ease of
programming cache control instructions, such as PREFETCH and
FLUSH

* Memory protection

The L1 memories operate at the core clock frequency (CCLK). Some
Blackfin processors feature an L1 instruction ROM, which is embedded
similarly as L1 instruction SRAM, and (because of that embedding) can be
read using DMA. Even though the ROM content may be read using
DMA, its content may not be read using the ITEST mechanism.

Overview of Scratchpad Data SRAM

The processor provides a dedicated 4K byte bank of scratchpad data
SRAM. The scratchpad is independent of the configuration of the other
L1 memory banks and cannot be configured as cache or targeted by DMA.
Typical applications use the scratchpad data memory where speed is criti-
cal. For example, the User and Supervisor stacks should be mapped to the
scratchpad memory for the fastest context switching during interrupt

handling.

The scratchpad data SRAM, like the other L1 blocks, operates at
core clock frequency (CCLK). It can be accessed by the core at full
performance. However, it cannot be accessed by the DMA
controller.
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Overview of On-Chip Level 2 (L2) Memory

Some Blackfin derivatives feature a Level 2 (L2) memory on chip. The L2
memory provides low latency, high-bandwidth capacity. This memory sys-
tem is referred to as on-chip L2 because it forms an on-chip memory
hierarchy with L1 memory. On-chip L2 memory provides more capacity
than L1 memory, but the latency is higher. The on-chip L2 memory is
SRAM and can not be configured as cache. It is capable of storing both
instructions and data. The L1 caches can be configured to cache instruc-
tions and data located in the on-chip L2 memory. On-chip L2 memory
operates at CCLK frequency.

Overview of On-Chip Level 3 (L3) Memory

Most Blackfin processors feature an on-chip Boot ROM, which can be
seen as L3 memory. The ROM is managed by the External Bus Interface
Unit (EBIU) and operates at SCLK frequency. Although is primarily used
for instruction storage, the ROM can also be accessed using DAG opera-
tions and DMA.

L1 Instruction Memory

L1 Instruction Memory consists of a combination of dedicated SRAM and
banks which can be configured as SRAM or cache. For the 16K byte bank
that can be either cache or SRAM, control bits in the IMEM_CONTROL
register can be used to organize all four subbanks of the L1 Instruction
Memory as:

e Asimple SRAM
* A 4-Way, set associative instruction cache

* A cache with as many as four locked Ways
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L1 instruction memory only may be used to store instructions. The L1
content is not accessible by normal load or store operations. This mem-
ory’s content may be read and modified using DMA and the ITEST
mechanism.

IMEM_CONTROL Register

The Instruction Memory Control register (IMEM_CONTROL) contains con-
trol bits for the L1 Instruction Memory. (See Figure 6-2 and Figure 6-3.)
By default after reset, cache and Cacheability Protection Lookaside Buffer
(CPLB) address checking is disabled (see “L1 Instruction Cache” on

page 6-12).

When the LRUPRIORST bit is set to 1, the cached states of all CPLB_LRUPRIO
bits (see “ICPLB_DATAx Registers” on page 6-61) are cleared. This
simultaneously forces all cached lines to be of equal (low) importance.
Cache replacement policy is