

Video Filtering Considerations for Media Processors
By David Katz and Rick Gentile, Blackfin Applications Group, Analog Devices, Inc.

Until recently, designers needing to perform video or image analysis in real time, a
typical requirement of medical, industrial and military systems, had to resort to expensive
specialized processors. With the advent of fixed-point, high-performance embedded
media processors, however, it has become possible to do image processing economically
in real time. To develop truly efficient algorithms, it is essential for designers to take
advantage of the architectural features these processors provide. This article discusses
how digital image filtering algorithms can leverage the multimedia-friendly features of an
embedded media processor’s architecture. The Blackfin processor’s features and
instruction set are used as a reference point, but the same concepts apply to high-
performance media processors in general.

Although the clock speeds of fixed-point processors now reach beyond 300 MHz, this
speed increase alone doesn’t guarantee the ability to accommodate real-time video
filtering. Just as important are multimedia-geared architectural features and video-
specific instructions.

Most video applications need to deal with 8-bit data, since individual pixel components
(whether RGB or YUV) are usually byte quantities. Therefore, 8-bit video ALUs and
byte-based address generation can make a huge difference in manipulating pixels. This is
a nontrivial point, because DSPs typically operate on 16-bit or 32-bit boundaries.

Another complementary feature is a flexible data register file. In traditional fixed-
point DSPs, word sizes are usually fixed. However, there is an advantage to having
data registers that can be treated as either a 32-bit word (e.g., R0) or 2 16-bit words
(R0.L and R0.H, for the low and high halves, respectively). The utility of this
structure will become apparent below.

Dedicated single-cycle instructions can be very convenient for providing efficient
multimedia coding algorithms. A good example of this is a “Sum of Absolute
Differences” instruction that can add up differences between several pixel sets
simultaneously, indicating how much a scene has changed between frames.

Two-dimensional Image Convolution

Since a video stream is really an image sequence moving at a specified rate, image filters
need to operate fast enough to keep up with the succession of input images. Thus, it is
imperative that image filter kernels be optimized for execution in the lowest possible
number of processor cycles. This can be illustrated by examining a simple image filter
set based on two-dimensional convolution.

Convolution is one of the fundamental operations in image processing. In a two-
dimensional convolution, the calculation performed for a given pixel is a weighted sum
of intensity values from pixels in its immediate neighborhood. Since the neighborhood of
a mask is centered on a given pixel, the mask usually has odd dimensions. The mask size
is typically small relative to the image, and a 3x3 mask is a common choice, because it is
computationally reasonable on a per-pixel basis, but large enough to detect edges in an
image.

The basic structure of the 3x3 kernel is shown in Figure 1a. As an example, the output of
the convolution process for a pixel at row 20, column 10 in an image would be:
Out(20,10)=A*(19,9)+B*(19,10)+C*(19,11)+D*(20,9)+E*(20,10)+F*(20,11)+G*(21,9)+H*(21,10)+I*(21,11)

It is important to choose coefficients in a way that aids computation. For instance, scale
factors that are powers of 2 (including fractions) are preferred because multiplications
can then be replaced by simple shift operations.

Figures 1b-1e show several useful 3x3 kernels, each of which is explained briefly below.

The Delta Function shown in Figure 1b is among the simplest image manipulations,
passing the current pixel through without modification.

Figure 1c shows 2 popular forms of an edge detection mask. The first one detects
vertical edges, while the second one detects horizontal edges. High output values
correspond to higher degrees of edge presence.

The kernel in Figure 1d is a smoothing filter. It performs an average of the 8 surrounding
pixels and places the result at the current pixel location. This has the result of
“smoothing,” or low-pass filtering, the image.

The filter in Figure 1e is known as an “unsharp masking” operator. It can be considered
as producing an edge-enhanced image by subtracting from the current pixel a smoothed
version of itself (constructed by averaging the 8 surrounding pixels).

Performing Image Convolution on an Embedded Media Processor

Let’s take a closer look at the two-dimensional convolution process. The high-level
algorithm can be described by the following steps:
1. Place the center of the mask over an element of the input matrix.
2. Multiply each pixel in the mask neighborhood by the corresponding filter mask
element.
3. Sum each of the multiplies into a single result.
4. Place each sum in a location corresponding to the center of the mask in the output
matrix

Figure 2 shows three matrices: an input matrix f(x,y), a 3x3 mask matrix h(x,y), and an
output matrix g(x,y).

After each output point is computed, the mask is moved to the right by one element. On
the image edges, the algorithm wraps around to the first element in the next row. For
example, when the mask is centered on element F2m, the H23 element of the mask
matrix is multiplied by element F31 of the input matrix. As a result, the usable section of
the output matrix is reduced by 1 element along each edge of the image.

Let’s pause for a moment to consider the demands such a filter places on a processor:
For a VGA image (640x480 pixels/frame) at 30 frames/sec, there are 9.2 Mpixels/sec.
Now consider if the 9 multiplies and 8 accumulates need to be done serially: that’s
(9+8)*9.2 = 156 MIPS! If the accumulates are done in parallel with the multiplies, the
load will be reduced to 9*9.2 = 83 MIPS. The following example will show how an
additional 2x cycle savings can be achieved.

Efficient 2D Convolution: An example
For the code described in the following sections, the focus will be on the “inner” loop
where all of the multiply/accumulate (MAC) operations are performed. This example
will demonstrate that by aligning the input data properly, both MAC units can be used in
a single processor cycle to process two output points at a time. During this same cycle,
multiple data fetches occur in parallel with the MAC operation.

The critical section of this application is the inner loop, which is shown in Figure 3.
Each line within the inner loop is executed in a single instruction. The input data is
represented in 16-bit quantities. The start of the input matrix must be aligned on a 32-bit
boundary. This ensures that two consecutive points from the input matrix can be read in
with a single 32-bit read. Prior to entering this loop, the first value of the input matrix is
stored in R0.H and the second value (F12) is stored in R0.L, as shown in the first 2
operations during Cycle 1 in Figure 3. The register R1.L also was loaded prior to
entering the inner loop. It contains the value of the first element in the mask matrix
(H11).

As described earlier, there are nine multiplies and eight accumulates required to obtain
each element of the output matrix. However, because of the dual MAC operations, 2
output elements are available at the completion of each inner loop. Thus, F11*H11 and
F12*H11 are available in the accumulators at the end of the first instruction. Each
instruction in the inner loop moves to the next mask value. Results are summed in
separate accumulators. The final outputs of the inner loop are loaded into R6.

Not only are multiple arithmetic operations occurring each cycle, but also load/store
operations take place in parallel to achieve even greater efficiency. Again using Cycle
#1 as an example, the next input element (F13) is read into R0.L and is available for use
in a MAC on the very next instruction. Similarly, R2 is loaded with the next set of mask
values. These values are used in subsequent MAC operations in the inner loop.

Conclusion
As image filtering goes, two-dimensional convolution with a 3x3 mask is relatively
straightforward to implement. However, the study presented above demonstrates how
selecting a processor designed for real-time image processing and understanding its
architectural components can increase algorithm efficiency and reduce cycle time, in this
case by a factor of 4. This understanding, in turn, can provide a strong foundation for
implementing more complex image processing functionality on the same platform.

