
 

 
Understanding Advanced Processor Features Promotes Efficient Coding  
By David Katz, Tomasz Lukasiak and Rick Gentile, Blackfin Applications Group, 
Analog Devices, Inc.  

Today's digital signal processors (DSPs) have achieved such an attractive mix of 
performance, peripheral mix, power dissipation and pricing that many system designers 
are eager to explore their benefits over the processors with which they've traditionally 
designed.  One potential hurdle to this is the large amount of legacy C/C++ code they've 
developed for their application space. Clearly, these engineers would like to leverage 
their existing high-level code base on a DSP platform while taking advantage of DSP 
architectural features that enable performance unattainable on their former platform.  
Moreover, they require a familiar, intuitive development environment, as well as a 
straightforward way to implement assembly language routines selectively for increased 
performance.  This article discusses programming strategies and techniques for DSPs in 
today’s development environment.  

HLL vs Assembly – A Combination May Be Best  
One mandatory task when undertaking a DSP-based project is deciding what kind of 
programming methodology to use.  The choice is usually between assembly language 
and a high-level language (HLL) like C or C++. The decision revolves around many 
factors, so it’s important to understand the benefits and drawbacks each approach 
entails.  

Benefits of C/C++ include modularity, portability and reusability.  Not only do the 
majority of embedded programmers have experience with one of these high-level 
languages, but also there exists a huge code base that can be ported from an existing 
microcontroller or DSP domain to a new DSP platform in a relatively straightforward 
manner.  Because assembly language is architecture-specific, reuse is typically restricted 
to devices in the same processor family.  Also, within a development team it is often 
desirable to have various teams coding different system modules, and a HLL allows these 
cross-functional teams to be processor-agnostic.  

Traditional assembly languages have long been maligned for their arcane syntax and 
strange acronyms.  Today, however, these factors are much less of an issue in 
architectures where so-called “algebraic syntax” is used. Figure 1 shows an example of a 
typical DSP instruction in the conventional style versus that of the algebraic format.  It is 
clear that the latter’s structure is much more intuitive.  



 

 

One reason assembly has been difficult to program is its focus on data flow between the 
DSP’s actual register sets, computational units and memories.  In C/C++, this 
manipulation typically occurs at a much more abstract level through the use of variables 
and function/procedure calls, making the code easier to follow.   

Today’s C/C++ compilers are quite resourceful, and many can do an admirable job of 
compiling the HLL code into tight assembly code.  In fact, it’s often best to just let the 
compiler optimizer do its job. However, the fact remains that compiler performance is 
tuned to a specific set of features that the tool developer considered most important.  
Therefore, it cannot exceed handcrafted assembly code performance in all situations.  

The bottom line is that developers use assembly language only when it is necessary to 
optimize important processing-intensive code blocks for efficient execution on the DSP.  
HLL compiler optimization switches can do an admirable job, but nothing beats 
thoughtful, direct control of DSP data flow and computation.  This is why designers often 
use a combination of C/C++ and assembly.  The HLL is fine for the control and basic 
data manipulation, but the assembly shines for efficient numeric computation. 
 
Architectural Features for Efficient Programming  
In order for the assembly programmer to do an effective job, it is imperative to 
understand the types of structures that can differentiate DSPs from processors not 



 

optimized for super-fast number crunching.  These features include:  

. • Specialized addressing modes  

. • Hardware Loop Constructs  

. • Cacheable memories  

. • Multiple operations per cycle  

. • Interlocked pipeline  

. • Flexible data register file  
 
These features can make an enormous difference in computational efficiency. Let’s 
discuss each one in turn.  

Specialized Addressing Modes  

Allowing the processor to access multiple data words in a single cycle requires complete 
flexibility in address generation.  In addition to the more DSP-centric access sizes along 
16 and 32-bit boundaries, byte addressing is required for the most efficient processing.  
This is important because some common applications, including many video-based 
systems, operate on 8-bit data.  When memory accesses are restricted to a single 
boundary, extra cycles may be required for the processor to mask off relevant bits.       

Another beneficial addressing capability is “circular buffering”. This feature must be 
supported directly by the processor with no special software management overhead.  
Circular buffering allows a programmer to define buffers in memory and stride through 
them automatically.  Once the buffer is set up, no special software interaction is required 
to navigate through the data. The address generator handles non-unity strides and, more 
importantly, handles the “wrap-around” feature illustrated in Figure 2.  Without this 
automated address generation, the programmer would have to manually keep track of the 
buffer, thus wasting valuable processing cycles.  



 

 

An essential addressing mode for efficient signal processing operations such as the FFT 
and DCT is bit reversal. Just as the name implies, “bit reversal” involves reversing the 
bits in a binary address. That is, the least significant bits are swapped in position with the 
most significant bits. The data ordering required by a radix-2 butterfly is in "bit-reversed" 
order, so bit-reversed indices are used to combine FFT stages. It is possible to calculate 
these bit-reversed indices in software, but this is very inefficient.  An example of bit 
reversal address flow is shown in Figure 3.  



 

 

Hardware Loop Constructs  

Looping is a critical feature in communications processing algorithms.  There are two key 
looping-related features that can improve performance on a wide variety of algorithms.  
The first is referred to as a “zero-overhead hardware loop”.  As with the addressing 
capabilities, the looping constructs are implemented in hardware.  Again, while this 
function could be accomplished in software, the associated overhead would cut into the 
real-time processing budget. Zero overhead loops allow programmers to initialize loops 
by setting up a count value and defining the loop bounds. The processor will continue to 
execute this loop until the count has been reached.  

Zero-overhead loops are part of most processors, but “hardware loop buffers” can really 
add increased performance in looping constructs.  They act as a type of cache for 
instructions being executed in the loop. For example, after the first time through a loop, 
the instructions can be kept in the loop buffer, eliminating the need to “re-fetch” the same 
instructions over and over again each time through the loop.  This can produce a 
significant savings in cycles by keeping the loop instructions in a buffer where they can 
be accessed in a single cycle. This feature requires no additional setup by the programmer 
but it is important to know the size of this buffer so that loop sizes can be selected 
intelligently.  

 



 

 
Cacheable Memories  
Typical DSPs usually have a small amount of fast, on-chip memory.  Microcontrollers 
usually have access to large external memories.  A hierarchical memory architecture 
combines the best of both approaches, providing several levels of memory with different 
performance levels. For applications that require the most determinism, on-chip SRAM 
can be accessed in a single core clock cycle. For systems with larger code sizes, large, 
higher-latency on-chip and off-chip memory is available.    

By itself, this hierarchy is only moderately useful, since today’s high-speed processors 
would effectively run at much slower speeds because larger applications would only fit in 
slower external memory.  Additionally, programmers would be forced to manually move 
key code in and out of internal SRAM.  However, by adding data and instruction caches 
into the architecture, external memory becomes much more manageable. The cache 
reduces the manual movement of instructions and data into the processor core.  This 
greatly simplifies the programming model by eliminating the need to worry about 
managing the flow of data and instructions into the core.  

Figure 4 demonstrates a typical memory configuration where instructions are brought in 
from external memory as they are needed.  Instruction cache usually operates with some 
type of Least Recently Used (LRU) algorithm, insuring that instructions that run more 
often get replaced less often. The figure also illustrates that having the ability to 
configure some on-chip data memory as cache and some as SRAM can optimize 
performance.  DMA controllers can feed the core directly, while data from tables can be 
brought in to the data cache as they are needed.  



 

 

Multiple Operations per Cycle  

Processors are often benchmarked by how many millions of instructions they can execute 
per second (MIPS). However, for modern processors this can be misleading because of 
the confusion surrounding what actually constitutes an instruction.  For example, multi-
issue instructions, which were once reserved for use in higher-cost parallel processors, 
are now also available in low-cost, fixed-point processors.  In addition to performing 
multiple ALU/MAC operations each core processor cycle, additional data loads and 
stores can also be completed in the same cycle.  The memory is typically portioned into 
sub-banks that can be dual-accessed by the core and optionally by a DMA controller.  
Factoring in the hardware-based address calculations described above, it is apparent that 
a lot can happen in a single cycle.    

An example of a multi-operation instruction is shown in Figure 5.  As shown, in 
addition to 2 separate MAC operations, a data fetch and data store can also be 
accomplished in the same processor clock cycle.  



 

 

Interlocked Pipeline  

As processors increase in speed, it is necessary for the processing pipeline to become 
deeper in terms of overall stages.  This is important to understand because when 
assembly programming is required, the pipeline can make programming more 
challenging.  Some processors, however, have an “interlocked” pipeline.  This means that 
when assembly programming is performed, the programmer does not have to manually 
schedule or keep track of data and instructions moving through the pipe. The processor 
automatically handles stalls and bubbles.  

Flexible Data Register File  

Finally, another complementary feature is a versatile data register set.  In traditional 
fixed-point DSPs, word sizes are usually fixed. However, there is an advantage to having 
data registers that can be treated as either a 32-bit word (e.g., R0) or two 16-bit words 
(R0.L and R0.H, for the low and high halves, respectively). In a dual-MAC system, this 
allows operation on four pieces of 16-bit data in a single cycle. 

 
 
 



 

 
Code Comparison and Analysis  
The architectural framework described above is the foundation of efficient DSP 
programming.  Many ubiquitous number-crunching algorithms can be executed 
extremely fast if the programmer utilizes the full potential of the processor's features.  
Below is a selection of a few common algorithms with a description of how they should 
be executed on a DSP.  Note that, while the code efficiency needs to be examined at the 
assembly level, modern optimizing DSP compilers are designed to utilize many of the 
same rules that are at the disposal of an assembly programmer. For illustration, Blackfin 
processor assembly language is used in the examples.  

Dot Product The dot product, or scalar product, is an operation useful in measuring 
orthogonality of two vectors. Most C programmers would be familiar with the following 
implementation of a dot product:  

short dot(short a[], short b[], int size) { int i; int output = 0;  

  for(i=0; i<size; i++) {  
output += (a[i] * b[i]);  

}  
return output; 
 

Below is the main portion of the assembly code:  

//P0=loop count, I0 & P1 are address registersA1 = A0 = 0; // A0 & 
A1 are accumulatorsLSETUP (loop1,loop1) LC0 = P0 ; // Set up hardware loop starting at label loop1:loop1: A1 += 
R1.H * R0.H , A0 += R1.L * R0.L || R1 = [ P1 ++ ] || R0 = [ I0 ++ ] ;  

The following points illustrate DSP architectural features that facilitate this tight coding.  

Hardware loop buffers and loop counters eliminate the need for jump instructions at the 
end of each iteration. Since a dot product is a summation of products, it is implemented 
in a loop.  Many RISC microcontrollers use a jump instruction at the end of each iteration 
in order to process the next iteration of the loop.  The assembly program shows the 
LSETUP instruction, which is the only instruction needed to implement a loop.  

Multi-issue instructions allow the execution of instructions and two data accesses in the 
same cycle. In each iteration, the values a[i] and b[i] must be read, then multiplied, and 
finally written back to the running summation in the variable output.  On many 
microcontroller platforms, this effectively amounts to four instructions.  The last line of 
the assembly code shows that all of these operations can be executed in one cycle.  

Parallel ALU operations allow two 16-bit instructions to be executed simultaneously. 
The assembly code shows two accumulator units (A0 and A1) being used in each 
iteration. This reduces the number of iterations by 50%, effectively halving the 
original execution time.  



 

 
FIR The finite impulse response filter is a very common filter structure equivalent to the 
convolution operation. A straightforward C implementation looks very similar to the dot 
product:  
// sample the signal into a circular buffer  
x[cur] = sampling_function();  
cur = (cur+1)%TAPS; // advance the cur pointer in a circular fashion  
 

// perform the multiply-
addition  
y = 0;  
for (k=0; k<TAPS; k++) 
{  
 
y += h[k] * 

x[(cur+k)%TAPS];  
} 
 

The essential part of an FIR kernel written in assembly shows a format similar to that of 
the dot  
product. In fact, the same DSP features were used to deliver maximum performance to 
the  
algorithm’s execution.  In this specific example, the samples are stored in the R0 register,  
while the coefficients are stored in the R1 register.  
 

     // P0 holds # of filter taps R0=[I0++] || R1=[I1++]; // set initial 
values for R0 and R1 A1=A0=0;   // zero the accumulators LSETUP (loop1, loop1) LC0 = P0; // configure inner 
looploop1: A1+=R0.L*R1.L, A0+=R0.H*R1.H || R0 = [I0++] || R1 = [I1++]; // compute  

Besides the features described for the dot product, the FIR algorithm shown above 
exploits circular buffering.  

Circular buffers eliminate the need for explicit modulus arithmetic. In the C code 
snippet, the % (modulus) operator provides a mechanism for circular buffering.  As 
shown in the assembly kernel, this modulus operator does not get translated into an 
additional instruction inside the loop. Instead, the Data Address Generator registers I0 
and I1 are configured outside the loop to automatically wrap around to the beginning 
upon hitting the coefficient buffer boundary.  

FFT A Fast Fourier Transform is an integral part of many signal-processing algorithms.  
One of its peculiarities is that the input vector is in sequential time order, but the output 
comes out in bit-reversed order.  Most traditional general-purpose processors require the 
programmer to implement a separate routine to unscramble the bit-reversed output.  On a 
DSP platform, bit reversal is designed into the addressing engine.  



 

 

Bit-reversed addressing eliminates the need for a separate bit-reversing procedure in 
an FFT implementation. Allowing the hardware to automatically bit-reverse the output 
of an FFT algorithm relieves the programmer from writing additional utilities, and thus 
improves performance.  

In addition to the instruction constructs shown above, some processors also include an 
additional set of dedicated instructions to support a wide range of applications.  The 
purpose of these instructions is to further extend the processing capabilities to algorithms 
such as Viterbi, Huffman coding and many other bit manipulation routines.  
Clearly, there is much to consider when defining a programming strategy for a DSP-
based application. Using C or C++ with a strong compiler/optimizer can produce robust 
results much of the time, but handcrafted assembly is often the best way to gain extra 
performance out of a processor. However, this effort must be undertaken only after 
gaining a thorough understanding of the architectural blocks that promote efficient 
coding. 
 
 


