Engineer To Engineer Note

Technical Notes on using Analog Devices' DSP components and development tools Contact our technical support by phone: (800) ANALOG-D or e-mail: dsp.support@analog.com Or visit our on-line resources http://www.analog.com/dsp and http://www.analog.com/dsp/EZAnswers

ADSP-BF535 Blackfin® Processor PCI Interface Performance

Contributed by Jorge Manguane

September 3, 2003

Introduction

This Engineer to Engineer Note will briefly discuss the performance of the ADSP-BF535 Blackfin® Processor PCI interface. In general, maximum PCI performance is achieved during burst transfers, where a single *address phase* (one clock cycle at the beginning of the transaction where the address and transfer type are output on the AD bus and on the C/BE lines, respectively) is followed by multiple *data phases*. It is therefore easy to see how single data transfers may yield lower throughput. We will look at the ramifications of each of these transfer types, namely, burst and single word transfers.

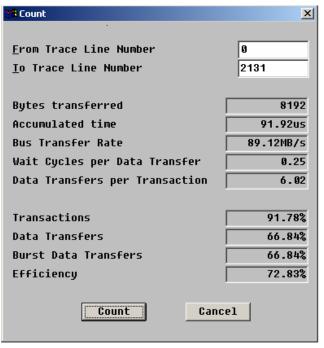
To validate this analysis the Eagle-35 and the Hawk-35 boards were used as a system host and PCI device, respectively. Both boards have the ADSP-BF535 Blackfin® Processor as the main processor and are sold and supported by Momentum Data Systems, MDS. Also, a VMETRO PCI bus analyzer/exerciser was used to both monitor the PCI traffic along with its metrics and to exercise the bus.

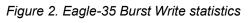
It should be noted that a PCI-to-PCI bridge is used on the Hawk-35 board to interface the BF535 PCI core interface to the PCI bus signals. The main purpose of this bridge is to perform automatic voltage detection and translation in order to allow the board to be plugged into either a 3.3 Volt or 5 Volt system.

On the BF535, a dedicated bus is available on chip to allow an external bus master to transfer

data directly to/from internal (L2 memory) or external memory spaces without involving the processor core.

Burst transfers


When the BF535 is the bus master, burst transfers are accomplished through Direct Memory Access (DMA), in particular through the processor's Memory DMA (MemDMA) engine. For PCI transfers, MemDMA allows memory to memory DMA transfers between PCI memory space and either internal L2 or SDRAM memory.


The MemDMA engine's burst size is 8 words, which means that after every 8 words transferred the PCI interface issues the next PCI address. This situation is illustrated in the PCI trace shown in Figure 1, where every address phase (Start) is followed by eight data words. A new Start (address phase) transfer follows, and the process goes on until all data has been Not every transaction (address transferred. phase, data phase) will be the same (i.e., 8 data words for each address phase) because at some point the target may issue "retries." These retries will force the PCI bus master to reissue a new address. Figure 2 shows the PCI bus statistics including the Data Transfers per Transaction, which indicate an average number of data words transferred during each burst access.

Copyright 2003, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers' products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices' Engineer Notes.

💐 BusView - [P	CI CLOCK mode Trac	e dma_w	vrite.trc triggere	d at START:	3]
File Edit Con	npare <u>S</u> earch <u>J</u> ump	Cou <u>n</u> t Fo r	mat <u>M</u> arker <u>U</u> tiliti	ies <u>W</u> indow H	lelp
)). 	> ⊁ ⊡ ₽		Ya Ya Ya		⊥ ‡ 7 ‡ ? ∑ _{⊂N}
Sample	TimeRel Burst#	State	C/BE[7:0]#	AD[63:32]	AD[31:0]
TRIG:	0ns .	Addr	MemWr	00000000	E0000000
1:	30ns B	T₩	00000000	00000000	11111111
2:	30ns B	Data	00000000	00000000	11111111
3:	30ns B	Data	00000000	00000000	22222222
4:	30ns B	Data	00000000	00000000	33333333
5:	30ns B	Data	0000000	00000000	44444444
6:	30ns B	Data	00000000	00000000	55555555
7:	30ns B	Data	00000000	00000000	66666666
8:	30ns B	Data	00000000	00000000	7777777
9:	30ns B	Data	00000000	00000000	88888888
10:	30ns .	Addr	MemWr	00000000	E0000020
11:	30ns B	T₩	00000000	00000000	999999999
12:	30ns B	Data	00000000	00000000	999999999
13:	30ns B	Data	00000000	00000000	AAAAAAA
14:	30ns B	Data	0000000	00000000	BBBBBBBB
15:	30ns B	Data	00000000	00000000	CCCCCCCC
16:	30ns B	Data	00000000	00000000	DDDDDDDD
17:	30ns B	Data	00000000	00000000	EEEEEEE
18:	30ns B	Data	00000000	00000000	FFFFFFF
19:	30ns B	Data	00000000	00000000	11111110
20:	30ns .	Addr	MemWr	00000000	E0000040
21:	30ns B	τw	00000000	00000000	22222221
22:	30ns B	Data	00000000	00000000	22222221
23:	30ns B	Data	0000000	00000000	33333332
24:	30ns B	Data	00000000	00000000	4444443
25:	30ns B	Data	00000000	00000000	55555554
26:	30ns B	Data	00000000	00000000	66666665
27:	30ns B	Data	00000000	00000000	7777776
28:	30ns B	Data	00000000	00000000	88888887
29:	30ns B	Data	00000000	00000000	99999998
30:	30ns .	Addr	MemWr	00000000	E0000060

Figure 1. Eagle-35 Burst write trace

These metrics were obtained from a DMA write transfer between the Eagle-35 board (as the bus master) and the Hawk-35 board (as the bus

slave). The target memory accessed was the onchip ADSP-BF535 L2 memory. This will be the case for the remainder of the traces shown in this application note. Accesses to SDRAM yielded a slight (insignificant) decrease in throughput – refer to the metrics in Table 1. As it can be seen from Figure 2. Eagle-35 Burst Write statistics, a high throughput of 89.12 MB/s was achieved, as well as an efficiency of 72.83%. Here the efficiency is measured as a ratio of the percentage of data transfers against the percentage of total transactions.

The processors' system clocks, SCLK, on both boards were set to 131 MHz, with the core clocks running at 262 MHz. Since the maximum burst length on the BF535 is 8, SCLK is a major factor that influences PCI throughput. As an example, when SCLK was set to 120 MHz, the observed throughput was 80 MB/s. Because the MemDMA engine operates in the SCLK domain, it is apparent that a higher SCLK allows more data transferred per unit time. Note, however, that 133 MHz is the maximum frequency to which SCLK can be set.

When the BF535 is the target (slave) of a burst transfer, the initiator's burst size will determine the amount of data transferred per transaction. As an example, the burst length of the VMETRO's PCI exerciser can be specified to an arbitrary length. Burst length also influences throughput. As the burst length increases, the number of transactions needed to complete the transfer decreases. Figure 3 shows the Hawk-35 being accessed by the VMETRO's PCI exerciser (read access), and Figure 4 shows the corresponding bus statistics. Here the burst length was set to equal the number of bytes transferred.

PCI TRANSFER		_		-				[
Sample	TimeRel	Wait	Size	Burst	Command	Address	Data	Status
TRIG:	Ons	-	AD32	Start	MemRd	E0000000		TdwodTr
1:	840ns		AD32	Start	MenRd	E0000000	11111111	ОК
2:	30ns	-	AD32	В	MemRd	E0000000	22222222	ок
3:	30ns		AD32	В	MenRd	E0000000	33333333	ок
4:	30ns	-	AD32	в	MenRd	E0000000	4444444	ОК
5:	30ns		AD32	В	MenRd	E0000000	55555555	ок
6:	30ns		AD32	В	MenRd	E0000000	66666666	ОК
7:	30ns		AD32	В	MenRd	E0000000	77777777	ок
8:	30ns	-	AD32	В	MemRd	E000000	88888888	ок
9:	30ns	-	AD32	В	MenRd	E000000	999999999	ОК
10:	30ns		AD32	В	MenRd	E0000000	AAAAAAA	ок
11:	30ns	-	AD32	В	MemRd	E000000	BBBBBBBB	ок
12:	30ns	-	AD32	В	MenRd	E000000	CCCCCCCC	ОК
13:	30ns	-	AD32	в	MemRd	E0000000	DDDDDDDD	ок
14:	30ns		AD32	В	MemRd	E000000	EEEEEEE	ок
15:	30ns		AD32	В	MemRd	E0000000	FFFFFFFF	ОК
16:	30ns		AD32	В	MenRd	E0000000	11111110	ок
17:	30ns		AD32	В	MemRd	E000000	22222221	ок
18:	30ns		AD32	В	MemRd	E0000000	33333332	ок
19:	30ns	-	AD32	в	MemRd	E0000000	4444443	ок
20:	30ns		AD32	В	MenRd	E0000000	55555554	ок

Figure 3. Exerciser Burst Reads trace

💥 🛱 Count	×
<u>F</u> rom Trace Line Number <u>I</u> o Trace Line Number	0 2 05 0
Bytes transferred	8192
Accumulated time	96.18us
Bus Transfer Rate	85.17MB/s
Wait Cycles per Data Transfer	0.25
Data Transfers per Transaction	512.00
Transactions	79.76%
Data Transfers	63.88%
Burst Data Transfers	63.88%
Efficiency	80.09%
Count	el

Figure 4. PCI Exerciser Burst Read statistics

Single Word Accesses

For the case of single word accesses, each transaction consists of one address phase followed by one data word in the data phase. Writes are posted, meaning that the transaction is buffered at an intermediate agent (e.g., a bridge from one bus to another -- transaction FIFOs on the BF535) and completes at the source before actually completing at the destination. The BF535 transaction FIFO is 4 transactions deep.

Writes are posted as long as there's space in both the transaction and transmit data FIFOs (8 x 32bit words deep). The posting of writes allows the BF535 PCI interface to reach the theoretical maximum throughput of 44 MB/s for singleword write accesses.

🖉 BusView - [P	CI CLOCK mode Trac	e core_w	rite.trc triggere	d at START:4]	
III File Edit Compare Search Jump Count Format Marker Utilities Window Help						
Sample	TimeRel Burst#	State	C/BE[7:0]#	AD[63:32]	AD[31:0]	
TRIG:	0ns .	Addr	MemWr	00000000	E0000FFC	
1:	30ns .	T₩	00000000	00000000	11111111	
2:	30ns .	Data	00000000	00000000	11111111	
3:	30ns .	Addr	MemWr	00000000	E0001000	
4:	30ns .	T₩	00000000	00000000	22222222	
5:	30ns .	Data	00000000	00000000	22222222	
6:	30ns .	Addr	MemWr	00000000	E0001004	
7:	30ns .	T₩	00000000	00000000	33333333	
8:	30ns .	Data	00000000	00000000	33333333	
9:	30ns .	Addr	MemWr	00000000	E0001008	
10:	30ns .	T₩	00000000	00000000	4444444	
11:	30ns .	Data	00000000	00000000	4444444	
12:	30ns .	Addr	MemWr	00000000	E000100C	
13:	30ns .	T₩	00000000	00000000	55555555	
14:	30ns .	Data	00000000	00000000	55555555	
15:	30ns .	Addr	MemWr	00000000	E0001010	
16:	30ns .	T₩	00000000	00000000	66666666	
17:	30ns .	Data	00000000	00000000	66666666	
18:	30ns .	Addr	MemWr	00000000	E0001014	
19:	30ns .	T₩	00000000	00000000	77777777	
20:	30ns .	Data	00000000	00000000	7777777	
21:	30ns .	Addr	MenWr	00000000	E0001018	
22:	30ns .	T₩	00000000	00000000	88888888	
23:	30ns .	Data	00000000	00000000	88888888	
24:	30ns .	Addr	MenWr	00000000	E000101C	
25:	30ns .	T₩	00000000	00000000	99999999	
26:	30ns .	Data	00000000	00000000	99999999	
27:	30ns .	Addr	MemWr	00000000	E0001020	
28:	30ns .	T₩	00000000	00000000	AAAAAAA	
29:	30ns .	Data	00000000	00000000	AAAAAAA	
30:	30ns .	Addr	MemWr	00000000	E0001024	

Figure 5. Single word writes trace. Eagle-35 (master) to Hawk-35 (target)

On the other hand, reads are not posted, and for every transaction there's at least one extra cycle added between the address and data phases – this cycle is referred to as the "turnaround cycle," after which the target drives the data on the PCI Address/Data bus. In addition, both the target and the master may introduce wait states, or the target may disconnect the transaction with no data being transferred, which would greatly reduce the PCI throughput for single read accesses.

💐 BusView - [P	CI CLOCK mode Trac	e core_rea	d.trc triggere	d at START:4]	
📰 Eile Edit Compare Search Jump Count Format Marker Utilities Window Help						
<u>)</u> 🖞 📑 🖨	>⊁⊷ ≗ ₽		<u>></u> Ya Ya Ya		⊥ * * ? ∑	
Sample	TimeRel Burst#	State	C/BE[7:0]#	AD[63:32]	AD[31:0]	
TRIG:	Øns .	Addr	MemWr	00000000	E0000000	
1:	30ns .	TΨ	00000000	00000000	888888800	
2:	30ns .	Data	00000000	00000000	888888800	
3:	30ns .	Addr	MenRd	00000000	E0000004	
4:	30ns .	T₩	00000000	00000000	E0000004	
5:	30ns .	TdwodTr	00000000	00000000	0001003C	
6:	30ns .		00000000	00000000	0001003C	
7:	30ns .		00000000	00000000	E0000004	
8:	30ns .		00000000	00000000	E0000004	
9:	30ns .	Addr	MemRd	00000000	E0000004	
10:	30ns .	TΨ	00000000	00000000	E0000004	
11:	30ns .	TdwodTr	00000000	00000000	0001003C	
12:	30ns .		00000000	00000000	0001003C	
13:	30ns .		00000000	00000000	E0000004	
14:	30ns .		00000000	00000000	E0000004	
15:	30ns .	Addr	MenRd	00000000	E0000004	
16:	30ns .	T₩	00000000	00000000	E0000004	
17:	30ns .	TdwodTr	00000000	00000000	0001003C	
18:	30ns .		00000000	00000000	0001003C	
19:	30ns .		00000000	00000000	E0000004	
20:	30ns .		00000000	00000000	E0000004	
21:	30ns .	Addr	MemRd	00000000	E0000004	
22:	30ns .	τw	00000000	00000000	E0000004	
23:	30ns .	TdwodTr	00000000	00000000	0001003C	
24:	30ns .		00000000	00000000	0001003C	
25:	30ns .		00000000	00000000	E0000004	
26:	30ns .		00000000	00000000	E0000004	
27:	30ns .	Addr	MemRd	00000000	E0000004	
28:	30ns .	τw	00000000	00000000	E0000004	
29:	30ns .	τw	00000000	00000000	0001003C	
30:	30ns .	Data	00000000	00000000	22222222	

Figure 6. Single word reads trace. Eagle-35 (master) to Hawk-35 (target)

The following tables summarizes the ADSP-BF535 PCI performance metrics:

Access Type	Target memory	Throughput	Efficiency
Burst	L2	89.12 MB/s	72.83 %
Writes	SDRAM	88.26 MB/s	72.44%
Burst	L2	26.04 MB/s	40 %
Reads	SDRAM	25.97 MB/s	39.91%
Sequential Single	L2	44.42 MB/s	33.33%
Writes	SDRAM	44.42 MB/s	33.33
Sequential Single	L2	4.16 MB/s	9.37%
Reads	SDRAM	3.55 MB/s	8%

Table 1. Transfer between Eagle-35 (PCI master) and Hawk-35 (PCI device) both with an SCLK of 131 MHz.

Access Type	Efficiency	Throughput
Burst Reads	80.09 %	85.17 MB/s
Burst Writes	95.48 %	57.96 MB/s

Table 2. Transfer between the VMETRO's PCI exerciser (PCI master) and the Hawk-35 board (PCI device)

Conclusion

This Engineer to Engineer note provides some PCI benchmarks and performance considerations that should be helpful in determining the usage of the ADSP-BF535 PCI interface appropriate to the architecture of a given PCI agent. For instance, it may make sense to have the ADSP-BF535 PCI interface perform a write to a PCI agent rather than have the PCI agent read the ADSP-BF535 PCI memory. This may, however, not be necessary if the reading agent has a rather large burst length, as was the case above for the VMETRO PCI exerciser.

References

- [1] ADSP-BF535 Blackfin[®] Processor Hardware Reference Revision 2.0, April 2003 Analog Devices, Inc.
- [2] PCI Hardware and Reference, 5th Edition, Solari & Willse.
- [3] PCI System Architecture, 4th Edition, Mindshare, Inc
- [4] PCI Local Bus Specification Revision 2.2 December 18, 1998

Document History

Version	Description
September 3, 2003 by J Manguane	Initial Final Release
August 4, 2003 by J Manguane	Initial Draft Release