
 

 
Video Filtering Considerations for Media Processors  
By David Katz and Rick Gentile, Blackfin Applications Group, Analog Devices, Inc.  

Until recently, designers needing to perform video or image analysis in real time, a 
typical requirement of medical, industrial and military systems, had to resort to expensive 
specialized processors. With the advent of fixed-point, high-performance embedded 
media processors, however, it has become possible to do image processing economically 
in real time.  To develop truly efficient algorithms, it is essential for designers to take 
advantage of the architectural features these processors provide. This article discusses 
how digital image filtering algorithms can leverage the multimedia-friendly features of an 
embedded media processor’s architecture. The Blackfin processor’s features and 
instruction set are used as a reference point, but the same concepts apply to high-
performance media processors in general.  

Although the clock speeds of fixed-point processors now reach beyond 300 MHz, this 
speed increase alone doesn’t guarantee the ability to accommodate real-time video 
filtering. Just as important are multimedia-geared architectural features and video-
specific instructions.  

Most video applications need to deal with 8-bit data, since individual pixel components 
(whether RGB or YUV) are usually byte quantities. Therefore, 8-bit video ALUs and 
byte-based address generation can make a huge difference in manipulating pixels. This is 
a nontrivial point, because DSPs typically operate on 16-bit or 32-bit boundaries.  

Another complementary feature is a flexible data register file.  In traditional fixed-
point DSPs, word sizes are usually fixed. However, there is an advantage to having 
data registers that can be treated as either a 32-bit word (e.g., R0) or 2 16-bit words 
(R0.L and R0.H, for the low and high halves, respectively). The utility of this 
structure will become apparent below.   

Dedicated single-cycle instructions can be very convenient for providing efficient 
multimedia coding algorithms. A good example of this is a “Sum of Absolute 
Differences” instruction that can add up differences between several pixel sets 
simultaneously, indicating how much a scene has changed between frames.    

 
Two-dimensional Image Convolution  

Since a video stream is really an image sequence moving at a specified rate, image filters 
need to operate fast enough to keep up with the succession of input images.  Thus, it is 
imperative that image filter kernels be optimized for execution in the lowest possible 
number of processor cycles.  This can be illustrated by examining a simple image filter 
set based on two-dimensional convolution.  

 



 

 
 
Convolution is one of the fundamental operations in image processing.  In a two-
dimensional convolution, the calculation performed for a given pixel is a weighted sum 
of intensity values from pixels in its immediate neighborhood.  Since the neighborhood of 
a mask is centered on a given pixel, the mask usually has odd dimensions.  The mask size 
is typically small relative to the image, and a 3x3 mask is a common choice, because it is 
computationally reasonable on a per-pixel basis, but large enough to detect edges in an 
image.   
 
The basic structure of the 3x3 kernel is shown in Figure 1a. As an example, the output of 
the convolution process for a pixel at row 20, column 10 in an image would be:  
Out(20,10)=A*(19,9)+B*(19,10)+C*(19,11)+D*(20,9)+E*(20,10)+F*(20,11)+G*(21,9)+H*(21,10)+I*(21,11)  

 

It is important to choose coefficients in a way that aids computation.  For instance, scale 
factors that are powers of 2 (including fractions) are preferred because multiplications 
can then be replaced by simple shift operations.  

Figures 1b-1e show several useful 3x3 kernels, each of which is explained briefly below.  

The Delta Function shown in Figure 1b is among the simplest image manipulations, 
passing the current pixel through without modification.   

Figure 1c shows 2 popular forms of an edge detection mask.  The first one detects 
vertical edges, while the second one detects horizontal edges. High output values 
correspond to higher degrees of edge presence.  

 



 

 
 
The kernel in Figure 1d is a smoothing filter. It performs an average of the 8 surrounding 
pixels and places the result at the current pixel location. This has the result of 
“smoothing,” or low-pass filtering, the image.  

The filter in Figure 1e is known as an “unsharp masking” operator.  It can be considered 
as producing an edge-enhanced image by subtracting from the current pixel a smoothed 
version of itself (constructed by averaging the 8 surrounding pixels).  

Performing Image Convolution on an Embedded Media Processor  

Let’s take a closer look at the two-dimensional convolution process. The high-level 
algorithm can be described by the following steps:  
1. Place the center of the mask over an element of the input matrix.  
2. Multiply each pixel in the mask neighborhood by the corresponding filter mask 
element.  
3. Sum each of the multiplies into a single result.  
4. Place each sum in a location corresponding to the center of the mask in the output 
matrix  
 
Figure 2 shows three matrices: an input matrix f(x,y), a 3x3 mask matrix h(x,y), and an 
output matrix g(x,y).  



 

 
After each output point is computed, the mask is moved to the right by one element.  On 
the image edges, the algorithm wraps around to the first element in the next row.  For 
example, when the mask is centered on element F2m, the H23 element of the mask 
matrix is multiplied by element F31 of the input matrix.  As a result, the usable section of 
the output matrix is reduced by 1 element along each edge of the image.  
 

Let’s pause for a moment to consider the demands such a filter places on a processor:  
For a VGA image (640x480 pixels/frame) at 30 frames/sec, there are 9.2 Mpixels/sec.  
Now consider if the 9 multiplies and 8 accumulates need to be done serially:  that’s 
(9+8)*9.2 = 156 MIPS! If the accumulates are done in parallel with the multiplies, the 
load will be reduced to 9*9.2 = 83 MIPS.  The following example will show how an 
additional 2x cycle savings can be achieved.  

Efficient 2D Convolution: An example  
For the code described in the following sections, the focus will be on the “inner” loop 
where all of the multiply/accumulate (MAC) operations are performed.  This example 
will demonstrate that by aligning the input data properly, both MAC units can be used in 
a single processor cycle to process two output points at a time. During this same cycle, 
multiple data fetches occur in parallel with the MAC operation.   



 

 

The critical section of this application is the inner loop, which is shown in Figure 3. 
Each line within the inner loop is executed in a single instruction. The input data is 
represented in 16-bit quantities. The start of the input matrix must be aligned on a 32-bit 
boundary.  This ensures that two consecutive points from the input matrix can be read in 
with a single 32-bit read.  Prior to entering this loop, the first value of the input matrix is 
stored in R0.H and the second value (F12) is stored in R0.L, as shown in the first 2 
operations during Cycle 1 in Figure 3. The register R1.L also was loaded prior to 
entering the inner loop. It contains the value of the first element in the mask matrix 
(H11).    

 
As described earlier, there are nine multiplies and eight accumulates required to obtain 
each element of the output matrix.  However, because of the dual MAC operations, 2 
output elements are available at the completion of each inner loop. Thus, F11*H11 and 
F12*H11 are available in the accumulators at the end of the first instruction. Each 
instruction in the inner loop moves to the next mask value. Results are summed in 
separate accumulators.  The final outputs of the inner loop are loaded into R6.  



 

 

Not only are multiple arithmetic operations occurring each cycle, but also load/store 
operations take place in parallel to achieve even greater efficiency. Again using Cycle 
#1 as an example, the next input element (F13) is read into R0.L and is available for use 
in a MAC on the very next instruction. Similarly, R2 is loaded with the next set of mask 
values.  These values are used in subsequent MAC operations in the inner loop.  

 
Conclusion  
As image filtering goes, two-dimensional convolution with a 3x3 mask is relatively 
straightforward to implement. However, the study presented above demonstrates how 
selecting a processor designed for real-time image processing and understanding its 
architectural components can increase algorithm efficiency and reduce cycle time, in this 
case by a factor of 4. This understanding, in turn, can provide a strong foundation for 
implementing more complex image processing functionality on the same platform.   
 


