
Engineer-to-Engineer Note EE-239

a

Technical notes on using Analog Devices DSPs, processors and development tools
Contact our technical support at dsp.support@analog.com and at dsptools.support@analog.com
Or visit our on-line resources http://www.analog.com/ee-notes and http://www.analog.com/processors

Running Programs from Flash on ADSP-BF533 Blackfin® Processors
Contributed by Steve K Rev 1 – May 22, 2004

Copyright 2004, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property

Introduction
This document describes the process of setting up an application to run on the ADSP-BF533 Blackfin®
processor via flash memory, instead of being loaded from VisualDSP++® 3.5 via an emulator. It uses the
ADSP-BF533 EZ-KIT Lite™ evaluation system as an example board.

Minimum requirements:

• VisualDSP++ 3.5 (base release or Update)

• ADSP-BF533 Blackfin processor, silicon revision 0.2 or higher

The EZ-KIT Lite example program “Blink” is used to demonstrate the procedures. It can be found in the
..\Blackfin\EZ-Kits\ADSP-BF533\Examples\Blink\C directory within the VisualDSP++ installation.

The document considers two approaches:

• Running the program via the ADSP-BF533 Blackfin processor boot ROM

• Running the program directly from flash memory, via bypass mode

Initial Steps: Running Under the Emulator
Begin by coping the Blink example from the VisualDSP++ installation to a new working directory, and
build it to verify that it works, as follows:

1. Copy the ..\Blackfin\EZ-Kits\ADSP-BF533\Examples\Blink\C directory to a new location.

2. Start VisualDSP++.

3. Use Project->Open to open BF533 Flags C.dpj in the new location.

4. Rebuild all.

5. Load the program into the ADSP-BF533 EZ-KIT Lite board (via an in-circuit emulator or USB agent)
and run it.

6. Observe the six LEDs, blinking on and off in sequence.

This program is running entirely from internal L1 memory, using L1 Instruction memory and L1 Data A
and L1 Data B memory. No caches are enabled. SDRAM is not used.

In the ISRs.c file, Timer0_ISR()uses the code shown in Listing 1 to generate the blinking sequence.

of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices’ Engineer-to-Engineer Notes.

 a
 if(sLight_Move_Direction)
 {
 if((ucActive_LED = ucActive_LED >> 1) == 0x00) ucActive_LED = 0x20;
 }
 else
 {
 if((ucActive_LED = ucActive_LED << 1) == 0x40) ucActive_LED = 0x01;
 }

Listing 1. LED sequence in Blink application

While following the various stages of this document, you may find it helpful to modify this piece of code
to produce different sequences. This will help verify that on power-up your EZ-KIT Lite board is now
running a newly modified program. Listing 2 shows suggested alternative sequences.

 if (++ucActive_LED == 0x40)
 ucActive_LED = 1; // alternative 1: count up

 if (ucActive_LED-- == 0)
 ucActive_LED = 0x40; // alternative 2: count down

Listing 2. Suggested alternative LED sequences

Booting from Flash Devices
ADSP-BF533 Blackfin processors feature an on-chip boot ROM that contains a boot kernel. If the
BMODE pins are programmed in “boot from flash” mode, the kernel processes a boot stream stored in the
flash memory and decomposes it into blocks of code and data. These blocks are copied to RAM areas
within the memory space. The boot stream is created by the loader utility after building a .DXE file, and is
contained within a loader file that must be programmed into the flash memory. After the boot kernel has
copied the blocks to their respective destinations, the kernel jumps to the start of L1 Instruction memory
and starts executing from there. Consequently, all code and data have been copied to their final
destinations before the application code starts running.

Creating a Boot Stream

1. In Project->Project Options, on the Project tab, under Target, change Type to DSP loader file.

2. On the Load tab, set Boot mode to Flash and set Output width to 16-bit.

3. On the Load tab under Boot kernel options, clear the Use boot kernel option.

4. On the Load tab under ROM splitter options, ensure that Enable ROM splitter is not selected.

5. Close the Project Options dialog box.

6. Save project changes via Project->Save.

7. Rebuild the project.

When the project is rebuilt (after creating Debug\BF533 Flags C.dxe), VisualDSP++ will invoke the
Elfloader utility to generate the boot stream from this .DXE file. The boot stream will be created in the
loader file Debug\BF533 Flags C.ldr.

Running Programs from Flash on ADSP-BF533 Blackfin® Processors (EE-239) Page 2 of 14

 a
Programming the Boot Stream into the EZ-KIT Lite Board

1. Select Tools->Flash Programmer. The Flash Programmer window opens.

2. In the Driver File field, browse to the file …\Blackfin\Flash Programmer Drivers\ADSP-BF533 EZ-kit
Lite\BF533EZFLASH.DXE.

3. Click on Load Driver. The Status circle will change from red to yellow and then to green.

4. In the Data File field, browse to the file Debug\BF533 Flags C.ldr in your project.

5. Click on Load File. The boot stream from the loader file will be programmed into the EZ-KIT Lite
board’s flash memory.

6. Exit the Flash Programmer.

7. Exit VisualDSP++.

8. Power-cycle the EZ-KIT Lite board. Observe the LEDs blinking on power-up.

Using the Boot Kernel and SDRAM

If any of the application is mapped to SDRAM – such as if the USE_CACHE option of the standard .LDF files
is employed – the SDRAM will need to be initialized before the boot kernel can copy a block from the
boot stream into SDRAM. This can be achieved through the use of initialization blocks.

The loader utility can be given an initialization file. This is a .DXE file built for the target using the ADSP-
BF533_ASM.ldf file. The loader utility extracts the executable code section (program section), and inserts it
into the boot stream with a special marker. The marker indicates to the boot kernel that it should execute
the code within the block immediately after copying it. Thus, the block can be used to set up SDRAM
before application components are copied into it.

The initialization object file must contain code that operates like a function that considers all registers to
be callee-preserved; it must save and restore all the registers it uses. Since this initialization code is called
like a function, it must terminate with an RTS instruction. The boot kernel will provide sufficient stack
space within the L1 scratchpad memory.

For an example of an initialization file, refer to Listing 2-1 in VisualDSP++ 3.5 Loader Manual for 16-bit
Processors [1].

Running from Flash via Bypass Mode
When the ADSP-BF533 Blackfin processor detects that it is being configured in bypass mode at reset, it
does not process a boot stream. Instead, it bypasses the boot ROM, jumps to the start address of flash
memory, and starts execution directly. This means that the application code is being executed from within
flash, rather than being copied to RAM and then being executed from there.

In this mode, any code or data that should be in the L1 Instruction, L1 Data A, or L1 Data B memories has
not yet been copied when control is passed to the application. Generally, the application will at least need
to initialize data items to their starting values before modifying them during the course of the application.

Data sections can be initialized in an automated fashion by using initialization qualifiers within the .LDF
file and by enabling memory-initialization during linking. When this is done, the final .DXE file will

Running Programs from Flash on ADSP-BF533 Blackfin® Processors (EE-239) Page 3 of 14

 a
contain a data table similar to the boot stream produced by the loader utility for booting via the boot
ROM. The table is described in the Memory Initializer Boot Stream section.

Processing the Data Stream in Assembly Applications

The run-time libraries contain a routine for processing this table that the assembly programmer can call to
cause the initialization. The function is called _mi_initialize (one leading underscore, from assembly). It
takes no parameters and returns an integer result. Zero means successful initialization, and a negative
value means that the table was invalid.

Alternatively, the assembly programmer could process the table directly. The table is pointed to by the
global variable ___inits (three leading underscores). This symbol is a pointer, and is normally a NULL
pointer (points to 0x0000 0000). If the .DXE file has been processed for run-time initialization during
linking, the ___inits symbol will be modified to point to the start of the table. See the Memory Initializer
Boot Stream section for details on the format of the table.

Processing the Data Stream in C/C++ Applications

The C/C++ developer does not need to call the run-time function mi_initialize (no leading underscores,
from C/C++) explicitly; the start-up code for the C/C++ run-time calls mi_initialize automatically
before invoking main.

Limitations of mi_initialize

At the time of this writing, the run-time initialization support has two limitations:

• It does not support writing to L1 Instruction memory. Therefore, it cannot be used to copy code from
flash into L1 Instruction memory.

• It does not provide any means of invoking initialization code for SDRAM. Therefore, it cannot be
used to copy code or data from flash into SDRAM, unless some other means is used to enable
SDRAM before the memory initialization process runs.

An assembly developer can avoid these limitations by processing the data table directly. A C/C++
developer can avoid these limitations by providing an alternative implementation of mi_initialize.

The “Blink” application does not use SDRAM, so the second limitation does not pose a problem for the
examples in this document. To deal with the first limitation within the scope of this document, the “Blink”
application will be linked so that its code runs entirely from flash memory.

Creating a Flash-Based Application

Creating a flash-based application is a two-stage process. First, a customized .LDF file is needed to re-map
the application code and arrange for data initialization. Then the project must be configured to generate a
no-boot flash image.

Creating the Flash-Based .LDF File

The “Blink” application does not have an .LDF file of its own; it uses the default compiler .LDF files.
Therefore, begin by creating an .LDF file for the project, as follows:

Running Programs from Flash on ADSP-BF533 Blackfin® Processors (EE-239) Page 4 of 14

 a
1. Select Tools->Expert Linker->Create LDF… Click on Next.

2. Select the C project type. Click Next.

3. This is a single-processor ADSP-BF533 session, so the defaults presented on the next dialog suffice.
Click Next.

4. Click Finish.

5. The Expert Linker will open its graphical editor. Close it.

6. Right-click the BF533 Flags C.ldf file in the Project window and select Open with Source Window.

Placing Code Sections in Flash

The .LDF file has to be changed to reflect that code will be mapped into the flash areas. This requires the
following changes:

• Map section program_ram to MEM_ASYNC0 (instead of MEM_L1_CODE).

• Map section l1_code to MEM_ASYNC0 (instead of MEM_L1_CODE_CACHE).

Because the code is mapped to flash, it will be executable directly from the flash memory.

Placing Data in Flash or RAM

Constant Data
For constant data, there are two options: the data can be mapped directly to flash memory because it is
unchanging, or it can be mapped to RAM and initialized at run-time. The former saves space, but the latter
runs faster. This is an application-level decision.

In this example, we consider the constdata input section to be constant data that nevertheless might be
frequently accessed by the application (e.g., FIR coefficients). Therefore, we will map these input sections
into RAM for initialization at runtime. But the compiler also generates a number of tables that are used for
C++ constructor and exception support, and those are unlikely to be referenced often, so we will map
them directly into flash memory.

This is a convenient decision for this example, because constdata is a misnomer for the output section in
the default .LDF files: it also maps input sections L1_data_a, cplb_data, data1, and voldata, which are not
constant. If we were to resolve constdata into flash memory, we would have to ensure that these other
input sections are separately mapped elsewhere in RAM.

We separate the constdata output section into constdata and cplustables; the constdata input section is
mapped into the former, in MEM_L1_DATA_A, and the sections ctor, ctorl, .gdt, .gdtl, .edt, .cht, .frt, and
.frtl are mapped into the latter, in MEM_ASYNC0.

Furthermore, because the constdata section needs to be processed at runtime to initialize it, we mark it
with a RUNTIME_INIT initialization qualifier. This is used during link-time, when the run-time initialization
is configured, to indicate that the section has data that needs to be saved into ROM and copied into RAM
at run-time.

The two modified sections from the .LDF file are shown in Listing 3.

Running Programs from Flash on ADSP-BF533 Blackfin® Processors (EE-239) Page 5 of 14

 a
constdata RUNTIME_INIT
 {
 INPUT_SECTION_ALIGN(4)
 INPUT_SECTIONS($OBJECTS(L1_data_a) $LIBRARIES(L1_data_a))
 INPUT_SECTIONS($OBJECTS(cplb_data) $LIBRARIES(cplb_data))
 INPUT_SECTIONS($OBJECTS(data1) $LIBRARIES(data1))
 INPUT_SECTIONS($OBJECTS(voldata) $LIBRARIES(voldata))
 INPUT_SECTIONS($OBJECTS(constdata) $LIBRARIES(constdata))
 } >MEM_L1_DATA_A

cplustables
 {
 INPUT_SECTION_ALIGN(4)
 INPUT_SECTIONS($OBJECTS(ctor) $LIBRARIES(ctor))
 INPUT_SECTIONS($OBJECTS(ctorl) $LIBRARIES(ctorl))
 INPUT_SECTION_ALIGN(4)
 INPUT_SECTIONS($OBJECTS(.gdt) $LIBRARIES(.gdt))
 INPUT_SECTION_ALIGN(4)
 INPUT_SECTIONS($OBJECTS(.gdtl) $LIBRARIES(.gdtl))
 INPUT_SECTION_ALIGN(4)
 INPUT_SECTIONS($OBJECTS(.edt) $LIBRARIES(.edt))
 INPUT_SECTION_ALIGN(4)
 INPUT_SECTIONS($OBJECTS(.cht) $LIBRARIES(.cht))
 INPUT_SECTION_ALIGN(4)
 INPUT_SECTIONS($OBJECTS(.frt) $LIBRARIES(.frt))
 INPUT_SECTION_ALIGN(4)
 INPUT_SECTIONS($OBJECTS(.frtl) $LIBRARIES(.frtl))
 } >MEM_ASYNC0

Listing 3. Constant Data, Placed in Flash.

Variable Data
For variable data, there are also two options: the data may be initialized to zero, or it may be initialized to
a non-zero constant. Both options are handled in approximately the same way; the difference between the
two is the initialization qualifier.

The output sections (data, l1_data_a and l1_data_b) contain data that may be initialized to arbitrary
constants. Each of these sections is marked with the RUNTIME_INIT qualifier to indicate that the contents
must be copied from flash to the appropriate RAM areas (MEM_L1_DATA_B, MEM_L1_DATA_A_CACHE, and
MEM_L1_DATA_B_CACHE, respectively). They map the input sections data1, voldata, L1_data_a, L1_data_b,
and cplb_data, all of which will contain some initial non-zero values.

The output section bsz maps the bsz input sections, which only contain data that must be zero-filled on
start-up. This output section is already marked with the ZERO_INIT qualifier, so the run-time initialization
will just write zeroes to the section instead of copying bytes from flash. This section needs no
modification.

Heap and Stack
These sections, which must be in RAM, do not need initialization qualifiers, as they are initialized
explicitly by the run-time library. You may find it convenient to mark these sections as ZERO_INIT, to clear
their contents first, though this is not necessary.

Running Programs from Flash on ADSP-BF533 Blackfin® Processors (EE-239) Page 6 of 14

 a
Initialization Tables
The sections bsz_init and .meminit must be mapped into flash memory. The bsz_init section, which is a
very small, will contain a pointer to the start of initialization data. The .meminit section is a special section
that is populated after linking with the tables needed to perform the run-time initialization. In effect, it is
similar to a boot stream: it contains blocks of data that are copied from flash memory to RAM areas.

Listing 4 shows how these sections are mapped in the .LDF file.

bsz_init
 {
 INPUT_SECTION_ALIGN(4)
 INPUT_SECTIONS($OBJECTS(bsz_init) $LIBRARIES(bsz_init))
 } >MEM_ASYNC0
 .meminit {} >MEM_ASYNC0

Listing 4. Memory Initialization Tables in Flash Memory

RAM Versus ROM
The .LDF file declares MEM_ASYNC0–3 as type RAM. This must be changed to be type ROM. Otherwise, the ROM
splitter utility used to generate the Intel hex file will ignore the sections, and nothing will be programmed
into the flash memory.

Start Address
The .LDF file explicitly resolves the start symbol to be the address of the first instruction executed.
Normally, this is the start of L1 Instruction memory, but for an application that bypasses booting and goes
directly to flash memory, it must be the start of flash, as shown in Listing 5.

 RESOLVE(start,0x20000000)

Listing 5. Resolving the Starting Address to the Beginning of Flash Memory

Enabling Memory Initialization

Run-time memory initialization is enabled by adding an extra flag during the link stage. There are two
ways of doing this:

• If you are building your application within VisualDSP++, enable memory initialization by typing
-meminit in the Additional options field of the Link tab on the Project Options dialog box.

• If you are building your application from the command line, enable memory initialization by adding
the -mem switch to the ccblkfn command.

If run-time memory initialization is selected via one of these methods, the linker will perform an
additional pass after producing the .DXE file, which has the following effects:

• Output sections marked as ZERO_INIT are recorded in an initialization table.

• Output sections marked as RUNTIME_INIT are recorded in the same table. In addition, the contents of
these sections are added to the table.

• The initialization table is written into the .meminit output section.

• A pointer to the start of the table is written into the bsz_init output section.

Running Programs from Flash on ADSP-BF533 Blackfin® Processors (EE-239) Page 7 of 14

 a
When the application starts running, the following will occur:

• The run-time library will follow the pointer to the initialization table.

• For each section recorded in the initialization table, the run-time library zero-fills the section or copies
starting values from the initialization table to the section, depending on the section’s initialization
qualifier.

Therefore, as long as the .meminit and bsz_init sections are mapped to flash (as described previously) and
the sections mapped to volatile memory are marked with a suitable initialization qualifier, the run-time
memory initialization will ensure that the volatile data sections are appropriately configured when the
application starts running.

Creating the No-Boot Flash Image

The loader file is created in a similar manner to the boot ROM-based loader field. Since raw executable
code is placed into the flash memory instead of a boot stream, the ROM splitter option is used.

In the Load tab of the Project Options dialog box:

1. Select the ROM splitter options category, and select Enable ROM splitter. Because the ROM splitter
is enabled, options under the Loader options and Boot kernel options categories are ignored, so they
do not need to be changed.

2. Set Format to Hex.

3. Set the Mask address to 29.

4. In Output file, specify an output filename.

5. Click OK.

Now save the changes to the project, and rebuild it.

When the project is rebuilt, after creating Debug\BF533 Flags C.dxe, VisualDSP++ will invoke the
Elfloader utility to generate the loader file (named in step 4) from this .DXE file.

Some versions of VisualDSP++ may generate linker warning li2131 – “Input sections of incompatible init
qualifier detected in the output section” – during the linking phase. These warnings are triggered when an
input section’s initialization qualifier does not exactly match the output section’s initialization qualifier.
The run-time library’s data1 section is built without qualifiers, so mapping it into an output section with
the RUNTIME_INIT qualifier will cause the linker to issue this warning, which can be safely ignored in this
case.

! Ensure that input sections are not mapped into output sections with initialization qualifiers
that are incompatible for the input section’s contents. For example, input sections with non-
zero contents cannot be safely mapped to an output section with a ZERO_INIT qualifier, nor
can an input section with a ZERO_INIT qualifier be safely mapped to an output section with a
NO_INIT qualifier. Both of these combinations would mean that the contents would be
initialized incorrectly.

Running Programs from Flash on ADSP-BF533 Blackfin® Processors (EE-239) Page 8 of 14

 a
Loading the Loader File onto the EZ-KIT Lite Board

1. Select Tools->Flash Programmer…. The Flash Programmer window opens.

2. In the Driver File field, browse to the file …\Blackfin\Flash Programmer Drivers\ADSP-BF533 EZ-kit
Lite\BF533EZFLASH.DXE.

3. Click on Load Driver. The Status circle will change from red to yellow and then to green.

4. In the Data File field, browse to the output file previously specified via the ROM splitter category (on
the Load page).

5. Click on Load File. The loader file will be programmed into the EZ-KIT Lite board’s flash memory.

6. Exit the Flash Programmer.

7. Exit VisualDSP++.

8. Power-cycle the EZ-KIT Lite board.

On power-up, the boot ROM will attempt to interpret the flash contents as a boot stream. Since the flash
contents are not a boot stream, the booting process will fail. Instead, the flash contents must be executed
directly, as described below.

Running the Program in Flash Memory

For diagnostic purposes, the program in flash memory can be invoked under emulator control, using the
program shown in Listing 6.

int main(void)
{
 void (*program)(void) = (void (*)(void))(0x20000000);
 (*program)();
}

Listing 6. Running a Program in Flash Memory.

To execute on power-up, however, the processor must be reset in bypass mode. This is done on a Revision
1.2 EZ-KIT Lite board by resetting with R11 shorted out. Recent revisions of EZ-KIT Lite boards provide
a jumper.

R11 is located to the left of the Blackfin processor (moving left from the Blackfin processor, you will find
C198, R11, and R10, in order). R11 is just two contacts, with no connector between them. To boot the
processor in bypass mode, short the gap between the two contacts while power-cycling or pressing the
Reset switch (top left corner of the EZ-KIT Lite board). Observe that the lights start blinking when the
program starts running.

Performance When Executing From Flash Memory
The flash memory described in this EE-Note is connected directly to the External Bus Interface Unit
(EBIU). At reset, the settings for this Asynchronous Memory bank default to the largest number of wait
states and hold states to account for the possibility that a slow flash memory will be connected. At these
maximum settings, the maximum rate of processor execution is one 16-bit instruction every 15 System

Running Programs from Flash on ADSP-BF533 Blackfin® Processors (EE-239) Page 9 of 14

 a
Clock (SCLK) cycles. At reset, the SCLK value on the ADSP-BF533 EZ-KIT Lite board is 54 MHz
(27 MHz * 10 MSEL/5 SSEL).

In the Blackfin Instruction Set Architecture1, the most frequently used instructions are encoded as 16-bits.
However, the instruction set also contains 32-bit and 64-bit instructions. Each instruction fetch from flash
is 16 bits in size, so a 64-bit instruction will take four 16-bit fetches. Because flash is an “asynchronous”
memory, turning instruction cache on and making the flash “cacheable” will not improve performance the
first time code is executed. If, however, the code from flash is re-executed once it has been brought into
cache, subsequent execution will enjoy single-cycle throughput.

If the flash connected in a system supports fewer wait states and the hold time is lower, the maximum
instruction fetch rate from 16-bit flash is one 16-bit fetch every two SCLKs. This can be accomplished by
using the init booting function described in the VisualDSP++ 3.5 Loader Manual for 16-bit Processors
[1] to configure the EBIU appropriately.

Another way to improve performance is to use overlays. With this method, code segments are transferred
into internal memory using DMA before the actual code is executed. The memory DMA controller is used
to bring code into one memory bank while the processor executes code from another memory bank.

For further information on the EBIU, refer to the ADSP-BF533 Blackfin Processor Hardware Reference
[2].

Memory Initializer Boot Stream
The Memory Initializer utility is invoked at link-time, when the compiler’s –mem switch is used or when
the linker’s –meminit switch is used. The Memory Initializer utility processes the linked application and
builds a boot stream within the .meminit section. The format of this stream is described by the structures
defined in the <meminit.h> header file, and is explained here.

The ___inits Pointer

The start of the boot stream is the global pointer ___inits (in assembly, with three leading underscores)
or __inits (in C, with two leading underscores). In an application that has not been processed by the
Memory Initializer utility, this pointer has the value 0, indicating that there is no boot stream to process.
When the Memory Initializer utility processes the application, it creates the boot stream and then updates
the value of this global pointer to point to the start of the boot stream.

The pointer’s C declaration is shown in Listing 7.

typedef struct mi_table_header_t mi_table_header;
extern mi_table_header *__inits;

Listing 7. C Declaration of __inits Pointer.

The Table Header

The table header indicates the format and size of the following boot stream. It is defined using the
structures listed in Listing 8.

1 See the Blackfin Processor Instruction Set Reference [3].

Running Programs from Flash on ADSP-BF533 Blackfin® Processors (EE-239) Page 10 of 14

 a
struct mi_magic_t {
 unsigned char version;
 unsigned char reserved;
 unsigned short magic;
};

struct mi_table_header_t {
 struct mi_magic_t magic;
 unsigned long num_blocks;
 struct mi_block_header_t blocks[1]; /* arbitrary number of blocks */
};

typedef struct mi_magic_t mi_magic;

Listing 8. Memory Initializer Header Structures

The magic field identifies the format of the boot stream. For Blackfin processors, the only allowed values
for the mi_magic_t structure’s fields are:

Field Value

version 0
reserved Reserved for future use
magic MI_MAGIC_BLACKFIN (0xFFFF)

Table 1. mi_magic_t Fields

The blocks[] field is declared as an array that is one block in length. In reality, it indicates the position of
the first block in the stream. num_blocks indicates the total number of blocks in the stream, and therefore
gives the true size of the blocks[] field.

Block Structure

Each block in the boot stream defines a portion of memory to be initialized, either by copying data
(including code) from the boot stream into the area of memory or by zero-filling the area of memory.

The block structure is defined as shown in Listing 9.

struct mi_block_header_t {
 char *addr;
 unsigned long byte_count;
 unsigned long flags;
 unsigned long pattern_bytes;
};

Listing 9. Memory Initializer Block Structure

Running Programs from Flash on ADSP-BF533 Blackfin® Processors (EE-239) Page 11 of 14

 a
The flags field is divided into several sub-fields:

Bits Use

0-1 Memory type: MI_MEM_US (0x02)

2-5 Word Size: MI_WS_8BITS (0x00)

6-8 Block kind

9-31 Reserved for future use

Table 2. Flags Sub-Fields

The memory type indicates the kind of memory the block is initializing. For Blackfin, this is always set to
MI_MEM_US (0x02), which indicates that the memory is not of a fixed type, (e.g., Program Memory or Data
Memory).

The word size indicates the addressable units for the memory being initialized. Since Blackfin is a byte-
addressed architecture, this field is always MI_WS_8BITS (0x00).

The block kind indicates how the block should be interpreted to initialize the memory area.

Block Kinds

The block kind indicates what kind of initialization is required for the memory area. There are several
possible values:

Value Meaning

MI_BT_RAW (0x00) The memory area will be initialized by copying data verbatim from the boot
stream to the memory area.

MI_BT_ZERO (0x01) The memory area will be initialized by zero-filling the memory area.

MI_BT_REP (0x03) The memory area will be initialized by filling it with a repeating pattern from
the boot stream.

Table 3: Block kinds

Note that value 0x02 is not used.

Raw Block Kind
For a raw block, the significant fields are addr and byte_count. Within the boot stream, the block will be
immediately followed by byte_count bytes of data which are to be copied to the address addr. If there are
any more blocks within the boot stream, the next block will follow the data for the raw block.

Zero Block Kind
For a zero block, the significant fields are addr and byte_count. A zero block indicates that the memory
area starting at address addr is byte_count bytes in size and should be zero-filled. The block has no
following data and, if there are more blocks in the boot stream, the next block will immediately follow this
zero block.

Running Programs from Flash on ADSP-BF533 Blackfin® Processors (EE-239) Page 12 of 14

 a
Repeating Block Kind
For a repeating block, the significant fields are addr, byte_count, and pattern_bytes. The block will be
followed by pattern_bytes bytes of data, which should be copied to the byte_count bytes of memory
starting at address addr. If there are more blocks in the boot stream, the next block will follow after the
repeated-pattern data. For VisualDSP++3.5, the repeated patterns are restricted to the normal data type
sizes: 1, 2, or 4 bytes in length. For future versions of VisualDSP++, the Memory Initializer utility may be
able to detect longer sequences of repeated patterns. There is no guarantee that byte_count will be a
multiple of pattern_bytes; the pattern should be copied repeatedly to the memory area until byte_count
bytes of data have been copied.

Following Blocks

For Blackfin processors, a block is always aligned on a 4-byte boundary within the flash device. This is
achieved as follows:

• The first block is part of the table header, which is always aligned. Therefore, the first block is
aligned.

• For zero blocks, there is no data between the zero block and the following block, so the following
block is always aligned.

• For raw blocks and repeating blocks, there is data between the block and the following block, which
may not be of a suitable length to correctly align the following block. If byte_count (for raw blocks) or
pattern_bytes (for repeating blocks) is not a multiple of 4, then 1-3 bytes of padding will be inserted
between the data and the start of the following block to ensure the following block’s alignment.

Initializing L1 Instruction Memory

If the .LDF file sections that map code to L1 Instruction Memory are marked as RUNTIME_INIT, the Memory
Initializer utility will create blocks in the boot stream that initialize these sections as well. At the time of
this writing, the mi_initialize run-time library function does not support this, as L1 Instruction Memory
may not be written to as normal data. If an application developer needs to initialize L1 Instruction
Memory, the boot stream will have to be processed explicitly, using the cache control registers to write
data into L1 Instruction Memory.

Running Programs from Flash on ADSP-BF533 Blackfin® Processors (EE-239) Page 13 of 14

 a

References
[1] VisualDSP++ 3.5 Loader Manual for 16-bit Processors. Rev 1.0, October 2003. Analog Devices, Inc.

[2] ASDP-BF533 Blackfin Processor Hardware Reference. Rev 1.0, December 2003. Analog Devices, Inc.

[3] Blackfin Processor Instruction Set Reference, Rev 1.0. March 2002. Analog Devices, Inc.

Document History

Revision Description

Rev 1 – May 22, 2004
by Steve K.

Initial Release

Running Programs from Flash on ADSP-BF533 Blackfin® Processors (EE-239) Page 14 of 14

	Introduction
	Initial Steps: Running Under the Emulator
	Listing 1. LED sequence in Blink application
	Listing 2. Suggested alternative LED sequences

	Booting from Flash Devices
	Running from Flash via Bypass Mode
	Constant Data
	Listing 3. Constant Data, Placed in Flash.
	Variable Data
	Heap and Stack
	Initialization Tables
	Listing 4. Memory Initialization Tables in Flash Memory

	RAM Versus ROM
	Start Address
	Listing 5. Resolving the Starting Address to the Beginning o
	Listing 6. Running a Program in Flash Memory.

	Performance When Executing From Flash Memory
	Memory Initializer Boot Stream
	Listing 7. C Declaration of __inits Pointer.
	Listing 8. Memory Initializer Header Structures
	Field
	Value
	Table 1. mi_magic_t Fields
	Listing 9. Memory Initializer Block Structure
	Table 2. Flags Sub-Fields
	Table 3: Block kinds

	Raw Block Kind
	Zero Block Kind
	Repeating Block Kind

	References
	Document History

