
a

W 5.0
C/C++ Compiler and Library Manual

 for Blackfin® Processors

Revision 5.4, January 2011

Part Number
82-000410-03

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2011 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, Blackfin, EZ-KIT Lite, and VisualDSP++ are
registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual iii
for Blackfin Processors

 CONTENTS

PREFACE

Purpose of This Manual ... li

Intended Audience ... li

Manual Contents Description ... lii

What’s New in This Manual ... lii

Technical or Customer Support .. liv

Supported Processors .. liv

Product Information .. liv

Analog Devices Web Site ... lv

VisualDSP++ Online Documentation lv

Technical Library CD ... lvi

EngineerZone ... lvi

Social Networking Web Sites ... lvii

Notation Conventions ... lvii

Contents

iv VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

COMPILER

C/C++ Compiler Overview ... 1-3

Compiler Command-Line Interface .. 1-5

Running the Compiler .. 1-6

C/C++ Compiler Command-Line Switches 1-10

C/C++ Mode Selection Switch Descriptions 1-26

-c89 ... 1-26

-c99 ... 1-26

-c++ ... 1-26

C/C++ Compiler Common Switch Descriptions 1-26

sourcefile .. 1-27

-@ .. 1-27

-A .. 1-27

-add-debug-libpaths .. 1-28

-alttok ... 1-28

-always-inline ... 1-29

-annotate .. 1-30

-annotate-loop-instr .. 1-30

-auto-attrs .. 1-30

-bss .. 1-30

-build-lib .. 1-31

-C .. 1-31

-c ... 1-31

-const-read-write .. 1-31

VisualDSP++ 5.0 C/C++ Compiler and Library Manual v
for Blackfin Processors

Contents

-const-strings .. 1-32

-cplbs .. 1-32

-D .. 1-32

-dcplbs .. 1-33

-debug-types <file.h> ... 1-33

-decls-{weak|strong} .. 1-33

-double-size-{32 | 64} .. 1-34

-double-size-any ... 1-34

-dry .. 1-34

-dryrun ... 1-35

-E ... 1-35

-ED .. 1-35

-EE ... 1-35

-eh .. 1-35

-enum-is-int .. 1-36

-expand-symbolic-links .. 1-37

-expand-windows-shortcuts ... 1-37

-extra-keywords ... 1-37

-extra-loop-loads ... 1-37

-fast-fp .. 1-38

-file-attr .. 1-38

-fixed-point-io .. 1-38

-flags{-asm | -compiler | -lib | -link | -mem} switch
[,switch2[,...]] ... 1-39

-force-circbuf .. 1-39

Contents

vi VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-force-link .. 1-40

-fp-associative ... 1-40

-full-io .. 1-40

-full-version .. 1-41

-fx-contract .. 1-41

-fx-rounding-mode-biased ... 1-41

-fx-rounding-mode-truncation 1-41

-fx-rounding-mode-unbiased ... 1-41

-g ... 1-42

-glite ... 1-42

-guard-vol-loads .. 1-43

-H ... 1-43

-HH ... 1-43

-h[elp] .. 1-43

-I .. 1-44

-I- .. 1-44

-i .. 1-45

-icplbs .. 1-45

-ieee-fp ... 1-45

-implicit-pointers .. 1-46

-include .. 1-46

-ipa .. 1-47

-jcs2l .. 1-47

-L ... 1-47

VisualDSP++ 5.0 C/C++ Compiler and Library Manual vii
for Blackfin Processors

Contents

-l ... 1-47

-list-workarounds .. 1-48

-M .. 1-48

-MD ... 1-49

-MM .. 1-49

-Mo .. 1-49

-Mt ... 1-49

-map ... 1-49

-mem .. 1-50

-multicore ... 1-50

-multiline ... 1-50

-never-inline ... 1-51

-no-alttok ... 1-51

-no-annotate ... 1-51

-no-annotate-loop-instr ... 1-52

-no-assume-vols-are-mmrs ... 1-52

-no-auto-attrs .. 1-52

-no-bss .. 1-53

-no-builtin .. 1-53

-no-circbuf .. 1-53

-no-const-strings ... 1-53

-no-defs .. 1-54

-no-eh ... 1-54

-no-expand-symbolic-links .. 1-54

Contents

viii VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-no-expand-windows-shortcuts 1-54

-no-extra-keywords ... 1-54

-no-force-link ... 1-55

-no-fp-associative .. 1-55

-no-full-io .. 1-56

-no-fx-contract ... 1-56

-no-int-to-fract ... 1-56

-no-jcs2l ... 1-57

-no-mem .. 1-57

-no-multiline .. 1-57

-no-progress-rep-timeout .. 1-57

-no-sat-associative ... 1-57

-no-saturation ... 1-58

-no-std-ass .. 1-58

-no-std-def ... 1-58

-no-std-inc ... 1-59

-no-std-lib .. 1-59

-no-threads ... 1-59

-no-workaround ... 1-59

-no-zero-loop-counters .. 1-60

-O[0|1] .. 1-60

-Oa .. 1-60

-Ofp ... 1-60

-Og .. 1-61

VisualDSP++ 5.0 C/C++ Compiler and Library Manual ix
for Blackfin Processors

Contents

-Os ... 1-61

-Ov ... 1-61

-o ... 1-63

-overlay ... 1-64

-overlay-clobbers ... 1-64

-P ... 1-65

-PP ... 1-65

-p[1|2] .. 1-65

-path {-asm | -compiler | -lib | -link} 1-65

-path-install .. 1-66

-path-output ... 1-66

-path-temp .. 1-66

-pch .. 1-66

-pchdir ... 1-66

-pgo-session .. 1-67

-pguide ... 1-67

-pplist ... 1-68

-proc ... 1-68

-progress-rep-func ... 1-69

-progress-rep-opt ... 1-69

-progress-rep-timeout .. 1-70

-progress-rep-timeout-secs ... 1-70

-R ... 1-70

-R- ... 1-71

Contents

x VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-reserve ... 1-71

-S ... 1-71

-s .. 1-71

-sat-associative .. 1-71

-save-temps ... 1-72

-sdram .. 1-72

-section .. 1-72

-show ... 1-73

-signed-bitfield ... 1-74

-signed-char .. 1-74

-si-revision .. 1-74

-stack-detect ... 1-74

-structs-do-not-overlap ... 1-75

-syntax-only .. 1-75

-sysdefs ... 1-76

-T .. 1-76

-threads .. 1-76

-time .. 1-77

-U .. 1-77

-unsigned-bitfield ... 1-77

-unsigned-char .. 1-78

-v ... 1-78

-verbose .. 1-79

-version .. 1-79

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xi
for Blackfin Processors

Contents

-W{error|remark|suppress|warn} 1-79

-Werror-limit .. 1-80

-Werror-warnings .. 1-80

-Wremarks .. 1-80

-Wterse ... 1-80

-w ... 1-80

-warn-protos ... 1-81

-workaround ... 1-81

-write-files .. 1-81

-write-opts .. 1-82

-xref .. 1-82

-zero-loop-counters ... 1-83

C Mode (MISRA) Compiler Switch Descriptions 1-83

-misra ... 1-83

-misra-linkdir ... 1-84

-misra-no-cross-module ... 1-84

-misra-no-runtime ... 1-84

-misra-strict .. 1-84

-misra-suppress-advisory .. 1-85

-misra-testing .. 1-85

-Wmis_suppress .. 1-85

-Wmis_warn ... 1-85

Contents

xii VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

C++ Mode Compiler Switch Descriptions 1-85

-anach .. 1-85

-check-init-order ... 1-87

-extern-inline .. 1-87

-friend-injection ... 1-88

-full-dependency-inclusion .. 1-88

-ignore-std .. 1-88

-no-anach ... 1-89

-no-extern-inline .. 1-89

-no-friend-injection .. 1-89

-no-implicit-inclusion ... 1-89

-no-rtti ... 1-90

-no-std-templates .. 1-90

-rtti .. 1-90

-std-templates ... 1-90

Environment Variables Used by the Compiler 1-91

Additional Path Support .. 1-92

Windows Shortcut Support ... 1-92

Cygwin Path Support .. 1-93

Cygwin Symbolic Links .. 1-93

Cygdrive Folders ... 1-94

Cygwin Mounted Directories .. 1-94

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xiii
for Blackfin Processors

Contents

Optimization Control .. 1-95

Optimization Levels .. 1-95

Interprocedural Analysis .. 1-98

Interaction With Libraries ... 1-99

Controlling Silicon Revision and Anomaly Workarounds
Within the Compiler .. 1-100

 Using the -si-revision Switch .. 1-101

Using the -workaround Switch .. 1-102

Using the -no-workaround Switch 1-103

Interactions: Silicon Revision vs. Workaround
Switches ... 1-104

Using Native Fixed-Point Types ... 1-104

Fixed-Point Type Support .. 1-104

Native Fixed-Point Types ... 1-105

Native Fixed-Point Constants ... 1-107

A Motivating Example ... 1-108

Fixed-Point Arithmetic Semantics .. 1-109

Data Type Conversions and Fixed-Point Types 1-110

Bit-Pattern Conversion Functions: bitsfx and fxbits 1-112

Arithmetic Operators for Fixed-Point Types 1-113

FX_CONTRACT ... 1-115

Rounding Behavior .. 1-118

Contents

xiv VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Arithmetic Library Functions .. 1-120

divifx ... 1-121

idivfx ... 1-122

fxdivi .. 1-123

mulifx .. 1-124

absfx .. 1-125

roundfx .. 1-125

countlsfx .. 1-126

strtofxfx ... 1-127

I/O Conversion Specifiers ... 1-127

Setting the Rounding Mode .. 1-128

Porting Code Written Using fract16 and fract32 1-131

Fixed-Point Type Example ... 1-137

Language Standards Compliance ... 1-140

C Mode .. 1-140

C++ Mode .. 1-142

MISRA-C Compiler ... 1-143

MISRA-C Compiler Overview .. 1-143

MISRA-C Compliance .. 1-144

Using the Compiler to Achieve Compliance 1-144

Rules Descriptions .. 1-147

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xv
for Blackfin Processors

Contents

C/C++ Compiler Language Extensions 1-156

Function Inlining .. 1-159

Inlining and Optimization .. 1-162

Inlining and Out-of-Line Copies 1-163

Inlining and Global asm Statements 1-163

Inlining and Sections .. 1-164

Variable Argument Macros ... 1-164

Restricted Pointers ... 1-165

Variable-Length Arrays .. 1-166

Non-Constant Initializer Support .. 1-167

Designated Initializers ... 1-168

Hexadecimal Floating-Point Numbers 1-170

Declarations Mixed With Code .. 1-171

Compound Literals .. 1-172

C++ Style Comments ... 1-173

Enumeration Constants That Are Not int Type 1-173

Boolean Type Support Keywords (bool, true, false) 1-173

Native Fixed-Point Types fract and accum 1-174

Inline Assembly Language Support Keyword (asm) 1-174

asm() Construct Syntax ... 1-176

asm() Construct Syntax Rules 1-178

asm() Construct Template Example 1-179

Assembly Construct Operand Description 1-180

Using long long Types in asm Constraints 1-185

Contents

xvi VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Assembly Constructs With Multiple Instructions 1-186

Assembly Construct Reordering and Optimization 1-187

Assembly Constructs With Input and Output
Operands ... 1-188

Assembly Constructs With Compile-Time Constants 1-189

Assembly Constructs and Flow Control 1-190

Guidelines for Using asm() Statements 1-190

Bank Qualifiers ... 1-191

Placement Support Keyword (section) 1-192

Placement of Compiler-Generated Code and Data 1-193

Long Identifiers .. 1-194

Compiler Built-In Functions ... 1-195

Fractional Value Built-In Functions in C 1-196

16-Bit Fractional Built-In Functions 1-198

32-Bit Fractional Built-In Functions 1-203

fract2x16 Built-In Functions 1-207

ETSI Built-In Functions ... 1-215

ETSI Support ... 1-217

32-Bit Fractional ETSI Routines Using
Double-Precision Format ... 1-220

32-Bit Fractional ETSI Routines Using
1.31 Format ... 1-223

16-Bit Fractional ETSI Routines 1-227

Fractional Value Built-In Functions in C++ 1-232

fract16 and fract32 Literal Values in C 1-234

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xvii
for Blackfin Processors

Contents

Converting Between Fractional and Floating-Point
Values .. 1-235

Complex Fractional Built-In Functions in C 1-238

Changing the RND_MOD Bit .. 1-242

Complex Operations in C++ ... 1-243

Packed 16-Bit Integer Built-In Functions 1-245

Division Functions .. 1-246

Full-Precision Accumulator Built-In Functions 1-247

Accumulator Built-In Function Prototypes 1-248

Accumulator Built-In Functions and the Optimizer 1-251

Viterbi History and Decoding Functions 1-253

Search Built-in Functions .. 1-255

Circular Buffer Built-In Functions 1-256

Automatic Circular Buffer Generation 1-256

Explicit Circular Buffer Generation 1-257

Circular Buffer Increment of an Index 1-257

Circular Buffer Increment of a Pointer 1-258

Endian-Swapping Intrinsics ... 1-259

System Built-In Functions ... 1-259

Cache Built-In Functions .. 1-261

flush ... 1-261

flushinv .. 1-262

flushinvmodup .. 1-262

flushmodup .. 1-262

iflush .. 1-263

Contents

xviii VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

iflushmodup ... 1-263

prefetch .. 1-263

prefetchmodup ... 1-264

Compiler Performance Built-In Functions 1-264

Video Operation Built-In Functions 1-267

Function Prototypes .. 1-268

Example of Use: Sum of Absolute Difference 1-272

Misaligned Data Built-In Functions 1-274

Memory-Mapped Register Access Built-In Functions 1-275

Miscellaneous Built-In Functions 1-276

Pragmas .. 1-277

Pragmas With Declaration Lists 1-279

Data Alignment Pragmas .. 1-279

#pragma align num ... 1-280

#pragma alignment_region (alignopt) 1-282

#pragma pack (alignopt) .. 1-284

#pragma pad (alignopt) ... 1-286

Interrupt Handler Pragmas ... 1-286

Loop Optimization Pragmas ... 1-287

#pragma all_aligned .. 1-288

#pragma different_banks .. 1-288

#pragma extra_loop_loads ... 1-289

#pragma loop_count(min, max, modulo) 1-292

#pragma loop_unroll N .. 1-293

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xix
for Blackfin Processors

Contents

#pragma no_alias .. 1-295

#pragma no_vectorization ... 1-296

#pragma vector_for ... 1-296

General Optimization Pragmas .. 1-297

Fixed-Point Arithmetic Pragmas 1-298

#pragma FX_CONTRACT {ON|OFF} 1-299

#pragma FX_ROUNDING_MODE
{TRUNCATION|BIASED|UNBIASED} 1-299

#pragma STDC FX_FULL_PRECISION
{ON|OFF|DEFAULT} .. 1-300

#pragma STDC FX_FRACT_OVERFLOW
{SAT|DEFAULT} ... 1-301

#pragma STDC FX_ACCUM_OVERFLOW
{SAT|DEFAULT} ... 1-301

Inline Control Pragmas ... 1-301

#pragma always_inline .. 1-301

#pragma inline .. 1-302

#pragma never_inline .. 1-303

Linking Control Pragmas .. 1-303

#pragma linkage_name identifier 1-304

#pragma core .. 1-304

#pragma retain_name .. 1-309

#pragma section/#pragma default_section 1-310

#pragma file_attr(“name[=value]”
[, “name[=value]” [...]]) .. 1-314

Contents

xx VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

#pragma symbolic_ref ... 1-315

#pragma weak_entry ... 1-318

Function Side-Effect Pragmas ... 1-318

#pragma alloc ... 1-319

#pragma const .. 1-319

#pragma inline ... 1-320

#pragma misra_func(arg) ... 1-320

#pragma noreturn ... 1-320

#pragma pgo_ignore ... 1-321

#pragma pure ... 1-321

#pragma regs_clobbered string 1-322

#pragma regs_clobbered_call string 1-326

#pragma overlay ... 1-329

#pragma result_alignment (n) 1-330

Class Conversion Optimization Pragmas 1-330

#pragma param_never_null param_name [...] 1-330

#pragma suppress_null_check 1-332

Template Instantiation Pragmas 1-333

#pragma instantiate instance .. 1-334

#pragma do_not_instantiate instance 1-335

#pragma can_instantiate instance 1-335

Header File Control Pragmas .. 1-335

#pragma hdrstop .. 1-335

#pragma no_implicit_inclusion 1-336

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xxi
for Blackfin Processors

Contents

#pragma no_pch ... 1-337

#pragma once ... 1-338

#pragma system_header ... 1-338

Diagnostic Control Pragmas .. 1-338

Modifying the Severity of Specific Diagnostics 1-339

Modifying the Behavior of an Entire Class
of Diagnostics .. 1-340

Saving or Restoring the Current Behavior
of All Diagnostics ... 1-340

Memory Bank Pragmas ... 1-341

#pragma code_bank(bankname) 1-342

#pragma data_bank(bankname) 1-342

#pragma stack_bank(bankname) 1-343

#pragma bank_memory_kind(bankname, kind) 1-345

#pragma bank_read_cycles(bankname, cycles) 1-345

#pragma bank_write_cycles(bankname, cycles) 1-346

#pragma bank_optimal_width(bankname, width) 1-347

Exceptions Tables Pragma .. 1-347

GCC Compatibility Extensions ... 1-349

Statement Expressions ... 1-349

Type Reference Support Keyword (typeof) 1-351

GCC Generalized lvalues ... 1-352

Conditional Expressions With Missing Operands 1-352

Zero-Length Arrays ... 1-353

GCC Variable Argument Macros 1-353

Contents

xxii VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Line Breaks in String Literals .. 1-353

Arithmetic on Pointers to Void and Pointers to
Functions .. 1-354

Cast to Union ... 1-354

Ranges in Case Labels ... 1-354

Escape Character Constant ... 1-354

Alignment Inquiry Keyword (__alignof__) 1-354

(asm) Keyword for Specifying Names in
Generated Assembler ... 1-355

Function, Variable, and Type Attribute
Keyword (__attribute__) .. 1-356

Unnamed struct/union Fields Within struct/unions 1-356

Preprocessor-Generated Warnings .. 1-357

Blackfin Processor-Specific Functionality 1-357

Startup Code Overview ... 1-357

Support for argv/argc .. 1-358

Profiling With Instrumented Code 1-359

Generating Instrumented Code 1-359

Running the Executable .. 1-360

Post-Processing the mon.out File 1-362

Profiling Data Storage ... 1-363

Computing Cycle Counts ... 1-363

Controlling System Heap Size and Placement 1-364

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xxiii
for Blackfin Processors

Contents

Interrupt Handler Support ... 1-365

Defining an ISR .. 1-366

Registering an ISR .. 1-368

ISRs and ANSI C Signal Handlers 1-370

Saved Processor Context .. 1-371

Fetching Event Details .. 1-372

Caching and Memory Protection ... 1-373

___cplb_ctrl Control Variable ... 1-374

CPLB Installation ... 1-376

Cache Configurations ... 1-378

Default Cache Configuration .. 1-379

Changing Cache Configuration 1-383

Cache Invalidation .. 1-383

Default .ldf Files and Cache .. 1-385

CPLB Replacement and Cache Modes 1-388

Cache Flushing ... 1-389

Using the _cplb_mgr Routine .. 1-390

Caching and Asynchronous Change 1-392

Migrating .ldf Files From Previous VisualDSP++
Installations ... 1-393

C++ Support Tables (ctor, gdt) 1-394

Dual-Core Single-Application Per Core Shared
Data .. 1-395

C++ Run-Time Libraries Rationalization 1-396

Contents

xxiv VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Multi-Threaded Libraries .. 1-397

Fixed-Point I/O Support ... 1-399

C/C++ Preprocessor Features ... 1-401

Predefined Macros .. 1-401

Writing Preprocessor Macros ... 1-405

Compound Macros ... 1-406

C/C++ Run-Time Model and Environment 1-408

C/C++ Run-Time Header and Startup Code 1-410

CRT Header Overview ... 1-410

CRT Description .. 1-412

Declarations ... 1-412

Start and Register Settings ... 1-413

Event Vector Table .. 1-413

Stack Pointer and Frame Pointer 1-414

Cycle Counter .. 1-415

DAG Port Selection .. 1-415

Memory Initialization ... 1-415

Device Initialization ... 1-416

CPLB Initialization ... 1-416

Lower Processor Priority ... 1-417

Mark Registers .. 1-417

Terminate Stack Frame Chain 1-418

Profiler Initialization ... 1-418

C++ Constructor Invocation 1-418

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xxv
for Blackfin Processors

Contents

Multi-Threaded Applications 1-419

Argument Parsing .. 1-419

Calling _main and _exit .. 1-419

Constructors and Destructors of Global Class Instances 1-419

Constructors, Destructors, and Memory Placement 1-421

Using Memory Sections ... 1-422

Using Multiple Heaps .. 1-423

Defining a Heap ... 1-424

Defining Heaps at Link-Time .. 1-424

Defining Heaps at Runtime ... 1-425

Tips for Working With Heaps ... 1-426

Standard Heap Interface .. 1-426

Allocating C++ STL Objects to a Non-Default Heap 1-427

Using the Alternate Heap Interface 1-430

C++ Run-Time Support for the Alternate
Heap Interface ... 1-431

Freeing Space .. 1-432

Dedicated Registers ... 1-432

Call-Preserved Registers ... 1-433

Scratch Registers ... 1-433

Stack Registers ... 1-435

Managing the Stack ... 1-435

Contents

xxvi VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Transferring Function Arguments and Return Value 1-439

Passing Arguments .. 1-439

Passing a C++ Class Instance ... 1-441

Return Values ... 1-441

Using Data Storage Formats .. 1-443

Floating-Point Data Size ... 1-446

Floating-Point Binary Formats .. 1-448

IEEE Floating-Point Format 1-448

Variants of IEEE Floating-Point Support 1-450

fract and accum Data Representation 1-451

Fract16 and Fract32 Data Representation 1-455

C/C++ and Assembly Interface .. 1-456

Calling Assembly Subroutines From C/C++ Programs 1-456

Calling C/C++ Functions From Assembly Programs 1-459

Using Mixed C/C++ and Assembly Naming
Conventions .. 1-461

Exceptions Tables in Assembly Routines 1-462

Compiler C++ Template Support .. 1-466

Template Instantiation .. 1-466

Implicit Instantiation .. 1-467

Exported Templates .. 1-468

Generated Template Files .. 1-469

Identifying Un-Instantiated Templates 1-469

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xxvii
for Blackfin Processors

Contents

File Attributes ... 1-471

Automatically-Applied Attributes ... 1-472

Default LDF Placement ... 1-474

Sections Versus Attributes .. 1-475

Granularity ... 1-475

Hard Mapping Versus Soft Mapping 1-475

Number of Values ... 1-476

Using Attributes .. 1-476

Example 1 ... 1-476

Example 2 ... 1-479

ACHIEVING OPTIMAL PERFORMANCE FROM C/C++
SOURCE CODE

General Guidelines ... 2-3

How the Compiler Can Help ... 2-4

Using the Compiler Optimizer .. 2-4

Using Compiler Diagnostics .. 2-5

Warnings and Remarks .. 2-6

Assembly Annotations ... 2-7

Using the Statistical Profiler .. 2-8

Using Profile-Guided Optimization 2-9

Using Profile-Guided Optimization With a Simulator 2-9

Using Profile-Guided Optimization With
Non-Simulatable Applications 2-11

Profile-Guided Optimization and Multiple
Source Uses .. 2-11

Contents

xxviii VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Profile-Guided Optimization and the -Ov num
Switch ... 2-12

Profile-Guided Optimization and Multiple PGO
Data Sets ... 2-12

When to Use Profile-Guided Optimization 2-13

Using Interprocedural Optimization 2-13

The Volatile Type Qualifier ... 2-14

Data Types .. 2-15

Optimizing a struct .. 2-17

Bit-Fields ... 2-19

Avoiding Emulated Arithmetic .. 2-20

Getting the Most From IPA ... 2-21

Initializing Constants Statically ... 2-21

Word-Aligning Your Data ... 2-23

Using __builtin_aligned ... 2-24

Avoiding Aliases ... 2-25

Indexed Arrays Versus Pointers .. 2-27

Trying Pointer and Indexed Styles 2-28

Using Function Inlining .. 2-28

Using Inline asm Statements .. 2-30

Memory Usage .. 2-31

Using the Bank Qualifier .. 2-32

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xxix
for Blackfin Processors

Contents

Improving Conditional Code .. 2-33

Using Compiler Performance Built-In Functions 2-34

Using PGO in Function Profiling .. 2-37

Loop Guidelines ... 2-38

Keeping Loops Short ... 2-39

Avoiding Unrolling Loops .. 2-39

Avoiding Loop-Carried Dependencies 2-40

Avoiding Loop Rotation by Hand .. 2-41

Avoiding Complex Array Indexing ... 2-42

Inner Loops Versus Outer Loops .. 2-43

Avoiding Conditional Code in Loops 2-43

Avoiding Placing Function Calls in Loops 2-44

Avoiding Non-Unit Strides .. 2-45

Using 16-Bit Data Types and Vector Instructions 2-46

Loop Control .. 2-47

Using the Restrict Qualifier ... 2-48

Avoiding Long Latencies .. 2-49

Manipulating Fixed-Point and Fractional Data 2-49

Using Integer Arithmetic to Encode Fractional Semantics 2-50

Using the Native Fixed-Point Types fract and accum 2-51

Using Built-In Functions to Perform Fixed-Point
Arithmetic .. 2-52

Using the shortfract and fract Classes in C++ 2-53

Contents

xxx VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Using Built-In Functions in Code Optimization 2-54

Fractional Data ... 2-54

Using System Support Built-In Functions 2-54

Using Circular Buffers ... 2-55

Smaller Applications: Optimizing for Code Size 2-57

Effect of Data Type Size on Code Size 2-59

Using Pragmas for Optimization ... 2-60

Function Pragmas ... 2-61

#pragma alloc ... 2-61

#pragma const .. 2-61

#pragma pure ... 2-62

#pragma result_alignment ... 2-62

#pragma regs_clobbered .. 2-63

#pragma optimize_
{off|for_speed|for_space|as_cmd_line} 2-65

Loop Optimization Pragmas .. 2-65

#pragma loop_count ... 2-65

#pragma no_vectorization ... 2-66

#pragma vector_for ... 2-66

#pragma all_aligned .. 2-68

#pragma different_banks .. 2-69

#pragma no_alias .. 2-69

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xxxi
for Blackfin Processors

Contents

Useful Optimization Switches .. 2-70

How Loop Optimization Works .. 2-70

Terminology .. 2-71

Clobbered ... 2-71

Live .. 2-71

Spill .. 2-72

Scheduling .. 2-72

Loop Kernel .. 2-72

Loop Prolog .. 2-72

Loop Epilog .. 2-73

Loop Invariant .. 2-73

Hoisting ... 2-73

Sinking ... 2-73

Loop Optimization Concepts ... 2-74

Software Pipelining ... 2-75

Loop Rotation .. 2-75

Loop Vectorization .. 2-77

Modulo Scheduling ... 2-79

Initiation Interval (II) and the Kernel 2-81

Minimum Initiation Interval Due to Resources
(Res MII) ... 2-84

Minimum Initiation Interval Due to Recurrences
(Rec MII) ... 2-85

Contents

xxxii VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Stage Count (SC) ... 2-85

Variable Expansion and MVE Unroll 2-87

Trip Count ... 2-92

A Working Example .. 2-93

Assembly Optimizer Annotations .. 2-96

Global Information ... 2-97

Procedure Statistics ... 2-99

Instruction Annotations .. 2-103

Loop Identification ... 2-103

Loop Identification Annotations 2-104

Resource Definitions .. 2-106

File Position ... 2-110

Infinite Hardware Loop Wrappers 2-112

Vectorization ... 2-115

Unroll and Jam ... 2-116

Example F (Unroll and Jam) 2-118

Loop Flattening .. 2-120

Vectorization Annotations ... 2-121

Modulo Scheduling Information ... 2-124

Annotations for Modulo-Scheduled Instructions 2-125

Warnings, Failure Messages, and Advice 2-130

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xxxiii
for Blackfin Processors

Contents

Analyzing Your Application ... 2-135

Profiling With Instrumented Code 2-135

Generating an Application With Instrumented
Profiling ... 2-136

Running the Executable .. 2-137

Invoking the profblkfn.exe Command-Line Reporter 2-137

Contents of the Profiling Report 2-138

profblkfn Command-Line Tool Report Format 2-140

Profiling Data Storage ... 2-140

Computing Cycle Counts .. 2-140

Non-Terminating Applications .. 2-141

Profiling of Interrupts ... 2-141

Behavior That Interferes With Instrumented
Profiling ... 2-142

Stack Overflow Detection .. 2-142

Compiler’s Stack Overflow Detection Facility 2-144

C/C++ RUN-TIME LIBRARY

C and C++ Run-Time Library Guide ... 3-2

Calling Library Functions .. 3-3

Using the Compiler’s Built-In Functions 3-5

Linking Library Functions ... 3-5

Library Attributes .. 3-8

Exceptions to Library Attribute Conventions 3-12

Mapping Objects to Flash Using Attributes 3-14

Contents

xxxiv VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Library Function Re-Entrancy and Multi-Threaded
Environments .. 3-14

Support Functions for Private Data 3-17

Support Functions for Locking ... 3-18

Other Support Functions for Multi-Core Applications 3-18

Library Placement .. 3-18

Section Placement .. 3-19

Working With Library Header Files 3-20

adi_types.h ... 3-22

assert.h ... 3-22

ccblkfn.h .. 3-23

cplbtab.h .. 3-23

ctype.h ... 3-23

device.h .. 3-24

device_int.h .. 3-24

errno.h ... 3-24

float.h .. 3-24

iso646.h ... 3-25

limits.h .. 3-26

locale.h .. 3-26

math.h ... 3-26

mc_data.h .. 3-28

misra_types.h ... 3-28

setjmp.h ... 3-28

signal.h .. 3-28

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xxxv
for Blackfin Processors

Contents

stdarg.h .. 3-28

stdbool.h .. 3-29

stdfix.h ... 3-29

stddef.h .. 3-29

stdint.h ... 3-29

stdio.h ... 3-31

stdlib.h ... 3-36

string.h ... 3-36

time.h ... 3-36

Calling a Library Function From an ISR 3-38

Abridged C++ Library Support .. 3-38

Embedded C++ Library Header Files 3-39

C++ Header Files for C Library Facilities 3-41

Embedded Standard Template Library (ESTL)
Header Files ... 3-42

Using Thread-Safe C/C++ Run-Time Libraries
With VDK ... 3-43

File I/O Support .. 3-44

Extending I/O Support to New Devices 3-44

DevEntry Structure ... 3-45

Registering New Devices ... 3-50

Pre-Registering Devices ... 3-50

Default Device .. 3-52

Remove and Rename Functions 3-53

Contents

xxxvi VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Default Device Driver Interface .. 3-53

Data Packing for Primitive I/O 3-54

Data Structure for Primitive I/O 3-55

Documented Library Functions .. 3-58

C Run-Time Library Reference ... 3-64

abort .. 3-65

abs ... 3-66

absfx .. 3-67

acos .. 3-69

adi_acquire_lock, adi_try_lock, adi_release_lock 3-71

adi_core_id .. 3-74

adi_obtain_mc_slot, adi_free_mc_slot, adi_set_mc_value,
adi_get_mc_value .. 3-76

asctime ... 3-80

asin .. 3-82

atan .. 3-84

atan2 .. 3-86

atexit ... 3-88

atof .. 3-89

atoi .. 3-92

atol .. 3-93

atoll ... 3-94

bitsfx .. 3-95

bsearch ... 3-97

cache_invalidate ... 3-100

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xxxvii
for Blackfin Processors

Contents

calloc .. 3-103

ceil ... 3-104

clearerr ... 3-105

clock ... 3-107

cos .. 3-109

cosh .. 3-112

countlsfx ... 3-113

cplb_hdr ... 3-115

cplb_init ... 3-117

cplb_mgr .. 3-120

ctime .. 3-124

difftime .. 3-126

disable_data_cache .. 3-128

div .. 3-129

divifx .. 3-130

enable_data_cache .. 3-132

exit ... 3-134

exp ... 3-135

fabs .. 3-136

fclose .. 3-137

feof ... 3-139

ferror .. 3-140

fflush .. 3-141

fgetc ... 3-142

Contents

xxxviii VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fgetpos ... 3-144

fgets ... 3-146

floor ... 3-148

flush_data_cache .. 3-149

fmod .. 3-151

fopen ... 3-152

fprintf .. 3-154

fputc .. 3-160

fputs .. 3-161

fread .. 3-163

free .. 3-165

freopen ... 3-166

frexp .. 3-168

fscanf ... 3-169

fseek ... 3-174

fsetpos .. 3-176

ftell .. 3-177

fwrite ... 3-178

fxbits .. 3-180

fxdivi .. 3-182

getc .. 3-184

getchar ... 3-186

gets .. 3-188

gmtime .. 3-190

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xxxix
for Blackfin Processors

Contents

heap_calloc ... 3-192

heap_free .. 3-194

heap_init .. 3-196

heap_install .. 3-198

heap_lookup ... 3-200

heap_malloc ... 3-202

heap_realloc .. 3-204

heap_space_unused ... 3-206

idivfx .. 3-207

interrupt ... 3-209

isalnum .. 3-211

isalpha .. 3-212

iscntrl ... 3-213

isdigit ... 3-214

isgraph .. 3-215

isinf .. 3-216

islower .. 3-218

isnan ... 3-219

isprint .. 3-221

ispunct ... 3-222

isspace .. 3-223

isupper ... 3-224

isxdigit .. 3-225

_l1_memcpy, _memcpy_l1 .. 3-226

Contents

xl VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

labs .. 3-228

ldexp .. 3-229

ldiv .. 3-230

localtime .. 3-232

log ... 3-234

log10 .. 3-235

longjmp ... 3-236

malloc .. 3-238

memchr .. 3-239

memcmp .. 3-240

memcpy ... 3-241

memmove .. 3-243

memset .. 3-244

mktime .. 3-245

modf .. 3-248

mulifx .. 3-249

perror ... 3-251

pow .. 3-253

printf ... 3-254

putc ... 3-256

putchar .. 3-257

puts .. 3-259

qsort .. 3-260

raise ... 3-262

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xli
for Blackfin Processors

Contents

rand .. 3-264

realloc ... 3-265

register_handler .. 3-267

register_handler_ex ... 3-270

remove .. 3-274

rename ... 3-276

rewind .. 3-278

roundfx .. 3-280

scanf ... 3-282

setbuf ... 3-284

setjmp .. 3-286

setvbuf .. 3-288

signal .. 3-290

sin .. 3-292

sinh .. 3-295

snprintf .. 3-296

space_unused .. 3-298

sprintf .. 3-299

sqrt ... 3-301

srand .. 3-302

sscanf .. 3-303

strcat .. 3-305

strchr .. 3-306

strcmp .. 3-307

Contents

xlii VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

strcoll ... 3-308

strcpy ... 3-309

strcspn .. 3-310

strerror ... 3-311

strftime .. 3-312

strlen .. 3-316

strncat .. 3-317

strncmp .. 3-318

strncpy ... 3-319

strpbrk ... 3-320

strrchr .. 3-321

strspn ... 3-322

strstr .. 3-323

strtod ... 3-324

strtof .. 3-327

strtofxfx ... 3-330

strtok ... 3-333

strtol .. 3-335

strtold .. 3-337

strtoll ... 3-340

strtoul .. 3-342

strtoull ... 3-344

strxfrm ... 3-346

tan ... 3-348

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xliii
for Blackfin Processors

Contents

tanh .. 3-350

time .. 3-351

tmpfile .. 3-352

tmpnam .. 3-355

tolower ... 3-358

toupper ... 3-359

ungetc .. 3-360

va_arg ... 3-362

va_end .. 3-365

va_start ... 3-366

vfprintf ... 3-367

vprintf .. 3-369

vsnprintf ... 3-371

vsprintf ... 3-373

DSP RUN-TIME LIBRARY

DSP Run-Time Library Guide ... 4-2

Linking DSP Library Functions ... 4-3

Working With Library Source Code ... 4-4

Library Attributes .. 4-4

DSP Header Files .. 4-5

complex.h ... 4-5

cycle_count.h .. 4-9

cycles.h ... 4-10

filter.h .. 4-10

Contents

xliv VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

math.h ... 4-20

matrix.h ... 4-24

stats.h .. 4-38

vector.h .. 4-45

window.h ... 4-61

Measuring Cycle Counts ... 4-64

Basic Cycle-Counting Facility ... 4-65

Cycle-Counting Facility With Statistics 4-67

Using time.h to Measure Cycle Counts 4-70

Determining the Processor Clock Rate 4-72

Considerations When Measuring Cycle Counts 4-73

DSP Run-Time Library Reference ... 4-75

a_compress ... 4-77

a_expand .. 4-78

alog .. 4-79

alog10 .. 4-81

arg ... 4-83

autocoh .. 4-85

autocorr ... 4-87

cabs .. 4-90

cadd ... 4-92

cartesian ... 4-93

cdiv .. 4-95

cexp ... 4-97

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xlv
for Blackfin Processors

Contents

cfft ... 4-98

cfftf .. 4-102

cfftrad4 ... 4-106

cfft2d ... 4-108

cfir ... 4-112

clip ... 4-116

cmlt .. 4-118

coeff_iirdf1 ... 4-120

conj .. 4-124

convolve ... 4-125

conv2d ... 4-128

conv2d3x3 .. 4-131

copysign ... 4-134

cot .. 4-135

countones ... 4-136

crosscoh .. 4-137

crosscorr ... 4-140

csub .. 4-143

fft_magnitude ... 4-144

fir ... 4-149

fir_decima .. 4-154

fir_interp .. 4-160

gen_bartlett ... 4-166

gen_blackman ... 4-169

Contents

xlvi VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

gen_gaussian .. 4-171

gen_hamming .. 4-173

gen_hanning .. 4-175

gen_harris .. 4-177

gen_kaiser .. 4-179

gen_rectangular .. 4-181

gen_triangle ... 4-183

gen_vonhann .. 4-185

histogram ... 4-186

ifft ... 4-189

ifftf .. 4-194

ifftrad4 ... 4-197

ifft2d .. 4-199

iir ... 4-203

iirdf1 .. 4-209

max .. 4-215

mean .. 4-216

min .. 4-218

mu_compress .. 4-219

mu_expand .. 4-220

norm .. 4-221

polar .. 4-222

rfft ... 4-225

rfftf .. 4-229

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xlvii
for Blackfin Processors

Contents

rfftrad4 ... 4-233

rfft2d .. 4-235

rms ... 4-239

rsqrt ... 4-241

twidfftrad2 ... 4-242

twidfftrad4 ... 4-245

twidfftf ... 4-247

twidfft2d .. 4-250

var ... 4-253

zero_cross ... 4-256

PROGRAMMING DUAL-CORE BLACKFIN PROCESSORS

Dual-Core Blackfin Architecture Overview A-2

Approaches Supported in VisualDSP++ .. A-3

Single-Core Application ... A-5

Shared Memory .. A-6

Synchronization ... A-6

Cache, Startup, and Events ... A-7

Creating Customized .ldf Files .. A-7

One Application Per Core .. A-7

Using the Default Compiler .ldf File A-7

Using Customized .ldf Files .. A-8

Shared Memory .. A-9

Sharing Data .. A-10

Sharing Code ... A-13

Contents

xlviii VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Shared Code With Private Data ... A-13

Synchronization .. A-13

Cache, Startup, and Events with Default .ldf Files A-14

Cache, Startup, and Events with Customized .ldf Files A-15

Single Application/Dual Core ... A-16

Target Conventions ... A-16

Multi-Core Linking ... A-18

Creating the .ldf File ... A-19

Shared Memory .. A-20

Shared Data .. A-20

Sharing Code .. A-20

Synchronization .. A-21

Cache, Startup, and Events .. A-21

Dual-Core Applications That Use File Attributes A-22

Run-Time Library Functions .. A-23

Re-Entrancy .. A-23

Placement ... A-24

Restrictions on Dual-Core Applications A-25

Compiler Facilities .. A-25

Cross-Core Memory References ... A-25

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xlix
for Blackfin Processors

Contents

Dual-Core Programming Examples ... A-26

Single-Core Application Example .. A-26

One Application per Core Example A-27

Single Application/Dual-Core Example A-30

Profile-Guided Optimization in Dual-Core Systems A-32

Command-Line Profile-Guided Optimization A-32

PGO Session Identifiers ... A-33

Example of Dual-Core Profile-Guided Optimization A-34

Interprocedural Analysis and File Attributes A-37

Conflicting Approaches .. A-37

Example Application .. A-37

Building Multiple Instances of a Module A-38

Libraries and File Attributes ... A-39

Multiple Definitions and Pragma Core A-40

Using the IPA Dual-Core Example A-41

IPA Optimizations ... A-42

Synchronization Functions ... A-43

INDEX

Contents

l VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

VisualDSP++ 5.0 C/C++ Compiler and Library Manual li
for Blackfin Processors

 PREFACE

Thank you for purchasing Analog Devices development software for
Blackfin® embedded processors.

Purpose of This Manual
The VisualDSP++ 5.0 C/C++ Compiler and Library Manual for Blackfin
Processors contains information about the C/C++ compiler and run-time
libraries for Blackfin embedded processors that support a Media Instruc-
tion Set Computing (MISC) architecture. This architecture is the natural
merging of RISC, media functions, and signal processing characteristics
that delivers signal processing performance in a microprocessor-like
environment.

Intended Audience
The primary audience for this manual are programmers who are familiar
with Analog Devices Blackfin processors. This manual assumes that the
audience has a working knowledge of the Blackfin processors’ architecture
and instruction set and C/C++ programming languages.

Programmers who are unfamiliar with Blackfin processors can use this
manual, but should supplement it with other texts (such as the appropri-
ate Hardware Reference, Programming Reference, and data sheet) that
provide information about their Blackfin processor architecture and
instructions).

Manual Contents Description

 lii VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Manual Contents Description
This manual contains:

• Chapter 1, “Compiler”
Provides information on compiler options, language extensions,
C/C++/assembly interfacing, and support for C++ templates

• Chapter 2, “Achieving Optimal Performance From C/C++ Source
Code”
Shows how to optimize compiler operation.

• Chapter 3, “C/C++ Run-Time Library”
Shows how to use library functions and provides a complete C/C++
library function reference

• Chapter 4, “DSP Run-Time Library”
Shows how to use DSP library functions and provides a complete
DSP library function reference

• Appendix A, “Programming Dual-Core Blackfin Processors”
Provides various approaches and programming guidance for
developing systems on ADSP-BF561 Blackfin processors

What’s New in This Manual
This revision (5.4) of the VisualDSP++ 5.0 C/C++ Compiler and Library
Manual for Blackfin Processors manual documents changes/additions
related to the C/C++ compiler and run-time library for VisualDSP++®
5.0 and subsequent updates (up to update 9). Changes/additions to this
book from revision 5.3 include:

• Embedded C Support: The compiler supports the fixed-point types
fract and accum as native types. Refer to “Using Native
Fixed-Point Types” on page 1-104 for more information.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual liii
for Blackfin Processors

Preface

• New library support for 32-bit fractional values: Many of the
16-bit fractional library routines now have accompanying 32-bit
fractional variants. Refer to the respective function description
pages in Chapter 3, “C/C++ Run-Time Library” and Chapter 4,
“DSP Run-Time Library” for details.

• 40-bit accumulator access: The compiler now supports access to
the 40-bit accumulators, via new built-in functions. For more
information, see “Full-Precision Accumulator Built-In Functions”
on page 1-247.

• Improved compliance with ISO/IEC standards: The compiler has
optional support for a freestanding implementation of the
ISO/IEC 9899:1999 C standard (“C99”), and support for a free-
standing implementation of the ISO/IEC14882:2003 C++
standard (“C++ 2003”). See “Language Standards Compliance” on
page 1-140 for more information.

• Stack overflow detection: The compiler can instrument generated
code to detect when the stack limit is being exceeded, reducing the
effort involved in debugging such problems. For multi-threaded
applications, this facility requires RTOS support. For more infor-
mation see “Stack Overflow Detection” on page 2-142.

• fract32 support: The majority of functions in Chapter 2, “Achiev-
ing Optimal Performance From C/C++ Source Code” now have
variants that support the fract32 data type.

• Corrections of typographic errors and reported document errata.

Technical or Customer Support

 liv VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Technical or Customer Support
You can reach Analog Devices, Inc. Customer Support in the following
ways:

• Visit the Embedded Processing and DSP products Web site at
http://www.analog.com/processors/technical_support

• E-mail tools questions to
processor.tools.support@analog.com

• E-mail processor questions to
processor.support@analog.com (World wide support)

processor.europe@analog.com (Europe support)

processor.china@analog.com (China support)

• Phone questions to 1-800-ANALOGD

• Contact your Analog Devices, Inc. local sales office or authorized
distributor

Supported Processors
The name “Blackfin” refers to a family of 16-bit, embedded processors.
For a complete list of processors supported by VisualDSP++® 5.0, refer to
VisualDSP++ online Help.

Product Information
Product information can be obtained from the Analog Devices Web site,
VisualDSP++ online Help system, and a technical library CD.

http://www.analog.com/processors/technical_support
mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

VisualDSP++ 5.0 C/C++ Compiler and Library Manual lv
for Blackfin Processors

Preface

Analog Devices Web Site
The Analog Devices Web site, www.analog.com, provides information
about a broad range of products—analog integrated circuits, amplifiers,
converters, and digital signal processors.

To access a complete technical library for each processor family, go to
http://www.analog.com/processors/technical_library. The manuals
selection opens a list of current manuals related to the product as well as a
link to the previous revisions of the manuals. When locating your manual
title, note a possible errata check mark next to the title that leads to the
current correction report against the manual.

Also note, MyAnalog.com is a free feature of the Analog Devices Web site
that allows customization of a Web page to display only the latest infor-
mation about products you are interested in. You can choose to receive
weekly e-mail notifications containing updates to the Web pages that meet
your interests, including documentation errata against all manuals.
MyAnalog.com provides access to books, application notes, data sheets,
code examples, and more.

Visit MyAnalog.com to sign up. If you are a registered user, just log on.
Your user name is your e-mail address.

VisualDSP++ Online Documentation
Online documentation comprises the VisualDSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, Dinkum
Abridged C++ library, and FLEXnet License Tools documentation. You
can search easily across the entire VisualDSP++ documentation set for any
topic of interest.

For easy printing, supplementary Portable Documentation Format (.pdf)
files for all manuals are provided on the VisualDSP++ installation CD.

http://www.analog.com
http://www.analog.com/processors/technical_library/
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions

Product Information

 lvi VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Each documentation file type is described as follows.

Technical Library CD
The technical library CD contains seminar materials, product highlights,
a selection guide, and documentation files of processor manuals, Visu-
alDSP++ software manuals, and hardware tools manuals for the following
processor families: Blackfin, SHARC®, TigerSHARC®, ADSP-218x, and
ADSP-219x.

To order the technical library CD, go to http://www.analog.com/proces-
sors/technical_library, navigate to the manuals page for your
processor, click the request CD check mark, and fill out the order form.

Data sheets, which can be downloaded from the Analog Devices Web site,
change rapidly, and therefore are not included on the technical library
CD. Technical manuals change periodically. Check the Web site for the
latest manual revisions and associated documentation errata.

EngineerZone
EngineerZone is a technical support forum from Analog Devices. It allows
you direct access to ADI technical support engineers. You can search
FAQs and technical information to get quick answers to your embedded
processing and DSP design questions.

File Description

.chm Help system files and manuals in Microsoft help format

.htm or

.html
Dinkum Abridged C++ library and FLEXnet license tools software
documentation. Viewing and printing the .html files requires a browser, such as
Internet Explorer 6.0 (or higher).

.pdf VisualDSP++ and processor manuals in PDF format. Viewing and printing the
.pdf files requires a PDF reader, such as Adobe Acrobat Reader (4.0 or higher).

http://www.analog.com/processors/technical_library/
http://www.analog.com/processors/technical_library/

VisualDSP++ 5.0 C/C++ Compiler and Library Manual lvii
for Blackfin Processors

Preface

Use EngineerZone to connect with other DSP developers who face similar
design challenges. You can also use this open forum to share knowledge
and collaborate with the ADI support team and your peers. Visit
http://ez.analog.com to sign up.

Social Networking Web Sites
You can now follow Analog Devices Blackfin development on Twitter and
LinkedIn. To access:

• Twitter: http://twitter.com/blackfin

• LinkedIn: Network with the LinkedIn group, Analog Devices
Blackfin: http://www.linkedin.com

Notation Conventions
Text conventions in this manual are identified and described as follows.

 Additional conventions, which apply only to specific chapters, may
appear throughout this document.

Example Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
VisualDSP++ environment’s menu system (for example, the Close com-
mand appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets delim-
ited by commas and terminated with an ellipse; read the example as an
optional comma-separated list of this.

http://ez.analog.com
http://twitter.com/blackfin
http://www.linkedin.com

Notation Conventions

 lviii VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this

symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

Example Description







VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-1
for Blackfin Processors

1 COMPILER

The C/C++ compiler (ccblkfn) is part of Analog Devices development
software for Blackfin processors.

 The code examples in this manual have been compiled using
VisualDSP++ 5.0.1 (Update 1). The examples compiled with other
versions of VisualDSP++ may result in build errors or different
output although the highlighted algorithms stand and should con-
tinue to stand in future releases of VisualDSP++.

This chapter contains:

• “C/C++ Compiler Overview” on page 1-3
provides an overview of the C/C++ compiler for Blackfin
processors.

• “Compiler Command-Line Interface” on page 1-5
describes the operation of the compiler as it processes programs,
including input and output files and command-line switches.

• “Using Native Fixed-Point Types” on page 1-104
describes the compiler’s support for the native fixed-point types
fract and accum, defined in Chapter 4 of the “Extensions to support
embedded processors” ISO/IEC draft technical report TR 18037.

• “Language Standards Compliance” on page 1-140
describes how to enable the best possible compliance to the
ISO/IEC 9899:1990 C standard, the ISO/IEC 9899:1999 C
standard, or the ISO/IEC 14882:2003 C++ standard.

1-2 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

• “MISRA-C Compiler” on page 1-143
describes the compiler support for MISRA-C:2004 Guidelines for
the use of the C language in critical systems.

• “C/C++ Compiler Language Extensions” on page 1-156
describes the ccblkfn compiler’s extensions to the ANSI/ISO stan-
dard for the C and C++ languages.

• “Blackfin Processor-Specific Functionality” on page 1-357
contains information that is specific to Blackfin processors only.

• “C/C++ Preprocessor Features” on page 1-401
contains information on the preprocessor and ways to modify
source compilation.

• “C/C++ Run-Time Model and Environment” on page 1-408
contains reference information about implementation of C/C++
programs, data, and function calls in Blackfin processors.

• “C/C++ and Assembly Interface” on page 1-456
describes how to call an assembly language subroutine from within
a C/C++ program, and how to call a C/C++ function from within
an assembly language program.

• “Compiler C++ Template Support” on page 1-466
describes how templates are instantiated at compile time.

• “File Attributes” on page 1-471
describes how file attributes help with the placement of run-time
library functions.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-3
for Blackfin Processors

Compiler

C/C++ Compiler Overview
The C/C++ compiler is designed to aid your DSP project development
efforts by:

• Processing C and C++ source files, producing machine-level
versions of the source code and object files

• Providing relocatable code and debugging information within the
object files

• Providing relocatable data and program memory segments for
placement by the linker in the processors’ memory

Using C/C++, developers can significantly decrease time-to-market since
it gives them the ability to efficiently work with complex signal processing
data types. It also allows them to take advantage of specialized signal pro-
cessing operations without having to understand the underlying processor
architecture.

The C/C++ compiler compiles ANSI/ISO standard C and C++ code to
support signal data processing. Additionally, Analog Devices includes
within the compiler a number of C language extensions designed to assist
in DSP development. The ccblkfn compiler runs from the VisualDSP++
environment or from the operating system command line.

The C/C++ compiler processes your C and C++ language source files and
produces Blackfin assembler source files. The assembler source files are
assembled by the Blackfin processor assembler (easmblkfn). The assembler
creates Executable and Linkable Format (ELF) object files that can be
linked (using the linker) to create a Blackfin processor executable file or
included in an archive library using the librarian tool (elfar). The way in
which the compiler controls the assemble, link, and archive phases of the
process depends on the source input files and the compiler options used.

C/C++ Compiler Overview

1-4 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Your source files contain the C/C++ program to be processed by the
compiler. The ccblkfn compiler supports the following standards, each
with Analog Devices extensions enabled:

• A hosted implementation of the ISO/IEC 9899:1990 C standard
(“C89”).

• A freestanding implementation of the ISO/IEC 9899:1999 C
standard (“C99”).

• A freestanding implementation of the ISO/IEC 14882:2003 C++
standard (“C++ 2003”). The compiler supports the language fea-
tures supported by a standard subset of the C++ Library. You can
view the abridged C++ library reference available in the docs/cpl_lib
directory underneath your VisualDSP++ installation and opening
it in a Web browser.

RTTI and exceptions for C++ are supported, but disabled by default. See
information on these switches: “-rtti” on page 1-90 and “-eh” on
page 1-35.

For information on the C language standard, see any of the many refer-
ence texts on the C language. Analog Devices recommends the Bjarne
Stroustrup text “The C++ Programming Language” from Addison Wesley
Longman Publishing Co (ISBN: 0201889544) (1997) as a reference text
for the C++ programming language.

The ccblkfn compiler supports a set of C/C++ language extensions. These
extensions support hardware features of the Blackfin processors. For infor-
mation on these extensions, see “C/C++ Compiler Language Extensions”
on page 1-156.

You can specify compiler options from the Compile page of the Project
Options dialog box of the VisualDSP++ Integrated Development and
Debug Environment (IDDE). These selections control how the compiler
processes your source files, letting you select features that include the
language dialect, error reporting, and debugger output.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-5
for Blackfin Processors

Compiler

For more information on the VisualDSP++ environment, refer to
VisualDSP++ online Help.

Compiler Command-Line Interface
This section describes how the ccblkfn compiler is invoked from the
command line, the various types of files used by and generated from the
compiler, and the switches used to tailor the compiler’s operation.

This section contains:

• “Running the Compiler” on page 1-6

• “C/C++ Compiler Command-Line Switches” on page 1-10

• “Environment Variables Used by the Compiler” on page 1-91

• “Additional Path Support” on page 1-92

• “Optimization Control” on page 1-95

• “Controlling Silicon Revision and Anomaly Workarounds Within
the Compiler” on page 1-100

By default, the compiler runs with Analog Extensions for C code enabled.
This means that the compiler processes source files written in ISO/IEC
899:1990 standard C language supplemented with Analog Devices exten-
sions. Table 1-2 on page 1-8 lists valid extensions of source files the
compiler operates upon. By default, the compiler processes input files
through the listed stages to produce a .dxe file. (See file names in
Table 1-3 on page 1-9.) Table 1-4 on page 1-11 lists switches that select
the language dialect.

Although many switches are generic between C and C++, some are valid in
C++ mode only. A summary of the generic C/C++ compiler switches
appears in Table 1-5 on page 1-11. A summary of the C++-specific

Compiler Command-Line Interface

1-6 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

compiler switches appears in Table 1-6 on page 1-24. The summaries are
followed by descriptions of each switch.

 When developing a DSP project, sometimes it is useful to modify
the compiler’s default options settings. The way the compiler’s
options are set depends on the environment used to run the DSP
development software.

Running the Compiler
Use the following syntax for the ccblkfn command line:

ccblkfn [-switch [-switch …] sourcefile [sourcefile …]]

Table 1-1 describes the command-line syntax.

A file name can include the directory, file name, and file extension. The
compiler supports both Win32- and POSIX-style paths, using either for-
ward slashes or back slashes as the directory delimiter. It also supports
UNC path names (starting with two slashes and a network name).

Table 1-1. ccblkfn Command-Line Syntax

Parameter Description

ccblkfn Name of the compiler program for Blackfin processors.

-switch Switch (or switches) to process.
The compiler has many switches. These switches select the
operations and modes for the compiler and other tools.
Command-line switches are case-sensitive.
For example, -O is not the same as -o.

sourcefile Name of the file to be preprocessed, compiled, assembled, and/or linked

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-7
for Blackfin Processors

Compiler

 When file names or other switches for the compiler include spaces
or other special characters, you must ensure that these are properly
quoted (usually using double-quote characters), to ensure that they
are not interpreted by the operating system before being passed to
the compiler.

The ccblkfn compiler uses the file extension to determine what the file
contains and what operations to perform upon it. Table 1-3 on page 1-9
lists the allowed extensions.

Examples
For example, the following command line runs ccblkfn with the following
options:

ccblkfn -proc ADSP-BF535 -O -Wremarks -o program.dxe source.c

-proc ADSP-BF535 Specifies compiler instructions unique to the
ADSP-BF535 processor

-O Specifies optimization for the compiler

-Wremarks Selects extra diagnostic remarks in addition to
warning and error messages

-o program.dxe Specifies a name for the compiled, linked output

source.c Specifies the C language source file to be compiled

The following example command line for C++ mode runs ccblkfn with
these options:

ccblkfn -proc ADSP-BF535 -c++ source.cpp

-c++ Specifies all of the source files to be compiled in
C++ mode

source.cpp Specifies the C++ language source file to be
compiled

Compiler Command-Line Interface

1-8 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The normal function of ccblkfn is to invoke the compiler, assembler, and
linker as required to produce an executable object file. The precise opera-
tion is determined by the extensions of the input file names and by various
switches.

In normal operation, the compiler uses the files listed in Table 1-2 to per-
form a specified action.

If multiple files are specified, each is processed to produce an object file
and then all the object files are presented to the linker.

You can stop this sequence at various points using appropriate compiler
switches (-E,-P,-M,-H,-S, and -c.), or by selecting options within the
VisualDSP++ IDDE.

Many of the compiler’s switches take a file name as an optional parameter.
If you do not use the optional output name switch, ccblkfn names the
output for you. Table 1-3 lists the type of files, names, and extensions
ccblkfn appends to output files.

File extensions vary by command-line switch and file type. These exten-
sions are influenced by the program that is processing the file. The
programs search directories that you specify and path information that
you include in the file name. Table 1-3 indicates the extensions that the
preprocessor, compiler, assembler, and linker support. The compiler sup-
ports relative and absolute directory names to define file extension paths.

Table 1-2. File Extensions Specifying Compiler Action

Extension Action

.c .C .cpp .cxx .cc .c++ Source file is compiled, assembled, and linked.

.asm .dsp .s Assembly language source file is assembled and linked.

.doj Object file (from previous assembly) is linked.

.pgo .pgi Profile-guided optimization information file is used during
compilation.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-9
for Blackfin Processors

Compiler

For information on additional search directories, see the command-line
switch that controls the specific type of extensions.

When providing an input or output file name as an optional parameter,
follow these guidelines.

• Use a file name (include the file extension) with an unambiguous
relative path or an absolute path. A file name with an absolute path
includes the directory, file name, and file extension. The compiler
uses the file extension convention listed in Table 1-3 to determine
the input file type.

• Verify that the compiler is using the correct file. If you do not
provide the complete file path as part of the parameter or add
additional search directories, ccblkfn looks for input in the current
directory.

 Use the verbose output switches for the preprocessor, compiler,
assembler, and linker to cause each of these tools to display
command-line information as they process each file.

Table 1-3. Input and Output File Extensions

File Extension File Extension Description

.c .C C source file

.cpp .cxx .cc .c++ C++ source file

.h Header file (referenced by an #include statement)

.hpp .hh .hxx .h++ C++ header file (referenced by a #include statement)

.ii .ti Template instantiation files – used internally by the compiler when
instantiating templates

.ipa Interprocedural analysis files – used internally by the compiler when
performing interprocedural analysis.

.pgo Execution profile generated by a simulation run. For more informa-
tion, see “Using PGO in Function Profiling” in Chapter 2, Achiev-
ing Optimal Performance From C/C++ Source Code.

Compiler Command-Line Interface

1-10 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The compiler refers to a number of environment variables during its oper-
ation, and these environment variables can affect the compiler’s behavior.
Refer to “Environment Variables Used by the Compiler” on page 1-91 for
more information.

C/C++ Compiler Command-Line Switches
This section describes command-line switches used when compiling.
Tables, organized by switch type, provide a brief description of each
switch. Following these tables is a detailed description of each switch.

.i Preprocessed source file — created when preprocess only is specified

.s, .asm Assembly language source files

.is Preprocessed assembly language source — retained when
-save-temps (on page 1-72) is specified

.sbn Binary data included by an assembly language source file

.ldf Linker description file

.misra Text file used by prelinker for MISRA-C Guidelines checking

.pch Precompiled header file

.doj .o Object file to be linked

.dlb .a Library of object files to be linked as needed

.dxe Executable file produced by compiler

.xml Processor memory map file output

.sym Processor symbol map file output

Table 1-3. Input and Output File Extensions (Cont’d)

File Extension File Extension Description

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-11
for Blackfin Processors

Compiler

This section contains the following tables:

• “C/C++ Mode Selection Switches” (Table 1-4)

• “C/C++ Compiler Common Switches” (Table 1-5)

• “C Mode (MISRA) Compiler Switches” (Table 1-6 on page 1-24)

• “C++ Mode Compiler Switches” (Table 1-7 on page 1-25)

Table 1-4. C/C++ Mode Selection Switches

Switch Name Description

-c89
on page 1-26

Supports programs that conform to the ISO/IEC
9899:1990 standard. This is the default mode.

-c99
on page 1-26

Supports programs that conform to a freestanding
implementation of the ISO/IEC 9899:1999 standard
with Analog Devices extensions.

-c++
on page 1-26

Supports ANSI/ISO standard C++ with Analog Devices
extensions

Table 1-5. C/C++ Compiler Common Switches

Switch Name Description

sourcefile
on page 1-27

This parameter specifies the file to be compiled

-@ filename
on page 1-27

Reads command-line input from the file

-A symbol [tokens]
on page 1-27

Asserts the specified name as a predicate

-add-debug-libpaths
on page 1-28

Link against debug-specific variants of system libraries,
where available.

-alttok
on page 1-28

Allows alternative keywords and sequences in sources

-always-inline
on page 1-29

Treats inline keyword as a requirement rather than a
suggestion.

Compiler Command-Line Interface

1-12 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-annotate
on page 1-30

Enables assembly annotations

-annotate-loop-instr
on page 1-30

Provides additional annotation information for the pro-
log, kernel and epilog of a loop

-auto-attrs
on page 1-30

Directs the compiler to emit automatic attributes based
on the files it compiles. Enabled by default.

-bss
on page 1-30

Causes the compiler to put global zero-initialized data
into a separate BSS-style section. Set by default.

-build-lib
on page 1-31

Directs the librarian to build a library file

-C
on page 1-31

Retains preprocessor comments in the output file

-c
on page 1-31

Compiles and/or assembles only, but does not link

-const-read-write
on page 1-31

Specifies that data accessed via a pointer to const data
may be modified elsewhere

-const-strings
on page 1-32

Directs the compiler to mark string literals as const
qualified

-cplbs
on page 1-32

Instructs the compiler to assume that CPLBs are active

-D macro[=definition]
on page 1-32

Defines macro

-dcplbs
on page 1-33

Instructs the compiler to assume that data CPLBs are
active

-debug-types
on page 1-33

Supports building a .h file directly and writing a com-
plete set of debugging information for the header file

-decls-weak
-decls-strong
on page 1-33

Determines whether uninitialized global variables
should be treated as definitions or declarations

-double-size-32
-double-size-64
on page 1-34

Selects 32- or 64-bit IEEE format for double.
-double-size-32 is the default mode

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-13
for Blackfin Processors

Compiler

-double-size-any
on page 1-34

Indicates that the resulting object can be linked with
objects built with any double size

-dry
on page 1-34

Displays, but does not perform, main driver actions
(verbose dry run)

-dryrun
on page 1-35

Displays, but does not perform, top-level driver actions
(terse dry run)

-E
on page 1-35

Preprocesses, but does not compile, the source file

-ED
on page 1-35

Preprocesses and sends all output to a file

-EE
on page 1-35

Preprocesses and compiles the source file

-eh
on page 1-35

Enables exception handling

-enum-is-int
on page 1-36

By default, an enum can have a type larger than int.
This option ensures the enum type is int.

-expand-symbolic-links
on page 1-37

Provides support for Cygwin path extensions within
command-line switches and #include preprocessor
directives

-expand-windows-shortcuts
on page 1-37

Provides support for Windows shortcuts within
command-line switches and #include preprocessor
directives

-extra-keywords
on page 1-37

Recognizes Blackfin processor extensions to ANSI/ISO
standards for C (default mode)

-extra-loop-loads
on page 1-37

Allows the compiler to read off the start or end of mem-
ory areas, within loops, to aid performance

-fast-fp
on page 1-38

Links with the high-speed floating-point emulation
library

-file-attr name
on page 1-38

Adds the specified attribute name/value pair to the
file(s) being compiled

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

Compiler Command-Line Interface

1-14 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-fixed-point-io
on page 1-38

Links with a variant of the Analog Devices I/O library
containing support for printing native fixed-point types
in decimal format.

-flags-asm switches
-flags-compiler switches
-flags-lib switches
-flags-link switches
-flags-mem switches
on page 1-39

Passes command-line switches through the compiler to
other build tools

-force-circbuf
on page 1-39

Treats array references of the form array[i%n] as cir-
cular buffer operations

-force-link
on page 1-40

Forces stack frame creation for leaf functions.
(defaults to ON with -g option set, enforced for the -p
option)

-fp-associative
on page 1-40

Treats floating-point multiplication and addition as
associative operations

-full-io
on page 1-40

Links with a third party, proprietary I/O library

-full-version
on page 1-41

Displays the version number of the driver and processes
invoked by the driver

-fx-contract
on page 1-41

Sets the default mode of FX_CONTRACT to ON.

-fx-rounding-mode-biased
on page 1-41

Sets the default mode of FX_ROUNDING_MODE to
BIASED.

-fx-rounding-mode-truncation
on page 1-41

Sets the default mode of FX_ROUNDING_MODE to
TRUNCATION.

-fx-rounding-mode-unbiased
on page 1-41

Sets the default mode of FX_ROUNDING_MODE to
UNBIASED.

-g
on page 1-42

Generates DWARF-2 debug information

-glite
on page 1-42

Generates lightweight DWARF-2 debug information

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-15
for Blackfin Processors

Compiler

-guard-vol-loads
on page 1-43

Disables interrupts during volatile loads

-H
on page 1-43

Outputs a list of included header files, but does not
compile

-HH
on page 1-43

Outputs a list of included header files and compiles.

-h
-help
on page 1-43

Outputs a list of command-line switches with brief syn-
tax descriptions

-I directory
on page 1-44

Appends directory to the standard search path

-I-
on page 1-44

Specifies the point in the include directory list where
the search for header files enclosed in angle brackets
should begin

-i
on page 1-45

Outputs only header details or makefile dependencies
for include files specified in double quotes

-icplbs
on page 1-45

Instructs the compiler to assume that instruction
CPLBs are active

-ieee-fp
on page 1-45

Links with the fully-compliant floating-point emulation
library

-implicit-pointers
on page 1-46

Demotes incompatible-pointer-type errors into discre-
tionary warnings. Not valid when compiling in C++
mode.

-include filename
on page 1-46

Includes named file prior to each source file

-ipa
on page 1-47

Specifies that interprocedural analysis should be per-
formed for optimization between translation units

-jcs2l
on page 1-47

Enables the conversion of short jumps to long jumps
when necessary but uses the P1 register for indirect
jumps when long jumps are insufficient (enabled by
default)

-L directory
on page 1-47

Appends directory to the standard library search path

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

Compiler Command-Line Interface

1-16 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-l library
on page 1-47

Searches library for functions when linking

-list-workarounds
on page 1-48

Lists all compiler-supported errata workarounds

-M
on page 1-48

Generates make rules only, but does not compile

-MD
on page 1-49

Generates make rules, compiles, and prints to a file

-MM
on page 1-49

Generates make rules and compiles

-Mo filename
on page 1-49

Writes dependency information to filename. This
switch is used in conjunction with the -ED or -MD
options.

-Mt filename
on page 1-49

Makes dependencies, where the target is renamed as
filename

-map filename
on page 1-49

Directs the linker to generate a memory map of all sym-
bols

-mem
on page 1-50

Causes the compiler to invoke the Memory Initializer
after linking the executable file

-multicore
on page 1-50

Selects library versions suitable for use in a multi-core
environment

-multiline
on page 1-50

Enables string literals over multiple lines (default)

-never-inline
on page 1-51

Ignores inline keyword on function definitions

-no-alttok
on page 1-51

Disallows alternative keywords and sequences in sources

-no-annotate
on page 1-51

Disables the annotation of assembly files

-no-annotate-loop-instr
on page 1-52

Disables the production of additional loop annotation
information by the compiler (default mode)

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-17
for Blackfin Processors

Compiler

-no-assume-vols-are-mmrs
on page 1-52

Directs the compiler not to apply workarounds for
MMR-related silicon errata to arbitrary
volatile-qualified memory accesses.

-no-auto-attrs
on page 1-52

Directs the compiler not to emit automatic attributes
based on the files it compiles

-no-bss
on page 1-53

Causes the compiler to group global zero-initialized
data into the same section as global data with non-zero
initializers

-no-builtin
on page 1-53

Disable recognition of __builtin functions

-no-circbuf
on page 1-53

Disables the automatic generation of circular buffering
code

-no-const-strings
on page 1-53

Directs the compiler not to make string literals const
qualified

-no-defs
on page 1-54

Disables preprocessor definitions: macros, include
directories, library directories, run-time headers, or key-
word extensions

-no-eh
on page 1-54

Disables exception-handling

-no-expand-symbolic-links
on page 1-54

Disables support for Cygwin path extensions in com-
mand-line paths and preprocessor include directives

-no-expand-windows-shortcuts
on page 1-54

Disables support for Windows shortcuts in com-
mand-line paths and preprocessor include directives

-no-extra-keywords
on page 1-54

Does not define language extension keywords that
could be valid C/C++ identifiers

-no-force-link
on page 1-55

Does not create a new stack frame for leaf functions, if
one can be omitted. Overrides the default for -g.

-no-fp-associative
on page 1-55

Does not treat floating-point multiplication and
addition as associative operations

-no-full-io
on page 1-56

Links with the Analog Devices I/O library. Enabled by
default

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

Compiler Command-Line Interface

1-18 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-no-fx-contract
on page 1-56

Sets the default mode of FX_CONTRACT to OFF.

-no-int-to-fract
on page 1-56

Prevents the compiler from turning integer into frac-
tional arithmetic

-no-jcs2l
on page 1-57

Prevents the linker from converting compiler-generated
short jumps to long jumps using register P1

-no-mem
on page 1-57

Causes the compiler to not invoke the Memory Initial-
izer after linking. Set by default.

-no-multiline
on page 1-57

Disables multiple line string literal support

-no-progress-rep-timeout
on page 1-57

Prevents the compiler from issuing a diagnostic during
excessively long compilations

-no-sat-associative
on page 1-57

Saturating addition is not associative

-no-saturation
on page 1-58

Causes the compiler not to introduce saturation seman-
tics when optimizing expressions

-no-std-ass
on page 1-58

Prevents the compiler from defining standard assertions

-no-std-def
on page 1-58

Disables normal macro definitions and also Analog
Devices keyword extensions that do not have leading
underscores (__)

-no-std-inc
on page 1-59

Searches only for preprocessor include header files in
the current directory and in directories specified with
the -I switch

-no-std-lib
on page 1-59

When linking, searches for libraries only in directories
specified with the -L switch

-no-threads
on page 1-59

Specifies that no support is required for multi-threaded
applications

-no-workaround workaround_id
on page 1-59

Disables specific hardware anomaly workarounds
within the compiler

-no-zero-loop-counters
on page 1-60

Do not zero loop counters (LC0 and LC1) on function
exit

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-19
for Blackfin Processors

Compiler

-O
-O1
-O0
on page 1-60

Enables (-O or -O1) or disables (-O0) code
optimizations (uppercase “O” optionally followed
by a zero or a one)

-Oa
on page 1-60

Enables automatic function inlining

-Ofp
on page 1-60

Offsets the frame pointer to allow more short load and
store instructions. Reduces debugger capabilities, when
used with -g.

-Og

on page 1-61

Enables a compiler mode that performs optimizations
while still preserving the debugging information

-Os
on page 1-61

Optimizes the file to decrease code size

-Ov num
on page 1-61

Controls speed versus size optimizations

-o filename
on page 1-63

Specifies the output file name

-overlay
on page 1-64

Disables the propagation of register information
between functions and forces the compiler to assume
that all functions clobber all scratch registers

-overlay-clobbers registers
on page 1-64

Specifies the registers assumed to be clobbered by an
overlay manager

-P
on page 1-65

Preprocesses, but does not compile, the source file; out-
put does not contain #line directives

-PP
on page 1-65

Preprocesses and compiles the source file; output does
not contain #line directives.

-p1
-p2
on page 1-65

Generates profiling instrumentation

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

Compiler Command-Line Interface

1-20 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-path-asm filename
-path-compiler filename
-path-lib filename
-path-link filename
on page 1-65

Uses the specified directory as the location of the
specified compilation tool (assembler, compiler, library
builder, or linker)

-path-install directory
on page 1-66

Uses the specified directory as the location of all
compilation tools

-path-output directory
on page 1-66

Specifies the location of non-temporary files

-path-temp directory
on page 1-66

Specifies the location of temporary files

-pch
on page 1-66

Enables automatic generation and use of precompiled
header files

-pchdir directory
on page 1-66

Specifies an alternative directory to PCHRepository in
which to store precompiled header files

-pgo-session session-id
on page 1-67

Used with profile-guided optimization

-pguide
on page 1-67

Adds instrumentation for the gathering of a profile as
the first stage of performing profile-guided optimiza-
tion

-pplist filename
on page 1-68

Outputs a raw preprocessed listing to the specified file

-proc processor
on page 1-68

Specifies a processor for which the compiler should pro-
duce suitable code

-progress-rep-func
on page 1-69

Issues a diagnostic message each time the compiler
starts compiling a new function. Equivalent to
-Wwarn=cc1472.

-progress-rep-opt
on page 1-69

Issues a diagnostic message each time the compiler
starts a new optimization pass on the current function.
Equivalent to -Wwarn=cc1473.

-progress-rep-timeout
on page 1-70

Issues a diagnostic message if the compiler exceeds a
time limit during compilation.

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-21
for Blackfin Processors

Compiler

-progress-rep-timeout-secs secs
on page 1-70

Specifies how many seconds must elapse during a com-
pilation before the compiler issues a diagnostic on the
length of compilation.

-R directory
on page 1-70

Appends directory to the standard search path for
source files

-R-
on page 1-71

Removes all directories from the source file search direc-
tory list

-reserve register(s)
on page 1-71

Reserves certain registers from compiler use.
Note: Reserving registers can have a detrimental effect
on the compiler’s optimization capabilities.

-S
on page 1-71

Stops compilation before running the assembler

-s
on page 1-71

When linking, removes debugging information from
the output executable file

-sat-associative
on page 1-71

Saturating addition is associative

-save-temps
on page 1-72

Saves intermediate files

-sdram
on page 1-72

Instructs the compiler to assume that at least bank 0 of
external SDRAM will be present and enabled

-section id=section_name
on page 1-72

Orders the compiler to place data/program of type “id”
into the section “section_name”

-show
on page 1-73

Displays the driver command-line information

-signed-bitfield
 on page 1-74

Makes the default type for int bitfields signed

-signed-char
on page 1-74

Makes the default type for char signed

-si-revision version
on page 1-74

Specifies a silicon revision of the specified processor.
The default setting is the latest silicon revision

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

Compiler Command-Line Interface

1-22 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-stack-detect
on page 1-74

Causes the compiler to generate additional instructions
in the generated code to detect a potential stack over-
flow.

-structs-do-not-overlap
on page 1-75

Specifies that struct copies may use “memcpy” seman-
tics, rather than the usual “memmove” behavior

-syntax-only
on page 1-75

Checks the source code for compiler syntax errors, but
does not write any output

-sysdefs
on page 1-76

Instructs the driver to define preprocessor macros that
describe the current user and machine

-T filename
on page 1-76

Specifies the linker description file

-threads
on page 1-76

Enables the support for multi-threaded applications

-time
on page 1-77

Displays the elapsed time as part of the output informa-
tion on each part of the compilation process

-U macro
on page 1-77

Undefines macro

-unsigned-bitfield
on page 1-77

Makes the default type for plain int bit-fields unsigned

-unsigned-char
on page 1-78

Makes the default type for char unsigned

-v
on page 1-78

Displays version and command-line information for all
compilation tools

-verbose
on page 1-79

Displays command-line information for all compilation
tools as they process each file

-version
on page 1-79

Displays version information for all compilation tools
as they process each file

-Werror number
-Wremark number
-Wsuppress number
-Wwarn number
on page 1-79

Overrides the default severity of the specified messages
(errors, remarks, or warnings)

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-23
for Blackfin Processors

Compiler

-Werror-limit number
on page 1-80

Stops compiling after reaching the specified number of
errors

-Werror-warnings
on page 1-80

Directs the compiler to treat all warnings as errors

-Wremarks
on page 1-80

Issues compiler remarks

-Wterse
 on page 1-80

Issues the briefest form of compiler warnings, errors,
and remarks

-w
on page 1-80

Disables all warnings

-warn-protos
on page 1-81

Issues warnings about functions without prototypes

-workaround workaround_id
on page 1-81

Enables code generator workaround for specific hard-
ware errata

-write-files
on page 1-81

Enables compiler I/O redirection

-write-opts
on page 1-82

Passes the user options (but not input file names) via a
temporary file

-xref filename
on page 1-82

Outputs cross-reference information to the specified file

-zero-loop-counters
on page 1-83

Ensure used loop counters (LC0 and LC1) are zeroed on
function exit

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

Compiler Command-Line Interface

1-24 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Table 1-6. C Mode (MISRA) Compiler Switches

Switch Name Description

-misra
on page 1-83

Enables checking for MISRA-C:2004 Guidelines. Allows
some relaxation of interpretation. For more information,
see “Rules Descriptions” on page 1-147.

-misra-linkdir directory
on page 1-84

Specifies directory for generation of .misra files.
If this option is not specified, a local directory called
MISRARepository is created. The .misra files allow the
compiler to record information across modules to support
the implementation of MISRA rules 5.5, 8.8, and 8.10.

-misra-no-cross-module
on page 1-84

Implies -misra , but inhibits the generation of .misra
files to check for link-time rule violations. It therefore dis-
ables checking of MISRA rules 5.5, 8.8, and 8.10.

-misra-no-runtime
on page 1-84

Implies -misra, but inhibits the generation of extra code
to perform run-time checking in support of Rule 21. The
disabling of run-time checks also suppresses checking for
rules 17.1, 17.2 and 17.3. It limits rules 9.1, 12.8, 16.3
and 17.4 to compile-time checks.

-misra-strict
on page 1-84

Enables checking for MISRA-C:2004 Guidelines. Rules
relaxed by -misra option are enforced fully by this option.
For more information, see “Rules Descriptions” on
page 1-147.

-misra-suppress-advisory
on page 1-85

Implies -misra, but suppresses the reporting of advisory
rules.

-misra-testing
on page 1-85

Implies -misra, but suppresses reporting of MISRA rules
20.4, 20.7, 20.8, 20.9, 20.10, 20.11, and 20.12. This
allows the use of I/O and other support functions during
development testing.

-Wmis_suppress
on page 1-85

Overrides the default severity of the specified messages
relating to the specified MISRA rules. For example,
-Wmis_suppress 16.1 will suppress the reporting of
violations of rule 16.1.

-Wmis_warn
on page 1-85

Overrides the default severity of the specified messages
relating to the specified MISRA rules. For example,
-Wmis_warn 16.1 will change the reporting of violations of
rule 16.1 as an error to a warning.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-25
for Blackfin Processors

Compiler

Table 1-7. C++ Mode Compiler Switches

Switch Name Description

-anach
on page 1-85

Supports some language features (anachronisms) that are
prohibited by the C++ standard but still in common use

-check-init-order
on page 1-87

Adds run-time checking to the generated code highlighting
potential uninitialized external objects. For development
purposes only - do not use in production code.

-extern-inline
on page 1-87

Allows standard behavior with respect to extern inline
functions.

-friend-injection
on page 1-88

Allows non-standard behavior with respect to friend decla-
rations. When friend names are not injected, function
names are visible only when using dependent lookup. This
is the default mode.

-full-dependency-inclusion
on page 1-88

Ensures re-inclusion of implicitly included files when gen-
erating dependency information

-ignore-std
on page 1-88

Disables namespace std within the C++ Standard header
files

-no-anach
on page 1-89

Disallows the use of anachronisms that are prohibited by
the C++ standard

-no-extern-inline
on page 1-89

Treats extern inline functions as though they have static
linkage. This is the default mode.

-no-friend-injection
on page 1-89

Allows standard behavior. Friend function names are visi-
ble only when using argument-dependent lookup and
friend class names are never visible.

-no-implicit-inclusion
on page 1-89

Prevents implicit inclusion of source files as a method of
finding definitions of template entities to be instantiated

-no-rtti
on page 1-90

Disables run-time type information

-no-std-templates
on page 1-90

Disables the special lookup of names used in templates

-rtti
on page 1-90

Enables run-time type information

-std-templates
on page 1-90

Enables the lookup of names used in templates

Compiler Command-Line Interface

1-26 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Mode Selection Switch Descriptions

The following command-line switches provide C/C++ mode selection.

-c89

The -c89 switch directs the compiler to support programs that conform
to the ISO/IEC 9899:1990 standard. For greater conformance to the stan-
dard, use the following switches: -alttok, -const-read-write, and
-no-extra-keywords. (See Table 1-5 on page 1-11.)

-c99

The -c99 switch directs the compiler to support programs that conform to
a freestanding implementation of the ISO/IEC 9899:1999 standard. For
greater conformance to the standard see “Language Standards Compli-
ance” on page 1-140.

 The compiler does not support the _Complex and _Imaginary key-
words. Complex arithmetic in C mode is enabled by including the
Analog Devices-specific header file <complex.h>.

-c++

The –c++ (C++ mode) switch directs the compiler to assume that the
source file(s) are written in ANSI/ISO standard C++ with Analog Devices
language extensions.

All the standard features of C++ are accepted in the default mode except
exception handling and run-time type identification because these impose
a run-time overhead that is not desirable for all embedded programs.
Support for these features can be enabled with the -eh switch
(on page 1-35) and -rtti switch (on page 1-90).

C/C++ Compiler Common Switch Descriptions

The following command-line switches apply in both C and C++ modes.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-27
for Blackfin Processors

Compiler

sourcefile

The sourcefile parameter (or parameters) specifies the name of the file
(or files) to be preprocessed, compiled, assembled, and/or linked. A file
name can include the drive, directory, file name, and file extension. The
ccblkfn compiler uses the file extension to determine the operations to
perform. Table 1-3 on page 1-9 lists the permitted extensions and
matching compiler operations.

-@

The -@ filename (command file) switch directs the compiler to read
command-line input from filename. The specified file must contain
driver options and may also contain source file names and environment
variables. It can be used to store frequently used options as well as to read
from a file list.

-A

The -A name (tokens) (assert) switch directs the compiler to assert name
as a predicate with the specified tokens. This has the same effect as the
#assert preprocessor directive. The following assertions are predefined.

The -A name(value) switch is equivalent to including

#assert name(value)

Table 1-8. Predefined Assertions

Assertion Value

system embedded

machine adspblkfn

cpu adspblkfn

compiler ccblkfn

Compiler Command-Line Interface

1-28 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

in your source file, and both may be tested in a preprocessor condition
in the following manner:

#if #name(value)

// do something

#else

// do something else

#endif

For example, the default assertions may be tested as:

#if #machine(adspblkfn)

// do something else

#endif

 The parentheses in the assertion need quotes when using the -A
switch to prevent misinterpretation. Quotes are not required for an
#assert directive in a source file.

-add-debug-libpaths

The -add-debug-libpaths switch prepends the Debug subdirectory to the
search paths passed to the linker. The Debug subdirectory, found in each
of the silicon-revision-specific library directories, contains variants of cer-
tain libraries (for example, system services), which provide additional
diagnostic output to assist in debugging problems arising from their use.

Invoke this switch with the Use Debug System Libraries check box
located in the VisualDSP++ Project Options dialog box (Link : Processor
page).

-alttok

The -alttok (alternative tokens) switch directs the compiler to allow
digraph sequences in C and C++ source files. Additionally, the switch

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-29
for Blackfin Processors

Compiler

enables the recognition of these alternative operator keywords in C++
source files (Table 1-9).

 To use alternative tokens in C, use #include <iso646.h>.

See also “-no-alttok” on page 1-51.

-always-inline

The -always-inline switch instructs the compiler to attempt to inline
any call to a function that is defined with the inline qualifier. This switch
is equivalent to applying #pragma always_inline to all functions in the
module that have the inline qualifier. See also the –never-inline switch
(on page 1-51).

Invoke this switch with the Always check box located in the Inlining area
of the VisualDSP++ Project Options dialog box (Compile : General
page).

Table 1-9. Alternative Operator Keywords

Keyword Equivalent

and &&

and_eq &=

bitand &

bitor |

compl ~

or ||

or_eq |=

not !

not_eq !=

xor ^

xor_eq ^=

Compiler Command-Line Interface

1-30 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-annotate

The -annotate (enable assembly annotations) switch directs the compiler
to annotate assembly files generated by the compiler. By default, when
optimizations are enabled, all assembly files generated by the compiler are
annotated with information on the performance of the generated assem-
bly. See “Assembly Optimizer Annotations” on page 2-96 for more details
on this feature.

Invoke this switch by selecting the Generate assembly code annotations
check box located in the VisualDSP++ Project Options dialog box
(Compile page, General category).

See also “-no-annotate” on page 1-51.

-annotate-loop-instr

The -annotate-loop-instr switch directs the compiler to provide addi-
tional annotation information for the prolog, kernel, and epilog of a loop.
See “Assembly Optimizer Annotations” on page 2-96 for more details on
this feature.

See also “-no-annotate-loop-instr” on page 1-52.

-auto-attrs

The -auto-attrs (automatic attributes) switch directs the compiler to
emit automatic attributes based on the files it compiles. Emission of auto-
matic attributes is enabled by default. See “File Attributes” on page 1-471
for more information about attributes and what automatic attributes the
compiler emits. See also the -no-auto-attrs switch (on page 1-52) and
the -file-attr switch (on page 1-38).

-bss

The -bss switch causes the compiler to place global zero-initialized data
into a BSS-style section (called “bsz”), rather than into the normal global

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-31
for Blackfin Processors

Compiler

data section. This is the default mode. See also the –no-bss switch
(on page 1-53).

-build-lib

The -build-lib (build library) switch directs the compiler to use elfar
(the librarian) to produce a library file (.dlb) instead of using the linker to
produce an executable file (.dxe). The -o option (on page 1-63) must be
used to specify the name of the resulting library.

-C

The -C (comments) switch, which is only active when used with the –E,
-EE, -ED, -P, or -PP switches, directs the preprocessor to retain comments
in its output.

-c

The -c (compile only) switch directs the compiler to compile and/or
assemble the source files, but to stop before linking. The output is an
object file (.doj) for each source file.

-const-read-write

The -const-read-write switch directs the compiler to specify that con-
stants may be accessed as read-write data (as in ANSI C). The compiler’s
default behavior assumes that data referenced through const pointers
never changes.

The -const-read-write switch changes the compiler’s behavior to match
the ANSI C assumption, which is that other non-const pointers may be
used to change the data at some point.

Invoke this switch with the Pointers to const may point to non-const
data check box located in the Constants area of the VisualDSP++ Project
Options dialog box (Compile : Language Settings page).

Compiler Command-Line Interface

1-32 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-const-strings

The -const-strings (const-qualify strings) switch directs the compiler to
mark string literals as const-qualified. See also the –no-const-strings
switch (on page 1-53).

Invoke this switch with the Literal strings are const check box located in
the Language Settings : Constants area of the Project Options dialog box
(Compile : Language Settings page).

-cplbs

The -cplbs (CPLBs are active) switch instructs the compiler to assume
that all memory accesses will be validated by the Blackfin processor’s
memory protection hardware. This switch is best used in conjunction with
the -workaround switch, as it allows the compiler to identify situations
where the cacheability protection lookaside buffers (CPLBs) will avoid
problems, thus avoiding the need for extra workaround instructions.

If only instruction CPLBs or data CPLBs are enabled, use the “-icplbs” on
page 1-45 switch or the “-dcplbs” on page 1-33 switch, respectively

Invoke this switch with the CPLBs are enabled check box located in the
VisualDSP++ Project Options dialog box (Compile : Processor (2) page).

-D

The -D macro[=definition] (define macro) switch directs the compiler to
define a macro. If you do not include the optional definition string, the
compiler defines the macro as the string ‘1’. Note that the compiler pro-
cesses -D switches on the command line before any -U (undefine macro)
switches.

Invoke this switch by using the Preprocessor definitions field located in
the VisualDSP++ Project Options dialog box (Compile : Preprocessor
page).

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-33
for Blackfin Processors

Compiler

-dcplbs

The -dcplbs (data CPLBs are active) switch instructs the compiler to
assume that all data memory accesses will be validated by the Blackfin
processor’s memory protection hardware. This allows the compiler to
identify situations where the cacheability protection lookaside buffers
(CPLBs) will avoid problems the compiler would otherwise workaround
(for example, anomaly 05-00-0428), improving code size and
performance.

If both ICPLBs and DCPLBs are active, use the “-cplbs” on page 1-32
switch.

-debug-types <file.h>

The -debug-types switch builds a .h file directly and writes a complete set
of debugging information for the header file. The -g option
(on page 1-42) need not be specified with the -debug-types option
because it is implied.

For example,

ccblkfn -debug-types anyHeader.h

Until the introduction of -debug-types, the compiler would not accept a
*.h file as a valid input file. The implicit -g option writes debugging
information for only those typedefs that are referenced in the program.
The -debug-types option provides complete debugging information for
all typedefs and structs.

-decls-{weak|strong}

The -decls-weak and -decls-strong switches control how the compiler
interprets uninitialized global variable definitions, such as int x;.

The -decls-strong switch treats this as equivalent to int x = 0;,
specifying that other definitions of the same variable in other modules
cause a “multiply-defined symbol” error. The -decls-weak switch treats

Compiler Command-Line Interface

1-34 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

this as equivalent to “extern int x;”, such as a declaration of a symbol
that is defined in another module. The default is -decls-strong. ANSI C
behavior is -decls-weak.

Invoke this switch by means of the Treat uninitialized global vars as...
check boxes located in the VisualDSP++ Project Options dialog box
(Compile : Processor (1) page).

-double-size-{32 | 64}

The -double-size-32 (double is 32 bits) and -double-size-64 (double is
64 bits) switches specify the size of the double data type. The default is
-double-size-32 (32-bit data type).

The -double-size-64 switch promotes double to a 64-bit data type,
making it equivalent to long double. This switch does not affect the sizes
of float or long double. Refer to “Using Data Storage Formats” on
page 1-443 for more information on data types.

Invoke this switch with the Double Size option buttons located in the
Project Options dialog box (Compile : Processor (1) page).

-double-size-any

The -double-size-any switch specifies that the input source files make no
use of double-typed data, and that resulting object files should be marked
in such a way that will enable them to be linked against objects built with
doubles, either 32 bits or 64 bits in size. Refer to “Using Data Storage
Formats” on page 1-443 for more information on data types.

Invoke this switch with the Allow mixing of sizes check box located in the
VisualDSP++ Project Options dialog box (Compile : Processor (1) page).

-dry

The -dry (verbose dry run) switch directs the compiler to display main
ccblkfn actions, but not to perform them.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-35
for Blackfin Processors

Compiler

-dryrun

The -dryrun (terse dry run) switch directs the compiler to display
top-level ccblkfn actions, but not to perform them.

-E

The -E (stop after preprocessing) switch directs the compiler to stop
after the C/C++ preprocessor runs (without compiling). The output
(preprocessed source code) prints to the standard output stream unless
the output file is specified with the -o switch (on page 1-63).

-ED

The -ED (run after preprocessing to file) switch directs the compiler to
write the output of the C/C++ preprocessor to a file named
“original_filename.i”. After preprocessing, compilation proceeds
normally.

Invoke this switch with the Generate preprocessed file check box located
in the Project Options dialog box (Compile : General page).

-EE

The -EE (run after preprocessing) switch directs the compiler to write the
output of the C/C++ preprocessor to standard output. After preprocess-
ing, compilation proceeds normally.

-eh

The -eh (enable exception handling) switch directs the compiler to allow
C++ code that contains catch statements and throw exceptions and other
features associated with ANSI/ISO standard C++ exceptions. When this
switch is enabled, the compiler defines the macro __EXCEPTIONS as 1.

If used when compiling C programs, without the -c++ (C++ mode) switch
(on page 1-26), the -eh switch directs the compiler to generate exceptions

Compiler Command-Line Interface

1-36 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

tables but does not change the language accepted. In this case,
__EXCEPTIONS is not defined.

The –eh switch also causes the compiler to define __ADI_LIBEH__ during
the linking stage so that appropriate sections can be activated in the .ldf
file, and the program can be linked with a library built with exceptions
enabled.

Object files created with exceptions enabled may be linked with objects
created without exceptions enabled. However, exceptions can only be
thrown from and caught, and cleanup code executed, in modules com-
piled with -eh. If an attempt is made to throw an exception through the
execution of a function not compiled -eh, then abort or the function reg-
istered with set_terminate is called. See “Exceptions Tables Pragma” on
page 1-347.

In non-threaded applications, the buffer used for the passing of exception
data is not returned to the heap on application exit. This is to avoid
unnecessary code and will have no impact on behavior.

Invoke this switch with the C++ exceptions and RTTI check box located
in the VisualDSP++ Project Options dialog box (Compile : Language
Settings page).

See also “-no-eh” on page 1-54.

-enum-is-int

The -enum-is-int switch ensures that the type of an enum is int. By
default, the compiler defines enumeration types with integral types larger
than int, if int is insufficient to represent all the values in the enumera-
tion. This switch prevents the compiler from selecting a type wider than
int.

Invoke this switch with the Enumerated types are always int check box
located in the VisualDSP++ Project Options dialog box
(Compile : Language Settings page).

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-37
for Blackfin Processors

Compiler

-expand-symbolic-links

The -expand-symbolic-links (expand symbolic links) switch directs the
compiler to recognize Cygwin path extensions (see “Cygwin Path Sup-
port” on page 1-93) within command-line switches and #include
preprocessor directives. This option is disabled by default. See also the
-no-expand-symbolic-links switch (on page 1-54).

-expand-windows-shortcuts

The -expand-windows-shortcuts (expand Windows shortcuts) switch
directs the compiler to recognize Windows shortcuts (“Windows Shortcut
Support” on page 1-92) within command-line switches and #include
preprocessor directives. This option is disabled by default. See also the
-no-expand-windows-shortcuts switch (on page 1-54).

-extra-keywords

The -extra-keywords (enable short-form keywords) switch directs the
compiler to recognize the Analog Devices keyword extensions to
ANSI/ISO standard C/C++ without leading underscores, which can affect
conforming ANSI/ISO C/C++ programs. This is the default mode.

Use the -no-extra-keywords switch (on page 1-54) to disallow support
for the additional keywords. Table 1-21 on page 1-158 provides a list and
a brief description of keyword extensions.

-extra-loop-loads

The -extra-loop-loads (improve code for loops) switch provides the
compiler with extra freedom to read more memory locations than
required, within a loop, in order to generate the best code. For example, if
a loop indicated that the compiler should read elements arr[0]..arr[59]
and sum them, the -extra-loop-loads switch would indicate that the
compiler is also allowed to read element arr[60].

Compiler Command-Line Interface

1-38 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-fast-fp

The -fast-fp (fast floating point) switch directs the compiler to link with
the high-speed floating-point emulation library. This library relaxes some
of the IEEE floating-point standard’s rules for checking inputs against
not-a-number (NaN) and denormalized numbers to improve
performance. This switch is enabled by default. See also the -ieee-fp
switch (on page 1-45). Refer to “Using Data Storage Formats” on
page 1-443 for more information on data types.

Invoke this switch with the High performance option button located in
the Floating Point area of the VisualDSP++ Project Options dialog box
(Link : Processor page).

-file-attr

The -file-attr name[=value] (file attribute) switch directs the compiler
to add the specified attribute name/value pair to all the files it compiles.
To add multiple attributes, use the switch multiple times. If “=value” is
omitted, the default value of “1” will be used. See “File Attributes” on
page 1-471 for more information about attributes, and what automatic
attributes the compiler emits. See also the -auto-attrs switch
(on page 1-30) and the -no-auto-attrs switch (on page 1-52).

Invoke this switch with the Additional attributes text field located in the
Project Options dialog box (Compile : General page).

-fixed-point-io

The -fixed-point-io (use fixed-point I/O library) switch links the appli-
cation with a variant of the Analog Devices I/O library with support for
printing fract and accum types in decimal format with the printf family
of functions using the %k, %K, %r, and %R conversion specifiers. This library
provides output that adheres to the embedded C Technical Report 18037
at the expense of increased code size footprint. Linking with the default
I/O library provides output using the %k, %K, %r, and %R specifiers only in
hexadecimal format. Note that the Analog Devices libraries contains a

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-39
for Blackfin Processors

Compiler

faster implementation of C standard I/O than the alternative third-party
I/O library (see “-full-io” on page 1-40.) but that the functionality pro-
vided is not as comprehensive. For details, refer to “stdio.h” on page 3-31.

This switch passes the _ADI_FX_LIBIO macro to the compiler and linker.

Invoke this switch using the High performance I/O with support for
fixed-point types option button located in the I/O Libraries area of the
VisualDSP++ Project Options dialog box (Link : Processor page).

See also “-full-io” on page 1-40 and “-no-full-io” on page 1-56.

-flags{-asm | -compiler | -lib | -link | -mem} switch [,switch2[,...]]

The -flags (command-line input) switch directs the compiler to pass
command-line switches to the other build tools.

Versions of this switch are listed in Table 1-10.

-force-circbuf

The -force-circbuf (circular buffer) switch instructs the compiler to use
circular buffer facilities, even if the compiler cannot verify that the circular
index or pointer is always within the range of the buffer. Without this
switch, the compiler’s default behavior is conservative, and does not use
circular buffers unless it can verify that the circular index or pointer is

Table 1-10. Switches Passed to Other Build Tools

Option Tool

-flags-asm Assembler

-flags-compiler Compiler executable

-flags-lib Library Builder (elfar.exe)

-flags-link Linker

-flags-mem Memory Initializer

Compiler Command-Line Interface

1-40 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

always within the circular buffer range. See “Circular Buffer Built-In
Functions” on page 1-256.

Invoke this switch with the Even when pointer may be outside buffer
range option button located in the VisualDSP++ Project Options dialog
box (Compile : Language Settings page).

-force-link

The -force-link (force stack frame creation) switch directs the compiler
to create a new stack frame for leaf functions.

This is selected by default if the –g switch (on page 1-42) is selected as it
improves the quality of debugging information, but can be switched off
with –no-force-link. When –p (on page 1-65) is selected, this switch is
always in force. See also –no-force-link switch (on page 1-55).

-fp-associative

The -fp-associative switch directs the compiler to treat floating-point
multiplication and addition as associative operations. This switch is on by
default.

See also “-no-fp-associative” on page 1-55.

-full-io

The -full-io switch links the application with a third-party, proprietary
I/O library. The third-party I/O library provides a complete implementa-
tion of the ANSI C Standard I/O functionality at the cost of performance
(compared to the Analog Devices I/O library). For details, see “stdio.h” on
page 3-31.

Invoke this switch using two options: the Full I/O check box located in
the VisualDSP++ Project Options dialog box (Compile : Processor (1)
page) and the Full ANSI C Compliance option button located in the
I/O Libraries area of the VisualDSP++ Project Options dialog box
(Link : Processor page).

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-41
for Blackfin Processors

Compiler

See also “-no-full-io” on page 1-56.

-full-version

The -full-version (display version) switch directs the compiler to display
version information for all the compilation tools as they process each file.

-fx-contract

The -fx-contract switch sets the default state of FX_CONTRACT to ON,
which is the default setting. This switch controls the performance and
accuracy of arithmetic on the native fixed-point types fract and accum.
See “FX_CONTRACT” on page 1-115 for more information.

See also “-no-fx-contract” on page 1-56.

-fx-rounding-mode-biased

The -fx-rounding-mode-biased switch sets the default state of
FX_ROUNDING_MODE to BIASED. This switch controls the rounding behavior
of arithmetic on the native fixed-point types fract and accum. See “Set-
ting the Rounding Mode” on page 1-128 for more information. It should
be used in conjunction with the set_rnd_mod_biased() built-in function,
described in “Changing the RND_MOD Bit” on page 1-242.

-fx-rounding-mode-truncation

The -fx-rounding-mode-truncation switch sets the default state of
FX_ROUNDING_MODE to TRUNCATION, which is the default setting. This switch
controls the rounding behavior of arithmetic on the native fixed-point
types fract and accum. See “Setting the Rounding Mode” on page 1-128
for more information.

-fx-rounding-mode-unbiased

The -fx-rounding-mode-unbiased switch sets the default state of
FX_ROUNDING_MODE to UNBIASED. This switch controls the rounding behav-
ior of arithmetic on the native fixed-point types fract and accum. See

Compiler Command-Line Interface

1-42 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

“Setting the Rounding Mode” on page 1-128 for more information. It
should be used in conjunction with the set_rnd_mod_unbiased() built-in
function, described in “Changing the RND_MOD Bit” on page 1-242.

-g

The -g (generate debugging information) switch directs the compiler to
output symbols and other information used by the debugger.

If the -g switch is used with the -O (enable optimization) switch, the com-
piler performs standard optimizations. The compiler also outputs symbols
and other information to provide limited source-level debugging. This
combination of options provides line debugging and global variable
debugging.

Invoke this switch by selecting the Generate debug information check
box in the VisualDSP++ Project Options dialog box (Compile : General
page).

 When the -g and -O switches are specified, no debug information is
available for local variables and the standard optimizations can
sometimes rearrange program code in a way that produces inaccu-
rate line number information. For full debugging capabilities, use
the -g switch without the -O switch. See also the -Og switch
(on page 1-61).

-glite

The -glite (lightweight debugging) switch can be used on its own, or in
conjunction with any of the -g, -Og, or -debug-types compiler switches.
When this switch is enabled, it instructs the compiler to remove any
unnecessary debug information for the code that is compiled.

When used on its own, the switch also enables the -g option.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-43
for Blackfin Processors

Compiler

 This switch can be used to reduce the size of object and executable
files, but will have no effect on the size of the code loaded onto the
target.

-guard-vol-loads

The -guard-vol-loads (guard volatile loads) switch disables interrupts
during volatile loads. A load can be interrupted before completion and
restarted once the interrupt completes. If the load is to a device register,
this can have undesirable side effects. The -guard-vol-loads switch
disables interrupts before issuing a volatile load and re-enables interrupts
after the load to avoid this problem.

Invoke this switch with the Disable interrupts during volatile memory
accesses check box located in the VisualDSP++ Project Options dialog
box (Compile : Processor (1) page).

-H

The -H (list headers) switch directs the compiler to output a list of the files
included by the preprocessor via the #include directive, without compil-
ing. The -o switch (on page 1-63) may be used to redirect the list to a file.

-HH

The -HH (list headers and compile) switch directs the compiler to print to
the standard output file stream a list of the files included by the preproces-
sor via the #include directive. After preprocessing, compilation proceeds
normally.

-h[elp]

The -h or -help (command-line help) switches directs the compiler to
output a list of command-line switches with a brief syntax description.

Compiler Command-Line Interface

1-44 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-I

The -I directory [{,|;} directory...] (include search directory)
switch directs the C/C++ preprocessor to append the directory
(or directories) to the search path for include files. This option can be
specified more than once; all specified directories are added to the search
path.

Include files, whose names are not absolute path names and that are
enclosed in “...” when included, are searched for in the following directo-
ries in this order:

1. The directory containing the current input file (the primary source
file or the file containing the #include)

2. Any directories specified with the -I switch in the order they are
listed on the command line

3. Any directories on the standard list:
<install_path>\...\include

 If a file is included using the <...> form, this file is only searched
for by using directories defined in items 2 and 3 above.

Invoke this switch with the Additional include directories text field
located in the VisualDSP++ Project Options dialog box (Compile :
Preprocessor page).

-I-

The -I- (start include directory list) switch establishes the point in the
include directory list at which the search for header files enclosed in angle
brackets begins. Normally, for header files enclosed in double quotes, the
compiler searches in the directory containing the current input file; then
the compiler reverts back to looking in the directories specified with the
-I switch; and then the compiler searches in the standard include
directory.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-45
for Blackfin Processors

Compiler

It is possible to replace the initial search (within the directory containing
the current input file) by placing the -I- switch at the point on the com-
mand line where the search for all types of header file begins. All include
directories on the command line specified before the -I- switch are used
only in the search for header files that are enclosed in double quotes.

 This switch removes the directory containing the current input file
from the include directory list.

-i

The -i (less includes) switch may be used with the –H, -HH, -M, or -MM
switches to direct the compiler to only output header details (-H, -HH)
or makefile dependencies (-M, -MM) for include files specified in double
quotes.

-icplbs

The -icplbs (instruction CPLBs are active) switch instructs the compiler
to assume that all instruction memory accesses will be validated by the
Blackfin processor’s memory protection hardware. This allows the com-
piler to identify situations where the cacheability protection lookaside
buffers (CPLBs) will avoid problems the compiler would otherwise work-
around (for example, anomaly 05-00-0426), improving code size and
performance.

If both ICPLBs and DCPLBs are active, use the “-cplbs” on page 1-32
switch.

-ieee-fp

The -ieee-fp (slower floating point) switch directs the compiler to link
with the fully-compliant floating-point emulation library. This library
obeys all of the IEEE floating-point standard’s rules, and incurs a perfor-
mance penalty when compared with the default floating-point emulation
library. See also the -fast-fp switch (on page 1-38). Refer to “Using Data
Storage Formats” on page 1-443 for more information on data types.

Compiler Command-Line Interface

1-46 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Invoke this switch with the Strict IEEE compliance option button located
in the Floating Point area of the VisualDSP++ Project Options dialog box
(Link : Processor page).

-implicit-pointers

The -implicit-pointers (implicit pointer conversion) switch allows a
pointer to one type to be converted to a pointer to another type without
using an explicit cast. The compiler produces a discretionary warning
rather than an error in such circumstances. This option is not valid when
compiling in C++ mode.

For example, the following code will not compile without this switch:

int *foo(int *a) {

return a;

}

int main(void) {

char *p = 0, *r;

r = foo(p); /* Bad: normally produces an error */

return 0;

}

In this example, both the argument to foo and the assignment to r will be
faulted by the compiler. Using the -implicit-pointers switch converts
these errors into warnings.

Invoke this switch with the Allow incompatible pointer types check box
located in the VisualDSP++ Project Options dialog box
(Compile : Language Settings page).

-include

The -include filename (include file) switch directs the preprocessor to
process the specified file before processing the regular input file. Any -D
and -U options on the command line are processed before an -include
file.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-47
for Blackfin Processors

Compiler

-ipa

The -ipa (interprocedural analysis) switch turns on interprocedural
analysis (IPA) in the compiler. This option enables optimization across
the entire program, including between source files that were compiled
separately. If used, the -ipa switch should be applied to all C and C++
files in the program. For more information, see “Interprocedural Analysis”
on page 1-98. Specifying -ipa also implies setting the -O switch
(on page 1-60).

Invoke this switch by selecting the Interprocedural optimization check
box in the VisualDSP++ Project Options dialog box (Compile : General
page).

-jcs2l

The -jcs2l switch requests the linker to convert compiler-generated
short jumps to long jumps when necessary, but uses the P1 register for
indirect jumps/calls when long jumps/calls are insufficient. This switch is
enabled by default.

See also “-no-jcs2l” on page 1-57.

-L

The -L directory[{,|;} directory…] (library search directory) switch
directs the linker to append the directory (or directories) to the search
path for library files.

-l

The -l library (link library) switch directs the linker to search the library
for functions and global variables when linking. The library name is the
portion of the file name between the “lib” prefix and.dlb extension.
For example, the -lc compiler switch directs the linker to search in the
library named c. This library resides in a file named libc.dlb.

Compiler Command-Line Interface

1-48 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

List all object files on the command line before listing libraries using the
-l switch. When a reference to a symbol is made, the symbol definition
will be taken from the left-most object or library on the command line
that contains the global definition of that symbol. If two objects on the
command line contain definitions of the symbol x, x will be taken from
the left-most object on the command line that contains a global definition
of x.

If one of the definitions for x comes from user objects, and the other
comes from a user library, and the library definition should be overridden
by the user object definition, it is important that the user object comes
before the library on the command line.

Libraries included in the default .ldf file are searched last for symbol
definitions.

-list-workarounds

The -list-workarounds (list supported errata workarounds) switch
displays a list of all errata workarounds which the compiler supports.
See “Controlling Silicon Revision and Anomaly Workarounds Within the
Compiler” on page 1-100 for details of valid workarounds and the interac-
tion of the -si-revision (on page 1-74), -workaround (on page 1-81),
and -no-workaround (on page 1-59) switches.

-M

The -M (generate make rules only) switch directs the compiler not to
compile the source file, but to output a rule suitable for the make utility,
describing the dependencies of the main program file.

The format of the make rule output by the preprocessor is:
object-file: include-file ...

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-49
for Blackfin Processors

Compiler

-MD

The -MD (generate make rules and compile) switch directs the preprocessor
to print to a file called original_filename.d a rule describing the depen-
dencies of the main program file. After preprocessing, compilation
proceeds normally. See also the –Mo switch (on page 1-49).

-MM

The -MM (generate make rules and compile) switch directs the preprocessor
to print to the standard output stream a rule describing the dependencies
of the main program file. After preprocessing, compilation proceeds
normally.

-Mo

The -Mo filename (preprocessor output file) switch directs the compiler
to use filename for the output of –MD or –ED switches.

-Mt

The -Mt name (output make rule for the named source) switch modifies the
target of generated dependencies, renaming the target to name. This
switch is in effect only when used in conjunction with the -M or -MM
switch.

-map

The -map filename (generate a memory map) switch directs the compiler
to output a memory map of all symbols. The map file name corresponds
to the filename argument. For example, if the file name argument is test,
the map file name is test.xml. The.xml extension is added where
necessary.

Compiler Command-Line Interface

1-50 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-mem

The -mem (invoke memory initializer) switch causes the compiler to invoke
the Memory Initializer after linking the executable file. The Memory Ini-
tializer can be controlled through the -flags-mem switch (on page 1-39).

See also “-no-mem” on page 1-57.

-multicore

The -multicore switch indicates to the compiler that the application is
being built for use in a dual-core environment, such as the ADSP-BF561
Blackfin processor. It indicates that both cores are operating at once, and
therefore the application is linked against versions of the libraries that
include locking and per-core private storage. The -multicore switch
defines the __ADI_MULTICORE macro to the value “1” at both compile-time
and link-time.

The -multicore switch is not supported in conjunction with the -p, -p1,
or -p2 switches.

Invoke this switch with the:

• Will be linked with re-entrant libraries check box located in the
Project Options dialog box (Compile : Processor (2) page)

• Use re-entrant multicore libraries check box located in the
Libraries area of the VisualDSP++ Project Options dialog box
(Link : Processor page).

-multiline

The -multiline switch enables a compiler GNU compatibility mode,
which allows string literals to span multiple lines without the need for a
backslash character “\” at the end of each line. This is the default mode.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-51
for Blackfin Processors

Compiler

Invoke this switch with the Allow multi-line character strings check box
located in the VisualDSP++ Project Options dialog box
(Compile : Language Settings page).

See also “-no-multiline” on page 1-57.

-never-inline

The -never-inline switch instructs the compiler to ignore the inline
qualifier on function definitions, so that no calls to such functions will be
inlined. See also “-always-inline” on page 1-29.

Invoke this switch with the Never option button in the Inlining area of
the VisualDSP++ Project Options dialog box (Compile : General page).

-no-alttok

The -no-alttok (disable alternative tokens) switch directs the compiler
not to accept alternative operator keywords and digraph sequences in the
source files. This is the default mode. For more information, see “-alttok”
on page 1-28.

-no-annotate

The -no-annotate (disable assembly annotations) switch directs the com-
piler not to annotate assembly files generated by the compiler. By default,
whenever optimizations are enabled, all assembly files generated by the
compiler are annotated with information on the performance of the gener-
ated assembly. See “Assembly Optimizer Annotations” on page 2-96 for
more details on this feature.

Invoke this switch by clearing the Generate assembly code annotations
check box located in the VisualDSP++ Project Options dialog box
(Compile : General page).

See also “-annotate” on page 1-30.

Compiler Command-Line Interface

1-52 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-no-annotate-loop-instr

The -no-annotate-loop-instr switch disables the production of addi-
tional loop annotation information by the compiler. This is the default
mode.

See also “-annotate-loop-instr” on page 1-30.

-no-assume-vols-are-mmrs

When the compiler has to apply workarounds for silicon errata, it takes a
conservative approach concerning volatile-qualified accesses to arbitrary
memory. By default, the compiler assumes that such memory accesses may
be to memory-mapped registers (MMRs), and therefore must be protected
against any errata that affect MMR accesses.

The -no-assume-vols-are-mmrs switch disables this assumption, so that
arbitrary volatile-qualified memory will not be considered affected by
MMR-related errata. Specific MMR accesses (such as via a literal pointer
or the memory-mapped register access functions (on page 1-275) will still
receive such workarounds. For more information, see “Controlling Silicon
Revision and Anomaly Workarounds Within the Compiler” on
page 1-100.

-no-auto-attrs

The -no-auto-attrs (no automatic attributes) switch directs the compiler
not to emit automatic attributes based on the files it compiles. Emission of
automatic attributes is enabled by default. See “File Attributes” on
page 1-471 for more information about attributes, and what automatic
attributes the compiler emits. See also the -auto-attrs switch
(on page 1-30) and the -file-attr switch (on page 1-38).

Invoke this switch by clearing the Auto-generated attributes check box
located in the VisualDSP++ Project Options dialog box
(Compile : General page).

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-53
for Blackfin Processors

Compiler

-no-bss

The -no-bss switch causes the compiler to keep both zero-initialized and
non-zero-initialized data in the same data section, rather than separating
zero-initialized data into a different, BSS-style section. See also the –bss
switch (on page 1-30).

-no-builtin

The -no-builtin (no built-in functions) switch directs the compiler not
to generate short names for the built-in functions (for example, abs()),
and to accept only the full name (for example, __builtin_abs()). Note
that this switch influences many functions. This switch also predefines the
__NO_BUILTIN preprocessor macro. For more information, see “Compiler
Built-In Functions” on page 1-195.

Invoke this switch by selecting the Disable built-in functions check box
in the VisualDSP++ Project Options dialog box (Compile : Language
Settings page).

-no-circbuf

The -no-circbuf (no circular buffer) switch directs the compiler not to
automatically use circular buffer mechanisms (such as for referencing
array[i % n]). The use of the circindex() and circptr() functions
(that is, explicit circular buffer operations) is not affected.

Invoke this switch with the Never option button located in the Circular
Buffer Generation area of the VisualDSP++ Project Options dialog box
(Compile : Language Settings page).

-no-const-strings

The -no-const-strings switch directs the compiler not to make string lit-
erals const qualified. This is the default. See also the -const-strings
switch (on page 1-32).

Compiler Command-Line Interface

1-54 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-no-defs

The -no-defs (disable defaults) switch directs the compiler not to define
any default preprocessor macros, include directories, library directories,
libraries, or run-time headers.

-no-eh

The -no-eh (disable exception handling) switch directs the compiler to
disallow ANSI/ISO C++ exception handling. This is the default mode.
See the -eh switch (on page 1-35) for more information.

-no-expand-symbolic-links

The -no-expand-symbolic-links switch directs the compiler not to recog-
nize Cygwin path entities (see “Cygwin Path Support” on page 1-93)
within command-line paths and preprocessor #include directives. This
option is enabled by default. See also the -expand-symbolic-links switch
(on page 1-37).

-no-expand-windows-shortcuts

The -no-expand-windows-shortcuts switch directs the compiler not to
recognize Windows shortcut entities (see “Windows Shortcut Support” on
page 1-92) within command-line paths and preprocessor #include
directives. This option is enabled by default. See also the -expand-win-
dows-shortcuts switch (on page 1-37).

-no-extra-keywords

The -no-extra-keywords (disable short-form keywords) switch directs the
compiler not to recognize Analog Devices keyword extensions that might
affect conformance to ANSI/ISO standards for the C and C++ languages.
Keywords, such as inline, may be used as identifiers in conforming
programs. Alternate keywords (prefixed with two leading underscores,
such as __inline) continue to work.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-55
for Blackfin Processors

Compiler

Invoke this switch with the Disable Analog Devices extension keywords
check box located in the VisualDSP++ Project Options dialog box
(Compile : Language Settings page).

See also “-extra-keywords” on page 1-37.

-no-force-link

The -no-force-link (do not force stack frame creation) switch directs the
compiler not to create a new stack frame for leaf functions.

This switch is most useful in combination with the –g switch
(on page 1-42) when debugging optimized code. When optimization is
requested, the compiler does not generate stack frames for functions that
do not need them; this improves the size and speed of the code, but
reduces the quality of information displayed in the debugger. Therefore,
when the –g switch is used, the compiler by default always generates a
stack frame. Consequently, the code generated with the –g switch differs
from the code generated without using this switch and may result in
different behavior. The –no-force-link switch causes the same code to be
generated regardless of whether –g is used.

See also “-force-link” on page 1-40.

-no-fp-associative

The -no-fp-associative switch directs the compiler NOT to
treat floating-point multiplication and addition as associative operations.

Invoke this switch with the Do not treat floating point operations as
associative check box located in the VisualDSP++ Project Options dialog
box (Compile : Language Settings page).

See also “-fp-associative” on page 1-40.

Compiler Command-Line Interface

1-56 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-no-full-io

The -no-full-io switch links the application with the Analog Devices
I/O library, which contains a faster implementation of C Standard I/O
than the alternative third-party I/O library. (See “-full-io” on page 1-40.)
The functionality provided by the Analog Devices I/O library is not as
comprehensive as the third-party I/O library. For details, refer to “stdio.h”
on page 3-31.

This switch passes the _ADI_LIBIO macro to the compiler and linker.
This switch is enabled by default.

-no-fx-contract

The -no-fx-contract switch sets the default state of FX_CONTRACT to OFF.
This switch controls the performance and accuracy of arithmetic on the
native fixed-point types fract and accum. See “FX_CONTRACT” on
page 1-115 for more information.

See also “-fx-contract” on page 1-41.

-no-int-to-fract

The -no-int-to-fract (disable conversion of integer to fractional
arithmetic) switch directs the compiler not to turn integer arithmetic into
fractional arithmetic.

For example, the following statement may be changed, by default, into a
fractional multiplication.

short a = ((b*c)>>15);

The saturation properties of integer and fractional arithmetic are different;
therefore, if the resulting fractional arithmetic expression overflows, the
results may differ. Specifying the -no-int-to-fract switch disables this
optimization and may be used to ensure compliance with the C standard
where such saturation is a concern.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-57
for Blackfin Processors

Compiler

-no-jcs2l

The -no-jcs2l switch prevents the linker from converting compiler-gen-
erated short jumps to long jumps using register P1.

See also “-jcs2l” on page 1-47.

-no-mem

The -no-mem (disable memory initialization) switch causes the compiler
not to invoke the Memory Initializer after linking the executable. This is
the default setting. See also “-mem” on page 1-50.

-no-multiline

The -no-multiline switch disables a compiler GNU compatibility mode,
which allows string literals to span multiple lines without requiring a “\”
at the end of each line.

Invoke this switch by clearing the Allow multi-line character strings
check box located in the VisualDSP++ Project Options dialog box
(Compile : Language Settings page).

See also “-multiline” on page 1-50.

-no-progress-rep-timeout

The -no-progress-rep-timeout (disable progress message for long
compilations) switch disables the diagnostic message issued by the com-
piler to indicate that it is still working when a function’s compilation is
taking an excessively long time. The message is disabled by default. See
also the -progress-rep-timeout switch (on page 1-70) and the -prog-
ress-rep-timeout-secs switch (on page 1-70).

-no-sat-associative

The -no-sat-associative (saturating addition is not associative) switch
instructs the compiler not to consider saturating addition operations as

Compiler Command-Line Interface

1-58 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

associative: (a+b)+c may not be rewritten as a+(b+c), when the addition
operator saturates. The default is that saturating addition is not
associative.

See also “-sat-associative” on page 1-71.

-no-saturation

The -no-saturation switch directs the compiler not to introduce faster
operations in cases where the faster operation would saturate (if the
expression overflowed) when the original operation would have wrapped
the result. Note that since accumulator registers A0 and A1 will saturate if
an accumulation overflows 40 bits, the -no-saturation switch will also
prevent use of these registers for integer arithmetic when the compiler
cannot be sure that saturation will not occur. The code produced may be
less efficient than when the switch is not used.

Saturation is enabled by default when optimizing, and may be disabled by
this switch. Saturation is disabled when not optimizing (this switch is the
default when not optimizing).

Invoke this switch with the Do not introduce saturation to integer arith-
metic check box located in the VisualDSP++ Project Options dialog box
(Compile : Processor (2) page).

-no-std-ass

The -no-std-ass (disable standard assertions) switch prevents the com-
piler from defining the standard assertions. See the -A switch
(on page 1-27) for the list of standard assertions.

-no-std-def

The -no-std-def (disable standard macro definitions) switch prevents the
compiler from defining default preprocessor macro definitions.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-59
for Blackfin Processors

Compiler

-no-std-inc

The -no-std-inc (disable standard include search) switch directs the
C/C++ preprocessor to search only for header files in the current directory
and directories specified with the -I switch.

Invoke this switch by selecting the Ignore standard include paths check
box in the VisualDSP++ Project Options dialog box (Compile :
Preprocessor page).

-no-std-lib

The -no-std-lib (disable standard library search) switch directs the linker
to limit its search for libraries to directories specified with the -L switch
(on page 1-47). The compiler also defines __NO_STD_LIB during the link-
ing stage and passes it to the linker, so that the SEARCH_DIR directives in
the .ldf file can de disabled.

-no-threads

The -no-threads (disable thread-safe build) switch directs the compiler to
link against the non-thread-safe variants of the C/C++ variants of the
run-time libraries. See also the -threads switch (on page 1-76).

-no-workaround

The -no-workaround workaround_id[,workaround_id…] switch (disable
avoidance of specific errata) switch disables compiler code generator work-
arounds for specific hardware errata. See “Controlling Silicon Revision
and Anomaly Workarounds Within the Compiler” on page 1-100 for
details of valid workarounds and the interactions of the -si-revision,
-workaround, and -no-workaround switches.

See also “-workaround” on page 1-81.

Compiler Command-Line Interface

1-60 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-no-zero-loop-counters

The -no-zero-loop-counters switch directs the compiler to not zero loop
counter registers on function exit. This is the default mode.

Use the -zero-loop-counters switch (see “-zero-loop-counters” on
page 1-83) to enable the zeroing of loop counter registers on function exit.

-O[0|1]

The -O (enable optimizations) switch directs the compiler to produce code
that is optimized for performance. Optimizations are not enabled by
default for the compiler. (Note that the switch settings begin with the
uppercase letter “O” and end with a digit—a zero or a one.) The -O or -O1
switch turns on optimization, and -O0 turns off all optimizations.

Invoke this switch by selecting the Enable optimization check box in the
Project Options dialog box (Compile : General page).

-Oa

The -Oa (automatic function inlining) switch enables the inline expansion
of C/C++ functions, which are not necessarily declared inline in the source
code. The amount of auto-inlining the compiler performs is controlled
using the –Ov (optimize for speed versus size) switch (on page 1-61).
Therefore, the use of -Ov100 indicates that as many functions as possible
will be auto-inlined, whereas –Ov0 prevents any function from being
auto-inlined. Specifying -Oa implies the use of -O.

Invoke this switch with the Automatic option button located in the
Inlining area of the VisualDSP++ Project Options dialog box
(Compile : General page).

-Ofp

The -Ofp (frame pointer optimization) switch directs the compiler to
offset the frame pointer within a function. This allows the compiler to use

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-61
for Blackfin Processors

Compiler

more short load and store instructions. Specifying -Ofp also implies the
use of -O.

Specifying this switch reduces the capabilities of the debugger for
source-level debugging actions when used with -g, since the active call
frames cannot be followed beyond an active function with a frame pointer
offset. The debugger facilities that are affected by the -Ofp switch include:
call stack, step over, and step out of.

 When C++ exceptions support is enabled (by using the -eh switch
(on page 1-35)), the -Ofp switch is overridden. This is necessary to
allow the exceptions handling support routines to unwind the stack
from the current stack frame.

Invoke this switch with the Frame pointer optimization check box located
in the VisualDSP++ Project Options dialog box (Compile : Processor (1)
page).

-Og

The -Og switch enables a compiler mode that attempts to perform
optimizations while still preserving debugging information. It is meant
as an alternative for users who want a debuggable program but are also
concerned about the performance of their debuggable code.

-Os

The -Os (enable code size optimization) switch directs the compiler to
produce code that is optimized for size. This is achieved by performing all
optimizations except those that increase code size. The optimizations not
performed include loop unrolling and jump avoidance.

-Ov

The -Ov num (optimize for speed versus size) switch informs the compiler
of the relative importance of speed versus size, when considering whether

Compiler Command-Line Interface

1-62 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

such tradeoffs are worthwhile. The num variable should be an integer
between 0 (purely size) and 100 (purely speed).

For any given optimization, the compiler modifies the code being gener-
ated. Some optimizations produce code that will execute in fewer cycles,
but will require more code space. In such cases, there is a trade-off
between speed and space.

The num variable indicates a sliding scale between 0 and 100, which is the
probability that a linear piece of generated code (a “basic block”) will be
optimized for speed or for space. The -Ov0 optimizes all blocks for space,
and -Ov100 optimizes all blocks for speed. At any point in between, the
decision is based upon num and how many times the block is expected to
be executed (the “execution count” of the block). Figure 1-1 demonstrates
this relationship.

Figure 1-1. -Ov Switch Optimization Curve

0

Execution
count

Optimize for speed

-Ovnum
0 100

Infinity

Optimize for space

Limit line

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-63
for Blackfin Processors

Compiler

For any given optimization where speed and size conflict, the potential
benefit is dependent on the execution count. An optimization that
increases performance at the expense of code size is considerably more
beneficial if applied to the core loop of a critical algorithm than if applied
to one-time initialization code or to rarely-used error-handling functions.
If code only appears to be executed once, it will be optimized for space. As
its execution count increases, so too does the likelihood that the compiler
will consider the code increase worthwhile for the corresponding benefit
in performance.

As Figure 1-1 shows, the -Ov switch affects the point at which a given exe-
cution count is considered sufficient to switch optimization from “for
space” to “for speed”. Where num is a low value, the compiler is biased
towards space, so a block’s execution count has to be relatively high for the
compiler to apply code-increasing transformations. Where num has a high
value, the compiler is biased towards speed, so the same transformation
will be considered valid for a much lower execution count.

The -Ov switch is most effective when used in conjunction with profile-
guided optimization (PGO), where accurate execution counts are avail-
able. Without profile-guided optimization (see “Optimization Control”
on page 1-95), the compiler makes estimates of the relative execution
counts using heuristics.

Invoke this switch with the Optimize for code size/speed slider located in
the VisualDSP++ Project Options dialog box (Compile : General page).

For more information, see “Using PGO in Function Profiling” in
Chapter 2, Achieving Optimal Performance From C/C++ Source Code.

-o

The -o filename (output file) switch directs the compiler to use filename
for the name of the final output file.

Compiler Command-Line Interface

1-64 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-overlay

The -overlay (program may use overlays) switch disables the propagation
of register information between functions and forces the compiler to
assume that all functions clobber all scratch registers. Note that this switch
affects all functions in the source file and may result in a performance
degradation. For information on disabling the propagation of register
information only for specific functions, see “#pragma overlay” on
page 1-329.

-overlay-clobbers

The -overlay-clobbers clobbered-regs (registers clobbered by overlay
manager) switch identifies the set of registers clobbered by an overlay
manager, if one is used. The compiler will assume that any call to an over-
lay-managed function will clobber the values in clobbered-regs, in
addition to those clobbered by the function in question. A function is
considered to be an overlay-managed function if the -overlay switch
(on page 1-64) is specified, or if the function is marked with #pragma
overlay (on page 1-329).

The clobbered-regs is a single string formatted as per the argument to
#pragma regs_clobbered, except that individual components of the list
may also be separated by commas.

 Whitespace and semicolons are valid separators for the components
of the list, but must be properly quoted when being passed to the
compiler.

Examples:
ccblkfn -O t.c -overlay -overlay-clobbers r0,r1

ccblkfn -O t.c -overlay -overlay-clobbers Dscratch

ccblkfn -O t.c -overlay -overlay-clobbers "p0 p1;r0"

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-65
for Blackfin Processors

Compiler

-P

The -P (omit line numbers) switch directs the compiler to stop after the
C/C++ preprocessor runs (without compiling) and to omit #line
preprocessor directives (with line number information) in the output from
the preprocessor. The -C switch can be used with the -P switch to retain
comments.

-PP

The -PP (omit line numbers and compile) switch is similar to the -P
switch; however, it does not halt compilation after preprocessing.

-p[1|2]

The -p, -p1, and -p2 (generate profiling implementation) switches direct
the compiler to generate the additional instructions needed to profile the
program by recording the number of cycles spent in each function.

The -p1 switch causes the program being profiled to write the information
to a file called mon.out. The -p2 switch changes this behavior to write the
information to the standard output file stream. The -p switch writes the
data to mon.out and the standard output stream. For more information on
profiling, see “Profiling With Instrumented Code” on page 1-359.

-path {-asm | -compiler | -lib | -link}

The -path-{asm|compiler|lib|link}pathname (tool location) switch
directs the compiler to use the specified component in place of the
default-installed version of the compilation tool. The component
comprises a relative or absolute path to its location. Respectively, the tools
are the assembler, compiler, librarian, and linker. Use this switch when
overriding the normal version of one or more of the tools. The
-path-{...} switch also overrides the directory specified by the
-path-install switch (on page 1-66).

Compiler Command-Line Interface

1-66 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-path-install

The -path-install directory (installation location) switch directs the
compiler to use the specified directory as the location for all compilation
tools instead of the default path. This is useful when working with
multiple versions of the tool set.

 You can selectively override this switch with the -path-{asm|com-
piler|lib|link} switch.

-path-output

The -path-output directory (non-temporary files location) switch directs
the compiler to place output files in the specified directory.

-path-temp

The -path-temp directory (temporary files location) switch directs the
compiler to place temporary files in the specified directory.

-pch

The -pch (precompiled header) switch directs the compiler to automati-
cally generate and use precompiled header files. A precompiled output
header has a .pch extension attached to the source file name. By default,
all precompiled headers are stored in a directory called PCHRepository.

 Precompiled header files tend to occupy more disk space.

-pchdir

The -pchdir directory (locate precompiled header repository) switch
specifies the location of an alternative directory for storing and invocation
of precompiled header files. If the directory does not exist, the compiler
creates it. Note that the -o (output) switch does not influence the -pchdir
option.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-67
for Blackfin Processors

Compiler

-pgo-session

The -pgo-session session-id (specify PGO session identifier) switch is
used with profile-guided optimization. It has the following effects:

• When used with the -pguide switch (on page 1-67), the compiler
associates all counters for this module with the session identifier
session-id.

• When used with a previously-gathered profile (.pgo file), the
compiler ignores the profile contents, unless they have the same
session-id identifier.

This is most useful when the same source file is being built in more than
one way (for example, different macro definitions, or for multiprocessors)
in the same application. Each variant of the build can have a different
session-id associated with it, which means that the compiler will be able
to identify which parts of the gathered profile are to be used when opti-
mizing for the final build.

If each source file is built only in a single manner within the system
(the usual case), the -pgo-session switch is not needed.

Invoke this switch with the PGO session name text field located in the
VisualDSP++ Project Options dialog box (Compile : Profile-guided
Optimization page).

For more information, see “Using PGO in Function Profiling” in
Chapter 2, Achieving Optimal Performance From C/C++ Source Code.

-pguide

The -pguide (PGO) switch causes the compiler to add instrumentation to
gather a profile (a .pgo file) as the first stage of performing profile-guided
optimization.

Compiler Command-Line Interface

1-68 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Invoke this switch with the Prepare application to create new profile
check box located in the VisualDSP++ Project Options dialog box
(Compile : Profile-guided Optimization page).

For more information, see “Using PGO in Function Profiling” in
Chapter 2, Achieving Optimal Performance From C/C++ Source Code.

-pplist

The -pplist filename (preprocessor listing) switch directs the
preprocessor to output a listing to the named file. When more than one
source file is preprocessed, the listing file contains information about the
last file processed. The generated file contains raw source lines,
information on transitions into and out of include files, and diagnostics
generated by the compiler.

Key characters are described in Table 1-11.

-proc

The -proc processor (target processor) switch directs the compiler to
produce code suitable for the specified processor.

Table 1-11. Key Characters

Character Meaning

N Normal line of source

X Expanded line of source

S Line of source skipped by #if or #ifdef

L Change in source position

R Diagnostic message (remark)

W Diagnostic message (warning)

E Diagnostic message (error)

C Diagnostic message (catastrophic error)

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-69
for Blackfin Processors

Compiler

For example,

ccblkfn -proc ADSP-BF535 -o bin/p1.doj p1.asm

 If no target is specified with the -proc switch, the default processor
is set to ADSP-BF532.

When compiling with the -proc switch, the appropriate processor macro
and the __ADSPBLACKFIN__ preprocessor macro are defined as “1”. When
the target is an ADSP-BF522, ADSP-BF523, ADSP-BF524,
ADSP-BF525, ADSP-BF526, ADSP-BF527, ADSP-BF531,
ADSP-BF532, ADSP-BF533, ADSP-BF534, ADSP-BF536,
ADSP-BF537, ADSP-BF538, ADSP-BF539, ADSP-BF542,
ADSP-BF544, ADSP-BF548, ADSP-BF549, or ADSP-BF561 processor,
the compiler additionally defines macro __ADSPLPBLACKFIN__ as “1”.

For example, when -proc ADSP-BF531 is used, the compiler predefines the
__ADSPBF531__, __ADSPBLACKFIN__, and __ADSPLPBLACKFIN__ macros to
“1”.

 See also “-si-revision” on page 1-74 for more information on the
silicon revision of the specified processor.

-progress-rep-func

The -progress-rep-func switch provides feedback on the compiler’s
progress that may be useful when compiling and optimizing very large
source files. It issues a warning message each time the compiler starts
compiling a new function. The warning message is a remark that is
disabled by default, and this switch enables the remark as a warning.
The switch is equivalent to -Wwarn=cc1472.

-progress-rep-opt

The -progress-rep-opt switch provides feedback on the compiler’s prog-
ress that may be useful when compiling and optimizing a very large,
complex function. It issues a warning message each time the compiler

Compiler Command-Line Interface

1-70 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

starts a new optimization pass on the current function. The warning
message is a remark that is disabled by default, and this switch enables
the remark as a warning. The switch is equivalent to -Wwarn=cc1473.

-progress-rep-timeout

The -progress-rep-timeout switch issues a diagnostic message if the
compiler exceeds a time limit during compilation. This indicates the
compiler is still operating, but is taking a long time.

See also “-no-progress-rep-timeout” on page 1-57.

-progress-rep-timeout-secs

The -progress-rep-timeout-secs secs switch specifies how many
seconds must elapse during a compilation before the compiler issues a
diagnostic message about the length of time the compilation has used so
far.

See also “-no-progress-rep-timeout” on page 1-57.

-R

The -R directory[,directory …] (add source directory) switch directs
the compiler to add the specified directory to the list of directories
searched for source files. Multiple source directories can be presented as a
comma-separated list.

The compiler searches for the source files in the order specified on the
command line. The compiler searches the specified directories before
reverting to the current directory. This switch is dependent on its position
on the command line; that is, it effects only source files that follow it.

 Source files, whose file names begin with /, ./, or ../,
(or Windows equivalent) or contain drive specifiers (on Windows
platforms), are not affected by this option.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-71
for Blackfin Processors

Compiler

-R-

The -R- (disable source path) switch removes all directories from the
standard search path for source files, effectively disabling this feature.

 This option is position-dependent on the command line; it only
affects files following it.

-reserve

The -reserve register[,register …] (reserve register) switch directs
the compiler not to use the specified registers. Only the m3 register can be
reserved.

-S

The -S (stop after compilation) switch directs the compiler to stop
compilation before running the assembler. The compiler outputs an
assembly file with an .s extension.

-s

The -s (strip debug information) switch directs the compiler to remove
debug information (symbol table and other items) from the output
executable file during linking.

 Executable files produced by this switch are not suitable for use
with the Memory Initializer (see “-mem” on page 1-50 for more
information).

-sat-associative

The -sat-associative (saturating addition is associative) switch instructs
the compiler to consider saturating addition operations as associative;
(a+b)+c may be rewritten as a+(b+c), when the addition operator satu-
rates. The default is that saturating addition is not associative.

See also “-no-sat-associative” on page 1-57.

Compiler Command-Line Interface

1-72 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-save-temps

The -save-temps (save intermediate files) switch directs the compiler
to retain intermediate files generated, which are normally removed as part
of the various compilation stages. These intermediate files are placed
in the –path-output specified output directory or the build directory
(when the –path-output switch (on page 1-72) is not used). See Table 1-3
on page 1-9 for a list of intermediate files.

-sdram

The -sdram (SDRAM is active) switch instructs the compiler to assume
that at least Bank 0 of external SDRAM (the lower 32 Mbytes of space)
is active and enabled. This switch is most useful for reducing the number
of silicon anomaly workarounds needed. For more information, refer to
“Controlling Silicon Revision and Anomaly Workarounds Within the
Compiler” on page 1-100.

Invoke this switch with the SDRAM Bank 0 is in use check box located in
the VisualDSP++ Project Options dialog box (Compile : Processor (2)
page).

-section

The -section id=section_name[,id=section_name...] switch controls
the placement of types of data produced by the compiler. The data is
placed into the section_name section as provided on the command line.

The compiler currently supports the following section identifiers; see
“Placement of Compiler-Generated Code and Data” on page 1-193 for
more details.

code Controls placement of machine instructions

data Controls placement of initialized variable data

constdata Controls placement of constant data

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-73
for Blackfin Processors

Compiler

Note that alldata is not a real section kind, but rather a placeholder for
data, constdata, bsz, strings, and autoinit.

Therefore,
-section alldata=X

is equivalent to:

-section data=X

-section constdata=X

-section bsz=X

-section strings=X

-section autoinit=X

Ensure that the section selected via the command line exists within the
.ldf file (refer to the VisualDSP++ Linker and Utilities Manual).

-show

The -show (display command line) switch shows the command-line
arguments passed to ccblkfn, including expanded option files and

bsz Controls placement of zero-initialized variable data

sti Controls placement of the static C++ class constructor “start” func-
tions. Default is program. For more information, see “Constructors
and Destructors of Global Class Instances” on page 1-419.

switch Controls placement of jump tables used to implement C/C++ switch
statements. Default is constdata.

vtbl Controls placement of the C++ virtual lookup tables

vtable Synonym for vtbl

strings Controls the placement of string literals

autoinit Controls placement of data used to initialize aggregate autos

alldata Controls placement of data, constdata, bsz, strings, and
autoinit all at once

Compiler Command-Line Interface

1-74 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

environment variables. This allows you to ensure that command-line
options have been passed successfully.

-signed-bitfield

The -signed-bitfield (make plain bit-fields signed) switch directs the
compiler to make bit-fields (which have not been declared with an explicit
signed or unsigned keyword) signed. This switch does not affect plain
one-bit bit-fields, which are always unsigned. This is the default mode.
See also the -unsigned-bitfield switch (on page 1-77).

-signed-char

The -signed-char (make char signed) switch directs the compiler to make
the default type for char signed. The compiler also defines the
__SIGNED_CHARS__ macro. This is the default mode when the
-unsigned-char switch is not used (on page 1-78).

-si-revision

The -si-revision version (silicon revision) switch directs the compiler
to build for a specific hardware revision (version). Any errata workarounds
available for the targeted silicon revision will be enabled. For more infor-
mation on valid revisions and the interactions of the -si-revision,
-workaround, and -no-workaround switches, see “Controlling Silicon
Revision and Anomaly Workarounds Within the Compiler” on
page 1-100.

-stack-detect

The -stack-detect (detect stack overflow) switch directs the compiler to
generate the additional instructions needed to determine if the system
stack has overflowed. See “Stack Overflow Detection” on page 2-142.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-75
for Blackfin Processors

Compiler

-structs-do-not-overlap

The -structs-do-not-overlap switch specifies that the source code
being compiled contains no structure copies such that the source and the
destination memory regions overlap each other in a non-trivial way.

For example, in the statement

*p = *q;

where p and q are pointers to some structure type S, the compiler, by
default, always ensures that, after the assignment, the structure pointed to
by “p” contains an image of the structure pointed to by “q” prior to the
assignment. When p and q are not identical (in which case the assignment
is trivial) but the structures pointed to by the two pointers may overlap
each other, doing this means that the compiler must use the functionality
of the C library function “memmove” rather than “memcpy”.

Using “memmove” to copy data is slower than using “memcpy”. Therefore,
if your source code does not contain such overlapping structure copies,
you can obtain higher performance by using the command-line switch
-structs-do-not-overlap.

Invoke this switch from the Structs/classes do not overlap check box in
the VisualDSP++ Project Options dialog box
(Compile : Language Settings page).

-syntax-only

The -syntax-only (only check syntax) switch directs the compiler to
check the source code for syntax errors and warnings. No output files are
generated with this switch.

Compiler Command-Line Interface

1-76 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-sysdefs

The -sysdefs (system macro definitions) switch directs the compiler to
define several preprocessor macros describing the current user and user’s
system. The macros are defined as character string constants and are used
in functions with null-terminated string arguments.

The macros are defined if the system returns information for them
(Table 1-12).

-T

The -T filename (linker description file) switch directs the compiler
(and linker) to use the specified linker description file (.ldf) as control
input for linking. If -T is not specified, a default .ldf file is selected, based
on the processor variant.

-threads

The -threads switch directs the compiler to link against the thread-safe
variants of the C/C++ run-time libraries. The -threads switch defines the
_ADI_THREADS macro as “1” at the compile, assemble, and link phases of a
build.

Table 1-12. System Macros Defined

Macro Description

__HOSTNAME__ Name of the host machine

__SYSTEM__ Operating system name of the host machine

__USERNAME__ Current user’s login name

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-77
for Blackfin Processors

Compiler

When applications are built within VisualDSP++, this switch is added
automatically to projects that have VDK support selected.

 The use of thread-safe libraries is necessary in conjunction with the
-threads flag when using the VisualDSP++ kernel (VDK). The
thread-safe libraries can be used with other RTOSs, but this
requires the definition of various VDK interfaces.

The -threads switch does not imply that the compiler will produce
thread-safe code when compiling C/C++ source. It is the user’s
responsibility to employ multi-threaded programming practices in
code (such as semaphores to access shared data).

See also “-no-threads” on page 1-59.

-time

The -time (tell time) switch directs the compiler to display elapsed time as
part of the output information on each part of the compilation process.

-U

The -U macro (undefine macro) switch directs the compiler to undefine
macros. If you specify a macro name, it is undefined. Note the compiler
processes all -D (define macro) switches on the command line before any
-U (undefine macro) switches.

Invoke this switch by entering macro names to be undefined, separated by
commas, in the Preprocessor undefines field in the Project Options dia-
log box (Compile : Preprocessor page).

-unsigned-bitfield

The -unsigned-bitfield (make plain bit-fields unsigned) switch directs
the compiler to make bit-fields (which have not been declared with an
explicit signed or unsigned keyword) unsigned. This switch does not affect
plain one-bit bit-fields, which are always unsigned.

Compiler Command-Line Interface

1-78 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

For example, given the declaration

struct {

int a:2;

int b:1;

signed int c:2;

unsigned int d:2;

} x;

Table 1-13 lists the bitfield values.

See also the -signed-bitfields switch (on page 1-74).

-unsigned-char

The -unsigned-char (make char unsigned) switch directs the compiler to
make the default type for char unsigned. The compiler also undefines the
__SIGNED_CHARS__ preprocessor macro.

-v

The -v (version and verbose) switch directs the compiler to display the
version and command-line information for all the compilation tools as
they process each file.

Table 1-13. Bit-field Values

Field -unsigned-bitfield -signed-bitfield Why

x.a -2..1 0..3 Plain field

x.b 0..1 0..1 One bit

x.c -2..1 -2..1 Explicit signed

x.d 0..3 0..3 Explicit unsigned

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-79
for Blackfin Processors

Compiler

-verbose

The -verbose (display command line) switch directs the compiler to
display command-line information for all the compilation tools as they
process each file.

-version

The -version (display version) switch directs the compiler to display its
version information.

-W{error|remark|suppress|warn}

The -Werror, -Wremark, -Wsuppress, and -Wwarn number[, number...]
(override error message) switches with a number argument direct the com-
piler to override the severity of the specified diagnostic messages (errors,
remarks, or warnings). The number argument identifies the specific mes-
sage to override.

At compilation time, the compiler produces a number for each specific
compiler diagnostic message. A {D} (discretionary) following the diagnos-
tic message number indicates that the diagnostic may have its severity
overridden. Each diagnostic message is identified by a number that is used
across all compiler software releases.

 If the processing of the compiler command line generates a diag-
nostic, the position of the -W switch on the command-line is
important. If the -W switch changes the severity of the diagnostic,
it must occur before the command-line switch that generates the
diagnostic; otherwise, no change of severity will occur.

Also, as shown in the Output window and in Help, error codes
sometimes begin with a leading zero (for example, cc0025). If you
try to suppress error codes with -W{error|remark|suppress|warn}
or #pragma diag() and supply the code with a leading zero, it will
not work. This is because the compiler reads the number as an
octal value, and will suppress a different warning or error.

Compiler Command-Line Interface

1-80 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-Werror-limit

The -Werror-limit number (maximum compiler errors) switch sets a
maximum number of errors for the compiler before it aborts.

-Werror-warnings

The -Werror-warnings (treat warnings as errors) switch directs the
compiler to treat all warnings as errors, with the result that a warning will
cause the compilation to fail.

-Wremarks

The -Wremarks (enable diagnostic remarks) switch directs the compiler to
issue remarks, which are diagnostic messages that are milder than
warnings.

Invoke this switch by selecting the Enable remarks check box in the
VisualDSP++ Project Options dialog box (Compile : Warning page).

-Wterse

The -Wterse (enable terse warnings) switch directs the compiler to issue
the briefest form of warnings. This also applies to errors and remarks.

-w

The -w (disable all warnings) switch directs the compiler not to issue
warnings.

 If the processing of the compiler command line generates a
warning, the position of the -w switch on the command line is
important. If the -w switch is located before the command-line
switch that causes the warning, the warning will be suppressed;
otherwise, it will not be suppressed.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-81
for Blackfin Processors

Compiler

Invoke this switch by selecting the Disable all warnings and remarks
check box in the VisualDSP++ Project Options dialog box
(Compile : Warning page).

-warn-protos

The -warn-protos (warn if incomplete prototype) switch directs the
compiler to issue a warning when it calls a function for which an
incomplete function prototype has been supplied. This option has no
effect in C++ mode.

Invoke this switch with the Function declarations without prototypes
check box located in the VisualDSP++ Project Options dialog box
(Compile : Warning page).

-workaround

The -workaround workaround_id[,workaround_id ……] (enable avoidance
of specific errata) switch enables compiler code generator workarounds for
specific hardware errata. See “Controlling Silicon Revision and Anomaly
Workarounds Within the Compiler” on page 1-100 for details of valid
workarounds and the interaction of the -si-revision, -workaround, and
-no-workaround switches.

See also “-no-workaround” on page 1-59.

-write-files

The -write-files (enable driver I/O redirection) switch directs the
compiler driver to redirect the file name portions of its command line
through a temporary file. This technique helps to handle long file names,
which can make the compiler driver’s command line too long for some
operating systems.

 This switch is deprecated.

Compiler Command-Line Interface

1-82 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-write-opts

The -write-opts (user options) switch directs the compiler to pass the
user options (but not the input file names) to the main driver via a
temporary file which can help if the resulting main driver command line
is too long.

 This switch is deprecated.

-xref

The -xref filename (cross-reference list) switch directs the compiler to
write cross-reference listing information to the specified file. When more
than one source file has been compiled, the listing contains information
about the last file processed.

For each reference to a symbol in the source program, a line of the
following form is written to the named file.
symbol-id name ref-code filename line-number column-number

The symbol-id represents a unique decimal number for the symbol, and
ref-code is one of the characters listed in Table 1-14.

Table 1-14. ref-code Characters

Character Meaning

D Definition

d Declaration

M Modification

A Address taken

U Used

C Changed (used and modified)

R Any other type of reference

E Error (unknown type of reference)

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-83
for Blackfin Processors

Compiler

 The compiler’s -xref switch differs from the linker’s -xref switch.
Refer to the VisualDSP++ 5.0 Linker and Utilities Manual for more
information.

-zero-loop-counters

The -zero-loop-counters switch directs the compiler to ensure any used
loop counters are set to zero on function exit. This switch should be used
in the compilation of initcode that is overwritten with other code by an
overlay manager or boot ROM that does not ensure loop counters are
reset. Failure to do so may mean live hardware loops from initcode are
encountered in the newly-loaded code, resulting in a random amount of
loops over unrelated code (see the “Hardware Loops” section of the
Blackfin Processor Programming Reference). Live hardware loops may be left
when the compiler generates code that jumps out of a hardware loop
before it reaches zero, for instance when generating an optimized "while"
loop.

See also “-no-zero-loop-counters” on page 1-60.

C Mode (MISRA) Compiler Switch Descriptions

The following MISRA switches apply only to the C compiler.
See “MISRA-C Compiler” on page 1-143 for more information.

-misra

The –misra switch enables checking for MISRA-C Guidelines. Some rules
or parts of rules are relaxed with this switch enabled. Rules relaxed by this
option are 5.1, 5.7, 6.3, 6.4, 8.1, 8.2, 8.5, 10.5, 12.8, 13.7 and 19.7. This
is explained in more detail, see “Rules Descriptions” on page 1-147.

The -misra switch is not supported in conjunction with the -w and
-Werror|suppress|warn switches. The switch predefines the
_MISRA_RULES preprocessor macro.

Compiler Command-Line Interface

1-84 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-misra-linkdir

The –misra-linkdir directory switch specifies a directory in which to
place .misra files. The default is a local directory called MISRARepository.
The .misra files enable checking of violations of rules 5.5, 8.8, 8.9, and
8.10.

-misra-no-cross-module

The –misra-no-cross-module switch implies -misra, but also disables
checking for a number of rules that require the use of the prelinker to
check across multiple modules for rule violation. The MISRA-C rules
suppressed are 5.5, 8.8, 8.9, and 8.10.

The -misra-no-cross-module switch is not supported in conjunction with
the -w and -Werror|remark|suppress|warn switches.

-misra-no-runtime

The –misra-no-runtime switch implies -misra, but also disables run-time
checking for MISRA-C rules 17.1, 17.2, 7.3, and 21.1. It limits the
checking of rules 9.1, 12.8, 16.2, and 17.4.

The -misra-no-runtime switch is not supported in conjunction with the
-w and -Werror|remark|suppress|warn switches.

-misra-strict

The –misra-strict switch enables checking for MISRA-C Guidelines.
The switch ensures a strict interpretation of the MISRA-C:2004
Guidelines. See “Rules Descriptions” on page 1-147 for more detail.

The -misra-strict switch is not supported in conjunction with the -w
and -Werror|remark|suppress|warn switches. The switch predefines the
_MISRA_RULES preprocessor macro.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-85
for Blackfin Processors

Compiler

-misra-suppress-advisory

The –misra-suppress-advisory switch implies -misra, but suppresses the
reporting of advisory rules. The –misra-suppress-advisory switch is not
supported in conjunction with the -w and -Werror|remark|suppress|warn
switches.

-misra-testing

The –misra-testing switch implies –misra but also suppresses checking
of MISRA-C rules 20.4, 20.7, 20.8, 20.9, 20.10, 20.11, and 20.12.

The -misra-testing switch is not supported in conjunction with the -w
and -Werror|remark|suppress|warn switches.

-Wmis_suppress

The -Wmis_suppress rule_number [, rule_number] switch with a
rule_number argument directs the compiler to suppress the specified diag-
nostic for a MISRA-C rule. The rule_number argument identifies the
specific message to override

-Wmis_warn

The -Wmis_warn rule_number [, rule_number] switch with a
rule_number argument directs the compiler to override the severity of the
specified diagnostic to produce a warning for a MISRA-C rule. The
rule_number argument identifies the specific message to override.

C++ Mode Compiler Switch Descriptions

The following switches apply only to the C++ compiler.

-anach

The -anach (enable C++ anachronisms) switch directs the compiler to
accept some language features that are prohibited by the C++ standard but

Compiler Command-Line Interface

1-86 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

are still in common use. This is the default mode. Use the –no-anach
switch for greater standard compliance.

The following anachronisms are accepted in the default C++ mode:

• Overload is allowed in function declarations. It is accepted and
ignored.

• The number of elements in an array may be specified in an array
delete operation. The value is ignored.

• A single operator++() and operator--() function can be used to
overload both prefix and postfix operations.

• The base class name may be omitted in a base class initializer if
there is only one immediate base class.

• A bound function pointer (a pointer to a member function for a
given object) can be cast to a pointer to a function.

• A nested class name may be used as an un-nested class name pro-
vided no other class of that name has been declared. The
anachronism is not applied to template classes.

• A reference to a non-const type may be initialized from a value of a
different type. A temporary is created; it is initialized from the
(converted) initial value, and the reference is set to the temporary.

• A reference to a non-const class type may be initialized from an
rvalue of the class type or a derived class thereof. No (additional)
temporary is used.

• A function with old-style parameter declarations is allowed and
may participate in function overloading as though it were proto-
typed. Default argument promotion is not applied to parameter
types of such functions when the check for compatibility is done,
so that the following statements declare the overload of two

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-87
for Blackfin Processors

Compiler

functions named f:
int f(int);

int f(x) char x; { return x; }

See also “-no-anach” on page 1-89.

-check-init-order

It is not guaranteed that global objects requiring constructors are initial-
ized before their first use in a program consisting of separately compiled
units. The compiler will output warnings if these objects are external to
the compilation unit and are used in dynamic initialization or in construc-
tors of other objects.These warnings are not dependent on the
-check-init-order switch.

In order to catch uses of these objects and to allow the opportunity for
code to be rewritten, the -check-init-order switch adds run-time
checking to the code. This will generate output to stderr to indicate that
uses of such objects are unsafe.

 This switch generates extra code to aid development. Do not use
this switch when building production systems.

Invoke this switch with the Check initialization order check box located
in the VisualDSP++ Project Options dialog box (Compile : Language
Settings page).

-extern-inline

The -extern-inline switch directs the compiler to conform to the
ISO/IEC 14882:2003 standard with respect to inline functions that are
non-static. If the definition of the functions need to be retained, then the
compiler will ensure that there is a unique entry point.

See also “-no-extern-inline” on page 1-89.

Compiler Command-Line Interface

1-88 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-friend-injection

The -friend-injection switch directs the compiler to perform name
lookup in a non-standard way with respect to friend declarations. With
this switch enabled, a friend declaration will be injected into the scope
enclosing the class containing the friend declaration.

See also “-no-friend-injection” on page 1-89.

-full-dependency-inclusion

The -full-dependency-inclusion switch ensures that when generating
dependency information for implicitly-included .cpp files, the .cpp file is
re-included. This file is re-included only if the .cpp files are included
more than once in the source (via re-inclusion of their corresponding
header file). This switch is required only if your C++ source files are com-
piled more than once with different macro guards.

 Enabling this switch may increase the time required to generate
dependencies.

-ignore-std

The -ignore-std switch provides backwards compatibility to earlier
versions of VisualDSP C++, which did not use namespace std to guard
and encode C++ Standard library names. By default, the header files and
libraries now use namespace std.

Invoke this switch by clearing the Use std:: namespace check box located
in the VisualDSP++ Project Options dialog box (Compile : Language
Settings page).

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-89
for Blackfin Processors

Compiler

-no-anach

The -no-anach (disable C++ anachronisms) switch directs the compiler to
disallow some old C++ language features that are prohibited by the C++
standard. See the –anach switch (on page 1-85) for a full description of
these features.

-no-extern-inline

The -no-extern-inline switch directs the compiler to treat all inline
functions as static. If the function definition needs to be retained, an
external entry point is not generated. This is the default mode.

See also “-extern-inline” on page 1-87.

-no-friend-injection

The -no-friend-injection switch directs the compiler to conform to the
ISO/IEC 14882:2003 standard with respect to friend declarations. The
friend declaration is visible when the class to which it is a friend is among
the associated classes considered by argument-dependent lookup. This is
the default mode.

See also “-friend-injection” on page 1-88.

-no-implicit-inclusion

The -no-implicit-inclusion switch prevents implicit inclusion of source
files as a method of finding definitions of template entities to be
instantiated.

Compiler Command-Line Interface

1-90 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-no-rtti

The -no-rtti (disable run-time type identification) switch directs the
compiler to disallow support for dynamic_cast and other features of
ANSI/ISO C++ run-time type identification. This is the default mode.
Use –rtti to enable this feature.

See also “-rtti” on page 1-90.

-no-std-templates

The -no-std-templates switch disables dependent name processing
(that is, the special lookup of names used in templates as required by the
C++ standard). This is the default.

See also “-std-templates” on page 1-90.

-rtti

The -rtti (enable run-time type identification) switch directs the com-
piler to accept programs containing dynamic_cast expressions and other
features of ANSI/ISO C++ run-time type identification. The switch also
causes the compiler to define the macro __RTTI to 1. See also the –no-rtti
switch.

Invoke this switch with the C++ exceptions and RTTI check box located
in the VisualDSP++ Project Options dialog box (Compile : Language
Settings page).

See also “-no-rtti” on page 1-90.

-std-templates

The -std-templates switch enables dependent name processing, that is,
the special lookup of names used in templates as required by the C++
standard.

See also “-no-std-templates” on page 1-90.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-91
for Blackfin Processors

Compiler

Environment Variables Used by the Compiler
The compiler refers to several environment variables during its operation,
as listed below. The majority of the environment variables identify path
names to directories.

 Placing network paths into these environment variables may
adversely affect the time required to compile applications.

• PATH

This is your System search path, which is used to locate binary
executable files when you run them. The operating system uses this
environment variable to locate the compiler when you execute it
from the command line.

• TMP

This directory is used by the compiler for temporary files, when
building applications. For example, if you compile a C file to an
object file, the compiler first compiles the C file to an assembly file
which can be assembled to create the object file. The compiler
usually creates a temporary directory within the TMP directory into
which to put such files. However, if the -save-temps switch is
specified, the compiler creates temporary files in the current direc-
tory instead. This directory should exist and be writable. If this
directory does not exist, the compiler issues a warning.

• TEMP

This environment variable is also used by the compiler when look-
ing for temporary files, but only if TMP was examined and was not
set or the directory that TMP specified did not exist.

• ADI_DSP

The compiler locates other tools in the tool-chain through the
VisualDSP++ installation directory, or through the -path-install
switch. If neither is successful, the compiler looks in ADI_DSP for
other tools.

Compiler Command-Line Interface

1-92 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

• CCBLKFN_OPTIONS

If this environment variable is set, and CCBLKFN_IGNORE_ENV is not
set, this environment variable is interpreted as a list of additional
switches to be prepended to the command line. Multiple switches
are separated by spaces or new lines. A vertical-bar (|) character
may be used to indicate that any switches following it will be pro-
cessed after all other command-line switches.

• CCBLKFN_IGNORE_ENV

If this environment variable is set, CCBLKFN_OPTIONS is ignored.

Additional Path Support
The compiler driver and compiler provide support for extensions to stan-
dard Windows pathnames. Both Windows shortcuts and Cygwin paths
are supported. The extensions are controlled independently by compiler
switches. Both features are disabled by default.

 When either support is enabled, compilation time may be increased
in cases where many include paths are passed to the compiler.

Windows Shortcut Support

Enable Windows shortcut support with the -expand-windows-
shortcuts command-line switch (on page 1-37), and disable it with the
-no-expand-windows-shortcuts switch (on page 1-54). The support is
disabled by default. When enabled, the compiler recognizes elements of
paths that refer to Windows shortcuts.

For example, if the source file test.c exists in the directory

c:\src\blackfin\

and a Windows shortcut is created as

c:\src\platform

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-93
for Blackfin Processors

Compiler

which points to the source directory, the source file can be compiled with
the command line:

ccblkfn -proc ADSP-BF533 c:\src\platform\test.c

-expand-windows-shortcuts

The compiler also recognizes path directory elements which are Windows
shortcuts within preprocessor #include directives. For example, using the
example above, a file containing:

#include <platform\test.h>

could be compiled with the command line:

ccblkfn -proc ADSP-BF533 c:\src\platform\test.c -I c:\src

-expand-windows-shortcuts

Cygwin Path Support

The compiler provides support for Cygwin paths. The Cygwin environ-
ment provides users with a UNIX-like command-line environment on a
Microsoft Windows machine.

 The Cygwin environment is not part of VisualDSP++. It is pro-
vided by Red Hat, Inc. and can be downloaded from their Web
site.

Cygwin path support is enabled with the -expand-symbolic-links switch
and disabled with the -no-expand-symbolic-links switch. The support is
disabled by default. The compiler recognizes three types of path exten-
sions that are supported by Cygwin: symbolic links, cygdrive folders, and
Cygwin mounted directories.

Cygwin Symbolic Links

Symbolic links are created within Cygwin using the “ln -s” command.
The symbolic-links behave in a similar manner to Windows shortcuts,
providing a secondary link to a file or directory.

Compiler Command-Line Interface

1-94 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

For example, for the source file test.c located in the directory
c:\src\blackfin\, a symbolic link can be created using the commands:

cd /cygdrive/c/src

ln -s platform blackfin

The source file can be compiled with the commands:

cd /cygdrive/c/src

ccblkfn -proc ADSP-BF533 platform/test.c -expand-symbolic-links

 The compiler supports local symbolic links only. VisualDSP++
does not support symbolic links to remote devices and machines.

Cygdrive Folders

The Cygwin /cygdrive directory is a pseudo-directory that provides
access to all the drives that can be located through the “My Computer”
folder in Windows Explorer. The drives are accessed via the sub-directory
corresponding to their drive letter.

For example, the C: drive is accessed via the directory /cygdrive/c, and
the file c:\src\blackfin\test.c can be compiled using the command
line:

ccblkfn -proc ADSP-BF533 /cygdrive/c/src/blackfin/test.c

-expand-symbolic-links

Cygwin Mounted Directories

Cygwin provides a mount command that reproduces the behavior of the
UNIX mount command. It allows directories and devices to be accessed via
an alternative “mounted” directory.

For example, to mount the directory d:\testsuites as /tests, issue the
command:

mount d:\\testsuites /tests

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-95
for Blackfin Processors

Compiler

The contents of d:\testsuites will then be visible as if they existed
within /tests. The file d:\testsuites\test.c can be compiled with the
command:

ccblkfn -proc ADSP-BF533 /tests/test.c -expand-symbolic-links

 The compiler supports local Cygwin mounts only. VisualDSP++
does not support Cygwin mounts to remote devices and machines.

Optimization Control
The general aim of compiler optimization is to generate correct code that
executes quickly and is small in size. Not all optimizations are suitable for
every application or can be used all the time. Therefore, the compiler opti-
mizer has a number of configurations, or optimization levels, which can be
applied when needed. Each of these levels are enabled by one or more
compiler switches (and VisualDSP++ project options) or pragmas.

 Refer to “Achieving Optimal Performance From C/C++ Source
Code” on page 2-1 for information on how to obtain maximal code
performance from the compiler.

The compiler’s optimization capabilities are described in “Optimization
Levels” on page 1-95 and “Interprocedural Analysis” on page 1-98.

Optimization Levels

The following list identifies several optimization levels. The levels are
notionally ordered with least optimization listed first and most optimiza-
tion listed last. The descriptions for each level outline the optimizations
performed by the compiler and identify any required switches or pragmas
that have direct influence on them.

Compiler Command-Line Interface

1-96 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

• Debug
The compiler produces debug information to ensure that the object
code matches the appropriate source code line. See “-g” on
page 1-42 and “-Og” on page 1-61 for more information.

• Default
The compiler does not perform any optimization by default when
none of the compiler optimization switches are used (or enabled in
the VisualDSP++ Project Options dialog box). Default optimiza-
tion level can be enabled using the optimize_off pragma
(on page 1-297).

• Procedural Optimizations
The compiler performs advanced, aggressive optimization on each
procedure in the file being compiled. The optimizations can be
directed to favor optimizations for speed (-O1 or O) or space (-Os)
or a factor between speed and space (-Ov). If debugging is also
requested, the optimization is given priority so the debugging func-
tionality may be limited. See “-O[0|1]” on page 1-60, “-Os” on
page 1-61, “-Ov” on page 1-61, and “-Og” on page 1-61.

Procedural optimizations for speed and space (-O and -Os) can be
enabled in C/C++ source using the pragma
optimize_{for_speed|for_space}. For more information, see
“General Optimization Pragmas” on page 1-297. The -Ofp com-
piler switch directs the compiler to offset the frame pointer if doing
so allows more 16-bit instructions to be used. Offsetting the frame
pointer means the function does not conform to the Application
Binary Interface (ABI), but allows the compiler to produce smaller
code, which, in turn, allows for more multi-issue instructions.
Since the ABI is affected, the debugger would be unable to inter-
pret the resulting frame structure. See “-Ofp” on page 1-60 for
more information.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-97
for Blackfin Processors

Compiler

• Profile-Guided Optimizations (PGO)
The compiler performs advanced aggressive optimizations using
profiler statistics (.pgo files) generated from running the applica-
tion using representative training data. PGO can be used in
conjunction with interprocedural analysis (IPA) and automatic
inlining. See “-pguide” on page 1-67 for more information.
Note that PGO is supported in the simulator only.

The most common scenario in collecting PGO data is to set up one
or more simple file-to-device streams where the file is a standard
ASCII stream input file and the device is any stream device sup-
ported by the simulator target, such as memory and peripherals.
The PGO process can be broken down into the execution of one or
more data sets where a data set is the association of zero or more
input streams with one and only one .pgo output file.

You can create, edit, and delete data sets through the VisualDSP++
IDDE and then “run” the data sets with the click of one button to
produce an optimized application. The PGO operation is handled
via a the Manage Data Sets dialog box in the VisualDSP++ IDDE
via: Tools -> PGO -> Manage Data Sets.

For more information, see “Using Profile-Guided Optimization”
on page 2-9.

 Be aware of the requirement for allowing command-line arguments
in your project when using PGO. For further details refer to “Sup-
port for argv/argc” on page 1-358.

• Automatic Inlining
The compiler automatically inlines C/C++ functions which are not
necessarily declared as inline in the source code. It does this when
it has determined that doing so reduces execution time. The -Ov
switch controls how aggressively the compiler performs automatic
inlining. Automatic inlining is enabled using the -Oa switch which

Compiler Command-Line Interface

1-98 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

additionally enables procedural optimizations (-O). See “-Oa” on
page 1-60, “-Ov” on page 1-61, “-O[0|1]” on page 1-60, and
“Function Inlining” on page 1-159 for more information.

 When remarks are enabled, the compiler produces a remark to
indicate each function that is inlined.

• Interprocedural Optimizations
The compiler performs advanced, aggressive optimization over the
whole program, in addition to the per-file optimizations in proce-
dural optimization. Interprocedural analysis (IPA) is enabled using
the -ipa switch which additionally enables procedural optimiza-
tions (-O). See “-ipa” on page 1-47, “-O[0|1]” on page 1-60, and
“Interprocedural Analysis” on page 1-98 for more information.

The compiler optimizer attempts to vectorize loops when it is safe to do
so. IPA can identify additional safe candidates for vectorization which
might not be classified as safe at a procedural optimization level. Addi-
tionally, there may be other loops that are known to be safe candidates for
vectorization that can be identified to the compiler using various pragmas.
(See “Loop Optimization Pragmas” on page 1-287.)

Using the various compiler optimization levels is an excellent way of
improving application performance. However, consideration should be
given to how applications are written so that compiler optimizations are
given the best opportunity to be productive. These issues are the topic of
“Achieving Optimal Performance From C/C++ Source Code” on
page 2-1.

Interprocedural Analysis

The compiler has an optimization capability called interprocedural analysis
(IPA) that allows the compiler to optimize across translation units instead
of within individual translation units. This capability allows the compiler
to see all of the source files used in a final link at compilation time and to
use that information while optimizing.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-99
for Blackfin Processors

Compiler

Enable interprocedural analysis by selecting the Interprocedural analysis
check box on the Compile : General page of the VisualDSP++ Project
Options dialog box, or by specifying the -ipa command-line switch
(on page 1-47).

The -ipa switch automatically enables the -O switch to turn on
optimization.

The -ipa switch generates additional files along with the object file pro-
duced by the compiler. These files have .ipa extensions and should not be
deleted manually unless the associated object file is also deleted.

All of the -ipa optimizations are invoked after the initial link, when a spe-
cial program called the prelinker reinvokes the compiler to perform the
new optimizations, recompiling source files where necessary, to make use
of gathered information.

 Because a file may be recompiled by the prelinker, do not use the
-S option to see the final optimized assembler file when -ipa is
enabled. Instead, use the -save-temps switch, so that the full com-
pile/link cycle can be performed first.

Interaction With Libraries

When IPA is enabled, the compiler examines all of the source files to build
usage information about all of the function and data items. It then uses
that information to make additional optimizations across all of the source
files by recompiling where necessary.

Because IPA operates only during the final link, the -ipa switch has no
benefit when initially compiling source files to object format for inclusion
in a library. IPA gathers information about each file and embeds this
within the object format, but cannot make use of it at this point, because
the library contents have not yet been used in a specific context.

When IPA is invoked during linking, it will recover the gathered informa-
tion from all linked-in object files that were built with -ipa, and where

Compiler Command-Line Interface

1-100 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

necessary and possible, will recompile source files to apply additional opti-
mizations. Modules linked in from a library are not recompiled in this
manner, as source is not available for them. Therefore, the gathered infor-
mation in a library module can be used to further optimize application
sources, but does not provide a benefit to the library module itself.

If a library module references a function in a user module in the program,
this will be detected during the initial linking phase, and IPA will not
eliminate the function. If the library module was not compiled with -ipa,
IPA will not make any assumptions about how the function may be called,
so the function may not be optimized as effectively as if all references to it
were in source code visible to IPA, or from library modules compiled with
-ipa.

Controlling Silicon Revision and Anomaly
Workarounds Within the Compiler

The compiler provides three switches which specify that code produced by
the compiler will be generated for a specific revision of a specific proces-
sor, and appropriate revision specific system run-time libraries will be
linked against. Targeting a specific processor allows the compiler to
produce code that avoids specific hardware errata reported against that
revision. For the simplest control, use the -si-revision switch
(on page 1-74), which automatically controls the use of compiler
workarounds.

 The compiler cannot apply errata workarounds to code inside
asm() constructs.

When developing using the VisualDSP++ IDDE, the silicon revision
within a project is set to a default value of Automatic. Using a silicon revi-
sion of Automatic will select a parameter value for the -si-revision
switch based on the hardware connected and the target type currently in
use. This will enable all errata workarounds for the determined silicon
revision.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-101
for Blackfin Processors

Compiler

 Using the -si-revision Switch

The -si-revision version (silicon revision) switch directs the compiler
to build for a specific hardware revision. Any errata workarounds available
for the targeted silicon revision will be enabled. The parameter version
represents a silicon revision for the processor specified by the -proc switch
(on page 1-68). For example,

ccblkfn -proc ADSP-BF535 -si-revision 0.1 prog.c

If silicon version none is used, then no errata workarounds are enabled,
whereas specifying silicon version any will enable all errata workarounds
for all supported revisions of the target processor.

If the -si-revision switch is not used, the compiler will default to target
the latest known silicon revision for the target processor and any errata
workarounds which are appropriate for the latest silicon revision will be
enabled.

The directory Blackfin\lib contains two sets of libraries: one set (suffixed
with “y”, for example, libc532y.dlb) contains workarounds for all known
errata in all silicon revisions; the other set is built without any errata work-
arounds. Within the lib subdirectory, there are library directories for each
silicon revision; these libraries have been built with errata workarounds
appropriate for the silicon revision enabled. Note that an individual set of
libraries may cover more than one specific silicon revision, so if several sil-
icon revisions are affected by the same errata, then one common set of
libraries might be used.

The __SILICON_REVISION__ macro is set by the compiler to two hexadeci-
mal digits, representing the major and minor numbers in the silicon
revision. For example, 1.0 becomes 0x100, and 10.21 becomes 0xa15.

If the silicon revision is set to any, the __SILICON_REVISION__ macro is set
to 0xffff. If the -si-revision switch is set to none, the compiler will not
set the __SILICON_REVISION__ macro.

Compiler Command-Line Interface

1-102 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The compiler driver will pass the -si-revision switch, as specified in the
command line, when invoking other tools in the VisualDSP++ tool chain.

 Visit http://www.analog.com/processors/technicalSup-
port/ICAnomalies.html for information on specific anomalies
(including anomaly IDs).

Using the -workaround Switch

The -workaround workaround_id switch (on page 1-81) enables compiler
code generator workarounds for specific hardware errata.

When workarounds are enabled, the compiler defines the macro
__WORKAROUNDS_ENABLED at the compile, assembly, and link build stages.
The compiler also defines individual macros for each of the enabled work-
arounds for each of these stages, as indicated by each macro description.

For a complete list of anomaly workarounds and associated workaround_id
keywords, refer to the anomaly .xml files provided in the
<install_path>/System/ArchDef directory. These are named in the
format <platform_name>-anomaly.xml.

To find which workarounds are enabled for each chip and silicon revision,
refer to the appropriate <chip_name>-compiler.xml file in the same
directory (for example, ADSP-BF533-compiler.xml). Each *-compiler.xml
file references an *-anomaly.xml file via the name in the
<vdsp-anomaly-dictionary> element.

The two main anomaly .xml files relevant to Blackfin processors are:

• BLACKFIN-FRIO-anomaly.xml - Applicable to the ADSP-BF535
processor

• BLACKFIN-EDN-anomaly.xml - Applicable to all other Blackfin
processors

http://www.analog.com/processors/technicalSupport/ICAnomalies.html
http://www.analog.com/processors/technicalSupport/ICAnomalies.html

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-103
for Blackfin Processors

Compiler

 Certain silicon anomalies affect the access of memory-mapped
registers (MMRs), in particular 05-00-0122 (which is worked
around by default), 05-00-0157 (under control of -workaround
killed-mmr-write), and 05-00-0198 (under control of -work-
around sdram-mmr-read). The compiler applies the appropriate
workarounds to a memory access which it can identify as being to
an MMR (for example, if the pointer to the MMR is assigned a lit-
eral address, or the value of the pointer can be calculated at
compile time).

For pointers whose destination may not be known until runtime,
the compiler will take the conservative approach and assume that
the pointer may access MMRs if it is volatile-qualified. To disable
this assumption, use the -no-assume-vols-are-mmrs switch
(on page 1-52); the memory-mapped register access functions
(on page 1-275) should be used to ensure the MMR access is made
anomaly-safe

Using the -no-workaround Switch

The -no-workaround workaround_id[,workaround_id ...] switch
disables compiler code generator workarounds for specific hardware
errata. For a list of valid workarounds, refer to the instructions in
“Using the -workaround Switch” on page 1-102.

The -no-workaround switch can be used to disable workarounds enabled
via the -si-revision version or -workaround workaround_id switches.

All workarounds can be disabled by providing -no-workaround with all
valid workarounds for the selected silicon revision or by using the option
-no-workaround all. Disabling all workarounds via the -no-workaround
switch will provide linking against libraries with no silicon revision in
cases where the silicon revision is not none.

Using Native Fixed-Point Types

1-104 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Interactions: Silicon Revision vs. Workaround Switches

Interactions between -si-revision, -workaround, and -no-workaround
switches can only be determined once all the command-line arguments
have been parsed. To this effect, options are evaluated as follows:

1. The -si-revision version switch is parsed to determine which
revision of the run-time libraries the application is to link against.
It also produces an initial list of all the default compiler errata
workarounds to enable.

2. Any additional workarounds specified with the -workaround switch
is added to the errata list.

3. Any workarounds specified with -no-workaround is then removed
from this list.

4. If silicon revision is not none or if any workarounds were declared
via -workaround, the macro __WORKAROUNDS_ENABLED is defined at
compile, assembly, and link stages, even if -no-workaround disables
all workarounds.

Using Native Fixed-Point Types
This section provides an overview of the compiler’s support for the native
fixed-point types fract and accum, defined in Chapter 4 of the “Extensions
to support embedded processors” ISO/IEC draft document Technical Report
18037.

Fixed-Point Type Support
A fixed-point data type is one where the radix point is at a fixed position.
This includes the integer types (the radix point is immediately to the right
of the least-significant bit). However, this section uses the term to apply
exclusively to those that have a non-zero number of fractional bits, that is,

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-105
for Blackfin Processors

Compiler

bits to the right of the radix point. There may also be integer bits to the
left of the radix point.

The Blackfin processor has hardware support for arithmetic on a number
of these fixed-point data types. For example, it is able to perform addition,
subtraction and multiplication on 16-bit and 32-bit fractional values.
However, the C language does not make it easy to express the semantics of
the arithmetic that maps to the underlying hardware support.

To make it easier to use this hardware capability, and to facilitate expres-
sion of DSP algorithms that manipulate fixed-point data, the compiler
supports a number of native fixed-point types whose arithmetic obeys the
fixed-point semantics. This makes it easy to write high-performance algo-
rithms that manipulate fixed-point data, without having to resort to
compiler built-ins, or inline assembly.

An emerging standard for such fixed-point types is set out in Chapter 4 of
the “Extensions to support embedded processors” ISO/IEC Technical Report
18037. VisualDSP++ provides all the functionality specified in that chap-
ter, and the chapter is a useful reference that explains the subtleties of the
semantics of the library functions and arithmetic operators. However, the
following sections give an overview of these data types, the semantics of
arithmetic using these types, and guidelines for how to write high-perfor-
mance code using these types.

Native Fixed-Point Types
Two keywords, _Fract and _Accum, are used to declare variables of
fixed-point type. Each of these keywords may also be used in conjunction
with the type specifiers short and long, and signed and unsigned. There
are therefore 12 fixed-point types available, although some of these are
aliases for types of the same size and format.

By including the header file stdfix.h, the more convenient alternative
spellings - fract and accum - may be used instead of _Fract and _Accum.
This header file also provides prototypes for many useful functions and it

Using Native Fixed-Point Types

1-106 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

is highly recommended that you include it in source files that use
fixed-point types. Therefore, the discussion that follows uses the spelling
fract and accum as does the rest of the VisualDSP++ documentation.

The formats of the fixed-point types are given in table Table 1-15. In the
“Representation” column of the table, the number after the point indi-
cates the number of fractional bits, while the number before the point
refers to the number of integer bits, including a sign bit when it is pre-
ceded by “s”. Signed types are in two’s complement form. The range of
values that can be represented is also given in the table. Note that the bot-
tom of the range can be represented exactly, whereas the top of the range
cannot—only the value one bit less than this limit can be represented.

The Technical Report also defines a _Sat (alternative spelling sat) type
qualifier for the fixed-point types. This stipulates that all arithmetic on

Table 1-15. Data Storage Formats, Ranges, and Sizes of the Native
Fixed-Point Types

Type Representation Range sizeof Returns

short fract s1.15 [-1.0,1.0) 2

fract s1.15 [-1.0,1.0) 2

long fract s1.31 [-1.0,1.0) 4

unsigned short fract 0.16 [0.0,1.0) 2

unsigned fract 0.16 [0.0,1.0) 2

unsigned long fract 0.32 [0.0,1.0) 4

short accum s9.31 [-256.0,256.0) 8

accum s9.31 [-256.0,256.0) 8

long accum s9.31 [-256.0,256.0) 8

unsigned short accum 8.32 [0.0,256.0) 8

unsigned accum 8.32 [0.0,256.0) 8

unsigned long accum 8.32 [0.0,256.0) 8

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-107
for Blackfin Processors

Compiler

fixed-point types shall be saturating arithmetic (that is, that the result of
arithmetic that overflows the maximum value that can be represented by
the type shall saturate at the largest or smallest representable value). When
the sat qualifier is not used, the standard says that arithmetic that over-
flows may behave in an undefined manner. VisualDSP++ accepts the sat
qualifier for compatibility but will always produce code that saturates on
overflow whether the sat qualifier is used or not. This gives maximum
reproducibility of results and permits code to be written without worrying
about obtaining unexpected results on overflow.

Native Fixed-Point Constants
Fixed-point constants may be specified in the same format as for
floating-point constants, inclusive of any decimal or binary exponent.
For more information on these formats, refer to “strtofxfx” on page 3-330.
Suffixes are used to identify the type of constants. The stdfix.h header
also declares macros for the maximum and minimum values of the
fixed-point types. See Table 1-16 for details of the suffixes and maximum
and minimum fixed-point values.

Table 1-16. Fixed-Point Type Constant Suffixes and Macros

Type Suffix Example Minimum Value Maximum Value

short fract hr 0.5hr SFRACT_MIN SFRACT_MAX

fract r 0.5r FRACT_MIN FRACT_MAX

long fract lr 0.5lr LFRACT_MIN LFRACT_MAX

unsigned short fract uhr 0.5uhr 0.0uhr USFRACT_MAX

unsigned fract ur 0.5ur 0.0ur UFRACT_MAX

unsigned long fract ulr 0.5ulr 0.0ulr ULFRACT_MAX

short accum hk 12.4hk SACCUM_MIN SACCUM_MAX

accum k 12.4k ACCUM_MIN ACCUM_MAX

long accum lk 12.4lk LACCUM_MIN LACCUM_MAX

Using Native Fixed-Point Types

1-108 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

A Motivating Example
Consider a very simple example—a fixed-point dot product. How might
you write this using the native fixed-point types? The algorithm performs
multiplication of each pair of fractional values in the input arrays. The
accum type is designed to hold the results of accumulations, which is
exactly what is needed. Assume that the data consist of vectors of 16-bit
values, representing values in the range [-1.0,1.0). Then it is natural to
write:

Example

#include <stdfix.h>

accum dot_product(fract *a, fract *b, int n)

{

accum sum = 0.0k;

 int i;

 for (i = 0; i < n; i++)

 sum += a[i] * b[i];

 return sum;

}

The above algorithm performs a pair-wise fractional multiplication of
elements of the input arrays and accumulates the result into a variable that
saturates on overflow. In fact, this simple expression of the algorithm

unsigned short accum uhk 12.4uhk 0.0uhk USACCUM_MA
X

unsigned accum uk 12.4uk 0.0uk UACCUM_MAX

unsigned long accum ulk 12.4ulk 0.0ulk ULACCUM_MA
X

Table 1-16. Fixed-Point Type Constant Suffixes and Macros (Cont’d)

Type Suffix Example Minimum Value Maximum Value

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-109
for Blackfin Processors

Compiler

hides a subtlety related to the semantics of the arithmetic which is dis-
cussed in “FX_CONTRACT” on page 1-115, but it does show that it is
easy to express algorithms that manipulate fixed-point data and perform
saturation on overflow without needing to find special ways to express
these semantics through integer arithmetic.

Fixed-Point Arithmetic Semantics
The semantics of fixed-point arithmetic according to the Technical
Report are as follows:

1. If a binary operator has one floating-point operand, the other
operand is converted to floating-point and the operator is applied
to two floating-point operands to give a floating-point result.

2. If the operator has two fixed-point operands of different signed-
ness, convert the unsigned one to signed without changing its size.
(However, see also “FX_CONTRACT” on page 1-115.)

3. Deduce the result type. The result type is the operand type of
highest rank. Rank increases in the following order: short fract,
fract, long fract, short accum, accum, long accum (or their
unsigned equivalents). An operator with only one fixed-point
operand produces a result of this fixed-point type. (An exception is
the result of a comparison, which gives a boolean result.)

4. The result is the mathematical result of applying the operator to
the operand values, converted to the result type deduced in step 3.
In other words, the result is as if it was computed to infinite
precision before converting this result to the final result type.

The conversions between different types are discussed in “Data Type Con-
versions and Fixed-Point Types” on page 1-110.

Using Native Fixed-Point Types

1-110 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Data Type Conversions and Fixed-Point Types
The rules for conversion to and from fixed-point types are as follows:

1. When converting to a fixed-point type, if the value of the operand
can be represented by the fixed-point type, the result is this value.
If the operand value is out of range of the fixed-point type, the
result is the closest fixed-point value to the operand value. In other
words, conversion to fixed-point saturates the operand’s mathemat-
ical value to the fixed-point type’s range. If the operand value is
within the range of the fixed-point type, but cannot be represented
exactly, the result is the closest value either higher or lower than
the operand value. For more information, see “Rounding Behav-
ior” on page 1-118.)

2. When converting to an integer type from a fixed-point type, the
result is the integer part of the fixed-point type. The fractional part
is discarded, so rounding is towards zero; (int)(1.9k) gives 1,
and (int)(-1.9k) gives -1.

3. When converting to a floating-point type, the result is the closest
floating-point value to the operand value.

These rules have some important consequences of which you should be
aware:

 Conversion of an integer to a fractional type is only useful when
the integer is -1, 0, or 1. Any other integer value will be saturated
to the fractional type. So a statement like

fract f = 0x4000; // try to assign 0.5 to f

will not assign 0.5 to f, but will instead result in FRACT_MAX,
because 0x4000 is an integer greater than 1. Instead, use

fract f = 0.5r;

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-111
for Blackfin Processors

Compiler

- or -
fract f = 0x4000p-15r;

Note that the second format above uses the binary exponent syntax
available for fixed-point constants; specifically the value 0x4000 is
scaled by 2-15.

 Assignment of a fractional value to an integer yields zero unless the
fractional value is -1.0. Assignment of an unsigned fractional value
to an integer always results in zero.

 Be very careful to avoid mixing fract16 and fract32 types with
fract and long fract. The former are typedefs to integer types. So

#include <stdfix.h>

#include <fract.h>

fract16 f16;

fract f;

void foo(void) {

 f16 = -0x4000; // stores -0.5 into f16

 f = f16; // gives f = -1.0

}

because f16 is an integer value and therefore saturates on assign-
ment to the true fractional type. The compiler will emit an error
when it can detect that a fract16 or fract32 value has been con-
verted to a fract or long fract type (or vice versa), because this
nearly always indicates a programming error. To convert between
the integer typedefs and the native types, use “Bit-Pattern Conver-
sion Functions: bitsfx and fxbits” on page 1-112.

Compiler warnings will be produced to aid in the diagnosis of problems
where these conversions are likely to produce unexpected results.

Using Native Fixed-Point Types

1-112 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Bit-Pattern Conversion Functions: bitsfx and fxbits
The stdfix.h header file provides functions to convert a bit pattern to a
fixed-point type and vice versa. These functions are particularly useful for
converting between native types (fract, long fract) and integer typedefs
(fract16, fract32).

For each fixed-point type, a corresponding integer type is declared, which
is big enough to hold the bit pattern for the fixed-point type. These are
int_fx_t, where fx is one of hr, r, lr, hk, k, or lk, and uint_fx_t where fx
is one of uhr, ur, ulr, uhk, uk, or ulk.

To convert a fixed-point type to a bit pattern, use the bitsfx family of
functions. fx may be any of hr, r, lr, hk, k, lk, uhr, ur, ulr, uhk, uk, or ulk.
For example, using the prototype
uint_ur_t bitsur(unsigned fract);

you can write

#include <stdfix.h>

unsigned fract f;

uint_ur_t f_bit_pattern;

void foo(void) {

 f = 0.5ur;

 f_bit_pattern = bitsur(f); // gives 0x8000

}

 This is a good way to convert from a fract to a fract16 or a long
fract to a fract32 where necessary. For example,

#include <stdfix.h>

#include <fract.h>

fract f;

fract16 f16;

void foo(void) {

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-113
for Blackfin Processors

Compiler

f = 0.5r;

f16 = bitsr(f); // 0x4000 as expected

}

For more information, see “bitsfx” on page 3-95.

Similarly, to convert to a fixed-point type from a bit pattern, use the
fxbits family of functions. So, to convert from a fract32 to a long fract,
use:

#include <stdfix.h>

#include <fract.h>

fract32 f32;

long fract lf;

void foo(void) {

f32 = 0x40000000; // that’s 0.5

lf = lrbits(f32); // gets 0.5lr as expected

}

For more information, see “fxbits” on page 3-180.

Arithmetic Operators for Fixed-Point Types
You can use the +, -, *, and / operators on fixed-point types, which have
the same meaning as their integer or floating-point equivalents, aside from
any overflow or rounding semantics. As discussed on page 1-105,
fixed-point operations that overflow give results saturated at the highest or
lowest fixed-point value. Rounding is discussed in “Rounding Behavior”
on page 1-118.

Using Native Fixed-Point Types

1-114 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

You can use << to shift a fixed-point value up by a positive integer shift
amount less than the fixed-point type size in bits. This gives the same
result as multiplication by a power of 2, including overflow semantics:

#include <stdfix.h>

fract f1, f2;

void foo1(void) {

f1 = 0.125r;

f2 = f1 << 2; // gives 0.5r

}

void foo2(void) {

f1 = -0.125r;

f2 = f1 << 10; // gives -1.0r

}

You can also use >> to shift a fixed-point value down by an integer shift
amount in the same range. This is defined to give the same result as divi-
sion by a power of 2, including any rounding behavior:

#include <stdfix.h>

fract f1, f2;

void foo1(void) {

f1 = 0.5r;

f2 = f1 >> 2; // gives 0.125r

}

void foo2(void) {

f1 = 0x0003p-15r;

f2 = f1 >> 2; // gives 0x0000p-15r when rounding mode

// is truncation

// and 0x0001p-15r when rounding mode

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-115
for Blackfin Processors

Compiler

// is biased or unbiased

}

Any of these operators can be used in conjunction with assignment, for
example:

#include <stdfix.h>

fract f1, f2;

void foo1(void) {

f1 = 0.2r;

f2 = 0.3r;

f2 += f1;

}

In addition, there are a number of unary operators that may be used with
fixed-point types. These are:

• ++ Equivalent to adding integer 1

• -- Equivalent to subtracting integer 1

• + Unary plus, equivalent to adding value to 0.0 (no effect)

• - Unary negate, equivalent to subtracting value from 0.0

• ! 1 if equal to 0.0, 0 otherwise

FX_CONTRACT
The example of a dot-product (see “A Motivating Example” on
page 1-108) contained the accumulation:
sum += a[i] * b[i];

where sum was an accum type and a[i], b[i] were fract types. Bearing in
mind the rules discussed in the previous section, what is the result of the
multiplication? Since both a[i] and b[i] are fract types, the result of the

Using Native Fixed-Point Types

1-116 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

multiplication is also a fract—in other words, two s1.15 operands are
multiplied together to yield an s1.15 result. So the rules say that it should
be equivalent to writing:

fract tmp = a[i] * b[i];

sum += tmp;

However, this means that:

• The multiply result must be rounded to s1.15; 15 bits of precision
are lost.

• The result of multiplying -1.0r by -1.0r should be FRACT_MAX —
that is, not quite 1.0.

There are two problems with this:

• You probably do not want to round away those extra bits of preci-
sion before adding the result of the multiplication to sum. Doing so
decreases the accuracy of the accumulation. Moreover, the Blackfin
processor has an efficient single-cycle multiply-accumulate instruc-
tion, but this does not discard the extra bits of precision in the
multiply result before accumulation.

• On Blackfin processors, the multiply-accumulate instruction does
not saturate -1.0r * -1.0r before adding to the accumulator regis-
ter. This again has the effect of increasing the accuracy of the
accumulated result, but does not match the fixed-point type
semantics for the dot product example.

To generate efficient code without losing precision, you should really
write:
sum += (accum)a[i] * (accum)b[i];

This is because the conversion to the higher-precision accum type prior to
multiplication means that the generated code can hold the intermediate
multiply result in s9.31 format, which means there is no requirement to

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-117
for Blackfin Processors

Compiler

saturate the result or round off the lower order bits. This allows the com-
piler to use the hardware multiply-accumulate instruction.

For convenience, the compiler can do this step for you, using a mode
known as FX_CONTRACT. The name FX_CONTRACT is used as the behavior is
similar to that of FP_CONTRACT in C99. When FX_CONTRACT is on, the com-
piler may keep intermediate results in greater precision than that specified
by the Technical Report. In other words, it may choose not to round away
extra bits of precision or to saturate an intermediate result unnecessarily.
More precisely, the compiler keeps the intermediate result in greater preci-
sion when:

• Maintaining the higher-precision intermediate result will be more
efficient—it maps better to the underlying hardware.

• The intermediate result is not stored back to any named variable.

• No explicit casts convert the type of the intermediate result.

In other words,
sum += a[i] * b[i];

will result in a multiply-accumulate instruction, but
sum += (fract)(a[i] * b[i]);

- or -

fract tmp = a[i] * b[i];

sum += tmp;

will both force the result of the multiply to be converted back to fract
type before the accumulation.

Using Native Fixed-Point Types

1-118 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

There are other examples where FX_CONTRACT may keep intermediate
results in higher precision:

• Implicit conversion of unsigned fixed-point type to a larger signed
fixed-point type does not first convert to the signed fixed-point
type of the smaller size.

• Multiplication of signed fract and unsigned fract can create a
mixed-mode fractional multiply rather than first converting the
unsigned fract to a signed fract.

By default, the compiler permits FX_CONTRACT behavior. The FX_CONTRACT
mode can be controlled with a pragma (see also “#pragma
FX_CONTRACT {ON|OFF}” on page 1-299) or with command-line
switches, -fx-contract and –no-fx-contract (see “-fx-contract” on
page 1-41 and “-no-fx-contract” on page 1-56). The pragma may be used
at file scope or within functions. It obeys the same scope rules as the
FX_ROUNDING_MODE pragma discussed on page 1-128 with an example in
Listing 1-1 on page 1-129.

Rounding Behavior
What happens if a long fract is converted to a fract? The 16 least-signif-
icant bits cannot be represented in the result, so they must be discarded
during the conversion. In the case where the long fract value cannot be
represented exactly by the fract type, there is a choice: the result can be
the nearest fract value greater than the long fract value, or the nearest
value less than the long fract value. This is known as the rounding
behavior.

Some fixed-point operations are also affected by rounding. For example,
multiplication of two fractional values to produce a fractional result of the
same size requires discarding a number of bits of the exact result. For
example, s1.15 * s1.15 produces an exact s2.30 result. This is saturated to
s1.30 and the fifteen least-significant bits must be discarded to produce an
s1.15 result.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-119
for Blackfin Processors

Compiler

By default, any bits that must be discarded are truncated—in other words,
they are simply chopped off the end of the value. For example:

#include <stdfix.h>

fract f1, f2, prod;

void foo(void) {

f1 = 0x3ffp-15r;

f2 = 0x1000p-15r;

prod = f1 * f2; // gives 0x007fp-15r, discarded

// least-significant bits 0xe000

}

This is equivalent to always rounding down toward negative infinity. It
tends to produce results whose accuracy tends to deteriorate as any round-
ing errors are generally in the same direction and are compounded as the
calculations proceed.

If this does not give you the accuracy you require, you can use either
biased or unbiased round-to-nearest rounding. The compiler supports
pragmas and switches to control the rounding mode. In the biased or
unbiased rounding modes, the above product will be rounded to the
nearest value that can be represented by the result type, so the final result
will be 0x0080p-15r.

The difference between biased and unbiased rounding occurs when the
value to be rounded lies exactly half-way between the two closest values
that can be represented by the result type. In this case, biased rounding
will always round toward the greater of the two values (applying saturation
if this rounding overflows) whereas unbiased rounding will round toward
the value whose least-significant bit is zero. For example:

#include <stdfix.h>

fract f;

long fract lf;

Using Native Fixed-Point Types

1-120 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

void foo1(void) {

lf = 0x34568000p-31lr;

f = lf; // gives 0x3456p-15r in unbiased rounding mode,

// but 0x3457p-15r in biased rounding mode

}

void foo2(void) {

lf = 0x34578000p-31lr;

f = lf; // gives 0x3458p-15r in both biased

// and unbiased rounding modes

}

In general, unbiased rounding is more costly than biased rounding in
terms of cycles, but yields a more accurate result since rounding errors in
the half-way case are not all in the same direction and therefore are not
compounded so strongly in the final result.

The rounding discussed here only affects operations that yield a
fixed-point result. Operations that yield an integer result round toward
zero. There are also a few exceptions to the rounding rules:

• Conversion of a floating-point value to a fixed-point value rounds
towards zero.

• The roundfx, strtofxfx, and fxdivi functions always perform
either biased or unbiased rounding, dependent on the current state
of the RND_MOD bit. They do not support the truncation rounding
mode.

Details of how to set rounding mode are given in “Setting the Rounding
Mode” on page 1-128.

Arithmetic Library Functions
The stdfix.h header file also declares a number of functions that permit
useful arithmetic operations on combinations of fixed-point and integer

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-121
for Blackfin Processors

Compiler

types. These are the divifx, idivfx, fxdivi, mulifx, absfx, roundfx,
countlsfx, and strtofxfx families of functions.

divifx

The divifx functions, where fx is one of r, lr, k, lk, ur, ulr, uk, or ulk,
allow division of an integer value by a fixed-point value to produce an
integer result. If you write

#include <stdfix.h>

fract f;

int i, quo;

void foo(void) {

// BAD: division of int by fract gives fract result, not int

f = 0.5r;

i = 2;

quo = i / f;

}

then the result of the division is a fract whose integer part is stored in the
variable quo. This means that the value of quo is zero, as the division over-
flows and thus produces a fractional result that is nearly one.

To get the desired result, write

#include <stdfix.h>

fract f;

int i, quo;

void foo(void) {

// GOOD: uses divifx to give integer result

f = 0.5r;

i = 2;

quo = divir(i, f);

}

Using Native Fixed-Point Types

1-122 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

which will store the value 4 into the variable quo.

For more information, see “divifx” on page 3-130.

idivfx

The idivfx functions, where fx is one of r, lr, k, lk, ur, ulr, uk, or ulk,
allow division of a fixed-point value by a fixed-point value to produce an
integer result. If you write

#include <stdfix.h>

fract f1, f2;

int quo;

void foo(void) {

// BAD: division of two fracts gives fract result, not int

f1 = 0.5r;

f2 = 0.25r;

quo = f1 / f2;

}

then the result of the division is a fract whose integer part is stored in the
variable quo. This means that the value of quo is zero, as the division over-
flows and thus produces a fractional result that is nearly one.

To get the desired result, write

#include <stdfix.h>

fract f1, f2;

int quo;

void foo(void) {

// GOOD: uses idivfx to give integer result

f1 = 0.5r;

f2 = 0.25r;

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-123
for Blackfin Processors

Compiler

quo = idivr(f1, f2);

}

which will store the value 2 into the variable quo.

For more information, see “idivfx” on page 3-207.

fxdivi

The fxdivi functions, where fx is one of r, lr, k, lk, ur, ulr, uk, or ulk,
allow division of an integer value by an integer value to produce a
fixed-point result. If you write

#include <stdfix.h>

int i1, i2;

fract quo;

void foo(void) {

// BAD: division of int by int gives int result, not fract

i1 = 5;

i2 = 10;

quo = i1 / i2;

}

then the result of the division is an integer which is then converted to a
fract to be stored in the variable quo. This means that the value of quo is
zero, as the division is rounded to integer zero and then converted to
fract.

To get the desired result, write

#include <stdfix.h>

int i1, i2;

fract quo;

void foo(void) {

// GOOD: uses fxdivi to give fract result

Using Native Fixed-Point Types

1-124 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

i1 = 5;

i2 = 10;

quo = rdivi(i1, i2);

}

which will store the value 0.5 into the variable quo.

For more information, see “fxdivi” on page 3-182.

mulifx

The mulifx functions, where fx is one of r, lr, k, lk, ur, ulr, uk, or ulk,
allow multiplication of an integer value by a fixed-point value to produce
an integer result. If you write

#include <stdfix.h>

int i, prod;

fract f;

void foo(void) {

// BAD: multiplication of int by fract

// produces fract result, not int

i = 50;

f = 0.5r;

prod = i * f;

}

then the result of the multiplication is a fract whose integer part is stored
in the variable prod. This means that the value of prod is zero, as the mul-
tiplication overflows and thus produces a fractional result that is nearly
one.

To get the desired result, write

#include <stdfix.h>

int i, prod;

fract f;

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-125
for Blackfin Processors

Compiler

void foo(void) {

// GOOD: uses mulifx to give integer result

i = 50;

f = 0.5r;

prod = mulir(i, f);

}

which will store the value 25 into the variable prod.

For more information, see “mulifx” on page 3-249.

absfx

The absfx functions, where fx is one of hr, r, lr, hk, k, or lk, compute the
absolute value of a fixed-point value.

In addition, you can also use the type-generic macro absfx(), where the
operand type can be any of the signed fixed-point types.

For more information, see “absfx” on page 3-67.

roundfx

The roundfx functions, where fx is one of hr, r, lr, hk, k, lk, uhr, ur, ulr,
uhk, uk, or ulk, take two arguments. The first is a fixed-point operand
whose type corresponds to the name of the function called. The second
gives a number of fractional bits. The first operand is rounded to the
number of fractional bits given by the second operand. The second oper-
and must specify a value between 0 and the number of fractional bits in
the type. Rounding is to-nearest. However, whether the rounding is biased
or unbiased depends on the state of the RND_MOD bit on the hardware. See
“Rounding Behavior” on page 1-118 for more details.

#include <stdfix.h>

long fract lf, rnd;

Using Native Fixed-Point Types

1-126 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

void foo1(void) {

lf = 0x45608100p-31lr;

rnd = roundlr(lf, 15); // produces 0x45610000p-31lr;

}

void foo2(void) {

lf = 0x7fff9034p-31lr;

rnd = roundlr(lf, 15); // produces 0x7fffffffp-31lr;

}

In addition, you can also use the type-generic macro roundfx(), where the
first operand type can be any of the fixed-point types.

For more information, see “roundfx” on page 3-280.

countlsfx

The countlsfx functions, where fx is one of hr, r, lr, hk, k, lk, uhr, ur,
ulr, uhk, uk, or ulk, return the largest integer value k such that its oper-
and, when shifted up by k, does not overflow. For zero input, the result is
the size in bits of the operand type.

#include <stdfix.h>

int scal1, scal2;

void foo(void) {

scal1 = countlsk(-3.0k); // gives 6, because

// -3.0k<<6 = -192.0k

scal2 = countlsuk(3.0uk); // gives 6, because

// 3.0uk<<6 = 192.0uk

}

In addition, you can also use the type-generic macro countlsfx(), where
the operand type can be any of the fixed-point types.

For more information, see “countlsfx” on page 3-113.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-127
for Blackfin Processors

Compiler

strtofxfx

The strtofxfx functions, where fx is one of hr, r, lr, hk, k, lk, uhr, ur,
ulr, uhk, uk, or ulk, parse a string representation of a fixed-point number
and return a fixed-point result. They behave similarly to strtod, and
accept input in the same format.

For more information, see “strtofxfx” on page 3-330.

I/O Conversion Specifiers
The printf and scanf families of functions support conversion specifiers
for the fixed-point types. These are given in Table 1-17. Note that the
conversion specifiers for the signed types, %r and %k, are lowercase while
those for the unsigned types, %R and %K, are uppercase.

Table 1-17. I/O Conversion Specifiers for the Fixed-Point Types

Type Conversion Specifier

short fract %hr

fract %r

long fract %lr

unsigned short fract %hR

unsigned fract %R

unsigned long fract %lR

short accum %hk

accum %k

long accum %lk

unsigned short accum %hK

unsigned accum %K

unsigned long accum %lK

Using Native Fixed-Point Types

1-128 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

When used with the scanf family of functions, these conversion specifiers
accept input in the same format as consumed by the strtofxfx functions,
which is the same as that accepted for %f. (For more information, see
“strtofxfx” on page 3-330.)

When used with the printf family of functions, fixed-point values are
printed:

• As hexadecimal values by default, or when the -no-full-io com-
piler switch is used. For example,

printf(“fract: %r\n”, 0.5r); // prints fract: 4000

• Like floating-point values when the -fixed-point-io or -full-io
compiler switches are used. For example,

printf(“fract: %r\n”, 0.5r); // prints fract: 0.500000

Optional precision specifiers are accepted that control the number of dec-
imal places printed, and whether a trailing decimal point is printed.
However, these will have no effect unless either -fixed-point-io or
-full-io are used. For more information, see “fprintf” on page 3-154.

Setting the Rounding Mode
As discussed in “Rounding Behavior” on page 1-118, there are three
rounding modes supported for fixed-point arithmetic:

• Truncation (this is the default rounding mode)

• Biased round-to-nearest rounding

• Unbiased round-to-nearest rounding

To set the rounding mode, you can use a pragma or a compile-time
switch.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-129
for Blackfin Processors

Compiler

The following compile-time switches control rounding behavior:

• -fx-rounding-mode-truncation (on page 1-41)

• -fx-rounding-mode-biased (on page 1-41)

• -fx-rounding-mode-unbiased (on page 1-41)

The given rounding mode will then be the default for the whole of the
source file being compiled.

You can also use a pragma to allow finer-grained control of rounding.
The pragmas are:

• #pragma FX_ROUNDING_MODE TRUNCATION

• #pragma FX_ROUNDING_MODE BIASED

• #pragma FX_ROUNDING_MODE UNBIASED

If one of these pragmas is applied at file scope, it applies until the end of
the translation unit or until another pragma at file scope changes the
rounding mode.

If one of these pragmas is applied within a compound statement (that is,
within a block enclosed by braces), the pragma applies to the end of the
compound statement where it is specified. The rounding mode will return
to the outer scope rounding mode on exit from the compound statement.
An example of how to use these pragmas is given in Listing 1-1.

Listing 1-1. Use of #pragma FX_ROUNDING_MODE to Control
Rounding of Arithmetic on Fixed-Point Types

#include <stdfix.h>

#pragma FX_ROUNDING_MODE BIASED

fract my_func(void) {

Using Native Fixed-Point Types

1-130 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

// rounding mode here is biased

{

#pragma FX_ROUNDING_MODE UNBIASED

// rounding mode here is unbiased

}

// rounding mode here is biased

}

#pragma FX_ROUNDING_MODE TRUNCATION

fract my_func2(void) {

// rounding mode here is truncation

}

Blackfin has specialized instructions to support round-to-nearest round-
ing. However, whether these perform biased or unbiased rounding is
dependent on the current state of the RND_MOD bit. In order to facilitate
generation of efficient code, the compiler will assume that when the
rounding mode is either biased or unbiased, the RND_MOD bit has been set
to the same type of rounding. This means that the compiler can use the
hardware support for these rounding modes efficiently without needing to
set or clear this bit every time it uses a RND_MOD bit-dependent instruction.

Thus, it is your responsibility to ensure that the RND_MOD bit is set
correctly. Built-in functions are provided to make this task easier:

• int set_rnd_mod_biased(void)

• int set_rnd_mod_unbiased(void)

The return value of these built-in functions is the previous state of the
RND_MOD bit. So, another built-in function (void restore_rnd_mod(int))
resets the RND_MOD bit to a saved value.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-131
for Blackfin Processors

Compiler

For example, you could write:

#include <stdfix.h>

#include <builtins.h>

fract my_func(void) {

#pragma FX_ROUNDING_MODE BIASED

int saved_rnd_mod = set_rnd_mod_biased();

// rounding mode now biased

restore_rnd_mod(saved_rnd_mod);

// rounding mode now same as on function entry

}

If you use the pragmas to specify biased or unbiased rounding without
setting the RND_MOD bit, you may get a mixture of biased and unbiased
rounding behavior.

For more information, see “#pragma FX_ROUNDING_MODE {TRUN-
CATION|BIASED|UNBIASED}” on page 1-299 and “Changing the
RND_MOD Bit” on page 1-242.

Porting Code Written Using fract16 and fract32
If you have code written using fract16 and fract32 types, along with
built-in functions and calls to library functions, you may wish to rewrite
your code to use the new native fixed-point types. This section contains a
number of tips for the easiest ways to do that.

Since fract is a 16-bit type and long fract is a 32-bit type, the basic
strategy will be to replace uses of fract16 variables with fract-typed ones,
and fract32 variables with long fract-typed ones.

Firstly, code written using fract16 and fract32 will often contain
constants. If these are written using the r16 and r32 suffixes, you can
simply change the suffix to create a native fixed-point type.

Using Native Fixed-Point Types

1-132 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

For example:

fract16 f1 = 0.5r16;

fract32 f2 = 0.75r32;

becomes

fract f1 = 0.5r;

long fract f2 = 0.75lr;

If your code contains hexadecimal constants, it is convenient to use the
binary exponent syntax to convert your constants:

fract16 f1= 0x1234;

fract32 f2 = 0x12345678;

becomes

fract f1 = 0x1234p-15r;

long fract f2 = 0x12345678p-31lr;

Many built-ins are no longer necessary once you have converted to the
native fixed-point types – you can use native arithmetic instead. The cor-
respondence between the fract16 and fract32 built-in functions and
native fixed-point arithmetic is given in Table 1-18 on page 1-132.

Table 1-18. Correspondence Between fract16 and fract32 Built-In
Functions and Native Fixed-Point Arithmetic

fract16 or fract32 built-in function Native fixed-point type arithmetic

fract16 f1, f2;
fract16 f3 = add_fr1x16(f1, f2);

fract f1, f2;
fract f3 = f1 + f2;

fract16 f1, f2;
fract16 f3 = sub_fr1x16(f1, f2);

fract f1, f2;
fract f3 = f1 - f2;

fract16 f1, f2;
fract16 f3 = mult_fr1x16(f1,
f2);

fract f1, f2;
fract f3 = f1 * f2; // in truncation
rounding mode

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-133
for Blackfin Processors

Compiler

fract16 f1, f2;
fract16 f3 = multr_fr1x16(f1,
f2);

fract f1, f2;
fract f3 = f1 * f2; // in
biased/unbiased rounding mode

fract16 f1, f2;
fract32 f3 = mult_fr1x32(f1,
f2);

fract f1, f2;
long fract f3 = (long fract)f1 *
(long fract)f2;

fract16 f1;
fract16 f2 = abs_fr1x16(f1);

fract f1;
fract f2 = absr(f1);

fract16 f1;
fract16 f2 = negate_fr1x16(f1);

fract f1;
fract f2 = -f1;

fract16 f1;
int n = norm_fr1x16(f1);

fract f1;
int n = countlsr(f1);

fract32 f1, f2;
fract32 f3 = add_fr1x32(f1, f2);

long fract f1, f2;
long fract f3 = f1 + f2;

fract32 f1, f2;
fract32 f3 = sub_fr1x32(f1, f2);

long fract f1, f2;
long fract f3 = f1 - f2;

fract32 f1;
fract32 f2 = negate_fr1x32(f1);

long fract f1;
long fract f2 = -f1;

fract32 f1;
int n = norm_fr1x32(f1);

long fract f1;
int n = countlslr(f1);

fract32 f1;
fract16 = trunc_fr1x32(f1);

long fract f1;
fract f2 = f1; // in truncation
rounding mode

#include <fract2float_conv.h>
fract16 f1;
fract32 f2;
float f3;
f2 = fr16_to_fr32(f1);
f1 = fr32_to_fr16(f2);
f3 = fr16_to_float(f1);
f3 = fr32_to_float(f2);
f1 = float_to_fr16(f3);
f2 = float_to_fr32(f3);

fract f1;
long fract f2;
float f3;
f2 = f1;
f1 = f2;
f3 = f1;
f3 = f2;
f1 = f3;
f2 = f3;

Table 1-18. Correspondence Between fract16 and fract32 Built-In
Functions and Native Fixed-Point Arithmetic (Cont’d)

fract16 or fract32 built-in function Native fixed-point type arithmetic

Using Native Fixed-Point Types

1-134 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

For convenience, built-in functions are also provided giving the same
functionality on native fixed-point types, and it is simply necessary to
change the built-in name replacing “fr” with “fx”.

For example, if your original code says

#include <fract.h>

#include <builtins.h>

fract16 offset = 0.5r16;

fract16 add_offset(fract16 f) {

return add_fr1x16(f, offset);

}

you could change it to

#include <stdfix.h>

#include <builtins.h>

fract offset = 0.5r;

fract add_offset(fract f) {

return add_fx1x16(f, offset);

}

although it would be clearer to write

#include <stdfix.h>

fract offset = 0.5r;

fract add_offset(fract f) {

return f + offset;

}

There are a number of built-ins that do not map directly onto fixed-point
arithmetic but similar functionality is available. See Table 1-19 on
page 1-135 for details. These built-ins perform 1.31 fractional multiplica-
tion, rounding the result. However, the result may not be bit-identical to

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-135
for Blackfin Processors

Compiler

the result of native long fract multiplication, even in round-to-nearest
mode, as the rounding performed by the native types is more exact than
that provided by the built-ins. It is recommended that you use the native
fixed-point arithmetic unless you require bit-exact results with respect to
your previous implementation. In that case, you can use the bit-exact
equivalent built-in functions, mult_fx1x32x32, mult_fx1x32x32NS, and
multr_fx1x32x32.

There are many library functions that use fract16 and fract32 types. As a
general rule, you can simply replace the “fr” with “fx” to obtain a library
function that accepts and/or returns native fixed-point types instead.
However, there is no fixed-point version of the vector type fract2x16 or
the complex fractional types complex_fract16 and complex_fract32, so
special care must be taken when a mixture of native fixed-point types and
vector or complex fractional types is used. The fract2x16,
complex_fract16, and complex_fract32 types can be used with the native
fixed-point types so long as care is taken to access the data members with
the constructor and accessor functions given in Table 1-20 on page 1-136.

The naming convention for library functions that take a mixture of
fixed-point type and fract2x16, complex_fract16, or complex_fract32

Table 1-19. fract16 and fract32 Built-In Functions and Native Fixed-Point
Arithmetic with Similar Semantics

fract16 or fract32 built-in
function

Native fixed-point type arithmetic

fract32 f1, f2;
fract32 f3 =
mult_fr1x32x32(f1, f2);

long fract f1, f2;
long fract f3 = f1* f2 // in
biased/unbiased rounding mode;

fract32 f1, f2;
fract32 f3 =
multr_fr1x32x32(f1, f2);

long fract f1, f2;
long fract f3 = f1* f2 // in
biased/unbiased rounding mode;

fract32 f1, f2;
fract32 f3 =
mult_fr1x32x32NS(f1, f2);

long fract f1, f2;
long fract f3 = f1* f2 // in
biased/unbiased rounding mode;

Using Native Fixed-Point Types

1-136 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

types is to add “fx_” before the “fr2x16”, “fr16”, or “fr32” in the func-
tion name. You can check the name to use by consulting the
documentation page for the library function. Note that function names
that do not use fract16 or fract32 types will not need to be changed.

Table 1-20. Constructor and Accessor Functions for Using Native
Fixed-Point Types with Complex and Vector Fractional Types

built-in function Description

complex_fract16
ccompose_fx_fr16(fract real,

fract imag);

Create a complex_fract16 value from
fract-typed real and imaginary parts.

fract real_fx_fr16(complex_fract16
c);

Extract the fract-typed real part of a
complex_fract16 value.

fract imag_fx_fr16(complex_fract16
c);

Extract the fract-typed imaginary part
of a complex_fract16 value.

complex_fract32
ccompose_fx_fr32(long fract real,

long fract imag);

Create a complex_fract32 value from
long fract-typed real and imaginary
parts.

long fract
real_fx_fr32(complex_fract32 c);

Extract the long fract-typed real part
of a complex_fract32 value.

long fract
imag_fx_fr32(complex_fract32 c);

Extract the long fract-typed imagi-
nary part of a complex_fract32 value.

fract2x16 compose_fx_fr2x16(fract x,
fract y);

Create a fract2x16 value from two
fract-typed parts.

fract low_of_fx_fr2x16(fract2x16
vec);

Extract the fract-typed low part of a
fract2x16 value.

fract high_of_fx_fx2x16(fract2x16
vec);

Extract the fract-typed high part of a
fract2x16 value.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-137
for Blackfin Processors

Compiler

Fixed-Point Type Example
This section examines an example program to compute the variance of an
array of 16-bit fractional values.

The variance of an array of values samples[] is given by:

where n is the number of samples in the array.

How does this map onto the fixed-point types? samples is an array of
fract values, so in order to compute the sum of all the samples values, a
type with greater range than a fractional type is needed. If there are fewer
than 256 samples, it is certain that the sum will fit in an accum type
without saturation occurring. The same argument applies to the sum of
the squares of the samples elements.

However, the formula above also needs to calculate the intermediate result
sample_length * sum(samples[i] * samples[i]). The multiplication by
sample_length means that it is not certain that the result of the multipli-
cation will be within the range of an accum type.

variance

n samplesi
2

i 0=

n 1–

 samplesi
i 0=

n 1–


 
 
 
 2

–

n n 1–()
---=

Using Native Fixed-Point Types

1-138 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

An equivalent formula for the variance is:

This alternative definition means that the necessary intermediate values
can be computed in an accum type. A possible implementation is given in
Listing 1-2.

Listing 1-2. A Function to Compute the Variance of an Array of 16-bit
Fractional Values

#include <stdfix.h>

#include <builtins.h>

// FX_CONTRACT ON ensures that the compiler recognizes

// accum += fract * fract idioms

#pragma FX_CONTRACT ON

fract fract_variance(const fract *samples, int sample_length) {

fract variance = 0.0r;

if (sample_length > 1) {

#pragma FX_ROUNDING_MODE UNBIASED

int i, saved_rnd_mod = set_rnd_mod_unbiased();

accum diff, sum_of_samples = 0.0k, sum_of_squares = 0.0k;

long fract mean;

variance

samplesi
2

i 0=

n 1–



samplesi

i 0=

n 1–


 
 
 
 

n

2

–

n 1–()
--=

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-139
for Blackfin Processors

Compiler

// this is guaranteed not to saturate

// so long as sample_length <= 255

for (i = 0; i < sample_length; i++) {

sum_of_samples += samples[i];

sum_of_squares += samples[i] * samples[i];

}

mean = sum_of_samples / sample_length;

diff = sum_of_squares - (mean * sum_of_samples);

variance = diff / (sample_length - 1);

restore_rnd_mod(saved_rnd_mod);

}

return variance;

}

Firstly, stdfix.h has been included in order to be able to use the natural
spellings fract and accum. The next thing you might notice is the explicit
use of #pragma FX_CONTRACT ON. Since this is the default setting of the
FX_CONTRACT mode, this statement is not strictly necessary, but it is useful
to document the assumptions made by the program.

It only makes sense to compute the variance if there is more than one
sample, otherwise the function returns zero.

Next, the function sets the rounding mode. Here, unbiased rounding has
been used to maintain the highest accuracy in the result. This is done by
using the FX_ROUNDING_MODE UNBIASED pragma and set_rnd_mod_unbiased
built-in function together, as discussed in “Setting the Rounding Mode”
on page 1-128.

The loop computes the sum of the samples and the sum of the squares.
Since FX_CONTRACT mode is ON, no precision is lost as the fracts are multi-
plied together and summed into the accum type.

Language Standards Compliance

1-140 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

After the loop, the sum of the samples is divided by the sample_length to
give the mean sample value. This must be in the range [-1.0,1.0). It is
stored into a long fract to retain as much accuracy as possible.

Next, the function computes the difference between the sum of the
squares and the product of the mean and the sum of the samples. Since
the absolute value of the mean is less than or equal to one, this product fits
in an accum and, since this product and the sum of the squares are both
non-negative, the difference must also fit in an accum.

Finally, the variance is computed by dividing this difference by one less
than the sample_length. In theory, this value may be greater than one;
in this case the returned value will be saturated to give FRACT_MAX.

Language Standards Compliance
The compiler supports code that adheres to the ISO/IEC 9899:1990 C
standard, ISO/IEC 9899:1999 C standard, and the ISO/IEC 14882:2003
C++ standard.

The compiler’s level of conformance to the applicable ISO/IEC standards
is validated using commercial test-suites from Plum Hall, Perennial, and
Dinkumware.

C Mode
The compiler shall compile any program that adheres to a hosted imple-
mentation of the ISO/IEC 9899:1990 C standard, but it does not prohibit
the use of language extensions (“C/C++ Compiler Language Extensions”
on page 1-156) that are compatible with the correct translation of stan-
dard-conforming programs. This is the default mode; it can be explicitly
enabled by using the -c89 switch (See “-c89” on page 1-26).

The compiler shall compile any program that adheres to a freestanding
implementation of the ISO/IEC 9899:1999 C standard, but it does not

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-141
for Blackfin Processors

Compiler

prohibit the use of language extensions (“C/C++ Compiler Language
Extensions” on page 1-156) that are compatible with the correct transla-
tion of standard-conforming programs. The compiler does not support
the C99 keywords _Complex and _Imaginary. The ISO/IEC 9899:1990 C
standard library provided in C89 mode is used in C99 mode. To enable
C99 mode, use the -c99 switch (See “-c99” on page 1-26).

In C mode, the best standard conformance is achieved using the default
switches and the following non-default switches:

• -const-strings (See “-const-strings” on page 1-32)

• -double-size-64 (See “-double-size-{32 | 64}” on page 1-34)

• -full-io (See “-full-io” on page 1-40)

• -ieee-fp (See “-ieee-fp” on page 1-45)

• -decls-weak (See “-decls-{weak|strong}” on page 1-33)

• -enum-is-int (See “-enum-is-int” on page 1-36)

The language extensions cannot be disabled to ensure strict compliance to
the language standards. However, when compiling for MISRA-C
(“MISRA-C Compiler Overview” on page 1-143) compliance checking,
language extensions are disabled.

When the -c89 switch is enabled (which is the default mode), these exten-
sions already include many of the ISO/IEC 9899:1999 standard features.
The following features are only available in C99 mode.

• Type qualifiers may appear more than once in the same
specifier-qualifier-list.

• Universal character names (\u and \U) are accepted.

• The use of function declarations with non-prototyped parameter
lists are faulted.

Language Standards Compliance

1-142 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

• The first statement of a for-loop can be a declaration, not just
restricted to an expression.

• Type qualifiers and static are allowed in parameter array
declarators.

C++ Mode
The compiler shall compile any program that adheres to a freestanding
implementation of the ISO/IEC 14882:2003 C++ standard, but it does
not prohibit the use of language extensions (“C/C++ Compiler Language
Extensions” on page 1-156) that are compatible with the correct transla-
tion of standard-conforming programs. The Abridged Library is used,
which is a proper subset of the full Standard C++ Library and is designed
specifically for the needs of the embedded market.

In C++ mode, the best possible standard conformance is achieved using
the following switches:

• -no-anach (See “-no-anach” on page 1-89)

• -no-friend-injection (See “-no-friend-injection” on page 1-89)

• -no-implicit-inclusion (See “-no-implicit-inclusion” on
page 1-89)

• -std-templates (See “-std-templates” on page 1-90)

• -const-strings (See “-const-strings” on page 1-32)

• -double-size-64 (See “-double-size-{32 | 64}” on page 1-34)

• -eh (See “-eh” on page 1-35)

• -extern-inline (See “-extern-inline” on page 1-87)

• -full-io (See “-full-io” on page 1-40)

• -ieee-fp (See “-ieee-fp” on page 1-45)

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-143
for Blackfin Processors

Compiler

• -decls-weak (See “-decls-{weak|strong}” on page 1-33)

• -rtti (See “-rtti” on page 1-90)

MISRA-C Compiler
This section provides an overview of MISRA-C compiler and
MISRA-C:2004 Guidelines.

MISRA-C Compiler Overview
The Motor Industry Software Reliability Association (MISRA) in 1998
published a set of guidelines for the C Programming Language to promote
best practice in developing safety related electronic systems in road vehi-
cles and other embedded systems. The latest release of MISRA-C:2004 has
addressed many issues raised in the original guidelines specified in
MISRA-C:1998. Complex rules are now split into component parts.
There are 121 mandatory rules and 20 advisory rules. The compiler issues
a discretionary error for mandatory rules and a warning for advisory rules.
More information on MISRA-C can be obtained at
http://www.misra.org.uk/.

The compiler detects violations of the MISRA rules at compile-time,
link-time, and run-time. It has full support for the MISRA-C:2004
Guidelines, including the Technical clarifications given by
MISRA-C:2004 Technical Corrigendum 1. The majority of MISRA rules
are easy to interpret. Those that require further explanation can be found
in “Rules Descriptions” on page 1-147. As a documented extension, the
compiler supports the integral types long long and unsigned long long.
No other language extensions are supported when MISRA checking is
enabled. Common extensions, such as the keywords section and inline,
are not allowed in the MISRA mode, but the same effects can be achieved
by using pragmas “#pragma section/#pragma default_section” on
page 1-310 and “#pragma inline” on page 1-320. Rules can be suppressed

http://www.misra.org.uk

MISRA-C Compiler

1-144 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

by the use of command-line switches or the MISRA extensions to “Diag-
nostic Control Pragmas” (on page 1-338).

 The run-time checking that is used for validating a number of rules
should not be used in production code. The cost of detecting these
violations is expensive in both run-time performance and code size.

Refer to Table 1-6 on page 1-24 for the list of MISRA-C command-line
switches.

MISRA-C Compliance
The MISRA-C:2004 Guidelines document is an essential reference for
ensuring that code developed or requiring modification complies to these
Guidelines. A rigorous checking tool, such as this compiler, makes achiev-
ing compliance a lot easier than using a less capable tool or simply relying
on manual reviews of the code. The MISRA-C:2004 Guidelines document
describes a compliance matrix that a developer uses to ensure that each
rule has a method of detecting the rule violation. A compliance checking
tool is a vital component in detecting rule violations. It is recognized in
the Guidelines document that in some circumstances it may be necessary
to deviate from the given rules. A formal procedure has to be used to
authorize these deviations rather than an individual programmer having to
deviate at will.

Using the Compiler to Achieve Compliance

The VisualDSP++ compiler is one of the most comprehensive
MISRA-C:2004 compliance checking tools available. The compiler
provides command-line switches (on page 1-83) and diagnostic control
pragmas (on page 1-338) to enable you to achieve MISRA-C:2004
compliance.

During development it is recommended that the application is built with
maximum compliance enabled.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-145
for Blackfin Processors

Compiler

Use the -misra-strict command-line switch to detect the maximum
number of rule violations at compile-time. However, if existing code is
being modified, using -misra-strict may result in a lot of errors and
warnings. The majority are usually common rule violations that are
mainly advisory and typically found in header files as a result of macro
expansion. These can be suppressed using the -misra command-line
switch. This has the potential benefit of focussing change on individual
source file violations, before changing headers that may be shared by more
than one project.

The -misra-no-cross-module command-line switch disables checking
rule violations that occur across source modules. During development
some external variables may not be fully utilized and rather than add in
artificial uses to avoid rule violations, use this switch.

The -misra-no-runtime command-line switch disables the additional
run-time overheads imposed by some rules. During development these
checks are essential in ensuring code executes as expected. Use this switch
in release mode to disable the run-time overheads.

You can use the -misra-testing command-line switch during develop-
ment to record the behavior of executable code. Although the
MISRA-C:2004 Guidelines do not allow library functions such as those as
defined in the header <stdio.h>, it is recognized that they are an essential
part of validating the development process.

During development, it is likely that you will encounter areas where some
rule violations are unavoidable. In such circumstances you should follow
the procedure regarding rule deviations described in the MISRA-C:2004
Guidelines document. Use the -Wmis_suppress and -Wmis_warn switches
to control the detection of rule violations for whole source files.

Finer control is provided by the diagnostic control pragmas. These prag-
mas allow you to suppress the detection of specified rule violations for any
number of C statements and declarations.

MISRA-C Compiler

1-146 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Example

#include <misra_types.h>

#include <defBF532.h>

#include "proto.h" /* prototype for func_state and my_state */

int32_t func_state(int32_t state)

{

return state & TIMOD;

/* both operands signed, violates rule 12.7 */

}

#define my_flag 1

int32_t my_state(int32_t state)

{

return state & my_flag;

/* both operands signed, violates rule 12.7 */

}

In the above example, <defBF532.h> uses signed masks and signed literal
values for register values. The code is meaningful and trusted in this con-
text. You may suppress this rule and document the deviation in the code.
For code violating the rule that is not from the system header, you may
wish to rewrite the code:

#include <misra_types.h>

#include <defBF532.h>

#include "proto.h" /* prototype for func_state and my_state */

#ifdef _MISRA_RULES

#pragma diag(push)

#pragma diag(suppress:misra_rule_12_7:

 "Using the def file is a safe and justified

 deviation for rule 12.7")

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-147
for Blackfin Processors

Compiler

#endif /* _MISRA_RULES */

int32_t func_state(int32_t state)

{

return state & TIMOD;

/* both operands signed, violates rule 12.7 */

}

#ifdef _MISRA_RULES

#pragma diag(pop)

/* allow violations of 12.7 to be detected again */

#endif /* _MISRA_RULES */

#define my_flag 1u

uint32_t my_state(uint32_t state)

{

return state & my_flag; /* o.k both unsigned */

}

Rules Descriptions
The following are brief explanations of how some of the MISRA-C rules
are supported and interpreted in this VisualDSP++ release due to the fact
that some rules are handled in a nonstandard way, or some are not han-
dled at all:

• Rule 1.4 (required): The compiler/linker shall be checked to
ensure that 31 character significance and case sensitivity are sup-
ported for external identifiers.
The compiler and linker fully support this requirement.

• Rule 1.5 (required): Floating-point implementations should com-
ply with a defined floating-point standard.
Refer to “Floating-Point Binary Formats” on page 1-448.

MISRA-C Compiler

1-148 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

• Rule 2.4 (advisory): Sections of code should not be “commented
out”.
A diagnostic is reported if one of the following is encountered
inside of a comment.
- character ‘{‘ or ‘}’

- character ‘;’ followed by a new-line character

• Rule 5.1 (required): Identifiers (internal and external) shall not
rely on the significance of more than 31 characters.
This rule is only enforced when the -misra-strict compiler switch
is enabled (on page 1-84).

• Rule 5.5 (advisory): No object or function identifier with static
storage duration should be reused.
This rule is enforced by the compiler prelinker. The compiler
generates .misra extension files that the prelinker uses to ensure
that the same identifier is not used at file-scope within another
module. This rule is not enforced if the -misra-no-cross-module
compiler switch is specified (on page 1-84).

• Rule 5.7 (advisory): No identifier shall be reused.
This rule is limited to a single source file. The rule is only enforced
when the -misra-strict compiler switch is enabled
(on page 1-84).

• Rule 6.3 (advisory): typedefs that indicate size and signedness
should be used in place of basic types.
The typedefs for the basic types are provided by the system header
files <misra_types.h> and <stdbool.h>. The rule is only enforced
when the -misra-strict compiler switch is enabled
(on page 1-84).

• Rule 6.4 (advisory): Bit fields shall only be defined to be of type
unsigned int or signed int.
The rule regarding the use of plain int is only enforced when the
-misra-strict compiler switch is enabled (on page 1-84).

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-149
for Blackfin Processors

Compiler

• Rule 8.1 (required): Functions shall have prototype declarations
and the prototype shall be visible at both the function definition
and the call.
For static and inline functions, this rule is only enforced when the
-misra-strict compiler switch is enabled (on page 1-84).

• Rule 8.2 (required): Whenever an object or function is declared or
defined, its type shall be explicitly stated.
For function main, this rule is only enforced when the
-misra-strict switch is enabled.

• Rule 8.5 (required): There shall be no definitions of objects or
functions in a header file.
This rule is only enforced when the -misra-strict switch is
enabled.

• Rule 8.8 (required): An external object or function shall be
declared in one and only one file.
This rule is enforced by the compiler prelinker. The compiler gen-
erates .misra extension files that the prelinker uses to ensure that
the global is used in another file. The rule is not enforced if the
-misra-no-cross-module switch is enabled (on page 1-84).

• Rule 8.10 (required): All declarations and definitions of objects or
functions at file scope shall have internal linkage unless external
linkage is required.
This rule is enforced by the compiler prelinker. The compiler gen-
erates .misra extension files that the prelinker uses to ensure that
the global is used in another file. The rule is not enforced if the
-misra-no-cross-module switch is enabled (on page 1-84).

• Rule 9.1 (required): All automatic variables shall have been
assigned a value before being used.
The compiler attempts to detect some instances of violations of this
rule at compile-time. There is additional code added at run-time to
detect unassigned scalar variables. The additional integral types

MISRA-C Compiler

1-150 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

with a size less than an int are not checked by the additional
run-time code. The run-time code is not added if the
-misra-no-runtime compiler switch is enabled (on page 1-84).

• Rule 10.5 (required): If the bitwise operators ~ and << are applied
to an operand of underlying type unsigned char or unsigned
short, the result shall be immediately cast to the underlying type
of the operand.
When constant-expressions violate this rule, they are only detected
when the -misra-strict compiler switch is enabled
(on page 1-84).

• Rule 11.3 (advisory): A cast shall not be performed between a
pointer type and an integral type.
The compiler always allows a constant of integral type to be cast to
a pointer to a volatile type.
volatile int32_t *n;

n = (volatile int32_t *)10;

There is only one case where this rule is not applied.
int32_t *n;

n = (int32_t *)10;

• Rule 12.4 (required): The right-hand operand of a logical && or
|| operator shall not contain side-effects.
A function call used as the right-hand operand will not be faulted if
it is declared with an associated #pragma pure directive.

• Rule 12.7 (required): Bitwise operators shall not be applied to
operands whose underlying type is signed.
The compiler will not enforce this rule if the two operands are
constants.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-151
for Blackfin Processors

Compiler

• Rule 12.8 (required): The right-hand operand of a shift operator
shall lie between zero and one less than the width in bits of the
underlying type of the left-hand operand.
If the right-hand operand is not a constant expression, the
violation will be checked by additional run-time code when
-misra-no-runtime is not enabled. If both operands are constants,
the rule is only enforced when the -misra-strict compiler switch
is enabled (on page 1-84).

• Rule 12.12 (required): The underlying bit representations of
floating-point values shall not be used.
MISRA-C rules such as 11.4 prevent casting of bit-patterns to
floating-point values. Hexadecimal floating-point constants are
also not allowed when MISRA-C switches are enabled.

• Rule 13.2 (advisory): Tests of a value against zero should be made
explicit, unless the operand is effectively Boolean.
The compiler treats variables which use the type bool (a typedef is
declared in <stdbool.h>) as “Effectively Boolean” and will not raise
an error when these are implicitly tested as zero, as follows:
bool b = 1;

if(bool)

…;

• Rule 13.7 (required): Boolean operations whose results are invari-
ant shall not be used.
The compiler does not detect cases where there is a reliance on
more than one conditional statement. Constant expressions violat-
ing the rule are only detected when the -misra-strict compiler
switch is enabled (on page 1-84).

MISRA-C Compiler

1-152 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

• Rule 16.2 (required): Functions shall not call themselves, either
directly or indirectly.
A compile-time check is performed for a single file. Run-time code
is added to ensure that functions do not call themselves directly or
indirectly, but this code is not generated if the -misra-no-runtime
compiler switch is enabled (on page 1-84).

• Rule 16.4 (required): The identifiers used in the declaration and
definition of a function shall be identical.
A declaration of a parameter name may have one leading under-
score that the definition does not contain. This is to prevent name
clashing. If the -misra-strict compiler switch is enabled
(on page 1-84), the underscore is significant and results in the vio-
lation of this rule.

• Rule 16.5 (required): Functions with no parameters shall be
declared and defined with the parameter list void.
Function main shall only be reported as violating this rule if the
-misra-strict compiler switch is enabled (on page 1-84).

• Rule 16.10 (required): If a function returns error information,
then the error information shall be tested.
A function declared with return type bool, which is a typedef
declared in header file <stdbool.h> will be faulted if the result of
the call is not used.

• Rule 17.1 (required): Pointer arithmetic shall only be applied to
pointers that address an array or array element.
Checking is performed at run-time. A run-time function looks at
the value of the pointer and checks to see whether it violates this
rule.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-153
for Blackfin Processors

Compiler

• Rule 17.2 (required): Pointer subtraction shall only be applied to
pointers that address elements of the same array.
Checking is performed at runtime. A run-time function looks at
the value of the pointers and checks to see whether it violates this
rule.

• Rule 17.3 (required): >, >=, <, <= shall not be applied to pointers
that address elements of different arrays.
Checking is performed at run-time. A run-time function looks at
the value of the pointers and checks to see whether it violates this
rule.

• Rule 17.6 (required): The address of an object with automatic
storage shall not be assigned to another object that may persist
after the first object has ceased to exist.
Rule is not enforced under the following circumstances: if the
address of a local variable is passed as a parameter to another func-
tion, the compiler cannot detect whether that address has been
assigned to a global object.

• Rule 18.2 (required): An object shall not be assigned to an over-
lapping object.
The rule is not enforced by the compiler.

• Rule 18.3 (required): An area of memory shall not be reused for
unrelated purposes.
The rule is not enforced by the compiler.

• Rule 19.7 (advisory): A function shall be used in preference to a
function-like macro.
The rule is only enforced when the compiler option -misra-strict
is enabled.

MISRA-C Compiler

1-154 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

• Rule 19.15 (required): Precautions shall be taken in order to pre-
vent the contents of a header file being included twice.
The compiler will report this violation if a header file is included
more than once and does not prevent redeclarations of types, vari-
ables, or functions.

• Rule 20.3 (required): The validity of values passed to library
functions shall be checked.
This is not enforced by the compiler. The rule puts the responsibil-
ity on the programmer.

• Rule 20.4 (required): Dynamic heap memory allocation shall not
be used.
Prototype declarations for functions performing heap allocation
should be declared with an associated #pragma misra_func(heap)
directive. This directive allows the compiler to detect violations of
this rule when these functions are used.

• Rule 20.7 (required): The setjmp macro and longjmp function
shall not be used.
Prototype declarations for these should be declared with an associ-
ated #pragma misra_func(jmp) directive. This directive allows the
compiler to detect violations of this rule when these functions are
used.

• Rule 20.8 (required): The signal handling facilities of <signal.h>
shall not be used.
Prototype declarations for functions in this header should be
declared with an associated #pragma misra_func(handler) direc-
tive. This directive allows the compiler to detect violations of this
rule when these functions are used.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-155
for Blackfin Processors

Compiler

• Rule 20.9 (required): The input/output library <stdio.h> shall
not be used.
Prototype declarations for functions in this header should be
declared with an associated #pragma misra_func(io) directive.
This directive allows the compiler to detect violations of this rule
when these functions are used.

• Rule 20.10 (required): The library functions atof, atoi and atol
from library <stdlib.h> shall not be used.
Prototype declarations for these functions should be declared with
an associated #pragma misra_func(string_conv) directive. This
directive allows the compiler to detect violations of this rule when
these functions are used.

• Rule 20.11 (required): The library functions abort, exit, getenv
and system from library <stdlib.h> shall not be used.
Prototype declarations for these functions should be declared with
an associated #pragma misra_func(system) directive. This direc-
tive allows the compiler to detect violations of this rule when these
functions are used.

• Rule 20.12 (required): The time handling functions of library
<time.h> shall not be used.
Prototype declarations for these functions should be declared with
an associated #pragma misra_func(time) directive. This directive
allows the compiler to detect violations of this rule when these
functions are used.

• Rule 21.1 (required): Minimization of run-time failures shall be
ensured by the use of at least one of: (a) static analysis tools/tech-
niques; (b) dynamic analysis tools/techniques; (c) explicit coding
of checks to handle run-time faults.
The compiler performs some static checks on uses of unassigned
variables before conditional code and use of constant expressions.
The compiler performs run-time checks for arithmetic errors, such
as division by zero, array bound errors, unassigned variable

C/C++ Compiler Language Extensions

1-156 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

checking, and pointer dereferencing. Run-time checking has a neg-
ative effect on code performance. The -misra-no-runtime compiler
switch turns off the run-time checking (on page 1-84).

C/C++ Compiler Language Extensions
The compiler supports extensions to the ANSI/ISO standards for the C
and C++ languages. These extensions add support for DSP hardware and
permit some C++ programming features when compiling in C mode.
Most extensions are also available when compiling in C++ mode.

This section contains information on ISO/IEC 9899:1999 standard fea-
tures that are supported in C89 mode:

• “Function Inlining” on page 1-159

• “Variable Argument Macros” on page 1-164

• “Restricted Pointers” on page 1-165

• “Variable-Length Arrays” on page 1-166

• “Non-Constant Initializer Support” on page 1-167

• “Designated Initializers” on page 1-168

• “Hexadecimal Floating-Point Numbers” on page 1-170

• “Declarations Mixed With Code” on page 1-171

• “Compound Literals” on page 1-172

• “C++ Style Comments” on page 1-173

• “Enumeration Constants That Are Not int Type” on page 1-173

• “Boolean Type Support Keywords (bool, true, false)” on
page 1-173

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-157
for Blackfin Processors

Compiler

This section also contains information on other language extensions:

• “Native Fixed-Point Types fract and accum” on page 1-174

• “Inline Assembly Language Support Keyword (asm)” on
page 1-174

• “Bank Qualifiers” on page 1-191

• “Placement Support Keyword (section)” on page 1-192

• “Placement of Compiler-Generated Code and Data” on
page 1-193

• “Long Identifiers” on page 1-194

• “Compiler Built-In Functions” on page 1-195

• “Pragmas” on page 1-277

• “GCC Compatibility Extensions” on page 1-349

• “Preprocessor-Generated Warnings” on page 1-357

The additional keywords that are part of the C/C++ extensions do not
conflict with ANSI C/C++ keywords. The formal definitions of these
extension keywords are prefixed with a leading double underscore (__).
Unless the -no-extra-keywords command-line switch is used, the com-
piler defines the shorter form of the keyword extension that omits the
leading underscores. For more information, see the brief descriptions of
each switch beginning on page 1-26.

 This section describes the shorter forms of the keyword extensions.
In most cases, you can use either form in your code. For example,
all references to the inline keyword in this text appear without the
leading double underscores, but you can interchange inline and
__inline in your code.

C/C++ Compiler Language Extensions

1-158 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

You might exclusively use the longer form (such as __inline) if porting a
program that uses the extra Analog Devices keywords as identifiers. For
example, if a program declares local variables, such as asm or inline, use
the -no-extra-keywords switch. If you need to declare a function as
inline, use __inline.

Table 1-21 and Table 1-22 provide descriptions of each extension and
direct you to sections that describe each extension in more detail.

Table 1-21. Keyword Extensions

Keyword Extensions Description

inline Directs the compiler to integrate the function code into the code
of its callers. For more information, see “Function Inlining” on
page 1-159.

asm() Places Blackfin core assembly language commands directly in your
C/C++ program. For more information, see “Inline Assembly Lan-
guage Support Keyword (asm)” on page 1-174.

bank(“string”) Specifies a name which the user assigns to associate declarations
that reside in particular memory banks. For more information, see
“Bank Qualifiers” on page 1-191.

section(“string”) Specifies the section in which an object or function is placed.
For more information, see “Placement Support Keyword (sec-
tion)” on page 1-192.

bool

true

false

Specifies a Boolean type. For more information, see “Boolean
Type Support Keywords (bool, true, false)” on page 1-173.

restrict Specifies restricted pointer features. For more information, see
“Restricted Pointers” on page 1-165.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-159
for Blackfin Processors

Compiler

Function Inlining
The inline keyword directs the compiler to integrate the code for the
function you declare as inline into the code of its callers. Inline function
support and the inline keyword is a standard feature of the ISO/IEC
14882:2003 C++ standard and the ISO/IEC 9899:1999 C standard; the
ccblkfn compiler provides this keyword as an extension when the -c89
switch is enabled. For more information, see “-c89” on page 1-26.

This keyword eliminates the function call overhead and increases the
speed of your program’s execution. Argument values that are constant and
that have known values may permit simplifications at compile time so that
not all of the inline function’s code needs to be included.

Table 1-22. Operational Extensions

Operational Extensions Description

Non-constant initializers Permits the use of non-constants as elements of aggregate initializ-
ers for automatic variables. For more information, see “Non-Con-
stant Initializer Support” on page 1-167.

Indexed initializers Specifies elements of an aggregate initializer in arbitrary order. For
more information, see “Designated Initializers” on page 1-168.

Variable-length arrays Creates local arrays with a variable size. For more information, see
“Variable-Length Arrays” on page 1-166.

Long identifiers Supports identifiers of up to 1022 characters in length. For more
information, see “Long Identifiers” on page 1-194.

Preprocessor-generated warn-
ings

Generates warning messages from the preprocessor. For more
information, see “Preprocessor-Generated Warnings” on
page 1-357.

C++ style comments Allows for “//” C++ style comments in C programs. For more
information, see “C++ Style Comments” on page 1-173.

C/C++ Compiler Language Extensions

1-160 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The following example shows a function definition that uses the inline
keyword.

inline int max3 (int a, int b, int c) {

return max (a, max(b, c));

}

The compiler can decide not to inline a particular function declared with
the inline keyword; a diagnostic remark of cc1462 issued if the compiler
chooses to do this. The diagnostic can be raised to a warning by use of the
-Wwarn switch. For more information, see “-W{error|remark|sup-
press|warn}” on page 1-79.

Function inlining can also occur by use of the -Oa (automatic function
inlining) switch (“-Oa” on page 1-60), which enables the inline expansion
of C/C++ functions that are not necessarily declared inline in the source
code. The amount of auto-inlining the compiler performs is controlled
using the –Ov (optimize for speed versus size) switch.

The compiler follows a specific order of precedence when determining
whether a call can be inlined. The order is:

1. If the definition of the function is not available (for example, it is a
call to an external function), the compiler cannot inline the call.

2. If the -never-inline switch has been specified (on page 1-51), the
compiler will not inline the call. If the call is to a function that has
#pragma always_inline specified (see “Inline Control Pragmas” on
page 1-301), a warning will also be issued.

3. If the call is to a function that has #pragma never_inline specified,
the call will not be inlined.

4. If the call is via a pointer-to-function, the call will not be inlined
unless the compiler can prove that the pointer will always point to
the same function definition.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-161
for Blackfin Processors

Compiler

5. If the call is to a function that has a variable number of arguments,
the call will not be inlined.

6. If the module contains asm statements at global scope (outside
function definitions), the call may not be inlined because the asm
statement restricts the compiler’s ability to reorder the resulting
assembly output.

7. If the call is to a function that has #pragma always_inline speci-
fied, the call is inlined. If the call exceeds the current speed/space
ratio limits, the compiler will issue a warning, but will still inline
the call.

8. If the call is to a function that has the inline qualifier or has
#pragma inline specified, and the -always-inline switch has been
specified, the compiler will inline the call. If the call exceeds the
current speed/space ratio limits, the compiler will issue a warning,
but will still inline the call.

9. If the caller and callee are mapped to different code sections, the
call will not be inlined unless the callee has the inline qualifier or
has #pragma inline specified.

10.If the call is to a function that has the inline qualifier or has
#pragma inline specified, and optimization is enabled, the called
function will be compared against the current speed/size ratio lim-
its for code size and stack size. The calling function will also be
examined against these limits. Depending on the limits and the rel-
ative sizes of the caller and callee, the inlining may be rejected.

11.If the call is to a function that does not have the inline qualifier or
#pragma inline, and does not have #pragma weak_entry, then if
the -Oa switch has been specified to enable automatic inlining, the
called function will be considered as a possible candidate for inlin-
ing, according to the current speed/size ratio limits, as if the inline
qualifier were present.

C/C++ Compiler Language Extensions

1-162 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The compiler bases its code-related speed/size comparisons on the -Ov
switch (“-Ov” on page 1-61). When -Ov is in the range 1...100, the com-
piler performs a calculation upon the size of the generated code using the
-Ov value, and this will determine whether the generated code is too large
for inlining to occur. When -Ov has the value 1, only very small functions
are considered small enough to inline; when -Ov has the value 100, larger
functions are more likely to be considered suitable as well.

When -Ov has the value 0, the compiler is optimizing for space. The
speed/space calculation will only accept a call for inlining if it appears that
the inlining is likely to result in less code than the call itself would
(although this is an approximation, since the inlining process is a
high-level optimization process, before actual machine instructions have
been selected).

The inlining process also considers the required stack size while inlining.
A function that has a local array of 20 integers needs such an array for each
inlined invocation, and if inlined many times, the cumulative effect on
overall stack requirements can be significant. Consequently, the compiler
considers both the stack space required by the called function, and the
total stack space required by the caller; either may reach a limit at which
the compiler determines that inlining the call would not be beneficial.
The stack size analysis is not subject to the -Ov switch.

Inlining and Optimization

The inlining process operates regardless of whether optimization has been
selected (although if optimization is not enabled, then inlining will only
happen when forced by #pragma always_inline or the -always-inline
switch). The speed/size calculation still has an effect, although an opti-
mized function is likely to have a different size from a non-optimized one,
which is smaller (and therefore more likely to be inlined) and dependent
on the kind of optimization done.

A non-optimized function has loads and stores to temporary values which
are optimized away in the optimized version, but an optimized function

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-163
for Blackfin Processors

Compiler

may have unrolled or vectorized loops with multiple variants, selected at
run-time for the most efficient loop kernel. So an optimized function may
run faster, but not be smaller.

Given that the optimization emphasis may be changed within a module –
or even turned off completely – by the optimization pragmas, it is possible
for either, both, or neither of the caller and callee to be optimized. The
inlining process still operates, and is only affected by this in as far as the
speed/size ratios of the resulting functions are concerned.

Inlining and Out-of-Line Copies

If a function is static (that is, private to the module being compiled) and
all calls to that function are inlined, there are no calls remaining that are
not inline. Consequently, the compiler does not generate an out-of-line
copy for the function, thus reducing the size of the resulting application.

If the address of the function is taken, it is possible that the function could
be called through that derived pointer, so the compiler cannot guarantee
that all calls have been accounted for. In such cases, an out-of-line copy is
generated.

A function declared inline must be defined (its body must be included)
in every file in which the function is used. This is normally done by plac-
ing the inline definition in a header file. Usually it is also declared static.

Inlining and Global asm Statements

Inlining imposes a particular ordering on functions. If functions A and B
are marked as inline, and each calls the other, only one of the inline qual-
ifiers can be followed. Depending on which the compiler chooses to apply,
either A will be generated with inline versions of B, or B will be generated
with inline versions of A. Either case may result in no out-of-line copy of
the inlined function being generated. The compiler reorders the functions
within a module to get the best inlining result. Functionally, the code is
the same, but this affects the resulting assembly file.

C/C++ Compiler Language Extensions

1-164 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

When global asm statements are used with the module, between the func-
tion definitions, the compiler cannot do this reordering process, because
the asm statement might affect the behavior of the assembly code that is
generated from the following C function definitions. Because of this,
global asm statements can greatly reduce the compiler’s ability to inline a
function call.

Inlining and Sections

Before inlining, the compiler checks any section directives or pragmas on
the function definitions. For example,

section("secA") inline int add(int a, int b) { return a + b; }

section("secB") int times_two(int a) { return add(a, a); }

Since add() and times_two() are to be generated into different code sec-
tions, this call is ignored during the inlining process, so the call is not
inlined. If the callee is marked with #pragma always_inline
(on page 1-301), however, or the -always-inline switch (on page 1-29) is
in force, the compiler will inline the call despite the mismatch in sections.

Variable Argument Macros
This ISO/IEC 9899:1999 C standard feature is enabled as an extension in
C89 mode and in C++ mode. The final parameter in a macro declaration
may be ... to indicate the parameter stands for a variable number of
arguments.

For example:

#define trace(file,line,...) \

 logmsg(file,line,__VA_ARGS__)

can be used with differing numbers of arguments:

trace("a.c", 22, "Got here!\n”);

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-165
for Blackfin Processors

Compiler

trace("b.c", 99, "i = %d\n", i);

trace("c.c", 72, "x = %f, y = %f\n", x, y);

 This variable argument macro syntax comes from the ISO/IEC
9899:1999 C standard. The compiler supports both GCC and
C99 variable argument macro formats in C89, C99, and C++
modes. (See “GCC Variable Argument Macros” on page 1-353)

Restricted Pointers
The restrict keyword is a standard feature of the ISO/IEC 9899:1999 C
standard, and is available as an extension in C89 and C++ modes.

The use of restrict is limited to the declaration of a pointer. This key-
word specifies that the pointer provides exclusive initial access to the
pointed object. More simply, the restrict keyword is a way to identify
that a pointer does not create an alias. Also, two different restricted point-
ers cannot designate the same object, and therefore, they are not aliases.

The compiler is free to use the information about restricted pointers and
aliasing in order to better optimize C/C++ code that uses pointers. The
restrict keyword is most useful when applied to function parameters
that the compiler would otherwise have little information about. For
example,

void fir(short *in, short *c, short *restrict out, int n)

The behavior of a program is undefined if it contains an assignment
between two restricted pointers. Exceptions are:

• A function with a restricted pointer parameter may be called with
an argument that is a restricted pointer.

• A function may return the value of a restricted pointer that is local
to the function, and the return value may then be assigned to
another restricted pointer.

C/C++ Compiler Language Extensions

1-166 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

If your program uses a restricted pointer in a way that it does not uniquely
refer to storage, the behavior of the program is undefined.

Variable-Length Arrays
The compiler supports variable-length automatic arrays. This ISO/IEC
9899:1999 standard feature is also allowed as an extension in C89 mode.
(For more information, see “-c89” on page 1-26.) Variable-length arrays
are not supported in C++ mode.

Unlike other automatic arrays, variable-length arrays are declared with a
non-constant length. This means that the space is allocated when the array
is declared, and space is deallocated when the brace-level is exited.

 Variable-length arrays are only supported as an extension to C;
variable-length arrays are not supported in C++.

The compiler does not allow jumping into the brace-level of the array and
produces a compile-time error message if this is attempted. The compiler
does allow breaking or jumping out of the brace-level, and it deallocates
the array when this occurs.

You can use variable-length arrays as function arguments, such as:

struct entry

var_array (int array_len, char data[array_len][array_len])

{

...

}

The compiler calculates the length of an array at the time of allocation.
It then remembers the array length until the brace-level is exited and can
return it as the result of the sizeof() function performed on the array.

As an example, if you were to implement a routine for computation of a
product of three matrices, you need to allocate a temporary matrix of the

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-167
for Blackfin Processors

Compiler

same size as input matrices. Declaring an automatic variable size matrix is
much easier than explicitly allocating it in a heap.

The expression declares an array with a size that is computed at runtime.
The length of the array is computed on entry to the block and saved in
case sizeof() is applied to the array. For multi-dimensional arrays, the
boundaries are also saved for address computation. After leaving the block,
all the space allocated for the array and size information is deallocated.

For example, the following program prints 40, not 50:

#include <stdio.h>

void foo(int);

main ()

{

foo(40);

}

void foo (int n)

{

char c[n];

n = 50;

printf("%d", sizeof(c));

}

Non-Constant Initializer Support
The compiler does not require the elements of an aggregate initializer for
an automatic variable to be constant expressions. This is a standard feature
of the ISO/IEC 9899:1999 C standard and the ISO/IEC 14882:2003
C++ standard. The compiler supports it as an extension in C89 mode.

C/C++ Compiler Language Extensions

1-168 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The following example shows an initializer with elements that vary at
runtime.

void initializer (float a, float b)

{

float the_array[2] = { a-b, a+b };

}

All automatic structures can be initialized by arbitrary expressions involv-
ing literals, previously declared variables, and functions.

Designated Initializers
This is a standard feature of the ISO/IEC 9899:1999 C standard. The
compiler supports it as an extension in C89 and C++ modes.

This feature lets you specify the elements of an array or structure initial-
izer in any order by specifying their designators — the array indices or
structure field names to which they apply. All designators must be con-
stant expressions, even in automatic arrays.

For an array initializer, the syntax [INDEX] appearing before an initializer
element value specifies the index initialized by that value. Subsequent ini-
tializer elements are then applied to the sequentially following elements of
the array, unless another use of the [INDEX] syntax appears. The index val-
ues must be constant expressions, even when the array being initialized is
automatic.

The following example shows equivalent array initializers—the first in
C89 form (without using the extension) and the second in C99 form,
using the designators. Note that the [INDEX] designator precedes the value
being assigned to that element.

/* Example 1 C Array Initializer */

/* C89 array initializer (no designators) */

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-169
for Blackfin Processors

Compiler

int a[6] = { 0, 0, 15, 0, 29, 0 };

/* Equivalent C99 array initializer (with designators) */

int a[6] = { [4] 29, [2] 15 };

You can combine this technique of designated elements with initialization
of successive non-designated elements. The two instructions below are
equivalent. Note that any non-designated initial value is assigned to the
next consecutive element of the structure or array.

/* Example 2 Mixed Array Initializer */

/* C89 array initializer (no designators) */

int a[6] = { 0, v1, v2, 0, v4, 0 };

/* Equivalent C99 array initializer (with designators) */

 int a[6] = { [1] v1, v2, [4] v4 };

The following example shows how to label the array initializer elements
when the designators are characters or enum type.

/* Example 3 C Array Initializer With enum Type Indices */

/* C99 C array initializer (with designators) */

int whitespace[256] =

{

[' '] 1, ['\t'] 1, ['\v'] 1, ['\f'] 1, ['\n'] 1, ['\r'] 1

};

enum { e_ftp = 21, e_telnet = 23, e_smtp = 25, e_http = 80, e_nntp

= 119 };

char *names[] = {

[e_ftp] "ftp",

[e_http] "http",

C/C++ Compiler Language Extensions

1-170 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

[e_nntp] "nntp",

[e_smtp] "smtp",

[e_telnet] "telnet"

};

In a structure initializer, specify the name of the field to initialize with
fieldname: before the element value. The C89 and C99 struct initializers
in the example below are equivalent.

/* Example 4 struct Initializer */

/* C89 struct Initializer (no designators) */

struct point {int x, y;};

struct point p = {xvalue, yvalue};

/* Equivalent C99 struct Initializer (with designators) */

struct point {int x, y;};

struct point p = {y: yvalue, x: xvalue};

Hexadecimal Floating-Point Numbers
This is a standard feature of the ISO/IEC:9899 1999 C standard. The
compiler supports this as an extension in C89 mode and in C++ mode.

Hexadecimal floating-point numbers have the following syntax.

hexadecimal-floating-constant:

{0x|0X} hex-significand binary-exponent-part [floating-suffix]

hex-significand: hex-digits [. [hex-digits]]

binary-exponent-part: {p|P} [+|-] decimal-digits

floating-suffix: { f | l | F | L }

The hex-significand is interpreted as a hexadecimal rational number.
The digit sequence in the exponent part is interpreted as a decimal inte-
ger. The binary-exponent-part indicates the power of two by which the

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-171
for Blackfin Processors

Compiler

significand is to be scaled. The floating-suffix has the same meaning
that it has for decimal floating constants—a constant with no suffix is of
type double, a constant with suffix F is of type float, and a constant with
suffix L is of type long double.

Hexadecimal floating constants enable the programmer to specify the
exact bit pattern required for a floating-point constant. For example, the
declaration causes f to be initialized with the value 0x800000.

float f = 0x1p-126f;

Declarations Mixed With Code
In C89 mode, the compiler accepts declarations placed in the middle of
code. This allows the declaration of local variables to be placed at the
point where they are required. Therefore, the declaration can be combined
with initialization of the variable. This is a standard feature of the
ISO/IEC 9899:1999 C standard and the ISO/IEC 14882:2003 C++
standard.

For example, in the following function, the declaration of d is delayed
until its initial value is available, so that no variable is uninitialized at any
point in the function.

void func(Key k) {

Node *p = list;

while (p && p->key != k)

p = p->next;

if (!p)

return;

Data *d = p->data;

while (*d)

process(*d++);

}

C/C++ Compiler Language Extensions

1-172 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compound Literals
This is a standard feature of the ISO/IEC:9899 1999 standard. The
compiler supports it as an extension in C89 mode. It is not allowed in
C++ mode.

The following example shows an ISO/IEC 9899:1990 standard C struct
usage, followed by an equivalent ISO/IEC 9899:1999 standard C code
that has been simplified using a compound literal.

/* Standard C89/C++ code*/
struct foo {int a; char b[2];};
struct foo make_foo(int x, char *s)
{

struct foo temp;
temp.a = x;
temp.b[0] = s[0];
if (s[0] != '\0')

temp.b[1] = s[1];
else

temp.b[1] = '\0';
return temp;

}

/* Standard C99 code*/
struct foo {int a; char b[2];};
struct foo make_foo(int x, char *s)
{

return((struct foo) {x, {s[0], s[0] ? s[1] : '\0'}});
}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-173
for Blackfin Processors

Compiler

C++ Style Comments
The compiler accepts C++ comments, beginning with // and ending at
the end of the line, as in C programs. This comment representation is
essentially compatible with standard C, except for the following case.

a = b

//* highly unusual */ c

;

which a standard C compiler processes as:

a = b/c;

and a C++ compiler and ccblkfn process as:

a = b;

Enumeration Constants That Are Not int Type
The VisualDSP++ compiler allows enumeration constants to be integer
types other than int, such as unsigned int, long long or unsigned long
long, if the enumeration constant has a value outside the range of int.

Boolean Type Support Keywords (bool, true, false)
The compiler supports a Boolean data type bool, with values true and
false. This is a standard feature of the ISO/IEC 14882:2003 C++ stan-
dard, and is available as a standard feature in the ISO/IEC 9899:1999 C
standard when the stdbool.h header is included. It is supported as an
extension in C89 mode, and as an extension in C99 mode when the std-
bool.h header has not been included.

The bool keyword is a unique signed integral type. There are two built-in
constants of this type: true and false. When converting a numeric or
pointer value to bool, a zero value becomes false, and a nonzero value

C/C++ Compiler Language Extensions

1-174 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

becomes true. A bool value may be converted to int by promotion,
taking true to one and false to zero. A numeric or pointer value is con-
verted automatically to bool when needed.

Native Fixed-Point Types fract and accum
The compiler has support for the native fixed-point types fract and accum
as defined by Chapter 4 of the “Extensions to support embedded processors”
ISO/IEC draft technical report TR 18037. This support is available for
the C language only. A discussion of how to use this support is given in
“Using Native Fixed-Point Types” on page 1-104.

Inline Assembly Language Support Keyword (asm)
The compiler’s asm() construct is used to code Blackfin assembly language
instructions within a C/C++ function and to pass declarations and direc-
tives to the assembler. Use the asm() construct to express assembly
language statements that cannot be expressed easily or efficiently with
C/C++ constructs.

Using asm(), you can code complete assembly language instructions and
specify the operands of the instruction using C expressions. When specify-
ing operands with a C/C++ expression, you do not need to know which
registers or memory locations contain C/C++ variables.

 The compiler does not analyze code defined with the asm() con-
struct—it passes this code directly to the assembler. The compiler
performs substitutions for operands of the formats %0 through %9;
however, it passes everything else to the assembler without reading
or analyzing it. This means that the compiler cannot apply any
enabled workarounds for silicon errata that may be triggered either
by the contents of the asm() construct, or by the sequence of
instructions formed by the asm() construct and the surrounding
code produced by the compiler.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-175
for Blackfin Processors

Compiler

 asm() constructs with inputs, outputs or affected registers are exe-
cutable statements, and as such, may not appear before declarations
within C/C++ functions. The asm() constructs may also be used at
global scope, outside function declarations. Such asm() constructs
are used to pass declarations and directives directly to the assem-
bler. They are not executable constructs, and may not have any
inputs or outputs, or affect any registers.

 When optimizing, the compiler sometimes changes the order in
which generated functions appear in the output assembly file.
However, if global-scope asm() constructs are placed between two
function definitions, the compiler ensures that the function order
is retained in the generated assembly file. Consequently, function
inlining may be inhibited.

A simplified asm() construct without operands takes the following form.
asm(" NOP; ");

The complete assembly language instruction, enclosed in double quotes,
is the argument to asm(). Using asm() constructs with operands requires
additional syntax.

 The compiler generates a label before and after inline assembly
instructions when generating debug code. (See the -g switch
on page 1-42.) These labels are used to generate the debug line
information used by the debugger. If the inline assembler inserts
conditionally assembled code, an undefined symbol error is likely
to occur at link-time. For example, the following code could cause
undefined symbols if MACRO is undefined:

asm("#ifdef MACRO");

asm(" // assembly statements");

asm("#endif");

If the inline assembler changes the current section and thereby causes the
compiler labels to be placed in another section, such as a data section

C/C++ Compiler Language Extensions

1-176 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

(instead of the default code section), then the debug line information will
be incorrect for these lines.

The construct syntax is described in:

• “asm() Construct Syntax” on page 1-176

• “Assembly Construct Operand Description” on page 1-180

• “Using long long Types in asm Constraints” on page 1-185

• “Assembly Constructs With Multiple Instructions” on page 1-186

• “Assembly Construct Reordering and Optimization” on
page 1-187

• “Assembly Constructs With Input and Output Operands” on
page 1-188

• “Assembly Constructs With Compile-Time Constants” on
page 1-189

• “Assembly Constructs and Flow Control” on page 1-190

• “Guidelines for Using asm() Statements” on page 1-190

asm() Construct Syntax

Use the following general syntax for asm() constructs.

asm [volatile] (

template

[:[constraint(output operand)[,constraint(output operand)…]]

[:[constraint(input operand)[,constraint(input operand)…]]

[:clobber string]]]

);

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-177
for Blackfin Processors

Compiler

The syntax elements are defined as follows:

template
The template is a string containing the assembly instruction(s) with
%number, indicating where the compiler should substitute the operands.
Operands are numbered in order of occurrence from left to right, starting
at 0. Separate multiple instructions with a semicolon; then enclose the
entire string within double quotes.

For more information on templates containing multiple instructions, see
“Assembly Constructs With Multiple Instructions” on page 1-186.

constraint
The constraint is a string that directs the compiler to use certain groups of
registers for the input and output operands. Enclose the constraint string
within double quotes. For more information on operand constraints, see
“Assembly Construct Operand Description” on page 1-180.

output operand
The output operands are the names of C/C++ variables that receive output
from corresponding operands in the assembly instructions.

input operand
The input operand is a C/C++ expression that provides an input to a cor-
responding operand in the assembly instruction.

clobber string
The clobber string notifies the compiler that a list of registers is overwrit-
ten by the assembly instructions. Use lowercase characters to name
clobbered registers. Enclose each name within double quotes, and separate
each quoted register name with a comma. The input and output operands
are guaranteed not to use any of the clobbered registers, so you can read
and write the clobbered registers as often as you like. See Table 1-24 on
page 1-185.

C/C++ Compiler Language Extensions

1-178 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

It is vital that any register overwritten by an assembly instruction and not
allocated by the constraints is listed in the clobber list.

The list must include memory if an assembly instruction writes to memory.

asm() Construct Syntax Rules

These rules apply to assembly construct template syntax.

• The template is the only mandatory argument to asm(). All other
arguments are optional.

• An operand constraint string followed by a C/C++ expression in
parentheses describes each operand. For output operands, it must
be possible to assign to the expression; that is, the expression must
be legal on the left side of an assignment statement.

• A colon separates:

• The template from the first output operand

• The last output operand from the first input operand

• The last input operand from the clobbered registers

• A space must be placed between adjacent colon field delimiters in
order to avoid a clash with the C++ “::” reserved global resolution
operator.

• A comma separates operands and registers within arguments.

• The number of operands in arguments must match the number of
operands in your template.

• The maximum permissible number of operands is ten (%0, %1, %2,
%3, %4, %5, %6, %7, %8, and %9).

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-179
for Blackfin Processors

Compiler

 The compiler cannot check whether the operands have data types
that are reasonable for the instruction being executed. The com-
piler does not parse the assembler instruction template, does not
interpret the template, and does not verify whether the template
contains valid input for the assembler.

asm() Construct Template Example

The following example shows how to apply the asm() construct template
to the Blackfin assembly language assignment instruction.

{

int result, x;

...
asm (

"%0=%1;" :

"=d" (result) :

"d" (x)

);

}

In the example above, note that:

• The template is "%0=%1;". The %0 is replaced with operand zero
(result). The first operand, %1, is replaced with operand one (x).

• The output operand is the C/C++ variable result. The letter d is
the operand constraint for the variable. This constrains the output
to a data register, R{0-7}. The compiler generates code to copy the
output from the data register to the variable result, if necessary.
The = in =d indicates that the operand is an output.

• The input operand is the C/C++ variable x. The letter d in the
operand constraint position for this variable constrains x to a data
register, R{0-7}. If x is stored in a different kind of register or in
memory, the compiler generates code to copy the value into a data
register before the asm() construct uses it.

C/C++ Compiler Language Extensions

1-180 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Assembly Construct Operand Description

The second and third arguments to the asm() construct describe the
operands in the assembly language template. Several pieces of information
must be conveyed for the compiler to know how to assign registers to
operands. This information is conveyed with an operand constraint. The
compiler needs to know what kind of registers the assembly instructions
can operate on, so it can allocate the correct register type.

You convey this information with a letter in the operand constraint string
that describes the class of allowable registers.

Table 1-23 on page 1-183 describes the correspondence between con-
straint letters and register classes.

 The use of any letter not listed in Table 1-23 results in unspecified
behavior. The compiler does not check the validity of the code by
using the constraint letter.

To assign registers to the operands, the compiler must also be informed of
which operands in an assembly language instruction are inputs, which are
outputs, and which outputs may not overlap inputs. The compiler is told
this in three ways.

• The output operand list appears as the first argument after the
assembly language template. The list is separated from the assembly
language template with a colon. The input operands are separated
from the output operands with a colon and they always follow the
output operands.

• The operand constraints describe which registers are modified by
an assembly language instruction. The “=” in =constraint indi-
cates that the operand is an output; all output operand constraints
must use =. Operands that are input-outputs must use “+”. (See
below.)

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-181
for Blackfin Processors

Compiler

• The compiler may allocate an output operand in the same register
as an unrelated input operand, unless the output or input operand
has the &= constraint modifier. This situation can occur because the
compiler assumes the inputs are consumed before the outputs are
produced.

This assumption may be false if the assembler code actually consists
of more than one instruction. In such a case, use &= for each output
operand that must not overlap an input or supply an & for the
input operand.

Operand constraints indicate the kind of operand they describe by means
of preceding symbols. Preceding symbols include: no symbol, =, +, &, ?,
and #.

• (no symbol)
The operand is an input. It must appear as part of the third
argument to the asm() construct. The allocated register is loaded
with the value of the C/C++ expression before the asm() template
is executed. Its C/C++ expression is not modified by the asm()
construct, and its value may be a constant or literal.
Example: d

• = symbol
The operand is an output. It must appear as part of the second
argument to the asm() construct. Once the asm() template has
been executed, the value in the allocated register is stored into the
location indicated by its C/C++ expression; therefore, the expres-
sion must be one that would be valid as the left-hand side of an
assignment.
Example: =d

• + symbol
The operand is both an input and an output. It must appear as part
of the second argument to the asm() construct. The allocated regis-
ter is loaded with the C/C++ expression value, the asm() template

C/C++ Compiler Language Extensions

1-182 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

is executed, and then the allocated register’s new value is stored
back into the C/C++ expression. Therefore, as with pure outputs,
the C/C++ expression must be one that is valid on the left-hand
side of an assignment.
Example: +d

• ? symbol
The operand is temporary. It must appear as part of the third
argument to the asm() construct. A register is allocated as working
space for the duration of the asm() template execution. The regis-
ter’s initial value is undefined, and the register’s final value is
discarded. The corresponding C/C++ expression is not loaded into
the register, but must be present. This expression is normally
specified using a literal zero.
Example: ?d

• & symbol
This operand constraint may be applied to inputs and outputs.
It indicates that the register allocated to the input (or output) may
not be one of the registers that are allocated to the outputs
(or inputs). This operand constraint is used when one or more
output registers are set while one or more inputs are yet to be
referenced. (This situation sometimes occurs if the asm() template
contains more than one instruction.)
Example: &d

• # symbol
The operand is an input, but the register’s value is clobbered by the
asm() template execution. The compiler may make no assumptions
about the register’s final value. An input operand with this con-
straint will not be allocated the same register as any other input or
output operand of the asm(). The operand must appear as part of
the second argument to the asm() construct.
Example: #d

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-183
for Blackfin Processors

Compiler

Table 1-23 lists the registers that may be allocated for each register con-
straint letter. The use of any letter not listed in the “Constraint” column
of this table results in unspecified behavior. The compiler does not check
the validity of the code by using the constraint letter. Table 1-24 lists the
registers that may be named as part of the clobber list.

It is also possible to claim registers directly, instead of requesting a register
from a certain class using the constraint letters. You can claim the registers
directly by simply naming the register in the location where the class letter
would be. The register names are the same as those used to specify the
clobber list; see Table 1-24.

The following example loads sum into A0, loads x and y into two DREG
halves, executes the operation, and then stores the new total from A0 back
into sum.

asm("%0 += %1 * %2;"

:"+a0"(sum) /* output */

:"H"(x),"H"(y) /* input */

);

 Naming registers in this way allows the asm() construct to specify
several registers that must be related, such as the DAG registers for a
circular buffer. This also allows the use of registers not covered by
the register classes accepted by the asm() construct. The clobber
string can be any of the registers recognized by the compiler.

Table 1-23. asm() Operand Constraints

Constraint Register Type Registers

a General addressing registers P0 — P5

p General addressing registers P0 — P5

i DAG addressing registers I0 — I3

b DAG addressing registers I0 — I3

d General data registers R0 — R7

C/C++ Compiler Language Extensions

1-184 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

r General data registers R0 — R7

D General data registers R0 — R7

A Accumulator registers A0, A1

e Accumulator registers A0, A1

f Modifier registers M0 — M3

E Even general data registers R0,R2,R4,R6

O Odd general data registers R1,R3,R5,R7

h High halves of the general data registers R0.H,R1.H...R7.H

l Low halves of the general data registers R0.L,R1.L...R7.L

H Low or high halves of the general data registers R0.L,R1.L...R7.L

L Loop counter registers LC0,LC1

I General data register pairs (R0-R1), (R2-R3),
(R4-R5), (R6-R7)

n None (For more information, see “Assembly
Constructs With Compile-Time Constants” on
page 1-189.)

constraint Indicates the constraint is an input operand

=constraint Indicates the constraint is applied to an output
operand

&constraint Indicates the constraint is applied to an input
operand that may not be overlapped with an out-
put operand

=&constraint Indicates the constraint is applied to an output
operand that may not overlap an input operand

?constraint Indicates the constraint is temporary

+constraint Indicates the constraint is both an input and out-
put operand

#constraint Indicates the constraint is an input operand
whose value will be changed

Table 1-23. asm() Operand Constraints (Cont’d)

Constraint Register Type Registers

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-185
for Blackfin Processors

Compiler

Using long long Types in asm Constraints

It is possible to use an asm() constraint to specify a long long value, in
which case the compiler will claim a valid register pair. The syntax for
operands within the template is extended to allow the suffix “H” for the
top 32 bits of the operand and the suffix “L” for the bottom 32 bits of the
operand. A long long type is represented by the constraint letter “I”.

For example,

long long int res;

int main(void) {

long long result64, x64 = 123;

asm(

Table 1-24. Register Names for asm() Constructs

Clobber String Meaning

"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" General data register

"p0", "p1", "p2", "p3", "p4", "p5" General addressing register

"i0", "i1", "i2", "i3" DAG addressing register

"m0", "m1", "m2", "m3" Modify register

"b0", "b1", "b2", "b3" Base register

"l0", "l1", "l2", "l3" Length register

"astat" ALU status register

"seqstat" Sequencer status register

"rets" Subroutine address register

"cc" Condition code register

"a0", "a1" Accumulator result register

"lc0", "lc1" Loop counter register

"r1:0", "r3:2", "r5:4", "r7:6" General data register pair

"memory" Unspecified memory location(s)

C/C++ Compiler Language Extensions

1-186 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

"%0H = %1H; %0L = %1L;" :

"=I" (result64) :

"I" (x64)

);

res = result64;

}

In this example, the template is “%0H=%1H; %0L=%1L;”. The %0H is replaced
with the register containing the top 32 bits of operand zero (result64),
and %0L is replaced with the register containing the bottom 32 bits of
operand zero (result64). Similarly, %1H and %1L are replaced with the
registers containing the top 32 bits and bottom 32 bits, respectively, of
operand one (x64).

Assembly Constructs With Multiple Instructions

There can be many assembly instructions in one template. Normal rules
for line-breaking apply. In particular, the statement may spread over
multiple lines. You are recommended not to split a string over more than
one line, but to use the C language’s string concatenation feature. If you
are placing the inline assembly statement in a preprocessor macro, see
“Compound Macros” on page 1-406.

This is an example of multiple instructions in a template:

/* (pseudo code) r7 = x; r6 = y; result = x + y; */

asm ("r7=%1;"

"r6=%2;"

"%0=r6+r7;"

: "=d" (result) /* output */

: "d" (x), "d" (y) /* input */

: "r7", "r6"); /* clobbers */

 Do not attempt to produce multiple-instruction asm constructs via
a sequence of single-instruction asm constructs, as the compiler is
not guaranteed to maintain the ordering.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-187
for Blackfin Processors

Compiler

For example, avoid the following:

/* BAD EXAMPLE: Do not use sequences of single-instruction

** asms. Use a single multiple-instruction asm instead. */

asm("r7=%0;" : : "d" (x) : "r7");

asm("r6=%0;" : : "d" (y) : "r6");

asm("%0=r6+r7;" : "=d" (result));

Assembly Construct Reordering and Optimization

For the purpose of optimization, the compiler assumes that the side effects
of an asm() construct are limited to changes in the output operands or the
items specified using the clobber specifiers. This does not mean that you
cannot use instructions with side effects, but be careful to notify the com-
piler that you are using them by using the clobber specifiers. (See
Table 1-24.)

The compiler may eliminate supplied assembly instructions (if the output
operands are not used), move them out of loops, or reorder them with
respect to other statements, where there is no visible data dependency.
Also, if the instruction has a side effect on a variable that otherwise
appears not to change, the old value of the variable may be reused later if
it happens to be found in a register.

Use the keyword volatile to prevent an asm() instruction from being
moved or deleted. For example,

#define set_priority(x) \

asm volatile ("STI %0;": /* no outs */ : "d" (x))

A sequence of asm volatile() constructs is not guaranteed to be com-
pletely consecutive; it may be moved across jump instructions or in other
ways that are not significant to the compiler. To force the compiler to
keep the output consecutive, use one asm volatile() construct only, or
use the output of the asm() construct in a C/C++ statement.

C/C++ Compiler Language Extensions

1-188 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Assembly Constructs With Input and Output Operands

When an asm construct has both inputs and outputs, there are two aspects
to consider:

1. Whether a value read from an input variable will be written back to
the same variable or a different variable, on output.

2. Whether the input and output values will reside in the same regis-
ter or different registers.

The most common case is when both input and output variables and
input and output registers are different. In this case, the asm construct
reads from one variable into a register, performs an operation which leaves
the result in a different register, and writes that result from the register
into a different output variable.
asm("%0 = %1;" : "=p" (newptr) : "p" (oldptr));

When the input and output variables are the same, the input and output
registers are usually the same register. In this case, use the “+” constraint.
asm("%0 += 4;" : "+p" (sameptr));

When the input and output variables are different, but the input and out-
put registers have to be the same (usually because of requirements of the
assembly instructions), you indicate this to the compiler by using a differ-
ent syntax for the input’s constraint. Instead of specifying the register or
class to be used, specify the output to which the input must be matched.

For example,

asm("%0 += 4;"

:"=p" (newptr) // an output, given a preg,

// stored into newptr.

:"0" (oldptr)); // an input, given same reg as %0,

// initialized from oldptr

This specifies that the input oldptr has 0 (zero) as its constraint string,
which means it must be assigned the same register as %0 (newptr).

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-189
for Blackfin Processors

Compiler

Assembly Constructs With Compile-Time Constants

The n input constraint informs the compiler that the corresponding input
operand should not have its value loaded into a register. Instead, the com-
piler is to evaluate the operand, and then insert the operand’s value into
the assembly command as a literal numeric value. The operand must be a
compile-time constant expression.

For example,

int r; int arr[100];

asm("%0 = %1;" : "=d" (r) : "d" (sizeof(arr))); // "d"

produces code like

R0 = 400 (X); // compiler loads value into register

R1 = R0; // compiler replaces %1 with register

whereas:

int r; int arr[100];

asm("%0 = %1;" : "=d" (r) : "n" (sizeof(arr))); // "n"

produces code like
R1 = 400; // compiler replaces %1 with value

If the expression is not a compile-time constant, the compiler gives an
error:

int r; int arr[100];

asm("%0 = %1;" : "=d" (r) : "n" (arr));

// error: operand

// for "n" constraint

// must be a compile-time constant

C/C++ Compiler Language Extensions

1-190 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Assembly Constructs and Flow Control

 Do not place flow-control operations within an asm() construct
that “leaves” the asm() construct functions, such as calling a proce-
dure or performing a jump to another piece of code that is not
within the asm() construct itself. Such operations are invisible to
the compiler, may result in multiple-defined symbols, and may vio-
late assumptions made by the compiler.

For example, the compiler is careful to adhere to the calling conventions
for preserved registers when making a procedure call. If an asm() construct
calls a procedure, the asm() construct must also ensure that all conven-
tions are obeyed, or the called procedure may corrupt the state used by the
function containing the asm() construct.

It is also inadvisable to use labels in asm() statements, especially when
function inlining is enabled. If a function containing such asm statements
is inlined more than once in a file, there will be multiple definitions of the
label, resulting in an assembler error. If possible, use PC-relative jumps in
asm statements.

Guidelines for Using asm() Statements

Certain operations are performed more efficiently using other compiler
features, and result in source code that is more clear and easier to read.

Accessing System Registers

System registers are accessed most efficiently using the functions in
sysreg.h instead of using asm() statements (see also “System Built-In
Functions” on page 1-259).

Accessing Memory-Mapped Registers (MMRs)

MMRs can be accessed using the macros in the cdef*.h files (for example,
cdefBF531.h) that are supplied with VisualDSP++ (see also “Mem-
ory-Mapped Register Access Built-In Functions” on page 1-275).

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-191
for Blackfin Processors

Compiler

Bank Qualifiers
Bank qualifiers can be attached to data declarations to indicate that the
data resides in particular memory banks. For example,

int bank("blue") *ptr1;

int bank("green") *ptr2;

The bank qualifier assists the optimizer because the compiler assumes that
if two data items are in different banks, they can be accessed together
without conflict.

The bank name string literals have no significance, except to differentiate
between banks. There is no interpretation of the names attached to banks,
which can be any arbitrary string. There is a current implementation limit
of ten different banks.

For any given function, three banks are defined automatically. These are:

• The default bank for global data.
The “static” or “extern” data that is not explicitly placed into
another bank is assumed to be within this bank. Normally, this
bank is called “__data“, although a different bank can be selected
with #pragma data_bank(bankname).

• The default bank for local data.
Local variables of “auto” storage class that are not explicitly placed
into another bank are assumed to be within this bank. Normally,
this bank is called “__stack”, although a different bank can be
selected with #pragma stack_bank(bankname).

• The default bank for the function’s instructions.
The function itself is placed into this bank. Normally, it is called
“__code”, although a different bank can be selected with
#pragma code_bank(bankname).

C/C++ Compiler Language Extensions

1-192 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Each memory bank can have different performance characteristics. For
more information on memory bank attributes, see “Memory Bank Prag-
mas” on page 1-341.

Placement Support Keyword (section)
The section() keyword directs the compiler to place an object or func-
tion in an assembly .SECTION of the compiler’s intermediate output file.
You name the assembly .SECTION with the string literal parameter of the
section() keyword. If you do not specify a section() keyword for an
object or function declaration, the compiler uses a default section. The
.ldf file supplied to the linker must also be updated to support the addi-
tional named section. For information on the default sections, see “Using
Memory Sections” on page 1-422.

Applying section() is meaningful only when the data item is something
that the compiler can place in the named section. Apply section() only to
top-level, named objects that have static duration (for example, objects
that are explicitly static, or are given as external-object definitions).

The following example shows the declaration of a static variable that is
placed in the section called bingo.

static section("bingo") int x;

The section() keyword has the limitation that section initialization qual-
ifiers cannot be used within the section name string. The compiler may
generate labels containing this string, which will result in assembly syntax
errors. Additionally, the keyword is not compatible with any pragmas that
precede the object or function. For finer control over section placement
and compatibility with other pragmas, use #pragma section.

Refer to “#pragma section/#pragma default_section” on page 1-310 for
more information.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-193
for Blackfin Processors

Compiler

 The section keyword replaces the segment keyword in earlier
releases of the compiler. Although the segment() keyword is
supported by the compiler of the current release, Analog Devices
recommends that you revise legacy code.

Placement of Compiler-Generated Code and
Data

If the section() keyword is not used, the compiler emits code and data
into default sections. The -section switch (on page 1-72) can be used to
specify alternatives for these defaults on the command-line, and the
“#pragma section/#pragma default_section” on page 1-310 can be used to
specify alternatives for some of them within the source file.

In addition, when using certain features of C/C++, the compiler may be
required to produce internal data structures. The -section switch and the
default_section pragma allow you to override the default location where
the data would be placed.

For example, the following code instructs the compiler to place all the
C++ virtual function look-up tables into the vtbl_data section, rather
than the default vtbl section.

ccblkfn -section vtbl=vtbl_data test.cpp -c++

 It is the user’s responsibility to ensure that appropriately named
sections exist in the .ldf file.

The compiler currently supports the following section identifiers:

code Controls placement of machine instructions.
Default is program.

data Controls placement of initialized variable data.
Default is data1.

C/C++ Compiler Language Extensions

1-194 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

When both -section switches and default_section pragmas are used, the
default_section pragmas take priority.

Long Identifiers
The compiler supports C identifiers of up to 1022 characters in length;
C++ identifiers typically have a slightly shorter limit, as the limit applies
to the identifier after name mangling is used to transform it into a suitable
symbol for linking, and for C++, some of the symbol space is required to
represent the identifier’s type.

constdata Controls placement of constant data.
Default is constdata.

bsz Controls placement of zero-initialized variable data.
Default is bsz.

sti Controls placement of the static C++ class constructor “start” functions
Default is program. For more information, see “Constructors and Destruc-
tors of Global Class Instances” on page 1-419.

switch Controls placement of jump tables used to implement C/C++ switch
statements. Default is constdata.

vtbl Controls placement of the C++ virtual lookup tables.
Default is vtbl.

vtable Synonym for vtbl

strings Controls the placement of string literals

autoinit Controls placement of data used to initialize aggregate autos

alldata Controls placement of data, constdata, bsz, strings, and
autoinit all at once

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-195
for Blackfin Processors

Compiler

Compiler Built-In Functions
The compiler supports intrinsic (built-in) functions that enable efficient
use of hardware resources. These functions are:

• “Fractional Value Built-In Functions in C” on page 1-196

• “ETSI Support” on page 1-217

• “Fractional Value Built-In Functions in C++” on page 1-232

• “fract16 and fract32 Literal Values in C” on page 1-234

• “Converting Between Fractional and Floating-Point Values” on
page 1-235

• “Complex Fractional Built-In Functions in C” on page 1-238

• “Changing the RND_MOD Bit” on page 1-242

• “Complex Operations in C++” on page 1-243

• “Packed 16-Bit Integer Built-In Functions” on page 1-245

• “Division Functions” on page 1-246

• “Full-Precision Accumulator Built-In Functions” on page 1-247

• “Viterbi History and Decoding Functions” on page 1-253

• “Search Built-in Functions” on page 1-255

• “Circular Buffer Built-In Functions” on page 1-256

• “Endian-Swapping Intrinsics” on page 1-259

• “System Built-In Functions” on page 1-259

• “Cache Built-In Functions” on page 1-261

• “Compiler Performance Built-In Functions” on page 1-264

C/C++ Compiler Language Extensions

1-196 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

• “Video Operation Built-In Functions” on page 1-267

• “Misaligned Data Built-In Functions” on page 1-274

• “Memory-Mapped Register Access Built-In Functions” on
page 1-275

• “Miscellaneous Built-In Functions” on page 1-276

Knowledge of these functions is built into the ccblkfn compiler. Your
program uses them via normal function call syntax. The compiler notices
the invocation and generates one or more machine instructions, just as it
does for normal operators, such as + and *.

Built-in functions have names that begin with __builtin_. Note that
identifiers beginning with double underscores (__) are reserved by the C
standard, so these names will not conflict with user program identifiers.
The header files also define more readable names for the built-in functions
without the __builtin_ prefix. These additional names are disabled if the
-no-builtin command-line switch is used.

These functions are specific to individual architectures, and the following
sections list built-in functions currently supported on Blackfin processors.
Various system header files provide definitions and access to the intrinsics
as described below.

Fractional Value Built-In Functions in C

Two approaches may be used to access the fractional arithmetic and the
parallel 16-bit operations supported by the Blackfin processor instruc-
tions. One is to use the native fixed-point types fract and accum. This
approach is discussed in “Using Native Fixed-Point Types” on
page 1-104. Alternatively, built-in functions may be used to specify frac-
tional operations. This section discussed the use of these built-in
functions.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-197
for Blackfin Processors

Compiler

The various C types used in the built-in functions described in this section
are described in Table 1-25.

 See “Using Data Storage Formats” on page 1-443 for information
on how fract16, fract32, fract, long fract, and fract2x16 types
are represented. See the Blackfin Processor Programming Reference
for information on saturation, rounding (biased and unbiased), and
truncating.

Because fractional arithmetic uses slightly different instructions to normal
arithmetic, you cannot normally use the standard C operators on the
fract16 and fract32 data types and get the right result. Instead, use the
built-in functions described here to work with fractional data.

The fract.h header file provides access to the definitions for each of the
built-in functions that support fractional values. These functions have
names with suffixes _fr1x16 for single fract16, _fr2x16 for dual fract16,
and _fr1x32 for single fract32. All the functions in fract.h are marked as
inline, so when compiling with the compiler optimizer, the built-in func-
tions are inlined.

 The 16-bit fractional shift built-in functions without “_clip” in
the name ignore all but the least significant five bits of the shift
magnitude. The 32-bit fractional shift built-in functions without

Table 1-25. Fractional Value C Types

C type Usage

fract16 Single 16-bit signed fractional value, typedef to short

fract32 Single 32-bit signed fractional value, typedef to long

fract Single 16-bit signed fractional value, native type

long fract Single 32-bit signed fractional value, native type

fract2x16 Double 16-bit signed fractional value

C/C++ Compiler Language Extensions

1-198 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

“_clip” in the name ignore all but the least significant 6 bits of the
shift magnitude. The _clip variants of these built-in functions
automatically clip the shift magnitude to within a 5- or 6-bit range.

For example, where a 5-bit (-16..+15) range is required, the
“_clip” variants would clip the value +63 to be +15, while the
non-“_clip” variant would discard the upper bits and interpret
bit 5 as the sign bit, giving a value of -1. To avoid unexpected
results, use the “_clip” variants of the functions unless the shift
magnitude is known to be within the 5- or 6-bit range.

See “16-Bit Fractional Built-In Functions” on page 1-198 for descriptions
of built-in functions that work primarily with fract16 data. See “32-Bit
Fractional Built-In Functions” on page 1-203 for descriptions of built-in
functions that work primarily with fract32 data.

See “fract2x16 Built-In Functions” on page 1-207 for descriptions of
built-in functions that work primarily with fract2x16 data. Note that
when compiling programs that use the single data fract16 operations, the
compiler optimizer attempts to automatically detect cases where parallel
operations can be performed. In other words, recoding an algorithm to
make explicit use of fract2x16 built-in functions in place of the
fract1x16 ones does not always yield a performance benefit.

See “ETSI Built-In Functions” on page 1-215 for information on map-
ping the European Telecommunications Standards Institute (ETSI) fract
functions onto the compiler built-in functions.

16-Bit Fractional Built-In Functions

All the built-in functions described here are saturating unless otherwise
stated. These built-ins operate primarily on the fract16 and fract types
although one of the multiplies returns a fract32.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-199
for Blackfin Processors

Compiler

The following built-in functions are available.

fract16 add_fr1x16(fract16 f1,fract16 f2)

fract add_fx1x16(fract f1,fract f2)

Performs 16-bit addition of the two input parameters (f1+f2). The fract
version is included for completeness only; it is exactly equivalent to the +
operator on fract types.

fract16 sub_fr1x16(fract16 f1,fract16 f2)

fract sub_fx1x16(fract f1,fract f2)

Performs 16-bit subtraction of the two input parameters (f1-f2). The
fract version is included for completeness only; it is exactly equivalent to
the - operator on fract types.

fract16 mult_fr1x16(fract16 f1,fract16 f2)

fract mult_fx1x16(fract f1,fract f2)

Performs 16-bit multiplication of the input parameters (f1*f2).
The result is truncated to 16 bits. The fract version is exactly equivalent
to the * operator on fract types in the truncation rounding mode.

fract16 multr_fr1x16(fract16 f1,fract16 f2)

fract multr_fx1x16(fract f1,fract f2)

Performs a 16-bit fractional multiplication (f1*f2) of the two input
parameters. The result is rounded to 16 bits. Whether the rounding is
biased or unbiased depends on what the RND_MOD bit in the ASTAT register
is set to. The fract version is exactly equivalent to the * operator on fract
types when the biased or unbiased rounding mode is used.

C/C++ Compiler Language Extensions

1-200 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fract32 mult_fr1x32(fract16 f1,fract16 f2)

long fract mult_fx1x32(fract f1,fract f2)

Performs a fractional multiplication on two 16-bit fractions, returning the
32-bit result. The fract version is included for completeness only; it is
exactly equivalent to writing (long fract)f1 * (long fract)f2.

fract16 abs_fr1x16(fract16 f1)

fract abs_fx1x16(fract f1)

Returns the 16-bit value that is the absolute value of the input parameter.
Where the input is 0x8000, saturation occurs and 0x7fff is returned. The
fract version is included for completeness only; it is exactly equivalent to
the absr function.

fract16 min_fr1x16(fract16 f1, fract16 f2)

fract min_fx1x16(fract f1, fract f2)

Returns the minimum of the two input parameters.

fract16 max_fr1x16(fract16 f1, fract16 f2)

fract max_fx1x16(fract f1, fract f2)

Returns the maximum of the two input parameters.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-201
for Blackfin Processors

Compiler

fract16 negate_fr1x16(fract16 f1)

fract negate_fx1x16(fract f1)

Returns the 16-bit result of the negation of the input parameter (-f1).
If the input is 0x8000, saturation occurs and 0x7fff is returned. The fract
version is included for completeness only; it is exactly equivalent to writ-
ing -f1.

fract16 shl_fr1x16(fract16 src, short shft)

fract shl_fx1x16(fract src, short shft)

Arithmetically shifts the src variable left by shft places. The empty bits
are zero-filled. If shft is negative, the shift is to the right by abs(shft)
places with sign extension.

fract16 shl_fr1x16_clip(fract16 src, short shft)

fract shl_fx1x16_clip(fract src, short shft)

Arithmetically shifts the src variable left by shft (clipped to 5 bits) places.
The empty bits are zero filled. If shft is negative, the shift is to the right
by abs(shft) places with sign extension.

fract16 shr_fr1x16(fract16 src, short shft)

fract shr_fx1x16(fract src, short shft)

Arithmetically shifts the src variable right by shft places with sign
extension. If shft is negative, the shift is to the left by abs(shft) places,
and the empty bits are zero-filled.

C/C++ Compiler Language Extensions

1-202 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fract16 shr_fr1x16_clip(fract16 src, short shft)

fract shr_fx1x16_clip(fract src, short shft)

Arithmetically shifts the src variable right by shft (clipped to 5 bits)
places with sign extension. If shft is negative, the shift is to the left by
abs(shft) places, and the empty bits are zero-filled.

fract16 shrl_fr1x16(fract16 src, short shft)

fract shrl_fx1x16(fract src, short shft)

Logically shifts the src variable right by shft places. There is no sign
extension and no saturation – the empty bits are zero-filled.

fract16 shrl_fr1x16_clip(fract16 src, short shft)

fract shrl_fx1x16_clip(fract src, short shft)

Logically shifts the src variable right by shft (clipped to 5 bits) places.
There is no sign extension and no saturation – the empty bits are
zero-filled.

int norm_fr1x16(fract16 f1)

int norm_fx1x16(fract f1)

Returns the number of left shifts required to normalize the input variable
so that it is either in the interval 0x4000 to 0x7fff, or in the interval
0x8000 to 0xc000. In other words,

fract16 x;

shl_fr1x16(x,norm_fr1x16(x));

Returns a value in the range 0x4000 to 0x7fff, or in the range
0x8000 to 0xc000, except in the special case where x is zero. The
fract version is equivalent to the countlsr function.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-203
for Blackfin Processors

Compiler

32-Bit Fractional Built-In Functions

All the built-in functions described here are saturating unless otherwise
stated. These built-in functions operate primarily on the fract32 and long
fract types, although there are a couple of functions that convert between
16- and 32-bit fractional types.

fract32 add_fr1x32(fract32 f1,fract32 f2)

long fract add_fx1x32(long fract f1,long fract f2)

Performs 32-bit addition of the two input parameters (f1+f2). The long
fract version is included for completeness only; it is exactly equivalent to
the + operator on long fract types.

fract32 sub_fr1x32(fract32 f1,fract32 f2)

long fract sub_fx1x32(long fract f1,long fract f2)

Performs 32-bit subtraction of the two input parameters (f1-f2). The
long fract version is included for completeness only; it is exactly
equivalent to the - operator on long fract types.

fract32 mult_fr1x32x32(fract32 f1,fract32 f2)

long fract mult_fx1x32x32(long fract f1,long fract f2)

Performs 32-bit multiplication of the input parameters (f1*f2).
The result (which is calculated internally with an accuracy of 40 bits) is
rounded (biased rounding) to 32 bits. You might also consider using the *
operator on the long fract type in biased rounding mode. This provides
better rounding precision and may offer comparable performance.

C/C++ Compiler Language Extensions

1-204 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fract32 multr_fr1x32x32(fract32 f1,fract32 f2)

long fract multr_fx1x32x32(long fract f1,long fract f2)

Same as mult_fr1x32x32 and mult_fx1x32x32 but with additional round-
ing precision. You might also consider using the * operator on the long
fract type in biased rounding mode, which offers comparable perfor-
mance. The results may differ in the rounding performed.

fract32 mult_fr1x32x32NS(fract32 f1, fract32 f2)

long fract mult_fx1x32x32NS(long fract f1, long fract f2)

Performs 32-bit non-saturating multiplication of the input parameters
(f1*f2). This is somewhat faster than mult_fr1x32x32 or mult_fx1x32x32.
The result (which is calculated internally with an accuracy of 40 bits) is
rounded (biased rounding) to 32 bits. You might also consider using the *
operator on the long fract type in biased rounding mode. This performs
a saturating multiplication and gives a more precisely-rounded result at
some cost of efficiency.

fract32 abs_fr1x32(fract32 f1)

long fract abs_fx1x32(long fract f1)

Returns the 32-bit value that is the absolute value of the input parameter.
Where the input is 0x80000000, saturation occurs and 0x7fffffff is
returned. The long fract version is included for completeness only; it is
exactly equivalent to the abslr function.

fract32 min_fr1x32(fract32 f1, fract32 f2)

long fract min_fx1x32(long fract f1, long fract f2)

Returns the minimum of the two input parameters

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-205
for Blackfin Processors

Compiler

fract32 max_fr1x32(fract32 f1, fract32 f2)

long fract max_fx1x32(long fract f1, long fract f2)

Returns the maximum of the two input parameters

fract32 negate_fr1x32(fract32 f1)

long fract negate_fx1x32(long fract f1)

Returns the 32-bit result of the negation of the input parameter (-f1).
If the input is 0x80000000, saturation occurs and 0x7fffffff is returned.
The long fract version is included for completeness only; it is exactly
equivalent to writing -f1.

fract32 shl_fr1x32(fract32 src, short shft)

long fract shl_fx1x32(long fract src, short shft)

Arithmetically shifts the src variable left by shft places. The empty bits
are zero filled. If shft is negative, the shift is to the right by abs(shft)
places with sign extension.

fract32 shl_fr1x32_clip(fract32 src, short shft)

long fract shl_fx1x32_clip(long fract src, short shft)

Arithmetically shifts the src variable left by shft (clipped to 6 bits) places.
The empty bits are zero filled. If shft is negative, the shift is to the right
by abs(shft) places with sign extension.

C/C++ Compiler Language Extensions

1-206 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fract32 shr_fr1x32(fract32 src, short shft)

long fract shr_fx1x32(long fract src, short shft)

Arithmetically shifts the src variable right by shft places with sign exten-
sion. If shft is negative, the shift is to the left by abs(shft) places, and
the empty bits are zero-filled.

fract32 shr_fr1x32_clip(fract32 src, short shft)

long fract shr_fx1x32_clip(long fract src, short shft)

Arithmetically shifts the src variable right by shft (clipped to 6 bits)
places with sign extension. If shft is negative, the shift is to the left by
abs(shft) places, and the empty bits are zero-filled.

fract16 sat_fr1x32(fract32 f1)

fract sat_fx1x32(long fract f1)

If f1>0x00007fff, it returns 0x7fff. If f1<0xffff8000, it returns 0x8000.
Otherwise, it returns the lower 16 bits of f1.

fract16 round_fr1x32(fract32 f1)

fract round_fx1x32(long fract f1)

Rounds the 32-bit fract to a 16-bit fract using biased rounding. The
long fract version is equivalent to casting a long fract to fract in
biased rounding mode.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-207
for Blackfin Processors

Compiler

int norm_fr1x32(fract32 f1)

int norm_fx1x32(long fract f1)

Returns the number of left shifts required to normalize the input variable
so that it is either in the interval 0x40000000 to 0x7fffffff, or in the
interval 0x80000000 to 0xc0000000. In other words,

fract32 x;

shl_fr1x32(x,norm_fr1x32(x));

Returns a value in the range 0x40000000 to 0x7fffffff, or in the
range 0x80000000 to 0xc0000000, except in the special case where x
is zero. The long fract version is equivalent to the countlslr
function.

fract16 trunc_fr1x32(fract32 f1)

fract trunc_fx1x32(long fract f1)

Returns the top 16 bits of f1—it truncates f1 to 16 bits. The long fract
version is equivalent to casting a long fract to fract in truncation
rounding mode.

fract2x16 Built-In Functions

All built-in functions described here are saturating unless otherwise stated.
These built-ins operate primarily on the fract2x16 type, although there
are composition and decomposition functions for the fract2x16 type,
multiplies that return fract32 and long fract results, and operations on a
single fract2x16 pair that return fract16 and fract types.

The notation used to represent two fract16 or fract values packed into a
fract2x16 is {a,b}, where “a” is the fract16 or fract packed into the
high half, and “b” is the fract16 or fract packed into the low half. A
fract2x16 can be thought of as two fract16s or two fracts as the repre-
sentation of the two types is the same.

C/C++ Compiler Language Extensions

1-208 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fract2x16 compose_fr2x16(fract16 f1, fract16 f2)

fract2x16 compose_fx_fr2x16(fract f1, fract f2)

Takes two 16-bit fractional values, and returns a fract2x16 value.

Input: two fract16 or fract values

Returns: {f1,f2}

fract16 high_of_fr2x16(fract2x16 f)

fract high_of_fx_fr2x16(fract2x16 f)

Takes a fract2x16 and returns the “high half” fract16 or fract.

Input: f{a,b}

Returns: a

fract16 low_of_fr2x16(fract2x16 f)

fract low_of_fx_fr2x16(fract2x16 f)

Takes a fract2x16 and returns the “low half” fract16 or fract

Input: f{a,b}

Returns: b

fract2x16 add_fr2x16(fract2x16 f1,fract2x16 f2)

Adds two packed fracts.

Input: f1{a,b} f2{c,d}

Returns: {a+c,b+d}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-209
for Blackfin Processors

Compiler

fract2x16 sub_fr2x16(fract2x16 f1,fract2x16 f2)

Subtracts two packed fracts.

Input: f1{a,b} f2{c,d}

Returns: {a-c,b-d}

fract2x16 mult_fr2x16(fract2x16 f1,fract2x16 f2)

Multiplies two packed fracts. Truncates the results to 16 bits.

Input: f1{a,b} f2{c,d}

Returns: {trunc16(a*c),trunc16(b*d)}

fract2x16 multr_fr2x16(fract2x16 f1,fract2x16 f2)

Multiplies two packed fracts. Rounds the result to 16 bits. Whether the
rounding is biased or unbiased depends on what the RND_MOD bit in the
ASTAT register is set to.

Input: f1{a,b} f2{c,d}

Returns: {round16{a*c},round16{b*d}}

C/C++ Compiler Language Extensions

1-210 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fract2x16 negate_fr2x16(fract2x16 f1)

Negates both 16-bit fracts in the packed fract. If one of the fract16 val-
ues is 0x8000, saturation occurs and 0x7fff is the result of the negation.

Input: f1{a,b}

Returns: {-a,-b}

fract2x16 shl_fr2x16(fract2x16 f1,short shft)

Arithmetically shifts both fract16s in the fract2x16 left by shft places,
and returns the packed result. The empty bits are zero-filled. If shft is
negative, the shift is to the right by abs(shft) places with sign extension.

Input: f1{a,b} shft

Returns: {a<<shft,b<<shft}

fract2x16 shl_fr2x16_clip(fract2x16 f1,short shft)

Arithmetically shifts both fract16s in the fract2x16 left by shft (clipped
to 5 bits) places, and returns the packed result. The empty bits are zero
filled. If shft is negative, the shift is to the right by abs(shft) places with
sign extension.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-211
for Blackfin Processors

Compiler

fract2x16 shr_fr2x16(fract2x16 f1,short shft)

Arithmetically shifts both fract16s in the fract2x16 right by shft places
with sign extension, and returns the packed result. If shft is negative, the
shift is to the left by abs(shft) places and the empty bits are zero-filled.

Input: f1{a,b} shft

Returns: {a>>shft,b>>shft}

fract2x16 shr_fr2x16_clip(fract2x16 f1,short shft)

Arithmetically shifts both fract16s in the fract2x16 right by shft
(clipped to 5 bits) places with sign extension, and returns the packed
result. If shft is negative, the shift is to the left by abs(shft) places and
the empty bits are zero-filled.

fract2x16 shrl_fr2x16(fract2x16 f1,short shft)

Logically shifts both fract16s in the fract2x16 right by shft places.
There is no sign extension and no saturation – the empty bits are
zero-filled.

Input: f1{a,b} shft

Returns: {a>>shft,b>>shft} //logical shift

fract2x16 shrl_fr2x16_clip(fract2x16 f1,short shft)

Logically shifts both fract16s in the fract2x16 right by shft places
(clipped to 5 bits). There is no sign extension and no saturation – the
empty bits are zero-filled.

C/C++ Compiler Language Extensions

1-212 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fract2x16 abs_fr2x16(fract2x16 f1)

Returns the absolute value of both fract16s in the fract2x16.

Input: f1{a,b}

Returns: {abs(a),abs(b)}

fract2x16 min_fr2x16(fract2x16 f1,fract2x16 f2)

Returns the minimums of the two pairs of fract16s in the two input
fract2x16s.

Input: f1{a,b} f2{c,d}

Returns: {min(a,c),min(b,d)}

fract2x16 max_fr2x16(fract2x16 f1,fract2x16 f2)

Returns the maximums of the two pairs of fract16s in the two input
fract2x16s.

Input: f1{a,b} f2{c,d}

Returns: {max(a,c),max(b,d)}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-213
for Blackfin Processors

Compiler

fract16 sum_fr2x16(fract2x16 f1)

fract sum_fx_fr2x16(fract2x16 f1)

Performs a sideways addition of the two fract16s or fracts in f1.

Input: f1{a,b}

Returns: a+b

fract2x16 add_as_fr2x16(fract2x16 f1,fract2x16 f2)

Performs a vector add/subtract on the two input fract2x16s.

Input: f1{a,b} f2{c,d}

Returns: {a+c,b-d}

fract2x16 add_sa_fr2x16(fract2x16 f1,fract2x16 f2)

Performs a vector subtract/add on the two input fract2x16s.

Input: f1{a,b} f2{c,d}

Returns: {a-c,b+d}

fract16 diff_hl_fr2x16(fract2x16 f1)

fract diff_hl_fx_fr2x16(fract2x16 f1)

Takes the difference (high-low) of the two fract16s or fracts in the
fract2x16.

Input: f1{a,b}

Returns: a-b

C/C++ Compiler Language Extensions

1-214 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fract16 diff_lh_fr2x16(fract2x16 f1)

fract diff_lh_fx_fr2x16(fract2x16 f1)

Takes the difference (low-high) of the two fract16s or fracts in the
fract2x16.

Input: f1{a,b}

Returns: b-a

fract32 mult_ll_fr2x16(fract2x16 f1, fract2x16 f2)

long fract mult_ll_fx_fr2x16(fract2x16 f1, fract2x16 f2)

Cross-over multiplication. Multiplies the low half of f1 with the low half
of f2.

Input: f1{a,b} f2{c,d}

Returns: (fract32) b*d or (long fract) b*d

fract32 mult_hl_fr2x16(fract2x16 f1, fract2x16 f2)

long fract mult_hl_fx_fr2x16(fract2x16 f1, fract2x16 f2)

Cross-over multiplication. Multiplies the high half of f1 with the low half
of f2.

Input: f1{a,b} f2{c,d}

Returns: (fract32) a*d or (long fract) a*d

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-215
for Blackfin Processors

Compiler

fract32 mult_lh_fr2x16(fract2x16 f1, fract2x16 f2)

long fract mult_lh_fx_fr2x16(fract2x16 f1, fract2x16 f2)

Cross-over multiplication. Multiplies the low half of f1 with the high half
of f2.

Input: f1{a,b} f2{c,d}

Returns: (fract32) b*c or (long fract) b*c

fract32 mult_hh_fr2x16(fract2x16 f1, fract2x16 f2)

long fract mult_hh_fx_fr2x16(fract2x16 f1, fract2x16 f2)

Cross-over multiplication. Multiplies the high half of f1 with the high
half of f2.

Input: f1{a,b} f2{c,d}

Returns: (fract32) a*c or (long fract) a*c

ETSI Built-In Functions

If fract.h is included with ETSI_SOURCE defined, the macros listed below
are also defined, mapping from the European Telecommunications
Standards Institute (ETSI) fract functions onto the compiler built-in
functions. The mappings are done in fract_math.h (included by
fract.h).

add() abs_s()

sub() saturate()

shl() extract_h()

shr() extract_l()

mult() L_deposit_l()

mult_r() div_s()

negate() norm_s()

round() norm_l()

C/C++ Compiler Language Extensions

1-216 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

L_add() L_Extract()

L_sub() L_Comp()

L_abs() Mpy_32()

L_negate() Mpy_32_16()

L_shl() L_mult()

L_shr() L_mac()

L_msu() L_shr_r()

div_l()

Here is a description of the ETSI functions that do not map exactly to
compiler built-in functions:

fract32 L_mac(fract32 acc,fract16 f1, fract16 f2)

Multiply accumulate. Returns acc+=f1*f2.

fract32 L_msu(fract32 acc,fract16 f1, fract16 f2)

Multiply subtract. Returns acc-=f1*f2.

fract32 L_Comp(fract16 f1, fract16 f2)

Composes a 32-bit value from the given high and low components. The
sign is provided with the low half, and the result is calculated as:
f1<<16 + f2<<1.

fract32 Mpy_32_16(short hi, short lo, fract16 n)

Multiplies a fract32 (decomposed to hi and lo) by a fract16, and returns
the result as a fract32.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-217
for Blackfin Processors

Compiler

void L_Extract(fract32 f1, fract16 *f2, fract16 *f3)

Decomposes a 32-bit fract into two 16-bit fracts.

fract32 Mpy_32(short hi1, short lo1, short hi2, short lo2)

Multiplies two fract32 numbers, and returns the result as a fract32.
The input fracts have both been split up into two shorts.

fract16 div_s(fract16 f1, fract16 f2)

Produces a result which is the fractional division of f1 by f2. Not a
built-in function as written in C code.

By default, the following ETSI functions map to clipping versions of the
built-in fract shifts.

fract16 shl(fract16 _x, short _y);

fract16 shr(fract16 _x, short _y);

fract32 L_shl(fract32 _x, short _y);

fract32 L_shr(fract32 _x, short _y);

To map them to the faster, non-clipping, versions of the built-in frac-
tional shifts, define the macro _ADI_FAST_ETSI in your source before you
include fract_math.h or on the compile command line.

ETSI Support

VisualDSP++ 5.0 provides ETSI support routines in the libetsi*.dlb
library, which contains routines for manipulation of the fract16 and
fract32 data types as stipulated by ETSI. The routines provide
bit-accurate calculations for common operations, and conversions
between fract16 and fract32 data types.

C/C++ Compiler Language Extensions

1-218 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

To use the ETSI routines, the header file libetsi.h must be included,
and all source code must be compiled with the ETSI_SOURCE macro
defined.

These routines are:

• “32-Bit Fractional ETSI Routines Using Double-Precision For-
mat” on page 1-220

• “32-Bit Fractional ETSI Routines Using 1.31 Format” on
page 1-223

• “16-Bit Fractional ETSI Routines” on page 1-227

Several of the ETSI routines are provided with carry and overflow check-
ing. Where overflow or carry occurs, the global variables Carry and
Overflow are set. It is your responsibility to reset these variables in
between operations.

The Carry and Overflow variables are represented by integers and are pro-
totyped in the libetsi.h system header file.

Two types of libetsi libraries are provided with VisualDSP++ 5.0:

• Those with a name of the form libetsi*co.dlb have been com-
piled with checking and setting of Overflow and Carry.

• Those with a name of the form libetsi*.dlb (with no “co”) have
the checking and setting of Overflow and Carry disabled for opti-
mal performance. To use the Carry and Overflow checking versions
of the library, use the compiler flag “-l etsi*co”. When rebuild-
ing libetsi, Carry and Overflow checking is enabled with the C
and assembler macro definition __SET_ETSI_FLAGS=1.

By default, the carry/overflow setting function libraries (libetsi*co.dlb)
are not built by the supplied makefiles. To rebuild the carry and overflow
setting versions of the libraries, define compiler macro __SET_ETSI_FLAGS
=1 during compilation.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-219
for Blackfin Processors

Compiler

The carry/overflow setting versions of the following functions will not set
the Carry and/or Overflow variables correctly on the ADSP-BF535
processor, due to differences in the way the hardware flags are set on the
ADSP-BF535 processor.

shl shr shr_r

L_msuNs L_shl L_shr L_shr_r

Many routines in the library are also represented by built-in functions.
Where built-in functions exist, the compiler replaces the functional code
with an optimal inline assembler representation. To disable the use of the
ETSI built-in functions and use the library versions, compile with the
macro NO_ETSI_BUILTINS defined. However, use of the built-in functions
results in better performance since there is an overhead in making the
function call to the library.

 The built-in versions of the functions do not set the Carry and
Overflow flags.

 The built-in versions of some ETSI functions are affected by the
RND_MOD flag in the ASTAT register. For bit-exact results, set the
RND_MOD flag to provide biased rounding. For more information, see
“Changing the RND_MOD Bit” on page 1-242.

If the macro RENAME_ETSI_NEGATE is defined, the ETSI function “negate”
will be renamed to etsi_negate(). This is useful because the C++ Stan-
dard declares a template function called negate() (found in the C++
include “functional”).

C/C++ Compiler Language Extensions

1-220 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The following routines are available in the ETSI library. These routines
are commonly classified into three groups:

• Those that return or primarily operate on 32-bit fractional values
in double-precision format

• Those that return or primarily operate on 32-bit fractional values
in 1.31 format

• Those that return or primarily operate on 16-bit fractional values
in 1.15 format

32-Bit Fractional ETSI Routines Using Double-Precision Format

Double-precision format (DPF) is represented as:

L_32 = (hi<<16) + (lo<<1)

where:

• L_32 is a 32-bit signed integer (though it is listed as fract32)

• hi and lo are 16-bit signed integers (though they are listed as
fract16)

The ETSI operations that use DPF are:

fract32 L_Comp(fract16 hi, fract16 lo)

Composes a 32-bit value from the given high and low DPF components.
The sign is provided with the low half, and the result is calculated as:

(hi<<16) + (lo<<1);

A built-in version of this function is also provided.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-221
for Blackfin Processors

Compiler

void L_Extract(fract32 src, fract16 *hi, fract16 *lo)

Extracts low and high halves of a 32-bit value into 16-bit DPF component
values pointed to by the hi and lo parameters. The values calculated are:

*hi = bit16 to bit31 of src

*lo = (src - (hi<<16))>>1

A built-in version of this function is also provided.

fract32 Mpy_32(fract16 hi1,fract16 lo1, fract16 hi2,fract16 lo2)

Performs the multiplication of two 32-bit values, each provided as high
and low DPF components. The result returned is calculated as:

Res = L_mult(hi1, hi2);

Res = L_mac(Res, mult(hi1, lo2), 1);

Res = L_mac(Res, mult(lo1, hi2), 1);

A built-in version of this function is also provided.

fract32 Mpy_32_16(fract16 hi, fract16 lo, fract16 v)

Multiplies the parameter v, which is a fract16 value, by a 32-bit DPF
value provided as high and low halves, and returns the result as a 32-bit
value. A built-in version of this function is also provided.

fract32 Div_32(fract32 L_num, fract16 denom_hi, fract16 denom_lo)

Performs a 32-bit fractional division using a 32-bit dividend (L_num) and a
32-bit DPF divisor (denom_hi and denom_lo). Both the dividend and the

C/C++ Compiler Language Extensions

1-222 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

divisor must be positive fractional values. Also, the value of the dividend
must be less than the value of the divisor, and the value of the divisor must
not be less than 0x40000000 (which is equivalent to the value 0.5).

The result of Div_32 is accurate to 24 bits of precision.

Use of these functions typically requires fractional data to be converted to
and from DPF. The L_Extract() and L_Comp() functions can be used for
this purpose.

An example that uses these DPF operators follows. The example imple-
ments a 32-bit fractional multiplication (also implemented by the
compiler built-in function mult_fr1x32x32()).

#define ETSI_SOURCE

#include <libetsi.h>

fract32 mul32by32_etsi(fract32 a, fract32 b) {

fract32 exp_prec_res;

fract16 lo1, hi1, lo2, hi2, hi, lo;

fract32 res;

/* Extract two 16-bit DPF components from a 32-bit fract */

L_Extract(a, &hi1, &lo1) ;

/* Extract two 16-bit DPF components from a 32-bit fract */

L_Extract(b, &hi2, &lo2) ;

/* 32-bit extended precision Multiply */

exp_prec_res = Mpy_32(hi1, lo1, hi2, lo2);

/* Extract two 16-bit DPF components from a 32-bit integer */

L_Extract(exp_prec_res, &hi, &lo);

/* Compose a 32-bit integer from two 16-bit DPF components */

res = L_Comp(hi, lo);

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-223
for Blackfin Processors

Compiler

/* return result */

return res;

}

32-Bit Fractional ETSI Routines Using 1.31 Format

The following functions return or primarily operate on 32-bit fractional
data, in 1.31 format.

fract32 L_add_c(fract32 a, fract32 b)

Performs a 32-bit addition of the two input parameters. When using a ver-
sion of the library compiled with __SET_ETSI_FLAGS, the Carry and
Overflow flags are set when carry and overflow/underflow occur during
addition.

fract32 L_abs(fract32 a)

Returns the 32-bit absolute value of the input parameter. In cases where
the input is equal to 0x80000000, saturation occurs and 0x7fffffff is
returned. A built-in version of this function is also provided.

fract32 L_add(fract32 a, fract32 b)

Returns the 32-bit saturated result of the addition of the two input param-
eters. If the library is compiled with __SET_ETSI_FLAGS, the Overflow flag
is set when overflow occurs. A built-in version of this function is also
provided.

C/C++ Compiler Language Extensions

1-224 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fract32 L_deposit_h(fract16 hi)

Deposits the 16-bit parameter into the 16 most significant bits of the
32-bit result. The least 16 bits are zeroed. A built-in version of this func-
tion is also provided.

fract32 L_deposit_l(fract16 lo)

Deposits the 16-bit parameter into the 16 least significant bits of the
32-bit result. The most significant bits are set to sign extension for the
input. A built-in version of this function is also provided.

fract32 L_mac(fract32 acc, fract16 f1, fract16 f2)

Performs a fractional multiplication of the two 16-bit parameters and
returns the saturated sum of the multiplication result with the 32-bit
parameter. A built-in version of this function is also provided.

fract32 L_macNs(fract32,fract16, fract16)

Performs a non-saturating version of the L_mac operation. If the library is
compiled with __SET_ETSI_FLAGS, the Overflow and Carry flags are set
when carry or overflow/underflow occurs.

fract32 L_mls (fract32, fract16)

Multiplies both the most significant bits and the least significant bits of a
long, by the same short.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-225
for Blackfin Processors

Compiler

fract32 L_msu(fract32, fract16, fract16)

Performs a fractional multiplication of the two 16-bit parameters and
returns the saturated subtraction of the multiplication result with the
32-bit parameter. A built-in version of this function is also provided.

fract32 L_msuNs(fract32, fract16, fract16)

Performs a non-saturating version of the L_msu operation. If the library is
compiled with __SET_ETSI_FLAGS, the Overflow and Carry flags are set
when carry or overflow/underflow occurs.

fract32 L_mult(fract16, fract16)

Returns the 32-bit saturated result of the fractional multiplication of the
two 16-bit parameters. A built-in version of this function is also provided.

fract32 L_negate(fract32)

Returns the 32-bit result of the negation of the parameter. Where the
input parameter is 0x80000000 saturation occurs and 0x7fffffff is
returned. A built-in version of this function is also provided.

fract32 L_sat(fract32)

The resultant variable is set to 0x80000000 if Carry and Overflow flags are
set (underflow condition); else, if Overflow is set, the resultant is set to
0x7fffffff. The default revision of the library simply returns as no check-
ing or setting of the Overflow and Carry flags is performed.

C/C++ Compiler Language Extensions

1-226 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fract32 L_shl(fract32 src, fract16 shft)

Arithmetically shifts the 32-bit first parameter to the left by the value
given in the 16-bit second parameter. The empty bits of the 32-bit value
are zero-filled. If the shifting value, shft, is negative, the source is shifted
to the right by -shft, sign-extended. The result is saturated in cases of
overflow and underflow.

If the library is compiled with __SET_ETSI_FLAGS, the Overflow flag is set
when overflow occurs. A built-in version of this function is also provided.

fract32 L_shr(fract32, fract16)

Arithmetically shifts the 32-bit first parameter to the right by the value
given in the 16-bit second parameter with sign extension. If the shifting
value is negative, the source is shifted to the left. The result is saturated in
cases of overflow and underflow.

If the library is compiled with __SET_ETSI_FLAGS, the Overflow flag is set
when overflow occurs. A built-in version of this function is also provided.

fract32 L_shr_r(fract32, fract16)

Performs the shift-right operation as per L_shr but with rounding. If the
library is compiled with __SET_ETSI_FLAGS, the Overflow and Carry flags
are set when carry or overflow/underflow occurs.

fract32 L_sub(fract32, fract32)

Returns the 32-bit saturated result of the subtraction of two 32-bit param-
eters (first-second). A built-in version of this function is also provided.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-227
for Blackfin Processors

Compiler

fract32 L_sub_c(fract32 f1, fract32 f2)

Performs 32-bit subtraction of two fractional values (f1 - f2). When
using a version of the library compiled with __SET_ETSI_FLAGS, the Carry
and Overflow flags are set when carry and overflow/underflow occur dur-
ing subtraction.

16-Bit Fractional ETSI Routines

The following functions return or primarily operate on 16-bit fractional
data.

fract16 abs_s(fract16)

Returns the 16-bit value that is the absolute value of the input parameter.
Where the input is 0x8000, saturation occurs and 0x7fff is returned. A
built-in version of this function is also provided.

fract16 add(fract16, fract16)

Returns the 16-bit result of adding the two fract16 input parameters.

Saturation occurs with the result being set to 0x7fff for overflow and
0x8000 for underflow. If the library is compiled with __SET_ETSI_FLAGS,
the Overflow and Carry flags are set when carry or overflow/underflow
occurs. A built-in version of this function is also provided.

fract16 div_l (fract32, fract16)

This function produces a result which is the fractional integer division of
the first parameter by the second. Both inputs must be positive and the
least significant word of the second parameter must be greater or equal to
the first; the result is positive (leading bit equal to 0) and truncated to 16
bits. The function calls abort() on division error conditions.

C/C++ Compiler Language Extensions

1-228 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fract16 div_s(fract16 f1, fract16 f2)

Returns the 16-bit result of the fractional integer division of f1 by f2.
Both f1 and f2 must be positive fractional values with f2 greater than f1.
A built-in version of this function is also provided.

fract16 extract_l(fract32)

Returns the 16 least significant bits of the 32-bit fract parameter provided.
A built-in version of this function is also available.

fract16 extract_h(fract32)

Returns the 16 most significant bits of the 32-bit fract parameter pro-
vided. A built-in version of this function is also available.

fract16 mac_r(fract32 acc, fract16 f1, fract16 f2)

Performs an L_mac operation using the three parameters provided. The
result is the rounded 16 most significant bits of the 32-bit results from the
L_mac operation.

fract16 msu_r(fract32, fract16, fract16)

Performs an L_msu operation using the three parameters provided. The
result is the rounded 16 most significant bits of the 32-bit result from the
L_msu operation.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-229
for Blackfin Processors

Compiler

fract16 mult(fract16, fract16)

Returns the 16-bit result of the fractional multiplication of the input
parameters. The result is saturated. A built-in version of this function is
also provided.

fract16 mult_r(fract16, fract16)

Performs a 16-bit multiply with rounding of the result of the fractional
multiplication of the two input parameters. A built-in version of this func-
tion is also provided.

 The inline version of the mult_r() function is implemented using
the multr_fr1x16() compiler intrinsic, which in turn does a nor-
mal 16-bit fractional multiply:

Rx.L = Ry.L * Rz.L;

This instruction’s result is affected by the RND_MOD bit in the ASTAT
register, which means that the results are not always ETSI-compli-
ant. To avoid this issue, set RND_MOD before using the inline version
or use the libetsi library-defined version of the function (which
sets the bit). For more information, see “Changing the
RND_MOD Bit” on page 1-242.

fract16 negate(fract16)

Returns the 16-bit result of the negation of the input parameter. If the
input is 0x8000, saturation occurs and 0x7fff is returned. A built-in ver-
sion of this function is also provided.

 This function generates the Blackfin SIGNBITS instruction.

C/C++ Compiler Language Extensions

1-230 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

int norm_l(fract32)

Returns the number of left shifts required to normalize the input variable
so that it is either in the interval 0x40000000 to 0x7fffffff, or in the
interval 0x80000000 to 0xc0000000. In other words,

fract32 x;

shl_fr1x32(x,norm_fr1x32(x));

returns a value in the range 0x40000000 to 0x7fffffff, or in the range
0x80000000 to 0xc0000000.

int norm_s(fract16)

Returns the number of left shifts required to normalize the input variable
so that it is either in the interval 0x4000 to 0x7fff, or in the interval
0x8000 to 0xc000. In other words,

fract16 x;

shl_fr1x16(x,norm_fr1x16(x));

returns a value in the range 0x4000 to 0x7fff, or in the range 0x8000 to
0xc000.

 This function generates the Blackfin SIGNBITS instruction.

fract16 round(fract32)

Rounds the lower 16 bits of the 32-bit input parameter into the most sig-
nificant 16 bits with saturation. The resulting bits are shifted right by 16.
A built-in version of this function is also provided.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-231
for Blackfin Processors

Compiler

fract16 saturate(fract32)

Returns the 16 least significant bits of the input parameter. If the input
parameter is greater than 0x7fff, 0x7fff is returned. If the input parame-
ter is less than 0x8000, 0x8000 is returned. A built-in version of this
function is also available.

fract16 shl(fract16 src, fract16 shft)

Arithmetically shifts the src variable left by shft places. The empty bits
are zero-filled. If shft is negative, the shift is to the right by shft places.

If the library is compiled with __SET_ETSI_FLAGS, the Overflow and Carry
flags are set when carry or overflow/underflow occurs. A built-in version
of this function is also provided.

fract16 shr(fract16, fract16)

Arithmetically shifts the src variable right by shft places with sign exten-
sion. If shft is negative, the shift is to the left by shft places.

If the library is compiled with __SET_ETSI_FLAGS, the Overflow and Carry
flags are set when carry or overflow/underflow occurs. A built-in version
of this function is also provided.

fract16 shr_r(fract16, fract16)

Performs a shift to the right as per the shr() operation with additional
rounding and saturation of the result.

C/C++ Compiler Language Extensions

1-232 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fract16 sub(fract16 f1, fract16 f2)

Returns the 16-bit result of the subtraction of the two parameters (f1 –
f2). Saturation occurs with the result being set to 0x7fff for overflow and
0x8000 for underflow.

If the library is compiled with __SET_ETSI_FLAGS, the Overflow and Carry
flags are set when carry or overflow/underflow occurs. A built-in version
of this function is also provided.

Fractional Value Built-In Functions in C++

The compiler provides support for two C++ fractional classes. The fract
class uses a fract32 C type for storage of the fractional value, whereas the
shortfract class uses a fract16 C type for storage of the fractional value.

Instances of the shortfract and fract classes are initialized using values
with the “r” suffix, provided they are within the range [-1,1). The fract
class is implemented by the compiler as representing the internal type
fract. For example,

#include <fract>

int main ()

{

fract X = 0.5r;

}

Instances of the shortfract class can be initialized using “r” values in the
same way, but are not represented as an internal type by the compiler.
Instead, the compiler produces a temporary fract, which is initialized
using the “r” value. The value of the fract class is then copied to the
shortfract class using an implicit copy, and the fract is destroyed.

The fract and shortfract classes contain routines that allow basic
arithmetic operations and movement of data to and from other data types.
The example below shows the use of the shortfract class with * and +
operators.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-233
for Blackfin Processors

Compiler

The mathematical routines for addition, subtraction, division, and multi-
plication for both fract and shortfract classes are performed using the
ETSI-defined routines for the C fractional types (fract16 and fract32).
Inclusion of the fract and shortfract header files implicitly defines the
macro ETSI_SOURCE to be 1. This is required for use of the ETSI routines,
which are defined in libetsi.h and located in the libetsi53*.dlb
libraries.

#include <shortfract>

#include <stdio.h>

#define N 20

shortfract x[N] = {

.5r,.5r,.5r,.5r,.5r,

.5r,.5r,.5r,.5r,.5r,

.5r,.5r,.5r,.5r,.5r,

.5r,.5r,.5r,.5r,.5r};

shortfract y[N] = {

0,.1r,.2r,.3r,.4r,

.5r,.6r,.7r,.8r,.9r,

.10r,.1r,.2r,.3r,.4r,

.5r,.6r,.7r,.8r,.9r};

shortfract fdot(int n, shortfract *x, shortfract *y)

{

int j;

shortfract s;

s = 0;

for (j=0; j<n; j++) {

s += x[j] * y[j];

}

return s;

}

C/C++ Compiler Language Extensions

1-234 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

int main(void)

{

fdot(N,x,y);

}

fract16 and fract32 Literal Values in C

This section discusses natural ways to define fract16 and fract32 literal
values. For discussion of literals of the native fixed-point types fract and
accum, see “Native Fixed-Point Constants” on page 1-107.

When compiling a program in C mode, a constant with an “r” suffix is
defined to be a native fixed-point constant of fract type. This should not
be used to initialize a fract16 or fract32 constant since the type conver-
sion will yield an unexpected result (see “Data Type Conversions and
Fixed-Point Types” on page 1-110 for more details). However, in C++
mode the “r” suffix denotes values of the fract class. If a C program is
compiled in C++ mode, fract16 and fract32 variables can be initialized
using “r” literal values; the compiler automatically converts from the
fract class values to the C types. When adopting this approach, be aware
of any semantic differences between the C and C++ languages that might
affect your program.

The suffixes “r32” and “r16” can be used in C mode to represent fract32
and fract16 literals. They allow users to naturally express literals in frac-
tional format. These literals are represented as 32-bit signed integral types.

For example,

0x4000 is the same as 0.5r16

0x40000000 is the same as 0.5r32

These literals cannot be used in the expressions of the preprocessing direc-
tives #if or #elif.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-235
for Blackfin Processors

Compiler

 Despite appearances, literal values expressed in this syntax are still
“normal” integer values, and are subject to the usual rules of inte-
ger arithmetic and type promotion/conversion. Be sure to use the
built-in functions if you require fractional arithmetic.

Converting Between Fractional and Floating-Point Values

The VisualDSP++ run-time libraries contain high-level support for con-
verting between fractional and floating-point values. The include file
fract2float_conv.h defines functions which perform conversions
between fract16, fract32, and float types.

The following functions are defined:

fract32 fr16_to_fr32(fract16); // Deposits a fract16 to make

// a fract32

fract16 fr32_to_fr16(fract32); // Truncates a fract32 to make

// a fract16

fract32 float_to_fr32(float); // Converts a float to fract32

fract16 float_to_fr16(float); // Converts a float to fract16

float fr16_to_float(fract16); // Converts a fract16 to float

float fr32_to_float(fract32); // Converts a fract32 to float

In addition, the following functions are defined for use on the native
fixed-point types fract and long fract. These are provided for complete-
ness only, as casts between the different types provide the same
functionality.

long fract fx16_to_fx32(fract); // Deposits a fract to make

// a long fract

fract fx32_to_fx16(long fract); // Truncates a long fract to make

// a fract

long fract float_to_fx32(float); // Converts a float

C/C++ Compiler Language Extensions

1-236 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

// to a long fract

fract float_to_fx16(float); // Converts a float to a fract

float fx16_to_float(fract); // Converts a fract to a float

float fx32_to_float(long fract); // Converts a long fract

// to a float

The float-to-fract conversions are saturating such that the result lies in the
range of the fractional data type.

These functions can be employed to aid implementation of critical parts
of applications using fractional arithmetic that would otherwise use
floating-point arithmetic. Such implementations usually requires data
to be scaled into the fractional range before converting to fract16 or
fract32, and this is still true when using the functions defined in
fract2float_conv.h.

Listing 1-3 implements a floating-point multiplication using an ETSI
fract implementation.

Listing 1-3. Floating-Point Multiplication Using fracts

#define ETSI_SOURCE

#include <fract2float_conv.h>

#include <fract_typedef.h>

#include <libetsi.h>

#include <stdlib.h>

#include <math.h>

/* return a*b calculated using fract implementation */

float mul_fp(float a, float b) {

int sign_a, sign_b, sign_res;

float scaled_a, scaled_b, fract_div_res, result;

int exp_a, exp_b, exp_res;

fract32 fract_a, fract_b, fract_res;

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-237
for Blackfin Processors

Compiler

fract32 fract_exp_a, fract_exp_b, fract_exp_res;

fract16 hia, loa, hib, lob;

/* if either input is 0, return 0 */

if (a == 0.0 || b == 0.0)

return 0.0;

/* get sign and take absolute of inputs */

if (*(unsigned int *)&a & 0x80000000) {

sign_a=-1;

a = fabs(a);

} else

sign_a=1;

if (*(unsigned int *)&b & 0x80000000) {

sign_b=-1;

b = fabs(b);

} else

sign_b=1;

/* compute sign of result */

sign_res = sign_a * sign_b;

/* scale inputs */

scaled_a = frexpf(a, &exp_a);

scaled_b = frexpf(b, &exp_b);

/* convert scaled inputs to fract */

fract_a = float_to_fr32(scaled_a);

fract_b = float_to_fr32(scaled_b);

/* extract the 16-bit DPF words from the fract inputs */

L_Extract(fract_a, &hia, &loa);

L_Extract(fract_b, &hib, &lob);

C/C++ Compiler Language Extensions

1-238 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

/* do fractional multiplication in extended precision */

fract_res = Mpy_32(hia, loa, hib, lob);

/* multiply exponents by adding */

exp_res = exp_a + exp_b;

/* convert mul result back to float */

fract_div_res = fr32_to_float(fract_res);

/* compose the floating-point result */

result = ldexpf(fract_div_res, exp_res);

/* negate result if necessary */

result = result * sign_res;

/* return result */

return result;

} /* mul_fp */

Complex Fractional Built-In Functions in C

The complex_fract16 type is used to hold complex fractional numbers.
It contains real and imaginary values, both as 16-bit fractional numbers.

typedef struct {

fract16 re, im;

} complex_fract16;

The complex_fract32 type is used to hold complex fractional numbers.
It contains real and imaginary values, both as 32-bit fractional numbers.

typedef struct {

fract32 re, im;

} complex_fract32;

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-239
for Blackfin Processors

Compiler

The complex_fract16 and complex_fract32 types are defined by the
complex.h header file. Additionally, there are numerous library functions
for manipulating complex fracts. These functions are documented in
“DSP Run-Time Library Reference” on page 4-75.

The compiler also supports the following built-in operations for complex
fracts. For each of these built-ins, fractional results values are rounded
and saturated as required. The rounding mode is determined by the
RND_MOD bit in the ASTAT register.

• The following built-in function generates instructions to perform a
complex fractional multiplication of _a and _b, the result of which
is accumulated with _sum, saturating the accumulation at 32 bits:

complex_fract16 cmac_fr16(complex_fract16 _sum,

complex_fract16 _a,

complex_fract16 _b);

• The following built-in function generates instructions to perform a
complex fractional multiplication of _a and _b, the result of which
is subtracted from _sum, saturating the result at 32 bits:

complex_fract16 cmsu_fr16(complex_fract16 _sum,

complex_fract16 _a,

complex_fract16 _b);

• The following built-in function generates instructions to calculate
and returns the complex fractional square of _a.

complex_fract16 csqu_fr16(complex_fract16 _a);

C/C++ Compiler Language Extensions

1-240 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

• The following built-in functions generate instructions to calculate
the square of the distance between inputs _x and _y.

fract16 cdst_fr16(complex_fract16 _x,

complex_fract16 _y);

fract32 cdst_fr32(complex_fract16 _x,

complex_fract16 _y);

fract cdst_fx_fr16(complex_fract16 _x,

complex_fract16 _y);

long fract cdst_fx_fr32(complex_fract16 _x,

complex_fract16 _y);

• Complex fractional multiply accumulate and complex fractional
multiply subtract operations with internal operations performed
saturating to 40-bits in the accumulator registers.

complex_fract16 cmac_fr16_s40(complex_fract16 _sum,

complex_fract16 _a,

complex_fract16 _b);

complex_fract16 cmsu_fr16_s40(complex_fract16 _sum,

complex_fract16 _a,

complex_fract16 _b);

• The following functions can be used to extract the real (real_fr32)
and imaginary (imag_fr32) parts of the complex_fract16 or
complex_fract32 input _a.

fract16 real_fr16(complex_fract16 _a);

fract16 imag_fr16(complex_fract16 _a);

fract real_fx_fr16(complex_fract16 _a);

fract imag_fx_fr16(complex_fract16 _a);

fract32 real_fr32(complex_fract32 _a);

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-241
for Blackfin Processors

Compiler

fract32 imag_fr32(complex_fract32 _a);

long fract real_fx_fr32(complex_fract32 _a);

long fract imag_fx_fr32(complex_fract32 _a);

• The following functions can be used to create a complex_fract16
or complex_fract32 type instance from two fractional inputs which
correspond to the required result’s real and imaginary parts.

complex_fract16 ccompose_fr16

(fract16 _real, fract16 _imag);

complex_fract16 ccompose_fx_fr16

(fract _real, fract _imag);

complex_fract32 ccompose_fr32

(fract32 _real, fract32 _imag);

complex_fract32 ccompose_fx_fr32

(long fract _real, long fract _imag);

• The following function performs a complex addition of the inputs
and returns the result.

complex_fract32 cadd_fr32(complex_fract32 _a,

complex_fract32 _b);

• The following function performs a complex subtraction of the
inputs and returns the result.

complex_fract32 csub_fr32(complex_fract32 _a,

complex_fract32 _b);

• The following function returns the complex conjugate of the input.
complex_fract32 conj_fr32(complex_fract32 _a);

C/C++ Compiler Language Extensions

1-242 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Changing the RND_MOD Bit

Three built-in functions (set_rnd_mod_biased, set_rnd_mod_unbiased,
and restore_rnd_mod) provide a convenient way to change the state of the
RND_MOD bit that controls whether the hardware performs biased or
unbiased rounding. The builtins.h header file should be included to use
these built-in functions.

• The following built-in function generates instructions to set the
RND_BIT bit. This will mean that instructions that depend on the
state of the RND_MOD bit will perform biased rounding. The previous
state of the RND_MOD bit is returned.

int set_rnd_mod_biased(void);

• The following built-in function generates instructions to unset the
RND_BIT bit. This will mean that instructions that depend on the
state of the RND_MOD bit will perform unbiased rounding. The previ-
ous state of the RND_MOD bit is returned.

int set_rnd_mod_unbiased(void);

• The following built-in function generates instructions to reset the
RND_BIT bit to a previous value, which is passed into the function.

void restore_rnd_mod(int);

The following example shows how you might use these built-in functions.

#include <stdfix.h>

#include <builtins.h>

fract divide_biased(fract num, fract denom)

{

fract rtn;

int prev_rnd_mod = set_rnd_mod_biased();

#pragma FX_ROUNDING_MODE BIASED;

rtn = num / denom;

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-243
for Blackfin Processors

Compiler

restore_rnd_mod(prev_rnd_mod);

return rtn;

}

Note that the pragma to set FX_ROUNDING_MODE is necessary due to the use
of the fract type in the example. This pragma does not affect the state of
the RND_MOD bit. See “#pragma FX_ROUNDING_MODE {TRUNCA-
TION|BIASED|UNBIASED}” on page 1-299 and “Setting the Rounding
Mode” on page 1-128 for further details.

Complex Operations in C++

The C++ complex class is defined in the <complex> header file, and defines
a template class for manipulating complex numbers. The standard arith-
metic operators are overloaded, and there are real() and imag() methods
for obtaining the relevant part of the complex number.

For example, the determinate and inverse of a 2x2 matrix of complex
doubles may be computed using the following C++ function:

#include <complex>

using std::complex;

complex<double> inverse2d(const complex<double> mx[4],

complex<double> mxinv[4])

{

complex<double> det = mx[0] * mx[3] - mx[2] * mx[1];

if((det.real() != 0.0) || (det.imag() != 0.0)) {

complex<double> invdet = complex<double>(1.0,0.0) / det;

mxinv[0] = invdet * mx[3];

mxinv[1] = -(invdet * mx[1]);

mxinv[2] = -(invdet * mx[2]);

mxinv[3] = invdet * mx[0];

}

C/C++ Compiler Language Extensions

1-244 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

return det;

}

By comparison, the equivalent function in C is:

#include <complex.h>

complex_double inverse2d(const complex_double mx[4],

complex_double mxinv[4])

{

complex_double det;

complex_double invdet;

complex_double tmp;

det = cmlt(mx[0],mx[3]);

tmp = cmlt(mx[2],mx[1]);

det = csub(det,tmp);

if((det.re != 0.0) || (det.im != 0.0)) {

invdet = cdiv((complex_double){1.0,0.0},det);

mxinv[0] = cmlt(invdet,mx[3]);

mxinv[1] = cmlt(invdet,mx[1]);

mxinv[1].re = -mxinv[1].re;

mxinv[1].im = -mxinv[1].im;

mxinv[2] = cmlt(invdet,mx[2]);

mxinv[2].re = -mxinv[2].re;

mxinv[2].im = -mxinv[2].im;

mxinv[3] = cmlt(invdet,mx[0]);

}

return det;

}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-245
for Blackfin Processors

Compiler

Packed 16-Bit Integer Built-In Functions

The compiler provides built-in functions that manipulate and perform
basic arithmetic functions on two 16-bit integers packed into a single
32-bit type, int2x16. Use of the built-in functions produce optimal code
sequences, using vectorized operations where possible. The types and
operations are defined in the i2x16.h header file.

Composition and decomposition of the packed type are performed with
the following functions:

int2x16 compose_i2x16(short _x, short _y);

short high_of_i2x16(int2x16 _x);

short low_of_i2x16(int2x16 _x);

The following functions perform vectorized arithmetic operations:

int2x16 add_i2x16(int2x16 _x, int2x16 _y);

int2x16 sub_i2x16(int2x16 _y, int2x16 _y);

int2x16 mult_i2x16(int2x16 _x, int2x16 _y);

int2x16 abs_i2x16(int2x16 _x);

int2x16 min_i2x16(int2x16 _x, int2x16 _y);

int2x16 max_i2x16(int2x16 _x, int2x16 _y);

The following function performs summation of the two packed
components:

int sum_i2x16(int2x16 _x);

The following functions provide cross-wise multiplication:

int mult_ll_i2x16(int2x16 _x, int2x16 _y);

int mult_hl_i2x16(int2x16 _x, int2x16 _y);

int mult_lh_i2x16(int2x16 _x, int2x16 _y);

int mult_hh_i2x16(int2x16 _x, int2x16 _y);

C/C++ Compiler Language Extensions

1-246 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Division Functions

Two built-in functions (divs and divq) provide access to the “divide
primitive” instructions:

#include <builtins.h>

int divs(int numerator, int denominator ,int *aq);

int divq(int partialres, int denominator, int *aq);

The divs() and divq() built-in functions give access to the respective
Blackfin instructions, DIVS and DIVQ, that are the foundation elements of a
non-restoring, conditional, add-subtract, integer division algorithm.

The dividend (numerator) is a 32-bit value, and the divisor (denominator)
is a 16-bit value; the high half of denominator is ignored. For details of
the instructions, refer to “DIVS, DIVQ (Divide Primitive)” in the
Blackfin Processor Programming Reference.

First, divs() initializes the processor’s AQ flag and the quotient’s sign bit
(the initial value for partialres); successive uses of divq() generate a value
bit for the quotient, producing a new partialres, and update the AQ flag.
The aq parameter is used by the compiler to track the value of the AQ flag;
divs() writes to *aq, and each invocation of divq() updates *aq.
Typically, when optimizing, these reads and writes will be optimized
away.

The following example uses the divs() and divq() primitives to imple-
ment a saturating, fractional division algorithm.

#include <builtins.h>

#include <fract.h>

fract16 saturating_fract_divide(fract16 nom, fract16 denom)

{

int partialres = (int)nom;

int divisor = (int)denom;

fract16 rtn;

int i;

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-247
for Blackfin Processors

Compiler

int aq; /* initial value irrelevant */

if (partialres == 0) {

/* 0/anything gives 0 */

rtn = 0;

} else if (partialres >= divisor) {

/* fract16 values have the range -1.0 <= x < +1.0, */

/* so our result cannot be as high as 1.0. */

/* Therefore, for x/y, if x is larger than y, */

/* saturate the result to positive maximum. */

rtn = 0x7fff;

} else {

/* nom is a 16-bit fractional value, so move */

/* the 16 bits to the top of partialres. */

/* (promote fract16 to fract32) */

partialres <<= 16;

/* initialize sign bit and AQ, via divs(). */

partialres = divs(partialres, divisor, &aq);

/* Update each of the value bits of the partial result */

/* and reset AQ via divq(). */

for (i=0; i<15; i++) {

partialres = divq(partialres, divisor, &aq);

}

rtn = (fract16) partialres;

}

return rtn;

}

Full-Precision Accumulator Built-In Functions

The compiler provides built-in functions to take advantage of the full
40-bit precision of the accumulator registers.

Listing 1-4 shows a dot product that is guaranteed to accumulate in
40-bits and to saturate the final sum to 32-bits.

C/C++ Compiler Language Extensions

1-248 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Listing 1-4. Fractional Dot Product Implemented with Accumulator
Built-Ins

#include <builtins.h>

fract32 dot(fract16 a[], fract16 b[], int n) {

int i;

acc40 sum = 0;

for (i = 0; i < n; ++i)

sum = A_mac(sum, a[i], b[i]);

return A_mad(sum);

}

Accumulator Built-In Function Prototypes

Table 1-26 lists all the full-precision accumulator built-in functions with
their characteristic instruction. Each function implements the same com-
putation as this characteristic instruction, but the compiler may generate
an alternative instruction sequence to do so. See the Blackfin Processor
Programming Reference for details of the instructions.

Table 1-26. Accumulator Built-In Functions

Function Instruction

acc40 A_mult(fract16, fract16); An = Dx.lh * Dy.lh

acc40 A_mult_FU(fract16, fract16); An = Dx.lh * Dy.lh (FU)

acc40 A_mult_M(fract16, fract16); A1 = Dx.lh * Dy.lh (M)

acc40 A_mult_IS(short, short); An = Dx.lh * Dy.lh (IS)

acc40 A_mult_MIS(short, unsigned short); A1 = Dx.lh * Dy.lh (M,IS)

acc40 A_mac(acc40,fract16, fract16); An += Dx.lh * Dy.lh

acc40 A_mac_FU(acc40,fract16, fract16); An += Dx.lh * Dy.lh (FU)

acc40 A_mac_M(acc40,fract16, fract16); A1 += Dx.lh * Dy.lh (M)

acc40 A_mac_IS(acc40,short, short); An += Dx.lh * Dy.lh (IS)

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-249
for Blackfin Processors

Compiler

acc40 A_mac_MIS(acc40,short, unsigned short); A1 += Dx.lh * Dy.lh (M,IS)

acc40 A_msu(acc40,fract16, fract16); An -= Dx.lh * Dy.lh

acc40 A_msu_FU(acc40,fract16, fract16); An -= Dx.lh * Dy.lh (FU)

acc40 A_msu_M(acc40,fract16, fract16); A1 -= Dx.lh * Dy.lh (M)

acc40 A_msu_IS(acc40,short, short); An -= Dx.lh * Dy.lh (IS)

acc40 A_msu_MIS(acc40,short, unsigned short); A1 -= Dx.lh * Dy.lh (M,IS)

int A_eq(acc40, acc40); CC = A0 == A1

int A_lt(acc40, acc40); CC = A0 < A1

int A_le(acc40, acc40); CC = A0 <= A1

acc40 A_add(acc40, acc40); A0 += A1

acc40 A_sub(acc40, acc40); A0 -= A1

acc40 A_neg(acc40); An = -An

acc40 A_abs(acc40); An = ABS An

int A_bitmux_ASR(int, int, acc40, int*, acc40*); BITMUX(Dx, Dy, A0) (ASR)

int A_bitmux_ASL(int, int, acc40, int*, acc40*); BITMUX(Dx, Dy, A0) (ASL)

short A_bxorshift_mask32(acc40, int, int*); Dn.L = CC = BXORSHIFT(A0, Dx)

short A_bxor_mask32(acc40, int, int*); Dn.L = CC = BXOR(A0, Dx)

acc40 A_bxorshift_mask40(acc40, acc40, int); A0 = BXORSHIFT(A0, A1, CC);

short A_bxor_mask40(acc40, acc40, int, int*); Dn.L = CC = BXOR(A0, A1, CC);

short A_signbits(acc40); Dx.L = SIGNBITS An;

acc40 A_ashift(acc40, short); An = ASHIFT An BY Dx.L ‡
An = An >>> uimm5
An = An << uimm5

acc40 A_lshift(acc40, short); An = LSHIFT An BY Dx.L ‡
An = An >> uimm5
An = An << uimm5

Table 1-26. Accumulator Built-In Functions (Cont’d)

Function Instruction

C/C++ Compiler Language Extensions

1-250 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

 The results of the functions marked with a dagger (†) in
Table 1-26 on page 1-248 are affected by the setting of the RND_MOD
bit in the ASTAT register. See the Blackfin Processor Programming
Reference for details.

 The functions marked with a double dagger (‡) in Table 1-26 on
page 1-248 will return their first operand An shifted left by Dx.L
places if Dx.L is positive, or shifted right by ABS(Dx.L) places if
Dx.L is negative. See the Blackfin Processor Programming Reference
for details.

acc40 A_sat(acc40); An = An (S)

fract32 A_mad(acc40); Dn = An

fract32 A_mad_FU(acc40); Dn = An (FU)

fract32 A_mad_S2RND(acc40); Dn = An (S2RND)

int A_mad_ISS2(acc40); Dn = An (ISS2)

fract16 A_madh(acc40); Dn.lh = An †

fract16 A_madh_FU(acc40); Dn.lh = An (FU) †

short A_madh_IS(acc40); Dn.lh = An (IS)

unsigned short A_madh_IU(acc40); Dn.lh = An (IU)

fract16 A_madh_T(acc40); Dn.lh = An (T)

fract16 A_madh_TFU(acc40); Dn.lh = An (TFU)

fract16 A_madh_S2RND(acc40); Dn.lh = An (S2RND) †

short A_madh_ISS2(acc40); Dn.lh = An (ISS2)

short A_madh_IH(acc40); Dn.lh = An (IH) †

Table 1-26. Accumulator Built-In Functions (Cont’d)

Function Instruction

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-251
for Blackfin Processors

Compiler

Accumulator Built-In Functions and the Optimizer

The compiler will usually generate an accumulator instruction for each
call to an accumulator built-in function, but it will not map acc40 typed
variables to accumulator registers unless optimization is enabled. See the
-O (enable optimizations) switch on page 1-60.

Other circumstances may impact the efficiency of the generated code; for
example, the Blackfin processor has two 40-bit accumulator registers, so C
code that has more than two acc40 variables in use at the same time will
require some inefficient shuffling of values in and out of the accumulators
to perform the calculation.

The accumulator data type acc40 is a signed 64-bit integral type, so arith-
metic operators can be used with variables of this type. However, this is
not equivalent to using the accumulator intrinsics and usually translates to

Table 1-27. Types Used in Table 1-26 on page 1-248

C Type Usage

acc40 Any value in an accumulator. This is a signed 64-bit integer containing the
40-bit accumulator value. The most significant 24 bits are ignored by these
built-in functions. 40-bit accumulator values are sign-extended to 64 bits
when moving values from accumulator registers to other registers or
memory.

fract32 32-bit signed or unsigned fractional value

fract16 16-bit signed or unsigned fractional value

int 32-bit signed integer value

unsigned 32-bit unsigned integer value

short 16-bit signed integer value

unsigned short 16-bit unsigned integer value

Dx, Dy, Dn Data registers (R0 ... R7)

lh A low-half specifier (.L) or a high-half specifier (.H)

An Accumulator registers (A0 or A1)

C/C++ Compiler Language Extensions

1-252 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

expensive 64-bit arithmetic, which may offset any performance benefit of
using an accumulator. In addition, the acc40 type should not be confused
with the native fixed-point type accum available through the stdfix.h
header file.

Since the acc40 type is a signed 64-bit integral type, constants used to ini-
tialize it are interpreted as 64 bits in size. For example, the code:

#include <builtins.h>

acc40 acc = 0x80000000;

will result in the accumulator register being initialized to 0x0080000000,
not 0xff80000000.

When optimization is enabled, the compiler may also use accumulator
registers to implement short multiplication and int addition operations.
This use of a 40-bit accumulator to implement 32-bit addition will pro-
duce the same results as long as the 32-bit operation would not have
overflowed. Consequently, the two versions of dot product in Listing 1-5
on page 1-252 may translate to the same assembly code depending on
compilation options, but only the version that uses the A_mac_IS built-in
function is guaranteed to compute the same result as an assembly function
which uses an accumulator register, for all possible inputs and with any
compiler option. If your computations are at risk of overflow and you
want to be certain that saturation does not occur, consider using the
-no-saturation switch (on page 1-58). This switch will prevent the use of
accumulator registers for addition operations but at the expense of
reduced performance.

Listing 1-5. Comparison of Two Dot Products

#include <builtins.h>

/* may accumulate in 40 bits with optimization,

** but not guaranteed.

*/

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-253
for Blackfin Processors

Compiler

int dot32(short a[], short b[], int n) {

int i;

int sum = 0;

for (i = 0; i < n; ++i)

sum += a[i] * b[i];

return sum;

}

/* guaranteed to accumulate in 40 bits */

int dot40(short a[], short b[], int n) {

int i;

acc40 sum = 0;

for (i = 0; i < n; ++i)

sum = A_mac_IS(sum, a[i], b[i]);

return (int)sum;

}

Viterbi History and Decoding Functions

Four built-in functions provide the selection function of a Viterbi
decoder. Specifically, these four functions provide the maximum value
selection and history update parts. The functions use the A0 accumulator
to maintain the history value. (The accumulator register maintains the
history values by shifting the previous value along one place and setting
a bit to indicate the result of the current iteration’s selection.)

To use the Viterbi functions, you must include ccblkfn.h in the source
modules in which they are used. Failure to do so leads to errors at
compile-time.

The four Viterbi functions allow for left- or right-shifting (setting the least
or most significant bit, accordingly) and for 1x16 or 2x16 operands.

C/C++ Compiler Language Extensions

1-254 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The first two functions provide left- and right-shifting operations for
single 16-bit input operands:

short lvitmax1x16(int value, int oldhist, int *newhist)

short rvitmax1x16(int value, int oldhist, int *newhist)

lvitmax1x16() and rvitmax1x16() perform selection-and-update opera-
tions for two 16-bit operands, which are in the high and low halves of
value. The oldhist operand contains the history value from the preceding
iteration. The short value returned contains the selection result, and the
pointer newhist contains the history state after the operation.

The returned value is set to contain the largest half of value. The newhist
operand is set to contain the oldhist value, shifted one place (left for
lvitmax, right for rvitmax), and with one bit (LSB for lvitmax, MSB for
rvitmax) set to 1 if the high half was selected; 0 otherwise.

The next two Viterbi functions provide left- and right-shifting operations
for pairs of 16-bit input operands. The functions are:

int lvitmax2x16(int val_x, int val_y, int oldhist, int *newhist)

int rvitmax2x16(int val_x, int val_y, int oldhist, int *newhist)

The two functions, lvitmax2x16() and rvitmax2x16(), perform two
selection-and-update operations. Each of the val_x and val_y input
expressions contain two 16-bit operands. A selection operation is
performed on the two 16-bit operands in val_x, and another selection
operation is performed on the two 16-bit operands in val_y. The oldhist
value is shifted and updated into newhist, as described above.

However, in this example, oldhist is shifted two places, and two bits are
set. The history value is shifted one place, and a bit is set to indicate the
result of the val_x selection operation. Then, the history value is shifted a
second place, and another bit is set to indicate the result for the val_y
selection operation.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-255
for Blackfin Processors

Compiler

The selected value from val_x is stored in the low half of the returned
value, and the selected value from val_y is stored in the high half.

Search Built-in Functions

The compiler provides several built-in functions for locating the largest or
smallest 16-bit signed values in an array, using a loop. Each version of the
search built-in function has the following signature:

int2x16 *search_op(int2x16 cmp_vals,

 int2x16 *cmp_ptr,

 int2x16 *prev_hi_ptr,

 int2x16 *prev_lo_ptr,

 short prev_hi,

 short prev_lo,

 int2x16 **new_lo_ptr,

 short *new_hi,

 short *new_lo);

The available search functions are listed in Table 1-28 on page 1-256.
Each invocation of a search function compares two values from the array
against current best solutions, updating those partial results if appropriate.
If a value being tested is better than the current solution, the function also
saves the current pointer.

Upon completion of the search process, the function will have identified
two parallel sets of results, one for the values in the low half of the int2x16
value, and one for the values in the high half. Each set of results contains
the best solution identified (for example, the largest or smallest value) and
the corresponding pointer value.

The function returns the new pointer value for the low half comparison,
and passes the new pointer value for the high half comparison back via
new_lo_ptr. The new partial results are returned in new_hi and new_lo.

C/C++ Compiler Language Extensions

1-256 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Circular Buffer Built-In Functions

The C/C++ compiler provides built-in functions that use the Blackfin
processor’s circular buffer mechanisms. These functions provide auto-
matic circular buffer generation, circular indexing, and circular pointer
references.

Automatic Circular Buffer Generation

If optimization is enabled, the compiler automatically attempts to use
circular buffer mechanisms where appropriate. For example,

void func(int *array,int n,int incr)

{

int i;

for (i = 0;i < n;i++)

array [i % 10] += incr;

}

The compiler recognizes that the “[i % 10]” expression is a circular
reference, and uses a circular buffer if possible. There are cases where the
compiler is unable to verify that the memory access is always within the
bounds of the buffer. The compiler is conservative in such cases, and does
not generate circular buffer accesses.

Table 1-28. Built-in Search functions

Function name Operation

search_gt new = (cmp > prev)? cmp : prev
new_ptr = (cmp > prev)? cmp_ptr : prev_ptr

search_ge new = (cmp >= prev)? cmp : prev
new_ptr = (cmp >= prev)? cmp_ptr : prev_ptr

search_lt new = (cmp < prev)? cmp : prev
new_ptr = (cmp < prev)? cmp_ptr : prev_ptr

search_le new = (cmp <= prev)? cmp : prev
new_ptr = (cmp <= prev)? cmp_ptr : prev_ptr

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-257
for Blackfin Processors

Compiler

The compiler can be instructed to still generate circular buffer accesses
even in such cases, by specifying the -force-circbuf switch. (For more
information, see “-force-circbuf” on page 1-39.)

Explicit Circular Buffer Generation

The compiler also provides built-in functions that can explicitly generate
circular buffer accesses, subject to available hardware resources. The
built-in functions provide circular indexing and circular pointer refer-
ences. Both built-in functions are defined in the ccblkfn.h header file.

Circular Buffer Increment of an Index

The following operation performs a circular buffer increment of an index.

long circindex(long index, long incr, unsigned long nitems);

The operation is equivalent to:

index += incr;

if (index < 0)

index += nitems;

else if (index >= nitems)

index -= nitems;

An example of this built-in function is:

#include <ccblkfn.h>

void func(int *array, int n, int incr, int len)

{

int i, idx = 0;

for (i = 0; i < n; i++) {

array[idx] += incr;

idx = circindex(idx, incr, len);

}

}

C/C++ Compiler Language Extensions

1-258 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Circular Buffer Increment of a Pointer

The following operation performs a circular buffer increment of a pointer.

void *circptr(void *ptr, long incr ,

 void * base, unsigned long buflen);

Both incr and buflen are specified in bytes, since the operation deals in
void pointers.

The operation is equivalent to:

ptr += incr;

if (ptr < base)

ptr += buflen;

else if (ptr >= (base+buflen))

ptr -= buflen;

An example of this built-in function is:

#include <ccblkfn.h>

void func(int *array, int n, int incr, int len)

{

int i, idx = 0;

int *ptr = array;

// scale increment and length by size

// of item pointed to.

incr *= sizeof(*ptr);

len *= sizeof(*ptr);

for (i = 0; i < n; i++) {

*ptr += incr;

ptr = circptr(ptr, incr, array, len);

}

}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-259
for Blackfin Processors

Compiler

Endian-Swapping Intrinsics

The following two intrinsics are available for changing data from
big-endian to little-endian, or vice versa.

#include <ccblkfn.h>

int byteswap4(int);

short byteswap2(short);

For example, byteswap2(0x1234) returns 0x3412.

Since Blackfin processors use a little-endian architecture, these intrinsics
are useful when communicating with big-endian devices, or when using a
protocol that requires big-endian format. For example,

struct bige_buffer {

int len;

char data[MAXLEN];

} buf;

int i, len;

buf = get_next_buffer();

len = byteswap4(buf.len);

for (i = 0; i < len; i++)

process_byte(buf.data[i]);

System Built-In Functions

The following built-in functions allow access to system facilities on
Blackfin processors. The functions are defined in the ccblkfn.h header
file. Include the ccblkfn.h file before using these functions. Failure to do
so leads to unresolved symbols at link-time.

C/C++ Compiler Language Extensions

1-260 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Stack Space Allocation

void *alloca(unsigned)

This function allocates the requested number of bytes on the local stack,
and returns a pointer to the start of the buffer. The space is freed when the
current function exits.

The compiler supports this function via __builtin_alloca().

System Register Values

unsigned int sysreg_read(int reg)

void sysreg_write(int reg, unsigned int val)

unsigned long long sysreg_read64(int reg)

void sysreg_write64(int reg,unsigned long long val)

These functions get (read) or set (write) the value of a system register.
In all cases, reg is a constant from the file <sysreg.h>.

IMASK Values

unsigned cli(void)

void sti(unsigned mask)

The cli() function retrieves the old value of IMASK, and disables inter-
rupts by setting IMASK to all zeros. The sti() function installs a new value
into IMASK, enabling the interrupt system according to the new mask
stored.

Interrupts and Exceptions

void raise_intr(int)

void excpt(int)

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-261
for Blackfin Processors

Compiler

These two functions raise interrupts and exceptions, respectively. In both
cases, the parameter supplied must be an integer literal value.

Idle Mode

void idle(void)

places the processor in idle mode.

Synchronization

void csync_int(void)

void ssync_int(void)

These two functions provide synchronization. The csync() function is a
core-only synchronization—it flushes the pipeline and store buffers. The
ssync() function is a system synchronization, and also waits for an ACK
instruction from the system bus.

When it is known that interrupts are disabled at the point a csync or
ssync is required, the csync_int() and ssync_int() functions may be
used instead. These functions issue the csync and ssync instructions as
expected, however the workaround for the 05-00-0312 anomaly (disabling
interrupts around the csync/ssync instruction) will not be applied.

Cache Built-In Functions

The following built-in functions can be used to control the instruction
and data caches.

flush

void __builtin_flush(void * __a);

When compiled, this built-in function will be replaced by the assembly:

FLUSH[Preg]; // Preg is loaded with the address __a

C/C++ Compiler Language Extensions

1-262 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

__builtin_flush (data cache line flush) causes the data cache to synchro-
nize the cache line associated with the specified address with higher levels
of memory. If the cached data line is dirty, the instruction writes the line
out and marks the line clean in the data cache. If the specified data cache
line is already clean or does not exist, the instruction functions like a NOP.

flushinv

void __builtin_flushinv(void * __a);

When compiled, this built-in function will be replaced by the assembly:

FLUSHINV[Preg]; // Preg is loaded with the address __a

__builtin_flushinv (data cache line flush and invalidate) causes the data
cache to perform the same function as flush (on page 1-261) and then
invalidate the specified line in the cache. If the line is in the cache and
dirty, the cache line is first written out. The Valid bit in the cache line is
then cleared. If the line is not in the cache, flushinv functions like a NOP.

flushinvmodup

void * __builtin_flushinvmodup(void * __a);

When compiled, this built-in function will be replaced by the assembly:

FLUSHINV[Preg++]; // Preg is loaded with the address __a

__builtin_flushinvmodup functions exactly the same way as flushinv
(on page 1-262); however, the specified address is post-incremented by
the size of a cache block (for example, 32 bytes) and then returned.

flushmodup

void * __builtin_flushmodup(void * __a);

When compiled, this built-in function will be replaced by the assembly:

FLUSH[Preg++]; // Preg is loaded with the address __a

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-263
for Blackfin Processors

Compiler

__builtin_flushmodup functions exactly the same way as flush
(on page 1-261); however, the specified address is post-incremented by
the size of a cache block (for example, 32 bytes) and then returned.

iflush

void * __builtin_iflush(void * __a);

When compiled, this built-in function will be replaced by the assembly:

IFLUSH[Preg]; // Preg is loaded with the address __a

__builtin_iflush (instruction cache flush) causes the instruction cache to
invalidate the cache line associated with the address specified. The instruc-
tion cache contains no dirty bit. Consequently, the contents of the
instruction cache are never flushed to higher levels.

iflushmodup

void * __builtin_iflushmodup(void * __a);

When compiled, this built-in function will be replaced by the assembly:

IFLUSH[Preg++]; // Preg is loaded with the address __a

__builtin_iflushmodup functions exactly the same way as iflush
(on page 1-263); however, the specified address is post-incremented by
the size of a cache block (for example, 32 bytes) and then returned.

prefetch

void * __builtin_prefetch(void * __a);

When compiled, this built-in function will be replaced by the assembly:

PREFETCH[Preg]; // Preg is loaded with the address __a

__builtin_prefetch (data cache prefetch) causes the data cache to
prefetch the cache line that is associated with the specified address. The

C/C++ Compiler Language Extensions

1-264 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

operation causes the line to be fetched if it is not currently in the data
cache and if the address is cacheable. If the line is already in the cache or if
the cache is already fetching a line, prefetch performs like a NOP.

prefetchmodup

void * __builtin_prefetchmodup(void * __a);

When compiled, this built-in function will be replaced by the assembly:

PREFETCH[Preg++]; // Preg is loaded with the address __a

__builtin_prefetchmodup functions exactly the same way as prefetch
(on page 1-263); however, the specified address is post-incremented by
the size of a cache block (for example, 32 bytes) and then returned.

Compiler Performance Built-In Functions

The expected_true and expected_false functions provide the compiler
with information about the expected behavior of the program. You can
use these built-in functions to tell the compiler which parts of the pro-
gram are most likely to be executed; the compiler can then arrange for the
most common cases to be those that execute most efficiently.

#include <ccblkfn.h>

int expected_true(int cond);

int expected_false(int cond);

For example, consider the code

extern int func(int);

int example(int call_the_function, int value)

{

int r = 0;

if (call_the_function)

r = func(value);

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-265
for Blackfin Processors

Compiler

return r;

}

If you expect that parameter call_the_function to be true in the majority
of cases, you can write the function in the following manner:

extern int func(int);

int example(int call_the_function, int value)

{

int r = 0;

if (expected_true(call_the_function))

// indicate most likely true

r = func(value);

return r;

}

This indicates to the compiler that you expect call_the_function to be
true in most cases, so the compiler arranges for the default case to be to
call function func().

On the other hand, if you write the function as follows, the compiler
arranges the generated code to default to the opposite case, of not calling
function func().

extern int func(int);

int example(int call_the_function, int value)

{

int r = 0;

if (expected_false(call_the_function))

// indicate most likely false

r = func(value);

return r;

}

These built-in functions do not change the operation of the generated
code, which will still evaluate the boolean expression as normal. Instead,
they indicate to the compiler which flow of control is most likely, helping

C/C++ Compiler Language Extensions

1-266 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

the compiler to ensure that the most commonly-executed path is the one
that uses the most efficient instruction sequence.

The expected_true and expected_false built-in functions take effect
only when optimization is enabled in the compiler. They are supported in
conditional expressions only.

Known Values

The __builtin_assert() function provides the compiler with informa-
tion about the values of variables which it may not be able to deduce from
the context. For example, consider the code

int example(int value, int loop_count)

{

int r = 0;

int i;

for (i = 0; i < loop_count; i++) {

r += value;

}

return r;

}

The compiler has no way of knowing what values may be passed to the
function. If you know that the loop count will always be greater than four,
you can allow the optimizer to make use of that knowledge using
__builtin_assert().

int example(int value, int loop_count)

{

int r = 0;

int i;

__builtin_assert(loop_count > 4);

for (i = 0; i < loop_count; i++) {

r += value;

}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-267
for Blackfin Processors

Compiler

return r;

}

The optimizer can now omit the jump over the loop body it would other-
wise have to emit to cover loop_count == 0. In more complicated code,
further optimizations may be possible when bounds for variables are
known.

Video Operation Built-In Functions

The C/C++ compiler provides built-in functions for using the Blackfin
processor’s video pixel operations. Include the video.h header file before
using these functions.

Some video operation built-in functions take an 8-byte sequence of data,
and select from it a sequence of four bytes to use as input. The operation
selects the four bytes at an offset of 0, 1, 2, or 3 bytes from lowest byte
of the 8-byte sequence, depending on the value of a pointer parameter.
Where reverse variants of the operations exist (the operation name is suf-
fixed by “r”), the two 4-byte halves of the 8-byte sequence are accessed in
reverse order.

Where a video operation generates more than one result, the operation
may be implemented by more than one built-in function. In these cases,
macros are provided to generate the appropriate built-in calls.

For further information regarding the underlying Blackfin processor
instructions that implement the video operations, refer to the Blackfin
Processor Programming Reference.

C/C++ Compiler Language Extensions

1-268 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Function Prototypes

Align Operations

int align8(int src1, int src2); /* 1 byte offset */

int align16(int src1, int src2); /* 2 byte offset */

int align24(int src1, int src2); /* 3 byte offset */

These three operations treat their two inputs as a single 8-byte sequence,
and extract a specific 4-byte sequence from it, starting at offset 1, 2, or 3
bytes, as shown.

Packing Operations

int bytepack(int src1, int src2);

This operation treats its two inputs as four 16-bit values, and packs each
16-bit value into an 8-bit value in the result. Effectively, it converts an
array of four shorts to an array of four chars.

long long compose_i64(int low, int high);

This operation produces a 64-bit value from the two 32-bit values pro-
vided as input and can be used to efficiently generate a long long type
that is needed for many of the following operations.

Misaligned Loads

int loadbytes(int *ptr);

This operation is used to load a 4-byte sequence from memory using ptr
as the address, where ptr may be misaligned. The actual data retrieved is
aligned by masking off the bottom two bits of ptr, where ptr is intended
to select bytes from input operands in subsequent operations. Misaligned
read exceptions are prevented from occurring.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-269
for Blackfin Processors

Compiler

Unpacking

byteunpack(long long src, char *ptr, int dst1, int dst2)

byteunpackr(long long src, char *ptr, int dst1, int dst2)

These macros provide the unpacking operations, where PTR selects four
bytes from the eight-byte sequence in SRC. Each of the four bytes is
expanded to a 16-bit value. The first two 16-bit values are returned in
DST1, and the second two are returned in DST2.

Quad 8-Bit Add Subtract

add_i4x8(long long src1, char *ptr1, long long src2,

char *ptr2, int dst1, int dst2);

add_i4x8r(long long src1, char *ptr1, long long src2,

char *ptr2, int dst1, int dst2);

sub_i4x8(long long src1, char *ptr1, long long src2,

char *ptr2, int dst1, int dst2);

sub_i4x8r(long long src1, char *ptr1, long long src2,

char *ptr2, int dst1, int dst2);

These macros provide the operations to select two four-byte sequences
from the two eight-byte operands provided, add or subtract the corre-
sponding bytes, and generate four 16-bit results. The first two results are
stored in DST1, and the second two are stored in DST2. PTR1 selects the
bytes from SRC1, and PTR2 selects the bytes from SRC2. The add_i4x8r()
and sub_i4x8r() variants produce the same instructions as add_i4x8()
and sub_i4x8(), but with the “reverse” option enabled; this swaps the
order of the two 32-bit elements in the SRC parameters.

C/C++ Compiler Language Extensions

1-270 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Dual 16-Bit Add/Clip

int addclip_lo(long long src1, char *ptr1, long long src2,

char *ptr2);

int addclip_hi(long long src1, char *ptr1, long long src2,

char *ptr2);

int addclip_lor(long long src1, char *ptr1, long long src2,

char *ptr2);

int addclip_hir(long long src1, char *ptr1, long long src2,

char *ptr2);

These operations select two 16-bit values from src1 using ptr1, and two
8-bit values from src2 using ptr2. The pairs are added and then clipped to
the range 0 to 255, producing two 8-bit results. The _lo versions select
bytes 3 and 1 from src2, while the _hi versions select bytes 2 and 0. The
_lor and _hir versions reverse the order of the 32-bit elements in src1
and src2.

Quad 8-Bit Average

int avg_i4x8(long long src1, char *ptr1, long long src2,

char *ptr2);

int avg_i4x8_t(long long src1, char *ptr1, long long src2,

char *ptr2);

int avg_i4x8_r(long long src1, char *ptr1, long long src2,

char *ptr2);

int avg_i4x8_tr(long long src1, char *ptr1, long long src2,

char *ptr2);

These operations select two 4-byte sequences from src1 and src2, using
ptr1 and ptr2. They add the corresponding bytes from each sequence, and
then shift each result right once to produce four byte-size averages. There

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-271
for Blackfin Processors

Compiler

are four variants of the operation to select the reverse and truncate options
for the operation.

int avg_i2x8_lo (long long src1, char *ptr1, long long src2);

int avg_i2x8_lot (long long src1, char *ptr1, long long src2);

int avg_i2x8_lor (long long src1, char *ptr1, long long src2);

int avg_i2x8_lotr(long long src1, char *ptr1, long long src2);

int avg_i2x8_hi (long long src1, char *ptr1, long long src2);

int avg_i2x8_hit (long long src1, char *ptr1, long long src2);

int avg_i2x8_hir (long long src1, char *ptr1, long long src2);

int avg_i2x8_hitr(long long src1, char *ptr1, long long src2);

These operations produce two 8-bit average values. Each selects two
four-byte sequences from src1 and src2 using ptr, and then produces
averages of the 4-byte sequences as two 2x2-byte clusters. The two results
are byte-sized, and are stored in two bytes of the output result; the other
two bytes are set to zero. The variants allow for the generation of different
options: truncate or round, reverse input pairs, or store results in the low
or high bytes of each 16-bit half of the result register.

Accumulator Extract With Addition

extract_and_add(long long src1, long long src2, int dst1,

int dst2);

This macro provides the operation to add the high and low halves of SRC1
with the high and low halves of SRC2 to produce two 32-bit results.

C/C++ Compiler Language Extensions

1-272 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Subtract Absolute Accumulate

saa(long long src1, char *ptr1, long long src2, char *ptr2,

int sum1, int sum2, int dst1, int dst2);

saar(long long src1, char *ptr1, long long src2, char *ptr2,

int sum1, int sum2, int dst1, int dst2);

These macros provide the operations to select two 4-byte sequences from
SRC1 and SRC2, using PTR1 and PTR2 to select. The bytes from SRC2 are sub-
tracted from their corresponding bytes in SRC1, and then the absolute
value of each subtraction is computed. These four results are then added
to the four 16-bit values in SUM1 and SUM2, and the results are stored in
DST1 and DST2, as four 16-bit values.

Example of Use: Sum of Absolute Difference

As an example use of the video operation built-in functions, a block-based
video motion estimation algorithm might use sum of absolute difference
(SAD) calculations to measure distortion. A reference SAD function may
be implemented as:

int ref_SAD16x16(unsigned char *image, unsigned char *block,

int imgWidth)

{

int dist = 0;

int x, y;

for (y = 0; y < 16; y++) {

for (x = 0; x < 16; x++)

dist += abs(image[x] - block[x]);

image += 16+ (imgWidth-16);

block += 16;

}

return dist;

}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-273
for Blackfin Processors

Compiler

Using video operation built-in functions, the code could be written
as follows (Note: imgWidth should be divisible by 4):

int vid_SAD16x16(unsigned char *image, unsigned char *block,

int imgWidth)

{

int x, y;

long long srcI, srcB;

int bytesI1, bytesI2, bytesB1, bytesB2;

int sum1, sum2, res1, res2;

sum1 = sum2 = 0;

bytesI2 = bytesB2 = 0;

/* get 4-byte aligned pointers */

int *iPtr = ((int)image)&~3;

int *bPtr = ((int)block)&~3;

for (y = 0; y < 16; y++) {

bytesI1 = *iPtr;

bytesB1 = *bPtr;

for (x = 0; x < 16; x += 8) {

iPtr++; bytesI2 = *iPtr++;

bPtr++; bytesB2 = *bPtr++;

srcI = compose_i64(bytesI1, bytesI2);

srcB = compose_i64(bytesB1, bytesB2);

saa(srcI, image, srcB, block, sum1, sum2, sum1, sum2);

bytesI1 = *iPtr;

bytesB1 = *bPtr;

srcI = compose_i64(bytesI1, bytesI2);

srcB = compose_i64(bytesB1, bytesB2);

C/C++ Compiler Language Extensions

1-274 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

saar(srcI, image, srcB, block, sum1, sum2, sum1, sum2);

}

iPtr += (imgWidth - 16)/4;

}

extract_and_add(sum1, sum2, res1, res2);

return res1 + res2;

}

Misaligned Data Built-In Functions

The following intrinsic functions allow you to explicitly perform loads
from misaligned memory locations and stores to misaligned memory loca-
tions. These functions generate expanded code to read and write from
such memory locations, regardless of whether the access is aligned or not.

#include <ccblkfn.h>

short misaligned_load16(void *);

short misaligned_load16_vol(volatile void *);

void misaligned_store16(void *, short);

void misaligned_store16_vol(volatile void *, short);

int misaligned_load32(void *);

int misaligned_load32_vol(volatile void *);

void misaligned_store32(void *, int);

void misaligned_store32_vol(volatile void *, int);

long long misaligned_load64(void *);

long long misaligned_load64_vol(volatile void *);

void misaligned_store64(void *, long long);

void misaligned_store64_vol(volatile void *, long long);

Note that there are also volatile variants of these functions. Because of the
operations required to read from and write to such misaligned memory
locations, no assumptions should be made regarding the atomicity of these

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-275
for Blackfin Processors

Compiler

operations. Refer to “#pragma pack (alignopt)” on page 1-284 for more
information.

Memory-Mapped Register Access Built-In Functions

The following built-in functions can be used to ensure that the compiler
applies any necessary silicon anomaly workarounds for memory-mapped
register (MMR) accesses. These workarounds may be necessary for any
source that uses non-literal address type accesses (particularly when the
-no-assume-vols-are-mmrs switch (on page 1-52) is specified) as the
compiler is not normally able to identify such code as implementing
MMR accesses. An example of this is where an access is made via a pointer
whose value cannot be determined at compile time.

The prototypes for the following functions that implement this support
are defined in the ccblkfn.h include file:

unsigned short mmr_read16(volatile void *);

// Performs 16-bit MMR load

unsigned int mmr_read32(volatile void *);

// Performs 32-bit MMR load

void mmr_write16(volatile void *,

unsigned short); // Performs 16-bit MMR store

void mmr_write32(volatile void *,

unsigned int); // Performs 32-bit MMR store

The compiler generates equivalent code for uses of these built-in functions
as it would for a normal dereference of the specified pointer. The only dif-
ference when the built-ins are used is that the compiler can ensure that the
generated code avoids any silicon anomalies that impact MMR accesses,
provided the workarounds are enabled by building for the appropriate
silicon revision, or are explicitly enabled via the -workaround switch
(on page 1-81).

C/C++ Compiler Language Extensions

1-276 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Miscellaneous Built-In Functions

int __builtin_funcsize(const void *func)

The __builtin_funcsize built-in function returns the size in bytes of
pointer to function func. The result is calculated from the difference
between the start and end labels for the function operand. The compiler
creates these labels for all C/C++ functions.

The start label is the mangled name of the function. The end label used is
a dot (“.”) followed by the start label followed by “.end”. For example,
for C function foo, these labels are “_foo:” and “._foo.end:”.

When using the __builtin_funcsize built-in for assembly functions, the
start and end labels need to be correctly defined for it to work.

Example

#include <stdio.h>

#include <builtins.h>

void foo() {

}

void main(void) {

long size = __builtin_funcsize(foo);

printf("Function foo is size %ld bytes\n", size);

}

 The __builtin_funcsize built-in does not work for functions
defined in different modules than it is used, because end labels are
not usually externally visible.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-277
for Blackfin Processors

Compiler

Pragmas
The Blackfin C/C++ compiler supports pragmas. Pragmas are implemen-
tation-specific directives that modify the compiler’s behavior. There are
two types of pragma usage: pragma directives and pragma operators.

Pragma directives have the following syntax:

#pragma pragma-directive pragma-directive-operands new-line

Pragma operators have the following syntax:

_Pragma (string-literal)

When processing a pragma operator, the compiler effectively turns it into
a pragma directive using a non-string version of string-literal. This
means that the following pragma directive

#pragma linkage_name mylinkname

can also be equivalently expressed using the following pragma operator.

_Pragma ("linkage_name mylinkagename")

The examples in this manual use the directive form.

The C compiler supports pragmas for:

• Arranging alignment of data

• Defining functions that can act as interrupt handlers

• Changing the optimization level, midway through a module

• Changing how an externally visible function is linked

• Providing header file configurations and properties

• Giving additional information about loop usage to improve
optimizations

C/C++ Compiler Language Extensions

1-278 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The compiler issues a warning when it encounters an unrecognized
pragma directive or pragma operator.

The following sections describe the supported pragmas:

• “Pragmas With Declaration Lists” on page 1-279

• “Data Alignment Pragmas” on page 1-279

• “Interrupt Handler Pragmas” on page 1-286

• “Loop Optimization Pragmas” on page 1-287

• “General Optimization Pragmas” on page 1-297

• “Fixed-Point Arithmetic Pragmas” on page 1-298

• “Inline Control Pragmas” on page 1-301

• “Linking Control Pragmas” on page 1-303

• “Function Side-Effect Pragmas” on page 1-318

• “Class Conversion Optimization Pragmas” on page 1-330

• “Template Instantiation Pragmas” on page 1-333

• “Header File Control Pragmas” on page 1-335

• “Diagnostic Control Pragmas” on page 1-338

• “Memory Bank Pragmas” on page 1-341

• “Exceptions Tables Pragma” on page 1-347

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-279
for Blackfin Processors

Compiler

Pragmas With Declaration Lists

When using pragmas that can be applied to declarations, in most cases,
they only affect the immediately-following definition, even if it is part of a
list; for example:

#pragma align 8

int i1, i2, i3;

In the above example, the pragma applies only to i1, meaning i1 is 8-byte
aligned, while i2 and i3 use the default alignment. The single exception
to this is the “section” pragma, which applies to the entire declaration list
that follows it; for example:

#pragma section("foo")

int x, y, z;

In the above example, x, y, and z are placed in section foo, and the
compiler issues warning cc1738 to allow you to decide whether this is
what was intended.

Data Alignment Pragmas

Data alignment pragmas are used to modify how the compiler arranges
data within the processor’s memory. Since the Blackfin processor
architecture requires memory accesses to be naturally aligned, each data
item is normally aligned at least as strongly as itself—two-byte shorts
have an alignment of 2, and four-byte longs have an alignment of 4.
An 8-byte long long also has an alignment of 4.

When a struct is defined, the struct’s overall alignment is the same as the
field which has the largest alignment. The struct’s size may need padding
to ensure that all fields are properly aligned and that the struct’s overall
size is a multiple of its alignment.

Sometimes, it is useful to change these alignments. A struct may have its
alignment increased to improve the compiler’s opportunities in

C/C++ Compiler Language Extensions

1-280 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

vectorizing access to the data. A struct may have its alignment reduced so
that a large array occupies less space.

 If a data item’s alignment is reduced, the compiler cannot safely
access the data item without the risk of causing misaligned memory
access exceptions. Programs that use reduced-alignment data must
ensure that accesses to the data are made using data types that
match the reduced alignment, rather than the default one. For
example, if an int has its alignment reduced from the default (4)
to 2, it must be accessed as two shorts or four bytes, rather than as
a single int.

Data alignment pragmas include the align, pack, and pad pragmas.
Alignments specified using these pragmas must be a power of two. The
compiler rejects uses of those pragmas that specify alignments that are not
powers of two.

#pragma align num

The align pragma may be used before variable declarations and field
declarations. It applies to the variable or field declaration that immedi-
ately follows the pragma.

The pragma’s effect is that the next variable or field declaration is forced
to be aligned on a boundary specified by num, as follows:

• If the pragma is being applied to a local variable (which will be
stored on the stack), the alignment of the variable will only be
changed when num is not greater than the stack alignment, that is 4
bytes. If num is greater than the stack alignment, a warning is given
that the pragma is being ignored.

• If num is greater than the alignment normally required by the fol-
lowing variable or field declaration, the variable or field
declaration’s alignment is changed to num.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-281
for Blackfin Processors

Compiler

• If num is less than the alignment normally required, the variable or
field declaration’s alignment is changed to num, and a warning is
given that the alignment has been reduced.

The pragma also allows the following keywords as allowable alignment
specifications:

_WORD – Specifies a 32-bit alignment

_LONG – Specifies a 64-bit alignment

_QUAD – Specifies a 128-bit alignment

If the pack pragma (on page 1-284) or pad pragma (on page 1-286) are
currently active, then align overrides the immediately-following field
declaration.

The following examples show how to use #pragma align.

struct s{

#pragma align 8 /* field a aligned on 8-byte boundary */

int a;

int bar;

#pragma align 16 /* field b aligned on 16-byte boundary */

int b;

} t[2];

#pragma align 256

int arr[128]; /* declares an int array with 256 alignment */

The following example shows a use that is valid, but emits a compiler
warning.

#pragma align 1

int warns; /* declares an int with byte alignment, */
/* causes a compiler warning */

C/C++ Compiler Language Extensions

1-282 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The following is an example of an invalid use of #pragma align. Since the
alignment is not a power of two, the compiler rejects it and issues an error.

#pragma align 3

int errs; /* INVALID: declares an int with non-power of */

/* two alignment, causes a compiler error */

 The align pragma only applies to the immediately-following
definition, even if that definition is part of a list. For example,

#pragma align 8

int i1, i2, i3; // pragma only applies to i1

#pragma alignment_region (alignopt)

Sometimes it is desirable to specify an alignment for a group of consecu-
tive data items rather than individually. This can be done using the
alignment_region and alignment_region_end pragmas:

• #pragma alignment_region sets the alignment for all following
data symbols up to the corresponding alignment_region_end
pragma

• #pragma alignment_region_end removes the effect of the active
alignment region and restores the default alignment rules for data
symbols

The rules concerning the argument are the same as for the align pragma
(on page 1-280). The compiler faults an invalid alignment (such as an
alignment that is not a power of two). The compiler warns if the align-
ment of a data symbol within the control of an alignment_region is
reduced below its natural alignment (as for #pragma align).

Use of the align pragma overrides the region alignment specified by the
currently active alignment_region pragma (if there is one). The currently
active alignment_region does not affect the alignment of fields.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-283
for Blackfin Processors

Compiler

Example:

#pragma align 16

int aa; /* alignment 16 */

int bb; /* alignment 4 */

#pragma alignment_region (8)

int cc; /* alignment 8 */

int dd; /* alignment 8 */

int ee; /* alignment 8 */

#pragma align 16

int ff; /* alignment 16 */

int gg; /* alignment 8 */

int hh; /* alignment 8 */

#pragma alignment_region_end

int ii; /* alignment 4 */

#pragma alignment_region (2)

long double jj; /* alignment 2, but the compiler warns

about the reduction */

#pragma alignment_region_end

#pragma alignment_region (5)

long double kk; /* the compiler faults this, alignment

is not a power of two */

#pragma alignment_region_end

C/C++ Compiler Language Extensions

1-284 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

#pragma pack (alignopt)

The pack pragma may be applied to struct definitions. It applies to all
struct definitions that follow, until the default alignment is restored by
omitting alignopt (for example, by #pragma pack() with empty
parentheses).

The pack pragma is used to reduce the default alignment of the struct to
be alignopt. If fields within the struct have a default alignment greater
than align, their alignment is reduced to alignopt. If fields within the
struct have alignment less than align, their alignment is unchanged.

If alignopt is specified, it is illegal to invoke #pragma pad until the default
alignment is restored. The compiler generates an error message if the pad
and pack pragmas are used in a manner that conflicts.

The following example shows how to use #pragma pack:

#pragma pack(1)

/* struct minimum alignment now 1 byte, uses of

"#pragma pad" would cause a compilation error now */

struct is_packed {

char a;

/* normally the compiler would add three padding bytes here,

but not now because of prior pragma pack use */

int b;

} t[2]; /* t definition requires 10 packed bytes */

#pragma pack()

/* struct minimum alignment now, not one byte,

"#pragma pad"can now be used legally */

struct is_packed u[2]; /* u definition requires 10 packed
bytes */

/* struct not_packed is a new type, and will not be packed. */

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-285
for Blackfin Processors

Compiler

struct not_packed {

char a;

/* compiler will insert three padding bytes here */

int b;

} w[2]; /* w definition required 16 bytes */

The Blackfin processor does not support misaligned memory accesses at
the hardware level; the compiler generates additional code to correctly
handle reads from (and writes to) misaligned structure members. The code
generated will not necessarily be as efficient as reading from (or writing to)
an aligned structure member, but that is the trade-off that must be
accepted in return for getting packed structures.

Only direct reads from (and writes to) misaligned structure members are
automatically handled by the compiler. As a result, taking the address of a
misaligned field and assigning it to a pointer causes the compiler to emit a
warning. The reason for the warning is that the compiler does not detect a
misaligned memory access if the address of a misaligned field is taken and
stored in a pointer of a different type to that of the structure.

 Since #pragma pack reduces alignment constraints, and therefore
reduces the need for padding within the struct, the overall size of
the struct can be reduced; in fact, this reduction in size is often the
reason for using the pragma. Be aware, however, that the reduced
alignment also applies to the struct as a whole, so instances of the
struct may start on alignopt boundaries instead of the default
boundaries of the equivalent unpacked struct.

Prior to VisualDSP++ 4.0, this was not the case. The compiler
reduced internal alignment, but maintained overall alignment.
Since VisualDSP++ 4.0, packed structures may start on different
boundaries from unpacked structures. To maintain the overall start
alignment, use #pragma align (on page 1-279) on the first field of
the structure.

C/C++ Compiler Language Extensions

1-286 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

#pragma pad (alignopt)

Th pad pragma may be applied to struct definitions. It applies to struct
definitions that follow until the default alignment is restored by omitting
alignopt (for example, by #pragma pad() with empty parentheses).

The pad pragma is effectively shorthand for placing #pragma align before
every field within the struct definition. Like the pack pragma, it reduces
the alignment of fields that default to an alignment greater than alignopt.

However, unlike the pack pragma, it also increases the alignment of fields
that default to an alignment less than alignopt.

 Although the pack alignopt pragma emits a warning when a field
alignment is reduced, the pad alignopt pragma does not.

If alignopt is specified, it is illegal to invoke #pragma pack until the
default alignment is restored.

The following example shows how to use #pragma pad().

#pragma pad(4)

struct {

int i;

int j;

} s = {1,2};

#pragma pad()

Interrupt Handler Pragmas

The interrupt, nmi, and exception pragmas declare that the following
function declaration or definition is to be used as an entry in the event
vector table (EVT). The compiler arranges for the function to save its con-
text. This is more than the usual called-preserved set of registers. The
function returns using an instruction appropriate to the type of event
specified by the pragma.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-287
for Blackfin Processors

Compiler

Normally, these pragmas are not used directly; macros are provided by the
sys\exception.h file. See “Interrupt Handler Support” on page 1-365 for
more information.

Interrupt handler pragmas may be specified on a function’s declaration or
its definition. Only one of the three pragmas listed above may be specified
for a particular function.

The interrupt_reentrant pragma is used with the interrupt pragma to
specify that the function’s context-saving prologue should also arrange for
interrupts to be re-enabled for the duration of the function’s execution.

The interrupt_level_interrupt pragmas are also used to specify that a
function should be compiled as an interrupt service routine (ISR). Use
these pragmas instead of the interrupt pragma when compiling interrupt
handler functions with the -isr-imask-check workaround enabled, or
when the workaround is enabled by default for the targeted processor and
silicon revision. These pragmas are supported for interrupt levels 5
(#pragma interrupt_level_5) to 15 (#pragma interrupt_level_15).

If the isr-imask-check workaround is enabled, ISRs declared without
explicit interrupt levels—such as those declared using
EX_INTERRUPT_HANDLER()—check for interrupts occurring while a CLI
instruction is committed and return immediately if this is detected.
They do not attempt to re-raise the interrupt.

Loop Optimization Pragmas

Loop optimization pragmas give the compiler additional information
about usage within a particular loop, allowing the compiler to perform
more aggressive optimization. These pragmas are placed before the loop
statement, and apply to the statement that immediately follows, which
must be a for, while, or do statement to have effect. In general, it is most
effective to apply loop optimization pragmas to inner-most loops, since
the compiler can achieve the most savings there.

C/C++ Compiler Language Extensions

1-288 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The optimizer always attempts to vectorize loops when it is safe to do so.
The optimizer exploits the information generated by the interprocedural
analysis to increase the cases where it knows it is safe to do so. (See “Inter-
procedural Analysis” on page 1-98.)

Consider the code:

void copy(short *a, short *b) {

int i;

for (i=0; i<100; i++)

a[i] = b[i];

}

If you call copy with two calls, such as copy(x,y) and later copy(y,z),
interprocedural analysis is unable to tell that “a” never aliases “b”.
Therefore, the optimizer cannot be sure that one iteration of the loop is
not dependent on the data calculated by the previous iteration of the loop.
If it is known that each iteration of the loop is not dependent on the pre-
vious iteration, then the vector_for pragma can be used to explicitly
notify the compiler that this is the case.

#pragma all_aligned

The all_aligned pragma applies to the subsequent loop. This pragma
asserts that all pointers are initially aligned on the most desirable
boundary.

#pragma different_banks

The different_banks pragma allows the compiler to assume that groups
of memory accesses based on different pointers within a loop reside in
different memory banks. By scheduling them together, memory access
performance may be improved.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-289
for Blackfin Processors

Compiler

#pragma extra_loop_loads

The extra_loop_loads pragma instructs the compiler that the immedi-
ately-following loop is allowed to do additional reads past the end of the
indicated memory areas, as if the loop were doing an additional iteration,
if this allows the compiler to generate faster code. For example,

short dotprod_normal(int n, short *x, short *y)
{

int i;
short sum = 0;

#pragma no_vectorization
for (i = 0; i < n; i++)

sum += x[i] * y[i];
return sum;

}

short dotprod_with_pragma(int n, short *x, short *y)

{

int i;

short sum = 0;

#pragma no_vectorization

#pragma extra_loop_loads

for (i = 0; i < n; i++)
sum += x[i] * y[i];

return sum;

}

These examples use the no_vectorization pragma to force the compiler to
generate simpler versions of the function. Without the no_vectorization
pragma, the compiler generates vectorized and non-vectorized versions of
the loop, which does not invalidate the extra_loop_loads pragma, but
makes the example more difficult to follow.

C/C++ Compiler Language Extensions

1-290 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

In the example, the dotprod_normal() function only reads array elements
x[0]..x[n-1] and y[0]..y[n-1], using the following code:

_dotprod_normal:

P1 = R2 ;

P2 = R0 ;

CC = R0 <= 0;

R0 = 0;

IF CC JUMP ._P2L8 ;

I0 = R1 ;

P2 += -1;

LSETUP (._P2L5 , ._P2L6-8) LC0 = P2;

CC = P2 == 0;

MNOP || R0 = W[P1++] (X) || R1.L = W[I0++];

IF CC JUMP ._P2L6 ;

.align 8;

._P2L5:

A0 += R0.L*R1.L (IS) || R0 = W[P1++] (X) ||

R1.L = W[I0++];

._P2L6:

A0 += R0.L*R1.L (IS);

R0 = A0.w;

R0 = R0.L (X);

._P2L8:

RTS;

The compiler has scheduled the reads from x[i+1] and y[i+1] in parallel
with the addition of x[i] and y[i], for best performance. This can only
be done for n-1 iterations, and so the compiler produces a loop of n-1 iter-
ations and does the nth addition after the loop terminates. Since n is
unknown, the compiler must compute n-1, and verify that it is not zero
before entering the loop.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-291
for Blackfin Processors

Compiler

Compare this with the code generated by the compiler for the function
dotprod_with_pragma():

_dotprod_with_pragma:

P1 = R2 ;

P2 = R0 ;

CC = R0 <= 0;

R0 = 0;

IF CC JUMP ._P1L8 ;

.align 8;

I0 = R1 ;

A0 = 0 || R0 = W[P1++] (X) || NOP;

R1.L = W[I0++];

LSETUP (._P1L5 , ._P1L6-8) LC0 = P2;

._P1L5:

A0 += R0.L*R1.L (IS) || R0 = W[P1++] (X) ||

R1.L = W[I0++];

._P1L6:

R0 = A0.w;

R0 = R0.L (X);

._P1L8:

RTS;

The compiler has generated a loop that has the same instruction in the
body of the loop, but here the compiler executes it n times, rather than
n-1 times. This means that the nth iteration of the loop will be reading
x[n] and y[n], which does not happen for dotprod_normal(). The values
retrieved by these reads are discarded, since they are not needed, but the
compiler has gained a benefit because it does not have to compute n-1 and
determine whether it prevents the loop from executing.

The additional memory reads are only valid if neither x[] nor y[] are at
the end of a valid memory area. If you use the extra_loop_loads pragma,
you must ensure that the memory ranges within the loop are contiguous

C/C++ Compiler Language Extensions

1-292 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

with valid memory areas, so that if another iteration’s worth of loads is
attempted, the loads read from valid addresses.

Note that when the no_vectorization pragma is omitted, the compiler
will attempt to produce a vectorized loop. The extra_loop_loads pragma
will not affect the vectorized version, since the compiler will have to con-
ditionally execute a single final iteration anyway, for the cases where the
loop count is not an even number.

The extra_loop_loads pragma has no effect when:

• The loads are from volatile addresses; such cannot be accessed
speculatively

• The loads are from memory banks that cost more than a single
cycle to read

• The compiler can determine the number of iterations that the loop
will require, either through constant propagation, or through
loop_count pragmas. In such cases, the compiler does not need to
speculatively execute loads.

• The compiler’s speed/space ratio prevents it from rotating/pipelin-
ing the loop in this manner, because of the increase in code size

See also the -extra-loop-loads switch (on page 1-37).

#pragma loop_count(min, max, modulo)

The loop_count pragma appears just before the loop it describes. It asserts
that the loop iterates at least min times, no more than max times, and a
multiple of modulo times. This information enables the optimizer to omit
loop guards and to decide whether the loop is worth completely unrolling
and whether code needs to be generated for odd iterations.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-293
for Blackfin Processors

Compiler

Any of the parameters of the pragma that are unknown may be left blank.
For example,

int i;

#pragma loop_count(24, 48, 8)

for (i=0; i < n; i++)

#pragma loop_unroll N

The loop_unroll pragma can be used only before a for, while, or
do.. while loop. The pragma takes one positive integer argument, N,
and instructs the compiler to unroll the loop N times prior to further
transforming the code.

In the most general case, the effect of

#pragma loop_unroll N

for (init statements; condition; increment code) {

loop_body

}

is equivalent to transforming the loop to

for (init statements; condition; increment code) {

loop_body /* copy 1 */

increment_code

if (!condition)

break;

loop_body /* copy 2 */

increment_code

if (!condition)

break;

...

loop_body /* copy N-1 */

C/C++ Compiler Language Extensions

1-294 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

increment_code

if (!condition)

break;

loop_body /* copy N */

}

Similarly, the effect of

#pragma loop_unroll N

while (condition) {

loop_body

}

is equivalent to transforming the loop to:

while (condition) {

loop_body /* copy 1 */

if (!condition)

break;

loop_body /* copy 2 */

if (!condition)

break;

...

loop_body /* copy N-1 */

if (!condition)

break;

loop_body /* copy N */

}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-295
for Blackfin Processors

Compiler

and the effect of:

#pragma loop_unroll N

do {

loop_body

} while (condition)

is equivalent to transforming the loop to

do {

loop_body /* copy 1 */

if (!condition)

break;

loop_body /* copy 2 */

if (!condition)

break;

...

loop_body /* copy N-1 */

if (!condition)

break;

loop_body /* copy N */

} while (condition)

#pragma no_alias

Use the no_alias pragma to inform the compiler that the following loop
has no loads or stores that conflict. When the compiler finds memory
accesses that potentially refer to the same location through different point-
ers (known as “aliases”), the compiler is restricted in how it may reorder
or vectorize the loop, because all the accesses from earlier iterations must
be complete before the compiler can arrange for the next iteration to start.

C/C++ Compiler Language Extensions

1-296 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

For example,

void vadd(int *a, int *b, int *out, int n) {

int i;

#pragma no_alias

for (i=0; i < n; i++)

out[i] = a[i] + b[i];

}

The no_alias pragma appears just before the loop it describes. This
pragma asserts that in the next loop, no load or store operations conflict
with each other. In other words, no load or store in any iteration of the
loop has the same address as any other load or store in the current or in
any other iteration of the loop. In the example above, if pointers a and b
point to two memory areas that do not overlap, no load from b is using
the same address as any store to a. Therefore, a is never an alias for b.

Using the no_alias pragma can lead to better code because it allows any
number of iterations to be performed concurrently, thus providing better
software pipelining by the optimizer.

#pragma no_vectorization

The no_vectorization pragma turns off all vectorization for the loop on
which it is specified.

#pragma vector_for

The vector_for pragma notifies the optimizer that it is safe to execute two
iterations of the loop in parallel. The vector_for pragma does not force
the compiler to vectorize the loop. The optimizer checks various proper-
ties of the loop and does not vectorize it if it believes to be unsafe or if it
cannot deduce that the various properties necessary for the vectorization
transformation are valid.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-297
for Blackfin Processors

Compiler

Strictly speaking, the pragma simply disables checking for loop-carried
dependencies.

void copy(short *a, short *b) {

int i;

#pragma vector_for

for (i=0; i<100; i++)

a[i] = b[i];

}

In cases where vectorization is impossible (for example, if array a is aligned
on a word boundary but array b is not), the information given in the asser-
tion made by vector_for may still be put to good use in aiding other
optimizations.

General Optimization Pragmas

The compiler supports several pragmas which can change the optimization
level while a given module is being compiled. These pragmas must be used
globally, immediately prior to a function definition. The pragmas do not
just apply to the immediately-following function; they remain in effect
until the end of the compilation, or until they are superseded by one of
the following optimize_ pragmas.

• #pragma optimize_off

This pragma turns off the optimizer, if it was enabled. It has the
same effect as compiling with no optimization enabled.

• #pragma optimize_for_space

This pragma turns on the optimizer, if it was disabled, or sets the
focus to give reduced code size a higher priority than high perfor-
mance, where these conflict.

C/C++ Compiler Language Extensions

1-298 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

• #pragma optimize_for_speed

This pragma turns on the optimizer, if it was disabled, or sets the
focus to give high performance a higher priority than reduced code
size, where these conflict.

• #pragma optimize_as_cmd_line

This pragma resets the optimization settings to be those specified
on the ccblkfn command line when the compiler was invoked.

The following are code examples of optimize_ pragmas.

#pragma optimize_off

void non_op() { /* non-optimized code */ }

#pragma optimize_for_space

void op_for_si() { /* code optimized for size */ }

#pragma optimize_for_speed

void op_for_sp() { /* code optimized for speed */ }

/* subsequent functions declarations optimized for speed */

Fixed-Point Arithmetic Pragmas

The compiler supports several pragmas which can change the semantics of
arithmetic on the native fixed-point types fract and accum. These are
#pragma FX_CONTRACT {ON|OFF} and #pragma FX_ROUNDING_MODE {TRUN-
CATION|BIASED|UNBIASED}. In addition, #pragma STDC
FX_FULL_PRECISION {ON|OFF|DEFAULT}, #pragma STDC
FX_FRACT_OVERFLOW {SAT|DEFAULT}, and #pragma STDC
FX_ACCUM_OVERFLOW {SAT|DEFAULT} are accepted by the compiler but have
no effect on generated code.

These pragmas may be used at file scope, in which case they apply to all
following functions until another pragma is respecified to change the
pragma state. Alternatively, they may be specified in a { } delimited scope

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-299
for Blackfin Processors

Compiler

(or compound statement), where they will temporarily override the
current setting of the pragma’s state until the end of the scope.

#pragma FX_CONTRACT {ON|OFF}

The FX_CONTRACT {ON|OFF} pragma may be used to control the precision
of intermediate results of calculations on the native fixed-point types
fract and accum. If FX_CONTRACT is ON, where an intermediate result is not
stored back to a named variable, the compiler may choose to keep the
intermediate result in greater precision than that mandated by the
ISO/IEC C Technical Report 18037. It will do this where maintaining
the higher precision allows more efficient code to be generated.

When FX_CONTRACT is OFF, the compiler will adhere strictly to the
ISO/IEC Technical Report 18037 and will convert all intermediate results
to the type dictated in this standard before use.

The following example shows the use of this pragma.

accum mac(accum a, fract f1, fract f2) {

#pragma FX_CONTRACT ON

a += f1 * f2; /* compiler creates multiply-accumulate

instruction */

return a;

}

The default state of the FX_CONTRACT pragma is ON.

#pragma FX_ROUNDING_MODE {TRUNCATION|BIASED|UNBIASED}

The FX_ROUNDING_MODE {TRUNCATION|BIASED|UNBIASED} pragma may be
used to control the rounding mode used during calculations on the native
fixed-point types fract and accum.

When FX_ROUNDING_MODE is set to TRUNCATION, the exact mathematical
result of a computation is rounded by truncating the least significant bits

C/C++ Compiler Language Extensions

1-300 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

beyond the precision of the result type. This is equivalent to rounding
towards negative infinity.

When FX_ROUNDING_MODE is set to BIASED, the exact mathematical result of
a computation is rounded to the nearest value that fits in the result type. If
the exact result lies exactly half-way between two consecutive values in the
result type, the result is rounded up to the higher one. Note that this
rounding mode pragma should be used in conjunction with the
set_rnd_mod_biased() built-in function. For more information, see
“Changing the RND_MOD Bit” on page 1-242.

When FX_ROUNDING_MODE is set to UNBIASED, the exact mathematical result
of a computation is rounded to the nearest value that fits in the result
type. If the exact result lies exactly half-way between two consecutive val-
ues in the result type, the result is rounded to the even value. Note that
this rounding mode pragma should be used in conjunction with the
set_rnd_mod_unbiased() built-in function. For more information, see
“Changing the RND_MOD Bit” on page 1-242.

The following example shows the use of this pragma.

fract divide_biased(fract f1, fract f2) {

#pragma FX_ROUNDING_MODE BIASED

 set_rnd_mod_biased();

return f1 / f2; /* compiler creates divide with biased

rounding */

}

The default state of the FX_ROUNDING_MODE pragma is TRUNCATION.

#pragma STDC FX_FULL_PRECISION {ON|OFF|DEFAULT}

The STDC FX_FULL_PRECISION {ON|OFF|DEFAULT} pragma is used by the
ISO/IEC Technical Report 18037 to permit an implementation to gener-
ate faster code for fixed-point arithmetic, but produce lower-accuracy
results.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-301
for Blackfin Processors

Compiler

The VisualDSP++ compiler always produces full-accuracy results. There-
fore, although the pragma is accepted by the compiler, the code generated
will be the same regardless of the state of FX_FULL_PRECISION.

#pragma STDC FX_FRACT_OVERFLOW {SAT|DEFAULT}

The STDC FX_FRACT_OVERFLOW {SAT|DEFAULT} pragma is used by the
ISO/IEC Technical Report 18037 to permit an implementation to
generate code that does not saturate fract-typed results on overflow.

fract arithmetic with the VisualDSP++ compiler always saturates on
overflow. Therefore, although the pragma is accepted by the compiler,
the code generated will be the same regardless of the state of
FX_FRACT_OVERFLOW.

#pragma STDC FX_ACCUM_OVERFLOW {SAT|DEFAULT}

The STDC FX_ACCUM_OVERFLOW {SAT|DEFAULT} pragma is used by the
ISO/IEC Technical Report 18037 to permit an implementation to
generate code that does not saturate accum-typed results on overflow.

accum arithmetic with the VisualDSP++ compiler always saturates on
overflow. Therefore, although the pragma is accepted by the compiler, the
code generated will be the same regardless of the state of
FX_ACCUM_OVERFLOW.

Inline Control Pragmas

The compiler supports three pragmas to control the inlining of code
(#pragma always_inline, #pragma inline, and #pragma never_inline).

#pragma always_inline

The always_inline pragma may be applied to a function definition to
indicate to the compiler that the function should always be inlined, and
never called “out of line”. The pragma may only be applied to function
definitions with the inline qualifier, and may not be used on functions

C/C++ Compiler Language Extensions

1-302 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

with variable-length argument lists. This pragma is not valid for function
definitions that have interrupt-related pragmas associated with them.

If the function in question has its address taken, the compiler cannot
guarantee that all calls are inlined, so a warning is issued.

See “Function Inlining” on page 1-159 for details of pragma precedence
during inlining.

The following are examples of the always_inline pragma.

int func1(int a) { // only consider inlining

return a + 1; // if -Oa switch is on

}

inline int func2(int b) { // probably inlined, if optimizing

return b + 2;

}

#pragma always_inline

inline int func3(int c) { // always inline, even unoptimized

return c + 3;

}

#pragma always_inline

int func4(int d) { // error: not an inline function

return d + 4;

}

#pragma inline

The inline pragma instructs the compiler to inline the function if it is
considered desirable. The pragma is equivalent to specifying the inline
keyword, but may be applied when the inline keyword is not allowed

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-303
for Blackfin Processors

Compiler

(such as when compiling in MISRA-C mode). For more information, see
“MISRA-C Compiler” on page 1-143.
#pragma inline

int func5(int a, int b) { /* can be inlined */

return a / b;

}

#pragma never_inline

The never_inline pragma may be applied to a function definition to indi-
cate to the compiler that function should always be called “out of line”,
and that the function’s body should never be inlined.

This pragma may not be used on function definitions that have the inline
qualifier.

See “Function Inlining” on page 1-159 for details of pragma precedence
during inlining.

The following are code examples for the never_inline pragma.

#pragma never_inline

int func5(int e) { // never inlined, even with -Oa switch

return e + 5;

}

#pragma never_inline

inline int func5(int f) { // error: inline function

return f + 6;

}

Linking Control Pragmas

Linking control pragmas (linkage_name, core, retain_name, section,
file_attr, symbolic_ref, and weak_entry) change how a given global
function or variable is viewed during the linking stage.

C/C++ Compiler Language Extensions

1-304 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

#pragma linkage_name identifier

The linkage_name pragma associates the identifier with the next exter-
nal function declaration. It ensures that the identifier is used as the
external reference, instead of following the compiler’s usual conventions.
If the identifier is not a valid function name, as could be used in normal
function definitions, the compiler generates an error. See also the asm key-
word (on page 1-355).

The following example shows the use of this pragma.

#pragma linkage_name realfuncname

void funcname ();

void func() {

funcname(); /* compiler will generate a call to realfuncname

*/

}

#pragma core

When building a project that targets multiple processors or multiple cores
on a processor, a link stage may produce executable files for more than one
core or processor. The interprocedural analysis (IPA) framework requires
that some conventions be adhered to in order to successfully perform its
analyses for such projects.

Because the IPA framework collects information about the whole pro-
gram, including information on references which may be to definitions
outside the current translation unit, the IPA framework must be able to
distinguish these definitions and their references without ambiguity.

If any confusion were allowed about which definition a reference refers to,
then the IPA framework could potentially cause bad code to be generated,
or could cause translation units in the project to be continually recom-
piled ad infinitum. Global symbols are relevant in this respect. The IPA
framework correctly handles locals and static symbols because multiple

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-305
for Blackfin Processors

Compiler

definitions are not possible within the same file, so there can be no
ambiguity.

In order to disambiguate all references and the definitions to which they
refer, each definition within a given project must have a unique name. It is
illegal to define two different functions or variables with the same name.
This is illegal in single-core projects because this would lead to multiple
definitions of a symbol and the link would fail. In multi-core projects,
however, it may be possible to link a project with multiple definitions
because one definition could be linked into each link project, resulting in
a valid link. Without detailed knowledge of what actions the linker had
performed, however, the IPA framework would not be able disambiguate
such multiple definitions. For this reason, to use the IPA framework, you
must ensure unique names even in projects targeting multiple cores or
processors.

There are a few cases for which it is not possible to ensure unique names
in multi-core or multiprocessor projects. One such case is main. Each pro-
cessor or core will have its own _main function, and these need to be
disambiguated for the IPA framework to be able to function correctly.
Another case is where a library (or the C run-time startup) references a
symbol which the user may wish to define differently for each core.

For this reason, the #pragma core(corename) is provided.

The core pragma can be provided immediately prior to a definition or a
declaration. The pragma allows you to give a unique identifier to each def-
inition. It also allows you to indicate to which definition each reference
refers. The IPA framework uses this core identifier to distinguish all
instances of symbols with the same name and will therefore be able to
carry out its analyses correctly.

 The specified corename, which is case-sensitive, must consist of
alphanumeric characters only.

C/C++ Compiler Language Extensions

1-306 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Use the core pragma on:

• Every definition (not in a library) for which there needs to be a
distinct definition for each core.

• Every declaration of a symbol (not in a library) for which the
relevant definition includes the use of #pragma core. The core
specified for a declaration must agree with the core specified for the
definition.

The IPA framework will not need to be informed of any distinction if
there are two identical copies of the same function or data with the same
name. Functions or data that come from objects and that are duplicated in
memory local to each core, for example, will not need to be distinguished.
The IPA framework does not need to know exactly which instance each
reference will get linked to because the information processed by the
framework is identical for each copy. Essentially, the pragma only needs to
be specified on items where there will be different functions or data with
the same name incorporated into the executable for each core.

The following example of #pragma core usage distinguishes two different
main functions:

/* foo.c */

#pragma core("coreA")

int main(void) { /* Code to be executed by core A */

}

/* bar.c */

#pragma core("coreB")

int main(void) {

/* Code to be executed by core B */

}

Omitting either instance of the pragma will cause the IPA framework to
issue a fatal error, indicating that the pragma has been omitted on at least
one definition.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-307
for Blackfin Processors

Compiler

The following example issues an error because the name contains a
non-alphanumeric character:

#pragma core("core/A")

int main(void) { /* Code to executed on core A */

}

In the following example, the core pragma must be specified on a declara-
tion as well as the definitions. A library contains a reference to a symbol,
which is expected to be defined for each core. Two more modules define
the main functions for the two cores. Two further modules, each only used
by one of the cores, references this symbol, and therefore require the
pragma.

/* libc.c */

#include <stdio.h>

extern int core_number;

void print_core_number(void) {

printf("Core %d\n", core_number);

}

/* maina.c */

extern void fooa(void);

#pragma core("coreA")

int core_number = 1;

#pragma core("coreA")

int main(void) {

/* Code to be executed by core A */

print_core_number();

fooa();

}

/* mainb.c */

extern void foob(void);

#pragma core("coreB")

int core_number = 2;

#pragma core("coreB")

C/C++ Compiler Language Extensions

1-308 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

int main(void) {

/* Code to be executed by core B */

print_core_number();

foob();

}

/* fooa.c */

#include <stdio.h>

#pragma core("coreA")

extern int core_number;

void fooa(void) {

printf("Core: is core%c\n", 'A' - 1 + core_number);

}

/* foob.c */

#include <stdio.h>

#pragma core("coreB")

extern int core_number;

void fooa(void) {

printf("Core: is core%c\n", 'A' - 1 + core_number);

}

In general, it is only necessary to use #pragma core in this manner when
there is a reference from outside the application (in a library, for example)
where there is expected to be a distinct definition provided for each core,
and where there are other modules that also require access to their respec-
tive definition. Notice also that the declaration of core_number in lib.c
does not require the use of the core pragma because it is part of a transla-
tion unit to be included in a library.

A project that includes more than one definition of main will undergo
extra checking to catch problems that would otherwise occur in the IPA
framework. For any non-template symbol that has more than one defini-
tion, the tool chain will fault any definitions that are outside libraries that
do not specify a core name with the core pragma. This check does not
affect the normal behavior of the prelinker with respect to templates and
in particular the resolution of multiple template instantiations.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-309
for Blackfin Processors

Compiler

To clarify:

Inside a library, #pragma core is not required on declarations or defini-
tions of symbols that are defined more than once. However, a library can
be responsible for forcing the application to define a symbol more than
once (that is, once for each core). In this case, the definitions and declara-
tions require the core pragma to be used outside the library to distinguish
the multiple instances.

 The tool chain cannot check that uses of #pragma core are consis-
tent. If you use the pragma inconsistently or ambiguously, the IPA
framework may cause incorrect code to be generated or may cause
continual recompilation of the application’s files.

It is also important to note that the core pragma does not change the
linkage name of the symbol it is applied to in any way.

For more IPA information, see “Interprocedural Analysis” on page 1-98.

#pragma retain_name

The retain_name pragma indicates that the function or variable declara-
tion that follows the pragma is not to be removed even though it has no
apparent use. Normally, when interprocedural analysis or linker elimina-
tion are enabled, the VisualDSP++ tools will identify unused functions
and variables and will eliminate them from the resulting executable to
reduce memory requirements. The retain_name pragma instructs the tools
to retain the specified symbol regardless.

The following example shows how to use this pragma.

int delete_me(int x) {

return x-2;

}

#pragma retain_name

int keep_me(int y) {

C/C++ Compiler Language Extensions

1-310 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

return y+2;

}

int main(void) {

return 0;

}

Since the program has no uses for delete_me() or keep_me(), the compiler
removes delete_me(), but keeps keep_me() because of the pragma. You do
not need to specify retain_name for main().

The pragma is only valid for global symbols. It is not valid for the follow-
ing kinds of symbols:

• Symbols with static storage class

• Function parameters

• Symbols with auto storage class (locals). These are allocated on the
stack at runtime.

• Members/fields within structs/unions/classes

• Type declarations

For more information on IPA, see “Interprocedural Analysis” on
page 1-98.

#pragma section/#pragma default_section

The section pragma and default_section pragma provide greater con-
trol over the sections in which the compiler places symbols.

The section(SECTSTRING [, QUALIFIER, ...]) pragma is used to
override the target section for any global or static symbol immediately
following it. The pragma allows greater control over section qualifiers
compared to the section keyword.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-311
for Blackfin Processors

Compiler

The default_section(SECTKIND [, SECTSTRING [, QUALIFIER, ...]])
pragma is used to override the default sections in which the compiler is
placing its symbols.

The default sections fall into the categories listed under SECTKIND. Except
for the STI category, this pragma remains in force for a section category
until its next use with that particular category, or the end of the file. The
STI is an exception, in that only one STI default_section can be specified
and its scope is the entire file scope, not just the part following the use of
STI. A warning is issued if several STI sections are specified in the same
file.

The omission of a section name results in the default section being reset to
be the section that was in use at the start of the file, which can be either a
compiler default value, or a value set by the user through the -section
command-line switch (for example, -section SECTKIND=SECTSTRING).

In all cases (including STI), the default_section pragma overwrites the
value specified with the -section command line switch.

#pragma default_section(DATA, "NEW_DATA1")

int x;

#pragma default_section(DATA, "NEW_DATA2")

int x=5;

#pragma default_section(DATA, "NEW_DATA3")

int x;

In this case, x is placed in NEW_DATA2 because the definition of x is within
its scope.

A default_section pragma can only be used at global scope, where global
variables are allowed.

C/C++ Compiler Language Extensions

1-312 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

SECTKIND can be one of the keywords shown in Table 1-29.

SECTSTRING is a double-quoted string containing the section name, exactly
as it will appear in the assembler file.

Changing one section kind has no effect on other section kinds. For
instance, even though STRINGS and CONSTDATA are, by default, placed by
the compiler in the same section, if the default section for CONSTDATA is
changed, the change has no effect on the STRINGS data.

Table 1-29. SECTKIND Keywords

Keyword Description

CODE Section is used to contain procedures and functions

ALLDATA Shorthand notation for DATA, CONSTDATA, BSZ, STRINGS, and AUTOINIT

DATA Section is used to contain “normal data”

CONSTDATA Section is used to contain read-only data

BSZ Section is used to contain uninitialized data

SWITCH Section is used to contain jump tables to implement C/C++ switch statements

VTABLE Section is used to contain C++ virtual-function tables

STI Section that contains code required to be executed by C++ initializations.
For more information, see “Constructors and Destructors of Global Class
Instances” on page 1-419.

STRINGS Section that stores string literals

AUTOINIT Contains data used to initialize aggregate autos

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-313
for Blackfin Processors

Compiler

Note that ALLDATA is not a real section, but rather pseudo-kind that stands
for DATA, CONSTDATA, STRINGS, AUTOINIT, and BSZ. Changing ALLDATA is
equivalent to changing all of these section kinds. Therefore,

#pragma default_section(ALLDATA, params)

is equivalent to the sequence:

#pragma default_section(DATA, params)

#pragma default_section(CONSTDATA, params)

#pragma default_section(STRINGS, params)

#pragma default_section(AUTOINIT, params)

#pragma default_section(BSZ, params)

QUALIFIER can be one of the keywords in Table 1-30.

There may be any number of comma-separated section qualifiers within
such pragmas, but they must not conflict with one another. Qualifiers
must also be consistent across pragmas for identical section names, and
omission of qualifiers is not allowed, even if at least one such qualifier has
appeared in a previous pragma for the same section. If any qualifiers have
not been specified for a particular section by the end of the translation
unit, the compiler uses default qualifiers appropriate for the target
processor.

Table 1-30. QUALIFIER Keywords

Keyword Description

ZERO_INIT Section is zero-initialized at program startup

NO_INIT Section is not initialized at program startup

RUNTIME_INIT Section is user-initialized at program startup

DOUBLE32 Section may contain 32-bit but not 64-bit doubles

DOUBLE64 Section may contain 64-bit but not 32-bit doubles

DOUBLEANY Section may contain either 32-bit or 64-bit doubles

C/C++ Compiler Language Extensions

1-314 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The following specifies that f() should be placed in a section foo which is
DOUBLEANY qualified:

#pragma section("foo", DOUBLEANY)

void f() {}

The compiler always tries to honor the section pragma as its highest
priority, and the default_section pragma is always the lowest priority of
the two.

For example, the following code results in function f being placed in the
section foo:

#pragma default_section(CODE, "bar")

#pragma section("foo")

void f() {}

The following code results in x being placed in section zeromem:

#pragma default_section(BSZ, "zeromem")

int x;

 In cases where a C++ STL object is required to be placed in a
specific memory section, using #pragma section/default_section
does not work. Instead, a non-default heap must be used as
explained in “Allocating C++ STL Objects to a Non-Default
Heap” on page 1-427.

#pragma file_attr(“name[=value]” [, “name[=value]” [...]])

The file_attr pragma directs the compiler to emit the specified attri-
butes when it compiles a file containing the pragma. Multiple #pragma
file_attr directives are allowed in one file.

If "=value" is omitted, the default value of "1" will be used.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-315
for Blackfin Processors

Compiler

 The value of an attribute is all the characters after the '=' symbol
and before the closing '”' symbol, including spaces. A warning will
be emitted by the compiler if you have a preceding or trailing space
as an attribute value, as this is likely to be a mistake.

See “File Attributes” on page 1-471 for more information on using
attributes.

#pragma symbolic_ref

The symbolic_ref pragma may be used before a public global variable,
to indicate to the compiler that references to that variable should only be
through the variable’s symbolic name. Loading the address of a variable
into a pointer register can be an expensive operation, and the compiler
usually avoids this when possible. Consider the case where

int x;

int y;

int z;

void foo(void) { x = y + z; }

Given that the three variables are in the same data section, the compiler
can generate the following code:

_foo:

P0.L = .epcbss;

P0.H = .epcbss;

R0 = [P0+ 4];

R1 = [P0+ 8];

R0 = R1 + R0;

[P0+ 0] = R0;

RTS;

.section/ZERO_INIT bsz;

.align 4;

C/C++ Compiler Language Extensions

1-316 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

.epcbss:

.type .epcbss,STT_OBJECT;

.byte _x[4];

.global _x;

.type _x,STT_OBJECT;

.byte _y[4];

.global _y;

.type _y,STT_OBJECT;

.byte _z[4];

.global _z;

.type _z,STT_OBJECT;

.epcbss.end:

Having loaded a pointer to “x” (which shares the address of the start of the
.epcbss section), the compiler can use offsets from this pointer to access
“y” and “z”, avoiding the expense of loading addresses for those variables.
However, this forces the linker to ensure that the relative offsets between
x, y, z, and .epcbss do not change during the linking process.

There are cases when you might wish the compiler to reference a variable
only through its symbolic name, such as when you are using RESOLVE()
in the .ldf file to explicitly map the variable to a particular address.
The compiler automatically uses symbolic references for:

• Volatile variables

• Variables specified with #pragma weak_entry

• Variables greater than or equal to 16 bytes in size

If other cases arise, you can use #pragma symbolic_ref to explicitly
request this behavior. For example,

int x;

#pragma symbolic_ref

int y;

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-317
for Blackfin Processors

Compiler

int z;

void foo(void) { x = y + z; }

produces

_foo:

P0.L = .epcbss;

I0.L = _y;

P0.H = .epcbss;

I0.H = _y;

MNOP || R0 = [P0+ 4] || R1 = [I0];

R0 = R0 + R1;

[P0+ 0] = R0;

RTS;

.section/ZERO_INIT bsz;

.align 4;

.epcbss:

.type .epcbss,STT_OBJECT;

.byte _x[4];

.global _x;

.type _x,STT_OBJECT;

.byte _z[4];

.global _z;

.type _z,STT_OBJECT;

.epcbss.end:

.align 4;

.global _y;

.type _y,STT_OBJECT;

.byte _y[4];

._y.end:

Note that variable y is referenced explicitly by name, rather than using the
common pointer to .epcbss, and it is declared outside the bounds of the

C/C++ Compiler Language Extensions

1-318 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

(.epcbss, .epcbss.end) pair. The (_y, ._y.end) form a separate pair that
can be moved by the linker, if necessary, without affecting the functional-
ity of the generated code.

The symbolic_ref pragma can only be used immediately before declara-
tions of global variables, and only applies to the immediately-following
declaration.

#pragma weak_entry

The weak_entry pragma may be used before a static variable or function
declaration or definition. It applies to the function/variable declaration or
definition that immediately follows the pragma. Use of this pragma causes
the compiler to generate the function or variable definition with weak
linkage.

The following are example uses of the #pragma weak_entry directive.

#pragma weak_entry

int w_var = 0;

#pragma weak_entry

void w_func(){}

 When a symbol definition is weak, it may be discarded by the
linker in favor of another definition of the same symbol. Therefore,
if any modules in the application use the weak_entry pragma,
interprocedural analysis is disabled because it would be unsafe for
the compiler to predict which definition will be selected by the
linker. For more information, see “Interprocedural Analysis” on
page 1-98.

Function Side-Effect Pragmas

Function side-effect pragmas (alloc, pure, const, inline, misra_func,
noreturn, regs_clobbered, overlay, and result_alignment) are used
before a function declaration to give the compiler additional information

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-319
for Blackfin Processors

Compiler

about the function to improve the code surrounding the function call.
These pragmas should be placed before a function declaration and should
apply to that function. For example,

#pragma pure

long dot(short*, short*, int);

#pragma alloc

The alloc pragma tells the compiler that the function behaves like the
library function “malloc”, returning a pointer to a newly allocated object.
An important property of these functions is that the pointer returned by
the function does not point at any other object in the context of the call.

In the following example, the compiler can reorder the iterations of the
loop because the #pragma alloc tells it that a and b cannot overlap out.

#pragma alloc

short *new_buf(void);

short *copy_buf(short *a) {

int i;

short * p = a;

short * q = new_buf();

for (i=0; i<100; i++)

*p++ = *q++;

return p;

}

The GNU attribute malloc is also supported with the same meaning.

#pragma const

The const pragma is a more restrictive form of the pure pragma
(on page 1-321). It tells the compiler that the function does not read from
global variables, does not write to them, or read or write volatile variables.

C/C++ Compiler Language Extensions

1-320 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The result is therefore a function of its parameters. If any parameters are
pointers, the function may not read the data they point at.

#pragma inline

The inline pragma is placed before a function prototype or definition.
It tells the compiler that this function is to be treated as inline.

#pragma misra_func(arg)

The misra_func pragma is placed before a function prototype. It is used to
support MISRA-C rules 20.4, 20.7, 20.8, 20.9, 20.10, 20.11, and 20.12.
The arg indicates the type of function with respect to the MISRA-C rule.
Functions following rule 20.4 would take arg heap, 20.7 arg jmp, 20.8
arg handler, 20.9 arg io, 20.10 arg string_conv, 20.11 arg system,
and 20.12 arg time.

#pragma noreturn

The noreturn pragma can be placed before a function prototype or defini-
tion. It tells the compiler that the function to which it applies will never
return to its caller. For example, a function such as the standard C func-
tion “exit” never returns.

The use of this pragma allows the compiler to treat all code following a
call to a function declared with the pragma as unreachable and hence
removable.

#pragma noreturn

void func() {

while(1);

}

main() {

func();

/* any code here will be removed */

}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-321
for Blackfin Processors

Compiler

#pragma pgo_ignore

The pgo_ignore pragma tells the compiler that no profile should be gener-
ated for this function when using profile-guided optimization. This is
useful when the function is concerned with error checking or diagnostics.

For example,

extern const short *x, *y;

int dotprod(void) {

int i, sum = 0;

for (i = 0; i < 100; i++)

sum += x[i] * y[i];

return sum;

}

#pragma pgo_ignore

int check_dotprod(void) {

/* The compiler will not profile this comparison */

return dotprod() == 100;

}

#pragma pure

The pure pragma tells the compiler that the function does not write to any
global variables, and does not read or write any volatile variables. Its
result, therefore, is a function of its parameters or of global variables. If
any of the parameters are pointers, the function may read the data they
point at but may not write to the data.

Since the function call has the same effect every time it is called (between
assignments to global variables), the compiler need not generate the code
for every call.

C/C++ Compiler Language Extensions

1-322 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Therefore, in the following example, the compiler can replace the ten calls
to sdot with a single call made before the loop.

#pragma pure

long sdot(short *, short *, int);

long tendots(short *a, short *b, int n) {

int i;

long s = 0;

for (i = 1; i < 10; ++i)

s += sdot(a, b, n); // call can get hoisted out of loop

return s;}

#pragma regs_clobbered string

The regs_clobbered pragma may be used with a function declaration or
definition to specify which registers are modified (or clobbered) by that
function. The string contains a list of registers and is case-insensitive.

When used with an external function declaration, this pragma acts as an
assertion, telling the compiler something it would not be able to discover
for itself.

In the following example, the compiler knows that only registers r5, p5,
and i3 may be modified by the call to f, so it may keep local variables in
other registers across that call.

#pragma regs_clobbered "r5 p5 i3"

void f(void);

The regs_clobbered pragma may also be used with a function definition,
or a declaration preceding a definition (when it acts as a command to the
compiler to generate register saves, and restores on entry and exit from the
function) to ensure it only modifies the registers in string.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-323
for Blackfin Processors

Compiler

For example,

#pragma regs_clobbered "r3 m4 p5"

int g(int a) {

return a+3;

}

 The regs_clobbered pragma may not be used in conjunction with
#pragma interrupt. If both pragmas are specified, a warning is
issued and the regs_clobbered pragma is ignored.

To obtain optimal results with the pragma, it is best to restrict the clob-
bered set to be a subset of the default scratch registers. When considering
when to apply the regs_clobbered pragma, it may be useful to look at the
output of the compiler to see how many scratch registers were used.
Restricting the volatile set to these registers will produce no impact on the
code produced for the function but may free up registers for the caller to
allocate across the call site.

 The regs_clobbered pragma cannot be used in any way with
pointers to functions. A function pointer cannot be declared to
have a customized clobber set, and it cannot take the address of a
function which has a customized clobber set. The compiler raises
an error if either of these actions are attempted.

String Syntax

A regs_clobbered string consists of a list of registers, register ranges,
or register sets that are clobbered. Items in the list are separated by spaces,
commas, or semicolons.

A register is a single register name—the same name may be used in an
assembly file.

A register range consists of start and end registers, which reside in the
same register class, separated by a hyphen. All registers between the two
(inclusive) are clobbered.

C/C++ Compiler Language Extensions

1-324 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

A register set is a name for a specific set of commonly-clobbered regis-
ters that is predefined by the compiler.

When the compiler detects an illegal string, a warning is issued and the
default volatile set is used instead. (See “Scratch Registers” on
page 1-433.)

Unclobberable and Must-Clobber Registers

There are certain caveats as to what registers may or must be placed in the
clobbered set.

On Blackfin processors, the SP and FP registers may not be specified in the
clobbered set, as the correct operation of the function call requires their
values to be preserved. If the user specifies them in the clobbered set, a
warning is issued and they are removed from the specified clobbered set.

Registers from the following classes may be specified in the clobbered set,
and code is generated to save them as necessary.

I, P, D, M, ASTAT, A0, A1, LC, LT, LB

The L registers are required to be zero on entry and exit from a function.
A user may specify that a function clobbers the L registers. If it is a com-
piler-generated function, then it leaves the L registers zero at the end of
the function. If it is an assembly function, it may clobber the L registers.
In that case, the L registers are re-zeroed after any call to that function.

The SEQSTAT, RETI, RETX, RETN, SYSCFG, CYCLES, and CYCLES2 registers are
never used by the compiler and are never preserved.

Register P1 is used by the linker to expand CALL instructions, so it may be
modified at the call site regardless of whether the regs_clobbered pragma
says it is clobbered. Therefore, the compiler never keeps P1 live across a
call. However, the compiler accepts the pragma when compiling a func-
tion in case the user wants to keep P1 live across a call that is not expanded
by the linker. It is your responsibility to make sure such calls are not
expanded by the linker.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-325
for Blackfin Processors

Compiler

User-Reserved Registers

User-reserved registers, indicated via the -reserve switch (on page 1-71),
are never preserved in the function wrappers, whether in the clobbered set
or not.

Function Parameters

Function calling conventions are visible to the caller and do not affect the
clobbered set that may be used on a function.

In the following example, the parameters a and b are passed in registers R0
and R1, respectively. No matter what happens in function f, after the call
returns, the values of R0 and R1 remain 2 and 3, respectively.

#pragma regs_clobbered "" // clobbers nothing

void f(int a, int b);

void g() {

f(2,3);

}

Function Results

The registers in which a function returns its result must always be clob-
bered by the callee and retain their new value in the caller. They may
appear in the clobbered set of the callee, but it does not matter to the gen-
erated code—the return registers are not saved and restored. Only the
return register used by the particular function return type is special.
Return registers used by different return types are treated in the clobbered
list in the convention way.

For example,

typedef struct { int x; int y; } Point;

typedef struct { int x[10]; } Big;

int f(); // Result in R0.

// R1, P0 may be preserved across call.

Point g(); // Result in R0 and R1.

C/C++ Compiler Language Extensions

1-326 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

// P0 may be preserved across call.

Big f(); // Result pointer in P0.

// R0, R1 may be preserved across call.

#pragma regs_clobbered_call string

The regs_clobbered_call pragma may be applied to a statement to indi-
cate that the call within the statement uses a modified volatile register set.
The pragma is closely related to #pragma regs_clobbered, but avoids
some of the restrictions that relate to that pragma.

These restrictions arise because the regs_clobbered pragma applies to a
function’s declaration—when the call is made, the clobber set is retrieved
from the declaration automatically. This is not possible when the declara-
tion is not available, because the function being called is not directly tied
to a declaration of a specific function. This affects:

• Pointers to functions

• Class methods

• Pointers to class methods

• Virtual functions

In such cases, the regs_clobbered_call pragma can be used at the call site
to inform the compiler directly of the volatile register set to be used dur-
ing the call.

The pragma’s syntax is as follows:

#pragma regs_clobbered_call clobber_string
statement

where clobber_string follows the same format as for the regs_clobbered
pragma, and statement is the C statement containing the call expression.

There must be only a single call within the statement; otherwise, the state-
ment is ambiguous.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-327
for Blackfin Processors

Compiler

For example,

#pragma regs_clobbered "r0 r1 p1"

int func(int arg) { /* some code */ }

int (*fnptr)(int) = func;

int caller(int value) {

int r;

#pragma regs_clobbered_call "r0 r1”

r = (*fnptr)(value);

return r;

}

 When using the regs_clobbered_call pragma, ensure that the
called function does indeed only modify the registers listed in the
clobber set for the call—the compiler does not check this for you.
It is valid for the callee to clobber fewer registers than those listed
in the call’s clobber set. It is also valid for the callee to modify
registers outside of the call’s clobber set, as long as the callee saves
the values first and restores them before returning to the caller.

The following examples show this.

Example 1:

#pragma regs_clobbered "r0 r1"

void callee(void) { ... }

#pragma regs_clobbered_call "r0 r1"

callee(); // Okay - clobber sets match

C/C++ Compiler Language Extensions

1-328 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Example 2:

#pragma regs_clobbered "r0"

void callee(void) { ... }

#pragma regs_clobbered_call "r0 r1"

callee(); // Okay - callee clobber set is a subset

// of call's set

Example 3:

#pragma regs_clobbered "r0 r1 r2"

void callee(void) { ... }

#pragma regs_clobbered_call "r0 r1"

callee(); // Error - callee clobbers more than

// indicated by call.

Example 4:

void callee(void) { ... }

#pragma regs_clobbered_call "r0 r1"

callee(); // Error - callee uses default set larger

// than indicated by call.

Limitations

Pragma regs_clobbered_call may not be used on constructors or
destructors of C++ classes.

The pragma only applies to the call in the immediately-following state-
ment. If the immediately-following line contains more than one
statement, the pragma only applies to the first statement on the line:

#pragma regs_clobbered_call "r0 r1"

x = foo(); y = bar(); // only "x = foo();" is affected

// by the pragma.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-329
for Blackfin Processors

Compiler

Similarly, if the immediately-following line is a sequence of declarations
that use calls to initialize the variables, only the first declaration is
affected:

#pragma regs_clobbered_call "r0 r1"

int x = foo(), y = bar(); // only "x = foo()" is affected

// by the pragma.

Moreover, if the declaration with the call-based initializer is not the first
in the declaration list, the pragma will have no effect:

#pragma regs_clobbered_call "r0 r1"

int w = 4, x = foo(); y = bar(); // pragma has no effect

// on “w = 4”.

The pragma has no effect on function calls that get inlined. Once a func-
tion call is inlined, the inlined code obeys the clobber set of the function
into which it has been inlined. It does not continue to obey the clobber set
that will be used if an out-of-line copy is required.

#pragma overlay

When compiling code that involves one function calling another in the
same source file, the compiler optimizer can propagate register informa-
tion between the functions. This means that it can record which scratch
registers are clobbered over the function call. This can cause problems
when compiling overlaid functions, as the compiler may assume that cer-
tain scratch registers are not clobbered over the function call, but they are
clobbered by the overlay manager. The #pragma overlay, when placed on
the definition of a function, will disable this propagation of register infor-
mation to the function’s callers.

For example,

#pragma overlay

int add(int a, int b)

{

C/C++ Compiler Language Extensions

1-330 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

// callers of function add() assume it clobbers

// all scratch registers

return a+b;

}

#pragma result_alignment (n)

The result_alignment pragma asserts that the pointer or integer returned
by the function has a value that is a multiple of n. The pragma is often
used in conjunction with the #pragma alloc of custom-allocation func-
tions that return pointers more strictly aligned than could be deduced
from their type.

Class Conversion Optimization Pragmas

The class conversion optimization pragmas (param_never_null and
suppress_null_check) allow the compiler to generate more efficient code
when converting class pointers from a pointer-to-derived-class to a
pointer-to-base-class, by asserting that the pointer to be converted will
never be a null pointer. This allows the compiler to omit the null check
during conversion.

#pragma param_never_null param_name [...]

The param_never_null pragma must immediately precede a function defi-
nition. It specifies a name or a list of space-separated names, which must
correspond to the parameter names declared in the function definition.
It checks that the named parameter is a class pointer type. Using this
information allows it to generate more efficient code for a conversion from
a pointer to a derived class to a pointer to a base class. It removes the need
to check for the null pointer during the conversion. For example,

#include <iostream>

using namespace std;

class A {

int a;

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-331
for Blackfin Processors

Compiler

};

class B {

int b;

};

class C: public A, public B {

int c;

};

C obj;

B *bpart = &obj;

bool fail = false;

#pragma param_never_null pc

void func(C *pc)

{

B *pb;

pb = pc; /* without pragma the code generated has to

check for NULL */

if (pb != bpart)

fail = true;

}

int main(void)

{

func(&obj);

if (fail)

cout << "Test failed" << endl;

else

cout << "Test passed" << endl;

return 0;

}

C/C++ Compiler Language Extensions

1-332 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

#pragma suppress_null_check

The suppress_null_check pragma must immediately precede an assign-
ment of two pointers or a declaration list.

If the pragma precedes an assignment, it indicates that the second operand
pointer is not null and generates more efficient code for a conversion from
a pointer to a derived class to a pointer to a base class. It removes the need
to check for the null pointer before assignment.

On a declaration list, it marks all variables as not being the null pointer.
If the declaration contains an initialization expression, that expression is
not checked for null.

#include <iostream>

using namespace std;

class A {

int a;

};

class B {

int b;

};

class C: public A, public B {

int c;

};

C obj;

B *bpart = &obj;

bool fail = false;

void func(C *pc)

{

B *pb;

#pragma suppress_null_check

pb = pc; /* without pragma the code generated has to

check for NULL */

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-333
for Blackfin Processors

Compiler

if (pb != bpart)

fail = true;

}

void func2(C *pc)

{

#pragma suppress_null_check

B *pb = pc, *pb2 = pc; /* pragma means these initializations

need not check for NULL. It also marks pb and pb2

as never being NULL, so the compiler will not

generate NULL checks in class conversions using

these pointers. */

if (pb != bpart || pb2 != bpart)

fail = true;

}

int main(void)

{

func(&obj);

func2(&obj);

if (fail)

cout << "Test failed" << endl;

else

cout << "Test passed" << endl;

return 0;

}

Template Instantiation Pragmas

The template instantiation pragmas (instantiate, do_not_instantiate,
and can_instantiate) provide fine-grained control over where (that is, in
which object file) the individual instances of template functions, member
functions, and static members of template classes are created. The creation
of these instances from a template is known in “C++ speak” as

C/C++ Compiler Language Extensions

1-334 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

instantiation. As templates are a feature of C++, these pragmas are allowed
only in C++ mode.

Refer to “Compiler C++ Template Support” on page 1-466 for more
information on how the compiler handles templates.

The instantiation pragmas take the name of an instance as a parameter,
as shown in Table 1-31.

If the instantiation pragmas are not used, the compiler selects object files
where all required instances automatically instantiate during the prelink-
ing process.

#pragma instantiate instance

The instantiate pragma requests the compiler to instantiate instance in
the current compilation.

The following example causes all static members and member functions
for the int instance of a template class Stack to be instantiated, whether
they are required in this compilation or not.

#pragma instantiate class Stack<int>

Table 1-31. Instance Names

Name Parameter

Template class name A<int>

Template class declaration class A<int>

Member function name A<int>::f

Static data member name A<int>::I

Static data declaration int A<int>::I

Member function declaration void A<int>::f(int, char)

Template function declaration char* f(int, float)

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-335
for Blackfin Processors

Compiler

The following example causes only the individual member function
Stack<int>::push(int) to be instantiated.

#pragma instantiate void Stack<int>::push(int)

#pragma do_not_instantiate instance

The do_not_instantiate pragma directs the compiler not to instantiate
instance in the current compilation.

The following example prevents the compiler from instantiating the static
data member Stack<float>::use_count in the current compilation.

#pragma do_not_instantiate int Stack<float>::use_count

#pragma can_instantiate instance

The can_instantiate pragma tells the compiler that if instance is
required anywhere in the program, it should be instantiated in this
compilation.

 Currently, this pragma forces the instantiation, even if it is not
required anywhere in the program. Therefore, it has the same effect
as #pragma instantiate.

Header File Control Pragmas

The header file control pragmas (hdrstop, no_implicit_inclusion,
no_pch, once, and system_header) help the compiler to handle header
files.

#pragma hdrstop

The hdrstop pragma is used with the -pch (precompiled header) switch
(on page 1-66). The -pch switch instructs the compiler to look for a
precompiled header (.pch file), and, if it cannot find one, to generate a file
for use on a later compilation. The .pch file contains a snapshot of all the
code preceding the header stop point.

C/C++ Compiler Language Extensions

1-336 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

By default, the header stop point is the first non-preprocessing token in
the primary source file. The #pragma hdrstop can be used to set the point
earlier in the source file.

In the following example, the default header stop point is the start of the
declaration i.

#include "standard_defs.h"

#include "common_data.h"

#include "frequently_changing_data.h"

int i;

This might not be a good choice, as “frequently_changing_data.h”
might change frequently, causing the .pch file to be regenerated often,
and, therefore, losing the benefit of precompiled headers. The hdrstop
pragma can be used to move the header stop to a more appropriate place.

In the following example, the precompiled header file would not include
the contents of frequently_changing_data.h, as it is included after the
hdrstop pragma, and so the precompiled header file would not need to be
regenerated each time frequently_changing_data.h was modified.

#include "standard_defs.h"

#include "common_data.h"

#pragma hdrstop

#include "frequently_changing_data.h"

int i;

#pragma no_implicit_inclusion

With the -c++ switch (on page 1-26), for each included header file (.h or
non-suffixed), the compiler attempts to include the corresponding .c or
.cpp file. This is called “implicit inclusion”.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-337
for Blackfin Processors

Compiler

If #pragma no_implicit_inclusion is placed in an .h (or non-suffixed)
file, the compiler does not implicitly include the corresponding .c or .cpp
file with the -c++ switch. This behavior only affects the .h (or non-suf-
fixed) file with #pragma no_implicit_inclusion within it and the
corresponding .c or .cpp files.

For example, if there are the following files,

t.c containing

#include "m.h"

and m.h and m.c are both empty, then

ccblkfn -c++ t.c -M

shows the following dependencies for t.c:

t.doj: t.c

t.doj: m.h

t.doj: m.c

If the following line is added to m.h,

#pragma no_implicit_inclusion

running the compiler as before would not show m.c in the dependencies
list, such as:

t.doj: t.c

t.doj: m.h

#pragma no_pch

The no_pch pragma overrides the -pch (precompiled headers) switch
(on page 1-66) for a particular source file. It directs the compiler not to
look for a .pch file and not to generate one for the specified source file.

C/C++ Compiler Language Extensions

1-338 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

#pragma once

The once pragma, which should appear at the beginning of a header file,
tells the compiler that the header is written in such a way that including it
several times has the same effect as including it once. For example,

#pragma once

#ifndef FILE_H

#define FILE_H

... contents of header file ...

#endif

 In this example, #pragma once is actually optional because the
compiler recognizes the #ifndef, #define, or #endif idioms and
does not reopen a header that uses it.

#pragma system_header

The system_header pragma identifies an include file as a file supplied with
VisualDSP++. The VisualDSP++ compiler uses this information to help
optimize uses of the supplied library functions and inline functions that
these files define. Do not use this pragma in user application source.

Diagnostic Control Pragmas

The compiler supports #pragma diag, which allows selective modification
of the severity of compiler diagnostic messages.

The directive has three forms:

• Modify the severity of specific diagnostics

• Modify the behavior of an entire class of diagnostics

• Save or restore the current behavior of all diagnostics

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-339
for Blackfin Processors

Compiler

Modifying the Severity of Specific Diagnostics

This form of the directive has the following syntax:

#pragma diag(ACTION: DIAG [, DIAG ...][: STRING])

The action: qualifier can be one of the keywords in Table 1-32.

If not in MISRA-C mode, the DIAG qualifier can be one or more
comma-separated compiler diagnostic message numbers without any
preceding “cc” or zeros. The choice of error numbers is limited to those
that may have their severity overridden (such as those that display “{D}”
in the error message).

In addition, some diagnostics are global (for example, diagnostics emitted
by the compiler back-end after lexical analysis and parsing, or before pars-
ing begins), and these global diagnostics cannot have their severity
overridden by the diagnostic control pragmas. To modify the severity of
global diagnostics, use the diagnostic control switches. For more informa-
tion, see “-W{error|remark|suppress|warn}” on page 1-79.

In MISRA-C mode, the DIAG qualifier is a list of MISRA-C rule numbers
in the form misra_rule_6_3 and misra_rule_19_4 for rules 6.3 and 19.4,
and so on. Rules 10.1 and 10.2 are a special case, in which both rules split
into four distinct rule checks. For example, 10.1(c) should be stated as
misra_rule_10_1_c.

Table 1-32. Keywords for ACTION Qualifier

Keyword Action

suppress Suppresses all instances of the diagnostic

remark Changes the severity of the diagnostic to a remark

warning Changes the severity of the diagnostic to a warning

error Changes the severity of the diagnostic to an error

restore Restores the severity of the diagnostic to what it was originally at the start
of compilation after all command-line options were processed

C/C++ Compiler Language Extensions

1-340 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The third optional argument is a string-literal to insert a comment regard-
ing the use of the #pragma diag.

Modifying the Behavior of an Entire Class of Diagnostics

This form of the directive has the following syntax, which is not allowed
in MISRA-C mode:

#pragma diag(ACTION)

The effects are as follows:

• #pragma diag(errors)

This pragma can be used to inhibit all subsequent warnings and
remarks (equivalent to the -w switch option).

• #pragma diag(remarks)

This pragma can be used to enable all subsequent remarks and
warnings (equivalent to the -Wremarks switch option)

• #pragma diag(warnings)

This pragma can be used to restore the default behavior when
neither -w or -Wremarks is specified, which is to display warnings
but inhibit remarks.

Saving or Restoring the Current Behavior of All Diagnostics

This form has the following syntax:

#pragma diag(ACTION)

The effects are as follows:

• #pragma diag(push)

This pragma may be used to store the current state of the severity
of all diagnostic error messages.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-341
for Blackfin Processors

Compiler

• #pragma diag(pop)

This pragma restores all diagnostic error messages that were
previously saved with the most recent push.

All #pragma diag(push) directives must be matched with the same num-
ber of #pragma diag(pop) directives in the overall translation unit, but
need not be matched within individual source files, unless in MISRA-C
mode. Note that the error threshold (set by the remarks, warnings, or
errors keywords) is also saved and restored with these directives.

The duration of such modifications to diagnostic severity are from the
next line following the pragma to the end of the translation unit, the next
#pragma diag(pop) directive, or the next overriding #pragma diag()
directive with the same error number. These pragmas may be used any-
where and are not affected by normal scoping rules.

All command-line overrides to diagnostic severity are processed first, and
any subsequent #pragma diag() directives take precedence, with the
restore action changing the severity back to that at the start of compilation
after processing the command-line switch overrides.

 Directives to modify specific diagnostics are singular (for example,
“error”), and the directives to modify classes of diagnostics are
plural (for example, “errors”).

Memory Bank Pragmas

The memory bank pragmas provide additional performance characteristics
for the memory areas used to hold code and data for the function.

By default, the compiler assumes that there are no external costs associated
with memory accesses. This strategy allows optimal performance when the
code and data are placed into high-performance internal memory. In cases
where the performance characteristics of memory are known in advance,
the compiler can exploit this knowledge to improve the scheduling of gen-
erated code.

C/C++ Compiler Language Extensions

1-342 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Note that memory banks are different from sections:

• Section is a “hard” placement, using a name that is meaningful to
the linker. If the .ldf file does not map the named section, a linker
error occurs.

• A memory bank is a “soft” placement, using a name that is not
visible to the linker. The compiler uses optimization to take advan-
tage of the bank’s performance characteristics. However, if the .ldf
file maps the code or data to memory that performs differently,
the application still functions (albeit with a possible reduction in
performance).

#pragma code_bank(bankname)

The code_bank pragma informs the compiler that the instructions for the
immediately-following function are placed in a memory bank called bank-
name. Without this pragma, the compiler assumes that instructions are
placed into a bank called “__code”. When optimizing the function, the
compiler is aware of attributes of memory bank bankname, and determines
how long it takes to fetch each instruction from the memory bank.

In the following example, the add_slowly() function is placed into the
“slowmem” bank, which may have different performance characteristics
from the “__code” bank, into which add_quickly() is placed.

#pragma code_bank(slowmem)

int add_slowly (int x, int y) { return x + y; }

int add_quickly(int a, int b) { return a + b; }

#pragma data_bank(bankname)

The data_bank pragma informs the compiler that the immediately-follow-
ing function uses the memory bank bankname as the model for memory
accesses for non-local data that does not otherwise specify a memory bank.
Without this pragma, the compiler assumes that non-local data should use
the bank “__data” for behavioral characteristics.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-343
for Blackfin Processors

Compiler

In both green_func() and blue_func() of the following example, i is
associated with the memory bank “blue”, and the retrieval and update of i
are optimized to use the performance characteristics associated with
memory bank “blue”.

#pragma data_bank(green)

int green_func(void)

{

extern int arr1[32];

extern int bank("blue") i;

i &= 31;

return arr1[i++];

}

int blue_func(void)

{

extern int arr2[32];

extern int bank("blue") i;

i &= 31;

return arr2[i++];

}

The array arr1 does not have an explicit memory bank in its declaration.
Therefore, it is associated with the memory bank “green”, because
green_func() has a specific default data bank. In contrast, arr2 is
associated with the memory bank “__data”, because blue_func() does not
have a #pragma data_bank preceding it.

#pragma stack_bank(bankname)

The stack_bank pragma informs the compiler that all locals for the
immediately-following function are to be associated with memory bank
bankname, unless they explicitly identify a different memory bank.
Without this pragma, all locals are assumed to be associated with the
memory bank “__stack”.

C/C++ Compiler Language Extensions

1-344 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

In the following example, the dotprod() function places the sum and i
values into memory bank “mystack”, while fib() places r, a, and b into
memory bank “__stack”, because there is no stack_bank pragma.
The count_ticks() function does not declare any local data, but any
compiler-generated local storage uses the “sysstack” memory bank’s
performance characteristics.

#pragma stack_bank(mystack)

short dotprod(int n, const short *x, const short *y)

{

int sum = 0;

int i = 0;

for (i = 0; i < n; i++)

sum += *x++ * *y++;

return sum;

}

int fib(int n)

{

int r;

if (n < 2) {

r = 1;

} else {

int a = fib(n-1);

int b = fib(n-2);

r = a + b;

}

return r;

}

#include <sys/exception.h>

#pragma stack_bank(sysstack)

EX_INTERRUPT_HANDLER(count_ticks)

{

extern int ticks;

ticks++;

}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-345
for Blackfin Processors

Compiler

#pragma bank_memory_kind(bankname, kind)

The bank_memory_kind pragma informs the compiler of what kind of
memory the memory bank bankname is. The compiler allows the following
kinds of memory:

• Internal – The memory bank is high-speed in-core memory

• L2 – The memory bank is on-chip, but not in-core

• External – The memory bank is external to the processor

The pragma must appear at global scope, outside any function definitions,
but need not immediately precede a function definition.

In the following example, the compiler knows that all accesses to the
data[] array are to the “blue” memory bank, and hence to internal,
in-core memory.

#pragma bank_memory_kind(blue, internal)

int sum_list(const int bank("blue") *data, int n)

{

int sum = 0;

while (n--)

sum += data[n];

return sum;

}

#pragma bank_read_cycles(bankname, cycles)

The bank_read_cycles pragma tells the compiler that each read operation
on the memory bank bankname requires cycles cycles before the resulting
data is available. This allows the compiler to schedule sufficient code
between the initiation of the read and the use of its results, to prevent
unnecessary stalls.

C/C++ Compiler Language Extensions

1-346 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

In the following example, the compiler assumes that a read from *x takes a
single cycle, as this is the default read time, but that a read from *y takes
twenty cycles, because of the pragma.

#pragma bank_read_cycles(slowmem, 20)

int dotprod(int n, const int *x, bank("slowmem") const int *y)

{

int i, sum;

for (i=sum=0; i < n; i++)

sum += *x++ * *y++;

return sum;

}

The pragma must appear at global scope, outside any function definitions,
but need not immediately precede a function definition.

#pragma bank_write_cycles(bankname, cycles)

The bank_write_cycles pragma tells the compiler that each write opera-
tion on memory bank bankname requires cycles cycles before it completes.
This allows the compiler to schedule sufficient code between the initiation
of the write and a subsequent read or write to the same location, to pre-
vent unnecessary stalls.

In the following example, the compiler knows that each write through ptr
to the “output” memory bank takes six cycles to complete.

void write_buf(int n, const char *buf)

{

volatile bank("output") char *ptr = REG_ADDR;

while (n--)

*ptr = *buf++;

}

#pragma bank_write_cycles(output, 6)

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-347
for Blackfin Processors

Compiler

The pragma must appear at global scope, outside any function definitions,
but need not immediately precede a function definition. This is shown in
the preceding example.

#pragma bank_optimal_width(bankname, width)

The bank_optimal_width pragma informs the compiler that width is the
optimal number of bits to transfer to/from memory bank bankname in a
single cycle. This can be used to indicate to the compiler that some mem-
ories can benefit from vectorization and similar strategies more than
others. The width parameter must be 8, 16, 24, or 32.

In the following example, the compiler knows that the instructions for the
generated function would be best fetched in multiples of 16 bits, and so
can select instructions accordingly.

void memcpy_simple(char *dst, const char *src, size_t n)

{

while (n--)

*dst++ = *src++;

}

#pragma bank_optimal_width(__code, 16)

The pragma must appear at global scope, outside any function definitions,
but need not immediately precede a function definition. This is shown in
the preceding example.

Exceptions Tables Pragma

#pragma generate_exceptions_tables

The generate_exceptions_tables pragma may be applied to a C function
definition to request the compiler to generate tables that enable C++
exceptions to be thrown through executions of this function.

C/C++ Compiler Language Extensions

1-348 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

This example consists of two source files. The first is a C file that contains
the pragma applied to the definition of function call_a_call_back.

#pragma generate_exceptions_tables

void call_a_call_back(void pfn(void)) {

pfn(); /* without pragma program terminates

when throw_an_int throws an exception */

}

The second source file contains C++ code. The function main calls
call_a_call_back, from the C file listed above, which in turn calls
throw_an_int. The exception thrown by throw_an_int will be caught by
the catch handler in main because use of the pragma ensured the compiler
generated an exceptions table for call_a_call_back.

#include <iostream>

extern "C" void call_a_call_back(void pfn());

static void throw_an_int() {

throw 3;

}

int main() {

try {

call_a_call_back(throw_an_int);

} catch (int i) {

if (i == 3) std::cout << "Test passed\n";

}

}

An alternative to using #pragma generate_exceptions_tables is to
compile C files with the -eh (enable exception handling) switch
(on page 1-35) which, for C files, is equivalent to using the pragma before
every function definition.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-349
for Blackfin Processors

Compiler

GCC Compatibility Extensions
The compiler provides compatibility with many features of the C dialect
accepted by version 3.4 of the GNU C Compiler. Many of these features
are available in the ISO/IEC 9899:1999 C standard. A brief description of
the extensions is included in this section. For more information, refer to
the following Web address:

http://gcc.gnu.org/onlined-

ocs/gcc-3.4.6/gcc/index.html#toc_C-Extensions

 The GCC compatibility extensions are only available in C dialect
mode. They are not accepted in C++ dialect mode.

Statement Expressions

A statement expression is a compound statement enclosed in parentheses.
Because a compound statement itself is enclosed in braces as “{ }”, this
construct is enclosed in parentheses-brace pairs, as “({ })”.

The value computed by a statement expression is the value of the last
statement (which should be an expression statement). The statement
expression may be used where expressions of its result type may be used.
But they are not allowed in constant expressions.

Statement expressions are useful in the definition of macros as they allow
the declaration of variables local to the macro.

In the following example, the foo() and thing() statements get called
once each because they are assigned to the variables __x and __y, which are
local to the statement expression that min expands to. The min() can be
used freely within a larger expression because it expands to an expression.

#define min(a,b) ({ \

short __x=(a),__y=(b),__res; \

if (__x > __y) \

__res = __y; \

http://gcc.gnu.org/onlinedocs/gcc-3.2.1/gcc/C-Extensions.html#C%20Extensions
http://gcc.gnu.org/onlinedocs/gcc-3.2.1/gcc/C-Extensions.html#C%20Extensions
http://gcc.gnu.org/onlinedocs/gcc-3.2.1/gcc/C-Extensions.html#C%20Extensions

C/C++ Compiler Language Extensions

1-350 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

else \

__res = __x; \

__res; \

})

int use_min() {

return min(foo(), thing()) + 2;

}

Labels local to a statement expression can be declared with the __label__
keyword. For example,

#define checker(p) ({ \

__label__ exit; \

int i; \

for (i=0; p[i]; ++i) { \

int d = get(p[i]); \

if (!check(d)) goto exit; \

process(d); \

} \

exit: \

i; \

})

extern int g_p[100];

int checkit() {

int local_i = checker(g_p);

return local_i;

}

 Statement expressions are not supported in C++ mode. Statement
expressions are an extension to C originally implemented in the
GCC compiler. Analog Devices supports the extension primarily to
aid porting code written for that compiler. When writing new

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-351
for Blackfin Processors

Compiler

code, consider using inline functions, which are compatible with
ANSI/ISO standard C++ and C99, and are as efficient as macros
when optimization is enabled.

Type Reference Support Keyword (typeof)

The typeof(expression) construct can be used as a name for the type of
expression without actually knowing what that type is. It is useful for
making source code that is interpreted more than once, such as macros or
include files, more generic. The typeof keyword may be used wherever a
typedef name is permitted such as in declarations and in casts.

The following example shows typeof used in conjunction with a state-
ment expression to define a “generic” macro with a local variable
declaration.

#define abs(a) ({ \

typeof(a) __a = a; \

if (__a < 0) __a = - __a; \

__a; \

})

The argument to typeof may also be a type name. Because typeof itself is
a type name, it may be used in another typeof(type-name) construct.
This can be used to restructure the C-type declaration syntax.

The following example declares y to be an array of four pointers to char.

#define pointer(T) typeof(T *)

#define array(T, N) typeof(T [N])

array (pointer (char), 4) y;

C/C++ Compiler Language Extensions

1-352 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

 The typeof keyword is not supported in C++ mode.
The typeof keyword is an extension to C originally implemented
in the GCC compiler. It should be used with caution because it is
not compatible with other dialects of C/C++ and has not been
adopted by the more recent C99 standard.

GCC Generalized lvalues

A cast is an lvalue (may appear on the left-hand side of an assignment)
if its operand is an lvalue. This is an extension to C, provided for com-
patibility with GCC. It is not allowed in C++ mode.

A comma operator is an lvalue if its right operand is an lvalue. This is an
extension to C, provided for compatibility with GCC. It is a standard fea-
ture of C++.

A conditional operator is an lvalue if its last two operands are lvalues of
the same type. This is an extension to C, provided for compatibility with
GCC. It is a standard feature of C++.

Conditional Expressions With Missing Operands

The middle operand of a conditional operator can be omitted. If the con-
dition is nonzero (true), the condition itself is the result of the expression.
This can be used for testing and substituting a different value when a
pointer is NULL. The condition is evaluated only once; therefore,
repeated side effects can be avoided.

The following example calls lookup() once, and substitutes the string “-”
if it returns NULL. This is an extension to C, provided for compatibility
with GCC. It is not allowed in C++ mode.

printf("name = %s\n", lookup(key)?:"-");

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-353
for Blackfin Processors

Compiler

Zero-Length Arrays

Arrays may be declared with zero length. This anachronism is supported
to provide compatibility with GCC. Use variable-length array members
instead.

GCC Variable Argument Macros

The final parameter in a macro declaration may be followed by dots (...)
to indicate the parameter stands for a variable number of arguments.

For example,

#define trace(file,line,msg ...) \

 logmsg(file,line, ## msg);

can be used with differing numbers of arguments,

trace("a.c", 22, "Got here!\n”);

trace("b.c", 99, "i = %d\n", i);

trace("c.c", 72, "x = %f, y = %f\n", x, y);

The ## operator has a special meaning when used in a macro definition
before the parameter that expands the variable number of arguments:
if the parameter expands to nothing, it removes the preceding comma.

 The variable argument macro syntax comes from GCC. The
compiler supports both GCC and C99 variable argument macro
formats in C89, C99, and C++ modes. (“Variable Argument Mac-
ros” on page 1-164).

Line Breaks in String Literals

String literals may span many lines. The line breaks do not need to be
escaped in any way. They are replaced by the character \n in the generated
string. This extension is not supported in C++ mode. The extension is not

C/C++ Compiler Language Extensions

1-354 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

compatible with many dialects of C, including ANSI/ISO C89 and C99.
However, it is useful in asm statements, which are intrinsically
non-portable.

This extension may be disabled via the -no-multiline switch
on page 1-57.

Arithmetic on Pointers to Void and Pointers to Functions

Addition and subtraction is allowed on pointers to void and pointers to
functions. The result is as if the operands had been cast to pointers to
char. The sizeof operator returns one for void and function types.

Cast to Union

A type cast can be used to create a value of a union type, by casting a value
of one of the union member’s types.

Ranges in Case Labels

A consecutive range of values can be specified in a single case by separating
the first and last values of the range with ... (three periods).

For example,

case 200 ... 300:

Escape Character Constant

The escape character “\e” may be used in character and string literals.
It maps to the ASCII Escape code, 27.

Alignment Inquiry Keyword (__alignof__)

The __alignof__ (type-name) construct evaluates to the alignment
required for an object of a type. The __alignof__ expression construct

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-355
for Blackfin Processors

Compiler

can also be used to give the alignment required for an object of the
expression type.

If expression is an lvalue (may appear on the left side of an assignment),
the returned alignment takes into account alignment requested by prag-
mas and the default variable allocation rules.

(asm) Keyword for Specifying Names in Generated Assem-
bler

The asm keyword can be used to direct the compiler to use a different
name for a global variable or function. (See also “#pragma linkage_name
identifier” on page 1-304.)

The following example instructs the compiler to use the label C11045 in
the assembly code it generates wherever it needs to access the source level
variable N. By default, the compiler would use the label _N.

int N asm("C11045");

The asm keyword can also be used in function declarations, but not in
function definitions. However, a definition preceded by a declaration has
the desired effect. For example,

extern int f(int, int) asm("func");

int f(int a, int b) {

. . .

}

C/C++ Compiler Language Extensions

1-356 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Function, Variable, and Type Attribute Keyword
(__attribute__)

The __attribute__ keyword can be used to specify attributes of functions,
variables, and types, as in the following examples:

void func(void) __attribute__ ((section("fred")));

int a __attribute__ ((aligned (8)));

typedef struct {int a[4];} __attribute__((aligned (4))) Q;

Support for the __attribute__ keyword means that fewer changes may be
required when porting GCC code. All attributes accepted by GCC on
ix86 are accepted. Only attributes with corresponding pragmas (see “Prag-
mas” on page 1-277) will be used by the compiler; all other attributes are
ignored.

Unnamed struct/union Fields Within struct/unions

The compiler allows you to define a structure or union that contains,
as fields, structures and unions without names. For example:

struct {

int field1;

union {

int field2;

int field3;

};

int field4;

} myvar;

This allows you to access the members of the unnamed union as though
they were members of the enclosing struct or union, for example,
myvar.field2.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-357
for Blackfin Processors

Compiler

Preprocessor-Generated Warnings
The preprocessor directive #warning causes the preprocessor to generate a
warning and continue preprocessing. The text that follows the #warning
directive on the line is used as the warning message. For example,

#ifndef __ADSPBLACKFIN__

#warning This program is written for Blackfin processors

#endif

Blackfin Processor-Specific Functionality
This section provides information about functionality that is specific to
Blackfin processors.

This section describes:

• “Startup Code Overview” on page 1-357

• “Support for argv/argc” on page 1-358

• “Profiling With Instrumented Code” on page 1-359

• “Controlling System Heap Size and Placement” on page 1-364

• “Interrupt Handler Support” on page 1-365

• “Caching and Memory Protection” on page 1-373

Startup Code Overview
Startup code, which is invoked when the processor starts running,
initializes a default environment before calling main(). The VisualDSP++
Project Wizard can be used to generate startup code based on specified
options.

Blackfin Processor-Specific Functionality

1-358 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

If you select not to add a generated CRT in the Project Wizard, your
application will normally link using a pre-built default CRT from the
<install_path>\Blackfin\lib folder in the VisualDSP++ installation.
The source for these default CRT objects can be found in
 <install_path>\Blackfin\lib\src\libc\crt\basiccrt.s.

If you decide not to use a generated file but instead to customize the
startup code, copy the basiccrt.s source into your project and make the
desired customizations. If you are using a default .ldf file, you must
define the USER_CRT linker macro. Refer to “C/C++ Run-Time Header and
Startup Code” on page 1-410 for more information.

Support for argv/argc
By default, the facility to specify arguments that are passed to your main()
(argv/argc) at run-time is enabled. However, to correctly set up argc and
argv requires additional configuration by the user. Modify your applica-
tion as follows:

• Define your command-line arguments in C by defining a variable
called “__argv_string”. When linked, your new definition over-
rides the default zero definition otherwise found in the C run-time
library.

For example,

extern const char __argv_string[] =

"prog_name -in x.gif -out y.jpeg";

• To use command-line arguments as part of profile-guided optimi-
zation (PGO), it is necessary to define __argv_string within a
memory section called MEM_ARGV. Therefore, define a memory sec-
tion called MEM_ARGV in your .ldf file and include the definition of
__argv_string in it if you are using PGO. The default .ldf files
do this for you if macro IDDE_ARGS is defined at link-time. They do

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-359
for Blackfin Processors

Compiler

this using a RESOLVE statement to map __argv_string to the start
of MEM_ARGV. For this to succeed, it can be necessary for the defini-
tion of __argv_string to be preceded by #pragma symbolic_ref.

Profiling With Instrumented Code
The profiling facilities determine how many times each function is called
and how many cycles are used while the function is active. The informa-
tion is gathered by an additional library linked into the executable file.
The profiling routine is invoked by additional function calls at the start
and end of each function. The compiler inserts these extra calls when pro-
filing is enabled.

 The compiler profiling facilities are different from linear profiling
and statistical profiling features.

 The compiler profiling facilities are designed for single-core and
single-threaded systems. The compiler driver issues warning cc3106
if either the -multicore switch (on page 1-50) or -threads switch
(on page 1-76) is used together with the -p[1|2] switch
(on page 1-65).

Generating Instrumented Code

The -p[1|2] switch (on page 1-65) turns on the compiler’s profiling
facility when converting C/C++ source into assembly code. The compiler
cannot instrument assembly files or files that have already been compiled
to object files.

• The -p1 option causes the generated application to write accumu-
lated profile data to file mon.out.

• The -p2 option causes the generated application to write accumu-
lated profile data to standard output.

Blackfin Processor-Specific Functionality

1-360 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

• The -p option causes the generated application to write accumu-
lated profile data to both standard output and the mon.out file.

When created, the mon.out file will reside in the same folder as the appli-
cation is run.

Running the Executable

The executable may produce two forms of output. The first (generated by
-p and -p2) is a dump of data to standard output once the program com-
pletes. This output lists the approximate address of each profiled function,
how many times the function was invoked, and the inclusive and exclusive
cycle counts.

• Exclusive cycle counts include only the cycles spent processing the
function.

• Inclusive cycle counts also include the sum total of cycle counts in
any function invoked from this specified function.

• The cycle counts generated are the total cycles spent in all invoca-
tions of the specified function within the program.

The second form of output is a file in the current directory called mon.out
(-p and -p1). The mon.out is a binary file that contains a copy of the data
written to standard output. There is no way to change the file name used.

For example, in the following program, assume that apple() takes 10
cycles per call and banana() takes 20 cycles per call, of which 10 are
accounted for by its call to apple().

int apples, bananas;

void apple(void) {

apples++; // 10 cycles

}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-361
for Blackfin Processors

Compiler

void banana(void) {

bananas++; // 10 cycles

apple(); // 10 cycles

} // 20 cycles total

int main(void) {

apple(); // 10 cycles

apple(); // 10 cycles

banana(); // 20 cycles

return 0; // 40 inclusive cycles total

} // + exclusive cycles for main itself

When run, the program calls apple() three times: twice directly, and once
indirectly through banana(). The apple() function clocks up 30 cycles of
execution, and this is reported for both its inclusive and exclusive times,
since apple() does not call other functions.

The banana() function is called only once. It reports 10 cycles for its
exclusive time, and 20 cycles for its inclusive time. The exclusive cycles are
for the time when banana() is incrementing bananas and is not “waiting”
for another function to return, and so it reports 10 cycles. The inclusive
cycles include these 10 exclusive cycles and the 10 cycles apple() used
when called from banana(), giving a total of 20 inclusive cycles.

The main() function is called only once, and calls three other functions
(apple() twice, and banana() once). Between them, apple() and
banana() use up to 40 cycles, which appear in the main()’s inclusive
cycles. The main()’s exclusive cycles are for the time when main() is run-
ning, but is not in the middle of a call to either apple() or banana().

Example of stdout profiling output:

version=2 nrecs=3 Profiler cycles=5818

Addr:ffa096c4 ExecCount: 1 ExCyc: 10 IncCyc: 10

Addr:ffa0967c ExecCount: 3 ExCyc: 30 IncCyc: 30

Addr:ffa0969e ExecCount: 1 ExCyc: 10 IncCyc: 20

Blackfin Processor-Specific Functionality

1-362 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Post-Processing the mon.out File

The profblkfn program processes the contents of the mon.out file.
It reads both the mon.out file and the .dxe file that produced it.
It displays:

• Function Name – The name of the function being profiled

• ExecCount – The number of times the function is called

• Fn Only – The total number of cycles spent processing this func-
tion; that is, the “exclusive cycle count”

• Fn+nested – The total number of cycles spent processing this func-
tion and any functions it calls; that is, the “inclusive cycle count”

The profblkfn program is invoked as:

profblkfn prog.dxe

 Specify the .dxe file only. The mon.out file must be present in the
current directory and must be produced by the named .dxe file.

Example of profblkfn output:

Function Name ExecCount Fn Only Fn+nested

_main 1 10 50

_apple 3 30 30

_banana 1 10 20

where:

ExecCount is the number of times the function is executed. Fn Only is the
total cycle count for all executions of the function ignoring any function
calls made within that function (for example, each call to _banana is 10
cycles plus the call to _apple; so the value of Fn Only for _banana is 10
cycles per call to _banana). Fn+nested is the total cycle count (Fn Only) of
the function, plus the individual cycle counts of any other functions that
are called.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-363
for Blackfin Processors

Compiler

Profiling Data Storage

The profiling information is stored at runtime in memory allocated from
the system heap. If the profiling run-time support cannot allocate from
the heap (usually because it is exhausted), the profiling runtime issues an
error (“Profiler Resource Error: heap allocation failed so profiling cannot be
completed”) and stops storing information. The application will continue
to execute but may fail if the application also uses the system heap. The
profiling data available when this happens will be incomplete and will
probably not be very useful. To avoid this problem, increase the size of the
system heap until the error is no longer seen when running. See “Control-
ling System Heap Size and Placement” on page 1-364 for details.

Computing Cycle Counts

When profiling is enabled, the compiler instruments the generated code
by inserting calls to a profiling library at the start and end of each com-
piled function. The profiling library samples the processor’s cycle counter
and records this figure against the function just started or just completed.

The profiling library itself consumes some cycles, whose overhead is not
included in the figures reported for each function, so the total cycles
reported for the application by the profiler will be less than the cycles con-
sumed during the life of the application. In addition to this overhead,
there is some approximation involved in sampling the cycle counter,
because the profiler cannot guarantee how many cycles will pass between a
function’s first instruction and the sample. This is affected by the optimi-
zation levels, the state preserved by the function, and the contents of the
processor’s pipeline. The profiling library knows how long the call entry
and exit takes “on average”, and adjusts its counts accordingly.

Because of this adjustment, profiling using instrumented code provides an
approximate figure, with a small margin of error. This error margin is
more significant for functions with a small number of instructions than
for functions with a large number of instructions.

Blackfin Processor-Specific Functionality

1-364 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Controlling System Heap Size and Placement
The system heap is the default heap used by calls to allocation functions
like malloc() in C and the new operator in C++. System heap placement
and size are specified in the application’s .ldf file.

.ldf files created by the Project Wizard can be controlled using selections
on the LDF Settings : System Heap page of the Project Options dialog
box. If an .ldf file has not been added to the project either by using the
Project Wizard or by using a custom file, a default .ldf file from the
<install_path>/Blackfin/ldf directory will be used.

By default, the compiler uses the file arch.ldf, where arch is specified
via the -proc arch switch. For example, if -proc ADSP-BF537 is used,
the compiler defaults to using adsp-BF537.ldf. The entry controlling
the heap has a format similar to

// macro that defines minimum system heap size

#define HEAP_SIZE 7K

L1_DATA

{

INPUT_SECTION_ALIGN(4)

// allocate minimum of HEAP_SIZE to system heap

RESERVE(sys_heap, sys_heap_length = HEAP_SIZE, 4)

} > MEM_L1_DATA_A

// all other uses of MEM_L1_DATA_A

sys_heap

{

INPUT_SECTION_ALIGN(4)

// if any of MEM_L1_DATA_A is unused, add to system heap

RESERVE_EXPAND(sys_heap, sys_heap_length, 0, 4)

// define symbols to configure the heap for runtime support

ldf_heap_space = sys_heap;

ldf_heap_end = ldf_heap_space + sys_heap_length;

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-365
for Blackfin Processors

Compiler

ldf_heap_length = ldf_heap_end - ldf_heap_space;

} > MEM_L1_DATA_A

In this example, the minimal size of the heap can be modified by changing
the definition of the HEAP_SIZE macro. If this value is larger than the
memory output section being used, the linker issues error li2040.

The default .ldf files support the placement of heaps in scratchpad
(where available), L1, L2 (where available), or SDRAM. By default, L1
is used. To select alternate heap placement, the following macros can be
defined when linking:

• USE_SCRATCHPAD_HEAP – Causes scratchpad memory to be used for
the system heap. Limited to 4K capacity, but provides fast access
and uses memory that might otherwise be unused.

• USE_L1DATA_HEAP – (default) Places the heap in L1 data bank A

• USE_L2_HEAP – Causes L2 memory to be used for the system heap

• USE_SDRAM_HEAP – Causes SDRAM memory to be used for the sys-
tem heap. It provides large capacity but is slow to access. Enabling
data cache for the memory used reduces the performance impact.

See “Using Multiple Heaps” on page 1-423 for more information.

Interrupt Handler Support
The Blackfin C/C++ compiler provides support for interrupts and other
events used by the Blackfin processor architecture (Table 1-33).

The Blackfin system has several different classes of events, not all of which
are supported by the ccblkfn compiler. Handlers for these events are
called interrupt service routines (ISRs).

Blackfin Processor-Specific Functionality

1-366 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Resets are supported by treating them like general-purpose interrupts for
code-generation purposes. This means that the C/C++ compiler supports
interrupt, exception, and NMI events.

The compiler provides facilities for defining an ISR function, registering it
as an event handler, and for obtaining the saved processor context.

Defining an ISR

To define a function as an ISR, the sys/exception.h header file must be
included and the function must be declared and defined using macros
defined within this header file. There is a macro for each of the three kinds
of events the compiler supports:

EX_INTERRUPT_HANDLER

EX_EXCEPTION_HANDLER

EX_NMI_HANDLER

By default, ISRs generated by the compiler are not re-entrant; they disable
the interrupt system on entry, and re-enable it on exit. You may also
define ISRs for interrupts that are re-entrant, and which re-enable the
interrupt system soon after entering the ISR.

A different macro is used to specify a re-entrant interrupt handler:

EX_REENTRANT_HANDLER

Table 1-33. System Events

Event Priority Supported

Emulation Highest No

Reset Yes

NMI Yes

Exception Yes

Interrupt Lowest Yes

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-367
for Blackfin Processors

Compiler

For example, the following code declares and defines my_isr() as a han-
dler for interrupt-type events (for example, the routine returns using an
RTI instruction).

#include <sys/exception.h>

static volatile int number_of_interrupts;

EX_INTERRUPT_HANDLER(my_isr)

{

number_of_interrupts++;

}

The macro used for defining the ISR is also suitable for declaring it as a
prototype:

EX_INTERRUPT_HANDLER(my_isr);

The EX_INTERRUPT_HANDLER() macro uses a generic pragma, #pragma
interrupt, to indicate that the function is an interrupt handler. This
generic pragma does not indicate which interrupt the function handles.
The -workaround isr-imask-check switch selection (on page 1-81) for
hardware anomaly 05-00-0071 on the ADSP-BF535 processor requires
explicit information on the level of interrupt being handled, so that the
interrupt can be re-raised if the interrupt is taken while a CLI instruction is
being committed.

Such an ISR is defined as:

EX_HANDLER_PROTO(interrupt_level_6, my_handler){

}

Eleven level-specific pragmas, 5 through 15, correspond to the Blackfin
event table entries for interrupts.

If the isr-imask-check workaround is enabled, ISRs declared without
explicit interrupt levels—such as those declared using
EX_INTERRUPT_HANDLER()—check for interrupts occurring while a CLI

Blackfin Processor-Specific Functionality

1-368 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

instruction is committed and return immediately if this is detected.
They do not attempt to re-raise the interrupt.

 While thread-safe variants of the C/C++ run-time libraries exist,
many functions are not interrupt-safe as they access global data
structures. It is therefore recommended that ISRs do not make
library function calls, as unexpected behavior may result if the
interrupt occurs during a call to such a function. An alternative
approach is to disable interrupts before the application makes
run-time library calls. This may be disadvantageous
for time-critical applications as interrupts may be disabled for a
long period of time. The DSP run-time library functions do not
modify global data structures and are therefore interrupt-safe.

To define a static ISR, place the “static” qualifier within the appropriate
macro’s brackets – but not before the macro itself; for example:

#include <sys/exception.h>

EX_REENTRANT_HANDLER(static Sport1_TX_ISR)

{

// ISR code

}

Registering an ISR

ISRs, once defined, can be registered in the event vector table (EVT) using
the register_handler_ex() or register_handler() functions, both of
which also update the IMASK register so that the interrupt can take effect.
Only the register_handler_ex() function will be discussed here, as it is
an extended version of the register_handler() function. Refer to
“register_handler_ex” on page 3-270 for more information.

The register_handler_ex() function takes three parameters, defining the
event, the ISR, and specifying whether the interrupt should be enabled,
disabled, or left in its current state. It also returns the previously registered

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-369
for Blackfin Processors

Compiler

ISR (if any). The event is specified using the interrupt_kind enumeration
from exception.h.

typedef enum {

ik_emulation, ik_reset, ik_nmi, ik_exception,

ik_global_int_enable, ik_hardware_err, ik_timer,ik_ivg7,

ik_ivg8, ik_ivg9, ik_ivg10, ik_ivg11, ik_ivg12, ik_ivg13,

ik_ivg14, ik_ivg15

} interrupt_kind;

ex_handler_fn register_handler_ex(interrupt_kind kind,

ex_handler_fn fn, int enable);

Two special values of fn can be passed to register_handler_ex() in place
of real ISRs:

• EX_INT_IGNORE

Leaves the currently-installed handler in place, but disables the
interrupt (subject to the enable parameter)

• EX_INT_DEFAULT

Clears the event vector table entry for this event, so no handler is
installed, and disables the interrupt (subject to the enable
parameter)

The enable parameter may have one of the following values:

• EX_INT_KEEP_IMASK

Causes the event handler to be installed without changing the
“enabled” status of the event. If the event was previously enabled,
it remains so. If the event was previously disabled, it remains so.
This value has no effect if fn is EX_INT_DISABLE or EX_INT_IGNORE.

• EX_INT_DISABLE

Causes the event to be disabled before installing the new handler;
the event will be disabled on return from register_handler_ex().
This value has no effect if fn is EX_INT_DISABLE or EX_INT_IGNORE.

Blackfin Processor-Specific Functionality

1-370 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

• EX_INT_ENABLE

Causes the event to be enabled after installing the new handler;
the event will be enabled on return from register_handler_ex().
This value has no effect if fn is EX_INT_DISABLE or EX_INT_IGNORE.

• EX_INT_ALWAYS_ENABLE

Causes the event to be enabled after installing the new handler;
the event will be enabled on return from register_handler_ex().
This value takes effect even if fn is EX_INT_DISABLE or
EX_INT_IGNORE.

ISRs and ANSI C Signal Handlers

ISRs provide similar functionality to ANSI C signal handlers, and their
behavior is related. An ISR is a function that can be registered directly in
the processor’s event vector table (EVT). The ISR function saves its own
context, as required. In contrast, an ANSI C signal handler is a normal C
function that has been registered as a handler; when an event occurs, some
other dispatcher must save the processor context before invoking the sig-
nal handler.

ISRs and signal handlers are not interchangeable. A signal handler cannot
act as an ISR, because it does not save or restore the context, nor does it
terminate with the correct return instruction. An ISR cannot act as a sig-
nal handler, because it terminates the event directly rather than returning
to the dispatcher.

When a signal handler is installed, a default ISR is also installed in the
EVT which invokes the signal handler when the event occurs. When the
raise() function is used to invoke a signal handler explicitly, raise()
actually generates the corresponding event (if possible). This causes the
ISR to invoke the signal handler.

You may choose to install normal C functions as signal handlers or register
ISRs directly, but do not do both for a given event.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-371
for Blackfin Processors

Compiler

ANSI C signals are registered using signal() or using the Analog Devices
extension interrupt(), unlike ISRs, which are registered using
register_handler_ex() or register_handler().

Saved Processor Context

When generating code for an ISR, the compiler creates a prologue that
saves the processor context on the supervisor stack. This context is accessi-
ble to the ISR. The exception.h file defines a structure, interrupt_info,
that contains fields for all the information that defines the kind of event
that occurred.

To save an event’s context (in the handler), the get_interrupt_info
function can be called. The prototype for get_interrupt_info() is:

void get_interrupt_info(

interrupt_kind int_kind, interrupt_info *int_info);

An example use of get_interrupt_info() would be to save interrupt
information for later use as shown in the example below:

#include <sys/exception.h>

static interrupt_info last_int_info;

EX_INTERRUPT_HANDLER(ivg7_fielder)

{

get_interrupt_info(ik_ivg7, &last_int_info);

// handle the interrupt

}

The get_interrupt_info() function does not provide facilities to save
register values.

Blackfin Processor-Specific Functionality

1-372 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Fetching Event Details

The following function fetches the information about the event that
occurred:

void get_interrupt_info(interrupt_kind, interrupt_info *)

The sort of data retrieved includes the value of SEQSTAT and addresses that
caused exceptions. Note that at present, the function must be told which
kind of event it is investigating.

The structure contains:

interrupt_kind kind;

int value;

void *pc;

void *addr;

unsigned status;

These fields are set as:

• Exceptions
The pc field is set to the value of RETX, and value is set to the value
of SEQSTAT.
For exceptions that involve address faults, the addr and status
fields are set to the values of the memory-mapped registers
(MMRs) for DATA_FAULT_ADDR and DATA_FAULT_STATUS or for
CODE_FAULT_ADDR and CODE_FAULT_STATUS, as appropriate.

• Hardware Errors
The pc field is set to the value of RETI, and value is set to the value
of SEQSTAT.

• NMI Events
The pc field is set to the value of RETN.

• All Other Events
The pc field is set to the value of RETI.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-373
for Blackfin Processors

Compiler

Caching and Memory Protection
Blackfin processors support the caching of external memory or L2 SRAM
(where available) into L1 SRAM, for both instruction and data memory.
Caching can eliminate much of the performance penalty of using external
memory with minimal effort on the application developer’s part.

This section describes:

• “___cplb_ctrl Control Variable” on page 1-374

• “CPLB Installation” on page 1-376

• “Cache Configurations” on page 1-378

• “Default Cache Configuration” on page 1-379

• “Changing Cache Configuration” on page 1-383

• “Cache Invalidation” on page 1-383

• “Default .ldf Files and Cache” on page 1-385

• “CPLB Replacement and Cache Modes” on page 1-388

• “Cache Flushing” on page 1-389

• “Using the _cplb_mgr Routine” on page 1-390

• “Caching and Asynchronous Change” on page 1-392

• “Migrating .ldf Files From Previous VisualDSP++ Installations” on
page 1-393

The Blackfin processor caches are configurable devices. Instruction and
data caches can be enabled together or separately, and the memory spaces
they cache are configured separately. The cache configuration is defined
through the memory protection hardware, using tables that define
cacheability protection lookaside buffers (CPLBs). These CPLBs define

Blackfin Processor-Specific Functionality

1-374 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

the start addresses, sizes, and attributes of areas of memory for which
memory accesses are permitted (including whether the area of memory is
to be cached).

 Refer to the appropriate Blackfin processor’s Hardware Reference
for details.

The Blackfin run-time library provides support for cache configuration by
providing routines that can be used to initialize and maintain the CPLBs
from a configuration table.

Both the Project Wizard-generated C/C++ run-time (CRT) headers and
default pre-compiled CRT objects use these library routines. The default
configuration does not enable CPLBs. The support routines are designed
such that they can easily be incorporated into users’ systems, and so that
the configuration can be turned on or off via a debugger, without having
to re-link the application. (See “C/C++ Run-Time Header and Startup
Code” on page 1-410 for more information.)

___cplb_ctrl Control Variable

CPLB support is controlled through a global integer variable,
___cplb_ctrl. Its C name has two leading underscores, and its assembler
name has three leading underscores. The value of this variable determines
whether the startup code enables the CPLB system. By default, the vari-
able has the value 0 (zero), indicating that CPLBs are not enabled.

The variable’s value is a bitmask, based on the macros defined in the
<cplb.h> header. The macros are:

• CPLB_ENABLE_ICPLBS

Turns on instruction CPLBs

• CPLB_ENABLE_ICACHE

Turns on instruction caching into L1 Instruction memory

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-375
for Blackfin Processors

Compiler

• CPLB_ENABLE_DCPLBS

Turns on data CPLBs

• CPLB_ENABLE_DCACHE

Turns on data caching into L1 Data A memory

• CPLB_ENABLE_DCACHE2

Turns on data caching into L1 Data B memory

• CPLB_SET_DCBS

Sets the data cache bank select bit in the DMEM_CONTROL register.
This specifies which bit of a memory address determines the data
cache bank (A or B) used to cache the location. Depending on the
placement of data within the application memory space, one
setting or the other ensures more data is cached at runtime.
This bit has no effect unless both CPLB_ENABLE_DCACHE and
CPLB_ENABLE_DCACHE2 bits are also set. Refer to the processor’s
Hardware Reference for further details.

These macros are OR’d together to produce the value for ___cplb_ctrl.

Note that:

• If CPLB_ENABLE_DCACHE2 is set, CPLB_ENABLE_DCACHE must also be
set.

• If any of the three cache bits are set, the corresponding
CPLB_ENABLE_ICPLBS or CPLB_ENABLE_DCPLBS bit must also be set.

• ___cplb_ctrl must be placed in a locked CPLB.

There is a default definition of ___cplb_ctrl in the C run-time library,
which defaults to disabling CPLBs and caching. This default definition is
overridden by any definition in the CRT startup code generated by the

Blackfin Processor-Specific Functionality

1-376 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Project Wizard, or alternatively by providing your own definition within
your application. For example,

#include <stdio.h>

#include <cplb.h>

#pragma section("cplb_data")

int __cplb_ctrl = // C syntax with two underscores

CPLB_ENABLE_ICPLBS |

CPLB_ENABLE_ICACHE;

int main(void) {

printf("Hello world\n");

return 0;

}

The new definition enables CPLBs and turns on instruction caching;
data caching is not enabled.

CPLB Installation

When ___cplb_ctrl indicates that CPLBs are to be enabled, the startup
code calls the routine _cplb_init. This routine sets up instruction and
data CPLBs from a table, and enables the memory protection hardware.

There are sixteen CPLBs for each instruction and data space. On a simple
system, this is sufficient, and _cplb_init installs all available CPLBs from
its configuration table into the active table. On more complex systems,
there may need to be more CPLBs than can be active at once. In such sys-
tems, a time may come when the application attempts to access memory
that is not covered by one of the active CPLBs. This raises a CPLB miss
exception.

For these occasions, the library includes a CPLB management routine,
_cplb_mgr. This routine should be called from an exception handler that
has determined that a CPLB miss has occurred (either a data miss or an
instruction miss). The _cplb_mgr routine identifies the inactive CPLB that

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-377
for Blackfin Processors

Compiler

needs to be installed to resolve the access, and replaces one of the active
CPLBs with this one.

If CPLBs are to be enabled, the default startup code installs a default
exception handler called _cplb_hdr; this does nothing except test for
CPLB miss exceptions, which it delegates to _cplb_mgr. It is expected that
users have their own exception handlers that deal with additional events.

If data CPLBs are enabled, it is necessary to ensure that __cplb_ctrl is
mapped to data that is covered by a locked CPLB as it is loaded in the
default exception handler (cplb_hdr) prior to calling cplb_mgr to handle
CPLB exceptions. This can be done by using a #pragma section to define
___cplb_ctrl in a section that is mapped to a memory range that is cov-
ered by a locked CPLB. The default and generated .ldf files provide
sections that can be used for this purpose.

It is not possible to recover from a CPLB miss that occurs when handling
a prior miss exception. To avoid this, ensure that the code and data used
when handling a CPLB miss is covered by an active CPLB. The CPLB
management code is placed into a section called cplb_code. The data used
is the stack to save and restore registers and the variable ___cplb_ctrl.

It is necessary to ensure that the CPLBs for these are:

• Flagged as being “locked”, so they are not replaced by inactive
CPLBs during misses

• Flagged as “dirty” if the caching mode is set to write-back mode

The cplb_data section is used to contain the CPLB configuration tables.
It is not necessary to have a locked CPLB covering this section because the
CPLB management code disables CPLBs before accessing the data these
tables contain.

Blackfin Processor-Specific Functionality

1-378 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

When enabling CPLBs, _cplb_init checks that the CPLB entries are
valid. If an issue is identified, control will jump to an infinite loop around
a label describing the problem. These labels are described in Table 1-34.

Cache Configurations

Although CPLBs may be used for their protection capabilities, most often
they are used to enable caching. The ___cplb_ctrl variable is the means
by which the application directs the run-time library to install CPLBs for
caching.

The library defines the following configurations, although not all configu-
rations may be available on all Blackfin processors:

• No cache

• L1 SRAM Instruction as cache

• L1 SRAM Data A as cache

• L1 SRAM Data A and B as cache

Table 1-34. CPLB Issues

Label Error

cplb_address_is_misaligned_for_cplb_size Alignment of CPLB does not correspond
to CPLB size. Each CPLB must have a
minimum alignment equal to the size of
the CPLB.

too_many_locked_data_cplbs More than 16 locked data CPLBs are
present. Only 16 data CPLBs are avail-
able, so additional data CPLBs cannot
become active.

too_many_locked_instruction_cplbs More than 16 locked instruction CPLBs
are present. Only 16 instruction CPLBS
are available, so additional instruction
CPLBs cannot become active.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-379
for Blackfin Processors

Compiler

• L1 SRAM Instruction and Data A as cache

• L1 SRAM Instruction, Data A and Data B as cache

Note that if any cache is enabled, the corresponding data or instruction
CPLBs must also be enabled. Furthermore, if you are using the default
.ldf files, you must also tell the linker that the cache is enabled; this is
discussed in more detail in “Default Cache Configuration” and “Default
.ldf Files and Cache” on page 1-385.

If any cache is enabled, the respective caches are set up during _cplb_init,
using the CPLB configuration tables. On ADSP-BF535 processors, if
cache is enabled, the current cache contents are invalidated using the
functions described in “Cache Invalidation” on page 1-383. With other
Blackfin processors, the cache is automatically invalidated at power-up.

Default Cache Configuration

Although the default value for ___cplb_ctrl is that no cache or CPLBs
are enabled, the default system contains CPLB configuration tables that
permit caching. The default configuration tables differ for the parts
available.

The default configuration tables are defined in files called cplbtabn.s
in VisualDSP/Blackfin/lib/src/libc/crt, where n is the part number.

Table 1-35 lists the default CPLB configuration files.

Table 1-35. Default CPLB Configuration Files

Blackfin Processor Configuration file

ADSP-BF504 cplbtab504.s

ADSP-BF504F cplbtab504f.s

ADSP-BF506F cplbtab506f.s

ADSP-BF512 cplbtab512.s

ADSP-BF514 cplbtab514.s

Blackfin Processor-Specific Functionality

1-380 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

ADSP-BF516 cplbtab516.s

ADSP-BF518 cplbtab518.s

ADSP-BF522 cplbtab522.s

ADSP-BF523 cplbtab523.s

ADSP-BF524 cplbtab524.s

ADSP-BF525 cplbtab525.s

ADSP-BF526 cplbtab526.s

ADSP-BF527 cplbtab527.s

ADSP-BF531 cplbtab531.s

ADSP-BF532 cplbtab532.s

ADSP-BF533 cplbtab533.s

ADSP-BF534 cplbtab534.s

ADSP-BF535 cplbtab535.s

ADSP-BF536 cplbtab536.s

ADSP-BF537 cplbtab537.s

ADSP-BF538 cplbtab538.s

ADSP-BF539 cplbtab539.s

ADSP-BF542 cplbtab542.s

ADSP-BF542M cplbtab542M.s

ADSP-BF544 cplbtab544.s

ADSP-BF544M cplbtab544M.s

ADSP-BF548 cplbtab548.s

ADSP-BF548M cplbtab548M.s

ADSP-BF549 cplbtab549.s

ADSP-BF549M cplbtab549M.s

Table 1-35. Default CPLB Configuration Files (Cont’d)

Blackfin Processor Configuration file

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-381
for Blackfin Processors

Compiler

 If memory protection or caching has been selected through the
VisualDSP++ Project Wizard, you are allowed to generate a cus-
tomizable CPLB table. For more information, refer to the
description of the “VisualDSP++ Project Wizard” available from
VisualDSP++ Help.

Each file defines two tables:

1. icplbs_table[] – Instruction CPLBs

2. dcplbs_table[] – Data CPLBs

The table’s structure is defined by cplbtab.h, specifying the start address
of each area of memory, and the controlling attributes for that area. The
definitions of the macros that are used to define these attributes are con-
tained in the defblackfin.h standard include file and are documented in
the appropriate Hardware Reference manual.

The default tables include areas of memory for L1 SRAM, internal L2
(where present), external asynchronous and SDRAM memory, and other
memory spaces. The external areas are configured to be cacheable using
write-through mode by default. If no cache is enabled and CPLBs are
enabled, the run-time library masks off the cacheable flags on the CPLBs
before making them active.

The tables are defined by OR’ing a combination of the macros defined
in cplb.h and the core-specific header files (def_LPBlackfin.h or
defblackfin.h). The macros in cplb.h define bitmasks that specify
common CPLB configurations.

ADSP-BF561 (Core A) cplbtab561a.s

ADSP-BF561 (Core B) cplbtab561b.s

Table 1-35. Default CPLB Configuration Files (Cont’d)

Blackfin Processor Configuration file

Blackfin Processor-Specific Functionality

1-382 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

A brief description of these macros follows:

• CPLB_I_PAGE_MGMT

Default instruction CPLB configuration for memory page covering
page management code in cplb_code section. The CPLB is locked
(so it cannot be evicted), and valid.

• CPLB_DEF_CACHE

Default data cache configuration – memory page is cached in
write-through mode

• CPLB_DEF_CACHE_WT

Same as CPLB_DEF_CACHE

• CPLB_DEF_CACHE_WB

Default data cache configuration – memory page is cached in
write-back mode

• CPLB_ALL_ACCESS

Memory protection properties – specifies all accesses are allowed to
this page

• CPLB_DNOCACHE

All accesses are allowed, CPLB is valid, but page is not cached

• CPLB_DDOCACHE

Same as CPLB_DNOCACHE, but page is cached

• CPLB_DDOCACHE_WT

Same as CPLB_DNOCACHE, but page cached in write-through mode

• CPLB_DDOCACHE_WB

Same as CPLB_DNOCACHE, but page cached in write-back mode

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-383
for Blackfin Processors

Compiler

• CPLB_INOCACHE

Instruction memory read-only access, CPLB is valid, page is not
cached

• CPLB_IDOCACHE

Same as CPLB_INOCACHE, but page is cached

None of the above macros specify a page size, so they should be OR’d with
PAGE_SIZE_1KB, PAGE_SIZE_4KB, PAGE_SIZE_1MB, or PAGE_SIZE_4MB
(defined in core-specific header) as appropriate.

Changing Cache Configuration

The value of ___cplb_ctrl may be changed in several ways:

• The Project Wizard can be used to generate CRT startup code that
includes a definition of the ___cplb_ctrl variable, based on the
selected cache configuration.

• It may be defined as a new global variable with an initialization
value. This definition supersedes the definition in the library.
The example in “___cplb_ctrl Control Variable” on page 1-374
uses this approach.

• The linked-in version of the variable may be altered in a debugger,
after loading the application but before running it, so that the
startup code sees a different value.

Cache Invalidation

The cache_invalidate routine may be used to invalidate the processor’s
instruction and/or data caches. It is defined as:

#include <cplbtab.h>

void cache_invalidate(int cachemask);

Blackfin Processor-Specific Functionality

1-384 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Its parameter is a bitmask, indicating which caches should be cleared.

The cache_invalidate routine uses several supporting routines:

#include <cplbtab.h>

void icache_invalidate(void);

void dcache_invalidate(int a_or_b);

void dcache_invalidate_both(void);

The icache_invalidate routine clears the instruction cache.

The dcache_invalidate routine clears a single data cache, determined by
the a_or_b parameter:

• CPLB_INVALIDATE_A invalidates data cache A

• CPLB_INVALIDATE_B invalidates data cache B

The dcache_invalidate_both routine clears data cache A and data
cache B. On ADSP-BF535 processors, this is done by calling
dcache_invalidate for each cache. On other Blackfin processors,
it toggles control bits in the DMEM_CONTROL register, which invalidates
the contents of both data caches in a single operation.

 The dcache_invalidate and dcache_invalidate_both routines
do not flush any modified cache entries to memory first, if any
memory pages are cached in write-back mode. To flush such data
prior to invalidation, use the functions described in “Cache Flush-
ing” on page 1-389.

Table 1-36. Bitmasks and Caches to be Cleared

Bit set Cache invalidated

CPLB_ENABLE_ICACHE Instruction cache

CPLB_ENABLE_DCACHE Data cache A

CPLB_ENABLE_DCACHE2 Data cache B

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-385
for Blackfin Processors

Compiler

Default .ldf Files and Cache

The default .ldf files supplied with VisualDSP++ are designed to support
caching with minimal effort.

The default .ldf files have three basic configurations:

1. No external SDRAM and no caching. All code and data are placed
into internal SRAM. This is the default configuration.

2. External SDRAM and no caching. Code and data are placed into
both internal SRAM and external SDRAM. Code and data are
placed into internal SRAM where possible. This configuration is
enabled by passing the -MDUSE_SDRAM flag to the linker at link-time.

3. External SDRAM and caching enabled. This will require one or
more of the LDF caching macros to be defined when linking.

Configuration 1 is most efficient but is not suitable for larger applications
that will not fit into internal memory.

Configuration 2 allows larger applications to occupy external memory but
they will incur significant performance overheads when running code or
accessing data that is mapped to external memory.

Configuration 3 is an efficient configuration for larger applications
(than would fit in L1) as it allows larger applications to use external
memory while minimizing the performance overhead by using the cache
hardware. As mentioned previously, this configuration requires the defini-
tion of one or more macros when using the default .ldf file. These macros
are used to ensure that the .ldf file does not map code or data to memory
that will be configured as cache. These macros are normally defined using
the linker’s -MD switch and must match the cache configuration defined by
___cplb_ctrl.

Blackfin Processor-Specific Functionality

1-386 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Table 1-37 lists these macros.

If cache is not enabled, the macros listed above should not be used or the
memory they refer to will be unused.

Therefore, if the .ldf file believes cache is to be used, but ___cplb_ctrl
specifies otherwise, resources are wasted, but the application still func-
tions. In fact, this is the case if only code or data caches are requested by
___cplb_ctrl, but not both.

The last entry of Table 1-37 shows a configuration that must be avoided
since mapping code/data into L1 SRAM, which is then configured as
cache, leads to corrupt code/data. This scenario can also be difficult to

Table 1-37. Macros for Caching

Macro Function

USE_INSTRUCTION_CACHE Indicates that L1 instruction SRAM is reserved for use as cache,
for example, when ___cplb_ctrl is defined with
CPLB_ENABLE_ICACHE.

USE_DATA_A_CACHE Indicates that L1 data bank A is reserved for use as cache, for
example, when ___cplb_ctrl is defined with
CPLB_ENABLE_DCACHE.

USE_DATA_B_CACHE Indicates that L1 data bank B is reserved for use as cache, for
example, when ___cplb_ctrl is defined with
CPLB_ENABLE_DCACHE2.

USE_CACHE Indicates that caching is being enabled. It must be defined when
one or more of USE_INSTRUCTION_CACHE, USE_DATA_A_CACHE,
or USE_DATA_B_CACHE is defined.
If none of USE_INSTRUCTION_CACHE, USE_DATA_A_CACHE, and
USE_DATA_B_CACHE are defined when USE_CACHE is the default,
the .ldf file works as if USE_INSTRUCTION_CACHE,
USE_DATA_A_CACHE, and USE_DATA_B_CACHE were all defined.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-387
for Blackfin Processors

Compiler

debug, so the run-time library provides a mechanism for protecting
against this case, such as:

• The default .ldf files define global “guard” symbols, setting their
addresses to be 0 or 1, according to the LDF caching macros
(USE_INSTRUCTION_CACHE, USE_DATA_A_CACHE, and
USE_DATA_B_CACHE) that are defined at link-time. If objects are
mapped into a cache area during linking, the guard symbol is set
to 0 (indicating this cache area is not available); otherwise, it is set
to 1 (indicating that the cache area is available).

• When _cplb_init is enabling CPLBs and cache, the run-time
library tests the guard symbols. If a cache has been requested via
___cplb_ctrl, but the corresponding guard symbol indicates that
the cache area has already been allocated during link-time, the
library signals an error. It does so by jumping to an infinite loop
around labels with names that describe the problem.

These are defined as follows:

l1_code_cache_enabled_when_l1_used_for_code:

JUMP 0;

l1_data_a_cache_enabled_when_used_for_data:

JUMP 0;

l1_data_b_cache_enabled_when_used_for_data:

JUMP 0;

The guard symbols have the following names:

___l1_code_cache

___l1_data_cache_a

___l1_data_cache_b

Blackfin Processor-Specific Functionality

1-388 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

CPLB Replacement and Cache Modes

As previously noted, no more than 16 CPLBs may be active concurrently
for each instruction space or data space. Large applications may need to
address more memory than this, and may eventually access a memory
location not covered by the currently-active CPLBs. At this point, a CPLB
“miss exception” occurs, and the application’s exception handler must
select one of the active CPLBs for removal to make way for a new CPLB
that covers the address being accessed. This victimization and replacement
process is handled by the _cplb_mgr routine within the run-time library.
The process varies, depending on which cache modes are active.

Blackfin processors support two variants of caching: write-through mode
and write-back mode.

• In write-through mode, writes to cached memory are written to
both the cache and the memory location. Consequently,
write-through mode primarily provides performance gains for
memory reads. The memory location is kept up-to-date.

• In write-back mode, writes to cached memory are only written to
the cache. They are not written to the memory location until the
cache line is victimized (by an access to another memory location)
or flushed (through programmatic means).

The cache mode (write-through, write-back, or off) is specified on a
per-CPLB basis, so one page may be cached in write-through mode,
another in write-back mode, and a third not cached at all.

By default, write-back pages are “clean”, in that they do not have the
DIRTY flag set. When a write occurs to a clean write-back page, a protec-
tion violation exception is raised to indicate that the page is being written
to. The _cplb_mgr routine flags the page’s CPLB as DIRTY, and allows the
write to continue. This time, it succeeds. If the DIRTY flag is set when the
CPLB is first installed, no exception will be generated on first write.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-389
for Blackfin Processors

Compiler

This DIRTY flag can be used to identify which pages may contain data not
yet propagated back to memory; if the cache needs to propagate data back
to memory so that it can evict the data and cache another address, the
DIRTY flag will not be cleared.

Because write-through pages always update the memory location with the
new cached value, write-through pages need not be marked as DIRTY.
Consequently, write-through pages do not trigger an exception on first
write to the page.

The victimization process chooses victim CPLBs in the following order of
preference:

1. Unused (for example, invalid) CPLBs

2. Unlocked CPLBs

Note that only unlocked CPLBs are selected as victims. Locked CPLBs are
never selected. In particular, it is necessary to ensure that the CPLB man-
agement routines reside in pages that are covered by locked CPLBs to
prevent the CPLB management routines from evicting themselves.

To assist in this, the CPLB management routines reside in the cplb_code
section. This section must be explicitly mapped to memory that is covered
by a locked and valid CPLB. It is also necessary to ensure that the data
stack and cache control variable ___cplb_ctrl is always valid in the same
way.

Cache Flushing

If desired, write-back data can be flushed back to memory using the
flush_data_cache routine. The routine searches all active pages for valid,
modified pages that are cached in write-back mode, and flushes their
contents back to memory. This time-consuming process is dependent on
the size of the modified data page.

Blackfin Processor-Specific Functionality

1-390 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The costs in Table 1-38 are approximate, because they only take into
account the number of instructions executed, and do not include the costs
of data transfers from cache to external memory. The actual cost is greatly
influenced by the amount of modified data residing in the caches.

If it is necessary to ensure that smaller areas of memory are flushed to
memory, the flush_data_buffer routine may be used:

#include <cplbtab.h>

void flush_data_buffer(void *start, void *end, int invalidate);

This routine flushes back to memory any changes in the data cache that
apply to the address range specified by the start and end parameters.
If the invalidate parameter is non-zero, the routine also invalidates the
data cache for the address range, so that the next access to the range will
require a re-fetch from memory.

Using the _cplb_mgr Routine

The _cplb_mgr routine is intended to be invoked by the application’s
exception handler. The source for _cplb_mgr can be found within your
VisualDSP++ installation in the Blackfin/lib/src/libc/crt/cplbmgr.s
file. A minimal exception handler, _cplb_hdr, is installed by the default
startup code, and its source is in Blackfin/lib/src/libc/crt/cplbhdr.s.

Table 1-38. Flushing Costs per Page Size

Page Size Approximate cost of flushing

1K 400 instructions

4K 1500 instructions

1M 6000 instructions

4M 6000 instructions

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-391
for Blackfin Processors

Compiler

Typically, the exception handler delegates CPLB misses and protection
violations by calling _cplb_mgr and handles all other exceptions itself.
The _cplb_mgr routine is defined as (in C nomenclature):

int cplb_mgr(int code, int cplb_ctrl);

where code indicates the kind of exception raised (Table 1-39).

The routine accepts the current value of ___cplb_ctrl as the second
parameter.

There are several error codes that _cplb_mgr can return, defined in
<cplb.h> as shown in Table 1-40.

Table 1-39. Exception Mask Codes

Code Value Meaning

0 Instruction CPLB miss

1 Data CPLB miss

2 Protection violation (assumed to be first-write to write-back data page)

Table 1-40. CPLB Return Codes

Return Code Meaning

CPLB_RELOADED Successfully updated CPLB table

CPLB_NO_UNLOCKED All CPLBs are locked; thus, they cannot be evicted. This indicates
that the CPLBs in the configuration table are badly configured, as
this should never occur.

CPLB_NO_ADDR_MATCH The address being accessed, that triggered the exception, is not
covered by any of the CPLBs in the configuration table. The
application is presumably misbehaving.

CPLB_PROT_VIOL The address being accessed, that triggered the exception, is not a
first-write to a clean write-back data page, and so presumably is a
genuine violation of the page’s protection attributes. The applica-
tion is misbehaving.

Blackfin Processor-Specific Functionality

1-392 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

If _cplb_mgr returns an error indicator, the exception handler must decide
how to handle the error. The default exception handler installed by the
startup code delegates each of these failure conditions—plus one other—
to handler functions in the run-time library.

These functions are:

void _unknown_exception_occurred(void);

void _cplb_miss_all_locked(void);

void _cplb_miss_without_replacement(void);

void _cplb_protection_violation(void);

These functions are stubs that can be replaced for comprehensive error
handling. They enter an infinite loop with verbose labels, indicating the
kind of error that has occurred. For assistance when debugging, automatic
breakpoints are placed on these functions.

The _cplb_mgr routine modifies the following registers:

R0-R3, P0-P2, I0-I2, ASTAT, LC0, LC1, LB0, LB1, LT0, and LT1

It is therefore necessary that an exception handler, calling _cplb_mgr, saves
these registers before calling _cplb_mgr and restores them before returning
from the exception.

Caching and Asynchronous Change

Care must be taken when using the cache in systems with asynchronous
change. There are two levels of asynchronous data change:

• Data that may change beyond the scope of the current thread, but
within the scope of the system. This includes variables that may be
updated by other threads in the system (if using a multi-threaded
architecture). This kind of data must be marked volatile, so that
the compiler knows not to store local copies in registers (but may
be located in cached memory), since all threads access the data
through the cache.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-393
for Blackfin Processors

Compiler

• Data that may change beyond the scope of the cache as well as
beyond the scope of the current thread. This includes mem-
ory-mapped registers (which cannot be cached) and data in
memory that is updated by external means, such as DMA transfers
or host/target file I/O. Such data must be marked as volatile, so
that the compiler knows not to keep copies in registers. This data
may not be placed in cached memory since the cache does not see
the change and provides date copies to the application. Alterna-
tively, the cache copy must be invalidated before accessing
memory, in case it has been updated.

Migrating .ldf Files From Previous VisualDSP++ Installations

The .ldf files which have been used in VisualDSP++ 4.5 projects require
updating before they can be used in VisualDSP++ 5.0.

For customized .ldf files, you must make the changes manually.

For .ldf files generated by the Project Wizard, these changes can be
applied automatically, as follows:

1. Open the project using VisualDSP++ 5.0. The VisualDSP++
IDDE will ask for confirmation before upgrading the project to
VisualDSP++5.0. Click “Yes”.

2. In Project Options, LDF Settings, change one of the settings, and
click on OK. The Project Wizard will regenerate your .ldf file.

3. In Project Options, LDF Settings, change the setting back to its
original value and click on OK. The Project Wizard will regenerate
your .ldf file again. Your .ldf file will now be ready for use.

Blackfin Processor-Specific Functionality

1-394 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The changes are described in:

• “C++ Support Tables (ctor, gdt)” on page 1-394

• “Dual-Core Single-Application Per Core Shared Data” on
page 1-395

• “C++ Run-Time Libraries Rationalization” on page 1-396

• “Multi-Threaded Libraries” on page 1-397

• “Fixed-Point I/O Support” on page 1-399

C++ Support Tables (ctor, gdt)

 This change is required.

Linker changes in VisualDSP++ 5.0 make it possible for non-contiguous
placement of highly-aligned data. This means that order of mapping in
output memory sections is not necessarily maintained. This will result in
linker warning li2040, which can be avoided by using the
FORCE_CONTIGUITY directive when contiguous placement is required, and
NO_FORCE_CONTIGUITY otherwise.

The C++ static constructor mechanism (ctor/ctorl) and exceptions han-
dling support (.gdt/.gdtl) use table inputs terminated using the sections
ending in “l”. This requires contiguous placement of these sections, so use
of FORCE_CONTIGUITY is recommended.

For example, replace:

L1_data_b {

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($OBJECTS(L1_data_b) $LIBRARIES(L1_data_b))

INPUT_SECTIONS($OBJECTS(ctor) $LIBRARIES(ctor))

INPUT_SECTIONS($OBJECTS(ctorl) $LIBRARIES(ctorl))

INPUT_SECTIONS($OBJECTS(.gdt) $LIBRARIES(.gdt))

INPUT_SECTIONS($OBJECTS(.gdtl) $LIBRARIES(.gdtl))

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-395
for Blackfin Processors

Compiler

// ...

} >MEM_L1_DATA_B

with:

/* one-to-one mapping first */

L1_data_b {

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($OBJECTS(L1_data_b) $LIBRARIES(L1_data_b))

} >MEM_L1_DATA_B

L1_data_b_tables {

INPUT_SECTION_ALIGN(4)

FORCE_CONTIGUITY

INPUT_SECTIONS($OBJECTS(ctor) $LIBRARIES(ctor))

INPUT_SECTIONS($OBJECTS(ctorl) $LIBRARIES(ctorl))

INPUT_SECTIONS($OBJECTS(.gdt) $LIBRARIES(.gdt))

INPUT_SECTIONS($OBJECTS(.gdtl) $LIBRARIES(.gdtl))

} >MEM_L1_DATA_B

L1_data_b {

INPUT_SECTION_ALIGN(4)

// ...

} >MEM_L1_DATA_B

For more information, see “Constructors and Destructors of Global Class
Instances” on page 1-419.

Dual-Core Single-Application Per Core Shared Data

 This change is required for dual-core profiles that use the sin-
gle-application/dual-core approach.

When linking the core B .dxe file of a single application per core
multi-core configuration (see “One Application Per Core” on page A-7),
it is necessary to ensure that shared data is resolved by linking against the

Blackfin Processor-Specific Functionality

1-396 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

core A .dxe file rather than a core-specific definition. If the linker sees a
RESOLVE directive for a symbol linked locally and separately in the core,
it will issue warning li2143.

There is a particular case that can cause this to happen in the default .ldf
files which has been avoided in VisualDSP++ 5.0. The change was to
delete the use of mc_data561.doj by removing the following lines:

#if defined(__ADI_MULTICORE) && defined(COREA)

RT_OBJ_NAME(mc_data561), /* multi-core shared data */

#endif

and modifying the use of libmc*.dlb to use a linker attribute filter to
ensure that core B does not link a local instance of shared library data.
This is done by modifying:

#if defined(__ADI_MULTICORE)

RT_LIB_NAME(mc561), /* multi-core library */

#endif

to:

#if defined(COREB)

RT_LIB_NAME(mc561) {!sharing("MustShare")},

/* multi-core shared data */

#else

RT_LIB_NAME(mc561),

/* multi-core library */

#endif

C++ Run-Time Libraries Rationalization

 This change is optional.

In previous versions of VisualDSP++, it was necessary to link against
libcpp*.dlb, libcpprt*.dlb, and libx*.dlb when C++ exceptions sup-
port was required. In VisualDSP++ 5.0, it is only necessary to link against

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-397
for Blackfin Processors

Compiler

the libcpp*.dlb library. Therefore, it is possible to simplify your .ldf file
by removing references to the libx*.dlb and libcpprt*.dlb libraries.

Multi-Threaded Libraries

 This change is optional.

In VisualDSP++ 5.0 Update 8 and earlier, the -threads switch did not
link against thread-safe libraries unless the application used VDK. As of
VisualDSP++ 5.0 Update 9, non-VDK .ldf files will also use the
thread-safe libraries when the -threads switch is specified.

The changes in the default .ldf files are not trivial. They are controlled by
the presence of the _ADI_THREADS link-time macro, which the compiler
driver automatically defines when -threads is specified. There are two
types of change:

1. New macros RT_LIB_NAME_MT(n) and RT_LIB_NAME_EH_MT(n) are
defined. These will specify the libraries used depending on whether
the -eh switch is active. The definitions on the macros depend on
_ADI_THREADS: if _ADI_THREADS is defined, the macros name the
thread-safe libraries, otherwise they name the non-thread-safe
libraries.

2. Libraries which are delivered in thread-safe and non-thread-safe
flavors are identifies using these two new macros.

As an example of the first case, consider the file ADSP-BF548.ldf. In Visu-
alDSP++ 5.0 Update 8, this file contains the following definitions:

define RT_LIB_NAME(x) lib ## x ## y.dlb

define RT_OBJ_NAME(x) x ## y.doj

if defined(__ADI_LIBEH__)

define RT_LIB_NAME_EH(x) lib ## x ## yx.dlb

else /* __ADI_LIBEH__ */

define RT_LIB_NAME_EH(x) lib ## x ## y.dlb

endif

Blackfin Processor-Specific Functionality

1-398 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

In VisualDSP++ 5.0 Update 9, these definitions have been augmented
with choices dependent on the presence of _ADI_THREADS:

define RT_LIB_NAME(n) lib ## n ## y.dlb

define RT_OBJ_NAME(n) n ## y.doj
if defined(_ADI_THREADS)
define RT_LIB_NAME_MT(n) lib ## n ## mty.dlb
if defined(__ADI_LIBEH__)
define RT_LIB_NAME_EH_MT(n) lib ## n ## mtyx.dlb
else /* __ADI_LIBEH__ */
define RT_LIB_NAME_EH_MT(n) lib ## n ## mty.dlb
endif
else /* _ADI_THREADS */
define RT_LIB_NAME_MT(n) lib ## n ## y.dlb
if defined(__ADI_LIBEH__)
define RT_LIB_NAME_EH_MT(n) lib ## n ## yx.dlb
else /* __ADI_LIBEH__ */
define RT_LIB_NAME_EH_MT(n) lib ## n ## y.dlb
endif

endif /* _ADI_THREADS */

Consider the same file again, for an example of the second set of changes.
In VisualDSP++ 5.0 Update 8, the file contains the following library list
(comments removed for clarity):

$LIBRARIES =

 RT_LIB_NAME(small532),

...Other libraries elided...

#if defined(USE_FILEIO) || defined(USE_PROFGUIDE)

 RT_LIB_NAME(rt_fileio532),

#else

 RT_LIB_NAME(rt532),#endif

 RT_LIB_NAME(event532),

 RT_LIB_NAME_EH(cpp532),

#if defined(IEEEFP)

 RT_LIB_NAME(sftflt532),

#endif

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-399
for Blackfin Processors

Compiler

...Other libraries elided...

RT_LIB_NAME(profile532)

 ;

In VisualDSP++ 5.0 Update 9, the same list now uses the new macros
(once again, comments removed for clarity):

$LIBRARIES =
 RT_LIB_NAME_MT(small532),
...Other libraries elided..
#if defined(USE_FILEIO) || defined(USE_PROFGUIDE)
 RT_LIB_NAME_MT(rt_fileio532),
#else
 RT_LIB_NAME_MT(rt532),
#endif
 RT_LIB_NAME_MT(event532),
 RT_LIB_NAME_EH_MT(cpp532),
#if defined(IEEEFP)

 RT_LIB_NAME(sftflt532),

#endif
...Other libraries elided...
 RT_LIB_NAME(profile532)
 ;

Notice that not all the libraries in the list employ the new macros—not all
libraries require thread-safety.

Fixed-Point I/O Support

 This change is only required if your application requires format-
ted-I/O support for fixed-point types.

As of VisualDSP++ 5.0 Update 9, fixed-point types are natively supported
by the compiler, and formatted-I/O support is optionally available, when
the _ADI_FX_LIBIO macro is defined at link time. This is achieved by link-
ing against a different I/O library when the macro is defined.

Blackfin Processor-Specific Functionality

1-400 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

For example, ADSP-BF548.ldf in VisualDSP++ 5.0 Update 8 contains the
following definitions (comments removed for clarity):

#if defined(_DINKUM_IO)

 RT_LIB_NAME(c532),

 RT_LIB_NAME(io532),

#else

 RT_LIB_NAME(io532),

 RT_LIB_NAME(c532),

#endif

In VisualDSP++ 5.0 Update 9, the definitions have been augmented by
the _ADI_FX_LIBIO macro, which is automatically defined by the compiler
driver when the -fixed-point-io switch is specified at link time (once
again, comments removed for clarity):

#if defined(_DINKUM_IO)

 RT_LIB_NAME_MT(c532),

 RT_LIB_NAME_MT(io532),

#else
#if defined(_ADI_FX_LIBIO)
 RT_LIB_NAME_MT(iofx532),
#else
 RT_LIB_NAME_MT(io532),
#endif
 RT_LIB_NAME_MT(c532),
#endif

Notice that the definitions also use the new macros for selecting the
thread-safe libraries if required; see “Multi-Threaded Libraries” on
page 1-397.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-401
for Blackfin Processors

Compiler

C/C++ Preprocessor Features
Several features of the C/C++ preprocessor are used by VisualDSP++
to control the programming environment. The ccblkfn compiler provides
standard preprocessor functionality, as described in any C text. The fol-
lowing extensions to standard C are also supported:

// end of line (C++ style) commands

#warning directive

For more information about these extensions, see “Preprocessor-Gener-
ated Warnings” on page 1-357 and “C++ Style Comments” on
page 1-173. For ways to write macros, refer to “Writing Preprocessor
Macros” on page 1-405.

This section contains:

• “Predefined Macros” on page 1-401

• “Writing Preprocessor Macros” on page 1-405

Predefined Macros
The ccblkfn compiler defines macros to provide information about the
compiler, source file, and options specified. These macros can be tested,
using #ifdef and related directives, to support your program’s needs.
Similar tailoring is done in the system header files.

 For the list of predefined assertions, see “-A” on page 1-27.

Macros such as __DATE__ can be useful if incorporated into the text
strings. The # operator within a macro body is useful in converting such
symbols into text constructs.

C/C++ Preprocessor Features

1-402 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Table 1-41 describes the predefined compiler macros.

Table 1-41. Predefined Compiler Macros

Macro Function

_ADI_FX_LIBIO Defined as 1 when compiling with the -fixed-point-io switch.

_ADI_COMPILER Defined as 1.

__ADSPBF50x__ Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF504, ADSP-BF504F, or ADSP-BF506F
processor.

__ADSPBF51x__ Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF512, ADSP-BF514, ADSP-BF516, or
ADSP-BF518 processor.

__ADSPBF52x__ Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF522, ADSP-BF524, ADSP-BF526,
ADSP-BF523, ADSP-BF525, or ADSP-BF527 processor.

__ADSPBF52xLP__ Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF522, ADSP-BF524, or ADSP-BF526 pro-
cessor.

__ADSPBF53x__ Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF531, ADSP-BF532, ADSP-BF533,
ADSP-BF534, ADSP-BF536, ADSP-BF537, ADSP-BF538, or
ADSP-BF539 processor.
Note: This does not include the ADSP-BF535 processor.

__ADSPBF54x__ Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF542, ADSP-BF544, ADSP-BF547,
ADSP-BF548, or ADSP-BF549 processor.

__ADSPBF56x__ Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF561 processor.

__ADSPBF59x__ Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF592-A processor.

__ADSPBLACKFIN__ Always defined as 1.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-403
for Blackfin Processors

Compiler

__ADSPLPBLACKFIN__ Defined as 1 when the target processor (set using the -proc
switch) is one of low-power core parts. These include
ADSP-BF504, ADSP-BF504F, ADSP-BF506F, ADSP-BF512,
ADSP-BF514, ADSP-BF516, ADSP-BF518, ADSP-BF522,
ADSP-BF523, ADSP-BF524, ADSP-BF525, ADSP-BF526,
ADSP-BF527, ADSP-BF531, ADSP-BF532, ADSP-BF533,
ADSP-BF534, ADSP-BF536, ADSP-BF537, ADSP-BF538,
ADSP-BF539, ADSP-BF542, ADSP-BF547, ADSP-BF548,
ADSP-BF549, ADSP-BF561, or ADSP-BF592-A processors.

__ADSPBF506F_FAMILY__ Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF504, ADSP-BF504F, or ADSP-BF506F
processor.

__ADSPBF518_FAMILY__ Equivalent to __ADSPBF51x__.

__ADSPBF526_FAMILY__ Equivalent to __ADSPBF52xLP__.

__ADSPBF527_FAMILY__ Equivalent to __ADSPBF52x__.

__ADSPBF533_FAMILY__ Equivalent to __ADSPBF53x__.

__ADSPBF535_FAMILY__ Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF535.

__ADSPBF537_FAMILY__ Equivalent to __ADSPBF53x__.

__ADSPBF538_FAMILY__ Equivalent to __ADSPBF53x__.

__ADSPBF548_FAMILY__ Equivalent to __ADSPBF54x__.

__ADSPBF548M_FAMILY__ Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF542M, ADSP-BF544M, ADSP-BF547M,
ADSP-BF548M, or ADSP-BF549M.

__ADSPBF592_FAMILY__ Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF592-A processor.

__ANALOG_EXTENSIONS__ Defined as 1. If MISRA compliance checking is enabled, this
macro will not be defined.

__cplusplus Defined as 199711L when you compile in C++ mode.

__DATE__ The preprocessor expands this macro into the preprocessing date
as a string constant. The date string constant takes the form
mm dd yyyy (ANSI standard).

Table 1-41. Predefined Compiler Macros (Cont’d)

Macro Function

C/C++ Preprocessor Features

1-404 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

__DOUBLES_ARE_FLOATS__ Defined as 1 when the size of the double type is the same as the
single-precision float type. When the compiler -dou-
ble-size-64 switch is used, the macro is not defined.

__ECC__ Always defined as 1.

__EDG__ Always defined as 1. This definition signifies that an Edison
Design Group front end is being used.

__EDG_VERSION__ Always as an integral value representing the version of the com-
piler’s front end.

__EXCEPTIONS Defined as 1 when C++ exception handling is enabled (using the
-eh switch on page 1-35).

__FILE__ The preprocessor expands this macro into the current input file
name as a string constant. The string matches the name of the file
specified on the command line or in a preprocessor #include
command (ANSI standard).

_INSTRUMENTED_PROFILING Defined as 1 when instrumented profiling is enabled (using the
-p switches on page 1-65).

_LANGUAGE_C Always defined as 1.

__LINE__ The preprocessor expands this macro into the current input line
number as a decimal integer constant (ANSI standard).

_MISRA_RULES Defined as 1 when compiling in MISRA-C mode.

__NO_BUILTIN Defined as 1 when you compile with the -no-builtin com-
mand-line switch (on page 1-53).

__NUM_CORES__ Defined to be the number of cores in the currently-selected target
processor. For example, when compiling for the ADSP-BF533
processor, __NUM_CORES__ is defined as 1, whereas when compil-
ing for the ADSP-BF561 processor, __NUM_CORES__ is defined as
2.

__RTTI Defined as 1 when C++ run-time type information is enabled
(using the -rtti switch on page 1-90).

__SIGNED_CHARS__ Defined as 1, unless you compile with the -unsigned-char
command-line switch (on page 1-78).

Table 1-41. Predefined Compiler Macros (Cont’d)

Macro Function

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-405
for Blackfin Processors

Compiler

Writing Preprocessor Macros
A macro is a user-defined name or string for which the preprocessor
substitutes a user-defined block of text. Use the #define preprocessor
command to create a macro definition. When a macro definition has

__STDC__ Always defined as 1.

__STDC_VERSION__ Defined as 199409L when compiling in C89 mode, and as
199901L when compiling in C99 mode.

__TIME__ The preprocessor expands this macro into the preprocessing time
as a string constant. The date string constant takes the form
hh:mm:ss (ANSI standard).

__VERSION__ Defined as a string constant giving the version number of the
compiler used to compile this module.

__VERSIONNUM__ Defined as a numeric variant of __VERSION__ constructed from
the version number of the compiler. Eight bits are used for each
component in the version number, and the most significant byte
of the value represents the most significant version component.
For example, a compiler with version 7.1.0.0 defines
__VERSIONNUM__ as 0x07010000 and 7.1.1.10 would define
__VERSIONNUM__ to be 0x0701010A.

__VISUALDSPVERSION__ The preprocessor defines this macro to be an eight-digit hexadeci-
mal representation of the VisualDSP++ release, in the form
0xMMmmuurr, where:
– MM is the major release number
– mm is the minor release number
– uu is the update number
– rr is “00”, and is reserved for future use
For example, VisualDSP++5.0 Update 1 would be 0x05000100.

__WORKAROUNDS_ENABLED Defines this macro to be 1 if any hardware workarounds are
implemented by the compiler. This macro is set if the
-si-revision switch (on page 1-74) has a value other than
“none” or if any specific workaround is selected by means of the
-workaround switch (on page 1-81).

Table 1-41. Predefined Compiler Macros (Cont’d)

Macro Function

C/C++ Preprocessor Features

1-406 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

arguments, the block of text the preprocessor substitutes can vary with
each new set of arguments.

Compound Macros

Whenever possible, use inline functions rather than compound macros.
If compound macros are necessary, define such macros to allow invocation
like function calls. This makes your source code easier to read and main-
tain. If you want your macro to extend over more than one line, you must
escape the newlines with backslashes.

The following two code segments define two versions of the macro
SKIP_SPACES.

/* SKIP_SPACES, regular macro */

#define SKIP_SPACES(p, limit) { \

char *lim = (limit); \

while (p != lim) { \

if (*(p)++ != ' ') { \

(p)--; \

break; \

} \

} \

}

/* SKIP_SPACES, enclosed macro */

#define SKIP_SPACES(p, limit) \

do { \

char *lim = (limit); \

while ((p) != lim) { \

if (*(p)++ != ' ') { \

(p)--; \

break; \

} \

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-407
for Blackfin Processors

Compiler

} \

} while (0)

Enclosing the first definition within the do {…} while (0) pair changes
the macro from expanding to a compound statement to expanding to a
single statement. With the macro expanding to a compound statement,
you would sometimes need to omit the semicolon after the macro call in
order to have a legal program. This leads to a need to remember whether a
function or macro is being invoked for each call and whether the macro
needs a trailing semicolon or not. With the do {…} while (0) construct,
you can treat the macro as a function and put the semicolon after it.

For example,

 /* SKIP_SPACES, enclosed macro, ends without ‘;’ */
 if (*p != 0)
 SKIP_SPACES (p, lim);

 else …

This expands to:

 if (*p != 0)
 do {

 ...

 } while (0);

 else ...

Without the do {…} while (0) construct, the expansion would be:

if (*p != 0)

{

...

}; /* Probably not intended syntax */

else

C/C++ Run-Time Model and Environment

1-408 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Model and
Environment

This section describes the Blackfin processor C/C++ run-time model and
run-time environment. The C/C++ run-time model, which applies to
compiler-generated code, includes descriptions of layout of the stack, data
access, and call/entry sequence. The C/C++ run-time environment
includes the conventions that C/C++ routines must follow to run on
Blackfin processors. Assembly routines linked to C/C++ routines must
follow these conventions.

 Analog Devices recommends that assembly programmers maintain
stack conventions.

Figure 1-2 provides an overview of the run-time environment issues that
must be considered when writing assembly routines that link with C/C++
routines including the “C/C++ Run-Time Header and Startup Code” on
page 1-410. The run-time environment issues include the following items.

• Memory usage conventions

“Using Memory Sections” on page 1-422

“Using Multiple Heaps” on page 1-423

“Using Data Storage Formats” on page 1-443

• Register usage conventions

“Dedicated Registers” on page 1-432

“Call-Preserved Registers” on page 1-433

“Scratch Registers” on page 1-433

“Stack Registers” on page 1-435

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-409
for Blackfin Processors

Compiler

• Program control conventions

“Managing the Stack” on page 1-435

“Transferring Function Arguments and Return Value” on
page 1-439

Figure 1-2. Assembly Language Interfacing Overview

Required
Memory

Compiler
Registers

User
Registers

Compiler
Registers

Compiler
Registers

Compiler
Registers Compiler

Registers

Stack
Usage

Argument
Transfer

Function
Address

Data
Storage

C/C++
Run-Time
Header

Interface
Macros

C/C++

C/C++ Run-Time Model and Environment

1-410 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Header and Startup Code
The C/C++ run-time (CRT) header is code that is executed after the
processor jumps to the start address on reset. The CRT header sets the
machine into a known state and calls _main. CRT code can be included in
a project in one of the following ways:

• The Project Wizard can be used to automatically generate a cus-
tomized CRT in a project. Refer to VisualDSP++ Help for details.

• The macro USER_CRT can be defined at link-time to specify a cus-
tom user-defined CRT object is to be included in the project build.

• Default CRT objects are provided for all platforms in the run-time
libraries, and are linked against for all C/C++ projects if the
link-time macro USER_CRT is not defined.

This section contains:

• “CRT Header Overview”

• “CRT Description” on page 1-412

CRT Header Overview

The CRT ensures that when execution enters _main, the processor’s state
obeys the C application binary interface (ABI), and that global data
declared by the application have been initialized as required by the C/C++
standards. It arranges things so that _main appears to be “just another
function” invoked by the normal function invocation procedure.

Not all applications require the same configuration. For example, C++
constructors are invoked only for applications that contain C++ code.
The list of optional configuration items is long enough that determining
whether to invoke each one in turn at runtime would be overly costly.

For this reason, the Project Wizard allows a CRT to be generated which
includes the minimal amount of code necessary given the user-selected

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-411
for Blackfin Processors

Compiler

options. Additionally, the pre-built CRTs are supplied in several different
configurations, which can be specified at link-time via LDF macros.

The CRT header is used for projects that use C, C++, and VDK.
Assembly language projects do not provide a default run-time header;
you must provide your own.

The source assembly file for the pre-compiled CRTs is located under the
VisualDSP++ installation directory, in the file basiccrt.s, in the
directory Blackfin/lib/src/libc/crt. Each of the pre-built CRT objects
are built from this default CRT source. The different configurations are
produced by the definition of various macros.

The list of operations performed by the CRT (startup code) can include
(not necessarily in the following order):

• Setting registers to known/required values

• Disabling hardware loops

• Disabling circular buffers

• Setting up default event handlers and enabling interrupts

• Initializing the stack pointer and frame pointer

• Enabling the cycle counter

• Configuring the memory ports used by the two DAGs

• Copying data from the flash memory to RAM

• Initializing device drivers

• Setting up memory protection and caches

• Changing processor interrupt priority

• Initializing profiling support

C/C++ Run-Time Model and Environment

1-412 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

• Invoking C++ constructors

• Invoking _main, with supplied parameters

• Invoking _exit on termination

What the CRT Does Not Do

The CRT does not initialize actual memory hardware. The initialization
of the external SDRAM is left to the boot loader because it is possible (and
even likely) that the CRT itself will need to be moved into external mem-
ory before being executed.

CRT Description

The following sections describe the main operations that may be per-
formed by the CRT, dependent on the selected Project Wizard options, or
which of the pre-built CRTs is included in the build.

Declarations

The CRT begins with preprocessor directives that “include” the
appropriate platform-definition header and set up a few constants:

• IVBl and IVBh give the address of the event vector table

• UNASSIGNED_VAL is a bit pattern that indicates that the regis-
ter/memory location has not yet been written to by the application.
See “Mark Registers” on page 1-417 and “Terminate Stack Frame
Chain” on page 1-418.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-413
for Blackfin Processors

Compiler

• INTERRUPT_BITS is the default interrupt mask. By default, it enables
the lowest-priority interrupt, IVG15. This default mask can also be
overridden at runtime by your own version of
__install_default_handlers; see “Event Vector Table” on
page 1-413 for details.

• For some platforms, SYSCFG_VALUE is the initialization value for the
system configuration register (SYSCFG).

Start and Register Settings

The CRT declares its first code label as start. This required label is
referenced by .ldf files, which explicitly resolve this label to the
processor’s reset address.

First, the CRT disables facilities that could be enabled on start-up, due to
their random power-up states, as follows:

• SYSCFG is set to SYSCFG_VALUE, according to anomaly 05-00-0109
for ADSP-BF531, ADSP-BF532, ADSP-BF533, and ADSP-BF561
processors.

• Hardware loops are disabled to prevent jump-back-to-loop-start
behavior, should the “loop bottom” register correspond to the start
of an instruction.

• Circular buffer lengths are set to zero. The CRT makes use of the
Iregs and calls functions that may use them. Furthermore, the
C/C++ ABI requires that circular buffers are disabled on entry to
(and exit from) compiled functions, so the circular buffers must be
disabled before invoking _main.

Event Vector Table

The reset vector (fixed) and emulation events (not touched by the C ABI),
are not defined by the CRT. The processor’s lowest-priority event, IVG15,
is set to point to supervisor_mode, a label that appears later in the CRT

C/C++ Run-Time Model and Environment

1-414 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

and is used to facilitate the switch to supervisor mode. The remaining
entries of the event vector table are loaded with the address of the
__unknown_exception_occurred dummy event handler, which results in
defined behavior to aid debugging.

Additionally, if caching or memory protection is enabled (either selected
via the Project Wizard, or configured by the user-defined value of the
___cplb_ctrl variable), an exception handler is required to process possi-
ble events raised by the memory system. Therefore, the default handler,
___cplb_hdr, is installed into the exception entry of the event vector table.

For details on ___cplb_ctrl, refer to “Caching and Memory Protection”
on page 1-373.

You may install additional handlers; for your convenience, the CRT calls a
function to do this. The function, __install_default_handlers, is an
empty stub, which you may replace with your own function that installs
additional or alternative handlers, before the CRT enables events. The
function’s C prototype is:

short _install_default_handlers(short mask);

The CRT passes the default enable mask, (INTERRUPT_BITS), as a
parameter, and considers the return value to be an updated enable mask.
If you install additional handlers, you must return an updated enable
mask to reflect this.

 See the VisualDSP++ Kernel (VDK) User's Guide for details on how
to configure ISRs for applications that use VDK.

Stack Pointer and Frame Pointer

The stack pointer (SP) is set to point to the top of the stack, as defined in
the .ldf file by the symbol ldf_stack_end. Specifically, the stack pointer
is set to point just past the top of the stack. Because stack pushes are
pre-decrement operations, the first push moves the stack pointer so that it
refers to the actual stack top.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-415
for Blackfin Processors

Compiler

The user stack pointer (USP) and frame pointer (FP) are set to point to the
same address.

Twelve bytes are then claimed from the stack. This is because the C ABI
requires callers to allocate stack space for the parameters of callees, and
that all functions require at least twelve bytes of stack space for registers
R0-R2. Therefore, the CRT claims these twelve bytes as the incoming
parameters for functions called before invoking _main.

Cycle Counter

The CRT enables the cycle counter, so that the CYCLES and CYCLES2
registers are updated. This is not necessary for general program operation,
but is desirable for measuring performance.

DAG Port Selection

For ADSP-BF531, ADSP-BF532, ADSP-BF533, ADSP-BF534,
ADSP-BF536, ADSP-BF537, ADSP-BF538, ADSP-BF539, and
ADSP-BF561 processors, the CRT configures the DAGs to use different
ports for accessing memory. This reduces stalls when the DAGs issue
memory accesses in parallel.

Memory Initialization

Memory initialization is a two-stage process:

1. At link-time, the Memory Initializer utility processes the .dxe file
to generate a table of code and data memory areas that must be
initialized during booting.

2. At runtime, when the application starts, the run-time library
function _mi_initialize processes the table to copy the code and
data from the flash device to volatile memory.

If the application has not been processed by the Memory Initializer, or if
the Memory Initializer did not find any code or data that required such
movement, the _mi_initialize function returns immediately. If the

C/C++ Run-Time Model and Environment

1-416 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

“Enable run-time memory initialization” option is selected in the Project
Wizard, the generated CRT includes a call to _mi_initialize. The
default CRT source always includes the call.

 The CRT does not enable external memory. The configuration of
physical memory hardware is the responsibility of the boot loader
and must be complete before the CRT is invoked.

Device Initialization

The process of initializing device drivers that support stdio involves:

1. Initializing the internal file tables

2. Invoking the initialization routine for each device driver registered
at build-time

3. Associating stdin, stdout, and stderr with the default device
driver

By default, this process occurs automatically when a device is first
accessed. For information on the device drivers supported by stdio, refer
to “Extending I/O Support to New Devices” on page 3-44.

If the C/C++ I/O and I/O device support option on the Run-Time
Initialization page of the Project Wizard is selected (which is the default),
explicit device initialization is included in the generated CRT. Support for
the device drivers for stdio may be disabled under the Project Wizard by
de-selecting the option.

CPLB Initialization

When cacheability protection lookaside buffers (CPLBs) are to be
enabled, the CRT calls the function _cplb_init, passing the value of
___cplb_ctrl as a parameter.

The declaration and initialization of the global variable ___cplb_ctrl is
included in the generated CRT if memory protection or caching has been

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-417
for Blackfin Processors

Compiler

selected through the Project Wizard. The default library definition of the
variable is used if they are not overridden by a declaration in user code.
Refer to “Caching and Memory Protection” on page 1-373.

Lower Processor Priority

The CRT lowers the process priority to the lowest supervisor mode level
(IVG15). It first raises IVG15 as an event, but this event cannot be serviced
while the processor remains at the higher priority level of Reset.

The CRT sets RETI to be the still_interrupt_in_ipend label, at which
there is an RTI instruction, and is the next instruction to be executed.
This results in all bits representing interrupts of a higher priority than
IVG15 being cleared. In normal circumstances, this would include only the
reset interrupt, but occasionally this may not be the case (for example,
if the program is restarted during an ISR).

The pending IVG15 interrupt is now allowed to proceed, and the handler
set up earlier in the CRT (at the label supervisor_mode) is executed.
Thus, execution flows from the “return” from Reset level to the
supervisor_mode label, while changing processor mode from the highest
supervisor level to the lowest supervisor level.

 If other events are enabled (memory system exceptions or other
events installed via your own version of the default handlers stub),
they could be taken between the return from Reset and entering
IVG15. Therefore, the remaining parts of the CRT may not execute
when event handlers are triggered.

The CRT’s first action after entering IVG15 is to re-enable the interrupt
system so that other higher-priority interrupts can be processed.

Mark Registers

The UNASSIGNED_FILL value is written into R2-R7 registers and P0-P5
registers if the Project Wizard option “Initialize data registers to a known

C/C++ Run-Time Model and Environment

1-418 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

value” is selected (or if the UNASSIGNED_FILL macro is defined when
rebuilding the default CRT source).

Terminate Stack Frame Chain

Each stack frame is pointed to by the frame pointer and contains the pre-
vious values of the frame pointer and RETS. The CRT pushes two instances
of UNASSIGNED_VAL onto the stack, indicating that there are no further
active frames. The C++ exception support library uses these markers to
determine whether it has walked back through all active functions without
finding one with a catch for the thrown exception.

Again, the CRT allocates twelve bytes for outgoing parameters of func-
tions that will be called from the CRT.

Profiler Initialization

If profiling is selected (via the Project Wizard option “Enable Profiling”),
the CRT initializes the instrumented-code profiling library by calling
monstartup. This routine zeroes all counters and ensures that no profiling
frames are active. The instrumented-code profiling library uses stdio
routines to write the accumulated profile data to stdout or to a file.

Instrumented-code profiling is specified with the -p, -p1, and -p2
compiler switches. (See “-p[1|2]” on page 1-65.) These are added to the
compilation options if necessary by the Project Wizard. If any of the
object files were compiled to include this profiling, the prelinker detects
this and sets link-time macros, which selects a profiler-enabled pre-built
CRT object (if the Project Wizard is not in use).

C++ Constructor Invocation

The ___ctorloop function runs all of the global-scope constructors, and is
always called from the Project Wizard-generated CRT and from the C++
enabled pre-built CRTs (which the .ldf file selects if a C++ compiled
object has been detected).

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-419
for Blackfin Processors

Compiler

For more information, see “Constructors and Destructors of Global Class
Instances” on page 1-419.

Multi-Threaded Applications

The CRT can be built to work in a multi-threaded environment.
The _ADI_THREADS macro guards the code suitable for multi-threaded
applications.

Argument Parsing

The __getargv function is called to parse any provided arguments
(normally an empty list) into the __Argv global array. This function
returns the number of arguments found which, along with __Argv, form
the argc and argv parameters for _main. Within the default CRT source,
if FIOCRT is not defined, argc is set to zero and argv is set to an empty list,
statically defined within the CRT.

Calling _main and _exit

The _main function is called, using the argc and argv just defined.
Embedded programs are not expected to return from _main, but many leg-
acy and non-embedded programs do. Therefore, the return value from
_main is immediately passed to _exit to gracefully terminate the applica-
tion. _exit is not expected to return.

Constructors and Destructors of Global Class
Instances

Constructors for global class instances are invoked by the C/C++ run-time
header during start-up. Several components allow this to happen:

• The associated data space for the instance

• The associated constructor (and destructor, if one exists) for the
class

C/C++ Run-Time Model and Environment

1-420 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

• A compiler-generated “start” routine

• A compiler-generated table of such “start” routines

• A compiler-constructed linked-list of destructor routines

• The run-time header itself

The interaction of these components is as follows.

The compiler generates a “start” routine for each module that contains
globally-scoped class instances that need constructing or destructing.
There is at most one “start” routine per module; it handles all the
globally-scoped class instances in the module:

• For each such instance, it invokes the instance’s constructor. This
may be a direct call, or it may be inlined by the compiler optimizer.

• If the instance requires destruction, the “start” routine registers this
fact for later, by including pointers to the instance and its destruc-
tor into a linked list.

The start routine is named after the first such instance encountered,
though the classes are not guaranteed to be constructed or destructed in
any particular order (with the exception that destructors are called in the
reverse order of the constructors). Such instances should not have any
dependency on construction order; the -check-init-order switch
(on page 1-87) is useful for verifying this during system development, as it
plants additional code to detect uses of unconstructed objects during
initialization.

A pointer to the “start” routine is placed into the ctor section of the
generated object file. When the application is linked, all ctor sections are
mapped into the same ctor output section, forming a table of pointers to
the “start” routines. An additional ctorl object is appended to the end of
the table; this contains a terminating NULL pointer.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-421
for Blackfin Processors

Compiler

When the run-time header is invoked, it calls _ctor_loop(), which walks
the table of ctor sections, calling each pointed-to “start” function until it
reaches the NULL pointer from ctorl. In this manner, the run-time
header calls each global class instance's constructor, indirectly through the
pointers to “start” functions.

When the program reaches exit(), either by calling it directly or by
returning from main(), the exit() routine follows the normal process of
invoking the list of functions registered through the atexit() interface.
One of these is a function that walks the list of destructors, invoking each
in turn (in reverse order from the constructors).

This function is registered with atexit() via _mark_dtors(); the compiler
plants a call to this function at the start of every main() that is compiled in
C++ mode.

 Functions registered with atexit() may not reference global class
instances, as the destructor for the instance may be invoked before
the reference is used.

Constructors, Destructors, and Memory Placement

By default, the compiler places the code for constructors and destructors
into the same section as any other function's code. This can be changed
either by specifying the section specifically for the constructor or destruc-
tor (see “#pragma section/#pragma default_section” on page 1-310 and
“Placement Support Keyword (section)” on page 1-192), or by altering
the default destination section for generated code (see “#pragma sec-
tion/#pragma default_section” on page 1-310 and “-section” on
page 1-72).

While normal compiler-generated code is placed into the CODE area, the
“start” routine is placed into the STI area. Both CODE and STI default to
the same section, but may be changed separately using #pragma
default_section or the -section switch (since the “start” function is an

C/C++ Run-Time Model and Environment

1-422 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

internal function generated by the compiler, its placement cannot be
affected by #pragma section).

The pointer to the “start” routine is placed into the ctor section. This is
not configurable, as the invocation process relies on all of the “start”
routine pointers being in the same section during linking, so that they
form a table. It is essential that all relevant ctor sections are mapped
during linking; if a ctor section is omitted, the associated constructor will
not be invoked during start-up, and run-time behavior will be incorrect.

If destructors are required, the compiler generates data structures pointing
to the class instance and destructor. These structures are placed into the
default variable-data section (the DATA area).

Using Memory Sections
The C/C++ run-time environment requires that a specific set of memory
section names are used to place code in memory. In assembly language
files, these names are used as labels for the .SECTION directive. In the .ldf
file, these names are used as labels for the output section names within the
SECTIONS{} command. For information on .ldf file syntax and other
information on the linker, see the VisualDSP++ Linker and Utilities
Manual.

Code Storage
The code section, program, is where the compiler puts all the program
instructions that it generates when compiling the program. The cplb_code
section exists so that memory protection management routines can be
placed into sections of memory that are always configured as being
available. A noncache_code section is mapped to memory that cannot be
configured as cache. The noncache_code section is used by the run-time
library (RTL).

Data Storage
The data section, data1, is where the compiler puts global and static data
in memory. The data section, constdata, is where the compiler puts data

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-423
for Blackfin Processors

Compiler

that has been declared as const. By default, the compiler places global
zero-initialized data into a “BSS-style” section, called bsz, unless the com-
piler is invoked with the -no-bss option (on page 1-53). The cplb_data
section exists so that configuration tables used to manage memory protec-
tion can be placed in memory areas that are always flagged as accessible.

Run-Time Stack
The run-time stack is positioned in memory section stack and is required
for the run-time environment to function. The section must be mapped in
the .ldf file.

The run-time stack is a 32-bit-wide structure, growing from high memory
to low memory. The compiler uses the run-time stack as the storage area
for local variables and return addresses. See “Managing the Stack” on
page 1-435 for more information.

Run-Time Heap Storage
The run-time heap section, heap, is where the compiler puts the run-time
heap in memory. When linking, use your .ldf file to map the heap sec-
tion. To dynamically allocate and deallocate memory at run-time, the C
run-time library includes four functions:

malloc() calloc() realloc() free()

Additionally, the C++ new and delete operators are available to allocate
and free memory from the run-time heap. By default, all heap allocations
are from the heap section of memory. The .ldf file must define symbolic
constants ldf_heap_space, ldf_heap_end, and ldf_heap_length to allow
the heap management routines to function.

Using Multiple Heaps
The Blackfin C/C++ run-time library supports the standard heap manage-
ment functions calloc, free, malloc, and realloc. By default, a single
heap, called the default heap, serves all allocation requests that do not

C/C++ Run-Time Model and Environment

1-424 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

explicitly specify an alternative heap. The default heap is defined in the
standard linker description file and the run-time header.

Any number of additional heaps can be defined. These heaps serve alloca-
tion requests that are explicitly directed to them. These additional heaps
can be accessed via the extension routines heap_calloc, heap_free,
heap_malloc, and heap_realloc.

Multiple heaps allow the programmer to serve allocations using
fast-but-scarce memory or slower-but-plentiful memory as appropriate.

The following sections describe how to define a heap, work with heaps,
use the heap interface, and free space in the heap.

Defining a Heap

Heaps can be defined at link-time or at runtime. In both cases, a heap has
three attributes:

• Start (base) address (the lowest usable address in the heap)

• Length (in bytes)

• User identifier (userid, a number >= 1)

The default system heap, defined at link-time, always has userid 0.
In addition, heaps have indices. This is like the userid, except that the
index is assigned by the system. All the allocation and deallocation
routines use heap indices, not heap user IDs. A userid can be converted
to its index using _heap_lookup(). (See “Defining Heaps at Link-Time”.)
Be sure to pass the correct identifier to each function.

Defining Heaps at Link-Time

Link-time heaps are defined in the heaptab.s file in the library, and their
start address, length, and userid are held in three 32-bit words. The heaps
are in a table called “_heap_table”. This table must contain the default

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-425
for Blackfin Processors

Compiler

heap (userid 0) first and must be terminated by an entry that has a base
address of zero.

The addresses placed into this table can be literal addresses, or they can be
symbols that are resolved by the linker. The default heap uses symbols
generated by the linker through the .ldf file.

The _heap_table table can live in constant memory. It is used to initialize
the run-time heap structure, ___heaps, when the first request to a heap is
made. When allocating from any heap, the library initializes ___heaps
using the data in _heap_table, and sets ___nheaps to be the number of
available heaps.

Because the allocation routines use heap indices instead of heap user IDs,
a heap installed in this fashion must have its userid mapped into an index
before it can be used explicitly:

int _heap_lookup(int userid); // returns index

Defining Heaps at Runtime

Heaps may also be defined and installed at runtime, using the
_heap_install() function:

int _heap_install(void *base, size_t length, int userid);

This function can take any section of memory and start using it as a heap.
It returns the heap index allocated for the newly installed heap, or a nega-
tive value if there was some problem. (See “Tips for Working With
Heaps”.)

Reasons why _heap_install() may return an error status include, but are
not limited to:

• A heap using the specified userid already exists

• A new heap appears too small to be usable (length too small)

C/C++ Run-Time Model and Environment

1-426 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Tips for Working With Heaps

Heaps may not start at address zero (0x0000 0000). This address is
reserved and means “no memory could be allocated”. It is the null pointer
on the Blackfin platform.

Not all memory in a heap is available to users. 32 bytes per heap and
12 bytes per allocation (rounded to ensure the allocation is 8-byte aligned)
are used for housekeeping. Thus, a heap of 256 bytes is unable to serve
four blocks of 64 bytes.

Memory reserved for housekeeping precedes the allocated blocks. Thus,
if a heap begins at 0x0800 0000, this particular address is never returned to
the user program as the result of an allocation request; the first request
returns an address some way into the heap.

The base address of a heap must be appropriately aligned for an 8-byte
memory access. This means that allocations can then be used for vector
operations.

The lengths of heaps should be multiples of powers of two for most
efficient space usage. The heap allocator works in block sizes such as 256,
512, or 1024 bytes.

For C++ compliance, calls to malloc and calloc with a size of 0 will allo-
cate a block of size 1.

Standard Heap Interface

The standard functions, calloc and malloc, allocate a new object from
the default heap. If realloc is called with a null pointer, it too allocates a
new object from the default heap.

Previously allocated objects can be deallocated with the free or realloc
functions. When a previously allocated object is resized with realloc, the
returned object is in the same heap as the original object.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-427
for Blackfin Processors

Compiler

The space_unused function returns the number of bytes unallocated in
the heap with index 0. Note that you may not be able to allocate all of this
space due to heap fragmentation and the overhead that each allocated
block needs.

Allocating C++ STL Objects to a Non-Default Heap

C++ STL objects can be placed in a non-default heap through use of a
custom allocator. To do this, you must first create your custom allocator.
Below is an example custom allocator that you can use as a basis for your
own. The most important part of customalloc.h in most cases is the
allocate function, where memory is allocated to the STL object. Cur-
rently, the pertinent line of code assigns to the default heap (0):

Ty* ty = (Ty*) heap_malloc(0, n * sizeof(Ty));

Simply by changing the first parameter of heap_malloc(), you can allocate
to a different heap:

• 0 is the default heap

• 1 is the first user heap

• 2 is the second user heap

• And so on

Once you have created your custom allocator, you must inform your STL
object to use it. Note that the standard definition for “list”:

list<int> a;

is the same as writing:

list<int, allocator<int> > a;

C/C++ Run-Time Model and Environment

1-428 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

where “allocator” is the default allocator. Therefore, we can tell list “a” to
use our custom allocator as follows:

list<int, customallocator<int> > a;

Once created, the list “a” can be used as normal. Also, example.cpp
(below) is a simple example that shows the custom allocator being used.

customalloc.h

template <class Ty>

class customallocator {

public:

typedef Ty value_type;

typedef Ty* pointer;

typedef Ty& reference;

typedef const Ty* const_pointer;

typedef const Ty& const_reference;

typedef size_t size_type;

typedef ptrdiff_t difference_type;

template <class Other>

struct rebind { typedef customallocator<Other> other; };

pointer address(reference val) const { return &val; }

const_pointer address(const_reference val)

const { return &val; }

customallocator(){}

customallocator(const customallocator<Ty>&){}

template <class Other>

customallocator(const customallocator<Other>&) {}

template <class Other>

customallocator<Ty>& operator=(const customallocator&)

{ return (*this); }

pointer allocate(size_type n, const void * = 0) {

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-429
for Blackfin Processors

Compiler

Ty* ty = (Ty*) heap_malloc(0, n * sizeof(Ty));

cout << "Allocating 0x" << ty << endl;

return ty;

}

void deallocate(void* p, size_type) {

cout << "Deallocating 0x" << p << endl;

if (p) free(p);

}

void construct(pointer p, const Ty& val)

{ new((void*)p)Ty(val); }

void destroy(pointer p) { p->~Ty(); }

size_type max_size() const { return size_t(-1); } };

example.cpp

#include <iostream>

#include <list>

#include <customalloc.h> // include your custom allocator

using namespace std;

main(){

cout << "creating list" << endl;

list <int, customallocator<int> > a;

 // create list with custom allocator

cout.setf(ios_base::hex,ios_base::basefield);

cout << "pushing some items on the back" << endl;

a.push_back(0xaaaaaaaa); // push items as usual

a.push_back(0xbbbbbbbb);

while(!a.empty()){

cout << "popping:0x" << a.front() << endl;

//read item as usual

a.pop_front(); //pop items as usual

}

C/C++ Run-Time Model and Environment

1-430 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

cout << "finished." << endl;

}

Using the Alternate Heap Interface

The C run-time library provides the alternate heap interface functions
heap_calloc, heap_free, heap_malloc, and heap_realloc. These routines
work in exactly the same way as the corresponding standard functions
without the heap_ prefix, except that they take an additional argument
that specifies the heap index.

For example,

void *_heap_calloc(int idx, size_t nelem, size_t elsize)

void *_heap_free(int idx, void *)

void *_heap_malloc(int idx, size_t length)

void *_heap_realloc(int idx, void *, size_t length)

The actual entry point names for the alternate heap interface routines have
an initial underscore. The stdlib.h standard header file defines macro
equivalents without the leading underscores.

Note that for

heap_realloc(idx, NULL, length)

the operation is equivalent to

heap_malloc(idx, length)

However, for

heap_realloc(idx, ptr, length)

where ptr != NULL, the supplied idx parameter is ignored; the reallocation
is always done from the heap that ptr was allocated from, even if a memcpy
function is required within the heap.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-431
for Blackfin Processors

Compiler

Similarly,

heap_free(idx, ptr)

ignores the supplied index parameter, which is specified only for consis-
tency—the space indicated by ptr is always returned to the heap from
which it was allocated.

The heap_space_unused(int idx) function returns the number of bytes
unallocated in the heap with index idx. The function returns -1 if there is
no heap with the requested heap index.

C++ Run-Time Support for the Alternate Heap Interface

The C++ run-time library provides support for allocation and release of
memory from an alternative heap via the new and delete operators.

Heaps should be initialized with the C run-time functions as described.
These heaps can then be used via the new and delete mechanism by sim-
ply passing the heap index to the new operator. There is no need to pass
the heap index to the delete operator as the information is not required
when the memory is released.

The routines are used as in the example below.

#include <heapnew>

char *alloc_string(int size, int heapidx)

{

char *retVal = new(heapidx) char[size];

return retVal;

}

void free_string(char *aString)

{

delete aString;

}

C/C++ Run-Time Model and Environment

1-432 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Freeing Space

When space is “freed”, it is not returned to the “system”. Instead, freed
blocks are maintained on a free list within the heap in question. The
blocks are coalesced where possible.

It is possible to reinitialize a heap, emptying the free list and returning all
the space to the heap itself, using the _heap_init function:

int _heap_init(int index)

This returns zero for success, and nonzero for failure. Note, however, that
this discards all records within the heap, so it may not be used if there are
any live allocations on the heap still outstanding.

Dedicated Registers
The C/C++ run-time environment specifies a set of registers whose con-
tents should not be changed except in specific defined circumstances.
If these registers are changed, their values must be saved and restored.
The dedicated register values must always be valid for every function call
(especially for library calls) and for any possible interrupt.

The dedicated registers are SP, FP, and L0-L3.

• SP and FP are the stack pointer and the frame pointer registers,
respectively. The compiler requires that both point to valid 4-byte
aligned addresses within the stack section.

• The L0–L3 registers define the lengths of the DAG’s circular buf-
fers. The compiler uses the DAG registers, both in linear mode and
in circular buffering mode. The compiler assumes that the Length
registers are zero, both on entry to functions and on return from
functions, and ensures this is the case when it generates calls or
returns. Your application may modify the Length registers and use
the circular buffers, but you must ensure that the Length registers

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-433
for Blackfin Processors

Compiler

are appropriately reset when calling compiled functions, or
returning to compiled functions. Interrupt handlers must save
and restore the Length registers, if using DAG registers.

Call-Preserved Registers
The C/C++ run-time environment specifies a set of registers whose con-
tents must be saved and restored. Your assembly function must save these
registers during the function’s prologue and restore the registers as part of
the function’s epilogue. The call-preserved registers must be saved and
restored if they are modified within the assembly function; if a function
does not change a particular register, it does not need to save and restore
the register. The registers are:

P3–P5

R4–R7

Scratch Registers
The C/C++ run-time environment specifies a set of registers whose
contents need not be saved and restored. Note that the contents of these
registers are not preserved across function calls.

Table 1-42 lists the scratch registers, supplying notes when appropriate.

Table 1-42. Scratch Registers

Scratch Register Notes

P0 Used as the aggregate return pointer

P1–P2

R0–R3 The first three words of the argument list are always passed in R0, R1, and
R2 if present (R3 is not used for parameters).

LB0–LB1

LC0–LC1

C/C++ Run-Time Model and Environment

1-434 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Loop Counters, Overlays, and DMA’d Code

The compiler does not ensure that the loop counter registers (LC0 and LC1)
are zero on entry or exit from a function. This does not normally cause a
problem because the exit point of a hardware loop is unique within the
program, and the compiler ensures that the only path to the exit is
through the corresponding loop setup instruction.

If overlays are being used, or if code is being DMA’d into faster memory
for execution, this may no longer be the case. It is possible for an overlay
or a DMA’d function to set up a loop that terminates at address A, and
then for a different overlay or DMA’d function to have different code
occupying address A at a later point in time. If a hardware loop is still
active—LC0 or LC1 is non-zero—at the point when the instruction at
address A is reached, then undefined behavior results as the hardware loop
“jumps” back to the start of the loop.

Therefore, in such cases, it is necessary for the overlay manager or the
DMA manager to reset loop counters to ensure no hardware loops remain
active that might relate to the address range covered by the variant code.

LT0–LT1

ASTAT Including CC

A0–A1

I0–I3

B0–B3

M0–M3

Table 1-42. Scratch Registers (Cont’d)

Scratch Register Notes

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-435
for Blackfin Processors

Compiler

Stack Registers
The C/C++ run-time environment reserves a set of registers that control
the run-time stack. These registers may be modified for stack manage-
ment, but must be saved and restored. The stack registers include SP
(stack pointer) and FP (frame pointer).

Managing the Stack
The C/C++ run-time environment uses the run-time stack to store auto-
matic variables and return addresses. The stack is managed by a frame
pointer (FP) and a stack pointer (SP) and grows downward in memory,
moving from higher to lower addresses.

A stack frame is a section of the stack used to hold information about the
current context of the C/C++ program. Information in the frame includes
local variables, compiler temporaries, and parameters for the next
function.

The frame pointer serves as a base for accessing memory in the stack
frame. Routines refer to locals, temporaries, and parameters by their offset
from the frame pointer.

Figure 1-3 shows an example section of a run-time stack.

C/C++ Run-Time Model and Environment

1-436 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

In Figure 1-3, the currently executing routine, Current(), was called by
Previous(), and Current() in turn calls Next(). The state of the stack is
as if Current() has pushed all the arguments for Next() onto the stack and
is just about to call Next().

 Stack usage for passing any or all of a function’s arguments
depends upon the number and types of parameters to the function.

Figure 1-3. Example Run-Time Stack

Incoming Arguments
arg n

...
arg 2
arg 1

Outgoing Arguments

Return Address RETS

Caller's (old) FP (OFP)

local var 1
local var 2

...
local var n

Register Save Area

Previous
Frame

Current
Frame

FP + 4

FP

SP

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-437
for Blackfin Processors

Compiler

As you write assembly routines, note that operations to restore stack and
frame pointers are the responsibility of the called function.

To enter and perform a function, follow this sequence of steps:

• Linking Stack Frames – The return address and the caller’s FP are
saved on the stack, and FP is set pointing to the beginning of the
new (callee) stack frame. SP is decremented to allocate space for
local variables and compiler temporaries.

• Register Saving – Any registers that the function needs to preserve
are saved on the stack frame, and SP is set pointing to the top of the
stack frame.

At the end of the function, these steps must be performed:

• Restore Registers – Any registers that had been preserved are
restored from the stack frame, and SP is set pointing to the top of
the stack frame.

• Unlinking Stack Frame – The frame pointer is restored from the
stack frame to the caller’s FP, RETS is restored from the stack frame
to the return address, and SP is set pointing to the top of the caller’s
stack frame.

A typical function prologue would be:

LINK 16;

[--SP]=(R7:4);

SP += –16;

[FP+8]=R0; [FP+12]=R1; [FP+16]=R2;

where:

LINK 16;

is a special linkage instruction that saves the return address and the
frame pointer, and updates the stack pointer to allocate 16 bytes
for local variables.

C/C++ Run-Time Model and Environment

1-438 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

[--SP]=(R7:4);

allocates space on the stack and saves the registers in the save area.

SP += –16;

allocates space on the stack for outgoing arguments. Always allo-
cate at least 12 bytes on the stack for outgoing arguments, even if
the function being called requires less than this.

[FP+8]=R0; [FP+12]=R1; [FP+16]=R2;

saves the argument registers in the argument area.

A matching function epilogue would be:

SP += 16;

P0=[FP+4];

(R7:4)=[SP++];

UNLINK;

JUMP (P0);

where:

SP += 16;

reclaims the space on the stack that was used for outgoing
arguments.

P0=[FP+4]

loads the return address into register P0.

(R7:4)=[SP++];

restores the registers from the save area and reclaims the area.

UNLINK;

is a special instruction that restores the frame pointer and stack
pointer.

JUMP (P0);

returns to the caller.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-439
for Blackfin Processors

Compiler

 “Transferring Function Arguments and Return Value” on
page 1-439 provides additional details on function call
requirements.

Transferring Function Arguments and Return Value
The C/C++ run-time environment uses a set of registers and the run-time
stack to transfer function parameters to assembly routines. Your assembly
language functions must follow these conventions when they call (or when
called by) C/C++ functions. This section describes:

• “Passing Arguments” on page 1-439

• “Passing a C++ Class Instance” on page 1-441

• “Return Values” on page 1-441

Passing Arguments

The details of argument passing are most easily understood in terms of a
conceptual argument list. This is a list of words on the stack. Double argu-
ments are placed starting on the next available word in the list, as are
structures. Each argument appears in the argument list exactly as it would
in storage, and each separate argument begins on a word boundary.

The actual argument list is like the conceptual argument list except that
the contents of the first three words are placed in registers R0, R1, and R2.
Normally, this means that the first three arguments (if they are integers or
pointers) are passed in registers R0 to R2 with any additional arguments
being passed on the stack.

If any argument is greater than one word, it occupies multiple registers.
The caller is responsible for extending any char or short arguments to
32-bit values.

C/C++ Run-Time Model and Environment

1-440 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

 When calling a C function, at least twelve bytes of stack space must
be allocated for the function’s arguments, corresponding to R0–R2.
This applies even for functions with fewer than 12 bytes of argu-
ment data, or that have fewer than three arguments. Note that the
called function is permitted to modify the contents of this stack
space.

The details of argument passing do not change for variable argument lists.

For example, a function declared as follows may receive one or more
arguments.

int varying(char *fmt, ...) { /* ... */ }

 As with other functions, the first argument, fmt, is passed in R0, and other
arguments are passed in R1, and then R2, and then on the stack, as
required.

Variable argument lists are processed using the macros defined in the
stdarg.h header file. The va_start() function obtains a pointer to the list
of arguments which may be passed to other functions, or which may be
walked by the va_arg() macro.

To support this, the compiler begins variable argument functions by
flushing R0, R1, and R2 to their reserved spaces on the stack:

_varying:

[SP+0] = R0;

[SP+4] = R1;

[SP+8] = R2;

The va_start() function can then take the address of the last non-varying
argument (fmt, in the example above, at [SP+0]), and va_arg() can walk
through the complete argument list on the stack.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-441
for Blackfin Processors

Compiler

Passing a C++ Class Instance

A C++ class instance function parameter is always passed by reference
when a copy constructor has been defined for the C++ class. If a copy con-
structor has not been defined for the C++ class then the C++ class instance
function parameter is passed by value.

Consider the following example.

class fr

{

public:

int v;

public:

fr () {}

fr (const fr& rc1) : v(rc1.v) {}

};

extern int fn(fr x);

fr Y;

int main() {

return fn (Y);

}

The function call fn (Y) in main will pass the C++ class instance Y by
reference because a copy constructor for that C++ class has been defined
by fr (const fr& rc1) : v(rc1.v) {}. If this copy constructor were
removed, then Y would be passed by value.

Return Values

If a function returns a short or a char, the callee is responsible for sign- or
zero-extending the return value into a 32-bit register. So, for example, a
function that returns a signed short must sign-extend that short into R0.

C/C++ Run-Time Model and Environment

1-442 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Similarly, a function that returns an unsigned char must zero-extend that
unsigned char into R0.

• For functions returning aggregate values occupying fewer than or
equal to 32 bits, the result is returned in R0.

• For aggregate values occupying greater than 32 bits, and fewer than
or equal to 64 bits, the result is returned in register pair R0, R1.

• For functions returning aggregate values occupying more than 64
bits, the caller allocates the return value object on the stack and the
address of this object is passed to the callee as a hidden argument in
register P0.

Table 1-43 provides examples of passed parameters.

Table 1-43. Examples of Parameter Passing

Function Prototype Parameters Passed as Return Location

int test(int a, int b,
int c)

a in R0,
b in R1,
c in R2

in R0

char test(int a, char b,
char c)

a in R0,
b in R1,
c in R2

in R0

int test(int a) a in R0 in R0

int test(char a, char b,
char c, char d, char e)

a in R0,
b in R1,
c in R2,
d in [FP+20],
e in [FP+24]

in R0

int test(struct *a, int
b, int c)

a (addr) in R0,
b in R1,
c in R2

in R0

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-443
for Blackfin Processors

Compiler

Using Data Storage Formats
The sizes of intrinsic C/C++ data types are selected by Analog Devices so
that normal C/C++ programs execute with hardware-native data types,
and, therefore, at high speed. The C/C++ run-time environment uses the

struct s2a {
char ta;
char ub;
int vc;}
int test(struct s2a x,
int b, int c)

x.ta and x.ub in R0,
x.vc in R1,
b in R2,
c in [FP+20]

in R0

struct foo *test(int a,
int b, int c)

a in R0,
b in R1,
c in R2

(address) in R0

void qsort(void *base,
int nel, int width, int
(*compare)(const void *,
const void *))

base(addr) in R0,
nel in R1,
width in R2,
compare(addr) in [FP+20]

struct s2 {
char t;
char u;
int v;
}
struct s2 test(int a,
int b, int c)

a in R0,
b in R1,
c in R2

in R0 (s.t and s.u) and
in R1 (s.v)

struct s3 {
char t;
char u;
int v;
int w;
}
struct s3 test(int a,
int b, int c)

a in R0,
b in R1,
c in R2

in *P0 (based on value
of P0 at the call, not
necessarily at the
return)

Table 1-43. Examples of Parameter Passing (Cont’d)

Function Prototype Parameters Passed as Return Location

C/C++ Run-Time Model and Environment

1-444 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

intrinsic C/C++ data types and data formats that appear in Table 1-44 and
are shown in Figure 1-4 on page 1-449 and Figure 1-5 on page 1-450.

Table 1-44. Data Storage Formats and Data Type Sizes

Type Bit Size Number Representation sizeof returns

bool 8 bits signed 8-bit two’s complement 1

char 8 bits signed 8-bit two’s complement 1

unsigned char 8 bits unsigned 8-bit unsigned magnitude 1

short 16 bits signed 16-bit two’s complement 2

unsigned short 16 bits unsigned 16-bit unsigned magnitude 2

int 32 bits signed 32-bit two’s complement 4

unsigned int 32 bits unsigned 32-bit unsigned magnitude 4

long 32 bits signed 32-bit two’s complement 4

unsigned long 32 bits unsigned 32-bit unsigned magnitude 4

long long 64 bits signed 64-bit two’s complement 8

unsigned long long 64 bits unsigned 64-bit unsigned magnitude 8

pointer 32 bits 32-bit two’s complement 4

function pointer 32 bits 32-bit two’s complement 4

double 32 bits 32-bit IEEE single-precision 4

float 32 bits 32-bit IEEE single-precision 4

double 64 bits 64-bit IEEE double-precision 8

long double 64 bits 64-bit IEEE 8

fract 16 bits signed s1.15 fract 2

long fract 32 bits signed s1.31 fract 4

unsigned short
fract

16 bits unsigned 0.16 fract 2

unsigned fract 16 bits unsigned 0.16 fract 2

unsigned long
fract

32 bits unsigned 0.32 fract 4

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-445
for Blackfin Processors

Compiler

 The floating-point and 64-bit data types are implemented using
software emulation, and are expected to run more slowly than
hardware-supported native data types. The emulated data types are
float, double, long double, long long, and unsigned long long.

 The native fixed-point types fract and accum are not available in
C++. In C, they are available only when the stdfix.h header file is
included.

 The fract16 and fract32 are not actually intrinsic data types—
they are typedefs to short and long, respectively. In C, you need
to use built-in functions to do basic arithmetic. (See “Fractional
Value Built-In Functions in C++” on page 1-232.) You cannot do
fract16*fract16 and get the right result. In C++, for fract data,
the classes “fract” and “shortfract” define the basic arithmetic
operators, while in C, the native fixed-point types fract and accum
provide a more natural alternative to fract16 and fract32.

short accum 40 bits signed s9.31 fixed-point 8

accum 40 bits signed s9.31 fixed-point 8

long accum 40 bits signed s9.31 fixed-point 8

unsigned short
accum

40 bits unsigned 8.32 fixed-point 8

unsigned accum 40 bits unsigned 8.32 fixed-point 8

unsigned long
accum

40 bits unsigned 8.32 fixed-point 8

fract16 16 bits signed 1.15 fract 2

fract32 32 bits signed 1.31 fract 4

Table 1-44. Data Storage Formats and Data Type Sizes (Cont’d)

Type Bit Size Number Representation sizeof returns

C/C++ Run-Time Model and Environment

1-446 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Floating-Point Data Size

On Blackfin processors, the float data type is 32 bits, and the double data
type default size is 32 bits. This size is chosen because it is the most effi-
cient. The 64-bit long double data type is available if more precision is
needed, although this is more costly because the type exceeds the data sizes
supported natively by hardware.

In the C language, floating-point literal constants default to the double
data type. When operations involve both float and double, the float
operands are promoted to double and the operation is done at double size.
By having double default to a 32-bit data type, the Blackfin compiler
usually avoids additional expense during these promotions. This does not,
however, fully conform to the C and C++ standards which require that the
double type supports at least 10 digits of precision.

The -double-size-64 switch (on page 1-34) sets the size of the double
type to 64 bits if additional precision, or full standard conformance, is
required.

The -double-size-64 switch causes the compiler to treat the double data
type as a 64-bit data type, instead of a 32-bit data type. This means that
all values are promoted to 64 bits, and consequently incur more storage
and cycles during computation. The switch does not affect the size of the
float data type, which remains at 32 bits.

Consider the following case.

float add_two(float x) { return x + 2.0; } // has promotion

When compiling this function, the compiler promotes the float value x
to double, to match the literal constant 2.0. The addition becomes a
double operation, and the result is truncated back to a float before being
returned.

By default, or with the -double-size-32 switch (on page 1-34), the pro-
motion and truncation operations are empty operations—they require no

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-447
for Blackfin Processors

Compiler

work because the float and double types default to the same size. Thus,
there is no cost.

With the -double-size-64 switch, the promotion and truncation opera-
tions require work because the double constant 2.0 is a 64-bit value. The x
value is promoted to 64 bits, a 64-bit addition is performed, and the result
is truncated to 32 bits before being returned.

In contrast, since the literal constant 2.0f in the following example has an
“f” suffix, it is a float-type constant, not a double-type constant.

float add_two(float x) { return x + 2.0f; } // no promotion

Thus, both operands to the addition are of type float, and no promotion
or truncation is necessary. This version of the function does not produce
any performance degradation when the -double-size-64 switch is used.

You must be consistent in your use of the -double-size-{32|64} switch.

Consider the two files, such as:

file x.c:

double add_nums(double x, double y) { return x + y; }

file y.c:

extern double add_nums(double, double);

double times_two(double val) { return add_nums(val, val); }

Both files must be compiled with the same usage of -double-size{32|64}.
Otherwise, times_two() and add_nums() will be exchanging data in mis-
matched formats, and incorrect behavior will occur. Table 1-45 shows the
results for the various permutations:

C/C++ Run-Time Model and Environment

1-448 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

If a file does not make use of any double-typed data, it may be compiled
with the -double-size-any switch (on page 1-34), to indicate this fact.
Files compiled in this way may be linked with files compiled with
-double-size-32 or with -double-size-64, without conflict.

Conflicts are detected by the linker and result in linker error li1151,
“Input sections have inconsistent qualifiers”.

Floating-Point Binary Formats

The Blackfin compiler supports IEEE floating-point format.

IEEE Floating-Point Format

By default, the Blackfin compiler provides floating-point emulation using
IEEE single- and double-precision formats. Single-precision IEEE format
(Figure 1-4 on page 1-449) provides a 32-bit value, with 23 bits for the
mantissa, 8 bits for the exponent, and 1 bit for the sign. This format is
used for the float data type, and for the double data type by default and
when the -double-size-32 switch is used.

Table 1-45. Use of the -double-size-{32|64} Switch

x.c y.c Result

default default Okay

default -double-size-32 Okay

-double-size-32 default Okay

-double-size-32 -double-size-32 Okay

-double-size-64 -double-size-64 Okay

-double-size-32 -double-size-64 Error

-double-size-64 -double-size-32 Error

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-449
for Blackfin Processors

Compiler

In Figure 1-4, the single word (32-bit) data storage format equates to:

where:

• Sign – Comes from the sign bit.

• Mantissa – Represents the fractional part of the mantissa, 23 bits.
(The “1.” is assumed in this format.)

• Exponent – Represents the 8-bit exponent.

Double-precision IEEE format (Figure 1-5 on page 1-450) provides a
64-bit value, with 52 bits for the mantissa, 11 bits for the exponent, and 1
bit for the sign. This format is used for the long double data type, and for
the double data type when the -double-size-64 switch is used.

Figure 1-4. Data Storage Format for Float and Double Types

Single Word (32 bits)

Sign Bit

2223 031

8-Bit Exponent
Biased by +127

Mantissa

1Sign 1.Mantissa 2 Exponent 127–()××–

C/C++ Run-Time Model and Environment

1-450 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

In Figure 1-5, the two-word (64-bit) data storage format equates to:

where:

• Sign – Comes from the sign bit.

• Mantissa – Represents the fractional part of the mantissa, 52 bits.
(The “1.” is assumed in this format.)

• Exponent – Represents the 11-bit exponent.

Variants of IEEE Floating-Point Support

The Blackfin compiler supports two variants of IEEE floating-point
support. These variants are implemented in terms of two alternative
emulation libraries, selected at link-time.

The two alternative emulation libraries are:

• The default IEEE floating-point library
It is a high-performance variant, which relaxes some of the IEEE
rules in the interest of performance. This library assumes that its

Figure 1-5. Double-Precision IEEE Format

at Memory Address N

Sign Bit

52 062

11-Bit Exponent
Biased by +1023

Mantissa

5163

at Memory Address N+1

31

1Sign 1.Mantissa 2 Exponent 1023–()××–

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-451
for Blackfin Processors

Compiler

inputs will be value numbers, rather than Not-a-Number values.
This library can also be selected explicitly via the -fast-fp switch
(on page 1-38).

• An alternative IEEE floating-point library
It is a strictly-conforming variant, which offers less performance,
but includes all the input-checking that has been relaxed in the
default library. The strictly-conforming library can be selected via
the -ieee-fp switch (on page 1-45).

The default .ldf file links in the appropriate archive(s), depending on the
setting of the link-time macro IEEEFP. If the -ieee-fp switch has been
specified, the compiler defines the macro and the .ldf file links the
application against the non-default, IEEE-conforming library. Conversely,
if the link-time macro IEEEFP is not defined, then the default .ldf file
arranges for the application to be linked against the default, high-perfor-
mance, floating-point archives.

fract and accum Data Representation

The fract and accum types are native fixed-point types that can be used to
write code using saturating, fixed-point arithmetic. They should not be
confused with the fract16 and fract32 typedefs which may be used to
write fixed-point arithmetic via built-in functions only. The native
fixed-point types are discussed in “Using Native Fixed-Point Types” on
page 1-104.

The short fract and fract types represent a single 16-bit signed
fractional value, while the long fract type represents a 32-bit signed
fractional value. Both types have the same range, [-1.0,+1.0). However,
long fract has twice the precision.

The short fract, fract, and long fract data representations are shown
in Figure 1-6 on page 1-452.

C/C++ Run-Time Model and Environment

1-452 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Therefore, to represent 0.25 in fract, the HEX representation would be
0x2000 (2-2). For -0.25 in long fract, the HEX representation is 0xe000
0000 (-1+2-1+2-2). For -1, the HEX representation in fract is 0x8000.
short fract, fract, and long fract cannot represent +1 exactly, but they
get quite close with 0x7fff for short fract and fract, or 0x7fff ffff for
long fract.

The unsigned short fract and unsigned fract types represent a single
16-bit unsigned fractional value, while the unsigned long fract type rep-
resents a 32-bit unsigned fractional value. Both types have the same range,
[0.0,+1.0). However, unsigned long fract has twice the precision.

The unsigned short fract, unsigned fract and unsigned long fract
data representations are shown in Figure 1-7 on page 1-453.

Therefore, to represent 0.25 in unsigned fract, the HEX representation
would be 0x4000 (2-2). For 0.125 in unsigned long fract, the HEX is
0x2000 0000 (2-3). unsigned short fract, unsigned fract and unsigned

Figure 1-6. Data Storage Format for short fract, fract, and long fract

Short fract, fract (1.15)

Bit 15 14 13 2 1 0

Long fract (1.31)

Bit

Weight

Weight

31 30 29 2 1 0

2-29 2-30 2-31

(-1) 2-1 2-2 2-13 2-14 2-15

(-1) 2-1 2-2

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-453
for Blackfin Processors

Compiler

long fract cannot represent +1 exactly, but they get quite close with
0xffff for unsigned short fract and unsigned fract, or 0xffff ffff
for unsigned long fract.

The short accum, accum, and long accum types represent a single 40-bit
signed fixed-point value. The three types have the same range,
[-256.0,+256.0). They should not be confused with the acc40 type, which
is a container for a value held in the accumulator register.

The short accum, accum, and long accum data representations are shown
in Figure 1-8 on page 1-454.

Therefore, to represent 12.25 in any of the signed accum types, the HEX
representation would be 0x06 2000 0000 (23+22+2-2). For -256.0, the
HEX representation in the signed accum types is 0x80 0000 0000. short
accum, accum, and long accum cannot represent +256.0 exactly, but they
get quite close with 0x7f ffff ffff.

Figure 1-7. Data Storage Format for unsigned short fract, unsigned
fract, and unsigned long fract

Unsigned short fract, unsigned fract (0.16)

Bit 15 14 13 2 1 0

Unsigned long fract, unsigned fract (0.32)

Bit

Weight

Weight

31 30 29 2 1 0

2-1 2-2 2-3 2-30 2-31 2-32

2-1 2-2 2-3 2-14 2-15 2-16

C/C++ Run-Time Model and Environment

1-454 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The unsigned short accum and unsigned accum types represent a single
40-bit unsigned fixed-point value. The three types have the same range,
[0.0,+256.0).

The unsigned short accum, unsigned accum, and unsigned long accum
data representations are shown in Figure 1-9.

Therefore, to represent 12.25 in any of the unsigned accum types, the
HEX representation would be 0x0c 4000 0000 (23+22+2-2). unsigned
short accum, unsigned accum, and unsigned long accum cannot represent
+256.0 exactly, but they get quite close with 0xff ffff ffff.

Figure 1-8. Data Storage Format for short accum, accum, and long accum

Figure 1-9. Data Storage Format for unsigned short accum, unsigned
accum, and unsigned long accum

short accum, accum, long accum (9.31)

Bit

Weight

39 38 37 2 1 0

(-28) 27 26 2-29 2-30 2-31

Sign Bit

Unsigned short accum, unsigned accum, unsigned long accum (8.32)

Bit

Weight

39 38 37 2 1 0

27 26 25 2-30 2-31 2-32

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-455
for Blackfin Processors

Compiler

Fract16 and Fract32 Data Representation

The fract16 type represents a single 16-bit signed fractional value, and
the fract32 type represents a 32-bit signed fractional value. Both types
have the same range, [-1.0,+1.0). However, fract32 has twice the
precision. They are not intrinsic data storage formats, they are simply
typedefs.

typedef short fract16;

typedef long fract32;

The fract data representation is shown in Figure 1-10

Therefore, to represent 0.25 in fract16, the HEX representation would be
0x2000 (2-2). For -0.25 in fract32, the HEX would be 0xe000 0000
(-1+2-1+2-2). For -1, the HEX representation in fract16 would be 0x8000
(-1). fract16 and fract32 cannot represent +1 exactly, but they get quite
close with 0x7fff for fract16, or 0x7fff ffff for fract32. There is also a
fract2x16 data type, which is two fract16s packed into 32 bits. The first
two bytes belong to one fract16, and the second two bytes belong to the

Figure 1-10. Data Storage Format for fract16 and fract32

Signed Fractional (1.15)

Signed Fractional (1.31)

Bit

Weight

Sign Bit

Sign Bit

Bit

Weight

15 14 13 2 1 0

2 1 0

(-1) 2
-1

 2
-2

(-1) 2
-1

 2
-2

2
-14

 2
-14

 2
-15

2
-29

 2
-30

 2
-31

31 30 29

C/C++ and Assembly Interface

1-456 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

other. There are also built-in functions that work with fract2x16
parameters.

C/C++ and Assembly Interface
This section describes how to call assembly language subroutines from
within C/C++ programs, and how to call C/C++ functions from within
assembly language programs. Before attempting to perform either of these
operations, familiarize yourself with the information about the C/C++
run-time model (including details about the stack, data types, and how
arguments are handled) in “C/C++ Run-Time Model and Environment”
on page 1-408. At the end of this reference, a series of examples demon-
strate how to mix C/C++ and assembly code.

This section describes:

• “Calling Assembly Subroutines From C/C++ Programs” on
page 1-456

• “Calling C/C++ Functions From Assembly Programs” on
page 1-459

• “Exceptions Tables in Assembly Routines” on page 1-462

Calling Assembly Subroutines From C/C++
Programs

Before calling an assembly language subroutine from a C/C++ program,
create a prototype to define the arguments for the assembly language sub-
routine and the interface from the C/C++ program to the assembly
language subroutine. Even though it is legal to use a function without a
prototype in C/C++, prototypes are a strongly-recommended practice for
good software engineering. When the prototype is omitted, the compiler
cannot perform argument-type checking and assumes that the return value

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-457
for Blackfin Processors

Compiler

is of type integer and uses K&R promotion rules instead of ANSI promo-
tion rules.

The compiler prefaces the name of any external entry point with an
underscore. Therefore, declare your assembly language subroutine’s name
with a leading underscore.

The run-time model defines some registers as scratch registers and others
as preserved or dedicated registers. Scratch registers can be used within the
assembly language program without worrying about their previous con-
tents. If more room is needed (or an existing code is used) and you wish to
use the preserved registers, you must save their contents and then restore
those contents before returning.

 Use the dedicated or stack registers for their intended purpose
only; the compiler, libraries, debugger, and interrupt routines
depend on having a stack available as defined by those registers.

The compiler also assumes the machine state does not change during exe-
cution of the assembly language subroutine.

 Do not change any machine modes (for example, certain registers
may be used to indicate circular buffering when those register val-
ues are nonzero).

The compiler will always align arrays on a 32-bit word boundary, and the
compiler will normally use this knowledge when optimizing accesses. It is
therefore necessary to ensure that arrays that are defined in assembly code
that are accessed in C/C++ code are similarly aligned. This is normally
achieved by preceding array definitions in assembly with the .align 4
assembly directive.

If arguments are on the stack, they are addressed via an offset from the
stack pointer or frame pointer. A good way to explore how arguments are
passed between a C/C++ program and an assembly language subroutine is
to write a dummy function in C/C++ and compile it using the IDDE’s
Save temporary files option (or the -save-temps command-line switch).

C/C++ and Assembly Interface

1-458 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The following example includes the global volatile variable assignments to
indicate where the arguments can be found upon entry to asmfunc.

// Sample file for exploring compiler interface …

// global variables … assign arguments there just so

// we can track which registers were used

// (type of each variable corresponds to one of arguments):

int global_a;

float global_b;

int * global_p;

// the function itself:

int asmfunc(int a, float b, int * p)

{

// do some assignments so assembly file will show

where args are:

global_a = a;

global_b = b;

global_p = p;

// value gets loaded into the return register:

return 12345;

}

When compiled with the -save-temps and -no-annotate -O switches,
the following code is produced.

.section program;

.align 2;

_asmfunc:

P0.L = .epcbss;

P0.H = .epcbss;

[P0+ 0] = R0;

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-459
for Blackfin Processors

Compiler

R0 = 0x1234 (X);

[P0+ 4] = R1;

[P0+ 8] = R2;

RTS;

._asmfunc.end:

.global _asmfunc;

.type _asmfunc,STT_FUNC;

.section data1;

.align 4;

.epcbss:

.byte _global_a[4];

.global _global_a;

.type _global_a,STT_OBJECT;

.byte _global_b[4];

.global _global_b;

.type _global_b,STT_OBJECT;

.byte _global_p[4];

.global _global_p;

.type _global_p,STT_OBJECT;

.epcbss.end:

Calling C/C++ Functions From Assembly Programs
You may want to call C/C++ callable library and other functions from
within an assembly language program. As discussed in “Calling Assembly
Subroutines From C/C++ Programs” on page 1-456, you may want to cre-
ate a test function to do this in C/C++, and then use the code generated by
the compiler as a reference when creating your assembly language program
and the argument setup. Using volatile global variables may help clarify
the essential code in your test function.

C/C++ and Assembly Interface

1-460 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The run-time model defines some registers as scratch registers and others
as preserved or dedicated. The contents of the scratch registers may be
changed without warning by the called C/C++ function. If the assembly
language program needs the contents of any of those registers, you must
save their contents before the call to the C/C++ function and then restore
those contents after returning from the call.

 Use the dedicated registers for their intended purpose only; the
compiler, libraries, debugger, and interrupt routines depend on
having a stack available as defined by those registers.

Preserved registers can be used; their contents are not changed by calling a
C/C++ function. The function always saves and restores the contents of
preserved registers if they are going to change.

If arguments are on the stack, they are addressed via an offset from the
stack pointer or frame pointer. Explore how arguments are passed between
an assembly language program and a function by writing a dummy func-
tion in C/C++ and compiling it with the save temporary files option.
(See the -save-temps switch on page 1-72.) By examining the contents of
volatile global variables in a *.s file, you can determine how the C/C++
function passes arguments, and then duplicate that argument setup pro-
cess in the assembly language program.

The stack must be set up correctly before calling a C/C++ callable func-
tion. If you call other functions, maintaining the basic stack model also
facilitates the use of the debugger. The easiest way to do this is to define a
C/C++ main program to initialize the run-time system; maintain the stack
until it is needed by the C/C++ function being called from the assembly
language program; and then continue to maintain that stack until it is
needed to call back into C/C++. However, ensure that the dedicated regis-
ters are correct. You do not need to set the FP prior to the call; the caller’s
FP is never used by the recipient.

The assembly interface requires all calling functions to reserve stack space
for the first twelve bytes (R0-R2) of parameter space for a callee, even when

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-461
for Blackfin Processors

Compiler

the callee does not require that much space. In VisualDSP++ 5.0, the
compiler makes increased use of this stack space to store temporary values,
if it does not find that the space is needed for other purposes (such as stor-
ing the register-based parameter itself). Therefore, all assembly functions
that call compiled functions must follow the correct procedure; with
VisualDSP++ 5.0, the compiler makes more efficient use of stack space,
but there is a corresponding risk that functions that violate the ABI may
find that live values are corrupted in the process.

If you call other functions, maintaining the basic stack model also
facilitates the use of the debugger. The easiest way to do this is by defining
a C/C++ main program to initialize the run-time system, maintaining the
stack until it is needed by the C/C++ function being called from the
assembly language program, and then continuing to maintain that stack
until it is needed to call back into C/C++. However, ensure that the
dedicated registers are correct. You do not need to set the FP prior to the
call; the caller’s FP is never used by the recipient.

Using Mixed C/C++ and Assembly Naming Conventions

You can use C/C++ symbols (function or variable names) in assembly
routines and use assembly symbols in C/C++ code. This section describes
how to name and use C/C++ and assembly symbols.

To name an assembly symbol that corresponds to a C symbol, add an
underscore prefix to the C symbol name when declaring the symbol in
assembly. For example, the C symbol main becomes the assembly symbol
_main. C++ global symbols are usually “mangled” to encode the additional
type information. Declare C++ global symbols using extern “C” to disable
the mangling.

To use a C/C++ function or variable in an assembly routine, declare it as
global in the C program. Import the symbol into the assembly routine by
declaring the symbol with the .EXTERN assembler directive.

C/C++ and Assembly Interface

1-462 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

To use an assembly function or variable in your C/C++ program, declare
the symbol with the .GLOBAL assembler directive in the assembly routine
and import the symbol by declaring the symbol as extern in the C
program.

Table 1-46 shows several examples of the C/C++ and assembly interface
naming conventions.

Exceptions Tables in Assembly Routines
Assembly routines that both call C++ functions and are called by C++
functions and require exceptions thrown by callees to be caught by callers
must be provided with a “function exceptions table” to enable the
run-time library to restore registers to the values they held on entry to the
routine.

The assembly routine must allocate a stack frame using FP and SP as
described in “Managing the Stack” on page 1-435. On entry to the assem-
bly routine, call-preserved registers (on page 1-433) that are modified in
the routine should be saved into a contiguous region within the stack
frame, called the save area. Registers are saved at ascending addresses in the
save area in the order given in Table 1-48 on page 1-464.

Table 1-46. C/C++ Naming Conventions for Symbols

In the C/C++ Program In the Assembly Subroutine

int c_var; /*declared global*/ .extern _c_var;
.type _c_var,STT_OBJECT;

void c_func(void); .global _c_func;
.type _c_func,STT_FUNC;

extern int asm_var; .global _asm_var;
.type _asm_var,STT_OBJECT;
.byte = 0x00,0x00,0x00,0x00

extern void asm_func(void); .global _asm_func;
.type _asm_func,STT_FUNC;
_asm_func:

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-463
for Blackfin Processors

Compiler

A word in the .gdt section must be initialized with the address of the
function exceptions table. This word must be marked with the
.RETAIN_NAME directive to prevent it being removed by linker data
elimination. The function exceptions table itself must be initialized as
illustrated in Table 1-47.

The bit set field of the function exceptions table contains a bit for each
register. The bits corresponding to registers saved in the save area must be
set to one and the other bits set to zero. The bit numbers corresponding to
each register are given in Table 1-48, where bit 0 is the least significant bit
of the lowest addressed word, bit 31 is the most significant bit of that
word, bit 32 is the least significant bit of the second lowest addressed
word, and so on.

Bit numbering may best be explained by the C code to test bit number.

int wrd = r/32;

int bit = lu << (r%32);

if (bitset[wrd] & bit)

/* register r was saved */

Table 1-47. Function Exceptions Table

Offset Size in bytes Meaning

0 4 Start address of the routine

4 4 First address after end of routine

8 4 Signed offset from FP of register save area

12 8 Bit set indicating which registers are saved

20 4 Always zero. Indicates this is not C++ code

C/C++ and Assembly Interface

1-464 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Table 1-48. Function Exception Table Register Numbers

Register Bit Number Bytes taken in save area if saved

LB1 0 4

LB0 1 4

LT1 2 4

LT0 3 4

LC1 4 4

LC0 5 4

M3 6 4

M2 7 4

M1 8 4

M0 9 4

B3 10 4

B2 11 4

B1 12 4

B0 13 4

I3 14 4

I2 15 4

I1 16 4

I0 17 4

L3 18 4

L2 19 4

L1 20 4

L0 21 4

A1X 22 4

A1W 23 4

A0X 24 4

A0W 25 4

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-465
for Blackfin Processors

Compiler

This example shows an assembly routine with function exceptions table,

.section program;

_asmfunc:

.LN._asmfunc:

LINK 0; /* setup FP */

[--SP] = (R7:5, P5:4); /* save R5,R6,R7,P4,P5 at FP-20 */

/* use R5,R6,R7,P4,P5 call a C++ function */

(R7:5, P5:4) = [SP++]; /* restore registers */

UNLINK;

RTS;

.LN._asmfunc.end:

._asmfunc.end:

P5 26 4

P4 27 4

P3 28 4

P2 29 4

P1 30 4

P0 31 4

R7 32 4

R6 33 4

R5 34 4

R4 35 4

R3 36 4

R2 37 4

R1 38 4

R0 39 4

ASTAT 40 4

Table 1-48. Function Exception Table Register Numbers (Cont’d)

Register Bit Number Bytes taken in save area if saved

Compiler C++ Template Support

1-466 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

.global _asmfunc;

.type _asmfunc, STT_FUNC;

.section .edt; /* conventionally function exceptions

tables go in .edt */

.align 4;

.byte4 .function_exceptions_table[6] =

.LN._asmfunc, /* first address of _asmfunc */

.LN._asmfunc.end, /* first address after _asmfunc */

-20, /* offset of save area from FP */

0x0c000000, 0x00000007, /* bit set, bits 26=P5,

27=P4,32=R7,33=R6,34=R5 */

0; /* always zero for non-c++ */

.section .gdt;

.align 4;

.fet_index:

.byte4 = .function_exceptions_table;

/* address of table in .gdt */

.retain_name .fet_index;

Compiler C++ Template Support
The compiler provides template support C++ templates as defined in the
ISO/IEC 14882:2003 C++ standard.

Template Instantiation
Templates are instantiated automatically during compilation using a
linker feedback mechanism. This involves compiling files, determining
any required template instantiations, and then recompiling those files
making the appropriate instantiations. The process repeats until all
required instantiations have been made. Multiple recompilations may be

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-467
for Blackfin Processors

Compiler

required in the case when a template instantiation is made that requires
another template instantiation to be made.

Implicit Instantiation

The compiler uses a method called implicit instantiation, which is com-
mon practice. It results in having both the specification and definition
available at the point of instantiation.

 Implicit instantiation does not conform to the ISO/IEC
14882:2003 C++ standard, and does not work with exported
templates. Implicit instantiation is enabled by default. It can be
disabled via the -no-implicit-inclusion switch on page 1-89.

Implicit instantiation involves placing template specifications in a header
(for example, “.h”) file and the definitions in a source (for example,
“.cpp”) file. Any file being compiled that includes a header file containing
template specifications will instruct the compiler to implicitly include the
corresponding “.cpp” file containing the definitions of the template.

For example, you may have the header file “tp.h”
template <typename A> void func(A var)

and source file “tp.cpp”

template <typename A> void func(A var)

{

...code...

}

Two files “file1.cpp” and “file2.cpp” that include “tp.h” will have file
“tp.cpp” included implicitly to make the template definitions available to
the compilation.

When generating dependencies, the compiler will only parse each implic-
itly included .cpp file once. This parsing avoids excessive compilation
times in situations where a header file that implicitly includes a source file

Compiler C++ Template Support

1-468 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

is included several times. If the .cpp file should be included implicitly
more than once, the -full-dependency-inclusion switch (on page 1-88)
can be used. (For example, the file may contain macro guarded sections of
code.) This may result in more time required to generate dependencies.

Exported Templates

The compiler supports the export keyword, which provides an alternative
implementation for templates. An exported template does not need to be
present in a translation unit that uses the template. For example, the fol-
lowing is a valid C++ program consisting of two translation units:

// File 1

#include <iostream>

static void print(void) { std::cout << "File 1" << std::endl;}

export template <class T> T const &maxii(T const &a, T const &b);

int main()

{

print();

return maxii(7,8);

}

// File 2

#include <iostream>

static void print(void) { std::cout << "File 2" << std::endl;}

export template <class T> T const &maxii(T const &a, T const &b)

{

print();

return (a>b) ? a : b;

}

The two files are separate translation units; one is not included in the
other. This allows the two functions print() to coexist (with external
linkage).

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-469
for Blackfin Processors

Compiler

The automatic instantiation of exported templates is similar to that of
regular (included) templates. An instantiation of an exported template
involves at least two translation units: one that requires the instantiation,
and one that contains the template definition.

When a file containing a definition of an exported template is compiled, a
file with a “.et” suffix is created and some extra information is included in
the associated “.ti” file. The “.et” files are used by the compiler to find
the translation units that define a given exported template.

Generated Template Files

Regardless of whether implicit instantiation is used, the compilation
process involves compiling one or more source files and generating a “.ti”
file corresponding to the source files being compiled. These “.ti” files are
then used by the prelinker to determine the templates to be instantiated.
The prelinker creates a “.ii” file and recompiles one or more of the files
instantiating the required templates.

The prelinker ensures that only one instantiation of a particular template
is generated across all objects. For example, the prelinker ensures that if
both “file1.cpp” and “file2.cpp” invoked the template function with an
int, the resulting instantiation would be generated in just one of the
objects.

Identifying Un-Instantiated Templates

If for some reason the prelinker is unable to instantiate all the templates
that are required for a particular link, then a link error will occur. For
example:

[Error li1021] The following symbols referenced in processor 'P0'

could not be resolved:

'Complex<T1> Complex<T1>::_conjugate() const [with T1=short]

[_conjugate__16Complex__tm__2_sCFv_18Complex__tm__4_Z1Z]' refer-

enced from '.\Debug\main.doj'

Compiler C++ Template Support

1-470 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

'T1 *Buffer<T1>::_getAddress() const [with T1=Complex<short>]

[_getAddress__33Buffer__tm__19_16Complex__tm__2_sCFv_PZ1Z]'

referenced from '.\Debug\main.doj'

'T1 Complex<T1>::_getReal() const [with T1=short]

[_getReal__16Complex__tm__2_sCFv_Z1Z]' referenced from

'.\Debug\main.doj'

Linker finished with 1 error

Careful examination of the linker errors reveals which instantiations have
not been made. Below are some examples.

Missing instantiation:

Complex<short> Complex<short>::conjugate()

Linker Text:

'Complex<T1> Complex<T1>::_conjugate() const [with T1=short]

[_conjugate__16Complex__tm__2_sCFv_18Complex__tm__4_Z1Z]'

referenced from '.\Debug\main.doj'

Missing instantiation:

Complex<short> *Buffer<Complex<short>>::getAddress()

Linker Text:

'T1 *Buffer<T1>::_getAddress() const [with T1=Complex<short>]

[_getAddress__33Buffer__tm__19_16Complex__tm__2_sCFv_PZ1Z]'

referenced from '.\Debug\main.doj'

Missing instantiation:

Short Complex<short>::getReal()

Linker Text:

'T1 Complex<T1>::_getReal() const [with T1=short]

[_getReal__16Complex__tm__2_sCFv_Z1Z]' referenced from

'.\Debug\main.doj'

There could be many reasons for the prelinker being unable to instantiate
these templates, but the most common is that the .ti and .ii files

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-471
for Blackfin Processors

Compiler

associated with an object file have been removed. Only source files that
can contain instantiated templates will have associated .ti and .ii files,
and without this information, the prelinker may not be able to complete
its task. Removing the object file and recompiling will normally fix this
problem.

Another possible reason for un-instantiated templates at link time is when
implicit inclusion (described above) is disabled but the source code has
been written to require it. Explicitly compiling the .cpp files that would
normally have been implicitly included and adding them to the final link
is normally all that is needed to fix this.

Another likely reason for seeing the linker errors above is invoking the
linker directly. It is the compiler’s responsibility to instantiate C++
templates, and this is done automatically if the final link is performed via
the compiler driver. The linker itself contains no support for instantiating
templates.

File Attributes
A file attribute is a name-value pair that is associated with a binary object,
whether in an object file (.doj) or in a library file (.dlb). One attribute
name can have multiple values associated with it. Attribute names and
values are strings. A valid attribute name consists of one or more
characters matching the following pattern:

[a-zA-Z_][a-zA-Z_0-9]*

An attribute value is a non-empty character sequence containing any
characters apart from NUL.

Attributes help with the placement of run-time library functions. All of
the run-time library objects contain attributes that allow you to place
time-critical library objects into internal (fast) memory. Using attribute

File Attributes

1-472 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

filters in the .ldf file, you can place run-time library objects into internal
or external (slow) memory, either individually or in groups.

This section describes:

• “Automatically-Applied Attributes” on page 1-472

• “Default LDF Placement” on page 1-474

• “Sections Versus Attributes” on page 1-475

• “Using Attributes” on page 1-476

For more information, see “Library Attributes” in Chapter 3, C/C++
Run-Time Library.

Automatically-Applied Attributes
By default, the compiler applies a number of attributes automatically
when compiling a C/C++ file. For example, it applies the Content and
FuncName attributes. These automatically-applied attributes can be
disabled using the -no-auto-attrs switch (on page 1-52).

Figure 1-11 shows a content attribute tree.

The Content attribute can be used to map binary objects according to
their kind of content, as show in Table 1-49.

Table 1-49. Interpreting Values of the Content Attribute

CodeData This is the most general value, indicating that the binary object contains a mix of
content types.

Code The binary object does not contain any global data, only executable code. This can
be used to map binary objects into program memory, or into ROM.

Data The binary object does not contain any executable code. The binary object may
not be mapped into dedicated program memory. The kinds of data used in the
binary object vary.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-473
for Blackfin Processors

Compiler

ZeroData The binary object contains only zero-initialized data. Its contents must be mapped
into a memory section with the ZERO_INIT qualifier, to ensure correct initializa-
tion.

InitData The binary object contains only initialized global data. The contents may not be
mapped into a memory section that has the ZERO_INIT qualifier.

VarData The binary object contains initialized variable data. It must be mapped into
read-write memory, and may not be mapped into a memory section with the
ZERO_INIT qualifier.

ConstData The binary object contains only constant data (data declared with the C const
qualifier). The data may be mapped into read-only memory (but see also the
-const-read-write switch (on page 1-31) and its effects).

Empty The binary object contains neither functions nor global data.

Figure 1-11. Content Attributes

Table 1-49. Interpreting Values of the Content Attribute (Cont’d)

Code

ConstData

InitData

CodeData

Data

ZeroData

Empty

VarData

File Attributes

1-474 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Default LDF Placement
The default .ldf file is written in such manner that the order of prefer-
ence for putting an object in section data or program depends on the value
of the prefersMem attribute. Precedence is given in the following order:

1. Highest priority is given to binary objects that have a prefersMem
attribute with a value of internal.

2. Next priority is given to binary objects that have no prefersMem
attribute, or a prefersMem attribute with a value that is neither
internal nor external.

3. Lowest priority is given to binary objects with a prefersMem attri-
bute with the value external.

Although the default .ldf files only reference the values internal and
external, prefersMem may have other values. For example, an object using
a value such as L2 will be given second priority, as the value is neither
internal nor external. You may modify your .ldf file to assign
appropriate priority to any value you choose, by mapping objects with
higher-priority values before objects with lower-priority values.

The prefersMemNum attribute is similar to the prefersMem attribute, but is
given numerical values instead of textual values. This makes it easier to
assign priority when there are many different levels, because you can use
relational comparisons in the .ldf file instead of just equalities and
inequalities. Table 1-50 shows the numerical values used by the run-time
library for each corresponding prefersMem attribute value.

Table 1-50. Values for prefersMemNum Attribute

prefersMem Attribute Value prefersMemNum Attribute Value

internal 30

any 50

external 70

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-475
for Blackfin Processors

Compiler

Sections Versus Attributes
File attributes and section qualifiers (on page 1-192) can be thought of as
being somewhat similar, since both affect how the application is linked.
There are important differences, however, that affect whether you choose
to use sections or file attributes to control the placement of code and data.

Granularity

Individual components—global variables and functions—in a binary
object can be assigned different sections, and then those section assign-
ments can be used to map each component of the binary object
differently. In contrast, an attribute applies to the whole binary object.
This means you do not have as fine control over individual components
using attributes as when using sections.

Hard Mapping Versus Soft Mapping

A section qualifier is a “hard” constraint. When the linker maps the object
file into memory, it must obey all the section qualifiers in the object file,
according to instructions in the .ldf file. If this cannot be done, or if the
.ldf file does not give sufficient information to map a section from the
object file, the linker reports an error.

In contrast, with attributes, the mapping is “soft”. The default .ldf files
use the prefersMem attribute as a guide to give a better mapping in
memory, but if this cannot be done, the linker will not report an error.
For example, if there are more objects with prefersMem=internal than
will fit into internal memory, the remaining objects will spill over into
external memory. Likewise, if there are fewer objects with the attribute
prefersMem!=external than are needed to fill internal memory, some
objects with the attribute prefersMem=external may be mapped to
internal memory.

Section qualifiers are rules that must be obeyed. Attributes are guidelines,
defined by convention, that can be used if convenient and ignored if not.

File Attributes

1-476 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The Content attribute is an example of this: you can use the Content attri-
bute to map Code and ConstData binary objects into read-only memory, if
this is a convenient partitioning of your application, but you need not do
so if you choose to map your application differently.

Number of Values

Any given element of an object file is assigned exactly one section quali-
fier, to determine into which section it should be mapped. In contrast, an
object file may have many attributes (or even none), and each attribute
may have many different values. Since attributes are optional and act as
guidelines, you need only pay attention to the attributes that are relevant
to your application.

Using Attributes
You can add attributes to a file in two ways:

• Use #pragma file_attr (on page 1-314)

• Use the -file-attr switch (on page 1-38)

The run-time libraries have attributes associated with the objects in them.
For more information, see “Library Attributes” in Chapter 3, C/C++
Run-Time Library.

Example 1

This example uses attributes to encourage the placement of library
functions in internal memory.

Suppose the file “test.c” exists, as shown below:

#define MANY_ITERATIONS 500

void main(void) {

int i;

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-477
for Blackfin Processors

Compiler

for (i = 0; i < MANY_ITERATIONS; i++) {

fft_lib_function();

frequently_called_lib_function();

}

rarely_called_lib_function();

}

Also suppose:

• The objects containing frequently_called_lib_function and
rarely_called_lib_function are both in the standard library, and
have the attribute prefersMem=any.

• There is only enough internal memory to map fft_lib_function
(which has prefersMem=internal) and one other library function
into internal memory.

• The linker chooses to map rarely_called_lib_function to
internal memory.

In this example, for optimal performance,
frequently_called_lib_function should be mapped to the internal
memory in preference to rarely_called_lib_function.

The .ldf file defines a macro $OBJS_LIBS_INTERNAL to store all the objects
that the linker should try to map to internal memory, as follows:

$OBJS_LIBS_INTERNAL =

$OBJECTS{prefersMem("internal")},

$LIBRARIES{prefersMem("internal")};

File Attributes

1-478 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

If all the objects do not fit in internal memory, the remainder is placed in
external memory and no linker error will occur. To add the object that
contains frequently_called_lib_function to this macro, extend the
definition to read:

$OBJS_LIBS_INTERNAL =

$OBJECTS{prefersMem("internal")},

$LIBRARIES{prefersMem("internal")},

$OBJECTS{ libFunc("frequently_called_lib_function") };

This ensures that the binary object that defines
frequently_called_lib_function is among those to which the linker
gives highest priority when mapping binary objects to internal memory.

Note that it is not necessary to know which binary object (or even which
library) defines frequently_called_lib_function. All the binary objects
in the run-time libraries define the libFunc attribute so that you can select
the binary objects for particular functions without needing to know
exactly where in the libraries a function is defined. The modified line uses
this attribute to select the binary object (or objects) for
frequently_called_lib_function and append it (or them) to the
$OBJS_LIBS_INTERNAL macro. The .ldf file maps objects in
$OBJS_LIBS_INTERNAL to internal memory in preference to other objects,
so frequently_called_lib_function is mapped to L1.

For more information, see “Library Attributes” in Chapter 3, C/C++
Run-Time Library.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 1-479
for Blackfin Processors

Compiler

Example 2

Suppose you want the contents of test.c to be mapped to external
memory by preference. You can do this by adding the following pragma to
the top of test.c:

#pragma file_attr("prefersMem=external")

or use the -file-attr switch:

ccblkfn -file-attr prefersMem=external switches test.c

Both methods will cause the resulting object file to have the attribute
prefersMem=external. The .ldf files give objects with this attribute the
lowest priority when mapping objects into internal memory, so the object
is less likely to consume valuable internal memory space, which could be
more usefully allocated to another function.

 Since file attributes are used as guidelines rather than rules, if space
is available in internal memory after higher-priority objects have
been mapped, it is permissible for objects with
prefersMem=external to be mapped into internal memory.

File Attributes

1-480 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-1
for Blackfin Processors

2 ACHIEVING OPTIMAL
PERFORMANCE FROM
C/C++ SOURCE CODE

This chapter provides guidance on tuning your application to achieve the
best possible code from the compiler. Since implementation choices are
available when coding an algorithm, understanding their impact is crucial
to attaining optimal performance.

This chapter contains:

• “General Guidelines” on page 2-3
provides a four-step basic strategy for designing applications. It also
describes topics such as data types, memory usage, and indexed
arrays versus pointers.

• “Improving Conditional Code” on page 2-33
describes the expected_true and expected_false built-in func-
tions, which control the compiler’s optimization of conditional
branches.

• “Loop Guidelines” on page 2-38
describes how to help the compiler produce the most efficient loop
code, including keeping loops short, and avoiding unrolling loops
and loop-carried dependencies.

• “Manipulating Fixed-Point and Fractional Data” on page 2-49
discusses ways to manipulate fixed-point and fractional data.

• “Using Built-In Functions in Code Optimization” on page 2-54
describes how to use built-in functions to efficiently use low-level
features of the processor hardware while programming in C.

2-2 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

• “Smaller Applications: Optimizing for Code Size” on page 2-57
provides tips and techniques about optimizing the application for
full performance and for space.

• “Using Pragmas for Optimization” on page 2-60
describes how to use pragmas to finely tune source code.

• “Useful Optimization Switches” on page 2-70
lists compiler switches useful during the optimization process.

• “How Loop Optimization Works” on page 2-70
introduces concepts used in loop optimization.

• “Assembly Optimizer Annotations” on page 2-96
describes annotations, which indicate how close to optimal a
program is, and suggest what else can be done to improve the
generated code.

• “Analyzing Your Application” on page 2-135
describes various techniques that can be used to analyze and debug
a program. Instrumented profiling, code coverage and stack and
heap tracing are discussed.

This chapter helps you get maximal code performance from the compiler.
Most of these guidelines also apply when optimizing for minimum code
size, although some techniques specific to that goal are also discussed.

The first section looks at some general principles, and explains how the
compiler can help your optimization effort. Optimal coding styles are
then considered in detail. Special features such as compiler switches,
built-in functions, and pragmas are also discussed. The chapter ends with
a short example to demonstrate how the optimizer works.

Small examples are included throughout this chapter to demonstrate
points being made. Some show recommended coding styles, while others
identify styles to be avoided or code that it may be possible to improve.
These are commented in the code as “GOOD” and “BAD”, respectively.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-3
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

General Guidelines
This section contains:

• “How the Compiler Can Help” on page 2-4

• “Data Types” on page 2-15

• “Getting the Most From IPA” on page 2-21

• “Indexed Arrays Versus Pointers” on page 2-27

• “Using Function Inlining” on page 2-28

• “Using Inline asm Statements” on page 2-30

• “Memory Usage” on page 2-31

Remember the following strategy when writing an application:

1. Choose the language as appropriate.
Your first decision is whether to implement your application in C
or C++. Performance considerations may influence this decision.
C++ code using only C features has very similar performance to
pure C code. Many higher level C++ features (for example, those
resolved at compilation, such as namespaces, overloaded functions
and also inheritance) have no performance cost.

However, use of some other features may degrade performance.
Carefully weigh performance loss against the richness of expression
available in C++ (such as virtual functions or classes used to imple-
ment basic data types).

2. Choose an algorithm suited to the architecture being targeted. For
example, the target architecture will influence any trade-off
between memory usage and algorithm complexity.

General Guidelines

2-4 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

3. Code the algorithm in a simple, high-level generic form. Keep the
target in mind, especially when choosing data types.

4. Tune critical code sections. After your application is complete,
identify the most critical sections. Carefully consider the strengths
of the target processor and make non-portable changes where nec-
essary to improve performance.

How the Compiler Can Help
The compiler provides many facilities to help the programmer to achieve
optimal performance, including the compiler optimizer, statistical pro-
filer, profile-guided optimizer (PGO), and interprocedural optimizers.

This section contains:

• “Using the Compiler Optimizer” on page 2-4

• “Using Compiler Diagnostics” on page 2-5

• “Using the Statistical Profiler” on page 2-8

• “Using Profile-Guided Optimization” on page 2-9

• “Using Interprocedural Optimization” on page 2-13

Using the Compiler Optimizer

There is a vast difference in performance between code compiled opti-
mized and code compiled non-optimized. In some cases, optimized code
can run ten or twenty times faster. Always use optimization when measur-
ing performance or shipping code as product.

The optimizer in the C/C++ compiler is designed to generate efficient
code from source that has been written in a straightforward manner. The
basic strategy for tuning a program is to present the algorithm in a way
that gives the optimizer the best possible visibility of the operations and

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-5
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

data, and hence the greatest freedom to safely manipulate the code. Future
releases of the compiler will continue to enhance the optimizer. Express-
ing algorithms simply will provide the best chance of benefiting from such
enhancements.

The default setting (“Debug” configuration within the VisualDSP++
IDDE) is for non-optimized compilation in order to assist programmers
in diagnosing problems with their initial coding. The optimizer is enabled
in VisualDSP++ by selecting the Enable optimization check box on the
Project Options : Compile page or by using the -O switch (on page 1-60).
A “release” build from within VisualDSP++ automatically enables
optimization.

Using Compiler Diagnostics

There are many features of the C and C++ languages that, while legal,
often indicate programming errors. There are also aspects that are valid
but may be relatively expensive for an embedded environment. The com-
piler can provide the following diagnostics, which may save time and
effort in characterizing source-related problems:

• Warnings and remarks (on page 2-6)

• Assembly annotations (on page 2-7)

These diagnostics are particularly important for obtaining high-perfor-
mance code, since the optimizer aggressively transforms the application to
yield the best performance, discarding unused or redundant code. If this
code is redundant because of a programming error (such as omitting an
essential volatile qualifier (on page 2-14) from a declaration), then the
code will behave differently from a non-optimized version. Using the
compiler’s diagnostics may help you identify such situations before they
become problems.

General Guidelines

2-6 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Warnings and Remarks

By default, the compiler emits warnings to the standard error stream at
compile-time when it detects a problem with the source code. Warnings
can be disabled individually, with the -Wsuppress switch (on page 1-79)
or as a class, with the -w switch (on page 1-80), disabling all warnings and
remarks. However, disabling warnings is inadvisable until each instance
has been investigated for problems.

A typical warning involves a variable being used before its value has been
set.

Remarks are diagnostics that are less severe than warnings. Like warnings,
they are produced at compile-time to the standard error stream, but unlike
warnings, remarks are suppressed by default. Remarks are typically for sit-
uations that are probably correct, but less than ideal. Remarks may be
enabled as a class with the -Wremarks switch (on page 1-80) or the Enable
remarks option (Project : Compile : Warning page of Project Options
dialog box).

A typical remark involves a variable being declared, but never used.

A remark may be promoted to a warning through the -Wwarn switch
(on page 1-79). Remarks and warnings may be promoted to an error
through the -Werror switch (on page 1-79).

To improve overall code quality:

1. Enable remarks and build the application. Gather all warnings and
remarks generated.

2. Examine the generated diagnostics and choose those message types
that you consider most important. For example, you might select
just cc0223, a remark that identifies implicitly-declared functions.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-7
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

3. Promote those remarks and warnings to errors, using the -Werror
switch (for example, “-Werror 0223”), and rebuild the application.
The compiler will now fault such cases as errors, so you will have to
fix the source to address the issues before your application will
build.

4. Once your application rebuilds, repeat the process for the next
most important diagnostics.

Diagnostics you might typically consider first include:

• cc0223: function declared implicitly

• cc0549: variable used before its value is set

• cc1665: variable is possibly used before its value is set, in a loop

• cc0187: use of “=” where “==” may have been intended

• cc1045: missing return statement at the end of non-void function

• cc0111: statement is unreachable

If you have particular cases that are correct for your application, do not let
them prevent your application from building because you have raised the
diagnostic to an error. For such cases, temporarily lower the severity again
within the source file in question by using #pragma diag (on page 1-338).

Assembly Annotations

By default, the compiler emits annotations that are embedded in the gen-
erated assembly code. Annotations can be used to find out why the
compiler has generated code in a particular manner.

For more information, see “Assembly Optimizer Annotations” on
page 2-96.

General Guidelines

2-8 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Using the Statistical Profiler

Tuning an application begins with identifying areas of the application that
are most frequently executed, where improvements would provide the
largest gains. The VisualDSP++ statistical profiler provides an easy way to
find these areas. VisualDSP++ Help explains how to use the profiler in
detail.

The advantage of statistical profiling is that it is completely unobtrusive.
Other forms of profiling insert instrumentation into the code, disturbing
the original optimization, code size, and register allocation.

The best methodology is usually to compile with both optimization and
debug information generation enabled. You can then obtain a profile of
the optimized code while retaining function names and line number infor-
mation. This gives you accurate results that correspond directly to the
C/C++ source. Note that the compiler optimizer may have moved code
between lines.

If you build your application optimized but without debug information
generation, the profile will obtain statistics that relate directly to the
assembly code. This kind of profile provides the most precise view of your
application but not usually the easiest to use because you must relate
assembly lines to the original source. Do not strip out function names
when linking, since keeping function names means you can scroll through
the assembly window to instructions of interest.

In complex code, you can locate the exact source lines by counting the
loops, unless they are unrolled. Looking at the line numbers in the assem-
bly file may also help. (Use the -save-temps switch to retain compiler
generated assembly files, which have the .s filename extension.) The com-
piler optimizer may have moved code around, so that it does not appear in
the same order as in your original source.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-9
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Using Profile-Guided Optimization

Profile-guided optimization (PGO) is an excellent way to tune the com-
piler’s optimization strategy for the typical run-time behavior of a
program. There are many program characteristics that cannot be known
statically at compile-time but can be provided through PGO. The com-
piler can use this knowledge to improve its code generation. The benefits
include more accurate branch prediction, improved loop transformations,
and reduced code size. The technique is most relevant where the behavior
of the application over different data sets is expected to be very similar.

 Note that PGO is supported in the simulator only.

An example application that demonstrates how to use PGO is in “Example
of Profile-Guided Optimization” on page 2-37.

Using Profile-Guided Optimization With a Simulator

The PGO process is illustrated in Figure 2-1.

Figure 2-1. PGO Process

.dxe .pgo .dxe

Source files

Data

Compile with
-O -pguide

Compile with
-Ov num

Profile with
simulator

General Guidelines

2-10 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

1. Compile the application with the -pguide switch (on page 1-67) or
Prepare application to create new profile option. This creates an
executable file containing the necessary instrumentation for gather-
ing profile data. For best results, use the Enable optimization
option/-O switch (on page 1-60) or Interprocedural analysis
option/-ipa (on page 1-47) switch.

2. Gather the profile. Presently, this may only be done using a simula-
tor. Run the executable with one or more training data sets. These
training data sets should be representative of the data that you
expect the application to process in the field. Note that
unrepresentative training data sets can cause performance degrada-
tions when the application is used on real data. The profile is
stored in a file with the extension .pgo.

3. Recompile the application using this gathered profile data. Place
the .pgo file on the command line. Optimization should also be
enabled at this stage.

 When C/C++ source files are specified in a compiler command
line, any specified .pgo files will be used to guide compilation.
However, any recompilation due to .doj files provided on the
command line will reread the same .pgo file as when the source was
previously compiled. For example, prof2.pgo is ignored in the fol-
lowing commands:

ccblkfn -O f2.c -o f2.doj prof1.pgo

ccblkfn -o prog.dxe f1.asm f2.doj prof2.pgo

See also “Using PGO in Function Profiling” on page 2-37.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-11
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Using Profile-Guided Optimization With Non-Simulatable Applications

It may not be possible to run a complex application in its entirety in a
simulation session (for example, if peripherals not modeled by the simula-
tor are used). It may, however, still be possible to use PGO as follows.

1. If the application is structured in a modular fashion, it will be pos-
sible to extract the core performance-critical algorithm from the
application.

2. Create a “wrapper” project, which can be run under simulation
that drives input values into the core algorithm, replacing the por-
tions of the application that can not be run under simulation. This
project can be used to generate PGO information, which can
subsequently be used to optimize the full application. As described
earlier, it is essential that the input values are representative of real
data to achieve best performance.

3. Leave as much of the core algorithm unmodified as possible, keep-
ing file and function names the same. The .pgo files generated
from execution of the wrapper project can then be used to optimize
the same functions in the full application by including the .pgo
files in the full application build.

 When compiling with a .pgo file, the compiler emits a warning and
ignores the data for a function if it detects the function has
changed from when the PGO data was generated. Therefore, any
functions that you do modify to get the algorithm to work properly
outside the application will not benefit from the profile
information.

Profile-Guided Optimization and Multiple Source Uses

In some applications, it is convenient to build the same source file in more
than one way within the same application. For example, a source file
might be conditionally compiled with different macro settings. Alterna-
tively, the same file might be compiled once, but linked more than once

General Guidelines

2-12 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

into the same application in a multi-core or multiprocessor environment.
In such circumstances, the typical behaviors of each instance in the appli-
cation might differ. Identify the separate instances so that they can be
profiled separately and optimized accordingly.

The -pgo-session switch (on page 1-67) (or PGO session name option)
is used to separate profiles in such cases. It is used during both stage 1,
where the compiler instruments the generated code for profiling, and dur-
ing stage 3, where the compiler uses gathered profiles to guide the
optimization.

During stage 1, when the compiler instruments the generated code, if the
-pgo-session switch is used, then the compiler marks the instrumentation
as belonging to the session’s session-id.

During stage 3, when the compiler reads gathered profiles, if the
-pgo-session switch is used, then the compiler ignores all profile data not
generated from code that was marked with the same session-id.

Therefore, the compiler can optimize each variant of the source’s build
according to how the variant is used, rather than according to an average
of all uses.

Profile-Guided Optimization and the -Ov num Switch

When a .pgo file is placed on the command line, the optimization (-O)
switch, by default, tries to balance between code performance and
code-size considerations. It is equivalent to using the -Ov 50 switch.
To optimize solely for performance while using PGO, use the -Ov 100
switch. The -Ov n switch (on page 1-61) is discussed further along with
optimization for space in “Smaller Applications: Optimizing for Code
Size” on page 2-57.

Profile-Guided Optimization and Multiple PGO Data Sets

When using profile-guided optimization with an executable constructed
from multiple source files, the use of multiple PGO data sets will result in

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-13
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

the creation of a temporary PGO information file (.pgi). This file is used
by the compiler and prelinker to ensure that temporary PGO files can be
recreated and to identify cases where objects and PGO data sets are
invalid.

The compiler reports an error if any of the PGO data files have been mod-
ified between the initial compilation of an object and any recompilation
that occurs at the final link stage. To avoid this error, perform a full
recompilation after running the application to generate .pgo data files.

When to Use Profile-Guided Optimization

PGO should be performed as the last optimization step. If the application
source code is changed after gathering profile data, this profile data
becomes invalid. The compiler does not use profile data when it can detect
that it is inaccurate. However, it is possible to change source code in a way
that is not detectable to the compiler (for example, by changing con-
stants). The programmer should ensure that the profile data used for
optimization remains accurate.

For more details on PGO, refer to “Optimization Control” on page 1-95.

An example application demonstrates how to use PGO in “Example of
Profile-Guided Optimization” on page 2-37.

Using Interprocedural Optimization

To obtain the best performance, the optimizer often requires information
that can only be determined by looking outside the function on which it is
working. For example, it helps to know what data can be referenced by
pointer parameters or whether a variable actually has a constant value. The
-ipa compiler switch (on page 1-47) enables interprocedural analysis
(IPA), which can make this information available. When this switch is
used, the compiler is called again from the link phase to recompile the
program, using additional information obtained during previous
compilations.

General Guidelines

2-14 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

This gathered information is stored within the object file generated during
initial compilation. IPA retrieves the gathered information from the object
file during linking and uses it to recompile available source files where
beneficial. Because recompilation is necessary, IPA-built modules in
libraries can contribute to the optimization of application sources, but do
not themselves benefit from IPA, as their source is not available for
recompilation.

Because it operates only at link-time, the effects of IPA are not seen if you
compile with the -S switch (on page 1-71). To see the assembly file when
IPA is enabled, use the -save-temps switch (on page 1-72) and look at the
.s file produced after your program has been built.

As an alternative to IPA, you can achieve many of the same benefits by
adding pragma directives and other declarations such as
__builtin_aligned to provide information to the compiler about how
each function interacts with the rest of the program.

These directives are further described in “Using __builtin_aligned” on
page 2-24 and “Using Pragmas for Optimization” on page 2-60.

The Volatile Type Qualifier
The volatile type qualifier is used to inform the compiler that it may not
make any assumptions about a variable or memory location (or a series of
them), and that such variables must be read from or written to as specified
and in the same order as in the source code.

Failure to use volatile when necessary is a common programming error
that can cause an application to fail when built in Release configuration
with compiler optimizations enabled. This is because the compiler
assumes that all non-volatile memory is modified explicitly and does not
change in a way the compiler cannot see. This assumption is used exten-
sively during optimization, where values held in memory may not be
reloaded if they do not appear to have changed. Since the cases listed
below do not adhere to the compiler’s assumptions, the compiler must be

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-15
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

informed of these situations through the use of the volatile type
qualifier.

It is essential to make the following types of objects volatile-qualified in
your application source:

• An object that is a memory-mapped register (MMR) or a mem-
ory-mapped device

• An object that is shared between multiple concurrent threads of
execution. This includes data that is shared between processors or
data written by DMA.

• An object that is modified by an asynchronous event handler
(for example, a global variable modified by an interrupt handler)

• An automatic storage duration object declared in a function that
calls setjmp() and whose value is changed between the call to
setjmp() and a corresponding call to longjmp()

Data Types
Table 2-1 shows compiler-supported scalar data types.

Table 2-1. Scalar Data Types

Data Type Description

Single-Word Fixed-Point Data Types: Native Arithmetic

char 8-bit signed integer

unsigned char 8-bit unsigned integer

short 16-bit signed integer

unsigned short 16-bit unsigned integer

int 32-bit signed integer

unsigned int 32-bit unsigned integer

long 32-bit signed integer

General Guidelines

2-16 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

unsigned long 32-bit unsigned integer

Fixed-Point Data Types: Native and Emulated Arithmetic

short fract (C only) 16-bit signed fractional

fract (C only) 16-bit signed fractional

long fract (C only) 32-bit signed fractional

unsigned short fract (C only) 16-bit unsigned fractional

unsigned fract (C only) 16-bit unsigned fractional

unsigned long fract (C only) 32-bit unsigned fractional

short accum (C only) 40-bit signed fixed-point

accum (C only) 40-bit signed fixed-point

long accum (C only) 40-bit signed fixed-point

short unsigned accum (C only) 40-bit unsigned fixed-point

unsigned accum (C only) 40-bit unsigned fixed-point

long unsigned accum (C only) 40-bit unsigned fixed-point

Double-Word Fixed-Point Data Types: Emulated Arithmetic

long long 64-bit signed integer

unsigned long long 64-bit unsigned integer

Table 2-1. Scalar Data Types (Cont’d)

Data Type Description

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-17
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

The fixed-point data types fract and accum may be used in C mode by
including the stdfix.h header file. Alternatively, the fractional data types
fract16 and fract32 can be used, which are typedefs to integer types.
Manipulation of these data types is best done by using the built-in func-
tions, described in “Using System Support Built-In Functions” on
page 2-54.

Optimizing a struct

Memory can be saved if a struct is declared with the members ordered by
size. The following example occupies 8 bytes of memory.

struct optimal_struct {

char element1,element2;

short element3;

int element4;

};

However, the following example occupies 12 bytes of memory.

struct non_optimal_struct {

char element1; /* 3 bytes of padding */

int element2;

short element3;

 Floating-Point Data Types: Emulated Arithmetic

float 32-bit float

double The size of the double type differs depending on the
options used. If the Double size option or the -dou-
ble-size-64 switch is used, double is a 64-bit float-
ing-point type; otherwise, it is a 32-bit floating-point
type.

long double 64-bit floating-point

Table 2-1. Scalar Data Types (Cont’d)

Data Type Description

General Guidelines

2-18 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

char element4; /* 1 byte of padding */

};

When the compiler generates a memory access, the access will be to a 1-,
2-, or 4-byte unit. Such accesses must be naturally aligned, meaning that
2-byte accesses must be to even addresses, and 4-byte accesses must be to
addresses on a 4-byte boundary. Failure to align addresses results in a mis-
aligned memory access exception.

The compiler is required to retain the order of members of a struct, and
must ensure these alignment constraints are met. Therefore, by default,
the compiler inserts any necessary padding to ensure that elements are
aligned on their required boundaries. Padding is also inserted after the last
member of a struct if required, to ensure that the struct’s size is a multi-
ple of the struct’s strictest member alignment.

Be aware of the following additional rules of padding:

• If any member has a 4-byte alignment, the struct is a multiple of
4 bytes in size.

• Otherwise, if any member has a two-byte alignment, the struct is
a multiple of two bytes in size.

• Otherwise, no end-of-struct padding is required.

Therefore, for a concrete example, if you have

struct non_optimal_struct test[2];

and if the compiler did not insert padding into the struct
non_optimal_struct, the size of struct non_optimal_struct would be
8 bytes, and test[] array would be 16 bytes in size. Then, if

int x = test[1].element2;

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-19
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

this would be attempting to read an int (4 bytes) from a misaligned
address (address of test+9), and thus a hardware exception (misaligned
access) would occur.

Because the compiler adds appropriate padding in the struct
non_optimal_struct, the int read will read a 4-byte aligned address
(address of test+16), and the access will succeed.

As a rule of thumb, to get the smallest possible struct, place elements in
the struct in the following order:

typedef struct efficient_struct{

size_1_elements a,...;

size_2_elements b,...;

size_4_or_greater_elements c,...;

}

The compiler supports greater density of structs through the use of the
#pragma pack(n) directive. This allows you to reduce the necessary pad-
ding required in structs without reordering the struct’s members. There is
a trade-off implied, because the compiler must still observe the architec-
ture's address-alignment constraints. When #pragma pack(n) is used, it
means that a struct member is being accessed across the required align-
ment boundary, and the compiler must decompose the member into
smaller, appropriately-aligned components and issue multiple accesses.

See “#pragma pad (alignopt)” on page 1-286 for more details.

Bit-Fields

The use of bit-fields in code can reduce the amount of data storage
required by an application, but will normally increase the amount of code
for an application (and thus make the application slower). This is because
more code is needed to access a bit-field than to access an intrinsic type
(char, int, and so on). Also, bit-fields may prevent the compiler from per-
forming optimizations that it could do on intrinsic types. However,

General Guidelines

2-20 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

depending on the use of bit-fields, the total data bytes plus total code
bytes may be less when using bit-fields instead of intrinsic types.

The struct in the following example packs a 5-bit item, a 3-bit item,
an 8-bit item, and a 16-bit item into 4 bytes.

struct bitf {

int item1:5;

int item2:3;

char item3;

short item4;

};

The array struct bitf arr[1000] would save a significant amount of data
space over a non-bit-field version. However, compared to not using a
bit-field, more code would be generated to access the bit-field members of
the struct, and that code would be slower.

Avoiding Emulated Arithmetic

Arithmetic operations for some data types are implemented by library
functions because the processor hardware does not directly support these
types. Consequently, operations for these data types are far slower than
native operations—sometimes by a factor of a hundred—and also produce
larger code. These types are marked as “Emulated Arithmetic” in “Data
Types” on page 2-15.

The hardware does not provide direct support for division, so division and
modulus operations are almost always multi-cycle operations, even on
integral type inputs. If the compiler has to issue a full-division operation,
it usually needs to generate a call to a library function. One instance in
which a library call is avoided is for integer division when the divisor is a
compile-time constant and is a power of two. In this case, the compiler
generates a shift instruction. Even then, a few fix-up instructions are
needed after the shift if the types are signed. If you have a signed division

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-21
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

by a power of two, consider whether you can change it to unsigned to
obtain a single-instruction operation.

When the compiler has to generate a call to a library function for an arith-
metic operator not supported by the hardware, performance would suffer
not only because the operation takes multiple cycles, but also because the
effectiveness of the compiler optimizer is reduced.

For example, such operations in a loop can prevent the compiler from
using efficient zero-overhead hardware loop instructions. Also, calling the
library to perform the required operation can change values held in scratch
registers before the call, so the compiler has to generate more stores and
loads from the data stack to keep values required after the call returns.
Avoid emulated arithmetic operators where possible, especially in loops.

Getting the Most From IPA
Interprocedural analysis (IPA) is designed to try to propagate information
about the program to parts of the optimizer that can use it. This section
looks at what information is useful, and how to structure your code to
make this information easily accessible for analysis.

The performance features are:

• “Initializing Constants Statically” on page 2-21

• “Word-Aligning Your Data” on page 2-23

• “Using __builtin_aligned” on page 2-24

• “Avoiding Aliases” on page 2-25

Initializing Constants Statically

IPA identifies variables that have only one value and replaces them with
constants, resulting in a host of benefits for the optimizer’s analysis.
For this to happen, a variable must have a single value throughout the

General Guidelines

2-22 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

program. If the variable is statically initialized to zero (as are all global
variables, by default) and is subsequently assigned some other value at
another point in the program, then the analysis sees two values and does
not consider the variable to have a constant value.

For example,

// BAD: IPA cannot see that val is a constant.

#include <stdio.h>

int val; // initialized to zero

void init() {

val = 3; // reassigned

}

void func() {

printf("val %d",val);

}

int main() {

init();

func();

}

The code is better written as:

//GOOD: IPA knows val is 3.

#include <stdio.h>

const int val = 3; // initialized once

void init() {

}

void func() {

printf("val %d",val);

}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-23
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

int main() {

init();

func();

}

Word-Aligning Your Data

To make most efficient use of the hardware, it must be continually fed
with data. In many algorithms, the balance of data accesses to computa-
tions is such that, to keep the hardware fully utilized, data must be fetched
with loads wider than 8 or 16 bits.

The hardware requires that references to memory be naturally aligned.
Thus, 16-bit references must be at even address locations, and 32-bit ref-
erences must be at word-aligned addresses. Therefore, to generate the
most efficient code, ensure that data buffers are word-aligned.

The compiler helps to establish the alignment of array data. Top-level
arrays are allocated at word-aligned addresses, regardless of their data
types. In order to do this for local arrays, the compiler also ensures that
stack frames are kept word-aligned. However, arrays within structures are
not aligned beyond the required alignment for their type. It may be worth
using the #pragma align 4 directive to force the alignment of arrays in
this case.

If you write programs that pass only the address of the first element of an
array as a parameter, and loops that process these input arrays an element
at a time, starting at element zero, then IPA should be able to establish
that the alignment is suitable for full-width accesses.

Where an inner loop processes a single row of a multi-dimensional array,
try to ensure that each row begins on a word boundary. In particular,
two-dimensional arrays should be defined in a single block of memory
rather than as an array of pointers to rows all separately allocated with
malloc. It is difficult for the compiler to keep track of the alignment of the

General Guidelines

2-24 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

pointers in the latter case. It may also be necessary to insert dummy data
at the end of each row to make the row length a multiple of four bytes.

Using __builtin_aligned

To avoid the need to use IPA to propagate alignment, and for situations
when IPA cannot guarantee the alignment (but you can), use the
__builtin_aligned function to assert the alignment of important point-
ers, meaning that the pointer points to data that is aligned.

 When adding this declaration, you are responsible for ensuring that
it is valid. If the assertion is not true, the code produced by the
compiler is likely to malfunction.

The assertion is particularly useful for function parameters, although you
may assert that any pointer is aligned.

When compiling the following function, for example, the compiler does
not know the alignment of pointers a and b if IPA is not being used.

// BAD: Without IPA, the compiler does not know the alignment

// of a and b.

void copy(char *a, char *b) {

int i;

for (i=0; i<100; i++)

a[i] = b[i];

}

However, by modifying the function as follows, the compiler is told that
the pointers are aligned on word boundaries.

// GOOD: Both pointer parameters are known to be aligned.

void copy(char *a, char *b) {

int i;

__builtin_aligned(a, 4);

__builtin_aligned(b, 4);

for (i=0; i<100; i++)

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-25
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

a[i] = b[i];

}

To assert instead that both pointers are always aligned one char before a
word boundary, use the following:

// GOOD: Both pointer parameters are known to be misaligned.

void copy(char *a, char *b) {

int i;

__builtin_aligned(a+1, 4);

__builtin_aligned(b+1, 4);

for (i=0; i<100; i++)

a[i] = b[i];

}

The expression used as the first parameter to the built-in function obeys
the usual C rules for pointer arithmetic. The second parameter should give
the alignment in bytes as a literal constant.

Avoiding Aliases

It may seem that the iterations can be performed in any order in the fol-
lowing loop:

// BAD: a and b may alias each other.

void fn(char a[], char b[], int n) {

int i;

for (i = 0; i < n; ++i)

a[i] = b[i];

}

But a and b are both parameters, and, although they are declared with [],
they are pointers that may point to the same array. When the same data
may be reachable through two pointers, they are said to alias each other.

If IPA is enabled, the compiler looks at the call sites of fn and tries to
determine whether a and b can ever point to the same array.

General Guidelines

2-26 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Even with IPA, it is easy to create what appears to the compiler as an alias.
The analysis works by associating pointers with sets of variables that they
may refer to some point in the program. If the sets for two pointers inter-
sect, then both pointers are assumed to point to the union of the two sets.

If fn above were called only in two places, with global arrays as arguments,
then IPA would have the results shown below:

// GOOD: sets for a and b do not intersect:

// a and b are not aliases.

fn(glob1, glob2, N);

fn(glob1, glob2, N);

// GOOD: sets for a and b do not intersect:

// a and b are not aliases.

fn(glob1, glob2, N);

fn(glob3, glob4, N);

// BAD: sets intersect - both a and b may access glob1;

// a and b may be aliases.

fn(glob1, glob2, N);

fn(glob3, glob1, N);

The third case arises because IPA considers the union of all calls at once,
rather than considering each call individually, when determining whether
there is a risk of aliasing. If each call were considered individually, IPA
would have to take flow control into account and the number of permuta-
tions would significantly lengthen compilation time.

The lack of control flow analysis can also create problems when a single
pointer is used in multiple contexts. For example, it is better to write

// GOOD: p and q do not alias.

int *p = a;

int *q = b;

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-27
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

// some use of p

// some use of q

than

// BAD: Uses of p in different contexts may alias.

int *p = a;

// some use of p

p = b;

// some use of p

because the latter may cause extra apparent aliases between the two uses.

Indexed Arrays Versus Pointers
The C language allows a program to access data from an array in two ways:
either by indexing from an invariant base pointer, or by incrementing a
pointer. The following two versions of vector addition illustrate the two
styles.

Style 1: Using indexed arrays (indexing from a base pointer)

void va_ind(const short a[], const short b[], short out[], int n)

{

int i;

for (i = 0; i < n; ++i)

out[i] = a[i] + b[i];

}

Style 2: Incrementing a pointer

void va_ptr(const short a[], const short b[], short out[], int n)

{

int i;

short *pout = out;

const short *pa = a, *pb = b;

for (i = 0; i < n; ++i)

General Guidelines

2-28 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

*pout++ = *pa++ + *pb++;

}

Trying Pointer and Indexed Styles

One might hope that the chosen style would not matter to the generated
code, but this is not always the case. Sometimes, one version of an algo-
rithm generates better optimized code than the other, but it is not always
the same style that is better.

 Try both pointer and indexed styles.

The pointer style introduces additional variables that compete with the
surrounding code for resources during the compiler optimizer’s analysis.
Array accesses, on the other hand, must be transformed to pointers by the
compiler, and sometimes this is accomplished better by hand.

The best strategy is to start with array notation. If the generated code
looks unsatisfactory, try using pointers. Outside the critical loops, use the
indexed style, since it is easier to understand.

Using Function Inlining
Function inlining may be used in two ways:

• By annotating functions in the source code with the inline key-
word. In this case, function inlining is performed only when
optimization is enabled.

• By turning on automatic inlining with the -Oa switch
(on page 1-60) or the Inlining -> Automatic option, automatically
enabling optimization.

 Inlining small frequently executed functions should improve appli-
cation performance as it avoids call overheads and allows the
compiler to optimize the code more effectively.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-29
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

You can use the compiler’s inline keyword to indicate that functions
should have code generated inline at the point of call. Doing this avoids
various costs such as program flow latencies, function entry and exit
instructions, and parameter passing overheads.

Using an inline function also has the advantage that the compiler can
optimize through the inline code and does not have to assume that scratch
registers and condition states are modified by the call. Prime candidates
for inlining are small, frequently-used functions because they cause the
least code-size increase while giving most performance benefit.

As an example of the usage of the inline keyword, the function below
sums two input parameters and returns the result.

// GOOD: use of the inline keyword.

inline int add(int a, int b) {

return (a+b);

}

Inlining has a code size-to-performance trade-off that should be consid-
ered. With -Oa, the compiler automatically inlines small functions where
possible. If the application has a tight upper code-size limit, the resulting
code-size expansion may be too great. Consider using automatic inlining
in conjunction with the -Ov num switch (on page 1-61) or the Optimize
for code speed/size slider to restrict inlining (and other optimizations
with a code-size cost) to parts of the application that are performance-crit-
ical. It is discussed in more detail later in this chapter.

General Guidelines

2-30 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Using Inline asm Statements
The compiler allows use of inline asm statements to insert small sections of
assembly into C code.

 Avoid use of inline asm statements where built-in functions may be
used instead.

The compiler does not intensively optimize code that contains
inline asm statements because it has little understanding about what
the code in the statement does. In particular, use of an asm state-
ment in a loop may inhibit useful transformations.

The compiler offers many built-in functions that generate specific hard-
ware instructions. These are designed to allow the programmer to more
finely tune the code produced by the compiler, or to allow access to sys-
tem support functions. A complete list of compiler’s built-in functions is
given in “Compiler Built-In Functions” on page 1-195.

Use of these built-in functions is much preferred to using inline asm state-
ments. Since the compiler knows what each built-in does, it can easily
optimize around them. Conversely, since the compiler does not parse asm
statements, it does not know what they do, and so is hindered in optimiz-
ing code that uses them. Note also that errors in the text string of an asm
statement are caught by the assembler and not by the compiler.

Examples of efficient use of built-in functions are given in “Using System
Support Built-In Functions” on page 2-54.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-31
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Memory Usage
The compiler, in conjunction with the use of the linker description file
(.ldf), allows the programmer control over data placement in memory.
This section describes how to best lay out data for maximum performance.

 Try to put arrays into different memory sections to support effi-
cient memory operations.

The processor hardware can support two memory operations on a single
instruction line, combined with a compute instruction. Two memory
operations will only complete in one cycle if the two addresses are situated
in different memory blocks. If both access the same block, the processor
stalls.

Consider the dot product loop below. Because data is loaded from both
array a and array b in every iteration of the loop, it may be useful to ensure
that these arrays are located in different blocks.

Therefore,

// BAD: compiler assumes that two memory accesses together

// may give a stall.

for (i=0; i<100; i++)

sum += a[i] * b[i];

First, define two memory banks in the MEMORY portion of the .ldf file.

Example: MEMORY portion of the .ldf file modified to define memory
banks.

MEMORY {

BANK_A1 {

TYPE(RAM) WIDTH(8)

START(start_address_1) END(end_address_1)

}

General Guidelines

2-32 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

BANK_A2 {

TYPE(RAM) WIDTH(8)

START(start_address_2) END(end_address_2)

}

}

Then, configure the SECTIONS portion to tell the linker to place data sec-
tions in specific memory banks.

Example: SECTIONS portion of the .ldf file modified to define memory
banks.

SECTIONS {

bank_a1 {

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($OBJECTS(bank_a1))

} >BANK_A1

bank_a2 {

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($OBJECTS(bank_a2))

} >BANK_A2

}

In the C source code, declare arrays with the section("section_name")
construct preceding a buffer declaration; in this case,

section("bank_a1") short a[100];

section("bank_a2") short b[100];

This ensures that the two array accesses in the dot product loop may occur
simultaneously without incurring a stall.

Using the Bank Qualifier

The bank qualifier can be used to write functions that use the fact that
buffers are placed in separate memory blocks.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-33
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

For example, it might be useful to create a function if you would like to
call func in different places, but always with pointers to buffers in differ-
ent sections of memory.

// GOOD: uses bank qualifier to allow simultaneous access

// to p and q.

void func(int bank("red") *p, int bank("blue") *q) {

// some code

}

The bank qualifier tells the compiler that the buffers are in different sec-
tions without requiring that the sections themselves be specified.

Therefore, func may be called with the first parameter pointing to mem-
ory in section("bank_a1") and the second pointing to data in
section("bank_a2") or vice versa. You must still explicitly place the data
buffers in the memory sections. The bank qualifier merely informs the
compiler that it may assume this has been done to generate more efficient
code. Refer to “Bank Qualifiers” on page 1-191 for more information.

Improving Conditional Code
When compiling conditional statements, the compiler attempts to deter-
mine whether the condition will usually evaluate to true or to false, and
will arrange for the most efficient path of execution to be that which is
expected to be most commonly executed. The compiler makes these deci-
sions based on the information in the following order:

1. If you have generated an execution profile of the function using
profile-guided optimization (PGO), the compiler will compare the
relative counts of the true/false paths for the branch, and will mark
the path with the highest execution count as the predicted path.

Improving Conditional Code

2-34 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

2. Otherwise, if you have used one of the compiler built-in functions
for explicit branch prediction (“Compiler Performance Built-In
Functions” on page 1-264) the compiler will make the prediction
as directed.

3. In the absence of all other information, the compiler will attempt
to predict the branch based on heuristics and information within
the source code.

This section describes:

• “Using Compiler Performance Built-In Functions” on page 2-34

• “Using PGO in Function Profiling” on page 2-37

Using Compiler Performance Built-In Functions
You can use the expected_true and expected_false built-in functions to
control the compiler’s optimization of conditional branches. By using
these functions, you can tell the compiler which way a condition is most
likely to evaluate. This influences the default flow of execution.

The following example shows two nested conditional statements.

if (buffer_valid(data_buffer))

if (send_msg(data_buffer))

system_failure();

If it was known that, for this example, buffer_valid() would usually
return true, but that send_msg() would rarely do so, the code could be
written as:

if (expected_true(buffer_valid(data_buffer)))

if (expected_false(send_msg(data_buffer)))

system_failure();

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-35
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Example of Compiler Performance Built-in Functions

The following example project demonstrates the use of these compiler per-
formance built-in functions:

Blackfin/Examples/No Hardware Required/

Compiler Features/Branch Prediction

The example project, called branch_prediction, loops through a section
of character data, counting the different types of characters it finds.
It produces three overall counts: lowercase letters, uppercase letters, and
non-alphabetic characters. The effective test is as follows:

if (isupper(c))

nAZ++; // count one more uppercase letter

else if (islower(c))

naz++; // count one more lowercase letter

else

nx++; // count one more non-alphabetic character

The performance of the application is determined by the compiler’s ability
to correctly predict which of these two tests is going to evaluate as true
most frequently.

In the source code for this example, the two tests are enclosed in two
macros, EXPRA(c) and EXPRB(c):

if (EXPRA(isupper(c)))

nAZ++; // count one more uppercase letter

else if (EXPRB(islower(c)))

naz++; // count one more lowercase letter

else

nx++; // count one more non-alphabetic character

The macros are conditionally defined according to the macro EXPRS, at
compile-time, as shown by Table 2-2. By setting EXPRS to different values,
you can see the effect the compiler performance built-in functions have on

Improving Conditional Code

2-36 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

the application’s overall performance. By leaving the EXPRS macro unde-
fined, you can see how the compiler’s default heuristics compare.

To use the example, do the following:

1. Create a simulator session for the ADSP-BF533 Blackfin processor.

2. Open the branch_prediction project.

3. Build the project, load it into the simulator, and execute it. You
will see some output on the console as the project reports the num-
ber of characters of each type found in the string. The application
will also report the number of cycles used.

4. Open the Project Options dialog box, and go to the Preprocessor
area of the Compile page.

5. In the Defines field, add EXPRS=1. Click OK.

6. Rebuild and rerun the application. You will receive the same
counts from the application, but the cycle counts will be different.

7. Try using values 2, 3, or 4 for EXPRS instead, and determine which
combination of expected_true() and expected_false() built-in
functions produces the best performance.

Table 2-2. How Macro EXPRS Affects Macros EXPRA and EXPRB

Value of EXPRS EXPRA expected to be EXPRB expected to be

Undefined No prediction No prediction

1 True True

2 False True

3 True False

4 False False

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-37
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

See “Compiler Performance Built-In Functions” on page 1-264 for more
information.

Using PGO in Function Profiling
The compiler can also determine the most commonly-executed branches
automatically, using profile-guided optimization (PGO). See “Optimiza-
tion Control” on page 1-95 for more details.

Example of Profile-Guided Optimization

Continuing with the same example (on page 2-35), PGO can determine
the best settings for the branches in EXPRA(c) and EXPRB(c) (and all other
parts of the source code) using profiling.

To use the example, do the following:

1. Create a simulator session for the ADSP-BF533 Blackfin processor.

2. Open the branch_prediction project.

3. Open the Project Options dialog box, and display the Preprocessor
area of the Compile page.

4. Make sure that the Defines field does not include a definition for
the EXPRS macro. Click OK.

5. Via Tools, PGO, select Manage Data Sets. The Manage Data Sets
dialog box appears.

6. Click New. The Edit Data Set dialog box appears.

7. In the Output filename (.pgo) field, enter the path name where the
simulator should create the generated execution profile. This path
name must have a .pgo extension. Click OK.

Loop Guidelines

2-38 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

8. Click OK again, to close the Manage Data Sets dialog box.

9. Via Tools, PGO, select Execute Data Sets. VisualDSP++ will do
the following:

a. Build the application with the -pguide switch, which pre-
pares it to gather a profile.

b. Run the executable in the simulator, using the data sets pro-
vided. The profile will be stored in the .pgo file you
specified.

c. Rebuild the application with the gathered profile, which
selects the branch prediction according to the most-fre-
quently executed paths of control.

d. Open a window displaying the difference in performance as
a result of the profile-based tuning.

Normally, when using PGO, you would configure one or more input files
as part of your data set. The application would read its inputs from these
files, and the data would influence the gathered profile. For this example,
all the input data is embedded in the application source, so the data set is
a null set containing no input files.

Loop Guidelines
Loops are where an application ordinarily spends the majority of its time.
It is therefore useful to look in detail at how to help the compiler to pro-
duce the most efficient loop code.

This section describes:

• “Keeping Loops Short” on page 2-39

• “Avoiding Unrolling Loops” on page 2-39

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-39
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

• “Avoiding Loop-Carried Dependencies” on page 2-40

• “Avoiding Loop Rotation by Hand” on page 2-41

• “Avoiding Complex Array Indexing” on page 2-42

• “Inner Loops Versus Outer Loops” on page 2-43

• “Avoiding Conditional Code in Loops” on page 2-43

• “Avoiding Placing Function Calls in Loops” on page 2-44

• “Avoiding Non-Unit Strides” on page 2-45

• “Using 16-Bit Data Types and Vector Instructions” on page 2-46

• “Loop Control” on page 2-47

• “Using the Restrict Qualifier” on page 2-48

• “Avoiding Long Latencies” on page 2-49

Keeping Loops Short
For best code efficiency, loops should be short. Large loop bodies are usu-
ally more complex and difficult to optimize. Large loops may also require
register data to be stored in memory, which decreases code density and
execution performance.

Avoiding Unrolling Loops

 Do not unroll loops yourself.

Not only does loop unrolling make the program harder to read, but also
prevents optimization by complicating the code for the compiler.

// GOOD: the compiler unrolls if it helps.

void va1(const short a[], const short b[], short c[], int n) {

Loop Guidelines

2-40 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

int i;

for (i = 0; i < n; ++i) {

c[i] = b[i] + a[i];

}

}

// BAD: harder for the compiler to optimize.

void va2(const short a[], const short b[], short c[], int n) {

short xa, xb, xc, ya, yb, yc;

int i;

for (i = 0; i < n; i+=2) {

xb = b[i]; yb = b[i+1];

xa = a[i]; ya = a[i+1];

xc = xa + xb; yc = ya + yb;

c[i] = xc; c[i+1] = yc;

}

}

Avoiding Loop-Carried Dependencies
A loop-carried dependency exists when a computation in a given iteration
of a loop cannot be completed without knowledge of values calculated in
earlier iterations. When a loop has such dependencies, the compiler can-
not overlap loop iterations. Some dependencies are caused by scalar
variables that are used before they are defined in a single iteration.

However, if the loop-carried dependency is part of a reduction computa-
tion, the optimizer can reorder iterations. Reductions are loop
computations that reduce a vector of values to a scalar value using an asso-
ciative and commutative operator. A multiply and accumulate in a loop is
a common example of a reduction.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-41
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

// BAD: loop-carried dependence in variable x.

for (i = 0; i < n; ++i)

x = a[i] - x;

// GOOD: loop-carried dependence is a reduction.

for (i = 0; i < n; ++i)

x += a[i] * b[i];

In the first case, the scalar dependency is the subtraction operation. The
variable x is modified in a manner that would give different results if the
iterations were performed out of order. In contrast, in the second case,
because the addition operator is associative and commutative, the com-
piler can perform the iterations in any order and still get the same result.
Other examples of reductions are bitwise and/or and min/max operators.
The existence of loop-carried dependencies that are not reductions pre-
vents the compiler from vectorizing a loop—that is, executing more than
one iteration concurrently.

Avoiding Loop Rotation by Hand

 Do not rotate loops by hand.

Programmers are often tempted to “rotate” loops in DSP code by hand,
attempting to execute loads and stores from earlier or future iterations at
the same time as computation from the current iteration. This technique
introduces loop-carried dependencies that prevent the compiler from rear-
ranging the code effectively. It is better to give the compiler a simpler
version, and leave the rotation to the compiler.

For example,

// GOOD: is rotated by the compiler.

int ss(short *a, short *b, int n) {

int sum = 0;

int i;

for (i = 0; i < n; i++) {

Loop Guidelines

2-42 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

sum += a[i] + b[i];

}

return sum;

}

// BAD: rotated by hand: hard for the compiler to optimize.

int ss(short *a, short *b, int n) {

short ta, tb;

int sum = 0;

int i = 0;

ta = a[i]; tb = b[i];

for (i = 1; i < n; i++) {

sum += ta + tb;

ta = a[i]; tb = b[i];

}

sum += ta + tb;

return sum;

}

Rotating the loop required adding the scalar variables ta and tb and
introducing loop-carried dependencies.

Avoiding Complex Array Indexing
Other dependencies can be caused by writes to array elements. In the fol-
lowing loop, the optimizer cannot determine whether the load from a
reads a value defined on a previous iteration or one that will be overwrit-
ten in a subsequent iteration.

// BAD: has array dependency.

for (i = 0; i < n; ++i)

a[i] = b[i] * a[c[i]];

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-43
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

The optimizer can resolve access patterns where the addresses are expres-
sions that vary by a fixed amount on each iteration. These are known as
“induction variables”.

// GOOD: uses induction variables.

for (i = 0; i < n; ++i)

a[i+4] = b[i] * a[i];

Inner Loops Versus Outer Loops

 Inner loops should iterate more than outer loops.

The optimizer focuses on improving the performance of inner loops
because this is where most programs spend the majority of their time. It is
considered a good trade-off for an optimization to slow down the code
before and after a loop to make the loop body run faster. Therefore, try to
make sure that your algorithm also spends most of its time in the inner
loop; otherwise it may actually run slower after optimization. If you have
nested loops where the outer loop runs many times and the inner loop
runs a small number of times, try to rewrite the loops so that the outer
loop has fewer iterations.

Avoiding Conditional Code in Loops
If a loop contains conditional code, control-flow latencies may incur large
penalties if the compiler has to generate conditional jumps within the
loop. In some cases, the compiler is able to convert if-then-else and ?:
constructs into conditional instructions. In other cases, it can evaluate the
expression entirely outside of the loop. However, for important loops, lin-
ear code should be written where possible.

There are several techniques for removing conditional code. For example,
there is hardware support for min and max. The compiler usually succeeds
in transforming conditional code equivalent to min or max into the single

Loop Guidelines

2-44 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

instruction. With particularly convoluted code the transformation may be
missed, in which case it is better to use min or max in the source code.

The compiler can sometimes perform the loop transformation that inter-
changes conditional code and loop structures. Nevertheless, instead of
writing

// BAD: loop contains conditional code.

for (i=0; i<100; i++) {

if (mult_by_b)

sum1 += a[i] * b[i];

else

sum1 += a[i] * c[i];

}

it is better to write the following if this is an important loop.

// GOOD: two simple loops can be optimized well.

if (mult_by_b) {

for (i=0; i<100; i++)

sum1 += a[i] * b[i];

} else {

for (i=0; i<100; i++)

sum1 += a[i] * c[i];

}

Avoiding Placing Function Calls in Loops
The compiler usually is unable to generate a hardware loop if the loop
contains a function call due to the expense of saving and restoring the con-
text of a hardware loop. In addition, operations such as division, modulus,
and some type coercions may implicitly call library functions. These are
expensive operations which you should try to avoid in inner loops. For
more details, see “Data Types” on page 2-15.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-45
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Avoiding Non-Unit Strides
If you write a loop, such as

// BAD: non-unit stride means division may be required.

for (i=0; i<n; i+=3) {

// some code

}

then for the compiler to turn this into a hardware loop, it needs to work
out the loop trip count. To do so, it must divide n by 3. The compiler may
decide that this is worthwhile as it speeds up the loop, but division is an
expensive operation. Try to avoid creating loop control variables with
strides other than 1 or -1.

In addition, try to keep memory accesses in consecutive iterations of an
inner loop contiguous. This is particularly applicable to multi-dimen-
sional arrays. Therefore,

// GOOD: memory accesses contiguous in inner loop.

for (i=0; i<100; i++)

for (j=0; j<100; j++)

sum += a[i][j];

is likely to be better than

// BAD: loop cannot be unrolled to use wide loads.

for (i=0; i<100; i++)

for (j=0; j<100; j++)

sum += a[j][i];

as the former is more amenable to vectorization.

Loop Guidelines

2-46 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Using 16-Bit Data Types and Vector Instructions
If a 16-bit, rather than 32-bit, native data type is used within a critical
processing loop, the opportunities for parallel execution are increased.
This is because the compiler can potentially use vector instructions, which
perform simultaneous operations on multiple 16-bit values. For example,
consider the simple function:

int func(int *a, int *b, int size) {

int i;

int x = 0;

for (i= 0; i < size; i++) {

x += a[i] + b[i];

}

return x;

}

When compiled to assembly with optimizations enabled, the compiler
generates code that can potentially execute one iteration of the loop in two
cycles. The equivalent function that uses the short data type is as follows:

short func(short *a, short *b, int size) {

int i;

short x = 0;

for (i= 0; i < size; i++) {

x += a[i] + b[i];

}

return x;

}

Here the compiler generates code that executes two iterations of the loop
in two cycles with use of a vector addition. In this example, using a short
data type doubles the performance of the loop.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-47
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Fractional arithmetic can also use vector instructions, and code generated
from fract16 built-in functions also uses these instructions as much as
possible.

For more information, see “Effect of Data Type Size on Code Size” on
page 2-59.

Loop Control

 Use int types for loop control variables and array indices.
Use automatic variables for loop control and loop exit test.

For loop control variables and array indices, use signed ints rather than
other integral types. For other integral types, the C standard requires vari-
ous type promotions and standard conversions that complicate the code
for the compiler optimizer. Frequently, the compiler is still able to deal
with such code and create hardware loops and pointer induction variables;
however, it is more difficult for the compiler to optimize and may result in
under-optimized code.

The same advice goes for using automatic (local) variables for loop con-
trol. It is easy for a compiler to see that an automatic scalar whose address
is not taken may be held in a register during a loop. But it is not as easy
when the variable is a global or a function static.

Therefore, the following code may not create a hardware loop if the com-
piler cannot be sure that the write into the array a does not change the
value of the global variable. The globvar variable must be reloaded each
time around the loop before performing the exit test.

// BAD: may need to reload globvar on every iteration.

for (i=0; i<globvar; i++)

a[i] = a[i] + 1;

Loop Guidelines

2-48 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

In this circumstance, the programmer can make the compiler’s job easier
by writing:

// GOOD: easily becomes a hardware loop.

int upper_bound = globvar;

for (i=0; i<upper_bound; i++)

a[i] = a[i] + 1;

Using the Restrict Qualifier
The restrict qualifier provides one way to help the compiler resolve
pointer aliasing ambiguities. Accesses from distinct restricted pointers do
not interfere with each other.

The loads and stores in the following loop

// BAD: possible alias of arrays a and b

void copy(short *a, short *b) {

int i;

for (i=0; i<100; i++)

a[i] = b[i];

}

may be disambiguated by writing

// GOOD: restrict qualifier tells compiler that memory

// accesses do not alias

void copy(short * restrict a, short * restrict b) {

int i;

for (i=0; i<100; i++)

a[i] = b[i];

}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-49
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Although the restrict keyword is particularly useful on function parame-
ters, it can be used on any variable declaration. For example, the copy
function may also be written as:

void copy(short *a, short *b) {

int i;

short * restrict p = a;

short * restrict q = b;

for (i=0; i<100; i++)

*p++ = *q++;

}

Avoiding Long Latencies
All pipelined machines introduce stall cycles when you cannot execute the
current instruction until a prior instruction has exited the pipeline. For
example, the Blackfin processor stalls for three cycles on a table lookup.
a[b[i]] takes four cycles more than expected.

Manipulating Fixed-Point and Fractional
Data

Fractional data can be manipulated in different ways. This section
discusses the different approaches and their advantages and limitations. In
general, the styles using native fixed-point types or built-in functions are
recommended, as they give you the most control over your data.

The approaches are:

• “Using Integer Arithmetic to Encode Fractional Semantics” on
page 2-50

• “Using the Native Fixed-Point Types fract and accum” on
page 2-51

Manipulating Fixed-Point and Fractional Data

2-50 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

• “Using Built-In Functions to Perform Fixed-Point Arithmetic” on
page 2-52

• “Using the shortfract and fract Classes in C++” on page 2-53

Using Integer Arithmetic to Encode Fractional
Semantics

One way to manipulate fractional data involves the use of multi-
ply-and-shift constructs. Consider the fractional dot product algorithm.
This may be written as:

// BAD: uses shifts to implement fractional multiplication.

long dot_product (short *a, short *b) {

int i;

long sum=0;

for (i=0; i<100; i++) {

/* this line is performance critical */

sum += (((long)a[i]*b[i]) << 1);

}

return sum;

}

This presents problems to the optimizer. Normally, the generated code
would be a multiply, followed by a shift, and then an accumulation.
However, the processor hardware has a fractional multiply/accumulate
instruction that performs all these tasks in one cycle.

In the example code, the compiler recognizes this idiom and replaces the
multiply followed by shift with a fractional multiply. In more complicated
cases, where perhaps the multiply is further separated from the shift, the
compiler may not detect the possibility of using a fractional multiply.

Moreover, the transformation may in fact be undesirable since it turns
non-saturating integer operations into saturating fractional ones. There-
fore, the results may change if the summation overflows. The

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-51
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

transformation is enabled by default since it usually is what the program-
mer intended.

Using the Native Fixed-Point Types fract and
accum

A good way to write fixed-point arithmetic is to use the native fixed-point
types fract and accum. Fixed-point arithmetic is provided on these types
using the standard C operators +, -, *, and /. This means that the
semantics of the arithmetic are well-defined and clear to the compiler and
programmer. Moreover, there is useful run-time library to provide further
manipulations on these types. For more information, see “Using Native
Fixed-Point Types” on page 1-104.

There are two important restrictions on using these types. Firstly, they are
not available when compiling in C++ mode, so C++ code cannot use the
native fixed-point types. Secondly, they are not compliant with MISRA,
and so are not available when compiling with the -misra switch.

You could write a dot product that operates on fractional data as follows:

// GOOD: uses native fixed-point types to implement fractional

multiplication

#include <stdfix.h>

long fract dot_product(fract *a, fract *b) {

int i;

accum sum=0.0k;

for (i=0; i<100; i++) {

/* this line is performance critical */

sum += a[i] * b[i];

}

return (long fract)sum;

}

Manipulating Fixed-Point and Fractional Data

2-52 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Using Built-In Functions to Perform Fixed-Point
Arithmetic

Another way to write fractional arithmetic is to use built-in functions.
This way makes the semantics of the operations clear to the compiler and
encourages writing code that maps well to the Blackfin processor, since
the built-in functions generally represent specific machine instructions. It
also has the advantage that it may be used in both C and C++ modes, but
at the expense of being less intuitive than using the native fixed-point
types.

Built-in functions exist to manipulate 16- and 32-bit fractional data, as
well as 40-bit values held in the accumulator registers. For more informa-
tion, see “Fractional Value Built-In Functions in C++” on page 1-232 and
“Full-Precision Accumulator Built-In Functions” on page 1-247.

In the following example, a built-in function is used to multiply fractional
16-bit data.

// GOOD: uses built-ins to implement fractional multiplication

#include <math.h>

fract32 dot_product(fract16 *a, fract16 *b) {

int i;

fract32 sum=0;

for (i=0; i<100; i++) {

/* this line is performance critical */

sum += mult_fr1x32(a[i],b[i]);

}

return sum;

}

Note that the fract16 and fract32 types used in the example above are
merely typedefs to C integer types used by convention in standard
include files. The compiler does not have any in-built knowledge of these
types and treats them exactly as the integer types to which they are
typedef’d.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-53
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Using the shortfract and fract Classes in C++
If compiling in C++ mode, the shortfract and fract classes can be used.
Arithmetic on these types using the usual arithmetic operators will obey
fractional semantics. For more information, see “Fractional Value Built-In
Functions in C” on page 1-196.

 The native fixed-point type fract represents a 16-bit fractional
value, while the C++ fract class represents a 32-bit fractional
value.

Like the native fixed-point types fract and accum (which cannot be used
in C++ mode), this style leads to readable code and makes the fractional
semantics clear to the compiler. The following example shows this
approach being used to write a dot product on fractional data.

// GOOD: uses shortfract and fract classes to implement frac-

tional multiplication

#include <fract>

#include <shortfract>

fract dot_product(shortfract *a, shortfract *b) {

int i;

fract sum=0.0r;

for (i=0; i<100; i++) {

/* this line is performance critical */

sum += (fract)a[i] * (fract)b[i];

}

return sum;

}

Using Built-In Functions in Code Optimization

2-54 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Using Built-In Functions in Code
Optimization

Built-in functions, also known as compiler intrinsics, enable you to
efficiently use low-level features of the processor hardware while program-
ming in C. Although this section does not cover all the built-in functions
available, it presents some code examples where implementation choices
are available to the programmer. For more information, refer to “Com-
piler Built-In Functions” on page 1-195.

Fractional Data
Built-in functions provide one way to perform arithmetic on fixed-point
data. The different approaches that can be used to work with fixed-point
data, including the use of built-in functions, are discussed in “Manipulat-
ing Fixed-Point and Fractional Data” on page 2-49.

Using System Support Built-In Functions
Numerous built-in functions are provided to perform low-level system
management, such as system register manipulation. Built-in functions are
recommended instead of inline asm statements.

The built-in functions cause the compiler to generate efficient inline
instructions and often result in better optimization of the surrounding
code at the point where they are used. Using built-in functions also results
in improved code readability. For more information on supported built-in
functions, refer to “Compiler Built-In Functions” on page 1-195.

Examples of the two styles are:

// BAD: uses inline asm statement.

unsigned int get_cycles(void) {

unsigned int ret_val;

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-55
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

asm("%0 = CYCLES;" : "=d" (ret_val) : :);

return ret_val;

}

// GOOD: uses sysreg.h.

#include <ccblkfn.h>

#include <sysreg.h>

unsigned int get_cycles(void) {

return sysreg_read(reg_CYCLES);

}

This example reads and returns the CYCLES register.

Using Circular Buffers
Circular buffers are useful in DSP-style code. They can be used in several
ways. Consider the C code:

// GOOD: the compiler knows that b is accessed

// as a circular buffer.

for (i=0; i<1000; i++) {

sum += a[i] * b[i%20];

}

The access to array b is a circular buffer. When optimization is enabled,
the compiler produces a hardware circular buffer instruction for this
access.

Consider this more complex example.

// BAD: may not be able to use circular buffer to access b.

for (i=0; i<1000; i+=n) {

sum += a[i] * b[i%20];

}

Using Built-In Functions in Code Optimization

2-56 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

In this case, the compiler does not know if n is positive and less than 20.
If it is, the access may be correctly implemented as a hardware circular
buffer. If it is greater than 20, a circular buffer increment may not yield
the same results as the C code.

The programmer has two options here.

The first option is to compile with the -force-circbuf switch
(on page 1-39). This tells the compiler that any access of the form a[i%n]
is to be considered as a circular buffer. Before using this switch, check that
this assumption is valid for your application.

1. The value of i must be positive.

2. The value of n must be constant across the loop, and greater than
zero (as the length of the buffer).

3. The value of a must be a constant across the loop (as the base
address of the circular buffer).

4. The initial value of i must be such that a[i] refers a valid position
within the circular buffer. This is because the circular buffer opera-
tions will take effect when advancing from position a[i] to either
a[i+m] or a[i-m], by addition or subtraction, respectively. If a[i]
is not initially valid, access before the first advancement will not
access the buffer, and a[i+m] and a[i-m] will not be guaranteed to
reference the buffer after advancement.

 Circular buffer operations (which add or subtract the buffer length
to a pointer) are semantically different from a[i%n] (which per-
forms a modulo operation on an index, and then adds the result to
a base pointer). If you use the -force-circbuf switch when the
above conditions are not true, the compiler generates code that
does not have the intended effect.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-57
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

The second (preferred) option is to use either of two built-in functions
(circindex or circptr, declared in ccblkfn.h) to perform the circular
buffering.

To inform the compiler that a circular buffer is to be used, you may write
either:

// GOOD: explicit use of circular buffer via circindex

for (i=0, j=0; i<1000; i+=n) {

sum += a[i] * b[j];

j = circindex(j, n, 20);

}

or

// GOOD: explicit use of circular buffer via circptr

int *p = b;

for (i=0, j=0; i<1000; i+=n) {

sum += a[i] * (*p);

p = circptr(p, 4*n, b, 80);

}

For more information, refer to “Circular Buffer Built-In Functions” on
page 1-256.

Smaller Applications: Optimizing for
Code Size

The same philosophy for producing fast code also applies to producing
small code. Present the algorithm in a way that gives the optimizer clear
visibility of the operations and data, hence granting it the greatest freedom
to safely manipulate the code to produce small applications.

Once the program is presented in this way, the optimization strategy
depends on the code size constraint that the program must obey. The first

Smaller Applications: Optimizing for Code Size

2-58 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

step is to optimize the application for full performance, using -O or -ipa
switches. If this obeys the code size constraints, no more need be done.

The “optimize for space” switch -Os (on page 1-61), which may be used in
conjunction with IPA, performs every performance-enhancing transfor-
mation except those that increase code size. In addition, the -e linker
switch (-flags-link -e if used from the compiler command line) may be
helpful (on page 1-39). This operation performs section elimination in the
linker to remove unneeded data and code. If the code produced with the
-Os and -flags-link -e switches does not meet the code size constraint,
some analysis of the source code is required to try to further reduce the
code size.

Note that loop transformations such as unrolling and software pipelining
increase code size. But these loop transformations also give the greatest
performance benefit. Therefore, in many cases compiling for minimum
code size produces significantly slower code than optimizing for speed.

The compiler provides a way to balance between the two extremes of -O
and -Os. This is the sliding-scale -Ov num switch described on page 1-61.
The num parameter may be a value between 0 and 100, where the lower
value corresponds to minimum code size and the upper to maximum per-
formance. An in-between value optimizes frequently-executed regions of
code for maximum performance, while keeping the infrequently-executed
parts as small as possible.

The -Ov num switch is most reliable when using profile-guided optimiza-
tion (PGO), since the execution counts of the various code regions have
been measured experimentally. (See “Optimization Control” on
page 1-95.) Without PGO, the execution counts are estimated, based on
the depth of loop nesting.

 Avoid using the inline keyword to inline code for functions that
are used multiple times, especially if they not very small. The -Os
switch has no effect on the use of the inline keyword. It does,

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-59
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

however, prevent automatic inlining (using the -Oa switch) from
increasing the code size. Macro functions can also cause code
expansion and should be used with care.

See “Bit-Fields” on page 2-19 for information on how bit-fields affect
code size.

Effect of Data Type Size on Code Size
For optimal performance and code size, the Blackfin architecture favors
the use of 32-bit data types in control code and 16-bit data types within
processing loops (on page 2-43), which improves the chance of vector
instructions being used.

Consequently, using non-int-sized data in control code can often result in
increased code size.

Listing 2-1. Short versus Int in Control Code

short generate_short();

int generate_int();

void do_something();

// BAD: using short data type in control code gives

// larger code size.

void shortfunc(){

short x;

x=generate_short();

x++;

if (x==3)

do_something();

}

// GOOD: using int data type in control code gives

// smaller code size.

Using Pragmas for Optimization

2-60 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

void intfunc(){

int x;

x=generate_int();

x++;

if (x==3)

do_something();

}

When Listing 2-1 is compiled and optimized, shortfunc() is slightly
larger (and slower) than intfunc(). This is because there is no 16-bit com-
pare instruction in the Blackfin architecture, and so x has to be
sign-extended to fill a whole register before the comparison.

Using Pragmas for Optimization
Pragmas can assist optimization by allowing the programmer to make
assertions or suggestions to the compiler. This section shows how they can
be used to finely tune source code. Refer to “Pragmas” on page 1-277 for
full details about each pragma. The emphasis of this section is to consider
under what circumstances they are useful during the optimization process.

In most cases, the pragmas serve to give the compiler information that it is
unable to deduce for itself. The programmer is responsible for making
sure that the information given by the pragma is valid in the context in
which it is used. Using a pragma to assert that a function or loop has a
quality that it does not in fact have may result in incorrect code and may
cause the application to malfunction.

Pragmas are advantageous because they allow code to remain portable,
since pragmas are normally ignored by a compiler that does not recognize
them.

The following section describes “Function Pragmas” while “Loop Optimi-
zation Pragmas” are described on page 2-65.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-61
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Function Pragmas
Function pragmas include #pragma alloc, #pragma const, #pragma pure,
#pragma result_alignment, and #pragma regs_clobbered. The optimiza-
tion #pragma optimize_{off|for_speed|for_space|as_cmd_line} is also
useful to control the optimization strategy used for specific functions in
the source file.

#pragma alloc

The alloc pragma asserts that the function behaves like the malloc library
function. In particular, it returns a pointer to new memory that cannot
alias any pre-existing buffers. In the following code, the alloc pragma
allows the compiler to be sure that the write into the buffer returned by
the call to new_buf does not modify the input buffer a. Therefore, the iter-
ations of the loop may be reordered.

#pragma alloc

short *new_buf(void);

short *copy_buf(short *a) {

int i;

short * p = a;

short * q = new_buf();

for (i=0; i<100; i++)

*p++ = *q++;

return p;

}

#pragma const

The const pragma asserts to the compiler that a function does not have
any side effects (such as modifying global variables or data buffers), and
the result returned is only a function of the parameter values. The const
pragma may be applied to a function prototype or definition. It helps the

Using Pragmas for Optimization

2-62 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

compiler, since two calls to the function with identical parameters always
yield the same result. In this way calls to #pragma const functions may be
hoisted out of loops if their parameters are loop independent.

#pragma pure

Like #pragma const, the pure pragma asserts to the compiler that a func-
tion does not have any side effects (such as modifying global variables or
data buffers). However, the result returned may be a function of both the
parameter values and any global variables. The pure pragma may be
applied to a function prototype or definition. Two calls to the function
with identical parameters yield the same result, provided that no global
variables have been modified between the calls. Hence, calls to #pragma
pure functions may be hoisted out of loops if their parameters are loop
independent and no global variables are modified in the loop.

#pragma result_alignment

The result_alignment pragma may be used on functions that have
pointer or integer results. When a function returns a pointer, the
result_alignment pragma is used to assert that the return result always
has some specified alignment. In the following example, the pragma is
applied to new_buf to indicate that the new_buf function always returns
buffers that are aligned on a word boundary.

// GOOD: uses pragma result_alignment to specify that out has

// strict alignment.

#pragma alloc

#pragma result_alignment (4)

int *new_buf(void);

int *vmul(int *a, int *b) {

int i;

int *out = new_buf();

for (i=0; i<100; i++)

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-63
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

out[i] = a[i] * b[i];

return out;

}

Further details on this pragma are in “#pragma result_alignment (n)” on
page 1-330. Another, more laborious, way to achieve the same effect is to
use __builtin_aligned at every call site to assert the alignment of the
returned result.

#pragma regs_clobbered

The regs_clobbered pragma is a useful way to improve the performance
of code that makes function calls. The best use of the regs_clobbered
pragma is to increase the number of call-preserved registers available across
a function call. There are two complementary ways in which this may be
done.

First, suppose you have a function written in assembly that you wish to
call from C source code. The regs_clobbered pragma may be applied to
the function prototype to specify which registers are “clobbered” by the
assembly function, that is, which registers may have different values before
and after the function call.

The following simple assembly function adds two integers, and then
masks the result to fit into 8 bits.

_add_mask:

R0 = R0 + R1;

R0 = R0.B (z);

RTS;

._add_mask.end

The function does not modify the majority of the available scratch
registers; thus, these may instead be used as call-preserved registers. In this
way, fewer spills to the stack are needed in the caller function.

Using Pragmas for Optimization

2-64 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Using the following prototype, the compiler is told which registers are
modified by a call to the add_mask function. Registers not specified by the
pragma are assumed to preserve their values across such a call, and the
compiler may use these spare registers to its advantage when optimizing
the call sites.

// GOOD: uses regs_clobbered to increase call-preserved

// register set.

#pragma regs_clobbered "R0, ASTAT"

int add_mask(int, int);

The pragma is also powerful when all of the source code is written in C.
In the above example, a C implementation might be:

// BAD: function thought to clobber entire volatile register set.

int add_mask(int a, int b) {

return ((a+b)&255);

}

Since this function does not need many registers when compiled, it can be
defined using the following code to ensure that any other registers aside
from R0 and the condition codes are not modified by the function.

// GOOD: function compiled to preserve most registers.

#pragma regs_clobbered "R0, CCset"

int add_mask(int a, int b) {

return ((a+b)&255);

}

If other registers are used in the compilation of the function, they are
saved and restored during the function prologue and epilogue.

In general, it is not helpful to specify any of the condition codes as
call-preserved, as they are difficult to save and restore and are usually clob-
bered by any function. Moreover, it is usually of limited benefit to keep
them live across a function call. Therefore, it is better to use CCset

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-65
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

(all condition codes) rather than ASTAT in the clobbered set above. For
more information, refer to “#pragma regs_clobbered string” on
page 1-322.

#pragma optimize_{off|for_speed|for_space|as_cmd_line}

The optimize pragmas may be used to change the optimization setting on
a function-by-function basis. In particular, it may be useful to optimize
functions that are rarely called (for example, error handling code) for
space (#pragma optimize_for_space), whereas functions critical to perfor-
mance should be compiled for maximum speed (using #pragma
optimize_for_speed). The #pragma optimize_off is useful for debugging
specific functions without increasing the size or decreasing the perfor-
mance of the overall application unnecessarily.

The #pragma optimize_as_cmd_line resets the optimization settings to
those specified on the ccblkfn command line when the compiler is
invoked. Refer to “General Optimization Pragmas” on page 1-297 for
more information.

Loop Optimization Pragmas
Many pragmas are targeted towards helping to produce optimal code for
inner loops. These are the loop_count, no_vectorization, vector_for,
all_aligned, different_banks, and no_alias pragmas.

#pragma loop_count

The loop_count pragma enables the programmer to inform the compiler
about a loop’s iteration count. The compiler is able to make more reliable
decisions about the optimization strategy for a loop when it knows the
iteration count range. If you know that the loop count is always a multiple
of a constant, this can also be useful, as it allows a loop to be partially
unrolled or vectorized without the need for conditionally-executed itera-
tions. Knowledge of the minimum trip count may allow the compiler to

Using Pragmas for Optimization

2-66 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

omit the guards that are usually required after software pipelining.
(A “guard” is code generated by the compiler to test a condition at run-
time rather than at compile-time.) Any of the unknown parameters of the
pragma may be left blank.

The following is an example of the loop_count pragma:

// GOOD: the loop_count pragma gives the compiler helpful

// information to assist optimization.

#pragma loop_count(/*minimum*/ 40, /*maximum*/ 100, /*modulo*/ 4)

for (i=0; i<n; i++)

a[i] = b[i];

For more information, refer to “#pragma loop_count(min, max, modulo)”
on page 1-292.

#pragma no_vectorization

Vectorization (executing more than one iteration of a loop in parallel) can
slow down loops with small iteration counts, since a loop prologue and
epilogue are required. The no_vectorization pragma can be used directly
above a for or do loop to instruct the compiler not to vectorize the loop.

#pragma vector_for

The vector_for pragma is used to help the compiler resolve dependencies
that prevent it from vectorizing a loop. It tells the compiler that all itera-
tions of the loop may be run in parallel with each other, subject to
rearrangement of reduction expressions in the loop. In other words, there
are no loop-carried dependencies except reductions. An optional parame-
ter, n, may be given in parentheses to indicate that only n iterations of the
loop may be run in parallel. The parameter must be a literal value.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-67
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

For example, the following cannot be vectorized if the compiler cannot
tell that array b does not alias array a.

// BAD: cannot be vectorized due to possible alias between

// a and b.

for (i=0; i<100; i++)

a[i] = b[i] + a[i-4];

But the vector_for pragma may be added to instruct the compiler to
execute four iterations concurrently, as follows:

// GOOD: pragma vector_for disambiguates alias.

#pragma vector_for (4)

for (i=0; i<100; i++)

a[i] = b[i] + a[i-4];

Note that this pragma does not force the compiler to vectorize the loop.
The optimizer checks various properties of the loop and does not vectorize
it if it believes that it is unsafe or cannot deduce information necessary to
carry out the vectorization transformation. The pragma assures the com-
piler that there are no loop-carried dependencies, but other properties of
the loop may prevent vectorization.

In cases where vectorization is impossible, the information given in the
assertion made by vector_for may still aid other optimizations.

For more information, refer to “#pragma vector_for” on page 1-296.

Using Pragmas for Optimization

2-68 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

#pragma all_aligned

The all_aligned pragma is used as shorthand for multiple
__builtin_aligned assertions. Prefixing a for loop with this pragma
asserts that every pointer variable in the loop is aligned on a word
boundary at the beginning of the first iteration. Thus, adding the pragma
to the following loop

// GOOD: uses all_aligned to inform compiler of alignment of

// a and b.

#pragma all_aligned

for (i=0; i<100; i++)

a[i] = b[i];

is equivalent to writing

// GOOD: uses __builtin_aligned to give alignment of a and b.

__builtin_aligned(a, 4);

__builtin_aligned(b, 4);

for (i=0; i<100; i++)

a[i] = b[i];

In addition, the all_aligned pragma may take an optional literal integer
argument, n, in parentheses. This tells the compiler that all pointer vari-
ables are aligned on a word boundary at the beginning of the nth iteration.
Note that the iteration count begins at zero.

Therefore,

// GOOD: uses all_aligned to inform compiler of alignment

// of a and b.

#pragma all_aligned (3)

for (i=99; i>=0; i--)

a[i] = b[i];

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-69
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

is equivalent to

// GOOD: uses __builtin_aligned to give alignment of a and b.

__builtin_aligned(a+96, 4);

__builtin_aligned(b+96, 4);

for (i=99; i>=0; i--)

a[i] = b[i];

For more information, refer to “#pragma all_aligned” on page 1-288 and
“Using __builtin_aligned” on page 2-24.

#pragma different_banks

The different_banks pragma is used as shorthand for declaring multiple
pointer types with different bank qualifiers. It asserts that any two inde-
pendent memory accesses in the loop may be issued together without
incurring a stall.

Therefore, writing the following allows a single instruction loop to be cre-
ated if it is known that a and b do not alias each other.

// GOOD: uses different banks to allow simultaneous accesses

// to a and b.

#pragma different_banks

for (i=0; i<100; i++)

a[i] = b[i];

See “#pragma different_banks” on page 1-288 for more information.

#pragma no_alias

When immediately preceding a loop, the no_alias pragma asserts that
no load or store in the loop accesses the same memory. This helps
to produce shorter loop kernels because it permits instructions in the loop
to be rearranged more freely. See “#pragma no_alias” on page 1-295 for
more information.

Useful Optimization Switches

2-70 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Useful Optimization Switches
Table 2-3 lists compiler switches useful during the optimization process.

How Loop Optimization Works
Loop optimization is important to overall application performance,
because any performance gain achieved within the body of a loop reaps a
benefit for every iteration of that loop. This section provides an introduc-
tion to some of the concepts used in loop optimization, helping you to use
the compiler features in this chapter.

Table 2-3. C/C++ Compiler Optimization Switches

Switch Name Description

-const-read-write
on page 1-31

Specifies that data accessed via a pointer to const data may be modi-
fied elsewhere

-flags-link -e
on page 1-39

Specifies linker section elimination

-force-circbuf
on page 1-39

Treats array references of the form array[i%n] as circular buffer
operations

-ipa
on page 1-47

Turns on inter-procedural optimization. Implies use of -O.
May be used in conjunction with -Os or -Ov.

-no-fp-associative
on page 1-55

Does not treat floating-point multiply and addition as an associative

-O
on page 1-60

Enables code optimizations and optimizes the file for speed

-Os
on page 1-61

Optimizes the file for size

-Ov num
on page 1-61

Controls speed vs. size optimizations (sliding scale)

-save-temps
on page 1-72

Saves intermediate files (for example, .s)

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-71
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

This section contains:

• “Terminology” on page 2-71

• “Loop Optimization Concepts” on page 2-74

• “A Working Example” on page 2-93

Terminology
This section describes terms that have particular meanings for compiler
behavior.

Clobbered

A register is “clobbered” if its value is changed so that the compiler cannot
usefully make assumptions about register’s new contents.

For example, when the compiler generates a call to an external function,
the compiler considers all caller-preserved registers to be clobbered by the
called function. Once the called function returns, the compiler cannot
make any assumptions about the values of those registers. This is why they
are called “caller-preserved.” If the caller needs the values in those registers,
the caller must preserve them itself.

The set of registers clobbered by a function can be changed using #pragma
regs_clobbered, and the set of registers changed by a gnu asm statement is
determined by the clobber part of the asm statement.

Live

A register is “live” if it contains a value needed by the compiler, and thus
cannot be overwritten by a new assignment to that register. For example,
to do “A = B + C”, the compiler might produce:

reg1 = load B // reg1 becomes live

reg2 = load C // reg2 becomes live

How Loop Optimization Works

2-72 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

reg1 = reg1 + reg2 // reg2 ceases to be live;

// reg1 still live, but with a different

// value

store reg1 to A // reg1 ceases to be live

Liveness determines which registers the compiler may use. In this exam-
ple, since reg1 is used to load B, and that register must maintain its value
until the addition, reg1 cannot also be used to load the value of C, unless
the value in reg1 is first stored elsewhere.

Spill

When a compiler needs to store a value in a register, and all usable regis-
ters are already live, the compiler must store the value of one of the
registers to temporary storage (the stack). This “spilling” process prevents
the loss of a necessary value.

Scheduling

“Scheduling” is the process of reordering the program instructions to
increase the efficiency of the generated code but without changing the
program’s behavior. The compiler attempts to produce the most efficient
schedule

Loop Kernel

The “loop kernel” is the body of code that is executed once per iteration of
the loop. It excludes any code required to set up the loop or to finalize it
after completion.

Loop Prolog

A “loop prolog” is a sequence of code required to set the machine into a
state whereby the loop kernel can execute. For example, the prolog may
pre-load some values into registers ready for use in the loop kernel. Not all
loops need a prolog.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-73
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Loop Epilog

A “loop epilog” is a sequence of code responsible for finalizing the execu-
tion of a loop. After each iteration of the loop kernel, the machine will be
in a state where the next iteration can begin efficiently. The epilog moves
values from the final iteration to where they need to be for the rest of the
function to execute. For example, the epilog might save values to memory.
Not all loops need an epilog.

Loop Invariant

A “loop invariant” is an expression that has the same value for all iterations
of a loop. For example:

int i, n = 10;

for (i = 0; i < n; i++) {

val += i;

}

The variable n is a loop invariant. Its value is not changed during the body
of the loop, so n will have the value 10 for every iteration of the loop.

Hoisting

When the optimizer determines that some part of a loop is computing a
value that is actually a loop invariant, it may move that computation to
before the loop. This “hoisting” prevents the same value from being
recomputed for every iteration.

Sinking

When the optimizer determines that some part of a loop is computing a
value that is not used until the loop terminates, the compiler may move
that computation to after the loop. This “sinking” process ensures the
value is only computed using the values from the final iteration.

How Loop Optimization Works

2-74 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Loop Optimization Concepts
The compiler optimizer focuses considerable attention on program loops,
as any gain in the loop's performance reaps the benefits on every iteration
of the loop. The applied transformations can produce code that appears to
be substantially different from the structure of the original source code.
This section provides an introduction to the compiler's loop optimization,
to help you understand why the code might be different.

The following examples are presented in terms of a hypothetical machine.
This machine is capable of issuing up to two instructions in parallel, pro-
vided one instruction is an arithmetic instruction, and the other is a load
or a store. Two arithmetic instructions may not be issued at once, nor may
two memory accesses:

t0 = t0 + t1; // valid: single arithmetic

t2 = [p0]; // valid: single memory access

[p1] = t2; // valid: single memory access

t2 = t1 + 4, t1 = [p0]; // valid: arithmetic and memory

t5 += 1, t6 -= 1; // invalid: two arithmetic

[p3] = t2, t4 = [p5]; // invalid: two memory

The machine can use the old value of a register and assign a new value to it
in the same cycle, for example:

t2 = t1 + 4, t1 = [p0]; // valid: arithmetic and memory

The value of t1 on entry to the instruction is the value used in the addi-
tion. On completion of the instruction, t1 contains the value loaded via
the p0 register.

The examples will show “START LOOP N” and “END LOOP”, to indicate the
boundaries of a loop that iterates N times. (The mechanisms of the loop
entry and exit are not relevant).

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-75
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Software Pipelining

“Software pipelining” is analogous to hardware pipelining used in some
processors. Whereas hardware pipelining allows a processor to start pro-
cessing one instruction before the preceding instruction has completed,
software pipelining allows the generated code to begin processing the next
iteration of the original source-code loop before the preceding iteration is
complete.

Software pipelining makes use of a processor's ability to multi-issue
instructions. Regarding known delays between instructions, it also sched-
ules instructions from later iterations where there is spare capacity.

Loop Rotation

“Loop rotation” is a common technique of achieving software pipelining.
It changes the logical start and end positions of the loop within the overall
instruction sequence, to allow a better schedule within the loop itself.
For example, this loop:

START LOOP N

A

B

C

D

E

END LOOP

could be rotated to produce the following loop:

A

B

C

START LOOP N-1

D

E

How Loop Optimization Works

2-76 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

A

B

C

END LOOP

D

E

The order of instructions in the loop kernel is now different. It still circles
from instruction E back to instruction A, but now it starts at D, rather than
A. The loop also has a prolog and epilog added, to preserve the intended
order of instructions. Since the combined prolog and epilog make up a
complete iteration of the loop, the kernel is now executing N-1 iterations,
instead of N.

Another example—consider the following loop:

START LOOP N

t0 += 1

[p0++] = t0

END LOOP

This loop has a two-cycle kernel. While the machine could execute the
two instructions in a single cycle—an arithmetic instruction and a mem-
ory access instruction—to do so would be invalid, because the second
instruction depends upon the value computed in the first instruction.
However, if the loop is rotated, we get:

t0 += 1

START LOOP N-1

[p0++] = t0

t0 += 1

END LOOP

[p0++] = t0

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-77
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

The value being stored is computed in the previous iteration (or before the
loop starts, in the prolog). This allows the two instructions to be executed
in a single cycle:

t0 += 1

START LOOP N-1

[p0++] = t0, t0 += 1

END LOOP

[p0++] = t0

Rotating the loop has presented an opportunity by which the kth iteration
of the original loop is starting (t0 += 1) while the (k-1)th iteration is
completing ([p0++] = t0). As a result, rotation has achieved software
pipelining, and the performance of the loop is doubled.

Notice that this process has changed the structure of the program slightly.
Suppose that the loop construct always executes the loop at least once;
that is, it is a 1..N count. Then if N==1, changing the loop to be N-1 would
be problematic. In this example, the compiler inserts a conditional jump
around the loop construct for the circumstances where the compiler can-
not guarantee that N > 1:

t0 += 1

IF N == 1 JUMP L1;

START LOOP N-1

[p0++] = t0, t0 += 1

END LOOP

L1:

[p0++] = t0

Loop Vectorization

“Loop vectorization” is another transformation that allows the generated
code to execute more than one iteration in parallel. However, vectoriza-
tion is different from software pipelining. Where software pipelining uses
a different ordering of instructions to get better performance,

How Loop Optimization Works

2-78 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

vectorization uses a different set of instructions. These vector instructions
act on multiple data elements concurrently to replace multiple executions
of each original instruction.

For example, consider the following dot-product loop:

int i, sum = 0;

for (i = 0; i < n; i++) {

sum += x[i] * y[i];

}

This loop walks two arrays, reading consecutive values from each, multi-
plying them and adding the result to the on-going sum. This loop has
these important characteristics:

• Successive iterations of the loop read from adjacent locations in the
arrays.

• The dependency between successive iterations is the summation, a
commutative operation.

• Operations such as load, multiply and add are often available in
parallel versions on embedded processors.

These characteristics allow the optimizer to vectorize the loop so that two
elements are read from each array per load, two multiplies are done, and
two totals maintained. The vectorized loop would be:

t0 = t1 = 0

START LOOP N/2

t2 = [p0++] (Wide) // load x[i] and x[i+1]

t3 = [p1++] (Wide) // load y[i] and y[i+1]

t0 += t2 * t3 (Low), t1 += t2 * t3 (High) // vector mulacc

END LOOP

t0 = t0 + t1 // combine totals for low and high

Vectorization is most efficient when all the operations in the loop can be
expressed in terms of parallel operations. Loops with conditional

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-79
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

constructs in them are rarely vectorizable, because the compiler cannot
guarantee that the condition will evaluate in the same way for all the itera-
tions being executed in parallel.

Vectorization is also affected by data alignment constraints and data access
patterns. Data alignment affects vectorization because processors often
constrain loads and stores to be aligned on certain boundaries. While the
unvectorized version will guarantee this, the vectorized version imposes a
greater constraint that may not be guaranteed. Data access patterns affect
vectorization because memory accesses must be contiguous. If a loop
accessed every tenth element, for example, then the compiler would not be
able to combine the two loads for successive iterations into a single access.

Vectorization divides the generated iteration count by the number of iter-
ations being processed in parallel. If the trip count of the original loop is
unknown, the compiler will have to conditionally execute some iterations
of the loop.

If the compiler cannot determine whether the loop is “vectorizable” at
compile-time and the speed/space optimization settings allow it, the com-
piler will generate vectorized and non-vectorized versions of the loop. It
will select between the two at run-time. This allows for considerable per-
formance improvements, at the expense of code-size and an initial set-up
cost.

 Vectorization and software pipelining are not mutually exclusive:
the compiler may vectorize a loop and then use software pipelining
to obtain better performance.

Modulo Scheduling

Loop rotation, as described earlier, is a simple software-pipelining method
that can often improve loop performance, but more complex examples
require a more advanced approach. The compiler uses a popular technique
known as “modulo scheduling” which can produce more efficient schedules

How Loop Optimization Works

2-80 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

for loops than simple loop rotation. See also “Modulo Scheduling Infor-
mation” on page 2-124.

Modulo scheduling is used to schedule innermost loops without control
flow. A modulo-scheduled loop is described using the following
parameters:

• Initiation interval (II): the number of cycles between initiating two
successive iterations of the original loop.

• Minimum initiation interval due to resources (res MII): a lower
limit for the initiation interval (II); an II lower than this would
mean at least one of the resources being used at greater capacity
than the machine allows.

• Minimum initiation interval due to recurrences (rec MII): an
instruction cannot be executed until earlier instructions on which
it depends have also been executed. These earlier instructions may
belong to a previous loop iteration. A cycle of such dependencies (a
recurrence) imposes a minimum number of cycles for the loop.

• Stage count (SC): the number of initiation intervals until the first
iteration of the loop has completed. This is also the number of iter-
ations in progress at any time within the kernel.

• Modulo variable expansion unroll factor (MVE unroll): the num-
ber of times the loop has to be unrolled to generate the schedule
without overlapping register lifetimes.

• Trip count: the number of times the loop kernel iterates.

• Trip modulo: a number that is known to divide the trip count.

• Trip maximum: an upper limit for the trip count.

• Trip minimum: a lower limit for the trip count.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-81
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Understanding these parameters will allow you to interpret the generated
code more easily. The compiler’s assembly annotations use these terms, so
you can examine the source code and the generated instructions, to see
how the scheduling relates to the original source. See “Assembly Opti-
mizer Annotations” on page 2-96 for more information.

Modulo scheduling performs software pipelining by:

• Ordering the original instructions in a sequence (for simplicity
referred to as the “base schedule”) that can be repeated after an
interval known as the “initiation interval” (“II”);

• Issuing parts of the base schedule belonging to successive iterations
of the original loop, in parallel.

For the purposes of this discussion, all instructions will be assumed to
require only a single cycle to execute; on a real processor, stalls affect the
initiation interval, so a loop that executes in II cycles may have fewer than
II instructions.

Initiation Interval (II) and the Kernel

Consider the loop
START LOOP N

A

B

C

D

E

F

G

H

END LOOP

Now consider that the compiler finds a new order for A,B,C,D,E,F,G,H
grouping; some of them on the same cycle so that a new instance of the
sequence can be started every two cycles. Say this base schedule is given in

How Loop Optimization Works

2-82 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Table 2-4 where I1,I2,...,I8 are A,B,...,H reordered. Albeit a valid
schedule for the original loop, the base schedule is not the final modulo
schedule; it may not even be the shortest schedule of the original loop.
However the base schedule is used to obtain the modulo schedule, by
being able to initiate it every II=2 cycles, as seen in Table 2-5.

Table 2-4. Base Schedule

Cycle Instructions

1 I1

2 I2, I3

3 I4, I5

4 I6

5 I7

6 I8

Table 2-5. Obtaining the Modulo Schedule by Repeating the Base
Schedule Every II=2 Cycles (assuming a maximum of 4 instructions
executed in parallel per cycle)

Cycle Iteration 1 Iteration 2 Iteration 3 Iteration 4

1 I1

2 I2, I3

3 I4, I5 I1

4 I6 I2, I3

5 I7 I4, I5 I1

6 I8 I6 I2, I3

7 I7 I4, I5 I1

8 I8 I6 I2, I3

9 I7 I4, I5

10 I8 I6

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-83
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Starting at cycle 5, the pattern in Table 2-6 repeats every 2 cycles. This
repeating pattern, the kernel, represents the modulo-scheduled loop.

The initiation interval has the value II=2, because iteration i+1 can start
two cycles after the cycle on which iteration i starts. This way, one itera-
tion of the original loop is initiated every II cycles, running in parallel
with previous, unfinished iterations.

The initiation interval of the loop indicates several important characteris-
tics of the schedule for the loop:

• The loop kernel will be II cycles in length.

• A new iteration of the original loop will start every II cycles.
An iteration of the original loop will end every II cycles.

• The same instruction will execute on cycle c and on cycle c+II
(hence the name modulo schedule).

Finding a modulo schedule implies finding a base schedule and an II such
that the base schedule can be initiated every II cycles.

If the compiler can reduce the value for II, it can start the next iteration
sooner, and thus increase the performance of the loop: The lower the II,
the more efficient the schedule. However, the II is limited by a number of
factors, including:

• The machine resources required by the instructions in the loop.

• The data dependencies and stalls between instructions.

Table 2-6. Loop kernel, N>=3

Cycle Iteration N-2
(last stage)

Iteration N-1
(2nd stage)

Iteration N
(1st stage)

II*N-1 I7 I4, I5 I1

II*N I8 I6 I2, I3

How Loop Optimization Works

2-84 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

These limiting factors are examined in:

• “Minimum Initiation Interval Due to Resources (Res MII)” on
page 2-84

• “Minimum Initiation Interval Due to Recurrences (Rec MII)” on
page 2-85

• “Stage Count (SC)” on page 2-85

• “Variable Expansion and MVE Unroll” on page 2-87

• “Trip Count” on page 2-92

Minimum Initiation Interval Due to Resources (Res MII)

The first factor that limits II is machine resource usage. Let’s start with the
simple observation that the kernel of a modulo-scheduled loop contains
the same set of instructions as the original loop.

Assume a machine that can execute up to four instructions in parallel. If
the loop has 8 instructions, then it requires a minimum of two lines in the
kernel, since there can be at most 4 instructions on a line. This implies II
has to be at least 2, and we can tell this without having found a base
schedule for the loop, or even knowing what the specific instructions are.

Consider another example where the original loop contains 3 memory
accesses to be scheduled on a machine that supports at most 2 memory
accesses per cycle. This implies at least 2 cycles in the kernel, regardless of
the rest of the instructions.

Given a set of instructions in a loop, we can determine a lower bound for
the II of any modulo schedule for that loop based on resources required.
This lower bound is called the “Resource-based Minimum Initiation
Interval” (Res MII).

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-85
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Minimum Initiation Interval Due to Recurrences (Rec MII)

A less obvious limitation for finding a low II are cycles in the data depen-
dencies between instructions.

Assume that the loop to be scheduled contains (among others) the
instructions:

i3: t3=t1+t5; // t5 carried from the previous iteration

i5: t5=t1+t3;

Assume each line of instructions takes 1 cycle. If i3 is executed at cycle c,
then t3 is available at cycle c+1 and t5 cannot be computed earlier than
c+1 (because it depends on t3), and similarly the next time we compute t3
cannot be earlier than c+2. Thus, if we execute i3 at cycle c, the next time
we can execute i3 again cannot be earlier than c+2. But for any modulo
schedule, if an instruction is executed at cycle c, the next iteration will
execute the same instruction at cycle c+II. Therefore, II has to be at least
2 due to the circular data dependency path t3->t5->t3.

This lower bound for II, given by circular data dependencies (recurrences)
is called the “Minimum Initiation Interval Due to Recurrences” (Rec
MII), and the data dependency path is called “loop carry path”. There can
be any number of loop carry paths in a loop, including none, and they are
not necessarily disjoint.

Stage Count (SC)

The kernel in Table 2-6 on page 2-83 is formed of instructions which
belong to three distinct iterations of the original loop: {I7,I8} end the
“oldest” iteration—in other words they belong to the iteration started the
longest time before the current cycle; {I4,I5,I6} belong to the next oldest
initiated iteration, and so on. {I1,I2,I3} are the beginning of the young-
est iteration.

The number of iterations of the original loop in progress at any time
within the kernel is called the “Stage Count” (SC). This is also the

How Loop Optimization Works

2-86 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

number of initiation intervals until the first iteration of the loop com-
pletes. In our example, SC=3.

The final schedule requires peeling a few instructions (the prolog) from
the beginning of the first iteration and a few instructions (the epilog) from
the end of the last iteration in order to preserve the structure of the kernel.
This reduces the trip count from N to N-(SC-1):

I1; // prolog

I2,I3; // prolog

I4,I5, I1; // prolog

I6, I2,I3; // prolog

LOOP N-2 // i.e. N-(SC-1), where SC=3

I7, I4,I5, I1; // kernel

I8, I6, I2,I3; // kernel

END LOOP

I7, I4, I5; // epilog

I8, I6; // epilog

I7; // epilog

I8; // epilog

Another way of viewing the modulo schedule is to group instructions into
stages as in Table 2-7, where each stage is viewed as a vector of height II=2
of instruction lists (that represent parts of instruction lines).

Table 2-7. Instructions Grouped into Stages

Stage Count Instructions

SC0 I1,
I2, I3

SC1 I4, I5,
I6

SC2 I7,
I8

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-87
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Now the schedule can be viewed as:

SC0 // prolog

SC1 SC0 // prolog

LOOP (N-2) // That is N-(SC-1), where SC=3

SC2 SC1 SC0 // kernel

END LOOP

SC2 SC1 // epilog

SC2 // epilog

where, for example, SC2 SC1 is the 2-line vector obtained from concate-
nating the lists in SC2 and SC1.

Variable Expansion and MVE Unroll

There is one more issue to address for modulo schedule correctness.

Consider the sequence of instructions in Table 2-8. Table 2-9 shows the
base schedule that is an instance of the one in Table 2-4 on page 2-82, and
Table 2-10 on page 2-88 shows the corresponding modulo schedule with
II=2.

Table 2-8. Problematic Instance

Generic
instruction

Specific instance

I1 t1=[p1++]

I2 t2=[p2++]

I3 t3=t1+t5

I4 t4=t2+1

I5 t5=t1+t3

I6 t6=t4*t5

I7 t7=t6*t3

I8 [p8++]=t7

How Loop Optimization Works

2-88 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

There is a problem with the schedule in Table 2-10: t3 defined in the
fourth cycle (second column in the table) is used on the fifth cycle (first
column); however, the intended use was of the value defined on the sec-
ond cycle (first column). In general, the value of t3 used by t7=t6*t3 in
the kernel will be the one defined in the previous cycle, instead of the one
defined 3 cycles earlier, as intended. Thus, if the compiler were to use this
schedule as-is, it would be clobbering the live value in t3. The lifetime of

Table 2-9. Base Schedule from Table 2-4 Applied to Instances in
Table 2-8

1 t1=[p1++]

2 t2=[p2++],t3=t1+t5

3 t4=t2+1,t5=t1+t3

4 t6=t4*t5

5 t7=t6*t3

6 [p8++]=t7

Table 2-10. Modulo Schedule Broken by Overlapping Lifetimes of t3

Iteration 1 Iteration 2 Iteration 3 ...

1 t1=[p1++]

2 t2=[p2++],t3=t1+t5

3 t4=t2+1,t5=t1+t3 t1=[p1++]

4 t6=t4*t5 t2=[p2++],t3=t1+t5

5 t7=t6*t3 t4=t2+1,t5=t1+t3 t1=[p1++]

6 [p8++]=t7 t6=t4*t5 t2=[p2++],t3=t1+t5

7 t7=t6*t3 t4=t2+1,t5=t1+t3

8 [p8++]=t7 t6=t4*t5

9 t7=t6*t3

10 [p8++]=t7

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-89
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

each value loaded into t3 is 3 cycles, but the loop’s initiation interval is
only 2, so the lifetimes of t3 from different iterations overlap.

The compiler fixes this by duplicating the kernel as many times as needed
to exceed the longest lifetime in the base schedule, then renaming the vari-
ables that clash—in this case, just t3.

In Table 2-11 we see that the length of the new loop body is 4, greater
than the lifetimes of the values in the loop.

So the loop becomes:

t1=[p1++];

t2=[p2++],t3=t1+t5;

t4=t2+1,t5=t1+t3, t1=[p1++];

t6=t4*t5, t2=[p2++],t3_2=t1+t5;

LOOP (N-2)/2

t7=t6*t3, t4=t2+1,t5=t1+t3_2, t1=[p1++];

[p8++]=t7, t6=t4*t5, t2=[p2++],t3=t1+t5;

t7=t6*t3_2, t4=t2+1,t5=t1+t3,t1=[p1++];

[p8++]=t7, t6=t4*t5, t2=[p2++], t3_2=t1+t5;

END LOOP

t7=t6*t3, t4=t2+1,t5=t1+t3_2;

[p8++]=t7, t6=t4*t5;

t7=t6*t3_2;

[p8++]=t7;

How Loop Optimization Works

2-90 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

This process of duplicating the kernel and renaming colliding variables is
called variable expansion, and the number of times the compiler dupli-
cates the kernel is referred to as the modulo variable expansion factor
(MVE). Conceptually we use different set of names, “register sets”, for suc-
cessive iterations of the original loop in progress in the unrolled kernel (in
practice we rename just the conflicting variables, see Table 2-12). In terms
of reading the code, this means that a single iteration of the loop generated
by the compiler will be processing more than one iteration of the original
loop. Also, the compiler will be using more registers to allow the iterations
of the original loop to overlap without clobbering the live values.

Table 2-11. Modulo Schedule Corrected by Variable Expansion: t3 and
t3_2

Iteration 1 Iteration 2 Iteration 3 Iteration 4 ...

1 t1=[p1++]

2 t2=[p2++],t3=t1+t5

3 t4=t2+1,t5=t1+t3 t1=[p1++]

4 t6=t4*t5 t2=[p2++],t3_2=t1+t
5

5 t7=t6*t3 t4=t2+1,t5=t1+t3_2 t1=[p1++]

6 [p8++]=t7 t6=t4*t5 t2=[p2++],t3=t1+t5

7 t7=t6*t3_2 t4=t2+1,t5=t1+t3 t1=[p1++]

8 [p8++]=t7 t6=t4*t5 t2=[p2++],t3_2=t1+t5

9 t7=t6*t3 t4=t2+1,t5=t1+t3_2

10 [p8++]=t7 t6=t4*t5

11 t7=t6*t3_2

12 [p8++]=t7

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-91
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

In terms of stages:

SC0 // prolog

SC1 SC0_2 // prolog

LOOP (N-2)/2 // That is N-(SC-1)/MVE, where

SC=3, MVE=2

SC2 SC1_2 SC0 // kernel

SC2_2 SC1 SC0_2 // kernel

END LOOP

SC2 SC1_2 // epilog

SC2_2 // epilog

where SCN_2 is SCN subject to renaming; in our case, only occurrences
of t3 are renamed as t3_2 in SCN_2.

In terms of instructions:
I1; // prolog

I2,I3; // prolog

I4,I5, I1_2; // prolog

I6, I2_2,I3_2; // prolog

LOOP(N-2)/2 // That is N-(SC-1) /MVE, where SC=3, MVE=2

I7, I4_2,I5_2, I1; // kernel

I8, I6_2, I2,I3; // kernel

I7_2, I4,I5, I1_2; // kernel

I8_2, I6, I2_2,I3_2; // kernel

END LOOP

I7, I4_2,I5_2; // epilog

I8, I6_2; // epilog

I7_2; // epilog

I8_2; // epilog

where IN_2 is IN subject to renaming; in our case, only occurrences of t3
are renamed as t3_2 in all IN_2, as seen in Table 2-12.

How Loop Optimization Works

2-92 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Trip Count

Notice that as the modulo scheduler expands the loop kernel to add in the
extra variable sets, the iteration count of the generated loop changes from
(N-SC) to (N-SC)/MVE. This is because each iteration of the generated loop
is now doing more than one iteration of the original loop, so fewer gener-
ated iterations are required.

However, this also relies on the compiler knowing that it can divide the
loop count in this manner. For example, if the compiler produces a loop
with MVE=2 so that the count should be (N-SC)/2, an odd value of
(N-SC) causes problems. In these cases, the compiler generates additional
“peeled” iterations of the original loop to handle the remaining iteration.
As with rotation, if the compiler cannot determine the value of N, it will
make parts of the loop—the kernel or peeled iterations—conditional so
that they are executed only for the appropriate values of N.

Table 2-12. Instructions After Modulo Variable Expansion

Generic
instruction

Specific instance

I1 and I1_2 t1=[p1++]

I2 and I2_2 t2=[p2++]

I3 t3=t1+t5

I3_2 t3_2=t1+t5

I4 and I4_2 t4=t2+1

I5 t5=t1+t3

I5_2 t5=t1+t3_2

I6 and I6_2 t6=t4*t5

I7 t7=t6*t3

I7_2 t7=t6*t3_2

I8 and I8_2 [p8++]=t7

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-93
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

The number of times the generated loop iterates is called the “trip count”.
As explained above, sometimes knowing the trip count is important for
efficient scheduling. However, the trip count is not always available.

Lacking it, additional information may be inferred, or passed to the com-
piler through the loop_count pragma, specifying:

• “Trip modulo”: A number known to divide the trip count

• “Trip minimum”: A lower bound for the trip count

• “Trip maximum”: An upper bound for the trip count

A Working Example
The following fractional scalar product loop is used to show how the opti-
mizer works. To see the described behavior, compile the example:

• With the optimizer enabled. For more information, see “Optimiza-
tion Control” on page 1-95.

• With the -sat-associative command-line switch (on page 1-71).
This switch is required because the example uses fractional opera-
tions, which saturate. The compiler does not treat saturating
operations as associative, by default, which means they normally
prevent vectorization.

Example: C source code for fixed-point scalar product

#include <stdfix.h>

long fract sp(fract *a, fract *b) {

int i;

accum sum=0.0k;

__builtin_aligned(a, 4);

__builtin_aligned(b, 4);

for (i=0; i<100; i++) {

sum += a[i] * b[i];

How Loop Optimization Works

2-94 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

}

return (long fract) sum;

}

After code generation and conventional scalar optimizations are done, the
compiler generates a loop that looks something like the following
example:

Example: Initial code generated for fixed-point scalar product

 P2 = 100;

 LOOP .P1L3 LC0 = P2;

.P1L3:

LOOP_BEGIN P1L3;

R0 = W[P0++] (X);

R2 = W[P1++] (X);

A0 += R0.L * R2.L;

LOOP_END .P1L3;

.P1L4:

R0 = A0;

The loop exit test has been moved to the bottom and the loop counter
rewritten to count down to zero, allowing a zero-overhead loop to be gen-
erated. The sum is being accumulated in A0. P0 and P1 are initialized with
the parameters a and b, respectively, and are incremented on each
iteration.

To use 32-bit memory accesses, the optimizer unrolls the loop to run two
iterations in parallel. The sum is now being accumulated in A0 and A1,
which must be added together after the loop to produce the final result.
To use word loads, the compiler has to know that P0 and P1 have initial
values that are multiples of four bytes.

This is done in the example by use of __builtin_aligned, although it
could also have been propagated with IPA.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-95
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

 Unless the compiler knows that the original loop was executed an
even number of times, a conditionally-executed odd iteration must
be inserted outside the loop.

 Vectorization is only possible in this example because the
-sat-associative switch enables reordering of saturating addition
and multiplication through associativity. If the example performs
an integer scalar product instead of a fractional scalar product, the
associativity would be enabled by default.

Example: Code generated for fixed-point scalar product after vectorization
transformation

P2 = 50;

A1 = A0 = 0;

LOOP .P1L3 LC0 = P2;

.P1L3:

LOOP_BEGIN .P1L3;

R0 = [P0++];

R2 = [P1++];

A1+=R0.H*R2.H, A0+=R0.L*R2.L;

LOOP_END .P1L3;

.P1L4:

A0 += A1;

R0 = A0;

Finally, the optimizer rotates the loop, unrolling and overlapping itera-
tions to obtain the highest possible use of functional units. Code similar
to the following is generated:

Example: Code generated for fixed-point scalar product after software
pipelining

A1=A0=0 || R0 = [P0++] || NOP;

R2 = [I1++];

P2 = 49;

LOOP .P1L3 LC0 = P2;

Assembly Optimizer Annotations

2-96 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

.P1L3:

LOOP_BEGIN .P1L3;

A1+=R0.H*R2.H, A0+=R0.L*R2.L

|| R0 = [P0++]

|| R2 = [I1++];

LOOP_END .P1L3;

.P1L4:

A1+=R0.H*R2.H, A0+=R0.L*R2.L;

A0 += A1;

R0 = A0;

Assembly Optimizer Annotations
When the compiler optimizations are enabled, the compiler can perform a
large number of optimizations to generate the resultant assembly code.
The decisions taken by the compiler as to whether certain optimizations
are safe or worthwhile are generally invisible to a programmer. However,
it could be beneficial to get feedback from the compiler regarding the
decisions made during optimization. The intention of the information
provided is to give a programmer an understanding of how close to opti-
mal a program is and what more could possibly be done to improve the
generated code.

The feedback from the compiler optimizer is provided by means of anno-
tations made to the assembly file generated by the compiler. The assembly
file generated by the compiler can be saved by specifying the -S switch
(on page 1-71), the -save-temps switch (on page 1-72), or by checking
the Project Options->Compile->General->Save temporary files option in
VisualDSP++ IDDE.

 For more information about the IDDE, refer to VisualDSP++
online Help.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-97
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

The assembly code generated by the compiler optimizer is annotated with
the following information:

• “Global Information” on page 2-97

• “Procedure Statistics” on page 2-99

• “Instruction Annotations” on page 2-103

• “Loop Identification” on page 2-103

• “Vectorization” on page 2-115

• “Modulo Scheduling Information” on page 2-124

• “Warnings, Failure Messages, and Advice” on page 2-130

The assembly annotations provide information in several areas that you
can use to assist the compiler’s evaluation of your source code. In turn,
this improves the generated code. For example, annotations could provide
indications of resource usage or the absence of a particular optimization
from the resultant code. Annotations which note the absence of optimiza-
tion can often be more important than those noting its presence. Assembly
code annotations give the programmer insight into why the compiler
enables and disables certain optimizations for a specific code sequence.

The assembly output for the examples in this chapter may differ based on
optimization flags and the version of the compiler. As a result, you may
not be able to reproduce these results exactly.

Global Information
For each compilation unit, the assembly output is annotated with:

• The time of the compilation

• The options used during that compilation.

• The architecture for which the file was compiled.

Assembly Optimizer Annotations

2-98 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

• The silicon revision used during the compilation

• A summary of the workarounds associated with the specified archi-
tecture and silicon revision. These workarounds are divided into:

• Disabled: these are the workarounds that were not applied

• Enabled: these are the workarounds that were applied dur-
ing the compilation.

• Always on: these are workarounds that are always applied
and that cannot be disabled, not even by using the
-si-revision none compiler switch.

For instance, if the file hello.c is compiled at 11am, on June 28 using the
following command line:

ccblkfn -O -S hello.c

then the hello.s file will show:

.file "hello.c";

// Compilation time: Thu Jun 28 11:00:00 2007

// Compiler options: -O -S

// Architecture: ADSP-BF532

// Silicon revision: 0.3

// Anomalies summary:

// Disabled: w05_00_0046,w05_00_0048,w05_00_0054,

// Enabled: w05_00_0189,w05_00_0198,w05_00_0202,

// Always on: w05_00_0074,w05_00_0122

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-99
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Procedure Statistics
For each function, the following is reported:

• Frame size – The size of stack frame.

• Registers used – Since function calls tend to implicitly clobber reg-
isters, there are several sets:

1. The first set is composed of the scratch registers changed by the
current function. This does not count the registers that are implic-
itly clobbered by the functions called from the current function.

2. The second set are the call-preserved registers changed by the cur-
rent function. This does not count the registers that are implicitly
clobbered by the functions called from the current function.

3. The third set are the registers clobbered by the inner function calls.

• Inlined Functions – If inlining happens, then the header of the
caller function reports which functions were inlined inside it and
where. Each inlined function is reported using the position of the
inlined call. All the functions inlined inside the inlined function
are reported as well, generating a tree of inlined calls. Each node,
except the root, has this form:

file_name:line:column'function_name

where:

function_name = name of the function inlined.
line = line number of the call to function_name, in the source file.
column = column number of the call to function_name, in the
source file.
file_name = name of the source file calling function_name.

Assembly Optimizer Annotations

2-100 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Example A (Procedure Statistics)

Consider the following program:

int func1(int*);

int func2(int);

int foo(int in)

{

int loc1 = 20;

int loc_arr[20];

loc1 = func1(loc_arr);

in += func2(loc_arr[loc1]);

return loc_arr[in];

}

The procedure statistics for foo are:

_foo:

.LN_foo:

.reference _func1;

.reference _func2;

//--

// Procedure statistics:

// Frame size = 96

// Scratch registers used:{R0.L,R0.H,R1.L,R1.H,

// P0-P2,ASTAT}

// Call preserved registers used:{R7.L,R7.H,P5,FP,SP,RETS}

// Registers that could be clobbered by function calls:

// {R0.L,R0.H,R1.L,R1.H,R2.L,R2.H,R3.L,R3.H,

// P0-P2,I0-I3,B0-B3,M0-M3,A0.W,A0.X,A1.W,A1.X,

// ASTAT,CC,AQ,LC0-LC1,LT0-LT1,LB0-LB1,

// RETS,SEQSTAT,SYSCFG,USP}

//---

// line "moo2.c":13

LINK 80;

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-101
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

.align 2

[--SP] = (R7:7, P5:5);

SP += -12;

R7 = R0;

...

Notes:

• The frame size is 96 bytes, indicating how much space is allocated
on the stack by the function. The frame size includes:

• 4 bytes for RETS

• 4 bytes for the frame pointer

• Space allocated by the compiler, for local variables
(80 bytes for loc_arr[20])

• Space required to save any callee-preserved registers
(8 bytes, for R7 and P5)

• Space required for parameters being passed to functions
called by this one (none in this case)

• “Scratch registers used” refers to those registers the compiler does
not need to save before modifying. In this case, the registers are R0,
R1, P0, P1, P2, and ASTAT. This does not include any registers that
are modified only by calls to other functions.

• “Call-preserved registers used” refers to those registers which must
be saved before modification, and restored afterwards. In this case,
the compiler uses R7 and P5, and the saved value for these registers
account for 8 bytes of frame size.

• “Registers that could be clobbered by function calls” refers to the
union of all the registers that will be modified by the calls to other
functions. In this case, the registers are the default scratch register
set, modified by calls to func1 and func2.

Assembly Optimizer Annotations

2-102 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Example B (Inlining Summary)

This is an example of inlined function reporting.

 1 void f4(int n);

 2 __inline void f3(int n)

 3 {

 4 f4(n);

 5 }

 6

 7 __inline void f2(int n)

 8 {

 9 while (n--) {

10 f3(n);

11 f3(2*n);

12 }

13 }

14 void f1(volatile unsigned int i)

15 {

16 f2(30);

17 }

f1 inlines the call of f2, which inlines the call of f3 in two places.
The procedure statistics for f1 reports these inlined calls:

_f1:

//--

// Procedure statistics

.

//Inlined in _f1:

// ExampleB.c:16:7’_f2

// ExampleB.c:11:11’_f3

// ExampleB.c:10:11’_f3

//--

.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-103
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

f1 reports that f2 was inlined at line 16 (column 7) and, implicitly, f1 also
inlined the two calls of f3 inside f2.

Instruction Annotations
Sometimes the compiler annotates certain assembly instructions. It does
so in order to point to possible inefficiencies in the original source code,
or when the -annotate-loop-instr switch (on page 1-30) is used to anno-
tate the instructions related to modulo-scheduled loops.

The format of an assembly line containing several instructions is changed.
Instructions issued in parallel are no longer shown all on the same assem-
bly line; each is shown on a separate assembly line, so that the instruction
annotations can be placed after the corresponding instructions. Thus

instruction_1 || instruction_2 || instruction_3;

is displayed as:

instruction_1 || // {annotations for instruction_1}

instruction_2 || // {annotations for instruction_2}

instruction_3; // {annotations for instruction_3}

Loop Identification
One useful annotation is loop identification—that is, showing the rela-
tionship between the source program loops and the generated assembly
code. This is not easy due to the various loop optimizations. Some of the
original loops may not be present, because they are unrolled. Other loops
get merged, making it difficult to describe what has happened to them.

Assembly Optimizer Annotations

2-104 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The assembly code generated by the compiler optimizer is annotated with
the following loop information:

• “Loop Identification Annotations” on page 2-104

• “Resource Definitions” on page 2-106

• “File Position” on page 2-110

• “Infinite Hardware Loop Wrappers” on page 2-112

Finally, the assembly code may contain compiler-generated loops that do
not correspond to any loop in the user program, but rather represent con-
structs such as structure assignment or calls to memcpy.

Loop Identification Annotations

Loop identification annotation rules are:

• Annotate only the loops that originate from the C looping con-
structs do, while, and for. Therefore, any goto defined loop is not
accounted for.

• A loop is identified by the position of the corresponding keyword
(do, while, for) in the source file.

• Account for all such loops in the original user program.

• Generally, loop bodies are delimited between the Lx: Loop at <file
position> and End Loop Lx assembly annotation. The former
annotation follows the label of the first block in the loop. The later
annotation follows the jump back to the beginning of the loop.
However, there are cases in which the code corresponding to a user
loop cannot be entirely represented between two markers. In such
cases the assembly code contains blocks that belong to a loop, but
are not contained between that loop’s end markers. Such blocks are
annotated with a comment identifying the innermost loop they
belong to, Part of Loop Lx.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-105
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

• Sometimes a loop in the original program does not show up in the
assembly file because it was either transformed or deleted. In either
case, a short description of what happened to the loop is given at
the beginning of the function.

• A program’s innermost loops are those loops that do not contain
other loops. In addition to regular loop information, the innermost
loops with no control flow and no function calls are annotated with
additional information such as:

• Cycle count. The number of cycles needed to execute one
iteration of the loop, including the stalls.

• Resource usage. The resources used during one iteration of
the loop. For each resource we show how many of that
resource are used, how many are available and the percent-
age of utilization during the entire loop. Resources are
shown in decreasing order of utilization. Note that 100%
utilization means that the corresponding resource is used at
its full capacity and represents a bottleneck for the loop.

• Register usage. If the -annotate-loop-instr compiler
switch is used, then the register usage table is shown. This
table has one column for every register that is defined or
used inside the loop. The header of the table shows the
names of the registers, written on the vertical, top down.
The registers that are not accessed do not show up. The col-
umns are grouped on data registers, pointer registers and all
other registers. For every cycle in a loop (including stalls)
there is a row in the array. The entry for a register has a '*'
on that row if the register is either live or being defined at
that cycle.

Assembly Optimizer Annotations

2-106 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

• Optimizations. Some loops are subject to optimizations
such as vectorization. These loops receive additional annota-
tions as described in the vectorization section.

• Sometimes the compiler generates additional loops that may or
may not be directly associated with the loops in the user program.
Whenever possible, the compiler annotations try to show the rela-
tion between such compiler-generated loops and the original source
code. For instance, for certain source level loops, the compiler gen-
erates two nested loops, with the outer loop behaving as an infinite
loop wrapper for the inner loop, and the outer loop is annotated as
an infinite wrapper.

Resource Definitions

For each cycle, a Blackfin processor may execute a single 16- or 32-bit
instruction, or it may execute a 64-bit multi-issued instruction consisting
of a 32-bit instruction and two 16-bit instructions. In either case, at most
one store instruction may be executed. Not all 16-bit instructions are valid
for the multi-issue slots, and not all of those may be placed into either
slot. Consequently, the resources are divided into group 1 (use of the first
16-bit multi-issue slot) and group 1 or 2 (use of either 16-bit multi-issue
slot).

The resource usage is described in terms of missed opportunities by the
compiler; in other words, slots where the compiler has had to issue a NOP
or MNOP instruction.

An instruction of the form:

R0 = R0 + R1 (NS) || R1 = [P0++] || NOP;

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-107
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

has managed to use both the 32-bit ALU slot and one of the 16-bit mem-
ory access slots, but has not managed to use the second 16-bit memory
access slot. Therefore, this counts as:

• 1 out of 1 possible 32-bit ALU/MAC instructions

• 1 out of 1 possible group 1 instructions

• 1 out of 2 possible group 1 or 2 instructions

• 0 out of 1 possible stores

A single-issued instruction is seen as occupying all issue-slots at once,
because the processor cannot issue other instructions in parallel.
Consequently, there are no opportunities missed by the compiler. Thus,
a single-issue instruction such as:

R2 = R0 + R1 ;

is counted as:

• 1 out of 1 possible 32-bit ALU/MAC instructions

• 1 out of 1 possible group 1 instructions

• 2 out of 2 possible group 1 or 2 instructions

• 1 out of 1 possible stores

This is because the compiler has not had to issue NOP instructions or MNOP
instructions, and so no resources have been unutilized.

Example C (Loop Identification)

Consider the following example:

1 int bar(int a[10000])

2 {

3 int i, sum = 0;

4 for (i = 0; i < 9999; ++i)

Assembly Optimizer Annotations

2-108 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

5 sum += (sum + 1);

6 while (i-- < 9999) /* this loop doesn't get executed */

7 a[i] = 2*i;

8 return sum;

9 }

The two loops are accounted for as follows:
_bar:

//---

............... procedure statistics

//---

// Original Loop at "ExampleC.c" line 6 col 3

// Loop structure removed due to constant propagation.

//---

// line "ExampleC.c":4

P1 = 9999;

.align 2

R0 = 0;

// line 5

R1 = 1;

// line 4

LOOP .P34L2L LC0 = P1;

.P34L2:

//--

// Loop at "ExampleC.c" line 4 col 3

//--

// This loop executes 1 iteration of the original loop

// in estimated 2 cycles.

//--

// This loop's resource usage is:

// 16-bit Instruction used 4 out of 4 (100.0%)

// 32-bit Instruction used 2 out of 2 (100.0%)

// Group 1 used 2 out of 2 (100.0%)

//---

LOOP_BEGIN .P34L2L;

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-109
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

// line 5

R2 = R0 + R1;

R0 = R0 + R2;

// line 4

LOOP_END .P34L2L;

.P34L13:

//--

// Part of top level (no loop)

//--

// line 8

RTS;

.LN._bar.end:

Notes:

• The keywords identifying the two loops are:

• for – Its position is in the file ExampleC.c, line 4, column 3.

• while – Its position is in file ExampleC.c, line 6, column 3.

• Immediately after the procedure statistics, a message states that the
loop at line 6 in the user program was removed. The reason was
constant propagation, which in this case realizes that the value of i
after the first loop is 9999, and that the second loop does not get
executed.

• The start of the loop at line 4 is marked in the assembly by the
“Loop at ExampleC.c, line 4, column 3” annotation. This annota-
tion follows the loop label .P34L2. The loop label End Loop L2 is
used to identify the end of the loop.

• The loop resource information accounts for all instructions and
stalls inside the loop. In this particular case, the loop body is exe-
cuted in two cycles, one instruction for each cycle. Both
instructions are single-issue instructions. The compiler has not
issued any NOP or MNOP instructions, so it reports full utilization.

Assembly Optimizer Annotations

2-110 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

File Position

As seen in Example C, the following file position is given, using the file
name, line number, and the column number in that file:

"ExampleC.c" line 4 col 6

This scheme uniquely identifies a source code position, unless inlining is
involved. In the presence of inlining, a piece of code from a certain file
position can be inlined at several places, which in turn can be inlined at
other places. Since inlining can happen an unspecified number of times, a
recursive scheme is used to describe a general file position.

Therefore, a <general file position> is <file position> inlined from
<general file position>.

Example D (Inlining Locations)

Consider the following source code:

5 void f2(int n);

6 inline void f3(int n)

7 {

8 while(n--)

9 f4();

10 if (n == 7)

11 f2(3*n);

12 }

13

14 inline void f2(int n)

15 {

16 while(n--) {

17 f3(n);

18 f3(2*n);

19 }

20 }

21 void f1(volatile unsigned int i)

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-111
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

22 {

23 f2(30);

24 }

The annotations generated for function f1 is structured as follows:

.....

// Inlined in _f1:

// ExampleD.c:23:5'_f2

// ExampleD.c:18:7'_f3

// ExampleD.c:17:7'_f3

//---

// line "ExampleD.c":22

LINK 0;

.....

.P36L4:

//--

// Loop at "ExampleD.c" line 16 col 3 inlined

// at "ExampleD.c" line 23 col 5

//--

.....

.P36L7:

//--

// Loop at "ExampleD.c" line 8 col 3 inlined at "ExampleD.c"

// line 17 col 7 inlined at "ExampleD.c" line 23 col 5

//--

.....

//--

// End Loop L7

//--

.P36L31:

//--

// Part of Loop 4, depth 1

//--

.P36L8:

Assembly Optimizer Annotations

2-112 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

// line 10

.....

.P36L15:

//---

// Loop at "ExampleD.c" line 8 col 3 inlined at "ExampleD.c"

// line 18 col 7 inlined at "ExampleD.c" line 23 col 5

//--

.....

Infinite Hardware Loop Wrappers

The compiler tries to generate hardware loops whenever possible to avoid
the delays involved with jump instructions. But hardware loops require a
trip count, and that is not always available. For instance, consider this
loop whose exit condition is not given by a trip count:

do {

body

} while (condition);

The compiler could generate code like this:

L_start:

body;

CC = condition;

IF CC JUMP L_start (bp);

This way the conditional jump takes at least 5 cycles during each iteration.
However, if we had a hardware loop that could run forever, then the fol-
lowing alternative would be better:

LOOP L_start LC0 = infinite;

LOOP_BEGIN L_start;

body;

CC = condition;

IF !CC JUMP L_out;

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-113
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

LOOP_END L_start;

L_out:

This is 4 cycles better as the conditional jump takes only one cycle if it is
not taken. However, the hardware does not have infinite hardware loops,
so the compiler emulates them by using the highest possible trip count for
the hardware loop, and wrapping the loop in an infinite loop:

L_infinite_wrapper:

P0 = -1;

LOOP L_start LC0 = P0;

LOOP_BEGIN L_start;

body;

CC = condition;

IF !CC JUMP L_out;

LOOP_END L_start;

JUMP L_infinite_wrapper;

// end loop infinite_wrapper

L_out:

The two loops behave as a single infinite loop, with a minor overhead,
even though the hardware loop has to terminate. If the condition is never
satisfied, the outer loop is executed forever.

The compiler annotations annotate the outer loop as the infinite hardware
loop wrapper for the inner loop.

Example E (Hardware Loop Wrappers)

Consider the following example:

1 int pseudo_mod(int l, int r)

2 {

3 while (l > r) {

4 l -= r;

5 }

Assembly Optimizer Annotations

2-114 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

6 return l;

7 }

and the code generated for this:

CC = R1 < R0;

if !CC jump .P34L2 ;

P1 = -1;

.P34L10:

//--

// Loop at "ExampleE.c" line 3 col 3

// (infinite hardware loop wrapper)

//--

LOOP .P34L3L LC0 = P1;

.P34L3:

//--

// Loop at "ExampleE.c" line 3 col 3

//--

LOOP_BEGIN .P34L3L;

// line 4

R0 = R0 - R1;

// line 3

CC = R1 < R0;

if !CC jump .P34L2 ;

.P34L9:

LOOP_END .P34L3L;

//--

// End Loop L3

//--

.P34L11:

//--

// Part of Loop 10, depth 1

//--

jump .P34L10;

//--

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-115
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

// End Loop L10

//--

.P34L2:

//--

// Part of top level (no loop)

//--

// line 6

RTS;

Vectorization
The trip count of a loop is the number of times the loop body gets
executed.

Under certain conditions, the compiler can take two operations from con-
secutive iterations of a loop and execute them in a single, more powerful
instruction. This gives a loop a smaller trip count. The transformation in
which operations from two subsequent iterations are executed in one more
powerful single operation is called “vectorization”.

For instance, the original loop may start with a trip count of 1000.

for(i=0; i< 1000; ++i)

a[i] = b[i] + c[i];

After the optimization, the vectorized loop has a final trip count of 500.
The vectorization factor is the number of operations in the original loop
that are executed at once in the transformed loop. It is illustrated using
some pseudo code below.

for(i=0; i< 1000; i+=2)

(a[i], a[i+1]) = (b[i],b[i+1]) .plus2. (c[i], c[i+1])

In the above example, the vectorization factor is 2. A loop may be vector-
ized more than once.

Assembly Optimizer Annotations

2-116 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

If the trip count is not a multiple of the vectorization factor, some itera-
tions need to be peeled off and executed unvectorized. If in the previous
example, the trip count of the original loop was 1001, then the vectorized
code would be:

for(i=0; i< 1000; i+=2)

(a[i], a[i+1]) = (b[i],b[i+1]) .plus2. (c[i], c[i+1]);

a[1000] = b[1000] + c[1000];

// This is one iteration peeled from

// the back of the loop.

In the above examples, the trip count is known and the amount of peeling
is also known. If the trip count (a variable) is not known, the number of
peeled iterations depends on the trip count. In such cases, the optimized
code contains peeled iterations that are executed conditionally.

Unroll and Jam

Another vectorization-related transformation is unroll and jam. Consider
the following function:

/* unroll and jam example */

void f_unroll_and_jam(short a[][40], short *restrict c) {

int i, j;

__builtin_aligned(a, 4);

__builtin_aligned(c, 4);

for (i=0; i<60; i++) {

short sum=0;

for (j=0; j<40; j++) {

sum += a[j][i];

}

c[i] = sum;

}

}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-117
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

The outer loop can be unrolled twice and the result is:

void f_unroll_and_jam(short a[][40], short *restrict c) {

int i, j;

__builtin_aligned(a, 4);

__builtin_aligned(c, 4);

for (i=0; i<60; i+=2) {

{

short sum=0;

for (j=0; j<40; j++) {

sum += a[j][i];

}

c[i] = sum;

}

{

short sum=0;

for (j=0; j<40; j++) {

sum += a[j][i+1];

}

c[i+1] = sum;

}

}

}

The two inner loops can be jammed together. We shall assume that we
have a plus_eq2 operation which is a more powerful version of += that can
handle two short integers at a time.

The result is:

void f_unroll_and_jam(short a[][40], short *restrict c) {

int i, j;

__builtin_aligned(a, 4);

__builtin_aligned(c, 4);

for (i=0; i<60; i+=2) {

short sum0=0;

Assembly Optimizer Annotations

2-118 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

short sum1=0;

for (j=0; j<40; j++) {

(sum0, sum1) .plus_eq2. (a[j][i], a[j][i+1]);

}

(c[i], c[i+1]) = (sum0, sum1);

}

}

Example F (Unroll and Jam)

The assembly-annotated code for the above f_unroll_and_jam example is:

M0 = 80 (X):

LOOP ._P1L2 LC1 = P2;

// "ExampleF.c" line 8 col 83

P2 = 39;

.P1L2:

//---

// Loop at "ExampleF.c" line 6 col 4

//---

// Loop was unrolled for unroll and jam 2 times

//---

LOOP_BEGIN ._P1L2;

I0 = P0 :

R0 = ROT R1 by 0 || NOP || R2 = [I0++M0];

LOOP ._P1L4 LC0 = P2;

.P1L4:

//---

// Loop at "ExampleF.c" line 8 col 8;

//---

// This jammed loop executes 2 iterations of the original loop

// in 1 cycle.

// (1 iteration of the inner loop for each of the 2 unrolled

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-119
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

// iterations of the outer loop)

//---

// This loop's resource usage is:

// 32-bit ALU/MAC used 1 out of 1 (100.0%)

// Group 1 or 2 used 1 out of 2 (50.0%)

//---

// Loop was jammed by unroll and jam 2 times

//---

// "ExampleF.c" line 9 col 13

LOOP_BEGIN ._P1L4;

R0 = R0 +|+ R2 || NOP || R2 = [I0++M0];

// "ExampleF.c" line 8 col 8

R0 = R0 + R2;

LOOP_END ._P1L4;

//---

// End Loop L4

//---

.P1L5:

//---

// Part of Loop 2, depth 1

//---

// "ExampleF.c" line 9 col 13

R0 = R0 +|+ R2;

// "ExampleF.c" line 11 col 8

[P1++] = R0;

P0 += 4;

// "ExampleF.c" line 6 col 4

LOOP_END ._P1L2;

//---

// End Loop L2

//---

Assembly Optimizer Annotations

2-120 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Loop Flattening

Another transformation, related to vectorization, is “loop flattening”.
Loop flattening takes two nested loops that run N1 and N2 times respec-
tively, and transforms them into a single loop that runs N1*N2 times.

Example G (Loop Flattening):

For instance, the following function

void copy_v(int a[][100], int b[][100]) {

int i,j;

for (i=0; i< 30; ++i)

for (j=0; j < 100; ++j)

a[i][j] = b[i][j];

}

is transformed into

void copy_v(int a[][100], int b[][100]) {

int i,j;

int *p_a = &a[0][0];

int *p_b = &b[0][0];

for (i=0; i< 3000; ++i)

p_a[i] = p_b[i];

}

This may further facilitate the vectorization process:

void copy_v(int a[][100], int b[][100]) {

int i,j;

int *p_a = &a[0][0];

int *p_b = &b[0][0];

for (i=0; i< 3000; i+=2)

(p_a[i], p_a[i+1]) = (p_b[i], p_b[i+1]);

}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-121
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

The assembly output for the loop flattening example is:

_copy_v:

//---

........ procedure statistics

//---

// Original Loop at "ExampleG.c" line 3 col 3 -- loop

// flattened into Loop at "ExampleG.c" line 4 col 5

//---

.................... procedure code

._P1L2:

//--

// Loop at "ExampleG.c" line 4 col 5

//.................. loop annotations

//--

//.................. loop body

//--

// End Loop L2

//--

._P1L3:

//--

// Part of top level (no loop)

//--

// line 7

RTS;

._copy_v.end:

Vectorization Annotations

For every loop that is vectorized, the following information is provided:

• The vectorization factor

• The number of peeled iterations

Assembly Optimizer Annotations

2-122 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

• The position of the peeled iterations (front or back of the loop)

• Information about whether peeled iterations are conditionally or
unconditionally executed

For every loop pair subject to unroll and jam, the following information is
provided:

• The number of times the unrolled outer loop was unrolled

• The number of times the inner loop was jammed

For every loop pair subject to loop flattening, the following information is
provided:

• The loop that is lost

• The remaining loop that it was merged with

Example H (Vectorization):

Consider the test program:

void add(short *a, short *restrict b, short *restrict c, int dim)

{

int i, j;

for (i = 0 ; i < dim; ++i)

a[i] = b[i] + c[i];

}

for which the annotations produced are:

_add:

//--

//... procedure statistics

//... loop selection code

.P34L29:

//--

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-123
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

// Loop at "ExampleH.c" line 3 col 3

//--

// This loop executes 2 iterations of the original loop

// in estimated 2 cycles.

//--

... loop body ...

//--

// Loop was vectorized by a factor of 2.

//--

// Vectorization peeled 1 conditional iteration from the back

// of the loop because of an unknown trip count, possibly not a

// multiple of 2.

//--

// Consider using pragma loop_count to specify the trip count

// or trip modulo in order to avoid conditional peeling.

//--

//--

// End Kernel for Loop L29

//--

.P34L23:

//--

// Loop at "ExampleH.c" line 3 col 3 (unvectorized version)

//--

// This loop executes 1 iteration of the original loop in

// estimated 2 cycles.

//--

//... loop body ...

//--

// End Kernel for Loop L23

//--

//...

The compiler has generated two versions of the loop: a vectorized version
and a non-vectorized version. The vectorized version will be executed as
long as all the pointers are sufficiently aligned. The compiler has peeled a

Assembly Optimizer Annotations

2-124 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

single iteration from the end of the vectorized version of the loop, which
will be executed if the pointers are all aligned, but dim is not a multiple of
two. Note that peeling could be avoided if additional information about
the loop count was provided and the compiler advice “Consider using
pragma loop_count to specify the trip count or trip modulo, in

order to avoid conditional peeling” informs the user of this.

Modulo Scheduling Information
For every modulo-scheduled loop (see also “Modulo Scheduling” on
page 2-79), in addition to regular loop annotations, the following infor-
mation is provided:

• The initiation interval (II)

• The final trip count if it is known: the trip count of the loop as it
ends up in the assembly code

• A cycle count representing the time to run one iteration of the
pipelined loop

• The minimum trip count, if it is known and the trip count is
unknown

• The maximum trip count, if it is known and the trip count is
unknown

• The trip modulo, if it is known and the trip count is unknown

• The stage count (iterations in parallel)

• The MVE unroll factor

• The resource usage

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-125
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

• The minimum initiation interval due to resources (res MII)

• The minimum initiation interval due to dependency cycles
(rec MII)

Annotations for Modulo-Scheduled Instructions

The -annotate-loop-instr switch (on page 1-30) can be used to produce
additional annotation information for the instructions that belong to the
prolog, kernel, or epilog of the modulo-scheduled loop.

Consider the example whose schedule is in Table 2-11 on page 2-90.
Remember that this example does not use a real DSP architecture, but
rather a theoretical one able to schedule four instructions on a line, and
each line takes one cycle to execute. We can view the instructions involved
in modulo scheduling as in Table 2-13 on page 2-130.

Due to variable expansion, the body of the modulo-scheduled loop con-
tains MVE=2 unrolled instances of the kernel, and the loop body contains
instructions from 4 iterations of the original loop. The iterations in prog-
ress in the kernel are shown in the table heading, starting with Iteration
0 which is the oldest iteration in progress (in its final stage). This example
uses two register sets, shown in the table heading.

The instruction annotations contain the following information:

• The part of the modulo-scheduled loop (prolog, kernel, or epilog)

• The loop label: This is required since prolog and epilog instruc-
tions appear outside of the loop body and are subject to being
scheduled with other instructions.

• ID: A unique number associated with the original instruction in
the unscheduled loop that generates the current instruction. It is
useful because a single instruction in the original loop can expand
into multiple instructions in a modulo-scheduled loop. In our
example, the annotations for all instances of I1 and I1_2 have the

Assembly Optimizer Annotations

2-126 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

same ID, meaning they all originate from the same instruction (I1)
in the unscheduled loop.

The IDs are assigned in the order the instructions appear in the
kernel and they might repeat for MVE unroll > 1.

• Loop-carry path, if any: If an instruction belongs to the loop-carry
path, its annotation will contain a ‘*’. If several such paths exist,
‘*2’ is used for the second one, ‘*3’ for the third one, and so on.

• sn: The stage count to which the instruction belongs

• rs: The register set used for the current instruction (useful when
MVE unroll > 1, in which case rs can be 0, 1, ..., mve-1). If the
loop has an MVE of 1, the instruction’s rs is not shown.

• Additionally, the instructions in the kernel are annotated with:

• Iteration. Iter: specifies the iteration of the original loop an
instruction is on in the schedule.

• In a modulo-scheduled kernel, there are instructions from
(SC+MVE-1) iterations of the original loop. Iter=0 denotes
instructions from the earliest iteration of the original loop,
with higher numbers denoting later iterations.

Thus, the instructions corresponding to the schedule in Table 2-13 on
page 2-130 for a hypothetical machine are annotated as follows:

1 : I1; // {L10 prolog:id=1,sn=0,rs=0}

2 : I2, // {L10 prolog:id=2,sn=0,rs=0}

3 : I3; // {L10 prolog:id=3,sn=0,rs=0}

4 : I4, // {L10 prolog:id=4,sn=1,rs=0}

5 : I5, // {L10 prolog:id=5,sn=1,rs=0}

6 : I1_2; // {L10 prolog:id=1,sn=0,rs=1}

7 : I6, // {L10 prolog:id=6,sn=1,rs=0}

8 : I2_2, // {L10 prolog:id=2,sn=0,rs=1}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-127
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

9 : I3_2; // {L10 prolog:id=3,sn=0,rs=1}

10://--

11:// Loop at ...

12://--

13:// This loop executes 2 iterations of the original loop

// in estimated 4 cycles.

14://--

15:// Unknown Trip Count

16:// Successfully found modulo schedule with:

17:// Initiation Interval (II) = 2

18:// Stage Count (SC) = 3

19:// MVE Unroll Factor = 2

20:// Minimum initiation interval due to recurrences

// (rec MII) = 2

21:// Minimum initiation interval due to resources

// (res MII) = 2.00

22://---

23:L10:

23:LOOP (N-2)/2;

25: I7, // {kernel:id=7,sn=2,rs=0,iter=0}

26: I4_2, // {kernel:id=4,sn=1,rs=1,iter=1}

27: I5_2, // {kernel:id=5,sn=1,rs=1,iter=1,*}

28: I1; // {kernel:id=1,sn=0,rs=0,iter=2}

29: I8, // {kernel:id=8,sn=2,rs=0,iter=0}

30: I6_2, // {kernel:id=6,sn=1,rs=1,iter=1}

31: I2, // {kernel:id=2,sn=0,rs=0,iter=2}

32: I3; // {kernel:id=3,sn=0,rs=0,iter=2,*}

33: I7_2, // {kernel:id=7,sn=2,rs=1,iter=1}

34: I4, // {kernel:id=4,sn=1,rs=0,iter=2}

35: I5, // {kernel:id=5,sn=1,rs=0,iter=2,*}

36: I1_2; // {kernel:id=1,sn=0,rs=1,iter=3}

37: I8_2, // {kernel:id=8,sn=2,rs=1,iter=1}

38: I6, // {kernel:id=6,sn=1,rs=0,iter=2}

39: I2_2, // {kernel:id=2,sn=0,rs=1,iter=3}

Assembly Optimizer Annotations

2-128 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

40: I3_2; // {kernel:id=3,sn=0,rs=1,iter=3,*}

41:END LOOP

42:

43: I7, // {L10 epilog:id=7,sn=2,rs=0}

44: I4_2, // {L10 epilog:id=4,sn=1,rs=1}

45: I5_2; // {L10 epilog:id=5,sn=1,rs=1}

46: I8, // {L10 epilog:id=8,sn=2,rs=0}

47: I6_2; // {L10 epilog:id=6,sn=1,rs=1}

48: I7_2; // {L10 epilog:id=7,sn=2,rs=1}

49: I8_2; // {L10 epilog:id=8,sn=2,rs=1}

Lines 10-22 define the kernel information: loop name and modulo-sched-
ule parameters: II, stage count, etc.

Lines 25-40 show the kernel.

Each instruction in the kernel has an annotation between {}, inside a
comment following the instruction. If several instructions are executed in
parallel, each gets its own annotation.

For instance, line 27 looks like:

27: I5_2, // {kernel:id=5,sn=1,rs=1,iter=1,*}

This annotation describes:

• That this instruction belongs to the kernel of the loop starting at
L10.

• That this and the other three instructions that have ID=5 originate
from the same original instruction in the unscheduled loop:

5: I5, // {L10 prolog:id=5,sn=1,rs=0}

...

27: I5_2, // {kernel:id=5,sn=1,rs=1,iter=1,*}

...

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-129
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

35: I5, // {kernel:id=5,sn=1,rs=0,iter=2,*}

...

45: I5_2; // {L10 epilog:id=5,sn=1,rs=1}

• sn=1 shows that this instruction belongs to stage count 1.

• rs=1 shows that this instruction uses register set 1.

• Iter=1 specifies that this instruction belongs to the second itera-
tion of the original loop (Iter numbers are zero-based).

• The ‘*’ indicates that this is part of a loop carry path for the loop.
In the original, unscheduled loop, that path is I5 -> I3 -> I5. Due
to unrolling, in the scheduled loop the “unrolled” path is I5_2 ->
I3->I5->I3_2->I5_2.

The prolog and epilog are not clearly delimited in blocks by themselves,
but their corresponding instructions are annotated similar to the ones in
the kernel except that they do not have an Iter field and that they are
preceded by a tag specifying which prolog or epilog they belong to:

5 : I5, // {L10 prolog:id=5,sn=1,rs=0}

...

27: I5_2, // {kernel:id=5,sn=1,rs=1,iter=1,*}

...

35: I5, // {kernel:id=5,sn=1,rs=0,iter=2,*}

...

45: I5_2; // {L10 epilog:id=5,sn=1,rs=1}

Note that the prolog/epilog instructions may mix with other instructions
on the same line.

This situation does not occur in this example; however, in a different
example it might have:

I5_2, // {L10 epilog:id=5,sn=1,rs=1}

I20;

Assembly Optimizer Annotations

2-130 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

This shows a line with two instructions. The second instruction I20 is
unrelated to modulo scheduling, and therefore it has no annotation.

Warnings, Failure Messages, and Advice
There are innocuous programming constructs that have a negative effect
on performance. Since you may not be aware of the hidden problems, the
compiler annotations try to give warnings when such situations occur.
Also, if a program construct keeps the compiler from performing a certain
optimization, the compiler gives the reason why that optimization was
precluded.

Table 2-13. Modulo-Scheduled Instructions

Part Iteration 0 Iteration 1 Iteration 2 Iteration 3 ...

Register Set 0 Register Set 1 Register Set 0 Register Set 1

1 prolog I1

2 prolog I2, I3

3 prolog I4, I5 I1_2

4 prolog I6 I2_2, I3_2

5 L: Loop ...

6 kernel I7 I4_2, I5_2 I1

7 kernel I8 I6_2 I2, I3

8 kernel I7_2 I4, I5 I1_2

9 kernel I8_2 I6 I2_2, I3_2

10 END Loop

11 epilog I7_2 I4_2, I5_2

12 epilog I8_2 I6_2

13 epilog I7_2

14 epilog I8_2

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-131
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

In some cases, the compiler assumes it could do a better job if you would
change your code in certain ways. In these cases, the compiler offers advice
on the potentially beneficial code changes. However, take this cautiously.
While it is likely that making the suggested change will improve the per-
formance, there is no guarantee that it will actually do so.

Some of the messages are:

• This loop was not modulo scheduled because it was optimized for
space
When a loop is modulo-scheduled, it often produces code that has
to precede the scheduled loop (the prolog) and follow the
scheduled loop (the epilog). This almost always increases the size of
the code. That is why, if you specify an optimization that mini-
mizes the space requirements, the compiler doesn't attempt
modulo scheduling of a loop.

• This loop was not modulo scheduled because it contains calls or
volatile operations
Due to the restrictions imposed by calls and volatile memory
accesses, the compiler does not try to modulo-schedule loops con-
taining such instructions.

• This loop was not modulo scheduled because it contains too
many instructions
The compiler does not try to modulo-schedule loops that contain
many instructions, because the potential for gain is not worth the
increased compilation time.

• This loop was not modulo scheduled because it contains jump
instructions
Only single block loops are modulo-scheduled. You can attempt to
restructure your code and use single block loops.

Assembly Optimizer Annotations

2-132 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

• This loop would vectorize more if alignment were known
The loop was vectorized, but it could be vectorized even more if
the compiler could deduce a stronger alignment of some memory
locations used in the loop.

• This loop would vectorize if alignment were known
The loop was not vectorized because of unknown pointer
alignment.

• Consider using pragma loop_count to specify the trip count or
trip modulo
This information may help vectorization.

• Consider using pragma loop_count to specify the trip count or
trip modulo, in order to prevent peeling
When a loop is vectorized, but the trip count is not known, some
iterations are peeled from the loop and executed conditionally
(based on the run-time value of the trip count). This can be
avoided if the trip count is known to be divisible by the number of
iterations executed in parallel as a result of vectorization.

• operation of this size is implemented as a library call
This message is issued when a source code operation results in a
library call, due to lack of hardware support for performing that
operation on operands of that size.

• operation is implemented as a library call
This message is issued when a source code operation results in a
library call, due to lack of direct hardware support. For instance, an
integer division results in a library call.

• MIN operation could not be generated because of unsigned oper-
ands
This message is issued when the compiler detects a MIN operation
performed between unsigned values. Such an operation cannot be
implemented using the hardware MIN instruction, which requires
signed values.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-133
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

• MAX operation could not be generated because of unsigned oper-
ands
This message is issued when the compiler detects a MAX operation
performed between unsigned values. Such an operation cannot be
implemented using the hardware MAX instruction, which requires
signed values.

• Use of volatile in loops precludes optimizations
In general, volatile variables hinder optimizations. They cannot be
promoted to registers, because each access to a volatile variable
requires accessing the corresponding memory location. The
negative effect on performance is amplified if volatile variables are
used inside loops. However, there are legitimate cases when you
have to use a volatile variable exactly because of this special treat-
ment by the optimizer. One example would be a loop polling if a
certain asynchronous condition occurs. This message does not dis-
courage the use of volatile variables, it just stresses the implications
of such a decision.

• Jumps out of this loop prevent efficient hardware loop generation
Due to the presence of jumps out of a loop, the compiler either
cannot generate a hardware loop, or was forced to generate one that
has a conditional exit.

• Consider using a 4-byte integral type for the variable name, for
more efficient hardware loop generation
Using short-typed variables as loop control variables limits optimi-
zation because the short variables may wrap.

Assembly Optimizer Annotations

2-134 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

For instance, in the following example,

unsigned short i;

for (i = 0; i < c; i++)

....

if c > 65536, then the loop will run forever because i wraps from
65535 back to 0. In this case, the compiler must add a wrapper.
The compiler recommends using an int variable instead (int or
unsigned int) unless the smaller size is critical to your program’s
behavior.

• There are N more instructions related to this call
Certain operations are implemented as library calls. In those cases
the call instruction in the assembly code is annotated explaining
that the user operation was implemented as a call. However the
cost of the operation may be slightly larger than the cost of the call
itself, due to additional overhead required to pass the parameters
and to obtain the result. This message gives an estimate of the
number of instructions in such an overhead associated with a
library call.

• This function calls the “alloca” function which may increase the
frame size
The assembly annotations try to estimate the frame size for a given
function. However, if the function makes explicit use of alloca
then this increases the frame size beyond the original reported
estimate.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-135
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Analyzing Your Application
The compiler and run-time libraries provide several features for analyzing
the run-time behavior of your application. These features allow you to
better debug errors and fine-tune the program. Features discussed in this
chapter are:

• “Profiling With Instrumented Code” on page 2-135 discusses how
to profile the application, measuring the time spent in individual
functions in an application.

• “Stack Overflow Detection” on page 2-142 details how to use the
stack overflow feature to determine when an application has
exceeded its maximum stack size.

As well as providing compiler instrumented profiling, VisualDSP++ also
provides statistical profiling. For more information, see “Using the Statis-
tical Profiler” on page 2-8.

Profiling With Instrumented Code
Instrumented profiling is an application profiling tool that provides a
summary of cycle counts for functions within an application. To produce
an instrumented profiling summary:

1. Compile your application with one of the -p switches
(on page 1-65). For best results, use the optimization switches that
will be enabled in the released version of the application.

2. Gather the profile. Run the executable with a training data set. The
training data set should be representative of the data that you
expect the application to process in the field. The profile is stored
in a file called mon.out.

Analyzing Your Application

2-136 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

3. Generate the profiling report, by invoking the profblkfn tool:

profblkfn.exe dxe

where dxe is the name of the executable.

4. Based on the profiling report, modify the application to improve
performance in critical sections of code.

 Instrumented profiling works by planting function calls into your
application which record the cycle count (and in multi-threaded
cases, the thread identifier) at certain points. Applications built
with instrumented profiling should be used for development and
should not be released.

 Instrumented profiling requires that an I/O device is available in
the application to produce its profiling data. The default I/O
device will be used to perform I/O operations for instrumented
profiling.

 Instrumented profiling is not supported with VDK-based
applications.

Generating an Application With Instrumented Profiling

The -p compiler switches (on page 1-65) enable instrumented profiling in
the compiler when compiling C/C++ source into assembly. The compiler
cannot instrument assembly files or files that have already been compiled
into object files.

To enable one of the -p switches in an IDDE project:

1. With the project loaded in the IDDE, select “Project Options...”
from the “Project” menu.

2. Select “Profiling” from the “Compile” section in the tree pane of
the “Project Options” dialog box.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-137
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

3. Select the “Enable compiler instrumented profiling” check box.

4. Click the “OK” button.

 When compiling with the -p switch, the compiler and linker will
define the preprocessor macro _INSTRUMENTED_PROFILING with a
value of 1.

Running the Executable

To produce a profiling report, run the application either on the simulator
or on hardware. The application will produce a profiling file which is used
to create the profiling report. The profiling file will be called mon.out,
and will be located in the same directory as the executable.

The profiling output file needs to be converted into a readable report.
This can be achieved using the command-line profblkfn.exe tool. See
“Invoking the profblkfn.exe Command-Line Reporter” on page 2-137 for
information on how to produce a report from the mon.out profile data file.

Invoking the profblkfn.exe Command-Line Reporter

The profblkfn.exe command-line tool produces a plain-text report
printed to the command-line console. To produce a report:

• Invoke the profblkfn.exe tool (located in the top directory of your
VisualDSP++ installation), providing the application executable as
a parameter. For example: profblkfn.exe test.dxe

The report is displayed via standard output, typically to the console or
command line.

Analyzing Your Application

2-138 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Contents of the Profiling Report

The profiling report lists each profiled function called in the application,
how many times it was called, and the inclusive and exclusive cycle counts
for that function.

• Exclusive cycle counts include only the cycles spent processing the
function. This is referred to by the “fn only” column in generated
report files.

• Inclusive cycle counts also include the sum total of cycle counts in
any function invoked from this specified function. This is referred
to by the “fn+nested” column in generated report files.

• The cycle counts generated are the total cycles spent in all invoca-
tions of the specified function within the program.

Listing 2-2. Example Program for Instrumented Profiling

int apples, bananas;

void apple(void) {

 apples++; // 10 cycles

}

void banana(void) {

 bananas++; // 10 cycles

 apple(); // 10 cycles

} // 20 cycles

int main(void) {

 apple(); // 10 cycles

 apple(); // 10 cycles

 banana(); // 20 cycles

 return 0; // 40 inclusive cycles total

} // + exclusive cycles for main itself

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-139
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

For example, in the program shown as Listing 2-2 on page 2-138, assume
that apple() takes 10 cycles per call and assume that banana() takes 20
cycles per call, of which 10 are accounted for by its call to apple(). The
program, when run, calls apple() three times: twice directly and once
indirectly through banana(). The apple() function clocks up 30 cycles of
execution, and this is reported for both its inclusive and exclusive times,
since apple() does not call other functions. The banana() function is
called only once. It reports 10 cycles for its exclusive time, and 20 cycles
for its inclusive time. The exclusive cycles are for the time when banana()
is incrementing bananas and is not “waiting” for another function to
return, and so it reports 10 cycles. The inclusive cycles include these 10
exclusive cycles and also include the 10 cycles apple() used when called
from banana(), giving a total of 20 inclusive cycles.

The main() function is called only once, and calls three other functions
(apple() twice, banana() once). Between them, apple() and banana() use
up to 40 cycles, which appear in the main() function’s inclusive cycles.
The main() function’s exclusive cycles are for the time when main() is
running, but is not in the middle of a call to either apple() or banana().

 Time spent in unprofiled functions will be added to the exclusive
cycle count for the innermost profiled function, if one is active.
(An active profiled function is a profiled function which has an
entry in the call stack, that is, it has begun execution but has not
yet returned.) For example, if apple() called the system function
malloc(), the time spent in malloc() (which is uninstrumented)
will be added to the time for apple().

Analyzing Your Application

2-140 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

profblkfn Command-Line Tool Report Format

The profblkfn.exe tool emits a report to standard output. The following
is an example of the tool’s output:
Function Name ExecCount Fn Only Fn+nested

_main 1 40 80

_apple 3 30 30

_banana 1 10 20

The “ExecCount” column contains the execution count for the given
function. The “Fn Only” column contains the exclusive cycle count for a
function. The “Fn+nested” column contains the inclusive cycle count for a
function. For more information, see “Contents of the Profiling Report”
on page 2-138.

Profiling Data Storage

The profiling information is stored at runtime in memory allocated from
the system heap. If the profiling run-time support cannot allocate from
the heap (usually because the heap is exhausted), the profiling runtime
will issue a diagnostic and stop storing information. The diagnostic is
'Profiler Resource Error: heap allocation failed so profiling

cannot be completed'. The profiling data available when this happens
will be incomplete and probably not very useful. To avoid this problem,
increase the size of the system heap until the error is no longer seen when
running. For more information, see “Controlling System Heap Size and
Placement” on page 1-364.

Computing Cycle Counts

When profiling is enabled, the compiler instruments the generated code
by inserting calls to a profiling library at the start of and end of each com-
piled function. The profiling library samples the processor’s cycle counter
and records this figure against the function just started or just completed.
The profiling library itself consumes some cycles, and these overheads are

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-141
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

not included in the figures reported for each function, so the total cycles
reported for the application by the profiler will be less than the cycles
consumed during the life of the application. In addition to this overhead,
there is some approximation involved in sampling the cycle counter,
because the profiler cannot guarantee how many cycles will pass between a
function’s first instruction and the sample. This is affected by the optimi-
zation levels, the state preserved by the function, and the contents of the
processor’s pipeline. The profiling library knows how long the call entry
and exit takes “on average”, and adjusts its counts accordingly. Because of
this adjustment, profiling using instrumented code provides an approxi-
mate figure, with a small margin for error. This margin is more significant
for functions with a small number of instructions than for functions with
a large number of instructions.

Non-Terminating Applications

When an instrumented application is executed, it records data in the
application, finally flushing this data to the host computer upon termina-
tion. Non-terminating single-threaded applications are not supported, as
the profiled data is never flushed to the host computer.

Profiling of Interrupts

A single-threaded application (that is, not built with the –threads
compiler switch) will add any time spent in interrupts to the time of the
innermost, active profiled function that was interrupted. Time spent in
the interrupt handler will not be visible in the profiling report produced.
The compiler does not instrument functions declared as event handlers.

Analyzing Your Application

2-142 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Behavior That Interferes With Instrumented Profiling

Several features of the C and C++ programming languages can have an
impact on profiling results. The following features can result in unex-
pected results from profiling:

• Unexpected termination of application. If the application termi-
nates unexpectedly, the profiled information will not be flushed to
the host computer. To ensure the profiling information is
complete, the application must terminate by unwinding its stack
(returning from main() or their thread creation function), or by
calling exit().

• Unexpected flow control. Functions that perform unexpected flow
control, such as C setjmp/longjmp, C++ exceptions or calling other
instrumented functions via asm() statements, may result in inaccu-
rate profiling information. Instrumented profiling relies on the
typical C/C++ behavior of call/return to be able to measure cycle
counts in functions. When features such as setjmp or C++ excep-
tions return through multiple stack frames, instrumented profiling
will attempt to complete the profiling information for any stack
frames unwound, but this may be inaccurate.

Stack Overflow Detection
A stack overflow is caused by the stack not being large enough for the
application. The effects of a stack overflow are undefined; the effects can
vary from data corruption to a catastrophic software crash.

The stack overflows when the stack pointer (SP) is modified to point past
the end of the memory reserved for the stack and the stack is written to
using the stack pointer or frame pointer (FP).

 A stack overflow is different from stack corruption caused by a bug
in your program code.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 2-143
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

When the stack overflows, any writes to the stack using the stack pointer
(SP) or the frame pointer (FP) will begin to corrupt an area of memory
which it should not. The results are undefined.

There are many reasons why a stack overflow can occur, for example:

1. A function defines a very large local array.

2. A function defines a very large variable-length array (Refer to
“Variable-Length Arrays” on page 1-166.)

3. A function uses the alloca() function, with an exceedingly large
value as its parameter, to allocate space in the stack frame of the
caller. (Refer to “System Built-In Functions” on page 1-259.)

4. The Linker Description File (.ldf) has insufficient space set aside
for the stack.

5. A function calls itself recursively too many times.

6. A function’s call tree is too deep.

7. A re-entrant interrupt handler is called too many times before the
interrupt is fully serviced.

Debugging a stack overflow is not often easy and mostly involves setting
breakpoints or adding tracing statements at various places in your applica-
tion. A stack overflow might also not become apparent if you are building
your application in a Release configuration, when optimizations are
enabled; a stack overflow might not reveal itself until your application is
built in a Debug configuration, when optimizations are not enabled.

The timing of interrupts will also mask a stack overflow. If nested
interrupts are enabled and the time taken to service the interrupts is
insufficient before another interrupt is raised and serviced, then a stack
overflow can occur.

Analyzing Your Application

2-144 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Once it has been identified that a stack overflow is the cause of your
application failure, correcting the problem can be as simple as increasing
the amount of memory reserved for your stack. This is done by either
manually editing your custom Linker Description File (.ldf) or by regen-
erating your .ldf file once you have made the necessary adjustments to
your current configuration’s Project Options: LDF Settings.

If, due to hardware memory restrictions, you are unable to increase the
amount of memory used for the stack, then conduct a review of your
application, examining your use of local arrays, function calling and other
program code that leads to a stack overflow.

Compiler’s Stack Overflow Detection Facility

The -stack-detect (on page 1-74) switch turns on the compiler’s stack
overflow detection facility when converting C/C++ source into assembly
code. The compiler cannot generate stack overflow detection code for
assembly files or files that have already been compiled to object files.

Once the compiler’s stack overflow detection facility has been enabled, the
compiler will generate code in the function’s prologue and whenever the
stack pointer (SP) is modified in the function code, to check that the stack
pointer has not exceeded the stack limit. The current stack limit is held in
a global data structure called __adi_stack_bounds.

If the stack pointer, once modified, exceeds the stack limit a function,
called adi_stack_overflowed, is invoked. The function that triggered the
stack overflow can be discovered by examining the RETS register.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-1
for Blackfin Processors

3 C/C++ RUN-TIME LIBRARY

The C and C++ run-time libraries are collections of functions, macros,
and class templates that may be called from your source programs. The
libraries provide a broad range of services, including those that are basic to
the languages such as memory allocation, character and string conversions,
and math calculations. Using the library simplifies software development
by providing code for a variety of common needs.

This chapter contains:

• “C and C++ Run-Time Library Guide” on page 3-2
provides introductory information about the ANSI/ISO standard
C and C++ libraries. It also provides information about the ANSI
standard header files and built-in functions that are included with
this release of the ccblkfn compiler.

• “Documented Library Functions” on page 3-58
tabulates the functions that are defined by ANSI standard header
files.

• “C Run-Time Library Reference” on page 3-64
provides reference information about the C run-time library
functions included with this release of the ccblkfn compiler.

The ccblkfn compiler provides a broad collection of library functions,
including those required by the ANSI standard and additional functions
supplied by Analog Devices that are of value in signal processing applica-
tions. In addition to the standard C library, this release of the compiler
software includes the Abridged C++ library, a conforming subset of the

C and C++ Run-Time Library Guide

3-2 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

standard C++ library. The Abridged C++ library includes the embedded
C++ and embedded standard template libraries.

This chapter describes the standard C/C++ library functions supported in
the current release of the run-time libraries. Chapter 4, “DSP Run-Time
Library”, describes signal processing, vector, matrix, and statistical func-
tions that assist DSP code development.

 For more information on the C standard library, see The Standard
C Library by P.J. Plauger, Prentice Hall, 1992. For information on
the algorithms on which many of the C library’s math functions are
based, see W. J. Cody and W. Waite, Software Manual for the Ele-
mentary Functions, Englewood Cliffs, New Jersey: Prentice Hall,
1980. For more information on the C++ library portion of the
ANSI/ISO Standard for C++, see Plauger, P. J. (Preface), The Draft
Standard C++ Library, Englewood Cliffs, New Jersey: Prentice
Hall, 1994, (ISBN: 0131170031).

The Abridged C++ library software documentation is located on the
VisualDSP++ installation CD in the Docs\Reference folder. Viewing or
printing these files requires a browser, such as Internet Explorer 6.0
(or higher). You can copy these files from the installation CD onto
another disk.

C and C++ Run-Time Library Guide
The C/C++ run-time libraries contain functions that can be called from
your source. This section describes how to use the library and provides
information on these topics:

• “Calling Library Functions” on page 3-3

• “Using the Compiler’s Built-In Functions” on page 3-5

• “Linking Library Functions” on page 3-5

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-3
for Blackfin Processors

C/C++ Run-Time Library

• “Library Attributes” on page 3-8

• “Library Function Re-Entrancy and Multi-Threaded Environ-
ments” on page 3-14

• “Working With Library Header Files” on page 3-20

• “Calling a Library Function From an ISR” on page 3-38

• “Abridged C++ Library Support” on page 3-38

• “File I/O Support” on page 3-44

For information on the C library’s contents, see “C Run-Time Library
Reference” on page 3-64.

For information on the Abridged C++ library’s contents, see “Abridged
C++ Library Support” on page 3-38.

Calling Library Functions
To use a C/C++ library function, call the function by name and provide
the appropriate arguments. The names and arguments for each function
are described on the reference pages, which begin in “C Run-Time Library
Reference” on page 3-64.

Like other functions, library functions should be declared. Declarations
are supplied in header files, as described in “Working With Library
Header Files” on page 3-20.

C and C++ Run-Time Library Guide

3-4 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Function names are C/C++ function names. If you call a C/C++ run-time
library function from an assembly program, you must use the assembly
version of the function name.

• For C functions, this is an underscore (_) at the beginning of the C
function name. For example, the C function main() is referred to
as _main from an assembly program.

• Functions in C++ modules are normally compiled with an encoded
function name. Function names in C++ contain abbreviations for
the parameters to the function and also the return type. As such,
they can become very large. The compiler “mangles” these names
to a shorter form. You can instruct the C++ compiler to use the
single-underscore convention from C, as shown by the following
example.

extern "C" {

int myfunc(int); // external name is _myfunc

}

Alternatively, compile C++ files to assembler, and see how the function
has been declared in the assembly file.

It may not be possible to call inline functions as the compiler may have
removed the definition of the function if all calls to the function are
inlined. Global static variables cannot be referred to in assembly routines
as their names are encrypted.

For more information on naming conventions, see “C/C++ and Assembly
Interface” on page 1-456.

 Create a VisualDSP++ project or use the archiver (elfar),
described in the VisualDSP++ Linker and Utilities Manual, to build
library archive files of your own functions.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-5
for Blackfin Processors

C/C++ Run-Time Library

Using the Compiler’s Built-In Functions
The C/C++ compiler’s built-in functions are a set of functions that the
compiler immediately recognizes and replaces with inline assembly code
instead of a function call. Typically, inline assembly code is faster than a
library routine, and does not incur the calling overhead. For example,
the absolute value function, abs(), is recognized by the compiler, which
subsequently replaces a call to the C/C++ run-time library version with
an inline version.

To use built-in functions, include the appropriate headers in your source;
otherwise, your program build will fail at link-time. If you want to use the
C/C++ run-time library functions of the same name, compile using the
-no-builtin compiler switch (on page 1-53).

 Standard math functions, such as abs, min, and max, are imple-
mented using compiler built-in functions. They perform as
described in “C Run-Time Library Reference” on page 3-64 and
“DSP Run-Time Library Reference” on page 4-75.

Linking Library Functions
The C/C++ run-time library is organized as a set of run-time libraries and
startup files installed under the VisualDSP++ installation directory in the
Blackfin\lib subdirectory. Table 3-1 contains a list of these library files
together with a brief description of their functions.

Table 3-1. C and C++ Library Files

Blackfin/lib Directory Description

crt*.doj C run-time startup file that sets up the system environment before
calling main()

crtn*.doj C++ cleanup file used for C++ constructors and destructors

C and C++ Run-Time Library Guide

3-6 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Regarding Table 3-2, in general, several versions of each C/C++ run-time
library component are supplied in binary form; for example, variants are
available for different Blackfin architectures while other variants have been
built for use in a multi-threaded environment. Each version of a library or

cplbtab*.doj Default cache configuration table; memory protection and cach-
ing attributes for each Blackfin processor’s memory map.
See “Caching and Memory Protection” on page 1-373.

idle*.doj Normal “termination” code that enters IDLE loop after “end” of
the application

__initsbsz*.doj Memory initializer support files

libc*.dlb Primary ANSI C run-time library

libcpp*.dlb Primary ANSI C++ run-time library

libcpprt*.dlb
libx*.dlb

Legacy library. These libraries are empty and are provided for the
sole purpose of use with a legacy .ldf file.

libdsp*.dlb DSP run-time library

libetsi*.dlb ETSI run-time support library

libio*.dlb Host-based I/O facilities, as described in“stdio.h” on page 3-31

libevent*.dlb Interrupt handler support library

libf64*.dlb 64-bit floating-point emulation routines

libprofile*.dlb Profile support routines

librt*.dlb C run-time support library, without file I/O

librt_fileio*.dlb C run-time support library, with file I/O

libsftflt*.dlb Floating-point emulation routines

libsmall*.dlb Supervisor mode support routines

prfflg0*.doj
prfflg1*.doj
prfflg2*.doj

Profiling initialization routines as selected by -p, -p1, and -p2
compiler options. See “-p[1|2]” on page 1-65.

Table 3-1. C and C++ Library Files (Cont’d)

Blackfin/lib Directory Description

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-7
for Blackfin Processors

C/C++ Run-Time Library

startup file is distinguished by a different combination of file name
suffices.

Table 3-2 lists the file name suffices that may be used.

 As an example, the C run-time library libc535mty.dlb has been
compiled with the -si-revision switch (on page 1-74) for execu-
tion on any ADSP-BF535 processor, and has been built for VDK
multi-threaded environments.

 Code or data built to run on a specific processor rather than a
group of processors described in Table 3-2 has a file name suffix
indicating the target part. For example, cplbtab531.doj contains
the default cache configuration for the ADSP-BF531 only.

The C/C++ run-time library provides further variants of the start-up files
(crt*.doj) that have been built from a single source file. (See “Startup

Table 3-2. C and C++ Library File Name Suffices

File Name Suffix Description

532 Compiled for execution on any of the ADSP-BF522, ADSP-BF525,
ADSP-BF527, ADSP-BF531, ADSP-BF532, ADSP-BF533,
ADSP-BF534, ADSP-BF536, ADSP-BF537, ADSP-BF538,
ADSP-BF539, ADSP-BF542, ADSP-BF544, ADSP-BF548, or
ADSP-BF549 processors

535 Compiled for execution on any of the ADSP-BF535 processors

561 Compiled for execution on the ADSP-BF561 processors

a Compiled for execution on core A of a dual-core processor

b Compiled for execution on core B of a dual-core processor

mt Built for multi-thread environments

x Libraries compiled with C++ exception handling enabled

y Compiled with the -si-revision switch (on page 1-74) to avoid all
known hardware anomalies

C and C++ Run-Time Library Guide

3-8 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Code Overview” on page 1-357.) Table 3-3 shows the file name suffices
used to differentiate between different versions of this binary file.

 For example, crtcf535.doj is the start-up file that enables file I/O
support and initializes a C++ application that has been compiled to
execute in user mode on an ADSP-BF535 processor.

When an application calls a C/C++ library function, the call creates a ref-
erence that the linker resolves. One way to direct the linker to the location
of the appropriate run-time library is to use the default linker description
file (<your_target>.ldf). If you are using a customized .ldf file to link the
application, add the appropriate library/libraries and startup files to the
.ldf file used by the project.

 Instead of modifying a customized .ldf file, use the compiler’s -l
switch to specify the names of libraries to be searched by the linker.
For example, the switches -lc532 -lcpp532 add the C library
libc532.dlb and the C++ library libcpp532.dlb to the list of
libraries that the linker examines. For more information on the
.ldf file, refer to the VisualDSP++ Linker and Utilities Manual.

Library Attributes
The run-time libraries make use of file attributes. (See “File Attributes” on
page 1-471 for details on using file attributes.)

Table 3-3. CRT File Name Suffices

crt File Name Suffix Description

c Startup file used for C++ applications

f Startup file that enables file I/O support via stdio.h

p Startup file used by applications that have been compiled with profil-
ing instrumentation

s Startup file used by applications that run in supervisor mode

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-9
for Blackfin Processors

C/C++ Run-Time Library

All object files within the run-time libraries listed in Table 3-1 on
page 3-5 have the attributes listed in Table 3-4.

For each object (obj) in the run-time libraries, the following is true:

If an object in the run-time library calls into another object in the same
library, whether it is internal or publicly visible, the called object will
inherit extra libGroup and libFunc values from the caller.

Table 3-4. Run-Time Library Object Attributes

Attribute Name Meaning of Attribute and Value

libGroup A potentially multi-valued attribute. Each value is the name of a header file
that either defines obj or defines a function that calls obj.

libName The name of the library that contains obj, without the processor and variant.
For example, suppose that obj were part of libdsp532y.dlb, then the value
of the attribute would be libdsp.

libFunc The name of all the functions in obj. libFunc will have multiple values –
both the C and assembly linkage names will be listed. libFunc will also
contain all the published C and assembly linkage names of objects in obj's
library that call into obj.

prefersMem One of three values: internal, external, or any. If obj contains a function
that is likely to be application performance-critical, it will be marked as
internal. Most DSP run-time library functions fit into the internal
category. If a function is deemed unlikely to be essential for achieving the
necessary performance, it will be marked as external (all I/O library func-
tions fall into this category). Default .ldf files use this attribute to place
code and data optimally.

prefersMemNum Analogous to prefersMem but takes a numeric string value. The attribute can
be used in .ldf files to provide a greater measure of control over the place-
ment of binary object files than is available using the prefersMem attribute.
The values "30", "50", and "70" correspond to the prefersMem values
internal, any, and external, respectively. Default .ldf files use the pre-
fersMem attribute in preference to the prefersMemNum attribute to specify
the optimal placement of files.

FuncName Multi-valued attribute whose values are all the assembler linkage names of the
defined names in obj.

C and C++ Run-Time Library Guide

3-10 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The following example demonstrates how attributes would look in a small
example library (libfunc.dlb) that comprises three objects: func1.doj,
func2.doj, and subfunc.doj. These objects are built from the following
source modules:

File: func1.h
void func1(void);

File: func2.h
void func2(void);

File: func1.c

#include "func1.h"

void func1(void) {

/* Compiles to func1.doj */

subfunc();

}

File: func2.c

#include "func2.h"

void func2(void) {

/* Compiles to func2.doj */

subfunc();

}

File: subfunc.c

void subfunc(void) {

/* Compiles to subfunc.doj */

}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-11
for Blackfin Processors

C/C++ Run-Time Library

The objects in libfunc.dlb will have the attributes as defined in
Table 3-5.

Table 3-5. Attribute Values in libfunc.dlb

Attribute Value

func1.doj
libGroup
libName
libFunc
libFunc
FuncName
prefersMem
prefersMemNum

func1.h
libfunc
_func1
func1
_func1

any(1)
50

func2.doj
libGroup
libName
libFunc
libFunc
FuncName
prefersMem
prefersMemNum

func2.h
libfunc
_func2
func2
_func2

internal(2)
30

C and C++ Run-Time Library Guide

3-12 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Exceptions to Library Attribute Conventions

This section lists exceptions to the library attribute conventions.

The C++ support libraries (libcpp*.dlb) contain functions that have C++
linkage. C++ linkage implies that the entry point names within the librar-
ies are encoded to include the parameter types, the return type, and the
namespace within which the function is declared (this encoding is also
known as name mangling). Thus any C++ library function that is used as
the value for a libFunc attribute must be the encoded name.

Table 3-6 lists additional libGroup attribute values.

subfunc.doj
libGroup
libGroup
libName
libFunc
libFunc
libFunc
libFunc
libFunc
libFunc
FuncName
prefersMem
prefersMemNum

func1.h

func2.h(3)

libfunc
_func1
func1
_func2
func2
_subfunc
subfunc
_subfunc

internal(4)
30

1 func1.doj will not be performance-critical, based on its normal usage.
2 func2.doj will be performance-critical in many applications, based on its normal usage.
3 libGroup contains the union of the libGroup attributes of the two calling objects.
4 prefersMem contains the highest priority of all the calling objects.

Table 3-5. Attribute Values in libfunc.dlb (Cont’d)

Attribute Value

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-13
for Blackfin Processors

C/C++ Run-Time Library

Objects with any of the libGroup attribute values listed in Table 3-6 will
not contain the libGroup or libFunc attributes from any calling objects.

Table 3-7 summarizes the default memory placement using prefersMem.

Table 3-6. Additional libGroup Attributes

Value Meaning

exceptions_support Compiler support routines for C++ exceptions

floating_point_support Compiler support routines for floating-point arithmetic

integer_support Compiler support routines for integer arithmetic

runtime_support Other run-time functions that do not fit into any of the above
categories

Table 3-7. Default Memory Placement Summary

Library Placement

__initsbsz*.doj
crt*.doj
crtn*.doj
cplbtab*.doj
mc_data561*.doj

Hard placement using sections

libcpp*.dlb
libetsi*.dlb

Any (any)

idle*.doj
libio*.dlb
libprofile*.dlb
prfflg*.doj

External (external)

libf64ieee*.dlb
libsftflt*.dlb

Internal (internal)

libc*.dlb any except for the stdio.h functions that are external and
qsort, which is internal

libdsp*.dlb internal except for the windowing functions and functions
that generate a twiddle table, which are external

C and C++ Run-Time Library Guide

3-14 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Most of the functions contained within the DSP run-time library
(libdsp*.dlb) have prefersMem=internal, because it is likely that any
function called in this run-time library will make up a significant part of
an application’s cycle count.

Mapping Objects to Flash Using Attributes

When using the memory initializer to initialize code and data areas from
flash memory, be sure to map code and data (used during initialization to
flash memory) so it is available during boot-up. The requiredForROMBoot
attribute is specified on library objects that contain such code and data
and can be used in the .ldf file to perform the required mapping. Refer to
the VisualDSP++ Linker and Utilities Manual for information on memory
initialization.

Library Function Re-Entrancy and Multi-Threaded
Environments

The C/C++ run-time libraries are not re-entrant. For example, it is not
possible to put the library code into L2 memory on the ADSP-BF561
processor and have either core (core A or core B) call the libraries without
using a user-defined semaphore.

libevent*.dlb internal for anything that may be called in response to an
event, plus flush_data_buffer; external for all exception
idle loops (where the processor has to halt); any for functions
that install and manage event handling functions

libmc561*.dlb any apart from exit, which is external

librt*.dlb internal for _memcpy and _memmove, otherwise any

libsmall*.dlb any or external, except for the vector table for signal and
interrupt, which is internal

Table 3-7. Default Memory Placement Summary (Cont’d)

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-15
for Blackfin Processors

C/C++ Run-Time Library

It is sometimes desirable to have several active instances of a given library
function at once. This can occur because:

• An interrupt or other external event invokes a function, while the
application is also executing that function.

• The application uses a multi-threaded architecture, such as VDK,
and more than one thread executes the function concurrently.

• The application is built for a multi-core processor, such as the
ADSP-BF561 processor, and more than one core is executing the
function concurrently.

When multiple concurrent threads may be active at once, ensure that the
library functions used are able to support this activity. If a function uses
private data storage, and both active instances of the function modify the
same storage area without due care, undefined behavior may occur.

The majority of the C/C++ run-time library functions are safe in this
regard, in that the functions do not have private storage, operating instead
on parameters passed by the caller.

A small subset of library functions use private storage, and functions like
the stdio support operate on shared resources (like FILE pointers) that
must be safely updated. To support these needs, multi-threaded builds of
the run-time libraries are included in VisualDSP++.

The multi-threaded versions of the run-time libraries use local storage
routines for thread-local and core-local private copies of data.
(See “adi_obtain_mc_slot, adi_free_mc_slot, adi_set_mc_value,
adi_get_mc_value” on page 3-76.) Recursive locking mechanisms are
included so that shared resources, such as stdio FILE buffers, are only
updated by a single function instance at any given time.

C and C++ Run-Time Library Guide

3-16 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The differences between the multi-threaded libraries and the multi-core
libraries are:

• Multi-threaded libraries have “mt” in their file name, and are built
for an arbitrary number of concurrent threads, as is the case for
VDK applications. Multi-threaded libraries are used both for VDK
builds and for non-VDK builds on dual-core processors, when the
-threads compiler switch (on page 1-76) is specified.

• Multi-core libraries have “mc” in their file name, and are built for
dual-core applications, with a single thread running on each of two
cores in a dual-core processor. Multi-core libraries are used for
non-VDK builds on dual-core processors, when the -multicore
compiler switch (on page 1-50) is specified.

The following Standard library elements use thread-local or core-local
private storage:

• atexit function

• rand function

• strtok function

• asctime function

• errno global variable

The atexit function requires a core-local slot, but not a thread-local slot,
because VDK applications do not use exit to terminate each thread,
and effectively run “forever”. Using exit terminates the whole VDK
application. By contrast, in a multi-core application, exit terminates the
application in one core while the other continues.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-17
for Blackfin Processors

C/C++ Run-Time Library

You must specify the -multicore compiler switch when building
multi-core applications. The switch has the following effects:

• At compile-time, it defines the __ADI_MULTICORE macro to ensure
that core-local storage operations are available.

• At link-time, it ensures that the application is linked against the
multi-threaded and multi-core builds of the library.

• It repositions the default heap to be in shared memory. Allocations
by either core will be served by the same heap. The heap allocation
and release routines use locking to ensure that only one core at a
time is updating the heap resource records.

 While thread-safe variants of the C/C++ run-time libraries exist,
many functions are not interrupt-safe as they access global data
structures. It is therefore recommended that ISRs do not call
library functions, as unexpected behavior may result if the inter-
rupt occurs during a call to such a function.

An alternative approach is to disable interrupts before the applica-
tion makes run-time library calls. This may be disadvantageous for
time-critical applications as interrupts may be disabled for a long
period of time. The DSP run-time library functions do not modify
global data structures and are therefore interrupt-safe.

Support Functions for Private Data

The run-time library provides support functions for creating thread-local
and core-local private data storage.

For thread-local private storage, refer to the VisualDSP++ Kernel (VDK)
User’s Guide.

For core-local private storage, see “adi_obtain_mc_slot, adi_free_mc_slot,
adi_set_mc_value, adi_get_mc_value” on page 3-76.

C and C++ Run-Time Library Guide

3-18 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Support Functions for Locking

The run-time library provides support functions in the form of locking
routines to ensure safe access to shared resources. See “adi_acquire_lock,
adi_try_lock, adi_release_lock” on page 3-71 for more information.

Other Support Functions for Multi-Core Applications

The run-time library includes the adi_core_id function, which can be
used by shared code to determine which core is executing it. See
“adi_core_id” on page 3-74 for more details.

Library Placement

A multi-threaded or multi-core application has some storage that must be
shared across threads and cores (such as locks, that must be globally acces-
sible), and some storage that must be private (such as the C++ exception
look-up tables in a multi-core application). Table 3-8 lists requirements
for each of the libraries, regarding section placement.

Table 3-8. Object/Library Multi-Core Restrictions

Object/Library Restriction

__init*.doj
cplbtab*.doj
crt*.doj

The startup and configuration objects are core-specific, and must not
be placed in a shared memory section

libc*.dlb Can be placed in a shared memory section

libcpp*.dlb Cannot be placed in a shared memory section

libdsp*.dlb Can be placed in a shared memory section

libetsi*.dlb Can be placed in a shared memory section, as provided. If rebuilt in
debug mode, so that Overflow and Carry “flags” are maintained,
these global variables will not be locked during updates.

libevent*.dlb Single-core memory placement recommended

libmc*.dlb Can be placed in a shared memory section

mc_data*.doj Must be placed in a shared memory section

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-19
for Blackfin Processors

C/C++ Run-Time Library

Section Placement

Libraries are mapped into shared or private areas via sections within the
.ldf file. Table 3-9 shows which LDF output sections must be shared,
and which must be private.

libprofile*.dlb Not supported in a multi-core environment

librt*.dlb Can be placed in a shared memory section

librt_fileio.dlb Can be placed in a shared memory section

libsftflt*.dlb Can be placed in a shared memory section

libsmall*.dlb Can be placed in a shared memory section

libx*.dlb Cannot be placed in a shared memory section

prfflg*.doj Not supported in a dual-core environment

Table 3-9. Shared and Private LDF Output Sections

LDF Section Must Be Shared Must Be Core-Specific

primio_atomic_lock Yes No

mc_data Yes No

heap No No

L1_code No Yes

cplb No Yes

cplb_data No Yes

bsz No Yes

bsz_init No Yes

.edt No Yes

.cht No Yes

constdata No Yes

Table 3-8. Object/Library Multi-Core Restrictions (Cont’d)

Object/Library Restriction

C and C++ Run-Time Library Guide

3-20 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Note that the sharing or privacy of the “heap” section is a matter for the
application designer. A multi-core application defaults to using a shared
heap with appropriate locking during allocation and release, but a private
per-core heap may better suit the application.

Any sections not listed in Table 3-9 may be shared or private, according to
the discretion of the application developer. Ensure that shared sections use
appropriate locking mechanisms to avoid corruption by simultaneous
accesses.

Working With Library Header Files
When using a library function in your program, include the function’s
header file with the #include preprocessor command. Each function’s
header file is identified in the Synopsis section of the function’s reference
page. Header files contain function prototypes, which are used by the
compiler to check that the function is called with the correct arguments.

Table 3-10 shows the standard C run-time library header files supplied
with this release of the Blackfin compiler. Refer to a C standard reference
(see “C/C++ Compiler Overview” on page 1-3) to augment information
supplied in this chapter.

ctor No Yes

ctorl No Yes

.gdt No Yes

.gdtl No Yes

.frt No Yes

.frtl No Yes

stack No Yes

Table 3-9. Shared and Private LDF Output Sections (Cont’d)

LDF Section Must Be Shared Must Be Core-Specific

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-21
for Blackfin Processors

C/C++ Run-Time Library

Table 3-10. Standard C Run-Time Library Header Files

Header Purpose Standard

aditypes.h Type definitions (on page 3-22) Analog extension

assert.h Diagnostics (on page 3-22) ANSI

ccblkfn.h Access to system facilities on Blackfin processors
(on page 3-23)

Analog extension

cplbtab.h Support routines for cache-related setup and management
routines (on page 3-23)

Analog extension

ctype.h Character handling (on page 3-23) ANSI

device.h Macros and data structures for alternative device drivers
(on page 3-24)

Analog extension

device_int.h Enumerations and prototypes for alternative device drivers
(on page 3-24)

Analog extension

errno.h Error handling (on page 3-24) ANSI

float.h Floating point (on page 3-24) ANSI

iso646.h Boolean operators (on page 3-25) ANSI

limits.h Limits (on page 3-26) ANSI

locale.h Localization (on page 3-26) ANSI

math.h Mathematics (on page 3-26) ANSI

mc_data.h Routines for accessing the core-specific data for multi-core
processors (on page 3-28)

Analog extension

misra_types.h Exact-width integer types (on page 3-28) MISRA-C:2004

setjmp.h Non-local jumps (on page 3-28) ANSI

signal.h Signal handling (on page 3-28) ANSI

stdarg.h Variable arguments (on page 3-28) ANSI

stdbool.h Boolean macros (on page 3-29) ANSI

stddef.h Standard definitions (on page 3-29) ANSI

stdfix.h Fixed point (on page 3-29) ISO/IEC TR
18037

stdint.h Exact width integer types (on page 3-29) ANSI

C and C++ Run-Time Library Guide

3-22 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The following sections describe the header files contained in the C library.
The header files are listed in alphabetical order.

adi_types.h

The adi_types.h header file contains the type definitions for char_t,
float32_t, and float64_t. The adi_types.h header file also includes
stdint.h (on page 3-29) and stdbool.h (on page 3-29).

assert.h

The assert.h header file defines the assert macro, which can insert
run-time diagnostics into a source file. The macro normally tests (asserts)
that an expression is true. If the expression is false, the macro prints an
error message first and then calls the abort function (on page 3-65)
to terminate the application. The message displayed by the assert macro
has the following form:

filename : linenumber expression – run-time assertion

where:

• filename – Name of the source file

• linenumber – Current line number in the source file

• expression – Expression tested

stdio.h Input/output (on page 3-31) ANSI

stdlib.h Standard library (on page 3-36) ANSI

string.h String handling (on page 3-36) ANSI

time.h Date and time (on page 3-36) ANSI

Table 3-10. Standard C Run-Time Library Header Files (Cont’d)

Header Purpose Standard

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-23
for Blackfin Processors

C/C++ Run-Time Library

If the NDEBUG macro is defined at the point at which the assert.h header
file is included in the source file, the assert macro will be defined as a
null macro and no run-time diagnostics will be generated.

 The strings associated with assert.h can be assigned to slower,
more plentiful memory (thereby freeing up faster memory)
by placing a default_section pragma above the sections of code
that contains the asserts. For example:
#pragma default_section(STRINGS,"sdram_bank1")

This will move all strings—not just those associated with assert.

Alternatively, place the -section flag on the compiler command
line or include the option via Project Options-> Compile->
General->Additional options. For example,
-section strings=sdram_bank1

ccblkfn.h

The ccblkfn.h header file defines built-in functions that allow access to
system facilities on Blackfin processors (see Table 3-18 on page 3-59).

cplbtab.h

The cplbtab.h header file (see Table 3-19 on page 3-59) provides support
routines for cache-related setup and management routines, such as
enable_data_cache() and cplb_init().

ctype.h

The ctype.h header file (see Table 3-20 on page 3-59) contains functions
for character handling, such as isalpha, tolower, and so on.

C and C++ Run-Time Library Guide

3-24 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

device.h

The device.h header file provides macros and defines data structures
required by an alternative device driver to provide file input and output
services for stdio library functions. Normally, stdio functions use a
default driver to access an underlying device, but alternative device drivers
may be registered that may then be used transparently by these functions.
This mechanism is described in “Extending I/O Support to New Devices”
on page 3-44.

device_int.h

The device_int.h header file contains function prototypes and provides
enumerations for alterative device drivers. An alternative device driver is
normally provided by an application and may be used by the stdio library
functions to access an underlying device; an alternative device driver may
coexist with, or may replace, the default driver that is supported by the
VisualDSP++ simulator and EZ-KIT Lite® evaluation systems. Refer to
“Extending I/O Support to New Devices” on page 3-44 for information.

errno.h

The errno.h header file provides access to errno. This facility is not, in
general, supported by the rest of the library.

float.h

The float.h header file defines the properties of the floating-point data
types implemented by the compiler (float, double, and long double).

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-25
for Blackfin Processors

C/C++ Run-Time Library

These properties are defined as macros and include the following for each
supported data type:

• The maximum and minimum value (for example, FLT_MAX and
FLT_MIN)

• The maximum and minimum power of ten (for example,
FLT_MAX_10_EXP and FLT_MIN_10_EXP)

• The available precision, expressed in terms of decimal digits
(for example, FLT_DIG)

• A constant that represents the smallest value that may added to 1.0
and still result in a change of value (for example, FLT_EPSILON)

Note that the set of macros that define the properties of the double data
type will have the same values as the corresponding set of macros for the
float type when doubles are specified to be 32 bits wide, and they will
have the same value as the macros for the long double data type when
doubles are specified to be 64 bits wide. (See “-double-size-{32 | 64}” on
page 1-34.)

iso646.h

The iso646.h header file defines symbolic names for certain C (Boolean)
operators. Table 3-11 shows symbolic names and their associated value.

Table 3-11. Symbolic Names Defined in iso646.h

Symbolic Name Equivalent

and &&

and_eq &=

bitand &

bitor |

compl ~

C and C++ Run-Time Library Guide

3-26 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

 The symbolic names have the same name as the C++ keywords that
are accepted by the compiler when the -alttok switch is specified.
(For more information, see “-alttok” on page 1-28.)

limits.h

The limits.h header file contains definitions of maximum and minimum
values for each C data type other than a floating-point type.

locale.h

The locale.h header file contains definitions used for expressing numeric,
monetary, time, and other data.

math.h

The math.h header file (see Table 3-21 on page 3-60) includes power,
trigonometric, logarithmic, exponential, and other miscellaneous func-
tions. The library contains the functions specified by the C standard along
with implementations for the data types float and long double. Some
functions are also provided that support 16-bit fractional data and 32-bit
fractional data.

not !

not_eq !=

or ||

or_eq |=

xor ^

xor_eq ^=

Table 3-11. Symbolic Names Defined in iso646.h (Cont’d)

Symbolic Name Equivalent

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-27
for Blackfin Processors

C/C++ Run-Time Library

For every function that is defined to return a double, the math.h header
file also defines two corresponding functions that return a float and a
long double, respectively. The names of the float functions are the same
as the equivalent double function with an “f” appended to its name.
Similarly, the names of the long double functions are the same as the
double function with a “d” appended to its name. For example, the header
file contains the following prototypes for the sine function:

float sinf (float x);

double sin (double x);

long double sind (long double x);

The -double-size-{32|64} compiler switch (on page 1-34) controls the
size of the double data type. The default behavior is for the compiler to
compile the double type as a 32-bit floating-point data type, and the
header file will arrange that all references to a double function are directed
to the equivalent float function (with the “f” suffix). Conversely, when
the double type is defined as a 64-bit floating-point data type, all refer-
ences to the double functions of this header file are directed to the long
double version of the function (with the “d” suffix). This allows un-suf-
fixed function names to be used with arguments of type double, regardless
of whether doubles are 32 or 64 bits long.

The math.h file also defines the HUGE_VAL macro, which evaluates to
infinity.

Some functions in the math.h header file exist as both integer and floating
point. The floating-point functions typically have an “f” prefix. Ensure
that you are using the correct function.

 The C language provides implicit type conversion, so the following
sequence produces surprising results with no warnings.

float x,y;

y = abs(x);

C and C++ Run-Time Library Guide

3-28 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The value in x is truncated to an integer prior to calculating the
absolute value; then it is reconverted to floating point for the
assignment to y.

mc_data.h

The mc_data.h header file (see Table 3-22 on page 3-60) contains routines
for accessing the core-specific data for multi-core processors.

misra_types.h

The misra_types.h header file contains definitions of exact-width data
types, as defined in “stdint.h” on page 3-29 and “stdbool.h” on page 3-29,
plus data types char_t, float32_t, and float64_t.

setjmp.h

The setjmp.h header file (see Table 3-23 on page 3-60) contains setjmp
and longjmp for non-local jumps.

signal.h

The signal.h header file (see Table 3-24 on page 3-61) provides function
prototypes for the standard ANSI signal.h routines. The signal handling
functions process conditions (hardware signals) that may occur during
program execution. They determine the way that C programs respond to
these signals. These functions are designed to process signals such as
external interrupts and timer interrupts.

stdarg.h

The stdarg.h header file (see Table 3-25 on page 3-61) contains defini-
tions needed for functions that accept a variable number of arguments.
Programs that call such functions must include a prototype for the refer-
enced functions.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-29
for Blackfin Processors

C/C++ Run-Time Library

stdbool.h

The stdbool.h header file contains three Boolean-related macros (true,
false, and __bool_true_false_are_defined) and an associated data type
(bool). The stdbool.h header file was introduced in the C99 standard
library.

stdfix.h

The stdfix.h file contains function prototypes and macro definitions to
support the native fixed-point types fract and accum as defined by the
ISO/IEC Technical Report 18037. The inclusion of this header file
enables the fract and accum keywords as aliases for _Fract and _Accum,
respectively. A discussion of support for native fixed-point types is given
in “Using Native Fixed-Point Types” on page 1-104.

stddef.h

The stddef.h header file contains a few common definitions, such as
size_t, that are useful for portable programs.

stdint.h

The stdint.h header file contains various exact-width integer types along
with associated minimum and maximum values. The stdint.h header file
was introduced in the C99 standard library.

Table 3-12 show each of the typedefs defined by the header file, and doc-
uments the macro name of the associated minimum and maximum values
for the types.

Table 3-12. Exact-Width Integer Types

Type Common Equivalent MIN MAX

int8_t signed char INT8_MIN INT8_MAX

int16_t short INT16_MIN INT16_MAX

C and C++ Run-Time Library Guide

3-30 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

int32_t int INT32_MIN INT32_MAX

int64_t long long INT64_MIN INT64_MAX

uint8_t unsigned char 0 UINT8_MAX

uint16_t unsigned short 0 UINT16_MAX

uint32_t unsigned int 0 UINT32_MAX

uint64_t unsigned long long 0 UINT64_MAX

int_least8_t signed char INT_LEAST8_MIN INT_LEAST8_MAX

int_least16_t short INT_LEAST16_MIN INT_LEAST16_MAX

int_least32_t int INT_LEAST32_MIN INT_LEAST32_MAX

int_least64_t long long INT_LEAST64_MIN INT_LEAST64_MAX

uint_least8_t unsigned char 0 UINT_LEAST8_MAX

uint_least16_t unsigned short 0 UNT_LEAST16_MAX

uint_least32_t unsigned int 0 UNT_LEAST32_MAX

uint_least64_t unsigned long long 0 UNT_LEAST64_MAX

int_fast8_t signed char INT_FAST8_MIN INT_FAST8_MAX

int_fast16_t short INT_FAST16_MIN INT_FAST16_MAX

int_fast32_t int INT_FAST32_MIN INT_FAST32_MAX

int_fast64_t long long INT_FAST64_MIN INT_FAST64_MAX

uint_fast8_t unsigned char 0 UINT_FAST8_MAX

uint_fast16_t unsigned short 0 UINT_FAST16_MAX

uint_fast32_t unsigned int 0 UINT_FAST32_MAX

uint_fast64_t unsigned long long 0 UINT_FAST64_MAX

intmax_t long long INTMAX_MIN INTMAX_MAX

intptr_t int INTPTR_MIN INTPTR_MAX

uintmax_t unsigned long long 0 UINTMAX_MAX

uintptr_t unsigned int 0 UINTPTR_MAX

Table 3-12. Exact-Width Integer Types (Cont’d)

Type Common Equivalent MIN MAX

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-31
for Blackfin Processors

C/C++ Run-Time Library

Table 3-13 describes MIN and MAX macros defined for typedefs in other
headings.

Macros for minimum-width integer constants include: INT8_C(),
INT16_C(), INT32_C(), UINT8_C(), UINT16_C(), UINT32_C(), INT64_C(),
and UINT64_C().

Macros for greatest-width integer constants include INTMAX_C() and
UINTMAX_C().

stdio.h

The stdio.h header file (see Table 3-27 on page 3-61) defines a set of
functions, macros, and data types for performing input and output. The
library functions defined by this header file are thread-safe but they are
not generally interrupt-safe; therefore, they should not be called directly
or indirectly from an interrupt service routine.

The compiler uses the definitions within the header file to select an appro-
priate set of functions that correspond to the currently selected size of type
double (either 32 bits or 64 bits). Any source file that uses the facilities of
stdio.h should therefore include the stdio.h header file, especially if it is
compiled with the -double-size-64 switch (on page 1-34). Failure to
include the header file may result in a linker failure as the compiler must

Table 3-13. MIN and MAX Macros for typedefs in Other Headings

Type MIN MAX

ptrdiff_t PTRDIFF_MIN PTRDIFF_MAX

sig_atomic_t SIG_ATOMIC_MIN SIG_ATOMIC_MAX

size_t 0 SIZE_MAX

wchar_t WCHAR_MIN WCHAR_MAX

wint_t WINT_MIN WINT_MAX

C and C++ Run-Time Library Guide

3-32 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

see a correct function prototype in order to generate the correct calling
sequence.

This release provides three alternative run-time libraries that implement
the functionality of the header file. If an application is built with the
-full-io switch (on page 1-40), then it is linked with a third-party I/O
library that provides a comprehensive implementation of the ANSI C
Standard I/O functionality, but at the cost of performance. This library is
fully compatible with previous releases of VisualDSP++ (version 4.5 and
earlier). It also supports printing of the native fixed-point types fract and
accum in decimal format. No source files are provided for this proprietary
library.

However, the normal behavior of the compiler is to link an application
against an I/O library provided by Analog Devices—this library does not
support all the facilities of the third-party library, but it is both faster and
smaller. To reduce the size of the library, the native fixed-point types
fract and accum are only printed in hexadecimal format. The source files
for this library are available under the VisualDSP++ installation in the
subdirectory Blackfin/lib/src/libio.

A third option is to link an application against a variant of this default I/O
library containing extra support for printing the native fixed-point types
fract and accum in decimal format. You can do this by building the appli-
cation with the -fixed-point-io switch (on page 1-38). As before, this
library does not support all the facilities of the third-party library, but it is
both faster and smaller. The source files for this library are available under
the VisualDSP++ installation in the subdirectory
Blackfin/lib/src/libio.

At program termination, any output that is pending in an I/O buffer is
flushed to the appropriate stream and the host environment will then close
down any physical connection between the application and an opened file.
Note, however, that the I/O library does not implicitly close any opened
streams to avoid unnecessary overheads (particularly with respect to mem-
ory occupancy); this means, for example, that any heap space used for file

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-33
for Blackfin Processors

C/C++ Run-Time Library

tables or I/O buffers will not be freed unless the associated stream is
explicitly closed by the application.

The functional differences between the library based on third-party soft-
ware (and accessed via the -full-io switch) and the default I/O run-time
library provided by Analog Devices are given below:

• The third-party I/O library supports the input and output of wide
characters (data of type wchar_t) and multi-byte characters. No
similar support is available under the Analog Devices I/O library.

• The fread() and fwrite() functions are commonly used to trans-
mit data between an application and a binary stream. For
efficiency, the Analog Devices I/O library may not use a buffer to
read or write data using these functions; thus, the data may be
transmitted directly between a program and an external device.
If an application relies on these functions to read and write data via
an I/O buffer, it should be linked against the third-party library
(using the -full-io switch).

• The functions tmpfile and tmpnam are only supported by the
third-party I/O library, albeit with limited functionality; refer to
the reference page for each of these functions for more details.

• When inputting formatted data (via fscanf, sscanf, and so on),
both the third-party I/O library and the default I/O library support
the following additional size qualifiers, which are defined in the
C99 (ISO/IEC 9899:1999) standard.

hh signed char or unsigned char

j intmax_t or uintmax_t
t ptrdiff_t

z size_t

These additional qualifiers may be used with the d, i, o, u, x, or X
conversion specifiers to describe the type of the corresponding

C and C++ Run-Time Library Guide

3-34 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

argument. However, only the third-party I/O library also supports
these additional size qualifiers when printing formatted data using
printf and its associated functions.

• The third-party I/O library accesses the current locale to determine
the symbol to be used as the decimal point character.

• The alternative libraries have different conventions for printing
IEEE floating-point values that are either NaN’s (Not-A-Number)
or Infinity. The third-party I/O library also accepts nan and inf
(in any case) as input for the e, f, and g conversion specifiers.

• The form of the output generated for the a conversion specifier by
the alternative libraries differ (both forms of output do, however,
conform to the requirements of ISO/IEC 9899:1999).

• The conversion specifier F is accepted by the third-party I/O
library; the specifier behaves the same as f.

• The third-party I/O library also supports the full functionality of
the [conversion specifier, while the Analog Devices I/O library
only provides the minimum facility level required by the ANSI
standard.

The implementation of both I/O libraries is based on a simple interface
with a device driver that provides a set of low-level primitives for open,
close, read, write, and seek operations. By default, these operations are
provided by the VisualDSP++ simulator and EZ-KIT Lite systems; this
mechanism is outlined in “Default Device Driver Interface” on page 3-53.
However, alternative device drivers may be registered (see “Extending I/O
Support to New Devices” on page 3-44) that can then be used transpar-
ently through the stdio.h functions.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-35
for Blackfin Processors

C/C++ Run-Time Library

Applications should be aware that the default device driver is activated
under any of the following conditions:

• When a file is opened or closed

• When an input buffer becomes empty, or an output buffer
becomes full or is flushed

• When interrogating or repositioning a file pointer

• When deleting a file, via the remove library function

• When renaming a file, via the rename library function

Under all the above conditions, the default device driver will disable inter-
rupts, and will halt the DSP while it negotiates with the host to perform
the required I/O operation. Once the I/O operation has completed, the
default device driver will restart the DSP and then re-enable interrupts.

While the DSP is stopped, the cycle count registers are not updated and
the DSP itself cannot initiate any interrupts; however, signals that corre-
spond to external events can still occur, and these may be activated once
the default device driver re-enables interrupts.

The following restrictions apply to either library in this software release:

• Functions rename() and remove() are only supported under the
default device driver supplied by the VisualDSP++ simulator and
EZ-KIT Lite system, and only operate on the host file system.

• Positioning within a file that has been opened as a text stream is
only supported if the lines within the file are terminated by the
character sequence \r\n.

• Support for formatted reading and writing of data of type long
double is only supported when an application is built with the
-double-size-64 switch.

C and C++ Run-Time Library Guide

3-36 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

stdlib.h

The stdlib.h header file (see Table 3-28 on page 3-62) offers general
utilities specified by the C standard. These include integer math functions
(such as abs, div, and rand), general string-to-numeric conversions,
memory-allocation functions (such as malloc and free), and termination
functions (such as exit). This library also contains miscellaneous func-
tions such as bsearch and qsort.

string.h

The string.h header file (see Table 3-29 on page 3-63) contains string
handling functions, including strcpy and memcpy.

time.h

The time.h header file (see Table 3-30 on page 3-63) provides functions,
data types, and a macro for expressing and manipulating date and time
information. The header file defines two fundamental data types: clock_t
and time_t.

The clock_t data type is associated with the number of implementa-
tion-dependent processor “ticks” used since an arbitrary starting point.

The time_t data type is used for values that represent the number of
seconds that have elapsed since a known epoch; values of this form are
known as calendar time. In this implementation, the epoch starts on the
1st of January, 1970, and calendar times before this date are represented
as negative values.

A calendar time may also be represented in a more versatile way as a
broken-down time, which is a structured variable of the following form:

struct tm {

int tm_sec; /* seconds after the minute [0,61] */

int tm_min; /* minutes after the hour [0,59] */

int tm_hour; /* hours after midnight [0,23] */

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-37
for Blackfin Processors

C/C++ Run-Time Library

int tm_mday; /* day of the month [1,31] */

int tm_mon; /* months since January [0,11] */

int tm_year; /* years since 1900 */

int tm_wday; /* days since Sunday [0, 6] */

int tm_yday; /* days since January 1st [0,365] */

int tm_isdst; /* Daylight Saving flag */

};

 This implementation does not support the Daylight Saving flag in
the structure struct tm; nor does it support the concept of time
zones. All calendar times are therefore assumed to relate to
Greenwich Mean Time (Coordinated Universal Time or UTC).

The time.h header file sets the CLOCKS_PER_SEC macro to the number of
processor cycles per second. This macro can therefore be used to convert
data of type clock_t into seconds, normally by using floating-point arith-
metic to divide it into the result returned by the clock function.

 Generally, processor speed is a property of a particular processor.
Therefore, it is recommended that the value to which this macro is
set be verified independently before being used by an application.

By default, the value of the CLOCKS_PER_SEC macro is defined by the
header file cycles.h. You may override this value by one of the following
methods (listed in descending order of precedence):

• Via the -DCLOCKS_PER_SEC=<definition> compile-time switch.
Because the time_t type is based on the long long int data type,
it is recommended that the value of the symbolic name
CLOCKS_PER_SEC be defined to be of type long long int by
qualifying the value with the LL (or ll) suffix. For example:
-DCLOCKS_PER_SEC=6000000LL

• Via the System Services Library

• Via the Processor speed option, specified in the VisualDSP++
Project Options dialog box, Compile tab, Processor (1) category

C and C++ Run-Time Library Guide

3-38 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Calling a Library Function From an ISR
Not all C run-time library functions are interrupt-safe (and can therefore
be called from an interrupt service routine). For a run-time function to be
classified as interrupt-safe:

• It must not update any global data, such as errno, and

• It must not write to (or maintain) any private static data

It is recommended that none of the functions defined in the math.h
header file, nor the string conversion functions defined in the stdlib.h
header file, be called from an ISR as these functions are commonly defined
to update the global variable errno. Similarly, the functions defined in the
stdio.h header file maintain static tables for currently opened streams and
should not be called from an ISR. Additionally, the memory allocation
routines (such as malloc, calloc, realloc, and free) and the C++ opera-
tors (new and delete) read and update global tables and are not
interrupt-safe; they should not be called from an ISR.

The following library functions are not interrupt-safe because they use
private static data.

asctime gmtime localtime

rand srand strtok

While not all C run-time library functions are interrupt-safe; thread-safe
versions of the functions are available for use in a VDK multi-threaded
environment or by dual-core Blackfin applications. These library func-
tions are found in the run-time libraries that have an _mt suffix in their file
names.

Abridged C++ Library Support
In C++ mode, the compiler can call many functions from the Abridged
C++ library, which is a conforming subset of the C++ library.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-39
for Blackfin Processors

C/C++ Run-Time Library

The Abridged C++ library has two major components: the embedded C++
library (EC++), and the embedded standard template library (ESTL).
The embedded C++ library is a conforming implementation of the
embedded C++ library as specified by the Embedded C++ Technical
Committee. You can view the Abridged Library Reference by locating the
file <install_path>\Docs\cpl_lib\index.html and opening it in a Web
browser.

This section lists and briefly describes the following components of the
Abridged C++ library:

• “Embedded C++ Library Header Files” on page 3-39

• “C++ Header Files for C Library Facilities” on page 3-41

• “Embedded Standard Template Library (ESTL) Header Files” on
page 3-42

• “Using Thread-Safe C/C++ Run-Time Libraries With VDK” on
page 3-43

Embedded C++ Library Header Files

Table 3-14 describes the header files in the embedded C++ library.

Table 3-14. Embedded C++ Library Header Files

Header Description

complex Defines a template class complex and a set of associated arithmetic opera-
tors. Predefined types include complex_float and complex_long_double.
This implementation does not support the full set of complex operations as
specified by the C++ standard. In particular, it does not support either the
transcendental functions or the I/O operators “<<“ and “>>”. The complex
header file and the C library header file complex.h refer to two different and
incompatible implementations of the complex data type.

exception Defines the exception and bad_exception classes and several functions
for low-level exception handling. These functions are used as the basis for
higher-level exception handling in <stdexcept> (See “stdexcept” below.)

C and C++ Run-Time Library Guide

3-40 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fract Defines the fract data type, which supports fractional arithmetic, assign-
ment, and type-conversion operations using a 32-bit data type. The header
file is fully described under “Fractional Value Built-In Functions in C++” on
page 1-232.

fstream Defines the filebuf, ifstream, and ofstream classes for external file
manipulations.

iomanip Declares several iostream manipulators. Each manipulator accepts a single
argument.

ios Defines several classes and functions for basic iostream manipulations.
Note that most of the iostream header files include ios.

iosfwd Declares forward references to various iostream template classes defined in
other standard headers.

iostream Declares most of the iostream objects used for the standard stream manipu-
lations.

istream Defines the istream class for iostream extractions. Note that most of the
iostream header files include istream.

new Declares several classes and functions for memory allocations and dealloca-
tions.

ostream Defines the ostream class for iostream insertions.

shortfract Defines the shortfract fractional class, which supports fractional arithme-
tic, assignment, and type-conversion operations using a 16-bit base type. The
header file is fully described under “Fractional Value Built-In Functions in
C++” on page 1-232.

sstream Defines the stringbuf, istringstream, and ostringstream classes for
various string object manipulations.

stdexcept Defines a variety of classes for exception reporting.

streambuf Defines the streambuf classes for basic operations of the iostream classes.
Note that most of the iostream header files include streambuf.

Table 3-14. Embedded C++ Library Header Files (Cont’d)

Header Description

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-41
for Blackfin Processors

C/C++ Run-Time Library

C++ Header Files for C Library Facilities

For each C standard library header, there is a corresponding standard C++
header. For example, if the name of a C standard library header file were
foo.h, the equivalent C++ header file would be named cfoo. Thus, the
C++ header file cstdio provides the same facilities as the C header file
stdio.h.

Table 3-15 lists the C++ header files that provide access to the C library
facilities.

The C standard header files may be used to define names in the C++
global namespace, and the equivalent C++ header files define names in the
standard namespace.

string Defines the string template and various supporting classes and functions
for string manipulations. Objects of the string type should not be con-
fused with the null-terminated C strings.

strstream Defines the strstreambuf, istrstream, and ostream classes for
iostream manipulations on allocated, extended, and freed character
sequences.

Table 3-15. C++ Header Files for C Library Facilities

Header Description

cassert Enforces assertions during function executions

cctype Classifies characters

cerrno Tests error codes reported by library functions

cfloat Tests floating-point type properties

climits Tests integer type properties

clocale Adapts to different cultural conventions

cmath Provides common mathematical operations

Table 3-14. Embedded C++ Library Header Files (Cont’d)

Header Description

C and C++ Run-Time Library Guide

3-42 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Embedded Standard Template Library (ESTL) Header Files

Templates and the associated header files are not part of the embedded
C++ standard library, but are supported by the compiler in C++ mode.
Table 3-16 describes embedded standard template library header files.

csetjmp Executes non-local goto statements

csignal Controls various exceptional conditions

cstdarg Accesses a variable number of arguments

cstddef Defines several useful data types and macros

cstdio Performs input and output

cstdlib Performs a variety of operations

cstring Manipulates several kinds of strings

Table 3-16. Embedded Standard Template Library (ESTL)
Header Files

Header Description

algorithm Defines numerous common operations on sequences

deque Defines a deque template container

functional Defines numerous function templates that can be used to create
callable types

hash_map Defines two hashed map template containers

hash_set Defines two hashed set template containers

iterator Defines common iterators and operations on iterators

list Defines a list template container

map Defines two map template containers

memory Defines facilities for managing memory

numeric Defines several numeric operations on sequences

Table 3-15. C++ Header Files for C Library Facilities (Cont’d)

Header Description

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-43
for Blackfin Processors

C/C++ Run-Time Library

The Embedded C++ library also includes several headers for compatibility
with traditional C++ libraries; see Table 3-17.

Using Thread-Safe C/C++ Run-Time Libraries With VDK

When developing for VDK, thread-safe variants of the run-time libraries
are linked with user applications. These libraries may add an overhead to
the VDK resources required by some applications.

The run-time libraries use VDK synchronicity functions to ensure thread
safety.

queue Defines two queue template container adapters

set Defines two set template containers

stack Defines a stack template container adapter

utility Defines an assortment of utility templates

vector Defines a vector template container

Table 3-17. Embedded Standard Template Header Library Files for
Compatibility with Traditional C++ Libraries

Header Description

fstream.h Defines several iostreams template classes that manipulate external
files

iomanip.h Defines several iostreams manipulators that take a single argument

iostream.h Declares the iostreams objects that manipulate the standard streams

new.h Declares several functions that allocate and free storage

Table 3-16. Embedded Standard Template Library (ESTL)
Header Files (Cont’d)

Header Description

C and C++ Run-Time Library Guide

3-44 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

File I/O Support
The VisualDSP++ environment provides access to files on a host system
by using stdio functions. File I/O support is provided through a set of
low-level primitives that implement the open, close, read, write, and
seek operations. The functions defined in the stdio.h header file use
these primitives to provide conventional C input and output facilities.
The source files for the I/O primitives are available under the
VisualDSP++ installation in the subdirectory Blackfin/lib/src/libio.

This section describes:

• “Extending I/O Support to New Devices” on page 3-44

• “Default Device Driver Interface” on page 3-53

Refer to “stdio.h” on page 3-31 for information about the conventional C
input and output facilities provided by the compiler.

Extending I/O Support to New Devices

The I/O primitives are implemented using an extensible device driver
mechanism. The default start-up code includes a device driver that can
perform I/O through the VisualDSP++ simulator and EZ-KIT Lite
evaluation systems. Other device drivers may be registered and then used
through the normal stdio functions.

This section describes:

• “DevEntry Structure” on page 3-45

• “Registering New Devices” on page 3-50

• “Pre-Registering Devices” on page 3-50

• “Default Device” on page 3-52

• “Remove and Rename Functions” on page 3-53

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-45
for Blackfin Processors

C/C++ Run-Time Library

DevEntry Structure

A device driver is a set of primitive functions grouped together into a
DevEntry structure. This structure is defined in device.h.

struct DevEntry {

int DeviceID;

void *data;

int (*init)(struct DevEntry *entry);

int (*open)(const char *name, int mode);

int (*close)(int fd);

int (*write)(int fd, unsigned char *buf, int size);

int (*read)(int fd, unsigned char *buf, int size);

long (*seek)(long fd, long offset, int whence);

int stdinfd;

int stdoutfd;

int stderrfd;

}

typedef struct DevEntry DevEntry;

typedef struct DevEntry *DevEntry_t;

The fields within the DevEntry structure have the following meanings.

DeviceID:
The DeviceID field is a unique identifier for the device, known to the user.
Device IDs are used globally across an application.

data:
The data field is a pointer for any private data the device may need; it is
not used by the run-time libraries.

init:
The init field is a pointer to an initialization function. The run-time
library calls this function when the device is first registered, passing in the
address of this structure (and thus giving the init function access to

C and C++ Run-Time Library Guide

3-46 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

DeviceID and the field data). If the init function encounters an error,
it must return -1; otherwise, it returns a positive value to indicate success.

open:
The open field is a pointer to a function that performs the “open file”
operation upon the device. The run-time library calls this function in
response to requests such as fopen(), when the device is the currently
selected default device. The name parameter is the path name to the file to
be opened, and the mode parameter is a bitmask that indicates how the file
is to be opened. Bits 0-1 indicate reading and/or writing.

0x0000 Open file for reading

0x0001 Open file for writing

0x0002 Open file for reading and writing

0x0003 Invalid

Additional bits may be OR’d into mode to alter the file’s behavior, such as:

0x0008 Open the file for appending

0x0100 Create the file, if it does not already exist.

0x0200 Truncate the file to zero length, if it

already exists

0x4000 Open the file as a text stream (converting the

character sequence \r\n to \n on reading,

and \n to \r\n on writing).

0x8000 Open the file as a binary stream (raw mode).

The open function must return a positive “file descriptor” if it succeeds
in opening the file; this file descriptor is used to identify the file to the
device in subsequent operations. The file descriptor must be unique for all
files currently open for the device, but need not be distinct from file
descriptors returned by other devices—the run-time library identifies the
file by the combination of device and file descriptor.

If the open function fails, it must return -1 to indicate failure.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-47
for Blackfin Processors

C/C++ Run-Time Library

close:
The close field is a pointer to a function that performs the “close file”
operation on the device. The run-time library calls the close function in
response to requests such as fclose() on a stream that was opened on the
device. The fd parameter is a file descriptor previously returned by a call
to the open function. The close function must return a zero value for
success and must return a non-zero value for failure.

write:
The write field is a pointer to a function that performs the “write to
file” operation on the device. The run-time library calls the write
function in response to requests, such as fwrite(), fprintf(), and so on,
that act on streams that were opened on the device.

The write function takes three parameters:

• fd – This file descriptor identifies the file to be written to. It will
be a value returned from a previous call to the open function.

• buf – A pointer to the data to be written to the file

• size – The number of bytes to be written to the file

The write function must return one of the following values:

• A positive value from 1 to size inclusive, indicating how many
bytes from buf were successfully written to the file

• Zero, indicating that the file has been closed, for whatever reason
(for example, the network connection dropped)

• A negative value, indicating an error

read:
The read field is a pointer to a function that performs the “read from
file” operation on the device. The run-time library calls the read
function in response to requests, such as fread(), fscanf(), and so on,
that act on streams that were opened on the device.

C and C++ Run-Time Library Guide

3-48 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The read function’s parameters are:

• fd – The file descriptor for the file to be read

• buf – A pointer to the buffer where the retrieved data is stored

• size – The number of 8-bit bytes to read from the file. This must
not exceed the space available in the buffer pointed to by buf.

The read function must return one of the following values:

• A positive value from 1 to size inclusive, indicating how many
bytes were read from the file into buf

• Zero, indicating end-of-file

• A negative value, indicating an error

 The run-time library expects the read function to return 0xa (10)
as the newline character.

seek:
The seek field is a pointer to a function that performs dynamic access
on the file. The run-time library calls the seek function in response to
requests such as rewind(), fseek(), and so on that act on streams that
were opened on the device.

The seek function takes the following parameters:

• fd – The file descriptor for the file which will have its read/write
position altered

• offset – A value used to determine the new read/write pointer
position within the file; it is in 8-bit bytes

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-49
for Blackfin Processors

C/C++ Run-Time Library

• whence – A value that indicates how the offset parameter is
interpreted:

• 0: offset is an absolute value, giving the new read/write
position in the file

• 1: offset is a value relative to the current position within
the file

• 2: offset is a value relative to the end of the file

The seek function returns a positive value that is the new (absolute)
position of the read/write pointer within the file. If an error is encoun-
tered, the seek function must return a negative value.

If a device does not support the functionality required by one of these
functions (such as read-only devices, or stream devices that do not support
seeking), the DevEntry structure must still have a pointer to a valid func-
tion; the function must arrange to return an error for any attempted seek
operations.

stdinfd:
The stdinfd field is set to the device file descriptor for stdin if the device
expects to claim the stdin stream; otherwise, to the enumeration value
dev_not_claimed.

stdoutfd:
The stdoutfd field is set to the device file descriptor for stdout if the
device expects to claim the stdout stream; otherwise to the enumeration
value dev_not_claimed.

stderrfd:
The stderrfd field is set to the device file descriptor for stderr if the
device expects to claim the stderr stream; otherwise to the enumeration
value dev_not_claimed.

C and C++ Run-Time Library Guide

3-50 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Registering New Devices

A new device can be registered with the following function:

int add_devtab_entry(DevEntry_t entry);

If the device is successfully registered, the init() routine of the device is
called with entry as its parameter. The add_devtab_entry() function
returns the DeviceID of the registered device.

If the device is not successfully registered, a negative value is returned.
Causes for failure include (but are not limited to):

• The DeviceID is the same as another, already registered device

• There are no more slots left in the device registry table

• The DeviceID is less than zero

• Some of the function pointers are NULL

• The device’s init() routine returned a failure result

• The device attempted to claim a standard stream that is already
claimed by another device

Pre-Registering Devices

The library source file, devtab.c, which is located under a VisualDSP++
installation in the Blackfin/lib/src/libio subdirectory, declares the
array:

DevEntry_t DevDrvTable[];

This array contains pointers to DevEntry structures for each pre-registered
device, (that is, devices that are available as soon as main() is entered),
and that do not need to be registered at runtime by calling
add_devtab_entry().

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-51
for Blackfin Processors

C/C++ Run-Time Library

By default, the “PrimIO” device is registered. The PrimIO device provides
support for target/host communication when using simulators and the
Analog Devices emulators and debug agents. This device is pre-registered,
so that printf() and similar functions operate as expected without addi-
tional setup.

Pre-register additional devices, as follows:

1. Add a copy of the devtab.c source file to your project.

2. Declare your new device’s DevEntry structure within the devtab.c
file, for example,

extern DevEntry myDevice;

3. Include the address of the DevEntry structure within the Dev-
DrvTable[] array. Ensure that the table is null-terminated,
for example,

DevEntry_t DevDrvTable[MAXDEV] = {

#ifdef PRIMIO

&primio_deventry,

#endif

&myDevice, /* new pre-registered device */

0,

};

Pre-registered devices are initialized automatically when device I/O is first
used. The run-time library calls the init() function of each of the
pre-registered devices in turn.

The normal behavior of the PrimIO device when it is registered is to claim
the first three files as stdin, stdout, and stderr. These standard streams
may be reopened on other devices at runtime by using freopen() to close
the PrimIO-based streams and reopen the streams on the current default
device.

C and C++ Run-Time Library Guide

3-52 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

To allow an alternative device (either pre-registered or registered by
add_devtab_entry()) to claim one or all of the standard streams:

1. Add a copy of the primiolib.c source file to your project.

2. Edit the appropriate stdinfd, stdoutfd, and stderrfd file
descriptors in the primio_deventry structure to have the value
dev_not_claimed.

3. Ensure that the alternative device’s DevEntry structure has set the
standard stream file descriptors appropriately.

Both the device initialization routines called from the startup code and
add_devtab_entry() return with an error if a device attempts to claim a
standard stream that is already claimed.

Default Device

Once a device is registered, it can be made the default device by using the
following function:

void set_default_io_device(int);

The function should be passed the DeviceID of the device. The corre-
sponding function for retrieving the current default device is:

int get_default_io_device(void);

The default device is used by fopen() when a file is first opened. The
fopen() function passes the open request to the open() function of the
device indicated by get_default_io_device(). The device’s file identifier
(fd) returned by the open() function is private to the device; other devices
may simultaneously have other open files that use the same identifier. An
open file is uniquely identified by the combination of DeviceID and fd.

The fopen() function records the DeviceID and fd in the global open file
table, and allocates its own internal fid to this combination. All future
operations on the file use this fid to retrieve the DeviceID and thus direct

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-53
for Blackfin Processors

C/C++ Run-Time Library

the request to the appropriate device’s primitive functions, passing the fd
along with other parameters. Once a file has been opened by fopen(), the
current value of get_default_io_device() is irrelevant to that file.

Remove and Rename Functions

The PrimIO device supports for the remove() and rename() functions.
These functions are not currently part of the extensible file I/O interface,
since they deal purely with path names, and not with file descriptors. All
calls to remove() and rename() in the run-time library pass directly to the
PrimIO device.

Default Device Driver Interface

The stdio functions provide access to the files on a host system through a
device driver that supports a set of low-level I/O primitives, which are
described under “Extending I/O Support to New Devices” on page 3-44.
The default device driver implements these primitives based on a simple
interface provided by the VisualDSP++ simulator and EZ-KIT Lite
evaluation systems.

All I/O requests submitted through the default device driver are channeled
through the C function _primIO. The assembly label has two underscores,
__primIO. The source for this function (and all the other library routines)
are located under the base installation for VisualDSP++ in the subdirec-
tory Blackfin/lib/src/libio.

The __primIO function accepts no arguments. Instead, it examines the I/O
control block at the label _PrimIOCB. Without external intervention by a
host environment, the __primIO routine simply returns, which indicates
failure of the request. Two schemes for host interception of I/O requests
are provided.

The first scheme modifies control flow into and out of the __primIO
routine. Typically, it is achieved by a breakpoint mechanism available to a
debugger/simulator. Upon entry to __primIO, the data for the request

C and C++ Run-Time Library Guide

3-54 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

resides in a control block at the label _PrimIOCB. If this scheme is used, the
host should arrange to intercept control when it enters the __primIO rou-
tine, and, after servicing the request, return control to the calling routine.

The second scheme involves communicating with the DSP processor
through a pair of simple semaphores. This scheme is most suitable for an
externally-hosted development board. Under this scheme, the host system
clears the data word whose label is __lone_SHARC; this causes __primIO to
assume that a host environment is present and is able to communicate
with the process.

If __primIO sees that __lone_SHARC is cleared, upon entry (for example,
when an I/O request is made) it sets a non-zero value into the word
labeled __Godot. The __primIO routine then busy-waits until this word is
reset to zero by the host. The non-zero value of __Godot raised by
__primIO is the address of the I/O control block.

Data Packing for Primitive I/O

The implementation of the __primIO interface is based on a word-address-
able machine, with each word comprising a fixed number of 8-bit bytes.
All READ and WRITE requests specify a move of some number of 8-bit bytes,
(that is, the relevant fields count 8-bit bytes, not words). Data packing is
always little endian, the first byte of a file read or written is the low-order
byte of the first word transferred.

Data packing is set to one byte per word for Blackfin processors. Data
packing can be changed to accommodate other architectures by modifying
the constant BITS_PER_WORD, defined in _wordsize.h. (For example, for a
processor with 16-bit addressable words, change this value to 16.)

Note that the file name provided in an OPEN request uses the processor’s
“native” string format, normally one byte per word. Data packing applies
only to READ and WRITE requests.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-55
for Blackfin Processors

C/C++ Run-Time Library

Data Structure for Primitive I/O

The I/O control block is declared in _primio.h, as follows.

typedef struct

{

enum

{

PRIM_OPEN = 100,

PRIM_READ,

PRIM_WRITE,

PRIM_CLOSE,

PRIM_SEEK,

PRIM_REMOVE,

PRIM_RENAME

} op;

int fileID;

int flags;

unsigned char *buf; /* data buffer, or file name */

int nDesired; /* number of characters to read */

/* or write */

int nCompleted; /* number of characters actually */

/* read or written */

void *more; /* for future use */

}

PrimIOCB_T;

The first field, op, identifies which of the seven supported operations is
being requested.

The file ID for an open file is a non-negative integer assigned by the
debugger or other “host” mechanism. The fileID values of 0, 1, and 2
are pre-assigned to stdin, stdout, and stderr, respectively. No open
request is required for these file IDs.

C and C++ Run-Time Library Guide

3-56 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Before “activating” the debugger or other host environment, an OPEN or
REMOVE request may set the fileID field to the length of the file name to
open or delete; a RENAME request may also set the field to the length of the
old file name. If the fileID field does contain a string length, then this
will be indicated in the flags field (see below), and the debugger or other
host environment will be able to use the information to perform a batch
memory read to extract the file name. If the information is not provided,
then the file name must be extracted one character at a time.

The flags field is a bit-field containing other information for special
requests. Meaningful bit values for an OPEN operation are:

M_OPENR = 0x0001 /* open for reading */

M_OPENW = 0x0002 /* open for writing */

M_OPENA = 0x0004 /* open for append */

M_TRUNCATE = 0x0008 /* truncate to zero length */

/* if file exists */

M_CREATE = 0x0010 /* create the file if necessary */

M_BINARY = 0x0020 /* binary file (vs. text file) */

M_STRLEN_PROVIDED = 0x8000 /* length of file name(s) avail. */

For a READ operation, the low-order four bits of the flag value contain the
number of bytes packed into each word of the read buffer, and the rest of
the value is reserved for future use.

For a WRITE operation, the low-order four bits of the flag value contain
the number of bytes packed into each word of the write buffer, and the
rest of the value form a bit-field, for which only the following bit is cur-
rently defined:

M_ALIGN_BUFFER = 0x10

If this bit is set for a WRITE request, the WRITE operation is expected to be
aligned on a processor word boundary by writing padding NULs to the
file before the buffer contents are transferred.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-57
for Blackfin Processors

C/C++ Run-Time Library

For an OPEN, REMOVE, and RENAME operation, the debugger (or other host
mechanism) must extract the file name(s) one character at a time from the
memory of the target. However, if the bit corresponding to the value
M_STRLEN_PROVIDED is set, the I/O control block contains the length of the
file name(s) and the debugger is able to use this information to perform a
batch read of the target memory (refer to the description of the fields
fileID and nCompleted).

For a SEEK request, the flags field indicates the seek mode (whence) as
follows:

enum

{

M_SEEK_SET = 0x0001, /* seek origin is the start of

the file */

M_SEEK_CUR = 0x0002, /* seek origin is the current

position within the file */

M_SEEK_END = 0x0004, /* seek origin is the end of

the file */

};

The flags field is unused for a CLOSE request.

The buf field contains a pointer to the file name for an OPEN or REMOVE
request, or a pointer to the data buffer for a READ or WRITE request. For a
RENAME operation, this field contains a pointer to the old file name.

The nDesired field is set to the number of bytes that should be transferred
for a READ or WRITE request. This field is also used by a RENAME request, and
is set to a pointer to the new file name.

For a SEEK request, the nDesired field contains the offset at which the file
should be positioned, relative to the origin specified by the flags field.
(On architectures that only support 16-bit ints, the 32-bit offset at which
the file should be positioned is stored in the combined fields [buf,
nDesired].)

Documented Library Functions

3-58 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The nCompleted field is set by __primIO to the number of bytes actually
transferred by a READ or WRITE operation. For a SEEK operation, __primIO
sets this field to the new value of the file pointer. (On architectures that
only support 16-bit ints, __primIO sets the new value of the file pointer in
the combined fields [nCompleted, more].)

The RENAME operation may also use the nCompleted field. If the operation
can determine the lengths of the old and new file names, it should store
these sizes in the fields fileID and nCompleted, respectively, and also set
the bit-field flags to M_STRLEN_PROVIDED. The debugger (or other host
mechanism) can then use this information to perform a batch read of the
target memory to extract the file names. If this information is not pro-
vided, each character of the file names will have to be read individually.

The more field is reserved for future use and currently is always set to NULL
before calling _primIO.

Documented Library Functions
The C run-time library has several categories of functions and macros
defined by the ANSI C standard, plus extensions provided by Analog
Devices.

The following tables list the library functions documented in this chapter.
Note that the tables list the functions for each header file separately;
however, reference pages for these library functions present the functions
in alphabetical order.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-59
for Blackfin Processors

C/C++ Run-Time Library

Table 3-18 lists functions in the ccblkfn.h header file. For more informa-
tion, see “ccblkfn.h” on page 3-23.

Table 3-19 lists functions in the cplbtab.h header file. For more informa-
tion, see “cplbtab.h” on page 3-23.

Table 3-20 lists functions in the ctype.h header file. For more informa-
tion, see “ctype.h” on page 3-23.

Table 3-18. Library Functions in the ccblkfn.h Header File

adi_obtain_mc_slot,
adi_free_mc_slot,
adi_set_mc_value,
adi_get_mc_value

adi_core_id _l1_memcpy, _memcpy_l1

Table 3-19. Library Functions in the cplbtab.h Header File

cplb_hdr cache_invalidate cplb_mgr

disable_data_cache enable_data_cache flush_data_cache

cplb_init

Table 3-20. Library Functions in the ctype.h Header File

isalnum isalpha iscntrl

isdigit isgraph islower

isprint ispunct isspace

isupper isxdigit tolower

toupper

Documented Library Functions

3-60 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Table 3-21 lists functions in the math.h header file. For more information,
see “math.h” on page 3-26.

Table 3-22 lists functions in the mc_data.h header file. For more informa-
tion, see “mc_data.h” on page 3-28.

Table 3-23 lists functions in the setjmp.h header file. For more informa-
tion, see “setjmp.h” on page 3-28.

Table 3-21. Library Functions in the math.h Header File

acos asin atan

atan2 ceil cos

cosh exp fabs

floor fmod frexp

isinf isnan ldexp

log log10 modf

pow sin sinh

sqrt tan tanh

Table 3-22. Library Functions in the mc_data.h Header File

adi_obtain_mc_slot,
adi_free_mc_slot,
adi_set_mc_value,
adi_get_mc_value

Table 3-23. Library Functions in the setjmp.h Header File

longjmp setjmp

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-61
for Blackfin Processors

C/C++ Run-Time Library

Table 3-24 lists functions in the signal.h header file. For more informa-
tion, see “signal.h” on page 3-28.

Table 3-25 lists functions in the stdarg.h header file. For more informa-
tion, see “stdarg.h” on page 3-28.

Table 3-26 lists functions in the stdfix.h header file. For more informa-
tion, see “stdfix.h” on page 3-29.

Table 3-27 lists functions in the stdio.h header file. For more informa-
tion, see “stdio.h” on page 3-31.

Table 3-24. Library Functions in the signal.h Header File

raise signal interrupt

Table 3-25. Library Functions in the stdarg.h Header File

va_arg va_end va_start

Table 3-26. Library Functions in the stdfix.h Header File

absfx bitsfx countlsfx

divifx fxbits fxdivi

idivfx mulifx roundfx

strtofxfx

Table 3-27. Supported Library Functions in the stdio.h Header
File

clearerr fclose feof

ferror fflush fgetc

fgetpos fgets fprintf

fputc fputs fopen

Documented Library Functions

3-62 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Table 3-28 lists functions in the stdlib.h header file. For more informa-
tion, see “stdlib.h” on page 3-36.

freopen fscanf fread

fseek fsetpos ftell

fwrite getc getchar

gets perror printf

putc putchar puts

remove rename rewind

scanf setbuf setvbuf

snprintf sprintf sscanf

tmpfile tmpnam ungetc

vfprintf vprintf vsnprintf

vsprintf

Table 3-28. Library Functions in stdlib.h Header File

abort abs atexit

atof atoi atol

atoll bsearch

calloc div exit

free heap_calloc heap_free

heap_init heap_install heap_lookup

heap_malloc heap_realloc heap_space_unused

labs ldiv malloc

qsort rand realloc

space_unused srand strtod

Table 3-27. Supported Library Functions in the stdio.h Header
File (Cont’d)

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-63
for Blackfin Processors

C/C++ Run-Time Library

Table 3-29 lists functions in the string.h header file. For more informa-
tion, see “string.h” on page 3-36.

Table 3-30 lists functions in the time.h header file. For more information,
see “time.h” on page 3-36.

strtof strtol strtold

strtoll strtoul strtoull

Table 3-29. Library Functions in string.h Header File

memchr memcmp memcpy

memmove memset strcat

strchr strcmp strcoll

strcpy strcspn strerror

strlen strncat strncmp

strncpy strpbrk strrchr

strspn strstr strtok

strxfrm

Table 3-30. Library Functions in time.h Header File

asctime clock ctime

difftime gmtime localtime

mktime strftime time

Table 3-28. Library Functions in stdlib.h Header File (Cont’d)

Documented Library Functions

3-64 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

C Run-Time Library Reference
The C run-time library is a collection of functions called from your C
programs. The following items apply to all of the functions in the library.

Notation Conventions

An interval of numbers is indicated by the minimum and maximum, sepa-
rated by a comma, and enclosed in two square brackets, two parentheses,
or one of each. A square bracket indicates that the endpoint is included in
the set of numbers; a parenthesis indicates that the endpoint is not
included.

Reference Format

Each function in the library has a reference page. These pages have the fol-
lowing format:

• Name and Purpose of the function

• Synopsis – Required header file and functional prototype

• Description – Function specification

• Error Conditions – Method that the functions use to indicate an
error

• Example – Typical function usage

• See Also – Related functions

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-65
for Blackfin Processors

C/C++ Run-Time Library

abort

Abnormal program end

Synopsis

#include <stdlib.h>

void abort(void);

Description

The abort function causes an abnormal program termination by raising
the SIGABRT exception. If the SIGABRT handler returns, abort() calls
exit() to terminate the program with a failure condition.

Error Conditions

The abort function does not return.

Example

#include <stdlib.h>

extern int errors;

if(errors) /* terminate program if */

abort(); /* errors are present */

See Also

atexit, exit

Documented Library Functions

3-66 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

abs

Absolute value

Synopsis

#include <stdlib.h>

int abs(int j);

Description

The abs function returns the absolute value of its integer input.

Note: The result of abs(INT_MIN) is undefined.

Error Conditions

The abs function does not return an error condition.

Example

#include <stdlib.h>

int i;

i = abs(-5); /* i == 5 */

See Also

absfx, fabs, labs

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-67
for Blackfin Processors

C/C++ Run-Time Library

absfx

absolute value

Synopsis

#include <stdfix.h>

fract absr(fract f);

accum absk(accum a);

short fract abshr(short fract f);

short accum abshk(short accum a);

long fract abslr(long fract f);

long accum abslk(long accum a);

Description

The absfx family of functions return the absolute value of their
fixed-point input.

In addition to the individually-named functions for each fixed-point type,
a type-generic macro absfx is defined for use in C99 mode. This may be
used with any of the fixed-point types and returns a result of the same type
as its operand.

Error Conditions

The absfx family of functions do not return an error condition.

Documented Library Functions

3-68 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Example

#include <stdfix.h>

accum a;

long fract f;

a = abshk(-12.5k); /* a == 12.5k */

f = abslr(0.75lr); /* f == 0.75lr */

#if defined(_C99)

a = absfx(-12.5k); /* a == 12.5k */

f = absfx(0.75lr); /* f == 0.75lr */

#endif

See Also

abs, fabs, labs

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-69
for Blackfin Processors

C/C++ Run-Time Library

acos

Arc cosine

Synopsis

#include <math.h>

float acosf (float x);

double acos (double x);

long double acosd (long double x);

fract16 acos_fr16 (fract16 x);

fract32 acos_fr32 (fract32 x);

_Fract acos_fx16 (_Fract x);

long _Fract acos_fx32 (long _Fract x);

Description

The arc cosine functions return the arc cosine of x. Both the argument x
and the function results are in radians.

The input for the functions acos, acosf, and acosd must be in the range
[-1, 1], and the functions return a result that will be in the range [0, π].

The acos_fr16, acos_fr32, acos_fx16 and acos_fx32 functions are
defined for fractional input values between 0 and 0.9. The outputs from
the functions are in the range [acos(0)*2/π, acos(0.9)*2/π].

Error Conditions

The arc cosine functions return a zero if the input is not in the defined
range.

Documented Library Functions

3-70 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Example

#include <math.h>

double y;

y = acos(0.0); /* y = PI/2 */

See Also

cos

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-71
for Blackfin Processors

C/C++ Run-Time Library

adi_acquire_lock, adi_try_lock, adi_release_lock

Obtain and release locks for multi-core synchronization

Synopsis

#include <ccblkfn.h>

void adi_acquire_lock(testset_t *lockptr);

int adi_try_lock(testset_t *lockptr);

void adi_release_lock(testset_t *lockptr);

Description

These functions provide locking facilities for multi-core applications that
need to ensure private access to shared resources, or for applications that
need to build synchronization mechanisms.

The functions operate on a pointer to a testset_t object, which is a pri-
vate type used only by these routines. Objects of type testset_t must be
global, and initialized to zero (which indicates that the lock is unclaimed).
The type is automatically volatile.

The adi_acquire_lock function repeatedly attempts to acquire the lock,
until successful. Upon return, the lock will have been acquired. The func-
tion does not make use of any timers or other mechanisms to pause
between attempts, so this function implies continuous accesses to the lock
object.

The adi_try_lock function makes a single attempt to acquire the lock,
but does not block if the lock has already been acquired. The function
returns non-zero if it has successfully acquired the lock, and zero if the
lock was not available.

The adi_release_lock function releases the lock object, marking it as
available to the next attempt by adi_acquire_lock or adi_try_lock. The
adi_release_lock function does not return a value, and does not verify

Documented Library Functions

3-72 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

whether the caller already holds the lock, or even if the lock is already held
by “another” caller.

Error Conditions

These functions do not return error conditions. Neither
adi_acquire_lock() nor adi_release_lock() return values. The
adi_try_lock() function merely returns a value indicating whether the
lock was acquired.

Examples

#include <ccblkfn.h>

void add_one(testset_t *lockptr, volatile int *valptr)

{

adi_acquire_lock(lockptr);

*valptr += 1;

adi_release_lock(lockptr);

}

 To be useful, the testset_t object must be located in a shared area
of memory accessible by both cores. These functions do not disable
interrupts; that is the responsibility of the caller.

#include <ccblkfn.h>

void claim_lock(testset_t *lockptr)

{

while (!adi_try_lock(lockptr)) {

// do someting else or go to sleep

// before trying the lock again

}

}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-73
for Blackfin Processors

C/C++ Run-Time Library

See Also

adi_core_id, adi_obtain_mc_slot, adi_free_mc_slot, adi_set_mc_value,
adi_get_mc_value

Documented Library Functions

3-74 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

adi_core_id

Identify caller’s core

Synopsis

#include <ccblkfn.h>

int adi_core_id(void);

Description

The adi_core_id function returns a numeric value indicating which pro-
cessor core is executing the call to the function. This function is most
useful on multi-core processors, when the caller is a function shared
between both cores, but which needs to perform different actions (or
access different data) depending on the core executing it.

The function returns a zero value when executed by core A, and a value of
one when executed on core B.

Error Conditions

The adi_core_id function does not return an error condition.

Example

#include <ccblkfn.h>

const char *core_name(void)

{

if (adi_core_id() == 0)

return "Core A";

else

return "Core B";

}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-75
for Blackfin Processors

C/C++ Run-Time Library

See Also

adi_acquire_lock, adi_try_lock, adi_release_lock, adi_obtain_mc_slot,
adi_free_mc_slot, adi_set_mc_value, adi_get_mc_value

Documented Library Functions

3-76 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

adi_obtain_mc_slot, adi_free_mc_slot, adi_set_mc_value,
adi_get_mc_value

Obtain and manage storage for multi-core private data in shared
functions.

Synopsis

#include <mc_data.h>

int adi_obtain_mc_slot(int *slotID, void (fn)(void *));

int adi_free_mc_slot(int slotID);

int adi_set_mc_value(int slotID, void *valptr);

void *adi_get_mc_value(int slotID);

Description

These functions provide a framework for shared functions that may be
called from any core in a multi-core environment, yet need to maintain
data values that are private to the calling core. An example is errno—in a
multi-core environment, each core needs to maintain its own version of
the errno value, but the correct version of errno must be updated when a
shared Standard library function is called.

The framework operates by maintaining a set of “slots”, each slot corre-
sponds to a data object that must be core-local. The slot holds a pointer
for each core, which can be set to point to the core’s private version of the
data object.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-77
for Blackfin Processors

C/C++ Run-Time Library

The process is as follows:

1. If this is the first time any core has needed the private data, then
allocate a slot.

2. If this is the first time this core has needed the private data, then
allocate storage for the data and record it in the slot, else retrieve
the location of the data’s storage from the slot.

3. Access the data.

The adi_obtain_mc_slot function is called to allocate a slot, when no core
has previously needed to access the data. slotID must be a pointer to a
global variable, shared by all the cores, which is initialized to the value
adi_mc_unallocated. The fn parameter must be NULL.

If the adi_obtain_mc_slot function can allocate a slot for the data object,
it will return the slot’s identifier, via the slotID pointer, and will return a
non-zero value. If there are no more slots remaining, the function returns
a zero value.

The adi_free_mc_slot function releases the slot indicated by slotID,
which must have been previously allocated by the adi_obtain_mc_slot
function. If slotID indicate a valid slot, the slot is freed and the function
returns a non-zero value. If slotID does not indicate a currently-valid slot,
the function returns zero.

The adi_set_mc_value function records the valptr pointer in the slot
indicated by slotID, as the location of the private data object for the call-
ing core. The function returns 1 if slotID refers to a currently-valid slot,
otherwise the function returns 0.

The adi_get_mc_value function returns a pointer previously stored in the
slot indicated by slotID, for the calling core. The pointer must have been
previously stored by the adi_set_mc_value function, by the current core,
otherwise the function returns NULL. The function also returns NULL if
slotID does not indicate a currently-valid slot.

Documented Library Functions

3-78 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Error Conditions

The adi_obtain_mc_slot function returns a zero value if a new slot can-
not be allocated.

The adi_free_mc_slot and adi_set_mc_value functions both return a
zero value if slotID does not refer to a currently-valid slot.

The adi_get_mc_value function returns NULL if slotID does not refer to
a currently-valid slot, or if the calling core has not yet stored a pointer in
the slot via adi_set_mc_value.

Example

/* error handling omitted */

#include <mc_data.h>

#include <ccblkfn.h>

#include <stdlib.h>

static int slotid = adi_mc_unallocated;

static testset_t slotlock = 0;

void set_error(int val)

{

int *storage;

adi_acquire_lock(&slotlock);

if (slotid == adi_mc_unallocated) {

// first core here

adi_obtain_mc_slot(&slotid, NULL);

}

adi_release_lock(&slotlock);

storage = adi_get_mc_value(slotid);

if (storage == NULL) {

// first time this core is here

storage = malloc(sizeof(int));

adi_set_mc_value(slotid, storage);

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-79
for Blackfin Processors

C/C++ Run-Time Library

}

*storage = val;

}

 The multi-core private storage routines do not disable interrupts;
that is left at the caller’s discretion.

Documented Library Functions

3-80 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

asctime

Convert broken-down time into a string

Synopsis

#include <time.h>

char *asctime(const struct tm *t);

Description

The asctime function converts a broken-down time, as generated by the
functions gmtime and localtime, into an ASCII string that will contain
the date and time in the form

DDD MMM dd hh:mm:ss YYYY\n

where

• DDD represents the day of the week (that is, Mon, Tue, Wed, etc.)

• MMM is the month and will be of the form Jan, Feb, Mar, etc.

• dd is the day of the month, from 1 to 31

• hh is the number of hours after midnight, from 0 to 23

• mm is the minute of the day, from 0 to 59

• ss is the second of the day, from 0 to 61 (to allow for leap seconds)

• YYYY represents the year

The function returns a pointer to the ASCII string, which may be over-
written by a subsequent call to this function. Also note that the function
ctime returns a string that is identical to

asctime(localtime(&t))

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-81
for Blackfin Processors

C/C++ Run-Time Library

Error Conditions

The asctime function does not return an error condition.

Example

#include <time.h>

#include <stdio.h>

struct tm tm_date;

printf("The date is %s",asctime(&tm_date));

See Also

ctime, gmtime, localtime

Documented Library Functions

3-82 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

asin

Arc sine

Synopsis

#include <math.h>

float asinf (float x);

double asin (double x);

long double asind (long double x);

fract16 asin_fr16(fract16 x);

fract32 asin_fr32(fract32 x);

_Fract asin_fx16(_Fract x);

long _Fract asin_fx32(long _Fract x);

Description

The arc sine functions return the arc sine of the argument x. Both the
argument x and the function results are in radians.

The input for the functions asin, asinf, and asind must be in the range
[-1, 1], and the functions return a result that will be the range [-π/2, π/2].

The asin_fr16, asin_fr32, asin_fx16 and asin_fx32 functions are
defined for fractional input values in the range [-0.9, 0.9]. The outputs
from the functions are in the range [asin(-0.9)*2/π, asin(0.9)*2/π].

Error Conditions

The arc sine functions return a zero if the input is not in the defined
range.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-83
for Blackfin Processors

C/C++ Run-Time Library

Example

#include <math.h>

double y;

y = asin(1.0); /* y = PI/2 */

See Also

sin

Documented Library Functions

3-84 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

atan

Arc tangent

Synopsis

#include <math.h>

float atanf (float x);

double atan (double x);

long double atand (long double x);

fract16 atan_fr16 (fract16 x);

fract32 atan_fr32 (fract32 x);

_Fract atan_fx16 (_Fract x);

long _Fract atan_fx32 (long _Fract x);

Description

The arc tangent functions return the arc tangent of the argument. Both
the argument x and the function results are in radians.

The atanf, atan, and atand functions return a result that is in the range
[-π/2, π/2].

The atan_fr16, atan_fr32, atan_fx16 and atan_fx32 functions are
defined for fractional input values in the range [-1.0, 1.0). The outputs
from the functions are in the range [-π/4, π/4].

Error Conditions

The arc tangent functions do not return an error condition.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-85
for Blackfin Processors

C/C++ Run-Time Library

Example

#include <math.h>

double y;

y = atan(0.0); /* y = 0.0 */

See Also

atan2, tan

Documented Library Functions

3-86 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

atan2

Arc tangent of quotient

Synopsis

#include <math.h>

float atan2f (float y, float x);

double atan2 (double y, double x);

long double atan2d (long double y, long double x);

fract16 atan2_fr16 (fract16 y, fract16 x);

fract32 atan2_fr32 (fract32 y, fract32 x);

_Fract atan2_fx16 (_Fract y, _Fract x);

long _Fract atan2_fx32 (long _Fract y, long _Fract x);

Description

The atan2 functions compute the arc tangent of the input value y divided
by input value x. The output is in radians.

The atan2f, atan2, and atan2d functions return a result that is in the
range [-π, π].

The atan2_fr16, atan2_fr32, atan2_fx16 and atan2_fx32 functions are
defined for fractional input values in the range [-1.0, 1.0). The outputs
from these function are scaled by π and are in the range [-1.0, 1.0).

Error Conditions

The atan2 functions return a zero if x=0 and y=0.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-87
for Blackfin Processors

C/C++ Run-Time Library

Example

#include <math.h>

double a,d;

float b,c;

a = atan2 (0.0, 0.0); /* the error condition: a = 0.0 */

b = atan2f (1.0, 1.0); /* b = π/4 */

c = atan2f (1.0, 0.0); /* c = π/2 */
d = atan2 (-1.0, 0.0); /* d = -π/2 */

See Also

atan, tan

Documented Library Functions

3-88 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

atexit

Register a function to call at program termination

Synopsis

#include <stdlib.h>

int atexit(void (*func)(void));

Description

The atexit function registers a function to be called at program termina-
tion. Functions are called once for each time they are registered, in the
reverse order of registration. Up to 32 functions can be registered using
the atexit function.

Error Conditions

The atexit function returns a non-zero value if the function cannot be
registered.

Example

#include <stdlib.h>

extern void goodbye(void);

if (atexit(goodbye))

exit(1);

See Also

abort, exit

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-89
for Blackfin Processors

C/C++ Run-Time Library

atof

Convert string to a double

Synopsis

#include <stdlib.h>

double atof(const char *nptr);

Description

The atof function converts a character string into a floating-point value
of type double, and returns its value. The character string is pointed to by
the argument nptr and may contain any number of leading whitespace
characters (as determined by the function isspace) followed by a float-
ing-point number. The floating-point number may either be a decimal
floating-point number or a hexadecimal floating-point number.

A decimal floating-point number has the form:

[sign] [digits] [.digits] [{e|E} [sign] [digits]]

The sign token is optional and is either plus (+) or minus (–); and
digits are one or more decimal digits. The sequence of digits may contain
a decimal point (.).

The decimal digits can be followed by an exponent, which consists of an
introductory letter (e or E) and an optionally signed integer. If neither an
exponent part nor a decimal point appears, a decimal point is assumed to
follow the last digit in the string.

The form of a hexadecimal floating-point number is:

[sign] [{0x}|{0X}] [hexdigs] [.hexdigs] [{p|P} [sign] [digits]]

A hexadecimal floating-point number may start with an optional plus (+)
or minus (–) followed by the hexadecimal prefix 0x or 0X. This character

Documented Library Functions

3-90 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

sequence must be followed by one or more hexadecimal characters that
optionally contain a decimal point (.).

The hexadecimal digits are followed by a binary exponent that consists of
the letter p or P, an optional sign, and a non-empty sequence of decimal
digits. The exponent is interpreted as a power of two that is used to scale
the fraction represented by the tokens [hexdigs] [.hexdigs].

The first character that does not fit either form of number stops the scan.

Error Conditions

The atof function returns a zero if no conversion is made. If the correct
value results in an overflow, a positive or negative (as appropriate)
HUGE_VAL is returned. If the correct value results in an underflow, 0.0 is
returned. The ERANGE value is stored in errno in the case of either an over-
flow or underflow.

Notes

The function reference atof (pdata) is functionally equivalent to:

strtod (pdata, (char *) NULL);

and therefore, if the function returns zero, it is not possible to determine
whether the character string contained a (valid) representation of 0.0 or
some invalid numerical string.

Example

#include <stdlib.h>

double x;

x = atof("5.5"); /* x == 5.5 */

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-91
for Blackfin Processors

C/C++ Run-Time Library

See Also

atoi, atol, strtod

Documented Library Functions

3-92 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

atoi

Convert string to integer

Synopsis

#include <stdlib.h>

int atoi (const char *nptr);

Description

The atoi function converts a character string to an integer value. The
character string to be converted is pointed to by the input pointer, nptr.
The function clears any leading characters for which isspace would return
true. Conversion begins at the first digit (with an optional preceding sign)
and terminates at the first non-digit.

Error Conditions

The atoi function returns a zero if no conversion is made.

Example

#include <stdlib.h>

int i;

i = atoi("5"); /* i == 5 */

See Also

atof, atol, strtod, strtol, strtoul

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-93
for Blackfin Processors

C/C++ Run-Time Library

atol

Convert string to long integer

Synopsis

#include <stdlib.h>

long atol (const char *nptr);

Description

The atol function converts a character string to a long integer value. The
character string to be converted is pointed to by the input pointer, nptr.
The function clears any leading characters for which isspace would return
true. Conversion begins at the first digit (with an optional preceding sign)
and terminates at the first non-digit.

 There is no way to determine if a zero is a valid result or an indica-
tor of an invalid string.

Error Conditions

The atol function returns a zero if no conversion is made.

Example

#include <stdlib.h>

long int i;

i = atol("5"); /* i == 5 */

See Also

atof, strtod, strtol, strtoul

Documented Library Functions

3-94 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

atoll

Convert string to long long integer

Synopsis

#include <stdlib.h>

long long atoll (const char *nptr);

Description

The atoll function converts a character string to a long long integer
value. The character string to be converted is pointed to by the input
pointer, nptr. The function clears any leading characters for which
isspace would return true. Conversion begins at the first digit (with an
optional preceding sign) and terminates at the first non-digit.

 There is no way to determine whether a zero is a valid result or an
indicator of an invalid string.

Error Conditions

The atoll function returns a zero if no conversion is made.

Example

#include <stdlib.h>

long long int i;

i = atoll("5"); /* i == 5 */

See Also

strtoll

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-95
for Blackfin Processors

C/C++ Run-Time Library

bitsfx

Bitwise fixed-point to integer conversion

Synopsis

#include <stdfix.h>

int_r_t bitsr(fract f);

int_k_t bitsk(accum a);

int_hr_t bitshr(short fract f);

int_hk_t bitshk(short accum a);

int_lr_t bitslr(long fract f);

int_lk_t bitslk(long accum a);

uint_ur_t bitsur(unsigned fract f);

uint_uk_t bitsuk(unsigned accum a);

uint_uhr_t bitsuhr(unsigned short fract f);

uint_uhk_t bitsuhk(unsigned short accum a);

uint_ulr_t bitsulr(unsigned long fract f);

uint_ulk_t bitsulk(unsigned long accum a);

Description

Given a fixed-point operand, the bitsfx family of functions return the
fixed-point value multiplied by 2F, where F is the number of fractional
bits in the fixed-point type. This is equivalent to the bit-pattern of the
fixed-point value held in an integer type.

Error Conditions

The bitsfx family of functions do not return an error condition.

Documented Library Functions

3-96 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Example

#include <stdfix.h>

#include <fract.h>

int_k_t k;

uint_ulr_t ulr;

fract16 fr16;

fract32 fr32;

k = bitsk(-12.5k); /* k == 0xfffffff9c0000000 */

ulr = bitsulr(0.125ulr); /* ulr == 0x20000000 */

fr16 = bitsr (-0.75r); /* fr16 = 0x6000 */

fr32 = bitslr (0.25lr); /* fr32 = 0xe0000000 */

See Also

fxbits

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-97
for Blackfin Processors

C/C++ Run-Time Library

bsearch

Perform binary search in a sorted array

Synopsis

#include <stdlib.h>

void *bsearch (const void *key, const void *base,

size_t nelem, size_t size,

int (*compare)(const void *, const void *));

Description

The bsearch function searches the array base for an array element that
matches the element key. The size of each array element is specified by
size, and the array is defined to have nelem array elements.

The bsearch function will call the function compare with two arguments;
the first argument will point to the array element key and the second argu-
ment will point to an element of the array. The compare function should
return an integer that is either zero, or less than zero, or greater than zero,
depending upon whether the array element key is equal to, less than, or
greater than the array element pointed to by the second argument.

If the comparison function returns a zero, then bsearch will return a
pointer to the matching array element; if there is more than one matching
elements then it is not defined which element is returned. If no match is
found in the array, bsearch will return NULL.

The array to be searched would normally be sorted according to the crite-
ria used by the comparison function (the qsort function may be used to
first sort the array if necessary).

Documented Library Functions

3-98 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Error Conditions

The bsearch function returns a null pointer when the key is not found in
the array.

Example

#include <stdlib.h>

#include <string.h>

#define SIZE 3

struct record_t {

 char *name;

 char *street;

 char *city;

};

struct record_t data_base[SIZE] = {

 {"Baby Doe" , "Central Park" , "New York"},

 {"Jane Doe" , "Regents Park" , "London" },

 {"John Doe" , "Queens Park" , "Sydney" }

};

static int

compare_function (const void *arg1, const void *arg2)

{

 const struct record_t *pkey = arg1;

 const struct record_t *pbase = arg2;

 return strcmp (pkey->name,pbase->name);

}

struct record_t key = {"Baby Doe" , "" , ""};

struct record_t *search_result;

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-99
for Blackfin Processors

C/C++ Run-Time Library

search_result = bsearch (&key,

 data_base,

 SIZE,

 sizeof(struct record_t),

 compare_function);

See Also

qsort

Documented Library Functions

3-100 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

cache_invalidate

Invalidate processor instruction and data caches

Synopsis

#include <cplbtab.h>

void cache_invalidate(int cachemask);

void icache_invalidate(void);

void dcache_invalidate(int a_or_b);

void dcache_invalidate_both(void);

Description

The cache_invalidate function and its related functions,
icache_invalidate and dcache_invalidate, invalidate the contents of the
processor’s instruction and data caches, forcing any data to be re-fetched
from memory. Modified data cached in write-back mode is not flushed to
memory first.

The cache_invalidate routine calls its support routines according to the
bits set in parameter cachemask. The bits have the following meanings.

A call is made to the appropriate support routine for each bit set. If bits
are set to indicate that both data cache A and data cache B must be invali-
dated, a single call is made to the dcache_invalidate_both routine.

On the ADSP-BF535 processor, cache_invalidate is called by the default
start-up code on reset, and is passed the value of ___cplb_ctrl as its

Bit Set Meaning

CPLB_ENABLE_ICACHE Invalidate instruction cache

CPLB_ENABLE_DCACHE Invalidate data cache A

CPLB_ENABLE_DCACHE2 Invalidate data cache B

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-101
for Blackfin Processors

C/C++ Run-Time Library

parameter. Thus, each enabled cache is invalidated during start-up.
On other Blackfin processors, the caches automatically reset to the
“invalidated” state, and no call is necessary, nor performed.

The dcache_invalidate routine only invalidates a single data cache,
selected by its a_or_b parameter:

The dcache_invalidate_both routine invalidates both data cache A and
data cache B. On the ADSP-BF535 processor, it is implemented by calling
dcache_invalidate for each data cache in turn. On other Blackfin proces-
sors, the routine toggles the bits of the DMEM_CONTROL register to invalidate
all contents of both data caches at once, and is considerably faster than
calling dcache_invalidate for each data cache separately.

Error Conditions

The cache invalidation routines do not return an error condition.

Example

#include <cplbtab.h>

void clean_cache(int which)

{

switch (which) {

case 1:

icache_invalidate();

break;

case 2:

dcache_invalidate(CPLB_INVALIDATE_A);

break;

a_or_b Value Meaning

CPLB_INVALIDATE_A Invalidate data cache A

CPLB_INVALIDATE_B Invalidate data cache B

Documented Library Functions

3-102 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

case 4:

dcache_invalidate(CPLB_INVALIDATE_B);

break;

case 6:

dcache_invalidate_both();

break;

default:

cache_invalidate(__cplb_ctrl);

break;

}

}

See Also

flush_data_cache

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-103
for Blackfin Processors

C/C++ Run-Time Library

calloc

Allocate and initialize memory

Synopsis

#include <stdlib.h>

void *calloc (size_t nmemb, size_t size);

Description

The calloc function dynamically allocates a range of memory and initial-
izes all locations to zero. The number of elements (the first argument)
multiplied by the size of each element (the second argument) is the total
memory allocated. The memory may be deallocated with the free func-
tion. The memory allocated is aligned to a 4-byte boundary.

Error Conditions

The calloc function returns a null pointer if unable to allocate the
requested memory.

Example

#include <stdlib.h>

int *ptr;

ptr = (int *) calloc(10, sizeof(int));

/* ptr points to a zeroed array of length 10 */

See Also

free, malloc, realloc

Documented Library Functions

3-104 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

ceil

Ceiling

Synopsis

#include <math.h>

float ceilf (float x);

double ceil (double x);

long double ceild (long double x);

Description

The ceiling functions return the smallest integral value that is not less than
the argument x.

Error Conditions

The ceiling functions do not return an error condition.

Example

#include <math.h>

double y;

float x;

y = ceil (1.05); /* y = 2.0 */

x = ceilf (-1.05); /* y = -1.0 */

See Also

floor

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-105
for Blackfin Processors

C/C++ Run-Time Library

clearerr

Clear file or stream error indicator

Synopsis

#include <stdio.h>

void clearerr(FILE *stream);

Description

The clearerr function clears the error and end-of-file (EOF) indicators for
the particular stream pointed to by stream.

The stream error indicators record whether any read or write errors have
occurred on the associated stream. The EOF indicator records when there is
no more data in the file.

Error Conditions

The clearerr function does not return an error condition.

Example

#include <stdio.h>

FILE *routine(char *filename)

{

FILE *fp;

fp = fopen(filename, "r");

/* Some operations using the file */

/* now clear the error indicators for the stream */

clearerr(fp);

return fp;

}

Documented Library Functions

3-106 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

See Also

feof, ferror

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-107
for Blackfin Processors

C/C++ Run-Time Library

clock

Processor time

Synopsis

#include <time.h>

clock_t clock(void);

Description

The clock function returns the number of processor cycles that have
elapsed since an arbitrary starting point. The function returns the value
(clock_t) -1, if the processor time is not available or if it cannot be rep-
resented. The result returned by the function may be used to calculate the
processor time in seconds by dividing it by the macro CLOCKS_PER_SEC.
For more information, see “time.h” on page 3-36. An alternative method
of measuring the performance of an application is described in “Measur-
ing Cycle Counts” on page 4-64.

Error Conditions

The clock function does not return an error condition.

Example

#include <time.h>

time_t start_time,stop_time;

double time_used;

start_time = clock();

compute();

stop_time = clock();

time_used = ((double) (stop_time - start_time)) / CLOCKS_PER_SEC;

Documented Library Functions

3-108 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

See Also

No related function.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-109
for Blackfin Processors

C/C++ Run-Time Library

cos

Cosine

Synopsis

#include <math.h>

float cosf (float x);

double cos (double x);

long double cosd (long double x);

fract16 cos_fr16 (fract16 x);

fract32 cos_fr32 (fract32 x);

_Fract cos_fx16 (_Fract x);

long _Fract cos_fx32 (long _Fract x);

Description

The cosine functions return the cosine of the argument. Both the argu-
ment x and the results returned by the functions are in radians.

The cos_fr16, cos_fr32, cos_fx16 and cos_fx32 functions input a frac-
tional value in the range [-1.0, 1.0) corresponding to [-π/2, π/2]. The
domain represents half a cycle which can be used to derive a full cycle if
required (see “Notes” below). The result, in radians, is in the range [-1.0,
1.0).

The domain of cosf is [-102940.0, 102940.0], and the domain for cosd is
[-843314852.0, 843314852.0]. The result returned by the functions cos,
cosf, and cosd is in the range [-1, 1]. The functions return 0.0 if the input
argument x is outside the respective domains.

Error Conditions

The cosine functions do not return an error condition.

Documented Library Functions

3-110 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Example

#include <math.h>

double y;

y = cos(3.14159); /* y = -1.0 */

Notes

The domain of the cos_fr16, cos_fr32, cos_fx16 and cos_fx32 functions
is restricted to the range [-1, 1) which corresponds to half a period from
–(π /2) to π/2. It is possible to derive the full period using the following
properties of the function.

cosine [0, π/2] = -cosine [π, 3/2 π]

cosine [-π/2, 0] = -cosine [π/2, π]

The function below uses these properties to calculate the full period (from
0 to 2π) of the cosine function using an input domain of [0, 0x7fff].

#include <math.h>

fract16 cos2pi_fr16 (fract16 x)

{

if (x < 0x2000) { /* <0.25 */

/* first quadrant [0..π/2): */

/* cos_fr16([0x0..0x7fff]) = [0..0x7fff) */

return cos_fr16(x * 4);

} else if (x < 0x6000) { /* < 0.75 */

/* if (x < 0x4000) */

/* second quadrant [π/2..π): */

/* -cos_fr16([0x8000..0x0)) = [0x7fff..0) */

/* */

/* if (x < 0x6000) */

/* third quadrant [π..3/2π): */

/* -cos_fr16([0x0..0x7fff]) = [0..0x8000) */

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-111
for Blackfin Processors

C/C++ Run-Time Library

return -cos_fr16((0xc000 + x) * 4);

} else {

/* fourth quadrant [3/2π..π): */

/* cos_fr16([0x8000..0x0)) = [0x8000..0) */

return cos_fr16((0x8000 + x) * 4);

}

}

See Also

acos, sin

Documented Library Functions

3-112 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

cosh

Hyperbolic cosine

Synopsis

#include <math.h>

float coshf (float x);

double cosh (double x);

long double coshd (long double x);

Description

The hyperbolic cosine functions return the hyperbolic cosine of their
argument.

Error Conditions

The domain of coshf is [-87.33, 88.72], and the domain for coshd is
[-710.44, 710.44]. The functions return HUGE_VAL if the input argument x
is outside the respective domains.

Example

#include <math.h>

double x, y;

float v, w;

y = cosh (x);

v = coshf (w);

See Also

sinh

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-113
for Blackfin Processors

C/C++ Run-Time Library

countlsfx

Count leading sign or zero bits

Synopsis

#include <stdfix.h>

int countlsr(fract f);

int countlsk(accum a);

int countlshr(short fract f);

int countlshk(short accum a);

int countlslr(long fract f);

int countlslk(long accum a);

int countlsur(unsigned fract f);

int countlsuk(unsigned accum a);

int countlsuhr(unsigned short fract f);

int countlsuhk(unsigned short accum a);

int countlsulr(unsigned long fract f);

int countlsulk(unsigned long accum a);

Description

Given a fixed-point operand x, the countlsfx family of functions return
the largest value of n for which x << n does not overflow. For a zero input
value, the function will return the number of bits in the fixed-point type.

In addition to the individually-named functions for each fixed-point type,
a type-generic macro countlsfx is defined for use in C99 mode. This may
be used with any of the fixed-point types.

Documented Library Functions

3-114 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Error Conditions

The countlsfx family of functions do not return an error condition.

Example

#include <stdfix.h>

int n;

n = countlsk(-12.5k); /* n == 4 */

n = countlsulr(0.125ulr); /* n == 2 */

#if defined(_C99)

n = countlsfx(-12.5k); /* n == 4 */

n = countlsfx(0.125ulr); /* n == 2 */

#endif

See Also

No related functions.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-115
for Blackfin Processors

C/C++ Run-Time Library

cplb_hdr

Default exception handler for memory-related events

Synopsis

#include <cplbtab.h>

void cplb_hdr (void);

Description

The cplb_hdr routine is the default exception handler, installed by the
default start-up code to service CPLB-related events if CPLBs or caching
is indicated by the ___cplb_ctrl variable.

The routine saves the processor context, before examining the exception
details to determine the kind of exception raised. If it is an instruction
CPLB miss, a data CPLB miss, or a data CPLB write, the routine invokes
cplb_mgr to handle the event, otherwise it calls the routine
_unknown_exception_occurred, which is not expected to return.

If cplb_mgr indicates a successful handling, the routine returns from the
exception, restoring the context as it does. Otherwise, it invokes an appro-
priate diagnostic routine.

Error Conditions

The cplb_hdr routine calls other routines to deal with each of the error
codes returned by the cplb_mgr routine. By default, these routines are
stubs that loop forever—you can replace them with your own routines if
you wish to provide more detailed handling.

Documented Library Functions

3-116 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Table 3-31 lists the error codes and their responses.

Example

#include <cplbtab.h>

#include <sys/exception.h>

void setup_cplb_handling(void) {

register_handler(ik_exception, (ex_handler_fn)cplb_hdr);

}

See also Blackfin/lib/src/libc/crt/basiccrt.s in the VisualDSP++
installation directory.

See Also

cplb_init, cplb_mgr

Table 3-31. cplb_hdr Error Codes and Responses

Error Code Response

CPLB_RELOADED Indicates success; returns

CPLB_NO_ADDR_MATCH Calls stub _cplb_miss_without_replacement

CPLB_NO_UNLOCKED Calls stub _cplb_miss_all_locked

CPLB_PROT_VIOL Calls stub _cplb_protection_violation

others Loops at label strange_return_from_cplb_mgr

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-117
for Blackfin Processors

C/C++ Run-Time Library

cplb_init

Initialize CPLBs and caches at start-up

Synopsis

#include <cplbtab.h>

void cplb_init(int bitmask);

Description

The cplb_init routine is called by the default start-up code during pro-
cessor initialization. It initializes the memory protection hardware and
enables caches where requested, according to configuration data in two
tables. It is not expected that cplb_init() is called from normal user code,
nor is it expected that it is called more than once following each processor
reset.

The routine’s behavior is controlled by the following data structures:

• The ___cplb_ctrl variable

• The dcplbs_table[] array

• The icplbs_table[] array

Initially, the routine tests the ___cplb_ctrl variable to determine whether
any of the caches have been enabled when the .ldf file has already
mapped code or data into the corresponding cache area. If so, this would
lead to corrupted code or data; therefore, the cplb_init routine aborts by
jumping to infinite loops labelled with diagnostic symbols, for example,
l1_code_cache_enabled_when_l1_used_for_code.

For the ADSP-BF535 processor, if caches are indicated by the
___cplb_ctrl variable, then the routine invokes the cache_invalidate
function to first invalidate the caches, so that they are not enabled while
containing random bits.

Documented Library Functions

3-118 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

For each of the data and instruction CPLBs, if requested, the cplb_init
routine copies from one to sixteen entries from the configuration tables,
installing the tables’ entries into the corresponding registers. For example,
icplbs_table[0] is copied into ICPLB_DATA0 and ICPLB_ADDR0, and
dcplbs_table[0] is copied into DCPLB_DATA0 and DCPLB_ADDR0.

The copying is not verbatim; if caches are not requested by the
___cplb_ctrl variable, cache bits are masked off the values written to the
xCPLB_DATAn registers.

If a table has from one to sixteen entries, all of the table’s entries are
installed, with any unused xCPLB_DATAn registers being marked as
“Invalid”. If a table contains more entries, then only the first sixteen are
installed. It is assumed that an appropriate exception handler was installed
to process any CPLB miss exceptions that occur. The cplb_hdr routine is
an example of such an exception handler.

After installing the CPLB entries from the tables, the cplb_init routine
modifies the IMEM_CONTROL and DMEM_CONTROL registers to enable the
CPLBs and caches that were indicated. The cplb_init routine also sets
the following DMEM_CONTROL bits:

• The data cache bank select bit is set, according to whether
CPLB_ENABLE_DCBS is set.

• The DAG0/1 port preference bits are set to 1 and 0, respectively,
to reduce memory access stalls.

Error Conditions

The cplb_init routine does not return an error condition. If it encounters
an error during initialization, it jumps to a label indicative of the problem.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-119
for Blackfin Processors

C/C++ Run-Time Library

Example

See the source for the start-up code, in the VisualDSP++ installation
directory, under ...Blackfin/lib/src/libc/crt/basiccrt.s.

See Also

cplb_hdr

Documented Library Functions

3-120 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

cplb_mgr

CPLB management routine for CPLB exceptions

Synopsis

#include <cplbtab.h>

int cplb_mgr(int event, int bitmask);

Description

The cplb_mgr routine manages the active CPLB tables for instructions and
data. It is intended to be invoked from an exception handler upon receipt
of a CPLB-related event. cplb_hdr, installed by the default start-up code,
is a typical example of such a handler.

The event parameter indicates the action that the routine should take:

To replace an instruction CPLB, the routine determines the faulting
address from the processor’s registers, and searches the icplbs_table[]
looking for an entry whose start address and size addresses a region of
memory that includes the faulting address. If none is found, the routine
returns CPLB_NO_ADDR_MATCH to indicate that the faulting address is not
covered by any of the entries in icplbs_table[], and is therefore an
invalid address.

The routine selects the first active instruction CPLB that is not locked,
and shuffles all following instruction CPLBs up, overwriting it, so that the
last instruction CPLB is free to be used by the entry to be installed. In this
manner, the replacement algorithm is Least-Recently-Installed. If no

Event Value Required Action

CPLB_EVT_ICPLB_MISS Replace an active instruction CPLB

CPLB_EVT_DCPLB_MISS Replace an active data CPLB

CPLB_EVT_DCPLB_WRITE Mark an existing data CPLB as dirty

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-121
for Blackfin Processors

C/C++ Run-Time Library

unlocked instruction CPLBs can be found, the routine returns
CPLB_NO_UNLOCKED.

The new instruction CPLB is installed into ICPLB_ADDR15 and
ICPLB_DATA15. If the bitmask parameter indicates that the instruction
cache is not enabled (that is, if bitmask does not have bit
CPLB_ENABLE_ICACHE set), then cache bits are masked off the entry as it is
installed.

Replacing a data CPLB follows a similar process, but must also deal with
CPLBs that indicate data is to be cached in write-back mode. In this case,
the routine first attempts to select a clean data CPLB to evict. If no
unlocked clean data CPLB can be found, then the routine falls back on
selecting dirty data CPLBs. As for instruction CPLBs, if no unlocked
CPLB can be selected, the routine returns CPLB_NO_UNLOCKED.

If it is necessary to evict a dirty data CPLB, the cplb_mgr routine first
flushes any modified cache entries corresponding to the victim data
CPLB’s memory page, forcing the modified data to be written back to sec-
ondary memory.

When the new data CPLB is installed, cache bits are masked off if the
bitmask parameter does not have either of the CPLB_ENABLE_DCACHE or
CPLB_ENABLE_DCACHE2 bits sets.

The cplb_mgr routine is called to handle data CPLB write events when a
page is cached in write-back mode, and the first write occurs to a clean
page. In this case, the routine locates the active CPLB using the proces-
sor’s MMRs and verifies that it is a clean, cached, write-back CPLB, and
marks the page as dirty. Future writes to the page do not trigger an excep-
tion, but now the page has been marked as dirty, so the routine can flush
the modified data from the cache if it becomes necessary to evict the page.

If the page indicated by a data CPLB write is not a clean, cached
write-back page, this indicates that a protection violation has occurred, for
example, a write to a supervisor-only page while in user mode, and, there-
fore, the routine returns CPLB_PROT_VIOL.

Documented Library Functions

3-122 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

When a data CPLB is installed during the eviction process, pages that are
cached in write-back mode are not forced to be marked as clean. This is
because there is a performance trade-off that the application designer can
exploit if the expectation is that data CPLB miss exceptions are very rare.
A dirty data CPLB is expensive to evict, because of the cost of flushing
modified data to secondary memory, but if no eviction is ever expected,
this is irrelevant. In contrast, if a page is expected to be modified but never
flushed, a clean data CPLB will pay the cost of a data CPLB write excep-
tion on first write. Therefore, the designer may choose to pre-mark pages
as dirty, with the expectation that the CPLB eviction process will never
occur.

Error Conditions

The cplb_mgr routine returns the following values:

Example

#include <cplbtab.h>

void replace_dcplb(void) {

int r = cplb_mgr(CPLB_EVT_DCPLB_MISS, __cplb_ctrl);

if (r == CPLB_RELOADED)

printf("Success\n");

else

Value Meaning

CPLB_RELOADED The event was serviced successfully

CPLB_NO_ADDR_MATCH There is no entry in the appropriate cplbs_table[] that cov-
ers the faulting address.

CPLB_NO_UNLOCKED All the active CPLBs are marked as “locked” and could not be
evicted

CPLB_PROT_VIOL A protection violation occurred

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-123
for Blackfin Processors

C/C++ Run-Time Library

printf("Failed to replace Data CPLB\n");

}

See also Blackfin/lib/src/libc/crt/cplbhdr.s in the VisualDSP++
installation directory.

See Also

cplb_hdr, cplb_init

Documented Library Functions

3-124 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

ctime

Convert calendar time into a string

Synopsis

#include <time.h>

char *ctime(const time_t *t);

Description

The ctime function converts a calendar time, pointed to by the argument
t, into a string that represents the local date and time. The form of the
string is the same as that generated by asctime, and so a call to ctime is
equivalent to:

asctime(localtime(&t))

A pointer to the string is returned by ctime, and it may be overwritten by
a subsequent call to the function.

Error Conditions

The ctime function does not return an error condition.

Example

#include <time.h>

#include <stdio.h>

time_t cal_time;

if (cal_time != (time_t)-1)

printf("Date and Time is %s",ctime(&cal_time));

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-125
for Blackfin Processors

C/C++ Run-Time Library

See Also

asctime, gmtime, localtime, time

Documented Library Functions

3-126 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

difftime

Difference between two calendar times

Synopsis

#include <time.h>

double difftime(time_t t1, time_t t0);

Description

The difftime function returns the difference in seconds between two cal-
endar times, expressed as a double. By default, the double data type
represents a 32-bit, single precision, floating-point, value. This form is
normally insufficient to preserve all of the bits associated with the differ-
ence between two calendar times, particularly if the difference represents
more than 97 days. It is recommended therefore that any function that
calls difftime is compiled with the -double-size-64 switch.

Error Conditions

The difftime function does not return an error condition.

Example

#include <time.h>

#include <stdio.h>

#define NA ((time_t)(-1))

time_t cal_time1;

time_t cal_time2;

double time_diff;

if ((cal_time1 == NA) || (cal_time2 == NA))

printf("calendar time difference is not available\n");

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-127
for Blackfin Processors

C/C++ Run-Time Library

else

time_diff = difftime(cal_time2,cal_time1);

See Also

time

Documented Library Functions

3-128 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

disable_data_cache

Disable processor data caches and CPLBs

Synopsis

#include <cplbtab.h>

void disable_data_cache(void);

Description

The disable_data_cache function disables the processor’s data caches and
data CPLBs.

 The disable_data_cache function does not flush back to memory
any modified data in the cache that is cached in write-back mode.
To flush any such data, use the flush_data_cache or
flush_data_buffer routines.

Error Conditions

The disable_data_cache function does not return an error code.

Example

#include <cplbtab.h>

void cache_off(void)

{

disable_data_cache();

}

See Also

cache_invalidate, enable_data_cache, flush_data_cache

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-129
for Blackfin Processors

C/C++ Run-Time Library

div

Division

Synopsis

#include <stdlib.h>

div_t div (int numer, int denom);

Description

The div function divides numer by denom, both of type int, and returns a
structure of type div_t. The type div_t is defined as:

typedef struct {

int quot;

int rem;

} div_t;

where quot is the quotient of the division and rem is the remainder, such
that if result is of type div_t, then

result.quot * denom + result.rem == numer

Error Conditions

If denom is zero, the behavior of the div function is undefined.

Example

#include <stdlib.h>

div_t result;

result = div(5, 2); /* result.quot=2, result.rem=1 */

See Also

ldiv, divifx, fmod, fxdivi, modf

Documented Library Functions

3-130 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

divifx

Division of integer by fixed-point to give integer result

Synopsis

#include <stdfix.h>

int divir(int numer, fract denom);

int divik(int numer, accum denom);

long int divilr(long int numer, long fract denom);

long int divilk(long int numer, long accum denom);

unsigned int diviur(unsigned int numer, unsigned fract denom);

unsigned int diviuk(unsigned int numer, unsigned accum denom);

unsigned long int diviulr(unsigned long int numer,

 unsigned long fract denom);

unsigned long int diviulk(unsigned long int numer,

 unsigned long accum denom);

Description

Given an integer numerator and a fixed-point denominator, the divifx
family of functions computes the quotient and returns the closest integer
value to the result.

Error Conditions

The divifx family of functions have undefined behavior if the
denominator is zero.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-131
for Blackfin Processors

C/C++ Run-Time Library

Example

#include <stdfix.h>

int quo;

unsigned long int ulquo;

quo = divik(125, -12.5k); /* quo == -10 */

ulquo = diviulr(125, 0.125ulr); /* ulquo == 1000 */

See Also

fxdivi, idivfx

Documented Library Functions

3-132 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

enable_data_cache

Turn on one or both data caches

Synopsis

#include <cplbtab.h>

void enable_data_cache(int bitmask);

Description

The enable_data_cache function enables one or both of the processor’s
data caches, as indicated by the bitmask parameter:

The bits are set in the following order:

1. The CPLB_ENABLE_CPLBS or CPLB_ENABLE_DCPLBS bits must be set.
If neither bit is set, the function exits without changing
DMEM_CONTROL. If one or both of these bits is set, data CPLBs are
enabled.

2. If caching is to be enabled, CPLB_ENABLE_DCACHE must be set. If so,
data cache A is enabled. However, CPLB_ENABLE_CPLBS or
CPLB_ENABLE_DCPLBS must be set first.

3. If both data caches are to be enabled, CPLB_ENABLE_DCACHE2 must
also be set; if so, both data cache A and data cache B are enabled.
CPLB_ENABLE_DCACHE2 is ignored if CPLB_ENABLE_DCACHE is not set,
as the processor does not support data cache B in isolation.

Bit Set Meaning

CPLB_ENABLE_CPLBS or
CPLB_ENABLE_DCPLBS

Enable data CPLBs

CPLB_ENABLE_DCACHE Enable data cache A

CPLB_ENABLE_DCACHE2 Enable data cache B

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-133
for Blackfin Processors

C/C++ Run-Time Library

 Valid data CPLBs must already be installed in the DCPLB active
table before calling this function; the default start-up code ensures
this is the case. If DCPLB misses are a possibility, a suitable excep-
tion handler, such as cplb_hdr, must be installed by the default
start-up code.

 The data caches may only be enabled if their memory space has
been left free for cache use. If any data has been mapped to this
space by the .ldf file, the data will be corrupted by the cache’s
operation, and undefined behavior will result.

Error Conditions

The enable_data_cache function does not return an error code.

Example

#include <cplbtab.h>

void cache_on(int howmany)

{

int bitmask = __cplb_ctrl;

if (howmany == 1)

bitmask &= ~CPLB_ENABLE_DCACHE2;

enable_data_cache(bitmask);

}

See Also

cplb_hdr, cplb_init, disable_data_cache

Documented Library Functions

3-134 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

exit

Normal program termination

Synopsis

#include <stdlib.h>

void exit (int status);

Description

The exit function causes normal program termination. The functions
registered by the atexit function are called in reverse order of their regis-
tration and the processor is put into the IDLE state. The status argument
is stored in register R0, and control is passed to the ___lib_prog_term
label, which is defined by this function.

Error Conditions

The exit function does not return an error condition.

Example

#include <stdlib.h>

exit(EXIT_SUCCESS);

See Also

abort, atexit

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-135
for Blackfin Processors

C/C++ Run-Time Library

exp

Exponential

Synopsis

#include <math.h>

float expf (float x);

double exp (double x);

long double expd (long double x);

Description

The exponential functions compute the exponential value e to the power
of their argument.

Error Conditions

The input argument x for expf must be in the domain [-87.33, 88.72],
and the input argument for expd must be in the domain [-708.39,
709.78]. The functions return HUGE_VAL if x is greater than the domain
and 0.0 if x is less than the domain.

Example

#include <math.h>

double y;

float x;

y = exp (1.0); /* y = 2.71828 */

x = expf (1.0); /* x = 2.71828 */

See Also

log, pow

Documented Library Functions

3-136 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fabs

Absolute value

Synopsis

#include <math.h>

float fabsf (float x);

double fabs (double x);

long double fabsd (long double x);

Description

The fabs functions return the absolute value of the argument x.

Error Conditions

The fabs functions do not return error conditions.

Example

#include <math.h>

double y;

float x;

y = fabs (-2.3); /* y = 2.3 */

y = fabs (2.3); /* y = 2.3 */

x = fabsf (-5.1); /* x = 5.1 */

See Also

abs, absfx, labs

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-137
for Blackfin Processors

C/C++ Run-Time Library

fclose

Close a stream

Synopsis

#include <stdio.h>

int fclose(FILE *stream);

Description

The fclose function flushes stream and closes the associated file. The
flush will result in any unwritten buffered data for the stream to be writ-
ten to the file, with any unread buffered data being discarded.

If the buffer associated with stream was allocated automatically, it will be
deallocated.

The fclose function will return 0 on successful completion.

Error Conditions

If the fclose function is not successful, it returns EOF.

Example

#include <stdio.h>

void example(char* fname)

{

FILE *fp;

fp = fopen(fname, "w+");

/* Do some operations on the file */

fclose(fp);

}

Documented Library Functions

3-138 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

See Also

fopen

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-139
for Blackfin Processors

C/C++ Run-Time Library

feof

Test for end of file

Synopsis

#include <stdio.h>

int feof(FILE *stream);

Description

The feof function tests whether or not the file identified by stream has
reached the end of the file. The routine returns 0 if the end of the file has
not been reached and a non-zero result if the end of file has been reached.

Error Conditions

The feof function does not return any error condition.

Example

#include <stdio.h>

void print_char_from_file(FILE *fp)

{

/* printf out each character from a file until EOF */

while (!feof(fp))

printf("%c", fgetc(fp));

printf("\n");

}

See Also

clearerr, ferror

Documented Library Functions

3-140 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

ferror

Test for read or write errors

Synopsis

#include <stdio.h>

int ferror(FILE *stream);

Description

The ferror function tests whether an uncleared error has occurred while
accessing stream. If there are no errors, the function will return zero;
otherwise it will return a non-zero value.

 The ferror function does not examine whether the file identified
by stream has reached the end of the file.

Error Conditions

The ferror function does not return any error condition.

Example

#include <stdio.h>

void test_for_error(FILE *fp)

{

if (ferror(fp))

printf("Error with read/write to stream\n");

else

printf("read/write to stream OKAY\n");

}

See Also

clearerr, feof

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-141
for Blackfin Processors

C/C++ Run-Time Library

fflush

Flush a stream

Synopsis

#include <stdio.h>

int fflush(FILE *stream);

Description

The fflush function causes any unwritten data for stream to be written to
the file. If stream is a NULL pointer, fflush performs this flushing action
on all streams.

Upon successful completion the fflush function returns zero.

Error Conditions

If fflush is unsuccessful, the EOF value is returned.

Example

#include <stdio.h>

void flush_all_streams(void)

{

fflush(NULL);

}

See Also

fclose

Documented Library Functions

3-142 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fgetc

 Get a character from a stream

Synopsis

#include <stdio.h>

int fgetc(FILE *stream);

Description

The fgetc function obtains the next character from the input stream
pointed to by stream, converts it from an unsigned char to an int, and
advances the file position indicator for the stream.

Upon successful completion, the fgetc function will return the next byte
from the input stream pointed to by stream.

Error Conditions

If the fgetc function is unsuccessful, then EOF is returned.

Example

#include <stdio.h>

char use_fgetc(FILE *fp)

{

char ch;

if ((ch = fgetc(fp)) == EOF) {

printf("Read End-of-file\n")

return 0;

} else {

return ch;

}

}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-143
for Blackfin Processors

C/C++ Run-Time Library

See Also

getc

Documented Library Functions

3-144 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fgetpos

 Record the current position in a stream

Synopsis

#include <stdio.h>

int fgetpos(FILE *stream, fpos_t *pos);

Description

The fgetpos function stores the current value of the file position indicator
for the stream pointed to by stream in the file position type object pointed
to by pos. The information generated by fgetpos in pos can be used with
the fsetpos function to return the file to this position.

Upon successful completion, the fgetpos function will return zero.

Error Conditions

If fgetpos is unsuccessful, the function will return a non-zero value.

Example

#include <stdio.h>

void aroutine(FILE *fp, char *buffer)

{

fpos_t pos;

/* get the current file position */

if (fgetpos(fp, &pos)!= 0) {

printf("fgetpos failed\n");

return;

}

/* write the buffer to the file */

(void) fprintf(fp, "%s\n", buffer);

/* reset the file position to the value before the write */

if (fsetpos(fp, &pos) != 0) {

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-145
for Blackfin Processors

C/C++ Run-Time Library

printf("fsetpos failed\n");

}

}

See Also

fsetpos, ftell, fseek, rewind

Documented Library Functions

3-146 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fgets

 Get a string from a stream

Synopsis

#include <stdio.h>

char *fgets(char *s, int n, FILE *stream);

Description

The fgets function reads characters from stream into the array pointed to
by s. The function will read a maximum of one less character than the
value specified by n, although the get will also end if either a NEWLINE
character or the end-of-file marker are read. The array s will have a NUL
character written at the end of the string that has been read.

Upon successful completion, the fgets function will return s.

Error Conditions

If fgets is unsuccessful, the function will return a NULL pointer.

Example

#include <stdio.h>

char buffer[20];

void read_into_buffer(FILE *fp)

{

char *str;

str = fgets(buffer, sizeof(buffer), fp);

if (str == NULL) {

printf("Either read failed or EOF encountered\n");

} else {

printf("filled buffer with %s\n", str);

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-147
for Blackfin Processors

C/C++ Run-Time Library

}

}

See Also

 fgetc, getc, gets

Documented Library Functions

3-148 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

floor

Floor

Synopsis

#include <math.h>

float floorf (float x);

double floor (double x);

long double floord (long double x);

Description

The floor functions return the largest integral value that is not greater
than their argument.

Error Conditions

The floor functions do not return error conditions.

Example

#include <math.h>

double y;

float z;

y = floor (1.25); /* y = 1.0 */

y = floor (-1.25); /* y = -2.0 */

z = floorf (10.1); /* z = 10.0 */

See Also

ceil

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-149
for Blackfin Processors

C/C++ Run-Time Library

flush_data_cache

Flush modified data from cache to memory

Synopsis

#include <cplbtab.h>

void flush_data_cache(void);

void flush_data_buffer(void *start, void *end, int invalidate);

Description

The flush_data_cache function may be used when the processor’s data
caches are enabled, and some data is being cached in write-back mode. In
this mode, modified data is held in the cache, and is not written back to
memory immediately, thus saving the cost of an external memory access.
When data is cached in this mode, it may be necessary to ensure that any
modified data has been flushed to memory, so that external systems can
access it. DMA transfers and dual-core accesses are common cases where
write-back mode data would need to be flushed.

The flush_data_cache function flushes all modified data from the cache
to memory. It does so by traversing the table of active data CPLBs, look-
ing for valid entries that indicate a write-back page that has been modified
(that is, the dirty flag has been set). For each page encountered, the func-
tion flushes the modified data in the page.

The flush_data_buffer function may be used when individual areas of
memory need to be flushed from the cache. The function flushes data
cache addresses from start to end inclusive. Additional data addresses
may also be flushed, since the function flushes entire cache lines.

If the invalidate parameter is non-zero, flush_data_buffer also invali-
dates the cache entries, forcing the next data access to re-fetch the data
from memory. This is useful if the buffer is being updated by an external
activity, such as DMA.

Documented Library Functions

3-150 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Error Conditions

The flush_data_cache and flush_data_buffer functions do not return
an error condition.

Example

#include <cplbtab.h>

void do_flush(void)

{

if (__cplb_ctrl & (CPLB_ENABLE_DCACHE|CPLB_ENABLE_DCACHE2))

flush_data_cache();

}

char *buffer;

int buffer_len;

void inv_buffer(void) {

flush_data_buffer(buffer, buffer+buffer_len, 1);

}

See Also

cache_invalidate

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-151
for Blackfin Processors

C/C++ Run-Time Library

fmod

Floating-point modulus

Synopsis

#include <math.h>

float fmodf (float x, float y);

double fmod (double x, double y);

long double fmodd (long double x, long double y);

Description

The fmod functions compute the floating-point remainder that results
from dividing the first argument by the second argument.

The result is less than the second argument and has the same sign as the
first argument. If the second argument is equal to zero, the fmod functions
return zero.

Error Conditions

The fmod functions do not return an error condition.

Example

#include <math.h>

double y;

float x;

y = fmod (5.0, 2.0); /* y = 1.0 */

x = fmodf (4.0, 2.0); /* x = 0.0 */

See Also

div, ldiv, modf

Documented Library Functions

3-152 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fopen

 Open a file

Synopsis

#include <stdio.h>

FILE *fopen(const char *filename, const char *mode);

Description

The fopen function initializes the data structures that are required for
reading or writing to a file. The file’s name is identified by filename, with
the access type required specified by the string mode.

Valid selections for mode are specified below. If any other mode specifica-
tion is selected then the behavior is undefined.

mode Selection

r Open text file for reading. This operation fails if the file has not previ-
ously been created.

w Open text file for writing. If the file name already exists, it will be trun-
cated to zero length with the write starting at the beginning of the file. If
the file does not already exist, it is created.

a Open a text file for appending data. All data will be written to the end of
the specified file.

r+ As r with the exception that the file can also be written to.

w+ As w with the exception that the file can also be read from.

a+ As a with the exception that the file can also be read from any position
within the file. Data is only written to the end of the file.

rb As r with the exception that the file is opened in binary mode.

wb As w with the exception that the file is opened in binary mode.

ab As a with the exception that the file is opened in binary mode.

r+b/rb+ Open file in binary mode for both reading and writing.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-153
for Blackfin Processors

C/C++ Run-Time Library

If the call to the fopen function is successful, a pointer to the object con-
trolling the stream is returned.

Error Conditions

If the fopen function is not successful, a NULL pointer is returned.

Example

#include <stdio.h>

FILE *open_output_file(void)

{

/* Open file for writing as binary */

FILE *handle = fopen("output.dat", "wb");

return handle;

}

See Also

fclose, fflush, freopen

w+b/wb+ Create or truncate to zero length a file for both reading and writing.

a+b/ab+ As a+ with the exception that the file is opened in binary mode.

mode Selection

Documented Library Functions

3-154 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fprintf

Print formatted output

Synopsis

#include <stdio.h>

int fprintf(FILE *stream, const char *format, /*args*/ ...);

Description

The fprintf function places output on the named output stream. The
string pointed to by format specifies how the arguments are converted for
output.

The format string can contain zero or more conversion specifications, each
beginning with the % character. The conversion specification itself follows
the % character and consists of one or more of the following sequence:

• Flag – optional characters that modify the meaning of the
conversion.

• Width – optional numeric value (or *) that specifies the minimum
field width.

• Precision – optional numeric value that specifies the minimum
number of digits to appear.

• Length – optional modifier that specifies the size of the argument.

• Type – character that specifies the type of conversion to be applied.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-155
for Blackfin Processors

C/C++ Run-Time Library

The flag characters can be in any order and are optional. The valid flags
are described in the following table.

If a field width is specified, the converted value is padded with spaces to
the specified width if the converted value contains fewer characters than
the width. Normally spaces will be used to pad the field on the left, but
padding on the right will be used if the ‘-’ flag has been specified. The ‘0’
flag may be used as an alternative to space padding; see the description of
the flag field above. The width may also be specified as a ‘*’, which indi-
cates that the current argument in the call to fprintf is an int that defines
the value of the width. If the value is negative then it is interpreted as a ‘-’
flag and a positive field width.

The optional precision value begins with a period (.) and is followed
either by an asterisk (*) or by a decimal integer. An asterisk (*) indicates

Flag Field

- Left-justify the result within the field. (The result is right-justified by
default.)

+ Always begin a signed conversion with a plus or minus sign. By default,
only negative values will start with a sign.

space Prefix a space to the result if the first character is not a sign and the +
flag has not also been specified.

The result is converted to an alternative form depending on the type of
conversion:
 o : If the value is not zero, it is preceded with 0.
 x : If the value is not zero, it is preceded with 0x.
 X : If the value is not zero, it is preceded with 0X.
 a A e E f F: Always generate a decimal point.
 g G : as E except trailing zeros are not removed.

0 (zero) Specifies an alternative to space padding. Leading zeroes will be used as
necessary to pad a field to the specified field width, the leading zeroes
will follow any sign or specification of a base. The flag will be ignored if
it appears with a ‘-’ flag or if it is used in a conversion specification that
uses a precision and one of the conversions a, A, d, i, o, u, x or X.
The 0 flag may be used with the a, A, d, i, o, u, x, X, e, E, f, g and G
conversions.

Documented Library Functions

3-156 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

that the precision is specified by an integer argument preceding the argu-
ment to be formatted. If only a period is specified, a precision of zero is
assumed. The precision value has differing effects, depending on the con-
version specifier being used:

• For A, a specifies the number of digits after the decimal point.
If the precision is zero and the # flag is not specified, no decimal
point will be generated.

• For d,i,o,u,x,X specifies the minimum number of digits to
appear, defaulting to 1.

• For f,F,E,e,k,K,r,R specifies the number of digits after the deci-
mal point character, the default being 6. If the # specifier is present
with a zero precision, no decimal point will be generated.

• For g, G specifies the maximum number of significant digits.

• For s, specifies the maximum number of characters to be written.

The length modifier can optionally be used to specify the size of the argu-
ment. The length modifiers should only precede one of the d, i, o, u, x, X,
k, K, r, R or n conversion specifiers unless other conversion specifiers are
detailed.

Length Action

h The argument should be interpreted as a short int, short fract, or
short accum.

hh The argument should be interpreted as a char.

j The argument should be interpreted as intmax_t or uintmax_t.

l The argument should be interpreted as a long int, long fract, or long
accum.

ll The argument should be interpreted as a long long int.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-157
for Blackfin Processors

C/C++ Run-Time Library

Note that the hh, j, t, and z size specifiers, as described in the C99
(ISO/IEC 9899:1999) standard, are only available if the -full-io option
has been selected.

The following table contains definitions of the valid conversion specifiers
that define the type of conversion to be applied:

L The argument should be interpreted as a long double argument. This
length modifier should precede one of the a, A, e, E, f, F, g, or G
conversion specifiers.
Note that this length modifier is only valid if -double-size-64 is selected.
If -double-size-32 is selected, no conversion will occur, with the corre-
sponding argument being consumed.

t The argument should be interpreted as ptrdiff_t.

z The argument should be interpreted as size_t.

Specifier Conversion

a, A Floating-point number

c Character

d, i Signed decimal integer

e, E Scientific notation (mantissa/exponent)

f, F Decimal floating-point

g, G Convert as e, E or f, F

k Signed accum

K Unsigned accum

n Pointer to signed integer to which the number of characters written so
far will be stored with no other output

o Unsigned octal

p Pointer to void

r Signed fract

R Unsigned fract

Length Action

Documented Library Functions

3-158 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The a|A conversion specifier converts to a floating-point number with the
notational style [-]0xh.hhhhp±d where there is one hexadecimal digit
before the period. The a|A conversion specifiers always contain a mini-
mum of one digit for the exponent.

The e|E conversion specifier converts to a floating-point number nota-
tional style [-]d.ddde±dd. The exponent always contains at least two
digits. The case of the e preceding the exponent will match that of the
conversion specifier.

The f|F conversion specifier converts to decimal notation [-]d.ddd.

The g|G conversion specifier converts as e|E or f|F specifiers depending on
the value being converted. If the exponent of the value being converted is
less than -4 or greater than or equal to the precision then e|E conversions
will be used, otherwise f|F conversions will be used.

For all of the a, A, e, E, f, F, g, and G specifiers, an argument that repre-
sents infinity is displayed as inf or INF, with the case matching that of the
specifier. For all of the a, A, e, E, f, F, g, and G specifiers, an argument that
represents a NaN result is displayed as nan or NAN, with the case matching
that of the specifier.

The k|K and r|R conversion specifiers convert a fixed-point value to deci-
mal notation [-]d.ddd when your application is built with the -full-io
or -fixed-point-io switch. Otherwise, the k|K and r|R conversion
specifiers convert a fixed-point value to hexadecimal.

The fprintf function returns the number of characters printed.

s String of characters

u Unsigned integer

x, X Unsigned hexadecimal notation

% Print a % character with no argument conversion

Specifier Conversion

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-159
for Blackfin Processors

C/C++ Run-Time Library

Error Conditions

If the fprintf function is unsuccessful, a negative value is returned.

Example

#include <stdio.h>

void fprintf_example(void)

{

char *str = "hello world";

/* Output to stdout is " +1 +1." */

fprintf(stdout, "%+5.0f%+#5.0f\n", 1.234, 1.234);

/* Output to stdout is "1.234 1.234000 1.23400000" */

fprintf(stdout, "%.3f %f %.8f\n", 1.234, 1.234, 1.234);

/* Output to stdout is "justified:
left:5 right: 5" */

fprintf(stdout, "justified:\nleft:%-5dright:%5i\n", 5, 5);

/* Output to stdout is

"90% of test programs print hello world" */

fprintf(stdout, "90%% of test programs print %s\n", str);

/* Output to stdout is "0.0001 1e-05 100000 1E+06" */

fprintf(stdout, "%g %g %G %G\n", 0.0001, 0.00001, 1e5, 1e6);

}

See Also

printf, snprintf, vfprintf, vprintf, vsnprintf, vsprintf

Documented Library Functions

3-160 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fputc

Put a character on a stream

Synopsis

#include <stdio.h>

int fputc(int ch, FILE *stream);

Description

The fputc function writes the argument ch to the output stream pointed
to by stream and advances the file position indicator. The argument ch is
converted to an unsigned char before it is written.

If the fputc function is successful then it will return the value that was
written to the stream.

Error Conditions

 If the fputc function is not successful, EOF is returned.

Example

#include <stdio.h>

void fputc_example(FILE* fp)

{

/* put the character 'i' to the stream pointed to by fp */

int res = fputc('i', fp);

if (res != 'i')

printf("fputc failed\n");

}

See Also

putc

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-161
for Blackfin Processors

C/C++ Run-Time Library

fputs

Put a string on a stream

Synopsis

#include <stdio.h>

int fputs(const char *string, FILE *stream);

Description

The fputs function writes the string pointed to by string to the output
stream pointed to by stream. The NUL terminating character of the string
will not be written to stream.

If the call to fputs is successful, the function will return a non-negative
value.

Error Conditions

The fputs function will return EOF if a write error occurred.

Example

#include <stdio.h>

void fputs_example(FILE* fp)

{

/* put the string "example" to the stream pointed to by fp */

char *example = "example";

int res = fputs(example, fp);

if (res == EOF)

printf("fputs failed\n");

}

Documented Library Functions

3-162 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

See Also

puts

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-163
for Blackfin Processors

C/C++ Run-Time Library

fread

Buffered input

Synopsis

#include <stdio.h>

size_t fread(void *ptr, size_t size, size_t n, FILE *stream);

Description

The fread function reads into an array pointed to by ptr up to a maxi-
mum of n items of data from stream, where an item of data is a sequence
of bytes of length size. It stops reading bytes if an EOF or error condition
is encountered while reading from stream, or if n items have been read. It
advances the data pointer in stream by the number of bytes read. It does
not change the contents of stream.

The fread function returns the number of items read. This may be less
than n if there is insufficient data on the external device to satisfy the read
request. If size or n is zero, then fread will return zero and does not affect
the state of stream.

When the stream has been opened as a binary stream, the Analog Devices
I/O library may choose to bypass the I/O buffer and transmit data from an
external device directly into the program, particularly when the buffer size
(as defined by the macro BUFSIZ in the stdio.h header file or controlled
by the function setvbuf) is smaller than the number of characters to be
transferred. If an application relies on this function to always read data via
an I/O buffer, then it should be linked against the third-party library
(using the -full-io switch).

Error Conditions

If an error occurs, fread will return zero and set the error indicator for
stream.

Documented Library Functions

3-164 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Example

#include <stdio.h>

int buffer[100];

int fill_buffer(FILE *fp)

{

int read_items;

/* Read from file pointer fp into array buffer */

read_items = fread(&buffer, sizeof(int), 100, fp);

if (read_items < 100) {

if (ferror(fp))

printf("fill_buffer failed with an I/O error\n");

else if (feof(fp))

printf("fill_buffer failed with EOF\n");

else

printf("fill_buffer only read %d items\n",read_items);

}

return read_items;

}

See Also

ferror, fgetc, fgets, fscanf

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-165
for Blackfin Processors

C/C++ Run-Time Library

free

Deallocate memory

Synopsis

#include <stdlib.h>

void free(void *ptr);

Description

The free function deallocates a pointer previously allocated to a range of
memory (by calloc or malloc) to the free memory heap. If the pointer
was not previously allocated by calloc, malloc, or realloc, the behavior
is undefined.

The free function returns the allocated memory to the heap from which it
was allocated.

Error Conditions

The free function does not return an error condition.

Example

#include <stdlib.h>

char *ptr;

ptr = (char *)malloc(10); /* Allocate 10 bytes from heap */

free(ptr); /* Return space to free heap */

See Also

calloc, malloc, realloc

Documented Library Functions

3-166 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

freopen

Open a file using an existing file descriptor

Synopsis

#include <stdio.h>

FILE *freopen(const char *fname, const char *mode, FILE *stream);

Description

The freopen function opens the file specified by fname and associates it
with the stream pointed to by stream. The mode argument has the same
effect as described in fopen (see “fopen” on page 3-152 for more informa-
tion on the mode argument).

Before opening the new file, the freopen function will first attempt to
flush the stream and close any file descriptor associated with stream.
Failure to flush or close the file successfully is ignored. Both the error and
EOF indicators for stream are cleared.

The original stream will always be closed regardless of whether the open-
ing of the new file is successful or not.

Upon successful completion, the freopen function returns the value of
stream.

Error Conditions

If freopen is unsuccessful, a NULL pointer is returned.

Example

#include <stdio.h>

void freopen_example(FILE* fp)

{

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-167
for Blackfin Processors

C/C++ Run-Time Library

FILE *result;

char *newname = "newname";

/* reopen existing file pointer for reading file "newname" */

result = freopen(newname, "r", fp);

if (result == fp)

printf("%s reopened for reading\n", newname);

else

printf("freopen not successful\n");

}

See Also

fclose, fopen

Documented Library Functions

3-168 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

frexp

Separate fraction and exponent

Synopsis

#include <math.h>

float frexpf (float f, int *expptr);

double frexp(double f, int *expptr);

long double frexpd (long double f, int *expptr);

Description

The frexp functions separate a floating-point input into a normalized
fraction and a (base 2) exponent. The functions return the first argument
as a fraction which is in the interval ±[½, 1), and store a power of 2 in the
integer pointed to by the second argument. If the input is zero, then the
fraction and exponent are both set to zero.

Error Conditions

The frexp functions do not return an error condition.

Example

#include <math.h>

double y;

float x;

int exponent;

y = frexp (2.0, &exponent); /* y = 0.5, exponent = 2 */

x = frexpf (4.0, &exponent); /* x = 0.5, exponent = 3 */

See Also

modf

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-169
for Blackfin Processors

C/C++ Run-Time Library

fscanf

Read formatted input

Synopsis

#include <stdio.h>

int fscanf(FILE *stream, const char *format, /* args */ ...);

Description

The fscanf function reads from the input file stream, interprets the
inputs according to format, and stores the results of the conversions
(if any) in its arguments. The format is a string containing the control
format for the input with the following arguments being pointers to the
locations where the converted results are to be written to.

The string pointed to by format specifies how the input is to be parsed
and, possibly, converted. It may consist of whitespace characters, ordinary
characters (apart from the % character), and conversion specifications. A
sequence of whitespace characters causes fscanf to continue to parse the
input until either there is no more input or until it finds a non-whitespace
character. If the format specification contains a sequence of ordinary char-
acters, then fscanf will continue to read the next characters in the input
stream until the input data does not match the sequence of characters in
the format. At this point fscanf will fail, and the differing and subsequent
characters in the input stream will not be read.

The % character in the format string introduces a conversion specification.
A conversion specification has the following form:

% [*] [width] [length] type

A conversion specification always starts with the % character. It may
optionally be followed by an asterisk (*) character, which indicates that
the result of the conversion is not to be saved. In this context, the asterisk
character is known as the assignment-suppressing character. The optional

Documented Library Functions

3-170 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

token width represents a non-zero decimal number and specifies the maxi-
mum field width. The fscanf function will not read any more than width
characters while performing the conversion specified by type.

The length token can be used to define a length modifier. The length
modifier can be used to specify the size of the argument. The length mod-
ifiers should only precede one of the d, i, o, u, x, X, k, K, r, R or n
conversion specifiers unless other conversion specifiers are detailed.

Note that the hh, j, t, and z size specifiers are defined in the C99
(ISO/IEC 9899:1999) standard.

Length Action

h The argument should be interpreted as a short int, short fract, or
short accum.

hh The argument should be interpreted as a char.

j The argument should be interpreted as intmax_t or uintmax_t.

l The argument should be interpreted as a long int, long fract, or
long accum.

ll The argument should be interpreted as a long long int.

L The argument should be interpreted as a long double argument. This
length modifier should precede one of the a, A, e, E, f, F, g, or G
conversion specifiers.

t The argument should be interpreted as ptrdiff_t.

z The argument should be interpreted as size_t.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-171
for Blackfin Processors

C/C++ Run-Time Library

A conversion specification terminates with a conversion specifier that
defines how the input data is to be converted. The valid conversion speci-
fiers can be found in the following table.

The “[” conversion specifier should be followed by a sequence of charac-
ters, referred to as the scanset, with a terminating “]” character and so will
take the form [scanset]. The conversion specifier copies into an array,
which is the corresponding argument, until a character that does not
match any of the scanset is read. If the scanset begins with a “^” character,
then the scanning will match against characters not defined in the scanset.

Specifier Conversion

a A e E f F g G Floating point, optionally preceded by a sign and optionally followed by
an e or E character

c Single character, including whitespace

d Signed decimal integer with optional sign

i Signed integer with optional sign

k Signed accum with optional sign

K Unsigned accum

n No input is consumed. The number of characters read so far will be
written to the corresponding argument. This specifier does not affect the
function result returned by fscanf

o Unsigned octal

p Pointer to void

r Signed fract with optional sign

R Unsigned fract

s String of characters up to a whitespace character

u Unsigned decimal integer

x X Hexadecimal integer with optional sign

[Non-empty sequence of characters referred to as the scanset

% Single % character with no conversion or assignment

Documented Library Functions

3-172 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

If the scanset is to include the “]” character, then this character must
immediately follow the “[” character or the “^” character (if specified).

Each input item is converted to a type appropriate to the conversion char-
acter, as specified in the table above. The result of the conversion is placed
into the object pointed to by the next argument that has not already been
the recipient of a conversion. If the suppression character has been speci-
fied, no data shall be placed into the object with the next conversion using
the object to store its result.

Note that the k, K, r and R format specifiers are only supported when
building with either the -full-io (see “-full-io” on page 1-40) or
-fixed-point-io switches (see “-fixed-point-io” on page 1-38).

The fscanf function returns the number of items successfully read.

Error Conditions

If the fscanf function is not successful before any conversion, EOF is
returned.

Example

#include <stdio.h>

void fscanf_example(FILE *fp)

{

short int day, month, year;

float f1, f2, f3;

char string[20];

/* Scan a date with any separator, eg, 1-1-2006 or 1/1/2006 */

fscanf (fp, "%hd%*c%hd%*c%hd", &day, &month, &year);

/* Scan float values separated by "abc", for example

1.234e+6abc1.234abc235.06abc */

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-173
for Blackfin Processors

C/C++ Run-Time Library

fscanf (fp, "%fabc%gabc%eabc", &f1, &f2, &f3);

/* For input "alphabet", string will contain "a" */

fscanf (fp, "%[aeiou]", string);

/* For input "drying", string will contain "dry" */

fscanf (fp, "%[^aeiou]", string);

}

See Also

scanf, sscanf

Documented Library Functions

3-174 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fseek

 Reposition a file position indicator in a stream

Synopsis

#include <stdio.h>

int fseek(FILE *stream, long offset, int whence);

Description

The fseek function sets the file position indicator for the stream pointed
to by stream. The position within the file is calculated by adding the off-
set to a position dependent on the value of whence. The valid values and
effects for whence are as follows:

Using fseek to position a text stream is only valid if either offset is zero,
or if whence is SEEK_SET and offset is a value that was previously returned
by ftell.

 Positioning within a file that has been opened as a text stream is
only supported by the libraries supplied by Analog Devices if the
lines within the file are terminated by the character sequence \r\n.

A successful call to fseek will clear the EOF indicator for stream and undo
any effects of ungetc on stream. If the stream has been opened as a update
stream, then the next I/O operation may be either a read request or a write
request.

whence Effect

SEEK_SET Set the position indicator to be equal to offset bytes from the begin-
ning of stream.

SEEK_CUR Set the new position indicator to current position indicator for stream
plus offset.

SEEK_END Set the position indicator to EOF plus offset.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-175
for Blackfin Processors

C/C++ Run-Time Library

The fseek function returns zero when successful.

Error Conditions

If the fseek function is unsuccessful, a non-zero value is returned.

Example

#include <stdio.h>

long fseek_and_ftell(FILE *fp)

{

long offset;

/* seek to 20 bytes offset from the start of fp */

if (fseek(fp, 20, SEEK_SET) != 0) {

printf("fseek failed\n");

return -1;

}

/* Now use ftell to get the offset value back */

offset = ftell(fp);

if (offset == -1)

printf("ftell failed\n");

if (offset == 20)

printf("ftell and fseek work\n");

return offset;

}

See Also

fflush, ftell, ungetc

Documented Library Functions

3-176 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fsetpos

 Reposition a file pointer in a stream

Synopsis

#include <stdio.h>

int fsetpos(FILE *stream, const fpos_t *pos);

Description

The fsetpos function sets the file position indicator for stream, using the
value of the object pointed to by pos. The value pointed to by pos must be
a value obtained from an earlier call to fgetpos on the same stream.

 Positioning within a file that has been opened as a text stream is
only supported by the libraries supplied by Analog Devices if the
lines within the file are terminated by the character sequence \r\n.

A successful call to fsetpos function clears the EOF indicator for stream
and undoes any effects of ungetc on the same stream.

The fsetpos function returns zero if it is successful.

Error Conditions

If the fsetpos function is unsuccessful, the function returns a non-zero
value.

Example

Refer to “fgetpos” on page 3-144 for an example.

See Also

fgetpos, fseek, ftell, rewind, ungetc

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-177
for Blackfin Processors

C/C++ Run-Time Library

ftell

 Obtain current file position

Synopsis

#include <stdio.h>

long int ftell(FILE *stream);

Description

The ftell function obtains the current position for a file identified by
stream.

If stream is a binary stream, then the value is the number of characters
from the beginning of the file. If stream is a text stream, then the informa-
tion in the position indicator is unspecified information which is usable
by fseek for determining the file position indicator at the time of the
ftell call.

 Positioning within a file that has been opened as a text stream is
only supported by the libraries supplied by Analog Devices if the
lines within the file are terminated by the character sequence \r\n.

If successful, the ftell function returns the current value of the file posi-
tion indicator on the stream.

Error Conditions

If the ftell function is unsuccessful, a value of -1 is returned.

Example

See fseek for an example.

See Also

fseek

Documented Library Functions

3-178 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fwrite

Buffered output

Synopsis

#include <stdio.h>

size_t fwrite(const void *ptr, size_t size, size_t n,

FILE *stream);

Description

The fwrite function writes to the output stream up to n items of data
from the array pointed by ptr. An item of data is defined as a sequence of
characters of size size. The write will complete once n items of data have
been written to the stream. The file position indicator for stream is
advanced by the number of characters successfully written.

When the stream has been opened as a binary stream, the Analog Devices
I/O library may choose to bypass the I/O buffer and transmit data from
the program directly to the external device, particularly when the buffer
size (as defined by the macro BUFSIZ in the stdio.h header file, or con-
trolled by the function setvbuf) is smaller than the number of characters
to be transferred. If an application relies on this feature to always write
data via an I/O buffer, then it should be linked against the third-party I/O
library, using the -full-io switch.

If successful, the fwrite function will return the number of items written.

Error Conditions

If the fwrite function is unsuccessful, it will return the number of ele-
ments successfully written which will be less than n.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-179
for Blackfin Processors

C/C++ Run-Time Library

Example

#include <stdio.h>

#include <stdlib.h>

char* message="some text";

void write_text_to_file(void)

{

/* Open "file.txt" for writing */

FILE* fp = fopen("file.txt", "w");

int res, message_len = strlen(message);

if (!fp) {

printf("fopen was not successful\n");

return;

}

res = fwrite(message, sizeof(char), message_len, fp);

if (res != message_len)

printf("fwrite was not successful\n");

}

See Also

fread

Documented Library Functions

3-180 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fxbits

Bitwise integer to fixed-point to conversion

Synopsis

#include <stdfix.h>

fract rbits(int_r_t b);

accum kbits(int_k_t b);

short fract hrbits(int_hr_t b);

short accum hkbits(int_hk_t b);

long fract lrbits(int_lr_t b);

long accum lkbits(int_lk_t b);

unsigned short fract uhrbits(uint_uhr_t b);

unsigned short accum uhkbits(uint_uhk_t b);

unsigned fract urbits(uint_ur_t b);

unsigned accum ukbits(uint_uk_t b);

unsigned long fract ulrbits(uint_ulr_t b);

unsigned long accum ulkbits(uint_ulk_t b);

Description

Given an integer operand, the fxbits family of functions return the
integer value divided by 2F, where F is the number of fractional bits in the
result fixed-point type. This is equivalent to the bit-pattern of the integer
value held in a fixed-point type.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-181
for Blackfin Processors

C/C++ Run-Time Library

Error Conditions

The fxbits family of functions do not return an error condition. If the
input integer value does not fit in the number of bits of the fixed-point
result type, the result is saturated to the largest or smallest fixed-point
value.

Example

#include <stdfix.h>

accum k;

unsigned long fract ulr;

k = kbits(-0x640000000ll); /* k == -12.5k */

ulr = ulrbits(0x20000000); /* ulr == 0.125ulr */

See Also

bitsfx

Documented Library Functions

3-182 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fxdivi

Division of integer by integer to give fixed-point result

Synopsis

#include <stdfix.h>

fract rdivi(int numer, int denom);

accum kdivi(int numer, int denom);

long fract lrdivi(long int numer, long int denom);

long accum lkdivi(long int numer, long int denom);

unsigned fract urdivi(unsigned int numer, unsigned int denom);

unsigned accum ukdivi(unsigned int numer, unsigned int denom);

unsigned long fract ulrdivi(unsigned long int numer,

unsigned long int denom);

unsigned long accum ulkdivi(unsigned long int numer,

unsigned long int denom);

Description

Given an integer numerator and denominator, the fxdivi family of
functions computes the quotient and returns the closest fixed-point value
to the result.

Error Conditions

The fxdivi family of functions have undefined behavior if the
denominator is zero.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-183
for Blackfin Processors

C/C++ Run-Time Library

Example

#include <stdfix.h>

accum quo;

unsigned long fract ulquo;

quo = kdivi(125, -10); /* quo == -12.5k */

ulquo = ulrdivi(1, 8); /* ulquo == 0.125ulr */

See Also

divifx, idivfx

Documented Library Functions

3-184 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

getc

Get a character from a stream

Synopsis

#include <stdio.h>

int getc(FILE *stream);

Description

The getc function is functionally equivalent to fgetc, except that it is
implemented (if -full-io is specified) as a macro for C language dialects
and as an inline function if the language dialect is C++.

The resulting implementation will be more efficient than making a call to
the fgetc function, though there are considerations on code size and the
inability to pass the address of getc to another function.

Error Conditions

If the getc function is unsuccessful, EOF is returned.

Example

#include <stdio.h>

char use_getc(FILE *fp)

{

char ch;

if ((ch = getc(fp)) == EOF) {

printf("Read End-of-file\n");

return (char)-1;

} else {

return ch;

}

}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-185
for Blackfin Processors

C/C++ Run-Time Library

See Also

fgetc

Documented Library Functions

3-186 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

getchar

Get a character from stdin

Synopsis

#include <stdio.h>

int getchar(void);

Description

The getchar function is functionally the same as calling the getc function
with stdin as its argument. A call to getchar will return the next single
character from the standard input stream. The getchar function also
advances the standard input's current position indicator.

The getchar function is implemented (if the -full-io switch option is
specified) as a macro for C language dialects and as an inline function if
the language dialect is C++.

The resulting implementation is more efficient than making a function
call, though there are considerations on code size and the ability to pass
the address of getchar to another function.

Error Conditions

If the getchar function is unsuccessful, EOF is returned.

Example

#include <stdio.h>

char use_getchar(void)

{

char ch;

if ((ch = getchar()) == EOF) {

printf("getchar() failed\n");

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-187
for Blackfin Processors

C/C++ Run-Time Library

return (char)-1;

} else {

return ch;

}

}

See Also

getc

Documented Library Functions

3-188 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

gets

Get a string from a stream

Synopsis

#include <stdio.h>

char *gets(char *s);

Description

The gets function reads characters from the standard input stream into
the array pointed to by s. The read will terminate when a NEWLINE charac-
ter is read, with the NEWLINE character being replaced by a null character in
the array pointed to by s. The read will also halt if EOF is encountered.

The array pointed to by s must be of equal or greater length of the input
line being read. If this is not the case, the behavior is undefined.

If EOF is encountered without any characters being read, then a NULL
pointer is returned.

Error Conditions

If the gets function is not successful and a read error occurs, a NULL
pointer is returned.

Example

#include <stdio.h>

void fill_buffer(char *buffer)

{

if (gets(buffer) == NULL)

printf("gets failed\n")

else

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-189
for Blackfin Processors

C/C++ Run-Time Library

printf("gets read %s\n", buffer);

}

See Also

fgetc, fgets, fread, fscanf

Documented Library Functions

3-190 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

gmtime

Convert calendar time into broken-down time as UTC

Synopsis

#include <time.h>

struct tm *gmtime(const time_t *t);

Description

The gmtime function converts a pointer to a calendar time into a bro-
ken-down time in terms of Coordinated Universal Time (UTC). A
broken-down time is a structured variable, as described in “time.h” on
page 3-36.

The broken-down time is returned by gmtime as a pointer to static mem-
ory, which may be overwritten by a subsequent call to either gmtime, or to
localtime.

Error Conditions

The gmtime function does not return an error condition.

Example

#include <time.h>

#include <stdio.h>

time_t cal_time;

struct tm *tm_ptr;

cal_time = time(NULL);

if (cal_time != (time_t) -1) {

tm_ptr = gmtime(&cal_time);

printf("The year is %4d\n",1900 + (tm_ptr->tm_year));

}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-191
for Blackfin Processors

C/C++ Run-Time Library

See Also

localtime, mktime, time

Documented Library Functions

3-192 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

heap_calloc

Allocate and initialize memory from a heap

Synopsis

#include <stdlib.h>

void *heap_calloc(int heap_index, size_t nelem, size_t size);

Description

The heap_calloc function allocates an array from the heap identified by
heap_index. The array will contain nelem elements, each of size size; the
whole array will be initialized to zero.

The function returns a pointer to the array. The return value can be safely
converted to an object of any type whose size is not greater than
size*nelem bytes. The memory allocated by calloc may be deallocated by
either the free or heap_free functions.

 Note that the userid of a heap is not the same as the heap’s index; the
index of a heap is returned by the function heap_install or heap_lookup.
Refer to “Using Multiple Heaps” on page 1-423 for more information on
multiple run-time heaps.

Error Conditions

The heap_calloc function returns a null pointer if the requested memory
could not be allocated.

Example

#include <stdlib.h>

#include <stdio.h>

int heapid = HEAP1_USERID;

int heapindex = -1;

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-193
for Blackfin Processors

C/C++ Run-Time Library

long *alloc_array(int nels)

{

if (heapindex < 0) {

heapindex = heap_lookup(heapid);

if (heapindex == -1) {

printf("Heap %d is not defined\n",heapid);

exit(EXIT_FAILURE);

}

}

return heap_calloc(heapindex,nels,sizeof(long));

}

See Also

calloc, free, heap_free, heap_init, heap_install, heap_lookup,
heap_malloc, heap_realloc, heap_space_unused, malloc, realloc,
space_unused

Documented Library Functions

3-194 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

heap_free

Return memory to a heap

Synopsis

#include <stdlib.h>

void heap_free(int heap_index, void *ptr);

Description

The heap_free function deallocates the object whose address is ptr, pro-
vided that ptr is not a null pointer. If the object was not allocated by one
of the heap allocation routines, or if the object has been previously freed,
then the behavior of the function is undefined. If ptr is a null pointer,
then the heap_free function will just return.

The function does not use the heap_index argument; instead it identifies
the heap from which the object was allocated and returns the memory to
this heap. For more information on creating multiple run-time heaps,
refer to “Using Multiple Heaps” on page 1-423.

Error Conditions

The heap_free function does not return an error condition.

Example

#include <stdlib.h>

extern int userid;

int heapindex = heap_lookup(userid);

char *ptr = heap_malloc(heapindex,32 * sizeof(char));

...

heap_free(0,ptr);

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-195
for Blackfin Processors

C/C++ Run-Time Library

See Also

calloc, free, heap_free, heap_init, heap_install, heap_lookup,
heap_malloc, heap_realloc, heap_space_unused, malloc, realloc,
space_unused

Documented Library Functions

3-196 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

heap_init

Re-initialize a heap

Synopsis

#include <stdlib.h>

int heap_init(int index);

Description

The heap_init function re-initializes a heap, emptying the free list, and
discarding all records within the heap. Because the function discards any
records within the heap, it must not be used if there are any allocations on
the heap that are still active and may be used in the future.

The function returns a zero if it succeeds in re-initializing the heap
specified.

 The run-time libraries use the default heap for data storage,
potentially before the application has reached main. Therefore,
re-initializing the default heap may result in erroneous or
unexpected behavior.

Error Conditions

The heap_init function returns a non-zero result if it failed to re-initialize
the heap.

Example

#include <stdlib.h>

#include <stdio.h>

int heap_index = heap_lookup(USERID_HEAP);

if (heap_init(heap_index)!=0) {

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-197
for Blackfin Processors

C/C++ Run-Time Library

printf("Heap re-initialization failed\n");

}

See Also

calloc, free, heap_free, heap_init, heap_install, heap_lookup,
heap_malloc, heap_realloc, heap_space_unused, malloc, realloc,
space_unused

Documented Library Functions

3-198 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

heap_install

Set up a heap at run-time

Synopsis

#include <stdlib.h>

int heap_install(void *base, size_t length, int userid);

Description

The heap_install function initializes the heap identified by the parame-
ter userid. The heap will be set up at the address specified by base and
with a size in bytes specified by length. The function will return the heap
index for the heap once it has been successfully initialized.

The function heap_malloc and the associated functions, such as
heap_calloc and heap_realloc, may be used to allocate memory from the
heap once the heap has been initialized. Refer to “Using Multiple Heaps”
on page 1-423 for more information.

To re-initialize a heap that is already installed, use the heap_init function
(on page 3-196).

Error Conditions

The heap_install function returns -1 if the heap was not initialized suc-
cessfully. This may occur, for example, if the __heaps table could not be
sufficiently resized, if a heap with the specified userid already exists, or if
the new heap is too small.

Example

#include <stdlib.h>

#include <stdio.h>

static int heapid = 0;

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-199
for Blackfin Processors

C/C++ Run-Time Library

int setup_heap(void *at, size_t bytes)

{

int index;

if ((index = heap_install(at, bytes, ++heapid)) == -1) {

printf("Failed to initialize heap with userid %d\n",

heapid);

exit(EXIT_FAILURE);

}

return index;

}

See Also

calloc, free, heap_free, heap_init, heap_install, heap_lookup,
heap_malloc, heap_realloc, heap_space_unused, malloc, realloc,
space_unused

Documented Library Functions

3-200 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

heap_lookup

Convert a userid to a heap index

Synopsis

#include <stdlib.h>

int heap_lookup(int userid);

Description

The heap_lookup function converts a userid to a heap index. All heaps
have a userid and a heap index associated with them. Both the userid and
the heap index are set on heap creation. The default heap has userid 0
and heap index 0.

The heap index is required for the functions heap_calloc, heap_malloc,
heap_realloc, heap_init, and heap_space_unused. For more information
on creating multiple run-time heaps, refer to “Using Multiple Heaps” on
page 1-423.

Error Conditions

The heap_lookup function returns -1 if there is no heap with the specified
userid.

Example

#include <stdlib.h>

#include <stdio.h>

int heap_userid = 1;

int heap_id;

if ((heap_id = heap_lookup(heap_userid)) == -1) {

printf("Heap %d not setup

-- will use the default heap\n", heap_userid);

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-201
for Blackfin Processors

C/C++ Run-Time Library

heap_id = 0;

}

char *ptr = heap_malloc(heap_id, 1024);

if (ptr == NULL) {

printf("heap_malloc failed to allocate memory\n");

}

See Also

calloc, free, heap_free, heap_init, heap_install, heap_lookup,
heap_malloc, heap_realloc, heap_space_unused, malloc, realloc,
space_unused

Documented Library Functions

3-202 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

heap_malloc

Allocate memory from a heap

Synopsis

#include <stdlib.h>

void *heap_malloc(int heap_index, size_t size);

Description

The heap_malloc function allocates an object of size bytes, from the heap
with heap index heap_index. It returns the address of the object if success-
ful. The return value may be used as a pointer to an object of any type
whose size in bytes is not greater than size.

The block of memory returned is uninitialized. The memory may be deal-
located with either the free or heap_free function. For more information
on creating multiple run-time heaps, refer to “Using Multiple Heaps” on
page 1-423.

Error Conditions

The heap_malloc function returns a null pointer if it was unable to allo-
cate the requested memory.

Example

#include <stdlib.h>

#include <stdio.h>

int heap_index = heap_lookup(USERID_HEAP);

long *buffer;

if (heap_index < 0) {

printf("Heap %d is not setup\n",USERID_HEAP);

exit(EXIT_FAILURE);

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-203
for Blackfin Processors

C/C++ Run-Time Library

}

buffer = heap_malloc(heap_index,16 * sizeof(long));

if (buffer == NULL) {

printf("heap_malloc failed to allocate memory\n");

}

See Also

calloc, free, heap_free, heap_init, heap_install, heap_lookup,
heap_malloc, heap_realloc, heap_space_unused, malloc, realloc,
space_unused

Documented Library Functions

3-204 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

heap_realloc

Change memory allocation from a heap

Synopsis

#include <stdlib.h>

void *heap_realloc(int heap_index, void *ptr, size_t size);

Description

The heap_realloc function changes the size of a previously allocated
block of memory. The new size of the object in bytes is specified by the
argument size; the new object retains the values of the old object up to its
original size, but any data beyond the original size will be indeterminate.
The address of the object is given by the argument ptr. The behavior of
the function is not defined if either the object has not been allocated from
a heap, or if it has already been freed.

If ptr is a null pointer, then heap_realloc behaves the same as
heap_malloc. If ptr is not a null pointer, and if size is zero, then
heap_realloc behaves the same as heap_free.

The argument heap_index is only used if ptr is a null pointer.

If the function successfully re-allocates the object, then it will return a
pointer to the new object.

Error Conditions

If heap_realloc cannot reallocate the memory, it returns a null pointer
and the original memory associated with ptr will be unchanged and will
still be available.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-205
for Blackfin Processors

C/C++ Run-Time Library

Example

#include <stdlib.h>

#include <stdio.h>

int heap_index = heap_lookup(USERID_HEAP);

int *buffer;

int *temp_buffer;

if (heap_index < 0) {

printf("Heap %d is not setup\n",USERID_HEAP);

exit(EXIT_FAILURE);

}

buffer = heap_malloc(heap_index,32*sizeof(int));

if (buffer == NULL) {

printf("heap_malloc failed to allocate memory\n");

}

...

temp_buffer = heap_realloc(0,buffer,64*sizeof(int));

if (temp_buffer == NULL) {

printf("heap_realloc failed to allocate memory\n");

} else {

buffer = temp_buffer;

}

See Also

calloc, free, heap_free, heap_init, heap_install, heap_lookup,
heap_malloc, heap_realloc, heap_space_unused, malloc, realloc,
space_unused

Documented Library Functions

3-206 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

heap_space_unused

Space unused in specific heap

Synopsis

#include <stdlib.h>

int heap_space_unused(int idx);

Description

The heap_space_unused function returns the total free space in bytes for
the heap with index idx.

Note that calling heap_malloc(idx,heap_space_unused(idx)) does not
allocate space because each allocated block uses more memory internally
than the requested space. Note also that the free space in the heap may be
fragmented, and thus may not be available in one contiguous block.

Error Conditions

If a heap with heap index idx does not exist, this function returns -1.

Example

#include <stdlib.h>

int free_space;

free_space = heap_space_unused(1); /* Get free space in heap 1

*/

See Also

calloc, free, heap_free, heap_init, heap_install, heap_lookup,
heap_malloc, heap_realloc, heap_space_unused, malloc, realloc,
space_unused

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-207
for Blackfin Processors

C/C++ Run-Time Library

idivfx

Division of fixed-point by fixed-point to give integer result

Synopsis

#include <stdfix.h>

int idivi(fract numer, fract denom);

int idivk(accum numer, accum denom);

long int idivlr(long fract numer, long fract denom);

long int idivlk(long accum numer, long accum denom);

unsigned int idivur(unsigned fract numer, unsigned fract denom);

unsigned int idivuk(unsigned accum numer, unsigned accum denom);

unsigned long int idivulr(unsigned long fract numer,

 unsigned long fract denom);

unsigned long int idivulk(unsigned long accum numer,

 unsigned long accum denom);

Description

Given a fixed-point numerator and denominator, the idivfx family of
functions computes the quotient and returns the closest integer value to
the result.

Error Conditions

The idivfx family of functions have undefined behavior if the
denominator is zero.

Documented Library Functions

3-208 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Example

#include <stdfix.h>

int quo;

unsigned long int ulquo;

quo = idivk(125.0k, -12.5k); /* quo == -10 */

ulquo = idivulr(0.5ulr, 0.125ulr); /* ulquo == 4 */

See Also

divifx, fxdivi

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-209
for Blackfin Processors

C/C++ Run-Time Library

interrupt

Define interrupt handling

Synopsis

#include <signal.h>

void (*interrupt (int sig, void(*func)(int val))) (int);

Description

The interrupt function determines how a signal received during program
execution is handled. The interrupt function executes the function
pointed to by func at every signal sig. The signal function executes the
function only once.

The func argument must be one of the values listed in Table 3-32. The
interrupt function causes the receipt of the signal number sig to be han-
dled in one of the ways shown in Table 3-32.

The function pointed to by func is executed each time the interrupt is
received. The interrupt function must be called with the SIG_IGN argu-
ment to disable interrupt handling. The sig argument may be any of the
signals shown in Table 3-33 on page 3-262 which lists the supported sig-
nals in interrupt priority order from highest to lowest.

When the function pointed to by func is executed, the parameter val is set
to the number of the signal that has been received. So if func is a signal

Table 3-32. Interrupt Handling: func Argument

Func Value Action

SIG_DFL The signal is enabled, but ignored when it occurs.

SIG_IGN The signal is disabled.

Function address The signal is enabled, and the function is called when the signal occurs.

Documented Library Functions

3-210 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

handler used for various signals, func can find out which signal it is
handling.

The function pointed to by func must not be defined using #pragma
interrupt; the #pragma interrupt functions are registered using
register_handler_ex() or register_handler() instead.

Refer to “Interrupt Handler Support” on page 1-365 for more
information.

See Also

raise, register_handler, register_handler_ex, signal

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-211
for Blackfin Processors

C/C++ Run-Time Library

isalnum

Detect alphanumeric character

Synopsis

#include <ctype.h>

int isalnum(int c);

Description

The isalnum function determines whether the argument is an alphanu-
meric character (A-Z, a-z, or 0-9). If the argument is not alphanumeric,
isalnum returns a zero. If the argument is alphanumeric, isalnum returns a
non-zero value.

Error Conditions

The isalnum function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%3s", isalnum(ch) ? "alphanumeric" : "");

putchar('\n');

}

See Also

isalpha, isdigit

Documented Library Functions

3-212 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

isalpha

Detect alphabetic character

Synopsis

#include <ctype.h>

int isalpha(int c);

Description

The isalpha function determines whether the input is an alphabetic char-
acter (A-Z or a-z). If the input is not alphabetic, isalpha returns a zero.
If the input is alphabetic, isalpha returns a non-zero value.

Error Conditions

The isalpha function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", isalpha(ch) ? "alphabetic" : "");

putchar('\n');

}

See Also

isalnum, isdigit

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-213
for Blackfin Processors

C/C++ Run-Time Library

iscntrl

Detect control character

Synopsis

#include <ctype.h>

int iscntrl(int c);

Description

The iscntrl function determines whether the argument is a control char-
acter (0x00-0x1F or 0x7F). If the argument is not a control character,
iscntrl returns a zero. If the argument is a control character, iscntrl
returns a non-zero value.

Error Conditions

The iscntrl function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", iscntrl(ch) ? "control" : "");

putchar('\n');

}

See Also

isalnum, isgraph

Documented Library Functions

3-214 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

isdigit

Detect decimal digit

Synopsis

#include <ctype.h>

int isdigit(int c);

Description

The isdigit function determines whether the input character is a decimal
digit (0-9). If the input is not a digit, isdigit returns a zero. If the input is
a digit, isdigit returns a non-zero value.

Error Conditions

The isdigit function does not return an error condition.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", isdigit(ch) ? "digit" : "");

putchar('\n');

}

See Also

isalnum, isalpha, isxdigit

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-215
for Blackfin Processors

C/C++ Run-Time Library

isgraph

Detect printable character, not including white space

Synopsis

#include <ctype.h>

int isgraph(int c);

Description

The isgraph function determines whether the argument is a printable
character, not including white space (0x21-0x7e). If the argument is not a
printable character, isgraph returns a zero. If the argument is a printable
character, isgraph returns a non-zero value.

Error Conditions

The isgraph function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", isgraph(ch) ? "graph" : "");

putchar('\n');

}

See Also

isalnum, iscntrl, isprint

Documented Library Functions

3-216 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

isinf

Test for infinity

Synopsis

#include <math.h>

int isinf(double x);

int isinff(float x);

int isinfd (long double x);

Description

The isinf functions return a zero if the argument is not set to the IEEE
constant for +Infinity or -Infinity; otherwise, the functions will return
a non-zero value.

Error Conditions

The isinf functions do not return or set any error conditions.

Example

#include <stdio.h>

#include <math.h>

static int fail=0;

main(){

/* test int isinf(double) */

union {

double d; float f; unsigned long l;

} u;

#ifdef __DOUBLES_ARE_FLOATS__

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-217
for Blackfin Processors

C/C++ Run-Time Library

u.l=0xFF800000L; if (isinf(u.d)==0) fail++;

u.l=0xFF800001L; if (isinf(u.d)!=0) fail++;

u.l=0x7F800000L; if (isinf(u.d)==0) fail++;

u.l=0x7F800001L; if (isinf(u.d)!=0) fail++;

#endif

/* test int isinff(float) */

u.l=0xFF800000L; if (isinff(u.f)==0) fail++;

u.l=0xFF800001L; if (isinff(u.f)!=0) fail++;

u.l=0x7F800000L; if (isinff(u.f)==0) fail++;

u.l=0x7F800001L; if (isinff(u.f)!=0) fail++;

/* print pass/fail message */

if (fail==0)

printf("Test passed\n");

else

printf("Test failed: %d\n", fail);

}

See Also

isnan

Documented Library Functions

3-218 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

islower

Detect lowercase character

Synopsis

#include <ctype.h>

int islower(int c);

Description

The islower function determines whether the argument is a lowercase
character (a-z). If the argument is not lowercase, islower returns a zero.
If the argument is lowercase, islower returns a non-zero value.

Error Conditions

The islower function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", islower(ch) ? "lowercase" : "");

putchar('\n');

}

See Also

isalpha, isupper

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-219
for Blackfin Processors

C/C++ Run-Time Library

isnan

Test for Not-a-Number (NAN)

Synopsis

#include <math.h>

int isnanf(float x);

int isnan(double x);

int isnand (long double x);

Description

The isnan functions return a zero if the argument is not set to an IEEE
NaN; otherwise, the functions return a non-zero value.

Error Conditions

The isnan functions do not return or set any error conditions.

Example

#include <stdio.h>

#include <math.h>

static int fail=0;

main(){

/* test int isnan(double) */

union {

double d; float f; unsigned long l;

} u;

#ifdef __DOUBLES_ARE_FLOATS__

u.l=0xFF800000L; if (isnan(u.d)!=0) fail++;

Documented Library Functions

3-220 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

u.l=0xFF800001L; if (isnan(u.d)==0) fail++;

u.l=0x7F800000L; if (isnan(u.d)!=0) fail++;

u.l=0x7F800001L; if (isnan(u.d)==0) fail++;

#endif

/* test int isnanf(float) */

u.l=0xFF800000L; if (isnanf(u.f)!=0) fail++;

u.l=0xFF800001L; if (isnanf(u.f)==0) fail++;

u.l=0x7F800000L; if (isnanf(u.f)!=0) fail++;

u.l=0x7F800001L; if (isnanf(u.f)==0) fail++;

/* print pass/fail message */

if (fail==0)

printf("Test passed\n");

else

printf("Test failed: %d\n", fail);

}

See Also

isinf

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-221
for Blackfin Processors

C/C++ Run-Time Library

isprint

Detect printable character

Synopsis

#include <ctype.h>

int isprint(int c);

Description

The isprint function determines whether the argument is a printable
character (0x20-0x7E). If the argument is not a printable character,
isprint returns a zero. If the argument is a printable character, isprint
returns a non-zero value.

Error Conditions

The isprint function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%3s", isprint(ch) ? "printable" : "");

putchar('\n');

}

See Also

isgraph, isspace

Documented Library Functions

3-222 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

ispunct

Detect punctuation character

Synopsis

#include <ctype.h>

int ispunct(int c);

Description

The ispunct function determines whether the argument is a punctuation
character. If the argument is not a punctuation character, ispunct returns
a zero. If the argument is a punctuation character, ispunct returns a
non-zero value.

Error Conditions

The ispunct function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%3s", ispunct(ch) ? "punctuation" : "");

putchar('\n');

}

See Also

isalnum

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-223
for Blackfin Processors

C/C++ Run-Time Library

isspace

Detect whitespace character

Synopsis

#include <ctype.h>

int isspace(int c);

Description

The isspace function determines whether the argument is a blank
whitespace character (0x09-0x0D or 0x20). This includes the characters
space (), form feed (\f), new line (\n), carriage return (\r), horizontal tab
(\t), and vertical tab (\v).

If the argument is not a blank space character, isspace returns a zero. If
the argument is a blank space character, isspace returns a non-zero value.

Error Conditions

The isspace function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", isspace(ch) ? "space" : "");

putchar('\n');

}

See Also

iscntrl, isgraph

Documented Library Functions

3-224 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

isupper

Detect uppercase character

Synopsis

#include <ctype.h>

int isupper(int c);

Description

The isupper function determines whether the argument is an uppercase
character (A-Z). If the argument is not an uppercase character, isupper
returns a zero. If the argument is an uppercase character, isupper returns a
non-zero value.

Error Conditions

The isupper function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", isupper(ch) ? "uppercase" : "");

putchar('\n');

}

See Also

isalpha, islower

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-225
for Blackfin Processors

C/C++ Run-Time Library

isxdigit

Detect hexadecimal digit

Synopsis

#include <ctype.h>

int isxdigit(int c);

Description

The isxdigit function determines whether the argument is a hexadecimal
digit character (A-F, a-f, or 0-9). If the argument is not a hexadecimal
digit, isxdigit returns a zero. If the argument is a hexadecimal digit,
isxdigit returns a non-zero value.

Error Conditions

The isxdigit function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", isxdigit(ch) ? "hexadecimal" : "");

putchar('\n');

}

See Also

isalnum, isdigit

Documented Library Functions

3-226 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

_l1_memcpy, _memcpy_l1

Copy instructions between L1 instruction memory and data memory

Synopsis

#include <ccblkfn.h>

void *_l1_memcpy(void *datap, const void *instrp, size_t n);

void *_memcpy_l1(void *instrp, const void *datap, size_t n);

Description

The _l1_memcpy function copies n characters of program instructions from
the address instrp to the data buffer datap. The _memcpy_l1 function is
the inverse: it copies n characters of program instructions from the data
buffer datap to the address instrp. Both functions share the following
restrictions:

• n must be a multiple of 8

• instrp must be an address in L1 instruction memory

• instrp must be 8-byte aligned

• datap must be 4-byte aligned

• instrp+n-1 must be within L1 instruction memory

• For dual-core processors, instrp must correspond to the core call-
ing the function.

The _l1_memcpy function returns datap for success. The _memcpy_l1 func-
tion returns instrp for success.

The C and C++ run-time libraries use _memcpy_l1 to implement the
memory-initialization process, if the .dxe file has been built with the -mem
compiler switch, or with the -meminit linker switch.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-227
for Blackfin Processors

C/C++ Run-Time Library

Error Conditions

If any of the restrictions are not met, the _l1_memcpy and _memcpy_l1
functions return NULL.

 On platforms where L1_CODE_CACHE does not follow on directly
from L1_CODE in memory (such as ADSP-BF561, ADSP-BF52x,
ADSP-BF531, ADSP-BF534, ADSP-BF536, ADSP-BF537, and
ADSP-BF54x processors), _l1_memcpy and _memcpy_l1 allow users
to write to any memory in between. Ensure that addresses being
written to are entirely within valid L1_CODE or L1_CODE_CACHE.

Example

/* copying program instructions from L1 Instruction

** memory to data memory.

*/

#include <ccblkfn.h>

char dest[32];

const char *src = (const char *)0xFFA00000;

if (_l1_memcpy(dest, src, 32) != dest)

exit(1);

/* copying program instructions from data memory

** to L1 Instruction memory.

*/

#include <ccblkfn.h>

const char src[32] = { /* some instruction op-codes */ };

char *dest = (char *)0xFFA00000;

if (_memcpy_l1(dest, src, 32) != dest)

exit(1);

See Also

memcpy

Documented Library Functions

3-228 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

labs

Long integer absolute value

Synopsis

#include <stdlib.h>

long int labs(long int j);

long long int llabs (long long int j);

Description

The labs and llabs functions return the absolute value of their integer
inputs.

Note: The result of labs(LONG_MIN) is undefined.

Error Conditions

The labs and llabs functions do not return an error condition.

Example

#include <stdlib.h>

long int j;

j = labs(-285128); /* j = 285128 */

See Also

abs, absfx, fabs

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-229
for Blackfin Processors

C/C++ Run-Time Library

ldexp

Multiply by power of 2

Synopsis

#include <math.h>

float ldexpf (float x, int n);

double ldexp (double x, int n);

long double ldexpd (long double x, int n);

Description

The ldexp functions return the value of the floating-point argument mul-
tiplied by 2n. These functions add the value of n to the exponent of x.

Error Conditions

If the result overflows, the ldexp functions return HUGE_VAL with the
proper sign. If the result underflows, the functions return a zero.
In addition, ldexpf (and ldexp if the size of the double type is the same as
the size of the float type) will set errno to ERANGE.

Example

#include <math.h>

double y;

float x;

y = ldexp (0.5, 2); /* y = 2.0 */

x = ldexpf (1.0, 2); /* x = 4.0 */

See Also

exp, pow

Documented Library Functions

3-230 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

ldiv

Long division

Synopsis

#include <stdlib.h>

ldiv_t ldiv(long int numer, long int denom);

lldiv_t lldiv (long long int numer, long long int denom);

Description

The ldiv and lldiv functions divide numer by denom and return a
structure of type ldiv_t and lldiv_t, respectively. The types ldiv_t and
lldiv_t are defined as:

typedef struct {

long int quot;

long int rem;

} ldiv_t;

typedef struct {

long long int quot;

long long int rem;

} lldiv_t;

where quot is the quotient of the division and rem is the remainder, such
that if result is of the appropriate type, then
result.quot * denom + result.rem = numer

Error Conditions

If denom is zero, the behavior of the ldiv and lldiv functions are
undefined.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-231
for Blackfin Processors

C/C++ Run-Time Library

Example

#include <stdlib.h>

ldiv_t result;

result = ldiv(7, 2); /* result.quot=3, result.rem=1 */

See Also

div, divifx, fmod, fxdivi, idivfx

Documented Library Functions

3-232 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

localtime

Convert calendar time into broken-down time

Synopsis

#include <time.h>

struct tm *localtime(const time_t *t);

Description

The localtime function converts a pointer to a calendar time into a
broken-down time that corresponds to current time zone. A broken-down
time is a structured variable, which is described in “time.h” on page 3-36.
This implementation of the header file does not support the Daylight Sav-
ing flag nor does it support time zones and, thus, localtime is equivalent
to the gmtime function.

The broken-down time is returned by localtime as a pointer to static
memory, which may be overwritten by a subsequent call to either
localtime or to gmtime.

Error Conditions

The localtime function does not return an error condition.

Example

#include <time.h>

#include <stdio.h>

time_t cal_time;

struct tm *tm_ptr;

cal_time = time(NULL);

if (cal_time != (time_t) -1) {

tm_ptr = localtime(&cal_time);

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-233
for Blackfin Processors

C/C++ Run-Time Library

printf("The year is %4d\n",1900 + (tm_ptr->tm_year));

}

See Also

asctime, gmtime, mktime, time

Documented Library Functions

3-234 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

log

Natural logarithm

Synopsis

#include <math.h>

float logf (float x);

double log (double x);

long double logd (long double x);

Description

The natural logarithm functions compute the natural (base e) logarithm
of their argument.

Error Conditions

The natural logarithm functions return -HUGE_VAL if the input value is
zero or negative.

Example

#include <math.h>

double y;

float x;

y = log (1.0); /* y = 0.0 */

x = logf (2.71828); /* x = 1.0 */

See Also

alog, exp, log10

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-235
for Blackfin Processors

C/C++ Run-Time Library

log10

Base 10 logarithm

Synopsis

#include <math.h>

float log10f (float f);

double log10(double f);

long double log10d (long double f);

Description

The log10 functions return the base 10 logarithm of their inputs.

Error Conditions

The log10 functions return -HUGE_VAL if the input is zero or negative.

Example

#include <math.h>

double y;

float x;

y = log10 (100.0); /* y = 2.0 */

x = log10f (10.0); /* x = 1.0 */

See Also

alog10, log, pow

Documented Library Functions

3-236 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

longjmp

Second return from setjmp

Synopsis

#include <setjmp.h>

void longjmp(jmp_buf env, int return_val);

Description

The longjmp function causes the program to execute a second return from
the place where setjmp (env) was called (with the same jmp_buf
argument).

The longjmp function takes as its arguments a jump buffer that contains
the context at the time of the original call to setjmp. It also takes an inte-
ger, return_val, which setjmp returns if return_val is non-zero.
Otherwise, setjmp returns a 1.

If env was not initialized through a previous call to setjmp or the function
that called setjmp has since returned, the behavior is undefined.

 The use of setjmp and longjmp (or similar functions which do not
follow conventional C/C++ flow control) may produce unexpected
results when the application is compiled with optimizations
enabled. Functions that call setjmp or longjmp are optimized by
the compiler with the assumption that all variables referenced may
be modified by any functions that are called. This assumption
ensures that it is safe to use setjmp and longjmp with optimizations
enabled, though it does mean that it is dangerous to conceal from
the optimizer that a call to setjmp or longjmp is being made, for
example by calling through a function pointer.

Error Conditions

The longjmp function does not return an error condition.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-237
for Blackfin Processors

C/C++ Run-Time Library

Example

#include <setjmp.h>

#include <stdio.h>

#include <errno.h>

#include <stdlib.h>

jmp_buf env;

int res;

void setjump_example(void)

{

if ((res = setjmp(env)) != 0) {

printf ("Problem %d reported by func ()", res);

exit (EXIT_FAILURE);

}

func ();

}

void func (void)

{

if (errno != 0) {

longjmp (env, errno);

}

}

See Also

setjmp

Documented Library Functions

3-238 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

malloc

Allocate memory

Synopsis

#include <stdlib.h>

void *malloc(size_t size);

Description

The malloc function returns a pointer to a block of memory of length
size. The block of memory is not initialized. The memory allocated is
aligned to an 8-byte boundary.

Error Conditions

The malloc function returns a null pointer if it is unable to allocate the
requested memory.

Example

#include <stdlib.h>

long *ptr;

ptr = (long *)malloc(10 * sizeof(long)); /* ptr points to an */

/* array of 10 longs */

See Also

calloc, realloc, free

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-239
for Blackfin Processors

C/C++ Run-Time Library

memchr

Find first occurrence of character

Synopsis

#include <string.h>

void *memchr(const void *s1, int c, size_t n);

Description

The memchr function compares the range of memory pointed to by s1 with
the input character c, and returns a pointer to the first occurrence of c.
A null pointer is returned if c does not occur in the first n characters.

Error Conditions

The memchr function does not return an error condition.

Example

#include <string.h>

char *ptr;

ptr= memchr("TESTING", 'E', 7);

/* ptr points to the E in TESTING */

See Also

strchr, strrchr

Documented Library Functions

3-240 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

memcmp

Compare objects

Synopsis

#include <string.h>

int memcmp(const void *s1, const void *s2, size_t n);

Description

The memcmp function compares the first n characters of the objects pointed
to by s1 and s2. This function returns a positive value if the s1 object is
lexically greater than the s2 object, returns a negative value if the s2 object
is lexically greater than the s1 object, and returns a zero if the objects are
the same.

Error Conditions

The memcmp function does not return an error condition.

Example

#include <string.h>

char *string1 = "ABC";

char *string2 = "BCD";

int result;

result = memcmp (string1, string2, 3); /* result < 0 */

See Also

strcmp, strcoll, strncmp

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-241
for Blackfin Processors

C/C++ Run-Time Library

memcpy

Copy characters from one object to another

Synopsis

#include <string.h>

void *memcpy(void *s1, const void *s2, size_t n);

Description

The memcpy function copies n characters from the object pointed to by s2
into the object pointed to by s1. The behavior of memcpy is undefined if
the two objects overlap.

 The compiler will always align vectors and arrays on a 32-bit word
boundary, and the compiler will normally use this knowledge to
replace a call to memcpy by more efficient in-line code. The align-
ment assumptions made by the compiler are safe, provided that the
vectors and arrays were allocated by the compiler. If the vectors and
arrays were allocated via an assembly function, that assembly
function must ensure that the objects s1 and s2 are aligned on a
4-byte address boundary; this is normally achieved by preceding
the definition of s1 and s2 with the .align 4 assembly directive.

The memcpy function returns the address of s1.

Error Conditions

The memcpy function does not return an error condition.

Example

#include <string.h>

char *a = "SRC";

char *b = "DEST";

memcpy (b, a, 3); /* b="SRCT" */

Documented Library Functions

3-242 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

See Also

memmove, strcpy, strncpy

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-243
for Blackfin Processors

C/C++ Run-Time Library

memmove

Copy characters between overlapping objects

Synopsis

#include <string.h>

void *memmove(void *s1, const void *s2, size_t n);

Description

The memmove function copies n characters from the object pointed to by s2
into the object pointed to by s1. The entire object is copied correctly even
if the objects overlap.

The memmove function returns a pointer to s1.

Error Conditions

The memmove function does not return an error condition.

Example

#include <string.h>

char *ptr, *str = "ABCDE";

ptr = str + 2;

memmove(ptr, str, 3); /* ptr = "ABC", str = "ABABC" */

See Also

memmove, strcpy,strncpy

Documented Library Functions

3-244 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

memset

Set range of memory to a character

Synopsis

#include <string.h>

void *memset(void *s1, int c, size_t n);

Description

The memset function sets a range of memory to the input character c.
The first n characters of s1 are set to c.

The memset function returns a pointer to s1.

Error Conditions

The memset function does not return an error condition.

Example

#include <string.h>

char string1[50];

memset(string1, ‘\0’, 50); /* set string1 to 0 */

See Also

memcpy

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-245
for Blackfin Processors

C/C++ Run-Time Library

mktime

Convert broken-down time into a calendar time

Synopsis

#include <time.h>

time_t mktime(struct tm *tm_ptr);

Description

The mktime function converts a pointer to a broken-down time, which
represents a local date and time, into a calendar time. However, this
implementation of time.h does not support either daylight saving or time
zones and hence this function will interpret the argument as Greenwich
Mean Time (UTC).

A broken-down time is a structured variable which is defined in the
time.h header file as:

struct tm {

 int tm_sec; /* seconds after the minute [0,61] */

int tm_min; /* minutes after the hour [0,59] */

int tm_hour; /* hours after midnight [0,23] */

int tm_mday; /* day of the month [1,31] */

int tm_mon; /* months since January [0,11] */

int tm_year; /* years since 1900 */

int tm_wday; /* days since Sunday [0, 6] */

int tm_yday; /* days since January 1st [0,365] */

int tm_isdst; /* Daylight Saving flag */

};

The various components of the broken-down time are not restricted to the
ranges indicated above. The mktime function calculates the calendar time
from the specified values of the components (ignoring the initial values of
tm_wday and tm_yday) and then “normalizes” the broken-down time forc-
ing each component into its defined range.

Documented Library Functions

3-246 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

If the component tm_isdst is zero, then the mktime function assumes that
daylight saving is not in effect for the specified time. If the component is
set to a positive value, then the function assumes that daylight saving is in
effect for the specified time and will make the appropriate adjustment to
the broken-down time. If the component is negative, the mktime function
should attempt to determine whether daylight saving is in effect for the
specified time but because neither time zones nor daylight saving are sup-
ported, the effect will be as if tm_isdst were set to zero.

Error Conditions

The mktime function returns the value (time_t) -1 if the calendar time
cannot be represented.

Example

#include <time.h>

#include <stdio.h>

static const char *wday[] = {"Sun","Mon","Tue","Wed",

 "Thu","Fri","Sat","???"};

struct tm tm_time = {0,0,0,0,0,0,0,0,0};

tm_time.tm_year = 2000 - 1900;

tm_time.tm_mday = 1;

if (mktime(&tm_time) == -1)

tm_time.tm_wday = 7;

printf("%4d started on a %s\n",

1900 + tm_time.tm_year,

wday[tm_time.tm_wday]);

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-247
for Blackfin Processors

C/C++ Run-Time Library

See Also

gmtime, localtime, time

Documented Library Functions

3-248 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

modf

Separate integral and fractional parts

Synopsis

#include <math.h>

float modff (float x, float *intptr);

double modf (double x, double *intptr);

long double modfd (long double x, long double *intptr);

Description

The modf functions separate the first argument into integral and fractional
portions. The fractional portion is returned and the integral portion is
stored in the object pointed to by intptr. The integral and fractional por-
tions have the same sign as the input.

Error Conditions

The modf functions do not return error conditions.

Example

#include <math.h>

double y, n;

float m, p;

y = modf (-12.345, &n); /* y = -0.345, n = -12.0 */

m = modff (11.75, &p); /* m = 0.75, p = 11.0 */

See Also

frexp

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-249
for Blackfin Processors

C/C++ Run-Time Library

mulifx

Multiplication of integer by fixed-point to give integer result

Synopsis

#include <stdfix.h>

int mulir(int i, fract f);

int mulik(int i, accum a);

long int mulilr(long int i, long fract f);

long int mulilk(long int i, long accum a);

unsigned int muliur(unsigned int i, unsigned fract f);

unsigned int muliuk(unsigned int i, unsigned accum a);

unsigned long int muliulr(unsigned long int i,

 unsigned long fract f);

unsigned long int muliulk(unsigned long int i,

 unsigned long accum a);

Description

Given an integer and a fixed-point value, the mulifx family of functions
computes the product and returns the closest integer value to the result.

Error Conditions

The mulifx family of functions do not return error conditions.

Example

#include <stdfix.h>

int prod;

unsigned long int ulprod;

Documented Library Functions

3-250 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

prod = mulik(128, -1.25k); /* prod == -160 */

ulprod = muliulr(128, 0.125ulr); /* ulquo == 16 */

See Also

No related functions.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-251
for Blackfin Processors

C/C++ Run-Time Library

perror

Print an error message on standard error

Synopsis

#include <stdio.h>

int perror(const char *s);

Description

The perror function is used to output an error message to the standard
stream stderr.

If the string s is not a null pointer and if the first character addressed by s
is not a null character, the function will output the string s followed by
the character sequence ": ". The function will then print the message that
is associated with the current value of errno. Note that the message
“no error” is used if the value of errno is zero.

Error Conditions

The perror function does not return any error conditions.

Example

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#define BASE_10 10

int n;

n = strtol (“987654321”,NULL,BASE_10);

if (errno != 0)

perror (“strtol failed”);

Documented Library Functions

3-252 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

See Also

strerror

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-253
for Blackfin Processors

C/C++ Run-Time Library

pow

Raise to a power

Synopsis

#include <math.h>

float powf (float x, float y);

double pow (double x, double y);

long double powd (long double x, long double y);

Description

The pow functions compute the value of the first argument raised to the
power of the second argument.

Error Conditions

The pow functions return zero when the first argument x is zero and the
second argument y is not an integral value. When x is zero and y is less
than zero, or when the result cannot be represented, the functions will
return the constant HUGE_VAL.

Example

#include <math.h>

double z;

float x;

z = pow (4.0, 2.0); /* z = 16.0 */

x = powf (4.0, 2.0); /* x = 16.0 */

See Also

exp, ldexp

Documented Library Functions

3-254 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

printf

Print formatted output

Synopsis

#include <stdio.h>

int printf(const char *format, /* args*/ ...);

Description

The printf function places output on the standard output stream stdout
in a form specified by format. The printf function is equivalent to
fprintf with stdout passed as the first argument. The argument format
contains a set of conversion specifiers, directives, and ordinary characters
that are used to control how the data is formatted. Refer to (“fprintf” on
page 3-154) for a description of the valid format specifiers.

The printf function returns the number of characters transmitted.

Error Conditions

If the printf function is unsuccessful, a negative value is returned.

Example

#include <stdio.h>

void printf_example(void)

{

int arg = 255;

/* Output will be "hex:ff, octal:377, integer:255" */

printf("hex:%x, octal:%o, integer:%d\n", arg, arg, arg);

}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-255
for Blackfin Processors

C/C++ Run-Time Library

See Also

fprintf

Documented Library Functions

3-256 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

putc

Put a character on a stream

Synopsis

#include <stdio.h>

int putc(int ch, FILE *stream);

Description

The putc function writes its argument to the output stream pointed to by
stream, after converting ch from an int to an unsigned char.

If the putc function call is successful, putc returns its argument ch.

Error Conditions

The stream’s error indicator will be set if the call is unsuccessful, and the
function will return EOF.

Example

#include <stdio.h>

void putc_example(void)

{

/* write the character 'a' to stdout */

if (putc('a', stdout) == EOF)

fprintf(stderr, "putc failed\n");

}

See Also

fputc

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-257
for Blackfin Processors

C/C++ Run-Time Library

putchar

Write a character to stdout

Synopsis

#include <stdio.h>

int putchar(int ch);

Description

The putchar function writes its argument to the standard output stream,
after converting ch from an int to an unsigned char. A call to putchar is
equivalent to calling putc(ch, stdout).

The function is implemented as an inline function if the language dialect
is C++; for other C language dialects, it is implemented as a macro if the
switch -full-io is specified. When it is implemented as a macro, the
resulting implementation is more efficient than making a function call,
though there are considerations on code size and the ability to pass the
address of putchar to another function.

If the putchar function call is successful, putchar returns its argument ch.

Error Conditions

The stream’s error indicator will be set if the call is unsuccessful, and the
function will return EOF.

Example

#include <stdio.h>

void putchar_example(void)

{

/* write the character 'a' to stdout */

if (putchar('a') == EOF)

Documented Library Functions

3-258 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fprintf(stderr, "putchar failed\n");

}

See Also

putc

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-259
for Blackfin Processors

C/C++ Run-Time Library

puts

Put a string to stdout

Synopsis

#include <stdio.h>

int puts(const char *s);

Description

The puts function writes the string pointed to by s, followed by a NEWLINE
character, to the standard output stream stdout. The terminating null
character of the string is not written to the stream.

If the function call is successful, then the return value is zero or greater.

Error Conditions

The macro EOF is returned if puts was unsuccessful, and the error indica-
tor for stdout will be set.

Example

#include <stdio.h>

void puts_example(void)

{

/* write the string "example" to stdout */

if (puts("example") < 0)

fprintf(stderr, "puts failed\n");

}

See Also

fputs

Documented Library Functions

3-260 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

qsort

Quicksort

Synopsis

#include <stdlib.h>

void qsort (void *base, size_t nelem, size_t size,

int (*compare) (const void *, const void *));

Description

The qsort function sorts an array of nelem objects, pointed to by base.
Each object is specified by its size.

The contents of the array are sorted into ascending order according to a
comparison function pointed to by compare, which is called with two
arguments that point to the objects being compared. The function returns
an integer less than, equal to, or greater than zero if the first argument is
considered to be respectively less than, equal to, or greater than the
second.

If two elements compare as equal, their order in the sorted array is unspec-
ified. The qsort function executes a binary search operation on a
pre-sorted array. Note that:

• base points to the start of the array

• nelem is the number of elements in the array

• size is the size of each element of the array

• compare is a pointer to a function that is called by qsort to com-
pare two elements of the array. The function returns a value less
than, equal to, or greater than zero, according to whether the first
argument is less than, equal to, or greater than the second.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-261
for Blackfin Processors

C/C++ Run-Time Library

Error Condition

The qsort function does not return any error conditions.

Example

#include <stdlib.h>

float a[10];

int compare_float (const void *a, const void *b)

{

float aval = *(float *)a;

float bval = *(float *)b;

if (aval < bval)

return -1;

else if (aval == bval)

return 0;

else

return 1;

}

qsort (a, sizeof (a)/sizeof (a[0]), sizeof (a[0]),compare_float);

See Also

bsearch

Documented Library Functions

3-262 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

raise

Force a signal

Synopsis

#include <signal.h>

int raise(int sig);

Description

The raise function sends the signal sig to the executing program. The
raise function forces interrupts wherever possible and simulates an inter-
rupt otherwise. The sig argument must be one of the signals listed in
priority order in Table 3-33.

Table 3-33. Raise Function Signals – Values and Meanings

Sig Value Definition

SIGEMU Emulation trap

SIGRSET Machine reset

SIGNMI Non-maskable interrupt

SIGEVNT Event vectoring

SIGHW Hardware error

SIGTIMR Timer events
Note that SIGALRM is mapped onto the signal SIGTIMR

SIGIVG7 - SIGIVG15 Miscellaneous interrupts
Note that:SIGUSR1 is mapped onto the signal SIGIVG15
SIGUSR2 is mapped onto the signal SIGIVG14

SIGINT Software interrupt

SIGILL Software interrupt

SIGBUS Software interrupt

SIGFPE Software interrupt

SIGSEGV Software interrupt

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-263
for Blackfin Processors

C/C++ Run-Time Library

When an interrupt is forced, the current ISR registered in the event vector
table is invoked. Normally, this is a dispatcher installed by signal(),
which saves the context before invoking the signal handler, and restores it
afterwards.

When an interrupt is simulated, raise() calls the registered signal handler
directly.

Error Conditions

The raise function returns a zero if successful, a non-zero value if it fails.

Example

#include <signal.h>

raise(SIGABRT);

See Also

interrupt, signal

SIGTERM Software interrupt

SIGABRT Software interrupt

Table 3-33. Raise Function Signals – Values and Meanings (Cont’d)

Sig Value Definition

Documented Library Functions

3-264 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

rand

Random number generator

Synopsis

#include <stdlib.h>

int rand(void);

Description

The rand function returns a pseudo-random integer value in the range
[0, 230– 1].

For this function, the measure of randomness is its periodicity—the num-
ber of values it is likely to generate before repeating a pattern. The output
of the pseudo-random number generator has a period in the order
of 230– 1.

Error Conditions

The rand function does not return an error condition.

Example

#include <stdlib.h>

int i;

i = rand();

See Also

srand

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-265
for Blackfin Processors

C/C++ Run-Time Library

realloc

Change memory allocation

Synopsis

#include <stdlib.h>

void *realloc(void *ptr, size_t size);

Description

The realloc function changes the memory allocation of the object
pointed to by ptr to size. Initial values for the new object are taken from
the values in the object pointed to by ptr. If the size of the new object is
greater than the size of the object pointed to by ptr, then the values in the
newly allocated section are undefined. The memory allocated is aligned to
a 4-byte boundary.

If ptr is a non-null pointer that was not allocated with malloc or
calloc, the behavior is undefined. If ptr is a null pointer, realloc
imitates malloc. If size is zero and ptr is not a null pointer, realloc
imitates free.

Error Conditions

If memory cannot be allocated, ptr remains unchanged and realloc
returns a null pointer.

Example

#include <stdlib.h>

int *ptr;

ptr = malloc(10 * sizeof(int)); /* ptr points to an array

of 10 ints */

ptr = realloc(ptr,20 * sizeof(int)); /* ptr now points to an

array of 20 ints */

Documented Library Functions

3-266 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

See Also

calloc, free, malloc

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-267
for Blackfin Processors

C/C++ Run-Time Library

register_handler

Register event handlers

Synopsis

#include <sys/exception.h>

ex_handler_fn register_handler(interrupt_kind kind,

ex_handler_fn fn);

Description

The register_handler function determines how the hardware event kind
is handled. This is done by registering the function pointed to by fn as a
handler for the event and updating the IMASK register so that interrupt can
take effect. The kind event is an enumeration identifying each of the hard-
ware events—interrupts and exceptions—accepted by the Blackfin
processor.

 The register_handler_ex function provides an extended and
more functional interface than register_handler. For more infor-
mation, see “register_handler_ex” on page 3-270.

For the values for kind, refer to “Registering an ISR” on page 1-368.
The fn must be one of the values listed here.

The vector table is used by the Blackfin processor to identify instructions
to execute when an event occurs. When a given event is raised, and if the

fn Value Action

EX_INT_IGNORE The event is disabled; the vector table is unchanged.

EX_INT_DEFAULT The event is disabled; the vector table is cleared.

Function address The event is enabled; the address is entered into the vector table.

Documented Library Functions

3-268 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

event is enabled, the processor begins executing instructions from the
address given by the event’s entry in the vector table.

No dispatcher is used to invoke fn. Therefore, fn must be a full event han-
dler. That is, it must save the processor context on entry, restore the
context on exit, and return using the machine instruction appropriate to
the event type. Therefore, if fn is written in C, it must be defined with an
appropriate #pragma to ensure the compiler generates suitable code. A nor-
mal C function is not suitable for use with register_handler. The header
file <sys/exception.h> provides macros to be used with
register_handler for prototyping and declaring functions.

The register_handler function is a more direct mechanism than signal
and interrupt. The signal and interrupt functions accept (and require)
“normal” C functions, and therefore need to use a dispatcher to invoke the
registered function. In contrast, register_handler does not use a dis-
patcher, and so, “normal” C functions are not suitable for registering with
the register_handler function.

Note that register_handler does not modify the interrupt latch register.
Therefore, if register_handler is called to install a handler for a latched
interrupt, the interrupt handler is called during the execution of
register_handler. The appropriate bit in the interrupt latch register must
be unset by the user if this is undesirable behavior. See the appropriate
Hardware Reference manual for details of how to do this.

 Refer to “Interrupt Handler Support” on page 1-365 for more
information.

The function returns a pointer that is in the event vector table for the
hardware event kind upon entry to register_handler.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-269
for Blackfin Processors

C/C++ Run-Time Library

Example

#include <sys/exception.h>

int timer_count = 0;

EX_INTERRUPT_HANDLER(inccount)

{

timer_count++;

}

main(void)

{

register_handler(ik_timer, inccount);

}

See Also

interrupt, raise, register_handler_ex, signal

Documented Library Functions

3-270 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

register_handler_ex

Register event handlers (extended interface)

Synopsis

#include <sys/exception.h>

ex_handler_fn register_handler_ex(interrupt_kind kind,

ex_handler_fn fn,

int enable);

Description

The register_handler_ex function determines how the hardware event
kind is handled. This is done by registering the function pointed to by fn
as a handler for the event. The kind event is an enumeration identifying
each of the hardware events interrupts and exceptions accepted by the
Blackfin processor.

For the values for kind, refer to “Registering an ISR” on page 1-368.
The fn must be one of the values listed here.

The vector table is used by the Blackfin processor to identify instructions
to execute when an event occurs. When a given event is raised, and if the
event is enabled, the processor begins executing instructions from the
address given by the events entry in the vector table.

No dispatcher is used to invoke fn. Therefore, fn must be a full event han-
dler. That is, it must save the processor context on entry, restore the

fn Value Action

EX_INT_IGNORE The event is disabled; the vector table is unchanged.

EX_INT_DEFAULT The event is disabled; the vector table is cleared.

Function address The event is enabled; the address is entered into the vector table.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-271
for Blackfin Processors

C/C++ Run-Time Library

context on exit, and return using the machine instruction appropriate to
the event type. Therefore, if fn is written in C, it must be defined with an
appropriate #pragma to ensure that the compiler generates suitable code.
A normal C function is not suitable for use with register_handler_ex.
The header file <sys/exception.h> provides macros to be used with
register_handler_ex for prototyping and declaring functions.

If fn is one of the special values shown in the table above, the value of
enable is ignored, unless enable == EX_INT_ALWAYS_ENABLE. The parame-
ter enable must be one of the values listed here:

The register_handler_ex function is a more direct mechanism than the
signal and interrupt functions. These functions accept (and require)
normal C functions, and therefore need to use a dispatcher to invoke the
registered function. In contrast, register_handler_ex does not use a dis-
patcher, and so, normal C functions are not suitable for registering with
the register_handler_ex function.

 The register_handler_ex function does not modify the interrupt
latch register. Therefore, if register_handler_ex is called to install
a handler for a latched interrupt, the interrupt handler is called
during the execution of register_handler_ex. The appropriate bit

Enable Action

EX_INT_DISABLE Register fn. The interrupt will be disabled.

EX_INT_ENABLE Register fn. The interrupt will be enabled.

EX_INT_KEEP_IMASK Register fn. The interrupt will remain in the state it was before call-
ing register_handler_ex (that is, if it was enabled, it stays
enabled).

EX_INT_ALWAYS_ENABLE Install fn if fn != EX_INT_IGNORE and fn != EX_INT_DISABLE.
Then enable the interrupt in IMASK no matter what the value of fn
is, and return. Calling register_handler_ex with
fn == EX_INT_IGNORE and enable == EX_INT_ALWAYS_ENABLE
will enable the hardware event kind without changing the registered
handler function.

Documented Library Functions

3-272 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

in the interrupt latch register must be unset by the user if this is
undesirable behavior. See the appropriate Hardware Reference
manual for details of how to do this.

The return value for register_handler_ex is the value that was in the
event vector table entry for an interrupt of type kind when
register_handler_ex was called.

 Refer to “Interrupt Handler Support” on page 1-365 for more
information.

The function returns a pointer that is in the event vector table for the
hardware event kind upon entry to register_handler.

Example

#include <sys/exception.h>

int timer_count = 0;

EX_INTERRUPT_HANDLER(inccount)

{

timer_count++;

}

main(void)

{

/* Register a handler for the ik_timer event and enable it */

register_handler_ex(ik_timer, inccount, EX_INT_ENABLE);

/* Disable the ik_timer interrupt */

/* keeping the handler in the table */

register_handler_ex(ik_timer, EX_INT_IGNORE,

EX_INT_DISABLE);

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-273
for Blackfin Processors

C/C++ Run-Time Library

/* Re-enable the ik_timer_interrupt, */

/* using the existing handler in the table */

register_handler_ex(ik_timer, EX_INT_IGNORE,

EX_INT_ALWAYS_ENABLE);

}

See Also

interrupt, raise, register_handler_ex, signal

Documented Library Functions

3-274 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

remove

Remove file

Synopsis

#include <stdio.h>

int remove(const char *filename);

Description

The remove function removes the file whose name is filename. After the
function call, filename will no longer be accessible.

The remove function is only supported under the default device driver
supplied by the VisualDSP++ simulator and EZ-KIT Lite evaluation
system and it only operates on the host file system.

The remove function returns zero on successful completion.

Error Conditions

If the remove function is unsuccessful, a non-zero value is returned.

Example

#include <stdio.h>

void remove_example(char *filename)

{

if (remove(filename))

printf("Remove of %s failed\n", filename);

else

printf("File %s removed\n", filename);

}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-275
for Blackfin Processors

C/C++ Run-Time Library

See Also

rename

Documented Library Functions

3-276 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

rename

Rename a file

Synopsis

#include <stdio.h>

int rename(const char *oldname, const char *newname);

Description

The rename function establishes a new name, using the string newname,
for a file currently known by the string oldname. After being successful
renamed, the file is no longer accessible by oldname.

The rename function is only supported under the default device driver
supplied by the VisualDSP++ simulator and EZ-KIT Lite evaluation
system and it only operates on the host file system.

If rename is successful, a value of zero is returned.

Error Conditions

If rename fails, the file named oldname is unaffected and a non-zero value
is returned.

Example

#include <stdio.h>

void rename_file(char *new, char *old)

{

if (rename(old, new))

printf("rename failed for %s\n", old);

else

printf("%s now named %s\n", old, new);

}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-277
for Blackfin Processors

C/C++ Run-Time Library

See Also

remove

Documented Library Functions

3-278 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

rewind

Reset file position indicator in a stream

Synopsis

#include <stdio.h>

void rewind(FILE *stream);

Description

The rewind function sets the file position indicator for stream to the
beginning of the file. This is equivalent to using the fseek routine in the
following manner:

fseek(stream, 0, SEEK_SET);

with the exception that rewind will also clear the error indicator.

Error Conditions

The rewind function does not return an error condition.

Example

#include <stdio.h>

char buffer[20];

void rewind_example(FILE *fp)

{

/* write "a string" to a file */

fputs("a string", fp);

/* rewind the file to the beginning */

rewind(fp);

/* read back from the file - buffer will be "a string" */

fgets(buffer, sizeof(buffer), fp);

}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-279
for Blackfin Processors

C/C++ Run-Time Library

See Also

fseek

Documented Library Functions

3-280 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

roundfx

Round a fixed-point value to a specified precision

Synopsis

#include <stdfix.h>

fract roundr(fract f, int n);

accum roundk(accum a, int n);

short fract roundhr(short fract f, int n);

short accum roundhk(short accum a, int n);

long fract roundlr(long fract f, int n);

long accum roundlk(long accum a, int n);

unsigned fract roundur(unsigned fract f, int n);

unsigned accum rounduk(unsigned accum a, int n);

unsigned short fract rounduhr(unsigned short fract f, int n);

unsigned short accum rounduhk(unsigned short accum a, int n);

unsigned long fract roundulr(unsigned long fract f, int n);

unsigned long accum roundulk(unsigned long accum a, int n);

Description

The roundfx family of functions round a fixed-point value to the number
of fractional bits specified by the second argument. The rounding is
round-to-nearest. If the rounded result is out of range of the result type,
the result saturated to the maximum or minimum fixed-point value.

In addition to the individually-named functions for each fixed-point type,
a type-generic macro roundfx is defined for use in C99 mode. This may be

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-281
for Blackfin Processors

C/C++ Run-Time Library

used with any of the fixed-point types and returns a result of the same type
as its operand.

Error Conditions

The roundfx family of functions do not return an error condition.

Example

#include <stdfix.h>

accum a;

long fract f;

a = roundhk(-12.51k, 1); /* a == 12.5k */

f = roundulr(0x12345678p-32ulr, 16); /* f == 0x12340000ulr */

#if defined(_C99)

a = roundfx(-12.51k, 1); /* a == 12.5k */

f = roundfx(0x12345678p-32ulr, 16); /* f == 0x12340000ulr */

#endif

See Also

No related functions.

Documented Library Functions

3-282 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

scanf

Convert formatted input from stdin

Synopsis

#include <stdio.h>

int scanf(const char *format, /* args */...);

Description

The scanf function reads from the standard input stream stdin, interprets
the inputs according to format, and stores the results of the conversions in
its arguments. The string pointed to by format contains the control for-
mat for the input with the arguments that follow being pointers to the
locations where the converted results are to be written.

The scanf function is equivalent to calling fscanf with stdin as its first
argument. For details on the control format string, refer to “fscanf” on
page 3-169.

The scanf function returns the number of successful conversions
performed.

Error Conditions

The scanf function returns EOF if it encounters an error before any con-
versions are performed.

Example

#include <stdio.h>

void scanf_example(void)

{

short int day, month, year;

char string[20];

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-283
for Blackfin Processors

C/C++ Run-Time Library

/* Scan a string from standard input */

scanf ("%s", string);

/* Scan a date with any separator, eg, 1-1-2006 or 1/1/2006 */

scanf ("%hd%*c%hd%*c%hd", &day, &month, &year);

}

See Also

fscanf

Documented Library Functions

3-284 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

setbuf

Specify full buffering for a file or stream

Synopsis

#include <stdio.h>

void setbuf(FILE *stream, char* buf);

Description

The setbuf function results in the array pointed to by buf being used to
buffer the stream pointed to by stream instead of an automatically allo-
cated buffer. The setbuf function may be used only after the stream
pointed to by stream is opened but before it is read or written to. Note
that the buffer provided must be of size BUFSIZ as defined in the stdio.h
header.

If buf is the NULL pointer, the input/output will be completely unbuffered.

Error Conditions

The setbuf function does not return an error condition.

Example

#include <stdio.h>

#include <stdlib.h>

void* allocate_buffer_from_heap(FILE* fp)

{

/* Allocate a buffer from the heap for the file pointer */

void* buf = malloc(BUFSIZ);

if (buf != NULL)

setbuf(fp, buf);

return buf;

}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-285
for Blackfin Processors

C/C++ Run-Time Library

See Also

setvbuf

Documented Library Functions

3-286 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

setjmp

Define a run-time label

Synopsis

#include <setjmp.h>

int setjmp(jmp_buf env);

Description

The setjmp function saves the calling environment in the jmp_buf argu-
ment. The effect of the call is to declare a run-time label that can be
jumped to via a subsequent call to longjmp.

When setjmp is called, it immediately returns with a result of zero to indi-
cate that the environment has been saved in the jmp_buf argument. If, at
some later point, longjmp is called with the same jmp_buf argument,
longjmp restores the environment from the argument. The execution then
resumes at the statement immediately following the corresponding call to
setjmp. The effect is as if the call to setjmp has returned for a second time
but this time the function returns a non-zero result.

The effect of calling longjmp is undefined if the function that called
setjmp has returned in the interim.

 The use of setjmp and longjmp (or similar functions which do not
follow conventional C/C++ flow control) may produce unexpected
results when the application is compiled with optimizations
enabled. Functions that call setjmp or longjmp are optimized by
the compiler with the assumption that all variables referenced may
be modified by any functions that are called. This assumption
ensures that it is safe to use setjmp and longjmp with optimizations
enabled, though it does mean that it is dangerous to conceal from
the optimizer that a call to setjmp or longjmp is being made, for
example by calling through a function pointer.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-287
for Blackfin Processors

C/C++ Run-Time Library

Error Conditions

The label setjmp does not return an error condition.

Example

See the code example for “longjmp” on page 3-236.

See Also

longjmp

Documented Library Functions

3-288 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

setvbuf

Specify buffering for a file or stream

Synopsis

#include <stdio.h>

int setvbuf(FILE *stream, char *buf, int type, size_t size);

Description

The setvbuf function may be used after a stream has been opened but
before it is read or written to. The kind of buffering that is to be used is
specified by the type argument. The valid values for type are detailed in
the following table.

If buf is not the NULL pointer, the array it points to will be used for buffer-
ing, instead of an automatically allocated buffer. If buf is non-NULL, you
must ensure that the associated storage continues to be available until you
close the stream identified by stream. The size argument specifies the size
of the buffer required. If input/output is unbuffered, the buf and size
arguments are ignored.

If buf is the NULL pointer, buffering is enabled and a buffer of size size
will be automatically generated.

The setvbuf function returns zero when successful.

Type Effect

_IOFBF Use full buffering for output. Only output to the host system when the buffer
is full, or when the stream is flushed or closed, or when a file positioning
operation intervenes.

_IOLBF Use line buffering. The buffer will be flushed whenever a NEWLINE is written,
as well as when the buffer is full, or when input is requested.

_IONBF Do not use any buffering at all.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-289
for Blackfin Processors

C/C++ Run-Time Library

Error Conditions

The setvbuf function will return a non-zero value if either an invalid
value is given for type, if the stream has already been used to read or write
data, or if an I/O buffer could not be allocated.

Example

#include <stdio.h>

void line_buffer_stderr(void)

{

/* stderr is not buffered - set to use line buffering */

setvbuf (stderr,NULL,_IOLBF,BUFSIZ);

}

See Also

setbuf

Documented Library Functions

3-290 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

signal

Define signal handling

Synopsis

#include <signal.h>

void (*signal(int sig, void (*func)(int val))) (int);

Description

The signal function determines how a signal received during program
execution is handled. This function causes a response to any single occur-
rence of an interrupt. The sig argument must be one of the signals listed
in priority order in Table 3-33 on page 3-262.

 Event handlers may also be installed directly; for more informa-
tion, refer to “Interrupt Handler Support” on page 1-365. The
default run-time header installs event handlers that invoke handlers
registered by signal().

The signal function installs a dispatcher ISR into the event vector table,
and enables the relevant event. When the event occurs, the dispatcher
saves the processor context before the invoked func, and restores the con-
text afterwards.

• If the function is SIG_DFL, the signal is enabled, but ignored when
it occurs.

• If the function is SIG_IGN, the signal is disabled.

When the function pointed to by func is executed, the parameter val is set
to the number of the signal that has been received. Thus, it has the same
value as sig, assuming that for each signal sig, a unique function is
registered.

The function pointed to by func must not be defined using #pragma
interrupt; the #pragma interrupt functions are registered using

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-291
for Blackfin Processors

C/C++ Run-Time Library

register_handler_ex() or register_handler() instead. Refer to “Regis-
tering an ISR” on page 1-368 and “ISRs and ANSI C Signal Handlers” on
page 1-370 for more information.

See Also

interrupt, raise, register_handler_ex, register_handler

Documented Library Functions

3-292 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

sin

Sine

Synopsis

#include <math.h>

double sin (double x);

float sinf (float x);

long double sind (long double x);

fract16 sin_fr16 (fract16 x);

fract32 sin_fr32 (fract32 x);

_Fract sin_fx16 (_Fract x);

long _Fract sin_fx32 (long _Fract x);

Description

The sin functions return the sine of the argument. Both the argument x
and the results returned by the functions are in radians.

The sin_fr16, sin_fr32, sin_fx16 and sin_fx32 functions input a frac-
tional value in the range [-1.0, 1.0) corresponding to [-π/2, π/2]. The
domain represents half a cycle which can be used to derive a full cycle if
required. (See Notes below.) The result, in radians, is in the range [-1.0,
1.0).

The domain of sinf is [-102940.0, 102940.0], and the domain for sind is
[-843314852.0, 843314852.0]. The result returned by the functions sin,
sinf, and sind is in the range [-1, 1]. The functions return 0.0 if the input
argument x is outside the respective domains.

Error Conditions

The sin functions do not return an error condition.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-293
for Blackfin Processors

C/C++ Run-Time Library

Example

#include <math.h>

double y;

y = sin(3.14159); /* y = 0.0 */

Notes

The domain of the sin_fr16, sin_fr32, sin_fx16 and sin_fx32 functions
is restricted to the fractional range [-1, 1), which corresponds to half a
period from –(π /2) to π/2. It is possible to derive the full period using the
following properties of the function.

sine [0, π/2] = -sine [π, 3/2 π]

sine [-π/2, 0] = -sine [π/2, π]

The function below uses these properties to calculate the full period
(from 0 to 2π) of the sine function using an input domain of [0, 0x7fff].

#include <math.h>

fract16 sin2pi_fr16 (fract16 x)

{

if (x < 0x2000) { /* <0.25 */

/* first quadrant [0..π/2): */

/* sin_fr16([0x0..0x7fff]) = [0..0x7fff) */

return sin_fr16(x * 4);

} else if (x == 0x2000) { /* = 0.25 */

return 0x7fff;

} else if (x < 0x6000) { /* < 0.75 */

/* if (x < 0x4000) */

/* second quadrant [π/2..π): */

/* -sin_fr16([0x8000..0x0)) = [0x7fff..0) */

/* */

Documented Library Functions

3-294 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

/* if (x < 0x6000) */

/* third quadrant [π..3/2π): */

/* -sin_fr16([0x0..0x7fff]) = [0..0x8000) */

return -sin_fr16((0xc000 + x) * 4);

} else {

/* fourth quadrant [3/2π..π): */

/* sin_fr16([0x8000..0x0)) = [0x8000..0) */

return sin_fr16((0x8000 + x) * 4);

}

}

See Also

asin, cos

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-295
for Blackfin Processors

C/C++ Run-Time Library

sinh

Hyperbolic sine

Synopsis

#include <math.h>

float sinhf (float x);

double sinh (double x);

long double sinhd (long double x);

Description

The sinh functions return the hyperbolic sine of x.

Error Conditions

The input argument x must be in the domain [-87.33, 88.72] for sinhf,
and in the domain [-710.46, 710.47] for sinhd. If the input value is
greater than the function’s domain, HUGE_VAL is returned; if the input
value is less than the domain, -HUGE_VAL is returned.

Example

#include <math.h>

double x, y;

float z, w;

y = sinh (x);

z = sinhf (w);

See Also

cosh

Documented Library Functions

3-296 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

snprintf

Format data into an n-character array

Synopsis

#include <stdio.h>

int snprintf (char *str, size_t n, const char *format, ...);

Description

The snprintf function is defined in the C99 Standard (ISO/IEC 9899).

It is similar to the sprintf function in that snprintf formats data accord-
ing to the argument format, and then writes the output to the array str.
The argument format contains a set of conversion specifiers, directives,
and ordinary characters that are used to control how the data is formatted.
Refer to “fprintf” on page 3-154 for a description of the valid format
specifiers.

The function differs from sprintf in that no more than n-1 characters are
written to the output array. Any data written beyond the n-1'th character
is discarded. A terminating NUL character is written after the end of the last
character written to the output array unless n is set to zero, in which case
nothing will be written to the output array and the output array may be
represented by the NULL pointer.

The snprintf function returns the number of characters that would have
been written to the output array str if n was sufficiently large. The return
value does not include the terminating null character written to the array.

The output array will contain all of the formatted text if the return value is
not negative and is also less than n.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-297
for Blackfin Processors

C/C++ Run-Time Library

Error Conditions

The snprintf function returns a negative value if a formatting error
occurred.

Example

#include <stdio.h>

#include <stdlib.h>

extern char *make_filename(char *name, int id)

{

char *filename_template = "%s%d.dat";

char *filename = NULL;

int len = 0;

int r; /* return value from snprintf */

do {

r = snprintf(filename,len,filename_template,name,id);

if (r < 0) /* formatting error? */

abort();

if (r < len) /* was complete string written? */

return filename; /* return with success */

filename = realloc(filename,(len=r+1));

} while (filename != NULL);

abort();

}

See Also

fprintf, sprintf, vsnprintf

Documented Library Functions

3-298 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

space_unused

Space unused in heap

Synopsis

#include <stdlib.h>

int space_unused(void);

Description

The space_unused function returns the total free space in bytes for the
default heap. Note that calling malloc(space_unused()) does not allocate
space because each allocated block uses more memory internally than the
requested space, and also the free space in the heap may be fragmented,
and thus not be available in one contiguous block.

Error Conditions

If there are no heaps, calling this function will return -1.

Example

#include <stdlib.h>

int free_space;

free_space = space_unused(); /* Get free space in the heap */

See Also

calloc, free,heap_calloc, heap_free, heap_init, heap_install, heap_lookup,
heap_malloc, heap_space_unused, malloc, realloc, space_unused

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-299
for Blackfin Processors

C/C++ Run-Time Library

sprintf

Format data into a character array

Synopsis

#include <stdio.h>

int sprintf (char *str, const char *format, /* args */...);

Description

The sprintf function formats data according to the argument format,
and then writes the output to the array str. The argument format con-
tains a set of conversion specifiers, directives, and ordinary characters that
are used to control how the data is formatted. Refer to “fprintf” on
page 3-154 for a description of the valid format specifiers.

In all respects other than writing to an array rather than a stream, the
behavior of sprintf is similar to that of fprintf.

If the sprintf function is successful, it returns the number of characters
written in the array, not counting the terminating NULL character.

Error Conditions

The sprintf function returns a negative value if a formatting error
occurred.

Example

#include <stdio.h>

#include <stdlib.h>

char filename[128];

extern char *assign_filename(char *name)

{

Documented Library Functions

3-300 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

char *filename_template = "%s.dat";

int r; /* return value from sprintf */

if ((strlen(name)+5) > sizeof(filename))

abort();

r = sprintf(filename, filename_template, name);

if (r < 0) /* sprintf failed */

abort();

return filename; /* return with success */

}

See Also

fprintf, snprintf

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-301
for Blackfin Processors

C/C++ Run-Time Library

sqrt

Square root

Synopsis

#include <math.h>

float sqrtf (float x);

double sqrt (double x);

long double sqrtd (long double x);

fract16 sqrt_fr16 (fract16 x);

fract32 sqrt_fr32 (fract32 x);

_Fract sqrt_fx16 (_Fract x);

long _Fract sqrt_fx32 (long _Fract x);

Description

The sqrt functions return the positive square root of the argument x.

Error Conditions

The sqrt functions return a zero if the input argument is negative.

Example

#include <math.h>

double y;

y = sqrt(2.0); /* y = 1.414..... */

See Also

rsqrt

Documented Library Functions

3-302 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

srand

Random number seed

Synopsis

#include <stdlib.h>

void srand(unsigned int seed);

Description

The srand function sets the seed value for the rand function. A particular
seed value always produces the same sequence of pseudo-random
numbers.

Error Conditions

The srand function does not return an error condition.

Example

#include <stdlib.h>

srand(22);

See Also

rand

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-303
for Blackfin Processors

C/C++ Run-Time Library

sscanf

Convert formatted input in a string

Synopsis

#include <stdio.h>

int sscanf(const char *s, const char *format, /* args */...);

Description

The sscanf function reads from the string s. The function is equivalent to
fscanf with the exception of the string being read from a string rather
than a stream. The behavior of sscanf when reaching the end of the string
equates to fscanf reaching the EOF in a stream. For details on the control
format string, refer to “fscanf” on page 3-169.

The sscanf function returns the number of items successfully read.

Error Conditions

If the sscanf function is unsuccessful, EOF is returned.

Example

#include <stdio.h>

void sscanf_example(const char *input)

{

short int day, month, year;

char string[20];

/* Scan for a string from "input" */

sscanf (input, "%s", string);

/* Scan a date with any separator, eg, 1-1-2006 or 1/1/2006 */

sscanf (input, "%hd%*c%hd%*c%hd", &day, &month, &year);

}

Documented Library Functions

3-304 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

See Also

fscanf

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-305
for Blackfin Processors

C/C++ Run-Time Library

strcat

Concatenate strings

Synopsis

#include <string.h>

char *strcat(char *s1, const char *s2);

Description

The strcat function appends a copy of the null-terminated string pointed
to by s2 to the end of the null-terminated string pointed to by s1. The
function returns a pointer to the new s1 string, which is null-terminated.
The behavior of strcat is undefined if the two strings overlap.

Error Conditions

The strcat function does not return an error condition.

Example

#include <string.h>

char string1[50];

string1[0] = 'A';

string1[1] = 'B';

string1[2] = '\0';

strcat(string1, "CD"); /* new string is "ABCD" */

See Also

strncat

Documented Library Functions

3-306 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

strchr

Find first occurrence of character in string

Synopsis

#include <string.h>

char *strchr(const char *s1, int c);

Description

The strchr function returns a pointer to the first location in s1
(null-terminated string) that contains the character c.

Error Conditions

The strchr function returns a null pointer if c is not part of the string.

Example

#include <string.h>

char *ptr1, *ptr2;

ptr1 = "TESTING";

ptr2 = strchr(ptr1, 'E');

/* ptr2 points to the E in TESTING */

See Also

memchr, strstr

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-307
for Blackfin Processors

C/C++ Run-Time Library

strcmp

Compare strings

Synopsis

#include <string.h>

int strcmp(const char *s1, const char *s2);

Description

The strcmp function lexicographically compares the null-terminated
strings pointed to by s1 and s2. The function returns a positive value if
the s1 string is greater than the s2 string, a negative value if the s2 string is
greater than the s1 string, and a zero if the strings are the same.

Error Conditions

The strcmp function does not return an error condition.

Example

#include <string.h>

char string1[50], string2[50];

if (strcmp(string1, string2))

printf("%s is different than %s \n", string1, string2);

See Also

memcmp, strncmp

Documented Library Functions

3-308 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

strcoll

Compare strings

Synopsis

#include <string.h>

int strcoll(const char *s1, const char *s2);

Description

The strcoll function compares the string pointed to by s1 with the string
pointed to by s2. The comparison is based on the LC_COLLATE locale
macro. Because only the C locale is defined in the Blackfin run-time envi-
ronment, the strcoll function is identical to the strcmp function. The
function returns a positive value if the s1 string is greater than the s2
string, a negative value if the s2 string is greater than the s1 string, and a
zero if the strings are the same.

Error Conditions

The strcoll function does not return an error condition.

Example

#include <string.h>

char string1[50], string2[50];

if (strcoll(string1, string2))

printf("%s is different than %s \n", string1, string2);

See Also

strcmp, strncmp

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-309
for Blackfin Processors

C/C++ Run-Time Library

strcpy

Copy from one string to another

Synopsis

#include <string.h>

void *strcpy(char *s1, const char *s2);

Description

The strcpy function copies the null-terminated string pointed to by s2
into the space pointed to by s1. The memory allocated for s1 must be
large enough to hold s2, plus one space for the null character ('\0').
The behavior of strcpy is undefined if the two objects overlap, or if s1 is
not large enough. The strcpy function returns the new s1.

Error Conditions

The strcpy function does not return an error condition.

Example

#include <string.h>

char string1[50];

strcpy(string1, "SOMEFUN");

/* SOMEFUN is copied into string1 */

See Also

memcpy, memmove, strncpy

Documented Library Functions

3-310 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

strcspn

Length of character segment in one string but not the other

Synopsis

#include <string.h>

size_t strcspn(const char *s1, const char *s2);

Description

The strcspn function returns the length of the initial segment of s1,
which consists entirely of characters not in the string pointed to by s2.
The string pointed to by s2 is treated as a set of characters. The order of
the characters in the string is not significant.

Error Conditions

The strcspn function does not return an error condition.

Example

#include <string.h>

char *ptr1, *ptr2;

size_t len;

ptrl = "Tried and Tested";

ptr2 = "aeiou";

len = strcspn (ptrl,ptr2); /* len = 2 */

See Also

strlen, strspn

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-311
for Blackfin Processors

C/C++ Run-Time Library

strerror

Get string containing error message

Synopsis

#include <string.h>

char *strerror(int errnum);

Description

The strerror function returns a pointer to a string containing an error
message by mapping the number in errnum to that string.

Error Conditions

The strerror function does not return an error condition.

Example

#include <string.h>

char *ptr1;

ptr1 = strerror(1);

See Also

No related functions.

Documented Library Functions

3-312 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

strftime

Format a broken-down time

Synopsis

#include <time.h>

size_t strftime(char *buf,

size_t buf_size,

const char *format,

const struct tm *tm_ptr);

Description

The strftime function formats the broken-down time tm_ptr into the
char array pointed to by buf, under the control of the format string
format. At most, buf_size characters (including the null terminating
character) are written to buf.

In a similar way as for printf, the format string consists of ordinary char-
acters, which are copied unchanged to the char array buf, and zero or
more conversion specifiers. A conversion specifier starts with the character
% and is followed by a character that indicates the form of transformation
required – the supported transformations are given below in Table 3-34.
The strftime function only supports the “C” locale, and this is reflected
in the table.

Table 3-34. Conversion Specifiers Supported by strftime

Conversion Specifier Transformation ISO/IEC 9899

%a Abbreviated weekday name Yes

%A Full weekday name Yes

%b Abbreviated month name Yes

%B Full month name Yes

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-313
for Blackfin Processors

C/C++ Run-Time Library

%c Date and time presentation in the form
of DDD MMM dd hh:mm:ss yyyy

Yes

%C Century of the year POSIX.2-1992 + ISO C99

%d Day of the month (01 - 31) Yes

%D Date represented as mm/dd/yy POSIX.2-1992 + ISO C99

%e Day of the month, padded with a space
character (cf %d)

POSIX.2-1992 + ISO C99

%F Date represented as yyyy-mm-dd POSIX.2-1992 + ISO C99

%h Abbreviated name of the month (same as
%b)

POSIX.2-1992 + ISO C99

%H Hour of the day as a 24-hour clock
(00-23)

Yes

%I Hour of the day as a 12-hour clock
(00-12)

Yes

%j Day of the year (001-366) Yes

%k Hour of the day as a 24-hour clock pad-
ded with a space (0-23)

No

%l Hour of the day as a 12-hour clock pad-
ded with a space (0-12)

No

%m Month of the year (01-12) Yes

%M Minute of the hour (00-59) Yes

%n Newline character POSIX.2-1992 + ISO C99

%p AM or PM Yes

%P am or pm No

%r Time presented as either hh:mm:ss AM
or as hh:mm:ss PM

POSIX.2-1992 + ISO C99

%R Time presented as hh:mm POSIX.2-1992 + ISO C99

%S Second of the minute (00-61) Yes

%t Tab character POSIX.2-1992 + ISO C99

Table 3-34. Conversion Specifiers Supported by strftime (Cont’d)

Conversion Specifier Transformation ISO/IEC 9899

Documented Library Functions

3-314 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

 The current implementation of time.h does not support time zones
and, therefore, the %Z specifier does not generate any characters.

The strftime function returns the number of characters (not including
the terminating null character) that have been written to buf.

Error Conditions

The strftime function returns zero if more than buf_size characters are
required to process the format string. In this case, the contents of the array
buf will be indeterminate.

%T Time formatted as %H:%M:%S POSIX.2-1992 + ISO C99

%U Week number of the year (week starts on
Sunday) (00-53)

Yes

%w Weekday as a decimal (0-6) (0 if Sun-
day)

Yes

%W Week number of the year (week starts on
Sunday) (00-53)

Yes

%x Date represented as mm/dd/yy (same as
%D)

Yes

%X Time represented as hh:mm:ss Yes

%y Year without the century (00-99) Yes

%Y Year with the century (nnnn) Yes

%Z Time zone name, or nothing if the name
cannot be determined

Yes

%% % character Yes

Table 3-34. Conversion Specifiers Supported by strftime (Cont’d)

Conversion Specifier Transformation ISO/IEC 9899

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-315
for Blackfin Processors

C/C++ Run-Time Library

Example

#include <time.h>

#include <stdio.h>

extern void

print_time(time_t tod)

{

char tod_string[100];

strftime(tod_string,

100,

"It is %M min and %S secs after %l o'clock (%p)",

gmtime(&tod));

puts(tod_string);

}

See Also

ctime, gmtime, localtime, mktime

Documented Library Functions

3-316 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

strlen

String length

Synopsis

#include <string.h>

size_t strlen(const char *s1);

Description

The strlen function returns the length of the null-terminated string
pointed to by s1 (not including the terminating null character).

Error Conditions

The strlen function does not return an error condition.

Example

#include <string.h>

size_t len;

len = strlen("SOMEFUN"); /* len = 7 */

See Also

strcspn, strspn

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-317
for Blackfin Processors

C/C++ Run-Time Library

strncat

Concatenate characters from one string to another

Synopsis

#include <string.h>

char *strncat(char *s1, const char *s2, size_t n);

Description

The strncat function appends a copy of up to n characters in the
null-terminated string pointed to by s2 to the end of the null-terminated
string pointed to by s1. The function returns a pointer to the new s1
string.

The behavior of strncat is undefined if the two strings overlap. The new
s1 string is terminated with a null character ('\0').

Error Conditions

The strncat function does not return an error condition.

Example

#include <string.h>

char string1[50], *ptr;

string1[0]='\0';

strncat(string1, "MOREFUN", 4);

/* string1 equals "MORE" */

See Also

strcat

Documented Library Functions

3-318 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

strncmp

Compare characters in strings

Synopsis

#include <string.h>

int strncmp(const char *s1, const char *s2, size_t n);

Description

The strncmp function lexicographically compares up to n characters of the
null-terminated strings pointed to by s1 and s2. The function returns a
positive value when the s1 string is greater than the s2 string, a negative
value when the s2 string is greater than the s1 string, and a zero when the
strings are the same.

Error Conditions

The strncmp function does not return an error condition.

Example

#include <string.h>

char *ptr1;

ptr1 = "TEST1";

if (strncmp(ptr1, "TEST", 4) == 0)

printf("%s starts with TEST \n", ptr1);

See Also

memcmp, strcmp

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-319
for Blackfin Processors

C/C++ Run-Time Library

strncpy

Copy characters from one string to another

Synopsis

#include <string.h>

char *strncpy(char *s1, const char *s2, size_t n);

Description

The strncpy function copies up to n characters of the null-terminated
string pointed to by s2 into the space pointed to by s1. If the last character
copied from s2 is not a null, the result does not end with a null. The
behavior of strncpy is undefined when the two objects overlap. The
strncpy function returns the new s1.

If the s2 string contains fewer than n characters, the s1 string is padded
with the null character until all n characters are written.

Error Conditions

The strncpy function does not return an error condition.

Example

#include <string.h>

char string1[50];

strncpy(string1, "MOREFUN", 4);

/* MORE is copied into string1 */

string1[4] = '\0'; /* must null-terminate string1 */

See Also

memcpy, memmove, strcpy

Documented Library Functions

3-320 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

strpbrk

Find character match in two strings

Synopsis

#include <string.h>

char *strpbrk(const char *s1, const char *s2);

Description

The strpbrk function returns a pointer to the first character in s1 that is
also found in s2. The string pointed to by s2 is treated as a set of charac-
ters. The order of the characters in the string is not significant.

Error Conditions

In the event that no character in s1 matches any in s2, a null pointer is
returned.

Example

#include <string.h>

char *ptr1, *ptr2, *ptr3;

ptr1 = "TESTING";

ptr2 = "SHOP"

ptr3 = strpbrk(ptr1, ptr2);

/* ptr3 points to the S in TESTING */

See Also

strspn

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-321
for Blackfin Processors

C/C++ Run-Time Library

strrchr

Find last occurrence of character in string

Synopsis

#include <string.h>

char *strrchr(const char *s1, int c);

Description

The strrchr function returns a pointer to the last occurrence of character
c in the null-terminated input string s1.

Error Conditions

The strrchr function returns a null pointer if c is not found.

Example

#include <string.h>

char *ptr1, *ptr2;

ptr1 = "TESTING";

ptr2 = strrchr(ptr1, 'T');

/* ptr2 points to the second T of TESTING */

See Also

memchr, strchr

Documented Library Functions

3-322 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

strspn

Length of segment of characters in both strings

Synopsis

#include <string.h>

size_t strspn(const char *s1, const char *s2);

Description

The strspn function returns the length of the initial segment of s1, which
consists entirely of characters in the string pointed to by s2. The string
pointed to by s2 is treated as a set of characters. The order of the charac-
ters in the string is not significant.

Error Conditions

The strspn function does not return an error condition.

Example

#include <string.h>

size_t len;

char *ptr1, *ptr2;

ptr1 = "TESTING";

ptr2 = "ERST";

len = strspn(ptr1, ptr2); /* len = 4 */

See Also

strcspn, strlen

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-323
for Blackfin Processors

C/C++ Run-Time Library

strstr

Find string within string

Synopsis

#include <string.h>

char *strstr(const char *s1, const char *s2);

Description

The strstr function returns a pointer to the first occurrence in the string
of s1 of the characters pointed to by s2. This excludes the terminating null
character in s1.

Error Conditions

If the string is not found, strstr returns a null pointer. If s2 points to a
string of zero length, s1 is returned.

Example

#include <string.h>

char *ptr1, *ptr2;

ptr1 = "TESTING";

ptr2 = strstr (ptr1, "E");

/* ptr2 points to the E in TESTING */

See Also

strchr

Documented Library Functions

3-324 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

strtod

Convert string to double

Synopsis

#include <stdlib.h>

double strtod (const char *nptr, char **endptr)

Description

The strtod function extracts a value from the string pointed to by nptr,
and returns the value as a double. The strtod function expects nptr to
point to a string that represents either a decimal floating-point number or
a hexadecimal floating-point number. Either form of number may be pre-
ceded by a sequence of whitespace characters (as determined by the
isspace function) that the function ignores.

A decimal floating-point number has the form:

[sign] [digits] [.digits] [{e|E} [sign] [digits]]

The sign token is optional and is either plus (+) or minus (–); and dig-
its are one or more decimal digits. The sequence of digits may contain a
decimal point (.).

The decimal digits can be followed by an exponent, which consists of an
introductory letter (e or E) and an optionally signed integer. If neither an
exponent part nor a decimal point appears, a decimal point is assumed to
follow the last digit in the string.

The form of a hexadecimal floating-point number is:

[sign] [{0x}|{0X}] [hexdigs] [.hexdigs] [{p|P} [sign] [digits]]

A hexadecimal floating-point number may start with an optional plus (+)
or minus (–) followed by the hexadecimal prefix 0x or 0X. This character

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-325
for Blackfin Processors

C/C++ Run-Time Library

sequence must be followed by one or more hexadecimal characters that
optionally contain a decimal point (.).

The hexadecimal digits are followed by a binary exponent that consists of
the letter p or P, an optional sign, and a non-empty sequence of decimal
digits. The exponent is interpreted as a power of two that is used to scale
the fraction represented by the tokens [hexdigs] [.hexdigs].

The first character that does not fit either form of number stops the scan.
If endptr is not NULL, a pointer to the character that stopped the scan is
stored at the location pointed to by endptr. If no conversion can be per-
formed, the value of nptr is stored at the location pointed to by endptr.

Error Conditions

The strtod function returns a zero if no conversion is made and a pointer
to the invalid string is stored in the object pointed to by endptr. If the
correct value results in an overflow, a positive or negative (as appropriate)
HUGE_VAL is returned. If the correct value results in an underflow, zero is
returned. The ERANGE value is stored in errno in the case of either an over-
flow or underflow.

Example

#include <stdlib.h>

char *rem;

double dd;

dd = strtod ("2345.5E4 abc",&rem);

/* dd = 2.3455E+7, rem = " abc" */

dd = strtod ("-0x1.800p+9,123",&rem);

/* dd = -768.0, rem = ",123" */

Documented Library Functions

3-326 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

See Also

atof, strtofxfx, strtol, strtoul

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-327
for Blackfin Processors

C/C++ Run-Time Library

strtof

Convert string to float

Synopsis

#include <stdlib.h>

float strtof (const char *nptr, char **endptr)

Description

The strtof function extracts a value from the string pointed to by nptr,
and returns the value as a float. The strtof function expects nptr to
point to a string that represents either a decimal floating-point number or
a hexadecimal floating-point number. Either form of number may be pre-
ceded by a sequence of whitespace characters (as determined by the
isspace function) that the function ignores.

A decimal floating-point number has the form:

[sign] [digits] [.digits] [{e|E} [sign] [digits]]

The sign token is optional and is either plus (+) or minus (–); and dig-
its are one or more decimal digits. The sequence of digits may contain a
decimal point (.).

The decimal digits can be followed by an exponent, which consists of an
introductory letter (e or E) and an optionally signed integer. If neither an
exponent part nor a decimal point appears, a decimal point is assumed to
follow the last digit in the string.

The form of a hexadecimal floating-point number is:

[sign] [{0x}|{0X}] [hexdigs] [.hexdigs] [{p|P} [sign] [digits]]

A hexadecimal floating-point number may start with an optional plus (+)
or minus (–) followed by the hexadecimal prefix 0x or 0X. This character

Documented Library Functions

3-328 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

sequence must be followed by one or more hexadecimal characters that
optionally contain a decimal point (.).

The hexadecimal digits are followed by a binary exponent that consists of
the letter p or P, an optional sign, and a non-empty sequence of decimal
digits. The exponent is interpreted as a power of two that is used to scale
the fraction represented by the tokens [hexdigs] [.hexdigs].

The first character that does not fit either form of number stops the scan.
If endptr is not NULL, a pointer to the character that stopped the scan is
stored at the location pointed to by endptr. If no conversion can be per-
formed, the value of nptr is stored at the location pointed to by endptr.

Error Conditions

The strtof function returns a zero if no conversion is made and a pointer
to the invalid string is stored in the object pointed to by endptr. If the
correct value results in an overflow, a positive or negative (as appropriate)
HUGE_VAL is returned. If the correct value results in an underflow, zero is
returned. The ERANGE value is stored in errno in the case of either an over-
flow or underflow.

Example

#include <stdlib.h>

char *rem;

float ff;

ff = strtof ("2345.5E4 abc",&rem);

/* ff = 2.3455E+7, rem = " abc" */

ff = strtof ("-0x1.800p+9,123",&rem);

/* ff = -768.0, rem = ",123" */

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-329
for Blackfin Processors

C/C++ Run-Time Library

See Also

atof, strtofxfx, strtol, strtoul

Documented Library Functions

3-330 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

strtofxfx

Convert string to fixed-point

Synopsis

#include <stdfix.h>

fract strtofxr(const char *nptr, char **endptr);

accum strtofxk(const char *nptr, char **endptr);

short fract strtofxhr(const char *nptr, char **endptr);

short accum strtofxhk(const char *nptr, char **endptr);

long fract strtofxlr(const char *nptr, char **endptr);

long accum strtofxlk(const char *nptr, char **endptr);

unsigned fract strtofxur(const char *nptr, char **endptr);

unsigned accum strtofxuk(const char *nptr, char **endptr);

unsigned short fract strtofxuhr(const char *nptr, char **endptr);

unsigned short accum strtofxuhk(const char *nptr, char **endptr);

unsigned long fract strtofxulr(const char *nptr, char **endptr);

unsigned long accum strtofxulk(const char *nptr, char **endptr);

Description

The strtofxfx family of functions extracts a value from the string pointed
to by nptr, and converts the value to a fixed-point representation. The
strtofxfx functions expect nptr to point to a string that represents either
a decimal floating-point number or a hexadecimal floating-point number.
Either form of number may be preceded by a sequence of whitespace char-
acters (as determined by the isspace function) that the function ignores.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-331
for Blackfin Processors

C/C++ Run-Time Library

A decimal floating-point number has the form:

[sign] [digits] [.digits] [{e|E} [sign] [digits]]

The sign token is optional and is either plus (+) or minus (–); and
digits are one or more decimal digits. The sequence of digits may contain
a decimal point (.).

The decimal digits can be followed by an exponent, which consists of an
introductory letter (e or E) and an optionally signed integer. If neither an
exponent part nor a decimal point appears, a decimal point is assumed to
follow the last digit in the string.

The form of a hexadecimal floating-point number is:

[sign] [{0x}|{0X}] [hexdigs] [.hexdigs] [{p|P} [sign] [digits]]

A hexadecimal floating-point number may start with an optional plus (+)
or minus (–) followed by the hexadecimal prefix 0x or 0X. This character
sequence must be followed by one or more hexadecimal characters that
optionally contain a decimal point (.).

The hexadecimal digits are followed by a binary exponent that consists of
the letter p or P, an optional sign, and a non-empty sequence of decimal
digits. The exponent is interpreted as a power of two that is used to scale
the fraction represented by the tokens [hexdigs] [.hexdigs].

The first character that does not fit either form of number stops the scan.
If endptr is not NULL, a pointer to the character that stopped the scan is
stored at the location pointed to by endptr. If no conversion can be per-
formed, the value of nptr is stored at the location pointed to by endptr.

Error Conditions

The strtofxfx functions return a zero if no conversion can be made and a
pointer to the invalid string is stored in the object pointed to by endptr. If
the correct value results in an overflow, the maximum positive or negative
(as appropriate) fixed-point value is returned. If the correct value results in

Documented Library Functions

3-332 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

an underflow, zero is returned. The ERANGE value is stored in errno in the
case of overflow.

Example

#include <stdfix.h>

char *rem;

accum k;

unsigned long fract ulr;

k = strtofxk ("-2345.5E-3 abc",&rem);

/* k = -2.3455k, rem = " abc" */

ulr = strtofxulr ("0x180p-12,123",&rem);

/* ulr = 0x1800p-16ulr, rem = ",123" */

See Also

strtod, strtol, strtoul

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-333
for Blackfin Processors

C/C++ Run-Time Library

strtok

Convert string to tokens

Synopsis

#include <string.h>

char *strtok(char *s1, const char *s2);

Description

The strtok function returns successive tokens from the string s1, where
each token is delimited by characters from the string s2.

A call to strtok, with s1 not NULL, returns a pointer to the first token in
s1, where a token is a consecutive sequence of characters not in s2. The s1
string is modified in place to insert a null character at the end of the
returned token. If s1 consists entirely of characters from s2, NULL is
returned.

Subsequent calls to strtok, with s1 equal to NULL, return successive
tokens from the same string. When the string contains no further tokens,
NULL is returned. Each new call to strtok may use a new delimiter
string, even if s1 is NULL. If s1 is NULL, the remainder of the string is
converted into tokens using the new delimiter characters.

Error Conditions

The strtok function returns a null pointer if there are no tokens remain-
ing in the string.

Example

#include <string.h>

static char str[] = "a phrase to be tested, today";

char *t;

Documented Library Functions

3-334 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

t = strtok(str, " "); /* t points to "a" */

t = strtok(NULL, " "); /* t points to "phrase" */

t = strtok(NULL, ","); /* t points to "to be tested" */

t = strtok(NULL, "."); /* t points to " today" */

t = strtok(NULL, "."); /* t = NULL */

See Also

No related functions.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-335
for Blackfin Processors

C/C++ Run-Time Library

strtol

Convert string to long integer

Synopsis

#include <stdlib.h>

long int strtol(const char *nptr, char **endptr, int base);

Description

The strtol function returns as a long int the value represented by the
string nptr. If endptr is not a null pointer, strtol stores a pointer to the
unconverted remainder in *endptr.

The strtol function breaks down the input into three sections: white
space (as determined by isspace), initial characters, and unrecognized
characters, including a terminating null character. The initial characters
may comprise an optional sign character, 0x or 0X, when base is 16, and
those letters and digits which represent an integer with a radix of base.
The letters (a-z or A-Z) are assigned the values 10 to 35 and are permitted
only when those values are less than the value of base.

If base is zero, the base is taken from the initial characters. A leading 0x
indicates base 16; a leading 0 indicates base 8. For any other leading char-
acters, base 10 is used. If base is between 2 and 36, it is used as a base for
conversion.

Error Conditions

The strtol function returns a zero if no conversion is made, and a pointer
to the invalid string is stored in the object pointed to by endptr (provided
that endptr is not a null pointer). If the correct value results in an over-
flow, positive or negative (as appropriate) LONG_MAX is returned. If the
correct value results in an underflow, LONG_MIN is returned. The ERANGE
value is stored in errno in the case of either overflow or underflow.

Documented Library Functions

3-336 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Example

#include <stdlib.h>

#define base 10

char *rem;

long int i;

i = strtol("2345.5", &rem, base);

/* i=2345, rem=".5" */

See Also

atoi, atol, strtofxfx, strtoul

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-337
for Blackfin Processors

C/C++ Run-Time Library

strtold

Convert string to long double

Synopsis

#include <stdlib.h>

long double strtold(const char *nptr, char **endptr)

Description

The strtold function extracts a value from the string pointed to by nptr,
and returns the value as a long double. The strtold function expects
nptr to point to a string that represents either a decimal floating-point
number or a hexadecimal floating-point number. Either form of number
may be preceded by a sequence of whitespace characters (as determined by
the isspace function) that the function ignores.

A decimal floating-point number has the form:

[sign] [digits] [.digits] [{e|E} [sign] [digits]]

The sign token is optional and is either plus (+) or minus (–); and dig-
its are one or more decimal digits. The sequence of digits may contain a
decimal point (.).

The decimal digits can be followed by an exponent, which consists of an
introductory letter (e or E) and an optionally signed integer. If neither an
exponent part nor a decimal point appears, a decimal point is assumed to
follow the last digit in the string.

The form of a hexadecimal floating-point number is:

[sign] [{0x}|{0X}] [hexdigs] [.hexdigs] [{p|P} [sign] [digits]]

A hexadecimal floating-point number may start with an optional plus (+)
or minus (–) followed by the hexadecimal prefix 0x or 0X. This character

Documented Library Functions

3-338 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

sequence must be followed by one or more hexadecimal characters that
optionally contain a decimal point (.).

The hexadecimal digits are followed by a binary exponent that consists of
the letter p or P, an optional sign, and a non-empty sequence of decimal
digits. The exponent is interpreted as a power of two that is used to scale
the fraction represented by the tokens [hexdigs] [.hexdigs].

The first character that does not fit either form of number stops the scan.
If endptr is not NULL, a pointer to the character that stopped the scan is
stored at the location pointed to by endptr. If no conversion can be per-
formed, the value of nptr is stored at the location pointed to by endptr.

Error Conditions

The strtold function returns a zero if no conversion can be made and a
pointer to the invalid string is stored in the object pointed to by endptr. If
the correct value results in an overflow, a positive or negative (as appropri-
ate) LDBL_MAX is returned. If the correct value results in an underflow, zero
is returned. The ERANGE value is stored in errno in the case of either an
overflow or underflow.

Example

#include <stdlib.h>

char *rem;

long double dd;

dd = strtold ("2345.5E4 abc",&rem);

/* dd = 2.3455E+7, rem = " abc" */

dd = strtold ("-0x1.800p+9,123",&rem);

/* dd = -768.0, rem = ",123" */

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-339
for Blackfin Processors

C/C++ Run-Time Library

See Also

strtofxfx, strtol, strtoul

Documented Library Functions

3-340 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

strtoll

Convert string to long long integer

Synopsis

#include <stdlib.h>

long long int strtoll(const char *nptr, char **endptr, int base);

Description

The strtoll function returns as a long long int the value represented by
the string nptr. If endptr is not a null pointer, strtoll stores a pointer to
the unconverted remainder in *endptr.

The strtoll function breaks down the input into three sections: white
space (as determined by isspace), initial characters, and unrecognized
characters, including a terminating null character. The initial characters
may comprise an optional sign character, 0x or 0X, when base is 16, and
those letters and digits which represent an integer with a radix of base.
The letters (a-z or A-Z) are assigned the values 10 to 35 and are permitted
only when those values are less than the value of base.

If base is zero, the base is taken from the initial characters. A leading 0x
indicates base 16; a leading 0 indicates base 8. For any other leading char-
acters, base 10 is used. If base is between 2 and 36, it is used as a base for
conversion.

Error Conditions

The strtoll function returns a zero if no conversion is made and a
pointer to the invalid string is stored in the object pointed to by endptr
(provided that endptr is not a null pointer). If the correct value results in
an overflow, positive or negative (as appropriate) LLONG_MAX is returned.
If the correct value results in an underflow, LLONG_MIN is returned. The
ERANGE value is stored in errno in the case of either overflow or underflow.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-341
for Blackfin Processors

C/C++ Run-Time Library

Example

#include <stdlib.h>

#define base 10

char *rem;

long long int i;

i = strtoll("2345.5", &rem, base);

/* i=2345, rem=".5" */

See Also

atoll, strtofxfx, strtoul

Documented Library Functions

3-342 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

strtoul

Convert string to unsigned long integer

Synopsis

#include <stdlib.h>

unsigned long int strtoul(const char *nptr,

char **endptr, int base);

Description

The strtoul function returns as an unsigned long int the value repre-
sented by the string nptr. If endptr is not a null pointer, strtoul stores a
pointer to the unconverted remainder in *endptr.

The strtoul function breaks down the input into three sections:

• Whitespace (as determined by isspace)

• Initial characters

• Unrecognized characters including a terminating null character

The initial characters may comprise an optional sign character, 0x or 0X,
when base is 16, and those letters and digits which represent an integer
with a radix of base. The letters (a-z or A-Z) are assigned the values 10
to 35 and are permitted only when those values are less than the value of
base.

If base is zero, the base is taken from the initial characters. A leading 0x
indicates base 16; a leading 0 indicates base 8. For any other leading
characters, base 10 is used. If base is between 2 and 36, it is used as a base
for conversion.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-343
for Blackfin Processors

C/C++ Run-Time Library

Error Conditions

The strtoul function returns a zero if no conversion is made and a
pointer to the invalid string is stored in the object pointed to by endptr
(provided that endptr is not a null pointer). If the correct value results in
an overflow, ULONG_MAX is returned. The ERANGE value is stored in errno in
the case of overflow.

Example

#include <stdlib.h>

#define base 10

char *rem;

unsigned long int i;

i = strtoul("2345.5", &rem, base);

/* i = 2345, rem = ".5" */

See Also

atoi, atol, strtofxfx, strtol

Documented Library Functions

3-344 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

strtoull

Convert string to unsigned long long integer

Synopsis

#include <stdlib.h>

unsigned long long int strtoull(const char *nptr,

char **endptr, int base);

Description

The strtoull function returns as an unsigned long long int, the value
represented by the string nptr. If endptr is not a null pointer, strtoull
stores a pointer to the unconverted remainder in *endptr.

The strtoull function breaks down the input into three sections:

• Whitespace (as determined by isspace)

• Initial characters

• Unrecognized characters including a terminating null character

The initial characters may comprise an optional sign character, 0x or 0X,
when base is 16, and those letters and digits which represent an integer
with a radix of base. The letters (a-z or A-Z) are assigned the values 10
to 35 and are permitted only when those values are less than the value of
base.

If base is zero, the base is taken from the initial characters. A leading 0x
indicates base 16; a leading 0 indicates base 8. For any other leading
characters, base 10 is used. If base is between 2 and 36, it is used as a base
for conversion.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-345
for Blackfin Processors

C/C++ Run-Time Library

Error Conditions

The strtoull function returns a zero if no conversion is made and a
pointer to the invalid string is stored in the object pointed to by endptr
(provided that endptr is not a null pointer). If the correct value results in
an overflow, ULLONG_MAX is returned. The ERANGE value is stored in errno
in the case of overflow.

Example

#include <stdlib.h>

#define base 10

char *rem;

unsigned long long int i;

i = strtoull("2345.5", &rem, base);

/* i = 2345, rem = ".5" */

See Also

atoll, strtofxfx, strtoll

Documented Library Functions

3-346 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

strxfrm

Transform string using LC_COLLATE

Synopsis

#include <string.h>

size_t strxfrm(char *s1, const char *s2, size_t n);

Description

The strxfrm function transforms the string pointed to by s2 using the
locale-specific category LC_COLLATE. The function places the result in the
array pointed to by s1.

If s1 and s2 are transformed and used as arguments to strcmp, the result is
identical to the result derived from strcoll using s1 and s2 as arguments.
However, since only C locale is implemented, this function does not per-
form any transformations other than the number of characters. The string
stored in the array pointed to by s1 is never more than n characters,
including the terminating null character.

The function returns 1. If this value is n or greater, the result stored in the
array pointed to by s1 is indeterminate. The s1 can be a null pointer if n
is 0.

Error Conditions

The strxfrm function does not return an error condition.

Example

#include <string.h>

char string1[50];

strxfrm(string1, "SOMEFUN", 49);

/* SOMEFUN is copied into string1 */

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-347
for Blackfin Processors

C/C++ Run-Time Library

See Also

strcmp, strcoll

Documented Library Functions

3-348 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

tan

Tangent

Synopsis

#include <math.h>

float tanf (float x);

double tan (double x);

long double tand (long double x);

fract16 tan_fr16 (fract16 x);

fract32 tan_fr32 (fract32 x);

_Fract tan_fx16 (_Fract x);

long _Fract tan_fx32 (long _Fract x);

Description

The tan functions return the tangent of x. Both the argument x and the
function results are in radians. The defined domain for the tanf function
is [-9099, 9099], and for the tand function the domain is [-4.216e8,
4.216e8].

The tan_fr16, tan_fr32, tan_fx16 and tan_fx32 functions are defined for
fractional input values between [- π/4, π/4]. The outputs from the func-
tions are in the range [-1.0, 1.0).

Error Conditions

The tan functions return a zero if the input argument is not in the defined
domain.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-349
for Blackfin Processors

C/C++ Run-Time Library

Example

#include <math.h>

double y;

y = tan (3.14159/4.0) /* y = 1.0 */

See Also

atan, atan2

Documented Library Functions

3-350 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

tanh

Hyperbolic tangent

Synopsis

#include <math.h>

float tanhf (float x);

double tanh (double x);

long double tanhd (long double x);

Description

The tanh functions return the hyperbolic tangent of the argument x,
where x is measured in radians.

Error Conditions

The tanh functions do not return an error condition.

Example

#include <math.h>

double x, y;

float z, w;

y = tanh (x);

z = tanhf (w);

See Also

cosh, sinh

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-351
for Blackfin Processors

C/C++ Run-Time Library

time

Calendar time

Synopsis

#include <time.h>

time_t time(time_t *t);

Description

The time function returns the current calendar time, which measures the
number of seconds that have elapsed since the start of a known epoch.
As the calendar time cannot be determined in this implementation of
time.h, a result of (time_t)-1 is returned. The function result is also
assigned to its argument, if the pointer to t is not a null pointer.

Error Conditions

The time function will return the value (time_t) -1 if the calendar time is
not available.

Example

#include <time.h>

#include <stdio.h>

if (time(NULL) == (time_t) -1)

printf("Calendar time is not available\n");

See Also

ctime, gmtime, localtime

Documented Library Functions

3-352 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

tmpfile

Create a temporary file

Synopsis

#include <stdio.h>

FILE *tmpfile(void);

Description

This function is not thread-safe, and is only available if an application is
built with the switch -full-io.

The tmpfile function creates a temporary file and uses fopen to open the
file in binary read/write mode (mode = "wb+"). The file will be deleted
when it is closed or when the application terminates. Note that the file is
deleted via the remove function, which is only supported under the default
device driver supplied by the VisualDSP++ simulator and EZ-KIT Lite
evaluation system, and only operates on the host file system.

If successful, the function will return a pointer to the stream; if the func-
tion could not open a temporary file, it will return NULL.

 The implementation of the function uses tmpnam. Refer to the
function’s reference page to see how it creates a file name.

Error Conditions

The function will return a NULL pointer if it could not open a temporary
file.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-353
for Blackfin Processors

C/C++ Run-Time Library

Example
#include <stdio.h>

#include <string.h>

#include <stdfix.h>

FILE *tmp1;

FILE *tmp2;

long fract temp_results1[32768];

long fract temp_results2[32768];

tmp1 = tmpfile();

tmp2 = tmpfile();

if ((tmp1) && (tmp2)) {

/* Save some temporary calculations */

fwrite (temp_results1,1,sizeof(temp_results1),tmp1);

fwrite (temp_results2,1,sizeof(temp_results2),tmp2);

- - - - - - - - - - - - - -

/* Restore temporary calculations */

rewind (tmp1);

fread (temp_results1,1,sizeof(temp_results1),tmp1);

rewind (tmp2);

fread (temp_results2,1,sizeof(temp_results2),tmp2);

/* Close (and delete) the temporary files */

fclose (tmp1);

Documented Library Functions

3-354 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fclose (tmp2);

}

See Also

fopen, tmpnam, remove

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-355
for Blackfin Processors

C/C++ Run-Time Library

tmpnam

Create a name for a temporary file

Synopsis

#include <stdio.h>

char *tmpnam(char *tempname);

Description

This function is only available if an application is built with the switch
-full-io.

The tmpnam function generates a file name that can be used as the name of
a temporary file. If the argument tempname is not a NULL pointer, the func-
tion will assume that the pointer is to an array of at least L_TMPNAM
characters, and it will copy the file name into the array.

The function generates a different file name each time that it is called. In
this implementation, the file name generated is of the form:

ctmNNNNN.tmp

where NNNNN represents a five-digit octal number, starting with 00000
and incrementing through to 77777.

 The file name generated is a valid file name that is not the same as
the name of an existing file. This implementation will ensure that
it is unique by calling the remove function to delete any existing
version of the file. Note that the remove function is only supported
under the default device driver supplied by the VisualDSP++ simu-
lator and EZ-KIT Lite evaluation system, and it only operates on
the host file system.

Files whose names are generated by tmpnam are only temporary in the sense
that their names are unique—unlike files created by tmpfile, they are not
removed when the application terminates or they are closed; removing the

Documented Library Functions

3-356 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

files created by using names generated by tmpnam remains the responsibil-
ity of the programmer.

The tmpnam function is thread-safe and will generate a different file name
on an application-wide basis—that is, each thread will effectively share a
common copy of the function and its data.

The function returns a pointer to the file name. If the argument tempname
is a NULL pointer then the function will return a pointer to internal static
memory that contains the file name; this static memory may be overwrit-
ten by a subsequent call to tmpnam.

Error Conditions

The tmpnam function does not return any errors.

Example

#include <stdio.h>

FILE *open_temp_file(char *filename)

{

 return fopen(tmpnam(filename), "w+");

}

void close_temp_file(FILE * workfp, char *filename)

{

fclose(workfp);

remove(filename);

}

FILE *workfp;

char workname[L_TMPNAM];

workfp = open_temp_file(workname);

close_temp_file(workfp, workname);

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-357
for Blackfin Processors

C/C++ Run-Time Library

See Also

tmpfile, fopen, remove

Documented Library Functions

3-358 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

tolower

Convert from uppercase to lowercase

Synopsis

#include <ctype.h>

int tolower(int c);

Description

The tolower function converts the input character to lowercase if it is
uppercase; otherwise, it returns the character.

Error Conditions

The tolower function does not return an error condition.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

if(isupper(ch))

printf("tolower=%#04x", tolower(ch));

putchar('\n');

}

See Also

islower, isupper, toupper

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-359
for Blackfin Processors

C/C++ Run-Time Library

toupper

Convert from lowercase to uppercase

Synopsis

#include <ctype.h>

int toupper(int c);

Description

The toupper function converts the input character to uppercase if it is in
lowercase; otherwise, it returns the character.

Error Conditions

The toupper function does not return an error condition.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

if(islower(ch))

printf("toupper=%#04x", toupper(ch));

putchar('\n');

}

See Also

islower, isupper, tolower

Documented Library Functions

3-360 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

ungetc

Push character back into input stream

Synopsis

#include <stdio.h>

int ungetc(int uc, FILE *stream);

Description

The ungetc function pushes the character specified by uc back onto
stream. The characters that have been pushed back onto stream will be
returned by any subsequent read of stream in the reverse order of their
pushing.

A successful call to the ungetc function will clear the EOF indicator for
stream. The file position indicator for stream is decremented for every
successful call to ungetc.

Upon successful completion, ungetc returns the character pushed back
after conversion.

Error Conditions

If the ungetc function is unsuccessful, EOF is returned.

Example

#include <stdio.h>

void ungetc_example(FILE *fp)

{

int ch, ret_ch;

/* get char from file pointer */

ch = fgetc(fp);

/* unget the char, return value should be char */

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-361
for Blackfin Processors

C/C++ Run-Time Library

if ((ret_ch = ungetc(ch, fp)) != ch)

printf("ungetc failed\n");

/* make sure that the char had been placed in the file */

if ((ret_ch = fgetc(fp)) != ch)

printf("ungetc failed to put back the char\n");

}

See Also

fseek, fsetpos, getc

Documented Library Functions

3-362 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

va_arg

Get next argument in variable-length list of arguments

Synopsis

#include <stdarg.h>

void va_arg(va_list ap, type);

Description

The va_arg macro is used to walk through the variable-length list of argu-
ments to a function.

After starting to process a variable-length list of arguments with va_start,
call va_arg with the same va_list variable to extract arguments from the
list. Each call to va_arg returns a new argument from the list.

Substitute a type name corresponding to the type of the next argument for
the type parameter in each call to va_arg. After processing the list, call
va_end.

The stdarg.h header file defines a pointer type called va_list that is used
to access the list of variable arguments.

The function calling va_arg is responsible for determining the number
and types of arguments in the list. The function needs this information to
determine how many times to call va_arg and what to pass for the type
parameter each time. There are several common ways for a function to
determine this type of information. The standard C printf function reads
its first argument looking for % sequences to determine the number and
types of its extra arguments. In the example, all of the arguments are of the
same type (char*), and a termination value (NULL) is used to indicate the
end of the argument list. Other methods are also possible.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-363
for Blackfin Processors

C/C++ Run-Time Library

If a call to va_arg is made after all arguments have been processed, or if
va_arg is called with a type parameter that is different from the type of the
next argument in the list, the behavior of va_arg is undefined.

Error Conditions

The va_arg macro does not return an error condition.

Example
#include <stdio.h>

#include <stdarg.h>

#include <string.h>

#include <stdlib.h>

char *concat(char *s1,...)

{

int len = 0;

char *result;

char *s;

va_list ap;

va_start (ap,s1);

s = s1;

while (s){

len += strlen (s);

s = va_arg (ap,char *);

}

va_end (ap);

result = malloc (len +7);

if (!result)

return result;

*result = '\0';

va_start (ap,s1);

s = s1;

Documented Library Functions

3-364 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

while (s){

strcat (result,s);

s = va_arg (ap,char *);

}

va_end (ap);

return result;

}

char *txt1 = "One";

char *txt2 = "Two";

char *txt3 = "Three";

extern int main(void)

{

char *result;

result = concat(txt1, txt2, txt3, NULL);

puts(result); /* prints "OneTwoThree" */

free(result);

}

See Also

va_start, va_end

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-365
for Blackfin Processors

C/C++ Run-Time Library

va_end

Finish processing variable-length list of arguments

Synopsis

#include <stdarg.h>

void va_end(va_list ap);

Description

The va_end macro can only be used after the va_start macro has been
invoked. A call to va_end concludes the processing of a variable length list
of arguments that was begun by va_start.

Error Conditions

The va_end macro does not return an error condition.

See Also

va_arg, va_start

Documented Library Functions

3-366 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

va_start

Initialize processing variable-length list of arguments

Synopsis

#include <stdarg.h>

void va_start(va_list ap, parmN);

Description

The va_start macro is used to start processing variable arguments in a
function declared to take a variable number of arguments. The first argu-
ment to va_start should be a variable of type va_list, which is used by
va_arg to walk through the arguments.

The second argument is the name of the last named parameter in the func-
tion’s parameter list; the list of variable arguments immediately follows
this parameter. The va_start macro must be invoked before either the
va_arg or va_end macro can be invoked.

Error Conditions

The va_start macro does not return an error condition.

See Also

va_arg, va_end

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-367
for Blackfin Processors

C/C++ Run-Time Library

vfprintf

Print formatted output of a variable argument list

Synopsis

#include <stdio.h>

#include <stdarg.h>

int vfprintf(FILE *stream, const char *format, va_list ap);

Description

The vfprintf function formats data according to the argument format,
and then writes the output to the stream stream. The argument format
contains a set of conversion specifiers, directives, and ordinary characters
that are used to control how the data is formatted. Refer to “fprintf” on
page 3-154 for a description of the valid format specifiers.

The vfprintf function behaves in the same manner as fprintf with the
exception that instead of being a function which takes a variable number
or arguments it is called with an argument list ap of type va_list, as
defined in stdarg.h.

If the vfprintf function is successful it will return the number of charac-
ters output.

Error Conditions

The vfprintf function returns a negative value if unsuccessful.

Example

#include <stdio.h>

#include <stdarg.h>

void write_name_to_file(FILE *fp, char *name_template, ...)

Documented Library Functions

3-368 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

{

va_list p_vargs;

int ret; /* return value from vfprintf */

va_start (p_vargs,name_template);

ret = vfprintf(fp, name_template, p_vargs);

va_end (p_vargs);

if (ret < 0)

printf("vfprintf failed\n");

}

See Also

fprintf, va_start, va_end

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-369
for Blackfin Processors

C/C++ Run-Time Library

vprintf

Print formatted output of a variable argument list to stdout

Synopsis

#include <stdio.h>

#include <stdarg.h>

int vprintf(const char *format, va_list ap);

Description

The vprintf function formats data according to the argument format,
and then writes the output to the standard output stream stdout. The
argument format contains a set of conversion specifiers, directives, and
ordinary characters that are used to control how the data is formatted.
Refer to “fprintf” on page 3-154 for a description of the valid format
specifiers.

The vprintf function behaves in the same manner as vfprintf with
stdout provided as the pointer to the stream.

If the vprintf function is successful it will return the number of charac-
ters output.

Error Conditions

The vprintf function returns a negative value if unsuccessful.

Example

#include <stdio.h>

#include <stdlib.h>

#include <stdarg.h>

void print_message(int error, char *format, ...)

Documented Library Functions

3-370 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

{

/* This function is called with the same arguments as for */

/* printf but if the argument error is not zero, then the */

/* output will be preceded by the text "ERROR:" */

va_list p_vargs;

int ret; /* return value from vprintf */

va_start (p_vargs, format);

if (!error)

printf("ERROR: ");

ret = vprintf(format, p_vargs);

va_end (p_vargs);

if (ret < 0)

printf("vprintf failed\n");

}

See Also

fprintf, vfprintf

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-371
for Blackfin Processors

C/C++ Run-Time Library

vsnprintf

Format argument list into an n-character array

Synopsis

#include <stdio.h>

#include <stdarg.h>

int vsnprintf (char *str, size_t n, const char *format,

va_list args);

Description

The vsnprintf function is similar to the vsprintf function in that it for-
mats the variable argument list args according to the argument format,
and then writes the output to the array str. The argument format con-
tains a set of conversion specifiers, directives, and ordinary characters that
are used to control how the data is formatted. Refer to “fprintf” on
page 3-154 for a description of the valid format specifiers.

The function differs from vsprintf in that no more than n-1 characters
are written to the output array. Any data written beyond the n-1'th char-
acter is discarded. A terminating NUL character is written after the end of
the last character written to the output array unless n is set to zero, in
which case nothing will be written to the output array and the output
array may be represented by the NULL pointer.

The vsnprintf function returns the number of characters that would have
been written to the output array str if n was sufficiently large. The return
value does not include the terminating NUL character written to the array.

Error Conditions

The vsnprintf function returns a negative value if unsuccessful.

Documented Library Functions

3-372 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Example

#include <stdio.h>

#include <stdlib.h>

#include <stdarg.h>

char *message(char *format, ...)

{

char *message = NULL;

int len = 0;

int r;

va_list p_vargs; /* return value from vsnprintf */

do {

va_start (p_vargs,format);

r = vsnprintf (message,len,format,p_vargs);

va_end (p_vargs);

if (r < 0) /* formatting error? */

abort();

if (r < len) /* was complete string written? */

return message; /* return with success */

message = realloc (message,(len=r+1));

} while (message != NULL);

abort();

}

See Also

fprintf, snprintf

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 3-373
for Blackfin Processors

C/C++ Run-Time Library

vsprintf

Format argument list into a character array

Synopsis

#include <stdio.h>

#include <stdarg.h>

int vsprintf (char *str, const char *format, va_list args);

Description

The vsprintf function formats the variable argument list args according
to the argument format, and then writes the output to the array str.
The argument format contains a set of conversion specifiers, directives,
and ordinary characters that are used to control how the data is formatted.
Refer to “fprintf” on page 3-154 for a description of the valid format
specifiers.

The vsprintf function behaves in the same manner as sprintf with the
exception that instead of being a function which takes a variable number
or arguments function it is called with an argument list args of type
va_list, as defined in stdarg.h.

The vsprintf function returns the number of characters that have been
written to the output array str. The return value does not include the
terminating NUL character written to the array.

Error Conditions

The vsprintf function returns a negative value if unsuccessful.

Documented Library Functions

3-374 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Example

#include <stdio.h>

#include <stdlib.h>

#include <stdarg.h>

char filename[128];

char *assign_filename(char *filename_template, ...)

{

char *message = NULL;

int r;

va_list p_vargs; /* return value from vsprintf */

va_start (p_vargs,filename_template);

r = vsprintf(&filename[0], filename_template, p_vargs);

va_end (p_vargs);

if (r < 0) /* formatting error? */

abort();

return &filename[0]; /* return with success */

}

See Also

fprintf, sprintf, snprintf

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-1
for Blackfin Processors

4 DSP RUN-TIME LIBRARY

This chapter describes the DSP run-time library, which contains a broad
collection of functions that are commonly required by signal processing
applications. The services provided by the DSP run-time library include
support for general-purpose signal processing such as companders, filters,
and Fast Fourier Transform (FFT) functions. These services are Analog
Devices extensions to ANSI standard C. These support functions are in
addition to the C/C++ run-time library functions described in Chapter 3,
“C/C++ Run-Time Library”.

For more information about the algorithms on which many of the DSP
run-time library’s math functions are based, see W. J. Cody and W.
Waite, Software Manual for the Elementary Functions, Englewood Cliffs,
New Jersey: Prentice Hall, 1980.

 In addition to containing the user-callable functions described
in this chapter, the DSP run-time library also contains compiler
support functions that perform basic operations on integer and
floating-point types that the compiler might not perform in-line.
These functions are called by compiler-generated code to imple-
ment basic type conversions, floating-point operations, and so on.
Compiler support functions should not be called directly from user
code.

DSP Run-Time Library Guide

4-2 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

This chapter contains:

• “DSP Run-Time Library Guide” on page 4-2
contains information about the library and provides a description
of the DSP header files that are included with this release of the
ccblkfn compiler.

• “DSP Run-Time Library Reference” on page 4-75
contains the complete reference for each DSP run-time library
function provided with this release of the ccblkfn compiler.

DSP Run-Time Library Guide
The DSP run-time library contains functions that can be called from your
source program. This section includes:

• “Linking DSP Library Functions” on page 4-3

• “Working With Library Source Code” on page 4-4

• “Library Attributes” on page 4-4

• “DSP Header Files” on page 4-5

• “Measuring Cycle Counts” on page 4-64

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-3
for Blackfin Processors

DSP Run-Time Library

Linking DSP Library Functions
The DSP run-time library is located under the VisualDSP++ installation
directory in the subdirectory Blackfin/lib. Different versions of the
library are supplied and catalogued in Table 4-1.

Versions of the DSP run-time library that contain “532” in the file name
have been built to run on ADSP-BF531, ADSP-BF532, ADSP-BF533,
ADSP-BF534, ADSP-BF536, ADSP-BF537, ADSP-BF538, or
ADSP-BF539 processors. Versions of the DSP run-time library that con-
tain “535” in the file name have been built to run on ADSP-BF535
processors. Versions of the DSP run-time library that contain “561” in the
file name have been built to run on ADSP-BF561 processors.

Versions of the library whose file name end with a “y” (for example,
libdsp532y.dlb) are built with the compiler’s -si-revision switch and
include all available compiler workarounds for hardware anomalies.
(See “-si-revision” on page 1-74.)

When an application calls a DSP library function, the call creates a refer-
ence that the linker resolves. One way to direct the linker to the library’s
location is to use the default linker description file (<your_target>.ldf).
If a customized .ldf file is used to link the application, add the appropri-
ate DSP run-time library to the .ldf file used by the project.

Table 4-1. DSP Library Files

Blackfin/lib Directory Description

libdsp532.dlb
libdsp535.dlb
libdsp561.dlb

DSP run-time library

libdsp532y,dlb
libdsp535y.dlb
libdsp561y.dlb

DSP run-time library built with the -si-revision flag specified.
(For more information, see “-si-revision” on page 1-74.)

DSP Run-Time Library Guide

4-4 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

 Instead of modifying a customized .ldf file, use the -l switch
(see “-l” on page 1-47) to specify the library that should
be searched by the linker. For example, the -ldsp532 switch adds
the libdsp532.dlb library to the list of libraries that the linker
examines. For information on .ldf files, refer to the VisualDSP++
Linker and Utilities Manual.

Working With Library Source Code
The source code for the functions in the DSP run-time library is provided
with VisualDSP++. By default, the libraries are installed in the directory
Blackfin/lib, and the source files are copied into Blackfin/lib/src.
Each function is contained in a separate file. The file name is the name of
the function with an .asm or .c extension. If you do not intend to modify
any of the run-time library functions, you may delete this directory and its
contents to conserve disk space.

Source code is provided so you can customize specific functions.
To modify these files, proficiency in Blackfin assembly language and an
understanding of the run-time environment is needed.

Refer to “C/C++ Run-Time Model and Environment” on page 1-408 for
more information.

Before modifying source code, copy it to a file with a different file name
and rename the function itself. Test the function before you use it in your
system to verify that it is functionally correct.

 Analog Devices only supports the run-time library functions as
currently provided.

Library Attributes
The DSP run-time library contains the same attributes as the C/C++
run-time library. For more information, see “Library Attributes” in
Chapter 3, C/C++ Run-Time Library.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-5
for Blackfin Processors

DSP Run-Time Library

DSP Header Files
The DSP header files contain prototypes for the DSP library functions.
When the appropriate #include preprocessor command is included in
your source, the compiler uses the prototypes to check that each function
is called with the correct arguments. Table 4-2 shows the DSP header files
included in this release of the ccblkfn compiler.

complex.h

The complex.h header file contains type definitions and basic arithmetic
operations for variables of type complex_float, complex_double,
complex_long_double, complex_fract16 and complex_fract32.

The complex functions defined in this header file are listed in Table 4-3
on page 4-7. Functions that operate on the complex_fract16 and
complex_fract32 data types use saturating arithmetic. The
complex_fract16 data type has 32-bit alignment.

Table 4-2. DSP Header Files

Header File Description

complex.h Basic complex arithmetic functions (on page 4-5)

cycle_count.h Basic cycle counting (on page 4-9)

cycles.h Cycle counting with statistics (on page 4-10)

filter.h Filters and transformations (on page 4-10)

math.h Math functions (on page 4-20)

matrix.h Matrix functions (on page 4-24)

stats.h Statistical functions (on page 4-38)

vector.h Vector functions (on page 4-45)

window.h Window generators (on page 4-61)

DSP Run-Time Library Guide

4-6 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The following structures represent complex numbers in rectangular
coordinates:

typedef struct

{

float re;

float im;

} complex_float;

typedef struct

{

double re;

double im;

} complex_double;

typedef struct

{

long double re;

long double im;

} complex_long_double;

typedef struct

{

#pragma align 4

fract16 re;

fract16 im;

} complex_fract16;

typedef struct

{

fract32 re;

fract32 im;

} complex_fract32;

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-7
for Blackfin Processors

DSP Run-Time Library

Details about basic complex arithmetic functions are included in “DSP
Run-Time Library Reference” starting on page 4-75.

Table 4-3. Complex Functions

Description Prototype

Complex
Absolute Value

double cabs (complex_double a)
float cabsf (complex_float a)
long double cabsd (complex_long_double a)
fract16 cabs_fr16 (complex_fract16 a)
fract32 cabs_fr32 (complex_fract32 a)
_Fract cabs_fx_fr16 (complex_fract16 a)
long _Fract cabs_fx_fr32 (complex_fract32 a)

Complex Addition complex_double cadd
(complex_double a, complex_double b)

complex_float caddf
(complex_float a, complex_float b)

complex_long_double caddd
(complex_long_double a, complex_long_double b)

complex_fract16 cadd_fr16
(complex_fract16 a, complex_fract16 b)

complex_fract32 cadd_fr32
(complex_fract32 a, complex_fract32 b)

Complex Subtraction complex_double csub
(complex_double a, complex_double b)

complex_float csubf
(complex_float a, complex_float b)

complex_long_double csubd
(complex_long_double a, complex_long_double b)

complex_fract16 csub_fr16
(complex_fract16 a, complex_fract16 b)

complex_fract32 csub_fr32
(complex_fract32 a, complex_fract32 b)

DSP Run-Time Library Guide

4-8 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Complex Multiply complex_double cmlt
(complex_double a, complex_double b)

complex_float cmltf
(complex_float a, complex_float b)

complex_long_double cmltd
(complex_long_double a, complex_long_double b)

complex_fract16 cmlt_fr16
(complex_fract16 a, complex_fract16 b)

complex_fract32 cmlt_fr32
(complex_fract32 a, complex_fract32 b)

Complex Division complex_double cdiv
(complex_double a, complex_double b)

complex_float cdivf
(complex_float a, complex_float b)

complex_long_double cdivd
(complex_long_double a, complex_long_double b)

complex_fract16 cdiv_fr16
(complex_fract16 a, complex_fract16 b)

complex_fract32 cdiv_fr32
(complex_fract32 a, complex_fract32 b)

Get Phase of a
Complex Number

double arg (complex_double a)
float argf (complex_float a)
long double argd (complex_long_double a)
fract16 arg_fr16 (complex_fract16 a)
fract32 arg_fr32 (complex_fract32 a)
_Fract arg_fx_fr16 (complex_fract16 a)
long _Fract arg_fx_fr32 (complex_fract32 a)

Complex Conjugate complex_double conj (complex_double a)
complex_float conjf (complex_float a)
complex_long_double conjd (complex_long_double a)
complex_fract16 conj_fr16 (complex_fract16 a)
complex_fract32 conj_fr32 (complex_fract32 a)

Table 4-3. Complex Functions (Cont’d)

Description Prototype

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-9
for Blackfin Processors

DSP Run-Time Library

cycle_count.h

The cycle_count.h header file provides an inexpensive method for bench-
marking C-written source by defining basic facilities for measuring cycle
counts. The facilities provided are based upon two macros and a data type,
which are described in “Measuring Cycle Counts” on page 4-64.

Convert Cartesian to
Polar Coordinates

double cartesian (complex_double a, double* phase)
float cartesianf (complex_float a, float* phase)
long double cartesiand

(complex_long_double a, long_double* phase)
fract16 cartesian_fr16
 (complex_fract16 a, fract16* phase)
fract32 cartesian_fr32
 (complex_fract32 a, fract32* phase)
_Fract cartesian_fx_fr16

(complex_fract16 a, _Fract* phase)
long _Fract cartesian_fx_fr32

(complex_fract32 a, long _Fract* phase)

Convert Polar to
Cartesian Coordinates

complex_double polar (double mag, double phase)
complex_float polarf (float mag, float phase)
complex_long_double polard

(long double mag, long double phase)
complex_fract16 polar_fr16 (fract16 mag, fract16 phase)
complex_fract32 polar_fr32 (fract32 mag, fract32 phase)
complex_fract16 polar_fx_fr16

(_Fract mag, _Fract phase)
complex_fract32 polar_fx_fr32

(long _Fract mag, long _Fract phase)

Complex
Exponential

complex_double cexp (double a)
complex_long_double cexpd (long double a)
complex_float cexpf (float a)

Normalization complex_double norm (complex_double a)
complex_long_double normd (complex_long_double a)
complex_float normf (complex_float a)

Table 4-3. Complex Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-10 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

cycles.h

The cycles.h header file defines a set of five macros and an associated
data type that may be used to measure the cycle counts used by a section
of C-written source. The macros can record how many times a particular
piece of code has been executed, and the minimum, average, and maxi-
mum number of cycles used. The facilities available via this header file are
described in “Measuring Cycle Counts” on page 4-64.

filter.h

The filter.h header file contains filters used in signal processing. The file
also includes the A-law and µ-law companders used by voice-band com-
pression and expansion applications.

This header file also contains functions that perform key signal processing
transformations, including FFTs and convolution.

The library provides various forms of the FFT function, corresponding to
radix-2, radix-4, and two-dimensional FFTs. The number of points is pro-
vided as an argument. The header file also defines a complex FFT
function (cfftf_fr16) implemented using an optimized radix-4 algo-
rithm. However, the cfftf_fr16 function has certain requirements that
may not be appropriate for some applications. The twiddle table for the
FFT functions is supplied as a separate argument and is normally calcu-
lated once during program initialization.

 The cfftf_fr16 library function uses the M3 register, which may be
used by an emulator for context switching. Refer to the appropriate
emulator documentation.

Library functions are provided to initialize a twiddle table. A twiddle table
can accommodate several FFTs of different sizes by allocating the table at
maximum size, and then using the FFT function’s stride argument to
specify the step size through the table. If the stride argument is set to 1,

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-11
for Blackfin Processors

DSP Run-Time Library

the FFT function uses the entire table; if the FFT uses only half the
number of points of the largest, the stride is 2.

An FFT magnitude function is also provided that computes the normal-
ized power spectrum of an FFT.

The functions defined in this header file are listed in Table 4-4 and
Table 4-5 and are described in “DSP Run-Time Library Reference” on
page 4-75.

Table 4-4. Filter Library

Description Prototype

Finite Impulse
Response Filter

void fir_fr16
(const fract16 input[], fract16 output[],

int length, fir_state_fr16 *filter_state)
void fir_fx16

(const _Fract input[], _Fract output[],
int length, fir_state_fx16 *filter_state)

void fir_fr32
(const fract32 input[], fract32 output[],
int length, fir_state_fr32 *filter_state)

void fir_fx32
(const long _Fract input[], long _Fract output[],
int length, fir_state_fx32 *filter_state)

Infinite Impulse
Response Filter

void iir_fr16
(const fract16 input[], fract16 output[],

int length, iirdf1_state_fr16 *filter_state)
void iir_fx16

(const _Fract input[], _Fract output[],
int length, iir_state_fx16 *filter_state)

void iir_fr32
(const fract32 input[], fract32 output[],
int length, iir_state_fr32 *filter_state)

void iir_fx32
(const long _Fract input[], long _Fract output[],
int length, iir_state_fx32 *filter_state)

DSP Run-Time Library Guide

4-12 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Direct Form I Infinite
Response Filter

void iirdf1_fr16
(const fract16 input[], fract16 output[],

int length, iirdf1_state_fr16 *filter_state)
void iirdf1_fx16

(const _Fract input[], _Fract output[],
int length, iirdf1_state_fx16 *filter_state)

void iirdf1_fr32
(const fract32 input[], fract32 output[],
int length, iirdf1_state_fr32 *filter_state)

void iirdf1_fx32
(const long _Fract input[], long _Fract output[],
int length, iirdf1_state_fx32 *filter_state)

FIR Decimation Filter void fir_decima_fr16
(const fract16 input[], fract16 output[],

int length, fir_state_fr16 *filter_state)
void fir_decima_fx16

(const _Fract input[], _Fract output[],
int length, fir_state_fx16 *filter_state)

void fir_decima_fr32
(const fract32 input[], fract32 output[],
int length, fir_state_fr32 *filter_state)

void fir_decima_fx32
(const long _Fract input[], long _Fract output[],
int length, fir_state_fx32 *filter_state)

FIR Interpolation Filter void fir_interp_fr16
(const fract16 input[], fract16 output[],

int length, fir_state_fr16 *filter_state)
void fir_interp_fx16

(const _Fract input[], _Fract output[],
int length, fir_state_fx16 *filter_state)

void fir_interp_fr32
(const fract32 input[], fract32 output[],
int length, fir_state_fr32 *filter_state)

void fir_interp_fx32
(const long _Fract input[], long _Fract output[],
int length, fir_state_fx32 *filter_state)

Table 4-4. Filter Library (Cont’d)

Description Prototype

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-13
for Blackfin Processors

DSP Run-Time Library

Complex Finite Impulse
Response Filter

void cfir_fr16
(const complex_fract16 input[],
complex_fract16 output[],
int length, cfir_state_fr16 *filter_state)

void cfir_fr32
(const complex_fract32 input[],
complex_fract32 output[],
int length, cfir_state_fr32 *filter_state)

Convert Coefficients for
DF1 IIR

void coeff_iirdf1_fr16
(const float acoeff[], const float bcoeff[],

fract16 coeff[], int nstages)
void coeff_iirdf1_fx16

(const float acoeff[], const float bcoeff[],
_Fract coeff[], int nstages)

void coeff_iirdf1_fr32
(const long double acoeff[],
const long double bcoeff[],
fract32 coeff[], int nstages)

void coeff_iirdf1_fx32
(const long double acoeff[],
const long double bcoeff[],
long _Fract coeff[], int nstages)

Table 4-5. Transformational Functions

Description Prototype

Fast Fourier Transforms

Generate FFT Twiddle
Factors

void twidfft_fr16
(complex_fract16 twiddle_table[], int fft_size)

Generate FFT Twiddle
Factors for Radix-2 FFT

void twidfftrad2_fr16
(complex_fract16 twiddle_table[], int fft_size)

void twidfftrad2_fr32
(complex_fract32 twiddle_table[], int fft_size)

Generate FFT Twiddle
Factors for Radix-4 FFT

void twidfftrad4_fr16
(complex_fract16 twiddle_table[], int fft_size)

Table 4-4. Filter Library (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-14 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Generate FFT Twiddle
Factors for 2-D FFT

void twidfft2d_fr16
(complex_fract16 twiddle_table[], int fft_size)

void twidfft2d_fr32
(complex_fract32 twiddle_table[], int fft_size)

Generate FFT Twiddle
Factors for Optimized
FFT

void twidfftf_fr16
(complex_fract16 twiddle_table[], int fft_size)

void twidfftf_fr32
(complex_fract32 twiddle_table[], int fft_size)

FFT magnitude void fft_magnitude_fr16
(const complex_fract16 input[],
fract16 output[],
int fft_size, int block_exponent, int mode)

void fft_magnitude_fr32
(const complex_fract32 input[],
fract32 output[],
int fft_size, int block_exponent, int mode)

N Point Radix-2
Complex Input FFT

void cfft_fr16
(const complex_fract16 *input,

complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size,
int *block_exponent, int scale_method)

void cfft_fr32
(const complex_fract32 *input,
complex_fract32 *output,
const complex_fract32 *twiddle_table,
int twiddle_stride, int fft_size,
int *block_exponent, int scale_method)

Table 4-5. Transformational Functions (Cont’d)

Description Prototype

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-15
for Blackfin Processors

DSP Run-Time Library

N Point Radix-2
Real Input FFT

void rfft_fr16
(const fract16 *input, complex_fract16 *output,

const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size,
int *block_exponent, int scale_method)

void rfft_fx_fr16
(const _Fract *input, complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size,
int *block_exponent, int scale_method)

void rfft_fr32
(const fract32 *input, complex_fract32 *output,
const complex_fract32 *twiddle_table,
int twiddle_stride, int fft_size,
int *block_exponent, int scale_method)

void rfft_fx_fr32
(const long _Fract *input,
 complex_fract32 *output,
 const complex_fract32 *twiddle_table,
 int twiddle_stride, int fft_size,
 int *block_exponent, int scale_method)

N Point Radix-2
Inverse FFT

void ifft_fr16
(const complex_fract16 *input,

complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size,
int *block_exponent, int scale_method)

void ifft_fr32
(const complex_fract32 *input,
complex_fract32 *output,
const complex_fract32 *twiddle_table,
int twiddle_stride, int fft_size,
int *block_exponent, int scale_method)

N Point Radix-4
Complex Input FFT

void cfftrad4_fr16
(const complex_fract16 *input,

complex_fract16 *temp, complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size,
int block_exponent, int scale_method)

Table 4-5. Transformational Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-16 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

N Point Radix-4
Real Input FFT

void rfftrad4_fr16
(const fract16 *input, complex_fract16 *temp,

complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size,
int block_exponent, int scale_method)

N Point Radix-4
Inverse Input FFT

void ifftrad4_fr16
(const complex_fract16 *input,

complex_fract16 *temp, complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size,
int block_exponent, int scale_method)

Fast N point Radix-4
Complex Input FFT

void cfftf_fr16
(const complex_fract16 *input,

complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size)

NxN Point 2-D
Complex Input FFT

void cfft2d_fr16
(const complex_fract16 *input,

complex_fract16 *temp, complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size,
int block_exponent, int scale_method)

void cfft2d_fr32
(const complex_fract32 *input,
complex_fract32 *temp, complex_fract32 *output,
const complex_fract32 *twiddle_table,
int twiddle_stride, int fft_size)

Table 4-5. Transformational Functions (Cont’d)

Description Prototype

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-17
for Blackfin Processors

DSP Run-Time Library

NxN Point 2-D
Real Input FFT

void rfft2d_fr16
(const fract16 *input, complex_fract16 *temp,

complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size,
int block_exponent, int scale_method)

void rfft_fx_fr16
(const _Fract *input, complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size,
int *block_exponent, int scale_method)

void rfft_fr32
(const fract32 *input, complex_fract32 *output,
const complex_fract32 *twiddle_table,
int twiddle_stride, int fft_size,
int *block_exponent, int scale_method)

void rfft_fx_fr32
(const long _Fract *input,
 complex_fract32 *output,
const complex_fract32 *twiddle_table,
int twiddle_stride, int fft_size,
int *block_exponent, int scale_method)

NxN Point 2-D
Inverse FFT

void ifft2d_fr16
(const complex_fract16 *input,

complex_fract16 *temp, complex_fract16 *output,
const complex_fract16 *twiddle_table,
int twiddle_stride, int fft_size,
int block_exponent, int scale_method)

void ifft2d_fr32
(const complex_fract32 *input,
complex_fract32 *temp, complex_fract32 *output,
const complex_fract32 *twiddle_table,
int twiddle_stride, int fft_size)

Fast N point Mixed-Radix
Complex Input FFT

void cfftf_fr32
(const complex_fract32 *input,
complex_fract32 *output,
const complex_fract32 *twiddle_table,
int twiddle_stride, int fft_size)

Table 4-5. Transformational Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-18 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Fast N point Mixed-Radix
Inverse Input FFT

void ifftf_fr32
(const complex_fract32 *input,
complex_fract32 *output,
const complex_fract32 *twiddle_table,
int twiddle_stride, int fft_size)

Fast N point Mixed-Radix
Real Input FFT

void rfftf_fr32
(const complex_fract32 *input,

complex_fract32 *output,
const complex_fract32 *twiddle_table,
int twiddle_stride, int fft_size)

void rfftf_fx_fr32
(const long _Fract *input,
complex_fract32 *output,
const complex_fract32 *twiddle_table,
int twiddle_stride, int fft_size)

Convolutions

Convolution void convolve_fr16
(const fract16 input_x[], int length_x,

const fract16 input_y[], int length_y,
fract16 output[])

void convolve_fr32
(const fract32 input_x[], int length_x,

const fract32 input_y[], int length_y,
fract32 output[])

void convolve_fx16
(const _Fract input_x[], int length_x,
const _Fract input_y[], int length_y,
_Fract output[])

void convolve_fx32
(const long _Fract input_x[], int length_x,
const long _Fract input_y[], int length_y,
long _Fract output[])

Table 4-5. Transformational Functions (Cont’d)

Description Prototype

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-19
for Blackfin Processors

DSP Run-Time Library

2-D Convolution void conv2d_fr16
(const fract16 *input_x, int rows_x, int columns_x,

const fract16 *input_y, int rows_y, int columns_y,
fract16 *output)

void conv2d_fx16
(const _Fract *input_x, int rows_x, int columns_x,
const _Fract *input_y, int rows_y, int columns_y,
_Fract *output)

void conv2d_fr32
(const fract32 *input_x, int rows_x, int columns_x,
const fract32 *input_y, int rows_y, int columns_y,
fract32 *output)

void conv2d_fx32
(const long _Fract *input_x, int rows_x,
int columns_x, const long _Fract *input_y,
int rows_y, int columns_y, long _Fract *output)

2-D Convolution
3x3 Matrix

void conv2d3x3_fr16
(const fract16 *input_x, int rows_x, int columns_x,

const fract16 *input_y, fract16 *output)
void conv2d3x3_fx16

(const _Fract *input_x, int rows_x, int columns_x,
const _Fract *input_y, _Fract *output)

void conv2d3x3_fr32
(const fract32 *input_x, int rows_x, int columns_x,
const fract32 *input_y, fract32 *output)

void conv2d3x3_fx32
(const long _Fract *input_x, int rows_x,
int columns_x, const long _Fract *input_y,
long _Fract *output)

Compression/Expansion

A-law compression void a_compress
(const short input[], short output[], int length)

A-law expansion void a_expand
(const short input[], short output[], int length)

Table 4-5. Transformational Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-20 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

math.h

The standard math functions have been augmented by implementations
for the float and long double data types, and in some cases, for the
fract16 and fract32 data types, and the Embedded C data types _Fract
and long _Fract.

Table 4-6 summarizes the functions defined by the math.h header file.
Descriptions of these functions are given under the name of the double
version in “C Run-Time Library Reference” on page 3-64.

The math.h header file also provides prototypes for additional math func-
tions (clip, copysign, max, and min), and an integer function (countones).
These functions are described in “DSP Run-Time Library Reference” on
page 4-75.

µ-law compression void mu_compress
(const short input[], short output[], int length)

µ-law expansion void mu_expand
(const char input[], short output[], int length)

Table 4-6. Math Library

Description Prototype

Absolute Value double fabs (double x)
float fabsf (float x)
long double fabsd (long double x)

Anti-log double alog (double x)
float alogf (float x)
long double alogd (long double x)

Base 10 Anti-log double alog10 (double x)
float alog10f (float x)
long double alog10d (long double x)

Table 4-5. Transformational Functions (Cont’d)

Description Prototype

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-21
for Blackfin Processors

DSP Run-Time Library

Arc Cosine double acos (double x)
float acosf (float x)
long double acosd (long double x)
fract16 acos_fr16 (fract16 x)
_Fract acos_fx16 (_Fract x)
fract32 acos_fr32 (fract32 x)
long _Fract acos_fx32 (long _Fract x)

Arc Sine double asin (double x)
float asinf (float x)
long double asind (long double x)
fract16 asin_fr16 (fract16 x)
_Fract asin_fx16 (_Fract x)
fract32 asin_fr32 (fract32 x)
long _Fract asin_fx32 (long _Fract x)

Arc Tangent double atan (double x)
float atanf (float x)
long double atand (long double x)
fract16 atan_fr16 (fract16 x)
_Fract atan_fx16 (_Fract x)
fract32 atan_fr32 (fract32 x)
long _Fract atan_fx32 (long _Fract x)

Arc Tangent of Quotient double atan2 (double y, double x)
float atan2f (float y, float x)
long double atan2d (long double y, long double x)
fract16 atan2_fr16 (fract16 y, fract16 x)
_Fract atan2_fx16 (_Fract y, _Fract x)
fract32 atan2_fr32 (fract32 y, fract32 x)
long _Fract atan2_fx32
 (long _Fract y, long _Fract x)

Ceiling double ceil (double x)
float ceilf (float x)
long double ceild (long double x)

Table 4-6. Math Library (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-22 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Cosine double cos (double x)
float cosf (float x)
long double cosd (long double x)
fract16 cos_fr16 (fract16 x)
_Fract cos_fx16 (_Fract x)
fract32 cos_fr32 (fract32 x)
long _Fract cos_fx32 (long _Fract x)

Cotangent double cot (double x)
float cotf (float x)
long double cotd (long double x)

Hyperbolic Cosine double cosh (double x)
float coshf (float x)
long double coshd (long double x)

Exponential double exp (double x)
float expf (float x)
long double expd (long double x)

Floor double floor (double x)
float floorf (float x)
long double floord (long double x)

Floating-Point Remainder double fmod (double x, double y)
float fmodf (float x, float y)
long double fmodd (long double x, long double y)

Get Mantissa and Exponent double frexp (double x, int *n)
float frexpf (float x, int *n)
long double frexpd (long double x, int *n)

Is Not a Number? int isnanf (float x)
int isnan (double x)
int isnand (long double x)

Is Infinity? int isinff (float x)
int isinf (double x)
int isinfd (long double x)

Multiply by Power of 2 double ldexp(double x, int n)
float ldexpf(float x, int n)
long double ldexpd (long double x, int n)

Table 4-6. Math Library (Cont’d)

Description Prototype

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-23
for Blackfin Processors

DSP Run-Time Library

Natural Logarithm double log (double x)
float logf (float x)
long double logd (long double x)

Logarithm Base 10 double log10 (double x)
float log10f (float x)
long double log10d (long double x)

Get Fraction and Integer double modf (double x, double *i)
float modff (float x, float *i)
long double modfd (long double x, long double *i)

Power double pow (double x, double y)
float powf (float x, float y)
long double powd (long double x, long double y)

Reciprocal Square Root double rsqrt (double x)
float rsqrtf (float x)
long double rsqrtd (long double x)

Sine double sin (double x)
float sinf (float x)
long double sind (long double x)
fract16 sin_fr16 (fract16 x)
_Fract sin_fx16 (_Fract x)
fract32 sin_fr32 (fract32 x)
long _Fract sin_fx32 (long _Fract x)

Hyperbolic Sine double sinh (double x)
float sinhf (float x)
long double sinhd (long double x)

Square Root double sqrt (double x)
float sqrtf (float x)
long double sqrtd (long double x)
fract16 sqrt_fr16 (fract16 x)
fract32 sqrt_fr32 (fract32 x)
_Fract sqrt_fx16 (_Fract x)
long _Fract sqrt_fx32 (long _Fract x)

Table 4-6. Math Library (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-24 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

matrix.h

The matrix.h header file contains matrix functions for operating on real
and complex matrices, both matrix-scalar and matrix-matrix operations.
See “complex.h” on page 4-5 for definitions of the complex types.

The matrix functions defined in the matrix.h header file are listed in
Table 4-7. Matrix functions that operate on the fract16, fract32,
complex_fract16 and complex_fract32 data types, and on the Embedded
C data types _Fract and long _Fract, use saturating arithmetic.

Tangent double tan (double x)
float tanf (float x)
long double tand (long double x)
fract16 tan_fr16 (fract16 x)
fract32 tan_fr32 (fract32 x)
_Fract tan_fx16 (_Fract x)
long _Fract tan_fx32 (long _Fract x)

Hyperbolic Tangent double tanh (double x)
float tanhf (float x)
long double tanhd (long double x)

Table 4-6. Math Library (Cont’d)

Description Prototype

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-25
for Blackfin Processors

DSP Run-Time Library

Table 4-7. Matrix Functions

Description Prototype

Real Matrix +
Scalar Addition

void matsadd
(const double *matrix, double scalar,

int rows, int columns, double *out)
void matsaddf

(const float *matrix, float scalar,
int rows, int columns, float *out)

void matsaddd
(const long double *matrix, long double scalar,

int rows, int columns, long double *out)
void matsadd_fr16

(const fract16 *matrix, fract16 scalar,
int rows, int columns, fract16 *out)

void matsadd_fr32
(const fract32 *matrix, fract32 scalar,

int rows, int columns, fract32 *out)
void matsadd_fx16

(const _Fract *matrix, _Fract scalar,
int rows, int columns, _Fract *out)

void matsadd_fx32
(const long _Fract *matrix, long _Fract scalar,
int rows, int columns, long _Fract *out)

DSP Run-Time Library Guide

4-26 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Real Matrix –
Scalar Subtraction

void matssub
(const double *matrix, double scalar,

int rows, int columns, double *out)
void matssubf

(const float *matrix, float scalar,
int rows, int columns, float *out)

void matssubd
(const long double *matrix, long double scalar,

int rows, int columns, long double *out)
void matssub_fr16

(const fract16 *matrix, fract16 scalar,
int rows, int columns, fract16 *out)

void matssub_fr32
(const fract32 *matrix, fract32 scalar,

int rows, int columns, fract32 *out)
void matssub_fx16

(const _Fract *matrix, _Fract scalar,
int rows, int columns, _Fract *out)

void matssub_fx32
(const long _Fract *matrix, long _Fract scalar,
int rows, int columns, long _Fract *out)

Table 4-7. Matrix Functions (Cont’d)

Description Prototype

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-27
for Blackfin Processors

DSP Run-Time Library

Real Matrix *
Scalar Multiplication

void matsmlt
(const double *matrix, double scalar,

int rows, int columns, double *out)
void matsmltf

(const float *matrix, float scalar,
int rows, int columns, float *out)

void matsmltd
(const long double *matrix, long double scalar,

int rows, int columns, long double *out)
void matsmlt_fr16

(const fract16 *matrix, fract16 scalar,
int rows, int columns, fract16 *out)

void matsmlt_fr32
(const fract32 *matrix, fract32 scalar,

int rows, int columns, fract32 *out)
void matsmlt_fx16

(const _Fract *matrix, _Fract scalar,
int rows, int columns, _Fract *out)

void matsmlt_fx32
(const long _Fract *matrix, long _Fract scalar,
int rows, int columns, long _Fract *out)

Table 4-7. Matrix Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-28 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Real Matrix +
Matrix Addition

void matmadd
(const double *matrix_a, const double *matrix_b,

int rows, int columns, double *out)
void matmaddf

(const float *matrix_a, const float *matrix_b,
int rows, int columns, float *out)

void matmaddd
(const long double *matrix_a,
const long double *matrix_b,
int rows, int columns, long double *out)

void matmadd_fr16
(const fract16 *matrix_a, const fract16 *matrix_b,

int rows, int columns, fract16 *out)
void matmadd_fr32

(const fract32 *matrix_a, const fract32 *matrix_b,
int rows, int columns, fract32 *out)

void matmadd_fx16
(const _Fract *matrix_a, const _Fract *matrix_b,
int rows, int columns, _Fract *out)

void matmadd_fx32
(const long _Fract *matrix_a,
 const long _Fract *matrix_b,
int rows, int columns, long _Fract *out)

Table 4-7. Matrix Functions (Cont’d)

Description Prototype

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-29
for Blackfin Processors

DSP Run-Time Library

Real Matrix –
Matrix Subtraction

void matmsub
(const double *matrix_a, const double *matrix_b,

int rows, int columns, double *out)
void matmsubf

(const float *matrix_a, const float *matrix_b,
int rows, int columns, float *out)

void matmsubd
(const long double *matrix_a,
const long double *matrix_b,
int rows, int columns, long double *out)

void matmsub_fr16
(const fract16 *matrix_a, const fract16 *matrix_b,

int rows, int columns, fract16 *out)
void matmsub_fr32

(const fract32 *matrix_a, const fract32 *matrix_b,
int rows, int columns, fract32 *out)

void matmsub_fx16
(const _Fract *matrix_a, const _Fract *matrix_b,
int rows, int columns, _Fract *out)

void matmsub_fx32
(const long _Fract *matrix_a,
const long _Fract *matrix_b,
int rows, int columns, long _Fract *out)

Table 4-7. Matrix Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-30 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Real Matrix *
Matrix Multiplication

void matmmlt
(const double *matrix_a, int rows_a, int columns_a,

const double *matrix_b, int columns_b, double *out)
void matmmltf

(const float *matrix_a, int rows_a, int columns_a,
const float *matrix_b, int columns_b, float *out)

void matmmltd
(const long double *matrix_a, int rows_a,
int columns_a,
const long double *matrix_b, int columns_b,
long double *out)

void matmmlt_fr16
(const fract16 *matrix_a, int rows_a, int columns_a,

const fract16 *matrix_b, int columns_b,
fract16 *out)

void matmmlt_fr32
(const fract32 *matrix_a, int rows_a, int columns_a,

const fract32 *matrix_b, int columns_b,
fract32 *out)

void matmmlt_fx16
(const _Fract *matrix_a, int rows_a, int columns_a,
const _Fract *matrix_b, int columns_b,
_Fract *out)

void matmmlt_fx32
(const long _Fract *matrix_a,
 int rows_a, int columns_a,
const long _Fract *matrix_b, int columns_b,
long _Fract *out)

Table 4-7. Matrix Functions (Cont’d)

Description Prototype

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-31
for Blackfin Processors

DSP Run-Time Library

Complex Matrix +
Scalar Addition

void cmatsadd
(const complex_double *matrix,

complex_double scalar,
int rows, int columns, complex_double *out)

void cmatsaddf
(const complex_float *matrix,

complex_float scalar,
int rows, int columns, complex_float *out)

void cmatsaddd
(const complex_long_double *matrix,

complex_long_double scalar,
int rows, int columns, complex_long_double *out)

void cmatsadd_fr16
(const complex_fract16 *matrix,

complex_fract16 scalar,
int rows, int columns, complex_fract16 *out)

void cmatsadd_fr32
(const complex_fract32 *matrix,

complex_fract32 scalar,
int rows, int columns, complex_fract32 *out)

Table 4-7. Matrix Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-32 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Complex Matrix –
Scalar Subtraction

void cmatssub
(const complex_double *matrix,

complex_double scalar,
int rows, int columns, complex_double *out)

void cmatssubf
(const complex_float *matrix,

complex_float scalar,
int rows, int columns, complex_float *out)

void cmatssubd
(const complex_long_double *matrix,

complex_long_double scalar,
int rows, int columns, complex_long_double *out)

void cmatssub_fr16
(const complex_fract16 *matrix,

complex_fract16 scalar,
int rows, int columns, complex_fract16 *out)

void cmatssub_fr32
(const complex_fract32 *matrix,

complex_fract32 scalar,
int rows, int columns, complex_fract32 *out)

Table 4-7. Matrix Functions (Cont’d)

Description Prototype

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-33
for Blackfin Processors

DSP Run-Time Library

Complex Matrix *
Scalar Multiplication

void cmatsmlt
(const complex_double *matrix,

complex_double scalar,
int rows, int columns, complex_double *out)

void cmatsmltf
(const complex_float *matrix,

complex_float scalar,
int rows, int columns, complex_float *out)

void cmatsmltd
(const complex_long_double *matrix,

complex_long_double scalar,
int rows, int columns, complex_long_double *out)

void cmatsmlt_fr16
(const complex_fract16 *matrix,

complex_fract16 scalar,
int rows, int columns, complex_fract16 *out)

void cmatsmlt_fr32
(const complex_fract32 *matrix,

complex_fract32 scalar,
int rows, int columns, complex_fract32 *out)

Table 4-7. Matrix Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-34 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Complex Matrix +
Matrix Addition

void cmatmadd
(const complex_double *matrix_a,

const complex_double *matrix_b,
int rows, int columns, complex_double *out)

void cmatmaddf
(const complex_float *matrix_a,

const complex_float *matrix_b,
int rows, int columns, complex_float *out)

void cmatmaddd
(const complex_long_double *matrix_a,

const complex_long_double *matrix_b,
int rows, int columns, complex_long_double *out)

void cmatmadd_fr16
(const complex_fract16 *matrix_a,

const complex_fract16 *matrix_b,
int rows, int columns, complex_fract16 *out)

void cmatmadd_fr32
(const complex_fract32 *matrix_a,
const complex_fract32 *matrix_b,
int rows, int columns, complex_fract32 *out)

Table 4-7. Matrix Functions (Cont’d)

Description Prototype

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-35
for Blackfin Processors

DSP Run-Time Library

Complex Matrix –
Matrix Subtraction

void cmatmsub
(const complex_double *matrix_a,

const complex_double *matrix_b,
int rows, int columns, complex_double *out)

void cmatmsubf
(const complex_float *matrix_a,

const complex_float *matrix_b,
int rows, int columns, complex_float *out)

void cmatmsubd
(const complex_long_double *matrix_a,

const complex_long_double *matrix_b,
int rows, int columns, complex_long_double *out)

void cmatmsub_fr16
(const complex_fract16 *matrix_a,

const complex_fract16 *matrix_b,
int rows, int columns, complex_fract16 *out)

void cmatmsub_fr32
(const complex_fract32 *matrix_a,

const complex_fract32 *matrix_b,
int rows, int columns, complex_fract32 *out)

Table 4-7. Matrix Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-36 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Complex Matrix *
Matrix Multiplication

void cmatmmlt
(const complex_double *matrix_a,

int rows_a, int columns_a,
const complex_double *matrix_b,
int columns_b, complex_double *out)

void cmatmmltf
(const complex_float *matrix_a,

int rows_a, int columns_a,
const complex_float *matrix_b, int columns_b,
complex_float *out)

void cmatmmltd
(const complex_long_double *matrix_a,

int rows_a, int columns_a,
const complex_long_double *matrix_b,
int columns_b, complex_long_double *out)

void cmatmmlt_fr16
(const complex_fract16 *matrix_a, int rows_a,

int columns_a, const complex_fract16 *matrix_b,
int columns_b, complex_fract16 *out)

void cmatmmlt_fr32
(const complex_fract32 *matrix_a, int rows_a,
int columns_a, const complex_fract32 *matrix_b,
int columns_b, complex_fract32 *out)

Table 4-7. Matrix Functions (Cont’d)

Description Prototype

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-37
for Blackfin Processors

DSP Run-Time Library

Transpose void transpm
(const double *matrix, int rows, int columns,

double *out)
void transpmf

(const float *matrix, int rows, int columns,
float *out)

void transpmd
(const long double *matrix, int rows,

int columns, long double *out)
void transpm_fr16

(const fract16 *matrix, int rows, int columns,
fract16 *out)

void transpm_fr32
(const fract32 *matrix, int rows, int columns,

fract32 *out)
void transpm_fx16

(const _Fract *matrix, int rows, int columns,
_Fract *out)

void transpm_fx32
(const long _Fract *matrix, int rows, int columns,

long _Fract *out)

Complex Transpose void ctranspm
 (const complex_double *matrix, int rows,
 int columns, complex_double *out)
void ctranspmf
 (const complex_float *matrix, int rows,
 int columns, complex_float *out)
void ctranspmd
 (const complex_long_double *matrix, int rows,
 int columns, complex_long_double *out)
void ctranspm_fr16
 (const complex_fract16 *matrix, int rows,
 int columns, complex_fract16 *out)
void ctranspm_fr32
 (const complex_fract32 *matrix, int rows
 int columns, complex_fract32 *out)

Table 4-7. Matrix Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-38 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

In most of the function prototypes:

In the matrix*matrix functions, rows_a and columns_a are the dimensions
of matrix a, and rows_b and columns_b are the dimensions of matrix b.

The functions described by this header assume that input array arguments
are constant; that is, their contents do not change during the course of the
routine. In particular, this means the input arguments do not overlap with
any output argument.

stats.h

The statistical functions defined in the stats.h header file are listed in
Table 4-8 and are described in “DSP Run-Time Library Reference” on
page 4-75.

*matrix_a Is a pointer to input matrix matrix_a [] []

*matrix_b Is a pointer to input matrix matrix_b [] []

scalar Is an input scalar

rows Is the number of rows

columns Is the number of columns

*out Is a pointer to output matrix out[][]

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-39
for Blackfin Processors

DSP Run-Time Library

Table 4-8. Statistical Functions

Description Prototype

Autocoherence void autocohf
(const float samples[], int sample_length, int lags,

 float out[])
void autocoh

(const double samples[], int sample_length, int lags,
 double out[])

void autocohd
(const long double samples[], int sample_length,

int lags, long double out[])
void autocoh_fr16

(const fract16 samples[], int sample_length, int lags,
fract16 out[])

void autocoh_fr32
(const fract32 samples[], int sample_length, int lags,

fract32 out[])
void autocoh_fx16

(const _Fract samples[], int sample_length, int lags,
_Fract out[])

void autocoh_fx32
(const long _Fract samples[], int sample_length,
int lags, long _Fract out[])

DSP Run-Time Library Guide

4-40 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Autocorrelation void autocorrf
(const float samples[], int sample_length, int lags,

float out[])
void autocorr

(const double samples[], int sample_length, int lags,
double out[])

void autocorrd
(const long double samples[], int sample_length,

int lags, long double out[])
void autocorr_fr16

(const fract16 samples[], int sample_length, int lags,
fract16 out[])

void autocorr_fr32
(const fract32 samples[], int sample_length, int lags,

fract32 out[])
void autocorr_fx16

(const _Fract samples[], int sample_length, int lags,
_Fract out[])

void autocorr_fx32
(const long _Fract samples[], int sample_length,
int lags, long _Fract out[])

Table 4-8. Statistical Functions (Cont’d)

Description Prototype

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-41
for Blackfin Processors

DSP Run-Time Library

Cross-coherence void crosscohf
(const float samples_a[], const float samples_b[],

int sample_length, int lags, float out[])
void crosscoh

(const double samples_a[], const double samples_b[],
int sample_length, int lags, double out[])

void crosscohd
(const long double samples_a[],

const long double samples_b[], int sample_length,
int lags, long double out[])

void crosscoh_fr16
(const fract16 samples_a[], const fract16 samples_b[],

int sample_length, int lags, fract16 out[])
void crosscoh_fr32

(const fract32 samples_a[], const fract32 samples_b[],
int sample_length, int lags, fract32 out[])

void crosscoh_fx16
(const _Fract samples_a[], const _Fract samples_b[],
int sample_length, int lags, _Fract out[])

void crosscoh_fx32
(const long _Fract samples_a[],
 const long _Fract samples_b[],
int sample_length, int lags, long _Fract out[])

Table 4-8. Statistical Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-42 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Cross-correlation void crosscorrf
(const float samples_a[], const float samples_b[],

int sample_length, int lags, float out[])
void crosscorr

(const double samples_a[], const double samples_b[],
int sample_length, int lags, double out[])

void crosscorrd
(const long double samples_a[],

const long double samples_b[], int sample_length,
int lags, long double out[])

void crosscorr_fr16
(const fract16 samples_a[], const fract16 samples_b[],

int sample_length, int lags, fract16 out[])
void crosscorr_fx16

(const _Fract samples_a[], const _Fract samples_b[],
int sample_length, int lags, _Fract out[])

void crosscorr_fr32
(const fract32 samples_a[], const fract32 samples_b[],
int sample_length, int lags, fract32 out[])

void crosscorr_fx32
(const long _Fract samples_a[],
const long _Fract samples_b[],
int sample_length, int lags, long _Fract out[])

Table 4-8. Statistical Functions (Cont’d)

Description Prototype

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-43
for Blackfin Processors

DSP Run-Time Library

Histogram void histogramf
(const float samples[], int out[],

float max_sample, float min_sample,
int sample_length, int bin_count)

void histogram
(const double samples[], int out[],

double max_sample, double min_sample,
int sample_length, int bin_count)

void histogramd
(const long double samples[], int out[],

long double max_sample, long double min_sample,
int sample_length, int bin_count)

void histogram_fr16
(const fract16 samples[], int out[],

fract16 max_sample, fract16 min_sample,
int sample_length, int bin_count)

void histogram_fx16
(const _Fract samples[], int out[],
_Fract max_sample, _Fract min_sample,
int sample_length, int bin_count)

void histogram_fr32
(const fract32 samples[], int out[],
fract32 max_sample, fract32 min_sample,
int sample_length, int bin_count)

void histogram_fx32
(const long _Fract samples[], int out[],
long _Fract max_sample, long _Fract min_sample,
int sample_length, int bin_count)

Table 4-8. Statistical Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-44 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Mean float meanf (const float samples[], int sample_length)
double mean (const double samples[], int sample_length)
long double meand

(const long double samples[], int sample_length)
fract16 mean_fr16

(const fract16 samples[], int sample_length)
_Fract mean_fx16

(const _Fract samples[], int sample_length)
fract32 mean_fr32

(const fract32 samples[], int sample_length)
long _Fract mean_fx32

(const long _Fract samples[], int sample_length)

Root Mean Square float rmsf (const float samples[], int sample_length)
double rms (const double samples[], int sample_length)
long double rmsd

(const long double samples[], int sample_length)
fract16 rms_fr16

(const fract16 samples[], int sample_length)
fract32 rms_fr32

(const fract32 samples[], int sample_length)
_Fract rms_fx16

(const _Fract samples[], int sample_length)
long _Fract rms_fx32

(const long _Fract samples[], int sample_length)

Table 4-8. Statistical Functions (Cont’d)

Description Prototype

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-45
for Blackfin Processors

DSP Run-Time Library

vector.h

The vector.h header file contains functions for operating on real and
complex vectors, both vector-scalar and vector-vector operations. See
“complex.h” on page 4-5 for definitions of the complex types.

The functions defined in the vector.h header file are listed in Table 4-9.
Vector functions that operate on the complex_fract16 and
complex_fract32 data types, and on the Embedded C data types _Fract
and long _Fract, use saturating arithmetic.

Variance float varf (const float samples[], int sample_length)
double var (const double samples[], int sample_length)
long double vard

(const long double samples[], int sample_length)
fract16 var_fr16

(const fract16 samples[], int sample_length)
_Fract var_fx16

(const _Fract samples[], int sample_length)
fract32 var_fr32

(const fract32 samples[], int sample_length)
long _Fract var_fx32

(const long _Fract samples[], int sample_length)

Count Zero Crossing int zero_crossf
(const float samples[], int sample_length)

int zero_cross
(const double samples[], int sample_length)

int zero_crossd
(const long double samples[], int sample_length)

int zero_cross_fr16
(const fract16 samples[], int sample_length)

int zero_cross_fx16
(const _Fract samples[], int sample_length)

int zero_cross_fr32
(const fract32 samples[], int sample_length)

int zero_cross_fx32
(const long _Fract samples[], int sample_length)

Table 4-8. Statistical Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-46 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

In the Prototype column, vec[], vec_a[], and vec_b[] are input vectors,
scalar is an input scalar, out[] is an output vector, and sample_length is
the number of elements. The functions assume that input array arguments
are constant; that is, their contents will not change during the course of
the routine. In particular, this means the input arguments do not overlap
with any output argument. In general, better run-time performance is
achieved by the vector functions when the input vectors and the output
vector are in different memory banks. This structure avoids any potential
memory bank collisions.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-47
for Blackfin Processors

DSP Run-Time Library

Table 4-9. Vector Functions

Description Prototype

Real Vector +
Scalar Addition

void vecsadd
(const double vec[], double scalar,

double out[], int length)
void vecsaddd

(const long double vec[], long double scalar,
long double out[], int length)

void vecsaddf
(const float vec[], float scalar,

float out[], int length)
void vecsadd_fr16

(const fract16 vec[], fract16 scalar,
fract16 out[], int length)

void vecsadd_fx16
(const _Fract vec[], _Fract scalar,
_Fract out[], int length)

void vecsadd_fr32
(const fract32 vec[], fract32 scalar,
fract32 out[], int length)

void vecsadd_fx32
(const long _Fract vec[], long _Fract scalar,
long _Fract out[], int length)

DSP Run-Time Library Guide

4-48 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Real Vector –
Scalar Subtraction

void vecssub
(const double vec[], double scalar,

double out[], int length)
void vecssubd

(const long double vec[], long double scalar,
long double out[], int length)

void vecssubf
(const float vec[], float scalar,

float out[], int length)
void vecssub_fr16

(const fract16 vec[], fract16 scalar,
fract16 out[], int length)

void vecssub_fx16
(const _Fract vec[], _Fract scalar,
_Fract out[], int length)

void vecssub_fr32
(const fract32 vec[], fract32 scalar,
fract32 out[], int length)

void vecssub_fx32
(const long _Fract vec[], long _Fract scalar,
long _Fract out[], int length)

Table 4-9. Vector Functions (Cont’d)

Description Prototype

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-49
for Blackfin Processors

DSP Run-Time Library

Real Vector *
Scalar Multiplication

void vecsmlt
(const double vec[], double scalar,

double out[], int length)
void vecsmltd

(const long double vec[], long double scalar,
long double out[], int length)

void vecsmltf
(const float vec[], float scalar,

float out[], int length)
void vecsmlt_fr16

(const fract16 vec[], fract16 scalar,
fract16 out[], int length)

void vecsmlt_fx16
(const _Fract vec[], _Fract scalar,
_Fract out[], int length)

void vecsmlt_fr32
(const fract32 vec[], fract32 scalar,
fract32 out[], int length)

void vecsmlt_fx32
(const long _Fract vec[], long _Fract scalar,
long _Fract out[], int length)

Table 4-9. Vector Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-50 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Real Vector +
Vector Addition

void vecvadd
(const double vec_a[], const double vec_b[],

double out[], int length)
void vecvaddd

(const long double vec_a[],
const long double vec_b[],
long double out[], int length)

void vecvaddf
(const float vec_a[], const float vec_b[],

float out[], int length)
void vecvadd_fr16

(const fract16 vec_a[], const fract16 vec_b[],
fract16 out[], int length)

void vecvadd_fx16
(const _Fract vec_a[], const _Fract vec_b[],
_Fract out[], int length)

void vecvadd_fr32
(const fract32 vec_a[], const fract32 vec_b[],
fract32 out[], int length)

void vecvadd_fx32
(const long _Fract vec_a[],
const long _Fract vec_b[],
long _Fract out[], int length)

Table 4-9. Vector Functions (Cont’d)

Description Prototype

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-51
for Blackfin Processors

DSP Run-Time Library

Real Vector –
Vector Subtraction

void vecvsub
(const double vec_a[], const double vec_b[],

double out[], int length)
void vecvsubd

(const long double vec_a[],
 const long double vec_b[],

long double out[], int length)
void vecvsubf

(const float vec_a[], const float vec_b[],
float out[], int length)

void vecvsub_fr16
(const fract16 vec_a[],

const fract16 vec_b[],
fract16 out[], int length)

void vecvsub_fx16
(const _Fract vec_a[],
const _Fract vec_b[],
_Fract out[], int length)

void vecvsub_fr32
(const fract32 vec_a[],
const fract32 vec_b[],
fract32 out[], int length)

void vecvsub_fx32
(const long _Fract vec_a[],
const long _Fract vec_b[],
long _Fract out[], int length)

Table 4-9. Vector Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-52 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Real Vector *
Vector Multiplication

void vecvmlt
(const double vec_a[], const double vec_b[],

double out[], int length)
void vecvmltd

(const long double vec_a[],
 const long double vec_b[],
long double out[], int length)

void vecvmltf
(const float vec_a[], const float vec_b[],

float out[], int length)
void vecvmlt_fr16

(const fract16 vec_a[], const fract16 vec_b[],
fract16 out[], int length)

void vecvmlt_fx16
(const _Fract vec_a[], const _Fract vec_b[],
_Fract out[], int length)

void vecvmlt_fr32
(const fract32 vec_a[], const fract32 vec_b[],
fract32 out[], int length)

void vecvmlt_fx32
(const long _Fract vec_a[],
const long _Fract vec_b[],
long _Fract out[], int length)

Maximum Value of
Vector Elements

double vecmax (const double vec[], int length)
long double vecmaxd

(const long double vec[], int length)
float vecmaxf (const float vec[], int length)
fract16 vecmax_fr16 (const fract16 vec[], int length)
_Fract vecmax_fx16 (const _Fract vec[], int length)
fract32 vecmax_fr32 (const fract32 vec[], int length)
long _Fract vecmax_fx32
 (const long _Fract vec[], int length)

Table 4-9. Vector Functions (Cont’d)

Description Prototype

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-53
for Blackfin Processors

DSP Run-Time Library

Minimum Value of
Vector Elements

double vecmin (const double vec[], int length)
long double vecmind

(const long double vec[], int length)
float vecminf (const float vec[], int length)
fract16 vecmin_fr16(const fract16 vec[], int length)
_Fract vecmin_fx16(const _Fract vec[], int length)
fract32 vecmin_fr32(const fract32 vec[], int length)
long _Fract vecmin_fx32

(const long _Fract vec[], int length)

Index of Maximum Value
of Vector Elements

int vecmaxloc (const double vec[], int length)
int vecmaxlocd

(const long double vec[], int length)
int vecmaxlocf(const float vec[], int length)
int vecmaxloc_fr16 (const fract16 vec[], int length)
int vecmaxloc_fx16
(const _Fract vec[], int length)

int vecmaxloc_fr32 (const fract32 vec[], int length)
int vecmaxloc_fx32

(const long _Fract vec[], int length)

Index of Minimum Value
of Vector Elements

int vecminloc (const double vec[], int length)
int vecminlocd(const long double vec[], int length)
int vecminlocf (const float vec[], int length)
int vecminloc_fr16(const fract16 vec[], int length)
int vecminloc_fx16(const _Fract vec[], int length)
int vecminloc_fr32(const fract32 vec[], int length)
int vecminloc_fx32

(const long _Fract vec[], int length)

Table 4-9. Vector Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-54 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Complex Vector +
Scalar Addition

void cvecsadd
(const complex_double vec[],

complex_double scalar,
complex_double out[], int length)

void cvecsaddd
(const complex_long_double vec[],

complex_long_double scalar,
complex_long_double out[], int length)

void cvecsaddf
(const complex_float vec[],

complex_float scalar,
complex_float out[], int length)

void cvecsadd_fr16
(const complex_fract16 vec[],

complex_fract16 scalar,
complex_fract16 out[], int length)

void cvecsadd_fr32
(const complex_fract32 vec[],
complex_fract32 scalar,
complex_fract32 out[], int length)

Table 4-9. Vector Functions (Cont’d)

Description Prototype

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-55
for Blackfin Processors

DSP Run-Time Library

Complex Vector –
Scalar Subtraction

void cvecssub
(const complex_double vec[],

complex_double scalar,
complex_double out[], int length)

void cvecssubd
(const complex_long_double vec[],

complex_long_double scalar,
complex_long_double out[], int length)

void cvecssubf
(const complex_float vec[],

complex_float scalar,
complex_float out[], int length)

void cvecssub_fr16
(const complex_fract16 vec[],

complex_fract16 scalar,
complex_fract16 out[], int length)

void cvecssub_fr32
(const complex_fract32 vec[],
complex_fract32 scalar,
complex_fract32 out[], int length)

Table 4-9. Vector Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-56 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Complex Vector *
Scalar Multiplication

void cvecsmlt
(const complex_double vec[],

complex_double scalar,
complex_double out[], int length)

void cvecsmltd
(const complex_long_double vec[],

complex_long_double scalar,
complex_long_double out[], int length)

void cvecsmltf
(const complex_float vec[],

complex_float scalar,
complex_float out[], int length)

void cvecsmlt_fr16
(const complex_fract16 vec[],

complex_fract16 scalar,
complex_fract16 out[], int length)

void cvecsmlt_fr32
(const complex_fract32 vec[],
complex_fract32 scalar,
complex_fract32 out[], int length)

Table 4-9. Vector Functions (Cont’d)

Description Prototype

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-57
for Blackfin Processors

DSP Run-Time Library

Complex Vector + Vector
Addition

void cvecvadd
(const complex_double vec_a[],

const complex_double vec_b[],
complex_double out[], int length)

void cvecvaddd
(const complex_long_double vec_a[],

const complex_long_double vec_b[],
complex_long_double out[], int length)

void cvecvaddf
(const complex_float vec_a[],

const complex_float vec_b[],
complex_float out[], int length)

void cvecvadd_fr16
(const complex_fract16 vec_a[],

const complex_fract16 vec_b[],
complex_fract16 out[], int length)

void cvecvadd_fr32
(const complex_fract32 vec_a[],

const complex_fract32 vec_b[],
complex_fract32 out[], int length)

Table 4-9. Vector Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-58 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Complex Vector –
Vector Subtraction

void cvecvsub
(const complex_double vec_a[],

const complex_double vec_b[],
complex_double out[], int length)

void cvecvsubd
(const complex_long_double vec_a[],

const complex_long_double vec_b[],
complex_long_double out[], int length)

void cvecvsubf
(const complex_float vec_a[],

const complex_float vec_b[],
complex_float out[], int length)

void cvecvsub_fr16
(const complex_fract16 vec_a[],

const complex_fract16 vec_b[],
complex_fract16 out[], int length)

void cvecvsub_fr32
(const complex_fract32 vec_a[],
const complex_fract32 vec_b[],
complex_fract32 out[], int length)

Table 4-9. Vector Functions (Cont’d)

Description Prototype

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-59
for Blackfin Processors

DSP Run-Time Library

Complex Vector *
Vector Multiplication

void cvecvmlt
(const complex_double vec_a[],

const complex_double vec_b[],
complex_double out[], int length)

void cvecvmltd
(const complex_long_double vec_a[],

const complex_long_double vec_b[],
complex_long_double out[], int length)

void cvecvmltf
(const complex_float vec_a[],

const complex_float vec_b[],
complex_float out[], int length)

void cvecvmlt_fr16
(const complex_fract16 vec_a[],

const complex_fract16 vec_b[],
complex_fract16 out[], int length)

void cvecvmlt_fr32
(const complex_fract32 vec_a[],
const complex_fract32 vec_b[],
complex_fract32 out[], int length)

Table 4-9. Vector Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-60 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Real Vector Dot Product double vecdot
(const double vec_a[],

const double vec_b[], int length)
long double vecdotd

(const long double vec_a[],
const long double vec_b[], int length)

float vecdotf
(const float vec_a[],

const float vec_b[], int length)
fract16 vecdot_fr16

(const fract16 vec_a[],
const fract16 vec_b[], int length)

_Fract vecdot_fx16
(const _Fract vec_a[],
const _Fract vec_b[], int length)

fract32 vecdot_fr32
(const fract32 vec_a[],
const fract32 vec_b[], int length)

long _Fract vecdot_fx32
(const long _Fract vec_a[],
const long _Fract vec_b[], int length)

Complex Vector Dot
Product

complex_double cvecdot
(const complex_double vec_a[],

const complex_double vec_b[], int length)
complex_long_double cvecdotd

(const complex_long_double vec_a[],
const complex_long_double vec_b[],
int length)

complex_float cvecdotf
(const complex_float vec_a[],

const complex_float vec_b[], int length)
complex_fract16 cvecdot_fr16

(const complex_fract16 vec_a[],
const complex_fract16 vec_b[], int length)

complex_fract32 cvecdot_fr32
(const complex_fract32 vec_a[],
const complex_fract32 vec_b[], int length)

Table 4-9. Vector Functions (Cont’d)

Description Prototype

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-61
for Blackfin Processors

DSP Run-Time Library

window.h

The window.h header file contains various functions to generate windows
based on various methodologies. The functions defined in the window.h
header file are listed in Table 4-10 and are described in “DSP Run-Time
Library Reference” on page 4-75.

For all window functions, a stride parameter (window_stride) is used to
space the window values. The window length parameter (window_size)
equates to the number of elements in the window. Therefore, for a
window_stride of 2 and a window_length of 10, an array of length 20 is
required, where every second entry is untouched.

Table 4-10. Window Generator Functions

Description Prototype

Generate Bartlett
window

void gen_bartlett_fr16
(fract16 bartlett_window[],

int window_stride, int window_size)
void gen_bartlett_fx16

(_Fract bartlett_window[],
int window_stride, int window_size)

void gen_bartlett_fr32
(fract32 bartlett_window[],
int window_stride, int window_size)

void gen_bartlett_fx32
(long _Fract bartlett_window[],
int window_stride, int window_size)

Generate Blackman
window

void gen_blackman_fr16
(fract16 blackman_window[],

int window_stride, int window_size)
void gen_blackman_fx16

(_Fract blackman_window[],
int window_stride, int window_size)

void gen_blackman_fr32
(fract32 blackman_window[],
int window_stride, int window_size)

void gen_blackman_fx32
(long _Fract blackman_window[],
int window_stride, int window_size)

DSP Run-Time Library Guide

4-62 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Generate Gaussian
window

void gen_gaussian_fr16
(fract16 gaussian_window[],
float alpha, int window_stride, int window_size)

void gen_gaussian_fx16
(_Fract gaussian_window[],
float alpha, int window_stride, int window_size)

void gen_gaussian_fr32
(fract32 gaussian_window[], long double alpha,
int window_stride, int window_size)

void gen_gaussian_fx32
(long _Fract gaussian_window[], long double alpha,
int window_stride, int window_size)

Generate Hamming
window

void gen_hamming_fr16
(fract16 hamming_window[],

int window_stride, int window_size)
void gen_hamming_fx16

(_Fract hamming_window[],
int window_stride, int window_size)

void gen_hamming_fr32
(fract32 hamming_window[],
int window_stride, int window_size)

void gen_hamming_fx32
(long _Fract hamming_window[],
int window_stride, int window_size)

Generate Hanning
window

void gen_hanning_fr16
(fract16 hanning_window[],

int window_stride, int window_size)
void gen_hanning_fx16

(_Fract hanning_window[],
int window_stride, int window_size)

void gen_hanning_fr32
(fract32 hanning_window[],
int window_stride, int window_size)

void gen_hanning_fx32
(long _Fract hanning_window[],
int window_stride, int window_size)

Table 4-10. Window Generator Functions (Cont’d)

Description Prototype

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-63
for Blackfin Processors

DSP Run-Time Library

Generate Harris
window

void gen_harris_fr16
(fract16 harris_window[],

int window_stride, int window_size)
void gen_harris_fx16

(_Fract harris_window[],
int window_stride, int window_size)

void gen_harris_fr32
(fract32 harris_window[],
int window_stride, int window_size)

void gen_harris_fx32
(long _Fract harris_window[],
int window_stride, int window_size)

Generate Kaiser
window

void gen_kaiser_fr16
(fract16 kaiser_window[], float beta,

int window_stride, int window_size)
void gen_kaiser_fx16

(_Fract kaiser_window[], float beta,
int window_stride, int window_size)

void gen_kaiser_fr32
(fract32 kaiser_window[], long double beta,
int window_stride, int window_size)

void gen_kaiser_fx32
(long _Fract kaiser_window[], long double beta,
int window_stride, int window_size)

Generate rectangular
window

void gen_rectangular_fr16
(fract16 rectangular_window[],

int window_stride, int window_size)
void gen_rectangular_fx16

(_Fract rectangular_window[],
int window_stride, int window_size)

void gen_rectangular_fr32
(fract32 rectangular_window[],
int window_stride, int window_size)

void gen_rectangular_fx32
(long _Fract rectangular_window[],
int window_stride, int window_size)

Table 4-10. Window Generator Functions (Cont’d)

Description Prototype

DSP Run-Time Library Guide

4-64 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Measuring Cycle Counts
The common basis for benchmarking some arbitrary C-written source is
to measure the number of processor cycles that the code uses. Once
known, calculate the actual time taken by multiplying the number of
processor cycles by the clock rate of the processor.

 The cycle counting macros detailed in this section are not
thread-safe. If the cycle counting macros are to be used in a
multi-threaded environment, they should be invoked from a
critical region.

Generate triangle
window

void gen_triangle_fr16
(fract16 triangle_window[],

int window_stride, int window_size)
void gen_triangle_fx16

(_Fract triangle_window[],
int window_stride, int window_size)

void gen_triangle_fr32
(fract32 triangle_window[],
int window_stride, int window_size)

void gen_triangle_fx32
(long _Fract triangle_window[],
int window_stride, int window_size)

Generate von Hann
window

void gen_vonhann_fr16
(fract16 vonhann_window[],

int window_stride, int window_size)
void gen_vonhann_fx16

(_Fract vonhann_window[],
int window_stride, int window_size)

void gen_vonhann_fr32
(fract32 vonhann_window[],
int window_stride, int window_size)

void gen_vonhann_fx32
(long _Fract vonhann_window[],
int window_stride, int window_size)

Table 4-10. Window Generator Functions (Cont’d)

Description Prototype

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-65
for Blackfin Processors

DSP Run-Time Library

The run-time library provides three alternative methods for measuring
processor counts, as described in the following sections:

• “Basic Cycle-Counting Facility” on page 4-65

• “Cycle-Counting Facility With Statistics” on page 4-67

• “Using time.h to Measure Cycle Counts” on page 4-70

• “Determining the Processor Clock Rate” on page 4-72

• “Considerations When Measuring Cycle Counts” on page 4-73

Basic Cycle-Counting Facility

The fundamental approach to measuring the performance of a section
of code is to record the current value of the cycle-count register before
executing the section of code, and to read the register again after the code
has been executed. This process is represented by two macros defined in
the cycle_count.h header file:

• START_CYCLE_COUNT(S)

• STOP_CYCLE_COUNT(T,S)

The parameter S is set by the macro START_CYCLE_COUNT to the current
value of the cycle-count register; this value is then passed to the macro
STOP_CYCLE_COUNT, which calculates the difference between the parameter
and current value of the cycle-count register. Reading the cycle-count
register incurs an overhead of a small number of cycles, and the macro
ensures that the difference returned (in parameter T) will be adjusted to
allow for this additional cost. Parameters S and T must be separate vari-
ables; they should be declared as a cycle_t data type, which the header file
cycle_count.h defines as:

typedef volatile unsigned long long cycle_t;

DSP Run-Time Library Guide

4-66 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

 The use of the volatile type qualifier in the definition of the
cycle_t data type means that cycle_t cannot be specified as a
function return type.

The header file also defines the macro PRINT_CYCLES(STRING,T)
which is provided mainly as an example of how to print a value of type
cycle_t; the macro outputs the text STRING to stdout followed by the
number of cycles T.

The instrumentation represented by the macros defined in this section is
activated only when the program is compiled with the –DDO_CYCLE_COUNTS
compile-time switch. If this switch is not specified, the macros are
replaced by empty statements and have no effect on the program.

The following example demonstrates how the basic cycle-counting facility
may be used to monitor the performance of a section of code.

#include <cycle_count.h>

#include <stdio.h>

extern int

main(void)

{

cycle_t start_count;

cycle_t final_count;

START_CYCLE_COUNT(start_count);

Some_Function_Or_Code_To_Measure();

STOP_CYCLE_COUNT(final_count,start_count);

PRINT_CYCLES("Number of cycles: ",final_count);

}

The run-time libraries provide alternative facilities for measuring the
performance of C source (see “Cycle-Counting Facility With Statistics”
on page 4-67 and “Using time.h to Measure Cycle Counts” on

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-67
for Blackfin Processors

DSP Run-Time Library

page 4-70); the relative benefits of this facility are outlined in “Consider-
ations When Measuring Cycle Counts” on page 4-73.

The basic cycle-counting facility is based upon macros; it may therefore be
customized for a particular application (if required), without having to
rebuild the run-time libraries.

Cycle-Counting Facility With Statistics

The cycles.h header file defines a set of macros for measuring the
performance of compiled C source. In addition to providing the basic
facility for reading the cycle-count registers of the Blackfin architecture,
the macros can also accumulate statistics suited to recording the perfor-
mance of a section of code that is executed repeatedly.

If the -DDO_CYCLE_COUNTS switch is specified at compile-time, the
cycles.h header file defines the following macros:

• CYCLES_INIT(S)
This macro initializes the system timing mechanism and clears the
parameter S; an application must contain one reference to this
macro.

• CYCLES_START(S)
This macro extracts the current value of the cycle-count register
and saves it in the parameter S.

• CYCLES_STOP(S)
This macro extracts the current value of the cycle-count register
and accumulates statistics in the parameter S, based on the previous
reference to the CYCLES_START macro.

DSP Run-Time Library Guide

4-68 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

• CYCLES_PRINT(S)

This macro prints a summary of the accumulated statistics
recorded in the parameter S.

• CYCLES_RESET(S)

This macro re-zeros the accumulated statistics recorded in the
parameter S.

The parameter S that is passed to the macros must be declared to be of the
type cycle_stats_t; this is a structured data type that is defined in the
cycles.h header file. The data type can record the number of times that
an instrumented part of the source has been executed, as well as the
minimum, maximum, and average number of cycles that have been used.
For example, if an instrumented piece of code has been executed 4 times,
the CYCLES_PRINT macro would generate output on the standard stream
stdout in the form:

AVG : 95

MIN : 92

MAX : 100

CALLS : 4

If an instrumented piece of code had only been executed once, then the
CYCLES_PRINT macro would print a message of the form:

CYCLES : 95

If the -DDO_CYCLE_COUNTS switch is not specified, the macros described
above are defined as null macros and no cycle-count information is
gathered. To switch between development and release mode therefore
requires recompilation and does not require any changes to the source of
an application.

The macros defined in the cycles.h header file may be customized for a
particular application without having to rebuild the run-time libraries.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-69
for Blackfin Processors

DSP Run-Time Library

The following example demonstrates how this facility may be used.

#include <cycles.h>

#include <stdio.h>

extern void foo(void);

extern void bar(void);

extern int

main(void)

{

cycle_stats_t stats;

int i;

CYCLES_INIT(stats);

for (i = 0; i < LIMIT; i++) {

CYCLES_START(stats);

foo();

CYCLES_STOP(stats);

}

printf("Cycles used by foo\n");

CYCLES_PRINT(stats);

CYCLES_RESET(stats);

for (i = 0; i < LIMIT; i++) {

CYCLES_START(stats);

bar();

CYCLES_STOP(stats);

}

printf("Cycles used by bar\n");

CYCLES_PRINT(stats);

}

DSP Run-Time Library Guide

4-70 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

This example might output:

Cycles used by foo

AVG : 25454

MIN : 23003

MAX : 26295

CALLS : 16

Cycles used by bar

AVG : 8727

MIN : 7653

MAX : 8912

CALLS : 16

Alternative methods of measuring the performance of compiled C source
are described in “Basic Cycle-Counting Facility” on page 4-65 and “Using
time.h to Measure Cycle Counts” on page 4-70. Also refer to “Consider-
ations When Measuring Cycle Counts” on page 4-73, which provides
useful tips with regards to performance measurements.

Using time.h to Measure Cycle Counts

The time.h header file defines the data type clock_t, the clock function,
and the macro CLOCKS_PER_SEC, which together may be used to calculate
the number of seconds spent in a program.

In the ANSI C standard, the clock function is defined to return the num-
ber of implementation-dependent clock “ticks” that have elapsed since the
program began. In this version of the C/C++ compiler, the clock function
returns the number of processor cycles that an application has used.

The conventional way of using the facilities of the time.h header file to
measure the time spent in a program is to call the clock function at the
start of a program, and then subtract this value from the value returned by
a subsequent call to the function. The computed difference is usually cast

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-71
for Blackfin Processors

DSP Run-Time Library

to a floating-point type, and is then divided by the macro CLOCKS_PER_SEC
to determine the time in seconds that has occurred between the two calls.

If this method of timing is used by an application, note that:

• The value assigned to the macro CLOCKS_PER_SEC should be verified
independently to ensure that it is correct for the particular proces-
sor being used (see “Determining the Processor Clock Rate” on
page 4-72).

• The result returned by the clock function does not include the
overhead of calling the library function.

A typical example that demonstrates the use of the time.h header file to
measure the amount of time that an application takes is shown below.

#include <time.h>

#include <stdio.h>

extern int

main(void)

{

volatile clock_t clock_start;

volatile clock_t clock_stop;

double secs;

clock_start = clock();

Some_Function_Or_Code_To_Measure();

clock_stop = clock();

secs = ((double) (stop_time - start_time))

/ CLOCKS_PER_SEC;

printf("Time taken is %e seconds\n",secs);

}

DSP Run-Time Library Guide

4-72 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The cycles.h and cycle_count.h header files define other methods for
benchmarking an application—these header files are described in “Basic
Cycle-Counting Facility” on page 4-65 and “Cycle-Counting Facility
With Statistics” on page 4-67, respectively. Also refer to “Considerations
When Measuring Cycle Counts” on page 4-73, which provides useful
guidelines.

Determining the Processor Clock Rate

Applications may be benchmarked with respect to how many processor
cycles they use. However, applications are typically benchmarked with
respect to how much time (for example, in seconds) that they take.

Measuring the amount of time an application takes to run on a Blackfin
processor usually involves first determining the number of cycles that the
processor takes, and then dividing this value by the processor’s clock rate.
The time.h header file defines the macro CLOCKS_PER_SEC as the number
of processor “ticks” per second.

On Blackfin processors, it is set by the run-time library to one of the
following values in descending order of precedence:

• By way of the -DCLOCKS_PER_SEC=<definition> compile-time
switch. Because the time_t type is based on the long long int data
type, it is recommended that the value assigned to the symbolic
name CLOCKS_PER_SEC is defined as the same data type by qualify-
ing the value with the LL (or ll) suffix (for example,
-DCLOCKS_PER_SEC=60000000LL).

• By way of the System Services Library

• By way of the Processor speed box in the VisualDSP++ Project
Options dialog box, Compile tab, Processor (1) category

• From the cycles.h header file

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-73
for Blackfin Processors

DSP Run-Time Library

If the value of the macro CLOCKS_PER_SEC is taken from the cycles.h
header file, be aware that the clock rate of the processor will usually be
taken to be the maximum speed of the processor, which is not necessarily
the speed of the processor at RESET.

Considerations When Measuring Cycle Counts

This section summarizes cycle-counting techniques for benchmarking
C-compiled code. Each of these alternatives are described below.

• “Basic Cycle-Counting Facility” on page 4-65
This cycle-counting facility represents an inexpensive and relatively
unobtrusive method for benchmarking C-written source using
cycle counts. The facility is based on macros that factor in the over-
head incurred by the instrumentation. The macros may be
customized and can be switched on or off, so no source changes are
required when moving between development and release mode.
The same set of macros is available on other platforms provided by
Analog Devices.

• “Cycle-Counting Facility With Statistics” on page 4-67
This cycle-counting facility offers more features than the basic
cycle-counting facility described above. It is more expensive in
terms of program memory, data memory, and cycles consumed.
However, it can record the number of times that the instrumented
code has been executed and can calculate the maximum, minimum,
and average cost of each iteration. The provided macros take into
account the overhead involved in reading the cycle-count register.
By default, the macros are switched off, but they can be switched
on by specifying the -DDO_CYCLE_COUNTS compile-time switch.
These macros may also be customized for a specific application.
This cycle-counting facility is available on other Analog Devices
architectures.

DSP Run-Time Library Guide

4-74 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

• “Using time.h to Measure Cycle Counts” on page 4-70
The facilities of the time.h header file represent a simple method
for measuring the performance of an application that is portable
across many different architectures and systems. These facilities are
based on the clock function.

The clock function, however, does not account for the cost
involved in invoking the function. In addition, references to the
function may affect the optimizer-generated code in the vicinity of
the function call. This benchmarking method may not accurately
reflect the true cost of the code being measured.

This method is best suited for benchmarking applications rather
than small sections of code that run for a much shorter time span.

When benchmarking code, some thought is required when adding
timing instrumentation to C source that will be optimized. If the
sequence of statements to be measured is not selected carefully, the
optimizer may move instructions into (and out of) the code region
and/or it may re-site the instrumentation itself, leading to distorted
measurements. Therefore, it is generally considered more reliable
to measure the cycle count of calling (and returning from) a func-
tion rather than a sequence of statements within a function.

It is recommended that variables used directly in benchmarking be
simple scalars that are allocated in internal memory (be they
assigned the result of a reference to the clock function, or be they
used as arguments to the cycle-counting macros). In the case of
variables that are assigned the result of the clock function, it is also
recommended that they be defined with the volatile keyword.
The cycle-count registers of the Blackfin architecture are called the
CYCLES and CYCLES2 registers. These registers are 32-bit registers.
The CYCLES register is incremented at every processor cycle; when

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-75
for Blackfin Processors

DSP Run-Time Library

CYCLES wraps back to zero, the CYCLES2 register is incremented.
Together, these registers represent a 64-bit counter that is unlikely
to wrap around to zero during the timing of an application.

 The cycle counting macros detailed in this section are not
thread-safe because a context switch may occur between the read-
ing of the CYCLES and CYCLES2 registers. If the cycle counting
macros are to be used in a multi-threaded environment, they
should be invoked from a critical region.

DSP Run-Time Library Reference
This section provides descriptions of the DSP run-time library functions.

Notation Conventions

An interval of numbers is indicated by the minimum and maximum,
separated by a comma, and enclosed in two square brackets, two
parentheses, or one of each. A square bracket indicates that the endpoint is
included in the set of numbers; a parenthesis indicates that the endpoint is
not included.

Reference Format

Each function in the library has a reference page, formatted as follows:

Name and purpose of the function

Synopsis – Required header file and functional prototype; when
the functionality is provided for several data types (for example,
float, double, long double, or fract16), several prototypes are
given

DSP Run-Time Library Guide

4-76 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Description – Function specification

Algorithm – High-level mathematical representation of the
function

Domain – Range of values supported by the function

Notes – Miscellaneous information

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-77
for Blackfin Processors

DSP Run-Time Library

a_compress

A-law compression

Synopsis

#include <filter.h>

void a_compress(const short input[], short output[], int length);

Description

The a_compress function takes a vector of linear 13-bit signed speech
samples and performs A-law compression according to ITU recommenda-
tion G.711. Each sample is compressed to 8 bits and is returned in the
vector pointed to by output.

Algorithm

C(k)=a-law compression of A(k) for k = 0 to length-1

Domain

Content of input array: [–4096 , 4095]

DSP Run-Time Library Guide

4-78 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

a_expand

A-law expansion

Synopsis

#include <filter.h>

void a_expand (const short input[], short output[], int length);

Description

The a_expand function inputs a vector of 8-bit compressed speech samples
and expands them according to ITU recommendation G.711. Each input
value is expanded to a linear 13-bit signed sample in accordance with the
A-law definition and is returned in the vector pointed to by output.

Algorithm

C(k)=a-law expansion of A(k) for k = 0 to length-1

Domain

Content of input array: [0 , 255]

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-79
for Blackfin Processors

DSP Run-Time Library

alog

Anti-log

Synopsis

#include <math.h>

float alogf (float x);

double alog (double x);

long double alogd (long double x);

Description

The anti-log functions calculate the natural (base e) anti-log of their
argument. An anti-log function performs the reverse of a log function and
is therefore equivalent to exponentiation.

The value HUGE_VAL is returned if the argument x is greater than the
function’s domain. For input values less than the domain, the functions
return 0.0.

Algorithm

c = ex

Domain

x = [–87.33 , 88.72] for alogf()

x = [–708.39 , 709.78] for alogd()

DSP Run-Time Library Guide

4-80 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Example

#include <math.h>

double y;

y = alog(1.0); /* y = 2.71828... */

See Also

alog10, exp, log, pow

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-81
for Blackfin Processors

DSP Run-Time Library

alog10

Base 10 anti-log

Synopsis

#include <math.h>

float alog10f (float x);

double alog10 (double x);

long double alog10d (long double x);

Description

The base 10 anti-log functions calculate the base 10 anti-log of their
argument. An anti-log function performs the reverse of a log function and
is therefore equivalent to exponentiation. Therefore, alog10(x) is
equivalent to exp(x * log(10.0)).

The value HUGE_VAL is returned if the argument x is greater than the
function’s domain. For input values less than the domain, the functions
return 0.0.

Algorithm

c = e(x * log(10.0))

Domain

x = [–37.92 , 38.53] for alog10f()

x = [–307.65 , 308.25] for alog10d()

DSP Run-Time Library Guide

4-82 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Example

#include <math.h>

double y;

y = alog10(1.0); /* y = 10.0 */

See Also

alog, exp, log10, pow

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-83
for Blackfin Processors

DSP Run-Time Library

arg

Get phase of a complex number

Synopsis

#include <complex.h>

float argf (complex_float a);

double arg (complex_double a);

long double argd (complex_long_double a);

fract16 arg_fr16 (complex_fract16 a);

fract32 arg_fr32 (complex_fract32 a);

_Fract arg_fx_fr16 (complex_fract16 a);

long _Fract arg_fx_fr32 (complex_fract32 a);

Description

The arg functions compute the phase associated with a Cartesian number,
represented by the complex argument a, and return the result.

 Refer to the description of the polar_fr16 function (see “polar” on
page 4-222), which explains how a phase, represented as a frac-
tional number, is interpreted in polar notation.

Algorithm

The following equation is the basis of the algorithm.

c
Im(a)
Re(a)
------------ 
 atan=

DSP Run-Time Library Guide

4-84 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Domain

Note

[–3.4e38 , +3.4e38] for argf()

[–1.7 e308 , +1.7e308] for argd()

[–1.0 , +1.0) for arg_fr16(), arg_fx_fr16(),
 arg_fr32(), arg_fx_fr32()

Im (a) /Re (a) <=1 for arg_fr16 ()

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-85
for Blackfin Processors

DSP Run-Time Library

autocoh

Autocoherence

Synopsis

#include <stats.h>

void autocohf (const float samples[],

int sample_length,

int lags,

float coherence[]);

void autocoh (const double samples[],

int sample_length,

int lags,

double coherence[]);

void autocohd (const long double samples[],

int sample_length,

int lags,

long double coherence[]);

void autocoh_fr16 (const fract16 samples[],

int sample_length,

int lags,

fract16 coherence[]);

void autocoh_fr32 (const fract32 samples[],

int sample_length,

int lags,

fract32 coherence[]);

void autocoh_fx16 (const _Fract samples[],

int sample_length,

DSP Run-Time Library Guide

4-86 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

int lags,

_Fract coherence[]);

void autocoh_fx32 (const long _Fract samples[],

int sample_length,

int lags,

 long _Fract coherence[]);

Description

The autocoh functions compute the autocoherence of the input vector
samples[], which contain sample_length values. The autocoherence of an
input signal is its autocorrelation minus its mean squared. The functions
return the result in the output array coherence[] of length lags.

Algorithm

The following equation is the basis of the algorithm.

where:
k = {0, 1, ..., lags-1}
a is the mean value of input vector a

Domain

[–3.4e38 , +3.4e38] for autocohf()

[–1.7e308 , +1.7e308] for autocohd()

[–1.0 , 1.0) for autocoh_fr16(), autocoh_fx16(),
autocoh_fr32(), autocoh_fx32()

ck
1
n
--- aj aj k+•()

j 0=

n k– 1–

 a()
2–=

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-87
for Blackfin Processors

DSP Run-Time Library

autocorr

Autocorrelation

Synopsis

#include <stats.h>

void autocorrf (const float samples[],

int sample_length,

int lags,

float correlation[]);

void autocorr (const double samples[],

int sample_length,

int lags,

double correlation[]);

void autocorrd (const long double samples[],

int sample_length,

int lags,

long double correlation[]);

void autocorr_fr16 (const fract16 samples[],

int sample_length,

int lags,

fract16 correlation[]);

void autocorr_fr32 (const fract32 samples[],

int sample_length,

int lags,

fract32 correlation[]);

void autocorr_fx16 (const _Fract samples[],

int sample_length,

DSP Run-Time Library Guide

4-88 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

int lags,

_Fract correlation[]);

void autocorr_fx32 (const long _Fract samples[],

int sample_length,

int lags,

long _Fract correlation[]);

Description

The autocorr functions perform an autocorrelation of a signal.
Autocorrelation is the cross-correlation of a signal with a copy of itself.
It provides information about the time variation of the signal. The signal
to be autocorrelated is given by the samples[] input array. The number of
samples of the autocorrelation sequence to be produced is given by lags.
The length of the input sequence is given by sample_length.

Autocorrelation is used in digital signal processing applications such as
speech analysis.

Algorithm

The following equation is the basis of the algorithm.

where:
a = samples;
k = {0, 1, ..., m-1}
m is the number of lags
n is the size of the input vector samples

ck
1
n
--- aj

j 0=

n k– 1–

 aj k+•=

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-89
for Blackfin Processors

DSP Run-Time Library

Domain

[–3.4e38 , +3.4e38] for autocorrf()

[–1.7e308 , +1.7e308] for autocorrd()

[–1.0 , 1.0) for autocorr_fr16() and autocorr_fx16()
for autocorr_fr32() and autocorr_fx32()

DSP Run-Time Library Guide

4-90 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

cabs

Complex absolute value

Synopsis

#include <complex.h>

float cabsf (complex_float a);

double cabs (complex_double a);

long double cabsd (complex_long_double a);

fract16 cabs_fr16 (complex_fract16 a);

fract32 cabs_fr32 (complex_fract32 a);

_Fract cabs_fx_fr16 (complex_fract16 a);

long _Fract cabs_fx_fr32 (complex_fract32 a);

Description

The cabs functions compute the complex absolute value of a complex
input and return the result.

Algorithm

The following equation is the basis of the algorithm.

Domain

Re 2 (a) + Im2 (a) <= 3.4 x 10 38 for cabsf()

c Re2 a() Im2 a()+=

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-91
for Blackfin Processors

DSP Run-Time Library

Re 2 (a) + Im2 (a) <= 1.7 x 10 308 for cabsd()

Re 2 (a) + Im2 (a) <= 1.0 for cabs_fr16() and cabs_fx_fr16()
for cabs_fr32() and cabs_fx_fr32()

DSP Run-Time Library Guide

4-92 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

cadd

Complex addition

Synopsis

#include <complex.h>

complex_float caddf (complex_float a, complex_float b);

complex_double cadd (complex_double a, complex_double b);

complex_long_double caddd (complex_long_double a,

complex_long_double b);

complex_fract16 cadd_fr16 (complex_fract16 a, complex_fract16 b);

complex_fract32 cadd_fr32 (complex_fract32 a, complex_fract32 b);

Description

The cadd functions compute the complex addition of two complex inputs,
a and b, and return the result.

Algorithm

Re(c) = Re(a) + Re(b)

Im(c) = Im(a) + Im(b)

Domain

[–3.4e38 , +3.4e38] for caddf()

[–1.7e308 , +1.7e308] for caddd()

[–1.0 , +1.0) for cadd_fr16()
for cadd_fr32()

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-93
for Blackfin Processors

DSP Run-Time Library

cartesian

Convert Cartesian to polar notation

Synopsis

#include <complex.h>

float cartesianf (complex_float a, float *phase);

double cartesian (complex_double a, double *phase);

long double cartesiand (complex_long_double a,

long double *phase);

fract16 cartesian_fr16 (complex_fract16 a, fract16 *phase);

fract32 cartesian_fr32 (complex_fract32 a, fract32 *phase);

_Fract cartesian_fx_fr16 (complex_fract16 a, _Fract *phase);

long _Fract cartesian_fx_fr32 (complex_fract32 a,

 long _Fract *phase);

Description

The cartesian functions transform a complex number from Cartesian
notation to polar notation. The Cartesian number is represented by the
argument a that the function converts into a corresponding magnitude,
which it returns as the function’s result, and a phase that is returned via
the second argument phase.

 Refer to the description of the polar_fr16 function (see “polar” on
page 4-222), which explains how a phase, represented as a frac-
tional number, is interpreted in polar notation.

Algorithm

magnitude = cabs(a)

phase = arg(a)

DSP Run-Time Library Guide

4-94 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Domain

Example

#include <complex.h>

complex_float point = {-2.0 , 0.0};

float phase;

float mag;

mag = cartesianf (point,&phase); /* mag = 2.0, phase = π */

[–3.4e38 , +3.4e38] for cartesianf()

[–1.7e308 , +1.7e308] for cartesiand()

[–1.0 , +1.0) for cartesian_fr16() and cartesian_fx_fr16()
for cartesian_fr32() and cartesian_fx_fr32()

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-95
for Blackfin Processors

DSP Run-Time Library

cdiv

Complex division

Synopsis

#include <complex.h>

complex_float cdivf (complex_float a, complex_float b);

complex_double cdiv (complex_double a, complex_double b);

complex_long_double cdivd (complex_long_double a,

complex_long_double b);

complex_fract16 cdiv_fr16 (complex_fract16 a, complex_fract16 b);

complex_fract32 cdiv_fr32 (complex_fract32 a, complex_fract32 b);

Description

The cdiv functions compute the complex division of complex input a by
complex input b, and return the result.

Algorithm

The following equation is the basis of the algorithm.

Re c() Re a() Re b()• Im a() Im b()•+
Re2 b() Im2 b()+

---=

Im c() Re b() Im a()• Im b() Re a()•–
Re2 b() Im2 b()+

--=

DSP Run-Time Library Guide

4-96 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Domain

[–3.4e38 , +3.4e38] for cdivf()

[–1.7e308 , +1.7e308] for cdivd()

[–1.0 , +1.0) for cdiv_fr16()
for cdiv_fr32()

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-97
for Blackfin Processors

DSP Run-Time Library

cexp

Complex exponential

Synopsis

#include <complex.h>

complex_float cexpf (float x);

complex_double cexp (double x);

complex_long_double cexpd (long double x);

Description

The cexp functions compute the complex exponential of real input x and
return the result.

Algorithm

Re(c) = cos(x)

Im(c) = sin(x)

Domain

x = [–102940 , 102940] for cexpf()

x = [-8.433e8 , 8.433e8] for cexpd()

DSP Run-Time Library Guide

4-98 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

cfft

N-point radix-2 complex input FFT

Synopsis

#include <filter.h>

void cfft_fr16(const complex_fract16 input[],

complex_fract16 output[],

const complex_fract16 twiddle_table[],

int twiddle_stride,

int fft_size,

int *block_exponent,

int scale_method);

void cfft_fr32(const complex_fract32 input[],
complex_fract32 output[],
const complex_fract32 twiddle_table[],
int twiddle_stride,
int fft_size,
int *block_exponent,
int scale_method);

Description

The cfft functions transform the time domain complex input signal
sequence to the frequency domain by using the radix-2 Fast Fourier
Transform (FFT).

The size of the input array input and the output array output is fft_size,
where fft_size represents the number of points in the FFT. By allocating
these arrays in different memory banks, any potential data bank collisions
are avoided, thus improving run-time performance. If the input data can
be overwritten, optimal memory usage can be achieved by also specifying
the input array as the output array.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-99
for Blackfin Processors

DSP Run-Time Library

The twiddle table is passed in the argument twiddle_table, which must
contain at least fft_size/2 twiddle factors. The table is composed of
+cosine and -sine coefficients and may be initialized by using the func-
tion twidfftrad2_fr16 (on page 4-242) for cfft_fr16 and
twidfftrad2_fr32 for cfft_fr32. For optimal performance, the twiddle
table should be allocated in a different memory section than the output
array.

The argument twiddle_stride should be set to 1 if the twiddle table was
originally created for an FFT of size fft_size. If the twiddle table was cre-
ated for a larger FFT of size N*fft_size (where N is a power of 2), then
twiddle_stride should be set to N. This argument therefore provides a
way of using a single twiddle table to calculate FFTs of different sizes.

The argument scale_method controls how the function will apply scaling
while computing a Fourier Transform. The available options are static
scaling (dividing the input at any stage by 2), dynamic scaling (dividing
the input at any stage by 2 if the largest absolute input value is greater
than or equal to 0.25), or no scaling. Note that the number of stages
required to compute an FFT is dependent on the size of the FFT and is
given by the formula log2(fft_size).

If static scaling is selected, the function will always scale intermediate
results, thus preventing overflow. The loss of precision increases in line
with fft_size and is more pronounced for input signals with a small mag-
nitude (since the output is scaled by 1/fft_size). To select static scaling,
set the argument scale_method to a value of 1. The block exponent
returned will be log2(fft_size).

If dynamic scaling is selected, the function will inspect intermediate
results and only apply scaling where required to prevent overflow. The loss
of precision increases in line with the size of the FFT and is more pro-
nounced for input signals with a large magnitude (since these factors
increase the need for scaling). The requirement to inspect intermediate
results will have an impact on performance. To select dynamic scaling, set
the argument scale_method to a value of 2. The block exponent returned

DSP Run-Time Library Guide

4-100 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

will be between 0 and log2(fft_size) depending upon the number of
times that the function scales each set of intermediate results.

If no scaling is selected, the function will never scale intermediate results.
There will be no loss of precision unless overflow occurs and in this case
the function will generate saturated results. The likelihood of saturation
increases in line with the fft_size and is more pronounced for input sig-
nals with a large magnitude. To select no scaling, set the argument
scale_method to 3. The block exponent returned will be 0.

 Any values for the argument scale_method other than 2 or 3 will
result in the function performing static scaling.

Error Conditions

The cfft functions abort if the FFT size is less than 8 or if the twiddle
stride is less than 1.

Algorithm

The following equation is the basis of the algorithm.

Domain

Input sequence length n must be a power of 2 and at least 8.

Example

#include <filter.h>

#define FFT_SIZE1 32

#define FFT_SIZE2 256

X k() x n()WN

nk

n 0=

N 1–

=

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-101
for Blackfin Processors

DSP Run-Time Library

#define TWID_SIZE (FFT_SIZE2/2)

complex_fract32 in1[FFT_SIZE1], in2[FFT_SIZE2];

complex_fract32 out1[FFT_SIZE1], out2[FFT_SIZE2];

complex_fract32 twiddle[TWID_SIZE];

int block_exponent1, block_exponent2;

twidfftrad2_fr32 (twiddle, FFT_SIZE2);

cfft_fr32 (in1, out1, twiddle,

 (FFT_SIZE2 / FFT_SIZE1), FFT_SIZE1,

 &block_exponent1, 1 /*static scaling*/);

cfft_fr32 (in2, out2, twiddle, 1, FFT_SIZE2,

 &block_exponent2, 2 /*dynamic scaling*/);

DSP Run-Time Library Guide

4-102 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

cfftf

Fast N-point radix-4 complex input FFT

Synopsis

#include <filter.h>

void cfftf_fr16(const complex_fract16 input[],

complex_fract16 output[],

const complex_fract16 twiddle_table[],

int twiddle_stride,

int fft_size);

void cfftf_fr32(const complex_fract32 input[],

complex_fract32 output[],

const complex_fract32 twiddle_table[],

int twiddle_stride,

int fft_size);

Description

The cfftf functions transform the time domain complex input signal
sequence to the frequency domain by using the accelerated version of the
“Discrete Fourier Transform” known as a “Fast Fourier Transform” or
FFT. The cfftf_fr16 function “decimates in frequency” using an
optimized radix-4 algorithm, with the cfftf_fr32 function using a
mixed-radix algorithm.

The size of the input array input and the output array output is fft_size,
where fft_size represents the number of points in the FFT. The
cfftf_fr16 function has been designed for optimal performance and
requires that the input array input be aligned on an address boundary that
is a multiple of four times the FFT size. For certain applications, this
alignment constraint may not be appropriate; in such cases, the

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-103
for Blackfin Processors

DSP Run-Time Library

application should call the cfft_fr16 function (on page 4-98) instead,
with no loss of facility (apart from performance).

The number of points in the FFT (fft_size) must be a power of 4 and
must be at least 16 for cfftf_fr16 and a power of 2 and at least 8 for
cfftf_fr32.

The twiddle table is passed in the argument twiddle_table, which must
contain at least 3*fft_size/4 complex twiddle factors. The table should
be initialized with complex twiddle factors in which the real coefficients
are positive cosine values and the imaginary coefficients are negative sine
values. The function twidfftf_fr16 (on page 4-247) may be used to ini-
tialize the array for cfftf_fr16 with twidfftf_fr32 (on page 4-247) used
to initialize the array for cfftf_fr32.

If the twiddle table has been generated for an FFT of size fft_size, then
the twiddle_stride argument should be set 1. On the other hand, if the
twiddle table has been generated for an FFT of size x, where x >
fft_size, then the twiddle_stride argument should be set to x /
fft_size. The twiddle_stride argument therefore allows the same twid-
dle table to be used for different sizes of FFT. (The twiddle_stride
argument cannot be either zero or negative).

It is recommended that the output array not be allocated in the same 4K
memory sub-bank as the input array or the twiddle table, as the perfor-
mance of the functions may otherwise degrade due to data bank collisions.

The functions use static scaling of intermediate results to prevent over-
flow, and the final output therefore is scaled by 1/fft_size.

 The cfftf_fr16 function uses the M3 register, which may be used
by an emulator for context switching. Refer to the appropriate
emulator documentation.

DSP Run-Time Library Guide

4-104 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Algorithm

The following equation is the basis of the algorithm.

The cfft_fr16 function (on page 4-98), which uses a radix-2 algorithm,
must be used when the FFT size (n) is only a power of 2. The cfftf_fr32
function uses a mixed-radix algorithm (radix-4 and radix-2).

Domain

For the cfft_fr16 function, the number of points in the FFT must be a
power of 4 and must be at least 16.

For the cfft_fr32 function, the number of points in the FFT must be a
power of 2 and must be at least 8.

Example

#include <filter.h>

#define FFTSIZE 64

#pragma align 256

segment ("seg_1") complex_fract16 input[FFTSIZE];

#pragma align 4

segment ("seg_2") complex_fract16 output[FFTSIZE];

X k() x n()WN

nk

n 0=

N 1–

=

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-105
for Blackfin Processors

DSP Run-Time Library

#pragma align 4

segment ("seg_3") complex_fract16 twid[(3*FFTSIZE)/4];

twidfftf_fr16(twid,FFTSIZE);

cfftf_fr16(input,

output,

twid,1,FFTSIZE);

DSP Run-Time Library Guide

4-106 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

cfftrad4

N-point radix-4 complex input FFT

Synopsis

#include <filter.h>

void cfftrad4_fr16 (const complex_fract16 input[],

complex_fract16 temp[],

complex_fract16 output[],

const complex_fract16 twiddle_table[],

int twiddle_stride,

int fft_size,

int block_exponent,
int scale_method);

Description

This function transforms the time domain complex input signal sequence
to the frequency domain by using the radix-4 Fast Fourier Transform. The
cfftrad4_fr16 function “decimates in frequency” by the radix-4 FFT
algorithm.

The size of the input array input, the output array output, and the tempo-
rary working buffer temp is fft_size, where fft_size represents the
number of points in the FFT. Memory bank collisions, which have an
adverse effect on run-time performance, may be avoided by allocating all
input and working buffers to different memory banks. If the input data
can be overwritten, the optimal memory usage can be achieved by also
specifying the input array as the output array.

The twiddle table is passed in the argument twiddle_table, which must
contain at least 3*fft_size/4 twiddle coefficients. The function
twidfftrad4_fr16 may be used to initialize the array. If the twiddle table
contains more coefficients than needed for a particular call on

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-107
for Blackfin Processors

DSP Run-Time Library

cfftrad4_fr16, the stride factor must be set appropriately; otherwise it
should be set to 1.

 This function is provided for backward compatibility with existing
applications. New applications should use the cfft_fr16 function
(on page 4-98) instead.

Algorithm

The following equation is the basis of the algorithm.

Domain

Input sequence length fft_size must be a power of 4 and at least 16.

X k() x n()WN

nk

n 0=

N 1–

=

DSP Run-Time Library Guide

4-108 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

cfft2d

N x n point 2-D complex input FFT

Synopsis

#include <filter.h>

void cfft2d_fr16(const complex_fract16 *input,
complex_fract16 *temp,

complex_fract16 *output,

const complex_fract16 twiddle_table[],

int twiddle_stride,

int fft_size,

int block_exponent,

int scale_method);

void cfft2d_fr32(const complex_fract32 *input,

complex_fract32 *temp,

complex_fract32 *output,

const complex_fract32 twiddle_table[],

int twiddle_stride,

int fft_size);

Description

These cfft2d functions compute the two-dimensional Fast Fourier Trans-
form (FFT) of the complex input matrix input[fft_size][fft_size] and
stores the result to the complex output matrix
output[fft_size][fft_size].

The size of the input array input, the output array output, and the tempo-
rary working buffer temp is fft_size*fft_size, where fft_size
represents the number of points in the FFT. The number of points in the
FFT must be a power of 2 and must be at least 4 for cfft2d_fr16 and at
least 8 for cfft2d_fr32.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-109
for Blackfin Processors

DSP Run-Time Library

Memory bank collisions, which have an adverse effect on run-time perfor-
mance, may be avoided by allocating the twiddle table in a different
memory bank than the output matrix and temporary buffer. If the input
data can be overwritten, optimal memory usage can be achieved by also
specifying the input array as the output array.

The twiddle table is passed in the argument twiddle_table, which must
contain at least fft_size twiddle factors for cfft2d_fr16 and at least
3*fft_size/4 twiddle factors for cfft2d_fr32. The table should be initial-
ized with complex twiddle factors in which the real coefficients are
positive cosine values and the imaginary coefficients are negative sine val-
ues. The functions twidfft2d_fr16 and twidfft2d_fr32 (on page 4-250)
may be used to initialize the arrays for cfft2d_fr16 and cfft2d_fr32
respectively.

If the twiddle table has been generated for an fft_size FFT, the
twiddle_stride argument should be set 1. On the other hand, if the twid-
dle table has been generated for an FFT of size x, where x > fft_size, then
the twiddle_stride argument should be set to x / fft_size. The
twiddle_stride argument therefore allows the same twiddle table to be
used for different sizes of FFT. (The twiddle_stride argument cannot be
either zero or negative).

To avoid overflow, the functions scale the output by fft_size*fft_size.

The cfft2d_fr16 arguments block_exponent and scale_method have been
added for future expansion. These arguments are ignored by the function.

Error Conditions

The cfft2d functions abort if the twiddle stride is less than 1, or if fft_size
is less than 4 for cfft2d_fr16, or if fft_size is less than 8 for cfft2d_fr32.

DSP Run-Time Library Guide

4-110 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Algorithm

The following equation is the basis of the algorithm.

where:
i = {0, 1, ..., n-1}
j = {0, 1, ..., n-1}
a = input
c = output
n = fft_size

Domain

Input sequence length fft_size must be a power of 2 and at least 4 for
cfft2d_fr16 and at least 8 for cfft2d_fr32.

Example

#include <filter.h>

#define FFT_SIZE1 32

#define FFT_SIZE2 8

#define TWIDDLE_STRIDE1 (FFT_SIZE1 / FFT_SIZE1)

#define TWIDDLE_STRIDE2 (FFT_SIZE1 / FFT_SIZE2)

complex_fract32 in_a[FFT_SIZE1][FFT_SIZE1];
complex_fract32 in_b[FFT_SIZE2][FFT_SIZE2];
complex_fract32 out[FFT_SIZE2][FFT_SIZE2];
complex_fract32 temp[FFT_SIZE1][FFT_SIZE1];
complex_fract32 twiddle[(3*FFT_SIZE1)/4];

c i j,() a k l,() e 2π– i k⋅ j l⋅+()⋅() n⁄•
l 0=

n 1–


k 0=

n 1–

=

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-111
for Blackfin Processors

DSP Run-Time Library

complex_fract32* in1 = (complex_fract32*)in_a;

complex_fract32* in2 = (complex_fract32*)in_b;

complex_fract32* out2 = (complex_fract32*)out;

complex_fract32* tmp = (complex_fract32*)temp;

twidfft2d_fr32 (twiddle, FFT_SIZE1);

/* In-place computation */

cfft2d_fr32(in1, tmp, in1, twiddle, TWIDDLE_STRIDE1, FFT_SIZE1);

cfft2d_fr32(in2, tmp, out2, twiddle, TWIDDLE_STRIDE2, FFT_SIZE2);

DSP Run-Time Library Guide

4-112 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

cfir

Complex finite impulse response filter

Synopsis

#include <filter.h>

void cfir_fr16(const complex_fract16 input[],

complex_fract16 output[],

int length,

cfir_state_fr16 *filter_state);

void cfir_fr32(const complex_fract32 input[],
complex_fract32 output[],
int length,
cfir_state_fr32 *filter_state);

The cfir_fr16 function uses the following structure to maintain the state
of the filter.

typedef struct

{

int k; /* Number of coefficients */

complex_fract16 *h; /* Filter coefficients */

complex_fract16 *d; /* Start of delay line */

complex_fract16 *p; /* Read/write pointer */

} cfir_state_fr16;

The cfir_fr32 function uses the following structure to maintain the state
of the filter.

typedef struct
{

int k; /* Number of coefficients */
complex_fract32 *h; /* Filter coefficients */
complex_fract32 *d; /* Start of delay line */

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-113
for Blackfin Processors

DSP Run-Time Library

complex_fract32 *p; /* Read/write pointer */
} cfir_state_fr32;

Description

The cfir functions implement a complex finite impulse response (CFIR)
filter. They generate the filtered response of the complex input data input
and store the result in the complex output vector output.

The functions maintain the filter state in the structured variable
filter_state, which must be declared and initialized before calling the
function. The macro cfir_init, in the filter.h header file, is available to
initialize the structure.

It is defined as:

#define cfir_init(state, coeffs, delay, ncoeffs) \

(state).h = (coeffs); \

(state).d = (delay); \

(state).p = (delay); \

(state).k = (ncoeffs)

The characteristics of the filter (passband, stopband, and so on) depend
upon the number of complex filter coefficients and their values. A pointer
to the coefficients should be stored in filter_state->h, and
filter_state->k should be set to the number of coefficients. The func-
tions assume that the coefficients are stored in the normal order, thus
filter_state->h[0] contains the first filter coefficient and
filter_state->h[k-1] contains the last coefficient.

Each filter should have its own delay line, which is a vector of type
complex_fract16 (for cfir_fr16) or complex_fract32 (for cfir_fr32)
whose length is equal to the number of coefficients. The vector should be
cleared to zero before calling the function for the first time and should not
otherwise be modified by the user program. The structure member
filter_state->d should be set to the start of the delay line, and the func-

DSP Run-Time Library Guide

4-114 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

tion uses filter_state->p to keep track of its current position within the
vector.

Error Conditions

The cfir functions check that the number of samples and the number of
coefficients are positive - if not, the functions just returns.

Algorithm

The following equation is the basis of the algorithm.

where:
x = input
y = output
h = array of coefficients
k = number of coefficients
i = {0, 1, ..., length-1}

Domain

[–1.0 , +1.0)

Example

#include <filter.h>

#define LENGTH 85

#define COEFFS_N 32

complex_fract32 input[LENGTH];

y i() h j() x i j–()•
j 0=

k 1–

=

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-115
for Blackfin Processors

DSP Run-Time Library

complex_fract32 output[LENGTH];

complex_fract32 coeffs[COEFFS_N];

complex_fract32 delay[COEFFS_N];

cfir_state_fr32 state;

int i;

for (i=0; i < COEFFS_N; i++) /* clear the delay line */

{

delay[i].re = 0;

delay[i].im = 0;

}

cfir_init(state, coeffs, delay, COEFFS_N);

cfir_fr32(input, output, LENGTH, &state);

DSP Run-Time Library Guide

4-116 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

clip

Clip

Synopsis

#include <math.h>

int clip (int parm1, int parm2);

long int lclip (long int parm1, long int parm2);

long long int llclip (long long int parm1,

long long int parm2);

float fclipf (float parm1, float parm2);

double fclip (double parm1, double parm2);

long double fclipd (long double parm1, long double parm2);

fract16 clip_fr16 (fract16 parm1, fract16 parm2);

fract32 clip_fr32 (fract32 parm1, fract32 parm2);

_Fract clip_fx16 (_Fract parm1, _Fract parm2);

long _Fract clip_fx32 (long _Fract parm1, long _Fract parm2);

Description

The clip functions return the first argument if its absolute value is less
than the absolute value of the second argument; otherwise, they return the
absolute value of the second argument if the first is positive, or minus the
absolute value if the first argument is negative.

Algorithm

If (|parm1| < |parm2|)

return (parm1)

else

return (|parm2| * signof(parm1))

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-117
for Blackfin Processors

DSP Run-Time Library

Domain

Full range for various input parameter types.

DSP Run-Time Library Guide

4-118 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

cmlt

Complex multiply

Synopsis

#include <complex.h>

complex_float cmltf (complex_float a, complex_float b);

complex_double cmlt (complex_double a, complex_double b);

complex_long_double cmltd (complex_long_double a,

complex_long_double b);

complex_fract16 cmlt_fr16 (complex_fract16 a, complex_fract16 b);
complex_fract32 cmlt_fr32 (complex_fract32 a, complex_fract32 b);

Description

The cmlt functions compute the complex multiplication of two complex
inputs, a and b, and return the result.

Error Conditions

The cmlt functions do not return any error conditions.

Algorithm

Re(c) = Re(a) * Re(b) - Im(a) * Im(b)

Im(c) = Re(a) * Im(b) + Im(a) * Re(b)

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-119
for Blackfin Processors

DSP Run-Time Library

Domain

Example

#include <complex.h>

complex_fract32 x;

complex_fract32 y;

complex_fract32 z;

z = cmlt_fr32 (x, y);

[–3.4e38 , +3.4e38] for cmltf()

[–1.7e308 , +1.7e308] for cmltd()

[–1.0 , +1.0) for cmlt_fr16(), cmlt_fr32()

DSP Run-Time Library Guide

4-120 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

coeff_iirdf1

Convert coefficients for DF1 IIR filter

Synopsis

#include <filter.h>

void coeff_iirdf1_fr16 (const float acoeff[],

const float bcoeff[],

fract16 coeff[], int nstages);

void coeff_iirdf1_fx16 (const float acoeff[],

const float bcoeff[],

_Fract coeff[], int nstages);

void coeff_iirdf1_fr32 (const long double acoeff[],

const long double bcoeff[],

fract32 coeff[], int nstages);

void coeff_iirdf1_fx32 (const long double acoeff[],

const long double bcoeff[],

long _Fract coeff[], int nstages);

Description

The coeff_iirdf1 functions transform a set of A-coefficients and a set of
B-coefficients into a set of coefficients for the iirdf1 functions which
implement an optimized, direct form 1 infinite impulse response (IIR) fil-
ter. The coeff_iirdf1_fr16 coefficients are for use with the iirdf1_fr16
function (see on page 4-209), the coeff_iirdf1_fx16 function coeffi-
cients for iirdf1_fx16, the coeff_iirdf1_fr32 function coefficients for
iirdf1_fr32 and the coeff_iirdf1_fx32 function coefficients are suitable
for use with iirdf1_fx32.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-121
for Blackfin Processors

DSP Run-Time Library

The A-coefficients and the B-coefficients are passed into the function via
the floating-point vectors acoeff and bcoeff, respectively. The A0 coeffi-
cients are assumed to be 1.0, and all other A-coefficients must be scaled
according; the A0 coefficients should not be included in the acoeffs vec-
tor. The number of stages in the filter is given by the parameter nstages,
and therefore the size of the acoeffs vector is 2*nstages and the size of
the bcoeffs vector is (2*nstages) + 1.

 For the coeff_iirdf1_fr16 and coeff_iirdf1_fx16 functions, the
values of the coefficients that are held in the vectors acoeffs and
bcoeffs must be in the range of [LONG_MIN, LONG_MAX]; that is,
they must not be less than -2147483648, or greater than
2147483647.

The coeff_iirdf1 functions scale the coefficients and store them in the
vector coeff. The functions also store the appropriate scaling factor in the
vector which the iirdf1 functions will then apply to the filtered response
that they generate (thus eliminating the need to scale the output generated
by the IIR function). The size of coeffs array should be (4*nstages) + 2.

 Be aware of the consequence of specifying a set of filter coefficients
whose order of magnitude are significantly different. For instance,
when using 16-bit fractional data types, the term “significantly”
refers to an order of magnitude greater than or equal to 15 when
expressed as a power of 2. In this situation, one or more filter
coefficients may be transformed to zero due to the restricted
precision of the data type, and this may affect the performance of
the user-designed filter.

DSP Run-Time Library Guide

4-122 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Algorithm

The A-coefficients and the B-coefficients represent the numerator and
denominator coefficients of H(z), where H(z) is defined as:

If any of the coefficients are greater than or equal to 1.0, then all the
A-coefficients and all the B-coefficients are scaled to be less than 1.0. The
coefficients are stored into the vector coeffs in the following order:

[b0 , -a01 , b01 , -a02, b02, ..., -an1 , bn1 , -an2 , bn2 , scale factor]

where n is the number of stages.

 Note that the A-coefficients are negated by the function.

Domain

The vectors acoeff and bcoeff must be in the domain [LONG_MIN,
LONG_MAX] for the coeff_iirdf1_fr16 and coeff_iirdf1_fx16 functions,
and in the domain [LLONG_MIN, LLONG MAX] for the functions
coeff_iirdf1_fr32 and coeff_iirdf1_fx32, where LONG_MIN, LONG_MAX,
LLONG_MIN and LLONG_MAX are macros that are defined in the limits.h
header file.

Example

#include <filter.h>

#define N_STAGES 25

long double a_coeff[2*N_STAGES];

long double b_coeff[2*N_STAGES+1];

H z() B z()
A z()

b1 b2z 1– … b+ m 1+ z m–+ +

a1 a2z 1– … am 1+ z m–+ + +
---= =

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-123
for Blackfin Processors

DSP Run-Time Library

fract32 coefficient[4*N_STAGES+2];

coeff_iirdf1_fr32(a_coeff, b_coeff, coefficient, N_STAGES);

DSP Run-Time Library Guide

4-124 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

conj

Complex conjugate

Synopsis

#include <complex.h>

complex_float conjf (complex_float a);
complex_double conj (complex_double a);
complex_long_double conjd (complex_long_double a);

complex_fract16 conj_fr16 (complex_fract16 a);

complex_fract32 conj_fr32 (complex_fract32 a);

Description

The complex conjugate functions conjugate the complex input a and
return the result.

Algorithm

Re(c) = Re(a)

Im(c) = -Im(a)

Domain

[–3.4e38 , +3.4e38] for conjf()

[–1.7e308 , +1.7e308] for conjd()

[–1.0 , +1.0) for conj_fr16()
for conj_fr32()

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-125
for Blackfin Processors

DSP Run-Time Library

convolve

Convolution

Synopsis

#include <filter.h>

void convolve_fr16(const fract16 input_x[],
int length_x,

const fract16 input_y[],

int length_y,

fract16 output[]);

void convolve_fr32(const fract32 input_x[],
int length_x,

const fract32 input_y[],

int length_y,

fract32 output[]);

void convolve_fx16(const _Fract input_x[],
int length_x,

const _Fract input_y[],

int length_y,

_Fract output[]);

void convolve_fx32(const long _Fract input_x[],
int length_x,

const long _Fract input_y[],

int length_y,

long _Fract output[]);

DSP Run-Time Library Guide

4-126 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Description

The convolution functions convolve two sequences pointed to by input_x
and input_y. If input_x points to the sequence whose length is length_x
and input_y points to the sequence whose length is length_y, the result-
ing sequence pointed to by output has length length_x + length_y – 1.

Algorithm

Convolution between two sequences input_x and input_y is described as:

for n = 0 to clen1 + clen2-2.

Values for cin1[j] are considered to be zero for j < 0 or j > clen1-1,
where:

cin1 = input_x
cin2 = input_y
cout = output
clen1 = length_x
clen2 = length_y

Domain

[–1.0 , +1.0)

cout n[] cin1 n k clen2 1–()–+[] cin2 clen2 1–() k–[]•
k 0=

clen2 1–

=

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-127
for Blackfin Processors

DSP Run-Time Library

Example

The following is an example of a convolution where input_x is of length 4
and input_y is of length 3. If we represent input_x as “A” and input_y as
“B”, the elements of the output vector are:

{A[0]*B[0],

A[1]*B[0] + A[0]*B[1],

A[2]*B[0] + A[1]*B[1] + A[0]*B[2],

A[3]*B[0] + A[2]*B[1] + A[1]*B[2],

A[3]*B[1] + A[2]*B[2],

A[3]*B[2]}

DSP Run-Time Library Guide

4-128 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

conv2d

2-D convolution

Synopsis

#include <filter.h>

void conv2d_fr16(const fract16 *input_x,

int rows_x,

int columns_x,

const fract16 *input_y,

int rows_y,

int columns_y,

fract16 *output);

void conv2d_fx16(const _Fract *input_x,

int rows_x,

int columns_x,

const _Fract *input_y,

int rows_y,

int columns_y,

_Fract *output);

void conv2d_fr32(const fract32 *input_x,
int rows_x,
int columns_x,
const fract32 *input_y,
int rows_y,
int columns_y,
fract32 *output);

void conv2d_fx32(const long _Fract *input_x,
int rows_x,
int columns_x,
const long _Fract *input_y,
int rows_y,

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-129
for Blackfin Processors

DSP Run-Time Library

int columns_y,
long _Fract *output);

Description

The conv2d functions compute the two-dimensional convolution of input
matrix input_x of size rows_x*columns_x and input_y of size rows_y*
columns_y and store the result in matrix output of dimension
(rows_x + rows_y-1) x (columns_x + columns_y-1).

 A temporary work area is allocated from the run-time stack that the
conv2d_fr16 and conv2d_fx16 functions use to preserve accuracy
while evaluating the algorithm. The stack may therefore overflow if
the sizes of the input matrices are sufficiently large. The size of the
stack may be adjusted by making appropriate changes to the .ldf
file.

Error Conditions

The conv2d functions return if the sizes of any of the dimensions (rows_x,
columns_x, rows_y, columns_y) are less than or equal to zero.

Algorithm

The two-dimensional convolution of x[rows_x][cols_x] and
y[rows_y][cols_y] is defined as:

where:
r = 0 to [rows_x + rows_y - 1]
c = 0 to [cols_x + cols_y - 1]

output[r][c] x[j][k] y[r-j][c-k]•
k=0

cols_x-1


i=0

rows_x-1

=

DSP Run-Time Library Guide

4-130 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Domain

[–1.0 , +1.0)

Example

#include <filter.h>

#define ROWS_1 4

#define ROWS_2 4

#define COLS_1 8

#define COLS_2 2

fract32 input_1[ROWS_1][COLS_1], *a_p = (fract32 *) (&input_1);

fract32 input_2[ROWS_2][COLS_2], *b_p = (fract32 *) (&input_2);

fract32 result[ROWS_1+ROWS_2-1][COLS_1+COLS_2-1];

fract32 *res_p = (fract32 *)result;

conv2d_fr32 (a_p, ROWS_1, COLS_1, b_p, ROWS_2, COLS_2, res_p);

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-131
for Blackfin Processors

DSP Run-Time Library

conv2d3x3

2-D convolution with 3 x 3 matrix

Synopsis

#include <filter.h>

void conv2d3x3_fr16(const fract16 *input_x,

int rows_x,

int columns_x,

const fract16 *input_y,

fract16 *output);

void conv2d3x3_fx16(const _Fract *input_x,

int rows_x,

int columns_x,

const _Fract *input_y,

_Fract *output);

void conv2d3x3_fr32(const fract32 *input_x,
int rows_x,
int columns_x,
const fract32 *input_y,
fract32 *output);

void conv2d3x3_fx32(const long _Fract *input_x,
int rows_x,
int columns_x,
const long _Fract *input_y,
long _Fract *output);

Description

The conv2d3x3 functions compute the two-dimensional circular convolu-
tion of matrix input_x with dimensions [rows_x][columns_x]) and matrix

DSP Run-Time Library Guide

4-132 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

input_y with dimensions [3][3], and store the result in matrix output with
dimensions [rows_x][columns_x].

Error Conditions

The conv2d3x3 functions return if any of the dimensions rows_x or
columns_x are less than or equal to zero.

Algorithm

The two-dimensional circular convolution of x[rows_x][cols_x] and
y[3][3] is defined as:

where:
r = 0 to rows_x - 1
c = 0 to cols_x - 1
m = r+j-1
n = c+k-1

Domain

[–1.0 , +1.0)

Example

#include <filter.h>

#define ROWS 9

#define COLS 9

output[r][c] x[(rows_x+m)%rows_x][cols_x+n)%cols_x] y[j][k]•
k 0=

2


j 0=

2

=

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-133
for Blackfin Processors

DSP Run-Time Library

fract32 input_1[ROWS][COLS], *a_p = (fract32 *) (&input_1);

fract32 input_2[3][3], *b_p = (fract32 *) (&input_2);

fract32 result[ROWS][COLS];

fract32 *res_p = (fract32 *)(&result);

conv2d3x3_fr32 (a_p, ROWS, COLS, b_p, res_p);

DSP Run-Time Library Guide

4-134 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

copysign

Copysign

Synopsis

#include <math.h>

float copysignf (float parm1, float parm2);

double copysign (double parm1, double parm2);
long double copysignd (long double parm1, long double parm2);

fract16 copysign_fr16 (fract16 parm1, fract16 parm2);

fract32 copysign_fr32 (fract32 parm1, fract32 parm2);

_Fract copysign_fx16 (_Fract parm1, _Fract parm2);

long _Fract copysign_fx32 (long _Fract parm1, long _Fract parm2);

Description

The copysign functions copy the sign of the second argument to the first
argument.

Algorithm

return (|parm1| * copysignof(parm2))

Domain

Full range for type of parameters used.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-135
for Blackfin Processors

DSP Run-Time Library

cot

Cotangent

Synopsis

#include <math.h>

float cotf (float a);
double cot (double a);
long double cotd (long double a);

Description

The cotangent functions calculate the cotangent of the argument a,
which is measured in radians. If a is outside of the domain, the functions
return 0.

Algorithm

 c = cot(a)

Domain

a = [–9099 , 9099] for cotf()

a = [-4.21657e8 , 4.21657e8] for cotd()

DSP Run-Time Library Guide

4-136 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

countones

Count one bits in word

Synopsis

#include <math.h>

int countones(int parm);
int lcountones(long parm);
int llcountones(long long int parm);

Description

The countones functions count the number of one bits in the argument
parm.

Algorithm

The following equation is the basis of the algorithm.

where:
N is the number of bits in parm
bit[j] represents the jth bit of the parameter parm

return bit j[]
j 0=

N 1–

=

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-137
for Blackfin Processors

DSP Run-Time Library

crosscoh

Cross-coherence

Synopsis

#include <stats.h>

void crosscohf (const float samples_x[],

const float samples_y[],

int sample_length,

int lags,

float coherence[]);

void crosscoh (const double samples_x[],

const double samples_y[],

int sample_length,

int lags,

double coherence[]);

void crosscohd (const long double samples_x[],

const long double samples_y[],

int sample_length,

int lags,

long double coherence[]);

void crosscoh_fr16 (const fract16 samples_x[],

const fract16 samples_y[],

int sample_length,

int lags,

fract16 coherence[]);

void crosscoh_fx16 (const fract32 samples_x[],

const fract32 samples_y[],

int sample_length,

DSP Run-Time Library Guide

4-138 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

int lags,

fract32 coherence[]);

void crosscoh_fx16 (const _Fract samples_x[],

const _Fract samples_y[],

int sample_length,

int lags,

_Fract coherence[]);

void crosscoh_fx32 (const long _Fract samples_x[],

const long _Fract samples_y[],

int sample_length,

int lags,

long _Fract coherence[]);

Description

The cross-coherance functions compute the cross-coherence of two input
vectors samples_x[] and samples_y[]. The cross-coherence is the
cross-correlation minus the product of the mean of samples_x and the
mean of samples_y. The length of the input vectors is given by
sample_length. The functions return the result in the array coherence
with lags elements.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-139
for Blackfin Processors

DSP Run-Time Library

Algorithm

The following equation is the basis of the algorithm.

where:
k = {0, 1, ..., lags-1}
a = samples_x
b = samples_y
c = coherence
a is the mean value of input vector a
b is the mean value of input vector b

Domain

[–3.4e38 , +3.4e38] for crosscohf()

[–1.7e308 , +1.7e308] for crosscohd()

[–1.0 , +1.0) for crosscoh_fr16() and crosscoh_fx16()
for crosscoh_fr32() and crosscoh_fx32()

Ck
1
n
--- aj bj k+•()

j 0=

n k– 1–

• a b•()–=

DSP Run-Time Library Guide

4-140 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

crosscorr

Cross-correlation

Synopsis

#include <stats.h>

void crosscorrf (const float samples_x[],

const float samples_y[],

int sample_length,

int lags,

float correlation[]);

void crosscorr (const double samples_x[],

const double samples_y[],

int sample_length,

int lags,

double correlation[]);

void crosscorrd (const long double samples_x[],

const long double samples_y[],

int sample_length,

int lags,

long double correlation[]);

void crosscorr_fr16 (const fract16 samples_x[],

const fract16 samples_y[],

int sample_length,

int lags,

fract16 correlation[]);

void crosscorr_fx16 (const _Fract samples_x[],

const _Fract samples_y[],

int sample_length,

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-141
for Blackfin Processors

DSP Run-Time Library

int lags,

_Fract correlation[]);

void crosscorr_fr32 (const fract32 samples_x[],

const fract32 samples_y[],

int sample_length,

int lags,

fract32 correlation[]);

void crosscorr_fx32 (const long _Fract samples_x[],

const long _Fract samples_y[],

int sample_length,

int lags,

long _Fract correlation[]);

Description

The cross-correlation functions perform a cross-correlation between two
signals. The cross-correlation is the sum of the scalar products of the sig-
nals in which the signals are displaced in time with respect to one another.
The signals to be correlated are given by the input vectors samples_x[]
and samples_y[]. The length of the input vectors is given by
sample_length. The functions return the result in the array correlation
with lags elements.

Cross-correlation is used in signal processing applications such as speech
analysis.

DSP Run-Time Library Guide

4-142 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Algorithm

The following equation is the basis of the algorithm.

where:
k = {0, 1, ..., lags-1}
a = samples_x
b = samples_y
n = sample_length

Domain

[–3.4e38 , +3.4e38] for crosscorrf()

[–1.7e308 , +1.7e308] for crosscorrd()

[–1.0 , +1.0) for crosscorr_fr16(),
crosscorr_fx16(),
crosscorr_fr32(),
crosscorr_fx32()

ck
1
n
--- aj bj k+•

j 0=

n k– 1–

•=

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-143
for Blackfin Processors

DSP Run-Time Library

csub

Complex subtraction

Synopsis

#include <complex.h>

complex_float csubf (complex_float a, complex_float b);

complex_double csub (complex_double a, complex_double b);

complex_long_double csubd (complex_long_double a,

complex_long_double b);

complex_fract16 csub_fr16 (complex_fract16 a, complex_fract16 b);

complex_fract32 csub_fr32 (complex_fract32 a, complex_fract32 b);

Description

The csub functions compute the complex subtraction of two complex
inputs, a and b, and return the result.

Algorithm

Re(c) = Re(a) – Re(b)

Im(c) = Im(a) – Im(b)

Domain

[–3.4e38 , +3.4e38] for csubf()

[–1.7e308 , +1.7e308] for csubd()

[–1.0 , +1.0) for csub_fr16() and csub_fr32()

DSP Run-Time Library Guide

4-144 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fft_magnitude

FFT magnitude

Synopsis

#include <filter.h>

void fft_magnitude_fr16(const complex_fract16 input[],

fract16 output[],

int fft_size,

int block_exponent,

int mode);

void fft_magnitude_fr32(const complex_fract32 input[],

fract32 output[],

int fft_size,

int block_exponent,

int mode);

Description

The FFT magnitude functions, fft_magnitude_fr16 and
fft_magnitude_fr32, compute a normalized power spectrum from the
output signal generated by an FFT function. The fft_size argument
specifies the size of the FFT and must be a power of 2. The mode argument
is used to specify the type of FFT function used to generate the input
array. The function fft_magnitude_fr16 computes the magnitude of an
FFT that is represented by a fract16 input array, while
fft_magnitude_fr32 computes the magnitude of an FFT that is repre-
sented by a fract32 input array.

If the input array has been generated from a time-domain complex input
signal, the mode must be set to 0. Otherwise the mode argument must be
set to 1 to signify that the input array has been generated from a

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-145
for Blackfin Processors

DSP Run-Time Library

time-domain real input signal. For example, mode must be set to 0 if the
input was generated by one of the following library functions:

cfft_fr16, cfftf_fr16, cfftrad4_fr16

cfft_fr32, cfftf_fr32

and mode must be set to 1 if the input was generated by one of the follow-
ing library functions:

rfft_fr16, rfftrad4_fr16

rfft_fr32, rfftf_fr32

The block_exponent argument is used to control the normalization of the
power spectrum. It will usually be set to the block_exponent that is
returned by the cfft_fr16 or cfft_fr32, rfft_fr16 or rfft_fr32 func-
tions. If on the other hand the input array was generated by one of the
functions cfftf_fr16 or cfftf_fr32, cfftrad4_fr16, rfftrad4_fr16 or
rfftf_fr32, then the block_exponent argument should be set to -1, which
indicates that the input array was generated using static scaling.

If the input array was generated by some other means, then the value spec-
ified for the block_exponent argument will depend upon how the FFT
was calculated. If the function used to calculate the FFT did not scale the
intermediate results at any of the stages of the computation, then set
block_exponent to zero; if the FFT function scaled the intermediate
results at each stage of the computation, then set block_exponent to -1;
otherwise set block_exponent to the number of computation stages that
did scale the intermediate results (this value will be in the range 0 to
log2(fft_size)).

 Functions that compute an FFT using fixed-point arithmetic will
usually scale a set of intermediate results to avoid the arithmetic
from generating any saturated results. Refer to the description of
the cfft_fr16, rfft_fr16 or cfft_fr32, rfft_fr32 functions for
more information about different scaling methods.

DSP Run-Time Library Guide

4-146 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The fft_magnitude_fr16 and fft_magnitude_fr32 functions write the
power spectrum to the output array output. If mode is set to 0, then the
length of the power spectrum will be fft_size. If mode is set to 1, then
the length of the power spectrum will be ((fft_size/2)+1).

Error Conditions

The FFT magnitude functions exit without modifying the output vector if
any of the following conditions are true:

• fft_size is less than 2,

• the mode argument is set to a value other than 0 or 1,

• block_exponent contains a value less than -1,

• block exponent is greater than 0 and the following condition is not
true:

fft_size >= (1 << block_exponent)

Algorithm

For mode 0 (cfft generated input):

where: i = [0 ... fft_size)

fft_magnitude i[]
sqrt input[i].re

2
input[i].im

2
+()

fft_size
---=

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-147
for Blackfin Processors

DSP Run-Time Library

For mode 1 (rfft generated input):

where: i = [0 ... fft_size/2]

Example

#include <filter.h>

#define N_FFT 1024
#pragma align 4096
complex_fract16 cplx_signal[N_FFT];

fract16 real_signal[N_FFT];

complex_fract16 fft_output[N_FFT];

complex_fract16 twiddle_table[N_FFT];

fract16 real_magnitude[(N_FFT/2)+1];

fract16 cplx_magnitude[N_FFT];

int block_exponent;

twidfftrad2_fr16 (twiddle_table, N_FFT);

rfft_fr16(real_signal,fft_output,

 twiddle_table,1,N_FFT,&block_exponent,2);

fft_magnitude_fr16 (fft_output,real_magnitude

 N_FFT,block_exponent,1);

twidfftf_fr16 (twiddle_table,N_FFT);

fft_magnitude i[] 2 * (sqrt(input[i].re
2

input[i].im
2
))+

fft_size
--=

DSP Run-Time Library Guide

4-148 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

cfftf_fr16 (cplx_signal,fft_output,twiddle_table,1,N_FFT);

fft_magnitude_fr16 (fft_output,cplx_magnitude,N_FFT,-1,0);

See Also

cfft, cfftf, rfft, rfftf

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-149
for Blackfin Processors

DSP Run-Time Library

fir

Finite impulse response filter

Synopsis

#include <filter.h>

void fir_fr16(const fract16 input[],

fract16 output[],

int length,

fir_state_fr16 *filter_state);

void fir_fx16(const _Fract input[],

_Fract output[],

int length,

fir_state_fx16 *filter_state);

void fir_fr32(const fract32 input[],
fract32 output[],
int length,
fir_state_fr32 *filter_state);

void fir_fx32(const long _Fract input[],
long _Fract output[],
int length,
fir_state_fx32 *filter_state);

The fir_fr16 function uses the following structure to maintain the state
of the filter.

typedef struct

{

fract16 *h, /* filter coefficients */

fract16 *d, /* start of delay line */

fract16 *p, /* read/write pointer */

int k; /* number of coefficients */

DSP Run-Time Library Guide

4-150 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

int l; /* interpolation/decimation index */

} fir_state_fr16;

The fir_fx16 function uses the following structure to maintain the state
of the filter.

typedef struct

{

_Fract *h, /* filter coefficients */

_Fract *d, /* start of delay line */

_Fract *p, /* read/write pointer */

int k; /* number of coefficients */

int l; /* interpolation/decimation index */

} fir_state_fx16;

The fir_fr32 function uses the following structure to maintain the state
of the filter.

typedef struct
{

fract32 *h, /* filter coefficients */
fract32 *d, /* start of delay line */
fract32 *p, /* read/write pointer */
int k; /* number of coefficients */
int l; /* interpolation/decimation index */

} fir_state_fr32;

The fir_fx32 function uses the following structure to maintain the state
of the filter.

typedef struct
{

long _Fract *h, /* filter coefficients */
long _Fract *d, /* start of delay line */
long _Fract *p, /* read/write pointer */
int k; /* number of coefficients */
int l; /* interpolation/decimation index */

} fir_state_fx32;

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-151
for Blackfin Processors

DSP Run-Time Library

Description

The fir functions implement a finite impulse response (FIR) filter. The
functions generate the filtered response of the input data input and store
the result in the output vector output. The number of input samples and
the length of the output vector are specified by the argument length.

The functions maintain the filter state in the structured variable
filter_state, which must be declared and initialized before calling the
function. The macro fir_init, defined in the filter.h header file, is
available to initialize the structure.

It is defined as:

#define fir_init(state, coeffs, delay, ncoeffs. index) \

(state).h = (coeffs); \

(state).d = (delay); \

(state).p = (delay); \

(state).k = (ncoeffs); \

(state).l = (index)

The characteristics of the filter (passband, stopband, and so on) are depen-
dent upon the number of filter coefficients and their values. A pointer to
the coefficients should be stored in filter_state->h, and
filter_state->k should be set to the number of coefficients. The func-
tions assume that the coefficients are stored in the normal order, thus
filter_state->h[0] contains the first filter coefficient and
filter_state->h[k-1] contains the last coefficient.

 The fir_fr16 and fir_fx16 functions will exploit the Blackfin
architecture by computing the filtered response of two input sam-
ples at one time. As a consequence of this optimization, the input
and output vectors and the array of filter coefficients must be
aligned on a 32-bit address boundary. Under most circumstances,
the compiler will allocate arrays on a 32-bit word-aligned address
boundary. However, arrays within structures are not aligned
beyond the required alignment for their type. So if any of the

DSP Run-Time Library Guide

4-152 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

input, output, or coefficients arrays are allocated as part of a struc-
ture, then they should be explicitly aligned to a word address by
preceding their declaration with a #pragma align 4 directive. See
“#pragma align num” on page 1-280 for more information.

Each filter should have its own delay line which is a vector of type fract16
(for fir_fr16), _Fract (for fir_fx16), fract32 (for fir_fr32) or long
_Fract (for fir_fx32) whose length is equal to the number of coefficients.
The vector should be initially cleared to zero and should not otherwise be
modified by the user program. The structure member filter_state->d
should be set to the start of the delay line, and the function uses
filter_state->p to keep track of its current position within the vector.

The structure member filter_state->l is not used by the fir functions.
This field is normally set to an interpolation/decimation index before call-
ing either the fir_interp or fir_decima functions.

Error Conditions

The fir functions check that the number of input samples and the num-
ber of coefficients are greater than zero - if not, the functions just return.

Algorithm

The following equation is the basis of the algorithm.

y i() h j() x i j–()•
j 0=

k 1–

=

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-153
for Blackfin Processors

DSP Run-Time Library

where:
x = input
y = output
h = array of coefficients
k = number of coefficients
i = {0, 1, ..., length-1}

Domain

[–1.0 , +1.0)

Example

#include <filter.h>

#define NUM_SAMPLES 256

#define NUM_COEFFS 89

fract32 input[NUM_SAMPLES];

fract32 output[NUM_SAMPLES];

section("L1_data_a") fract32 coeffs[NUM_COEFFS];

section("L1_data_b") fract32 delay[NUM_COEFFS];

fir_state_fr32 state;

int i;

for (i = 0; i < NUM_COEFFS; i++) /* clear the delay line */

{

delay[i] = 0;

}

fir_init(state, coeffs, delay, NUM_COEFFS, 0);

fir_fr32(input, output, NUM_SAMPLES, &state);

DSP Run-Time Library Guide

4-154 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fir_decima

FIR decimation filter

Synopsis

#include <filter.h>

void fir_decima_fr16(const fract16 input[],

fract16 output[],

int length,

fir_state_fr16 *filter_state);

void fir_decima_fx16(const _Fract input[],

_Fract output[],

int length,

fir_state_fx16 *filter_state);

void fir_decima_fr32(const fract32 input[],
fract32 output[],
int length,
fir_state_fr32 *filter_state);

void fir_decima_fx32(const long _Fract input[],
long _Fract output[],
int length,
fir_state_fx32 *filter_state);

The fir_decima_fr16 function uses the following structure to maintain
the state of the filter.

typedef struct

{

fract16 *h; /* filter coefficients */

fract16 *d; /* start of delay line */

fract16 *p; /* read/write pointer */

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-155
for Blackfin Processors

DSP Run-Time Library

int k; /* number of coefficients */

int l; /* interpolation/decimation index */

} fir_state_fr16;

The fir_decima_fx16 function uses the following structure to maintain
the state of the filter.

typedef struct

{

_Fract *h; /* filter coefficients */

_Fract *d; /* start of delay line */

_Fract *p; /* read/write pointer */

int k; /* number of coefficients */

int l; /* interpolation/decimation index */

} fir_state_fx16;

The fir_decima_fr32 function uses the following structure to maintain
the state of the filter.

typedef struct
{

fract32 *h; /* filter coefficients */
fract32 *d; /* start of delay line */
fract32 *p; /* read/write pointer */
int k; /* number of coefficients */
int l; /* interpolation/decimation index */

} fir_state_fr32;

The fir_decima_fx32 function uses the following structure to maintain
the state of the filter.

typedef struct
{

long _Fract *h; /* filter coefficients */
long _Fract *d; /* start of delay line */
long _Fract *p; /* read/write pointer */
int k; /* number of coefficients */

DSP Run-Time Library Guide

4-156 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

int l; /* interpolation/decimation index */
} fir_state_fx32;

Description

The fir_decima functions perform an FIR-based decimation filter. They
generate the filtered decimated response of the input data input and store
the result in the output vector output. The number of input samples is
specified by the argument length, and the size of the output vector should
be length/l where l is the decimation index.

The functions maintain the filter state in the structured variable
filter_state, which must be declared and initialized before calling the
function. The macro fir_init, defined in the filter.h header file, is
available to initialize the structure.

It is defined as:

#define fir_init(state, coeffs, delay, ncoeffs, index) \

(state).h = (coeffs); \

(state).d = (delay); \

(state).p = (delay); \

(state).k = (ncoeffs); \

(state).l = (index)

The characteristics of the filter are dependent upon the number of filter
coefficients and their values, and on the decimation index supplied by the
calling program. A pointer to the coefficients should be stored in
filter_state->h, and filter_state->k should be set to the number of
coefficients. The functions assume that the coefficients are stored in the
normal order, thus filter_state->h[0] contains the first filter coefficient
and filter_state->h[k-1] contains the last coefficient. The decimation
index is supplied to the function in filter_state->l.

Each filter should have its own delay line which is a vector of type fract16
(for fir_decima_fr16), _Fract (for fir_decima_fx16), fract32 (for
fir_decima_fr32), or long _Fract (for fir_decima_fx32) whose length is

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-157
for Blackfin Processors

DSP Run-Time Library

equal to the number of coefficients. The vector should be initially cleared
to zero and should not otherwise be modified by the user program. The
structure member filter_state->d should be set to the start of the delay
line, and the function uses filter_state->p to keep track of its current
position within the vector.

Error Conditions

The fir_decima functions check that the number of input samples, the
number of coefficients and the decimation index are greater than zero - if
not, the functions just return.

Algorithm

The following equation is the basis of the algorithm.

y i() x i l• j–()
j 0=

k 1–

 h j()•=

DSP Run-Time Library Guide

4-158 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

where:
h = array of coefficients
k = number of coefficients
n = length
l = decimation index
i = {0, 1, ..., (n/l) - 1}
x = input
y = output

Domain

[–1.0 , +1.0)

Example

#include <filter.h>

#define NUM_INSAMPLES 256

#define NUM_COEFFS 89

#define NUM_DECIMATION 16

#define NUM_OUTSAMPLES (NUM_INSAMPLES / NUM_DECIMATION)

fract32 input[NUM_INSAMPLES];

fract32 output[NUM_OUTSAMPLES];

section("L1_data_a") fract32 coeffs[NUM_COEFFS];

section("L1_data_b") fract32 delay[NUM_COEFFS];

fir_state_fr32 state;

int i;

for (i = 0; i < NUM_COEFFS; i++) /* clear the delay line */

{

delay[i] = 0;

}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-159
for Blackfin Processors

DSP Run-Time Library

fir_init(state, coeffs, delay, NUM_COEFFS, NUM_DECIMATION);

fir_decima_fr32(input, output, NUM_INSAMPLES, &state);

DSP Run-Time Library Guide

4-160 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

fir_interp

FIR interpolation filter

Synopsis

#include <filter.h>

void fir_interp_fr16(const fract16 input[],

fract16 output[],

int length,

fir_state_fr16 *filter_state);

void fir_interp_fx16(const _Fract input[],

_Fract output[],

int length,

fir_state_fx16 *filter_state);

void fir_interp_fr32(const fract32 input[],

fract32 output[],

int length,

fir_state_fr32 *filter_state);

void fir_interp_fx32(const long _Fract input[],

long _Fract output[],

int length,

fir_state_fx32 *filter_state);

The fir_interp_fr16 function uses the following structure to maintain
the state of the filter.

typedef struct

{

fract16 *h; /* filter coefficients */

fract16 *d; /* start of delay line */

fract16 *p; /* read/write pointer */

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-161
for Blackfin Processors

DSP Run-Time Library

int k; /* number of coefficients per polyphase */

int l; /* interpolation/decimation index */

} fir_state_fr16;

The fir_interp_fx16 function uses the following structure to maintain
the state of the filter.

typedef struct

{

_Fract *h; /* filter coefficients */

_Fract *d; /* start of delay line */

_Fract *p; /* read/write pointer */

int k; /* number of coefficients per polyphase */

int l; /* interpolation/decimation index */

} fir_state_fx16;

The fir_interp_fr32 function uses the following structure to maintain
the state of the filter.

typedef struct

{

fract32 *h; /* filter coefficients */

fract32 *d; /* start of delay line */

fract32 *p; /* read/write pointer */

int k; /* number of coefficients per polyphase */

int l; /* interpolation/decimation index */

} fir_state_fr32;

The fir_interp_fx32 function uses the following structure to maintain
the state of the filter.

typedef struct

{

long _Fract *h; /* filter coefficients */

long _Fract *d; /* start of delay line */

long _Fract *p; /* read/write pointer */

int k; /* number of coefficients per polyphase */

DSP Run-Time Library Guide

4-162 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

int l; /* interpolation/decimation index */

} fir_state_fx32;

Description

The fir_interp functions performs an FIR-based interpolation filter.
They generate the interpolated filtered response of the input data input
and store the result in the output vector output. The number of input
samples is specified by the argument length, and the size of the output
vector should be length*l where l is the interpolation index.

The filter characteristics are dependent upon the number of polyphase fil-
ter coefficients and their values, and on the interpolation factor supplied
by the calling program.

The fir_interp functions assume that the coefficients are stored in the
following order:

coeffs[(np * ncoeffs) + nc]

where:
np = {0, 1, ..., nphases-1}

nc = {0, 1, ..., ncoeffs-1}

In the above syntax, nphases is the number of polyphases and ncoeffs is
the number of coefficients per polyphase. A pointer to the coefficients is
passed into the fir_interp function via the argument filter_state,
which is a structured variable that represents the filter state. This struc-
tured variable must be declared and initialized before calling the function.
The filter.h header file contains the macro fir_init that can be used to
initialize the structure and is defined as:

#define fir_init(state, coeffs, delay, ncoeffs, index) \

(state).h = (coeffs); \

(state).d = (delay); \

(state).p = (delay); \

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-163
for Blackfin Processors

DSP Run-Time Library

(state).k = (ncoeffs); \

(state).l = (index)

The interpolation factor is supplied to the function in filter_state->l.
A pointer to the coefficients should be stored in filter_state->h, and
filter_state->k should be set to the number of coefficients per poly-
phase filter.

Each filter should have its own delay line which is a vector of type fract16
(for fir_interp_fr16), _Fract (for fir_interp_fx16), fract32 (for
fir_interp_fr32), or long _Fract (for fir_interp_fx32) whose length is
equal to the number of coefficients in each polyphase. The vector should
be cleared to zero before calling the function for the first time and should
not otherwise be modified by the user program. The structure member
filter_state->d should be set to the start of the delay line, and the func-
tion uses filter_state->p to keep track of its current position within the
vector.

Error Conditions

The fir_interp functions check that the number of input samples, the
number of coefficients and the interpolation index are greater than zero -
if not, the functions just return.

Algorithm

The following equation is the basis of the algorithm.

y i l• m+() x i j–()
j 0=

k 1–

 h m k j+•()•=

DSP Run-Time Library Guide

4-164 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

where:
h = array of coefficients
k = number of coefficients
n = length
l = interpolation index
i = {0, 1, ..., n-1}
m = {0, 1, ..., l-1}
x = input
y = output

Domain

[–1.0 , +1.0)

Example

#include <filter.h>

#include <fract2float_conv.h>

#define N_INSAMPLES 257

#define N_COEFFS 128

#define N_INTERPOLATION 16

#define N_POLY N_INTERPOLATION

#define N_COEFFS_PER_POLY (N_COEFFS / N_POLY)

#define N_OUTSAMPLES (N_INSAMPLES * N_INTERPOLATION)

fract16 signal[N_INSAMPLES];

fract16 output[N_OUTSAMPLES];

/* Filter coefficients from a filter design tool */

float filter_coeffs[N_POLY][N_COEFFS_PER_POLY];

/* Coefficients and delay line for the filter function

(use separate memory banks for best performance)

*/

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-165
for Blackfin Processors

DSP Run-Time Library

section("L1_data_a") fract16 coeffs[N_COEFFS];

section("L1_data_b") fract16 delay[N_COEFFS_PER_POLY];

fir_state_fr16 state;

fract16 x;
int i,np,nc;

/* Transform the coefficients from the filter design tool

into coefficients for the fir_interp function

(all filter coefficients are assumed to be < 1.0)

*/

for (np = 0; np < N_POLY; np++) {

for (nc = 0; nc < N_COEFFS_PER_POLY; nc++) {

x = float_to_fr16 (filter_coeffs[np][nc]);

coeffs[(np * N_COEFFS_PER_POLY) + nc] = x;

}

}

/* Configure filter descriptor */

fir_init (state,coeffs,delay,N_COEFFS_PER_POLY,N_POLY);

/* Zero delay line to start or reset the filter */

for (i = 0; i < N_COEFFS_PER_POLY; i++)

delay[i] = 0;

/* Perform a FIR-based interpolation filter */

fir_interp_fr16 (signal,output,N_INSAMPLES,&state);

DSP Run-Time Library Guide

4-166 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

gen_bartlett

Generate Bartlett window

Synopsis

#include <window.h>

void gen_bartlett_fr16(fract16 bartlett_window[],

int window_stride,

int window_size);

void gen_bartlett_fr32(fract32 bartlett_window[],

int window_stride,

int window_size);

void gen_bartlett_fx16(_Fract bartlett_window[],

int window_stride,

int window_size);

void gen_bartlett_fx32(long _Fract bartlett_window[],

int window_stride,

int window_size);

Description

The gen_bartlett functions generate a vector containing the Bartlett win-
dow. The length of the window required is specified by the parameter
window_size, and the parameter window_stride is used to space the win-
dow values within the output vector bartlett_window. The length of the
output vector should therefore be window_size*window_stride.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-167
for Blackfin Processors

DSP Run-Time Library

The Bartlett window is similar to the triangle window (on page 4-183) but
has the following different properties:

• The Bartlett window always returns a window with two zeros on
either end of the sequence, so that for odd n, the center section of
an N+2 Bartlett window equals an N triangle window.

• For even n, the Bartlett window is still the convolution of two rect-
angular sequences. There is no standard definition for the triangle
window for even n; the slopes of the triangle window are slightly
steeper than those of the Bartlett window.

Algorithm

The following equation is the basis of the algorithm.

where:
w = bartlett_window
N = window_size
n = {0, 1, 2, ..., N-1}

Domain

window_stride > 0
N > 0

w n[] 1
n

N 1–
2

-------------–

N 1–
2

----------------------–=

DSP Run-Time Library Guide

4-168 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Example

#include <window.h>

#define N 100

#define n 2

fract32 b[n*N];

gen_bartlett_fr32(b, n, N);

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-169
for Blackfin Processors

DSP Run-Time Library

gen_blackman

Generate Blackman window

Synopsis

#include <window.h>

void gen_blackman_fr16(fract16 blackman_window[],

int window_stride,

int window_size);

void gen_blackman_fr32(fract32 blackman_window[],

int window_stride,

int window_size);

void gen_blackman_fx16(_Fract blackman_window[],

int window_stride,

int window_size);

void gen_blackman_fx32(long _Fract blackman_window[],

int window_stride,

int window_size);

Description

The gen_blackman functions generate a vector containing the Blackman
window. The length of the window required is specified by the parameter
window_size, and the parameter window_stride is used to space the win-
dow values within the output vector blackman_window. The length of the
output vector should therefore be window_size*window_stride.

DSP Run-Time Library Guide

4-170 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Algorithm

The following equation is the basis of the algorithm.

where:
N = window_size
w = blackman_window
n = {0, 1, 2, ..., N-1}

Domain

window_stride > 0
N > 0

w n[] 0.42 0.5
2πn

N 1–
------------- 
 cos 0.08

4πn
N 1–
------------- 
 cos+–=

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-171
for Blackfin Processors

DSP Run-Time Library

gen_gaussian

Generate Gaussian window

Synopsis

#include <window.h>

void gen_gaussian_fr16(fract16 gaussian_window[],

float alpha,

int window_stride,

int window_size);

void gen_gaussian_fr32(fract32 gaussian_window[],

long double alpha,

int window_stride,

int window_size);

void gen_gaussian_fx16(_Fract gaussian_window[],

float alpha,

int window_stride,

int window_size);

void gen_gaussian_fx32(long _Fract gaussian_window[],

long double alpha,

int window_stride,

int window_size);

Description

The gen_gaussian functions generate a vector containing the Gaussian
window. The length of the window required is specified by the parameter
window_size, and the parameter window_stride is used to space the win-
dow values within the output vector gaussian_window. The length of the
output vector should therefore be window_size*window_stride.

DSP Run-Time Library Guide

4-172 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The parameter alpha is used to control the shape of the window. In gen-
eral, the peak of the Gaussian window will become narrower and the
leading and trailing edges will tend towards zero the larger that alpha
becomes. Conversely, the peak will get wider and wider the more that
alpha tends towards zero.

Algorithm

The following equation is the basis of the algorithm.

where:
w = gaussian_window
N = window_size
n = {0, 1, 2, ..., N-1}
α is an input parameter

Domain

window_stride > 0
window_size > 0
α > 0

w n[] 1–
2

------ α
n N

2
----– 1

2
---–

N
2

 
 
 
 
 2

exp=

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-173
for Blackfin Processors

DSP Run-Time Library

gen_hamming

Generate Hamming window

Synopsis

#include <window.h>

void gen_hamming_fr16(fract16 hamming_window[],

int window_stride,

int window_size);

void gen_hamming_fr32(fract32 hamming_window[],

int window_stride,

int window_size);

void gen_hamming_fx16(_Fract hamming_window[],

int window_stride,

int window_size);

void gen_hamming_fx32(long _Fract hamming_window[],

int window_stride,

int window_size);

Description

The gen_hamming functions generate a vector containing the Hamming
window. The length of the window required is specified by the parameter
window_size, and the parameter window_stride is used to space the win-
dow values within the output vector hamming_window. The length of the
output vector should therefore be window_size*window_stride.

DSP Run-Time Library Guide

4-174 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Algorithm

The following equation is the basis of the algorithm.

where:
w = hamming_window
N = window_size
n = {0, 1, 2, ..., N-1}

Domain

window_stride > 0
N > 0

w n[] 0.54 0.46
2πn

N 1–
------------- 
 cos–=

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-175
for Blackfin Processors

DSP Run-Time Library

gen_hanning

Generate Hanning window

Synopsis

#include <window.h>

void gen_hanning_fr16(fract16 hanning_window[],

int window_stride,

int window_size);

void gen_hanning_fr32(fract32 hanning_window[],

int window_stride,

int window_size);

void gen_hanning_fx16(_Fract hanning_window[],

int window_stride,

int window_size);

void gen_hanning_fx32(long _Fract hanning_window[],

int window_stride,

int window_size);

Description

The gen_hanning functions generate a vector containing the Hanning
window. The length of the window required is specified by the parameter
window_size, and the parameter window_stride is used to space the win-
dow values within the output vector hanning_window. The length of the
output vector should therefore be window_size*window_stride. This win-
dow is also known as the cosine window.

DSP Run-Time Library Guide

4-176 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Algorithm

The following equation is the basis of the algorithm.

where:
N = window_size
w = hanning_window
n = {0, 1, 2, ..., N-1}

Domain

window_stride > 0
N > 0

w n[] 0.5 0.5
2πn

N 1–
------------- 
 cos–=

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-177
for Blackfin Processors

DSP Run-Time Library

gen_harris

Generate Harris window

Synopsis

#include <window.h>

void gen_harris_fr16(fract16 harris_window[],

int window_stride,

int window_size);

void gen_harris_fr32(fract32 harris_window[],

int window_stride,

int window_size);

void gen_harris_fx16(_Fract harris_window[],

int window_stride,

int window_size);

void gen_harris_fx32(long _Fract harris_window[],

int window_stride,

int window_size);

Description

The gen_harris functions generate a vector containing the Harris win-
dow. The length of the window required is specified by the parameter
window_size, and the parameter window_stride is used to space the win-
dow values within the output vector harris_window. The length of the
output vector should therefore be window_size*window_stride. This win-
dow is also known as the Blackman-Harris window.

DSP Run-Time Library Guide

4-178 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Algorithm

The following equation is the basis of the algorithm.

where:
N = window_size
w = harris_window
n = {0, 1, 2, ..., N-1}

Domain

window_stride > 0
N > 0

w[n] 0.35875 0.48829
2πn

N 1–
------------- 
 cos 0.14128

4πn
N 1–
------------- 
 cos 0.01168

6πn
N 1–
------------- 
 cos–+–=

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-179
for Blackfin Processors

DSP Run-Time Library

gen_kaiser

Generate Kaiser window

Synopsis

#include <window.h>

void gen_kaiser_fr16(fract16 kaiser_window[],

float beta,

int window_stride,

int window_size);

void gen_kaiser_fr32(fract32 kaiser_window[],

long double beta,

int window_stride,

int window_size);

void gen_kaiser_fx16(_Fract kaiser_window[],

float beta,

int window_stride,

int window_size);

void gen_kaiser_fx32(long _Fract kaiser_window[],

long double beta,

int window_stride,

int window_size);

Description

The gen_kaiser functions generate a vector containing the Kaiser win-
dow. The length of the window required is specified by the parameter
window_size, and the parameter window_stride is used to space the win-
dow values within the output vector kaiser_window. The length of the

DSP Run-Time Library Guide

4-180 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

output vector should therefore be window_size*window_stride. The β
value is specified by parameter beta.

Algorithm

The following equation is the basis of the algorithm.

where:

Domain

a > 0
N > 0
β > 0.0

N window_size

w kaiser_window

n {0, 1, 2, ..., N-1}

α (N - 1) / 2

I0(β) Zeroth-order modified Bessel function of the first kind

w n[]

I0 β 1
n α–

α
------------–

2

 
 

1
2

I0 β()
--=

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-181
for Blackfin Processors

DSP Run-Time Library

gen_rectangular

Generate rectangular window

Synopsis

#include <window.h>

void gen_rectangular_fr16(fract16 rectangular_window[],

int window_stride,

int window_size);

void gen_rectangular_fr32(fract32 rectangular_window[],

int window_stride,

int window_size);

void gen_rectangular_fx16(_Fract rectangular_window[],

int window_stride,

int window_size);

void gen_rectangular_fx32(long _Fract rectangular_window[],

int window_stride,

int window_size);

Description

The gen_rectangular functions generate a vector containing the
rectangular window. The length of the window required is specified by the
parameter window_size, and the parameter window_stride is used to space
the window values within the output vector rectangular_window. The
length of the output vector should therefore be
window_size*window_stride.

DSP Run-Time Library Guide

4-182 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Algorithm

rectangular_window[n] = 1

where:
N = window_size
n = {0, 1, 2, ..., N-1}

Domain

window_stride > 0
N > 0

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-183
for Blackfin Processors

DSP Run-Time Library

gen_triangle

 Generate triangle window

Synopsis

#include <window.h>

void gen_triangle_fr16(fract16 triangle_window[],

int window_stride,

int window_size);

void gen_triangle_fr32(fract32 triangle_window[],

int window_stride,

int window_size);

void gen_triangle_fx16(_Fract triangle_window[],

int window_stride,

int window_size);

void gen_triangle_fx32(long _Fract triangle_window[],

int window_stride,

int window_size);

Description

The gen_triangle functions generate a vector containing the triangle win-
dow. The length of the window required is specified by the parameter
window_size, and the parameter window_stride is used to space the win-
dow values within the output vector triangle_window.

Refer to the Bartlett window (on page 4-166) regarding the relationship
between it and the triangle window.

DSP Run-Time Library Guide

4-184 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Algorithm

For even n, the following equation applies.

where:
N = window_size
w = triangle_window
n = {0, 1, 2, ..., N-1}

For odd n, the following equation applies.

where n = {0, 1, 2, ..., N-1}

Domain

window_stride > 0
N > 0

w n[]

2n 1+()
N

-------------------- n
N
2
----<

2N 2n– 1–
N

----------------------------- n
N
2
---->






=

w n[]

2n 2+()
N 1+

-------------------- n
N
2
----<

2N 2n–
N 1+

-------------------- n
N
2
---->






=

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-185
for Blackfin Processors

DSP Run-Time Library

gen_vonhann

Generate von Hann window

Synopsis

#include <window.h>

void gen_vonhann_fr16(fract16 vonhann_window[],

int window_stride,

int window_size);

void gen_vonhann_fr32(fract32 vonhann_window[],

int window_stride,

int window_size);

void gen_vonhann_fx16(_Fract vonhann_window[],

int window_stride,

int window_size);

void gen_vonhann_fx32(long _Fract vonhann_window[],

int window_stride,

int window_size);

Description

The gen_vonhann functions are identical to the Hanning window func-
tions (see on page 4-175).

Domain

window_stride > 0
window_size > 0

DSP Run-Time Library Guide

4-186 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

histogram

Histogram

Synopsis

#include <stats.h>

void histogramf (const float samples[],

int histogram[],

float max_sample,

float min_sample,

int sample_length,

int bin_count);

void histogram (const double samples[],
int histogram[],

double max_sample,

double min_sample,

int sample_length,

int bin_count);

void histogramd (const long double samples[],

int histogram[],

long double max_sample,

long double min_sample,

int sample_length,

int bin_count);

void histogram_fr16 (const fract16 samples[],

int histogram[],

fract16 max_sample,

fract16 min_sample,

int sample_length,

int bin_count);

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-187
for Blackfin Processors

DSP Run-Time Library

void histogram_fx16 (const _Fract samples[],

int histogram[],

_Fract max_sample,

_Fract min_sample,

int sample_length,

int bin_count);

void histogram_fr32 (const fract32 samples[],

int histogram[],
fract32 max_sample,
fract32 min_sample,
int sample_length,
int bin_count);

void histogram_fx32 (const long _Fract samples[],

int histogram[],
long _Fract max_sample,
long _Fract min_sample,
int sample_length,
int bin_count);

Description

The histogram functions compute a histogram of the input vector
samples[] that contains nsamples samples, and store the result in the
output vector histogram.

The minimum and maximum value of any input sample is specified by
min_sample and max_sample, respectively. These values are used by the
function to calculate the size of each bin as (max_sample – min_sample) /
bin_count, where bin_count is the size of the output vector histogram.

Any input value that is outside the range [min_sample, max_sample)
exceeds the boundaries of the output vector and is discarded.

DSP Run-Time Library Guide

4-188 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

 To preserve maximum performance while performing
out-of-bounds checking, the histogram_fr16 and histogram_fx16
functions allocate a temporary work area on the stack. The work
area is allocated with (bin_count + 2) elements and the stack may
therefore overflow if the number of bins is sufficiently large. The
size of the stack may be adjusted by making appropriate changes to
the .ldf file.

Algorithm

Each input value is adjusted by min_sample, multiplied by
1/sample_length, and rounded. The appropriate bin in the output vector
is then incremented.

Domain

[–3.4e38 , +3.4e38] for histogramf()

[–1.7e308 , +1.7e308] for histogramd()

[–1.0 , +1.0) for histogram_fr16(),
histogram_fx16(),
histogram_fr32(),
histogram_fx32()

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-189
for Blackfin Processors

DSP Run-Time Library

ifft

N-point radix-2 inverse FFT

Synopsis

#include <filter.h>

void ifft_fr16(const complex_fract16 input[],

complex_fract16 output[],

const complex_fract16 twiddle_table[],

int twiddle_stride,

int fft_size,

int *block_exponent,
int scale_method);

void ifft_fr32(const complex_fract32 input[],

complex_fract32 output[],

const complex_fract32 twiddle_table[],

int twiddle_size,

int fft_size,

int *block_exponent,

int scale_method);

Description

The ifft functions transform the frequency domain complex input signal
sequence to the time domain by using the radix-2 Fast Fourier Transform.

The size of the input array input and the output array output is fft_size,
where fft_size represents the number of points in the FFT. By allocating
these arrays in different memory banks, any potential data bank collisions are
avoided, thus improving run-time performance. If the input data can be
overwritten, the optimum memory usage can be achieved by also specify-
ing the input array as the output array.

DSP Run-Time Library Guide

4-190 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The twiddle table is passed in the argument twiddle_table, which must
contain at least fft_size/2 twiddle factors. The table is composed of
+cosine and -sine coefficients and may be initialized by using the func-
tion twidfftrad2_fr16 for ifft_fr16 and twidfftrad2_fr32 for
ifft_fr32. For optimal performance, the twiddle table should be allo-
cated in a different memory section than the output array.

The argument twiddle_stride should be set to 1 if the twiddle table was
originally created for an FFT of size fft_size. If the twiddle table was cre-
ated for a larger FFT of size N*fft_size (where N is a power of 2), then
twiddle_stride should be set to N. This argument therefore provides a
way of using a single twiddle table to calculate FFTs of different sizes.

The argument scale_method controls how the function will apply scaling
while computing a Fourier Transform. The available options are static
scaling (dividing the input at any stage by 2), dynamic scaling (dividing
the input at any stage by 2 if the largest absolute input value is greater or
equal to 0.25), or no scaling. Note that the number of stages required to
compute an FFT is dependent on the size of the FFT and is given by the
formula log2(fft_size).

If static scaling is selected, the function will always scale intermediate
results, thus preventing overflow. The loss of precision increases in line
with fft_size and is more pronounced for input signals with a small mag-
nitude (since the output is scaled by 1/fft_size). To select static scaling,
set the argument scale_method to a value of 1. The block exponent
returned will be log2(fft_size).

If dynamic scaling is selected, the function will inspect intermediate
results and only apply scaling where required to prevent overflow. The loss
of precision increases in line with the size of the FFT and is more pro-
nounced for input signals with a large magnitude (since these factors
increase the need for scaling). The requirement to inspect intermediate
results will have an impact on performance. To select dynamic scaling, set
the argument scale_method to a value of 2. The block exponent returned

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-191
for Blackfin Processors

DSP Run-Time Library

will be between 0 and log2(fft_size) depending upon the number of
times that the function scales each set of intermediate results.

If no scaling is selected, the function will never scale intermediate results.
There will be no loss of precision unless overflow occurs and in this case
the function will generate saturated results. The likelihood of saturation
increases in line with the FFT size and is more pronounced for input sig-
nals with a large magnitude. To select no scaling, set the argument
scale_method to 3. The block exponent returned will be 0.

 Any values for the argument scale_method other than 2 or 3 will
result in the function performing static scaling.

Error Conditions

The ifft functions abort if the FFT size is less than 8 or if the twiddle
stride is less than 1.

Algorithm

The following equation is the basis of the algorithm.

Domain

Input sequence length fft_size must be a power of 2 and at least 8.

Example

/* Compute IFFT(CFFT(X)) = X */

#include <filter.h>

x n() X k()WN
nk–

k 0=

N 1–

=

DSP Run-Time Library Guide

4-192 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

#define N_FFT 64

complex_fract16 in[N_FFT];

complex_fract16 out_cfft[N_FFT];

complex_fract16 out_ifft[N_FFT];

complex_fract16 twiddle[N_FFT/2];

int blk_exp;

void ifft_fr16_example(void)

{

int i;

/* Generate DC signal */

for(i = 0; i < N_FFT; i++)

{

in[i].re = 0x100;

in[i].im = 0x0;

}

/* Populate twiddle table */

twidfftrad2_fr16(twiddle, N_FFT);

/* Compute Fast Fourier Transform */

cfft_fr16(in, out_cfft, twiddle, 1, N_FFT, &blk_exp, 0);

/* Reverse static scaling applied by cfft_fr16() function

Apply the shift operation before the call to the

ifft_fr16() function only if all the values in out_cfft

= 0x100. Otherwise, perform the shift operation after the

ifft_fr16() function has been computed.

*/

for(i = 0; i < N_FFT; i++)

{

out_cfft[i].re = out_cfft[i].re << 6; /* log2(N_FFT) = 6 */

out_cfft[i].im = out_cfft[i].im << 6;

}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-193
for Blackfin Processors

DSP Run-Time Library

/* Compute Inverse Fast Fourier Transform

The output signal from the ifft function will be the same

as the DC signal of magnitude 0x100 which was passed into

the cfft function.

*/

ifft_fr16(out_cfft, out_ifft, twiddle, 1, N_FFT, &blk_exp, 0);

}

DSP Run-Time Library Guide

4-194 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

ifftf

Inverse fast N-point Fast Fourier Transform

Synopsis

#include <filter.h>

void ifftf_fr32(const complex_fract32 input[],

complex_fract32 output[],

const complex_fract32 twiddle_table[],

int twiddle_stride,

int fft_size);

Description

The ifftf_fr32 function transforms the frequency domain complex input
signal sequence to the time domain by using the accelerated version of the
“Discrete Fourier Transform” known as a “Fast Fourier Transform” or
FFT. The ifftf_fr32 function uses a mixed-radix algorithm.

The size of the input array input and the output array output is fft_size,
where fft_size represents the number of points in the FFT. The number
of points in the FFT must be a power of 2 and must be at least 8.

The twiddle table is passed in the argument twiddle_table, which must
contain at least 3*fft_size/4 complex twiddle factors. The table should
be initialized with complex twiddle factors in which the real coefficients
are positive cosine values and the imaginary coefficients are negative sine
values. The function twidfftf_fr32 may be used to initialize the array.

If the twiddle table has been generated for an fft_size FFT, then the
twiddle_stride argument should be set 1. On the other hand, if the twid-
dle table has been generated for an FFT of size x, where x > fft_size,
then the twiddle_stride argument should be set to x / fft_size. The
twiddle_stride argument therefore allows the same twiddle table to be

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-195
for Blackfin Processors

DSP Run-Time Library

used for different sizes of FFT. (The twiddle_stride argument cannot be
either zero or negative).

It is recommended that the output array not be allocated in the same 4K
memory sub-bank as the input array or the twiddle table, as the perfor-
mance of the function may otherwise degrade due to data bank collisions.

The function uses static scaling of intermediate results to prevent over-
flow, and the final output therefore is scaled by 1/fft_size.

Error Conditions

The ifftf_fr32 function returns if the FFT size is less than eight or if the
twiddle stride is less than one.

Algorithm

The following equation is the basis of the algorithm.

The function uses a mixed-radix algorithm (radix-4 and radix-2).

Example

#include <filter.h>

#define FFT_SIZE1 32

#define FFT_SIZE2 256

#define TWID_SIZE ((3 * FFT_SIZE2) / 4)

complex_fract32 in1[FFT_SIZE1], in2[FFT_SIZE2];

complex_fract32 out1[FFT_SIZE1], out2[FFT_SIZE2];

complex_fract32 twiddle[TWID_SIZE];

x n() 1
N
---- X k()WN

nk–

k 0=

N 1–

⋅=

DSP Run-Time Library Guide

4-196 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

twidfftf_fr32(twiddle,FFT_SIZE2);

ifftf_fr32(in1, out1, twiddle,

FFT_SIZE2/FFT_SIZE1, FFT_SIZE1);

ifftf_fr32(in2, out2, twiddle, 1, FFT_SIZE2);

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-197
for Blackfin Processors

DSP Run-Time Library

ifftrad4

N-point radix-4 inverse input FFT

Synopsis

#include <filter.h>

void ifftrad4_fr16(const complex_fract16 *input,

complex_fract16 *temp,

complex_fract16 *output,

const complex_fract16 twiddle_table[],

int twiddle_stride,

int fft_size,

int block_exponent,

int scale_method);

Description

This function transforms the frequency domain complex input signal
sequence to the time domain by using the radix-4 Inverse Fast Fourier
Transform.

The size of the input array input, the output array output, and the tempo-
rary working buffer temp is fft_size, where fft_size represents the
number of points in the FFT. Memory bank collisions, which have an
adverse effect on run-time performance, may be avoided by allocating all
input and working buffers to different memory banks. If the input data
can be overwritten, the optimum memory usage can be achieved by also
specifying the input array as the output array.

The twiddle table is passed in the argument twiddle_table, which must
contain at least 3*fft_size/4 twiddle factors. The function
twidfftrad4_fr16 may be used to initialize the array. If the twiddle table
contains more factors than needed for a particular call on ifftrad4_fr16,

DSP Run-Time Library Guide

4-198 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

then the stride factor has to be set appropriately; otherwise it should be set
to 1.

The arguments block_exponent and scale_method have been added for
future expansion. These arguments are ignored by the function. To avoid
overflow, the function performs static scaling by first dividing the input
by fft_size.

 This function is provided for backward compatibility with existing
applications. New applications should use the ifft_fr16
(on page 4-189) function instead.

Algorithm

The following equation is the basis of the algorithm.

Domain

Input sequence length fft_size must be a power of 4 and at least 16.

x n() X k()WN
nk–

k 0=

N 1–

=

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-199
for Blackfin Processors

DSP Run-Time Library

ifft2d

N x n point 2-D inverse input FFT

Synopsis

#include <filter.h>

void ifft2d_fr16(const complex_fract16 *input,

complex_fract16 *temp,

complex_fract16 *output,

const complex_fract16 twiddle_table[],

int twiddle_stride,

int fft_size,

int block_exponent,

int scale_method);

void ifft2d_fr32(const complex_fract32 *input,

complex_fract32 *temp,

complex_fract32 *output,

const complex_fract32 twiddle_table[],

int twiddle_stride,

int fft_size);

Description

The ifft2d functions compute a two-dimensional Inverse Fast Fourier
Transform of the complex input matrix input[fft_size][fft_size] and
store the result to the complex output matrix
output[fft_size][fft_size].

The size of the input array input, the output array output, and the tempo-
rary working buffer temp is fft_size*fft_size, where fft_size
represents the number of points in the FFT. The number of points in the
FFT must be a power of 2 and must be at least 4 for ifft2d_fr16 and at least
8 for ifft2d_fr32.

DSP Run-Time Library Guide

4-200 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Memory bank collisions, which have an adverse effect on run-time perfor-
mance may be avoided by allocating the temporary array and the twiddle
table in separate memory banks if using ifft2d_fr16, or by allocating the
twiddle table in a different memory bank than the output array and the
temporary array if using ifft2d_fr32.

The twiddle table is passed in the argument twiddle_table, which must
contain at least fft_size twiddle factors for ifft2d_fr16 and at least
3*fft_size/4 twiddle factors for ifft2d_fr32. The table should be initial-
ized with complex twiddle factors in which the real coefficients are
positive cosine values and the imaginary coefficients are negative sine val-
ues. The functions twidfft2d_fr16 and twidfft2d_fr32 may be used to
initialize the arrays for ifft2d_fr16 and ifft2d_fr32 respectively.

If the twiddle table has been generated for an fft_size FFT, the
twiddle_stride argument should be set 1. On the other hand, if the twid-
dle table has been generated for an FFT of size x, where x > fft_size, then
the twiddle_stride argument should be set to x / fft_size. The
twiddle_stride argument therefore allows the same twiddle table to be
used for different sizes of FFT. (The twiddle_stride argument cannot be
either zero or negative).

To avoid overflow, the functions scale the output by fft_size *
fft_size.

The ifft2d_fr16 arguments block_exponent and scale_method have been
added for future expansion. These arguments are ignored by the function.

Error Conditions

The ifft2d functions abort if the twiddle stride is less than 1, or if fft_size
is less than 4 for ifft2d_fr16, or if fft_size is less than 8 for ifft2d_fr32.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-201
for Blackfin Processors

DSP Run-Time Library

Algorithm

The following equation is the basis of the algorithm.

where:
i = {0, 1, ..., n-1}
j = {0, 1, ..., n-1}

Domain

Input sequence length fft_size must be a power of 2 and at least 4 for
ifft2d_fr16 and at least 8 for ifft2d_fr32.

Example

#include <filter.h>

#define FFT_SIZE1 32

#define FFT_SIZE2 8

#define TWIDDLE_STRIDE1 (FFT_SIZE1 / FFT_SIZE1)

#define TWIDDLE_STRIDE2 (FFT_SIZE1 / FFT_SIZE2)

complex_fract32 in1[FFT_SIZE1][FFT_SIZE1];
complex_fract32 in2[FFT_SIZE2][FFT_SIZE2];
complex_fract32 out2[FFT_SIZE2][FFT_SIZE2];
complex_fract32 tmp[FFT_SIZE1][FFT_SIZE1];
complex_fract32 twiddle[(3*FFT_SIZE1)/4];

twidfft2d_fr32 (twiddle, FFT_SIZE1);

c i j,() 1

n2
----- a k l,()

l 0=

n 1–


k 0=

n 1–

• e 2πj i k• j l•+()– n⁄•=

DSP Run-Time Library Guide

4-202 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

/* In-place computation */

ifft2d_fr32(in1, tmp, in1, twiddle, TWIDDLE_STRIDE1, FFT_SIZE1);

ifft2d_fr32(in2, tmp, out2, twiddle, TWIDDLE_STRIDE2, FFT_SIZE2);

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-203
for Blackfin Processors

DSP Run-Time Library

iir

Infinite impulse response filter

Synopsis

#include <filter.h>

void iir_fr16(const fract16 input[],

fract16 output[],

int length,

iir_state_fr16 *filter_state);

void iir_fx16(const _Fract input[],

_Fract output[],

int length,

iir_state_fx16 *filter_state);

void iir_fr32(const fract32 input[],
fract32 output[],
int length,
iir_state_fr32 *filter_state);

void iir_fx32(const long _Fract input[],
long _Fract output[],
int length,
iir_state_fx32 *filter_state);

The iir_fr16 function uses the following structure to maintain the state
of the filter.

typedef struct

{

fract16 *c; /* coefficients */

fract16 *d; /* start of delay line */

int k; /* number of biquad stages */

} iir_state_fr16;

DSP Run-Time Library Guide

4-204 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The iir_fx16 function uses the following structure to maintain the state
of the filter.

typedef struct

{

_Fract *c; /* coefficients */

_Fract *d; /* start of delay line */

int k; /* number of biquad stages */

} iir_state_fx16;

The iir_fr32 function uses the following structure to maintain the state
of the filter.

typedef struct
{

fract32 *c; /* coefficients */
fract32 *d; /* start of delay line */
int k; /* number of biquad stages */

} iir_state_fr32;

The iir_fx32 function uses the following structure to maintain the state
of the filter.

typedef struct
{

long _Fract *c; /* coefficients */
long _Fract *d; /* start of delay line */
int k; /* number of biquad stages */

} iir_state_fx32;

Description

The iir functions implement a biquad direct form II infinite impulse
response (IIR) filter. They generate the filtered response of the input data
input and store the result in the output vector output. The number of
input samples and the length of the output vector are specified by the
argument length.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-205
for Blackfin Processors

DSP Run-Time Library

The functions maintain the filter state in the structured variable
filter_state, which must be declared and initialized before calling the
function. The macro iir_init, defined in the filter.h header file, is
available to initialize the structure and is defined as:

#define iir_init(state, coeffs, delay, stages) \

(state).c = (coeffs); \

(state).d = (delay); \

(state).k = (stages)

The characteristics of the filter are dependent upon filter coefficients and
the number of stages. Each stage has five coefficients which must be stored
in the order A2, A1, B2, B1, and B0. The value of A0 is implied to be 1.0 and
A1 and A2 should be scaled accordingly. This requires that the value of the
A0 coefficient be greater than both A1 and A2 for all the stages. The func-
tions iirdf1_fr16, iirdf1_fx16, iirdf1_fr32, and iirdf1_fx32 (see
on page 4-209) implement a direct form I filter, and do not impose this
requirement; however, they do assume that the A0 coefficients are 1.0.

A pointer to the coefficients should be stored in filter_state->c, and
filter_state->k should be set to the number of stages.

Each filter should have its own delay line which is a vector of type fract16
(for iir_fr16), _Fract (for iir_fx16), fract32 (for iir_fr32), or long
_Fract (for iir_fx32), whose length is equal to twice the number of
stages. The vector should be initially cleared to zero and should not other-
wise be modified by the user program. The structure member
filter_state->d should be set to the start of the delay line.

 The iir_fr16 and iir_fx16 functions will exploit the Blackfin
architecture by computing the filtered response of two input sam-
ples at one time. As a consequence of this optimization, the input
and output vectors and delay line must be aligned on a 32-bit
address boundary. Under most circumstances, the compiler will
allocate arrays on a 32-bit word-aligned address boundary. How-
ever, arrays within structures are not aligned beyond the required

DSP Run-Time Library Guide

4-206 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

alignment for their type. So if any of the input or output arrays, or
the delay line, are allocated as part of a structure, then they should
be explicitly aligned to a word address by preceding their declara-
tion with a #pragma align 4 directive. See “#pragma align num”
on page 1-280 for more information.

Algorithm

The following equation is the basis of the algorithm.

where

where m = {0, 1, 2, ..., length-1}

Domain

[–1.0 , +1.0)

Example

#include <filter.h>

#include <fract2float_conv.h>

#define NUM_STAGES 2

#define NUM_SAMPLES 64

/* Filter coefficients generated by a filter design

H z()
B0 B1z 1– B2z 2–+ +

1 A1z 1–() A2z 2–()+ +
--=

mmmm

mmmm

DBDBDBY
DADAXD

**

01122

1122

++=
−−=

−−

−−

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-207
for Blackfin Processors

DSP Run-Time Library

tool that uses a direct form II */

const struct {

float a0;

float a1;

float a2;

} A_coeffs[NUM_STAGES] = {

1.000000F, 0.453120F, 0.466326F,

1.000000F, 0.328976F, 0.064588F,

};

const struct {

float b0;

float b1;

float b2;

} B_coeffs[NUM_STAGES] = {

1.000000F, -2.000000F, 1.000000F,

1.000000F, -2.000000F, 1.000000F,

};

const int Bscale = 2; /* to scale B-coeffs into the fract */

/* range (must be a power of 2) */

/* Coefficients and delay line for the iir function

(use separate memory banks for best performance)

*/

section("L1_data_a") fract16 coeffs[NUM_STAGES * 5];

section("L1_data_b") fract16 delay[NUM_STAGES * 2];

iir_state_fr16 filter_state;

/* Input and output arrays */

fract16 signal[NUM_SAMPLES];

fract16 output[NUM_SAMPLES];

DSP Run-Time Library Guide

4-208 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

int k;

/* Transform the A-coefficients and B-coefficients from a

filter design tool into the form required by iir_fr16

-> A0 coefficients are assumed to be 1.0, and are not

passed to the iir function

-> A1 and A2 coefficients must be scaled against the A0

coefficient (use the iirdf1_fr16 function instead if

the A1 and A2 coefficients are larger than A0)

-> scale the B coefficients to fit into the fractional

range [-1..1); the scale factor must be a power of 2

*/

for (k = 0; k < NUM_STAGES; k++) {

coeffs[(5*k)+0] = float_to_fr16 (A_coeffs[k].a2);

coeffs[(5*k)+1] = float_to_fr16 (A_coeffs[k].a1);

coeffs[(5*k)+2] = float_to_fr16 (B_coeffs[k].b2/Bscale);

coeffs[(5*k)+3] = float_to_fr16 (B_coeffs[k].b1/Bscale);

coeffs[(5*k)+4] = float_to_fr16 (B_coeffs[k].b0/Bscale);

}

/* Configure filter state */

iir_init (filter_state,coeffs,delay,NUM_STAGES);

/* Zero delay line to start or reset the filter */

for (k = 0; k < (NUM_STAGES * 2); k++)

delay[k] =0;

/* Compute filter response */

iir_fr16 (signal,output,NUM_SAMPLES,&filter_state);

/* Undo scaling B coefficients */

for (k = 0; k < NUM_SAMPLES; k++)

output[k] = output[k] * (Bscale * NUM_STAGES);

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-209
for Blackfin Processors

DSP Run-Time Library

iirdf1

Direct form I impulse response filter

Synopsis

#include <filter.h>

void iirdf1_fr16(const fract16 input[],

fract16 output[],

int length,

iirdf1_state_fr16 *filter_state);

void iirdf1_fx16(const _Fract input[],

_Fract output[],

int length,

iirdf1_state_fx16 *filter_state);

void iirdf1_fr32(const fract32 input[],

fract32 output[],

int length,

iirdf1_state_fr32 *filter_state);

void iirdf1_fx32(const long _Fract input[],

long _Fract output[],

int length,

iirdf1_state_fx32 *filter_state);

The iirdf1_fr16 function uses the following structure to maintain the
state of the filter.

typedef struct

{

fract16 *c; /* coefficients */

fract16 *d; /* start of delay line */

fract16 *p; /* read/write pointer */

DSP Run-Time Library Guide

4-210 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

int k; /* 2*number of stages + 1 */

} iirdf1_state_fr16;

The iirdf1_fx16 function uses the following structure to maintain the
state of the filter.

typedef struct

{

_Fract *c; /* coefficients */

_Fract *d; /* start of delay line */

_Fract *p; /* read/write pointer */

int k; /* 2*number of stages + 1 */

} iirdf1_state_fx16;

The iirdf1_fr32 function uses the following structure to maintain the
state of the filter.

typedef struct

{

fract32 *c; /* coefficients */

fract32 *d; /* start of delay line */

fract32 *p; /* read/write pointer */

int k; /* 2*number of stages + 1 */

} iirdf1_state_fr32;

The iirdf1_fx32 function uses the following structure to maintain the
state of the filter.

typedef struct

{

long _Fract *c; /* coefficients */

long _Fract *d; /* start of delay line */

long _Fract *p; /* read/write pointer */

int k; /* 2*number of stages + 1 */

} iirdf1_state_fx32;

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-211
for Blackfin Processors

DSP Run-Time Library

Description

The iirfd1 functions implement a direct form I infinite impulse response
(IIR) filter. They generate the filtered response of the input data input
and store the result in the output vector output. The number of input
samples and the length of the output vector is specified by the argument
length.

The functions maintain the filter state in the structured variable
filter_state, which must be declared and initialized before calling the
function. The macro iirdf1_init, defined in the filter.h header file, is
available to initialize the structure.

The macro is defined as:

#define iirdf1_init(state, coeffs, delay, stages) \

(state).c = (coeffs); \

(state).d = (delay); \

(state).p = (delay); \

(state).k = (2*(stages)+1)

The characteristics of the filter are dependent upon the filter coefficients
and the number of stages. The A-coefficients and the B-coefficients for
each stage are stored in a vector that is addressed by the pointer
filter_state->c. This vector should be generated by the
coeff_iirdf1_fr16 function (on page 4-120) for use with iirdf1_fr16,
coeff_iirdf1_fx16 for use with iirdf1_fx16, coeff_iirdf1_fr32 for use
with iirdf1_fr32, and by coeff_iirdf1_fx32 for use with iirdf1_fx32.
The variable filter_state->k should be set to the expression (2*stages)
+ 1.

 Each of the iirdf1 and iir functions assume that the value of the
A0 coefficients is 1.0, and that all other A-coefficients have been
scaled according. For the iir functions, this also implies that the
value of the A0 coefficient is greater than both the A1 and A2 for all

DSP Run-Time Library Guide

4-212 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

stages. This restriction does not apply to the iirdf1 functions
because the coefficients are specified as floating-point values to the
coeff_iirdf1 function.

Each filter should have its own delay line which is a vector of type fract16
(for iirdf1_fr16), _Fract (for irrdf1_fx16). fract32 (for iirdf1_fr32),
or long _Fract (for iirdf1_fx32) whose length is equal to (4 * stages)
+ 2. The vector should be initially cleared to zero and should not other-
wise be modified by the user program. The structure member
filter_state->d should be set to the start of the delay line, and the func-
tion uses filter_state->p to keep track of its current position within the
vector. For optimum performance, coefficient and state arrays should be
allocated in separate memory blocks.

The iirdf1 functions will adjust the output by the scaling factor that was
applied to the A-coefficients and the B-coefficients by the coeff_iirfd1
functions.

 It is possible the filter’s gain will cause the filtered response to be
saturated. To avoid the saturation, the B-coefficients can be scaled
before calling the coeff_iirdf1 functions. For more information,
refer to the example below.

Algorithm

The following equation is the basis of the algorithm.

where:
V = B0 * x(i) + B1 * x(i-1) + B2 * x(i-2)

y(i) = V + A1 * y(i-1) + A2 * y(i-2)

i = {0, 1, .., length-1}

H z()
B0 B1z 1– B2z 2–+ +

1 A1z 1–()– A2z 2–()–
--=

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-213
for Blackfin Processors

DSP Run-Time Library

x = input

y = output

Domain

[-1.0 , +1.0)

Example

#include <filter.h>

#include <vector.h>

#define NSAMPLES 50

#define NSTAGES 2

/* Coefficients for the coeff_iirdf1_fr16 function */

const float a_coeffs[(2 * NSTAGES)] = { . . . };

const float b_coeffs[(2 * NSTAGES) + 1] = { . . . };

/* Coefficients for the iirdf1_fr16 function */

fract16 df1_coeffs[(4 * NSTAGES) + 2];

/* Input, Output, Delay Line, and Filter State */

fract16 input[NSAMPLES], output[NSAMPLES];

fract16 delay[(4 * NSTAGES) + 2];

iirdf1_state_fr16 state;

float gain;

int i;

/* Initialize filter description */

iirdf1_init (state,df1_coeffs,delay,NSTAGES);

DSP Run-Time Library Guide

4-214 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

/* Initialize the delay line */

for (i = 0; i < ((4 * NSTAGES) + 2); i++)

delay[i] = 0;

/* Convert coefficients */

if (gain >= 1.0F)

{

vecsmltf (b_coeffs,(1.0F/gain),b_coeffs,((2*NSTAGES)+1));

}

coeff_iirdf1_fr16 (a_coeffs,b_coeffs,df1_coeffs,NSTAGES);

/* Call the function */

iirdf1_fr16 (input,output,NSAMPLES,&state);

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-215
for Blackfin Processors

DSP Run-Time Library

max

Maximum

Synopsis

#include <math.h>

int max (int parm1, int parm2);

long int lmax (long int parm1, long int parm2);

long long int llmax (long long int parm1, long long int parm2);

float fmaxf (float parm1, float parm2);

double fmax (double parm1, double parm2);
long double fmaxd (long double parm1, long double parm2);

fract16 max_fr16 (fract16 parm1, fract16 parm2);

fract32 max_fr32 (fract32 parm1, fract32 parm2);

_Fract max_fx16 (_Fract parm1, _Fract parm2);

long _Fract max_fx32 (long _Fract parm1, long _Fract parm2);

Description

The max functions return the larger of their two arguments.

Algorithm

if (parm1 > parm2)

return (parm1)

else

return (parm2)

Domain

Full range for type of parameters.

DSP Run-Time Library Guide

4-216 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

mean

Mean

Synopsis

#include <stats.h>

float meanf(const float samples[],

int sample_length);

double mean(const double samples[],

int sample_length);

long double meand(const long double samples[],

int sample_length);

fract16 mean_fr16(const fract16 samples[],

int sample_length);

_Fract mean_fx16(const _Fract samples[],

int sample_length);

fract32 mean_fr32(const fract32 samples[],

int sample_length);

long _Fract mean_fx32(const long _Fract samples[],

int sample_length);

Description

The mean functions return the mean of the input array samples[].
The number of elements in the array is sample_length.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-217
for Blackfin Processors

DSP Run-Time Library

Algorithm

The following equation is the basis of the algorithm.

Error Conditions

The mean_fr16 and mean_fx16 functions can be used to compute the mean
of up to 65535 input data with a value of 0x8000 before the sum ai satu-
rates. The mean_fr32 and mean_fx32 functions can be used to compute
the mean of up to 4294967295 input data with a value of 0x80000000
before the sum ai saturates.

Domain

[–3.4e38 , +3.4e38] for meanf()

[–1.7e308 , +1.7e308] for meand()

[–1.0 , +1.0) for mean_fr16(), mean_fx16(),
mean_fr32(), mean_fx32()

c
1
n
--- ai

i 0=

n 1–


 
 
 
 

=

DSP Run-Time Library Guide

4-218 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

min

Minimum

Synopsis

#include <math.h>

int min (int parm1, int parm2);

long int lmin (long int parm1, long int parm2);
long long int llmin (long long int parm1, long long int parm2);

float fminf (float parm1, float parm2);

double fmin (double parm1, double parm2);
long double fmind (long double parm1, long double parm2);

fract16 min_fr16 (fract16 parm1, fract16 parm2);

fract32 min_fr32 (fract32 parm1, fract32 parm2);

_Fract min_fx16 (_Fract parm1, _Fract parm2);

long _Fract min_fx32 (long _Fract parm1, long _Fract parm2);

Description

The min functions return the smaller of their two arguments.

Algorithm

if (parm1 < parm2)

return (parm1)

else

return (parm2)

Domain

Full range for type of parameters used.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-219
for Blackfin Processors

DSP Run-Time Library

mu_compress

µ-law compression

Synopsis

#include <filter.h>

void mu_compress(const short input[],

short output[],

int length);

Description

The mu_compress function takes a vector of linear 14-bit signed speech
samples and performs µ-law compression according to ITU recommenda-
tion G.711. Each sample is compressed to 8 bits and is returned in the
vector pointed to by output.

Algorithm

C(k)= mu_law compression of A(k) for k = 0 to length-1

Domain

Content of input array: [–8192 , 8191]

DSP Run-Time Library Guide

4-220 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

mu_expand

µ-law expansion

Synopsis

#include <filter.h>

void mu_expand(const short input[],

short output[],

int length);

Description

The mu_expand function inputs a vector of 8-bit compressed speech sam-
ples and expands them according to ITU recommendation G.711. Each
input value is expanded to a linear 14-bit signed sample in accordance
with the µ-law definition and is returned in the vector pointed to output.

Algorithm

C(k)= mu_law expansion of A(k) for k = 0 to length-1

Domain

Content of input array: [0 , 255]

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-221
for Blackfin Processors

DSP Run-Time Library

norm

Normalization

Synopsis

#include <complex.h>

complex_float normf (complex_float a);

complex_double norm (complex_double a);

complex_long_double normd (complex_long_double a);

Description

The normalization functions normalize the complex input a and return
the result.

Algorithm

The following equations are the basis of the algorithm.

Domain

[–3.4e38 , +3.4e38] for normf()

[–1.7e308 , +1.7e308] for normd()

Re c() Re a()
Re2 a() Im2 a()+

--=

Im c() Im a()
Re2 a() Im2 a()+

--=

DSP Run-Time Library Guide

4-222 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

polar

Convert polar to Cartesian notation

Synopsis

#include <complex.h>

complex_float polarf(float magnitude,

float phase);

complex_double polar(double magnitude,

double phase);

complex_long_double polard(long double magnitude,

long double phase);

complex_fract16 polar_fr16(fract16 magnitude,

fract16 phase);
complex_fract32 polar_fr32(fract32 magnitude,

fract32 phase);

complex_fract16 polar_fx_fr16(_Fract magnitude,

_Fract phase);
complex_fract32 polar_fx_fr32(long _Fract magnitude,

long _Fract phase);

Description

The polar functions transform the polar coordinate, specified by the argu-
ments magnitude and phase, into a Cartesian coordinate and return the
result as a complex number in which the x-axis is represented by the real
part, and the y-axis by the imaginary part. The phase argument is inter-
preted as radians.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-223
for Blackfin Processors

DSP Run-Time Library

The phase must be scaled by 2π and must be in the range [0x8000,
0x7fff] for the polar_fr16 and polar_fx_fr16 functions, and in the
range [0x80000000, 0x7fffffff] for the polar_fr32 and polar_fx_fr32
functions. The value of the phase may be either positive or negative. Posi-
tive values are interpreted as an anti-clockwise motion around a circle with
a radius equal to the magnitude as shown in Table 4-11. Negative values
for the phase argument are interpreted as a clockwise movement.

Algorithm

The following equations are the basis of the algorithm.

Re(c) = r*cos(θ)

Im(c) = r*sin(θ)

where:
θ is the phase
r is the magnitude

Table 4-11. Positive and Negative Phases for Fractional Polar Functions

Radians Phase

0 0.0 -1

π/2 0.25(0x2000) -0.75

π 0.50(0x4000) -0.5

3/2π 0.75(0x6000) -0.25

<2π 0.999(0x7fff)

DSP Run-Time Library Guide

4-224 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Domain

Example

#include <complex.h>

#include <fract2float_conv.h>

#define PI 3.14159265

complex_fract16 point;

float phase_float;

fract16 phase_fr16;

fract16 mag_fr16;

phase_float = PI;

phase_fr16 = float_to_fr16(phase_float / (2*PI));

mag_fr16 = 0x0200;

point = polar_fr16 (mag_fr16,phase_fr16);

/* point.re = 0xfe00 */

/* point.im = 0x0000 */

phase = [–1.0294e+5, 1.0294e+5]
magnitude = [–3.4e38 , +3.4e38]

for polarf ()

phase = [–8.43315e8 , 8.43315e8]
magnitude = [–1.7e308 , +1.7e308]

for polard ()

[–1.0 , +1.0) for polar_fr16(),
polar_fx_fr16(),
polar_fr32() and
polar_fx_fr32()

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-225
for Blackfin Processors

DSP Run-Time Library

rfft

N-point radix-2 real input FFT

Synopsis

#include <filter.h>

void rfft_fr16(const fract16 input[],

complex_fract16 output[],

const complex_fract16 twiddle_table[],

int twiddle_stride,
int fft_size,

int *block_exponent,

int scale_method);

void rfft_fx_fr16(const _Fract input[],

complex_fract16 output[],

const complex_fract16 twiddle_table[],

int twiddle_stride,
int fft_size,

int *block_exponent,

int scale_method);

void rfft_fr32(const fract32 input[],

complex_fract32 output[],

const complex_fract32 twiddle_table[],

int twiddle_stride,
int fft_size,

int *block_exponent,

int scale_method);

void rfft_fx_fr32(const long _Fract input[],

complex_fract32 output[],

const complex_fract32 twiddle_table[],

DSP Run-Time Library Guide

4-226 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

int twiddle_stride,
int fft_size,

int *block_exponent,

int scale_method);

Description

The rfft functions transform the time domain real input signal sequence
to the frequency domain by using the radix-2 FFT. The functions take
advantage of the fact that the imaginary part of the input equals zero,
which in turn eliminates half of the multiplications in the butterfly.

The size of the input array input and the output array output is fft_size,
where fft_size represents the number of points in the FFT. If the input
data can be overwritten, the optimum memory usage can be achieved by
also specifying the input array as the output array, provided that the mem-
ory size of the input array is at least 2*fft_size.

The twiddle table is passed in the argument twiddle_table, which must
contain at least fft_size/2 twiddle factors. The table is composed of
+cosine and -sine coefficients and may be initialized by using the func-
tion twidfftrad2_fr16 (on page 4-242) for use with rfft_fr16 or
rfft_fx_fr16, and twidfftrad2_fr32 for use with rfft_fr32 or
rfft_fx_fr32. For optimum performance, the twiddle table should be
allocated in a different memory section than the output array.

The argument twiddle_stride should be set to 1 if the twiddle table was
originally created for an FFT of size fft_size. If the twiddle table was cre-
ated for a larger FFT of size N*fft_size (where N is a power of 2), then
twiddle_stride should be set to N. This argument therefore provides a
way of using a single twiddle table to calculate FFTs of different sizes.

The argument scale_method controls how the function will apply scaling
while computing a Fourier Transform. The available options are static
scaling (dividing the input at any stage by 2), dynamic scaling (dividing
the input at any stage by 2 if the largest absolute input value is greater or

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-227
for Blackfin Processors

DSP Run-Time Library

equal than 0.25), or no scaling. Note that the number of stages required to
compute an FFT is dependent on the size of the FFT and is given by the
formula log2(fft_size).

If static scaling is selected, the function will always scale intermediate
results, thus preventing overflow. The loss of precision increases in line
with fft_size and is more pronounced for input signals with a small mag-
nitude (since the output is scaled by 1/fft_size). To select static scaling,
set the argument scale_method to a value of 1. The block exponent
returned will be log2(fft_size).

If dynamic scaling is selected, the function will inspect intermediate
results and only apply scaling where required to prevent overflow. The loss
of precision increases in line with the size of the FFT and is more pro-
nounced for input signals with a large magnitude (since these factors
increase the need for scaling). The requirement to inspect intermediate
results will have an impact on performance. To select dynamic scaling, set
the argument scale_method to a value of 2. The block exponent returned
will be between 0 and log2(fft_size), depending upon the number of
times that the function scales the intermediate set of results.

If no scaling is selected, the function will never scale intermediate results.
There will be no loss of precision unless overflow occurs and in this case
the function will generate saturated results. The likelihood of saturation
increases in line with the fft_size and is more pronounced for input sig-
nals with a large magnitude. To select no scaling, set the argument
scale_method to 3. The block exponent returned will be 0.

 Any values for the argument scale_method other than 2 or 3 will
result in the function performing static scaling.

Error Conditions

The rfft functions abort if the FFT size is less than 8 or if the twiddle
stride is less than 1.

DSP Run-Time Library Guide

4-228 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Algorithm

See “cfft” on page 4-98 for more information.

Domain

Input sequence length fft_size must be a power of 2 and at least 8.

Example

#include <filter.h>

#define FFT_SIZE1 32

#define FFT_SIZE2 256

#define TWID_SIZE (FFT_SIZE2/2)

fract32 in1[FFT_SIZE1], in2[FFT_SIZE2];

complex_fract32 out1[FFT_SIZE1], out2[FFT_SIZE2];

complex_fract32 twiddle[TWID_SIZE];

int block_exponent1, block_exponent2;

twidfftrad2_fr32 (twiddle, FFT_SIZE2);

rfft_fr32 (in1, out1, twiddle,

(FFT_SIZE2 / FFT_SIZE1), FFT_SIZE1,

&block_exponent1, 1 /*static scaling*/);

rfft_fr32 (in2, out2, twiddle, 1, FFT_SIZE2,

&block_exponent2, 2 /*dynamic scaling*/);

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-229
for Blackfin Processors

DSP Run-Time Library

rfftf

Fast N-point real input Fast Fourier Transform

Synopsis

#include <filter.h>

void rfftf_fr32(const fract32 input[],

complex_fract32 output[],

const complex_fract32 twiddle_table[],

int twiddle_stride,

int fft_size);

void rfftf_fx_fr32(const long _Fract input[],

complex_fract32 output[],

const complex_fract32 twiddle_table[],

int twiddle_stride,

int fft_size);

Description

The rfftf functions transform the time domain real input signal sequence
to the frequency domain by using the accelerated version of the “Discrete
Fourier Transform” known as a “Fast Fourier Transform” or FFT. They
decimate in frequency using a mixed-radix algorithm.

The size of the input array input and the output array output is fft_size,
where fft_size represents the number of points in the FFT. The number
of points in the FFT must be a power of 2 and must be at least 16.

As the complex spectrum of a real FFT is symmetrical about the midpoint,
the rfftf functions only generate the first (fft_size/2)+1 points of the
FFT, and so the size of the output array output must be at least of length

DSP Run-Time Library Guide

4-230 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

(fft_size/2) + 1. After returning, the output array will contain the fol-
lowing values:

• DC component of the signal in output[0].re (output[0].im = 0)

• First half of the complex spectrum in output[1]
...output[(fft_size/2)-1]

• Nyquist frequency in output[fft_size/2].re (with
output[fft_size/2].im = 0)

Refer to the Example section below to see how an application would con-
struct the full complex spectrum using the symmetry of a real FFT.

The twiddle table is passed in the argument twiddle_table, which must
contain at least 3*fft_size/4 complex twiddle factors. The table should
be initialized with complex twiddle factors in which the real coefficients
are positive cosine values and the imaginary coefficients are negative sine
values. The function twidfftf_fr32 may be used to initialize the array.

If the twiddle table has been generated for an fft_size FFT, then the
twiddle_stride argument should be set 1. On the other hand, if the twid-
dle table has been generated for an FFT of size x, where x > fft_size,
then the twiddle_stride argument should be set to x / fft_size. The
twiddle_stride argument therefore allows the same twiddle table to be
used for different sizes of FFT. (The twiddle_stride argument cannot be
either zero or negative).

It is recommended that the output array not be allocated in the same 4K
memory sub-bank as the input array or the twiddle table, as the perfor-
mance of the function may otherwise degrade due to data bank collisions.

The functions use static scaling of intermediate results to prevent over-
flow, and the final output therefore is scaled by 1/fft_size.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-231
for Blackfin Processors

DSP Run-Time Library

Algorithm

The following equation is the basis of the algorithm.

The implementation uses a mixed-radix algorithm (radix4 and radix-2).

Example

#include <filter.h>

#include <complex.h>

#define FFTSIZE 32

#define TWIDSIZE ((3 * FFTSIZE) / 4)

fract32 sigdata[FFTSIZE];

complex_fract32 r_output[FFTSIZE];

complex_fract32 twiddles[TWIDSIZE];

int i;

/* Initialize the twiddle table */

twidfftf_fr32(twiddles,FFTSIZE);

/* Calculate the FFT of a real signal */

rfftf_fr32(sigdata, r_output, twiddles,1,FFTSIZE);

/* Add the 2nd half of the spectrum */

x n() 1
N
---- X k()WN

nk–

k 0=

N 1–

⋅=

DSP Run-Time Library Guide

4-232 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

for (i = 1; i < (FFTSIZE/2); i++) {

r_output[FFTSIZE - i] = conj_fr32(r_output[i]);

}

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-233
for Blackfin Processors

DSP Run-Time Library

rfftrad4

N-point radix-4 real input FFT

Synopsis

#include <filter.h>

void rfftrad4_fr16(const fract16 input[],

complex_fract16 temp[],

complex_fract16 output[],

const complex_fract16 twiddle_table[],

int twiddle_stride,

int fft_size,

int block_exponent,

int scale_method);

Description

This function transforms the time domain real input signal sequence to
the frequency domain by using the radix-4 Fast Fourier Transform. The
rfftrad4_fr16 function takes advantage of the fact that the imaginary
part of the input equals zero, which in turn eliminates half of the multipli-
cations in the butterfly.

The size of the input array input, the output array out, and the temporary
working buffer temp is fft_size, where fft_size represents the number
of points in the FFT. To avoid potential data bank collisions, the input
and temporary buffers should reside in different memory banks. This
results in improved run-time performance. If the input data can be over-
written, the optimum memory usage can be achieved by also specifying
the input array as the output array, provided that the memory size of the
input array is at least 2*fft_size.

The twiddle table is passed in the argument twiddle_table, which must
contain at least 3*fft_size/4 twiddle factors. The function

DSP Run-Time Library Guide

4-234 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

twidfftrad4_fr16 may be used to initialize the array. If the twiddle table
contains more factors than needed for a particular call on rfftrad4_fr16,
then the stride factor has to be set appropriately; otherwise it should be set
to 1.

The arguments block_exponent and scale_method have been added for
future expansion. These arguments are ignored by the function. To avoid
overflow, the function performs static scaling by first dividing the input
by fft_size.

 This function is provided for backward compatibility with existing
applications. New applications should use the rfft_fr16
(on page 4-225) function instead.

Algorithm

See “cfftrad4” on page 4-106 for more information.

Domain

Input sequence length fft_size must be a power of 4 and at least 8.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-235
for Blackfin Processors

DSP Run-Time Library

rfft2d

N x n point 2-D real input FFT

Synopsis

#include <filter.h>

void rfft2d_fr16(const fract16 input[],

complex_fract16 temp[],

complex_fract16 output[],

const complex_fract16 twiddle_table[],

int twiddle_stride,

int fft_size,

int block_exponent,

int scale_method);

void rfft2d_fx_fr16(const _Fract input[],

complex_fract16 temp[],

complex_fract16 output[],

const complex_fract16 twiddle_table[],

int twiddle_stride,

int fft_size,

int block_exponent,

int scale_method);

void rfft2d_fr32(const fract32 input[],

complex_fract32 temp[],

complex_fract32 output[],

const complex_fract32 twiddle_table[],

int twiddle_stride,

int fft_size);

void rfft2d_fx_fr32(const long _Fract input[],

complex_fract32 temp[],

DSP Run-Time Library Guide

4-236 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

complex_fract32 output[],

const complex_fract32 twiddle_table[],

int twiddle_stride,

int fft_size);

Description

The rfft2d functions compute a two-dimensional Fast Fourier Transform
of the real input matrix input[fft_size][fft_size], and store the result
to the complex output matrix output[fft_size][fft_size].

The size of the input array input, the output array output, and the tempo-
rary working buffer temp is fft_size*fft_size, where fft_size
represents the number of rows and number of columns in the FFT. The
number of points in the FFT must be a power of 2 and must be at least 4
for rfft2d_fr16 and at least 16 for rfft2d_fr32.

Memory bank collisions, which have an adverse effect on run-time perfor-
mance, may be avoided by allocating the temporary array and the twiddle
table in separate memory banks if using rfft2d_fr16, or by allocating the
twiddle table in a different memory bank than the output array and the
temporary array if using rfft2d_fr32. If the input data can be overwrit-
ten, the optimum memory usage can be achieved by also specifying the
input array as the output array, provided that the memory size of the input
array is at least 2*fft_size*fft_size.

The twiddle table is passed in the argument twiddle_table, which must
contain at least fft_size twiddle factors for rfft2d_fr16 and at least
3*fft_size/4 twiddle factors for rfft2d_fr32. The table should be initial-
ized with complex twiddle factors in which the real coefficients are
positive cosine values and the imaginary coefficients are negative sine val-
ues. The function twidfft2d_fr16 may be used to initialize the arrays for
rfft2d_fr16, while twidfft2d_fr32 may be used to initialize the arrays
for rfft2d_fr32.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-237
for Blackfin Processors

DSP Run-Time Library

If the twiddle table has been generated for an fft_size FFT, the
twiddle_stride argument should be set 1. On the other hand, if the twid-
dle table has been generated for an FFT of size x, where x > fft_size, then
the twiddle_stride argument should be set to x / fft_size. The
twiddle_stride argument therefore allows the same twiddle table to be
used for different sizes of FFT. (The twiddle_stride argument cannot be
either zero or negative).

To avoid overflow, the functions scale the output by fft_size*fft_size.

The rfft2d_fr16 arguments block_exponent and scale_method have been
added for future expansion. These arguments are ignored by the function.

Error Conditions

The rfft2d functions abort if the twiddle stride is less than 1, or if fft_size
is less than 4 for rfft2d_fr16 or rfft2d_fx_fr16, or if fft_size is less than
16 for rfft2d_fr32 or rfft2d_fx_fr32.

Algorithm

The following equation is the basis of the algorithm.

where:
i = {0, 1, ..., n-1}
j = {0, 1, ..., n-1}

c i j,() a k l,() e 2π– i k⋅ j l⋅+()⋅() n⁄•
l 0=

n 1–


k 0=

n 1–

=

DSP Run-Time Library Guide

4-238 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Domain

Input sequence length fft_size must be a power of 2 and at least 4 for
rfft2d_fr16 and at least 16 for rfft2d_fr32.

Example

#include <filter.h>

#define FFT_SIZE1 128

#define FFT_SIZE2 32

#define TWIDDLE_STRIDE1 (FFT_SIZE1 / FFT_SIZE1)

#define TWIDDLE_STRIDE2 (FFT_SIZE1 / FFT_SIZE2)

complex_fract32 out_a[FFT_SIZE1][FFT_SIZE1];

complex_fract32 out_b[FFT_SIZE2][FFT_SIZE2];

complex_fract32 in[FFT_SIZE2][FFT_SIZE2];

complex_fract32 tmp[FFT_SIZE1][FFT_SIZE1];

complex_fract32 twiddle[(3*FFT_SIZE1)/4];

fract32 *in1 = (fract32*)&out_a;
complex_fract32 *out1 = (complex_fract32*)&out_a;
fract32 *in2 = (fract32*)∈
complex_fract32 *out2 = (complex_fract32*)&out_b;
complex_fract32 *tmp = (complex_fract32*)&temp;

twidfft2d_fr32 (twiddle, FFT_SIZE1);

/* In-place computation */

rfft2d_fr32(in1, tmp, out1, twiddle, TWIDDLE_STRIDE1, FFT_SIZE1);

rfft2d_fr32(in2, tmp, out2, twiddle, TWIDDLE_STRIDE2, FFT_SIZE2);

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-239
for Blackfin Processors

DSP Run-Time Library

rms

Root mean square

Synopsis

#include <stats.h>

float rmsf(const float samples[],

int sample_length);

double rms(const double samples[],

int sample_length);

long double rmsd(const long double samples[],

int sample_length);

fract16 rms_fr16(const fract16 samples[],

int sample_length);

fract32 rms_fr32(const fract32 samples[],

int sample_length);

_Fract rms_fx16(const _Fract samples[],

int sample_length);

long _Fract rms_fx32(const long _Fract samples[],

 int sample_length);

Description

The root mean square functions return the root mean square of the ele-
ments within the input vector samples[]. The number of elements in the
vector is sample_length.

DSP Run-Time Library Guide

4-240 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Algorithm

The following equation is the basis of the algorithm.

where:
a = samples
n = sample_length

Domain

[–3.4e38 , +3.4e38] for rmsf()

[–1.7e308 , +1.7e308] for rmsd()

[–1.0 , +1.0) for rms_fr16(), rms_fx16(),
rms_fr32() and rms_fx32()

c

ai
2

i 0=

n 1–



n
---------------=

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-241
for Blackfin Processors

DSP Run-Time Library

rsqrt

Reciprocal square root

Synopsis

#include <math.h>

float rsqrtf (float a);

double rsqrt (double a);
long double rsqrtd (long double a);

Description

The rsqrt functions calculate the reciprocal of the square root of the
number a. If a is negative, the functions return 0.

Algorithm

The following equation is the basis of the algorithm.

Domain

[0.0 , 3.4e38] for rsqrtf()

[0.0 , +1.7e308] for rsqrtd()

c
1

a
------=

DSP Run-Time Library Guide

4-242 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

twidfftrad2

Generate FFT twiddle factors for radix-2 FFT

Synopsis

#include <filter.h>

void twidfftrad2_fr16(complex_fract16 twiddle_table[],

int fft_size);

void twidfftrad2_fr32(complex_fract32 twiddle_table[],

int fft_size);

Description

The twidfftrad2 functions calculate complex twiddle coefficients for a
radix-2 FFT of size fft_size and return the coefficients in the vector
twiddle_table. The size of the vector, which is known as a twiddle table,
must be at least fft_size/2. It contains pairs of sine and cosine values that
are used by an FFT function to calculate a Fast Fourier Transform. The
table generated by the function twidfftrad2_fr16 may be used by any of
the functions cfft_fr16, ifft_fr16, rfft_fr16 and rfft_fx_fr16, and
the table generated by the function twidfftrad2_fr32 may be used by any
of the functions cfft_fr32, ifft_fr32, rfft_fr32 and rfft_fx_fr32.

A twiddle table of a given size will contain constant values, and so typi-
cally such a table would be generated only once during the development
cycle of an application and would thereafter be preserved by the applica-
tion in some suitable form.

An application that calculates FFTs of different sizes does not require
multiple twiddle tables. A single twiddle table can be used to compute the
FFTs provided that the table is created for the largest FFT that the appli-
cation expects to generate. Each of the FFT functions cfft, ifft, and

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-243
for Blackfin Processors

DSP Run-Time Library

rfft have a twiddle stride argument that the application would set to 1
when it is generating an FFT with the largest number of data points.

To generate smaller FFTs, the twiddle stride argument should be set
according to the formula:

For example, if a twiddle table had been created for a 1024-point FFT,
then the same table could also be used to calculate a 256-point FFT by
setting the twiddle stride argument to 4.

Algorithm

This function takes FFT length fft_size as an input parameter and gen-
erates the lookup table of complex twiddle coefficients. The samples are:

where:
n = fft_size
k = {0, 1, 2, ..., n/2 - 1}

Domain

The number of points in the FFT must be a power of 2 and at least 8.

largest FFT size
current FFT size

twid_re(k)
2π
n

------k 
 cos=

twid_im(k)
2π
n

------k 
 sin–=

DSP Run-Time Library Guide

4-244 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Example

#include <filter.h>

#define FFT_SIZE1 256

#define FFT_SIZE2 64

#define TWID_SIZE (FFT_SIZE1/2)

complex_fract32 input1[FFT_SIZE1];

complex_fract32 output1[FFT_SIZE1];

complex_fract32 input2[FFT_SIZE2];

complex_fract32 output2[FFT_SIZE2];

complex_fract32 twiddles[TWID_SIZE];

int block_exponent1, block_exponent2;

int scale_method = 1;

twidfftrad2_fr32 (twiddles, FFT_SIZE1);

cfft_fr32 (input1, output1, twiddles, 1, FFT_SIZE1,

&block_exponent1, scale_method);

cfft_fr32 (input1, output2, twiddles, (FFT_SIZE1/FFT_SIZE2),

FFT_SIZE2, &block_exponent2, scale_method);

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-245
for Blackfin Processors

DSP Run-Time Library

twidfftrad4

Generate FFT twiddle factors for radix-4 FFT

Synopsis

#include <filter.h>

void twidfftrad4_fr16(complex_fract16 twiddle_table[],

int fft_size);

void twidfft_fr16(complex_fract16 twiddle_table[],

int fft_size);

Description

The twidfftrad4_fr16 function initializes a table with complex twiddle
factors for a radix-4 FFT. The number of points in the FFT are defined by
fft_size, and the coefficients are returned in the twiddle table
twiddle_table.

The size of the twiddle table must be at least 3*fft_size/4, the length of
the FFT input sequence. A table can accommodate several FFTs of differ-
ent sizes by allocating the table at maximum size, and then using the stride
argument of the FFT function to specify the step size through the table.

If the stride is set to 1, the FFT function uses all the table; if your FFT has
only a quarter of the number of points of the largest FFT, the stride
should be 4.

For efficiency, the twiddle table is normally generated once during pro-
gram initialization and is then supplied to the FFT routine as a separate
argument.

 The twidfftrad4_fr16 function and the radix-4 FFT functions are
only provided for backwards compatibility with existing applica-
tions. New applications should use one of the radix-2 FFT

DSP Run-Time Library Guide

4-246 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

functions instead (see cfft, ifft, rfft). The twiddle table for the
radix-2 FFT functions may be generated by calling
twidfftrad2_fr16.

The twidfft_fr16 function may be used as an alternative to the
twidfftrad4_fr16. Both routines have the same functionality.

Algorithm

This function takes FFT length fft_size as an input parameter and gen-
erates the lookup table of complex twiddle coefficients.

The samples generated are:

where:
n = fft_size
k = {0, 1, 2, ..., ¾n - 1}

Domain

The FFT length fft_size must be a power of 4 and at least 16.

twid_re(k)
2π
n

------k 
 cos=

twid_im(k)
2π
n

------k 
 sin=

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-247
for Blackfin Processors

DSP Run-Time Library

twidfftf

Generate FFT twiddle factors for a fast FFT

Synopsis

#include <filter.h>

void twidfftf_fr16(complex_fract16 twiddle_table[],

int fft_size);

void twidfftf_fr32(complex_fract32 twiddle_table[],

int fft_size);

Description

The twidfftf_fr16 function generates complex twiddle factors for the fast
radix-4 FFT function cfftf_fr16, while the twidfftf_fr32 function gen-
erates complex twiddle factors for the fast mixed-radix FFT functions
cfftf_fr32, ifftf_fr32, rfftf_fr32, and rfftf_fx_fr32. The twiddle
factors are pairs of cosine and sine values that are stored in the vector
twiddle_table; the FFT functions will then use this table to generate a
Fast Fourier Transform. The size of the twiddle table must be at least
3*fft_size/4 where fft_size is the number of points in the FFT.

A twiddle table of a given size will contain constant values, and so typi-
cally such a table would be generated only once during the development
cycle of an application and would thereafter be preserved by the applica-
tion in some suitable form.

An application that calculates FFTs of different sizes does not require
multiple twiddle tables. A single twiddle table can be used to compute the
FFTs provided that the table is created for the largest FFT that the appli-
cation expects to generate. Each FFT function has a twiddle stride
argument that the application would set to 1 when it is generating an FFT

DSP Run-Time Library Guide

4-248 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

with the largest number of data points. To generate smaller FFTs, the
twiddle stride argument should be set according to the formula:

For example, if a twiddle table had been created for a 1024-point FFT,
then the same table could also be used to calculate a 256-point FFT by
setting the twiddle stride argument to 4.

Error Conditions

The twidfftf functions do not return an error condition.

Algorithm

The function calculates a lookup table of complex twiddle factors.
The coefficients generated are:

where:
n = fft_size
k = {0, 1, 2, ..., ¾n – 1}

largest FFT size
current FFT size

twid_re(k)
2π
n

------k 
 cos=

twid_im(k)
2π
n

------k 
 sin–=

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-249
for Blackfin Processors

DSP Run-Time Library

Domain

The number of points in the FFT must be a power of 4 and must be at
least 16 for cfftf_fr16, and a power of 2 and at least 16 for cfftf_fr32,
ifftf_fr32, rfftf_fr32 and rfftf_fx_fr32.

Example

#include <filter.h>

#define FFT_SIZE1 256

#define FFT_SIZE2 64

#define TWIDDLE_SIZE ((3*FFT_SIZE1)/4)

complex_fract32 in1[FFT_SIZE1];
complex_fract32 out1[FFT_SIZE1];
complex_fract32 in2[FFT_SIZE2];
complex_fract32 out2[FFT_SIZE2];
complex_fract32 twiddles[TWIDDLE_SIZE];

twidfftf_fr32 (twiddles, FFT_SIZE1);

cfftf_fr32(in1, out1, twiddles, 1, FFT_SIZE1);

cfftf_fr32(in2, out2, twiddles, FFT_SIZE1/FFT_SIZE2, FFT_SIZE2);

DSP Run-Time Library Guide

4-250 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

twidfft2d

Generate FFT twiddle factors for 2-D FFT

Synopsis

#include <filter.h>

void twidfft2d_fr16 (complex_fract16 twiddle_table[],

int fft_size);

void twidfft2d_fr32 (complex_fract32 twiddle_table[],

int fft_size);

Description

The twidfft2d functions calculate complex twiddle coefficients for a 2-D
FFT of size fft_size and return the coefficients in the vector
twiddle_table. The size of the vector, which is known as a twiddle table,
must be at least fft_size for twidfft2d_fr16, and at least 3*fft_size/4
for twidfft2d_fr32. It contains pairs of sine and cosine values that are
used by an FFT function to calculate a Fast Fourier Transform. The table
generated by the function twidfft2d_fr16 may be used by any of the
functions cfft2d_fr16, ifft2d_fr16, rfft2d_fr16, and rfft2d_fx_fr16,
and the table generated by the function twidfft2d_fr32 may be used by
any of the functions cfft2d_fr32, ifft2d_fr32, rfft2d_fr32, and
rfft2d_fx_fr32.

A twiddle table of a given size will contain constant values, and so typi-
cally such a table would be generated only once during the development
cycle of an application and would thereafter be preserved by the applica-
tion in some suitable form.

An application that calculates FFTs of different sizes does not require
multiple twiddle tables. A single twiddle table can be used to compute the
FFTs provided that the table is created for the largest FFT that the appli-
cation expects to generate. Each 2-D FFT function has a twiddle stride

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-251
for Blackfin Processors

DSP Run-Time Library

argument that the application would set to 1 when it is generating an FFT
with the largest number of data points.

To generate smaller FFTs, the twiddle stride argument should be set
according to the formula:

For example, if a twiddle table had been created for a 1024-point FFT,
then the same table could also be used to calculate a 256-point FFT by
setting the twiddle stride argument to 4.

Algorithm

This function takes an FFT length (fft_size) as an input parameter and
generates the lookup table of complex twiddle coefficients.

The samples generated are:

where:
n = fft_size
k = {0, 1, 2, ..., n-1}

Domain

The number of points in the FFT must be a power of 2, and must be at
least 4 for cfft2d_fr16, ifft2d_fr16, rfft2d_fr16 and rfft2d_fx_fr16,

largest FFT size
current FFT size

twid_re(k)
2π
n

------k 
 cos=

twid_im(k)
2π
n

------k 
 sin–=

DSP Run-Time Library Guide

4-252 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

at least 8 for cfft2d_fr32 and ifft2d_fr32 and at least 16 for the
rfft2d_fr32 and rfft2d_fx_fr32 functions.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-253
for Blackfin Processors

DSP Run-Time Library

var

Variance

Synopsis

#include <stats.h>

float varf(const float samples[],

int sample_length);

double var(const double samples[],

int sample_length);

long double vard(const long double samples[],

int sample_length);

fract16 var_fr16(const fract16 samples[],

int sample_length);

_Fract var_fx16(const _Fract samples[],

int sample_length);

fract32 var_fr32(const fract32 samples[],

int sample_length);

long _Fract var_fx32(const long _Fract samples[],

int sample_length);

Description

The variance functions return the variance of the elements within the
input vector samples[]. The number of elements in the vector is
sample_length.

DSP Run-Time Library Guide

4-254 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Error Conditions

The var_fr16 and var_fx16 functions can be used to compute the mean
of up to 65535 input data with a value of 0x8000 before the sum ai satu-
rates. The var_fr32 and var_fx32 functions can be used to compute the
mean of up to 4294967295 input data with a value of 0x80000000 before
the sum ai saturates.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-255
for Blackfin Processors

DSP Run-Time Library

Algorithm

The following equation is the basis of the algorithm.

where:
a = samples
n = sample_length

Domain

[–3.4e38 , +3.4e38] for varf()

[–1.7e308 , +1.7e308] for vard()

[–1.0 , +1.0) for var_fr16(), var_fx16(),
var_fr32(), var_fx32()

c

n ai
2

i 0=

n 1–

 a1
i 0=

n 1–


 
 
 
 2

–

n n 1–()
---=

DSP Run-Time Library Guide

4-256 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

zero_cross

Count zero crossings

Synopsis

#include <stats.h>

int zero_crossf (const float samples[],

int samples_length);

int zero_cross (const double samples[],

int samples_length);

int zero_crossd (const long double samples[],

int samples_length);

int zero_cross_fr16 (const fract16 samples[],

int samples_length);

int zero_cross_fx16 (const _Fract samples[],

int samples_length);

int zero_cross_fr32 (const fract32 samples[],

int samples_length);

int zero_cross_fx32 (const long _Fract samples[],

int samples_length);

Description

The zero_cross functions return the number of times that a signal repre-
sented in the input array samples[] crosses over the zero line. If all the
input values are either positive or zero, or they are all either negative or
zero, then the functions return a zero.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual 4-257
for Blackfin Processors

DSP Run-Time Library

Algorithm

The actual algorithm is different from the one shown below because the
algorithm needs to handle the case where an element of the array is zero.
However, the following example provides a basic understanding.

if (a(i) > 0 && a(i+1) < 0)|| (a(i) < 0 && a(i+1) > 0)

the number of zeros is increased by one

 Domain

[–3.4e38 , +3.4e38] for zero_crossf ()

[–1.7e308 , +1.7e308] for zero_crossd ()

[–1.0 , +1.0) for zero_cross_fr16 (),
zero_cross_fx16 (),
zero_cross_fr32 (),
zero_cross_fx32 ()

DSP Run-Time Library Guide

4-258 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

VisualDSP++ 5.0 C/C++ Compiler and Library Manual A-1
for Blackfin Processors

A PROGRAMMING
DUAL-CORE BLACKFIN
PROCESSORS

The Blackfin processor family includes dual-core processors, such as the
ADSP-BF561 processor. In addition to other features, dual-core proces-
sors add a new dimension to application development. The dual-core
nature of the processor presents additional challenges to the programmer;
this section addresses these challenges within the context of VisualDSP++.

The appendix begins with a brief comparison of the single-core versus
dual-core Blackfin processors, before describing VisualDSP++ recom-
mended approaches to application development. Finally, it offers
guidelines for developing systems on dual-core Blackfin processors. The
appendix expects users to have an understanding of programming for mul-
tiple processors/threads.

All examples given are for the ADSP-BF561 processor.

The appendix contains:

• “Dual-Core Blackfin Architecture Overview” on page A-2

• “Approaches Supported in VisualDSP++” on page A-3

• “Single-Core Application” on page A-5

• “One Application Per Core” on page A-7

• “Single Application/Dual Core” on page A-16

• “Dual-Core Applications That Use File Attributes” on page A-22

• “Run-Time Library Functions” on page A-23

Dual-Core Blackfin Architecture Overview

A-2 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

• “Restrictions on Dual-Core Applications” on page A-25

• “Dual-Core Programming Examples” on page A-26

• “Synchronization Functions” on page A-43

For the most efficient use of information in this appendix, you should be
familiar with the Blackfin architecture and have experience in building
and executing C/C++ applications for the Blackfin architecture within the
VisualDSP++ environment. The appendix focuses only on the additional
considerations necessary for dual-core programming.

Dual-Core Blackfin Architecture
Overview

Each dual-core Blackfin processor has two Blackfin cores (core A and
core B), each with its own internal L1 memory. There is a common inter-
nal memory shared between the two cores, and both cores share access to
external memory.

Each core functions independently: they have their own reset address,
event vector table, instruction and data caches, and so on. On reset, core A
starts running from its reset address, while core B is disabled. Core B starts
running when it is enabled by core A.

 VisualDSP++ enables core B when it connects to an EZ-KIT Lite
board, as part of the program download process.

When core B starts running, it runs its own application from its own reset
address.

The two cores may use the TESTSET instruction to serialize access to shared
resources. The TESTSET instruction reads and updates a memory location
in an atomic fashion. Applications and libraries can build semaphores and
other synchronization mechanisms from this primitive.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual A-3
for Blackfin Processors

Programming Dual-Core Blackfin Processors

Refer to the ADSP-BF561 hardware reference for detailed information on
the ADSP-BF561 processor’s architecture.

Approaches Supported in VisualDSP++
VisualDSP++ supports three different approaches to project development
for dual-core Blackfin processors:

• Single-core applications
In this approach, only core A is used, and core B remains disabled.
(See “Single-Core Application” on page A-5.)

• One application per core
In this approach, each core is treated as a separate processor, built
individually. The VisualDSP++ project explicitly builds a .dxe file
for a particular core. Resource sharing is coarse-grain and is man-
aged by the developer. (See “One Application Per Core” on
page A-7.)

• One application across both cores
In this approach, a hierarchy of VisualDSP++ projects builds a sin-
gle application that supports both cores. Resource sharing is
fine-grain, managed by the linker. (See “Single Application/Dual
Core” on page A-16.)

The following sections describe these approaches in more detail.

The approaches represent increasing levels of sophistication, with corre-
sponding levels of complexity.

A single-core application allows the processor to be used as a migration
path from other Blackfin processors and as a means of running standard
and legacy applications with minimal effort. Benchmarks are typical
examples. This simplistic approach does not exploit the full potential of
the dual-core Blackfin processor but provides the fastest route for getting
existing code “up and running.”

Approaches Supported in VisualDSP++

A-4 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Having one application per core extends this simplistic approach to use
both cores. Effectively, two single-core applications are built indepen-
dently and run in parallel on the processor. The shared memory areas,
both internal and external, are each sub-divided into three areas—a sec-
tion dedicated to core A, a section dedicated to core B, and a shared
section. It is left up to the developer to arrange for shared, serialized access
to the shared areas from each of the cores.

The single-application/dual-core approach is the most powerful, because it
allows for all of the shared memory areas to be used efficiently by both
cores. Common code can be placed in shared memory to avoid duplica-
tion. Shared data can be placed in shared memory without the need for
explicit positioning. This approach allows an expert developer to exercise
fine control over the structure of the application, using the VisualDSP++
advanced linker capabilities.

The VisualDSP++ libraries and .ldf files provide support for multi-core
builds, used by the latter two approaches. This support is available
through the -multicore compiler switch and through the
__ADI_MULTICORE linker macro. (See “-multicore” on page 1-50.)

The VisualDSP++ Project Wizard provides support for generating .ldf
files, startup code and template files for your project, for each of the sup-
ported approaches. The resulting files are customized according to your
project options.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual A-5
for Blackfin Processors

Programming Dual-Core Blackfin Processors

Single-Core Application
The single-core application approach is supported by the default compiler
linker description file (.ldf). Whenever the compiler is asked to generate
an executable file without specifying an .ldf file, the compiler uses a
default .ldf file for the platform in question. For example,

ccblkfn -proc ADSP-BF561 prog.c -o prog.dxe

does not specify an .ldf file, so the compiler uses the default, whereas:

ccblkfn -proc ADSP-BF561 prog.c -o prog.dxe -T ./my.ldf

directs the compiler to use ./my.ldf as the .ldf file.

The default compiler .ldf file for the ADSP-BF561 processor is located in
<install_path>/Blackfin/ldf/. It is similar to the corresponding default
.ldf files for other Blackfin processors, such as the ADSP-BF533 proces-
sor (although with a different memory map).

The .ldf file creates a single .dxe file that runs on core A. By default, the
same .ldf file is also used for the one-application-per-core build,
described in “One Application Per Core” on page A-7.

 You can create a project of this kind using the Project Wizard, if
you select File, New, Project.... Dual-core Settings offers two
choices for single-core projects. In Single core: Single application,
only core A runs, while core B remains disabled. In Dual core: Sin-
gle application, a default program runs on core B, placing it into
IDLE mode, so that core A can change processor speed.

 When you add or customize an .ldf file via the Project Options
dialog box, a single-core application .ldf file is produced if you
select Core A under LDF Settings, Multi-Core Selection.

There is an example of this approach on page A-26.

Single-Core Application

A-6 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Shared Memory
The .ldf file divides the 128 Kbytes shared L2 internal memory as
follows:

• Lowest 32 Kbytes: reserved for core B, not used in this approach

• Next 32 Kbytes: reserved for core A, usable via section l2_sram_a

• Most of remaining 64 Kbytes: reserved for shared data, usable via
section l2_shared

• 16 bytes reserved for synchronization locks, not used by this
approach

• 1 Kbytes reserved for second-stage boot loader, not used by
<install_path>\Blackfin\LDF

Note that the lowest 64 Kbytes are partitioned between the two cores.
This is because the same .ldf file is also used for the “one application per
core” approach described later. For a single-core application, it may be
desirable to customize the .ldf file so that all of L2 internal memory is
available for core A, although this will complicate migration towards a
multi-core solution.

To place code or data into the area reserved for core A, place them into the
l2_sram_a section.

External memory is shared between the cores and can be used via the sec-
tion sdram_data.

Synchronization
Synchronization is not necessary for the single-core approach. The .ldf
file still reserves a section of internal L2 memory for synchronization
locks, for backward compatibility.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual A-7
for Blackfin Processors

Programming Dual-Core Blackfin Processors

Cache, Startup, and Events
For a single-core application, normal cache configuration and event han-
dling is used, such as for the ADSP-BF533 processor. The only difference
is that the .ldf file maps a cacheability protection lookaside buffers
(CPLBs) configuration table explicitly for each core. Where
ADSP-BF533.ldf links against cplbtab533.doj, a single-core ADSP-BF561
processor application would link against cplbtab561a.doj, for core A’s
CPLB configuration.

The run-time header executed on startup is a generic routine that has been
assembled for the ADSP-BF561 processor. It behaves in the same manner
as for other Blackfin platforms, except that it makes no attempt to modify
the clock speed. It enables cache, interrupts and exceptions in the same
fashion as for other Blackfin processors.

Creating Customized .ldf Files
To create a customized .ldf file for a single-core application, under Proj-
ect Options, select Add Startup code/LDF. Under LDF Settings,
Multi-core Selection, choose Core A.

One Application Per Core
Like the single-core application approach, the one-application-per-core
approach can use either customized .ldf files or the default compiler .ldf
file. In this chapter, it is called per-core.

There is an example of this approach on page A-27.

Using the Default Compiler .ldf File
The default compiler .ldf file builds one application for each invocation,
either for core A or for core B, according to command-line options. To

One Application Per Core

A-8 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

produce the two applications, first build the application for one core, and
then build the application for the second core.

For example,

ccblkfn -proc ADSP-BF561 -flags-link -MDCOREA -o \

p0.dxe a1.c a2.c

ccblkfn -proc ADSP-BF561 -flags-link -MDCOREB -o \

p1.dxe b1.c b2.c

This would build two applications— p0.dxe for core A and p1.dxe for
core B.

The COREA and COREB linker flags define preprocessor macros that select
alternative PROCESSOR directives in the .ldf file. If neither COREA nor COREB
is defined, the .ldf file automatically defines COREA and links for core A.
This is how the single-core application (described in “Single-Core Appli-
cation” on page A-5) is implemented.

 If you create the projects using the Project Wizard, the COREA and
COREB preprocessor macros will be added for you by the Project
Wizard.

Using Customized .ldf Files
When using customized .ldf files, you create a customized .ldf file
configured for each core. Create a project for each application you are
building (one for core A, one for core B).

 You can create these projects using the Project Wizard, if you select
File, New, Project... Under Dual-core Settings, then select Dual
core: one application per core.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual A-9
for Blackfin Processors

Programming Dual-Core Blackfin Processors

Once you have created your projects, add a customized .ldf file to each:

1. For each project, go to Project Options, Add Startup code/LDF.

2. Under LDF Settings, Multi-core Selection, choose either Core A
or Core B, as appropriate for the project.

VisualDSP++ creates customized .ldf files for each core, containing only
the parts relevant to the core in question. Consequently, you do not need
to specify COREA or COREB when linking the applications.

Shared Memory
The memory map for the default .ldf file defines all of the internal mem-
ories for both cores, although the PROCESSOR section uses only the areas
defined for the currently-selected core. Thus, while COREB is defined, the
.ldf file maps the L2_sram_a section into the lowest 32 Kbytes of the L2
internal memory. When COREA is defined, it maps the L2_sram_b section
into the next 32 Kbytes of the L2 internal memory. In this manner, the
two separate builds can map code or data into the common L2 internal
memory without conflict.

Customized .ldf files define only the areas of memory for the core in
question; therefore, a customized .ldf file for core A maps section
L2_sram_a, while a customized .ldf file for core B maps section
L2_sram_b.

One Application Per Core

A-10 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Sharing Data
The .ldf files provide two shared data areas, l2_shared and
sdram_shared, which are in L2 memory and SDRAM respectively. For the
per-core approach, the recommended method for sharing data is as
follows:

For core A’s project:

• Define the data items to be shared in a source module that contains
only shared items (that is, no items to be mapped to core-specific
memory).

• Declare the data items to be volatile.

• Set the file attribute sharing to MustShare for the shared-data
module.

• In the source module, declare the shared-data items to be part of a
section that is shared by both cores, such as l2_shared or
sdram_shared.

For example,

#include <ccblkfn.h>

#pragma file_attr("sharing=MustShare")

section("l2_shared") volatile char shared_buffer[1024];

section("sdram_shared") volatile testset_t lock_variable;

VisualDSP++ 5.0 C/C++ Compiler and Library Manual A-11
for Blackfin Processors

Programming Dual-Core Blackfin Processors

For core B’s project:

• Declare the data items as external (via extern), as they will be sup-
plied by the definitions from core A’s project.
extern volatile char shared_buffer[];

extern volatile testset_t lock_variable;

• In Project Options, Link, LDF Preprocessing, Preprocessor
Macro Definitions, define the macro OTHERCORE. (You do not need
to supply a value.) If you create your project using the Project Wiz-
ard, this macro will be added to your project automatically on
creation.

• Add a header file, local_shared_symbols.h. This file should
redefine the OTHERCORE macro to be the pathname to the .dxe file
produced by core A’s project, and include the library header file
shared_symbols.h. For example,
#undef OTHERCORE

#define OTHERCORE "Release/Core A.dxe"

#include <shared_symbols.h>

• For each data item to be shared, add a RESOLVE() command to
local_shared_symbols.h, giving the symbol name and the
OTHERCORE macro, for example:
RESOLVE(_shared_buffer, OTHERCORE)

RESOLVE(_lock_variable, OTHERCORE)

 The RESOLVE commands will be processed by the linker, and there-
fore they must use the linkage name of the symbols. For C
declarations, this typically means prefixing the symbol name with
an underscore. C++ symbol names are “mangled” by default to
encode the additional type information. If you are sharing C++
objects, you can declare them using extern “C” to give them C
linkage instead.

The default and generated .ldf files for core B recognize the OTHERCORE
macro, and include the local_shared_symbols.h header file into the .ldf

One Application Per Core

A-12 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

file when it is defined. When building core B's .dxe file, the linker will
not have a local definition for the shared data items. This is because they
have been mapped only when building core A’s .dxe file, and not when
building core B’s. Therefore, the linker follows the RESOLVE directives in
the included file to resolve the specified symbols to the same address as
used for core A.

The shared_symbols.h header file, included by local_shared_symbols.h,
is a VisualDSP++ header file that gives suitable RESOLVE directives for the
run-time library’s shared symbols. It uses the macro OTHERCORE to identify
the .dxe file to be used. For more information, see “One Application per
Core Example” on page A-27.

Data shared between the two applications must be declared as volatile,
so that the compiler does not cache values in registers during times when
the other core might be updating the value.

The data caches within cores A and B do not maintain coherence, so two
alternatives are available:

• Do not enable data caching for shared areas.

• After finishing an access, but before releasing the data to be used by
the other core, flush the data from the cache and invalidate the cor-
responding cache entries.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual A-13
for Blackfin Processors

Programming Dual-Core Blackfin Processors

Sharing Code
To share code between applications, follow the same steps as for sharing
data (on page A-10):

1. Map the functions to the shared area in the application for core A.

2. In the application for core B, declare the functions as external (via
extern).

3. Add RESOLVE directives to the local_shared_symbols.h header file
for core B, giving the functions' external names.

Shared Code With Private Data
It is sometimes desirable for a function to maintain its own private data.
In a single-threaded, single-core application, declare the data as static.

In a dual-core application where the code is shared, the same data is used
by both cores. If you want each core to have its own instance of the private
data, use library routines provided with VisualDSP++ to allocate private
copies of the data. These routines are described in detail in
“adi_obtain_mc_slot, adi_free_mc_slot, adi_set_mc_value,
adi_get_mc_value” on page 3-76.

Synchronization
Synchronization functions exist in the run-time library for claiming and
releasing a lock variable. They are described in detail in
“adi_acquire_lock, adi_try_lock, adi_release_lock” on page 3-71.

#include <ccblkfn.h>

void adi_acquire_lock(testset_t *t);

int adi_try_lock(testset_t *t);

void adi_release_lock(testset_t *t);

int adi_core_id(void);

One Application Per Core

A-14 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Cache, Startup, and Events with Default .ldf Files
Each core has its own caches and its own cache configuration table. These
are linked in by the .ldf file according to whether COREA or COREB is
defined. COREA links against cplbtab561a.doj, while COREB links against
cplbtab561b.doj.

Each application has its own copy of the ___cplb_ctrl cache configura-
tion variable. Each application also has its own definitions of the guard
symbols that the .ldf file defines to indicate whether L1 SRAM spaces are
available for cache use. Thus, the two applications can run with entirely
independent cache configurations. The section cplb_code must be
mapped into L1 Instruction memory so that the CPLB configuration rou-
tines can access these core-specific guard symbols.

However, the startup code is the same for the two cores. In other words,
each application in the per-core approach receives its own copy of the
same startup code, resolved to the Reset address of that core. In particular,
the default startup code does not include any functionality to allow core A
to enable core B. Use the following function to enable core B:

#include <ccblkfn.h>

void adi_core_b_enable(void);

 VisualDSP++ also arranges for core B to be enabled when down-
loading applications to the EZ-KIT Lite boards.

Each core registers its own event handler (for CPLB events, if requested),
and handles interrupts and exceptions separately. The two applications
can have separate event masks. Signals can be passed between the two
applications by triggering interrupts via the system interrupt controller.
The run-time library allows interrupt handlers to be registered, but does
not provide direct support for the system interrupt controller, or for rais-
ing events at that level.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual A-15
for Blackfin Processors

Programming Dual-Core Blackfin Processors

Cache, Startup, and Events with Customized .ldf
Files

The cache configuration for both applications is managed by Project
Options, Startup Code Settings, Cache and Memory Protection. Using
Project Options ensures that the start-up code invokes only the CPLB
configuration routines where necessary, and that the L1 memory usage
matches the cache options selected.

The start-up code is essentially the same for the two cores, but each appli-
cation receives its own generated start-up routine according to Project
Options, so there may be some differences. Note that the default startup
code does not include functionality to allow core A to enable core B. You
should arrange for core A to do this when your application is suitably
configured.

A convenient way to enable core B is to use the following function:

#include <ccblkfn.h>

void adi_core_b_enable(void);

 VisualDSP++ also arranges for core B to be enabled when down-
loading applications to the EZ-KIT Lite boards.

Each core registers its own event handler (for CPLB events, if requested),
and handles interrupts and exceptions separately. The two applications
can have separate event masks. Signals can be passed between the two
applications by triggering interrupts via the system interrupt controller.
The run-time library allows interrupt handlers to be registered, but does
not provide any direct support for the system interrupt controller or for
raising events at that level.

Single Application/Dual Core

A-16 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Single Application/Dual Core
The single application/dual core approach generates a single application
with just one build process. The application is divided into three compo-
nents: the two individual cores and the shared memory. (For the purposes
of the build, all common memory is treated as one.)

The single application/dual core approach (also known as single/dual)
allows a more complex application to be built. This is because the three
major components are produced during a single linking process that
resolves all symbols at once. This process allows code and data in the
shared memories to be referenced directly from the cores, allowing the
cores to use the same instance of a function or data item.

This sharing process makes use of more advanced linker facilities that are
not normally required or employed for single applications that run on a
single core. These extra capabilities can present a steep learning curve for
those new to cross-system linking. Therefore, the single/dual approach
adopts a set of conventions to assist in the development of dual-core appli-
cations. The .ldf files generated by VisualDSP++ rely on these
conventions for simplicity. The advanced developer may choose alterna-
tive approaches by using entirely customized .ldf files.

There is an example of this approach on page A-30.

Target Conventions
The conventions are as follows.

• The application is arranged as a hierarchy of targets, as shown by
Figure A-1, with the final application being the top-level project.
This top-level target is of type “DSP executable”.

• Beneath the top-level target, there are four sub-targets: core A,
core B, shared internal L2 memory, and shared external memory
areas. These sub-targets are of type “DSP library”.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual A-17
for Blackfin Processors

Programming Dual-Core Blackfin Processors

• The sub-targets create individual files called corea.dlb, coreb.dlb,
sml2.dlb and sml3.dlb.

• The top-level target links against the libraries generated by the
sub-targets, resolving symbols across all of the system at once, and
produces three output files: p0.dxe, p1.dxe and
L2_and_L3_common_memory.sm. These files may be loaded into the
Blackfin processor.

Figure A-1 shows a typical five-project setup.

With the application divided into individual libraries, it is simpler to
arrange for a part of the application to reside within a particular core or
within a particular shared memory.

Establishing a convention for file names (p0.dxe, sml2.dlb, and so on)
means that the .ldf file in the top-level target can use the output of a
sub-target without needing customization.

Figure A-1. Five-Project Setup

Top -level project

(Executable)

corea project

(Library)

coreb project

(Library)

sml2 project

(Library)

sml3 project

(Library)

LDF

Single Application/Dual Core

A-18 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Using file attributes is an alternative approach. (For more information, see
“File Attributes” on page 1-471.) This approach allows you to control
memory placement without needing several sub-projects. This approach is
described on page A-22, with an example shown on page A-37.

 You can create these projects using the Project Wizard, if you select
File, New, Project... Under Dual-core Settings, select Dual core:
Single application using both cores. The Project Wizard will also
create a customized .ldf file and startup code.

Multi-Core Linking
The single/dual approach uses advanced linker facilities to resolve
cross-references between the cores and shared memories. Each core is
described by a PROCESSOR directive, and the two shared memory areas (the
internal L2 memory and the external memory) are described by a single
COMMON_MEMORY directive. The COMMON_MEMORY region uses the MASTERS
directive to indicate that the two PROCESSOR directives are attempting to
resolve external references through the COMMON_MEMORY region.

Both the PROCESSOR directives and the COMMON_MEMORY region can link
against libraries, as shown by Figure A-2. The PLibs libraries are mapped
directly by the PROCESSOR directives. If an external reference is resolved
using these libraries, the definition is mapped into the private memory of
core A or core B, as appropriate. The libraries shown as CLibs, are mapped
by the COMMON_MEMORY region. If an external reference is resolved using
these libraries, the definition will be mapped into the COMMON_MEMORY
region, and may be shared between core A and core B.

For information on these linker facilities, refer to the VisualDSP++ 5.0
Linker and Utilities Manual.

 When linking a single-application/dual-core application, you must
use the -multicore switch to ensure that the run-time libraries use
the correct synchronization locks.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual A-19
for Blackfin Processors

Programming Dual-Core Blackfin Processors

Creating the .ldf File
The single/dual approach requires a custom .ldf file. This is because the
default .ldf files for the dual-core Blackfin processors are designed for the
simpler single-core and per-core approaches. It is not necessary to modify
the .ldf file in any way, once created. The sub-projects do not require
.ldf files.

The easiest way to create the custom .ldf file is to use the Project Wizard:
select File, New, Project... Under Dual-core Settings, select Dual core:
Single application using both cores. The custom .ldf file will be created,
along with the project hierarchy.

Figure A-2. Dual-Core Linking

Core A Core B

Common

Memory

CLibs
2

PLibs
1

1. Objects from these libs are private,

2. Objects from these libs are in common
memory and may be shared by both cores.

Single Application/Dual Core

A-20 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Alternatively, you can create the custom .ldf file via Project Options for
the top-level project, using Add Startup code/LDF. Ensure that the Cores
A and B option is selected under LDF Settings, Multi-core Selection.

Shared Memory
Code and data can be mapped into internal L2 memory by placing them
into the sml2 sub-target. The .ldf file links the COMMON_MEMORY area
against the library produced by this sub-target. The usual sections (pro-
gram, data1, constdata, and so on) are mapped, as is l2_sram.

Code and data can be mapped into the external memory by placing them
into the sml3 sub-target.

Shared Data
To share data items between the two cores, do the following:

• Define the shared-data items in a source module that contains only
shared items (that is, do not include any code or data that will be
private to one of the cores).

• Make the source module part of the sml2 or sml3 sub-project, as
appropriate.

• Within the source module, define the file attribute sharing, with
the value MustShare, that is,
#pragma file_attr("sharing=MustShare")

• Declare the data items to be volatile.

Sharing Code
Application code may be shared between the two cores by following the
same steps as for sharing data (on page A-20).

VisualDSP++ 5.0 C/C++ Compiler and Library Manual A-21
for Blackfin Processors

Programming Dual-Core Blackfin Processors

If run-time library functions are to be shared, then the libraries in which
they reside must only be included in the CLibs list of libraries (as shown in
Figure A-2 on page A-19). In other words, they should not be in the list of
libraries linked-against by the PROCESSOR directives. Otherwise, the cores
will link in their own copy of the function instead of using the shared ver-
sion in COMMON_MEMORY.

Synchronization
Synchronization between the cores can be achieved as for the per-core
approach using “adi_acquire_lock, adi_try_lock, adi_release_lock” on
page 3-71. The synchronization lock variables must be defined in the
sml2.dlb or sml3.dlb sub-targets, so that they are mapped into the shared
memory.

Cache, Startup, and Events
The generated .ldf file for the single/dual approach maps a copy of the
startup code into each core, resolving the copies to the Reset addresses of
the cores. Startup, cache configuration, and events are as for the per-core
approach.

 Only a single startup code routine is generated and built, and
linked into both cores. Ensure that your Project Options are suit-
able for both cores.

The generated .ldf file also maps the cplb_code section into the L1
instruction memories of the cores. This means that the definitions of the
guard symbols are local to the processor. If the .ldf file is changed so that
the cplb_code section is mapped into shared memory instead, then the
COMMON_MEMORY directive must also define appropriate guard symbols, oth-
erwise the link may resolve the reference by importing the default guard
symbols from the run-time library.

Dual-Core Applications That Use File Attributes

A-22 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Dual-Core Applications That Use File
Attributes

The five-project convention provides a basic organizing tool for managing
code and data placement within a dual-core system.

Using file attributes is an alternative approach. (For more information, see
“File Attributes” on page 1-471.) This approach allows you to control
memory placement without needing several sub-projects. An example is
shown in “Interprocedural Analysis and File Attributes” on page A-37.

The generated dual-core .ldf files support the following file attributes by
default:

• DualCoreMem: May have the values CoreA or CoreB. This attribute is
used to filter the command-line objects so that items for one core
do not get mapped to the other.

• prefersMem: May have values internal or external, in which case
the linker will attempt to map the objects accordingly. Other val-
ues are equivalent to not setting this attribute.

• sharing: Objects with this attribute set to MustShare will be sub-
jected to additional checking by the linker, to ensure that there is
only a single definition of the symbols defined by the object.

In addition, the run-time library defines a number of file attributes for
each supported function. (See “Library Attributes” on page 3-8 for more
information.) These can all be used when mapping library routines to
dual-core systems to help with code and data placement.

File attributes allow you to link dual-core applications without organizing
core-based objects into libraries. This allows you to make more use of
interprocedural analysis (which has reduced benefit with library objects).

VisualDSP++ 5.0 C/C++ Compiler and Library Manual A-23
for Blackfin Processors

Programming Dual-Core Blackfin Processors

To use attributes for dual-core linking, do the following:

1. Distribute your sources between the two cores by defining attri-
butes DualCoreMem=CoreA or DualCoreMem=CoreB as required. These
sources can be part of your top-level project – they do not need to
be in corea or coreb sub-projects.

2. Objects that will be mapped into common memory must be built
into a library (because only libraries can be mapped into
COMMON_MEMORY). This can be via the sml2 or sml3 sub-projects, or
via another project.

3. To avoid link-time errors, create an empty C file and add it to each
of the standard sub-projects you are not using. This will allow
VisualDSP++ to create the expected libraries that will be referenced
at link-time, thus avoiding to have to manually modify the .ldf
file.

For more information, see “Interprocedural Analysis and File Attributes”
on page A-37.

Run-Time Library Functions
The three approaches discussed here are concerned primarily with arrange-
ment of application code and data, but it is a rare application that does
not make use of run-time library support in some manner. This raises
complications for a dual-core system.

Re-Entrancy
The majority of run-time library routines make no use of private data,
operating on parameters and stack data only. Such functions are fully
usable within a dual-core system without the need for locking. Some Stan-
dard routines—such as strtok()— use private data, and some routines

Run-Time Library Functions

A-24 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

update global data—the errno variable being the most common global
variable so effected.

Multi-core applications must be built with the -multicore compiler
switch, which means that the multi-core variants of these functions will be
used. They have the appropriate locking enabled, and allocate per-core
private copies of such data to ensure that each core sees standardized
behavior.

 The -multicore switch has two settings under Project Options.
The Will be linked with re-entrant libraries option under Com-
pile, Processor (2) sets the -multicore switch at compile-time. The
Use re-entrant multicore libraries option under Link, Processor
sets the -multicore switch at link-time. These flags are set auto-
matically if you create your project(s) using the Project Wizard.

However, not all run-time library functions may be freely mapped. There
are some restrictions on mapping. These are documented in “Library
Function Re-Entrancy and Multi-Threaded Environments” on page 3-14.

Placement
Use the run-time libraries’ file attributes to control placement of library
components among core A, core B and common memory. This approach
is more effective than using the normal section-based placement, as the
majority of library components are mapped into the standard sections.

For more details on the run-time libraries’ attribute support, see “Library
Attributes” on page 3-8.

For restrictions on placing library functions in memory, see sections
“Library Placement” on page 3-18 and “Section Placement” on page 3-19.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual A-25
for Blackfin Processors

Programming Dual-Core Blackfin Processors

Restrictions on Dual-Core Applications
There are some restrictions for dual-core applications that do not apply to
other applications.

Compiler Facilities
The following features have some restrictions with dual-core systems:

• Interprocedural analysis (IPA) optimization requires you to use
#pragma core (on page 1-304) to identify distinct symbols that are
defined differently for each core. For more information, see “Inter-
procedural Analysis and File Attributes” on page A-37.

• Profile-guided optimization (PGO) requires you to use session IDs
to distinguish between profiles gathered for each core. For more
information, see “Profile-Guided Optimization in Dual-Core Sys-
tems” on page A-32.

• Instrumented-code profiling (-p[1|2] compiler switches
on page 1-65) is not supported.

Cross-Core Memory References
It is not valid for code executing in one core to access the L1 memory of
the other core, whether for code or data references. Attempts to do so will
raise an exception. Therefore, when pointers to L1 memory are stored in
shared memory and accessed by common code, care must be taken to
ensure that such pointers are not de-referenced by the other core. This
applies to both the per-core and single/dual approaches.

The linker’s COMMON_MEMORY construct provides some protection against
this situation. In most cases the linker can resolve such cases without the
need for user interaction, by duplicating input sections. Where the linker
cannot safely resolve the situation, a link-time error occurs.

Dual-Core Programming Examples

A-26 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

See the VisualDSP++ 5.0 Linker and Utilities Manual for more
information.

Dual-Core Programming Examples
The following examples show the different code design approaches as
applied to a simple client-server application on the ADSP-BF561 proces-
sor. The client passes a list of sentences to a server, one by one, and the
server encodes them via a trivial ROT13 algorithm. The client shows each
string before encoding, after encoding, and once more after re-encoding
(which, under ROT13, restores the original plain text).

A frame object is used to pass each sentence between the client and the
server, and to return the encoded form.

The examples can be found in the VisualDSP++ installation directory,
under:

Blackfin/Examples/No Hardware Required/Compiler Features

Single-Core Application Example
The single-core approach can be found in the Rot13 Single-Core project
in the Rot13 Single-Core directory. It is a single-threaded version, for
simplicity. Since there is just a single thread, no synchronization is neces-
sary. The main() function for core A is in the file maina.c and calls the
rot13() function directly. This example does not enable core B and serves
as a comparison with multi-core variants.

The example was created with the Project Wizard, using Single core:
Single application. It makes use of the default .ldf file, and since it does
not define any preprocessor macros, links for core A by default.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual A-27
for Blackfin Processors

Programming Dual-Core Blackfin Processors

One Application per Core Example
The per-core approach is in the project group Rot13 Per-Core in the
Rot13 Per-Core directory. Since it requires synchronization, locking rou-
tines are added to the build. It also requires another thread that runs in
the second core. The two threads use a lock to serialize access to the buffer
and a protocol to indicate the buffer state. The procedure is as follows:

1. The buffer starts in state ProcessingDone. There is no work
pending.

2. Core A copies data into the buffer and sets the state to
WaitingToBeProcessed.

3. The buffer belongs to core B, which does the necessary encoding
and resets the state to ProcessingDone.

4. The buffer now belongs to core A again, and core A is free to exam-
ine the results.

5. When core A has passed all packets of data to core B and received
all the responses, core A sets the state to NoMoreWork. This indicates
to core B that it can terminate.

There are two projects: a client (Rot13 Per-Core_CoreA) and a server
(Rot13 Per-Core_CoreB). The projects were created by the Project Wiz-
ard, using Dual core: One application per core.

The client consists of client.c and report.c, which contain core A’s
main() function and the display routine report().

The server consists of server.c and rot13.c, which contain core B’s
main() function and the encoding/decoding rot13() function.

Core A’s project also contains the source files for the shared data (the
frame and a communications lock) and the locking routines. The shared
data is declared as volatile, to prevent the optimizer from making

Dual-Core Programming Examples

A-28 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

assumptions about values. The client .ldf file maps objects from these
shared source files into regions of memory accessible by both cores.

The server project does not contain these shared sources. Instead, it
declares the shared data and functions as external. Since the project con-
tains no definitions for the shared elements, the linker has to resort to
outside sources to resolve the symbols during linking. The server project’s
.ldf file includes the file local_shared_symbols.h, which contains the
following code:

#undef OTHERCORE

#ifdef DEBUG

#define OTHERCORE "Debug/Rot13 Per-Core_CoreA.dxe"

#endif

#ifdef RELEASE

#define OTHERCORE "Release/Rot13 Per-Core_CoreA.dxe"

#endif

#include <shared_symbols.h>

RESOLVE(_corelock, OTHERCORE)

RESOLVE(_frame, OTHERCORE)

RESOLVE(_claim_lock, OTHERCORE)

RESOLVE(_release_lock, OTHERCORE)

These contents instruct the linker that it should resolve the external refer-
ences by examining the file OTHERCORE – the .dxe produced by the client
project – and resolving the symbols to the same addresses as used in that
other executable. This means that the source components common to
both projects are resolved to the same address in both executables. The
DEBUG and RELEASE macros are set by the configurations generated by the
Project Wizard, so that the linker resolves against the executable in the
appropriate directory.

The shared_symbols.h file also resolves common symbols in this manner.
It lists symbols from the run-time library that must be common to both
cores in a multi-core application.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual A-29
for Blackfin Processors

Programming Dual-Core Blackfin Processors

Each project has a custom .ldf file, generated automatically by the Proj-
ect Wizard. Note the following points:

• As these .ldf files are generated for a dual-core processor, the
multi-core settings have to be selected accordingly. The client’s
.ldf file is for core A, while the server’s is for core B.

• Both projects are flagged as being linked with re-entrant libraries,
under:

• Compile, Processor(2). This setting affects header-file pre-
processing during compilation.

• Link, Processor. This setting affects the library selection
during linking.

• External memory is enabled under the following:

• LDF Settings, External Memory.

• Link, Processor.

• The server project has the client project as a dependency, so the
client project will automatically be built if required when building
the server project.

To build and use the example project, do the following:

1. Create a session in the VisualDSP++ IDDE for the ADSP-BF561
Blackfin processor.

2. Open the Rot13 Per-Core.dpg project group.

3. Make Rot13 Per-Core_CoreB the active project.

Dual-Core Programming Examples

A-30 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

4. Rebuild all.

5. Ensure that when loading the resulting executables:

• Rot13 Per-Core_CoreA.dxe is loaded into core P0

• Rot13 Per-Core_CoreB.dxe is loaded into core P1

Single Application/Dual-Core Example
The sources for the single/dual approach are effectively the same as for the
per-core approach. The differences appear in how they are linked into a
single application. The example is in the Rot13 Dual-Core project group,
in the Rot13 Dual-Core directory.

Five projects are used, created by the Project Wizard: the overall project
(Rot13 Dual-Core) and four sub-projects (corea, coreb, sml2 and sml3).
These sub-projects are all dependencies of the main Rot13 Dual-Core
project.

The main project has an .ldf file, generated through the Project Wizard.
Note that:

• Under LDF Settings, Multi-core Selection is set to Cores A and B.

• External memory is enabled under:

• LDF Settings, External Memory

• Link, Processor

• Re-entrant libraries are selected under:

• Compile, Processor(2)

• Link, Processor

VisualDSP++ 5.0 C/C++ Compiler and Library Manual A-31
for Blackfin Processors

Programming Dual-Core Blackfin Processors

The source files are distributed among the sub-projects in the following
manner:

Rot13 Dual-Core: No sources

corea: client.c report.c

coreb: server.c rot13.c

sml2: lockfns.c lockdata.c

sml3: frame.c

This division between sml2 and sml3 is arbitrary and is used to demon-
strate placement within the different shared memories. The lockdata.c
and frame.c files contain the shared symbols, while lockfns.c contains
the shared code.

The entire application is built using the following single build process:

1. Create a session in the VisualDSP++ IDDE for the ADSP-BF561
Blackfin processor.

2. Open the Rot13 Dual-Core.dpg project group.

3. Make Rot13 Dual-Core the active project.

4. Rebuild all.

5. Ensure that, when loading the resulting executables:

• P0.dxe is loaded into core P0.

• P1.dxe is loaded into core P1.

First, the sub-target libraries are built, then the top-level target is used to
build the whole application. The .ldf file specifies all the output files
within it, generating p0.dxe, p1.dxe and L2_and_L3_common_memory.sm.

Dual-Core Programming Examples

A-32 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Profile-Guided Optimization in Dual-Core Systems
For single-core applications on a dual-core system, profile-guided optimi-
zation (PGO) is used in the same way as it is for any other single-core
system. Since the second core is not being used, it has no effect on PGO
usage.

When you are using a dual-core system, whether via the per-core approach
or via the single/dual approach, PGO usage is different because the Visu-
alDSP++ IDDE graphical interface to PGO is designed for a single-core
system. The IDDE understands that, for PGO, the application must be:

• Built using -pguide (on page 1-67) to prepare for profile-gathering

• Executed in the simulator using input data sets, to gather the
profile

• Rebuilt using the resulting profile, to obtain the best optimization

To this end, the IDDE automates the process of building, executing and
rebuilding, but does so in a manner that assumes all input data sets are
being fed to a single executable. On a dual-core system, there are two exe-
cutables, one per core, and the distribution of input data between them is
not predictable. Therefore, the IDDE’s automated PGO interface is not
suitable.

Command-Line Profile-Guided Optimization

To run PGO on a dual-core system, use the pgoctrl command-line tool.
This tool enables and disables profile gathering. You will have to arrange
for each executable to read its input data sets as necessary. Use the pgoctrl
tool as follows:

pgoctrl on path-to-profile-file.pgo

pgoctrl off

VisualDSP++ 5.0 C/C++ Compiler and Library Manual A-33
for Blackfin Processors

Programming Dual-Core Blackfin Processors

These commands must be entered while the applications are already
loaded into a simulator session within the IDDE. There must only be one
instance of VisualDSP++ active during this time.

The first command enables profile-gathering and informs the IDDE of the
file name into which the profile-data will be stored. From this point on,
whenever the program executes within the simulator, PGO will be count-
ing the times the program passes through paths of control.

Having enabled PGO, you can run your application for the required time.

The second command terminates profile-gathering. The IDDE writes the
gathered profile to the named file and stops counting path execution.

 If the file already exists, it will not be overwritten. Instead, the
existing file’s contents will be merged with the new profile data. To
create entirely new profiles, ensure that the file name specifies a
new file rather than an existing one.

 Profiling is not a persistent state. If you terminate the Visu-
alDSP++ session and later restart VisualDSP++, you will need to
re-enable profiling, if it is still required.

PGO Session Identifiers

In a dual-core system, sometimes the same source module is used in both
cores. The source module may be compiled with different options, or it
may be compiled once to an object file and then linked into the private
core areas of memory. In such cases, the module should ideally be profiled
separately for each core, and then re-optimized differently according to
each core’s execution profile. This is achieved using PGO session identifi-
ers (session IDs).

Session IDs are used to distinguish between two or more counters for the
same source-level symbol in an application. For example, both cores will
have a main() function and those functions are likely to be different. Each
main() is assigned a different session ID during initial compilation and

Dual-Core Programming Examples

A-34 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

these IDs are recorded in the gathered profiles. Then, when recompiling,
the session IDs are used to associate the gathered counts with the particu-
lar version of main() being recompiled.

You specify session IDs using the -pgo-session switch (on page 1-67),
during both initial compilation and during recompilation. Each use of the
source module in the application must have a different session ID. This
means that, rather than compiling once and then linking into both cores,
you must recompile for each instance linked into the application (even if
the only difference is in the session ID).

Example of Dual-Core Profile-Guided Optimization

“Example of Profile-Guided Optimization” on page 2-37 demonstrates
how PGO can improve the performance of an application, using a simple
example that counts the types of characters in some text data. The follow-
ing example expands this concept, adding a different analysis routine on
the second core.

The dual-core example can be found in this location:

Blackfin/Examples/No Hardware Required/

Compiler Features/Branch Prediction Dual-Core

The example project is called Branch Prediction Dual-Core. As a
dual-core application, it also has a project group for the different sub-proj-
ects, all created with the Project Wizard. The example has a single main.c
source file that contains the main() functions for both core A and core B.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual A-35
for Blackfin Processors

Programming Dual-Core Blackfin Processors

As a result:

• Core A performs a word count analysis of the text, reporting the
number of characters, words, and lines. (A word consists of any
non-whitespace character sequence.) It also reports the cycle
counts.

• Core B performs the type-of-character analysis seen in the sin-
gle-core version of the example. It communicates its results to core
A through global variables in common memory.

Since the same source file is compiled in two different ways to execute dif-
ferent algorithms, it cannot be optimized according to a single execution
profile. Therefore, PGO session IDs are required.

To use the example, do the following:

1. Create a new IDDE simulator session for the ADSP-BF561 Black-
fin processor.

2. Open the Branch Prediction Dual-Core project group.

3. Ensure that the Release configuration is selected.

4. In Settings, Preferences, ensure that the Run to main option is
de-selected.

5. In Project Options for the corea sub-project, display the Pro-
file-Guided Optimization page and select Prepare application to
create new profile option.

6. Ensure that the PGO session name option is set to CoreA.

7. Do the same for the coreb sub-project, enabling the Prepare appli-
cation to create new profile option and ensuring the PGO session
name option is set to CoreB.

8. Rebuild everything and load the resulting p0.dxe into core A and
p1.dxe into core B. They will be in the Release sub-directory.

Dual-Core Programming Examples

A-36 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

9. Open a command-window, and change directory to the system
sub-directory of the VisualDSP++ installation.

10.In the command-line window, execute pgoctrl on file.pgo, where
file.pgo is a pathname to the file you’d like the profile to be
stored in.

11.In the IDDE, execute a multi-core Run. You will have to do this a
number of times (since each core halts at _main) until core A has
reached __lib_prog_term. In the console window, core A will have
reported the counts computed by each core and the cycles con-
sumed by each while doing so.

12.In the command-line window, execute pgoctrl off. The IDDE
will now create file.pgo where you specified.

13.In the Project Options for the corea and coreb sub-projects, clear
the Prepare application to create new profile option and select the
Optimize using existing profiles option. In the Profile field,
browse to the file.pgo file just created.

14.Rebuild everything. The two versions of main() will now be rebuilt
using the gathered profiles.

15.Reload the executables into cores A and B as before and run them
until core A reaches __lib_prog_term.

16.Core A will report improved cycle counts for each core.

As for the single-core version of this example, the key decisions of each
version of main() may also be predicted explicitly, using the EXPRS macro
to select expected_true() or expected_false() branch prediction func-
tions. See Figure 2-2 on page 2-36 for details.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual A-37
for Blackfin Processors

Programming Dual-Core Blackfin Processors

Interprocedural Analysis and File Attributes
This example is in the IPA Dual-Core project group in the IPA Dual-Core
directory. The example demonstrates how IPA can make dramatic
improvements to an application, even in a dual-core system. The example
uses file attributes for object placement.

Conflicting Approaches

The single/dual approach (on page A-16) uses sub-project libraries as an
organizing mechanism. The dual-core .ldf file uses the libraries to control
which application objects are mapped into particular regions of memory.
However, this approach conflicts with a desire to use IPA: IPA propagates
information about each source module and performs its analysis of all
such source modules at link-time.

Where the analysis reveals some potential benefits, IPA recompiles the
sources using the gathered information, and this is where the conflict
arises. If IPA does not have sources available for recompilation, it cannot
apply the benefits of the analysis. IPA can retrieve information from an
object within a library, however, and can apply that information during
analysis.

Therefore, to use IPA effectively in a dual-core environment, you have to
ensure that any objects likely to benefit are linked directly into the appli-
cation, and not via the conventional sub-project libraries.

Example Application

The example application performs a matrix operation. The main() func-
tion allocates a block of memory (using getbuffer()) to contain an NxM
block of shorts, and another array of N shorts. It then calls another func-
tion sumcol() that sums the columns of the matrix into each element of
the array:

array[i] += matrix[i][j];

Dual-Core Programming Examples

A-38 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Similar main() source is used for both cores, first allocating the memory
and then counting the cycles required to perform the summing operation.
The differences between the two cores are:

1. Different values for N and M are chosen for each core.

2. Core A contains additional code to enable core B, wait for core B
to complete, and to display the cycle counts for both cores.

3. Core B contains additional code to pass its cycle count back to core
A.

The same getbuffer.c source file is included in both the corea and coreb
projects. The main() functions, with their differences as described, are in
different source files, maina.c and mainb.c, in the corea and coreb proj-
ects. Because these files are part of the library sub-projects, they will not
benefit from IPA’s analysis, but can contribute to it.

The sumcol() function is handled differently.This example is arranged so
that the sumcol() function is compiled separately for each core. Therefore
the compiler can produce a version specialized for each core. If there was a
single generic version, IPA would recognize that the functions were inter-
acting in more than one fashion and would only be able to apply generic
optimizations.

Building Multiple Instances of a Module

The function to be specialized by IPA is sumcol(), which is in the file
sumcol.h. This is included into two further source files: sumcola.c and
sumcolb.c, which are both part of the top-level project. For example,
maina.c contains:

#define COREA

#pragma file_attr("DualCoreMem=CoreA")

#include "sumcol.h"

VisualDSP++ 5.0 C/C++ Compiler and Library Manual A-39
for Blackfin Processors

Programming Dual-Core Blackfin Processors

When the project is built, each of the two C source files will be built, pro-
ducing two versions of each function, one per core. An alternative
approach would be to build from the command-line (for example, using a
makefile) and to specify different compiler options. For example:

ccblkfn -proc ADSP-BF561 sumcol.c -o sumcola.doj -multicore \

-ipa -DCOREA -file-attr "DualCoreMem=CoreA"

ccblkfn -proc ADSP-BF561 sumcol.c -o sumcolb.doj -multicore \

-ipa -DCOREB -file-attr "DualCoreMem=CoreB"

Since the IDDE does not support multiple builds of a single source mod-
ule within a given project, the example uses the inclusion approach
instead.

Libraries and File Attributes

The .ldf file used by the IPA Dual-Core project is generated from the
Project Wizard, where the LDF Settings, Multi-core Selection is set to
Cores A and B. This .ldf file uses the five-project convention and there-
fore expects to link against the four sub-project libraries. Therefore, these
libraries exist here with the following contents:

• corea and coreb both contain a main*.c and getbuffer.c. This
will cause the functions to be mapped into the private memory for
each core. Since they placed into a library sub-project, IPA will
have no effect on them, and they will not be specialized. However,
IPA will record whatever information it can deduce about each,
and will make that available during analysis.

• sml2 contains global.c, which contains the global variables used to
indicate core B’s completion state and cycle count. It will be
mapped into shared memory.

Dual-Core Programming Examples

A-40 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

• sml3 contains dummy.c. This library is not needed by the example,
but the .ldf file expects it to exist.

• The top-level project contains the source files that are to be special-
ized by IPA: sumcola.c and sumcolb.c. It also contains source files
auto-generated by Project Options, as part of the .ldf file produc-
tion process.

Since the top-level project contains source files, these will be passed to the
linker on the command-line. There must be some means by which the
linker can determine how to map them into memory. This is achieved by
the file attributes set in each source file. The .ldf file will map com-
mand-line objects into core A providing they do not have the file attribute
DualCoreMem=CoreB. Similarly, it will map command-line objects into core
B as along as they do not have the file attribute DualCoreMem=CoreA. This
provides a mechanism for controlling file placement without placing the
object files into specific libraries.

Multiple Definitions and Pragma Core

When an application contains multiple definitions of the same symbol
and is being built using IPA, the IPA framework must distinguish between
conflicting definitions. In this example, there are two definitions of
main(), and two definitions of sumcol(). The definitions can be distin-
guished using #pragma core (on page 1-304). For example, the definition
of main() in maina.c begins like this:

#pragma core("CoreA")

int main(void) {

When the function is compiled, the pragma will be used to specify differ-
ent identifiers for the function. The same approach is used for the
definition and declaration of sumcol(), except there, the pragma in ques-
tion is compiled conditionally depending on the target core. During the
IPA analysis, these identifiers allow the compiler to see that each version
of main() is always calling a specific version of sumcol(), and therefore the

VisualDSP++ 5.0 C/C++ Compiler and Library Manual A-41
for Blackfin Processors

Programming Dual-Core Blackfin Processors

compiler can propagate information about that call into the relevant ver-
sion of sumcol().

Note that each version of main() also calls getbuffer(), but this function
does not need to be distinguished by #pragma core because its definition
is being retrieved from a library. Therefore, it is not being specialized by
IPA.

 Since the top-level project contains auto-generated source files that
do not have #pragma core on their definitions, these auto-gener-
ated files have file-specific options that do not include IPA.

Using the IPA Dual-Core Example

To use the IPA dual-core example, do the following:

1. Create a session in the VisualDSP++ IDDE for the ADSP-BF561
Blackfin processor.

2. Open the IPA Dual-Core.dpg project group.

3. Make IPA Dual-Core the active project.

4. Under Project Options, Compile, General, ensure that the Inter-
procedural optimization option is not enabled, but that the Enable
optimization option is selected and that the slider is set to 100.

5. Ensure the same settings apply for both corea and coreb projects.

6. Rebuild all.

7. Ensure that, when loading the resulting executables:

• P0.dxe is loaded into core P0.

• P1.dxe is loaded into core P1.

Dual-Core Programming Examples

A-42 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

8. Run the two cores, until core A reaches __lib_prog_term. Core A
will report the cycle counts for the two cores in the IDDE’s con-
sole. This gives the counts for ordinary optimization without IPA.

9. To demonstrate the effect of IPA, select the Interprocedural opti-
mization option under Project Options, Compile, General, for
each of the top-level, corea and coreb projects.

10.Rebuild all.

11.Reload both executables into the two cores.

12.Rerun both cores. This time, the cycle counts will improve because
IPA was able to propagate information about the parameters being
passed from main() to sumcol().

IPA Optimizations

There are several optimizations being done by IPA in this example:

• The values of N and M are propagated from parameters to values
used within sumcol(), allowing the compiler to know the loop
counts and memory access patterns.

• The memory allocated by getbuffer() is allocated by malloc(). It
is known that all pointers returned by malloc()—and therefore by
getbuffer()—will be optimally aligned and will be unique. (They
will not alias other pointers returned in this context.) IPA then
propagates this information to sumcol().

• Recognizing the uniqueness, alignment and size of the allocated
memory blocks allows the compiler to heavily optimize sumcol(),
performing an unroll-and-jam transformation.

Where information about a library function is not available, because the
library’s objects were not built with IPA, it may be possible to explicitly
announce information to the compiler. In this case, the getbuffer()

VisualDSP++ 5.0 C/C++ Compiler and Library Manual A-43
for Blackfin Processors

Programming Dual-Core Blackfin Processors

characteristics could be announced using #pragma alloc (on page 1-319)
and #pragma result_alignment (on page 1-330).

Synchronization Functions
VisualDSP++ 5.0 provides functionality for synchronization. There are
two compiler intrinsics (built-in functions) and three locking routines.

The compiler intrinsics are:

#include <ccblkfn.h>

int testset(char *);

void untestset(char *);

The testset() intrinsic generates a native TESTSET instruction, which can
perform atomic updates on a memory location. The intrinsic returns the
result of the CC flag produced by the TESTSET instruction. Refer to the
Blackfin Processor Programming Reference for details.

The untestset() intrinsic clears the memory location set by the
testset() intrinsic. This intrinsic is recommended in place of a normal
memory write because the untestset() intrinsic acts as a stronger barrier
to code movement during optimization.

The three locking routines are:

#include <ccblkfn.h>

void adi_acquire_lock(testset_t *);

int adi_try_lock(testset_t *);

void adi_release_lock(testset_t *);

The adi_acquire_lock() routine repeatedly attempts to claim the lock
by issuing testset() until successful, whereupon it returns to the caller.
In contrast, the adi_try_lock() routine makes a single attempt—if it suc-
cessfully claims the lock, it returns nonzero; otherwise, it returns zero.

Synchronization Functions

A-44 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

The adi_release_lock() routine releases the lock obtained by either
adi_acquire_lock() or adi_try_lock(). It assumes that the lock was
already claimed and makes no attempt to verify that its caller is in fact the
current owner of the lock. None of these intrinsics or functions disable
interrupts—that is left to the caller’s discretion.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-1
for Blackfin Processors

I INDEX

Numerics
128-bit alignment, 1-281
16-bit fractional built-in functions, 1-198
16-bit fractional ETSI routines, 1-227
2-D convolution (conv2d3x3) function,

4-131
2-D convolution (conv2d) function, 4-128
32-bit alignment, 1-281
32-bit fractional built-in functions, 1-203
32-bit fractional ETSI routines

using 1.31 format, 1-223
using double-precision format, 1-220

64-bit alignment, 1-281
64-bit counter, 4-75
64-bit floating-point emulation routines,

3-6

A
A_abs function, 1-249
A_add function, 1-249
A_ashift function, 1-249
-A (assert) compiler switch, 1-27
abend. See abort (abnormal program end)

function
A_bitmux_ASL function, 1-249
A_bitmux_ASR function, 1-249
abs (absolute value) function, 3-66
absfx (absolute value) function, 1-125, 3-67
abs_i2x16 function, 1-245
absolute value. See abs, fabs, labs functions
A_bxor_mask32 function, 1-249

A_bxor_mask40 function, 1-249
A_bxorshift_mask32 function, 1-249
A_bxorshift_mask40 function, 1-249
acc40 type, 1-251
_Accum, 1-105
accum, 1-105, 1-174, 1-451

using, 2-51
accumulator built-in functions

prototypes, 1-248
accumulator registers, 1-58
accumulators, 1-240
a_compress (A-law compression) function,

4-77
acos (arc cosine) function, 3-69
acosd function, 3-69
acosf function, 3-69
acos_fr16 function, 3-69
action qualifier, 1-339
-add-debug-libpaths compiler switch, 1-28
add_devtab_entry function, 3-50
add_i2x16 function, 1-245
additional loop annotation information

disabling, 1-52
enabling, 1-30

address, event vector table, 1-412
addresses

alignment, 2-18
adi_acquire_lock function, 3-71, A-43
_ADI_COMPILER macro, 1-402
adi_core_id function, 3-18, 3-74
_ADI_FAST_ETSI macro, 1-217
adi_free_mc_slot function, 3-76

Index

I-2 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

_ADI_FX_LIBIO macro, 1-402
adi_get_mc_value function, 3-76
__ADI_LIBEH__ macro, 1-36
_ADI_LIBIO macro, 1-39, 1-56
__ADI_MULTICORE macro, 1-50, 3-17,

A-4
adi_obtain_mc_slot function, 3-76
adi_release_lock function, 3-71, A-44
adi_set_mc_value function, 3-76
_ADI_THREADS macro, 1-419
adi_try_lock function, 3-71, A-43
adi_types.h header file, 3-22
__ADSPBF50x__ macro, 1-402
__ADSPBF518_FAMILY__ macro, 1-403
__ADSPBF51x__ macro, 1-402
__ADSPBF526_FAMILY__ macro, 1-403
__ADSPBF527_FAMILY__ macro, 1-403
__ADSPBF52xLP__ macro, 1-402
__ADSPBF52x__ macro, 1-402
__ADSPBF533_FAMILY__ macro, 1-403
__ADSPBF535_FAMILY__ macro, 1-403
__ADSPBF537_FAMILY__ macro, 1-403
__ADSPBF538_FAMILY__ macro, 1-403
__ADSPBF53x__ macro, 1-402
__ADSPBF548_FAMILY__ macro, 1-403
__ADSPBF548M_FAMILY__ macro,

1-403
__ADSPBF54x__ macro, 1-402
ADSP-BF561 Blackfin processor

architecture overview, A-2
dual-core applications using file

attributes, A-22
dual-core PGO, A-35
dual-core programming, A-26
internal memory, A-9
IPA dual-core example, A-41
L2 internal memory, A-6
locking routines, A-43
one-application-per-core approach, A-7
one-application-per-core session, A-29

ADSP-BF561 Blackfin proc (continued)
run-time library routines, re-entrancy,

A-23
run-time library support, A-23
single application/dual-core approach,

A-16
single application/dual-core session,

A-31
single-core application approach, A-5
startup code, A-14, A-15
synchronization functions, A-43

__ADSPBF56x__ macro, 1-402, 1-403
__ADSPBLACKFIN__ macro, 1-69,

1-402
__ADSPLPBLACKFIN__ macro, 1-69,

1-403
A_eq function, 1-249
a_expand (A-law expansion) function, 4-78
aggregate assignment support (compiler),

1-172
aggregate constructor expression, 1-172
aggregate return pointer, 1-433
A-law

compression, 4-77
expansion, 4-78

A_le function, 1-249
algebraic functions. See math functions
algorithm header file, 3-42
aliases, avoiding, 2-25
alignment

data, 1-285
inquiry keyword, 1-355

alignment_region pragma, 1-282
__alignof__ (type-name) construct, 1-354
align pragma, 1-280
all_aligned pragma, 1-288
ALLDATA qualifier, 1-312
alldata section identifier, 1-73, 1-194
alloca function, 1-260

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-3
for Blackfin Processors

Index

allocate memory. See calloc, free, malloc,
realloc functions

alloc pragma, 1-319
alog10 functions, 4-81
alog (anti-log) functions, 4-79
alphanumeric character test. See isalnum

function
A_lshift function, 1-249
alternate heap interface

C run-time library functions, 1-430
C++ run-time library support, 1-431

alternate heap placement, 1-365
alternate keywords, 1-54
alternative operator keywords, 1-29
alternative tokens, 1-28

disabling, 1-51
enabling, 1-28

alternative tokens in C, 1-29
A_lt function, 1-249
-alttok (alternative tokens) compiler switch,

1-28
-always-inline compiler switch, 1-29, 1-161
always_inline pragma, 1-301
A_mac_FU function, 1-248
A_mac function, 1-248
A_mac_IS function, 1-248
A_mac_M function, 1-248
A_mac_MI function, 1-249
A_mad_FU function, 1-250
A_mad function, 1-250
A_madh_FU function, 1-250
A_madh function, 1-250
A_madh_IH function, 1-250
A_madh_IS function, 1-250
A_madh_ISS2 function, 1-250
A_madh_IU function, 1-250
A_madh_S2RND function, 1-250
A_madh_TFU function, 1-250
A_madh_T function, 1-250
A_mad_ISS2 function, 1-250

A_mad_S2RND function, 1-250
A_msu_FU function, 1-249
A_msu function, 1-249
A_msu_IS function, 1-249
A_msu_M function, 1-249
A_msu_MI function, 1-249
A_mult_FU function, 1-248
A_mult function, 1-248
A_mult_IS function, 1-248
A_mult_M function, 1-248
A_mult_MI function, 1-248
-anach (enable C++ anachronisms) C++

mode compiler switch, 1-85
anachronisms

default C++ mode, 1-86
disabled C++ mode, 1-89

__ANALOG_EXTENSIONS__ macro,
1-403

A_neg function, 1-249
-annotate (enable assembly annotations)

compiler switch, 1-30
-annotate-loop-instr compiler switch, 1-30,

2-105
annotation information, instrumental,

1-30
annotations

assembly code, 2-97
assembly source code position, 2-110
disabling, 1-30, 1-51
embedded, 2-7
loop identification, 2-103
modulo-scheduled instructions, 2-125
modulo scheduling, 2-79
source and assembly, 2-7
vectorization, 2-121

anomalies
affecting access to MMRs, 1-103
IDs, 1-102
workaround management, 1-100
workarounds, 1-102

Index

I-4 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

anomaly
05-00-0071, 1-367
05-00-0109, 1-413

ANSI C signal handlers, 1-370
ANSI/ISO standard C++, 1-26
ANSI standard compiler, 1-37
application binary interface, 1-96
applications

analyzing, 2-135
multi-threaded, 2-141
non-terminating, 2-141

arc cosine, 3-69
arc sine, 3-82
arc tangent, 3-84
arc tangent of quotient, 3-86
argc

parameter, 1-419
support, 1-358

arg (get phase of a complex number)
function, 4-83

argument
and return transfer, 1-439
parsing, 1-419
passing, 1-439

argument list, formatting into an
n-character array, 3-371

argv
parameter, 1-419
support, 1-358

argv/argc arguments, 1-358
__argv global array, 1-419
__argv_string variable, defining, 1-358
arithmetic

data types, 2-15
arithmetic functions, 4-5
arithmetic operators for fixed-point types,

1-113
array indices

use of signed ints, 2-47

arrays
access to, 2-28
defining, 2-23
initializer, 1-168
length, 1-166
multi-dimensional, 1-167
sorting, 3-260
variable-length, 1-166, 1-353
zero-length, 1-353

array writes
avoiding, 2-42

A_sat function, 1-250
asctime (convert broken-down time into a

string) function, 3-38, 3-80, 3-124
A_signbits function, 1-249
asin (arc sine) function, 3-82
asind function, 3-82
asinf function, 3-82
asin_fr16 function, 3-82
asm

compiler keyword, 1-158, 1-174
statement, 1-354, 2-30

asm()
workarounds not applied, 1-100, 1-174

asm() construct
defined, 1-174
flow control operations and, 1-190
operands, 1-180
register names for, 1-185
registers for, 1-180
reordering, 1-187
reordering and optimization, 1-187
syntax, 1-176
syntax rules, 1-178
with compile-time constant, 1-189

asm keyword, for specifying names in
generated assembler, 1-355

asm() operand constraints, 1-180, 1-183
used to specify a long long value, 1-185

assembler, Blackfin processors, 1-3

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-5
for Blackfin Processors

Index

assembly
inserting into C code, 2-30

assembly code annotations
disabling, 1-51
disabling via IDDE, 1-51
enabling via IDDE, 1-51
enabling with optimization, 1-96
file position, 2-110
in assembly code, 2-7
infinite hardware loop wrappers, 2-112
in object code, 2-7
in saved assembly file, 2-96
loop flattening, 2-120
loop identification, 2-104
procedure statistics, 2-99
providing code optimizations, 2-97
resource definitions, 2-106
vectorization, 2-115

assembly construct
operands, 1-180
reordering and optimization, 1-187
template, 1-176
with multiple instructions in template,

1-186
assembly language support keyword (asm),

1-174
assembly optimizer

annotations, 2-96
global information, 2-97
loop identification annotation, 2-104
messages and warnings, 2-131
modulo scheduling, 2-79
vectorization annotations, 2-121

assembly output annotations
disabling, 1-30
disabling via IDDE, 1-30
enabling, 1-30
enabling via IDDE, 1-30
failure messages, 2-130
global information, 2-97

assembly output annotations (continued)
instrumental, 1-30
loop identification, 2-103
modulo scheduling, 2-79
of generated source code, 2-7
selecting, 2-96
vectorization, 2-115
warnings, 2-130

assembly routine, using function exceptions
table, 1-462

assembly subroutine, calling from C/C++
program, 1-456

assert.h header file, 3-22
assert macro, 3-22
ASTAT register, 1-229
A_sub function, 1-249
asynchronous data change, 1-392
atan2 (arc tangent of quotient) function,

3-86
atan2d function, 3-86
atan2f function, 3-86
atan2_fr16 function, 3-86
atan (arc tangent) function, 3-84
atand function, 3-84
atanf function, 3-84
atan_fr16 function, 3-84
atexit function, 1-421, 3-14, 3-16, 3-88
atof (convert string to double) function,

3-89
atoi (convert string to integer) function,

3-92
atol (convert string to long integer)

function, 3-93
atoll (convert string to long long integer)

function, 3-94
__attribute__ keyword, 1-356
attributes

file, 1-30, 1-38, 1-52, 1-471
functions, variables and types, 1-356
using, 1-476

Index

I-6 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-auto-attrs compiler switch, 1-30
autocoh (autocoherence) function, 4-85
autocoherence, 4-85
autocorr (autocorrelation) function, 4-87
autocorrelation, 4-87
autoinit section identifier, 1-73, 1-194
automatic

inlining, 1-60, 1-97, 1-160, 2-28
loop control variables, 2-47

automatic attributes
disabling, 1-52
enabling, 1-30

B
backwards compatibility to earlier versions

of VisualDSP C++, 1-88
bank_memory_kind pragma, 1-345
bank_optimal_width pragma, 1-347
bank qualifier, 1-191, 2-32, 2-69
bank_read_cycles pragma, 1-345
bank (string) compiler keyword, 1-158
bank_write_cycles pragma, 1-346
Bartlett window, 4-166
base 10

anti-log functions, 4-81
logarithms, 3-235

basic complex arithmetic functions, 4-5
basiccrt.s file, 1-411
benchmarking C-compiled code, 4-73
biased round-to-nearest rounding, 1-128
big-endian, 1-259
bit-fields, 2-19

signed, 1-74
unsigned, 1-77

bitsfx (bitwise fixed-point to integer
conversion) function, 1-112, 3-95

BITS_PER_WORD constant, 3-54

Blackfin processors
caches, 1-373
cycle-count registers, 4-74
data packing, 3-54
data types, 1-443
dual-core, A-1
setting processor speed, 3-37
system facilities, 1-259

Blackfin-specific functionality
argv/argc arguments, 1-358
caching of external memory, 1-373
computing cycle counts, 1-363
CPLBs, 1-373
generating instrumented code, 1-359
interrupts, 1-365
processing mon.out file, 1-362
profiling for single-threaded systems,

1-359
profiling routine, 1-359
running the executable, 1-360
startup code, 1-357
system events, 1-365

Blackman-Harris window, 4-177
Blackman window, 4-169
blank space character, 3-223
Boolean operators, and symbolic names,

3-25
Boolean type support keywords (bool, true,

false), 1-173
broken-down time, 3-36, 3-232, 3-312

converting into a string, 3-80
converting into calendar time, 3-245

bsearch (binary search in sorted array)
function, 3-97

-bss compiler switch, 1-30
BSZ qualifier, 1-312
bsz section identifier, 1-73, 1-194
buffered output, 3-178
buf field, 3-57
BUFSIZ macro, 3-163, 3-178

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-7
for Blackfin Processors

Index

-build-lib (build library) compiler switch,
1-31

build tools, 1-39
__builtin_aligned function, 2-14, 2-24,

2-68
__builtin_assert() function, 1-266
__builtin_circptr function, 2-57
__builtin_funcsize built-in function, 1-276
built-in functions

16-bit fractional, 1-198
32-bit fractional, 1-203
about, 1-195
accumulator and optimizer, 1-251
accumulator prototypes, 1-248
__builtin_funcsize, 1-276
cache, 1-261
C/C++ compiler, 3-5
circular buffers, 1-256
_clip, 1-198
compiler performance enhancement,

1-264
compiler program behavior and, 1-264,

2-34
complex fract, 1-238
endian swapping, 1-259
ETSI, 1-198, 1-215
exceptions, 1-261
expected_false, 1-264
expected_true, 1-264
for complex fracts in C, 1-239
fract, 1-197, 1-198
fract16, 1-197, 1-198
fract2x16, 1-197, 1-207
fract32, 1-197, 1-203
fractional arithmetic in C, 1-196
fractional arithmetic in C++, 1-232
fract literals in C, 1-234
full-precision accumulator, 1-247
handling fractional data, 2-49
ignoring, 1-53

built-in functions (continued)
IMASK, 1-260
in code optimization, 2-54
interrupts, 1-261
long fract, 1-197
manipulating 16-bit integers packed in

32-bit type, 1-245
misaligned data, 1-274
MMR accesses, 1-275
naming convention, 1-196
performing fixed-point arithmetic, 2-52
standard math, 3-5
synchronization, 1-261, A-43
system, 1-259
system support, 2-54
testset, A-43
untestset, A-43
video operations, 1-267
Viterbi functions, 1-253

__builtin prefix, 1-196
byteswap2, 1-259
byteswap4, 1-259

C
C

alternative tokens in, 1-29
fractional arithmetic, 1-197
fractional literal values, 1-234
GCC compatibility mode, 1-349
library facilities, 3-41
run-time support library, with file I/O,

3-6
run-time support library, without file

I/O, 3-6
variable-length arrays, 1-166

C++
Abridged Library, 3-39
alternative tokens in, 1-29
class constructor functions, 1-73, 1-194
class instance function, 1-441

Index

I-8 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

C++ (continued)
comments, 1-173
complex class, 1-243
complex operations, 1-243
constructor invocation, 1-418
constructors, 1-419
delete operator, 3-38
destructors, 1-419
exceptions, 1-347
fractional arithmetic, 1-232
fractional classes, 1-232
GCC compatibility features not

supported, 1-349
new operator, 3-38
support libraries libcpp*.dlb, 3-12
support tables (ctor, gdt), 1-394
template inclusion control pragma,

1-336
templates, 1-466
virtual lookup tables, 1-73, 1-194

C++ 2003, 1-4
-c89 (ISO/IEC 98991990 standard),

compiler switch, 1-26
C89 mode, 1-4
-c99 (ISO/IEC 9899

1999 standard), compiler switch, 1-26
C99 mode, 1-4
cabs (complex absolute value) function,

4-90
cache

asynchronous change systems, 1-392
built-in functions, 1-261
changing configuration, 1-383
configuration definition, 1-373
configurations, 1-378
data flushing, 1-389
data flushing to memory, 3-149
default configuration, 1-379
enabling, 1-378

cache (continued)
enabling on ADSP-BF535 processor,

1-378
external memory, 1-373
initialization, 3-117
invalidating, 1-383, 3-100
modes, 1-388
protection lookaside buffers (CPLBs),

1-374
cacheability protection lookaside buffers

(CPLBs). See CPLB
cache_invalidate function, 1-383, 3-100,

3-117
caching

write-back mode, 1-388
write-through mode, 1-388

cadd (complex addition) function, 4-92
calendar time, 3-36, 3-351

converting into a string, 3-124
converting into broken-down time,

3-232
calling

assembly language subroutines, 1-457
library functions, 3-3

CALL instruction, 1-324
calloc (allocate and initialize memory)

function, 3-103
call-preserved registers, 1-433

increasing, 2-63
C++ anachronisms

disabling, 1-89
enabling, 1-85

C and C++ library files, 3-5
can_instantiate pragma, 1-335
Carry

flag for ETSI functions, 1-218
global variable, 1-218

cartesian (Cartesian to polar) function,
4-93

Cartesian coordinates, 4-93

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-9
for Blackfin Processors

Index

case label, 1-354
case-sensitive switches, 1-6
cassert header file, 3-41
C/C++

callable library, 1-459
calling from assembly programs, 1-459
calling library functions, 3-3
code optimization, 2-2
language extensions, 1-156
preprocessor features, 1-401
run-time header (CRT), 1-374
run-time model, 1-408
switch statements, 1-73, 1-194

cc1462, 1-160
cc1472, 1-69
cc1473, 1-70
cc1738, 1-279
cc3106, 1-359
C/C++ assembly interfacing. See mixed

C/C++ assembly programming
ccblkfn (Blackfin C/C++ compiler), 1-1,

1-3
ccblkfn.h header file, 3-23, 3-59
ccblkfn.h include file, 1-275
C/C++ compiler

common switches, 1-26
common switches, table, 1-11
guide, 1-1, 1-3
overview, 1-1, 1-3

C/C++ compiler mode switches
-c89, 1-26
-c99, 1-26
-c++ (C++ mode), 1-26

C/C++ language extensions
asm keyword, 1-174
bool keyword, 1-158
false keyword, 1-158
inline keyword, 1-159
long identifiers, 1-159
restrict, 1-158

C/C++ language extensions (continued)
section() keyword, 1-158
true keyword, 1-158

C/C++ mode selection
switches, 1-26
switches, table, 1-11

-C (comments) compiler switch, 1-31
C-compiled code, benchmarking, 4-73
-c (compile only) compiler switch, 1-31
C compiler

MISRA switches, 1-83
MISRA switches, table, 1-24
overview, 1-143

C++ compiler switches
-no-friend-injection, 1-89

C/C++ run-time environment, defined,
1-408

C/C++ run-time environment. See also
mixed C/C++ assembly programming

C/C++ run-time header. See CRT
C/C++ run-time libraries

defined, 3-2
files, 3-5
linking, 3-5
organization of, 3-5
start-up file variants, 3-7
variants, 3-5, 3-7

C/C++ run-time library files
cplbtab*.doj, default cache configuration

table, 3-6
crt*.doj C run-time start-up file, 3-5
crtn*.doj C++ cleanup file, 3-5
file name suffices, 3-7
idle*.doj, normal termination code, 3-6
__initsbsz*.doj, memory initializer

support files, 3-6
libc*.dlb, primary ANSI C run-time

library, 3-6
libcpp*.dlb, primary ANSI C++ run-time

library, 3-6

Index

I-10 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ run-time library files (continued)
libdsp*.dlb, DSP run-time library, 3-6
libetsi*.dlb, ETSI run-time support

library, 3-6
libevent*.dlb, interrupt handler support

library, 3-6
libf64*.dlb, 64-bit floating-point

emulation routines, 3-6
libio*.dlb, host-based I/O facilities, 3-6
libprofile*.dlb, profile support routines,

3-6
librt*.dlb, C run-time support library,

without file I/O, 3-6
librt_fileio*.dlb, C run-time support

library, with file I/O, 3-6
libsftflt*.dlb, floating-point emulation

routines, 3-6
libsmall*.dlb, supervisor mode support

routines, 3-6
prfflgx*.doj profiling initialization

routines, 3-6
cctype header file, 3-41
C data types, 1-443
cdef*.h files, 1-190
cdiv (complex division) function, 4-95
ceil (ceiling) functions, 3-104
cerrno header file, 3-41
cexp (complex exponential) function, 4-97
cfft2d_fr16 function, 4-108
cfft2d (n x n point 2-D complex input

FFT) function, 4-108
cfftf (fast N-point radix-4 complex input

FFT) function, 4-102
cfftf_fr16 function, 4-102
cfft_fr16 function, 4-98
cfft (n point radix-2 complex FFT)

function, 4-98
cfftrad4_fr16 function, 4-106
cfftrad4 (n point radix-4 complex FFT)

function, 4-106

cfir (complex FIR filter) function, 4-112
cfir_fr16 function, 4-113
cfir_init macro, 4-113
cfloat header file, 3-41
character, pushing back into input stream,

3-360
characters in strings, comparing, 3-318
character string search. See strchr function
char storage format, 1-444
-check-init-order C++ mode compiler

switch, 1-87, 1-420
circindex function, 2-57
circptr function, 2-57
circular buffers

automatic generation, 1-256
compiling with the -force-circbuf

compiler switch, 2-56
DAG, 1-432
disabling, 1-53
enabling for use, 1-39
explicit circular buffer generation, 1-257
generating, 1-256
increments of index, 1-257
increments of pointer, 1-258
indexing, 1-256
lengths set to zero, 1-413
used in DSP-style code, 2-55

circular pointer references, 1-256
C language extensions

C++ style comments, 1-159
indexed initializers, 1-159
non-constant initializers, 1-159
preprocessor-generated warnings, 1-159
variable length arrays, 1-159

class conversion optimization pragmas,
1-330

classes, initializing global instances, 1-419
clearerr function, 3-105
CLibs libraries, A-18
cli function, 1-260

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-11
for Blackfin Processors

Index

CLI instruction, 1-367
climits header file, 3-41
_clip built-in functions, 1-198
clip (clip) function, 4-116
clobber, of asm() construct, 1-177
clobbered

register definition, 2-71
registers, 1-177, 1-322, 1-324
register sets, 1-324

clocale header file, 3-41
clock

clock_t data type, 3-36
function, 3-107, 4-70, 4-74
time_t data type, 3-36

CLOCKS_PER_SEC macro, 4-70, 4-72
clock_t data type, 3-37, 3-107
close function, 3-47
cmath header file, 3-41
cmlt (complex multiply) function, 4-118
C mode

compliance, 1-140
C++ mode

compiler switches, 1-85
compiler switches, table, 1-25
compliance, 1-142
using fract, 2-53
using shortfract, 2-53

C mode compiler switches
-misra, 1-83
-misra-linkdir, 1-84
-misra-no-cross-module, 1-84
-misra-no-runtime, 1-84
-misra-strict, 1-84
-misra-suppress-advisory, 1-85
-misra-testing, 1-85
-Wmis_suppress rule_number, 1-85
-Wmis_warn rule_number, 1-85

C++ mode compiler switches
-anach (enable C++ anachronisms), 1-85
-check-init-order, 1-87, 1-420
-eh (enable exception handling), 1-35
-extern-inline, 1-87
-friend-injection, 1-88
-full-dependency-inclusion, 1-88
-ignore-std, 1-88
-no-anach (disable C++ anachronisms),

1-89
-no-eh (disable exception handling),

1-54
-no-implicit-inclusion, 1-89
-no-rtti (disable run-time type

identification), 1-90
-no-std-templates, 1-90
-rtti (enable run-time type

identification), 1-90
-std-templates, 1-90

C mode MISRA compiler switches, 1-83
C mode MISRA compiler switches, table,

1-24
code

improving quality of, 2-6
placement within a dual-core system,

A-22
section identifier, 1-72, 1-193
sharing between applications, A-13
sharing items between two cores, A-20
sharing with private data, A-13
size, 1-162
storage, 1-422

code_bank pragma, 1-342
Code binary object, 1-472
CodeData binary object, 1-472
CODE_FAULT_ADDR, 1-372
CODE_FAULT_STATUS, 1-372
code inlining, controlling, 1-301
CODE memory area, 1-421

Index

I-12 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

code optimization
built-in functions, 2-54
controlling, 1-95, 2-4
disabling, 1-60
enabling, 1-60, 1-251
for maximum performance, 2-58
for size, 1-61, 1-62, 1-162, 2-57
for speed, 1-62, 1-162
using pragmas in, 2-60
with PGO, 2-9

code placement, compiler-controlled,
1-193

CODE qualifier, 1-312
coeff_iirdf1_fr16 function, 4-120, 4-212
coeff_iirdf1 function, 4-120
command-line

interface, 1-5
syntax, 1-6

COMMON_MEMORY
area, A-20
automatic duplication, A-25
directive, A-18, A-21
object mapping, A-23
protecting against de-referencing, A-25
shared version, A-21

compilation time message, disabling with
-no-progress-rep-timeout compiler
switch, 1-57

compiler
building for a specific hardware revision,

1-74
built-in functions, 1-195, 3-5
C/C++ common switches, 1-26
C/C++ common switches, table, 1-11
C/C++ language extensions, 1-156
C/C++ mode selection switches, 1-26
C/C++ mode selection switches, table,

1-11
C++ mode switches, 1-85
C++ mode switches, table, 1-25

compiler (continued)
code generator workarounds, 1-102
code optimization, 1-95, 2-2
command-line interface, overview, 1-5
command-line switch summaries, 1-10
command-line syntax, 1-6
diagnostics, 2-5
disabling GNU compatibility mode,

1-57
disabling hardware anomaly

workarounds, 1-59
enabling GNU compatibility mode, 1-50
enabling hardware anomaly

workarounds, 1-102
generating a label, 1-175
infinite hardware loop wrappers, 2-112
input/output files, 1-9
intrinsics, 1-195, 2-54
keywords, not recognized, 1-54
linking with high-speed floating-point

emulation library, 1-38
MISRA switches, 1-83
MISRA switches, table, 1-24
optimizer, 2-4
overview, 1-3
passing user options, 1-82
performance enhancement built-in

functions, 1-264
placing symbols in sections, 1-310
producing processor-specified code, 1-68
profiling facilities, 1-359
progress feedback, 1-69
resource usage, 2-106
running from command line, 1-6
selecting compilation tool, 1-65
selecting diagnostic messages, 1-338
starting a new optimization pass, 1-69
stopping after compilation, 1-71

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-13
for Blackfin Processors

Index

compiler (continued)
undefining macros, 1-77
writing cross-reference listing

information, 1-82
compiler common switches

-A (assert), 1-27
-add-debug-libpaths, 1-28
-alttok (alternative tokens), 1-28
-always-inline, 1-29
-annotate, 1-30
-annotate-loop-instr, 1-30
-auto-attrs, 1-30
-bss, 1-30
-build-lib (build library), 1-31
-C (comments), 1-31
-c (compile only), 1-31
-const-read-write, 1-31
-const-strings, 1-32
-cplbs (CPLBs are active), 1-32
-dcplbs (data CPLBs are active), 1-33
-D (define macro), 1-32
-debug-types, 1-33
-decls, 1-33
-double-size-{32 | 64}, 1-34
-dry (a verbose dry-run), 1-34
-dryrun (a terse dry-run), 1-35
-ED (run after preprocessing to file),

1-35
-EE (run after preprocessing), 1-35
-enum-is-int, 1-36
-E (stop after preprocessing), 1-35
-expand-symbolic-links, 1-37
-expand-windows-shortcuts, 1-37
-extra-keywords (enable short-form

keywords), 1-37
-extra-loop-loads, 1-37
-fast-fp (fast floating point), 1-38
-file-attr, 1-38
-@ filename, 1-27
-fixed-point-io, 1-38

compiler common switches (continued)
-flags (command-line input), 1-39
-force-circbuf, 1-39
-force-link, 1-40
-fp-associative (floating-point associative

operation), 1-40
-full-io, 1-40
-full-version (display version), 1-41
-fx-contract (performance and accuracy),

1-41
-fx-rounding-mode-biased, 1-41
-fx-rounding-mode-truncation, 1-41
-fx-rounding-mode-unbiased, 1-41
-g (generate debug information), 1-42
-glite (lightweight debugging), 1-42
-guard-vol-loads, 1-43
-help (command-line help), 1-43
-HH (list headers and compile), 1-43
-H (list headers), 1-43
-icplbs (instruction CPLBs are active),

1-45
-ieee-fp (slow floating point), 1-45
-I (include search directory), 1-44
-i (less includes), 1-45
-implicit-pointers, 1-46
-include (include file), 1-46
-ipa (interprocedural analysis), 1-47
-I- (start include directory list), 1-44
-jcs21, 1-47
-list-workarounds, 1-48
-L (library search directory), 1-47
-l (link library), 1-47
-map (generate a memory map), 1-49
-MD (generate make rules and compile),

1-49
-mem (invoke memory initializer), 1-50
-M (generate make rules only), 1-48
-MM (generate make rules and compile),

1-49
-Mo (processor output file), 1-49

Index

I-14 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

compiler common switches (continued)
-Mt (output make rule for named file),

1-49
-multicore, 1-50
-multiline, 1-50
-never-inline, 1-51
-no-alttok (disable alternative tokens),

1-51
-no-annotate (disable alternative tokens),

1-51
-no-annotate-loop-instr, 1-52
-no-assume-vols-are-mmrs, 1-52
-no-auto-attrs, 1-52
-no-bss, 1-53
-no-builtin (no built-in functions, 1-53
-no-circbuf (no circular buffer), 1-53
-no-const-strings, 1-53
-no-defs (disable defaults), 1-54
-no-expand-symbolic-links, 1-54
-no-expand-windows-shortcuts, 1-54
-no-extra-keywords, 1-54
-no-force-link, 1-55
-no-fp-associative, 1-55
-no-full-io, 1-56
-no-fx-contract, 1-56
-no-int-to-fact (disable integer to

fractional conversion), 1-56
-no-int-to-fract, 1-56
-no-jcs2l, 1-57
-no-mem (not invoking memory

initializer), 1-57
-no-multiline, 1-57
-no-progress-rep-timeout, 1-57
-no-sat-associative, 1-57
-no-saturation (no faster operations),

1-58
-no-std-ass (disable standard assertions),

1-58
-no-std-def (disable standard macro

definitions), 1-58

compiler common switches (continued)
-no-std-inc (disable standard include

search), 1-59
-no-std-lib (disable standard library

search), 1-59
-no-threads (disable thread-safe build),

1-59
-no-workaround workaround_id, 1-59,

1-103
-no-zero-loop-counters, 1-60
-O0 (disable optimizations), 1-60
-O1 (enable optimizations), 1-60
-Oa (automatic function inlining), 1-60
-O (enable optimizations), 1-60
-Ofp (frame pointer optimizations), 1-60
-Og (optimize while preserving

debugging information), 1-61
-o (output file), 1-63
-Os (enable code size optimizations),

1-61
-overlay, 1-64
-overlay-clobbers, 1-64
-Ov (optimize for speed vs. size), 1-61
-path-install (installation location), 1-66
-path-output (non-temporary files

location), 1-66
-path-temp (temporary files location),

1-66
-path- (tool location), 1-65
-pchdir directory, 1-66
-pch (recompiled header), 1-66
-p (generate profiling implementation),

1-65
-pgo-session session-id, 1-67
-pguide (profile-guided optimization),

1-67
-P (omit line numbers), 1-65
-pplist (preprocessor listing), 1-68
-PP (omit line numbers and compile),

1-65

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-15
for Blackfin Processors

Index

compiler common switches (continued)
-progress-rep-func, 1-69
-progress-rep-opt, 1-69
-progress-rep-timeout, 1-70
-progress-rep-timeout-secs, 1-70
-R (add source directory), 1-70
-R- (disable source path), 1-71
-reserve (reserve register), 1-71
-sat-associative, 1-71
-save-temps (save intermediate files),

1-72
-sdram, 1-72
-section (data placement), 1-72, 1-421
-show (display command line), 1-73
-signed-bitfield (make plain bit-fields

signed), 1-74
-signed-char (make char signed), 1-74
-si-revision version (silicon revision),

1-74, 1-101
sourcefile, 1-27
-S (stop after compilation), 1-71
-s (strip debug information), 1-71
-stack-detect (detect stack overflow),

1-74
-syntax-only (only check syntax), 1-75
-sysdef (system macro definitions), 1-76
-threads (enable thread-safe build), 1-76
-time (tell time), 1-77
-T (linker description file), 1-76
-unsigned-bitfield (make plain bit-fields

unsigned), 1-77
-unsigned-char (make char unsigned),

1-78
-U (undefine macro), 1-77
-verbose (display command line), 1-79
-version (display version), 1-79
-v (version and verbose), 1-78
-warn-protos (warn if incomplete

prototype), 1-81
-w (disable all warnings), 1-80

compiler common switches (continued)
-Werror-limit (maximum compiler

errors), 1-80
-Werror-warnings (treat warnings as

errors), 1-80
-W{...} number (override error message),

1-79
-workaround workaround_id, 1-81,

1-102
-Wremarks (enable diagnostic remarks),

1-80
-write-files (enable driver I/O

redirection), 1-81
-write-opts (user options), 1-82
-Wterse (enable terse warnings), 1-80
-xref (cross-reference list), 1-82
-zero-loop-counters, 1-83

compiler driver, 1-92, 1-102
compiler performance built-in functions

controlling compiler behavior, 2-34
usage example, 2-35

compile-time constant, 1-189
complex

absolute value, 4-90
addition, 1-241, 4-92
compose, 1-241
conjugate, 1-241, 4-124
division, 4-95
exponential, 4-97
extract real and imaginary parts, 1-240
fract built-ins, 1-238
fractional distance, 1-240
fractional multiply and accumulate,

1-239, 1-240, 1-242
fractional multiply and accumulate and

multiply and subtract, 1-239, 1-242
fractional multiply and subtract, 1-239,

1-240
fractional numbers, 1-238
fractional square, 1-239

Index

I-16 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

complex (continued)
functions, 4-5
functions in C++, 1-243
multiply, 4-118
number, 4-83
subtraction, 1-241, 4-143

complex FIR filter, 4-112
complex_fract16 cmac_fr16 function,

1-239, 1-242
complex_fract16 cmac_fr16_s40 function,

1-240
complex_fract16 cmsu_fr16 function,

1-239, 1-242
complex_fract16 cmsu_fr16_s40 function,

1-240
complex_fract16 csqu_fr16 function,

1-239
complex_fract16 type, 1-238, 1-239
complex_fract32 cadd_fr32 function,

1-241
complex_fract32 ccompose_fr32 function,

1-241
complex_fract32 conj_fr32 function,

1-241
complex_fract32 csub_fr32 function,

1-241
complex_fract32 type, 1-238, 1-239
complex header file, 1-243, 3-39
complex header file. See also complex.h file
complex.h header file, 1-239, 1-244, 4-5
compliance

language standards, 1-140
compose_i2x16 function, 1-245
compound literals, 1-172
compound macros, 1-406
compression/expansion, 4-19
conditional code

avoiding in loops, 2-43
improving, 2-33

conditional expressions, with missing
operands, 1-352

conj (complex conjugate) function, 4-124
constants

accessed as read-write data, 1-31
initializing statically, 2-21

ConstData binary object, 1-473
CONSTDATA qualifier, 1-312
constdata section identifier, 1-72, 1-194
const pointers, 1-31
const pragma, 1-319
constraint

asm() construct, 1-177
n input, 1-189
operand, 1-180, 1-183

-const-read-write compiler switch, 1-31
constructors, C++ classes, 1-421
constructors and destructors, 1-419

and memory placement, 1-421
for global class instances, 1-419
start routine, 1-420

constructs
flow control, 1-190
input and output operands, 1-188, 1-189
operand description, 1-180
optimization, 1-187
reordering and optimization, 1-187
template, 1-176
template for assembly, 1-176
template operands, 1-180
with multiple instructions, 1-186

-const-string compiler switch, 1-32
Content attribute, 1-472

values, 1-472
continuation characters, 1-50, 1-57
control character, detecting, 3-213
control character test. See iscntrl function
control code, using 32-bit data types in,

2-59
conv2d (2-D convolution) function, 4-128

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-17
for Blackfin Processors

Index

conv2d3x3 (2-D convolution) function,
4-131

conversion
fixed-point types, 1-110

conversion of integer to fractional
arithmetic, disabling, 1-56

conversion specifiers, 3-33, 3-157, 3-171
supported by strftime function, 3-312

convert
characters. See tolower, toupper

functions
coefficients for DF1 IIR filter, 4-120
implicit type, 3-27
strings. See atof, atoi, atol, strtok, strtol,

strtoul functions
converting

float to fract, 1-235
fract to float, 1-235

convolution, 4-10, 4-18, 4-125
convolve (convolution) function, 4-125
copying

characters from one string to another,
3-319

one string to another, 3-309
copysign (copysign) function, 4-134
core, identifying current, 3-71, 3-74
core algorithm, unmodified, 2-11
core pragma, 1-304
cos (cosine) function, 3-109
cosd function, 3-109
cosf function, 3-109
cos_fr16 function, 3-109
coshd function, 3-112
coshf function, 3-112
cosh (hyperbolic cosine) functions, 3-112
cosine, 3-109
cosine window, 4-175
cotangent, 4-135
cot (cotangent) function, 4-135
counting one bits in word, 4-136

countlsfx (count leading sign or zero bits)
function, 1-126, 3-113

countones (count one bits in word)
function, 4-136

count_ticks function, 1-344
CPLB

cache configurations, 1-378
___cplb_ctrl control variable, 1-374
_cplb_mgr management routine, 1-376
data, 1-381
defining, 1-373
defining memory access, 1-373
defining memory access parameters,

1-373
disabling, 3-128
enabling, 1-32, 3-132
enabling caching, 1-378
eviction, 3-120
exception management, 3-120
initialization, 1-417, 3-117
installation, 1-376
instruction, 1-381
management routine for exceptions,

3-120
mapping configuration tables, A-7
miss exception, 1-376
replacement and cache modes, 1-388
return (error) codes, 1-391
validation, 1-378

CPLB_ALL_ACCESS macro, 1-382
___cplb_ctrl control variable, 1-374,

1-376, 1-378, 1-383, 1-391, 1-414,
3-100, 3-117, A-14

__cplb_ctrl control variable, 3-117
___cplb_ctrl variable, 1-387, 1-389
CPLB_DATAn registers, 3-118
CPLB_DDOCACHE macro, 1-382
CPLB_DEF_CACHE macro, 1-382
CPLB_DNOCACHE macro, 1-382

Index

I-18 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

CPLB_ENABLE_CPLBS macro, 1-374,
1-375

CPLB_ENABLE_DCACHE2 macro,
1-375

CPLB_ENABLE_DCACHE macro,
1-375

CPLB_ENABLE_ICACHE macro, 1-374
___cplb_hdr default handler, 1-414
_cplb_hdr exception handler, 1-377, 1-390
cplb_hdr function, 3-115
cplb.h header file, 1-374, 1-381, 1-391
CPLB_IDOCACHE macro, 1-383
cplb_init function, 3-117
_cplb_init routine, 1-376
CPLB_INOCACHE macro, 1-383
CPLB_I_PAGE_MGMT macro, 1-382
cplb_mgr function, 3-120
_cplb_mgr routine, 1-376

CPLB replacement and cache modes,
1-388

definition, 1-391
return codes, 1-390, 1-391

_cplb_miss_all_locked function, 1-392
_cplb_miss_without_replacement

function, 1-392
CPLB_NO_ADDR_MATCH return

code, 1-391
CPLB_NO_UNLOCKED return code,

1-391
_cplb_protection_violation function,

1-392
CPLB_PROT_VIOL return code, 1-391
CPLB_RELOADED return code, 1-391
-cplbs (CPLBs are active) compiler switch,

1-32
CPLB_SET_DCBS macro, 1-375
cplbtab*.doj, default cache configuration

table, 3-6
cplbtab.h header file, 1-381, 3-23, 3-59

__cplusplus macro, 1-403
crosscoh (cross-coherence) function, 4-137
cross-core memory references, A-25
crosscorr (cross-correlation) function,

4-140
cross-reference listing information, 1-82
CRT

about, 1-410
argument parsing, 1-419
calling _cplb_init routine, 1-416
C++ constructor invocation, 1-418
configuring DAGs, 1-415
declarations, 1-412
default objects, 1-410
enabling cycle counter, 1-415
event vector table, 1-414
_exit function, 1-419
file name suffices, 3-8
header overview, 1-410
initializing device drivers, 1-416
initializing instrumented-code profiling

library, 1-418
lowering process priority, 1-417
_main function, 1-410, 1-419
memory initialization, 1-415
pre-built objects, 1-411
register settings, 1-413
start-up settings, 1-413
via Project Wizard, 1-410
working in multi-threaded environment,

1-419
crt*.doj C run-time start-up file, 3-5
crt*.doj start-up files, 3-7
crtn*.doj C++ cleanup file, 3-5
C++ run-time, alternate heap interface

support, 1-431
C run-time, library reference, 3-64 to

3-366

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-19
for Blackfin Processors

Index

C run-time library functions
calling from ISR, 3-38
interrupt-safe, 3-38
not-interrupt-safe, 3-38

csetjmp header file, 3-42
csignal header file, 3-42
cstdarg header file, 3-42
cstddef header file, 3-42
cstdio header file, 3-42
C++ STL objects, 1-427
cstring header file, 3-42
csub (complex subtraction) function, 4-143
csync function, 1-261
ctime (convert calendar time into a string)

function, 3-80, 3-124
___ctorloop function, 1-418
ctor memory section, 1-420
C-type functions

iscntrl, 3-213
isgraph, 3-215
islower, 3-218
isprint, 3-221
ispunct, 3-222
isspace, 3-223
isupper, 3-224
isxdigit, 3-225
tolower, 3-358
toupper, 3-359

ctype.h header file, 3-23
custom allocator, 1-427
customer support, liv
customized .ldf files

creating for each core, A-8
creating for single-core application, A-7

cycle counter, 1-363
enabling, 1-415

cycle_count.h header file, 4-9, 4-65
cycle counting, 4-65
cycle-count register, 4-65, 4-73, 4-74

cycle counts
accumulating statistics, 4-67
computing, 1-363, 2-140
determining processor clock rate, 4-72
measuring, 4-9, 4-64
using time.h header file, 4-70
with statistics, 4-10, 4-67

CYCLES2 register, 4-75
cycles.h header file, 4-10, 4-67, 4-68
CYCLES_INIT(S) macro, 4-67
CYCLES_PRINT(S) macro, 4-68
CYCLES register, 4-74
CYCLES_RESET(S) macro, 4-68
CYCLES_START(S) macro, 4-67
CYCLES_STOP(S) macro, 4-67
cycle_t data type, 4-65
cygdrive folders, 1-94
Cygwin

cygdrive directory, 1-94
environment paths, 1-92
mounted directories, 1-94
path extensions, 1-37
paths, 1-93
symbolic links, 1-93
UNIX-like command-line environment,

1-93

D
DAG

circular buffers, 1-432
port, selecting, 1-415
registers, 1-432

data
alignment, misaligned accesses, 1-274,

1-285
alignment pragmas, 1-279, 1-280
fetching with 32-bit loads, 2-23
field, 3-45
formatting into a character array, 3-299
fractional, 2-49, 2-54

Index

I-20 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

data (continued)
packing, 3-54
placement for performance, 2-31
sharing between applications, A-10
sharing items between two cores, A-20
storage, 1-422
storage formats, 1-443
word alignment, 2-23

data_bank pragma, 1-342
Data binary object, 1-472
data buffers

word alignment, 2-23
data cache

disabling, 3-128
enabling, 3-132
flushing, 3-149

data CPLBs, 1-381
disabling, 3-128
enabling, 3-132

DATA_FAULT_ADDR, 1-372
DATA_FAULT_STATUS, 1-372
data memory accesses

validating, 1-33
DATA memory area, 1-422
data placement, compiler-controlled, 1-72,

1-193, 1-421
DATA qualifier, 1-312
data section identifier, 1-72, 1-193
data type

formats, 1-443
scalar, 2-15
sizes, 1-443

data types
emulated arithmetic, 2-20
fixed-point, 1-104

date
information, 3-36

__DATE__ macro, 1-403
Daylight Saving flag, 3-36

dcache_invalidate_both routine, 1-384,
3-100

dcache_invalidate routine, 1-384, 3-100
-DCLOCKS_PER_SEC compile-time

switch, 4-72
-D (define macro) compiler switch, 1-32,

1-77
-DDO_CYCLE_COUNTS compile-time

switch, 4-66, 4-67, 4-73
deallocate memory. See free function
debugger, generating debug line

information, 1-175
debugging, source-level, 1-42, 1-61
debugging information

generating, 1-42
lightweight, 1-42
preserving, 1-61
removing, 1-71
removing unnecessary, 1-42

DEBUG macro, A-28
Debug subdirectory, 1-28
-debug-types compiler switch, 1-33
declarations, mixed with code, 1-171
-decls compiler switch, 1-33
dedicated registers, 1-432
default

cache configuration tables, 1-379
CPLB exception handler, 3-115
device, 3-52
device driver, 3-53
environment, 1-357
heap, 1-423, 1-425
I/O run-time library, 3-33
.ldf files, 1-364, 1-385
memory placement, 3-13
names, controlling, 1-72, 1-193
sections, 1-311
startup code, 1-377
target processor, 1-69

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-21
for Blackfin Processors

Index

default preprocessor macros, disabling,
1-54

default_section pragma, 1-193, 1-310
defblackfin.h header file, 1-381
def_LPBlackfin.h header file, 1-381
delete operator

free memory from run-time heap, 1-423
with multiple heaps, 1-431

dependency information, generating, 1-88
dependent name processing

disabling, 1-90
enabling, 1-90

deque header file, 3-42
destructors, C++ classes, 1-421
DevEntry structure, 3-45

pre-registered devices, 3-50
device

default, 3-52
driver, 3-45
drivers, 3-44
identifiers, 3-45
initialization, 1-416
registering, 3-50

device drivers, initializing, 1-416
device.h header file, 3-24, 3-45
DeviceID field, 3-45
device_int.h header file, 3-24
devices

pre-registering, 3-50
devtab.c library source file, 3-50
DF1 IIR filter, 4-120
diagnostic control pragmas, 1-338
diagnostic messages

modifying behavior, 1-340
restoring behavior, 1-340
saving behavior, 1-340
severity of, 1-338, 1-339

diagnostic remarks
enabling, 1-80

diagnostics
annotations, 2-7
described, 2-5
modifying severity of, 1-339
modifying with directives, 1-341
remarks, 2-6
warnings, 2-6

diag pragmas, 1-340
DIAG qualifier, in MISRA-C mode, 1-339
different_banks pragma, 1-288
difftime (difference between two calendar

times) function, 3-126
digraph sequences, 1-28
DIRTY flag, 1-388, 1-389
disable_data_cache function, 3-128
div (division) function, 3-129
divide primitive instructions, 1-246
divifx (division of integer by fixed-point)

function, 1-121, 3-130
division

handling, 2-20
division, complex, 4-95
division functions, 1-246
division. See div, ldiv functions
divq function, 1-246
divs function, 1-246
DMA

code processed via, 1-434
manager, 1-434
transfers, 1-393, 3-149

DMEM_CONTROL register, 1-384,
3-118

DM qualifier, 1-313
.doj files, 1-8, 1-31
do_not_instantiate pragma, 1-335
double

32-bit data type, 1-34
64-bit data type, 1-34
data type, 1-443, 1-446, 1-447
data type formats, 1-34

Index

I-22 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

double (continued)
representation, 3-324
storage format, 1-443

DOUBLE32 qualifier, 1-313
DOUBLE64 qualifier, 1-313
DOUBLEANY qualifier, 1-313
double-precision format, 1-220
__DOUBLES_ARE_FLOATS__ macro,

1-404
-double-size-32 compiler switch, 1-34,

1-443, 1-446
-double-size-64 compiler switch, 1-34,

1-443, 1-446
-double-size-any compiler switch, 1-443,

1-447, 1-448
driver I/O redirection, enabling, 1-81
-dry-run (verbose dry-run) compiler switch,

1-35
-dry (terse -dry-run) compiler switch, 1-34
DSP

filters, 4-10
header files, 4-5
run-time library, 3-6, 4-1
run-time library, calling function in, 4-3
run-time library, linking functions, 4-3
run-time library, source code, 4-4
run-time library attributes, 4-4
run-time library format, 4-75
run-time library functions, 4-75

dual-core applications
architecture overview, A-2
dual-core .ldf files, A-22
dual-core linking, A-23
environment, selecting, 1-50
linking, A-18, A-23
processor, A-1
restrictions for, A-25
using file attributes with, A-22

DualCoreMem file attribute, A-22, A-38,
A-40

dynamic_cast expressions, 1-90
dynamic scaling, 4-99, 4-190, 4-227

E
easmblkfn assembler, 1-3
__ECC__ macro, 1-404
__EDG__ macro, 1-404
__EDG_VERSION__ macro, 1-404
-ED (run after preprocessing to file)

compiler switch, 1-35
-EE (run after preprocessing) compiler

switch, 1-35
-eh (enable exception handling) compiler

switch, 1-35
elfar archive library, 1-3
embedded C++ header files

complex, 3-39
exception, 3-39
fract, 3-40
fstream, 3-40
iomanip, 3-40
ios, 3-40
iosfwd, 3-40
iostream, 3-40
istream, 3-40
new, 3-40
ostream, 3-40
shortfract, 3-40
sstream, 3-40
stdexcept, 3-40
streambuf, 3-40
string, 3-41
strstream, 3-41

embedded C++ library
header files, 3-39

embedded standard template library, 3-42
Empty binary object, 1-473

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-23
for Blackfin Processors

Index

emulated arithmetic
avoiding, 2-20
data types, 2-16, 2-17, 2-20
operators, 2-21

enable_data_cache function, 3-132
endian-swapping intrinsics, 1-259
End. See atexit, exit functions
EngineerZone, lvi
enumeration types, 1-36
-enum-is-int compiler switch, 1-36
environment variables

ADI_DSP, 1-91
CCBLKFN_IGNORE_ENV, 1-92
CCBLKFN_OPTIONS, 1-92
PATH, 1-91
TEMP, 1-91
TMP, 1-91

EOF indicator, 3-105
errno global variable, 3-14, 3-38, A-24
errno.h header file, 3-24
error messages

overriding, 1-79
via diagnostic control pragmas, 1-338

escape character, 1-354
ESTL header files, 3-42
-E (stop after preprocessing) compiler

switch, 1-35
ETSI

built-in functions, 1-215, 1-451, 1-452,
1-453, 1-454, 1-455

built-in functions, disabling, 1-219
conversions between fract16 and fract32

data types, 1-217
etsi_negate function, 1-219
floating-point multiplication using fract

implementation, 1-236
macros, 1-215
negate function, 1-219
routines for C fracts, 1-233

ETSI (continued)
run-time support library, 3-6
support routines, in libetsi*.dlb library,

1-217
ETSI library

carry flag, 1-219
overflow flag, 1-219

etsi_negate function, 1-219
ETSI routines

16-bit fractional, 1-227
32-bit fractional using 1.31 format,

1-223
32-bit fractional using double-precision

format, 1-220
RND_MOD flag, 1-219

ETSI_SOURCE macro, 1-215, 1-218,
1-233

European Telecommunications Standards
Institute functions, see ETSI

event
handlers, 1-366, 3-290
vector table, 1-368, 3-290

event details
exceptions, 1-372
fetching, 1-372

event handlers
for each core, A-15
in one-application-per-core system, A-14
in single application/dual-core system,

A-21
in single-core application, A-7
registering directly, 3-267, 3-270

event vector tables, 1-414
ISRs, 1-370
pragmas, 1-286

examples
fixed-point dot product, 1-108
fixed-point type, 1-137

Index

I-24 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

exception
events, 1-366
mask codes, 1-391

exception handler
calling _cplb_mgr, 1-376
_cplb_hdr, 1-377
CPLBs, 3-115, 3-120
disabling, 1-54
working with _cplb_mgr routine, 1-391

exception handling
disabling, 1-54
enabling, 1-35

exception header file, 3-39
exception.h file, 1-371
__EXCEPTIONS macro, 1-35, 1-404
exceptions tables, 1-347

in assembly routine, 1-462
initialization, 1-463

executable, running the, 1-360
EX_EXCEPTION_HANDLER macro,

1-366
EX_HANDLER_PROTO macro, 1-367
EX_INT_ALWAYS_ENABLE value,

1-370
EX_INT_DEFAULT value, 1-369
EX_INT_DISABLE value, 1-369
EX_INT_ENABLE value, 1-370
EX_INTERRUPT_HANDLER macro,

1-287, 1-366, 1-367
EX_INT_IGNORE value, 1-369
EX_INT_KEEP_IMASK value, 1-369
_exit function, calling, 1-419
exit library function, 1-421
exit (normal program termination)

function, 3-134
EX_NMI_HANDLER macro, 1-366
-expand-symbolic-links compiler switch,

1-37
-expand-windows-shortcuts compiler

switch, 1-37

expected_false built-in function, 1-264,
2-33, 2-34, A-36

expected_true built-in function, 1-264,
2-33, 2-34, A-36

exp (exponential) functions, 3-135
exponential. See exp, ldexp functions
exponentiation, 4-79, 4-81
EXPRS macro, 2-36
EX_REENTRANT_HANDLER macro,

1-366
extension keywords, 1-157
external SDRAM, 1-385
-extern-inline C++ mode compiler switch,

1-87
-extra-keywords (enable short-form

keywords) compiler switch, 1-37
-extra-loop-loads compiler switch, 1-37
extra_loop_loads pragma, 1-289
EZ-KIT Lite system, 3-53

ADSP-BF561 Blackfin processor, A-2
I/O primitives, 3-44
supporting primitives for open, close,

read, write, and seek operations, 3-34
with alternative device drivers, 3-24

F
fabs (absolute value) functions, 3-136
far jump return. See longjmp, setjmp

functions
faster operations, disabling, 1-58
Fast Fourier Transforms, 4-10, 4-13
-fast-fp (fast floating point) compiler

switch, 1-38, 1-443, 1-451
fclose function, 3-137
feof function, 3-139
ferror function, 3-140
fetching event details, 1-372
fflush function, 3-141
FFT function versions, 4-10
fgetc function, 3-142

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-25
for Blackfin Processors

Index

fgetpos function, 3-144
fgets function, 3-146
file

annotation position, 2-110
attributes, 1-314
attributes, adding, 1-38
attributes, disabling, 1-52
automatic attributes, 1-30
buffering, 3-288
current position for, 3-177
extensions, 1-6, 1-9, 1-27
full buffering, 3-284
I/O, extending to new devices, 3-44
I/O support, 3-44
multiple attributes, 1-38
opening, 3-152
opening with an existing file descriptor,

3-166
position indicator, 3-174, 3-176
removing, 3-274
renaming, 3-276
searching, 1-8

file attribute
and section qualifiers, 1-475
automatically-applied, 1-472
different values of, 1-476
for dual-core linking, A-23
name, 1-471
used with dual-core applications, A-22

file attributes
controlling placement of library

components, A-24
placement of run-time library functions

with, 1-471
-file-attr name compiler switch, 1-38, A-39
file_attr pragma, 1-314, A-38
fileID field, 3-58
__FILE__ macro, 1-404

file name
reading from, 1-27
to be processed, 1-27

-@ filename (command file) compiler
switch, 1-27

files
.doj, 1-8, 1-31

file-to-device stream, 1-97
filter.h header file, 4-10, 4-162, 4-205,

4-211
filter library, 4-11
filters, signal processing, 4-10
finite impulse response (FIR) filter, 4-151
FIOCRT macro, 1-419
fir_decima (FIR decimation filter)

function, 4-154
fir_decima_fr16 function, 4-156
FIR decimation filter, 4-154
FIR filter, 4-151
fir (finite impulse response filter) function,

4-144, 4-149
fir_interp (FIR interpolation filter)

function, 4-160
fir_interp_fr16 function, 4-162
five-project convention, A-22
fixed-point arithmetic

pragmas, 1-298
semantics, 1-109
using built-in functions, 2-52

fixed-point arithmetic pragmas, 1-298
fixed-point constants, 1-107
-fixed-point-io compiler switch, 1-38
fixed-point types

arithmetic operators, 1-113
conversion, 1-110
using, 1-104

-flags (command line input) compiler
switch, 1-39

flags field, 3-56

Index

I-26 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

flash memory, mapping code and data to,
3-14

float
converting to fract, 1-235
data type, 1-443, 1-446
storage format, 1-443

float.h header file, 3-24
floating-point

binary formats, 1-448
data size, 1-446
emulation routines, 3-6
fully-compliant emulation library, 1-45
hexadecimal constants, 1-170
high-speed emulation library, 1-38
multiplication using ETSI fract

implementation, 1-236
numbers, 1-443

floating-point multiplication and addition
as associative operations, 1-40
not as associative operations, 1-55

float_to_fr16 function, 1-235, 1-236
float_to_fr32 function, 1-235
floor (integral value) functions, 3-148
flow control operations, 1-190
FLT_MAX macro, 3-25
FLT_MIN macro, 3-25
flush_data_buffer function, 1-390, 3-149
flush_data_cache function, 1-389, 3-149
flush (data cache line flush) built-in

function, 1-261
flushing data cache, 1-389, 3-149
flushinv (data cache line flush and

invalidate) built-in function, 1-262
flushinvmodup built-in function, 1-262
flushmodup built-in function, 1-262
fmod (floating-point modulus) functions,

3-151
fopen function, 3-52, 3-152
-force-circbuf (circular buffer) compiler

switch, 1-39, 2-56

FORCE_CONTIGUITY directive, 1-394
-force-link (force stack frame creation)

compiler switch, 1-40
formatted input

converting from stdin, 3-282
converting in a string, 3-303
reading, 3-169

formatted output
of a variable argument list, 3-367
printing, 3-154, 3-254

-fp-associative (floating-point associative)
compiler switch, 1-40

fprintf function, 3-154
fputc function, 3-160
fputs function, 3-161
fr16_to_float function, 1-235, 1-236
fr16_to_fr32 function, 1-235
fr32_to_float function, 1-235, 1-236
fr32_to_fr16 function, 1-235
_Fract, 1-105
fract, 1-105, 1-174, 1-451

class, 1-232
converting to float, 1-235, 1-236
ETSI functions, 1-215
using, 2-51, 2-53

fract16, 1-234
fract16 built-in functions, 1-198
fract16 cdst_fr16 function, 1-240
fract16 data type, 1-197, 1-451, 1-452,

1-453, 1-454, 1-455
fract16 ETSI functions, 1-227
fract2float_conv.h header file, 1-235
fract2x16 built-in functions, 1-207
fract2x16 data type, 1-197, 1-451, 1-452,

1-453, 1-454, 1-455
fract32, 1-203, 1-234
fract32 built-in functions, 1-203
fract32 cdst_fr32 function, 1-240
fract32 data type, 1-197, 1-451, 1-452,

1-453, 1-454, 1-455

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-27
for Blackfin Processors

Index

fract32 Div_32 function, 1-221
fract32 ETSI functions, 1-220, 1-223
fract32 imag_fr32 function, 1-240
fract32 real_fr32 function, 1-240
fract data type, 1-197
fract header file, 3-40
fract.h header file, 1-197, 1-215
fractional

built-in functions, 1-197, 1-451, 1-452,
1-453, 1-454, 1-455

built-in values, 1-196
complex_fract16 values, 1-238
C type values, 1-196
data, 2-49
fract class values, 1-232
literal values in C, 1-234
numbers, 1-451, 1-452, 1-453, 1-454,

1-455
shortfract class values, 1-232

fractional data, 2-54
fractional semantics

using integer arithmetic, 2-50
fract_math.h header file, 1-215, 1-217
frame pointer

and frame pointer optimization, 1-60
and user stack pointer, 1-415
controlling the run-time stack, 1-435
dedicated register, 1-432
performed at end of function, 1-437
purpose of, 1-435

fread (buffered input) function, 3-163
fread function, 3-33
free (deallocate memory) function, 3-165
free list, emptying, 1-432
freopen function, 3-166
frexp (separate fraction and exponent)

function, 3-168
-friend-injection C++ mode compiler

switch, 1-88
fscanf function, 3-169

fseek function, 3-174
fsetpos function, 3-176
fstream header file, 3-40
fstream.h header file, 3-43
ftell (current file position) function, 3-177
-full-dependency-inclusion C++ mode

compiler switch, 1-88
-full-io compiler switch, 1-40
full-precision accumulator built-in

function, 1-247
-full-version (display version) compiler

switch, 1-41
FuncName attribute, 1-472
function

A_abs, 1-249
A_add, 1-249
A_ashift, 1-249
A_bitmux_ASL, 1-249
A_bitmux_ASR, 1-249
A_bxor_mask32, 1-249
A_bxor_mask40, 1-249
A_bxorshift_mask32, 1-249
A_bxorshift_mask40, 1-249
A_eq, 1-249
A_le, 1-249
A_lshift, 1-249
A_lt, 1-249
A_mac, 1-248
A_mac_FU, 1-248
A_mac_IS, 1-248
A_mac_M, 1-248
A_mac_MI, 1-249
A_mad, 1-250
A_mad_FU, 1-250
A_madh, 1-250
A_madh_FU, 1-250
A_madh_IH, 1-250
A_madh_IS, 1-250
A_madh_ISS2, 1-250
A_madh_IU, 1-250

Index

I-28 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

function (continued)
A_madh_S2RND, 1-250
A_madh_T, 1-250
A_madh_TFU, 1-250
A_mad_ISS2, 1-250
A_mad_S2RND, 1-250
A_msu, 1-249
A_msu_FU, 1-249
A_msu_IS, 1-249
A_msu_M, 1-249
A_msu_MI, 1-249
A_mult, 1-248
A_mult_FU, 1-248
A_mult_IS, 1-248
A_mult_M, 1-248
A_mult_MI, 1-248
A_neg, 1-249
A_sat, 1-250
A_signbits, 1-249
A_sub, 1-249

functional header file, 3-42, 3-43
function arguments, transferring, 1-439
function calls, 2-44, 2-63

reported statistics, 2-99
function inlining, 1-159

and global asm statements, 1-163
and optimization, 1-162
and out-of-line copies, 1-163
declined (cc1462), 1-160
how to use, 2-28
ignoring section directives, 1-164
stack size, 1-162

function pointer, not used with
regs_clobbered pragma, 1-323

function pragmas, for code optimization,
2-61

functions
arguments/return value transfer, 1-439
arithmetic, 4-5
__builtin_functsize, 1-276

functions (continued)
calling in loop, 2-44
complex, 4-5
division, 1-246
entry (prologue), 1-435
exit (epilogue), 1-435
inlining, 2-28
inlining a call to, 1-29
math, 4-20
matrix, 4-24
obtaining size in bits, 1-276
out-of-line copy, 1-163
statistical, 4-38
synchronization, 3-71
transformational, 4-11
vector, 4-45

function side-effect pragmas, 1-318
fwrite function, 3-33, 3-178
fxbits (bitwise integer to fixed-point

conversion) function, 1-112, 3-180
FX_CONTRACT

behavior, 1-115
-fx-contract compiler switch, 1-41
FX_CONTRACT pragma, 1-299
fxdivi (division of integer by integer)

function, 1-123, 3-182
-fx-rounding-mode-biased compiler

switch, 1-41
FX_ROUNDING_MODE pragma,

1-299
-fx-rounding-mode-truncation compiler

switch, 1-41
-fx-rounding-mode-unbiased compiler

switch, 1-41

G
Gaussian window, 4-171
GCC compatibility extensions, 1-349
GCC compatibility mode, 1-349
GCC compiler, 1-350

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-29
for Blackfin Processors

Index

GCC generalized lvalue, 1-352
gen_bartlett (generate Bartlett window)

function, 4-166
gen_blackman (generate Blackman

window) function, 4-169
general optimization pragmas, 1-297
generate_exceptions_tables pragma, 1-347
gen_gaussian (generate Gaussian window)

function, 4-171
gen_hamming (generate Hamming

window) function, 4-173
gen_hanning (generate Hanning window)

function, 4-175
gen_harris (generate Harris window)

function, 4-177
gen_kaiser (generate Kaiser window)

function, 4-179
gen_rectangular (generate rectangular

window) function, 4-181
gen_triangle (generate triangle window)

function, 4-183
gen_vonhann (generate von Hann

window) function, 4-185
__getargv function, 1-419
getc function, 3-184
getchar function, 3-186
get_default_io_device function, 3-52
get_interrupt_info function, 1-371
gets function, 3-188
-g (generate debug information) compiler

switch, 1-42
-glite (lightweight debugging) compiler

switch, 1-42
global

asm statements and function call
inlining, 1-163, 1-164

control variable ___cplb_ctrl, 1-387,
1-389

guard symbols, 1-387

global (continued)
variable debugging, 1-42
variables, 1-461

global information, 2-97
global symbols, 1-304
global zero-initialized data

keeping in the same data section, 1-53
placing in bsz section, 1-30

globvar global variable, 2-47
gmtime (convert calendar time into

broken-down time as UTC) function,
3-38, 3-80, 3-190, 3-232

GNU C compiler, 1-349
GNU compatibility mode, 1-50

disabling, 1-57
granularity, when attributes are used, 1-475
graphical character test. See isgraph

function
guards, 2-66
-guard-vol-loads (guard volatile loads)

compiler switch, 1-43

H
Hamming window, 4-173
handlers, signal, 1-370
Hanning window, 4-175
hard constraints, 1-475
hardware

anomaly, avoiding, 3-7
disabled loops, 1-413
errors, 1-372
error values, 1-372
event kind handling, 3-270
event kind values, 3-270
flags setting on ADSP-BF535 processor,

1-219
loop counters, 1-434
loops, 2-112
pipelining, 2-75
workarounds macro, 1-405

Index

I-30 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

hardware events, handing, 3-267
hardware loops

trip count, 2-112
hardware revision, building project for,

1-74
Harris window, 4-177
hash_map header file, 3-42
hash_set header file, 3-42
hdrstop pragma, 1-335
header, stop point, 1-336
header files

C++, 3-41
control pragmas, 1-335
DSP, list of, 4-5
embedded C++ library, 3-39
embedded standard template library,

3-42
ESTL, 3-42
search for, 1-59
standard C run-time library, 3-20

header files (embedded C++)
complex, 3-39
exception, 3-39
fract, 3-40
fstream, 3-40
iomanip, 3-40
ios, 3-40
iosfwd, 3-40
iostream, 3-40
istream, 3-40
new, 3-40
ostream, 3-40
shortfract, 3-40
sstream, 3-40
stdexcept, 3-40
streambuf, 3-40
string, 3-41
strstream, 3-41

header files (embedded standard template)
algorithm, 3-42
deque, 3-42
fstream.h, 3-43
functional, 3-42
hash_map, 3-42
hash_set, 3-42
iomanip.h, 3-43
iostream.h, 3-43
iterator, 3-42
list, 3-42
map, 3-42
memory, 3-42
new.h, 3-43
numeric, 3-42
queue, 3-43
set, 3-43
stack, 3-43
utility, 3-43
vector, 3-43

header files (new form)
cassert, 3-41
cctype, 3-41
cerrno, 3-41
cfloat, 3-41
climits, 3-41
clocale, 3-41
cmath, 3-41
csetjmp, 3-42
csignal, 3-42
cstdarg, 3-42
cstddef, 3-42
cstdio, 3-42
cstdlib, 3-42
cstring, 3-42

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-31
for Blackfin Processors

Index

header files (standard)
adi_types.h, 3-22
assert.h, 3-22
ccblkfn.h, 3-23
cplbtab.h, 3-23
ctype.h, 3-23
device.h, 3-24
device_int.h, 3-24
errno.h, 3-24
float.h, 3-24
iso646.h, 1-29, 3-25
limits.h, 3-26
locale.h, 3-26
math.h, 3-26
mc_data.h, 3-28
misra_types.h, 3-28
setjmp.h, 3-28
signal.h, 3-28
stdarg.h, 3-28
stdbool.h, 3-29
stddef.h, 3-29
stdfix.h, 3-29
stdint.h, 3-29
stdio.h, 3-31
stdlib.h, 3-36
string.h, 3-36
time.h, 3-36

heap
addressing, 1-426
base address, 1-426
default, 1-424
defining, 1-424
defining at link-time, 1-424, 1-425
defining at runtime, 1-425
emptying free list, 1-432
freeing space for, 1-432
index, 1-430, 1-431, 3-200
interface, alternate, 1-430
interface, standard, 1-426
interface, with multiple heaps, 1-431

heap (continued)
length of, 1-426
memory control, 1-364
re-initializing, 1-432, 3-196
section, 1-423
setting up at run-time, 3-198
space unused in, 3-298
system, 1-364

heap_calloc function, 1-430, 3-192
heap extension routines

alternate heap interface, 1-430
heap_calloc, 1-424
heap_free, 1-424
heap_malloc, 1-424
heap_realloc, 1-424
listed, 1-424

heap_free function, 1-430, 3-194
heap functions

calloc, 1-423
free, 1-423
malloc, 1-423
realloc, 1-423
standard, 1-426

heap index, 3-200
heap_init function, 3-196
heap_install function, 3-198
heap_lookup function, 3-200
heap_malloc function, 1-430, 3-202
heap_realloc function, 1-430, 3-204
heaps

non-default, 1-427
HEAP_SIZE macro, 1-365
heap_space_unused function, 1-431, 3-206
_heap_table table, 1-425
heaptab.s file, 1-424
-help (command-line help) compiler

switch, 1-43
hexadecimal digit test. See isxdigit function
hexadecimal floating-point constants,

1-170

Index

I-32 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

hexadecimal floating-point numbers, 1-170
-HH (list *.h and compile) compiler switch,

1-43
high_of_i2x16 function, 1-245
high-speed floating-point emulation

library, 1-38
histogram (histogram) function, 4-186
-H (list *.h) compiler switch, 1-43
hoisting, 2-73
host-based I/O facilities, 3-6
host file system, 3-274, 3-276
__HOSTNAME__ macro, 1-76
HUGE_VAL macro, 3-27
hyperbolic. See cosh, sinh, tanh functions

I
i2x16.h header file, 1-245
icache_invalidate routine, 1-384, 3-100
IDDE_ARGS macro, 1-358
identifier, long, 1-194
idivfx (division of fixed-point by

fixed-point) function, 1-122, 3-207
idivfx functions, 3-207
idle*.doj, normal termination code, 3-6
idle mode, 1-261
IEEE-754 floating-point formats, 1-448
IEEE floating-point support, 1-450
-ieee-fp compiler switch, 1-443
IEEEFP macro, 1-451
-ieee-fp (slow floating point) compiler

switch, 1-45
IEEE single/double-precision description,

1-443
ifft2d (n x n point 2-D inverse input FFT)

function, 4-199
ifftf (fast N-point inverse input FFT),

4-194
ifft (n point radix 2 inverse FFT) function,

4-189

ifftrad4 (n point radix 4 inverse input FFT)
function, 4-197

iflush built-in function, 1-263
iflushmodup built-in function, 1-263
-ignore-std C++ mode compiler switch,

1-88
-I (include search directory) compiler

switch, 1-59
iirdf1 (direct form I impulse response filter)

function, 4-209
iirdf1_fr16 function, 4-211
iirdf1_init macro, 4-211
iir_fr16 function, 4-204, 4-211
iir (infinite impulse response filter)

function, 4-203
iir_init macro, 4-205
-i (less includes) compiler switch, 1-45
IMASK

register, 1-368, 3-267
value, 1-260

IMEM_CONTROL register, 3-118
implicit

inclusion, of source files, 1-336
inclusion of .cpp files, 1-88
pointer conversion, 1-46

implicit instantiation method, 1-467
-implicit-pointers compiler switch, 1-46
include directory list, 1-44
include files, searching, 1-44
-include (include file) compiler switch,

1-46
incomplete prototype warning, 1-81
indexed

array, 2-27
style, 2-28

indexed initializers, 1-168
induction variables

definition, 2-43
infinite hardware loop wrappers, 2-112
infinite impulse response (IIR) filter, 4-203

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-33
for Blackfin Processors

Index

InitData binary object, 1-473
init function, 3-46
initialization

CPLB, 1-417
device, 1-416
memory, 1-50, 1-415
order, checking, 1-87

initializers
indexed, 1-168

initiation interval
and kernel, 2-81
minimum, 2-80

__initsbsz*.doj, memory initializer support
files, 3-6

inline
asm statements, 2-30
assembly language support keyword

(asm), 1-174, 1-176, 1-180, 1-186,
1-187

automatic, 2-28
expansion of C/C++ functions, 1-60
functions, 3-4
function support keyword, 1-160
keyword, 1-158, 1-159, 2-29
keyword, avoiding use of, 2-58
qualifier, 1-161, 1-301

inline control pragmas, 1-301
inline functions

advantage of, 2-29
inline pragma, 1-302, 1-320
inline qualifier

enabling, 1-29
ignoring, 1-51

inlining
file position, 2-110
function, 1-159, 2-28
#pragma inline, 1-302
trade-offs, 2-29

inner loops, 2-43
optimizing, 2-43

input operand
of asm() construct, 1-177

installation location, 1-66
__install_default_handlers function, 1-414
instance names, 1-334
instantiate pragma, 1-334
instantiation, template functions, 1-334
instrprof command-line tool

report format, 2-140
instrprof.exe command-line Reporter Tool,

2-137
instruction CPLBs, 1-381
instruction memory accesses

validating, 1-45
instrumented code

generating, 1-359
instrumented-code

profiling, 1-418
instrumented-code profiling, 1-418
instrumented-code profiling library, 1-418
instrumented-code profiling switch, A-25
instrumented profiling

generating an application, 2-136
things that affect, 2-142

_INSTRUMENTED_PROFILING
macro, 1-404

int2x16 data type, 1-245
integer arithmetic

encoding fractional semantics, 2-50
integer data type, 1-443
integer to fractional conversion, disabling,

1-56
interfacing C/C++ and assembly. See mixed

C/C++ assembly programming
intermediate files

listing, 1-9
saving, 1-72

internal SRAM, 1-385
interpolation filter, 4-162

Index

I-34 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

interprocedural analysis
loop optimization, 1-288

interprocedural analysis (IPA)
about, 2-21
defined, A-25
described, 1-98
enabling, 1-47, 1-98, 2-13
framework, 1-304
generating usage information, 1-100
identifying variables, 2-21
-ipa compiler switch for, 1-47
#pragma core used with, 1-304
used for code optimization, 1-98
using the -ipa compiler switch for, 1-98
when to use, 2-13

interprocedural optimizations
described briefly, 1-98
when to use, 2-13

interrupt
function, 3-209

INTERRUPT_BITS
default enable mask, 1-414
default interrupt mask, 1-413

interrupt function, 1-371
interrupt handler, re-entrant, 1-366
interrupt handler support library, 3-6
interrupt_info structure, 1-371
interrupt_level_interrupt pragmas, 1-287
interrupt_level pragmas, 1-287
interrupt pragma, 1-287, 1-367
interrupt_reentrant pragma, 1-287
interrupts

disabling during volatile loads, 1-43
general-purpose, 1-366
handler pragmas, 1-286
handling, 3-209
profiling, 2-141

interrupt-safe functions, 3-38
interrupt service routines (ISRs). See ISRs
intrinsic (built-in) functions, 1-195

intrinsics
compiler, 2-54

invalidate parameter, 1-390
invariant base pointers, indexing from,

2-27
I/O

buffer, bypassing, 3-163, 3-178
extending to new devices, 3-44
functions, 3-31
primitives, 3-44, 3-53
primitives, data packing, 3-54
primitives, data structure, 3-55
support for new devices, 3-44

I/O conversion specifiers, 1-127
I/O library

linking with complete implementation of
ANSI C Standard I/O, 1-40

linking with faster implementation of C
Standard I/O, 1-56

linking with faster implementation of C
standard I/O, 1-38

third-party proprietary, 1-40
iomanip header file, 3-40
iomanip.h header file, 3-43
iosfwd header file, 3-40
ios header file, 3-40
iostream header file, 3-40
-ipa (interprocedural analysis) compiler

switch, 1-47, 1-99, 2-13
IPA. See interprocedural analysis (IPA)
isalnum (detect alphanumeric character)

function, 3-211
isalpha (detect alphabetic character)

function, 3-212
iscntrl (detect control character) function,

3-213
isdigit (detect decimal digit) function,

3-214
isgraph (detect printable character)

function, 3-215

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-35
for Blackfin Processors

Index

isinf (test for infinity) function, 3-216
islower (detect lowercase character)

function, 3-218
isnan (test for NAN) function, 3-219
iso646.h (Boolean operator) header file,

1-29, 3-25
ISO/IEC 14882

2003 C++ standard, 1-4
ISO/IEC 9899

1990 C standard, 1-4
1999 C standard, 1-4

isprint (detect printable character)
function, 3-221

ispunct (detect punctuation character)
function, 3-222

isr-imask-check workaround, 1-287, 1-367
ISRs

and ANSI C signal handlers, 1-370
default, 1-370
defining, 1-366
library functions called from, 3-38
system event handlers, 1-365

isspace (detect whitespace character)
function, 3-223

-I (start include directory) compiler switch,
1-44

-I- (start include directory list) compiler
switch, 1-44

istream header file, 3-40
isupper (detect uppercase character)

function, 3-224
isxdigit (detect hexadecimal digit) function,

3-225
iteration interval, 2-81
iterator header file, 3-42
IVBl and IVBh constants, 1-412
IVG15 mode, lowest priority mode, 1-417

J
-jcs2l compiler switch, 1-47

K
Kaiser window, 4-179
kernel time

profiling, 2-141
keywords

compiler, 1-37, 1-158
extensions, 1-37, 1-158
extensions, not recognized, 1-54
not recognized, 1-54

keywords (compiler)
See also compiler C/C++ extensions

kind hardware event, 3-270

L
___l1_code_cache guard symbol, 1-387
___l1_data_cache_a guard symbol, 1-387
___l1_data_cache_b guard symbol, 1-387
L1 instruction memory, 3-226
_l1_memcpy function, 3-226
L1 SRAM memory, 1-373
L2_sram_a section, A-9
L2_sram_b section, A-9
L2 SRAM memory, caching, 1-373
labs (long integer absolute value) function,

3-228
_LANGUAGE_C macro, 1-404
language extensions (compiler). See

compiler C/C++ extensions)
language standards compliance, 1-140
LC_COLLATE locale category, 3-346
ldexp (exponential, multiply) functions,

3-229
ldf_heap_end constant, 1-423
ldf_heap_length constant, 1-423
ldf_heap_space constant, 1-423

Index

I-36 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

.ldf (linker description file)
basic configurations, 1-385
default, 1-385
migrating from previous VisualDSP++

versions, 1-393
output sections, shared and private, 3-19
private output sections, 3-19
shared output sections, 3-19

ldiv (long division) function, 3-230
ldiv_t type, 3-230
leaf functions, 1-40, 1-55
legacy code, 1-193
legacy library files

libcpprt*.dlb, libx*.dlb, 3-6
length modifiers, 3-156, 3-170
li1151, 1-448
li2040, 1-365, 1-394
li2143, 1-396
libc*.dlb, primary ANSI C run-time

library, 3-6
libcpp*.dlb, primary ANSI C++ run-time

library, 3-6
libcpp*.dlb C++

support libraries, 3-12
libcpprt*.dlb, libx*.dlb legacy library files,

3-6
libdsp*.dlb, DSP run-time library, 3-6
libetsi532co.dlb library, 1-218
libetsi535co.dlb library, 1-218
libetsi53*.dlb libraries, 1-233
libetsi*co.dlb library, 1-218
libetsi*.dlb, ETSI run-time support library,

1-217, 3-6
libetsi.h header file, 1-218, 1-233
libevent*.dlb, interrupt handler support

library, 3-6

libf64*.dlb, 64-bit floating-point
emulation routines, 3-6

libfunc.dlb attributes, 3-11
libGroup attribute values, additional, 3-12
libio*.dlb, host-based I/O facilities, 3-6
libprofile*.dlb, profile support routines, 3-6
___lib_prog_term label, 3-134
libraries

C/C++ run-time, 3-2
DSP run-time, 4-3
functions, documented, 3-58
source code, working with, 4-4

library
attribute convention exceptions, 3-12
calling functions, 3-3
C run-time reference, 3-64 to 3-366
format for DSP run-time, 4-75
linking functions, 3-5
optimization, 1-99
placement restrictions, 3-14, 3-18

library files
producing with elfar, 1-31

librt*.dlb, C run-time support library,
without file I/O, 3-6

librt_fileio*.dlb, C run-time support
library, with file I/O, 3-6

libsftflt*.dlb, floating-point emulation
routines, 3-6

libsmall*.dlb, supervisor mode support
routines, 3-6

limits.h header file, 3-26
line breaks, in string literals, 1-353
line debugging, 1-42
__LINE__ macro, 1-404
line numbers, omitting, 1-65
linkage_name pragma, 1-299, 1-304

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-37
for Blackfin Processors

Index

linker
and IPA framework, 1-305
and mapping requirements, 1-342
discarding weak symbol definition,

1-318
informing that cache is enabled, 1-379
RESOLVE command, A-11
searching the library for functions and

global variables, 1-47
Linker Description File (.ldf). See LDF
linking

a project with multiple definitions, 1-305
library functions, 3-5
multi-core system, A-18

linking control pragmas, 1-303
link-time heaps, 1-424
list header file, 3-42
-list-workarounds compiler switch, 1-48
literals

compound, 1-172
little-endian, 1-259
live register, 2-71
llabs function, 3-228
llcountones function, 4-136
lldiv function, 3-230
lldiv_t type, 3-230
-L (library search directory) compiler

switch, 1-47
-l (link library) compiler switch, 1-47, 1-59
locale.h header file, 3-26
local_shared_symbols.h header file, A-11,

A-28
localtime (convert calendar time into

broken-down time) function, 3-38,
3-80, 3-190, 3-232

locking function, 3-71
locking routines

ADSP-BF561 Blackfin processor, A-43
ensuring safe access to shared resources,

3-18
log10 (base 10 logarithm) function, 3-235
log (log base e) functions, 3-234
long compilation

disabling progress message for, 1-57
long division. See ldiv
long double

data type, 1-444
representation, 3-337

long file names, handling with the
-write-files switch, 1-81

long fract, 1-203
long fract data type, 1-197
long identifier, 1-194
long int data type, 1-443
longjmp (second return from setjmp)

function, 3-236
long jump. See longjmp, setjmp functions
_LONG keyword, 1-281
long latencies, avoiding, 2-49
loop-carried dependency, 2-40, 2-41

avoiding, 2-40
loop counters, hardware, 1-434
loop_count pragma, 1-292
loop invariant, 2-73
loop kernel, 2-72
loop optimization

terminology, 2-71
loop optimization pragmas, 1-287
loop rotation, 2-75

avoiding, 2-41

Index

I-38 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

loops
annotations, 2-124
avoiding array writes, 2-42
avoiding conditional code in, 2-43
avoiding function calls in, 2-44
avoiding non-unit strides, 2-45
control variables, 2-47
cycle count, 2-105
epilog, 2-73
exit test, 2-47
flattening, 2-120
identification, 2-103
identification annotation, 2-104
improving code for, 1-37
inner vs. outer, 2-43
invariant, 2-73
iteration count, 2-65
kernel, 2-72
optimization, how it works, 2-70
optimization, terminology, 2-71
optimization concepts, 2-74
optimization pragmas, 1-287, 2-65
parallel processing, 1-296
prolog, 2-72
register usage, 2-105
resource usage, 2-105
rotation, defined, 2-75
rotation by hand, 2-41
shortening, 2-39
trip count, 2-45, 2-112, 2-115
unrolling, 2-39
using 16-bit data types and vector

instructions, 2-46
vectorization, 1-288, 2-66, 2-77

loop trip count, 2-45
loop_unroll pragma, 1-293
loop vectorization, 2-77

lowercase. See islower, tolower functions
low-level primitives, for open, close, read,

write, and seek operations, 3-34
low_of_i2x16 function, 1-245
lvalue, GCC generalized, 1-352

M
m3 register, reserved, 1-71
macro guards, 1-88
macros

defining, 1-32
__HOSTNAME__, 1-76
predefined, 1-401
predefined (preprocessor), 1-401
preprocessor, 1-405
__RTTI, 1-90
__SYSTEM__, 1-76
USER_CRT, 1-410
__USERNAME__, 1-76
variable argument, 1-164, 1-353
writing, 1-405

_main function
calling, 1-419
invoking, 1-410
unique for each processor/core, 1-305

malloc (allocate memory) function, 1-319,
3-238, A-42

mangling, disabling, 1-461
map files, 1-49
-map (generate a memory map) compiler

switch, 1-49
map header file, 3-42
_mark_dtors library function, 1-421
mark registers, 1-417
MASTERS directive, A-18

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-39
for Blackfin Processors

Index

math functions
ceil, 3-104
cosh, 3-112
exp, 3-135
fabs, 3-136
floor, 3-148
fmod, 3-151
ldexp, 3-229
library, 4-20
log, 3-234
modf, 3-248
sinh, 3-295
summarized, 4-20
tanh, 3-350

math.h header file, 3-26, 4-20
matrix functions, 4-24
matrix.h header file, 4-24
max_i2x16 function, 1-245
maximum performance, 2-58
max (maximum) function, 4-215
mc_data.h header file, 3-28
-MD (make and compile) compiler switch,

1-49
-MDUSE_SDRAM flag, 1-385
mean (mean) function, 4-216
MEM_ARGV memory section, 1-358
memchr (find first occurrence of character)

function, 3-239
memcmp (compare objects) function,

3-240
memcpy (copy characters from one object

to another) function, 1-75, 3-226,
3-241

memcpy_l1 function, 3-226
-mem (invoke memory initializer) compiler

switch, 1-50
memmove (copy characters between

overlapping objects) function, 1-75,
3-243

memory
allocating and initializing from heap,

3-192
allocating from heap, 3-202
allocation functions, 1-423, 3-36
allocation routines, 3-38
allowed by the compiler, 1-345
changing object allocation in, 3-265
controlling size of, 1-364
data placement in, 2-31
initialization, 1-415, 3-14
initialization, enabling, 1-50
initializer support files, 3-6
initializing from heap, 3-192
map, generating, 1-49
maximum performance, 2-31
protection hardware, 1-373
protection hardware, enabling, 1-376
returning to heap, 3-194
See also calloc, free, malloc, memcmp,

memcpy, memset, memmove,
memchar, realloc functions

memory bank
optimal transfer width (bits), 1-347

memory bank pragmas, 1-341
memory banks, specifying data in, 1-191
memory header file, 3-42
memory initialization

disabling, 1-57
memory initializer, 1-50

initializing code/data from flash memory,
3-14

not invoking after linking, 1-57
memory map files, 1-49
memory-mapped registers (MMR)

fetching event details, 1-372
memory-mapped registers (MMRs)

accessing, 1-103, 1-190, 1-275
-no-assume-vols-are-mmrs compiler

switch, 1-52

Index

I-40 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

memory operations
speeding up, 2-31

memory protection hardware,
initialization, 3-117

memory sections
bsz, 1-423
constdata, 1-422
cplb_code, 1-422
cplb_data, 1-423
data1, 1-422
data storage, 1-422
heap, 1-423
program, 1-422
run-time stack, 1-423
using, 1-422

memset (set range of memory to a
character) function, 3-244

_mi_initialize function, 1-415
min_i2x16 function, 1-245
minimum code size, compiling for, 2-58
min (minimum) function, 4-218
misaligned_load built-in functions, 1-274
misaligned memory access, 1-285
misaligned_store built-in functions, 1-274
MISRA

compiler switches, 1-83
MISRA C

rule 10.5 (required), 1-150
rule 12.12 (required), 1-151
rule 12.4 (required), 1-150
rule 12.8 (required), 1-151
rule 13.2 (advisory), 1-151
rule 13.7 (required), 1-151
rule 1.5 (required), 1-147
rule 16.10 (required), 1-152
rule 16.2 (required), 1-152
rule 16.4 (required), 1-152
rule 17.1 (required), 1-152
rule 17.2 (required), 1-153
rule 17.3 (required), 1-153

MISRA C (continued)
rule 17.6 (required), 1-153
rule 18.2 (required), 1-153
rule 19.15 (advisory), 1-154
rule 19.7 (advisory), 1-153
rule 20.10 (required), 1-155
rule 20.11 (required), 1-155
rule 20.3 (required), 1-154
rule 20.4 (required), 1-154
rule 20.7 (required), 1-154
rule 20.8 (required), 1-154
rule 20.9 (required), 1-155
rule 21.1 (required), 1-155
rule 2.4 (advisory), 1-148
rule 5.1 (required), 1-148
rule 5.5 (advisory), 1-148
rule 5.7 (advisory), 1-148
rule 6.3 (advisory), 1-148
rule 6.4 (advisory), 1-148
rule 8.10 (required), 1-149
rule 8.1 (required), 1-149
rule 8.2 (required), 1-149
rule 8.5 (required), 1-149
rule 8.8 (required), 1-149
rule 9.1 (required), 1-149
rule clarifications, 1-147

MISRA-C
compiler, 1-143
compiler switches, 1-83
compiler switches, table, 1-24
rule 1.4 (required), 1-147
rules, 1-147

-misra C compiler switch, 1-83
.misra files, 1-84, 1-148, 1-149
misra_func pragma, 1-320
-misra-linkdir C compiler switch, 1-84
-misra-no-cross-module C compiler switch,

1-84
-misra-no-runtime C compiler switch, 1-84
MISRARepository directory, 1-84

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-41
for Blackfin Processors

Index

_MISRA_RULES macro, 1-404
-misra-strict C compiler switch, 1-84
-misra-suppress-advisory C compiler

switch, 1-85
misra_types.h header file, 1-151, 3-28
missing operands, in conditional

expressions, 1-352
mixed C/C++ assembly naming

conventions, 1-461
mixed C/C++ assembly programming

arguments and return, 1-439
asm() constructs, 1-174, 1-176, 1-180,

1-186, 1-187
conventions, 1-408
data storage and type sizes, 1-443
scratch registers, 1-433
stack registers, 1-435
stack usage, 1-435

mixed C/C++ assembly reference, 1-408,
1-459

mktime (convert broken-down time into a
calendar) function, 3-245

-M (make only) compiler switch, 1-48
-MM (make and compile) compiler switch,

1-49
mmr_read16 function, 1-275
mmr_read32 function, 1-275
mmr_write16 function, 1-275
mmr_write32 function, 1-275
modf (modulus, float) functions, 3-248
modulo

variable expansion unroll factor, 2-80
modulo-scheduled instructions, 2-125
modulo-scheduled loops, 2-124
modulo scheduling, 2-81

producing scheduled loops with, 2-79
modulo variable expansion factor, 2-90
mon.out file, 1-65

post-processing, 1-362
profblkfn program to process, 1-362

monstartup routine, 1-418
-Mo (processor output file) compiler

switch, 1-49
move memory range. See memmove

function
M_STRLEN_PROVIDED bit, 3-57
-Mt preprocessor switch, 1-49
mu_compress (µ-law compression)

function, 4-219
mu_expand (µ-law expansion) function,

4-220
mulifx functions, 3-249
mulifx (multiplication of integer by

fixed-point) function, 1-124, 3-249
mult_hh_i2x16 function, 1-245
mult_hl_i2x16 function, 1-245
mult_i2x16 function, 1-245
multi-core

builds, A-4
environment, selecting, 1-50
environment, storage management in,

3-76
libraries, 3-16
linking, A-18
private data, 3-76
processor identification, 3-74
processor support, 1-304

multi-core applications, 3-14
locking, 3-71
private storage, 3-18
storage shared across threads and cores,

3-18
-multicore compiler switch, 1-50, 3-14,

A-4, A-24
multi-dimensional arrays, 1-167

controlling memory accesses, 2-45
multiline asm() C program constructs,

1-186
-multiline switch, 1-50

Index

I-42 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

multiple
heaps, 1-424
heap support, 1-431
lines, spanning, 1-50
pointer types, declaring, 2-69

multiple definitions, and #pragma core,
A-40

multiple-instruction asm construct, 1-186
multiprocessor support, 1-304
multi-statement macros, 1-406
multi-threaded

applications, 1-419, 3-14
environments, 3-7, 3-15
libraries, 3-16

multi-threaded applications, 2-141
mult_lh_i2x16 function, 1-245
mult_ll_i2x16 function, 1-245

N
naming conventions, C and assembly,

1-461
NAN test, 3-219
native arithmetic

data types, 2-15, 2-16
native fixed-point constants, 1-107
native fixed-point types

fract and accum, 1-174
native fixed-point types fract and accum,

1-174
natural logarithm, 3-234
nCompleted field, 3-58
nDesired field, 3-57
-never-inline compiler switch, 1-51
never_inline pragma, 1-303
new devices, I/O support, 3-44
new header file, 3-40
new.h header file, 3-43
newline, in string literals, 1-50, 1-57

new operator
allocating and freeing memory, 1-423
with multiple heaps, 1-431

next argument in variable list, 3-362
n input constraint, 1-189
NMI events, 1-366, 1-372
no_alias pragma, 1-295
-no-alttok (disable tokens) compiler switch,

1-51
-no-anach (disable C++ anachronisms)

compiler switch, 1-89
-no-annotate (disable assembly

annotations) compiler switch, 1-51
-no-annotate-loop-instr compiler switch,

1-52
-no-assume-vols-are-mmrs compiler

switch, 1-52, 1-103, 1-275
-no-auto-attrs compiler switch, 1-52
-no-bss compiler switch, 1-53
__NO_BUILTIN macro, 1-53, 1-404
-no-builtin (no builtin functions) compiler

switch, 1-53
-no-circbuf (no circular buffer) compiler

switch, 1-53
-no-const-strings compiler switch, 1-53
-no-def (disable definitions) compiler

switch, 1-54
-no-eh (disable exception handling)

compiler switch, 1-54
NO_ETSI_BUILTINS macro, 1-219
-no-expand-symbolic-links compiler

switch, 1-54
-no-expand-windows-shortcuts compiler

switch, 1-54
-no-extern-inline compiler switch, 1-89
-no-extra-keywords (not quite -ansi)

compiler switch, 1-54
-no-force-link (do not force stack frame

creation) compiler switch, 1-55
-no-fp-associative compiler switch, 1-55

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-43
for Blackfin Processors

Index

-no-friend-injection compiler switch, 1-89
-no-full-io compiler switch, 1-56
-no-fx-contract compiler switch, 1-56
no implicit inclusion, of source files, 1-89,

1-336
-no-implicit-inclusion C++ mode compiler

switch, 1-89
no_implicit_inclusion pragma, 1-336
NO_INIT qualifier, 1-313
-no-int-to-fract (disable integer to

fractional conversion) compiler
switch, 1-56

-no-jcs2l compiler switch, 1-57
-no-mem (not invoking memory initializer)

compiler switch, 1-57
-no-multiline compiler switch, 1-57
noncache_code section, 1-422
non-default heap, 1-427
non-IEEE-754 floating point format,

1-443
non-literal address type accesses, 1-275
non-temporary files location, 1-66
non-terminating applications, 2-141
non-unit strides, avoiding in loops, 2-45
no_pch pragma, 1-337
-no-progress-rep-timeout compiler switch,

1-57
noreturn pragma, 1-320
norm (normalization) function, 4-221
-no-rtti (disable run-time type

identification) C++ mode compiler
switch, 1-90

-no-sat-associative compiler switch, 1-57
-no-saturation (no faster operations)

compiler switch, 1-58
-no-std-ass (disable standard assertions)

compiler switch, 1-58

-no-std-def (disable standard definitions)
compiler switch, 1-58

-no-std-inc (disable standard include
search) compiler switch, 1-59

-no-std-lib (disable standard library search)
compiler switch, 1-59

__NO_STD_LIB macro, 1-59
-no-std-templates compiler switch, 1-90
not-interrupt-safe library functions, 3-38
no_vectorization pragma, 1-289, 1-296
-no-workaround workaround_id compiler

switch, 1-59, 1-60, 1-103
-no-zero-loop-counters compiler switch,

1-60
null pointer, 1-426
null-terminated strings, comparing, 3-307
numbers

hexadecimal floating-point, 1-170
__NUM_CORES__ macro, 1-404
numeric header file, 3-42
num variable, 1-62

O
-Oa (automatic function inlining) compiler

switch, 1-60
object files, 1-8
$OBJS_LIBS_INTERNAL macro, 1-477
-O (enable optimization) compiler switch,

1-251
-O (enable optimization) compiler switch,

1-60, 1-61
OFF cache mode, 1-388
-Ofp (frame pointer optimizations) switch,

1-60
-Og (optimize while preserving debugging

information) compiler switch, 1-61
once pragma, 1-338

Index

I-44 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

one-application-per-core approach, A-5
caches and startup with customized

LDFs, A-15
caches and startup with default .ldf files,

A-14
cross-core memory references, A-25
example, A-27
shared memory, A-9
sharing code, A-13
sharing code with private data, A-13
sharing data, A-10
synchronization, A-13
using customized .ldf files, A-8
using default and generated LDFs, A-11
using default compiler .ldf files, A-7

-o (output) compiler switch, 1-63
open field, 3-46
open function, 3-52
operand constraints

described, 1-180
symbols, 1-181

operator, 1-353
optimization

asm() C program constructs, 1-187
compiler, 2-4
configurations (or levels), 1-95
controlling code, 1-95
default, 1-96
disabling, 1-60
enabling, 1-47, 1-60, 1-98, 1-251
for code size, 1-61, 2-57, 2-58
for maximum performance, 2-58
for speed, 2-58
inlining process and, 1-162
inner loops, 2-43
interprocedural, 2-13
library, 1-99
loop optimization pragmas, 1-288
pass on the current function, 1-70
pragmas, 2-60

optimization (continued)
preserving debugging information, 1-61
reporting progress, 1-69, 1-70
struct, 2-17
switches, 1-60, 1-251, 2-2, 2-70
using sliding scale for, 1-62
with debug information generation

enabled, 2-8
with interprocedural analysis (IPA), 1-98

optimization levels
automatic inlining, 1-97
debug, 1-96
default, 1-96
interprocedural optimizations, 1-98
PGO, 1-97
procedural optimizations, 1-96

optimize_as_cmd_line pragma, 1-298
optimize_for_space pragma, 1-297
optimize_for_speed pragma, 1-298
optimize_off pragma, 1-297
optimizer

accumulator built-in functions, 1-251
optional precision value, 3-155
ostream header file, 3-40
OTHERCORE macro, A-11, A-12, A-28
outer loops, 2-43
out-of-line copy, 1-163
output operands, 1-188

of asm() construct, 1-177
output sections, in .ldf file, 3-19
Overflow

flag for ETSI functions, 1-218
global variable, 1-218

-overlay-clobbers compiler switch, 1-64
overlay pragma, 1-329
-overlay (program may use overlays)

compiler switch, 1-64

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-45
for Blackfin Processors

Index

overlays
and the overlay pragma, 1-329
loop counters and DMA, 1-434
-overlay compiler switch, 1-64
registers clobbered by overlay manager,

1-64
-Ov num (optimize for speed versus size)

compiler switch, 1-61

P
-p, 2-135
P1 register, 1-324
packed data structures, 1-284
pack pragma, 1-284, 1-286
padding, of struct, 2-18
pad pragma, 1-284, 1-286
page size, specifying, 1-383
param_never_null pragma, 1-330
passing

arguments, 1-439
arguments to driver, 1-73
parameters, 1-439

-path-install (installation location)
compiler switch, 1-66

-path-output (non-temporary files
location) compiler switch, 1-66

paths
additional path support, 1-92
Cygdrive directories, 1-94
Cygwin mounted directories, 1-94
Cygwin path support, 1-93
Cygwin symbolic links, 1-93
Windows shortcut support, 1-92

-path-temp (temporary files location)
compiler switch, 1-66

-path-tool (tool location) compiler switch,
1-65

-pchdir directory (locate precompiled
header repository) compiler switch,
1-66

-pch (precompiled header) compiler switch,
1-66

PCHRepository directory, 1-66
PC-relative jumps in asm statements.,

1-190
peeled iterations, 2-116
peeling amount, 2-116
per-file optimizations, 1-96, 1-98
perror (map error number to error message)

function, 3-251
-p (generate profiling implementation)

compiler switch, 1-65, A-25
.pgi files, 2-12
PGO

See also profile-guided optimization
(PGO)

collecting data, 1-97
data sets, 2-12
operation via menu selection, 1-97
pgo_ignore pragma, 1-321
session identifier, 1-67
supported in the simulator only, 1-97,

2-9
pgoctrl command-line tool, A-32
.pgo files, 1-67, 1-97, 2-10

from wrapper project, 2-11
gathering data with -pguide switch, 1-67
in PGO process, 1-97

pgo_ignore pragma, 1-321
-pgo-session session-id compiler switch,

1-67, A-34
used to separate profiles, 2-12

-pguide (profile-guided optimization)
compiler switch, 1-67, A-32

Index

I-46 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

placement
all data, 1-73, 1-194
constant data, 1-72, 1-194
C++ virtual lookup table, 1-73, 1-194
data, 1-72, 1-421
data used to initialize aggregate autos,

1-73, 1-194
initialized variable data, 1-72, 1-193
jump tables used to implement C/C++

switch statements, 1-73, 1-194
library, 3-18
library components among cores and

common memory, A-24
machine instructions, 1-72, 1-193
section (in a library), 3-18, 3-19
static C++ class constructor functions,

1-73, 1-194
string literals, 1-73, 1-194
zero-initialized variable data, 1-73, 1-194

placement support keyword (section),
1-192

PLibs libraries, A-18
PM qualifier, 1-313
pointer

class support keyword (restrict), 1-165
pointer class support keyword (restrict),

1-158, 1-165
pointers

and index styles, 2-28
arithmetic action on, 1-354
incrementing, 2-27
resolving aliasing, 2-48
to aligned data, 2-24
used in multiple contexts, 2-26

polar (construct from polar coordinates)
functions, 4-222

polar coordinates, 4-222
polar_fr16 function, 4-223
-P (omit line numbers) compiler switch,

1-65

porting code that uses fract16 and fract32,
1-131

post-processing mon.out file from profiler,
1-360

power. See exp, pow, functions
pow (raise to a power) function, 3-253
-pplist (preprocessor listing) compiler

switch, 1-68
-PP (omit line numbers and compile)

compiler switch, 1-65
#pragma alignment_region, 1-282
#pragma alignment_region_end, 1-282
#pragma align num, 1-280, 1-288, 2-23
#pragma all_aligned, 2-68
#pragma alloc, 1-319, 2-61, A-43
#pragma always_inline, 1-29, 1-161, 1-301
#pragma bank_memory_kind, 1-345
#pragma bank_optimal_width, 1-347
#pragma bank_read_cycles, 1-345
#pragma bank_write_cycles, 1-346
#pragma can_instantiate, 1-335
#pragma code_bank, 1-342
#pragma const, 1-319, 2-61
#pragma core, 1-304, A-25, A-40, A-41
#pragma data_bank, 1-342
#pragma default_section, 1-310, 1-421,

1-422
#pragma diag, 1-338, 2-7
#pragma diag(errors), 1-340
#pragma diag(pop), 1-341
#pragma diag(push), 1-340
#pragma diag(remarks), 1-340
#pragma diag(warnings), 1-340
#pragma different_banks, 1-288, 2-69
#pragma do_not_instantiate instance,

1-335
#pragma extra_loop_loads, 1-289
#pragma file_attr, 1-314, A-38
#pragma generate_exceptions_tables,

1-347

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-47
for Blackfin Processors

Index

#pragma hdrstop, 1-335
#pragma inline, 1-161, 1-302, 1-320
#pragma instantiate, 1-334, 1-466
#pragma interrupt, 1-367
#pragma interrupt functions, 3-210
#pragma interrupt_level, 1-287
#pragma linkage_name, 1-299, 1-304
#pragma loop_count, 1-292, 2-65
#pragma loop_unroll N, 1-293
#pragma misra_func, 1-320
#pragma never_inline, 1-303
#pragma no_alias, 1-295, 2-69
#pragma no_implicit_inclusion, 1-336
#pragma no_pch, 1-337
#pragma noreturn, 1-320
#pragma no_vectorization, 1-296, 2-66
#pragma once, 1-338
#pragma optimize_as_cmd_line, 1-298,

2-65
#pragma optimize_for_space, 1-297, 2-65
#pragma optimize_for_speed, 1-298, 2-65
#pragma optimize_off, 1-297
#pragma optimize_off|, 2-65
#pragma overlay, 1-329
#pragma pack (alignopt), 1-284
#pragma pack(n) directive, 2-19
#pragma pad (alignopt), 1-286
#pragma param_never_null, 1-330
#pragma pgo_ignore, 1-321
#pragma pure, 1-321, 2-62
#pragma regs_clobbered, 1-322, 2-63
#pragma regs_clobbered_call, 1-326
#pragma result_alignment, 1-330, 2-62,

A-43
#pragma retain_name, 1-309

pragmas
about, 1-277
alignment_region, 1-282
alignment_region_end, 1-282
align num, 1-280, 1-288
all_aligned, 2-68
alloc, 1-319, 2-61
always_inline, 1-161, 1-301
bank_memory_kind, 1-345
bank_optimal_width, 1-347
bank_read_cycles, 1-345
bank_write_cycles, 1-346
can_instantiate, 1-335
code_bank, 1-342
const, 1-319, 2-61
core, 1-304
data alignment, 1-279
data_bank, 1-342
declaration lists, 1-279
default_section, 1-310, 1-421, 1-422
described, 1-277
diag, 1-338
diagnostic control, 1-338
different_banks, 1-288, 2-69
do_not_instantiate instance, 1-335
exception, 1-286
exceptions tables, 1-347
extra_loop_loads, 1-289
file_attr, 1-314, A-38
fixed-point arithmetic, 1-298
function side-effect, 1-318
FX_CONTRACT, 1-115, 1-299
FX_ROUNDING_MODE, 1-129,

1-299
general optimization, 1-297
generate_exceptions_tables, 1-347
hdrstop, 1-335
header file control, 1-335
inline, 1-302, 1-320
inline control, 1-301

Index

I-48 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

pragmas (continued)
inlining, 1-161
instantiate, 1-334
interrupt, 1-286
interrupt functions, 3-210
interrupt_level_interrupt, 1-287
interrupt_reentrant, 1-287
linkage_name, 1-299, 1-304
linking, 1-303
linking control, 1-303
loop_count, 2-65
loop_count(min, max, modulo), 1-292
loop optimization, 1-287, 2-65
loop_unroll N, 1-293
memory bank, 1-341
memory_kind, 1-345
misra_func, 1-320
never_inline, 1-303
nmi, 1-286
no_alias, 1-295, 2-69
no_implicit_inclusion, 1-336
no_pch, 1-337
noreturn, 1-320
no_vectorization, 1-296, 2-66
once, 1-338
optimal_width, 1-347
optimize_as_cmd_line, 1-298, 1-341,

2-65
optimize_for_space, 1-297, 2-65
optimize_for_speed, 1-298, 2-65
optimize_off, 1-297, 2-65
overlay, 1-329
pack (alignopt), 1-284
pad (alignopt), 1-286
param_never_null, 1-330
pgo_ignore, 1-321
pure, 1-321, 2-62
read_cycles, 1-345
regs_clobbered, 1-322, 2-63
regs_clobbered_call, 1-326

pragmas (continued)
regs_clobbered string, 1-322
result_alignment, 1-330, 2-62
retain_name, 1-309
section, 1-310, 1-421, 1-422
stack_bank, 1-343
STDC FX_ACCUM_OVERFLOW,

1-301
STDC FX_FRACT_OVERFLOW,

1-301
STDC FX_FULL_PRECISION, 1-300
STDC STDC FX_FULL_PRECISION,

1-300
suppress_null_check, 1-332
symbolic_ref, 1-315
system_header, 1-338
template instantiation, 1-333
used for optimization, 2-60
vector_for, 1-296, 2-66
weak_entry, 1-318
write_cycles, 1-346

#pragma section, 1-192, 1-310, 1-421,
1-422

#pragma stack_bank, 1-343
#pragma suppress_null_check, 1-332
#pragma symbolic_ref, 1-315
#pragma system_header, 1-338
#pragma vector_for, 1-296, 2-66
#pragma weak_entry, 1-318
precompiled header files, generating and

use, 1-66
precompiled header repository, locating,

1-66
predefined macros

_ADI_COMPILER, 1-402
__ADSPBF506F_FAMILY__, 1-403
__ADSPBF518_FAMILY__, 1-403
__ADSPBF51x__, 1-402
__ADSPBF526_FAMILY__, 1-403
__ADSPBF527_FAMILY__, 1-403

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-49
for Blackfin Processors

Index

predefined macros (continued)
__ADSPBF52x__, 1-402
__ADSPBF52xLP__, 1-402
__ADSPBF533_FAMILY__, 1-403
__ADSPBF535_FAMILY__, 1-403
__ADSPBF537_FAMILY__, 1-403
__ADSPBF538_FAMILY__, 1-403
__ADSPBF53x__, 1-402
__ADSPBF548_FAMILY__, 1-403
__ADSPBF548M_FAMILY__, 1-403
__ADSPBF54x__, 1-402
__ADSPBF56x__, 1-402
__ADSPBF592_FAMILY__, 1-403
__ADSPBF59x__, 1-402
__ADSPBLACKFIN__, 1-402
__ADSPLPBLACKFIN__, 1-403
__ANALOG_EXTENSIONS__, 1-403
__cplusplus, 1-403
__DATE__, 1-403
__DOUBLES_ARE_FLOATS__,

1-404
__ECC__, 1-404
__EDG__, 1-404
__EDG_VERSION__, 1-404
__EXCEPTIONS, 1-404
__FILE__, 1-404
__INSTRUMENTED_PROFILING,

1-404
_LANGUAGE_C, 1-404
__LINE__, 1-404
_MISRA_RULES, 1-83, 1-404
__NO_BUILTIN, 1-404
__RTTI, 1-404
__SIGNED_CHARS__, 1-404
__STDC__, 1-405
__STDC_VERSION__, 1-405
__TIME__, 1-405
__VERSION__, 1-405

predefined macros (continued)
__VERSIONNUM__, 1-405
__WORKAROUNDS_ENABLED,

1-405
prefersMem attribute, 1-474, 1-475, A-22
prefersMemNum attribute, 1-474
prefetch (data cache prefetch) built-in

function, 1-263
prefetchmodup built-in function, 1-264
prelinker, 1-308, 1-469, 2-13

detecting instrumented-code profiling,
1-418

MISRA-C compiler, 1-149
reinvoking compiler to perform new

optimizations, 1-99
preprocessing, a program, 1-401
preprocessor

generating a warning, 1-357
listing a file, 1-68
macros, 1-401
writing macros, 1-405
writing macros for, 1-405

pre-registering devices, 3-50
preserved registers, 1-432
prfflgx*.doj profiling initialization routines,

3-6
primary ANSI C run-time library, 3-6
primary ANSI C++ run-time library, 3-6
PrimIO device, 3-51, 3-53
_primio.h header file, 3-55
__primIO label, 3-53
primiolib.c source file, 3-52
primitive I/O functions, 3-54
printable characters, detecting, 3-215,

3-221
printable character test. See isprint function
PRINT_CYCLES(STRING,T) macro,

4-66

Index

I-50 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

printf (print formatted output) function,
3-51, 3-254

extending to new devices, 3-51
private data storage, 3-17
private LDF output sections, 3-19
problematic instance, 2-87
procedural optimizations, 1-96
procedure statistics, 2-99
processing loops, 16-bit data types in, 2-59
processor

clock rate, 4-72
context on supervisor stack, 1-371
counts, measuring, 4-65
initialization, 3-117
priority level, 1-417
target, 1-68
time, 3-107

PROCESSOR directive, A-8, A-18
processor support options

EngineerZone, lvi
LinkedIn, lvii
Twitter, lvii

-proc (target processor) compiler switch,
1-68

profblkfn program, 1-362
profile gathering, A-32
profile-guided optimization (PGO)

about, 1-97
adding instrumentation, 1-67
command-line arguments in, 1-358
generating no function profile, 1-321
multiple PGO data sets, 2-12
multiple source uses, 2-11
on a dual-core system, A-32
operation via menu selection, 1-97
run-time behavior, 2-9
session identifier, 1-67
session identifiers, A-25, A-33
specifying PGO session identifier, 1-67
usage example, 2-37

PGO (continued)
using the -Ov num switch with, 1-63,

2-12, 2-58
using the pgoctrl command-line tool,

A-32
using with non-simulatable applications,

2-11
when not used, 1-63
when to use, 2-9, 2-13
with simulator, 2-9, 2-10

profile instrumentation, and profile-guided
optimization (PGO), 1-67

profiler initialization, 1-418
profiling

data storage, 1-363
enabling, 1-418
executable outputs, 1-360
initialization routines, 3-6
Interrupts, 2-141
kernel time, 2-141
library, consuming cycles, 1-363
statistical, 2-8
things that affect, 2-142
using the -p switch, 1-359
with instrumented code, 1-359, 2-135

profiling data
storage, 2-140

profiling implementation, generating
information on, 1-65

profiling information, 1-363
profiling report

contents of, 2-138
program control functions

calloc, 3-103
malloc, 3-238
realloc, 3-265

program termination, 3-134
-progress-rep-func compiler switch, 1-69
-progress-rep-opt compiler switch, 1-69
progress reporting, 1-69, 1-70

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-51
for Blackfin Processors

Index

-progress-rep-timeout compiler switch,
1-70

-progress-rep-timeout-secs compiler switch,
1-70

project development for dual-core Blackfin
processors, A-3

Project Wizard, 1-357, 1-374
protection violation exception, 1-388
public global variable, 1-315
punctuation character, detecting, 3-222
pure pragma, 1-321
putc function, 3-256
putchar function, 3-257
puts function, 3-259

Q
qsort (quicksort) function, 3-260
_QUAD keyword, 1-281
QUALIFIER keywords, for section

pragma, 1-313
queue header file, 3-43

R
raise (raise a signal) function, 1-370, 3-262
rand function, 3-14, 3-38
random number generator. See rand, srand

functions
rand (random number generator) function,

3-264
-R- (disable source path) compiler switch,

1-71
read function, 3-48
read/write registers, 1-260
realloc (change memory allocation)

function, 3-265
reciprocal square root (rsqrt) function,

4-241
rectangular window, 4-181
reductions, 2-40

ref-code characters, 1-82
register

event handlers, 3-267
event handlers (extended interface),

3-270
information, disabling propagation of,

1-64, 1-329
register_handler_ex function, 1-368,

1-371, 3-270
register_handler function, 1-368, 1-371,

3-267
registers

accumulator, 1-253
call-preserved, 1-433
clobbered, 1-322
clobbered by overlay manager, 1-64
dedicated, 1-432
for asm() constructs, 1-180
mark, 1-417
preserved, 1-432
reserved, 1-71
restoring, 1-437
saved on stack frame, 1-437
scratch, 1-433
settings at startup, 1-413
stack, 1-435
usage. See mixed C/C++ assembly

programming
user-reserved, 1-325

regs_clobbered_call pragma, 1-326
regs_clobbered pragma, 1-322, 1-324

restrictions, 1-323
regs_clobbered string, 1-323
RELEASE macro, A-28
remarks

enabling as a class, 2-6
promoting to errors, 2-6
promoting to warnings, 2-6
using in diagnostics, 2-6
via diagnostic control pragmas, 1-338

Index

I-52 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

remove function, 3-53, 3-274
RENAME_ETSI_NEGATE macro, 1-219
rename function, 3-53, 3-276
Reporter Tool

using instrprof.exe command-line, 2-137
-reserve (reserve register) compiler switch,

1-71
reset address, 1-413
resets, compiler support, 1-366
RESOLVE() LDF command, A-11, A-28
restrict

keyword, 2-49
operator keyword, 1-165
qualifier, 2-48

restricted pointers, 2-48
restrict keyword, 1-158
restrict keyword, See also pointer class

support keyword (restrict)
result_alignment pragma, 1-330
.RETAIN_NAME directive, 1-463
retain_name pragma, 1-309
return

long integer absolute value, 3-228
values, 1-441
value transfer, 1-439

rewind function, 3-278
rfft2d (n x n point 2-D real input fft)

function, 4-235
rfftf (fast N-point real input FFT), 4-229
rfft (n point radix 2 real input FFT)

function, 4-225
rfftrad4 (n point radix 4 real input fft)

function, 4-233
rms (root mean square) function. See root

mean square (rms) function
RND_MOD bit, 1-199, 1-219, 1-229,

1-300
built-in functions, 1-242
changing, 1-242

root mean square (rms) function, 4-239
ROT13 algorithm, A-26
roundfx (round fixed-point value)

function, 1-125, 3-280
rounding, 1-128

behavior, 1-118
biased round-to-nearest, 1-128
setting mode, 1-128
unbiased round-to-nearest, 1-128

rounding, in ETSI functions, 1-229
-R (search for source files) compiler switch,

1-70
rsqrt (reciprocal square root) function,

4-241
-rtti (enable run-time type identification)

C++ mode compiler switch, 1-90
__RTTI macro, 1-90, 1-404
run-time

checking, 1-156
disabling type identification, 1-90
enabling type identification, 1-90
environment, 1-408
environment. See also mixed C/C++

assembly programming
heap storage, 1-423
label, 3-286
libraries, 3-5, 3-8
library attributes, list of, 3-8
stack, 1-423, 1-435

RUNTIME_INIT qualifier, 1-313
run-time type identification

disabling, 1-90
enabling, 1-90

S
_Sat, 1-106
sat, 1-106
-sat-associative compiler switch, 1-71

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-53
for Blackfin Processors

Index

saturation
disabling, 1-58
disabling associativity, 1-57
enabling associativity, 1-71

-save-temps (save intermediate files)
compiler switch, 1-72

scalar variables, 2-40
scanf function, 3-282
scheduling, of program instructions, 2-72
scratch registers, 1-433

clobbered over the function call, 1-329
SDRAM

activating, 1-72
external, 1-385

-sdram (SDRAM is active) compiler switch,
1-72

search
character string. See strchr, strrchr

functions
memory, character. See memchar

function
path for include files, 1-44
path for library files, 1-47

section
elimination, 2-58
placement, 3-14, 3-18, 3-19
qualifiers, 1-310

-section compiler switch, 1-72
.SECTION directive, 1-422
-section id (data placement) compiler

switch, 1-72
controlling default names with, 1-193

section identifiers
code/data placement, 1-193
compiler-controlled, 1-72, 1-193

section() keyword, 1-158, 1-192
section pragma, 1-279, 1-310
sections, placing symbols in, 1-310
SECTKIND keywords, for section pragma,

1-312

SECTSTRING double-quoted string, for
section pragma, 1-312

seek function, 3-48
segment legacy keyword, 1-193
segment. See placement support keyword

(section)
SEQSTAT values, 1-372
session identifiers, A-33
setbuf function, 3-284
set_default_io_device function, 3-52
__SET_ETSI_FLAGS macro, 1-218,

1-223, 1-227
set header file, 3-43
setjmp (define run-time label) function,

3-286
setjmp.h header file, 3-28, 3-60
set jump. See longjmp, setjmp functions
setting

range of memory to a character, 3-244
register, 1-413
start, 1-413

setvbuf function, 3-288
shared LDF output sections, 3-19
shared_symbols.h header file, A-12, A-28
sharing file attribute, A-22
short, storage format, 1-444
short-form keywords

disabling, 1-54
enabling, 1-37

shortfract
using, 2-53

shortfract class, 1-232
shortfract header file, 3-40
short jumps to long jumps conversion

disabling, 1-57
enabling, 1-47
preventing using register P1 for, 1-57
using the P1 register, 1-47

-show (display command line) compiler
switch, 1-73

Index

I-54 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

sig argument, 3-262, 3-290
SIG_DFL function, 3-290
SIG_IGN function, 3-290
signal

handler, 1-370
signal (define signal handling) function,

1-371, 3-290
signal.h header file, 3-28, 3-61
signals

defining handling of, 3-290
forcing, 3-262
handling, 3-28
processing transformations, 4-10
sending to the executing program, 3-262
signal handers, 1-370

SIGNBITS instruction, 1-229, 1-230
-signed-bitfield (make plain bit-fields

signed) compiler switch, 1-74
-signed-char (make char signed) compiler

switch, 1-74
__SIGNED_CHARS__ macro, 1-74,

1-78, 1-404
sig signal, 3-262
silicon revision

enabling, 1-74, 1-101
specifying specific hardware revision,

1-101
__SILICON_REVISION__ macro, 1-101
silicon revision management, 1-100
simulator, used with PGO, 1-97, 2-9
sind function, 3-292
sinf function, 3-292
sin_fr16 function, 3-292
single application/dual-core approach

about, A-18, A-37
cross-core memory references, A-25
custom .ldf file, A-19
example, A-30
multi-core linking, A-18
shared memory, A-20

single app/dual-core approach (continued)
sharing code, A-20
sharing data, A-20
startup and cache, A-21
synchronization, A-21
target hierarchy, A-16
using file attributes, A-18

single case range, 1-354
single-core application approach

example, A-26
single-core application design approach

customized .ldf file, A-7
default compiler .LDF file, A-5
shared memory, A-6
startup and cache, A-7
synchronization, A-6

sinh (sine hyperbolic) functions, 3-295
sinking process, 2-73
sin (sine) function, 3-292
-si-revision (silicon revision) compiler

switch, 1-74, 1-101
sizeof operator, 1-354
size qualifiers, additional (third-party),

3-33
sliding scale, between 0 and 100, 1-62
slotID pointer, 3-76, 3-77
small applications, producing, 2-57
snprintf function, 3-296
social networking

Twitter and LinkedIn, lvii
soft constraints, 1-475
software pipelining, 2-75, 2-77
source code, DSP run-time library, 4-4
source directory, adding, 1-70
source file implicit inclusion, preventing,

1-89, 1-336
sourcefile parameter, 1-27
space allocator, 1-260
space_unused function, 1-427, 3-298

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-55
for Blackfin Processors

Index

specific diagnostics
modifying severity of, 1-339
modifying with directives, 1-341

spill, to the stack, 2-72
sprintf function, 3-299
sqrtd function, 3-301
sqrtf function, 3-301
sqrt_fr16 function, 3-301
sqrt (square root) function, 3-301
square root, 3-301
srand function, 3-38
srand (random number seed) function,

3-302
sscanf function, 3-303
-S (stop after compilation) compiler switch,

1-71
sstream header file, 3-40
-s (strip debug information) compiler

switch, 1-71
ssync function, 1-261
stack

managing, 1-435
overflow detection, 2-142
pointer, 1-414, 1-435
pointer dedicated register, 1-432
registers, 1-435
registers listed, 1-435
user pointer, 1-414

stack_bank pragma, 1-343
-stack-detect compiler switch, 1-74
stack frame

creating, 1-40
disabling creation of, 1-55
linking, 1-437
unlinking, 1-437

stack frame chain, terminating, 1-418
stack header file, 3-43
stack overflows

debugging, 2-143
detection, 2-142

stacks
detecting overflow, 2-144

stack space, allocated to function
arguments, 1-440

stage count (SC), 2-80, 2-85
stall cycles

described, 2-49
standard

assertions, disabling, 1-58
assertions, enabling, 1-27
include search, disabling, 1-59
library search, disabling, 1-59
library search, enabling, 1-47
macro definitions, disabling, 1-58

Standard C Library, 3-41
standard library functions

abs, 3-66, 3-95, 3-113
absfx, 3-67
acos, 3-69
adi_core_id, 3-74
asin, 3-82
atan, 3-84
atan2, 3-86
atexit, 3-88
atoi, 3-92
atol, 3-93
atoll, 3-94
bitsfx, 3-95
bsearch, 3-97
calloc, 3-103
cos, 3-109
countlsfx, 3-113
div, 3-129
divifx, 3-130
exit, 3-134
free, 3-165
frexp, 3-168
fxbits, 3-180
fxdivi, 3-182
heap_calloc, 3-192

Index

I-56 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

standard library functions (continued)
heap_free, 3-194, 3-196
heap_install, 3-198
heap_lookup, 3-200
heap_malloc, 3-202
heap_realloc, 3-204
heap_space_unused, 3-206
idivfx, 3-207
isalnum, 3-211
isalpha, 3-212
iscntrl, 3-213
isdigit, 3-214
isgraph, 3-215
islower, 3-218
isprint, 3-221
isspace, 3-223
isupper, 3-224
isxdigit, 3-225
labs, 3-228
ldiv, 3-230
log10, 3-235
longjmp, 3-236
malloc, 3-238
memchr, 3-239
memcmp, 3-240
memcpy, 3-241
memmove, 3-243
memset, 3-244
mulifx, 3-249
pow, 3-253
qsort, 3-260
raise, 3-262
rand, 3-264
realloc, 3-265
roundfx, 3-280
setjmp, 3-286
signal, 3-290
sin, 3-292
space_unused, 3-298
sqrt, 3-301

standard library functions (continued)
srand, 3-302
strbrk, 3-320
strcmp, 3-307
strcoll, 3-308
strcpy, 3-309
strcspn, 3-310
strerror, 3-311
strncat, 3-317
strncmp, 3-318
strncpy, 3-319
strrchr, 3-321
strspn, 3-322
strstr, 3-323
strtok, 3-333
strtol, 3-335
strtoll, 3-340
strtoul, 3-342
strtoull, 3-344
strxfrm, 3-346
tan, 3-348
tolower, 3-358
toupper, 3-359
va_arg macro, 3-362
va_end macro, 3-365
va_start macro, 3-366

standard math functions, 3-5
standards

ISO/IEC 14882
2003 C++ standard, 1-4

ISO/IEC 9899
1990 C standard, 1-4
1999 C standard, 1-4

start code label, 1-413
START_CYCLE_COUNT macro, 4-65
startup code

ADSP-BF561 Blackfin processor, A-7,
A-14, A-15

and CRT header, 1-410
CRT operations performed, 1-411

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-57
for Blackfin Processors

Index

startup code (continued)
device driver in, 3-44
overview, 1-357

startup files, 3-5, 3-7
statement expression

definition, 1-349
static scaling, 4-99, 4-190, 4-227
statistical

functions, 4-38
profiling, 2-8

stats.h header file, 4-38
status argument, 3-134
stdard.h header file, 3-28
stdarg.h header file, 3-61, 3-362
stdbool.h header file, 3-29
STDC FX_ACCUM_OVERFLOW

pragma, 1-301
STDC FX_FRACT_OVERFLOW

pragma, 1-301
__STDC__ macro, 1-405
STDC STDC FX_FULL_PRECISION

pragma, 1-300
__STDC_VERSION__ macro, 1-405
stddef.h header file, 3-29
stderrfd function, 3-49
stdexcept header file, 3-40
stdfix.h header file, 3-29
stdinfd function, 3-49
stdint.h header file, 3-29
stdio.h header file, 3-31, 3-44, 3-61
stdlib header file, 3-42
stdlib.h header file, 3-36, 3-62
std namespace, 1-88
stdoutfd function, 3-49
-std-templates C++ mode compiler switch,

1-90
-steee-fp compiler switch, 1-451
sti function, 1-260
STI memory area, 1-421

STI qualifier, 1-312
sti section identifier, 1-73, 1-194, 1-311
STOP_CYCLE_COUNT macro, 4-65
stop. See atexit, exit functions
storage formats, short, 1-444
strcat (concatenate strings) function, 3-305
strchr (find first occurrence of character in

string) function, 3-306
strcmp (compare strings) function, 3-307
strcoll (compare strings) function, 3-308
strcpy (copy from one string to another)

function, 3-309
strcspn (compare string span) function,

3-310
streambuf header file, 3-40
strerror (get string containing error

message) function, 3-311
strftime (format a broken-down time)

function, 3-312
conversion specifiers, 3-312

strides
loop control variables to be avoided, 2-45

string
containing error message, 3-311
converting to double, 3-324
converting to fixed-point, 3-330
converting to float, 3-327
converting to long double, 3-337
converting to long integer, 3-335
converting to long long integer, 3-340
converting to tokens, 3-333
converting to unsigned long integer,

3-342
converting to unsigned long long integer,

3-344
copying characters from one to another,

3-319
finding character match in, 3-320
length, 3-316

Index

I-58 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

string (continued)
literals with line breaks, 1-353
transforming with LC_COLLATE,

3-346
string conversion. See atof, atoi, atol, strtok,

strtol, strxfrm functions
string functions

memchar, 3-239
memcmp, 3-240
memcpy, 3-241
memmove, 3-243
memset, 3-244
strcat, 3-305
strchr, 3-306
strcoll, 3-308
strcpy, 3-309
strcspn, 3-310
strerror, 3-311
strlen, 3-316
strncat, 3-317
strncmp, 3-318
strncpy, 3-319
strpbrk, 3-320
strrchr, 3-321, 3-322
strspn, 3-322
strstr, 3-323
strtok, 3-333
strxfrm, 3-346

string header file, 3-41
string.h header file, 3-36, 3-63
string literals

marked as const-qualify strings, 1-32
multiline, 1-50
no-multiline, 1-57
not making const-qualified, 1-53

strings
comparing, 3-307
concatenating, 3-305

strings section identifier, 1-73, 1-194
string-to-numeric conversions, 3-36
strlen (string length) function, 3-316
strncat (concatenate characters from one

string to another) function, 3-317
strncmp (compare characters in strings)

function, 3-318
strncpy (copy characters from one string to

another) function, 3-319
strong entry, 1-33
strpbrk (find character match in two

strings) function, 3-320
strrchr (find last occurrence of character in

string) function, 3-321
strspn (length of segment of characters in

both strings) function, 3-322
strstream header file, 3-41
strstr (find string within string) function,

3-323
strtod (convert string to double) function,

3-324
strtof (convert string to float) function,

3-327
strtofxfx (convert string to fixed-point)

function, 1-127, 3-330
strtok (convert string to tokens) function,

3-333
strtok function, 3-14, 3-38
strtol (convert string to long integer)

function, 3-335
strtold (convert string to long double)

function, 3-337
strtoll (convert string to long long integer)

function, 3-340
strtoul (convert string to unsigned long

integer) function, 3-342
strtoull (convert string to unsigned long

long integer) function, 3-344

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-59
for Blackfin Processors

Index

struct
assignment, 1-75
copying, 1-75
optimizing, 2-17
packed, 1-285

-structs-do-not-overlap compiler switch,
1-75

struct tm, 3-36
structures

initializing, 1-169
strxfrm (transform string using

LC_COLLATE) function, 3-346
sub_i2x16 function, 1-245
sum_i2x16 function, 1-245
supervisor mode support routines, 3-6
suppress_null_check pragma, 1-332
SWITCH qualifier, 1-312
switch section identifier, 1-73, 1-194
symbolic links

expanding, 1-37
not recognizing, 1-54

symbolic_ref pragma, 1-315
symbols

global, 1-304
symbols, placing in sections, 1-310
synchronization

compiler intrinsics, A-43
functions, 1-261
lock variables, A-21
one-application-per-core system, A-13
single application/dual-core system, A-21
single-core application system, A-6

-syntax-only (only check syntax) compiler
switch, 1-75

SYSCFG (system configuration) register,
1-413

SYSCFG_VALUE initialization value,
1-413

-sysdef (system definitions) compiler
switch, 1-76

sysreg_read64 function, 1-260
sysreg_read function, 1-260
sysreg_write64 function, 1-260
sysreg_write function, 1-260
system built-in functions, 1-259

idle mode, 1-261
IMASK, 1-260
interrupts, 1-260
read/write registers, 1-260
stack space allocation, 1-259
synchronization, 1-261
system register values, 1-260

system configuration register (SYSCFG),
1-413

system events, 1-365
system_header pragma, 1-338
system heap, 1-363, 1-364
__SYSTEM__ macro, 1-76
system macro definitions, 1-76
system registers

accessing, 1-190
manipulating, 2-54
values, 1-260

system services library
setting CLOCKS_PER_SECOND

macro, 3-37

T
tand function, 3-348
tanf function, 3-348
tan_fr16 function, 3-348
tangent function, 3-348
tanh (hyperbolic tangent) functions, 3-350
tan (tangent) function, 3-348
target processor, specifying, 1-68
technical support forum, lvi

Index

I-60 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

template
asm() construct, 1-177
class, 1-466
classes, 1-333
function, 1-466
instantiation, 1-466
support in C++, 1-466
un-instantiated, 1-469

template instantiation, 1-468
template instantiation pragmas, 1-333
temporary file, 3-352
temporary file name, 3-355
temporary files location, 1-66
terminate. See atexit, exit functions
termination functions, 3-36
terminology

loop optimization, 2-71
testset built-in function, A-43
TESTSET instruction, A-2, A-43
third-party I/O library, 1-40, 3-32, 3-33
thread-safe

code, 1-77
functions, 3-38
libraries, using with VDK, 1-77

threads flag, 1-77
time

information, 3-36
zones, 3-36

time (calendar time) function, 3-351
time.h header file, 3-36, 3-63, 4-70, 4-72,

4-74
__TIME__ macro, 1-405
time_t data type, 3-37, 3-351
-time (tell time) compiler switch, 1-77
-T (linker description file) compiler switch,

1-76
tokens, string convert. See strtok function
tolower (convert from uppercase to

lowercase) function, 3-358

toupper (convert characters to uppercase)
function, 3-359

transformational functions, 4-11, 4-13
triangle window, 4-183
trip

count, 2-80
maximum, 2-80
minimum, 2-80
modulo, 2-80

trip count, 2-92, 2-112
loop, 2-115
minimum, 2-65

truncation, 1-128
twiddle tables

initializing, 4-10
twidfft2d_fr16 function, 4-250
twidfft2d function, 4-250
twidfftf_fr16 function, 4-247
twidfftrad2 function, 4-242
twidfftrad4_fr16 function, 4-234, 4-245
twidfftrad4 function, 4-245
type cast, 1-354
typeof construct, 1-351
typeof reference support keyword, 1-351

U
UNASSIGNED_FILL macro, 1-417,

1-418
UNASSIGNED_VAL bit pattern, 1-412
unbiased round-to-nearest rounding, 1-128
unclobbered registers, 1-324
ungetc function, 3-360
uninitialized global variable definitions,

1-33
UNIX signal() function, 1-368
_unknown_exception_occurred function,

1-392
unnamed struct/union fields, 1-356
unroll-and-jam optimization, A-42

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-61
for Blackfin Processors

Index

-unsigned-bitfield (make plain bit-fields
unsigned) compiler switch, 1-77

-unsigned-char (make char unsigned)
compiler switch, 1-78

untestset built-in function, A-43
uppercase characters, detecting, 3-224
uppercase. See isupper, toupper functions
USE_L1DATA_HEAP macro, 1-365
USE_L2_HEAP macro, 1-365
USER_CRT linker macro, 1-358
USER_CRT macro, 1-410
user identifier, 1-424
__USERNAME__ macro, 1-76
user-reserved registers, 1-325
user stack pointer, 1-415
USE_SCRATCHPAD_HEAP macro,

1-365
USE_SDRAM_HEAP macro, 1-365
utility header file, 3-43
-U (undefine macro) compiler switch, 1-32,

1-77

V
va_arg (get next argument in variable list)

function, 1-440, 3-362
va_end (reset variable list pointer) function,

3-365
validating

data memory accesses, 1-33
instruction memory accesses, 1-45

VarData binary object, 1-473
variable

argument macros, 1-164
variable, statically initialized, 2-22
variable argument list

details of argument passing, 1-440
printing, 3-367
printing to stdout, 3-369

variable argument macros, 1-353
variable expansion and MVE unroll, 2-87

variable-length argument list
finishing, 3-365
initializing, 3-366

variable-length arrays, 1-166, 1-353
var (variance) functions, 4-253
va_start (set variable list pointer) function,

1-440, 3-366
VDK

configuring ISRs for, 1-414
multi-threaded environments, 3-7, 3-16
project support selected, 1-77
terminating application in, 3-16
thread-local private storage, 3-17
using CRT header with, 1-411
using thread-safe C/C++ run-time

libraries with, 1-77, 3-43
vector_for pragma, 1-288, 1-296
vector functions, 4-45
vector header file, 3-43
vector.h header file, 4-45
vector instructions, 2-46, 2-59

with 16-bit data types, 2-46
vectorization

annotations, 2-121
avoiding, 2-66
defined, 2-115
factor, 2-115
loop, 2-66, 2-77
transformation, 2-67

vectorized loop, 1-292
vectorized operations, 1-245
-verbose (display command line) compiler

switch, 1-79
-version (display version) compiler switch,

1-79
version information, displaying, 1-41
__VERSION__ macro, 1-405
__VERSIONNUM__ macro, 1-405
vfprintf function, 3-367
video.h header file, 1-267

Index

I-62 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

video operations
accumulator extract with addition, 1-271
align operations, 1-268
built-in functions, 1-267
dual 16-bit add or clip, 1-270
misaligned loads, 1-268
packing, 1-268
quad 8-bit add subtract, 1-269
quad 8-bit average, 1-270
subtract absolute accumulate, 1-272
unpacking, 1-269

virtual function lookup tables, 1-72, 1-193
VisualDSP++

compiler (ccblkfn), 1-3
IDDE, 1-4
IDDE, automated PGO interface, A-32
Project Wizard, 1-357
simulator, 3-24, 3-34, 3-44, 3-53
specifying processor speed, 4-72
synchronization features, A-43

__VISUALDSPVERSION__ macro,
1-405

Viterbi decoder, 1-253
Viterbi functions

described, 1-253
void pointer, 1-258
volatile

about, 2-14
and asm() C program constructs, 1-187
declarations, 2-5
register set, 1-326

volatile, possible MMRs, 1-103
volatile loads, disabling interrupts during,

1-43
volatile memory, potential MMRs, 1-52
volatile register set, 1-326
von Hann window, 4-185
vprintf function, 3-369
vsnprintf function, 3-371
vsprintf function, 3-373

VTABLE qualifier, 1-312
vtable section identifier, 1-73, 1-194
vtbl section identifier, 1-73, 1-193, 1-194
-v (version & verbose) compiler switch,

1-78

W
warning messages

as type of diagnostic, 2-6
described, 2-6
disabling, 2-6
promoting to errors, 2-6
via diagnostic control pragmas, 1-338
#warning directive, 1-357

-Warn-protos (warn if incomplete
prototype) compiler switch, 1-81

wchar_t data type, 3-33
-w (disable all warnings) compiler switch,

1-80, 2-6
weak entry, 1-33
weak_entry pragma, 1-318
-Werror-limit (maximum compiler errors)

compiler switch, 1-80
-Werror-warnings (treat warnings as errors)

compiler switch, 1-80
white space character test. See isspace

function
window

cosine, 4-175
functions, 4-61
generators, 4-61

window.h header file, 4-61
Windows shortcuts, 1-92

expanding, 1-37
not recognizing, 1-54

-Wmis_suppress rule_number C compiler
switch, 1-85

-Wmis_warn rule_number C compiler
switch, 1-85

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-63
for Blackfin Processors

Index

-W{...} number (override error message)
compiler switch, 1-79, 2-6

word alignment
data buffer, 2-23

_WORD keyword, 1-281
_wordsize.h header file, 3-54
workarounds

anomaly management, 1-100, 1-102
enabling, 1-102
interaction between -si-revision,

-workaround and -no-workaround,
1-104

isr-imask-check, 1-287, 1-367
list of valid workarounds, 1-102
not applied in asm() constructs, 1-100,

1-174
use of the -si-revision switch, 1-101
use of the -workaround switch, 1-102
using the -no-workaround switch, 1-103

__WORKAROUNDS_ENABLED
macro, 1-102, 1-104, 1-405

-workaround workaround_id compiler
switch, 1-81, 1-102

-W (override error message) compiler
switch, 2-6

wrapper project, 2-11
-Wremarks (enable diagnostic remarks)

compiler switch, 1-80
-Wremarks (enable diagnostic warnings)

compiler switch, 2-6
write-back mode, 1-388
-write-files (enable driver I/O pipe)

compiler switch, 1-81
write function, 3-47
-write-opts (enable driver I/O pipe)

compiler switch, 1-82
write-through mode, 1-381, 1-388

writing
array elements, 2-42
preprocessor macros, 1-405

-Wterse (enable terse warnings) compiler
switch, 1-80

X
.xml files, 1-49
-xref (cross-reference list) compiler switch,

1-82

Z
zero_cross (count zero crossing) function,

4-256
zero crossings, 4-256
ZeroData binary object, 1-473
ZERO_INIT qualifier, 1-313, 1-473
zero-length arrays, 1-353
-zero-loop-counter compiler switch, 1-83
µ-law compression function, 4-219
µ-law expansion function, 4-220

Index

I-64 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

	VisualDSP++ 5.0 C/C++ Compiler and Library Manual for Blackfin Processors, Revision 5.4, January 2011
	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents Description
	What’s New in This Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	Analog Devices Web Site
	VisualDSP++ Online Documentation
	Technical Library CD
	EngineerZone
	Social Networking Web Sites

	Notation Conventions

	1 Compiler
	C/C++ Compiler Overview
	Compiler Command-Line Interface
	Running the Compiler
	C/C++ Compiler Command-Line Switches
	C/C++ Mode Selection Switch Descriptions
	-c89
	-c99
	-c++

	C/C++ Compiler Common Switch Descriptions
	sourcefile
	-@
	-A
	-add-debug-libpaths
	-alttok
	-always-inline
	-annotate
	-annotate-loop-instr
	-auto-attrs
	-bss
	-build-lib
	-C
	-c
	-const-read-write
	-const-strings
	-cplbs
	-D
	-dcplbs
	-debug-types <file.h>
	-decls-{weak|strong}
	-double-size-{32 | 64}
	-double-size-any
	-dry
	-dryrun
	-E
	-ED
	-EE
	-eh
	-enum-is-int
	-expand-symbolic-links
	-expand-windows-shortcuts
	-extra-keywords
	-extra-loop-loads
	-fast-fp
	-file-attr
	-fixed-point-io
	-flags{-asm | -compiler | -lib | -link | -mem} switch [,switch2[,...]]
	-force-circbuf
	-force-link
	-fp-associative
	-full-io
	-full-version
	-fx-contract
	-fx-rounding-mode-biased
	-fx-rounding-mode-truncation
	-fx-rounding-mode-unbiased
	-g
	-glite
	-guard-vol-loads
	-H
	-HH
	-h[elp]
	-I
	-I-
	-i
	-icplbs
	-ieee-fp
	-implicit-pointers
	-include
	-ipa
	-jcs2l
	-L
	-l
	-list-workarounds
	-M
	-MD
	-MM
	-Mo
	-Mt
	-map
	-mem
	-multicore
	-multiline
	-never-inline
	-no-alttok
	-no-annotate
	-no-annotate-loop-instr
	-no-assume-vols-are-mmrs
	-no-auto-attrs
	-no-bss
	-no-builtin
	-no-circbuf
	-no-const-strings
	-no-defs
	-no-eh
	-no-expand-symbolic-links
	-no-expand-windows-shortcuts
	-no-extra-keywords
	-no-force-link
	-no-fp-associative
	-no-full-io
	-no-fx-contract
	-no-int-to-fract
	-no-jcs2l
	-no-mem
	-no-multiline
	-no-progress-rep-timeout
	-no-sat-associative
	-no-saturation
	-no-std-ass
	-no-std-def
	-no-std-inc
	-no-std-lib
	-no-threads
	-no-workaround
	-no-zero-loop-counters
	-O[0|1]
	-Oa
	-Ofp
	-Og
	-Os
	-Ov
	-o
	-overlay
	-overlay-clobbers
	-P
	-PP
	-p[1|2]
	-path {-asm | -compiler | -lib | -link}
	-path-install
	-path-output
	-path-temp
	-pch
	-pchdir
	-pgo-session
	-pguide
	-pplist
	-proc
	-progress-rep-func
	-progress-rep-opt
	-progress-rep-timeout
	-progress-rep-timeout-secs
	-R
	-R-
	-reserve
	-S
	-s
	-sat-associative
	-save-temps
	-sdram
	-section
	-show
	-signed-bitfield
	-signed-char
	-si-revision
	-stack-detect
	-structs-do-not-overlap
	-syntax-only
	-sysdefs
	-T
	-threads
	-time
	-U
	-unsigned-bitfield
	-unsigned-char
	-v
	-verbose
	-version
	-W{error|remark|suppress|warn}
	-Werror-limit
	-Werror-warnings
	-Wremarks
	-Wterse
	-w
	-warn-protos
	-workaround
	-write-files
	-write-opts
	-xref
	-zero-loop-counters

	C Mode (MISRA) Compiler Switch Descriptions
	-misra
	-misra-linkdir
	-misra-no-cross-module
	-misra-no-runtime
	-misra-strict
	-misra-suppress-advisory
	-misra-testing
	-Wmis_suppress
	-Wmis_warn

	C++ Mode Compiler Switch Descriptions
	-anach
	-check-init-order
	-extern-inline
	-friend-injection
	-full-dependency-inclusion
	-ignore-std
	-no-anach
	-no-extern-inline
	-no-friend-injection
	-no-implicit-inclusion
	-no-rtti
	-no-std-templates
	-rtti
	-std-templates

	Environment Variables Used by the Compiler
	Additional Path Support
	Windows Shortcut Support
	Cygwin Path Support
	Cygwin Symbolic Links
	Cygdrive Folders
	Cygwin Mounted Directories

	Optimization Control
	Optimization Levels
	Interprocedural Analysis
	Interaction With Libraries

	Controlling Silicon Revision and Anomaly Workarounds Within the Compiler
	Using the -si-revision Switch
	Using the -workaround Switch
	Using the -no-workaround Switch
	Interactions: Silicon Revision vs. Workaround Switches

	Using Native Fixed-Point Types
	Fixed-Point Type Support
	Native Fixed-Point Types
	Native Fixed-Point Constants
	A Motivating Example
	Fixed-Point Arithmetic Semantics
	Data Type Conversions and Fixed-Point Types
	Bit-Pattern Conversion Functions: bitsfx and fxbits
	Arithmetic Operators for Fixed-Point Types
	FX_CONTRACT
	Rounding Behavior
	Arithmetic Library Functions
	divifx
	idivfx
	fxdivi
	mulifx
	absfx
	roundfx
	countlsfx
	strtofxfx

	I/O Conversion Specifiers
	Setting the Rounding Mode
	Porting Code Written Using fract16 and fract32
	Fixed-Point Type Example

	Language Standards Compliance
	C Mode
	C++ Mode

	MISRA-C Compiler
	MISRA-C Compiler Overview
	MISRA-C Compliance
	Using the Compiler to Achieve Compliance

	Rules Descriptions

	C/C++ Compiler Language Extensions
	Function Inlining
	Inlining and Optimization
	Inlining and Out-of-Line Copies
	Inlining and Global asm Statements
	Inlining and Sections

	Variable Argument Macros
	Restricted Pointers
	Variable-Length Arrays
	Non-Constant Initializer Support
	Designated Initializers
	Hexadecimal Floating-Point Numbers
	Declarations Mixed With Code
	Compound Literals
	C++ Style Comments
	Enumeration Constants That Are Not int Type
	Boolean Type Support Keywords (bool, true, false)
	Native Fixed-Point Types fract and accum
	Inline Assembly Language Support Keyword (asm)
	asm() Construct Syntax
	asm() Construct Syntax Rules
	asm() Construct Template Example

	Assembly Construct Operand Description
	Using long long Types in asm Constraints
	Assembly Constructs With Multiple Instructions
	Assembly Construct Reordering and Optimization
	Assembly Constructs With Input and Output Operands
	Assembly Constructs With Compile-Time Constants
	Assembly Constructs and Flow Control
	Guidelines for Using asm() Statements

	Bank Qualifiers
	Placement Support Keyword (section)
	Placement of Compiler-Generated Code and Data
	Long Identifiers
	Compiler Built-In Functions
	Fractional Value Built-In Functions in C
	16-Bit Fractional Built-In Functions
	32-Bit Fractional Built-In Functions
	fract2x16 Built-In Functions
	ETSI Built-In Functions

	ETSI Support
	32-Bit Fractional ETSI Routines Using Double-Precision Format
	32-Bit Fractional ETSI Routines Using 1.31 Format
	16-Bit Fractional ETSI Routines

	Fractional Value Built-In Functions in C++
	fract16 and fract32 Literal Values in C
	Converting Between Fractional and Floating-Point Values
	Complex Fractional Built-In Functions in C
	Changing the RND_MOD Bit
	Complex Operations in C++
	Packed 16-Bit Integer Built-In Functions
	Division Functions
	Full-Precision Accumulator Built-In Functions
	Accumulator Built-In Function Prototypes
	Accumulator Built-In Functions and the Optimizer

	Viterbi History and Decoding Functions
	Search Built-in Functions
	Circular Buffer Built-In Functions
	Automatic Circular Buffer Generation
	Explicit Circular Buffer Generation
	Circular Buffer Increment of an Index
	Circular Buffer Increment of a Pointer

	Endian-Swapping Intrinsics
	System Built-In Functions
	Cache Built-In Functions
	flush
	flushinv
	flushinvmodup
	flushmodup
	iflush
	iflushmodup
	prefetch
	prefetchmodup

	Compiler Performance Built-In Functions
	Video Operation Built-In Functions
	Function Prototypes
	Example of Use: Sum of Absolute Difference

	Misaligned Data Built-In Functions
	Memory-Mapped Register Access Built-In Functions
	Miscellaneous Built-In Functions

	Pragmas
	Pragmas With Declaration Lists
	Data Alignment Pragmas
	#pragma align num
	#pragma alignment_region (alignopt)
	#pragma pack (alignopt)
	#pragma pad (alignopt)

	Interrupt Handler Pragmas
	Loop Optimization Pragmas
	#pragma all_aligned
	#pragma different_banks
	#pragma extra_loop_loads
	#pragma loop_count(min, max, modulo)
	#pragma loop_unroll N
	#pragma no_alias
	#pragma no_vectorization
	#pragma vector_for

	General Optimization Pragmas
	Fixed-Point Arithmetic Pragmas
	#pragma FX_CONTRACT {ON|OFF}
	#pragma FX_ROUNDING_MODE {TRUNCATION|BIASED|UNBIASED}
	#pragma STDC FX_FULL_PRECISION {ON|OFF|DEFAULT}
	#pragma STDC FX_FRACT_OVERFLOW {SAT|DEFAULT}
	#pragma STDC FX_ACCUM_OVERFLOW {SAT|DEFAULT}

	Inline Control Pragmas
	#pragma always_inline
	#pragma inline
	#pragma never_inline

	Linking Control Pragmas
	#pragma linkage_name identifier
	#pragma core
	#pragma retain_name
	#pragma section/#pragma default_section
	#pragma file_attr(“name[=value]” [, “name[=value]” [...]])
	#pragma symbolic_ref
	#pragma weak_entry

	Function Side-Effect Pragmas
	#pragma alloc
	#pragma const
	#pragma inline
	#pragma misra_func(arg)
	#pragma noreturn
	#pragma pgo_ignore
	#pragma pure
	#pragma regs_clobbered string
	#pragma regs_clobbered_call string
	#pragma overlay
	#pragma result_alignment (n)

	Class Conversion Optimization Pragmas
	#pragma param_never_null param_name [...]
	#pragma suppress_null_check

	Template Instantiation Pragmas
	#pragma instantiate instance
	#pragma do_not_instantiate instance
	#pragma can_instantiate instance

	Header File Control Pragmas
	#pragma hdrstop
	#pragma no_implicit_inclusion
	#pragma no_pch
	#pragma once
	#pragma system_header

	Diagnostic Control Pragmas
	Modifying the Severity of Specific Diagnostics
	Modifying the Behavior of an Entire Class of Diagnostics
	Saving or Restoring the Current Behavior of All Diagnostics

	Memory Bank Pragmas
	#pragma code_bank(bankname)
	#pragma data_bank(bankname)
	#pragma stack_bank(bankname)
	#pragma bank_memory_kind(bankname, kind)
	#pragma bank_read_cycles(bankname, cycles)
	#pragma bank_write_cycles(bankname, cycles)
	#pragma bank_optimal_width(bankname, width)

	Exceptions Tables Pragma

	GCC Compatibility Extensions
	Statement Expressions
	Type Reference Support Keyword (typeof)
	GCC Generalized lvalues
	Conditional Expressions With Missing Operands
	Zero-Length Arrays
	GCC Variable Argument Macros
	Line Breaks in String Literals
	Arithmetic on Pointers to Void and Pointers to Functions
	Cast to Union
	Ranges in Case Labels
	Escape Character Constant
	Alignment Inquiry Keyword (__alignof__)
	(asm) Keyword for Specifying Names in Generated Assembler
	Function, Variable, and Type Attribute Keyword (__attribute__)
	Unnamed struct/union Fields Within struct/unions

	Preprocessor-Generated Warnings

	Blackfin Processor-Specific Functionality
	Startup Code Overview
	Support for argv/argc
	Profiling With Instrumented Code
	Generating Instrumented Code
	Running the Executable
	Post-Processing the mon.out File
	Profiling Data Storage
	Computing Cycle Counts

	Controlling System Heap Size and Placement
	Interrupt Handler Support
	Defining an ISR
	Registering an ISR
	ISRs and ANSI C Signal Handlers
	Saved Processor Context
	Fetching Event Details

	Caching and Memory Protection
	___cplb_ctrl Control Variable
	CPLB Installation
	Cache Configurations
	Default Cache Configuration
	Changing Cache Configuration
	Cache Invalidation
	Default .ldf Files and Cache
	CPLB Replacement and Cache Modes
	Cache Flushing
	Using the _cplb_mgr Routine
	Caching and Asynchronous Change
	Migrating .ldf Files From Previous VisualDSP++ Installations
	C++ Support Tables (ctor, gdt)
	Dual-Core Single-Application Per Core Shared Data
	C++ Run-Time Libraries Rationalization
	Multi-Threaded Libraries
	Fixed-Point I/O Support

	C/C++ Preprocessor Features
	Predefined Macros
	Writing Preprocessor Macros
	Compound Macros

	C/C++ Run-Time Model and Environment
	C/C++ Run-Time Header and Startup Code
	CRT Header Overview
	CRT Description
	Declarations
	Start and Register Settings
	Event Vector Table
	Stack Pointer and Frame Pointer
	Cycle Counter
	DAG Port Selection
	Memory Initialization
	Device Initialization
	CPLB Initialization
	Lower Processor Priority
	Mark Registers
	Terminate Stack Frame Chain
	Profiler Initialization
	C++ Constructor Invocation
	Multi-Threaded Applications
	Argument Parsing
	Calling _main and _exit

	Constructors and Destructors of Global Class Instances
	Constructors, Destructors, and Memory Placement

	Using Memory Sections
	Using Multiple Heaps
	Defining a Heap
	Defining Heaps at Link-Time
	Defining Heaps at Runtime
	Tips for Working With Heaps
	Standard Heap Interface
	Allocating C++ STL Objects to a Non-Default Heap
	Using the Alternate Heap Interface
	C++ Run-Time Support for the Alternate Heap Interface

	Freeing Space

	Dedicated Registers
	Call-Preserved Registers
	Scratch Registers
	Stack Registers
	Managing the Stack
	Transferring Function Arguments and Return Value
	Passing Arguments
	Passing a C++ Class Instance
	Return Values

	Using Data Storage Formats
	Floating-Point Data Size
	Floating-Point Binary Formats
	IEEE Floating-Point Format
	Variants of IEEE Floating-Point Support

	fract and accum Data Representation
	Fract16 and Fract32 Data Representation

	C/C++ and Assembly Interface
	Calling Assembly Subroutines From C/C++ Programs
	Calling C/C++ Functions From Assembly Programs
	Using Mixed C/C++ and Assembly Naming Conventions

	Exceptions Tables in Assembly Routines

	Compiler C++ Template Support
	Template Instantiation
	Implicit Instantiation
	Exported Templates
	Generated Template Files
	Identifying Un-Instantiated Templates

	File Attributes
	Automatically-Applied Attributes
	Default LDF Placement
	Sections Versus Attributes
	Granularity
	Hard Mapping Versus Soft Mapping
	Number of Values

	Using Attributes
	Example 1
	Example 2

	2 Achieving Optimal Performance From C/C++ Source Code
	General Guidelines
	How the Compiler Can Help
	Using the Compiler Optimizer
	Using Compiler Diagnostics
	Warnings and Remarks
	Assembly Annotations

	Using the Statistical Profiler
	Using Profile-Guided Optimization
	Using Profile-Guided Optimization With a Simulator
	Using Profile-Guided Optimization With Non-Simulatable Applications
	Profile-Guided Optimization and Multiple Source Uses
	Profile-Guided Optimization and the -Ov num Switch
	Profile-Guided Optimization and Multiple PGO Data Sets
	When to Use Profile-Guided Optimization

	Using Interprocedural Optimization

	The Volatile Type Qualifier
	Data Types
	Optimizing a struct
	Bit-Fields
	Avoiding Emulated Arithmetic

	Getting the Most From IPA
	Initializing Constants Statically
	Word-Aligning Your Data
	Using __builtin_aligned
	Avoiding Aliases

	Indexed Arrays Versus Pointers
	Trying Pointer and Indexed Styles

	Using Function Inlining
	Using Inline asm Statements
	Memory Usage
	Using the Bank Qualifier

	Improving Conditional Code
	Using Compiler Performance Built-In Functions
	Using PGO in Function Profiling

	Loop Guidelines
	Keeping Loops Short
	Avoiding Unrolling Loops
	Avoiding Loop-Carried Dependencies
	Avoiding Loop Rotation by Hand
	Avoiding Complex Array Indexing
	Inner Loops Versus Outer Loops
	Avoiding Conditional Code in Loops
	Avoiding Placing Function Calls in Loops
	Avoiding Non-Unit Strides
	Using 16-Bit Data Types and Vector Instructions
	Loop Control
	Using the Restrict Qualifier
	Avoiding Long Latencies

	Manipulating Fixed-Point and Fractional Data
	Using Integer Arithmetic to Encode Fractional Semantics
	Using the Native Fixed-Point Types fract and accum
	Using Built-In Functions to Perform Fixed-Point Arithmetic
	Using the shortfract and fract Classes in C++

	Using Built-In Functions in Code Optimization
	Fractional Data
	Using System Support Built-In Functions
	Using Circular Buffers

	Smaller Applications: Optimizing for Code Size
	Effect of Data Type Size on Code Size

	Using Pragmas for Optimization
	Function Pragmas
	#pragma alloc
	#pragma const
	#pragma pure
	#pragma result_alignment
	#pragma regs_clobbered
	#pragma optimize_{off|for_speed|for_space|as_cmd_line}

	Loop Optimization Pragmas
	#pragma loop_count
	#pragma no_vectorization
	#pragma vector_for
	#pragma all_aligned
	#pragma different_banks
	#pragma no_alias

	Useful Optimization Switches
	How Loop Optimization Works
	Terminology
	Clobbered
	Live
	Spill
	Scheduling
	Loop Kernel
	Loop Prolog
	Loop Epilog
	Loop Invariant
	Hoisting
	Sinking

	Loop Optimization Concepts
	Software Pipelining
	Loop Rotation
	Loop Vectorization
	Modulo Scheduling
	Initiation Interval (II) and the Kernel
	Minimum Initiation Interval Due to Resources (Res MII)
	Minimum Initiation Interval Due to Recurrences (Rec MII)
	Stage Count (SC)
	Variable Expansion and MVE Unroll
	Trip Count

	A Working Example

	Assembly Optimizer Annotations
	Global Information
	Procedure Statistics
	Instruction Annotations
	Loop Identification
	Loop Identification Annotations
	Resource Definitions
	File Position
	Infinite Hardware Loop Wrappers

	Vectorization
	Unroll and Jam
	Example F (Unroll and Jam)

	Loop Flattening
	Vectorization Annotations

	Modulo Scheduling Information
	Annotations for Modulo-Scheduled Instructions

	Warnings, Failure Messages, and Advice

	Analyzing Your Application
	Profiling With Instrumented Code
	Generating an Application With Instrumented Profiling
	Running the Executable
	Invoking the profblkfn.exe Command-Line Reporter
	Contents of the Profiling Report
	profblkfn Command-Line Tool Report Format
	Profiling Data Storage
	Computing Cycle Counts
	Non-Terminating Applications
	Profiling of Interrupts
	Behavior That Interferes With Instrumented Profiling

	Stack Overflow Detection
	Compiler’s Stack Overflow Detection Facility

	3 C/C++ Run-Time Library
	C and C++ Run-Time Library Guide
	Calling Library Functions
	Using the Compiler’s Built-In Functions
	Linking Library Functions
	Library Attributes
	Exceptions to Library Attribute Conventions
	Mapping Objects to Flash Using Attributes

	Library Function Re-Entrancy and Multi-Threaded Environments
	Support Functions for Private Data
	Support Functions for Locking
	Other Support Functions for Multi-Core Applications
	Library Placement
	Section Placement

	Working With Library Header Files
	adi_types.h
	assert.h
	ccblkfn.h
	cplbtab.h
	ctype.h
	device.h
	device_int.h
	errno.h
	float.h
	iso646.h
	limits.h
	locale.h
	math.h
	mc_data.h
	misra_types.h
	setjmp.h
	signal.h
	stdarg.h
	stdbool.h
	stdfix.h
	stddef.h
	stdint.h
	stdio.h
	stdlib.h
	string.h
	time.h

	Calling a Library Function From an ISR
	Abridged C++ Library Support
	Embedded C++ Library Header Files
	C++ Header Files for C Library Facilities
	Embedded Standard Template Library (ESTL) Header Files
	Using Thread-Safe C/C++ Run-Time Libraries With VDK

	File I/O Support
	Extending I/O Support to New Devices
	DevEntry Structure
	Registering New Devices
	Pre-Registering Devices
	Default Device
	Remove and Rename Functions

	Default Device Driver Interface
	Data Packing for Primitive I/O
	Data Structure for Primitive I/O

	Documented Library Functions
	C Run-Time Library Reference
	abort
	abs
	absfx
	acos
	adi_acquire_lock, adi_try_lock, adi_release_lock
	adi_core_id
	adi_obtain_mc_slot, adi_free_mc_slot, adi_set_mc_value, adi_get_mc_value
	asctime
	asin
	atan
	atan2
	atexit
	atof
	atoi
	atol
	atoll
	bitsfx
	bsearch
	cache_invalidate
	calloc
	ceil
	clearerr
	clock
	cos
	cosh
	countlsfx
	cplb_hdr
	cplb_init
	cplb_mgr
	ctime
	difftime
	disable_data_cache
	div
	divifx
	enable_data_cache
	exit
	exp
	fabs
	fclose
	feof
	ferror
	fflush
	fgetc
	fgetpos
	fgets
	floor
	flush_data_cache
	fmod
	fopen
	fprintf
	fputc
	fputs
	fread
	free
	freopen
	frexp
	fscanf
	fseek
	fsetpos
	ftell
	fwrite
	fxbits
	fxdivi
	getc
	getchar
	gets
	gmtime
	heap_calloc
	heap_free
	heap_init
	heap_install
	heap_lookup
	heap_malloc
	heap_realloc
	heap_space_unused
	idivfx
	interrupt
	isalnum
	isalpha
	iscntrl
	isdigit
	isgraph
	isinf
	islower
	isnan
	isprint
	ispunct
	isspace
	isupper
	isxdigit
	_l1_memcpy, _memcpy_l1
	labs
	ldexp
	ldiv
	localtime
	log
	log10
	longjmp
	malloc
	memchr
	memcmp
	memcpy
	memmove
	memset
	mktime
	modf
	mulifx
	perror
	pow
	printf
	putc
	putchar
	puts
	qsort
	raise
	rand
	realloc
	register_handler
	register_handler_ex
	remove
	rename
	rewind
	roundfx
	scanf
	setbuf
	setjmp
	setvbuf
	signal
	sin
	sinh
	snprintf
	space_unused
	sprintf
	sqrt
	srand
	sscanf
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strerror
	strftime
	strlen
	strncat
	strncmp
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtod
	strtof
	strtofxfx
	strtok
	strtol
	strtold
	strtoll
	strtoul
	strtoull
	strxfrm
	tan
	tanh
	time
	tmpfile
	tmpnam
	tolower
	toupper
	ungetc
	va_arg
	va_end
	va_start
	vfprintf
	vprintf
	vsnprintf
	vsprintf

	4 DSP Run-Time Library
	DSP Run-Time Library Guide
	Linking DSP Library Functions
	Working With Library Source Code
	Library Attributes
	DSP Header Files
	complex.h
	cycle_count.h
	cycles.h
	filter.h
	math.h
	matrix.h
	stats.h
	vector.h
	window.h

	Measuring Cycle Counts
	Basic Cycle-Counting Facility
	Cycle-Counting Facility With Statistics
	Using time.h to Measure Cycle Counts
	Determining the Processor Clock Rate
	Considerations When Measuring Cycle Counts

	DSP Run-Time Library Reference
	a_compress
	a_expand
	alog
	alog10
	arg
	autocoh
	autocorr
	cabs
	cadd
	cartesian
	cdiv
	cexp
	cfft
	cfftf
	cfftrad4
	cfft2d
	cfir
	clip
	cmlt
	coeff_iirdf1
	conj
	convolve
	conv2d
	conv2d3x3
	copysign
	cot
	countones
	crosscoh
	crosscorr
	csub
	fft_magnitude
	fir
	fir_decima
	fir_interp
	gen_bartlett
	gen_blackman
	gen_gaussian
	gen_hamming
	gen_hanning
	gen_harris
	gen_kaiser
	gen_rectangular
	gen_triangle
	gen_vonhann
	histogram
	ifft
	ifftf
	ifftrad4
	ifft2d
	iir
	iirdf1
	max
	mean
	min
	mu_compress
	mu_expand
	norm
	polar
	rfft
	rfftf
	rfftrad4
	rfft2d
	rms
	rsqrt
	twidfftrad2
	twidfftrad4
	twidfftf
	twidfft2d
	var
	zero_cross

	A Programming Dual-Core Blackfin Processors
	Dual-Core Blackfin Architecture Overview
	Approaches Supported in VisualDSP++
	Single-Core Application
	Shared Memory
	Synchronization
	Cache, Startup, and Events
	Creating Customized .ldf Files

	One Application Per Core
	Using the Default Compiler .ldf File
	Using Customized .ldf Files
	Shared Memory
	Sharing Data
	Sharing Code
	Shared Code With Private Data
	Synchronization
	Cache, Startup, and Events with Default .ldf Files
	Cache, Startup, and Events with Customized .ldf Files

	Single Application/Dual Core
	Target Conventions
	Multi-Core Linking
	Creating the .ldf File
	Shared Memory
	Shared Data
	Sharing Code
	Synchronization
	Cache, Startup, and Events

	Dual-Core Applications That Use File Attributes
	Run-Time Library Functions
	Re-Entrancy
	Placement

	Restrictions on Dual-Core Applications
	Compiler Facilities
	Cross-Core Memory References

	Dual-Core Programming Examples
	Single-Core Application Example
	One Application per Core Example
	Single Application/Dual-Core Example
	Profile-Guided Optimization in Dual-Core Systems
	Command-Line Profile-Guided Optimization
	PGO Session Identifiers
	Example of Dual-Core Profile-Guided Optimization

	Interprocedural Analysis and File Attributes
	Conflicting Approaches
	Example Application
	Building Multiple Instances of a Module
	Libraries and File Attributes
	Multiple Definitions and Pragma Core
	Using the IPA Dual-Core Example
	IPA Optimizations

	Synchronization Functions

	I Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

