VISUAUDSK=> 5.0
C/C++ Compiler and Library Manual
for Blackfin® Processors

Revision 5.4, January 2011

Part Number
82-000410-03

Analog Devices, Inc.
One Technology Way

ANALOG
Norwood, Mass. 02062-9106 DEVICES

Copyright Information

© 2011 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer

Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice

The Analog Devices logo, Blackfin, EZ-KIT Lite, and VisualDSP++ are
registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

CONTENTS

PREFACE
Purpose of This Manualccoooiiiiiiiiiiiiiiiece, li
Intended AUdienceuvveeiiieiiiiiiiiiee e li
Manual Contents Descriptioncoocveeviiieniiiiiiiiieiniicenieeceeeens lii
What's New in This Manualccccoeviiiiiiiiiiiiiiiiieeieeee, lii
Technical or Customer SUPPOIt ...ceoevviiiiiiiiiiiiiiiiicicce, liv
Supported Processorscoouieeriieiriiiieriiiieiiiie e liv
Product Informationcocceeeeeriiiiieeniiiiee e liv
Analog Devices Web Siteccooviiiiiiiiiiiiiiiiii lv
Visual DSP++ Online Documentationccccvvveeeeeeeennnnnnnn. Iv
Technical Library CDcooiiiiiiiiiiiiiiiiciccccee e lvi
EngineerZonecccocouiiiiiiiiiniiiiniiiiiiiccce e lvi
Social Networking Web Sitescccccoevviiriiiiiiiiiiniiiiniienee. lvii
Notation CONVENTIONS ..uuvvvvrrieeeeerriiiiiiiieeeeeeeeaasiiieeeeeeeeessesnaaeeees lvii
Visual DSP++ 5.0 C/C++ Compiler and Library Manual iii

for Blackfin Processors

Contents

COMPILER
C/C++ Compiler OVEIVIEW ...cocvviiriiiiiiiiieniieceiec e 1-3
Compiler Command-Line Interfaceccocoeiviiiiiiiiinniiiniiennnn 1-5
Running the Compilerccccooiiiiiiiiiiiiiii 1-6
C/C++ Compiler Command-Line Switchesc..ccccoecieniiiins 1-10
C/C++ Mode Selection Switch Descriptionsccccueee... 1-26
T8 e 1-26
TC e 1-26
S e 1-26
C/C++ Compiler Common Switch Descriptions 1-26
SOUTCERIlE 1oviiiiiiiiiiiiii e 1-27
.. 1-27
.. 1-27
-add-debug-libpathscccooooiiii 1-28
alttok eeeei e 1-28
-always-inline ... 1-29
SAINNOTATE .uveerrrineeereniieeeettaaeeeettaeeeeeeenaeeeeennaseeenrnaaeenes 1-30
-anNotate-loOP-INStr ...ccoviiiiriiiiiiiiiiiiceic e 1-30
SAULO=ATEES eeeeerrinnnniieeeeeeeetetntatieeeeeeeeerenanaaaeaeeeeeeennne 1-30
DS et 1-30
Sbuild-1ib 1-31
.. 1-31
... 1-31
~CONST-TEA-WIITE weeiviiiiiiiiiiiic e 1-31

v

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

-debug-types <fiTe.h> iiviiiiiiiiiiiniiencec e

~decls-fweak|strong}coccoeiiiiiiiiinii
-double-size-{32 | 64} ..viiiiiiiiiie

S 100 o B TS 5 L AT
-expand-symbolic-linksccccceiniiiiniiiiii
-expand-windows-shortcutscccccoveveeriiiennnnennne.

—extra-Keywordsoooceiiiiiiiiiiii

~fixed-point-i0 ...ooviiiiiiiiiiiiiiiinicc e

~flags{-asm | -compiler | -lib | -link | -mem} switch

LSWIECh2[,.]] oo

—£0rce-CIrCDUL oo

Contents

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Contents

-force-linkooiiiiiiiiiie e 1-40
fP-aSSOCIALIVE .uvvveeiiiiiiiiie et 1-40
UL v 1-40
FU-VErSION weviiiiiiiiiiieeiiiee e 1-41
AFX-CONTIACT wvvviiiiieeeeieiiieee et e e e eee e 1-41
-fx-rounding-mode-biasedccocoeeeiiiiiiniiiinii 1-41
-fx-rounding-mode-truncationc.ccceeeeiriiieniiienieene 1-41
-fx-rounding-mode-unbiasedccccceeniiiiniiiiinin 1-41
P e e et e e e e e e e 1-42
—glite o 1-42
~guard-vol-loadsccocoiiiiiiiiiiiii 1-43
CH e 1-43
CHH e 1-43
ShEIP] o 1-43
e O PSP UPP R UPPPRPN 1-44
e USSP PRUPUPRP 1-44
ettt e e e e e e e e e t—eeeeeaaareeeeanbaaaeeanntraaeeaas 1-45
SICPIDS e 1-45
S1EEEP ettt 1-45
SIMPlICIt-POINTELS wevveiiiiiiiiiiiiie e 1-46
AINCIUAE woiii e 1-46
TIPA ettt e e e 1-47
FFES2L e 1-47
e PSSP UPPPRPN 1-47

vi

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

—multiline ..o
—never-inNlinecooeeeviiiiiiiiiiiiieeeeee e
—N0-alttok oo
“NIO-ANMNOTATE tevvvrreeeneeeeeerreeteieeeeeeeeeeerereaeeeeeas
-no-annotate-loop-instrccoocvveeviiieniiieniieeeee.

“NO-ASSUME-VOIS-Ar€-INIMIS tevverrneerneenneeeneeeneeeneennns

“NO-CONSE-STIINGS eevvviiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeen,

m0-AES ettt

Contents

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

vii

Contents

-no-expand-windows-shortcutsccccoviiiniiiinninnnnn 1-54
-no-extra-keywordscccoviiiiiiiiiii 1-54
-no-force-linkcooiiiiiiii 1-55
~NO-fP-aSSOCIALIVE eeuviiiiiiiiiiiiieiieeceec e 1-55
—N0-TUll-10 e 1-56
“NO-TX-CONTIACT tevuuviiiiiiiiiieee ettt e 1-56
“NO-INE-TO-FTACT tevruiiiiieiiiiieee et 1-56
SN0-JCS2] i 1-57
STLO-ITICIIL et 1-57
-no-multiline ..o, 1-57
-NO-PrOGIess-reP-tIMEOULuuvvurmumurrnrrnennnrnreeeeerarerereaaaens 1-57
“110-SAL-ASSOCIATIVE ..uuuueueuiniiiiiiiiiiiiiiieeeeeeee 1-57
“NIO-SATUTATION «eeriiiiniiineeeeeeettiireiiiaeeeeeeeettarnaiaaeeeeeeeeens 1-58
e Lo (s B R PRSPPI 1-58
-N0-Std-def ..oiiiiii 1-58
SN0-STA-INC wetviiiiiieeieie e 1-59
~N0-STA-1ID eeviiiiiiiie e 1-59
~N0-Threadsoooiiiiiiiiiiiiii e 1-59
-N0-workaroundooccciiiiiiiiii e 1-59
-NO-ZEr0-l00P-COUNTELS ...evviiiiiiiiiiiieiieciieceec e 1-60
SOL0[TT et 1-60

.. 1-60

... 1-60

.. 1-61

Viil

VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

—OVErlay ..iiiiiii

-overlay-clobbersccooiiiiiiiiiiii

-path-oUtPUL ...ocoeiiiiiiiiiii

~path-temp «oovviiiiiiii

Contents

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

X

Contents

SEESEIVE tevuieeiiitiieettuiieeetttiieeettti e eetaaa e etataeeeeettieeeenes 1-71
... 1-71
.. 1-71
“SAL-ASSOCIATIVE +eerrirrriiiieeeeeeetiiiiiiieeeeeeeeeteraraiieaeeeeeeerenes 1-71
“SAVE-TEIIPS ©uuuuuruunnninnnnninininisnsssnsssaesnssrsaaasaaaaaaraaaaaaaaaaaaes 1-72
SSATAIML Leieiiiii e 1-72
SSECTLOML uueeeeiiiiiiiiiee e e e e et ettt e e e e e e eeetabaaie e e e e eeeeeeaanaas 1-72
SShOW e 1-73
-signed-bitfieldooooiiiiiiii 1-74
-signed-char ... 1-74
ST=T@VISIOM . 1-74
~STACK-AETECT weviiiiiiiiiiiiiic e 1-74
-structs-do-not-overlapccoociiiiiiiiiiii 1-75
SSYNTAX-0N1Y Leviiiiiiiiiiiiiii e 1-75
SSYSAELS weviiiiiiiei e 1-76
.. 1-76
—threads cooveiiiiiiee e 1-76
FEIITIC ettt eeeettttiti e e e e e ettt bbbt e e e e e e et et bbb e e e e eeeenaaes 1-77
T e 1-77
-unsigned-bitfield ... 1-77
-unsigned-char ... 1-78
... 1-78
SVEIDOSE 1o 1-79
SVEISIOM .euiieiiiiiiitiiiieeeeeeeetettati e e e e eeeeetaanaie e e e eeeeeenaaaaas 1-79

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Contents

-W{error|remark|suppress|warn}cccccceviieniiiiniiinnnnae 1-79
SWerror-lmit ..eeeeivviieeeeiniiiieee e 1-80
-Werror-warningsccocceiiiiiiiiiii 1-80
SWremarks o..eeeiiiiiii 1-80
SWEEISE it 1-80
A APPSR PO PPPPPTN 1-80
SWAINI-PIOTOS tovvvviiiniiiiiiiiiiiiiiiie e e e eeeeiaiii e e e e eeeaaaaaaaes 1-81
-WOrkaround.ooooiiiiiii 1-81
SWIIEE-FI1ES woiiiiiiiiiiii 1-81
SWILEE-OPTS teviiiiiiiiiiiiiiiiiiiieii it 1-82
SXTEE 1ot 1-82
~2€10-100P-COUNTELS ouvvviiiiiiiiiiiieiiieceec e 1-83
C Mode (MISRA) Compiler Switch Descriptions 1-83
SINLIST eeeeiiiiiiiiie e e ettt e e e et e e e e e e e aaaaaas 1-83
-misra-linkdir oo 1-84
-misra-no-cross-moduleccooociiiiiii 1-84
“MISTA-NO-TUNTIIME teeeteeereiiiiirirreeeeeeeaniiitrereeeeeesaannnnneees 1-84
SIMUSTASTIICT uevvieeeiiiiieeeeriiieee e et e e e et e e e e eeeeeneee s 1-84
~MISTa-SUPPIEsS-AdVISOIY .uevvreeriniiiieieriiiieeeeriiieeeeeieeeee 1-85
SMISTA-TESTIIE evvvviiiiiiieiiiiiiiiiiiie e 1-85
-WMIS_SUPPIESS oooviiiiiiiiiiiiiiiiiiiiiiiii, 1-85
WIS, WAL teiiniiint ittt ettt e e e e eaens 1-85
Visual DSP++ 5.0 C/C++ Compiler and Library Manual xi

for Blackfin Processors

Contents

C++ Mode Compiler Switch Descriptionsccccovueenee. 1-85
SanACh oo 1-85
-check-init-ordercooiiiiiii 1-87
—extern-inline ... 1-87
friend-INJectionccooviveiriiieeniiieeee e 1-88
-full-dependency-inclusionc.cccceeviiiiniiiiniiiinincnne. 1-88
SIGNOTE-STA eeviiiiiiiiiiiic i 1-88
-N0-aNaCh i 1-89
-no-extern-inline ..., 1-89
-no-friend-injectioncccovceeiriiiiiiiiiiniee 1-89
-no-implicit-inclusionccoccceiviiiiniiiinii 1-89
e [0 4 P 1-90
-NO-Std-teMPIALES ...oeviiriiiiiiiiiiiiieceec e 1-90

.. 1-90
-std-templatesooeviiiiiiiiiii 1-90
Environment Variables Used by the Compilerccocueeennee 1-91
Additional Path SUPPOIT .ecoouviiiiiiiiiiiiiiiccccc 1-92

Windows Shortcut SUPPOIt «...eeeviiiiiniiiiiiiiniiceeeeeees 1-92

Cygwin Path Supportcccceeviiiiiiniiiniiiiiiiiicc 1-93
Cygwin Symbolic Linksc.ccccoiiiiniiiiniiiniiiiieee 1-93
Cygdrive Foldersccooviiiimiiiiniiiiiiciicnecceece 1-94
Cygwin Mounted Directoriesccccceevviiiiiiiiininennn. 1-94

Xil

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Contents

Optimization Controlccooviiiiiiiiniiiiiiiniiicceeeeen 1-95
Optimization Levelsccccooviiiiiiiiiiiiiiiecec 1-95
Interprocedural Analysisccccovvuiiiniiiiniiiiiiiiiiniiccnieeee 1-98

Interaction With Librariescccccoocciiniiiiiiniinnnnn.. 1-99

Controlling Silicon Revision and Anomaly Workarounds

Within the Compilerccccoviiiiiiiiiiiiiiiiice, 1-100

Using the -si-revision Switchc.ccocoiiiiiniiiiiinn, 1-101

Using the -workaround Switchccoooiiiiiiniin 1-102

Using the -no-workaround Switchcccccciiiniii. 1-103
Interactions: Silicon Revision vs. Workaround

SWIECRES evviiiiiiiiiiice i 1-104

Using Native Fixed-Point Typesccccoeeviiiiiiiiiiniiiiniiciniieeee 1-104

Fixed-Point Type SUPPOrtcocccveeeiiniiiiiiiiiiiiiiiiiiicceeee. 1-104

Native Fixed-Point Typescoccceeviiiiniiiiniiiiiiiiiecniiceneeee 1-105

Native Fixed-Point Constantscccecuveervveernieeeniieeenieeenn. 1-107

A Motivating Example ... 1-108

Fixed-Point Arithmetic Semanticscccceevvviiieeeiniiieeeennnne. 1-109

Data Type Conversions and Fixed-Point Typescc....... 1-110

Bit-Pattern Conversion Functions: bitsfx and fxbits 1-112

Arithmetic Operators for Fixed-Point Typesccccceeevuneenee. 1-113

FX_CONTRACT ...iiiiiiiiiiiiiiiiiiiceciccec e 1-115

Rounding Behaviorcccooiiiiiiiiiiii 1-118

Visual DSP++ 5.0 C/C++ Compiler and Library Manual xiil

for Blackfin Processors

Contents

Arithmetic Library Functionscccccoovviiiiiiiiiiiinniieeenn. 1-120
AIVIEX oo 1-121
IAIVER e 1-122
EXAIVE ettt e 1-123
MULEX o 1-124
ADSIX e 1-125
FOUNALX 1ottt e e 1-125
COUNTISEX weviiiiiiiiee e e 1-126
STEEOFXEX 1iiiiiiee it 1-127

I/0O Conversion Specifierscocueervieeinieeiniieeniieenieeene 1-127

Setting the Rounding Modeccccoviiiiiiiiiniiiiniiiiiiecee, 1-128

Porting Code Written Using fract16 and fract32 1-131

Fixed-Point Type Exampleccoceiiniiiiiiniiiiien 1-137

Language Standards Compliancecccocveeviiiiiniiiiiniiiinieeenee. 1-140
C MOdE it 1-140
Ctt MOdE e 1-142

MISRA-C Compiler ..cccoeieviiiiiniiiiiiiiiiiiceeieceec e 1-143

MISRA-C Compiler OVerviewcccceeevuieeniiieeniiecnnieeene. 1-143

MISRA-C Complianceeeeeveuviiiiimiiiiieeiniiieeeeiieee e 1-144
Using the Compiler to Achieve Compliancec........ 1-144

Rules Descriptionsecocveeerieeenieeeniiieeeiec e 1-147

X1V

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Contents

C/C++ Compiler Language Extensionsccccoecviiviiiininienne 1-156
Function Inliningcccocoiiiiiiiiiiicc, 1-159
Inlining and Optimizationccccceeevvveernieeiniieeeniieenen. 1-162
Inlining and Out-of-Line Copiesccccevuveriieniiiniennnenn 1-163
Inlining and Global asm Statementsccccocveeriiiennnee. 1-163
Inlining and Sectionscccocueieviiieniiiiiniiic e 1-164
Variable Argument Macrosccccceeviiiiiiiiiiiniiiiniiiciie, 1-164
Restricted POINTELSeeiiiiiviiiiiiiiiiieiiiiiceeeiieee e 1-165
Variable-Length Arraysccccoociiiiiiiiiniiiiniiiiniccnieceee, 1-166
Non-Constant Initializer SUPpOrtoccceeeivviiiiiiiiiiiiiiinnn 1-167
Designated Initializersccocoeeviiiiiniiiiniiiiniieiiieceieeee 1-168
Hexadecimal Floating-Point Numbersccccoocvieniiiinninen. 1-170
Declarations Mixed With Codeeooeviiiiiiiiiniiiiniiiinicne 1-171
Compound Literalscccoeeviiiiniiiiiiiiiiiinieeccec 1-172
C+ Style COMMENTS weeviiiiiiiiiiiiiieeiecciec e 1-173
Enumeration Constants That Are Not int Typeccccevueeene 1-173
Boolean Type Support Keywords (bool, true, false) 1-173
Native Fixed-Point Types fract and accumcccceveuveennnenne 1-174
Inline Assembly Language Support Keyword (asm) 1-174
asm() Construct SYNTaxeeeeeeeererriiiiiiieeeeeenaniiiieeeeeenn 1-176
asm() Construct Syntax Rulesccooiiniiiiniinnnn. 1-178
asm() Construct Template Exampleccooccieeinniiin. 1-179
Assembly Construct Operand Descriptionccccoeuveeen. 1-180
Using long long Types in asm Constraintsccccoeeuuee. 1-185
Visual DSP++ 5.0 C/C++ Compiler and Library Manual XV

for Blackfin Processors

Contents

Assembly Constructs With Multiple Instructions 1-186
Assembly Construct Reordering and Optimization 1-187

Assembly Constructs With Input and Output
Operandscoocveiieiiiiiiiiiii e 1-188
Assembly Constructs With Compile-Time Constants 1-189
Assembly Constructs and Flow Controlccccceeevinennn. 1-190
Guidelines for Using asm() Statementscccceevveennenne. 1-190
Bank Qualifierscoooiiiiiiiiiiiiiii 1-191
Placement Support Keyword (section)ccccceeevueienveeennnee. 1-192
Placement of Compiler-Generated Code and Data 1-193
Long Identifierscccoovvuiiiniiiiniieeniee e 1-194
Compiler Built-In Functionsccoocveeviiieniiiiniieciiecee. 1-195
Fractional Value Built-In Functions in Cccccceeeeinins 1-196
16-Bit Fractional Built-In Functionscccccceeeeunnnnee. 1-198
32-Bit Fractional Built-In Functionsccccceviiineenn. 1-203
fract2x16 Built-In Functionscccceeeieviiiiiiiniiieennn. 1-207
ETSI Built-In Functionscccceeeeviiiiiiiiieeeeeeeeiienee, 1-215
ETSI SUPPOIT o 1-217

32-Bit Fractional ETSI Routines Using
Double-Precision Formatcccccvvvveiieeieiiiiiiiiennn. 1-220
32-Bit Fractional ETSI Routines Using

1.31 FOrmatouveuimimiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeie 1-223
16-Bit Fractional ETSI Routinescccccvvvvereeeeennnnnn. 1-227
Fractional Value Built-In Functions in C++ ..cooovvveeeennnne. 1-232
fract16 and fract32 Literal Values in Cccoeeveviiiiieennne. 1-234

xvi

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Contents

Converting Between Fractional and Floating-Point

ValUies cooeeeeeiiiiiiee e 1-235
Complex Fractional Built-In Functions in C 1-238
Changing the RND_MOD Bit ..cccccocuivviiiniiiiiiiiicne 1-242
Complex Operations in C++ .eeevvveeeviieiniiiieniieenieeeeeene 1-243
Packed 16-Bit Integer Built-In Functionscccccveeenneen. 1-245
Division FUNCtionsccc.vvviiiiiiiiiiiiiiiiiiiieeeeeeeieeeee e 1-246
Full-Precision Accumulator Built-In Functions 1-247

Accumulator Built-In Function Prototypes 1-248

Accumulator Built-In Functions and the Optimizer 1-251
Viterbi History and Decoding Functionsc.cccccocueeenee. 1-253
Search Built-in Functionsccccooviiiieiiniiiiieiiiiieeee, 1-255
Circular Buffer Built-In Functionsccoooevvieeiniiieeennnne. 1-256

Automatic Circular Buffer Generationccccuvneeee. 1-256

Explicit Circular Buffer Generationccccceevvieennee. 1-257
Circular Buffer Increment of an Indexccccceeennnnen.. 1-257
Circular Buffer Increment of a Pointercccccvveveeeennnne 1-258
Endian-Swapping Intrinsicsccooceeevviiieniiieniieiiniecenee. 1-259
System Built-In Functionscccoveiiiiiiniiiiiiniine, 1-259
Cache Built-In Functionsccccoeevviiiiiiiieeeeeeeniiiieeenn. 1-261
Flush oo 1-261
FUShINY weeeiiiiiicee e 1-262
flushinvmodup «..oeeeviiiiiiiiii 1-262
flushmodup ..eeeeviiiiiiiii 1-262
Hlush oo 1-263
Visual DSP++ 5.0 C/C++ Compiler and Library Manual xvii

for Blackfin Processors

Contents

flushmodup .ecooveiiiiiiiii 1-263
prefetch ..ooooiiiiii 1-263
prefecchmodupoooviiiiiiiiiiiiiin 1-264
Compiler Performance Built-In Functionsc.ccooueeee. 1-264
Video Operation Built-In Functionsccccooiiiniinnne. 1-267
Function Prototypesccccvvviiiiiiiiiiiiiiiiiiiiiiiiiiee, 1-268
Example of Use: Sum of Absolute Difference 1-272
Misaligned Data Built-In Functionscccoocveeriiiennnnen. 1-274
Memory-Mapped Register Access Built-In Functions 1-275
Miscellaneous Built-In Functionscccooocviiiiiniiiiinnne. 1-276
Pragmascoooiiiiiiii 1-277
Pragmas With Declaration Listsccccoecvvieniiiiniiiennneenns 1-279
Data Alignment Pragmascccccooviiiiiiiiniiiinin, 1-279
#pragma align 7umccccooeviiiiiiiiii 1-280
#pragma alignment_region (alignopt)ccccccceeueees 1-282
#pragma pack (alignopt)cccccoevviiiiiiniiiniiiniiii 1-284
#pragma pad (alignopt)cccccoevviiiniiiiniiiiniiceeen 1-286
Interrupt Handler Pragmascccooiviiniiieniiiiiniicinieens 1-286
Loop Optimization Pragmascccccoiiiiiiiiiiiiin. 1-287
#pragma all_aligned ..o 1-288
#pragma different_bankscccocciiiiinii 1-288
#pragma extra_loop_loadsccceeiiiinii 1-289
#pragma loop_count(min, max, modulo) 1-292
#pragma loop_unroll NV ..ot 1-293

xviil

VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Contents

#pragma no_aliascccoeeiiiiiiiiiiiii, 1-295
#pragma No_veCctorizationcccccceevveviviviiieeiennieenennn. 1-296
#pragma vector_fOrccocviiiviiiiniiiiiniiienieeeeee e 1-296
General Optimization Pragmascccocciiviiiiniiinnnnnn. 1-297
Fixed-Point Arithmetic Pragmasccocceeviiiiiniinnnncns 1-298
#pragma FX_CONTRACT {ON|OFF}ccccovevvennrnnne. 1-299
#pragma FX_ROUNDING_MODE
{TRUNCATION|BIASED|UNBIASED} 1-299
#pragma STDC FX_FULL_PRECISION
{ON|OFF|DEFAULTY ...oooiiiiiiiiiieiiceseeeiee e 1-300
#pragma STDC FX_FRACT_OVERFLOW
{SAT|DEFAULT} ..oooiiiiiiiieiieieesesieee e 1-301
#pragma STDC FX_ACCUM_OVERFLOW
[SATIDEFAULT} oo 1-301
Inline Control Pragmasccccevvuveeniiiiiniiiiniicenieeeeen. 1-301
#pragma always_inline ... 1-301
#pragma inlineccocceiiiiiiiiiiiiniiinn 1-302
#pragma never_inlineccoocveiviiiiiniiiiniieeniceeen 1-303
Linking Control Pragmasc.cccocviviiiiniiiiniiiiniiiiicnnn 1-303
#pragma linkage_name identifierccocoveviiiinnnn 1-304
APragma COIC ...ooouviiiiiiiieiiiiiiiiiiiiie e e e 1-304
#pragma retain_Nameccccoooviiiieiiiiiineeniiiieee e 1-309
#pragma section/#pragma default_sectionc...... 1-310
#pragma file_attr(“name([=value]”
[, “name[=value]” [...]]) corrioriiiiie e 1-314
Visual DSP++ 5.0 C/C++ Compiler and Library Manual xix

for Blackfin Processors

Contents

#pragma symbolic_refccccooiiiiiiiiiiii 1-315
#pragma weak _entryccocceiviiieniiieniiienieeneeens 1-318
Function Side-Effect Pragmasccccccovviviiniiiiniiiicinnnenn, 1-318
#pragma alloc ... 1-319
HPragma CONST ..ecovvuriiiiiiiiiiieeiiiiiee e e e 1-319
#pragma inlinecooccccovviiiiiiiiiiniii 1-320
#pragma misra_func(arg)cccoviiiiiiniiiiiiiie, 1-320
#Pragma NOTETUIT ...cceeeiiiiiiiiiiiiieeeeeeeeeiiiie e e e e eeenaaaae 1-320
#pragma pgo_IZNOTEcoevvvviiiiiiiiiiiiiiiiiiiiiiiiieieeee, 1-321
APragma PUIeooeeveiiiiiiiiiiiii, 1-321
#pragma regs_clobbered string ... 1-322
#pragma regs_clobbered_call stringccoccoveiinniinl 1-326
#pragma overlay ... 1-329
#pragma result_alignment (72)ccooeviiriiiiiiiiinninens 1-330
Class Conversion Optimization Pragmasccccceeevuneen. 1-330
#pragma param_never_null param_name [...] 1-330
#pragma suppress_null_check ... 1-332
Template Instantiation Pragmascccoocuveeniiiirnieennnnne. 1-333
#pragma instantiate i7stanceccoocuveeviiniieiininnnn.. 1-334
#pragma do_not_instantiate 75tancecc.eeeueeeeeuaeeenn.. 1-335
#pragma can_instantiate izstancec.oooe... 1-335
Header File Control Pragmascccoeceiiviiiiiiiiinnnin, 1-335
#pragma hdrstop ...o.ccceeveiiiiiiiiiiiiii 1-335
#pragma no_implicit_inclusionccccccovviiinniiinnnncns 1-336
XX Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Contents

#pragma no_pch ... 1-337
HAPragma OMNCEeeeerruiiiiiiiiiiieeeeiiiee e e 1-338
#pragma system_headerccoceeiniiiiiiiiinii 1-338
Diagnostic Control Pragmascccccoviiiiiiiiiiiiiiininnnn, 1-338
Modifying the Severity of Specific Diagnostics 1-339
Modifying the Behavior of an Entire Class
of Diagnosticscccceeviiiiiiiiiiiiiiiiiic i 1-340
Saving or Restoring the Current Behavior
of All Diagnostics ..cc.ueeerveeeriuiieniiieiniieenieee e 1-340
Memory Bank Pragmasccccceeviiniiiiniiiiniiniiiiiiens 1-341
#pragma code_bank(bankname)c.cccocceoeiinnl 1-342
#pragma data_bank(bankname)ccccocoiiniiiinnnn. 1-342
#pragma stack_bank(bankname) ... 1-343
#pragma bank_memory_kind(bankname, kind) 1-345
#pragma bank_read_cycles(bankname, cycles) 1-345
#pragma bank_write_cycles(bankname, cycles) 1-346
#pragma bank_optimal_width(bankname, width) 1-347
Exceptions Tables Pragmacoocveeviiiiniiiiiniciiicee, 1-347
GCC Compatibility Extensionscccccoeveieeeiniiieceennnnneen. 1-349
Statement EXpressionscocccecevvieeeniiiieniiiiniiiecnieceeene 1-349
Type Reference Support Keyword (typeof)c.cceevvuneennne. 1-351
GCC Generalized lvaluescccoovviiiiiiiiiiiiiiiiiiiiiiieee, 1-352
Conditional Expressions With Missing Operands 1-352
Zero-Length Arrayscoccceevvueeiniieeiiiieiniic e 1-353
GCC Variable Argument Macrosccccceeveviiiiiiiiinnnns 1-353

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

XX1

Contents

Line Breaks in String Literalsccocceeviiiiiiniiiniinnnn. 1-353
Arithmetic on Pointers to Void and Pointers to
FUnctionscceeeeeviiiiiiiiiiiiccceec e 1-354
Cast t0 UNION ..eviiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e 1-354
Ranges in Case Labelsc.cccccoiiiiiniiiiiiiiiiees 1-354
Escape Character CONStantcccovveeenueeeniueeenneeeennnenn 1-354
Alignment Inquiry Keyword (__alignof_)ccoccee. 1-354
(asm) Keyword for Specifying Names in
Generated Assemblerccccovviiiiiiiiiiiiiii 1-355
Function, Variable, and Type Attribute
Keyword (__attribute__) .ocovveeeiiiiiiiiiiiiiiiiiiccee, 1-356
Unnamed struct/union Fields Within struct/unions 1-356
Preprocessor-Generated Warningsccccoeevviiiiieinneennnnnn. 1-357
Blackfin Processor-Specific Functionalityccocoeeviiiiniicnnnnen. 1-357
Startup Code OVErvIEWcccueeeriiiiriiiiiiiiieinieeenieeeeeee e 1-357
Support for argv/argecocuveriiiiniiiiiiiiiiee e 1-358
Profiling With Instrumented Codeccccvveviiiiniiiinniiiennnne. 1-359
Generating Instrumented Codeceeevviiiiniiiiniiiiinnneen, 1-359
Running the Executable ..., 1-360
Post-Processing the mon.out Fileccoccoeiiiiiniiin, 1-362
Profiling Data Storagecccceevveieniiieniiiciiiecenieceeeeene 1-363
Computing Cycle Countsccccoveiiiiiiiiiiniiiiiiiiiininen, 1-363
Controlling System Heap Size and Placementc....... 1-364

xx1i

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Contents

Interrupt Handler Supportccoovvviiiiiiiiiiiiiniiiicce 1-365
Defining an ISR ...t 1-366
Registering an ISR ... 1-368
ISRs and ANSI C Signal Handlersc.ccoocoinin. 1-370
Saved Processor CONEXT .uvvvrrrrrreerreiiiiiiiieeeeeeeeaaiieeeeeeeenss 1-371
Fetching Event Detailscooviiiiiiiiiiiiiiiiiiiicciecee 1-372

Caching and Memory Protectionccccceevviiiiniiiininnennn. 1-373
___cplb_ctrl Control Variableccocviiviiiiniiiinninne. 1-374
CPLB Installationccceveieiniiiieiiiiiieeeeicee e 1-376
Cache Configurationscccoeciiiiiiiiiniiiiniieiniiiciieee 1-378
Default Cache Configurationccccceeeviiieeniiienineennnnen. 1-379
Changing Cache Configurationcccocceeeriveeiniecennnen. 1-383
Cache Invalidationcccceeveiiiiiiiiiiiiiieeeeeeee, 1-383
Default .1df Files and Cachecoooeviviiiiiiiiiiiiiiieee, 1-385
CPLB Replacement and Cache Modesccccceeevuviennncne 1-388
Cache Flushingc.cccoooiiiiiiiiiii, 1-389
Using the _cplb_mgr Routineccocvveviiiiiniiiiniieennnen. 1-390
Caching and Asynchronous Changecccoceeeviiieenuneene 1-392
Migrating .1df Files From Previous Visual DSP++

Installationsceeeceviiiiiieee e 1-393
C++ Support Tables (ctor, gdt) .eooovvveviiieniiiiniiiiniieens 1-394
Dual-Core Single-Application Per Core Shared
DA e 1-395
C++ Run-Time Libraries Rationalization 1-396
Visual DSP++ 5.0 C/C++ Compiler and Library Manual xxiii

for Blackfin Processors

Contents

Multi-Threaded Librariesccccceveeviiiiierniiiieeennnen. 1-397
Fixed-Point I/O Supportccccovcuviiniiiiniiiiiniiiiiieens 1-399
C/C++ Preprocessor Featuresccccovvviiiiiiiiiiiiiiiiniiiiinnnn. 1-401
Predefined Macroscc.eeeevvuiiiieeiiiiiiee e e 1-401
Writing Preprocessor Macroscccccceeiiiiiiiiiiiiininn, 1-405
Compound Macroscceeueeeriiieinieiinieeenieeeeee e 1-406
C/C++ Run-Time Model and Environmentccccceevvuvvveeeenen.. 1-408
C/C++ Run-Time Header and Startup Codecccevuveennnnee. 1-410
CRT Header OVErviewcceeeeeeviiiiieeiiiiiieeeeiiiiee e 1-410
CRT DeSCriPtion ..ccoecuveeeeiriiiieeeniiieeeeiieeeeeiieee e 1-412
Declarationseeeeeeeeeeeiiiiiiieeeeee e e e 1-412

Start and Register Settingsccocveerviiiiniiiieniieennieens 1-413
Event Vector Tablecccuviiiiiiiiiiiiie, 1-413

Stack Pointer and Frame Pointerccccceeeevviinnnnnnnnn. 1-414
Cycle COUNLEL ..eviiiiiiiiiiiiceiie e 1-415

DAG Port Selectionccevvviiieiieiiiiiiiiiiiieeeee e 1-415
Memory Initializationcccceeeviiiiiiiiieiiie e 1-415
Device Initializationccccovviiiiiiniiiiiiiiiieeeeeeen 1-416
CPLB Initializationccccvvveiiiiiiiiiiiiiiiieeeeee 1-416
Lower Processor Prioritycccceeeviiiiiiiiiiiiiiiinniiiiinn, 1-417
Mark RegiSterseeeruveerniiieeniiieiniieeniieeniiee e 1-417
Terminate Stack Frame Chaincccocceviiiiniiiiinnnnnn. 1-418
Profiler Initializationc..evvveieeeriiiiiiiiiieee e, 1-418

C++ Constructor Invocationocccvveeeveeeeeiinninnnnne. 1-418

XX1V

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Contents

Multi-Threaded Applicationscccceeviieiniiieenniecennne. 1-419
Argument Parsingccocoeeviiiiiiiiiiniieeeceeee 1-419
Calling _main and _exit ...cccooevveeriiiiiniiiiiiiiceiecceen 1-419
Constructors and Destructors of Global Class Instances 1-419
Constructors, Destructors, and Memory Placement 1-421
Using Memory SECHIONSeeeeeruiieeerniiiieeeeniiieeeeeiieeee e 1-422
Using Multiple Heapscccocoiiiiiiiiiiiiiis 1-423
Defining a Heapcccovviiiiiiiiiiiiiiiiccc e 1-424
Defining Heaps at Link-Timecccovviiiniiiiniiiiiiiiiiieene 1-424
Defining Heaps at Runtimeccccccocieviiiininiiinniine 1-425
Tips for Working With Heapsccccooeiiiniiiiiniiiiniieenn 1-426
Standard Heap Interfaceccoooviiniiiiiniiiinniiiiniiieneens 1-426
Allocating C++ STL Objects to a Non-Default Heap 1-427
Using the Alternate Heap Interfaceccoovvviiniiiiniieennnee. 1-430
C++ Run-Time Support for the Alternate
Heap Interfacecccovviiiiiiiiiniiiiiiiiinicciccee 1-431
Freeing Space ..cc.ecovciiiiiiiiiiiiiciiicciec e 1-432
Dedicated RegiSterscceeeriiieriiiiiinieeaniiceniieenieee e 1-432
Call-Preserved Registersccccocvviiiiiiiiiiiiiiniiiiiiiicciieeeee, 1-433
Scratch Registersc.eioviiiiriiiiiniiiiiiiiciiecciee e 1-433
Stack ReGISTErs «uvveiiiuiiiiiiiiiiiiiceeiic e 1-435
Managing the Stackccoiiiii 1-435

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

XXV

Contents

Transferring Function Arguments and Return Value 1-439
Passing ArGUIMENTS ..ocovvrieriirieiiiiieeniieeeieeeeiree e e as 1-439
Passing a C++ Class Instancecccoceeeeviiiiniiiiniieennneenns 1-441
Return Valuescooociiiiiiiiiiiiiiiicce 1-441

Using Data Storage Formatsccccoocvviiviiiiniiiiniiienieene 1-443
Floating-Point Data Sizecccooviiiiiiiiniiiiniiiniecieee 1-446
Floating-Point Binary Formatscccccccoviiiiniiiiinnin, 1-448

IEEE Floating-Point Formatccccceevviiiiiniiiennneens 1-448

Variants of IEEE Floating-Point Supportccccceeeeneee. 1-450

fract and accum Data Representationccccoeevvieeenneeen. 1-451
Fract16 and Fract32 Data Representationc.cccccevuneen. 1-455
C/C++ and Assembly Interfacecccevvviiiniiiiniiciniiiiiniecce, 1-456

Calling Assembly Subroutines From C/C++ Programs 1-456

Calling C/C++ Functions From Assembly Programs 1-459
Using Mixed C/C++ and Assembly Naming

CONVENTIONS ..eiiiiiiiiiiiiiiiie e 1-461

Exceptions Tables in Assembly Routinescccocceeveuneennee 1-462

Compiler C++ Template SUPPOIt «oovveeviviiiniiiiiiiciieceeceee 1-466

Template Instantiationccceeeviiieiiiniiiiciiniieeeeec e 1-466
Implicit InStantiationcccecveereeenieineeniienieeneceeeen 1-467
Exported Templatesccccovcuveeriiiiiniiiiniiiiniicciieceeen 1-468
Generated Template Filesccooviiiiiiniiiin. 1-469
Identifying Un-Instantiated Templatescccceveuveennnens 1-469

XXVi Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Contents

File Attributes ...occvvviiiiiiiiiiiiiic e 1-471
Automatically-Applied Attributesccccoveviiviiiiniiiiinneene. 1-472
Default LDF Placementccccceeiiiiiiiiiiiiiiniiiiiiiiiccieee, 1-474
Sections Versus Attributescceeevviiiieeiniiieienniiieeeenieeeen. 1-475

Granularitycccooviiiiiiiie 1-475
Hard Mapping Versus Soft Mappingcceceeeerveeennncens 1-475
Number of Valuescooooiiiiniiiiiiiiiiiiiiicece, 1-476
Using Attributesoocoviiiiiiiiiiieiiiieenieceec e 1-476
Example 1 coooviiiiiiiii e 1-476
Example 2 .oooiiiiiiiiii 1-479

ACHIEVING OPTIMAL PERFORMANCE FROM C/C++
SOURCE CODE

General Guidelinescooeiiiiiiiiiiiiiiiiieiiie e 2-3
How the Compiler Can Help ...cooovviiiiiiiiiiiiiiiiiiiiicee 2-4
Using the Compiler Optimizercoccvveeviiieniiieiniecenieeenne 2-4
Using Compiler Diagnosticsccccecvviiiiiiiiiiiiniiiiininenns 2-5
Warnings and Remarksccocveiniiiiniiiiniiiniiceee 2-6
Assembly ANNOTAtioNScovvuveiriiiiiiniiiiiieeeniee e 2-7
Using the Statistical Profilerccccoooiviiiniiiniiininn.. 2-8
Using Profile-Guided Optimizationccccoecvvieniiiieniuneenne. 2-9
Using Profile-Guided Optimization With a Simulator 2-9
Using Profile-Guided Optimization With

Non-Simulatable Applicationscccccccevevieriiiinnneens 2-11

Profile-Guided Optimization and Multiple
SoUIce USES ..euiuiiiiiiiiiiiiiiiiiii 2-11

Visual DSP++ 5.0 C/C++ Compiler and Library Manual xxvil

for Blackfin Processors

Contents

Profile-Guided Optimization and the -Ov num

SWIECR ovvvvvceveenernnsneree s 2-12
Profile-Guided Optimization and Multiple PGO
Data SEts ..ooeeiiiiiiiiiiiiiiiiiei e 2-12
When to Use Profile-Guided Optimizationcc........ 2-13
Using Interprocedural Optimizationcccccceevvveernneenne. 2-13
The Volatile Type Qualifiercovovieriiiiiniiiiniiiiiiecieee 2-14
Data TYPES ..ovviiiiiiiiiiiiiiiic e 2-15
OptimizZing @ STIUCT ..vviviiiiiiiiiiiiiiiiiiiee e 2-17
Bit-Fields ..oooomiiiiiiiii 2-19
Avoiding Emulated Arithmeticcccoooviiiiiiiniiiniiene. 2-20
Getting the Most From IPAccooiiiiiiiiiiiiicceeee 2-21
Initializing Constants Staticallyccccooooiiiin 2-21
Word-Aligning Your Datacccooovviiniiiiniiiiiiiiciieccee, 2-23
Using __builtin_alignedcccoooviiiiiiiiiiiiiieces 2-24
Avoiding AlIasescccooiiiiiiiiiiiiiiiiiiiii 2-25
Indexed Arrays Versus PoIntersccocceeeeviveeniieeniieenieeennnnee. 2-27
Trying Pointer and Indexed Stylesccooviiiiniiiiniiinniiin, 2-28
Using Function Inliningccoooiiiiiiiii, 2-28
Using Inline asm Statementsccccevvveeviiieniiieniieeniieenee. 2-30
Memory Usageoooovvviiiiiiiiiiiiiiiiiiiiiis 2-31
Using the Bank Qualifierc.cccoooiviiiiiiiniiiii. 2-32
xxviil VisualDSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Improving Conditional Codeccccoecuviiviiiiiiiiiiniiiinnnn.
Using Compiler Performance Built-In Functions
Using PGO in Function Profilingc.coceiiiin.

Loop Guidelinescooccvviiimmiiiiiiiniiiiiiiiicce e
Keeping Loops Shortc.ccceviiiiiiiiiiiiiiiniiiiccnees
Avoiding Unrolling Loopscovvveiriiiiiniiiiniieenieeens
Avoiding Loop-Carried Dependenciescccceeueeens
Avoiding Loop Rotation by Handccccceeviiiiniiins
Avoiding Complex Array Indexingccccccoviviiinnins
Inner Loops Versus Outer Loopsccoeecviviiiiiiiiinnnnn.
Avoiding Conditional Code in Loopsccccevvveennneens
Avoiding Placing Function Calls in Loops
Avoiding Non-Unit Stridesccccoeviiiiiiiiniiiininnn,

Using 16-Bit Data Types and Vector Instructions

Loop Controlcceeeviiiiiiiiiniiiiiicec e
Using the Restrict Qualifiercccccoovviiiiiniiiniiinennn.
Avoiding Long Latenciesccocveeriiiiiniiiiniieeeninneens
Manipulating Fixed-Point and Fractional Data
Using Integer Arithmetic to Encode Fractional Semantics

Using the Native Fixed-Point Types fract and accum

Using Built-In Functions to Perform Fixed-Point

ATTTRMETIC i

Using the shortfract and fract Classes in C++c........

Contents

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

XXX

Contents

Using Built-In Functions in Code Optimizationcccccceeueeenns 2-54
Fractional Datacooeoiiiiiiiiieeiiicieee e 2-54
Using System Support Built-In Functionsccocceeinieeenne. 2-54
Using Circular Buffersccccooviiiiiiiiiiiiiiiiics 2-55

Smaller Applications: Optimizing for Code Sizeccccoevvernneeens 2-57
Effect of Data Type Size on Code Size ...ccceeeviiiirniiiinneeennnne. 2-59

Using Pragmas for Optimizationccccceevvevviieniiiiieniiienieennne. 2-60
Function Pragmasccccccciiiiiiiiiiiii 2-61

#pragma alloc ... 2-61
#APragma CONST ...oouviiiiiiiiiiii it 2-61
APIagma PULEcocoiiiiiiiiiiiiiiiieiiiiiiiiiic e 2-62
#pragma result_alignmentcocoeeiiiiiiiniii 2-62
#pragma regs_clobbered ... 2-63
#pragma optimize_
{off|for_speed|for_space|as_cmd_line}ccccevviriennnnne. 2-65
Loop Optimization Pragmasccccceiiiiiiiiiiiiin. 2-65
#pragma loop_cOUNToccveiiiiiiiniiiiiiicciccee e 2-65
#pragma N0o_veCtoriZationccueevvuiiiiiiieininieeiiiieeiinieens 2-66
#Pragma veCtor_fOrcociiiiiiiniiieniiiiieeiee st 2-66
#pragma all_alignedccocoiiiiiiiiiii 2-68
#pragma different_banks ... 2-69
#pragma no_aliasccccociiiiiiiiiii 2-69

XXX

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Contents

Useful Optimization Switchescoooiiiiiiiiiiiiiiiiiii, 2-70
How Loop Optimization Worksccccoevieriiiiiniiiiniiiciieeee. 2-70
Terminologyecovuiiiiiiiiiiiiere e 2-71
Clobberedcoviiiiiiiiiiiiie e 2-71
LAVE etiieee et e e 2-71
SPILL 1 2-72
Schedulingcccoovviiiiiiiiii 2-72
Loop Kernelcocviiiiiiiiiiiiiiiiicececec e 2-72
LoOp Prolog ...ccouviiiiiiiiiiiiiiiciieceecee e 2-72
Loop Epilog ..ccocviiiiiiiiiiiiiiiiiiiiicic 2-73
Loop Invariantcccececviiiiiiiiiiiiiiiiiiiieeeeee, 2-73
HoISting oooovviiiiiiiiiiiiii 2-73
SInking ..oooooiiiiiiiii 2-73
Loop Optimization Conceptscccevvviviiiiiiiiiiiiiiiiiiniineeeen. 2-74
Software Pipeliningcccocviiriiiiiiiiiiniiiiniccneceec 2-75
Loop Rotationccooovviiiiiiiiiiiiiiiiiiii, 2-75
Loop Vectorizationcccceeviiiiiiiiiiiiiiiii, 2-77
Modulo Schedulingcccooiiiiiiiiiii, 2-79
Initiation Interval (II) and the Kernelooovvvnnnnn. 2-81
Minimum Initiation Interval Due to Resources

(ReS MIL) weeiiiiiie e 2-84

Minimum Initiation Interval Due to Recurrences
(REC MII) woniiiiieee e 2-85

Visual DSP++ 5.0 C/C++ Compiler and Library Manual XXX1

for Blackfin Processors

Contents

Stage Count (SC) oooviiiiiiiiiiiiii 2-85
Variable Expansion and MVE Unrollccocceiiicns 2-87
TrIp COUNT ot 2-92
A Working Examplecccoociiniiiiiiiiiiiiiii, 2-93
Assembly Optimizer ANNOTALIONSeevvuveeeriiieeniiieiiiieeiee e 2-96
Global Informationceeeviiiiiiiiiiiiiieeiiee e 2-97
Procedure StatiStiCs ...oouvvvereeeeeeiiiiiiiiiiieeee e e e e e e e 2-99
[nstruction ANNOTATIONS ..eeeevirriuiiiieeeeeeeiiiiiiiiiee e e e eeeeeeeiiiiaaaes 2-103
Loop Identificationccccevveeiniieeniiiiiiiceniicceec e 2-103
Loop Identification Annotationscceceeeveuveeriiveennneenns 2-104
Resource Definitionscceevviuiiiiiireeeeeiiiiiiiiieeeeeeeeies 2-106
File POSITION tiiiiiiiiiiiiiiiiiiee et 2-110
Infinite Hardware Loop Wrapperscccccceeveiieiinieeinnnenns 2-112
VECTOTIZATION «.eiiiiiiiiiiiiiee ettt e e 2-115
Unroll and Jamuuueeeeeiiiiiiiiiiiiiiiiiieeieeeeeeenenenns 2-116
Example F (Unroll and Jam)cccooooiiiiiniiiiiinninn, 2-118
Loop Flatteningccoovveeriiieniiiiiiiie e 2-120
Vectorization ANNOTAtIONS «oeeeeeereiireieieieieiiiiieieeeeeeeeeeeeeennn. 2-121
Modulo Scheduling Informationc.ccccecveiiiiiiiiiiiinnnenn. 2-124
Annotations for Modulo-Scheduled Instructions 2-125
Warnings, Failure Messages, and Adviceccocoveerniiiinnneenn 2-130
xxxil VisualDSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Contents

Analyzing Your Applicationcccccoviiiiiiiiiiiiiiiniiien, 2-135
Profiling With Instrumented Code ...cceoevviiiiniiiiniiiinieenne. 2-135
Generating an Application With Instrumented
Profiling ...c.coovuieiiiiiiiiiiiiiie 2-136
Running the Executableccccccooiiiiiiiiiniiiis 2-137
Invoking the profblkfn.exe Command-Line Reporter 2-137
Contents of the Profiling Reportccocevviiiiiiniiinnnn. 2-138
profblkfn Command-Line Tool Report Format 2-140
Profiling Data Storagecccceevvviemiiieniiiienieerieeeieene 2-140
Computing Cycle Countsccceeeviiiiniiiiniiiiiiiiiiiies 2-140
Non-Terminating Applicationsccccceeevvvvienciveenineennnnee. 2-141
Profiling of Interruptscceevveeiniiiiniiiiniiieniieciieee 2-141
Behavior That Interferes With Instrumented
Profiling ..occeeeiviiiiiiiiiiiiceieccc e 2-142
Stack Overflow Detectionccceeeeviiiiiiiiiieeeeeeeiiiiiieeeennn 2-142
Compiler’s Stack Overflow Detection Facilityc......... 2-144
C/C++ RUN-TIME LIBRARY
C and C++ Run-Time Library Guidecccceevviiiiiiiiniiiiniiieniee, 3-2
Calling Library FUnctionsccceceeeviiiiniieiniiieiiec e 3-3
Using the Compiler’s Built-In Functionsccccoeoiiiinnin 3-5
Linking Library Functionscccocceeviiiiniiiiniiiiiiiiciniee e 3-5
Library Attributescccveeeviiiiiiiiiniieeeiicceieceec e 3-8
Exceptions to Library Attribute Conventionsccc........ 3-12
Mapping Objects to Flash Using Attributesccceeeenneenn. 3-14
Visual DSP++ 5.0 C/C++ Compiler and Library Manual Xxxiii

for Blackfin Processors

Contents

Library Function Re-Entrancy and Multi-Threaded

ENVIFONMENTS eeveiiiiiiiiieeeeeeeeiiii e e e e e e e 3-14
Support Functions for Private Dataccccocveeiiiiiinnncennn. 3-17
Support Functions for Lockingccoceeeiiniiiniiiniinnnn. 3-18
Other Support Functions for Multi-Core Applications 3-18
Library Placementcccoovveiiiiiiiniiiiiniicenieceeee e 3-18
Section Placementcccooviiiiiiniiiiiiiiiiiiiei e 3-19

Working With Library Header Filescoocceeniiiiniiinnnne. 3-20
adi_types.h oo 3-22
ASSEIT N 1o 3-22
ceblkfn.h oo 3-23
cplbtab.h oo 3-23
CLYPE. (o 3-23
device.h e 3-24
Aevice TN oo e 3-24
ErINO.N Loiiiii 3-24
Hloat.h o 3-24
1SO646.h .o 3-25
lmits.h oo 3-26
localeh oo 3-26
math.h Lo 3-26
MC_ data oo, 3-28
MISTa_tyPes.h oeeiiiiiiiii 3-28
SEUMP.N coii 3-28
signal.h oo 3-28

XXXIV

VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

stdarg.h oo
stdbool.h oo,
StAfix.h e
stddeflh oo
stdint.h oo
Stdioh oo
StAlib.h e
SEENG.N v
time.h co
Calling a Library Function From an ISR
Abridged C++ Library Supportccocoveviiiiiniiiinnicens
Embedded C++ Library Header Filesccc..c....
C++ Header Files for C Library Facilities
Embedded Standard Template Library (ESTL)
Header Files ...cccuvvviiiiiiiiiiiiiiiiiiceee
Using Thread-Safe C/C++ Run-Time Libraries
With VDK oo,
File I/O SUPPOIT cvvveeiiiiiiiiiiiiiceieceec e
Extending I/O Support to New Devices
DevEntry Structurecocoevviiiiiiiiiiniiiiinnnnn.
Registering New Devicesccccocc
Pre-Registering Devicesccccccceiiiiiiiiiiiinnnn.
Default Deviceuvvviiiieieiiiiiiiiiiiiieeeeeeiiieeeeen
Remove and Rename Functionscccccceeennnneenn.

Contents

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

XXXV

Contents

Default Device Driver Interfacecccovvvuviieiiiiiiiiiiiiiiieenns 3-53
Data Packing for Primitive I/O ...ccoooiiiiiiiiiiiiiieeee 3-54
Data Structure for Primitive /O ...oocviiiiiiiiiiiiiiceee 3-55
Documented Library Functionscccccccceivniiiiiinniiiiinniieeeens 3-58
C Run-Time Library Referenceccccceiviiiiniiiniiiinniiiinicens 3-64
ADOTE wetieiiiiit et e 3-65
A8 e 3-66
ADSEX e 3-67
ACOS +eeteuittt ettt e e e e et ettt e e e e ettt et e e e ettt et e e e e e aa bt aaeeeeas 3-69
adi_acquire_lock, adi_try_lock, adi_release_lockcccocueerniiin. 3-71
AT COTE_ I weneiee et e 3-74
adi_obrtain_mc_slot, adi_free_mc_slot, adi_set_mc_value,
adi_get_mc_valuecccocoiiiiiiiiii 3-76
ASCUIITIC +etvuuneeeetniieeetetaeeeetaea e eeetaa e eetenaa e eetrnae e eeeannaneeeeesaaeeeennnnns 3-80
ASIIL Leitiiiiii et et e e b e et b eeeaaaas 3-82
ATALL ettt 3-84
ATANZ Lottt 3-86
ALEXIT wervtuuiiieeeeeeeeiettt e e e e e eeteetaab e e e e e e et tababb e e e e eeeeetanbaa e e eeeas 3-88
E 100) PSP TPPPRP 3-89
ATOL ettt e e e e ettt e e e e e e ettt e e e e e ettt bbb e e e e e et eetaaa s 3-92
ATOL ettt e 3-93
ALOLL e 3-94
DIESEX 1ottt e e e e e 3-95
DSEArch oo 3-97
cache INVAlIAate ...oiiveiiii e 3-100
XXXVi VisualDSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Contents

CAllOC ittt 3-103
CEIL ittt e e e e e e 3-104
Clearert .oviiiiiiiiee e 3-105
CLOCK ettt e 3-107
£ ettt ettt ettt a e e 3-109
COSR e 3-112
COUNTISTX 1oiiiiiiieeii e 3-113
CPIb_hdr oo 3-115
CPID_INIE weiiiiiiiiiiiice e 3-117
Cplb_mgr oo 3-120
CUIITIE teteieeeeesiiiiteeeeeeeeeeessanetetteeeaeeeesannsnnnneeeeaeeeeeanannsssnaaeaeeeeennnns 3-124
AIfFEIME weiiiiiiiiee e 3-126
disable _data cache ..oooooeiiieeee e 3-128
IV ettt e e e e aaeeeeaaaas 3-129
IVEFX ettt 3-130
enable_data_ cache ..ooooeiiieee e 3-132
EXAT tvvvreeeeeeeesnunnnereeeeeeeeaaaanesseeaeeeeeeesaannnnaaeeeaeeeeeaaannntaraaaeeeeeaanns 3-134
EXP eeuuttteee ettt e e e e et e e e e e ettt e e e e e e st e e e e e e e e 3-135
FADS e 3-136
FCLOSE weiiieeeeee e 3-137
RO e 3-139
FEITOT ettt ettt 3-140
FITUSR oo 3-141
EETC it 3-142
Visual DSP++ 5.0 C/C++ Compiler and Library Manual XXXVil

for Blackfin Processors

Contents

FEEEPOS et 3-144
RS e 3-146
FLOOT ettt e 3-148
flush_data cache .ooooeeeoeee e, 3-149
FMOA e 3-151
FOPEN e 3-152
EPIINEE e 3-154
FPULC o 3-160
EPULS et 3-161
fread .ooeee s 3-163
5 (<SSP PSRRR 3-165
FEFEOPEN it 3-166
TR ettt 3-168
FSCANT 1o 3-169
FSEEK vttt 3-174
FSEEPOS ettt 3-176
FEEll e e 3-177
FWTIEE ceeeiiieeee e e e e e e e e e e e 3-178
FXDIES weveeeeiiiiie et 3-180
EXAIVE ettt aaaabanraaanaaanne 3-182
ZOTC 1ttt et e et e e e e e e e e e e e 3-184
EEtChar oo 3-186
ZETS 1uttutuiunitiittie b aaaaa 3-188
oA 101 B2 0 [PPSO P OO OO P OO PSP OPPPOPPPOPPPPPPPOPOPPPPPPPPPPRY 3-190
XXXViii VisualDSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

heap_calloc ..o
heap_free .ooovviiiiiiiiii
heap_Init .ooocveeiiiiiiiiii
heap_install ...
heap_lookupocoiiiiiiiiii
heap_malloc ..ooooiiiiiiiiii
heap_realloccooviiiiiiiiiiii
heap_space_unusedccccoviiiiiniiiiniiiiiiiiic
TAIVEX coiiee e
TN 5 1] S

ISAIIIUITL oot

TR0 0o
ISPUIICE coviiiiiiiiiiiieie e
ISSPACE coiiiiiiiiiiiiiiiie e
TRy U o) o 1C)
ISXAIGIT ettt

_11_memcpy, _memcpy_11 ...ocooiiiiiiiiiiiiiiiiiiii,

Contents

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

XXX1X

Contents

LaDS e 3-228
IAEXP et 3-229
LIV e 3-230
10CAIEIME .eviiiiiiiieii i 3-232
L0g e 3-234
LOZT0 e 3-235
longimp oo, 3-236
MALLOC 1o 3-238
MEMICHT 1ttt e 3-239
IMCITICITIP eetttteeeniiieeee ettt eee sttt e e eatte e e e sttt e eeeaantteeeesnnneeeeearnnes 3-240
IMEIMICPY +nnvreeenurreenitreentetestreeeeaeeestreeetreeeaateeesaneeesnneesnneeenanee 3-241
INEIMUTIOVE .ottt 3-243
ITLEITESEE vttt 3-244
MKEIME ittt e e e e e e e e e e e e e e 3-245
MOAE e 3-248
MULEX oo 3-249
PEITOL 1ottt ettt e e et 3-251
POW ettt e e e 3-253
PIITE ettt 3-254
PULC ittt 3-256
PUEChaAr oo 3-257
PULS ittt 3-259
QSOTT ettt ettt e e e ettt e e et e e ettt e e e et e e e e e e e e e aneeas 3-260
FAISE ettt 3-262
x| Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Contents

FANA. ©eeiiiiee et e e e e e e e e e e e e 3-264
FEALLOC 1iiiiiii e e 3-265
register_handler ... 3-267
register_handler_exccocciiiiiiiiiiiii 3-270
FEITLOVE 1eeeeeeuiiiuteeeeeeaeeeeaannssseeeeeeeeaaaannsssseeeeeeeesananssssseeeaessessnnnes 3-274
FEMAIIE teeiuiiiiiteeeeeeeeesaaaeitte ittt eeeeseaaaaabbe et e eeeeeesaanabbbeeeeeeeeeaanannee 3-276
FEWIIIA 1eiiiiiii e e e 3-278
FOUNAEX 1oiiiiiiii e e e e e e e e 3-280
SCANT ottt e 3-282
SEEDUL oot 3-284
SCTJITIP weveeiiieeee ettt e e ettt e e ettt e e e et e e s et e e e s e e e e e e e e 3-286
SEEVDUL Loiiiiii e 3-288
SIgNAl (oot 3-290
SIIL ettt e e e ettt ettt e e e ettt et e e e e e e ettt as 3-292
SINR e 3-295
SIPTIINEE weiiiiiiiiiiit et 3-296
SPACE_UNUSEA +envvriiiiiiiiiiie ettt 3-298
SPIINEE ottt 3-299
SQLT wetttteeee ettt et e e et e et e e e e e e e et e e e e e e e e eeeeeeeeeaaaes 3-301
R 21 1 V¢ KPR PPPRPR 3-302
SSCANE L.vttteeiiitt e e ettt e ettt e e ettt e ettt e et e st e e e s e e e e 3-303
STECAL +eteeeeeeasuuiitteteeeeeeeaaanaetteteeeeeeeeaannatbbaeeeeeeeeeaaannbbbebeeeeeeesannanns 3-305
STECRT i 3-306
STECITIP ettt e e e e ettt e e e e e e ettt e e e e e e e e bbba e e e e e e e e e eeaanns 3-307
Visual DSP++ 5.0 C/C++ Compiler and Library Manual xli

for Blackfin Processors

Contents

STECOLL e 3-308
STECPY +eeuitteeeeeiteee e e ettt e e e ettt e e e e ita e e e e eaae e e e e et e e e s tbe e e e e s anneeas 3-309
STECSPIL 1utttiuiuiinutusetuseetesaesssaseasseaaasseee e s s b ases s e sasesasssasananenes 3-310
STEEITOT wettttuieeeeeeeettttttae e e e e eeeetttabtaae e e e e eeeeeeaabnaaaeeeeeeeeeeasanaaaaes 3-311
Ry 8 4 48 111 -SSR SURRR 3-312
STELEIL Lot 3-316
STITICAL +ettvtiiieeeeeeetttttttie e e e e e e et ttbabb e e e e eeeeeeeabbiae e e e eeeeeeeasnnaaaaes 3-317
STENICITIP ©eviiiiiiiiitee e ettt et e e e e e et e e e e e e e e s e bbb s s s e e e e e e e e aanaaaes 3-318
STEIICPY uveutvtiiiieeeeeeeiiiiite ettt e e e e e st e et e e e e e s e s ibbbaaseeeeeesessaannraes 3-319
SEEPDIK i 3-320
STITCRT e 3-321
STESPIL Luuuuuiiiinunntusuetesassiesstsasassaeaaasaabassaa s aaab e e aseaaae e sasessnenenanane 3-322
STESEL ettt eeenenee 3-323
D8 4 (o ¢ AR SRRR 3-324
STEEOE ettt ittt 3-327
STEEOFXEX 1ttt 3-330
STTEOK 1ottt ettt et e e e et e e e e e e e e e e e e e e e e e rees 3-333
STEEOL 1eteeiiiit ettt 3-335
STEEOLA e 3-337
R 8 o) | USSR 3-340
STEEOUL 1ottt 3-342
SEEEOULL e 3-344
SEEXETIML 1eiiiiii e ettt e et e e et e e e st e e e e et ba e e e e e naaaee s 3-346
1:1 s WP PP P PP PPPPPPP PP 3-348
xlii VisualDSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Contents

TANR oot 3-350
TIITIC wettteeeeeeeiiit ettt e et e e ettt e e e e e ettt e e e e e e e e e e aabb et e e e eeeeeeeeaane 3-351
EMPEILE et 3-352
TITLPIIAIIL «oeiiiiiiiieeeeee ettt e e e e e e ettt eeeeeeeeeaiabaaeeeeeeeeeeeennaneeee 3-355
EOLOWET weiiiiiiii ittt 3-358
COUPPEE 1ottt te e e ettt e e e e e et e e e e e e e e bbaa e e e e e e e s eeaans 3-359
UILZEEC weviiiiieeitieeeitieeetiee ettt e e sttt e s e e et ee e et e e sbaeeeaaeeeeaaeee e 3-360
VA_ALE weeitteeruiteeeieee et e e ettt e ettt esta e ettt e et e st esbn e e saneeesnreeeas 3-362
VA_CI 1ottt 3-365
VAL STALT «eeeee et et e e e e e et e e e e e e e e et e e e e e e e e e e e e e e e e e raeeaaas 3-366
VEPIINEE oot 3-367
VPIIIEE coiiiiiiiiie ettt 3-369
VSTIPIINTE Loeiiiiiiiiii it 3-371
VSPIINEE 1ottt 3-373
DSP RUN-TIME LIBRARY

DSP Run-Time Library Guideooovviiiniiiiniiiiiiiiiiiicniiccneeee 4-2
Linking DSP Library Functionsc.cccoociiiiiiiiiniiiniinnnnne. 4-3
Working With Library Source Codecccceeevviiiiniiiiniiiinneenne. 4-4
Library Attributescoocueieriiiiniiiiiniiiciieceicece e 4-4
DSP Header Filesccoomiiiiiiiiiiiiiiiiiciiicceiecc e 4-5
complex.h wooiiiiii 4-5
cycle_count.h oo 4-9
Cycles.h oo 4-10
filterh oo 4-10

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

xliii

Contents

math.h L 4-20
MACTIX P oo 4-24
STALS. P i 4-38
VECTOL N woiiiiiiiii i 4-45
window.h oo 4-61
Measuring Cycle Countsccoevuveeriieernieeeniieenieeeseee e 4-64
Basic Cycle-Counting Facilityccccoooiiiii. 4-65
Cycle-Counting Facility With Statisticsccccecveernneeenne. 4-67

Using time.h to Measure Cycle Countsccccevvuveernuneennee. 4-70
Determining the Processor Clock Rateccoceeviiinninaee. 4-72
Considerations When Measuring Cycle Counts 4-73

DSP Run-Time Library Referenceccccoovveiiiiiiiniiiiniiiinneens 4-75
A_COIMIPIESS .evveeenuurrreerauurteeesanrteeesaautteeeeaaanneeeesaaraeeeesannneeeennnneeens 4-77
A_EXPANA ettt 4-78
ALOG et 4-79
AloGI0 Loiiiiiiii 4-81
AL ettt ettt ettt ettt e e e e et e st e s et e st e e e eaneeeas 4-83
AULOCON Loiiiiiiiiiiii e 4-85
AUTOCOIT .ottt ettt eie e ettt e et e et e st e s eaa e e e e sba e e eiaeeeiaee s 4-87
CADS ettt e 4-90
CAAd e 4-92
CATTESIAI .uuiiiiiiiiiiiiii ettt 4-93
CAIV ettt e e 4-95
CEXP wrveeeeauurteeeeanueeeee e ettt e e e et e e e et e e e e e et e e e e e et e e e e et et e e e naneeas 4-97

xliv VisualDSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Contents

1§ TSR 4-98
& £ PR PPPR 4-102
CIFEradd oooeeeiee e 4-106
CEFE2d oo 4-108
G 5T U UUPUPPPRPR 4-112
CLIP et e 4-116
CINLE ceeeeeeeeeee e 4-118
COCEE TIEAEL oo 4-120
COIJ ettt ettt e ettt e e ettt e e ettt e e e et e e e et e e e s aan e e e e e e e e 4-124
CONVOLVE oot 4-125
CONV2A 1iiiiiie e e e e a e e e e e e 4-128
CONV2A3X3 ittt 4-131
COPYSIZI ittt ettt e e 4-134
COT taeauttteeeeettteeeeaaaeeeeeataaeeeeassaeeeeaasssaeeeansssaeeesansseeeeaansseeeeennnses 4-135
COUITOIES +uuiiitetteeeeeeesaaitttetteeeeeeesaaasttaeeeeeeeeesaaanbteteeeeeeesaannans 4-136
CLOSSCON 1ottt e e e e e 4-137
CTOSSCOTT +eeeuuuueuereeeeesseaasnnssseeeeeessesssnssssneeeeeeesesanssssneeasasesennnnes 4-140
CSUD 1t 4-143
ffe_magnitude ...ooooiiiiiii 4-144
T PR PPRP 4-149
Fr_decima oveeieeiiiiiieecc e 4-154
FIE INTEIP ceiiiiieiie et 4-160
gen_bartlett ..o 4-166
gen_blackman ... 4-169
Visual DSP++ 5.0 C/C++ Compiler and Library Manual xlv

for Blackfin Processors

Contents

GEN_GAUSSIAI .evviiiiiiiiiiiie ittt s 4-171
gen_hammingcoccooiiiiiiiiiiiiii e 4-173
gen_hanningccoociiiiiiiiii e 4-175
gen_harris ..ooooiiiiiiiiiiiiii i 4-177
EEN_KAISET .oiiiiiiiiiiiiciii e 4-179
gEN_TeCtan@UIaroooviiiiiiiiiniiciie e 4-181
gen_triangle ... 4-183
gEeN_VONRANN 1ottt 4-185
RISEOEIamooiiiiiiiiiiiiic e 4-186
1§ & SR PP RRRRR PP 4-189
T4 & SRR PSR 4-194
HEEradd oo 4-197
HEE2d oo 4-199
SRR 4-203
R0 e | SR SRRR 4-209
ITLAX ¢ttt e e e e e e e s ettt et e e e e e e e e bbbttt e e e e e e e ettt e e eeeeeeeannntaeee 4-215
ITLEAIL +eeeeiiiiieteeeeeeeesaneteteeeeeeeeeeaannnssaaseeeaeeeaannnsssnnaeaeeeeesnnnnnsnnns 4-216
ITLIIL t ittt e e e et e e e e e et e e e e e e e e eeas 4-218
INU_COIMIPIESS euuvrvreeeurrrreeesuntrteesatnreeesastneeessanreeeesnnnnneeesannnes 4-219
MU_EXPANA oottt 4-220
T o' s RO PP PP PP PPPPPRPPI 4-221
POLAT i 4-222
& USRS 4-225
EEEEE e 4-229
xlvi VisualDSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Contents

FfEeradd oo 4-233
FFEE2d e 4-235
FITES wttttteeeeeeaaatttte et e e e e e e e e sttt et e e e e e e e e bbbttt e e e e e e e e e bttt eeeeeeeeeaaaae 4-239
ESQET euetteeee ettt eee ettt e e e ettt e e ettt e e e ettt e e ettt e e e ettt e e e ee e st 4-241
tWIAEFErad2 ooveeeeee e 4-242
EWIAFFErad4 e 4-245
EWIAEEEE oo 4-247
EWIAFFE2d oo 4-250
VAT ettttteeee e e e e ettt et e e e e e ettt et e e e e e ettt e e e e e e e ettt e eeeeeeseaaaaee 4-253
ZEIO__CTOSS evneeneen et eee e e e et e e e e e et e e e e e e e e e e ea e e e e e e eeanns 4-256

PROGRAMMING DUAL-CORE BLACKFIN PROCESSORS

Dual-Core Blackfin Architecture Overviewccccovvuveeiiniiieeenne A-2
Approaches Supported in VisualDSP++ ..ooooviiiniiiiniiiiniiiiiieene A-3
Single-Core Applicationccccceiiviiiiiiiiiiiiiiiiiiiiicc A-5
Shared Memoryooceeiviiiiiiiiiiiiciic e A-6
Synchronizationccocceiiiiiiiiiiiiiiicic e 6
Cache, Startup, and Eventscccccovviiiiiiniiiiiiniiiiciiniecces A-7
Creating Customized Idf Filesccocoiiiiiiiniiiiniii. A-7
One Application Per Corecooviiiiiiiiiniiiiniieeniiieeiec e A-7
Using the Default Compiler .Idf Fileccccociiniiiiiiinninnn. A-7
Using Customized Idf Filescooovviiiiiiiiiiiii, A-8
Shared Memorycooceiiiiiiiiiiiiiiiceec e A-9
Sharing Datacccoiiiiiiiiiiiiiiiiii e A-10
Sharing Codec.oiiiiiiiiiiiiiiiec e A-13
Visual DSP++ 5.0 C/C++ Compiler and Library Manual xlvii

for Blackfin Processors

Contents

Shared Code With Private Datacccceevviiiiiiiiiiniiiiniiceee A-13
Synchronizationcocceeviiiiiiiiiiiiiicc e A-13
Cache, Startup, and Events with Default .1df Files A-14
Cache, Startup, and Events with Customized .ldf Files A-15
Single Application/Dual Coreccceevviiiiniiiiiniiiiniieiiiceieeeas A-16
Target CONVENTIONS ...oviiiriiiiieiiiiiiieeeeiiiee e ee e A-16
Multi-Core Linkingccccooviiiiiiiiiiiiiiiiiiiiiicc, A-18
Creating the Idf File ..o A-19
Shared Memoryceooiiiiiiiiiiiiiiiiiceec e A-20
Shared Datacceeiiiiiiiiiiiiiii e A-20
Sharing Codeoiiviiiiiiiiiiiiiiiiicc e A-20
Synchronizationcccceeeriiiiiiiiiiiiiceic e A-21
Cache, Startup, and Eventsccccooouiiiiiniiiiiiinniiiiciiiieeeee A-21
Dual-Core Applications That Use File Attributesccocveerenneees A-22
Run-Time Library Functionscccccceviiiiniiiiniiiiiiiiciniecenieenn A-23
Re-ENtrancycccoooviiiiiiiiiiiiiiiiiicceeeeecec e A-23
PIACEMENT uvviiiiiiiiiiiee ittt A-24
Restrictions on Dual-Core Applicationscoocuveeriieeinieeennnenns A-25
Compiler Facilitiesccceiiiiiiiiiiiniiiiiiiniciecc i A-25
Cross-Core Memory Referencesccooevveeveiiieniiiiniieenineenne A-25

xlviii

VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Contents

Dual-Core Programming Examplesccccoociiiiiiiiinniinn. A-26
Single-Core Application Exampleccccccoovviiiiniiiiniiiinniennn. A-26
One Application per Core Example ..cocoeeviiiiiniiiiniiiinnicenne. A-27
Single Application/Dual-Core Exampleccccoiniiiniin A-30
Profile-Guided Optimization in Dual-Core Systems A-32
Command-Line Profile-Guided Optimization A-32
PGO Session Identifiersoooovviiiiieiieiiiniiiiiiiiieeeeeeens A-33
Example of Dual-Core Profile-Guided Optimization A-34
Interprocedural Analysis and File Attributesccoccveeeineenne. A-37
Contflicting Approachesccococieiiiiiiiiiiiniiiiiiiiiiees A-37
Example Applicationccoccueiiviiiiiniiiiniiiciiic e A-37
Building Multiple Instances of a Modulecccceeniieens A-38
Libraries and File Attributescoooooiiiiiiiiiiiiiiiiiiieeen, A-39
Multiple Definitions and Pragma Coreccocvveeniieennnnns A-40
Using the IPA Dual-Core Examplecoooiiiiiiiiiniiiinnens A-41
IPA OptimizZationsccoceuvveeeemiiiieeeiniiieeeeniieeeeeieeee e A-42
Synchronization FUnctionscccocceeviiiiiniiiiniiciniieenieceee. A-43
INDEX
Visual DSP++ 5.0 C/C++ Compiler and Library Manual xlix

for Blackfin Processors

Contents

l Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

PREFACE

Thank you for purchasing Analog Devices development software for
Blackfin® embedded processors.

Purpose of This Manual

The VisualDSP++ 5.0 C/C++ Compiler and Library Manual for Blackfin
Processors contains information about the C/C++ compiler and run-time
libraries for Blackfin embedded processors that support a Media Instruc-
tion Set Computing (MISC) architecture. This architecture is the natural
merging of RISC, media functions, and signal processing characteristics
that delivers signal processing performance in a microprocessor-like
environment.

Intended Audience

The primary audience for this manual are programmers who are familiar
with Analog Devices Blackfin processors. This manual assumes that the
audience has a working knowledge of the Blackfin processors’ architecture
and instruction set and C/C++ programming languages.

Programmers who are unfamiliar with Blackfin processors can use this
manual, but should supplement it with other texts (such as the appropri-
ate Hardware Reference, Programming Reference, and data sheet) that
provide information about their Blackfin processor architecture and
instructions).

Visual DSP++ 5.0 C/C++ Compiler and Library Manual li
for Blackfin Processors

Manual Contents Description

Manual Contents Description

This manual contains:

e Chapter 1, “Compiler”
Provides information on compiler options, language extensions,
C/C++/assembly interfacing, and support for C++ templates

e Chapter 2, “Achieving Optimal Performance From C/C++ Source
Code”

Shows how to optimize compiler operation.

* Chapter 3, “C/C++ Run-Time Library”
Shows how to use library functions and provides a complete C/C++
library function reference

e Chapter 4, “DSP Run-Time Library”
Shows how to use DSP library functions and provides a complete
DSP library function reference

* Appendix A, “Programming Dual-Core Blackfin Processors”
Provides various approaches and programming guidance for
developing systems on ADSP-BF561 Blackfin processors

What’s New in This Manual

This revision (5.4) of the VisualDSP++ 5.0 C/C++ Compiler and Library
Manual for Blackfin Processors manual documents changes/additions
related to the C/C++ compiler and run-time library for Visual DSP++®
5.0 and subsequent updates (up to update 9). Changes/additions to this
book from revision 5.3 include:

e Embedded C Support: The compiler supports the fixed-point types
fract and accum as native types. Refer to “Using Native
Fixed-Point Types” on page 1-104 for more information.

lii Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Preface

* New library support for 32-bit fractional values: Many of the
16-bit fractional library routines now have accompanying 32-bit
fractional variants. Refer to the respective function description
pages in Chapter 3, “C/C++ Run-Time Library” and Chapter 4,
“DSP Run-Time Library” for details.

* 40-bit accumulator access: The compiler now supports access to
the 40-bit accumulators, via new built-in functions. For more
information, see “Full-Precision Accumulator Built-In Functions”

on page 1-247.

* Improved compliance with ISO/IEC standards: The compiler has
optional support for a freestanding implementation of the
ISO/IEC 9899:1999 C standard (“C99”), and support for a free-
standing implementation of the ISO/IEC14882:2003 C++
standard (“C++ 2003”). See “Language Standards Compliance” on
page 1-140 for more information.

* Stack overflow detection: The compiler can instrument generated
code to detect when the stack limit is being exceeded, reducing the
effort involved in debugging such problems. For multi-threaded
applications, this facility requires RTOS support. For more infor-
mation see “Stack Overflow Detection” on page 2-142.

e fract32 support: The majority of functions in Chapter 2, “Achiev-
ing Optimal Performance From C/C++ Source Code” now have
variants that support the fract32 data type.

* Corrections of typographic errors and reported document errata.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual liii
for Blackfin Processors

Technical or Customer Support

Technical or Customer Support

You can reach Analog Devices, Inc. Customer Support in the following
ways:

* Visit the Embedded Processing and DSP products Web site at

http://www.analog.com/processors/technical_support

* E-mail tools questions to
processor.tools.support@analog.com

* E-mail processor questions to
processor.support@analog.com (World wide support)
processor.europe@analog.com (Europe support)
processor.china@analog.com (China support)

* Phone questions to 1-800-ANALOGD

* Contact your Analog Devices, Inc. local sales office or authorized
distributor

Supported Processors
The name “Blackfin” refers to a family of 16-bit, embedded processors.

For a complete list of processors supported by Visual DSP++® 5.0, refer to
VisualDSP++ online Help.

Product Information

Product information can be obtained from the Analog Devices Web site,
Visual DSP++ online Help system, and a technical library CD.

liv Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

http://www.analog.com/processors/technical_support
mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

Preface

Analog Devices Web Site

The Analog Devices Web site, www.analog.com, provides information
about a broad range of products—analog integrated circuits, amplifiers,
converters, and digital signal processors.

To access a complete technical library for each processor family, go to
http://www.analog.com/processors/technical_library. The manuals
selection opens a list of current manuals related to the product as well as a
link to the previous revisions of the manuals. When locating your manual
title, note a possible errata check mark next to the title that leads to the
current correction report against the manual.

Also note, MyAnalog.com is a free feature of the Analog Devices Web site
that allows customization of a Web page to display only the latest infor-
mation about products you are interested in. You can choose to receive
weekly e-mail notifications containing updates to the Web pages that meet
your interests, including documentation errata against all manuals.
MyAnalog.com provides access to books, application notes, data sheets,
code examples, and more.

Visit MyAnalog.com to sign up. If you are a registered user, just log on.
Your user name is your e-mail address.

VisualDSP++ Online Documentation

Online documentation comprises the Visual DSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, Dinkum
Abridged C++ library, and FLEXnet License Tools documentation. You
can search easily across the entire Visual DSP++ documentation set for any
topic of interest.

For easy printing, supplementary Portable Documentation Format (.pdf)
files for all manuals are provided on the Visual DSP++ installation CD.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual lv
for Blackfin Processors

http://www.analog.com
http://www.analog.com/processors/technical_library/
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions

Product Information

Each documentation file type is described as follows.

File Description

.chm Help system files and manuals in Microsoft help format

.htmor Dinkum Abridged C++ library and FLEXnet license tools software

.html documentation. Viewing and printing the . htm1 files requires a browser, such as

Internet Explorer 6.0 (or higher).

.pdf VisualDSP++ and processor manuals in PDF format. Viewing and printing the
.pdf files requires a PDF reader, such as Adobe Acrobat Reader (4.0 or higher).

Technical Library CD

The technical library CD contains seminar materials, product highlights,
a selection guide, and documentation files of processor manuals, Visu-
alDSP++ software manuals, and hardware tools manuals for the following
processor families: Blackfin, SHARC®, TigerSHARC®, ADSP-218x, and
ADSP-219x.

To order the technical library CD, go to http://www.analog.com/proces-
sors/technical_library, navigate to the manuals page for your
processor, click the request CD check mark, and fill out the order form.

Data sheets, which can be downloaded from the Analog Devices Web site,
change rapidly, and therefore are not included on the technical library
CD. Technical manuals change periodically. Check the Web site for the

latest manual revisions and associated documentation errata.

EngineerZone

EngineerZone is a technical support forum from Analog Devices. It allows
you direct access to ADI technical support engineers. You can search
FAQs and technical information to get quick answers to your embedded
processing and DSP design questions.

lvi Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

http://www.analog.com/processors/technical_library/
http://www.analog.com/processors/technical_library/

Preface

Use EngineerZone to connect with other DSP developers who face similar
design challenges. You can also use this open forum to share knowledge
and collaborate with the ADI support team and your peers. Visit
http://ez.analog.com to sign up.

Social Networking Web Sites

You can now follow Analog Devices Blackfin development on Twitter and
LinkedIn. To access:

e Twitter: http://twitter.com/blackfin

* LinkedIn: Network with the LinkedIn group, Analog Devices
Blackfin: http://www.linkedin.com

Notation Conventions

Text conventions in this manual are identified and described as follows.

Additional conventions, which apply only to specific chapters, may
appear throughout this document.

Example Description
Close command Titles in reference sections indicate the location of an item within the
(File menu) Visual DSP++ environment’s menu system (for example, the Close com-

mand appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,..] Optional item lists in syntax descriptions appear within brackets delim-
ited by commas and terminated with an ellipse; read the example as an
optional comma-separated list of this.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual lvii
for Blackfin Processors

http://ez.analog.com
http://twitter.com/blackfin
http://www.linkedin.com

Notation Conventions

Example Description

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this

symbol.

®
N

Caution: Incorrect device operation may result if ...

Caution: Device damage may result if ...

A Caution identifies conditions or inappropriate usage of the product

that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

N

Warning: Injury to device users may result if ...

A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

lviii

Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

1 COMPILER

The C/C++ compiler (ccblkfn) is part of Analog Devices development
software for Blackfin processors.

The code examples in this manual have been compiled using
VisualDSP++ 5.0.1 (Update 1). The examples compiled with other
versions of VisualDSP++ may result in build errors or different
output although the highlighted algorithms stand and should con-
tinue to stand in future releases of VisualDSP++.

This chapter contains:

e “C/C++ Compiler Overview” on page 1-3
provides an overview of the C/C++ compiler for Blackfin
processors.

e “Compiler Command-Line Interface” on page 1-5
describes the operation of the compiler as it processes programs,
including input and output files and command-line switches.

e “Using Native Fixed-Point Types” on page 1-104
describes the compiler’s support for the native fixed-point types
fract and accum, defined in Chapter 4 of the “Extensions to support
embedded processors” ISO/IEC draft technical report TR 18037.

e “Language Standards Compliance” on page 1-140
describes how to enable the best possible compliance to the
ISO/IEC 9899:1990 C standard, the ISO/IEC 9899:1999 C
standard, or the ISO/IEC 14882:2003 C++ standard.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-1
for Blackfin Processors

“MISRA-C Compiler” on page 1-143
describes the compiler support for MISRA-C:2004 Guidelines for

the use of the C language in critical systems.

“C/C++ Compiler Language Extensions” on page 1-156
describes the cch1kfn compiler’s extensions to the ANSI/ISO stan-
dard for the C and C++ languages.

“Blackfin Processor-Specific Functionality” on page 1-357
contains information that is specific to Blackfin processors only.

“C/C++ Preprocessor Features” on page 1-401
contains information on the preprocessor and ways to modify
source compilation.

“C/C++ Run-Time Model and Environment” on page 1-408
contains reference information about implementation of C/C++
programs, data, and function calls in Blackfin processors.

“C/C++ and Assembly Interface” on page 1-456

describes how to call an assembly language subroutine from within
a C/C++ program, and how to call a C/C++ function from within
an assembly language program.

“Compiler C++ Template Support” on page 1-466

describes how templates are instantiated at compile time.

“File Attributes” on page 1-471
describes how file attributes help with the placement of run-time
library functions.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

C/C++ Compiler Overview

The C/C++ compiler is designed to aid your DSP project development
efforts by:

e Processing C and C++ source files, producing machine-level
versions of the source code and object files

* Providing relocatable code and debugging information within the
object files

* DProviding relocatable data and program memory segments for
placement by the linker in the processors’ memory

Using C/C++, developers can significantly decrease time-to-market since
it gives them the ability to efficiently work with complex signal processing
data types. It also allows them to take advantage of specialized signal pro-
cessing operations without having to understand the underlying processor
architecture.

The C/C++ compiler compiles ANSI/ISO standard C and C++ code to
support signal data processing. Additionally, Analog Devices includes
within the compiler a number of C language extensions designed to assist
in DSP development. The ccb1kfn compiler runs from the Visual DSP++
environment or from the operating system command line.

The C/C++ compiler processes your C and C++ language source files and
produces Blackfin assembler source files. The assembler source files are
assembled by the Blackfin processor assembler (easmb1kfn). The assembler
creates Executable and Linkable Format (ELF) object files that can be
linked (using the linker) to create a Blackfin processor executable file or
included in an archive library using the librarian tool (e1far). The way in
which the compiler controls the assemble, link, and archive phases of the
process depends on the source input files and the compiler options used.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-3
for Blackfin Processors

C/C++ Compiler Overview

Your source files contain the C/C++ program to be processed by the
compiler. The ccb1kfn compiler supports the following standards, each
with Analog Devices extensions enabled:

* A hosted implementation of the ISO/IEC 9899:1990 C standard
(“C89”).

* A freestanding implementation of the ISO/IEC 9899:1999 C
standard (“C99”).

* A freestanding implementation of the ISO/IEC 14882:2003 C++
standard (“C++ 2003”). The compiler supports the language fea-
tures supported by a standard subset of the C++ Library. You can
view the abridged C++ library reference available in the docs/cpl_lib
directory underneath your VisualDSP++ installation and opening
itin a Web browser.

RTTI and exceptions for C++ are supported, but disabled by default. See
information on these switches: “-rtti” on page 1-90 and “-eh” on

page 1-35.

For information on the C language standard, see any of the many refer-
ence texts on the C language. Analog Devices recommends the Bjarne
Stroustrup text “7The C++ Programming Language” from Addison Wesley
Longman Publishing Co (ISBN: 0201889544) (1997) as a reference text
for the C++ programming language.

The ccb1kfn compiler supports a set of C/C++ language extensions. These
extensions support hardware features of the Blackfin processors. For infor-
mation on these extensions, see “C/C++ Compiler Language Extensions”

on page 1-156.

You can specify compiler options from the Compile page of the Project
Options dialog box of the VisualDSP++ Integrated Development and
Debug Environment (IDDE). These selections control how the compiler
processes your source files, letting you select features that include the
language dialect, error reporting, and debugger output.

1-4 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

For more information on the Visual DSP++ environment, refer to

Visual DSP++ online Help.

Compiler Command-Line Interface

This section describes how the ccb1kfn compiler is invoked from the
command line, the various types of files used by and generated from the
compiler, and the switches used to tailor the compiler’s operation.

This section contains:
e “Running the Compiler” on page 1-6
e “C/C++ Compiler Command-Line Switches” on page 1-10
e “Environment Variables Used by the Compiler” on page 1-91
* “Additional Path Support” on page 1-92
* “Optimization Control” on page 1-95

e “Controlling Silicon Revision and Anomaly Workarounds Within
the Compiler” on page 1-100

By default, the compiler runs with Analog Extensions for C code enabled.
This means that the compiler processes source files written in ISO/IEC
899:1990 standard C language supplemented with Analog Devices exten-
sions. Table 1-2 on page 1-8 lists valid extensions of source files the
compiler operates upon. By default, the compiler processes input files
through the listed stages to produce a .dxe file. (See file names in

Table 1-3 on page 1-9.) Table 1-4 on page 1-11 lists switches that select
the language dialect.

Although many switches are generic between C and C++, some are valid in
C++ mode only. A summary of the generic C/C++ compiler switches
appears in Table 1-5 on page 1-11. A summary of the C++-specific

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-5
for Blackfin Processors

Compiler Command-Line Interface

compiler switches appears in Table 1-6 on page 1-24. The summaries are
followed by descriptions of each switch.

When developing a DSP project, sometimes it is useful to modify
the compiler’s default options settings. The way the compiler’s
options are set depends on the environment used to run the DSP
development software.

Running the Compiler

Use the following syntax for the ccb1kfn command line:
cchlkfn [-switch [-switch ..]1 sourcefile [sourcefile ..1]

Table 1-1 describes the command-line syntax.

Table 1-1. ccblkfn Command-Line Syntax

Parameter Description
cchlkfn Name of the compiler program for Blackfin processors.
-switch Switch (or switches) to process.

The compiler has many switches. These switches select the
operations and modes for the compiler and other tools.
Command-line switches are case-sensitive.

For example, -0 is not the same as -o.

sourcefile Name of the file to be preprocessed, compiled, assembled, and/or linked

A file name can include the directory, file name, and file extension. The
compiler supports both Win32- and POSIX-style paths, using either for-
ward slashes or back slashes as the directory delimiter. It also supports
UNC path names (starting with two slashes and a network name).

1-6 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

When file names or other switches for the compiler include spaces
or other special characters, you must ensure that these are properly
quoted (usually using double-quote characters), to ensure that they
are not interpreted by the operating system before being passed to

the compiler.

The ccb1kfn compiler uses the file extension to determine what the file
contains and what operations to perform upon it. Table 1-3 on page 1-9
lists the allowed extensions.

Examples

For example, the following command line runs ccb1k fn with the following

options:

ccblkfn -proc ADSP-BF535 -0 -Wremarks -o program.dxe source.c

-proc ADSP-BF535

-0

-Wremarks

-0 program.dxe

source.c

Specifies compiler instructions unique to the
ADSP-BF535 processor

Specifies optimization for the compiler

Selects extra diagnostic remarks in addition to
warning and error messages

Specifies a name for the compiled, linked output

Specifies the C language source file to be compiled

The following example command line for C++ mode runs ccblkfn with

these options:

ccblkfn -proc ADSP-BF535 -c++ source.cpp

-CcH+

source.cpp

Specifies all of the source files to be compiled in
C++ mode

Specifies the C++ language source file to be
compiled

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-7

for Blackfin Processors

Compiler Command-Line Interface

The normal function of ccb1kfn is to invoke the compiler, assembler, and
linker as required to produce an executable object file. The precise opera-
tion is determined by the extensions of the input file names and by various
switches.

In normal operation, the compiler uses the files listed in Table 1-2 to per-
form a specified action.

Table 1-2. File Extensions Specifying Compiler Action

Extension Action
.c .C .cpp .Cxx .cc .c++ Source file is compiled, assembled, and linked.
.asm .dsp .s Assembly language source file is assembled and linked.
.doj Object file (from previous assembly) is linked.
.pgo .pgi Profile-guided optimization information file is used during
compilation.

If multiple files are specified, each is processed to produce an object file
and then all the object files are presented to the linker.

You can stop this sequence at various points using appropriate compiler
switches (-E,-P,-M,-H,-S, and -c.), or by selecting options within the
Visual DSP++ IDDE.

Many of the compiler’s switches take a file name as an optional parameter.
If you do not use the optional output name switch, ccb1kfn names the
output for you. Table 1-3 lists the type of files, names, and extensions
cchb1kfn appends to output files.

File extensions vary by command-line switch and file type. These exten-
sions are influenced by the program that is processing the file. The
programs search directories that you specify and path information that
you include in the file name. Table 1-3 indicates the extensions that the
preprocessor, compiler, assembler, and linker support. The compiler sup-
ports relative and absolute directory names to define file extension paths.

1-8 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

For information on additional search directories, see the command-line
switch that controls the specific type of extensions.

When providing an input or output file name as an optional parameter,
follow these guidelines.

®

Use a file name (include the file extension) with an unambiguous

relative path or an absolute path. A file name with an absolute path
includes the directory, file name, and file extension. The compiler
uses the file extension convention listed in Table 1-3 to determine

the input file type.

Verify that the compiler is using the correct file. If you do not
provide the complete file path as part of the parameter or add
additional search directories, ccb1kfn looks for input in the current
directory.

Use the verbose output switches for the preprocessor, compiler,
assembler, and linker to cause each of these tools to display
command-line information as they process each file.

Table 1-3. Input and Output File Extensions

File Extension File Extension Description
.c .C C source file
.CPp .CXX .CC .C++ C++ source file
.h Header file (referenced by an #include statement)
.hpp .hh .hxx .h++ C++ header file (referenced by a #include statement)
STt Template instantiation files — used internally by the compiler when
instantiating templates
ipa Interprocedural analysis files — used internally by the compiler when
performing interprocedural analysis.
.pgo Execution profile generated by a simulation run. For more informa-
tion, see “Using PGO in Function Profiling” in Chapter 2, Achiev-
ing Optimal Performance From C/C++ Source Code.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

1-9

Compiler Command-Line Interface

Table 1-3. Input and Output File Extensions (Contd)

File Extension File Extension Description

. Preprocessed source file — created when preprocess only is specified
.S, .asm Assembly language source files

s Preprocessed assembly language source — retained when

-save-temps (on page 1-72) is specified

.sbn Binary data included by an assembly language source file
J1df Linker description file

.misra Text file used by prelinker for MISRA-C Guidelines checking
.pch Precompiled header file

.doj .o Object file to be linked

.dlb .a Library of object files to be linked as needed

.dxe Executable file produced by compiler

.xml Processor memory map file output

.sym Processor symbol map file output

The compiler refers to a number of environment variables during its oper-
ation, and these environment variables can affect the compiler’s behavior.
Refer to “Environment Variables Used by the Compiler” on page 1-91 for

more information.

C/C++ Compiler Command-Line Switches

This section describes command-line switches used when compiling.
Tables, organized by switch type, provide a brief description of each
switch. Following these tables is a detailed description of each switch.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

This section contains the following tables:
¢ “C/C++ Mode Selection Switches” (Table 1-4)
¢ “C/C++ Compiler Common Switches” (Table 1-5)
e “C Mode (MISRA) Compiler Switches” (Table 1-6 on page 1-24)
e “C++ Mode Compiler Switches” (Table 1-7 on page 1-25)

Table 1-4. C/C++ Mode Selection Switches

Switch Name Description

-¢89 Supports programs that conform to the ISO/IEC
on page 1-26 9899:1990 standard. This is the default mode.
-¢c99

Supports programs that conform to a freestanding
on page 1-26 implementation of the ISO/IEC 9899:1999 standard
with Analog Devices extensions.

-cHt Supports ANSI/ISO standard C++ with Analog Devices

on page 1-26 extensions

Table 1-5. C/C++ Compiler Common Switches

Switch Name Description
sourcefile This parameter specifies the file to be compiled
on page 1-27
-@ filename Reads command-line input from the file
on page 1-27
-A symbol [tokens] Asserts the specified name as a predicate
on page 1-27
-add-debug-Tibpaths Link against debug-specific variants of system libraries,
on page 1-28 where available.
-alttok Allows alternative keywords and sequences in sources
on page 1-28
-always-inline Treats inline keyword as a requirement rather than a
on page 1-29 suggestion.
Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-11

for Blackfin Processors

Compiler Command-Line Interface

Table 1-5. C/C++ Compiler Common Switches (Contd)

Switch Name

Description

-annotate
on page 1-30

Enables assembly annotations

-annotate-loop-instr

Provides additional annotation information for the pro-

on page 1-30 log, kernel and epilog of a loop

-auto-attrs Directs the compiler to emit automatic attributes based
on page 1-30 on the files it compiles. Enabled by default.

-bss Causes the compiler to put global zero-initialized data
on page 1-30 into a separate BSS-style section. Set by default.
~build-T1ib Directs the librarian to build a library file

on page 1-31

-C Retains preprocessor comments in the output file

on page 1-31

-c Compiles and/or assembles only, but does not link

on page 1-31

-const-read-write
on page 1-31

Specifies that data accessed via a pointer to const data
may be modified elsewhere

-const-strings

Directs the compiler to mark string literals as const

on page 1-32 qualified

-cplbs Instructs the compiler to assume that CPLBs are active
on page 1-32

-Dmacrol=definition] Defines macro

on page 1-32

-dcplbs Instructs the compiler to assume that data CPLBs are
on page 1-33 active

-debug-types
on page 1-33

Supports building a . h file directly and writing a com-
plete set of debugging information for the header file

-decls-weak
-decls-strong
on page 1-33

Determines whether uninitialized global variables
should be treated as definitions or declarations

-double-size-32
-double-size-64
on page 1-34

Selects 32- or 64-bit IEEE format for double.
-double-size-32 is the default mode

Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

Table 1-5. C/C++ Compiler Common Switches (Contd)

Switch Name

Description

-double-size-any

Indicates that the resulting object can be linked with

on page 1-34 objects built with any double size

-dry Displays, but does not perform, main driver actions
on page 1-34 (verbose dry run)

-dryrun Displays, but does not perform, top-level driver actions
on page 1-35 (terse dry run)

-E Preprocesses, but does not compile, the source file
on page 1-35

-ED Preprocesses and sends all output to a file

on page 1-35

-EE Preprocesses and compiles the source file

on page 1-35

-eh Enables exception handling

on page 1-35

-enum-is-int
on page 1-36

By default, an enum can have a type larger than int.
This option ensures the enum type is int.

-expand-symbolic-Tinks
on page 1-37

Provides support for Cygwin path extensions within
command-line switches and #include preprocessor
directives

-expand-windows-shortcuts
on page 1-37

Provides support for Windows shortcuts within
command-line switches and #inc1ude preprocessor
directives

-extra-keywords
on page 1-37

Recognizes Blackfin processor extensions to ANSI/ISO
standards for C (default mode)

-extra-loop-loads

Allows the compiler to read off the start or end of mem-

on page 1-37 ory areas, within loops, to aid performance
-fast-fp Links with the high-speed floating-point emulation
on page 1-38 library

-file-attr name
on page 1-38

Adds the specified attribute name/ value pair to the
file(s) being compiled

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-13

for Blackfin Processors

Compiler Command-Line Interface

Table 1-5. C/C++ Compiler Common Switches (Contd)

Switch Name Description

-fixed-point-io Links with a variant of the Analog Devices I/O library

on page 1-38 containing support for printing native fixed-point types
in decimal format.

-flags-asm switches Passes command-line switches through the compiler to

-flags-compiler switches other build tools

-flags-1ib switches

-flags-link switches

-flags-mem switches

on page 1-39

-force-circhuf Treats array references of the form array[i%n] as cir-

on page 1-39 cular buffer operations

-force-link Forces stack frame creation for leaf functions.

on page 1-40 (defaults to ON with -g option set, enforced for the -p
option)

-fp-associative Treats floating-point multiplication and addition as

on page 1-40 associative operations

-full-io Links with a third party, proprietary I/O library

on page 1-40

-full-version Displays the version number of the driver and processes

on page 1-41 invoked by the driver

-fx-contract Sets the default mode of FX_CONTRACT to ON.

on page 1-41

-fx-rounding-mode-biased Sets the default mode of FX_ROUNDING_MODE to

on page 1-41 BIASED.

-fx-rounding-mode-truncation Sets the default mode of FX_ROUNDING_MODE to

on page 1-41 TRUNCATION.

-fx-rounding-mode-unbiased Sets the default mode of FX_ROUNDING_MODE to

on page 1-41 UNBIASED.

g Generates DWARF-2 debug information

on page 1-42

-glite Generates lightweight DWARF-2 debug information

on page 1-42

1-14 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

Table 1-5. C/C++ Compiler Common Switches (Contd)

Switch Name

Description

-guard-vol-loads

Disables interrupts during volatile loads

on page 1-43

-H Outputs a list of included header files, but does not

on page 1-43 compile

-HH Outputs a list of included header files and compiles.

on page 1-43

-h Outputs a list of command-line switches with brief syn-

-help tax descriptions

on page 1-43

-1 directory Appends directory to the standard search path

on page 1-44

-1- Specifies the point in the include directory list where

on page 1-44 the search for header files enclosed in angle brackets
should begin

-9 Outputs only header details or makefile dependencies

on page 1-45 for include files specified in double quotes

-icplbs Instructs the compiler to assume that instruction

on page 1-45 CPLBs are active

-jeee-fp Links with the fully-compliant floating-point emulation

on page 1-45 library

-implicit-pointers
on page 1-46

Demotes incompatible-pointer-type errors into discre-
tionary warnings. Not valid when compiling in C++
mode.

-include filename

Includes named file prior to each source file

on page 1-46

-ipa Specifies that interprocedural analysis should be per-
on page 1-47 formed for optimization between translation units
-jes21 Enables the conversion of short jumps to 1ong jumps
on page 1-47 when necessary but uses the P1 register for indirect

jumps when long jumps are insufficient (enabled by

default)

-L directory
on page 1-47

Appends directory to the standard library search path

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-15
for Blackfin Processors

Compiler Command-Line Interface

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name

Description

-1 Tibrary Searches 1ibrary for functions when linking

on page 1-47

-list-workarounds Lists all compiler-supported errata workarounds
on page 1-48

-M Generates make rules only, but does not compile
on page 1-48

-MD Generates make rules, compiles, and prints to a file
on page 1-49

-MM Generates make rules and compiles

on page 1-49

-Mo filename
on page 1-49

Writes dependency information to f77ename. This
switch is used in conjunction with the -ED or -MD
options.

-Mt filename
on page 1-49

Makes dependencies, where the target is renamed as
filename

-map filename

Directs the linker to generate a memory map of all sym-

on page 1-49 bols

-mem Causes the compiler to invoke the Memory Initializer
on page 1-50 after linking the executable file

-multicore Selects library versions suitable for use in a multi-core
on page 1-50 environment

-multiline Enables string literals over multiple lines (default)

on page 1-50

-never-inline Ignores inline keyword on function definitions

on page 1-51

-no-alttok Disallows alternative keywords and sequences in sources
on page 1-51

-no-annotate
on page 1-51

Disables the annotation of assembly files

-no-annotate-loop-instr
on page 1-52

Disables the production of additional loop annotation
information by the compiler (default mode)

1-16 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

Table 1-5. C/C++ Compiler Common Switches (Contd)

Switch Name

Description

-no-assume-vols-are-mmrs
on page 1-52

Directs the compiler not to apply workarounds for
MMR-related silicon errata to arbitrary
volatile-qualified memory accesses.

-no-auto-attrs

Directs the compiler not to emit automatic attributes

on page 1-52 based on the files it compiles
-no-bss Causes the compiler to group global zero-initialized
on page 1-53 data into the same section as global data with non-zero

initializers

-no-builtin
on page 1-53

Disable recognition of __builtin functions

-no-circbuf
on page 1-53

Disables the automatic generation of circular buffering
code

-no-const-strings

Directs the compiler not to make string literals const

on page 1-53 qualified

-no-defs Disables preprocessor definitions: macros, include

on page 1-54 directories, library directories, run-time headers, or key-
word extensions

-no-eh Disables exception-handling

on page 1-54

-no-expand-symbolic-Tlinks
on page 1-54

Disables support for Cygwin path extensions in com-
mand-line paths and preprocessor include directives

-no-expand-windows-shortcuts
on page 1-54

Disables support for Windows shortcuts in com-
mand-line paths and preprocessor include directives

-no-extra-keywords
on page 1-54

Does not define language extension keywords that

could be valid C/C++ identifiers

-no-force-1ink
on page 1-55

Does not create a new stack frame for leaf functions, if
one can be omitted. Overrides the default for -g.

-no-fp-associative
on page 1-55

Does not treat floating-point multiplication and
addition as associative operations

-no-full-io
on page 1-56

Links with the Analog Devices I/O library. Enabled by
defaule

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-17
for Blackfin Processors

Compiler Command-Line Interface

Table 1-5. C/C++ Compiler Common Switches (Contd)

Switch Name

Description

-no-fx-contract
on page 1-56

Sets the default mode of FX_CONTRACT to OFF.

-no-int-to-fract

Prevents the compiler from turning integer into frac-

on page 1-56 tional arithmetic

“no-jcs21 Prevents the linker from converting compiler-generated
on page 1-57 short jumps to long jumps using register P1

-no-mem Causes the compiler to not invoke the Memory Initial-
on page 1-57 izer after linking. Set by default.

-no-multiline
on page 1-57

Disables multiple line string literal support

-no-progress-rep-timeout
on page 1-57

Prevents the compiler from issuing a diagnostic during
excessively long compilations

-no-sat-associative
on page 1-57

Saturating addition is not associative

-no-saturation

Causes the compiler not to introduce saturation seman-

on page 1-58 tics when optimizing expressions

-no-std-ass Prevents the compiler from defining standard assertions

on page 1-58

-no-std-def Disables normal macro definitions and also Analog

on page 1-58 Devices keyword extensions that do not have leading
underscores (__)

-no-std-inc Searches only for preprocessor include header files in

on page 1-59 the current directory and in directories specified with
the - I switch

-no-std-lib When linking, searches for libraries only in directories

on page 1-59 specified with the -L switch

-no-threads
on page 1-59

Specifies that no support is required for multi-threaded
applications

on page 1-59

-no-workaround workaround_id

Disables specific hardware anomaly workarounds
within the compiler

-no-zero-loop-counters
on page 1-60

Do not zero loop counters (LCO and LC1) on function
exit

Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

Table 1-5. C/C++ Compiler Common Switches (Contd)

Switch Name

Description

-0 Enables (-0 or -01) or disables (-00) code

-01 optimizations (uppercase “O” optionally followed

-00 by a zero or a one)

on page 1-60

-0a Enables automatic function inlining

on page 1-60

-0fp Offsets the frame pointer to allow more short load and

on page 1-60 store instructions. Reduces debugger capabilities, when
used with -g.

-0g Enables a compiler mode that performs optimizations

on page 1-61 while still preserving the debugging information

-0s Optimizes the file to decrease code size

on page 1-61

-0v num Controls speed versus size optimizations

on page 1-61

-0 filename Specifies the output file name

on page 1-63

-overlay Disables the propagation of register information

on page 1-64 between functions and forces the compiler to assume

that all functions clobber all scratch registers

-overlay-clobbers registers

Specifies the registers assumed to be clobbered by an

for Blackfin Processors

on page 1-64 overlay manager
-p Preprocesses, but does not compile, the source file; out-
on page 1-65 put does not contain #11ne directives
-pp Preprocesses and compiles the source file; output does
on page 1-65 not contain #11ine directives.
-pl Generates profiling instrumentation
- p 2
on page 1-65
Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-19

Compiler Command-Line Interface

Table 1-5. C/C++ Compiler Common Switches (Contd)

Switch Name

Description

-path-asm filename
-path-compiler filename
-path-T1ib filename
-path-link filename

on page 1-65

Uses the specified directory as the location of the
specified compilation tool (assembler, compiler, library

builder, or linker)

-path-install directory
on page 1-66

Uses the specified directory as the location of all
compilation tools

-path-output directory
on page 1-66

Specifies the location of non-temporary files

-path-temp directory

Specifies the location of temporary files

on page 1-66
-pch Enables automatic generation and use of precompiled
on page 1-66 header files

-pchdir directory
on page 1-66

Specifies an alternative directory to PCHRepository in
which to store precompiled header files

-pgo-session session-id
on page 1-67

Used with profile-guided optimization

-pguide
on page 1-67

Adds instrumentation for the gathering of a profile as
the first stage of performing profile-guided optimiza-
tion

-pplist filename
on page 1-68

Outputs a raw preprocessed listing to the specified file

-proc processor
on page 1-68

Specifies a processor for which the compiler should pro-
duce suitable code

-progress-rep-func
on page 1-69

Issues a diagnostic message each time the compiler
starts compiling a new function. Equivalent to
-Wwarn=ccl472.

-progress-rep-opt
on page 1-69

Issues a diagnostic message each time the compiler
starts a new optimization pass on the current function.
Equivalent to -Wwarn=cc1473.

-progress-rep-timeout
on page 1-70

Issues a diagnostic message if the compiler exceeds a
time limit during compilation.

1-20

Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

Table 1-5. C/C++ Compiler Common Switches (Contd)

Switch Name

Description

on page 1-70

-progress-rep-timeout-secs secs

Specifies how many seconds must elapse during a com-
pilation before the compiler issues a diagnostic on the
length of compilation.

-R directory

Appends directory to the standard search path for

on page 1-70 source files
-R- Removes all directories from the source file search direc-
on page 1-71 tory list

-reserve register(s)

Reserves certain registers from compiler use.

on page 1-71 Note: Reserving registers can have a detrimental effect
on the compiler’s optimization capabilities.

-S Stops compilation before running the assembler

on page 1-71

-s When linking, removes debugging information from

on page 1-71 the output executable file

-sat-associative Saturating addition is associative

on page 1-71

-save-temps Saves intermediate files

on page 1-72

-sdram Instructs the compiler to assume that at least bank 0 of

on page 1-72 external SDRAM will be present and enabled

-section id=section_name

Orders the compiler to place data/program of type “id”

on page 1-72 into the section “section_name”
-show Displays the driver command-line information
on page 1-73

-signed-bitfield
on page 1-74

Makes the default type for int bitfields signed

-signed-char
on page 1-74

Makes the default type for char signed

-si-revision version
on page 1-74

Specifies a silicon revision of the specified processor.
The default setting is the latest silicon revision

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-21

for Blackfin Processors

Compiler Command-Line Interface

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description
-stack-detect Causes the compiler to generate additional instructions
on page 1-74 in the generated code to detect a potential stack over-
flow.

-structs-do-not-overlap Specifies that struct copies may use “memcpy” seman-
on page 1-75 tics, rather than the usual “memmove” behavior
-syntax-only Checks the source code for compiler syntax errors, but
on page 1-75 does not write any output
-sysdefs Instructs the driver to define preprocessor macros that
on page 1-76 describe the current user and machine
-T filename Specifies the linker description file
on page 1-76
-threads Enables the support for multi-threaded applications
on page 1-76
-time Displays the elapsed time as part of the output informa-
on page 1-77 tion on each part of the compilation process
-U macro Undefines macro
on page 1-77
-unsigned-bitfield Makes the default type for plain int bit-fields unsigned
on page 1-77
-unsigned-char Makes the default type for char unsigned
on page 1-78
-V Displays version and command-line information for all
on page 1-78 compilation tools
-verbose Displays command-line information for all compilation
on page 1-79 tools as they process each file
-version Displays version information for all compilation tools
on page 1-79 as they process each file
-Werror number Overrides the default severity of the specified messages
-Wremark number (errors, remarks, or warnings)
-Wsuppress number
-Wwarn number
on page 1-79

1-22 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

Table 1-5. C/C++ Compiler Common Switches (Contd)

Switch Name

Description

-Werror-Timit number

Stops compiling after reaching the specified number of

on page 1-80 errors

-Werror-warnings Directs the compiler to treat all warnings as errors
on page 1-80

-Wremarks Issues compiler remarks

on page 1-80

-Wterse Issues the briefest form of compiler warnings, errors,
on page 1-80 and remarks

W Disables all warnings

on page 1-80

-warn-protos
on page 1-81

Issues warnings about functions without prototypes

-workaround workaround_id

Enables code generator workaround for specific hard-

on page 1-81 ware errata

-write-files Enables compiler I/O redirection

on page 1-81

-write-opts Passes the user options (but not input file names) via a
on page 1-82 temporary file

-xref filename
on page 1-82

Outputs cross-reference information to the specified file

-zero-Tloop-counters
on page 1-83

Ensure used loop counters (LCO and LC1) are zeroed on
function exit

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-23

for Blackfin Processors

Compiler Command-Line Interface

Table 1-6. C Mode (MISRA) Compiler Switches

Switch Name Description
-misra Enables checking for MISRA-C:2004 Guidelines. Allows
on page 1-83 some relaxation of interpretation. For more information,

see “Rules Descriptions” on page 1-147.

-misra-linkdir directory Specifies directory for generation of .misra files.

on page 1-84 If this option is not specified, a local directory called
MISRARepository is created. The .misra files allow the
compiler to record information across modules to support
the implementation of MISRA rules 5.5, 8.8, and 8.10.

-misra-no-cross-module Implies -misra , but inhibits the generation of .misra
on page 1-84 files to check for link-time rule violations. It therefore dis-

ables checking of MISRA rules 5.5, 8.8, and 8.10.

-misra-no-runtime Implies -misra, but inhibits the generation of extra code
on page 1-84 to perform run-time checking in support of Rule 21. The
disabling of run-time checks also suppresses checking for
rules 17.1, 17.2 and 17.3. It limits rules 9.1, 12.8, 16.3
and 17.4 to compile-time checks.

-misra-strict Enables checking for MISRA-C:2004 Guidelines. Rules
on page 1-84 relaxed by -misra option are enforced fully by this option.
For more information, see “Rules Descriptions” on
page 1-147.
-misra-suppress-advisory Implies -misra, but suppresses the reporting of advisory
on page 1-85 rules.
-misra-testing Implies -misra, but suppresses reporting of MISRA rules
on page 1-85 20.4, 20.7, 20.8, 20.9, 20.10, 20.11, and 20.12. This

allows the use of I/O and other support functions during
development testing.

-Wmis_suppress Overrides the default severity of the specified messages
on page 1-85 relating to the specified MISRA rules. For example,
-Wmis_suppress 16.1 will suppress the reporting of
violations of rule 16.1.

-Wmis_warn Overrides the default severity of the specified messages

on page 1-85 relating to the specified MISRA rules. For example,
-Wmis_warn 16.1 will change the reporting of violations of
rule 16.1 as an error to a warning.

1-24 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Table 1-7. C++ Mode Compiler Switches

Switch Name

Description

-anach
on page 1-85

Supports some language features (anachronisms) that are
prohibited by the C++ standard but still in common use

-check-init-order
on page 1-87

Adds run-time checking to the generated code highlighting
potential uninitialized external objects. For development
purposes only - do not use in production code.

-extern-inTine
on page 1-87

Allows standard behavior with respect to extern inline
functions.

-friend-injection
on page 1-88

Allows non-standard behavior with respect to friend decla-
rations. When friend names are not injected, function
names are visible only when using dependent lookup. This
is the default mode.

-full-dependency-inclusion
on page 1-88

Ensures re-inclusion of implicitly included files when gen-
erating dependency information

-ignore-std

Disables namespace std within the C++ Standard header

on page 1-88 files
-no-anach Disallows the use of anachronisms that are prohibited by
on page 1-89 the C++ standard

-no-extern-inline
on page 1-89

Treats extern inline functions as though they have static

linkage. This is the default mode.

-no-friend-injection
on page 1-89

Allows standard behavior. Friend function names are visi-
ble only when using argument-dependent lookup and
friend class names are never visible.

-no-implicit-inclusion

Prevents implicit inclusion of source files as a method of

on page 1-89 finding definitions of template entities to be instantiated
-no-rtti Disables run-time type information

on page 1-90

-no-std-templates Disables the special lookup of names used in templates
on page 1-90

-rtti Enables run-time type information

on page 1-90

-std-templates
on page 1-90

Enables the lookup of names used in templates

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

1-25

Compiler Command-Line Interface

C/C++ Mode Selection Switch Descriptions

The following command-line switches provide C/C++ mode selection.

-c89

The -c89 switch directs the compiler to support programs that conform
to the ISO/IEC 9899:1990 standard. For greater conformance to the stan-
dard, use the following switches: -alttok, -const-read-write, and
-no-extra-keywords. (See Table 1-5 on page 1-11.)

-c99

The -¢99 switch directs the compiler to support programs that conform to
a freestanding implementation of the ISO/IEC 9899:1999 standard. For
greater conformance to the standard see “Language Standards Compli-
ance” on page 1-140.

The compiler does not support the _Complex and _Imaginary key-
words. Complex arithmetic in C mode is enabled by including the
Analog Devices-specific header file <complex.h>.

-Cc++

The -c++ (C++ mode) switch directs the compiler to assume that the
source file(s) are written in ANSI/ISO standard C++ with Analog Devices
language extensions.

All the standard features of C++ are accepted in the default mode except
exception handling and run-time type identification because these impose
a run-time overhead that is not desirable for all embedded programs.
Support for these features can be enabled with the -eh switch

(on page 1-35) and -rtti switch (on page 1-90).

C/C++ Compiler Common Switch Descriptions

The following command-line switches apply in both C and C++ modes.

1-26 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

sourcefile

The sourcefile parameter (or parameters) specifies the name of the file
(or files) to be preprocessed, compiled, assembled, and/or linked. A file
name can include the drive, directory, file name, and file extension. The
ccblkfn compiler uses the file extension to determine the operations to
perform. Table 1-3 on page 1-9 lists the permitted extensions and
matching compiler operations.

The -@ filename (command file) switch directs the compiler to read
command-line input from filename. The specified file must contain
driver options and may also contain source file names and environment

variables. It can be used to store frequently used options as well as to read
from a file list.

The -A name (tokens) (assert) switch directs the compiler to assert name
as a predicate with the specified zokens. This has the same effect as the
#assert preprocessor directive. The following assertions are predefined.

Table 1-8. Predefined Assertions

Assertion Value
system embedded
machine adspblkfn
cpu adspbTkfn
compiler cchlkfn

The -A name(value) switch is equivalent to including

ffassert name(value)

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-27
for Blackfin Processors

Compiler Command-Line Interface

in your source file, and both may be tested in a preprocessor condition
in the following manner:

#if fname(value)

// do something
ffelse

// do something else
frendif

For example, the default assertions may be tested as:

f#if ffmachine(adspblkfn)
// do something else
ffendif

The parentheses in the assertion need quotes when using the -A
switch to prevent misinterpretation. Quotes are not required for an
#assert directive in a source file.

-add-debug-libpaths

The -add-debug-Tibpaths switch prepends the Debug subdirectory to the
search paths passed to the linker. The Debug subdirectory, found in each
of the silicon-revision-specific library directories, contains variants of cer-
tain libraries (for example, system services), which provide additional
diagnostic output to assist in debugging problems arising from their use.

Invoke this switch with the Use Debug System Libraries check box
located in the Visual DSP++ Project Options dialog box (Link : Processor

page).
-alttok

The -alttok (alternative tokens) switch directs the compiler to allow
digraph sequences in C and C++ source files. Additionally, the switch

1-28 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

enables the recognition of these alternative operator keywords in C++

source files (Table 1-9).

Table 1-9. Alternative Operator Keywords

Keyword Equivalent
and &&
and_eq &=
bitand &
bitor |
compl ~
or I
or_eq =
not !
not_eq I=
xor n
Xxor_eq A=

@ To use alternative tokens in C, use #include <iso646.h>.

See also “-no-alttok” on page 1-51.
-always-inline

The -always-inline switch instructs the compiler to attempt to inline
any call to a function that is defined with the inline qualifier. This switch
is equivalent to applying #pragma always_inline to all functions in the
module that have the in1ine qualifier. See also the -never-inline switch

(on page 1-51).

Invoke this switch with the Always check box located in the Inlining area
of the VisualDSP++ Project Options dialog box (Compile : General

page).

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-29
for Blackfin Processors

Compiler Command-Line Interface

-annotate

The -annotate (enable assembly annotations) switch directs the compiler
to annotate assembly files generated by the compiler. By default, when
optimizations are enabled, all assembly files generated by the compiler are
annotated with information on the performance of the generated assem-

bly. See “Assembly Optimizer Annotations” on page 2-96 for more details
on this feature.

Invoke this switch by selecting the Generate assembly code annotations
check box located in the Visual DSP++ Project Options dialog box
(Compile page, General category).

See also “-no-annotate” on page 1-51.
-annotate-loop-instr

The -annotate-loop-instr switch directs the compiler to provide addi-
tional annotation information for the prolog, kernel, and epilog of a loop.

See “Assembly Optimizer Annotations” on page 2-96 for more details on
this feature.

See also “-no-annotate-loop-instr” on page 1-52.
-auto-attrs

The -auto-attrs (automatic attributes) switch directs the compiler to
emit automatic attributes based on the files it compiles. Emission of auto-
matic attributes is enabled by default. See “File Attributes” on page 1-471
for more information about attributes and what automatic attributes the
compiler emits. See also the -no-auto-attrs switch (on page 1-52) and
the -file-attr switch (on page 1-38).

-bss

The -bss switch causes the compiler to place global zero-initialized data
into a BSS-style section (called “bsz”), rather than into the normal global

1-30 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

data section. This is the default mode. See also the -no-bss switch

(on page 1-53).
-build-lib

The -build-1ib (build library) switch directs the compiler to use e1far
(the librarian) to produce a library file (. d1b) instead of using the linker to
produce an executable file (. dxe). The -0 option (on page 1-63) must be
used to specify the name of the resulting library.

The -C (comments) switch, which is only active when used with the -E,
-EE, -ED, -P, or -PP switches, directs the preprocessor to retain comments
in its output.

The -c (compile only) switch directs the compiler to compile and/or
assemble the source files, but to stop before linking. The output is an
object file (.doj) for each source file.

-const-read-write

The -const-read-write switch directs the compiler to specify that con-
stants may be accessed as read-write data (as in ANSI C). The compiler’s
default behavior assumes that data referenced through const pointers
never changes.

The -const-read-write switch changes the compiler’s behavior to match
the ANSI C assumption, which is that other non-const pointers may be
used to change the data at some point.

Invoke this switch with the Pointers to const may point to non-const
data check box located in the Constants area of the VisualDSP++ Project
Options dialog box (Compile : Language Settings page).

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-31
for Blackfin Processors

Compiler Command-Line Interface

-const-strings

The -const-strings (const-qualify strings) switch directs the compiler to
mark string literals as const-qualified. See also the -no-const-strings

switch (on page 1-53).

Invoke this switch with the Literal strings are const check box located in
the Language Settings : Constants area of the Project Options dialog box
(Compile : Language Settings page).

-cplbs

The -cp1bs (CPLBs are active) switch instructs the compiler to assume
that all memory accesses will be validated by the Blackfin processor’s
memory protection hardware. This switch is best used in conjunction with
the -workaround switch, as it allows the compiler to identify situations
where the cacheability protection lookaside buffers (CPLBs) will avoid
problems, thus avoiding the need for extra workaround instructions.

If only instruction CPLBs or data CPLBs are enabled, use the “-icplbs” on
page 1-45 switch or the “-dcplbs” on page 1-33 switch, respectively

Invoke this switch with the CPLBs are enabled check box located in the
Visual DSP++ Project Options dialog box (Compile : Processor (2) page).

The -D macrof=definition] (define macro) switch directs the compiler to
define a macro. If you do not include the optional definition string, the
compiler defines the macro as the string ‘1’. Note that the compiler pro-
cesses -D switches on the command line before any -U (undefine macro)
switches.

Invoke this switch by using the Preprocessor definitions field located in

the Visual DSP++ Project Options dialog box (Compile : Preprocessor
page).

1-32 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

-dcplbs

The -dcplbs (data CPLBs are active) switch instructs the compiler to
assume that all data memory accesses will be validated by the Blackfin
processor’s memory protection hardware. This allows the compiler to
identify situations where the cacheability protection lookaside buffers
(CPLBs) will avoid problems the compiler would otherwise workaround
(for example, anomaly 05-00-0428), improving code size and
performance.

If both ICPLBs and DCPLBs are active, use the “-cplbs” on page 1-32
switch.

-debug-types <file.h>

The -debug-types switch builds a . h file directly and writes a complete set
of debugging information for the header file. The -g option

(on page 1-42) need not be specified with the -debug-types option
because it is implied.

For example,
ccblkfn -debug-types anyHeader.h

Until the introduction of -debug-types, the compiler would not accept a
*.h file as a valid input file. The implicit -g option writes debugging
information for only those typedefs that are referenced in the program.
The -debug-types option provides complete debugging information for
all typedefs and structs.

-decls-{weak|]strong}

The -decls-weak and -decls-strong switches control how the compiler
interprets uninitialized global variable definitions, such as int x;.

)
specifying that other definitions of the same variable in other modules
cause a “multiply-defined symbol” error. The -decls-weak switch treats

The -decls-strong switch treats this as equivalent to int x = 0;

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-33
for Blackfin Processors

Compiler Command-Line Interface

this as equivalent to “extern int x;”, such as a declaration of a symbol
that is defined in another module. The default is -dec1s-strong. ANSI C
behavior is -decls-weak.

Invoke this switch by means of the Treat uninitialized global vars as...
check boxes located in the VisualDSP++ Project Options dialog box
(Compile : Processor (1) page).

-double-size-{32 | 64}

The -double-size-32 (double is 32 bits) and -double-size-64 (double is
64 bits) switches specify the size of the double data type. The default is
-double-size-32 (32-bit data type).

The -double-size-64 switch promotes double to a 64-bit data type,
making it equivalent to Tong double. This switch does not affect the sizes
of float or Tong double. Refer to “Using Data Storage Formats” on
page 1-443 for more information on data types.

Invoke this switch with the Double Size option buttons located in the
Project Options dialog box (Compile : Processor (1) page).

-double-size-any

The -double-size-any switch specifies that the input source files make no
use of double-typed data, and that resulting object files should be marked
in such a way that will enable them to be linked against objects built with
doubles, either 32 bits or 64 bits in size. Refer to “Using Data Storage
Formats” on page 1-443 for more information on data types.

Invoke this switch with the Allow mixing of sizes check box located in the

Visual DSP++ Project Options dialog box (Compile : Processor (1) page).
-dry

The -dry (verbose dry run) switch directs the compiler to display main
ccb1kfn actions, but not to perform them.

1-34 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

-dryrun

The -dryrun (terse dry run) switch directs the compiler to display
top-level ccblkfn actions, but not to perform them.

The -E (stop after preprocessing) switch directs the compiler to stop
after the C/C++ preprocessor runs (without compiling). The output
(preprocessed source code) prints to the standard output stream unless
the output file is specified with the -0 switch (on page 1-63).

-ED

The -£D (run after preprocessing to file) switch directs the compiler to
write the output of the C/C++ preprocessor to a file named
“original_filename.i”. After preprocessing, compilation proceeds
normally.

Invoke this switch with the Generate preprocessed file check box located
in the Project Options dialog box (Compile : General page).

-EE

The -EE (run after preprocessing) switch directs the compiler to write the
output of the C/C++ preprocessor to standard output. After preprocess-
ing, compilation proceeds normally.

-eh

The -eh (enable exception handling) switch directs the compiler to allow
C++ code that contains catch statements and throw exceptions and other
features associated with ANSI/ISO standard C++ exceptions. When this
switch is enabled, the compiler defines the macro __EXCEPTIONS as 1.

If used when compiling C programs, without the -c++ (C++ mode) switch
(on page 1-26), the -eh switch directs the compiler to generate exceptions

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-35
for Blackfin Processors

Compiler Command-Line Interface

tables but does not change the language accepted. In this case,
__EXCEPTIONS is not defined.

The -eh switch also causes the compiler to define __ADI_LIBEH__ during
the linking stage so that appropriate sections can be activated in the .1df

file, and the program can be linked with a library built with exceptions
enabled.

Object files created with exceptions enabled may be linked with objects
created without exceptions enabled. However, exceptions can only be
thrown from and caught, and cleanup code executed, in modules com-
piled with -eh. If an attempt is made to throw an exception through the
execution of a function not compiled -eh, then abort or the function reg-
istered with set_terminate is called. See “Exceptions Tables Pragma” on

page 1-347.

In non-threaded applications, the buffer used for the passing of exception
data is not returned to the heap on application exit. This is to avoid
unnecessary code and will have no impact on behavior.

Invoke this switch with the C++ exceptions and RTTI check box located
in the VisualDSP++ Project Options dialog box (Compile : Language
Settings page).

See also “-no-eh” on page 1-54.
-enume-is-int

The -enum-is-int switch ensures that the type of an enum is int. By
default, the compiler defines enumeration types with integral types larger
than int, if int is insufficient to represent all the values in the enumera-
tion. This switch prevents the compiler from selecting a type wider than
int.

Invoke this switch with the Enumerated types are always int check box
located in the Visual DSP++ Project Options dialog box
(Compile : Language Settings page).

1-36 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

-expand-symbolic-links

The -expand-symbolic-Tinks (expand symbolic links) switch directs the
compiler to recognize Cygwin path extensions (see “Cygwin Path Sup-
port” on page 1-93) within command-line switches and #include
preprocessor directives. This option is disabled by default. See also the
-no-expand-symbolic-1inks switch (on page 1-54).

-expand-windows-shortcuts

The -expand-windows-shortcuts (expand Windows shortcuts) switch
directs the compiler to recognize Windows shortcuts (“Windows Shortcut
Support” on page 1-92) within command-line switches and #include
preprocessor directives. This option is disabled by default. See also the
-no-expand-windows-shortcuts switch (on page 1-54).

-extra-keywords

The -extra-keywords (enable short-form keywords) switch directs the
compiler to recognize the Analog Devices keyword extensions to
ANSI/ISO standard C/C++ without leading underscores, which can affect
conforming ANSI/ISO C/C++ programs. This is the default mode.

Use the -no-extra-keywords switch (on page 1-54) to disallow support
for the additional keywords. Table 1-21 on page 1-158 provides a list and
a brief description of keyword extensions.

-extra-loop-loads

The -extra-loop-loads (improve code for loops) switch provides the
compiler with extra freedom to read more memory locations than
required, within a loop, in order to generate the best code. For example, if
a loop indicated that the compiler should read elements arr[0]..arr[59]
and sum them, the -extra-loop-loads switch would indicate that the
compiler is also allowed to read element arr[601].

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-37
for Blackfin Processors

Compiler Command-Line Interface

-fast-fp

The -fast-fp (fast floating point) switch directs the compiler to link with
the high-speed floating-point emulation library. This library relaxes some
of the IEEE floating-point standard’s rules for checking inputs against
not-a-number (NaN) and denormalized numbers to improve
performance. This switch is enabled by default. See also the -ieee-fp
switch (on page 1-45). Refer to “Using Data Storage Formats” on

page 1-443 for more information on data types.

Invoke this switch with the High performance option button located in
the Floating Point area of the Visual DSP++ Project Options dialog box
(Link : Processor page).

-file-attr

The -file-attr name[=value] (file attribute) switch directs the compiler
to add the specified attribute name/value pair to all the files it compiles.
To add multiple attributes, use the switch multiple times. If “=value” is
omitted, the default value of “1” will be used. See “File Attributes” on
page 1-471 for more information about attributes, and what automatic
attributes the compiler emits. See also the -auto-attrs switch

(on page 1-30) and the -no-auto-attrs switch (on page 1-52).

Invoke this switch with the Additional attributes text field located in the
Project Options dialog box (Compile : General page).

-fixed-point-io

The -fixed-point-io (use fixed-point I/O library) switch links the appli-
cation with a variant of the Analog Devices I/O library with support for
printing fract and accum types in decimal format with the printf family
of functions using the %k, %K, %r, and %R conversion specifiers. This library
provides output that adheres to the embedded C Technical Report 18037
at the expense of increased code size footprint. Linking with the default
I/O library provides output using the %k, %K, %r, and %R specifiers only in
hexadecimal format. Note that the Analog Devices libraries contains a

1-38 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

faster implementation of C standard I/O than the alternative third-party
I/0O library (see “-full-io” on page 1-40.) but that the functionality pro-
vided is not as comprehensive. For details, refer to “stdio.h” on page 3-31.

This switch passes the _ADI_FX_LIBI0 macro to the compiler and linker.

Invoke this switch using the High performance I/O with support for
fixed-point types option button located in the I/O Libraries area of the
Visual DSP++ Project Options dialog box (Link : Processor page).

See also “-full-io” on page 1-40 and “-no-full-io” on page 1-56.
-flags{-asm | -compiler | -lib | -link | -mem} switch [,switch2],...]]

The -flags (command-line input) switch directs the compiler to pass
command-line switches to the other build tools.

Versions of this switch are listed in Table 1-10.

Table 1-10. Switches Passed to Other Build Tools

Option Tool

-flags-asm Assembler
-flags-compiler Compiler executable
-flags-1ib Library Builder (e1far.exe)
-flags-link Linker

-flags-mem Memory Initializer

-force-circbuf

The -force-circbuf (circular buffer) switch instructs the compiler to use
circular buffer facilities, even if the compiler cannot verify that the circular
index or pointer is always within the range of the buffer. Without this
switch, the compiler’s default behavior is conservative, and does not use
circular buffers unless it can verify that the circular index or pointer is

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-39

for Blackfin Processors

Compiler Command-Line Interface

always within the circular buffer range. See “Circular Buffer Built-In
Functions” on page 1-256.

Invoke this switch with the Even when pointer may be outside buffer
range option button located in the VisualDSP++ Project Options dialog
box (Compile : Language Settings page).

-force-link

The -force-Tink (force stack frame creation) switch directs the compiler
to create a new stack frame for leaf functions.

This is selected by default if the -g switch (on page 1-42) is selected as it
improves the quality of debugging information, but can be switched off
with -no-force-1ink. When -p (on page 1-65) is selected, this switch is
always in force. See also -no-force-1ink switch (on page 1-55).

-fp-associative

The -fp-associative switch directs the compiler to treat floating-point
multiplication and addition as associative operations. This switch is on by

default.
See also “-no-fp-associative” on page 1-55.
-full-io

The -full-io switch links the application with a third-party, proprietary
/0O library. The third-party I/O library provides a complete implementa-
tion of the ANSI C Standard I/O functionality at the cost of performance
(compared to the Analog Devices I/O library). For details, see “stdio.h” on
page 3-31.

Invoke this switch using two options: the Full I/O check box located in
the Visual DSP++ Project Options dialog box (Compile : Processor (1)
page) and the Full ANSI C Compliance option button located in the
I/O Libraries area of the VisualDSP++ Project Options dialog box
(Link : Processor page).

1-40 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

See also “-no-full-io” on page 1-56.
-full-version

The -full-version (display version) switch directs the compiler to display
version information for all the compilation tools as they process each file.

-fx-contract

The -fx-contract switch sets the default state of FX_CONTRACT to ON,
which is the default setting. This switch controls the performance and
accuracy of arithmetic on the native fixed-point types fract and accum.

See “FX_CONTRACT” on page 1-115 for more information.

See also “-no-fx-contract” on page 1-56.

-fx-rounding-mode-biased

The -fx-rounding-mode-biased switch sets the default state of
FX_ROUNDING_MODE to BIASED. This switch controls the rounding behavior
of arithmetic on the native fixed-point types fract and accum. See “Set-
ting the Rounding Mode” on page 1-128 for more information. It should
be used in conjunction with the set_rnd_mod_biased() built-in function,

described in “Changing the RND_MOD Bit” on page 1-242.

-fx-rounding-mode-truncation

The -fx-rounding-mode-truncation switch sets the default state of
FX_ROUNDING_MODE to TRUNCATION, which is the default setting. This switch
controls the rounding behavior of arithmetic on the native fixed-point
types fract and accum. See “Setting the Rounding Mode” on page 1-128
for more information.

-fx-rounding-mode-unbiased

The -fx-rounding-mode-unbiased switch sets the default state of
FX_ROUNDING_MODE to UNBIASED. This switch controls the rounding behav-
ior of arithmetic on the native fixed-point types fract and accum. See

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-41
for Blackfin Processors

Compiler Command-Line Interface

“Setting the Rounding Mode” on page 1-128 for more information. It
should be used in conjunction with the set_rnd_mod_unbiased() built-in
function, described in “Changing the RND_MOD Bit” on page 1-242.

The -g (generate debugging information) switch directs the compiler to
output symbols and other information used by the debugger.

If the -g switch is used with the -0 (enable optimization) switch, the com-
piler performs standard optimizations. The compiler also outputs symbols
and other information to provide limited source-level debugging. This
combination of options provides line debugging and global variable

debugging.

Invoke this switch by selecting the Generate debug information check
box in the Visual DSP++ Project Options dialog box (Compile : General

page).

When the -g and -0 switches are specified, no debug information is
available for local variables and the standard optimizations can
sometimes rearrange program code in a way that produces inaccu-
rate line number information. For full debugging capabilities, use
the - g switch without the -0 switch. See also the -0g switch

(on page 1-61).

-glite

The -g1ite (lightweight debugging) switch can be used on its own, or in
conjunction with any of the -g, -0g, or -debug-types compiler switches.
When this switch is enabled, it instructs the compiler to remove any
unnecessary debug information for the code that is compiled.

When used on its own, the switch also enables the -g option.

1-42 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

This switch can be used to reduce the size of object and executable
files, but will have no effect on the size of the code loaded onto the
target.

-guard-vol-loads

The -guard-vol-loads (guard volatile loads) switch disables interrupts
during volatile loads. A load can be interrupted before completion and
restarted once the interrupt completes. If the load is to a device register,
this can have undesirable side effects. The -quard-vol-Toads switch
disables interrupts before issuing a volatile load and re-enables interrupts
after the load to avoid this problem.

Invoke this switch with the Disable interrupts during volatile memory
accesses check box located in the Visual DSP++ Project Options dialog
box (Compile : Processor (1) page).

The -H (list headers) switch directs the compiler to output a list of the files
included by the preprocessor via the #include directive, without compil-
ing. The -o switch (on page 1-63) may be used to redirect the list to a file.

-HH

The -HH (list headers and compile) switch directs the compiler to print to
the standard output file stream a list of the files included by the preproces-
sor via the #include directive. After preprocessing, compilation proceeds
normally.

-h[elp]

The -h or -help (command-line help) switches directs the compiler to
output a list of command-line switches with a brief syntax description.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-43
for Blackfin Processors

Compiler Command-Line Interface

The -1 directory [{,];} directory...] (include search directory)
switch directs the C/C++ preprocessor to append the directory

(or directories) to the search path for include files. This option can be
specified more than once; all specified directories are added to the search

path.

Include files, whose names are not absolute path names and that are
enclosed in “...” when included, are searched for in the following directo-
ries in this order:

1. The directory containing the current input file (the primary source
file or the file containing the #include)

2. Any directories specified with the -1 switch in the order they are
listed on the command line

3. Any directories on the standard list:
<install_path>\...\include

@ If a file is included using the <...> form, this file is only searched

for by using directories defined in items 2 and 3 above.

Invoke this switch with the Additional include directories text field
located in the Visual DSP++ Project Options dialog box (Compile :

Preprocessor page).

The -1- (start include directory list) switch establishes the point in the
include directory list at which the search for header files enclosed in angle
brackets begins. Normally, for header files enclosed in double quotes, the
compiler searches in the directory containing the current input file; then
the compiler reverts back to looking in the directories specified with the
-1 switch; and then the compiler searches in the standard include
directory.

1-44 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

It is possible to replace the initial search (within the directory containing
the current input file) by placing the -1- switch at the point on the com-
mand line where the search for all types of header file begins. All include
directories on the command line specified before the -1- switch are used
only in the search for header files that are enclosed in double quotes.

This switch removes the directory containing the current input file
from the include directory list.

The -1 (less includes) switch may be used with the -H, -HH, -M, or -MM
switches to direct the compiler to only output header details (-H, -HH)
or makefile dependencies (-M, -MM) for include files specified in double
quotes.

-icplbs

The -icplbs (instruction CPLBs are active) switch instructs the compiler
to assume that all instruction memory accesses will be validated by the
Blackfin processor’s memory protection hardware. This allows the com-
piler to identify situations where the cacheability protection lookaside
buffers (CPLBs) will avoid problems the compiler would otherwise work-
around (for example, anomaly 05-00-0426), improving code size and
performance.

If both ICPLBs and DCPLBs are active, use the “-cplbs” on page 1-32
switch.

-ieee-fp

The -ieee-fp (slower floating point) switch directs the compiler to link
with the fully-compliant floating-point emulation library. This library
obeys all of the IEEE floating-point standard’s rules, and incurs a perfor-
mance penalty when compared with the default floating-point emulation
library. See also the - fast-fp switch (on page 1-38). Refer to “Using Data
Storage Formats” on page 1-443 for more information on data types.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-45
for Blackfin Processors

Compiler Command-Line Interface

Invoke this switch with the Strict IEEE compliance option button located
in the Floating Point area of the Visual DSP++ Project Options dialog box
(Link : Processor page).

-implicit-pointers

The -implicit-pointers (implicit pointer conversion) switch allows a
pointer to one type to be converted to a pointer to another type without
using an explicit cast. The compiler produces a discretionary warning
rather than an error in such circumstances. This option is not valid when
compiling in C++ mode.

For example, the following code will not compile without this switch:

int *foo(int *a) {
return a;
}
int main(void) {
char *p = 0, *r;
r = foo(p); /* Bad: normally produces an error */
return 0;
}

In this example, both the argument to foo and the assignment to r will be
faulted by the compiler. Using the -implicit-pointers switch converts
these errors into warnings.

Invoke this switch with the Allow incompatible pointer types check box
located in the Visual DSP++ Project Options dialog box
(Compile : Language Settings page).

-include

The -include filename (include file) switch directs the preprocessor to
process the specified file before processing the regular input file. Any -D
and -U options on the command line are processed before an -include

file.

1-46 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

-ipa

The -ipa (interprocedural analysis) switch turns on interprocedural
analysis (IPA) in the compiler. This option enables optimization across
the entire program, including between source files that were compiled
separately. If used, the -ipa switch should be applied to all C and C++
files in the program. For more information, see “Interprocedural Analysis”
on page 1-98. Specifying -ipa also implies setting the -0 switch

(on page 1-60).

Invoke this switch by selecting the Interprocedural optimization check
box in the Visual DSP++ Project Options dialog box (Compile : General

page).
-jcs2l

The - jcs21 switch requests the linker to convert compiler-generated
short jumps to Tong jumps when necessary, but uses the P1 register for
indirect jumps/calls when 1ong jumps/calls are insufficient. This switch is

enabled by default.

See also “-no-jcs21” on page 1-57.

The -L directoryl[{.,|:} directory..] (library search directory) switch
directs the linker to append the directory (or directories) to the search
path for library files.

The -1 7ibrary (link library) switch directs the linker to search the library
for functions and global variables when linking. The library name is the
portion of the file name between the “1ib” prefix and.d1b extension.

For example, the -1c compiler switch directs the linker to search in the
library named c. This library resides in a file named 1ibc.d1b.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-47
for Blackfin Processors

Compiler Command-Line Interface

List all object files on the command line before listing libraries using the
-1 switch. When a reference to a symbol is made, the symbol definition
will be taken from the left-most object or library on the command line
that contains the global definition of that symbol. If two objects on the
command line contain definitions of the symbol x, x will be taken from
the left-most object on the command line that contains a global definition
of x.

If one of the definitions for x comes from user objects, and the other
comes from a user library, and the library definition should be overridden
by the user object definition, it is important that the user object comes
before the library on the command line.

Libraries included in the default . 1df file are searched last for symbol
definitions.

-list-workarounds

The -1ist-workarounds (list supported errata workarounds) switch
displays a list of all errata workarounds which the compiler supports.

See “Controlling Silicon Revision and Anomaly Workarounds Within the
Compiler” on page 1-100 for details of valid workarounds and the interac-
tion of the -si-revision (on page 1-74), -workaround (on page 1-81),
and -no-workaround (on page 1-59) switches.

The -M (generate make rules only) switch directs the compiler not to
compile the source file, but to output a rule suitable for the make utility,
describing the dependencies of the main program file.

The format of the make rule output by the preprocessor is:
object-file: include-file ...

1-48 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

-MD

The -MD (generate make rules and compile) switch directs the preprocessor
to print to a file called original_filename.d a rule describing the depen-
dencies of the main program file. After preprocessing, compilation
proceeds normally. See also the -Mo switch (on page 1-49).

-MM

The -MM (generate make rules and compile) switch directs the preprocessor
to print to the standard output stream a rule describing the dependencies
of the main program file. After preprocessing, compilation proceeds
normally.

-Mo

The -Mo filename (preprocessor output file) switch directs the compiler
to use f77ename for the output of -MD or -ED switches.

-Mt

The -Mt name (output make rule for the named source) switch modifies the
target of generated dependencies, renaming the target to name. This
switch is in effect only when used in conjunction with the -M or -MM
switch.

-map

The -map filename (generate a memory map) switch directs the compiler
to output a memory map of all symbols. The map file name corresponds
to the filename argument. For example, if the file name argument is test,
the map file name is test.xml. The.xm1 extension is added where
necessary.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-49
for Blackfin Processors

Compiler Command-Line Interface

-mem

The -mem (invoke memory initializer) switch causes the compiler to invoke
the Memory Initializer after linking the executable file. The Memory Ini-
tializer can be controlled through the -fl1ags-mem switch (on page 1-39).

See also “-no-mem” on page 1-57.

-multicore

The -multicore switch indicates to the compiler that the application is
being built for use in a dual-core environment, such as the ADSP-BF561
Blackfin processor. It indicates that both cores are operating at once, and
therefore the application is linked against versions of the libraries that
include locking and per-core private storage. The -multicore switch
defines the __ADI_MULTICORE macro to the value “1” at both compile-time
and link-time.

The -multicore switch is not supported in conjunction with the -p, -p1,
or -p?2 switches.

Invoke this switch with the:

* Will be linked with re-entrant libraries check box located in the
Project Options dialog box (Compile : Processor (2) page)

¢ Use re-entrant multicore libraries check box located in the
Libraries area of the Visual DSP++ Project Options dialog box
(Link : Processor page).

-multiline

The -multiline switch enables a compiler GNU compatibility mode,
which allows string literals to span multiple lines without the need for a
backslash character “\” at the end of each line. This is the default mode.

1-50 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Invoke this switch with the Allow multi-line character strings check box
located in the Visual DSP++ Project Options dialog box
(Compile : Language Settings page).

See also “-no-multiline” on page 1-57.
-never-inline

The -never-inline switch instructs the compiler to ignore the inline

p g
qualifier on function definitions, so that no calls to such functions will be
inlined. See also “-always-inline” on page 1-29.

Invoke this switch with the Never option button in the Inlining area of

the Visual DSP++ Project Options dialog box (Compile : General page).
-no-alttok

The -no-alttok (disable alternative tokens) switch directs the compiler
not to accept alternative operator keywords and digraph sequences in the
source files. This is the default mode. For more information, see “-alttok”
on page 1-28.

-no-annotate

The -no-annotate (disable assembly annotations) switch directs the com-
piler not to annotate assembly files generated by the compiler. By default,
whenever optimizations are enabled, all assembly files generated by the
compiler are annotated with information on the performance of the gener-
ated assembly. See “Assembly Optimizer Annotations” on page 2-96 for
more details on this feature.

Invoke this switch by clearing the Generate assembly code annotations
check box located in the Visual DSP++ Project Options dialog box
(Compile : General page).

See also “-annotate” on page 1-30.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-51
for Blackfin Processors

Compiler Command-Line Interface

-no-annotate-loop-instr

The -no-annotate-loop-instr switch disables the production of addi-
tional loop annotation information by the compiler. This is the default
mode.

See also “-annotate-loop-instr” on page 1-30.

-no-assume-vols-are-mmrs

When the compiler has to apply workarounds for silicon errata, it takes a
conservative approach concerning volatile-qualified accesses to arbitrary
memory. By default, the compiler assumes that such memory accesses may
be to memory-mapped registers (MMRs), and therefore must be protected
against any errata that affect MMR accesses.

The -no-assume-vols-are-mmrs switch disables this assumption, so that
arbitrary volatile-qualified memory will not be considered affected by
MMR-related errata. Specific MMR accesses (such as via a literal pointer
or the memory-mapped register access functions (on page 1-275) will still
receive such workarounds. For more information, see “Controlling Silicon
Revision and Anomaly Workarounds Within the Compiler” on

page 1-100.

-no-auto-attrs

The -no-auto-attrs (no automatic attributes) switch directs the compiler
not to emit automatic attributes based on the files it compiles. Emission of
automatic attributes is enabled by default. See “File Attributes” on

page 1-471 for more information about attributes, and what automatic
attributes the compiler emits. See also the -auto-attrs switch

(on page 1-30) and the -file-attr switch (on page 1-38).

Invoke this switch by clearing the Auto-generated attributes check box
located in the Visual DSP++ Project Options dialog box
(Compile : General page).

1-52 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

-no-bss

The -no-bss switch causes the compiler to keep both zero-initialized and
non-zero-initialized data in the same data section, rather than separating
zero-initialized data into a different, BSS-style section. See also the -bss
switch (on page 1-30).

-no-builtin

The -no-builtin (no built-in functions) switch directs the compiler not
to generate short names for the built-in functions (for example, abs()),
and to accept only the full name (for example, __builtin_abs()). Note
that this switch influences many functions. This switch also predefines the
__NO_BUILTIN preprocessor macro. For more information, see “Compiler
Built-In Functions” on page 1-195.

Invoke this switch by selecting the Disable built-in functions check box
in the VisualDSP++ Project Options dialog box (Compile : Language
Settings page).

-no-circbuf

The -no-circbuf (no circular buffer) switch directs the compiler not to
automatically use circular buffer mechanisms (such as for referencing
array[i % n1). The use of the circindex() and circptr() functions
(that is, explicit circular buffer operations) is not affected.

Invoke this switch with the Never option button located in the Circular
Buffer Generation area of the Visual DSP++ Project Options dialog box
(Compile : Language Settings page).

-no-const-strings

The -no-const-strings switch directs the compiler not to make string lit-
erals const qualified. This is the default. See also the -const-strings
switch (on page 1-32).

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-53
for Blackfin Processors

Compiler Command-Line Interface

-no-defs

The -no-defs (disable defaults) switch directs the compiler not to define
any default preprocessor macros, include directories, library directories,
libraries, or run-time headers.

-no-eh

The -no-eh (disable exception handling) switch directs the compiler to
disallow ANSI/ISO C++ exception handling. This is the default mode.

See the -eh switch (on page 1-35) for more information.
-no-expand-symbolic-links

The -no-expand-symbolic-1inks switch directs the compiler not to recog-
nize Cygwin path entities (see “Cygwin Path Support” on page 1-93)
within command-line paths and preprocessor #include directives. This
option is enabled by default. See also the -expand-symbolic-1inks switch
(on page 1-37).

-no-expand-windows-shortcuts

The -no-expand-windows-shortcuts switch directs the compiler not to
recognize Windows shortcut entities (see “Windows Shortcut Support” on
page 1-92) within command-line paths and preprocessor #include
directives. This option is enabled by default. See also the -expand-win-
dows-shortcuts switch (on page 1-37).

-no-extra-keywords

The -no-extra-keywords (disable short-form keywords) switch directs the
compiler not to recognize Analog Devices keyword extensions that might
affect conformance to ANSI/ISO standards for the C and C++ languages.
Keywords, such as inline, may be used as identifiers in conforming
programs. Alternate keywords (prefixed with two leading underscores,
such as __inline) continue to work.

1-54 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Invoke this switch with the Disable Analog Devices extension keywords
check box located in the Visual DSP++ Project Options dialog box
(Compile : Language Settings page).

See also “-extra-keywords” on page 1-37.
-no-force-link

The -no-force-1ink (do not force stack frame creation) switch directs the
compiler not to create a new stack frame for leaf functions.

This switch is most useful in combination with the -g switch

(on page 1-42) when debugging optimized code. When optimization is
requested, the compiler does not generate stack frames for functions that
do not need them; this improves the size and speed of the code, but
reduces the quality of information displayed in the debugger. Therefore,
when the -g switch is used, the compiler by default always generates a
stack frame. Consequently, the code generated with the -g switch differs
from the code generated without using this switch and may result in
different behavior. The -no-force-1ink switch causes the same code to be
generated regardless of whether -g is used.

See also “-force-link” on page 1-40.
-no-fp-associative

The -no-fp-associative switch directs the compiler NOT to
treat floating-point multiplication and addition as associative operations.

Invoke this switch with the Do not treat floating point operations as
associative check box located in the VisualDSP++ Project Options dialog
box (Compile : Language Settings page).

See also “-fp-associative” on page 1-40.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-55
for Blackfin Processors

Compiler Command-Line Interface

-no-full-io

The -no-full-io switch links the application with the Analog Devices
I/O library, which contains a faster implementation of C Standard 1/0
than the alternative third-party I/O library. (See “-full-io” on page 1-40.)
The functionality provided by the Analog Devices I/O library is not as
comprehensive as the third-party I/O library. For details, refer to “stdio.h”
on page 3-31.

This switch passes the _ADI_LIBI0 macro to the compiler and linker.
This switch is enabled by default.

-no-fx-contract

The -no-fx-contract switch sets the default state of FX_CONTRACT to OFF.
This switch controls the performance and accuracy of arithmetic on the

native fixed-point types fract and accum. See “FX_CONTRACT” on

page 1-115 for more information.

See also “-fx-contract” on page 1-41.
-no-int-to-fract

The -no-int-to-fract (disable conversion of integer to fractional
arithmetic) switch directs the compiler not to turn integer arithmetic into
fractional arithmetic.

For example, the following statement may be changed, by default, into a
fractional multiplication.

short a = ((b*c)>>15);

The saturation properties of integer and fractional arithmetic are different;
therefore, if the resulting fractional arithmetic expression overflows, the
results may differ. Specifying the -no-int-to-fract switch disables this
optimization and may be used to ensure compliance with the C standard
where such saturation is a concern.

1-56 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

-no-jcs2|

The -no-jcs21 switch prevents the linker from converting compiler-gen-
erated short jumps to Tong jumps using register P1.

See also “-jcs2]” on page 1-47.
-no-mem

The -no-mem (disable memory initialization) switch causes the compiler
not to invoke the Memory Initializer after linking the executable. This is
the default setting. See also “-mem” on page 1-50.

-no-multiline

The -no-multiline switch disables a compiler GNU compatibility mode,
which allows string literals to span multiple lines without requiring a “\”
at the end of each line.

Invoke this switch by clearing the Allow multi-line character strings
check box located in the Visual DSP++ Project Options dialog box
(Compile : Language Settings page).

See also “-multiline” on page 1-50.
-no-progress-rep-timeout

The -no-progress-rep-timeout (disable progress message for long
compilations) switch disables the diagnostic message issued by the com-
piler to indicate that it is still working when a function’s compilation is
taking an excessively long time. The message is disabled by default. See
also the -progress-rep-timeout switch (on page 1-70) and the -prog-
ress-rep-timeout-secs switch (on page 1-70).

-no-sat-associative

The -no-sat-associative (saturating addition is not associative) switch
instructs the compiler not to consider saturating addition operations as

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-57
for Blackfin Processors

Compiler Command-Line Interface

associative: (a+b)+c may not be rewritten as a+(b+c), when the addition
operator saturates. The default is that saturating addition is not
associative.

See also “-sat-associative” on page 1-71.

-no-saturation

The -no-saturation switch directs the compiler not to introduce faster
operations in cases where the faster operation would saturate (if the
expression overflowed) when the original operation would have wrapped
the result. Note that since accumulator registers A0 and Al will saturate if
an accumulation overflows 40 bits, the -no-saturation switch will also
prevent use of these registers for integer arithmetic when the compiler
cannot be sure that saturation will not occur. The code produced may be
less efficient than when the switch is not used.

Saturation is enabled by default when optimizing, and may be disabled by
this switch. Saturation is disabled when not optimizing (this switch is the
default when not optimizing).

Invoke this switch with the Do not introduce saturation to integer arith-
metic check box located in the VisualDSP++ Project Options dialog box
(Compile : Processor (2) page).

-no-std-ass

The -no-std-ass (disable standard assertions) switch prevents the com-
piler from defining the standard assertions. See the -A switch
(on page 1-27) for the list of standard assertions.

-no-std-def

The -no-std-def (disable standard macro definitions) switch prevents the
compiler from defining default preprocessor macro definitions.

1-58 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

-no-std-inc

The -no-std-inc (disable standard include search) switch directs the
C/C++ preprocessor to search only for header files in the current directory
and directories specified with the -1 switch.

Invoke this switch by selecting the Ignore standard include paths check
box in the Visual DSP++ Project Options dialog box (Compile :
Preprocessor page).

-no-std-lib

The -no-std-11ib (disable standard library search) switch directs the linker
to limit its search for libraries to directories specified with the -L switch
(on page 1-47). The compiler also defines __NO_STD_LIB during the link-

ing stage and passes it to the linker, so that the SEARCH_DIR directives in
the .1df file can de disabled.

-no-threads

The -no-threads (disable thread-safe build) switch directs the compiler to
link against the non-thread-safe variants of the C/C++ variants of the
run-time libraries. See also the -threads switch (on page 1-76).

-no-workaround

The -no-workaround workaround_id[,workaround_id..] switch (disable
avoidance of specific errata) switch disables compiler code generator work-
arounds for specific hardware errata. See “Controlling Silicon Revision
and Anomaly Workarounds Within the Compiler” on page 1-100 for
details of valid workarounds and the interactions of the -si-revision,
-workaround, and -no-workaround switches.

See also “-workaround” on page 1-81.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-59
for Blackfin Processors

Compiler Command-Line Interface

—no—zero—loop—counters

The -no-zero-loop-counters switch directs the compiler to not zero loop
counter registers on function exit. This is the default mode.

Use the -zero-Toop-counters switch (see “-zero-loop-counters” on
page 1-83) to enable the zeroing of loop counter registers on function exit.

-0[0]1]

The -0 (enable optimizations) switch directs the compiler to produce code
that is optimized for performance. Optimizations are not enabled by
default for the compiler. (Note that the switch settings begin with the
uppercase letter “O” and end with a digit—a zero or a one.) The -0 or -01
switch turns on optimization, and -00 turns off all optimizations.

Invoke this switch by selecting the Enable optimization check box in the
Project Options dialog box (Compile : General page).

-Oa

The -0a (automatic function inlining) switch enables the inline expansion
of C/C++ functions, which are not necessarily declared inline in the source
code. The amount of auto-inlining the compiler performs is controlled
using the -0v (optimize for speed versus size) switch (on page 1-61).
Therefore, the use of -0v100 indicates that as many functions as possible
will be auto-inlined, whereas -0v0 prevents any function from being
auto-inlined. Specifying -0a implies the use of -0.

Invoke this switch with the Automatic option button located in the
Inlining area of the VisualDSP++ Project Options dialog box
(Compile : General page).

-Ofp

The -0fp (frame pointer optimization) switch directs the compiler to
offset the frame pointer within a function. This allows the compiler to use

1-60 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

more short load and store instructions. Specifying -0fp also implies the
use of -0.

Specifying this switch reduces the capabilities of the debugger for
source-level debugging actions when used with -g, since the active call
frames cannot be followed beyond an active function with a frame pointer
offset. The debugger facilities that are affected by the -0fp switch include:
call stack, step over, and step out of.

When C++ exceptions support is enabled (by using the -eh switch
(on page 1-35)), the -0fp switch is overridden. This is necessary to
allow the exceptions handling support routines to unwind the stack
from the current stack frame.

Invoke this switch with the Frame pointer optimization check box located
in the Visual DSP++ Project Options dialog box (Compile : Processor (1)

page).
_Og

The -0g switch enables a compiler mode that attempts to perform
optimizations while still preserving debugging information. It is meant
as an alternative for users who want a debuggable program but are also
concerned about the performance of their debuggable code.

-Os

The -0s (enable code size optimization) switch directs the compiler to
produce code that is optimized for size. This is achieved by performing all
optimizations except those that increase code size. The optimizations not
performed include loop unrolling and jump avoidance.

-Ov

The -0v num (optimize for speed versus size) switch informs the compiler
of the relative importance of speed versus size, when considering whether

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-61
for Blackfin Processors

Compiler Command-Line Interface

such tradeoffs are worthwhile. The num variable should be an integer
between 0 (purely size) and 100 (purely speed).

For any given optimization, the compiler modifies the code being gener-
ated. Some optimizations produce code that will execute in fewer cycles,
but will require more code space. In such cases, there is a trade-off

between speed and space.

The num variable indicates a sliding scale between 0 and 100, which is the
probability that a linear piece of generated code (a “basic block”) will be
optimized for speed or for space. The -0v0 optimizes all blocks for space,
and -0v100 optimizes all blocks for speed. At any point in between, the
decision is based upon num and how many times the block is expected to
be executed (the “execution count” of the block). Figure 1-1 demonstrates

this relationship.

Infinity

Optimize for speed

qUN0d
uoL1nosax]

Limit Tine

Optimize for space

0 .~ 100
Qvnum

Figure 1-1. -Ov Switch Optimization Curve

1-62 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

For any given optimization where speed and size conflict, the potential
benefit is dependent on the execution count. An optimization that
increases performance at the expense of code size is considerably more
beneficial if applied to the core loop of a critical algorithm than if applied
to one-time initialization code or to rarely-used error-handling functions.
If code only appears to be executed once, it will be optimized for space. As
its execution count increases, so too does the likelihood that the compiler
will consider the code increase worthwhile for the corresponding benefit
in performance.

As Figure 1-1 shows, the -0v switch affects the point at which a given exe-
cution count is considered sufficient to switch optimization from “for
space” to “for speed”. Where num is a low value, the compiler is biased
towards space, so a block’s execution count has to be relatively high for the
compiler to apply code-increasing transformations. Where num has a high
value, the compiler is biased towards speed, so the same transformation
will be considered valid for a much lower execution count.

The -0v switch is most effective when used in conjunction with profile-
guided optimization (PGO), where accurate execution counts are avail-
able. Without profile-guided optimization (see “Optimization Control”
on page 1-95), the compiler makes estimates of the relative execution
counts using heuristics.

Invoke this switch with the Optimize for code size/speed slider located in

the VisualDSP++ Project Options dialog box (Compile : General page).

For more information, see “Using PGO in Function Profiling” in
Chapter 2, Achieving Optimal Performance From C/C++ Source Code.

-0
The -0 filename (output file) switch directs the compiler to use filename
for the name of the final output file.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-63

for Blackfin Processors

Compiler Command-Line Interface

-overlay

The -overlay (program may use overlays) switch disables the propagation
of register information between functions and forces the compiler to
assume that all functions clobber all scratch registers. Note that this switch
affects all functions in the source file and may result in a performance
degradation. For information on disabling the propagation of register
information only for specific functions, see “#pragma overlay” on

page 1-329.
-overlay-clobbers

The -overlay-clobbers clobbered-regs (registers clobbered by overlay
manager) switch identifies the set of registers clobbered by an overlay
manager, if one is used. The compiler will assume that any call to an over-
lay-managed function will clobber the values in clobbered-regs, in
addition to those clobbered by the function in question. A function is
considered to be an overlay-managed function if the -overlay switch

(on page 1-64) is specified, or if the function is marked with #pragma
overlay (on page 1-329).

The clobbered-regs is a single string formatted as per the argument to
#pragma regs_clobbered, except that individual components of the list
may also be separated by commas.

Whitespace and semicolons are valid separators for the components
of the list, but must be properly quoted when being passed to the
compiler.

Examples:

ccblkfn -0 t.c -overlay -overlay-clobbers r0,rl
ccblkfn -0 t.c -overlay -overlay-clobbers Dscratch
ccblkfn -0 t.c -overlay -overlay-clobbers "p0 pl;r0"

1-64 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

The -P (omit line numbers) switch directs the compiler to stop after the
C/C++ preprocessor runs (without compiling) and to omit #11ine
preprocessor directives (with line number information) in the output from
the preprocessor. The -C switch can be used with the -P switch to retain
comments.

-PP

The -PP (omit line numbers and compile) switch is similar to the -p
switch; however, it does not halt compilation after preprocessing.

-p[112]

The -p, -pl, and -p2 (generate profiling implementation) switches direct
the compiler to generate the additional instructions needed to profile the
program by recording the number of cycles spent in each function.

The -p1 switch causes the program being profiled to write the information
to a file called mon.out. The -p2 switch changes this behavior to write the
information to the standard output file stream. The -p switch writes the

data to mon.out and the standard output stream. For more information on

profiling, see “Profiling With Instrumented Code” on page 1-359.
-path {~asm | -compiler | -lib | -link}

The -path-{asm|compiler|1ib|1ink}pathname (tool location) switch
directs the compiler to use the specified component in place of the
default-installed version of the compilation tool. The component
comprises a relative or absolute path to its location. Respectively, the tools
are the assembler, compiler, librarian, and linker. Use this switch when
overriding the normal version of one or more of the tools. The
-path-{...} switch also overrides the directory specified by the
-path-install switch (on page 1-66).

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-65
for Blackfin Processors

Compiler Command-Line Interface

-path-install

The -path-install directory (installation location) switch directs the
compiler to use the specified directory as the location for all compilation
tools instead of the default path. This is useful when working with
multiple versions of the tool set.

You can selectively override this switch with the -path-fasm| com-
piler|1ib|1ink} switch.

-path-output

The -path-output directory (non-temporary files location) switch directs
the compiler to place output files in the specified directory.

-path-temp

The -path-temp directory (temporary files location) switch directs the
compiler to place temporary files in the specified directory.

-pch

The -pch (precompiled header) switch directs the compiler to automati-
cally generate and use precompiled header files. A precompiled output
header has a .pch extension attached to the source file name. By default,
all precompiled headers are stored in a directory called PCHRepository.

@ Precompiled header files tend to occupy more disk space.
-pchdir

The -pchdir directory (locate precompiled header repository) switch
specifies the location of an alternative directory for storing and invocation
of precompiled header files. If the directory does not exist, the compiler
creates it. Note that the -o (output) switch does not influence the -pchdir
option.

1-66 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

-pgo-session

The -pgo-session session-id (specify PGO session identifier) switch is
used with profile-guided optimization. It has the following effects:

* When used with the -pguide switch (on page 1-67), the compiler
associates all counters for this module with the session identifier
session-id.

* When used with a previously-gathered profile (.pgo file), the
compiler ignores the profile contents, unless they have the same
session-id identifier.

This is most useful when the same source file is being built in more than
one way (for example, different macro definitions, or for multiprocessors)
in the same application. Each variant of the build can have a different
session-idassociated with it, which means that the compiler will be able
to identify which parts of the gathered profile are to be used when opti-
mizing for the final build.

If each source file is built only in a single manner within the system
(the usual case), the -pgo-session switch is not needed.

Invoke this switch with the PGO session name text field located in the
Visual DSP++ Project Options dialog box (Compile : Profile-guided
Optimization page).

For more information, see “Using PGO in Function Profiling” in
Chapter 2, Achieving Optimal Performance From C/C++ Source Code.

-pguide

The -pguide (PGO) switch causes the compiler to add instrumentation to
gather a profile (a .pgo file) as the first stage of performing profile-guided
optimization.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-67

for Blackfin Processors

Compiler Command-Line Interface

Invoke this switch with the Prepare application to create new profile
check box located in the Visual DSP++ Project Options dialog box

(Compile : Profile-guided Optimization page).

For more information, see “Using PGO in Function Profiling” in
Chapter 2, Achieving Optimal Performance From C/C++ Source Code.

-pplist

The -pplist filename (preprocessor listing) switch directs the
preprocessor to output a listing to the named file. When more than one
source file is preprocessed, the listing file contains information about the
last file processed. The generated file contains raw source lines,
information on transitions into and out of include files, and diagnostics
generated by the compiler.

Key characters are described in Table 1-11.

Table 1-11. Key Characters

Character

Meaning

N

Normal line of source

X

Expanded line of source

Line of source skipped by #1f or #ifdef

Change in source position

Diagnostic message (remark)

Diagnostic message (warning)

Diagnostic message (error)

Diagnostic message (catastrophic error)

-proc

The -proc processor (target processor) switch directs the compiler to

produce code suitable for the specified processor.

1-68

Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

For example,
ccblkfn -proc ADSP-BF535 -0 bin/pl.doj pl.asm

If no target is specified with the -proc switch, the default processor
1s set to ADSP-BF532.

When compiling with the -proc switch, the appropriate processor macro
and the __ADSPBLACKFIN__ preprocessor macro are defined as “1”. When
the target is an ADSP-BF522, ADSP-BF523, ADSP-BF524,
ADSP-BF525, ADSP-BF526, ADSP-BF527, ADSP-BF531,
ADSP-BF532, ADSP-BF533, ADSP-BF534, ADSP-BF536,
ADSP-BF537, ADSP-BF538, ADSP-BF539, ADSP-BF542,
ADSP-BF544, ADSP-BF548, ADSP-BF549, or ADSP-BF561 processor,
the compiler additionally defines macro __ADSPLPBLACKFIN__as “1”.

For example, when -proc ADSP-BF531 is used, the compiler predefines the
__ADSPBF531 __ ADSPBLACKFIN and __ ADSPLPBLACKFIN__ macros to
C‘l,,.

—_—) —_—)

See also “-si-revision” on page 1-74 for more information on the
silicon revision of the specified processor.

-progress-rep-func

The -progress-rep-func switch provides feedback on the compiler’s
progress that may be useful when compiling and optimizing very large
source files. It issues a warning message each time the compiler starts
compiling a new function. The warning message is a remark that is
disabled by default, and this switch enables the remark as a warning.
The switch is equivalent to -Wwarn=cc1472.

-progress-rep-opt

The -progress-rep-opt switch provides feedback on the compiler’s prog-
ress that may be useful when compiling and optimizing a very large,
complex function. It issues a warning message each time the compiler

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-69
for Blackfin Processors

Compiler Command-Line Interface

starts a new optimization pass on the current function. The warning
message is a remark that is disabled by default, and this switch enables
the remark as a warning. The switch is equivalent to -Wwarn=cc1473.

-progress-rep-timeout

The -progress-rep-timeout switch issues a diagnostic message if the
compiler exceeds a time limit during compilation. This indicates the
compiler is still operating, but is taking a long time.

See also “-no-progress-rep-timeout” on page 1-57.

-progress-rep-timeout-secs

The -progress-rep-timeout-secs secs switch specifies how many
seconds must elapse during a compilation before the compiler issues a
diagnostic message about the length of time the compilation has used so
far.

See also “-no-progress-rep-timeout” on page 1-57.

The -R directoryl ,directory ..] (add source directory) switch directs
the compiler to add the specified directory to the list of directories
searched for source files. Multiple source directories can be presented as a
comma-separated list.

The compiler searches for the source files in the order specified on the
command line. The compiler searches the specified directories before
reverting to the current directory. This switch is dependent on its position
on the command line; that is, it effects only source files that follow it.

Source files, whose file names begin with /, ./, or ../,
(or Windows equivalent) or contain drive specifiers (on Windows
platforms), are not affected by this option.

1-70 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

-R-

The -R- (disable source path) switch removes all directories from the
standard search path for source files, effectively disabling this feature.

This option is position-dependent on the command line; it only
affects files following it.

-reserve

The -reserve register[,register ..J (reserve register) switch directs
the compiler not to use the specified registers. Only the m3 register can be
reserved.

The -S (stop after compilation) switch directs the compiler to stop
compilation before running the assembler. The compiler outputs an
assembly file with an .s extension.

The -s (strip debug information) switch directs the compiler to remove
debug information (symbol table and other items) from the output
executable file during linking.

Executable files produced by this switch are not suitable for use
with the Memory Initializer (see “-mem” on page 1-50 for more
information).

-sat-associative

The -sat-associative (saturating addition is associative) switch instructs
the compiler to consider saturating addition operations as associative;
(a+b)+c may be rewritten as a+(b+c), when the addition operator satu-
rates. The default is that saturating addition is not associative.

See also “-no-sat-associative” on page 1-57.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-71
for Blackfin Processors

Compiler Command-Line Interface

-save-temps

The -save-temps (save intermediate files) switch directs the compiler

to retain intermediate files generated, which are normally removed as part
of the various compilation stages. These intermediate files are placed

in the -path-output specified output directory or the build directory
(when the -path-output switch (on page 1-72) is not used). See Table 1-3
on page 1-9 for a list of intermediate files.

-sdram

The -sdram (SDRAM is active) switch instructs the compiler to assume
that at least Bank 0 of external SDRAM (the lower 32 Mbytes of space)
is active and enabled. This switch is most useful for reducing the number
of silicon anomaly workarounds needed. For more information, refer to
“Controlling Silicon Revision and Anomaly Workarounds Within the
Compiler” on page 1-100.

Invoke this switch with the SDRAM Bank 0 is in use check box located in
the Visual DSP++ Project Options dialog box (Compile : Processor (2)

page).
-section
The -section id=section_namel,id=section_name...J] switch controls

the placement of types of data produced by the compiler. The data is
placed into the section_name section as provided on the command line.

The compiler currently supports the following section identifiers; see
“Placement of Compiler-Generated Code and Data” on page 1-193 for
more details.

code Controls placement of machine instructions
data Controls placement of initialized variable data
constdata Controls placement of constant data
1-72 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

bsz

sti

switch

vtbl
vtable
strings
autoinit

alldata

Compiler

Controls placement of zero-initialized variable data

Controls placement of the static C++ class constructor “start” func-
tions. Default is program. For more information, see “Constructors
and Destructors of Global Class Instances” on page 1-419.

Controls placement of jump tables used to implement C/C++ switch
statements. Default is constdata.

Controls placement of the C++ virtual lookup tables
Synonym for vtb]1

Controls the placement of string literals

Controls placement of data used to initialize aggregate autos

Controls placement of data, constdata, bsz, strings, and
autoinit all at once

Note that alldata is not a real section kind, but rather a placeholder for
data,constdata,bsz,strings,and,autoinit

Therefore,

-section

alldata=X

is equivalent to:

-section
-section
-section
-section
-section

data=X
constdata=X
bsz=X
strings=X
autoinit=X

Ensure that the section selected via the command line exists within the
.1df file (refer to the VisualDSP++ Linker and Utilities Manual).

-show

The -show (display command line) switch shows the command-line
arguments passed to ccblkfn, including expanded option files and

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-73
for Blackfin Processors

Compiler Command-Line Interface

environment variables. This allows you to ensure that command-line
options have been passed successfully.

-signed-bitfield

The -signed-bitfield (make plain bit-fields signed) switch directs the
compiler to make bit-fields (which have not been declared with an explicit
signed or unsigned keyword) signed. This switch does not affect plain
one-bit bit-fields, which are always unsigned. This is the default mode.
See also the -unsigned-bitfield switch (on page 1-77).

-signed-char

The -signed-char (make char signed) switch directs the compiler to make
the default type for char signed. The compiler also defines the
__SIGNED_CHARS__ macro. This is the default mode when the
-unsigned-char switch is not used (on page 1-78).

-si-revision

The -si-revision version (silicon revision) switch directs the compiler
to build for a specific hardware revision (version). Any errata workarounds
available for the targeted silicon revision will be enabled. For more infor-
mation on valid revisions and the interactions of the -si-revision,
-workaround, and -no-workaround switches, see “Controlling Silicon
Revision and Anomaly Workarounds Within the Compiler” on

page 1-100.

-stack-detect

The -stack-detect (detect stack overflow) switch directs the compiler to
generate the additional instructions needed to determine if the system
stack has overflowed. See “Stack Overflow Detection” on page 2-142.

1-74 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

-structs-do-not-overlap

The -structs-do-not-overlap switch specifies that the source code
being compiled contains no structure copies such that the source and the
destination memory regions overlap each other in a non-trivial way.

For example, in the statement
*p = ‘kq :

where p and q are pointers to some structure type S, the compiler, by
default, always ensures that, after the assignment, the structure pointed to
by “p” contains an image of the structure pointed to by “q” prior to the
assignment. When p and q are not identical (in which case the assignment
is trivial) but the structures pointed to by the two pointers may overlap
each other, doing this means that the compiler must use the functionality
of the C library function “memmove” rather than “memcpy”.

Using “memmove” to copy data is slower than using “memcpy”. Therefore,
if your source code does not contain such overlapping structure copies,
you can obtain higher performance by using the command-line switch
-structs-do-not-overlap.

Invoke this switch from the Structs/classes do not overlap check box in
the Visual DSP++ Project Options dialog box
(Compile : Language Settings page).

-syntax-only

The -syntax-only (only check syntax) switch directs the compiler to
check the source code for syntax errors and warnings. No output files are
generated with this switch.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-75
for Blackfin Processors

Compiler Command-Line Interface

-sysdefs

The -sysdefs (system macro definitions) switch directs the compiler to
define several preprocessor macros describing the current user and user’s
system. The macros are defined as character string constants and are used
in functions with null-terminated string arguments.

The macros are defined if the system returns information for them
(Table 1-12).

Table 1-12. System Macros Defined

Macro Description
__HOSTNAME__ Name of the host machine
_ SYSTEM__

Operating system name of the host machine

__USERNAME__ Current user’s login name

The -T filename (linker description file) switch directs the compiler
(and linker) to use the specified linker description file (.1df) as control

input for linking. If - T is not specified, a default . 1df file is selected, based
on the processor variant.

-threads

The -threads switch directs the compiler to link against the thread-safe
variants of the C/C++ run-time libraries. The -threads switch defines the

_ADI_THREADS macro as “1” at the compile, assemble, and link phases of a
build.

1-76 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

When applications are built within Visual DSP++, this switch is added
automatically to projects that have VDK support selected.

The use of thread-safe libraries is necessary in conjunction with the
-threads flag when using the VisualDSP++ kernel (VDK). The
thread-safe libraries can be used with other RTOSs, but this
requires the definition of various VDK interfaces.

The -threads switch does not imply that the compiler will produce
thread-safe code when compiling C/C++ source. It is the user’s
responsibility to employ multi-threaded programming practices in
code (such as semaphores to access shared data).

See also “-no-threads” on page 1-59.
-time

The -time (tell time) switch directs the compiler to display elapsed time as
part of the output information on each part of the compilation process.

The -U macro (undefine macro) switch directs the compiler to undefine
macros. If you specify a macro name, it is undefined. Note the compiler
processes all -D (define macro) switches on the command line before any
-U (undefine macro) switches.

Invoke this switch by entering macro names to be undefined, separated by
commas, in the Preprocessor undefines field in the Project Options dia-
log box (Compile : Preprocessor page).

-unsigned-bitfield

The -unsigned-bitfield (make plain bit-fields unsigned) switch directs
the compiler to make bit-fields (which have not been declared with an
explicit signed or unsigned keyword) unsigned. This switch does not affect
plain one-bit bit-fields, which are always unsigned.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-77
for Blackfin Processors

Compiler Command-Line Interface

For example, given the declaration

struct {
int a:2;
int b:1;
signed int c:2;
unsigned int d:2;
boxs

Table 1-13 lists the bitfield values.

Table 1-13. Bit-field Values

Field -unsigned-bitfield -signed-bitfield Why

x.a -2.1 0..3 Plain field

x.b 0..1 0..1 One bit

x.c 2.1 2.1 Explicit signed
x.d 0.3 0.3 Explicit unsigned

See also the -signed-bitfields switch (on page 1-74).

-unsigned-char

The -unsigned-char (make char unsigned) switch directs the compiler to
make the default type for char unsigned. The compiler also undefines the

__SIGNED_CHARS__ preprocessor macro.

The -v (version and verbose) switch directs the compiler to display the
version and command-line information for all the compilation tools as

they process each file.

1-78

Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

-verbose

The -verbose (display command line) switch directs the compiler to
display command-line information for all the compilation tools as they
process each file.

-version

The -version (display version) switch directs the compiler to display its
version information.

-W{error|remark | suppress|warn}

The -Werror, -Wremark, -Wsuppress, and -Wwarn number[, number...]
(override error message) switches with a number argument direct the com-
piler to override the severity of the specified diagnostic messages (errors,
remarks, or warnings). The number argument identifies the specific mes-
sage to override.

At compilation time, the compiler produces a number for each specific
compiler diagnostic message. A (D} (discretionary) following the diagnos-
tic message number indicates that the diagnostic may have its severity
overridden. Each diagnostic message is identified by a number that is used
across all compiler software releases.

If the processing of the compiler command line generates a diag-
nostic, the position of the -W switch on the command-line is
important. If the -W switch changes the severity of the diagnostic,
it must occur before the command-line switch that generates the
diagnostic; otherwise, no change of severity will occur.

Also, as shown in the Output window and in Help, error codes
sometimes begin with a leading zero (for example, cc0025). If you
try to suppress error codes with -W{error|remark|suppress|warn}
or fipragma diag() and supply the code with a leading zero, it will
not work. This is because the compiler reads the number as an
octal value, and will suppress a different warning or error.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-79
for Blackfin Processors

Compiler Command-Line Interface

-Werror-limit

The -Werror-Timit number (maximum compiler errors) switch sets a
maximum number of errors for the compiler before it aborts.

-Werror-warnings

The -Werror-warnings (treat warnings as errors) switch directs the
compiler to treat all warnings as errors, with the result that a warning will
cause the compilation to fail.

-Wremarks

The -Wremarks (enable diagnostic remarks) switch directs the compiler to
issue remarks, which are diagnostic messages that are milder than
warnings.

Invoke this switch by selecting the Enable remarks check box in the
VisualDSP++ Project Options dialog box (Compile : Warning page).

-Wterse

The -Wterse (enable terse warnings) switch directs the compiler to issue
the briefest form of warnings. This also applies to errors and remarks.

The -w (disable all warnings) switch directs the compiler not to issue
warnings.

If the processing of the compiler command line generates a
warning, the position of the -w switch on the command line is
important. If the -w switch is located before the command-line
switch that causes the warning, the warning will be suppressed;
otherwise, it will not be suppressed.

1-80 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Invoke this switch by selecting the Disable all warnings and remarks
check box in the Visual DSP++ Project Options dialog box
(Compile : Warning page).

-warn-protos

The -warn-protos (warn if incomplete prototype) switch directs the
compiler to issue a warning when it calls a function for which an
incomplete function prototype has been supplied. This option has no
effect in C++ mode.

Invoke this switch with the Function declarations without prototypes
check box located in the Visual DSP++ Project Options dialog box
(Compile : Warning page).

-workaround

The -workaround workaround_id[,workaround_id] (enable avoidance
of specific errata) switch enables compiler code generator workarounds for
specific hardware errata. See “Controlling Silicon Revision and Anomaly
Workarounds Within the Compiler” on page 1-100 for details of valid
workarounds and the interaction of the -si-revision, -workaround, and
-no-workaround switches.

See also “-no-workaround” on page 1-59.
-write-files

The -write-files (enable driver I/O redirection) switch directs the
compiler driver to redirect the file name portions of its command line
through a temporary file. This technique helps to handle long file names,
which can make the compiler driver’s command line too long for some
operating systems.

@ This switch is deprecated.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-81
for Blackfin Processors

Compiler Command-Line Interface

-write-opts

The -write-opts (user options) switch directs the compiler to pass the
user options (but not the input file names) to the main driver via a
temporary file which can help if the resulting main driver command line
is too long.

@ This switch is deprecated.

-xref

The -xref filename (cross-reference list) switch directs the compiler to
write cross-reference listing information to the specified file. When more
than one source file has been compiled, the listing contains information
about the last file processed.

For each reference to a symbol in the source program, a line of the
following form is written to the named file.
symbol-id name ref-code filename line-number column-number

The symbol-1id represents a unique decimal number for the symbol, and
ref-code is one of the characters listed in Table 1-14.

Table 1-14. ref-code Characters

Character Meaning
D Definition
d Declaration
M Modification
A Address taken
u Used
C Changed (used and modified)
R Any other type of reference
E Error (unknown type of reference)
1-82 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

The compiler’s -xref switch differs from the linker’s -xref switch.
Refer to the VisualDSP++ 5.0 Linker and Utilities Manual for more
information.

—zero—loop—counters

The -zero-1oop-counters switch directs the compiler to ensure any used
loop counters are set to zero on function exit. This switch should be used
in the compilation of initcode that is overwritten with other code by an
overlay manager or boot ROM that does not ensure loop counters are
reset. Failure to do so may mean live hardware loops from initcode are
encountered in the newly-loaded code, resulting in a random amount of
loops over unrelated code (see the “Hardware Loops” section of the
Blackfin Processor Programming Reference). Live hardware loops may be left
when the compiler generates code that jumps out of a hardware loop
before it reaches zero, for instance when generating an optimized "while"

loop.

See also “-no-zero-loop-counters” on page 1-60.

C Mode (MISRA) Compiler Switch Descriptions

The following MISRA switches apply only to the C compiler.
See “MISRA-C Compiler” on page 1-143 for more information.

-misra

The -misra switch enables checking for MISRA-C Guidelines. Some rules
or parts of rules are relaxed with this switch enabled. Rules relaxed by this
option are 5.1, 5.7, 6.3, 6.4, 8.1, 8.2, 8.5, 10.5, 12.8, 13.7 and 19.7. This

is explained in more detail, see “Rules Descriptions” on page 1-147.

The -misra switch is not supported in conjunction with the -w and
-Werror|suppress|warn switches. The switch predefines the
_MISRA_RULES preprocessor macro.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-83
for Blackfin Processors

Compiler Command-Line Interface

-misra-linkdir

The -misra-1inkdir directory switch specifies a directory in which to
place .misra files. The default is a local directory called MISRARepository.

The .misra files enable checking of violations of rules 5.5, 8.8, 8.9, and
8.10.

-misra-no-cross-module

The -misra-no-cross-module switch implies -misra, but also disables
checking for a number of rules that require the use of the prelinker to
check across multiple modules for rule violation. The MISRA-C rules
suppressed are 5.5, 8.8, 8.9, and 8.10.

The -misra-no-cross-module switch is not supported in conjunction with
the -w and -Werror|remark|suppress|warn switches.

-misra-no-runtime

The -misra-no-runtime switch implies -misra, but also disables run-time
checking for MISRA-C rules 17.1, 17.2, 7.3, and 21.1. It limits the
checking of rules 9.1, 12.8, 16.2, and 17.4.

The -misra-no-runtime switch is not supported in conjunction with the
-wand -Werror|remark|suppress|warn switches.

-misra-strict

The -misra-strict switch enables checking for MISRA-C Guidelines.
The switch ensures a strict interpretation of the MISRA-C:2004
Guidelines. See “Rules Descriptions” on page 1-147 for more detail.

The -misra-strict switch is not supported in conjunction with the -w

and -Werror|remark|suppress|warn switches. The switch predefines the
_MISRA_RULES preprocessor macro.

1-84 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

-misra-suppress-advisory

The -misra-suppress-advisory switch implies -misra, but suppresses the
reporting of advisory rules. The -misra-suppress-advisory switch is not
supported in conjunction with the -wand -Werror|remark|suppress|warn
switches.

-misra-testing

The -misra-testing switch implies -misra but also suppresses checking
of MISRA-C rules 20.4, 20.7, 20.8, 20.9, 20.10, 20.11, and 20.12.

The -misra-testing switch is not supported in conjunction with the -w
and -Werror|remark|suppress|warn switches.

-Wmis_suppress

The -Wmis_suppress rule_number [, rule_number] switch with a
rule_number argument directs the compiler to suppress the specified diag-
nostic for a MISRA-C rule. The rule_number argument identifies the
specific message to override

-Wmis_warn

The -Wmis_warn rule_number [, rule_number] switch with a
rule_number argument directs the compiler to override the severity of the
specified diagnostic to produce a warning for a MISRA-C rule. The
rule_number argument identifies the specific message to override.

C++ Mode Compiler Switch Descriptions
The following switches apply only to the C++ compiler.
-anach

The -anach (enable C++ anachronisms) switch directs the compiler to
accept some language features that are prohibited by the C++ standard but

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-85

for Blackfin Processors

Compiler Command-Line Interface

are still in common use. This is the default mode. Use the -no-anach
switch for greater standard compliance.

The following anachronisms are accepted in the default C++ mode:

Overload is allowed in function declarations. It is accepted and
ignored.

The number of elements in an array may be specified in an array
delete operation. The value is ignored.

A single operator++() and operator--() function can be used to
overload both prefix and postfix operations.

The base class name may be omitted in a base class initializer if
there is only one immediate base class.

A bound function pointer (a pointer to a member function for a
given object) can be cast to a pointer to a function.

A nested class name may be used as an un-nested class name pro-
vided no other class of that name has been declared. The
anachronism is not applied to template classes.

A reference to a non-const type may be initialized from a value of a
different type. A temporary is created; it is initialized from the
(converted) initial value, and the reference is set to the temporary.

A reference to a non-const class type may be initialized from an
rvalue of the class type or a derived class thereof. No (additional)
temporary is used.

A function with old-style parameter declarations is allowed and
may participate in function overloading as though it were proto-
typed. Default argument promotion is not applied to parameter
types of such functions when the check for compatibility is done,
so that the following statements declare the overload of two

1-86

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

functions named f:
int f(int);
int f(x) char x; { return x; }

See also “-no-anach” on page 1-89.

-check-init-order

It is not guaranteed that global objects requiring constructors are initial-
ized before their first use in a program consisting of separately compiled
units. The compiler will output warnings if these objects are external to
the compilation unit and are used in dynamic initialization or in construc-
tors of other objects. These warnings are not dependent on the
-check-init-order switch.

In order to catch uses of these objects and to allow the opportunity for
code to be rewritten, the -check-init-order switch adds run-time
checking to the code. This will generate output to stderr to indicate that
uses of such objects are unsafe.

This switch generates extra code to aid development. Do not use
this switch when building production systems.

Invoke this switch with the Check initialization order check box located
in the VisualDSP++ Project Options dialog box (Compile : Language
Settings page).

-extern-inline

The -extern-inline switch directs the compiler to conform to the
ISO/IEC 14882:2003 standard with respect to inline functions that are
non-static. If the definition of the functions need to be retained, then the
compiler will ensure that there is a unique entry point.

See also “-no-extern-inline” on page 1-89.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-87
for Blackfin Processors

Compiler Command-Line Interface

-friend-injection

The -friend-injection switch directs the compiler to perform name
lookup in a non-standard way with respect to friend declarations. With
this switch enabled, a friend declaration will be injected into the scope
enclosing the class containing the friend declaration.

See also “-no-friend-injection” on page 1-89.
-full-dependency-inclusion

The -full-dependency-inclusion switch ensures that when generating
dependency information for implicitly-included . cpp files, the .cpp file is
re-included. This file is re-included only if the . cpp files are included
more than once in the source (via re-inclusion of their corresponding
header file). This switch is required only if your C++ source files are com-
piled more than once with different macro guards.

Enabling this switch may increase the time required to generate
dependencies.

-ignore-std

The -ignore-std switch provides backwards compatibility to earlier
versions of VisualDSP C++, which did not use namespace std to guard
and encode C++ Standard library names. By default, the header files and
libraries now use namespace std.

Invoke this switch by clearing the Use std:: namespace check box located
in the VisualDSP++ Project Options dialog box (Compile : Language
Settings page).

1-88 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

-no-anach

The -no-anach (disable C++ anachronisms) switch directs the compiler to
disallow some old C++ language features that are prohibited by the C++
standard. See the -anach switch (on page 1-85) for a full description of
these features.

-no-extern-inline

The -no-extern-inline switch directs the compiler to treat all inline
functions as static. If the function definition needs to be retained, an
external entry point is not generated. This is the default mode.

See also “-extern-inline” on page 1-87.
-no-friend-injection

The -no-friend-injection switch directs the compiler to conform to the
ISO/IEC 14882:2003 standard with respect to friend declarations. The
friend declaration is visible when the class to which it is a friend is among
the associated classes considered by argument-dependent lookup. This is
the default mode.

See also “-friend-injection” on page 1-88.
-no-implicit-inclusion

The -no-implicit-inclusion switch prevents implicit inclusion of source
files as a method of finding definitions of template entities to be
instantiated.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-89
for Blackfin Processors

Compiler Command-Line Interface

-no-rtti

The -no-rtti (disable run-time type identification) switch directs the
compiler to disallow support for dynamic_cast and other features of
ANSI/ISO C++ run-time type identification. This is the default mode.
Use -rtti to enable this feature.

See also “-rtti” on page 1-90.

-no-std-templates

The -no-std-templates switch disables dependent name processing
(that is, the special lookup of names used in templates as required by the

C++ standard). This is the default.

See also “-std-templates” on page 1-90.

-rtti

The -rtti (enable run-time type identification) switch directs the com-
piler to accept programs containing dynamic_cast expressions and other
features of ANSI/ISO C++ run-time type identification. The switch also
causes the compiler to define the macro __RTTI to 1. See also the -no-rtti
switch.

Invoke this switch with the C++ exceptions and RTTI check box located
in the VisualDSP++ Project Options dialog box (Compile : Language
Settings page).

See also “-no-rtti” on page 1-90.
-std-templates

The -std-templates switch enables dependent name processing, that is,
the special lookup of names used in templates as required by the C++
standard.

See also “-no-std-templates” on page 1-90.

1-90 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Environment Variables Used by the Compiler

The compiler refers to several environment variables during its operation,
as listed below. The majority of the environment variables identify path
names to directories.

/ Placing network paths into these environment variables may
adversely affect the time required to compile applications.

* PATH
This is your System search path, which is used to locate binary
executable files when you run them. The operating system uses this
environment variable to locate the compiler when you execute it
from the command line.

e TMP
This directory is used by the compiler for temporary files, when
building applications. For example, if you compile a C file to an
object file, the compiler first compiles the C file to an assembly file
which can be assembled to create the object file. The compiler
usually creates a temporary directory within the TMP directory into
which to put such files. However, if the -save-temps switch is
specified, the compiler creates temporary files in the current direc-
tory instead. This directory should exist and be writable. If this
directory does not exist, the compiler issues a warning.

e TEMP
This environment variable is also used by the compiler when look-
ing for temporary files, but only if TMP was examined and was not
set or the directory that TMP specified did not exist.

e ADI_DSP
The compiler locates other tools in the tool-chain through the
Visual DSP++ installation directory, or through the -path-install
switch. If neither is successful, the compiler looks in ADI_DSP for
other tools.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-91
for Blackfin Processors

Compiler Command-Line Interface

® CCBLKFN_OPTIONS
If this environment variable is set, and CCBLKFN_IGNORE_ENV is not
set, this environment variable is interpreted as a list of additional
switches to be prepended to the command line. Multiple switches
are separated by spaces or new lines. A vertical-bar (|) character
may be used to indicate that any switches following it will be pro-
cessed after all other command-line switches.

¢ CCBLKFN_IGNORE_ENV
If this environment variable is set, CCBLKFN_OPTIONS is ignored.

Additional Path Support

The compiler driver and compiler provide support for extensions to stan-
dard Windows pathnames. Both Windows shortcuts and Cygwin paths
are supported. The extensions are controlled independently by compiler
switches. Both features are disabled by default.

When either support is enabled, compilation time may be increased
in cases where many include paths are passed to the compiler.

Windows Shortcut Support

Enable Windows shortcut support with the -expand-windows-
shortcuts command-line switch (on page 1-37), and disable it with the
-no-expand-windows-shortcuts switch (on page 1-54). The support is
disabled by default. When enabled, the compiler recognizes elements of
paths that refer to Windows shortcuts.

For example, if the source file test.c exists in the directory
c:\src\blackfin\
and a Windows shortcut is created as

c:\src\platform

1-92 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

which points to the source directory, the source file can be compiled with
the command line:

cchblkfn -proc ADSP-BF533 c:\src\platform\test.c
-expand-windows-shortcuts

The compiler also recognizes path directory elements which are Windows
shortcuts within preprocessor #include directives. For example, using the
example above, a file containing:

f#include <platform\test.h>
could be compiled with the command line:

ccblkfn -proc ADSP-BF533 c:\src\platform\test.c -I c:\src
-expand-windows-shortcuts

Cygwin Path Support

The compiler provides support for Cygwin paths. The Cygwin environ-
ment provides users with a UNIX-like command-line environment on a
Microsoft Windows machine.

The Cygwin environment is not part of VisualDSP++. It is pro-
vided by Red Hat, Inc. and can be downloaded from their Web

site.

Cygwin path support is enabled with the -expand-symbolic-1inks switch
and disabled with the -no-expand-symbolic-1inks switch. The support is
disabled by default. The compiler recognizes three types of path exten-
sions that are supported by Cygwin: symbolic links, cygdrive folders, and
Cygwin mounted directories.

Cygwin Symbolic Links

Symbolic links are created within Cygwin using the “In -s” command.
The symbolic-links behave in a similar manner to Windows shortcuts,
providing a secondary link to a file or directory.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-93
for Blackfin Processors

Compiler Command-Line Interface

For example, for the source file test.c located in the directory
c:\src\blackfin\, a symbolic link can be created using the commands:

cd /cygdrive/c/src
In -s platform blackfin

The source file can be compiled with the commands:

cd /cygdrive/c/src
ccblkfn -proc ADSP-BF533 platform/test.c -expand-symbolic-Tinks

The compiler supports local symbolic links only. VisualDSP++
does not support symbolic links to remote devices and machines.

Cygdrive Folders

The Cygwin /cygdrive directory is a pseudo-directory that provides
access to all the drives that can be located through the “My Computer”
folder in Windows Explorer. The drives are accessed via the sub-directory
corresponding to their drive letter.

For example, the C: drive is accessed via the directory /cygdrive/c, and
the file c:\src\blackfin\test.c can be compiled using the command
line:

ccblkfn -proc ADSP-BF533 /cygdrive/c/src/blackfin/test.c
-expand-symbolic-1links

Cygwin Mounted Directories

Cygwin provides a mount command that reproduces the behavior of the
UNIX mount command. It allows directories and devices to be accessed via
an alternative “mounted” directory.

For example, to mount the directory d:\testsuites as /tests, issue the
command:

mount d:\\testsuites /tests

1-94 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

The contents of d: \testsuites will then be visible as if they existed

within /tests. The file d:\testsuites\test.c can be compiled with the
command:

ccblkfn -proc ADSP-BF533 /tests/test.c -expand-symbolic-links

The compiler supports local Cygwin mounts only. VisualDSP++
does not support Cygwin mounts to remote devices and machines.

Optimization Control

The general aim of compiler optimization is to generate correct code that
executes quickly and is small in size. Not all optimizations are suitable for
every application or can be used all the time. Therefore, the compiler opti-
mizer has a number of configurations, or optimization levels, which can be
applied when needed. Each of these levels are enabled by one or more
compiler switches (and VisualDSP++ project options) or pragmas.

Refer to “Achieving Optimal Performance From C/C++ Source
Code” on page 2-1 for information on how to obtain maximal code
performance from the compiler.

The compiler’s optimization capabilities are described in “Optimization
Levels” on page 1-95 and “Interprocedural Analysis” on page 1-98.

Optimization Levels

The following list identifies several optimization levels. The levels are
notionally ordered with least optimization listed first and most optimiza-
tion listed last. The descriptions for each level outline the optimizations
performed by the compiler and identify any required switches or pragmas
that have direct influence on them.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-95
for Blackfin Processors

Compiler Command-Line Interface

Debug

The compiler produces debug information to ensure that the object
code matches the appropriate source code line. See “-g” on

page 1-42 and “-Og” on page 1-61 for more information.

Default

The compiler does not perform any optimization by default when
none of the compiler optimization switches are used (or enabled in
the VisualDSP++ Project Options dialog box). Default optimiza-

tion level can be enabled using the optimize_off pragma

(on page 1-297).

Procedural Optimizations

The compiler performs advanced, aggressive optimization on each
procedure in the file being compiled. The optimizations can be
directed to favor optimizations for speed (-01 or 0) or space (-0s)
or a factor between speed and space (-0v). If debugging is also
requested, the optimization is given priority so the debugging func-
tionality may be limited. See “-O[0|1]” on page 1-60, “-Os” on
page 1-61, “-Ov” on page 1-61, and “-Og” on page 1-61.

Procedural optimizations for speed and space (-0 and -0s) can be
enabled in C/C++ source using the pragma
optimize_{for_speed|for_space}. For more information, see
“General Optimization Pragmas” on page 1-297. The -0fp com-
piler switch directs the compiler to offset the frame pointer if doing
so allows more 16-bit instructions to be used. Offsetting the frame
pointer means the function does not conform to the Application
Binary Interface (ABI), but allows the compiler to produce smaller
code, which, in turn, allows for more multi-issue instructions.
Since the ABI is affected, the debugger would be unable to inter-
pret the resulting frame structure. See “-Ofp” on page 1-60 for
more information.

1-96

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

* Profile-Guided Optimizations (PGO)
The compiler performs advanced aggressive optimizations using
profiler statistics (.pgo files) generated from running the applica-
tion using representative training data. PGO can be used in
conjunction with interprocedural analysis (IPA) and automatic
inlining. See “-pguide” on page 1-67 for more information.
Note that PGO is supported in the simulator only.

The most common scenario in collecting PGO data is to set up one
or more simple file-to-device streams where the file is a standard
ASCII stream input file and the device is any stream device sup-
ported by the simulator target, such as memory and peripherals.
The PGO process can be broken down into the execution of one or
more data sets where a data set is the association of zero or more
input streams with one and only one .pgo output file.

You can create, edit, and delete data sets through the Visual DSP++
IDDE and then “run” the data sets with the click of one button to
produce an optimized application. The PGO operation is handled
via a the Manage Data Sets dialog box in the VisualDSP++ IDDE
via: Tools -> PGO -> Manage Data Sets.

For more information, see “Using Profile-Guided Optimization”
on page 2-9.

@ Be aware of the requirement for allowing command-line arguments
in your project when using PGO. For further details refer to “Sup-
port for argv/argc” on page 1-358.

* Automatic Inlining
The compiler automatically inlines C/C++ functions which are not
necessarily declared as inline in the source code. It does this when
it has determined that doing so reduces execution time. The -0v
switch controls how aggressively the compiler performs automatic
inlining. Automatic inlining is enabled using the -0a switch which

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-97
for Blackfin Processors

Compiler Command-Line Interface

additionally enables procedural optimizations (-0). See “-Oa” on
page 1-60, “-Ov” on page 1-61, “-O[0|1]” on page 1-60, and
“Function Inlining” on page 1-159 for more information.

@ When remarks are enabled, the compiler produces a remark to

indicate each function that is inlined.

* Interprocedural Optimizations
The compiler performs advanced, aggressive optimization over the
whole program, in addition to the per-file optimizations in proce-
dural optimization. Interprocedural analysis (IPA) is enabled using
the -ipa switch which additionally enables procedural optimiza-
tions (-0). See “-ipa” on page 1-47, “-O[0|1]” on page 1-60, and
“Interprocedural Analysis” on page 1-98 for more information.

The compiler optimizer attempts to vectorize loops when it is safe to do
so. IPA can identify additional safe candidates for vectorization which
might not be classified as safe at a procedural optimization level. Addi-
tionally, there may be other loops that are known to be safe candidates for
vectorization that can be identified to the compiler using various pragmas.
(See “Loop Optimization Pragmas” on page 1-287.)

Using the various compiler optimization levels is an excellent way of
improving application performance. However, consideration should be
given to how applications are written so that compiler optimizations are
given the best opportunity to be productive. These issues are the topic of
“Achieving Optimal Performance From C/C++ Source Code” on

page 2-1.

Interprocedural Analysis

The compiler has an optimization capability called interprocedural analysis
(IPA) that allows the compiler to optimize across translation units instead
of within individual translation units. This capability allows the compiler
to see all of the source files used in a final link at compilation time and to
use that information while optimizing.

1-98 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Enable interprocedural analysis by selecting the Interprocedural analysis
check box on the Compile : General page of the VisualDSP++ Project
Options dialog box, or by specifying the -ipa command-line switch

(on page 1-47).

The -ipa switch automatically enables the -0 switch to turn on
optimization.

The -ipa switch generates additional files along with the object file pro-
duced by the compiler. These files have . ipa extensions and should not be
deleted manually unless the associated object file is also deleted.

All of the -ipa optimizations are invoked after the initial link, when a spe-
cial program called the prelinker reinvokes the compiler to perform the
new optimizations, recompiling source files where necessary, to make use
of gathered information.

Because a file may be recompiled by the prelinker, do not use the
-S option to see the final optimized assembler file when -ipa is
enabled. Instead, use the -save-temps switch, so that the full com-
pile/link cycle can be performed first.

Interaction With Libraries

When IPA is enabled, the compiler examines all of the source files to build
usage information about all of the function and data items. It then uses
that information to make additional optimizations across all of the source
files by recompiling where necessary.

Because IPA operates only during the final link, the -ipa switch has no
benefit when initially compiling source files to object format for inclusion
in a library. IPA gathers information about each file and embeds this
within the object format, but cannot make use of it at this point, because
the library contents have not yet been used in a specific context.

When IPA is invoked during linking, it will recover the gathered informa-
tion from all linked-in object files that were built with -ipa, and where

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-99
for Blackfin Processors

Compiler Command-Line Interface

necessary and possible, will recompile source files to apply additional opti-
mizations. Modules linked in from a library are not recompiled in this
manner, as source is not available for them. Therefore, the gathered infor-
mation in a library module can be used to further optimize application
sources, but does not provide a benefit to the library module itself.

If a library module references a function in a user module in the program,
this will be detected during the initial linking phase, and IPA will not
eliminate the function. If the library module was not compiled with -ipa,
IPA will not make any assumptions about how the function may be called,
so the function may not be optimized as effectively as if all references to it
were in source code visible to IPA, or from library modules compiled with
-ipa.

Controlling Silicon Revision and Anomaly
Workarounds Within the Compiler

The compiler provides three switches which specify that code produced by
the compiler will be generated for a specific revision of a specific proces-
sor, and appropriate revision specific system run-time libraries will be
linked against. Targeting a specific processor allows the compiler to
produce code that avoids specific hardware errata reported against that
revision. For the simplest control, use the -si-revision switch

(on page 1-74), which automatically controls the use of compiler
workarounds.

The compiler cannot apply errata workarounds to code inside
asm() constructs.

When developing using the VisualDSP++ IDDE, the silicon revision
within a project is set to a default value of Automatic. Using a silicon revi-
sion of Automatic will select a parameter value for the -si-revision
switch based on the hardware connected and the target type currently in
use. This will enable all errata workarounds for the determined silicon
revision.

1-100 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Using the -si-revision Switch

The -si-revision version (silicon revision) switch directs the compiler
to build for a specific hardware revision. Any errata workarounds available
for the targeted silicon revision will be enabled. The parameter version
represents a silicon revision for the processor specified by the -proc switch
(on page 1-68). For example,

ccbTkfn -proc ADSP-BF535 -si-revision 0.1 prog.c

If silicon version none is used, then no errata workarounds are enabled,
whereas specifying silicon version any will enable all errata workarounds
for all supported revisions of the target processor.

If the -si-revision switch is not used, the compiler will default to target
the latest known silicon revision for the target processor and any errata
workarounds which are appropriate for the latest silicon revision will be

enabled.

The directory Blackfin\1ib contains two sets of libraries: one set (suffixed
with “y”, for example, 11bc532y.d1b) contains workarounds for all known
errata in all silicon revisions; the other set is built without any errata work-
arounds. Within the lib subdirectory, there are library directories for each
silicon revision; these libraries have been built with errata workarounds
appropriate for the silicon revision enabled. Note that an individual set of
libraries may cover more than one specific silicon revision, so if several sil-
icon revisions are affected by the same errata, then one common set of
libraries might be used.

The __STLICON_REVISION__ macro is set by the compiler to two hexadeci-
mal digits, representing the major and minor numbers in the silicon
revision. For example, 1.0 becomes 0x100, and 10.21 becomes 0xal5.

If the silicon revision is set to any, the __ SILICON_REVISION__ macro is set
to Oxffff. If the -si-revision switch is set to none, the compiler will not
set the __SILICON_REVISION__ macro.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-101
for Blackfin Processors

Compiler Command-Line Interface

The compiler driver will pass the -si-revision switch, as specified in the
command line, when invoking other tools in the Visual DSP++ tool chain.

Visit http://www.analog.com/processors/technicalSup-
port/ICAnomalies.html for information on specific anomalies
(including anomaly IDs).

Using the -workaround Switch

The -workaround workaround_id switch (on page 1-81) enables compiler
code generator workarounds for specific hardware errata.

When workarounds are enabled, the compiler defines the macro
__WORKAROUNDS_ENABLED at the compile, assembly, and link build stages.
The compiler also defines individual macros for each of the enabled work-
arounds for each of these stages, as indicated by each macro description.

For a complete list of anomaly workarounds and associated workaround_id
keywords, refer to the anomaly .xm1 files provided in the
<install_path>/System/ArchDef directory. These are named in the
format <platform_name>-anomaly.xml.

To find which workarounds are enabled for each chip and silicon revision,
refer to the appropriate <chip_name>-compiler.xml file in the same
directory (for example, ADSP-BF533-compiler.xml). Each *-compiler.xm
file references an *-anomaly.xm1 file via the name in the
<vdsp-anomaly-dictionary> element.

The two main anomaly .xm1 files relevant to Blackfin processors are:

* BLACKFIN-FRIO-anomaly.xml - Applicable to the ADSP-BF535
processor

* BLACKFIN-EDN-anomaly.xml - Applicable to all other Blackfin
processors

1-102 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

http://www.analog.com/processors/technicalSupport/ICAnomalies.html
http://www.analog.com/processors/technicalSupport/ICAnomalies.html

Compiler

Certain silicon anomalies affect the access of memory-mapped
registers (MMRs), in particular 05-00-0122 (which is worked
around by default), 05-00-0157 (under control of -workaround
killed-mmr-write), and 05-00-0198 (under control of -work-
around sdram-mmr-read). The compiler applies the appropriate
workarounds to a memory access which it can identify as being to
an MMR (for example, if the pointer to the MMR is assigned a lit-
eral address, or the value of the pointer can be calculated at
compile time).

For pointers whose destination may not be known until runtime,
the compiler will take the conservative approach and assume that
the pointer may access MMREs if it is volatile-qualified. To disable
this assumption, use the -no-assume-vols-are-mmrs switch

(on page 1-52); the memory-mapped register access functions

(on page 1-275) should be used to ensure the MMR access is made
anomaly-safe

Using the -no-workaround Switch

The -no-workaround workaround_id[,workaround_id ...] switch
disables compiler code generator workarounds for specific hardware
errata. For a list of valid workarounds, refer to the instructions in
“Using the -workaround Switch” on page 1-102.

The -no-workaround switch can be used to disable workarounds enabled
via the -si-revision version or -workaround workaround_id switches.

All workarounds can be disabled by providing -no-workaround with all
valid workarounds for the selected silicon revision or by using the option
-no-workaround all. Disabling all workarounds via the -no-workaround
switch will provide linking against libraries with no silicon revision in
cases where the silicon revision is not none.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-103
for Blackfin Processors

Using Native Fixed-Point Types

Interactions: Silicon Revision vs. Workaround Switches

Interactions between -si-revision, -workaround, and -no-workaround
switches can only be determined once all the command-line arguments
have been parsed. To this effect, options are evaluated as follows:

1. The -si-revision version switch is parsed to determine which
revision of the run-time libraries the application is to link against.
It also produces an initial list of all the default compiler errata
workarounds to enable.

2. Any additional workarounds specified with the -workaround switch
is added to the errata list.

3. Any workarounds specified with -no-workaround is then removed
from this list.

4. If silicon revision is not none or if any workarounds were declared
via -workaround, the macro _ WORKAROUNDS_ENABLED is defined at
compile, assembly, and link stages, even if -no-workaround disables
all workarounds.

Using Native Fixed-Point Types

This section provides an overview of the compiler’s support for the native
fixed-point types fract and accum, defined in Chapter 4 of the “Extensions
to support embedded processors” ISO/IEC draft document Technical Report
18037.

Fixed-Point Type Support

A fixed-point data type is one where the radix point is at a fixed position.
This includes the integer types (the radix point is immediately to the right
of the least-significant bit). However, this section uses the term to apply

exclusively to those that have a non-zero number of fractional bits, that is,

1-104 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

bits to the right of the radix point. There may also be integer bits to the
left of the radix point.

The Blackfin processor has hardware support for arithmetic on a number
of these fixed-point data types. For example, it is able to perform addition,
subtraction and multiplication on 16-bit and 32-bit fractional values.
However, the C language does not make it easy to express the semantics of
the arithmetic that maps to the underlying hardware support.

To make it easier to use this hardware capability, and to facilitate expres-
sion of DSP algorithms that manipulate fixed-point data, the compiler
supports a number of native fixed-point types whose arithmetic obeys the
fixed-point semantics. This makes it easy to write high-performance algo-
rithms that manipulate fixed-point data, without having to resort to
compiler built-ins, or inline assembly.

An emerging standard for such fixed-point types is set out in Chapter 4 of
the “Extensions to support embedded processors” ISO/IEC Technical Report
18037. Visual DSP++ provides all the functionality specified in that chap-
ter, and the chapter is a useful reference that explains the subtleties of the
semantics of the library functions and arithmetic operators. However, the
following sections give an overview of these data types, the semantics of
arithmetic using these types, and guidelines for how to write high-perfor-
mance code using these types.

Native Fixed-Point Types

Two keywords, _Fract and _Accum, are used to declare variables of
fixed-point type. Each of these keywords may also be used in conjunction
with the type specifiers short and 1ong, and signed and unsigned. There
are therefore 12 fixed-point types available, although some of these are
aliases for types of the same size and format.

By including the header file stdfix.h, the more convenient alternative
spellings - fract and accum - may be used instead of _Fract and _Accum.
This header file also provides prototypes for many useful functions and it

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-105
for Blackfin Processors

Using Native Fixed-Point Types

is highly recommended that you include it in source files that use
fixed-point types. Therefore, the discussion that follows uses the spelling
fract and accum as does the rest of the Visual DSP++ documentation.

The formats of the fixed-point types are given in table Table 1-15. In the
“Representation” column of the table, the number after the point indi-
cates the number of fractional bits, while the number before the point
refers to the number of integer bits, including a sign bit when it is pre-
ceded by “s”. Signed types are in two’s complement form. The range of
values that can be represented is also given in the table. Note that the bot-
tom of the range can be represented exactly, whereas the top of the range
cannot—only the value one bit less than this limit can be represented.

Table 1-15. Data Storage Formats, Ranges, and Sizes of the Native
Fixed-Point Types

Type Representation Range sizeof Returns
short fract s1.15 [-1.0,1.0) 2
fract s1.15 [-1.0,1.0) 2
long fract s1.31 [-1.0,1.0) 4
unsigned short fract 0.16 [0.0,1.0) 2
unsigned fract 0.16 [0.0,1.0) 2
unsigned long fract 0.32 [0.0,1.0) 4
short accum $9.31 [-256.0,256.0) 8
accum $9.31 [-256.0,256.0) 8
long accum s9.31 [-256.0,256.0) 8
unsigned short accum 8.32 [0.0,256.0) 8
unsigned accum 8.32 [0.0,256.0) 8
unsigned long accum 8.32 [0.0,256.0) 8

The Technical Report also defines a _Sat (alternative spelling sat) type
qualifier for the fixed-point types. This stipulates that all arithmetic on

1-106 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

fixed-point types shall be saturating arithmetic (that is, that the result of
arithmetic that overflows the maximum value that can be represented by
the type shall saturate at the largest or smallest representable value). When
the sat qualifier is not used, the standard says that arithmetic that over-
flows may behave in an undefined manner. Visual DSP++ accepts the sat
qualifier for compatibility but will always produce code that saturates on
overflow whether the sat qualifier is used or not. This gives maximum
reproducibility of results and permits code to be written without worrying
about obtaining unexpected results on overflow.

Native Fixed-Point Constants

Fixed-point constants may be specified in the same format as for
floating-point constants, inclusive of any decimal or binary exponent.
For more information on these formats, refer to “strtofxfx” on page 3-330.
Suffixes are used to identify the type of constants. The stdfix.h header
also declares macros for the maximum and minimum values of the
fixed-point types. See Table 1-16 for details of the suffixes and maximum
and minimum fixed-point values.

Table 1-16. Fixed-Point Type Constant Suffixes and Macros

Type Suffix | Example | Minimum Value | Maximum Value
short fract hr 0.5hr SFRACT_MIN SFRACT_MAX
fract r 0.5r FRACT_MIN FRACT_MAX
long fract Ir 0.51r LFRACT_MIN LFRACT_MAX
unsigned short fract uhr 0.5uhr 0.0uhr USFRACT_MAX
unsigned fract ur 0.5ur 0.0ur UFRACT_MAX
unsigned long fract ulr 0.5ulr 0.0ulr ULFRACT_MAX
short accum hk 12.4hk SACCUM_MIN | SACCUM_MAX
accum k 12.4k ACCUM_MIN ACCUM_MAX
long accum 1k 12.41k LACCUM_MIN | LACCUM_MAX

Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

1-107

Using Native Fixed-Point Types

Table 1-16. Fixed-Point Type Constant Suffixes and Macros (Contd)

Type Suffix | Example | Minimum Value | Maximum Value

unsigned short accum uhk 12.4uhk | 0.0uhk USACCUM_MA
X

unsigned accum uk 12.4uk 0.0uk UACCUM_MAX

unsigned long accum ulk 12.4ulk 0.0ulk ULACCUM_MA
X

A Motivating Example

Consider a very simple example—a fixed-point dot product. How might
you write this using the native fixed-point types? The algorithm performs
multiplication of each pair of fractional values in the input arrays. The
accum type is designed to hold the results of accumulations, which is
exactly what is needed. Assume that the data consist of vectors of 16-bit
values, representing values in the range [-1.0,1.0). Then it is natural to
write:

Example

#include <stdfix.h>

accum dot_product(fract *a, fract *b, int n)
{
accum sum = 0.0k;
int i;
for (i = 0; 1 < n; i++)
sum += ali]l * b[i];
return sum;

}

The above algorithm performs a pair-wise fractional multiplication of

elements of the input arrays and accumulates the result into a variable that

saturates on overflow. In fact, this simple expression of the algorithm

1-108 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

hides a subtlety related to the semantics of the arithmetic which is dis-
cussed in “FX_CONTRACT” on page 1-115, but it does show that it is
easy to express algorithms that manipulate fixed-point data and perform
saturation on overflow without needing to find special ways to express
these semantics through integer arithmetic.

Fixed-Point Arithmetic Semantics

The semantics of fixed-point arithmetic according to the Technical
Report are as follows:

1. If a binary operator has one floating-point operand, the other
operand is converted to floating-point and the operator is applied
to two floating-point operands to give a floating-point result.

2. If the operator has two fixed-point operands of different signed-
ness, convert the unsigned one to signed without changing its size.

(However, see also “FX_CONTRACT” on page 1-115.)

3. Deduce the result type. The result type is the operand type of
highest rank. Rank increases in the following order: short fract,
fract, Tong fract, short accum, accum, long accum (or their
unsigned equivalents). An operator with only one fixed-point
operand produces a result of this fixed-point type. (An exception is
the result of a comparison, which gives a boolean result.)

4. The result is the mathematical result of applying the operator to
the operand values, converted to the result type deduced in step 3.
In other words, the result is as if it was computed to infinite
precision before converting this result to the final result type.

The conversions between different types are discussed in “Data Type Con-
versions and Fixed-Point Types” on page 1-110.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-109
for Blackfin Processors

Using Native Fixed-Point Types

Data Type Conversions and Fixed-Point Types

The rules for conversion to and from fixed-point types are as follows:

1.

When converting to a fixed-point type, if the value of the operand
can be represented by the fixed-point type, the result is this value.
If the operand value is out of range of the fixed-point type, the
result is the closest fixed-point value to the operand value. In other
words, conversion to fixed-point saturates the operand’s mathemat-
ical value to the fixed-point type’s range. If the operand value is
within the range of the fixed-point type, but cannot be represented
exactly, the result is the closest value either higher or lower than
the operand value. For more information, see “Rounding Behav-
ior” on page 1-118.)

When converting to an integer type from a fixed-point type, the
result is the integer part of the fixed-point type. The fractional part
is discarded, so rounding is towards zero; (int)(1.9k) gives 1,
and (int)(-1.9k) gives -1.

When converting to a floating-point type, the result is the closest
floating-point value to the operand value.

These rules have some important consequences of which you should be

aware:

N

Conversion of an integer to a fractional type is only useful when
the integer is -1, 0, or 1. Any other integer value will be saturated
to the fractional type. So a statement like

fract f = 0x4000; // try to assign 0.5 to f

will not assign 0.5 to f, but will instead result in FRACT_MAX,
because 0x4000 is an integer greater than 1. Instead, use

fract f = 0.5r;

1-110

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Or
fract f = 0x4000p-15r;

Note that the second format above uses the binary exponent syntax
available for fixed-point constants; specifically the value 0x4000 is
scaled by 215,

/ Assignment of a fractional value to an integer yields zero unless the
fractional value is -1.0. Assignment of an unsigned fractional value
to an integer always results in zero.

/ Be very careful to avoid mixing fract16 and fract32 types with
fract and lTong fract. The former are typedefs to integer types. So

#include <stdfix.h>
#include <fract.h>
fractle fl6;

fract f;

void foo(void) f{
f16 = -0x4000; // stores -0.5 into fl6
f = fl6; // gives f = -1.0

because f16 is an integer value and therefore saturates on assign-
ment to the true fractional type. The compiler will emit an error
when it can detect thata fract16 or fract32 value has been con-
verted to a fract or Tong fract type (or vice versa), because this
nearly always indicates a programming error. To convert between
the integer typedefs and the native types, use “Bit-Pattern Conver-
sion Functions: bitsfx and fxbits” on page 1-112.

Compiler warnings will be produced to aid in the diagnosis of problems
where these conversions are likely to produce unexpected results.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-111
for Blackfin Processors

Using Native Fixed-Point Types

Bit-Pattern Conversion Functions: bitsfx and fxbits

The stdfix.h header file provides functions to convert a bit pattern to a
fixed-point type and vice versa. These functions are particularly useful for
converting between native types (fract, Tong fract) and integer typedefs
(fractle, fract3?2).

For each fixed-point type, a corresponding integer type is declared, which
is big enough to hold the bit pattern for the fixed-point type. These are
int_fx_t, where fx is one of hr, r, Ir, hk, k, or lk, and uint_fx_t where fx
is one of uhr, ur, ulr, uhk, uk, or ulk.

To convert a fixed-point type to a bit pattern, use the bitsfx family of
functions. fx may be any of hr, r, Ir, hk, k, 1k, uhr, ur, ulr, uhk, uk, or ulk.
For example, using the prototype

uint_ur_t bitsur(unsigned fract);

you can write

#include <stdfix.h>
unsigned fract f;
uint_ur_t f_bit_pattern;

void foo(void) {
f = 0.5ur;
f_bit_pattern = bitsur(f); // gives 0x8000

This is a good way to convert from a fract to a fractl6 ora long
fract to a fract32 where necessary. For example,

#include <stdfix.h>
#include <fract.h>
fract f;

fractlé f16;

void foo(void) {

1-112 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

f =0.5r;
fl16 = bitsr(f); // 0x4000 as expected

For more information, see “bitsfx” on page 3-95.

Similarly, to convert to a fixed-point type from a bit pattern, use the
fxbits family of functions. So, to convert from a fract32 toa long fract,
use:

ffinclude <stdfix.h>
#include <fract.h>
fract32 f32;

long fract 1f;

void foo(void) {

f32 = 0x40000000; // that’s 0.5

1f = Trbits(f32); // gets 0.51r as expected
}

For more information, see “fxbits” on page 3-180.

Arithmetic Operators for Fixed-Point Types

You can use the +, -, *, and / operators on fixed-point types, which have
the same meaning as their integer or floating-point equivalents, aside from
any overflow or rounding semantics. As discussed on page 1-105,
fixed-point operations that overflow give results saturated at the highest or
lowest fixed-point value. Rounding is discussed in “Rounding Behavior”
on page 1-118.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-113
for Blackfin Processors

Using Native Fixed-Point Types

You can use << to shift a fixed-point value up by a positive integer shift
amount less than the fixed-point type size in bits. This gives the same
result as multiplication by a power of 2, including overflow semantics:

#include <stdfix.h>
fract fl1, f2;

void fool(void)
fl = 0.125r;
f2 = fl <K 2; // gives 0.5r

void foo2(void) {
fl -0.125r;
f2 fl << 10; // gives -1.0r

}

You can also use >> to shift a fixed-point value down by an integer shift
amount in the same range. This is defined to give the same result as divi-
sion by a power of 2, including any rounding behavior:

#include <stdfix.h>
fract fl1, f2;

void fool(void) {
fl = 0.5r;
f2 =11 >> 2; // gives 0.125r

void foo2(void) {
f1 = 0x0003p-15r;
f2 = f1 >> 2; // gives 0x0000p-15r when rounding mode
// is truncation
// and 0x0001p-15r when rounding mode

1-114 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

// is biased or unbiased
}

Any of these operators can be used in conjunction with assignment, for
example:

#Hinclude <stdfix.h>
fract f1, f2;

void fool(void) f{

fl =0.2r;
f2 = 0.3r;
f2 += f1;

}

In addition, there are a number of unary operators that may be used with
fixed-point types. These are:

e ++ Equivalent to adding integer 1

* - Equivalent to subtracting integer 1

* + Unary plus, equivalent to adding value to 0.0 (no effect)
e - Unary negate, equivalent to subtracting value from 0.0

o | 1 if equal to 0.0, 0 otherwise

FX_CONTRACT

The example of a dot-product (see “A Motivating Example” on
page 1-108) contained the accumulation:
sum += alil * blil;

where sum was an accum type and a[i1, b[i] were fract types. Bearing in
mind the rules discussed in the previous section, what is the result of the
multiplication? Since both ali] and b[1] are fract types, the result of the

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-115
for Blackfin Processors

Using Native Fixed-Point Types

multiplication is also a fract—in other words, two s1.15 operands are
multiplied together to yield an s1.15 result. So the rules say that it should
be equivalent to writing:

fract tmp = ali] * bl[il;
sum += tmp;

However, this means that:

e The multiply result must be rounded to s1.15; 15 bits of precision
are lost.

e The result of multiplying -1.0r by -1.0r should be FRACT_MAX —
that is, not quite 1.0.

There are two problems with this:

* You probably do not want to round away those extra bits of preci-
sion before adding the result of the multiplication to sum. Doing so
decreases the accuracy of the accumulation. Moreover, the Blackfin
processor has an efficient single-cycle multiply-accumulate instruc-
tion, but this does not discard the extra bits of precision in the
multiply result before accumulation.

* On Blackfin processors, the multiply-accumulate instruction does
not saturate -1.0r * -1.0r before adding to the accumulator regis-
ter. This again has the effect of increasing the accuracy of the
accumulated result, but does not match the fixed-point type
semantics for the dot product example.

To generate efficient code without losing precision, you should really
write:
sum += (accum)ali] * (accum)b[i];

This is because the conversion to the higher-precision accum type prior to
multiplication means that the generated code can hold the intermediate
multiply result in $9.31 format, which means there is no requirement to

1-116 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

saturate the result or round off the lower order bits. This allows the com-
piler to use the hardware multiply-accumulate instruction.

For convenience, the compiler can do this step for you, using a mode
known as FX_CONTRACT. The name FX_CONTRACT is used as the behavior is
similar to that of FP_CONTRACT in C99. When FX_CONTRACT is on, the com-
piler may keep intermediate results in greater precision than that specified
by the Technical Report. In other words, it may choose not to round away
extra bits of precision or to saturate an intermediate result unnecessarily.
More precisely, the compiler keeps the intermediate result in greater preci-
sion when:

* Maintaining the higher-precision intermediate result will be more
efficient—it maps better to the underlying hardware.

e The intermediate result is not stored back to any named variable.
* No explicit casts convert the type of the intermediate result.

In other words,
sum += al[i]l * b[i];

will result in a multiply-accumulate instruction, but
sum += (fract)(alil * blil);

Or.

fract tmp = ali] * bl[il;
sum += tmp;

will both force the result of the multiply to be converted back to fract
type before the accumulation.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-117
for Blackfin Processors

Using Native Fixed-Point Types

There are other examples where FX_CONTRACT may keep intermediate
results in higher precision:

e Implicit conversion of unsigned fixed-point type to a larger signed
fixed-point type does not first convert to the signed fixed-point
type of the smaller size.

* Multiplication of signed fract and unsigned fract can create a
mixed-mode fractional multiply rather than first converting the
unsigned fract toa signed fract.

By default, the compiler permits FX_CONTRACT behavior. The FX_CONTRACT
mode can be controlled with a pragma (see also “#pragma
FX_CONTRACT {ON|OFF}” on page 1-299) or with command-line
switches, -fx-contract and -no-fx-contract (see “-fx-contract” on

page 1-41 and “-no-fx-contract” on page 1-56). The pragma may be used
at file scope or within functions. It obeys the same scope rules as the
FX_ROUNDING_MODE pragma discussed on page 1-128 with an example in
Listing 1-1 on page 1-129.

Rounding Behavior

What happens if a Tong fract is converted to a fract? The 16 least-signif-
icant bits cannot be represented in the result, so they must be discarded
during the conversion. In the case where the 1ong fract value cannot be
represented exactly by the fract type, there is a choice: the result can be
the nearest fract value greater than the Tong fract value, or the nearest
value less than the Tong fract value. This is known as the rounding
behavior.

Some fixed-point operations are also affected by rounding. For example,
multiplication of two fractional values to produce a fractional result of the
same size requires discarding a number of bits of the exact result. For
example, s1.15 * s1.15 produces an exact s2.30 result. This is saturated to
$1.30 and the fifteen least-significant bits must be discarded to produce an
s1.15 result.

1-118 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

By default, any bits that must be discarded are truncated—in other words,
they are simply chopped off the end of the value. For example:

#include <stdfix.h>
fract fl, f2, prod;

void foo(void) {
fl 0x3ffp-156r;
f2 0x1000p-15r;
prod = f1 * f2; // gives 0x007fp-15r, discarded
// Teast-significant bits 0xe000

}

This is equivalent to always rounding down toward negative infinity. It
tends to produce results whose accuracy tends to deteriorate as any round-
ing errors are generally in the same direction and are compounded as the
calculations proceed.

If this does not give you the accuracy you require, you can use either
biased or unbiased round-to-nearest rounding. The compiler supports
pragmas and switches to control the rounding mode. In the biased or
unbiased rounding modes, the above product will be rounded to the
nearest value that can be represented by the result type, so the final result
will be 0x0080p-15r.

The difference between biased and unbiased rounding occurs when the
value to be rounded lies exactly half-way between the two closest values
that can be represented by the result type. In this case, biased rounding
will always round toward the greater of the two values (applying saturation
if this rounding overflows) whereas unbiased rounding will round toward
the value whose least-significant bit is zero. For example:

#include <stdfix.h>
fract f;
long fract 1f;

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-119
for Blackfin Processors

Using Native Fixed-Point Types

void fool(void) f{
1f = 0x34568000p-311r;
f=1f; // gives 0x3456p-15r in unbiased rounding mode,
// but 0x3457p-15r in biased rounding mode

void foo2(void) {
1f = 0x34578000p-311r;
f=1f; // gives 0x3458p-15r in both biased
// and unbiased rounding modes
}

In general, unbiased rounding is more costly than biased rounding in
terms of cycles, but yields a more accurate result since rounding errors in
the half-way case are not all in the same direction and therefore are not
compounded so strongly in the final result.

The rounding discussed here only affects operations that yield a
fixed-point result. Operations that yield an integer result round toward
zero. There are also a few exceptions to the rounding rules:

* Conversion of a floating-point value to a fixed-point value rounds
towards zero.

e The roundfx, strtofxfx, and fxdivi functions always perform
either biased or unbiased rounding, dependent on the current state
of the RND_MOD bit. They do not support the truncation rounding
mode.

Details of how to set rounding mode are given in “Setting the Roundin
g g g g

Mode” on page 1-128.

Arithmetic Library Functions

The stdfix.h header file also declares a number of functions that permit
useful arithmetic operations on combinations of fixed-point and integer

1-120 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

types. These are the divi fx, idivfx, fxdivi, mulifx, absfx, roundfx,
countlsfx, and strtofxfx families of functions.

divifx

The divi fx functions, where fx is one of 1, Ir, k, 1k, ur, ulr, uk, or ulk,
allow division of an integer value by a fixed-point value to produce an
integer result. If you write

#include <stdfix.h>
fract f;
int i, quo;

void foo(void) |
// BAD: division of int by fract gives fract result, not int

f =0.5r;
i=2
quo =1 / f;

}

then the result of the division is a fract whose integer part is stored in the
variable quo. This means that the value of quo is zero, as the division over-
flows and thus produces a fractional result that is nearly one.

To get the desired result, write

f#Hinclude <stdfix.h>
fract f;
int i, quo;

void foo(void) {
// GOOD: uses divifx to give integer result

f=20.5r;
i =
quo = divir(i, f);
}
Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-121

for Blackfin Processors

Using Native Fixed-Point Types

which will store the value 4 into the variable quo.
For more information, see “divifx” on page 3-130.
idivfx
The idivfx functions, where fx is one of r, Ir, k, 1k, ur, ulr, uk, or ulk,

allow division of a fixed-point value by a fixed-point value to produce an
integer result. If you write

#include <stdfix.h>
fract fl1, f2;
int quo;

void foo(void) {
// BAD: division of two fracts gives fract result, not int
fl = 0.5r;
f2 0.25r;
quo = f1 / f2;

}

then the result of the division is a fract whose integer part is stored in the
variable quo. This means that the value of quo is zero, as the division over-
flows and thus produces a fractional result that is nearly one.

To get the desired result, write

#include <stdfix.h>
fract f1, f2;
int quo;

void foo(void) {
// GOOD: uses idivfx to give integer result
fl = 0.5r;
f2 = 0.256r;

1-122 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

quo = idivr(fl, f2);
}

which will store the value 2 into the variable quo.

For more information, see “idivfx” on page 3-207.

fxdivi

The 7xdivi functions, where 7x is one of r, Ir, k, 1k, ur, ulr, uk, or ulk,
allow division of an integer value by an integer value to produce a
fixed-point result. If you write

#include <stdfix.h>
int i1, i2;
fract quo;

void foo(void) {
// BAD: division of int by int gives int result, not fract
il = 5;
i2 = 10;
quo = il / i2;
}

then the result of the division is an integer which is then converted to a
fract to be stored in the variable quo. This means that the value of quo is
zero, as the division is rounded to integer zero and then converted to
fract.

To get the desired result, write
#include <stdfix.h>

int i1, i2;
fract quo;

void foo(void) {
// GOOD: uses fxdivi to give fract result

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-123
for Blackfin Processors

Using Native Fixed-Point Types

il = b;
i2 10;
quo = rdivi(il, i2);

}
which will store the value 0.5 into the variable quo.

For more information, see “fxdivi” on page 3-182.

mulifx

The muli fx functions, where fx is one of r, Ir, k, 1k, ur, ulr, uk, or ulk,
allow multiplication of an integer value by a fixed-point value to produce
an integer result. If you write

f#Hinclude <stdfix.h>
int i, prod;
fract f;

void foo(void) {
// BAD: multiplication of int by fract
// produces fract result, not int
i = 50;
f=0.5r;
prod = i * f;
}

then the result of the multiplication is a fract whose integer part is stored
in the variable prod. This means that the value of prod is zero, as the mul-
tiplication overflows and thus produces a fractional result that is nearly
one.

To get the desired result, write

f#include <stdfix.h>
int i, prod;
fract f;

1-124 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

void foo(void) {
// GOOD: uses mulifx to give integer result
i = 50;
f =0.5r;
prod = mulir(i, f);
}

which will store the value 25 into the variable prod.

For more information, see “mulifx” on page 3-249.

absfx

The abs fx functions, where fx is one of hr, r, Ir, hk, k, or Ik, compute the
absolute value of a fixed-point value.

In addition, you can also use the type-generic macro absfx (), where the
operand type can be any of the signed fixed-point types.

For more information, see “absfx” on page 3-67.

roundfx

The round fx functions, where fx is one of hr, r, Ir, hk, k, 1k, uhr, ur, ulr,
uhk, uk, or ulk, take two arguments. The first is a fixed-point operand
whose type corresponds to the name of the function called. The second
gives a number of fractional bits. The first operand is rounded to the
number of fractional bits given by the second operand. The second oper-
and must specify a value between 0 and the number of fractional bits in
the type. Rounding is to-nearest. However, whether the rounding is biased
or unbiased depends on the state of the RND_MOD bit on the hardware. See
“Rounding Behavior” on page 1-118 for more details.

#include <stdfix.h>
long fract 1f, rnd;

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-125
for Blackfin Processors

Using Native Fixed-Point Types

void fool(void) {
1f = 0x45608100p-311r;
rnd = roundlr(1f, 15); // produces 0x45610000p-311r;

void foo2(void) {

1f = 0x7fff9034p-311r;

rnd = roundlr(1f, 15); // produces Ox7fffffffp-311r;
}

In addition, you can also use the type-generic macro roundfx (), where the
first operand type can be any of the fixed-point types.

For more information, see “roundfx” on page 3-280.

countlsfx

The countlsfx functions, where fx is one of hr, r, Ir, hk, k, 1k, uhr, ur,
ulr, uhk, uk, or ulk, return the largest integer value k such that its oper-
and, when shifted up by k, does not overflow. For zero input, the result is
the size in bits of the operand type.

#include <stdfix.h>
int scall, scal?;

void foo(void) {

scall = countlsk(-3.0k); // gives 6, because
// -3.0k<<6 = -192.0k
scal?2 = countlsuk(3.0uk); // gives 6, because

// 3.0uk<<6 = 192.0uk
}

In addition, you can also use the type-generic macro count1sfx(), where
the operand type can be any of the fixed-point types.

For more information, see “countlsfx” on page 3-113.

1-126 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

strtofxfx

The strtofxfx functions, where fx is one of hr, r, Ir, hk, k, 1k, uhr, ur,
ulr, uhk, uk, or ulk, parse a string representation of a fixed-point number
and return a fixed-point result. They behave similarly to strtod, and
accept input in the same format.

For more information, see “strtofxfx” on page 3-330.

/O Conversion Specifiers

The printf and scanf families of functions support conversion specifiers
for the fixed-point types. These are given in Table 1-17. Note that the
conversion specifiers for the signed types, %r and %k, are lowercase while
those for the unsigned types, %R and %K, are uppercase.

Table 1-17. I/O Conversion Specifiers for the Fixed-Point Types

Type Conversion Specifier
short fract hhr

fract br

lTong fract Blr

unsigned short fract %hR

unsigned fract %R

unsigned long fract %1R

short accum hhk

accum Bk

Tong accum %1k

unsigned short accum %hK

unsigned accum %K

unsigned long accum %1K

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-127

for Blackfin Processors

Using Native Fixed-Point Types

When used with the scanf family of functions, these conversion specifiers
accept input in the same format as consumed by the strtofxfx functions,
which is the same as that accepted for %f. (For more information, see

“strrofxfx” on page 3-330.)

When used with the printf family of functions, fixed-point values are
printed:

* As hexadecimal values by default, or when the -no-full-io com-
piler switch is used. For example,

printf(“fract: %Zr\n”, 0.5r); // prints fract: 4000

* Like floating-point values when the -fixed-point-io or -full-io
compiler switches are used. For example,

printf(“fract: %r\n”, 0.5r); // prints fract: 0.500000

Optional precision specifiers are accepted that control the number of dec-
imal places printed, and whether a trailing decimal point is printed.
However, these will have no effect unless either - fixed-point-io or
-full-io are used. For more information, see “fprintf” on page 3-154.

Setting the Rounding Mode

As discussed in “Rounding Behavior” on page 1-118, there are three
rounding modes supported for fixed-point arithmetic:

* Truncation (this is the default rounding mode)
* Biased round-to-nearest rounding
e Unbiased round-to-nearest rounding

To set the rounding mode, you can use a pragma or a compile-time
switch.

1-128 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

The following compile-time switches control rounding behavior:
e -fx-rounding-mode-truncation (on page 1-41)
e -fx-rounding-mode-biased (on page 1-41)
* -fx-rounding-mode-unbiased (on page 1-41)

The given rounding mode will then be the default for the whole of the
source file being compiled.

You can also use a pragma to allow finer-grained control of rounding.
The pragmas are:

* Jfpragma FX_ROUNDING_MODE TRUNCATION
* {fpragma FX_ROUNDING_MODE BIASED
* {fpragma FX_ROUNDING_MODE UNBIASED

If one of these pragmas is applied at file scope, it applies until the end of
the translation unit or until another pragma at file scope changes the
rounding mode.

If one of these pragmas is applied within a compound statement (that is,
within a block enclosed by braces), the pragma applies to the end of the
compound statement where it is specified. The rounding mode will return
to the outer scope rounding mode on exit from the compound statement.
An example of how to use these pragmas is given in Listing 1-1.

Listing 1-1. Use of #pragma FX_ROUNDING_MODE to Control
Rounding of Arithmetic on Fixed-Point Types

#include <stdfix.h>
#fpragma FX_ROUNDING_MODE BIASED

fract my_func(void) {

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-129
for Blackfin Processors

Using Native Fixed-Point Types

// rounding mode here is biased
{
#fpragma FX_ROUNDING_MODE UNBIASED
// rounding mode here is unbiased
}

// rounding mode here is biased

#fpragma FX_ROUNDING_MODE TRUNCATION

fract my_func2(void) {
// rounding mode here is truncation
}

Blackfin has specialized instructions to support round-to-nearest round-
ing. However, whether these perform biased or unbiased rounding is
dependent on the current state of the RND_MOD bit. In order to facilitate
generation of efficient code, the compiler will assume that when the
rounding mode is either biased or unbiased, the RND_MOD bit has been set
to the same type of rounding. This means that the compiler can use the
hardware support for these rounding modes efficiently without needing to
set or clear this bit every time it uses a RND_MOD bit-dependent instruction.

Thus, it is your responsibility to ensure that the RND_MOD bit is set
correctly. Built-in functions are provided to make this task easier:

* int set_rnd_mod_biased(void)
® int set_rnd_mod_unbiased(void)

The return value of these built-in functions is the previous state of the
RND_MOD bit. So, another built-in function (void restore_rnd_mod(int))
resets the RND_MOD bit to a saved value.

1-130 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

For example, you could write:

#include <stdfix.h>
#include <builtins.h>

fract my_func(void) {
ffipragma FX_ROUNDING_MODE BIASED
int saved_rnd_mod = set_rnd_mod_biased();
// rounding mode now biased
restore_rnd_mod(saved_rnd_mod) ;
// rounding mode now same as on function entry
}

If you use the pragmas to specify biased or unbiased rounding without
setting the RND_MOD bit, you may get a mixture of biased and unbiased
rounding behavior.

For more information, see “#pragma FX_ROUNDING_MODE {TRUN-
CATION|BIASED|UNBIASED}” on page 1-299 and “Changing the
RND_MOD Bit” on page 1-242.

Porting Code Written Using fractl6 and fract32

If you have code written using fract16 and fract32 types, along with
built-in functions and calls to library functions, you may wish to rewrite
your code to use the new native fixed-point types. This section contains a
number of tips for the easiest ways to do that.

Since fract is a 16-bit type and Tong fract is a 32-bit type, the basic
strategy will be to replace uses of fract16 variables with fract-typed ones,
and fract32 variables with Tong fract-typed ones.

Firstly, code written using fract16 and fract32 will often contain
constants. If these are written using the r16 and r32 suffixes, you can
simply change the suffix to create a native fixed-point type.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-131
for Blackfin Processors

Using Native Fixed-Point Types

For example:

fractle f1 = 0.5rl6;
fract32 f2 = 0.75r32;
becomes

fract f1 = 0.5r;
long fract f2 = 0.751r;

If your code contains hexadecimal constants, it is convenient to use the
binary exponent syntax to convert your constants:

fractle fl= 0x1234;
fract32 f2 = 0x12345678;

becomes

fract f1 = 0x1234p-15r;
long fract f2 = 0x12345678p-311r;

Many built-ins are no longer necessary once you have converted to the
native fixed-point types — you can use native arithmetic instead. The cor-
respondence between the fract16 and fract32 built-in functions and
native fixed-point arithmetic is given in Table 1-18 on page 1-132.

Table 1-18. Correspondence Between fract16 and fract32 Built-In
Functions and Native Fixed-Point Arithmetic

fractl6 or fract32 built-in function | Native fixed-point type arithmetic

fractle fl, f2; fract f1, f2;
fractle f3 = add_frix16(fl, f2); | fract f3 = f1 + f2;

fractle f1, f2; fract f1, f2;
fractle f3 = sub_frixl6(fl, f2); | fract f3 = f1 - f2;

fractle fl1, f2; fract fl1, f2;
fractle f3 = mult_frixle(fl, fract f3 = f1 * f2; // in truncation
f2); rounding mode
1-132 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

Table 1-18. Correspondence Between fract16 and fract32 Built-In
Functions and Native Fixed-Point Arithmetic (Contd)

fractl6 or fract32 built-in function

Native fixed-point type arithmetic

fractle fl, f2; fract f1, f2;

fractle f3 = multr_frixl6(fl, fract f3 = f1 * f2; // in
f2); biased/unbiased rounding mode
fractle fl1, f2; fract fl1, f2;

fract32 f3 = mult_frix32(f1, long fract f3 = (long fract)fl *
f2); (long fract)f2;

fractle f1; fract f1;

fractle f2 = abs_frix16(fl); fract f2 = absr(fl);

fractle f1; fract f1;

fractle f2 = negate_frix16(fl); fract f2 = -f1;

fractle f1; fract f1;

int n = norm_frlxl6e(fl); int n = countlsr(fl);

fract3z fl, f2; long fract fl, f2;

fract32 f3 = add_fr1x32(fl, f2); | long fract f3 = f1 + f2;
fract3z fl, f2; long fract f1, f2;

fract32 f3 = sub_frix32(fl, f2); | Tong fract f3 = f1 - f2;
fract32 f1; lTong fract f1;

fract32 f2 = negate_frix32(fl); lTong fract f2 = -f1;

fract32 f1; lTong fract f1;

int n = norm_fri1x32(fl); int n = countlslr(fl);
fract32 f1; lTong fract f1;

fractle = trunc_fr1x32(fl); fract f2 = f1; // in truncation

rounding mode

#include <fract2float_conv.h>

fractle f1;

fract32 f2;

float f3;

f2 = frl6_to_fr32(fl);
fl = fr32_to_frl6(f2);
f3 = frl6_to_float(fl);
f3 = fr32_to_float(f2);
fl = float_to_frl6(f3);
f2 = float_to_fr32(f3);

fract f1;
lTong fract f2;
float f3;
f2 = f1;
fl = f2;
f3 = fl;
f3 = f2;
fl = f3;
f2 = f3;

Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

1-133

Using Native Fixed-Point Types

For convenience, built-in functions are also provided giving the same
unctionality on native fixed-poin es, and it is sim necessary to
functionality tive fixed-point ty d it ly y t
change the built-in name replacing “fr” with “fx”.

For example, if your original code says

#include <fract.h>
#include <builtins.h>
fractle offset = 0.5rl6;

fractle add_offset(fractle f)
return add_frlx16(f, offset);
}

you could change it to

f#Hinclude <stdfix.h>
#include <builtins.h>
fract offset = 0.5r;

fract add_offset(fract f) {
return add_fx1x16(f, offset);
}

although it would be clearer to write

#include <stdfix.h>
fract offset = 0.5r;

fract add_offset(fract f) {
return f + offset;
}

There are a number of built-ins that do not map directly onto fixed-point
arithmetic but similar functionality is available. See Table 1-19 on

page 1-135 for details. These built-ins perform 1.31 fractional multiplica-
tion, rounding the result. However, the result may not be bit-identical to

1-134 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

the result of native long fract multiplication, even in round-to-nearest
mode, as the rounding performed by the native types is more exact than
that provided by the built-ins. It is recommended that you use the native
fixed-point arithmetic unless you require bit-exact results with respect to
your previous implementation. In that case, you can use the bit-exact
equivalent built-in functions, mult_fx1x32x32, mult_fx1x32x32NS, and
multr_fx1x32x32.

Table 1-19. fract16 and fract32 Built-In Functions and Native Fixed-Point
Arithmetic with Similar Semantics

fractl6 or fract32 built-in Native fixed-point type arithmetic
function

fract3z fl, f2; long fract f1, f2;

fract32 f3 = lTong fract f3 = f1* f2 // in
mult_frix32x32(fl, f2); biased/unbiased rounding mode;
fract3z fl, f2; lTong fract f1, f2;

fract3z2 f3 = lTong fract f3 = f1* f2 // in
multr_frix32x32(fl, f2); biased/unbiased rounding mode;
fract32 f1, f2; lTong fract f1, f2;

fract32 f3 = lTong fract f3 = f1* f2 // in
mult_frix32x32NS(fl, f2); biased/unbiased rounding mode;

There are many library functions that use fract16 and fract32 types. As a
general rule, you can simply replace the “fr” with “fx” to obtain a library
function that accepts and/or returns native fixed-point types instead.
However, there is no fixed-point version of the vector type fract2x16 or
the complex fractional types complex_fract16 and complex_fract32, so
special care must be taken when a mixture of native fixed-point types and
vector or complex fractional types is used. The fract2x1s,
complex_fractl6, and complex_fract32 types can be used with the native
fixed-point types so long as care is taken to access the data members with
the constructor and accessor functions given in Table 1-20 on page 1-136.

The naming convention for library functions that take a mixture of
fixed-point type and fract2x16, complex_fractl6, or complex_fract32

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-135
for Blackfin Processors

Using Native Fixed-Point Types

types is to add “fx_" before the “fr2x16”, “fr16”, or “fr32” in the func-
tion name. You can check the name to use by consulting the
documentation page for the library function. Note that function names
that do not use fractl6 or fract32 types will not need to be changed.

Table 1-20. Constructor and Accessor Functions for Using Native
Fixed-Point Types with Complex and Vector Fractional Types

built-in function

Description

complex_fractlé
ccompose_fx_frl6(fract real,

fract imag);

Create a complex_fractl16 value from
fract-typed real and imaginary parts.

fract real_fx_frl6(complex_fractlé
c)s

Extract the fract-typed real part of a
complex_fractl6 value.

fract imag_fx_frl6(complex_fractl6
c)s

Extract the fract-typed imaginary part
of a complex_fractl16 value.

complex_fract32
ccompose_fx_fr32(long fract real,

long fract imag);

Create a complex_fract32 value from
Tong fract-typed real and imaginary
parts.

Tong fract
real_fx_fr32(complex_fract32 c);

Extract the Tong fract-typed real part
of a complex_fract32 value.

long fract
imag_fx_fr32(complex_fract32 c);

Extract the Tong fract-typed imagi-
nary part of a complex_fract32 value.

fract y);

fract2x16 compose_fx_fr2xl6(fract x,

Create a fract2x16 value from two
fract-typed parts.

fract lTow_of_fx_fr2xl6(fract2xl6
vec);

Extract the fract-typed low part of a
fract2x16 value.

fract high_of_fx_fx2x16(fract2xl6
vec);

Extract the fract-typed high part of a
fract2x16 value.

1-136 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

Fixed-Point Type Example

This section examines an example program to compute the variance of an
array of 16-bit fractional values.

The variance of an array of values samples[] is given by:

2
n—1 n—1
" z samp/esiz— Z samples
i=0 =0
variance =
n(n—1)

where 7 is the number of samples in the array.

How does this map onto the fixed-point types? samples is an array of
fract values, so in order to compute the sum of all the samples values, a
type with greater range than a fractional type is needed. If there are fewer
than 256 samples, it is certain that the sum will fit in an accum type
without saturation occurring. The same argument applies to the sum of
the squares of the samples elements.

However, the formula above also needs to calculate the intermediate result
sample_length * sum(samples[i] * samples[i]). The multiplication by
sample_length means that it is not certain that the result of the multipli-
cation will be within the range of an accum type.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-137
for Blackfin Processors

Using Native Fixed-Point Types

An equivalent formula for the variance is:

2

n—1

Z samples,
n—1 i=0
Z samplesf—

n
, i=0
variance =
(n—=1)

This alternative definition means that the necessary intermediate values

can be computed in an accum type. A possible implementation is given in
Listing 1-2.

Listing 1-2. A Function to Compute the Variance of an Array of 16-bit
Fractional Values

#include <stdfix.h>
#include <builtins.h>

// FX_CONTRACT ON ensures that the compiler recognizes
// accum += fract * fract idioms
#fpragma FX_CONTRACT ON

fract fract_variance(const fract *samples, int sample_length) {
fract variance = 0.0r;

if (sample_length > 1) {
#fpragma FX_ROUNDING_MODE UNBIASED
int i, saved_rnd_mod = set_rnd_mod_unbiased();
accum diff, sum_of_samples = 0.0k, sum_of_squares = 0.0k;
long fract mean;

1-138 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

// this is guaranteed not to saturate

// so long as sample_length <= 255

for (i = 0; i < sample_length; i++) {
sum_of_samples += samples[i];
sum_of_squares += samples[i] * samples[il;

}

mean = sum_of_samples / sample_length;

diff sum_of_squares - (mean * sum_of_samples);

variance = diff / (sample_length - 1);

restore_rnd_mod(saved_rnd_mod);

return variance;

}

Firstly, stdfix.h has been included in order to be able to use the natural
spellings fract and accum. The next thing you might notice is the explicit
use of #pragma FX_CONTRACT ON. Since this is the default setting of the
FX_CONTRACT mode, this statement is not strictly necessary, but it is useful
to document the assumptions made by the program.

It only makes sense to compute the variance if there is more than one
sample, otherwise the function returns zero.

Next, the function sets the rounding mode. Here, unbiased rounding has
been used to maintain the highest accuracy in the result. This is done by
using the FX_ROUNDING_MODE UNBIASED pragmaand set_rnd_mod_unbiased
built-in function together, as discussed in “Setting the Rounding Mode”
on page 1-128.

The loop computes the sum of the samples and the sum of the squares.
Since FX_CONTRACT mode is ON, no precision is lost as the fracts are multi-
plied together and summed into the accum type.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-139
for Blackfin Processors

Language Standards Compliance

After the loop, the sum of the samp1les is divided by the sample_length to
give the mean sample value. This must be in the range [-1.0,1.0). It is
stored into a Tong fract to retain as much accuracy as possible.

Next, the function computes the difference between the sum of the
squares and the product of the mean and the sum of the samples. Since
the absolute value of the mean is less than or equal to one, this product fits
in an accum and, since this product and the sum of the squares are both
non-negative, the difference must also fit in an accum.

Finally, the variance is computed by dividing this difference by one less
than the sample_length. In theory, this value may be greater than one;
in this case the returned value will be saturated to give FRACT_MAX.

Language Standards Compliance

The compiler supports code that adheres to the ISO/IEC 9899:1990 C
standard, ISO/IEC 9899:1999 C standard, and the ISO/IEC 14882:2003
C++ standard.

The compiler’s level of conformance to the applicable ISO/IEC standards
is validated using commercial test-suites from Plum Hall, Perennial, and
Dinkumware.

C Mode

The compiler shall compile any program that adheres to a hosted imple-
mentation of the ISO/IEC 9899:1990 C standard, but it does not prohibit
the use of language extensions (“C/C++ Compiler Language Extensions”
on page 1-156) that are compatible with the correct translation of stan-
dard-conforming programs. This is the default mode; it can be explicitly
enabled by using the -c89 switch (See “-c89” on page 1-20).

The compiler shall compile any program that adheres to a freestanding

implementation of the ISO/IEC 9899:1999 C standard, but it does not

1-140 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

prohibit the use of language extensions (“C/C++ Compiler Language
Extensions” on page 1-156) that are compatible with the correct transla-
tion of standard-conforming programs. The compiler does not support
the C99 keywords _Complex and _Imaginary. The ISO/IEC 9899:1990 C
standard library provided in C89 mode is used in C99 mode. To enable
C99 mode, use the -¢99 switch (See “-c99” on page 1-26).

In C mode, the best standard conformance is achieved using the default
switches and the following non-default switches:

e -const-strings (See “-const-strings” on page 1-32)

* -double-size-64 (See “-double-size-{32 | 64} on page 1-34)
* -full-io (See “-full-io” on page 1-40)

e -ieee-fp (See “-icee-fp” on page 1-45)

e -decls-weak (See “-decls-{weak|strong}” on page 1-33)

e -enum-is-int (See “-enum-is-int” on page 1-306)

The language extensions cannot be disabled to ensure strict compliance to
the language standards. However, when compiling for MISRA-C
(“MISRA-C Compiler Overview” on page 1-143) compliance checking,

language extensions are disabled.

When the -c89 switch is enabled (which is the default mode), these exten-
sions already include many of the ISO/IEC 9899:1999 standard features.
The following features are only available in C99 mode.

e Type qualifiers may appear more than once in the same
specifier-qualifier-list.

* Universal character names (\u and \U) are accepted.

* The use of function declarations with non-prototyped parameter
lists are faulted.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-141
for Blackfin Processors

Language Standards Compliance

* The first statement of a for-loop can be a declaration, not just
restricted to an expression.

* Type qualifiers and static are allowed in parameter array
declarators.

C++ Mode

The compiler shall compile any program that adheres to a freestanding
implementation of the ISO/IEC 14882:2003 C++ standard, but it does
not prohibit the use of language extensions (“C/C++ Compiler Language
Extensions” on page 1-156) that are compatible with the correct transla-
tion of standard-conforming programs. The Abridged Library is used,
which is a proper subset of the full Standard C++ Library and is designed
specifically for the needs of the embedded market.

In C++ mode, the best possible standard conformance is achieved using
the following switches:

e -no-anach (See “-no-anach” on page 1-89)
* -no-friend-injection (See “-no-friend-injection” on page 1-89)

* -no-implicit-inclusion (See “-no-implicit-inclusion” on

page 1-89)
e -std-templates (See “-std-templates” on page 1-90)
e -const-strings (See “-const-strings” on page 1-32)
e -double-size-64 (See “-double-size-{32 | 64} on page 1-34)
e -eh (See “-eh” on page 1-35)
e -extern-inline (See “-extern-inline” on page 1-87)
* -full-io (See “-full-io” on page 1-40)

e -ieee-fp (See “-icee-fp” on page 1-45)

1-142 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

e -decls-weak (See “-decls-{weak|strong}” on page 1-33)

e -rtti (See “-rtti” on page 1-90)

MISRA-C Compiler

This section provides an overview of MISRA-C compiler and

MISRA-C:2004 Guidelines.

MISRA-C Compiler Overview

The Motor Industry Software Reliability Association (MISRA) in 1998
published a set of guidelines for the C Programming Language to promote
best practice in developing safety related electronic systems in road vehi-
cles and other embedded systems. The latest release of MISRA-C:2004 has
addressed many issues raised in the original guidelines specified in
MISRA-C:1998. Complex rules are now split into component parts.
There are 121 mandatory rules and 20 advisory rules. The compiler issues
a discretionary error for mandatory rules and a warning for advisory rules.
More information on MISRA-C can be obtained at
http://www.misra.org.uk/.

The compiler detects violations of the MISRA rules at compile-time,
link-time, and run-time. It has full support for the MISRA-C:2004
Guidelines, including the Technical clarifications given by
MISRA-C:2004 Technical Corrigendum 1. The majority of MISRA rules
are easy to interpret. Those that require further explanation can be found
in “Rules Descriptions” on page 1-147. As a documented extension, the
compiler supports the integral types Tong long and unsigned long long.
No other language extensions are supported when MISRA checking is
enabled. Common extensions, such as the keywords section and inline,
are not allowed in the MISRA mode, but the same effects can be achieved
by using pragmas “#pragma section/#pragma default_section” on

page 1-310 and “#pragma inline” on page 1-320. Rules can be suppressed

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-143
for Blackfin Processors

http://www.misra.org.uk

MISRA-C Compiler

by the use of command-line switches or the MISRA extensions to “Diag-
nostic Control Pragmas” (on page 1-338).

The run-time checking that is used for validating a number of rules
should not be used in production code. The cost of detecting these
violations is expensive in both run-time performance and code size.

Refer to Table 1-6 on page 1-24 for the list of MISRA-C command-line
switches.

MISRA-C Compliance

The MISRA-C:2004 Guidelines document is an essential reference for
ensuring that code developed or requiring modification complies to these
Guidelines. A rigorous checking tool, such as this compiler, makes achiev-
ing compliance a lot easier than using a less capable tool or simply relying
on manual reviews of the code. The MISRA-C:2004 Guidelines document
describes a compliance matrix that a developer uses to ensure that each
rule has a method of detecting the rule violation. A compliance checking
tool is a vital component in detecting rule violations. It is recognized in
the Guidelines document that in some circumstances it may be necessary
to deviate from the given rules. A formal procedure has to be used to
authorize these deviations rather than an individual programmer having to
deviate at will.

Using the Compiler to Achieve Compliance

The Visual DSP++ compiler is one of the most comprehensive
MISRA-C:2004 compliance checking tools available. The compiler
provides command-line switches (on page 1-83) and diagnostic control
pragmas (on page 1-338) to enable you to achieve MISRA-C:2004
compliance.

During development it is recommended that the application is built with
maximum compliance enabled.

1-144 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Use the -misra-strict command-line switch to detect the maximum
number of rule violations at compile-time. However, if existing code is
being modified, using -misra-strict may result in a lot of errors and
warnings. The majority are usually common rule violations that are
mainly advisory and typically found in header files as a result of macro
expansion. These can be suppressed using the -misra command-line
switch. This has the potential benefit of focussing change on individual
source file violations, before changing headers that may be shared by more
than one project.

The -misra-no-cross-module command-1ine switch disables checking
rule violations that occur across source modules. During development
some external variables may not be fully utilized and rather than add in
artificial uses to avoid rule violations, use this switch.

The -misra-no-runtime command-line switch disables the additional
run-time overheads imposed by some rules. During development these
checks are essential in ensuring code executes as expected. Use this switch
in release mode to disable the run-time overheads.

You can use the -misra-testing command-1ine switch during develop-
ment to record the behavior of executable code. Although the
MISRA-C:2004 Guidelines do not allow library functions such as those as
defined in the header <stdio.h>, it is recognized that they are an essential
part of validating the development process.

During development, it is likely that you will encounter areas where some
rule violations are unavoidable. In such circumstances you should follow

the procedure regarding rule deviations described in the MISRA-C:2004

Guidelines document. Use the -Wmis_suppress and -Wmis_warn switches
to control the detection of rule violations for whole source files.

Finer control is provided by the diagnostic control pragmas. These prag-
mas allow you to suppress the detection of specified rule violations for any
number of C statements and declarations.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-145
for Blackfin Processors

MISRA-C Compiler

Example

#include <misra_types.h>
ffinclude <defBF532.h>
ffinclude "proto.h" /* prototype for func_state and my_state */
int32_t func_state(int32_t state)
{
return state & TIMOD;
/* both operands signed, violates rule 12.7 */

ffdefine my_flag 1

int32_t my_state(int32_t state)
{
return state & my_flag;
/* both operands signed, violates rule 12.7 */
}

In the above example, <defBF532.h> uses signed masks and signed literal
values for register values. The code is meaningful and trusted in this con-
text. You may suppress this rule and document the deviation in the code.
For code violating the rule that is not from the system header, you may
wish to rewrite the code:

##include <misra_types.h>
ffinclude <defBF532.h>
f#finclude "proto.h"™ /* prototype for func_state and my_state */

##ifdef _MISRA_RULES

#fpragma diag(push)

#fpragma diag(suppress:misra_rule_12_7:
"Using the def file is a safe and justified
deviation for rule 12.7")

1-146 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

ffendif /* _MISRA_RULES */

int32_t func_state(int32_t state)
{
return state & TIMOD;
/* both operands signed, violates rule 12.7 */

fhifdef _MISRA_RULES
#fipragma diag(pop)

/* allow violations of 12.7 to be detected again */
ffendif /* _MISRA_RULES */

f##define my_flag 1lu

uint32_t my_state(uint3Z2_t state)

{

return state & my_flag; /* 0.k both unsigned */
}

Rules Descriptions

The following are brief explanations of how some of the MISRA-C rules
are supported and interpreted in this VisualDSP++ release due to the fact
that some rules are handled in a nonstandard way, or some are not han-

dled at all:
* Rule 1.4 (required): The compiler/linker shall be checked to

ensure that 31 character significance and case sensitivity are sup-
ported for external identifiers.
The compiler and linker fully support this requirement.

* Rule 1.5 (required): Floating-point implementations should com-
ply with a defined floating-point standard.
Refer to “Floating-Point Binary Formats” on page 1-448.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-147

for Blackfin Processors

MISRA-C Compiler

Rule 2.4 (advisory): Sections of code should not be “commented
out”.

A diagnostic is reported if one of the following is encountered
inside of a comment.

- character “{‘ or °}’

- character “;’ followed by a new-line character

Rule 5.1 (required): Identifiers (internal and external) shall not
rely on the significance of more than 31 characters.

This rule is only enforced when the -misra-strict compiler switch
is enabled (on page 1-84).

Rule 5.5 (advisory): No object or function identifier with static
storage duration should be reused.

This rule is enforced by the compiler prelinker. The compiler
generates .misra extension files that the prelinker uses to ensure
that the same identifier is not used at file-scope within another
module. This rule is not enforced if the -misra-no-cross-module
compiler switch is specified (on page 1-84).

Rule 5.7 (advisory): No identifier shall be reused.
This rule is limited to a single source file. The rule is only enforced
when the -misra-strict compiler switch is enabled

(on page 1-84).

Rule 6.3 (advisory): typedefs that indicate size and signedness
should be used in place of basic types.

The typedefs for the basic types are provided by the system header
files <misra_types.h> and <stdbool.h>. The rule is only enforced
when the -misra-strict compiler switch is enabled

(on page 1-84).
Rule 6.4 (advisory): Bit fields shall only be defined to be of type

unsigned int or signed int.
The rule regarding the use of plain int is only enforced when the
-misra-strict compiler switch is enabled (on page 1-84).

1-148

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

* Rule 8.1 (required): Functions shall have prototype declarations
and the prototype shall be visible at both the function definition
and the call.

For static and inline functions, this rule is only enforced when the
-misra-strict compiler switch is enabled (on page 1-84).

* Rule 8.2 (required): Whenever an object or function is declared or
defined, its type shall be explicitly stated.
For function main, this rule is only enforced when the
-misra-strict switch is enabled.

* Rule 8.5 (required): There shall be no definitions of objects or
functions in a header file.
This rule is only enforced when the -misra-strict switch is

enabled.

* Rule 8.8 (required): An external object or function shall be
declared in one and only one file.
This rule is enforced by the compiler prelinker. The compiler gen-
erates .misra extension files that the prelinker uses to ensure that
the global is used in another file. The rule is not enforced if the
-misra-no-cross-module switch is enabled (on page 1-84).

* Rule 8.10 (required): All declarations and definitions of objects or
functions at file scope shall have internal linkage unless external
linkage is required.

This rule is enforced by the compiler prelinker. The compiler gen-
erates .misra extension files that the prelinker uses to ensure that
the global is used in another file. The rule is not enforced if the
-misra-no-cross-module switch is enabled (on page 1-84).

* Rule 9.1 (required): All automatic variables shall have been
assigned a value before being used.
The compiler attempts to detect some instances of violations of this
rule at compile-time. There is additional code added at run-time to
detect unassigned scalar variables. The additional integral types

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-149
for Blackfin Processors

MISRA-C Compiler

with a size less than an int are not checked by the additional
run-time code. The run-time code is not added if the
-misra-no-runtime compiler switch is enabled (on page 1-84).

Rule 10.5 (required): If the bitwise operators ~ and << are applied
to an operand of underlying type unsigned char or unsigned
short, the result shall be immediately cast to the underlying type
of the operand.

When constant-expressions violate this rule, they are only detected
when the -misra-strict compiler switch is enabled

(on page 1-84).

Rule 11.3 (advisory): A cast shall not be performed between a
pointer type and an integral type.

The compiler always allows a constant of integral type to be cast to
a pointer to a volatile type.

volatile int32_t *n;

n = (volatile int32_t *)10;

There is only one case where this rule is not applied.

int32_t *n;

n = (int32_t *)10;

Rule 12.4 (required): The right-hand operand of a logical & & or
|| operator shall not contain side-effects.

A function call used as the right-hand operand will not be faulted if
it is declared with an associated #pragma pure directive.

Rule 12.7 (required): Bitwise operators shall not be applied to
operands whose underlying type is signed.

The compiler will not enforce this rule if the two operands are
constants.

1-150

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

* Rule 12.8 (required): The right-hand operand of a shift operator
shall lie between zero and one less than the width in bits of the
underlying type of the left-hand operand.

If the right-hand operand is not a constant expression, the
violation will be checked by additional run-time code when
-misra-no-runtime is not enabled. If both operands are constants,
the rule is only enforced when the -misra-strict compiler switch

is enabled (on page 1-84).

* Rule 12.12 (required): The underlying bit representations of
floating-point values shall not be used.
MISRA-C rules such as 11.4 prevent casting of bit-patterns to
floating-point values. Hexadecimal floating-point constants are

also not allowed when MISRA-C switches are enabled.

* Rule 13.2 (advisory): Tests of a value against zero should be made
explicit, unless the operand is effectively Boolean.
The compiler treats variables which use the type bool (a typedef is
declared in <stdbool.h>) as “Effectively Boolean” and will not raise
an error when these are implicitly tested as zero, as follows:
bool b = 1;
if(bool)

* Rule 13.7 (required): Boolean operations whose results are invari-
ant shall not be used.
The compiler does not detect cases where there is a reliance on
more than one conditional statement. Constant expressions violat-
ing the rule are only detected when the -misra-strict compiler
switch is enabled (on page 1-84).

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-151
for Blackfin Processors

MISRA-C Compiler

* Rule 16.2 (required): Functions shall not call themselves, either
directly or indirectly.
A compile-time check is performed for a single file. Run-time code
is added to ensure that functions do not call themselves directly or
indirectly, but this code is not generated if the -misra-no-runtime
compiler switch is enabled (on page 1-84).

* Rule 16.4 (required): The identifiers used in the declaration and
definition of a function shall be identical.
A declaration of a parameter name may have one leading under-
score that the definition does not contain. This is to prevent name
clashing. If the -misra-strict compiler switch is enabled
(on page 1-84), the underscore is significant and results in the vio-
lation of this rule.

* Rule 16.5 (required): Functions with no parameters shall be
declared and defined with the parameter list void.
Function main shall only be reported as violating this rule if the
-misra-strict compiler switch is enabled (on page 1-84).

* Rule 16.10 (required): If a function returns error information,
then the error information shall be tested.
A function declared with return type bool, which is a typedef
declared in header file <stdboo1l.h> will be faulted if the result of
the call is not used.

* Rule 17.1 (required): Pointer arithmetic shall only be applied to
pointers that address an array or array element.
Checking is performed at run-time. A run-time function looks at
the value of the pointer and checks to see whether it violates this
rule.

1-152 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

* Rule 17.2 (required): Pointer subtraction shall only be applied to
pointers that address elements of the same array.
Checking is performed at runtime. A run-time function looks at
the value of the pointers and checks to see whether it violates this
rule.

* Rule 17.3 (required): >, >=, <, <= shall not be applied to pointers
that address elements of different arrays.
Checking is performed at run-time. A run-time function looks at
the value of the pointers and checks to see whether it violates this
rule.

* Rule 17.6 (required): The address of an object with automatic
storage shall not be assigned to another object that may persist
after the first object has ceased to exist.

Rule is not enforced under the following circumstances: if the
address of a local variable is passed as a parameter to another func-
tion, the compiler cannot detect whether that address has been
assigned to a global object.

* Rule 18.2 (required): An object shall not be assigned to an over-
lapping object.

The rule is not enforced by the compiler.

* Rule 18.3 (required): An area of memory shall not be reused for
unrelated purposes.
The rule is not enforced by the compiler.

* Rule 19.7 (advisory): A function shall be used in preference to a
function-like macro.
The rule is only enforced when the compiler option -misra-strict
is enabled.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-153
for Blackfin Processors

MISRA-C Compiler

* Rule 19.15 (required): Precautions shall be taken in order to pre-
vent the contents of a header file being included twice.
The compiler will report this violation if a header file is included
more than once and does not prevent redeclarations of types, vari-
ables, or functions.

* Rule 20.3 (required): The validity of values passed to library
functions shall be checked.
This is not enforced by the compiler. The rule puts the responsibil-
ity on the programmer.

* Rule 20.4 (required): Dynamic heap memory allocation shall not
be used.
Prototype declarations for functions performing heap allocation
should be declared with an associated #pragma misra_func(heap)
directive. This directive allows the compiler to detect violations of
this rule when these functions are used.

* Rule 20.7 (required): The setjmp macro and longjmp function
shall not be used.
Prototype declarations for these should be declared with an associ-
ated #tpragma misra_func(jmp) directive. This directive allows the
compiler to detect violations of this rule when these functions are
used.

* Rule 20.8 (required): The signal handling facilities of <signal.h>
shall not be used.
Prototype declarations for functions in this header should be
declared with an associated #pragma misra_func(handler) direc-
tive. This directive allows the compiler to detect violations of this
rule when these functions are used.

1-154 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

* Rule 20.9 (required): The input/output library <stdio.h> shall
not be used.
Prototype declarations for functions in this header should be
declared with an associated #pragma misra_func(io) directive.
This directive allows the compiler to detect violations of this rule
when these functions are used.

* Rule 20.10 (required): The library functions atof, atoi and atol
from library <stdlib.h> shall not be used.
Prototype declarations for these functions should be declared with
an associated #pragma misra_func(string_conv) directive. This
directive allows the compiler to detect violations of this rule when
these functions are used.

* Rule 20.11 (required): The library functions abort, exit, getenv
and system from library <stdlib.h> shall not be used.
Prototype declarations for these functions should be declared with
an associated #pragma misra_func(system) directive. This direc-
tive allows the compiler to detect violations of this rule when these
functions are used.

* Rule 20.12 (required): The time handling functions of library
<time.h> shall not be used.
Prototype declarations for these functions should be declared with
an associated #pragma misra_func(time) directive. This directive
allows the compiler to detect violations of this rule when these
functions are used.

* Rule 21.1 (required): Minimization of run-time failures shall be
ensured by the use of at least one of: (a) static analysis tools/tech-
niques; (b) dynamic analysis tools/techniques; (c) explicit coding
of checks to handle run-time faults.

The compiler performs some static checks on uses of unassigned
variables before conditional code and use of constant expressions.
The compiler performs run-time checks for arithmetic errors, such
as division by zero, array bound errors, unassigned variable

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-155
for Blackfin Processors

C/C++ Compiler Language Extensions

checking, and pointer dereferencing. Run-time checking has a neg-
ative effect on code performance. The -misra-no-runtime compiler
switch turns off the run-time checking (on page 1-84).

C/C++ Compiler Language Extensions

The compiler supports extensions to the ANSI/ISO standards for the C
and C++ languages. These extensions add support for DSP hardware and
permit some C++ programming features when compiling in C mode.
Most extensions are also available when compiling in C++ mode.

This section contains information on ISO/IEC 9899:1999 standard fea-
tures that are supported in C89 mode:

* “Function Inlining” on page 1-159

* “Variable Argument Macros” on page 1-164

e “Restricted Pointers” on page 1-165

e “Variable-Length Arrays” on page 1-166

* “Non-Constant Initializer Support” on page 1-167

* “Designated Initializers” on page 1-168

e “Hexadecimal Floating-Point Numbers” on page 1-170
e “Declarations Mixed With Code” on page 1-171

e “Compound Literals” on page 1-172

* “C++ Style Comments” on page 1-173

* “Enumeration Constants That Are Not int Type” on page 1-173

* “Boolean Type Support Keywords (bool, true, false)” on
page 1-173

1-156 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

This section also contains information on other language extensions:
* “Native Fixed-Point Types fract and accum” on page 1-174

* “Inline Assembly Language Support Keyword (asm)” on
page 1-174

* “Bank Qualifiers” on page 1-191
* “Placement Support Keyword (section)” on page 1-192

e “Placement of Compiler-Generated Code and Data” on

page 1-193
* “Long Identifiers” on page 1-194
e “Compiler Built-In Functions” on page 1-195
e “Pragmas” on page 1-277
* “GCC Compatibility Extensions” on page 1-349
e “Preprocessor-Generated Warnings” on page 1-357

The additional keywords that are part of the C/C++ extensions do not
conflict with ANSI C/C++ keywords. The formal definitions of these
extension keywords are prefixed with a leading double underscore (__).
Unless the -no-extra-keywords command-line switch is used, the com-
piler defines the shorter form of the keyword extension that omits the
leading underscores. For more information, see the brief descriptions of
each switch beginning on page 1-26.

This section describes the shorter forms of the keyword extensions.
In most cases, you can use either form in your code. For example,
all references to the inline keyword in this text appear without the
leading double underscores, but you can interchange inline and
__inline in your code.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-157
for Blackfin Processors

C/C++ Compiler Language Extensions

You might exclusively use the longer form (such as __in1ine) if porting a
program that uses the extra Analog Devices keywords as identifiers. For
example, if a program declares local variables, such as asm or inline, use
the -no-extra-keywords switch. If you need to declare a function as
inline, use __inline.

Table 1-21 and Table 1-22 provide descriptions of each extension and
direct you to sections that describe each extension in more detail.

Table 1-21. Keyword Extensions

Keyword Extensions Description

inTine Directs the compiler to integrate the function code into the code
of its callers. For more information, see “Function Inlining” on
page 1-159.

asm() Places Blackfin core assembly language commands directly in your

C/C++ program. For more information, see “Inline Assembly Lan-
guage Support Keyword (asm)” on page 1-174.

bank(“string”) Specifies a name which the user assigns to associate declarations
that reside in particular memory banks. For more information, see
“Bank Qualifiers” on page 1-191.

section(“string”) Specifies the section in which an object or function is placed.
For more information, see “Placement Support Keyword (sec-
tion)” on page 1-192.

boo] Specifies a Boolean type. For more information, see “Boolean
Type Support Keywords (bool, true, false)” on page 1-173.
true
false
restrict Specifies restricted pointer features. For more information, see
“Restricted Pointers” on page 1-165.
1-158 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

Table 1-22. Operational Extensions

Operational Extensions

Description

Non-constant initializers

Permits the use of non-constants as elements of aggregate initializ-
ers for automatic variables. For more information, see “Non-Con-
stant Initializer Support” on page 1-167.

Indexed initializers

Specifies elements of an aggregate initializer in arbitrary order. For
more information, see “Designated Initializers” on page 1-168.

Variable-length arrays

Creates local arrays with a variable size. For more information, see
“Variable-Length Arrays” on page 1-166.

Long identifiers

Supports identifiers of up to 1022 characters in length. For more
information, see “Long Identifiers” on page 1-194.

Preprocessor-generated warn-
ings

Generates warning messages from the preprocessor. For more
information, see “Preprocessor-Generated Warnings” on

page 1-357.

C++ style comments

Allows for “//” C++ style comments in C programs. For more
information, see “C++ Style Comments” on page 1-173.

Function Inlining

The inline keyword directs the compiler to integrate the code for the
function you declare as inline into the code of its callers. Inline function
support and the inline keyword is a standard feature of the ISO/IEC
14882:2003 C++ standard and the ISO/IEC 9899:1999 C standard; the
cchb1kfn compiler provides this keyword as an extension when the -c89
switch is enabled. For more information, see “-c89” on page 1-26.

This keyword eliminates the function call overhead and increases the
speed of your program’s execution. Argument values that are constant and
that have known values may permit simplifications at compile time so that
not all of the inline function’s code needs to be included.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-159

for Blackfin Processors

C/C++ Compiler Language Extensions

The following example shows a function definition that uses the inline
keyword.

inTine int max3 (int a, int b, int c¢) {
return max (a, max(b, c¢));
}

The compiler can decide not to inline a particular function declared with
the inline keyword; a diagnostic remark of cc1462 issued if the compiler
chooses to do this. The diagnostic can be raised to a warning by use of the
-Wwarn switch. For more information, see “~-W{error|remark|sup-
press|warn}” on page 1-79.

Function inlining can also occur by use of the -0a (automatic function
inlining) switch (“-Oa” on page 1-60), which enables the inline expansion
of C/C++ functions that are not necessarily declared inline in the source
code. The amount of auto-inlining the compiler performs is controlled
using the -0v (optimize for speed versus size) switch.

The compiler follows a specific order of precedence when determining
whether a call can be inlined. The order is:

1. If the definition of the function is not available (for example, it is a
call to an external function), the compiler cannot inline the call.

2. If the -never-inline switch has been specified (on page 1-51), the
compiler will not inline the call. If the call is to a function that has
#pragma always_inline specified (see “Inline Control Pragmas” on
page 1-301), a warning will also be issued.

3. If the call is to a function that has #pragma never_inline specified,
the call will not be inlined.

4. If the call is via a pointer-to-function, the call will not be inlined
unless the compiler can prove that the pointer will always point to
the same function definition.

1-160 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

5. If the call is to a function that has a variable number of arguments,
the call will not be inlined.

6. If the module contains asm statements at global scope (outside
function definitions), the call may not be inlined because the asm
statement restricts the compiler’s ability to reorder the resulting
assembly output.

7. If the call is to a function that has fpragma always_inline speci-
fied, the call is inlined. If the call exceeds the current speed/space
ratio limits, the compiler will issue a warning, but will still inline

the call.

8. If the call is to a function that has the inline qualifier or has
#pragma inline specified, and the -always-inline switch has been
specified, the compiler will inline the call. If the call exceeds the
current speed/space ratio limits, the compiler will issue a warning,
but will still inline the call.

9. If the caller and callee are mapped to different code sections, the
call will not be inlined unless the callee has the inline qualifier or
has ffpragma inline specified.

10.1If the call is to a function that has the in1ine qualifier or has
#pragma inline specified, and optimization is enabled, the called
function will be compared against the current speed/size ratio lim-
its for code size and stack size. The calling function will also be
examined against these limits. Depending on the limits and the rel-
ative sizes of the caller and callee, the inlining may be rejected.

11.1f the call is to a function that does not have the inline qualifier or
#pragma inline, and does not have #pragma weak_entry, then if
the -0a switch has been specified to enable automatic inlining, the
called function will be considered as a possible candidate for inlin-
ing, according to the current speed/size ratio limits, as if the inline
qualifier were present.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-161
for Blackfin Processors

C/C++ Compiler Language Extensions

The compiler bases its code-related speed/size comparisons on the -0v
switch (“-Ov” on page 1-61). When -0v is in the range 1...100, the com-
piler performs a calculation upon the size of the generated code using the
-0v value, and this will determine whether the generated code is too large
for inlining to occur. When -0v has the value 1, only very small functions
are considered small enough to inline; when -0v has the value 100, larger
functions are more likely to be considered suitable as well.

When -0v has the value 0, the compiler is optimizing for space. The
speed/space calculation will only accept a call for inlining if it appears that
the inlining is likely to result in less code than the call itself would
(although this is an approximation, since the inlining process is a
high-level optimization process, before actual machine instructions have
been selected).

The inlining process also considers the required stack size while inlining.
A function that has a local array of 20 integers needs such an array for each
inlined invocation, and if inlined many times, the cumulative effect on
overall stack requirements can be significant. Consequently, the compiler
considers both the stack space required by the called function, and the
total stack space required by the caller; either may reach a limit at which
the compiler determines that inlining the call would not be beneficial.
The stack size analysis is not subject to the -0v switch.

Inlining and Optimization

The inlining process operates regardless of whether optimization has been
selected (although if optimization is not enabled, then inlining will only
happen when forced by #fipragma always_inline or the -always-inline
switch). The speed/size calculation still has an effect, although an opti-
mized function is likely to have a different size from a non-optimized one,
which is smaller (and therefore more likely to be inlined) and dependent
on the kind of optimization done.

A non-optimized function has loads and stores to temporary values which
are optimized away in the optimized version, but an optimized function

1-162 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

may have unrolled or vectorized loops with multiple variants, selected at
run-time for the most efficient loop kernel. So an optimized function may
run faster, but not be smaller.

Given that the optimization emphasis may be changed within a module —
or even turned off completely — by the optimization pragmas, it is possible
for either, both, or neither of the caller and callee to be optimized. The
inlining process still operates, and is only affected by this in as far as the
speed/size ratios of the resulting functions are concerned.

Inlining and Out-of-Line Copies

If a function is static (that is, private to the module being compiled) and
all calls to that function are inlined, there are no calls remaining that are
not inline. Consequently, the compiler does not generate an out-of-line

copy for the function, thus reducing the size of the resulting application.

If the address of the function is taken, it is possible that the function could
be called through that derived pointer, so the compiler cannot guarantee
that all calls have been accounted for. In such cases, an out-of-line copy is
generated.

A function declared inline must be defined (its body must be included)
in every file in which the function is used. This is normally done by plac-
ing the inline definition in a header file. Usually it is also declared static.

Inlining and Global asm Statements

Inlining imposes a particular ordering on functions. If functions A and B
are marked as inline, and each calls the other, only one of the inline qual-
ifiers can be followed. Depending on which the compiler chooses to apply,
either A will be generated with inline versions of B, or B will be generated
with inline versions of A. Either case may result in no out-of-line copy of
the inlined function being generated. The compiler reorders the functions
within a module to get the best inlining result. Functionally, the code is
the same, but this affects the resulting assembly file.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-163
for Blackfin Processors

C/C++ Compiler Language Extensions

When global asm statements are used with the module, between the func-
tion definitions, the compiler cannot do this reordering process, because
the asm statement might affect the behavior of the assembly code that is
generated from the following C function definitions. Because of this,
global asm statements can greatly reduce the compiler’s ability to inline a
function call.

Inlining and Sections

Before inlining, the compiler checks any section directives or pragmas on
the function definitions. For example,

section("secA") inline int add(int a, int b) { return a + b; }
section("secB") int times_two(int a) { return add(a, a); }

Since add() and times_two() are to be generated into different code sec-
tions, this call is ignored during the inlining process, so the call is not
inlined. If the callee is marked with #pragma always_inline

(on page 1-301), however, or the -always-inline switch (on page 1-29) is
in force, the compiler will inline the call despite the mismatch in sections.

Variable Argument Macros

This ISO/IEC 9899:1999 C standard feature is enabled as an extension in
C89 mode and in C++ mode. The final parameter in a macro declaration
may be ... to indicate the parameter stands for a variable number of
arguments.

For example:

ffdefine trace(file,line,...) \
logmsg(file,line VA_ARGS__)

PR

can be used with differing numbers of arguments:

trace("a.c", 22, "Got here!\n”);

1-164 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

trace("b.c", 99, "i %d\n", 1);

trace("c.c", 72, "x = %f, y = %f\n", x, y);

This variable argument macro syntax comes from the ISO/IEC
9899:1999 C standard. The compiler supports both GCC and
C99 variable argument macro formats in C89, C99, and C++
modes. (See “GCC Variable Argument Macros” on page 1-353)

Restricted Pointers

The restrict keyword is a standard feature of the ISO/IEC 9899:1999 C

standard, and is available as an extension in C89 and C++ modes.

The use of restrict is limited to the declaration of a pointer. This key-
word specifies that the pointer provides exclusive initial access to the
pointed object. More simply, the restrict keyword is a way to identify
that a pointer does not create an alias. Also, two different restricted point-
ers cannot designate the same object, and therefore, they are not aliases.

The compiler is free to use the information about restricted pointers and
aliasing in order to better optimize C/C++ code that uses pointers. The
restrict keyword is most useful when applied to function parameters
that the compiler would otherwise have little information about. For
example,

void fir(short *in, short *c, short *restrict out, int n)

The behavior of a program is undefined if it contains an assignment
between two restricted pointers. Exceptions are:

* A function with a restricted pointer parameter may be called with
an argument that is a restricted pointer.

* A function may return the value of a restricted pointer that is local
to the function, and the return value may then be assigned to
another restricted pointer.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-165
for Blackfin Processors

C/C++ Compiler Language Extensions

If your program uses a restricted pointer in a way that it does not uniquely
refer to storage, the behavior of the program is undefined.

Variable-Length Arrays

The compiler supports variable-length automatic arrays. This ISO/IEC
9899:1999 standard feature is also allowed as an extension in C89 mode.
(For more information, see “-c89” on page 1-26.) Variable-length arrays
are not supported in C++ mode.

Unlike other automatic arrays, variable-length arrays are declared with a
non-constant length. This means that the space is allocated when the array
is declared, and space is deallocated when the brace-level is exited.

Variable-length arrays are only supported as an extension to C;
variable-length arrays are not supported in C++.

The compiler does not allow jumping into the brace-level of the array and
produces a compile-time error message if this is attempted. The compiler
does allow breaking or jumping out of the brace-level, and it deallocates
the array when this occurs.

You can use variable-length arrays as function arguments, such as:

struct entry
var_array (int array_len, char datalarray_len]larray_len])
{

}
The compiler calculates the length of an array at the time of allocation.

It then remembers the array length until the brace-level is exited and can
return it as the result of the sizeof () function performed on the array.

As an example, if you were to implement a routine for computation of a
product of three matrices, you need to allocate a temporary matrix of the

1-166 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

same size as input matrices. Declaring an automatic variable size matrix is
much easier than explicitly allocating it in a heap.

The expression declares an array with a size that is computed at runtime.
The length of the array is computed on entry to the block and saved in
case sizeof() is applied to the array. For multi-dimensional arrays, the
boundaries are also saved for address computation. After leaving the block,
all the space allocated for the array and size information is deallocated.

For example, the following program prints 40, not 50:

#include <stdio.h>
void foo(int);

main ()
{
foo(40);

void foo (int n)
{
char c[nl;
n = 50;
printf("%d", sizeof(c));

Non-Constant Initializer Support

The compiler does not require the elements of an aggregate initializer for
an automatic variable to be constant expressions. This is a standard feature
of the ISO/IEC 9899:1999 C standard and the ISO/IEC 14882:2003

C++ standard. The compiler supports it as an extension in C89 mode.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-167
for Blackfin Processors

C/C++ Compiler Language Extensions

The following example shows an initializer with elements that vary at
runtime.

void initializer (float a, float b)
{

float the_array[2] = { a-b, a+b };
}

All automatic structures can be initialized by arbitrary expressions involv-
ing literals, previously declared variables, and functions.

Designated Initializers

This is a standard feature of the ISO/IEC 9899:1999 C standard. The

compiler supports it as an extension in C89 and C++ modes.

This feature lets you specify the elements of an array or structure initial-
izer in any order by specifying their designators — the array indices or
structure field names to which they apply. All designators must be con-
stant expressions, even in automatic arrays.

For an array initializer, the syntax [INDEX] appearing before an initializer
element value specifies the index initialized by that value. Subsequent ini-
tializer elements are then applied to the sequentially following elements of
the array, unless another use of the [INDEX] syntax appears. The index val-
ues must be constant expressions, even when the array being initialized is
automatic.

The following example shows equivalent array initializers—the first in
C89 form (without using the extension) and the second in C99 form,
using the designators. Note that the [IND£X] designator precedes the value
being assigned to that element.

/* Example 1 C Array Initializer */
/* (€89 array initializer (no designators) */

1-168 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

int al6é]l = { 0, 0, 15, 0, 29, 0 };
/* Equivalent C99 array initializer (with designators) */

int al6] = { [4]1 29, [2] 15 };

You can combine this technique of designated elements with initialization
of successive non-designated elements. The two instructions below are
equivalent. Note that any non-designated initial value is assigned to the
next consecutive element of the structure or array.

/* Example 2 Mixed Array Initializer */
/* C89 array initializer (no designators) */

int a[6]1 = { 0, vl, v2, 0, v4, 0 };
/* Equivalent C99 array initializer (with designators) */

int al6] = { [1]1 vl, v2, [4] v4 };

The following example shows how to label the array initializer elements
when the designators are characters or enum type.

/* Example 3 C Array Initializer With enum Type Indices */
/* C99 C array initializer (with designators) */

int whitespacel[256] =

{

(" "1 1, ["\t'1 1, ["\W'1 1, ['\fF'7 1, ["\n'2 1, ["\r']1
b

enum { e_ftp = 21, e_telnet = 23, e_smtp = 25, e_http = 80, e_nntp

=119 };
char *names[] = {
[e_ftp]l "ftp",

Le_http]l "http",

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-169
for Blackfin Processors

C/C++ Compiler Language Extensions

[e_nntp] "nntp",

[e_smtp] "smtp",

[e_telnet] "telnet"
b

In a structure initializer, specify the name of the field to initialize with
fieldname: before the element value. The C89 and C99 struct initializers
in the example below are equivalent.

/* Example 4 struct Initializer */
/* C89 struct Initializer (no designators) */

struct point {int x, y;};
struct point p = {xvalue, yvalue};

/* Equivalent C99 struct Initializer (with designators) */

struct point {int x, y;};
struct point p = {y: yvalue, x: xvalue};

Hexadecimal Floating-Point Numbers

This is a standard feature of the ISO/IEC:9899 1999 C standard. The

compiler supports this as an extension in C89 mode and in C++ mode.
Hexadecimal floating-point numbers have the following syntax.

hexadecimal-floating-constant:

{0x|0X} hex-significand binary-exponent-part [floating-suffix]
hex-significand: hex-digits [. [hex-digits 1]
binary-exponent-part: {p|P} [+|-] decimal-digits
floating-suffix: { f | 1 | F | L}

The hex-significand is interpreted as a hexadecimal rational number.
The digit sequence in the exponent part is interpreted as a decimal inte-
ger. The binary-exponent-part indicates the power of two by which the

1-170 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

significand is to be scaled. The floating-suffix has the same meaning
that it has for decimal floating constants—a constant with no suffix is of
type double, a constant with suffix F is of type float, and a constant with
suffix L is of type Tong double.

Hexadecimal floating constants enable the programmer to specify the
exact bit pattern required for a floating-point constant. For example, the
declaration causes f to be initialized with the value 0x800000.

float f = Oxlp-126f;

Declarations Mixed With Code

In C89 mode, the compiler accepts declarations placed in the middle of
code. This allows the declaration of local variables to be placed at the
point where they are required. Therefore, the declaration can be combined
with initialization of the variable. This is a standard feature of the
ISO/IEC 9899:1999 C standard and the ISO/IEC 14882:2003 C++
standard.

For example, in the following function, the declaration of d is delayed
until its initial value is available, so that no variable is uninitialized at any
point in the function.

void func(Key k) {

Node *p = list;

while (p && p->key != k)
D = p->next;

if (Ip)
return;

Data *d = p->data;

while (*d)
process(*d++);

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-171
for Blackfin Processors

C/C++ Compiler Language Extensions

Compound Literals

This is a standard feature of the ISO/IEC:9899 1999 standard. The
compiler supports it as an extension in C89 mode. It is not allowed in
C++ mode.

The following example shows an ISO/IEC 9899:1990 standard C struct
usage, followed by an equivalent ISO/IEC 9899:1999 standard C code
that has been simplified using a compound literal.

/* Standard C89/C++ code*/
struct foo {int a; char b[2];};
struct foo make_foo(int x, char *s)
{

struct foo temp;

temp.a = Xx;

temp.b[0] = s[0];

if (s[0] !'= '"\0")
temp.b[1] = s[1];
else
temp.b[1] = "\0";

return temp;
}

/* Standard C99 code*/
struct foo {int a; char b[2];};
struct foo make_foo(int x, char *s)
{
return((struct foo) {x, {s[0], s[0] ? s[1] : "\NO'"}});
}

1-172 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

C++ Style Comments

The compiler accepts C++ comments, beginning with // and ending at
the end of the line, as in C programs. This comment representation is
essentially compatible with standard C, except for the following case.

a =>=b
//* highly unusual */ ¢

which a standard C compiler processes as:
a = b/c;
and a C++ compiler and cch1kfn process as:

a =b;

Enumeration Constants That Are Not int Type

The Visual DSP++ compiler allows enumeration constants to be integer
types other than int, such as unsigned int, Tong long or unsigned long
lTong, if the enumeration constant has a value outside the range of int.

Boolean Type Support Keywords (bool, true, false)

The compiler supports a Boolean data type bool, with values true and
false. This is a standard feature of the ISO/IEC 14882:2003 C++ stan-
dard, and is available as a standard feature in the ISO/IEC 9899:1999 C
standard when the stdbool.h header is included. It is supported as an
extension in C89 mode, and as an extension in C99 mode when the std-
bool.h header has not been included.

The bool keyword is a unique signed integral type. There are two built-in
constants of this type: true and false. When converting a numeric or
pointer value to bool, a zero value becomes false, and a nonzero value

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-173
for Blackfin Processors

C/C++ Compiler Language Extensions

becomes true. A bool value may be converted to int by promotion,
taking true to one and false to zero. A numeric or pointer value is con-
verted automatically to bool when needed.

Native Fixed-Point Types fract and accum

The compiler has support for the native fixed-point types fract and accum
as defined by Chapter 4 of the “Extensions to support embedded processors”
ISO/IEC draft technical report TR 18037. This support is available for
the C language only. A discussion of how to use this support is given in
“Using Native Fixed-Point Types” on page 1-104.

Inline Assembly Language Support Keyword (asm)

The compiler’s asm() construct is used to code Blackfin assembly language
instructions within a C/C++ function and to pass declarations and direc-
tives to the assembler. Use the asm() construct to express assembly
language statements that cannot be expressed easily or efficiently with
C/C++ constructs.

Using asm(), you can code complete assembly language instructions and
specify the operands of the instruction using C expressions. When specify-
ing operands with a C/C++ expression, you do not need to know which
registers or memory locations contain C/C++ variables.

The compiler does not analyze code defined with the asm() con-
struct—it passes this code directly to the assembler. The compiler
performs substitutions for operands of the formats %0 through %9;
however, it passes everything else to the assembler without reading
or analyzing it. This means that the compiler cannot apply any
enabled workarounds for silicon errata that may be triggered either
by the contents of the asm() construct, or by the sequence of
instructions formed by the asm() construct and the surrounding
code produced by the compiler.

1-174 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

@ asm() constructs with inputs, outputs or affected registers are exe-

cutable statements, and as such, may not appear before declarations
within C/C++ functions. The asm() constructs may also be used at
global scope, outside function declarations. Such asm() constructs
are used to pass declarations and directives directly to the assem-
bler. They are not executable constructs, and may not have any
inputs or outputs, or affect any registers.

@ When optimizing, the compiler sometimes changes the order in

which generated functions appear in the output assembly file.
However, if global-scope asm() constructs are placed between two
function definitions, the compiler ensures that the function order
is retained in the generated assembly file. Consequently, function
inlining may be inhibited.

A simplified asm() construct without operands takes the following form.
asm(" NOP; ");

The complete assembly language instruction, enclosed in double quotes,
is the argument to asm(). Using asm() constructs with operands requires
additional syntax.

@ The compiler generates a label before and after inline assembly
instructions when generating debug code. (See the -g switch
on page 1-42.) These labels are used to generate the debug line
information used by the debugger. If the inline assembler inserts
conditionally assembled code, an undefined symbol error is likely
to occur at link-time. For example, the following code could cause
undefined symbols if MACRO is undefined:

asm("f#ifdef MACRO");
asm(" // assembly statements");
asm("f#endif");

If the inline assembler changes the current section and thereby causes the
compiler labels to be placed in another section, such as a data section

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-175
for Blackfin Processors

C/C++ Compiler Language Extensions

(instead of the default code section), then the debug line information will
be incorrect for these lines.

The construct syntax is described in:
e “asm() Construct Syntax” on page 1-176
e “Assembly Construct Operand Description” on page 1-180
e “Using long long Types in asm Constraints” on page 1-185
e “Assembly Constructs With Multiple Instructions” on page 1-186

e “Assembly Construct Reordering and Optimization” on
page 1-187

e “Assembly Constructs With Input and Output Operands” on
page 1-188

e “Assembly Constructs With Compile-Time Constants” on
page 1-189

e “Assembly Constructs and Flow Control” on page 1-190

* “Guidelines for Using asm() Statements” on page 1-190

asm() Construct Syntax
Use the following general syntax for asm() constructs.

asm [volatile] (
template
[:[constraint(output operand)[,constraint(output operand)..]]
[:[constraint(input operand)[,constraint(input operand)..]]
[:clobber stringll]

1-176 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

The syntax elements are defined as follows:

template

The template is a string containing the assembly instruction(s) with
%number, indicating where the compiler should substitute the operands.
Operands are numbered in order of occurrence from left to right, starting
at 0. Separate multiple instructions with a semicolon; then enclose the
entire string within double quotes.

For more information on templates containing multiple instructions, see
“Assembly Constructs With Multiple Instructions” on page 1-186.

constraint

The constraint is a string that directs the compiler to use certain groups of
registers for the input and output operands. Enclose the constraint string
within double quotes. For more information on operand constraints, see
“Assembly Construct Operand Description” on page 1-180.

output operand
The output operands are the names of C/C++ variables that receive output
from corresponding operands in the assembly instructions.

input operand
The input operand is a C/C++ expression that provides an input to a cor-
responding operand in the assembly instruction.

clobber string

The clobber string notifies the compiler that a list of registers is overwrit-
ten by the assembly instructions. Use lowercase characters to name
clobbered registers. Enclose each name within double quotes, and separate
each quoted register name with a comma. The input and output operands
are guaranteed not to use any of the clobbered registers, so you can read
and write the clobbered registers as often as you like. See Table 1-24 on
page 1-185.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-177
for Blackfin Processors

C/C++ Compiler Language Extensions

It is vital that any register overwritten by an assembly instruction and not
allocated by the constraints is listed in the clobber list.

The list must include memory if an assembly instruction writes to memory.

asm() Construct Syntax Rules

These rules apply to assembly construct template syntax.

The template is the only mandatory argument to asm(). All other
arguments are optional.

An operand constraint string followed by a C/C++ expression in
parentheses describes each operand. For output operands, it must
be possible to assign to the expression; that is, the expression must
be legal on the left side of an assignment statement.

A colon separates:
* The template from the first output operand
* The last output operand from the first input operand
* The last input operand from the clobbered registers

A space must be placed between adjacent colon field delimiters in
order to avoid a clash with the C++ “::” reserved global resolution
operator.

A comma separates operands and registers within arguments.

The number of operands in arguments must match the number of
operands in your template.

The maximum permissible number of operands is ten (%0, %1, %2,
%3, %4, %5, %6, %7, %8, and %9).

1-178

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

The compiler cannot check whether the operands have data types
that are reasonable for the instruction being executed. The com-
piler does not parse the assembler instruction template, does not
interpret the template, and does not verify whether the template
contains valid input for the assembler.

asm() Construct Template Example

The following example shows how to apply the asm() construct template
to the Blackfin assembly language assignment instruction.

{

int result, x;

asm (
"%0=%1;"
"=d" (result)
"d" (x)

)
}

In the example above, note that:

e The template is "%0=%1;". The %0 is replaced with operand zero
(result). The first operand, %1, is replaced with operand one (x).

* The output operand is the C/C++ variable result. The letter d is
the operand constraint for the variable. This constrains the output
to a data register, R{0-7}. The compiler generates code to copy the
output from the data register to the variable result, if necessary.
The = in =d indicates that the operand is an output.

e The input operand is the C/C++ variable x. The letter d in the
operand constraint position for this variable constrains x to a data
register, R{0-7}. If x is stored in a different kind of register or in
memory, the compiler generates code to copy the value into a data
register before the asm() construct uses it.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-179
for Blackfin Processors

C/C++ Compiler Language Extensions

Assembly Construct Operand Description

The second and third arguments to the asm() construct describe the
operands in the assembly language template. Several pieces of information
must be conveyed for the compiler to know how to assign registers to
operands. This information is conveyed with an operand constraint. The
compiler needs to know what kind of registers the assembly instructions
can operate on, so it can allocate the correct register type.

You convey this information with a letter in the operand constraint string
that describes the class of allowable registers.

Table 1-23 on page 1-183 describes the correspondence between con-
straint letters and register classes.

The use of any letter not listed in Table 1-23 results in unspecified
behavior. The compiler does not check the validity of the code by
using the constraint letter.

To assign registers to the operands, the compiler must also be informed of
which operands in an assembly language instruction are inputs, which are
outputs, and which outputs may not overlap inputs. The compiler is told
this in three ways.

* The output operand list appears as the first argument after the
assembly language template. The list is separated from the assembly
language template with a colon. The input operands are separated
from the output operands with a colon and they always follow the
output operands.

* The operand constraints describe which registers are modified by
an assembly language instruction. The “=” in =constraint indi-
cates that the operand is an output; all output operand constraints

must use =. Operands that are input-outputs must use “+”. (See

below.)

1-180 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

e The compiler may allocate an output operand in the same register
as an unrelated input operand, unless the output or input operand
has the &= constraint modifier. This situation can occur because the
compiler assumes the inputs are consumed before the outputs are

produced.

This assumption may be false if the assembler code actually consists
of more than one instruction. In such a case, use &= for each output
operand that must not overlap an input or supply an & for the
input operand.

Operand constraints indicate the kind of operand they describe by means
of preceding symbols. Preceding symbols include: no symbol, =, +, &, ?,
and #.

* (no symbol)
The operand is an input. It must appear as part of the third
argument to the asm() construct. The allocated register is loaded
with the value of the C/C++ expression before the asm() template
is executed. Its C/C++ expression is not modified by the asm()
construct, and its value may be a constant or literal.
Example: d

e = symbol

The operand is an output. It must appear as part of the second
argument to the asm() construct. Once the asm() template has
been executed, the value in the allocated register is stored into the
location indicated by its C/C++ expression; therefore, the expres-
sion must be one that would be valid as the left-hand side of an
assignment.

Example: =d

* + symbol
The operand is both an input and an output. It must appear as part
of the second argument to the asm() construct. The allocated regis-
ter is loaded with the C/C++ expression value, the asm() template

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-181
for Blackfin Processors

C/C++ Compiler Language Extensions

is executed, and then the allocated register’s new value is stored
back into the C/C++ expression. Therefore, as with pure outputs,
the C/C++ expression must be one that is valid on the left-hand
side of an assignment.

Example: +d

2 symbol

The operand is temporary. It must appear as part of the third
argument to the asm() construct. A register is allocated as working
space for the duration of the asm() template execution. The regis-
ter’s initial value is undefined, and the register’s final value is
discarded. The corresponding C/C++ expression is not loaded into
the register, but must be present. This expression is normally
specified using a literal zero.

Example: 7d

& symbol

This operand constraint may be applied to inputs and outputs.

It indicates that the register allocated to the input (or output) may
not be one of the registers that are allocated to the outputs

(or inputs). This operand constraint is used when one or more
output registers are set while one or more inputs are yet to be
referenced. (This situation sometimes occurs if the asm() template
contains more than one instruction.)

Example: &d

symbol

The operand is an input, but the register’s value is clobbered by the
asm() template execution. The compiler may make no assumptions
about the register’s final value. An input operand with this con-
straint will not be allocated the same register as any other input or
output operand of the asm(). The operand must appear as part of
the second argument to the asm() construct.

Example: #d

1-182

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Table 1-23 lists the registers that may be allocated for each register con-

straint letter. The use of any letter not listed in the “Constraint” column
of this table results in unspecified behavior. The compiler does not check
the validity of the code by using the constraint letter. Table 1-24 lists the

registers that may be named as part of the clobber list.

It is also possible to claim registers directly, instead of requesting a register
from a certain class using the constraint letters. You can claim the registers
directly by simply naming the register in the location where the class letter

would be. The register names are the same as those used to specify the
clobber list; see Table 1-24.

The following example loads sum into A0, loads x and y into two DREG
halves, executes the operation, and then stores the new total from A0 back

into sum.

asm("%0 += %1 * %2;"

:"+a0" (sum)
"H"(x),"H" (y)
)

/* output */
/* dinput */

Naming registers in this way allows the asm() construct to specify
several registers that must be related, such as the DAG registers for a
circular buffer. This also allows the use of registers not covered by
the register classes accepted by the asm() construct. The clobber
string can be any of the registers recognized by the compiler.

Table 1-23. asm() Operand Constraints

Constraint Register Type Registers
a General addressing registers PO — P5
p General addressing registers PO — P5
i DAG addressing registers 10 — 13
b DAG addressing registers 10 — I3
d General data registers RO — R7

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

1-183

C/C++ Compiler Language Extensions

Table 1-23. asm() Operand Constraints (Cont'd)

Constructs With Compile-Time Constants” on

page 1-189.)

Constraint Register Type Registers

r General data registers RO — R7

D General data registers RO — R7

A Accumulator registers A0, Al

e Accumulator registers AO, Al

f Modifier registers MO — M3

E Even general data registers RO,R2,R4,R6

0 Odd general data registers R1,R3,R5,R7

h High halves of the general data registers RO.H,RI.H...R7.

1 Low halves of the general data registers RO.L,R1.L...R7.

H Low or high halves of the general data registers | RO.L,R1.L...R7.

L Loop counter registers LCO,LCI

I General data register pairs (RO-R1), (R2-R3),
(R4-R5), (R6-R7)

n None (For more information, see “Assembly

constraint

Indicates the constraint is an input operand

=constraint

Indicates the constraint is applied to an output
operand

&constraint

Indicates the constraint is applied to an input
operand that may not be overlapped with an out-
put operand

=&constraint

Indicates the constraint is applied to an output
operand that may not overlap an input operand

?constraint

Indicates the constraint is temporary

+constraint

Indicates the constraint is both an input and out-
put operand

ffconstraint

Indicates the constraint is an input operand
whose value will be changed

1-184

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Table 1-24. Register Names for asm() Constructs

Clobber String Meaning

"ro", "rl", "r2", "r3", "r4", "rs5", "re", "r7" General data register
"p0", "pl", "p2", "p3", "p4", "pb" General addressing register
"io", "il1", "i2", "i3" DAG addressing register
"mo", "ml", "m2", "m3" Modify register

"b0", "bl", "b2", "b3" Base register

"1™, "11", "12", "13" Length register

"astat"” ALU status register
"seqstat" Sequencer status register
"rets" Subroutine address register
"cc” Condition code register
"a0", "al" Accumulator result register
"1c0", "lcl” Loop counter register
"rl:0", "r3:2", "r5:4", "r7:6" General data register pair
"memory" Unspecified memory location(s)

Using long long Types in asm Constraints

It is possible to use an asm() constraint to specify a Tong Tong value, in
which case the compiler will claim a valid register pair. The syntax for
operands within the template is extended to allow the suffix “H” for the
top 32 bits of the operand and the suffix “L” for the bottom 32 bits of the

«Wo»

operand. A Tong Tlong type is represented by the constraint letter “I”.

For example,

long long int

int main(void)

res;

{

lTong Tong result64, x64 = 123;
asm(
Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-185

for Blackfin Processors

C/C++ Compiler Language Extensions

"%0H = %1H; %0L = %1L;"
"=I" (result64)
"I" (x64)
)
res = resultésd;
}

In this example, the template is “%0H=%1H; %0L=%1L;". The %0H is replaced
with the register containing the top 32 bits of operand zero (result64),
and %0L is replaced with the register containing the bottom 32 bits of
operand zero (result64). Similarly, %1H and %1L are replaced with the
registers containing the top 32 bits and bottom 32 bits, respectively, of
operand one (x64).

Assembly Constructs With Multiple Instructions

There can be many assembly instructions in one template. Normal rules
for line-breaking apply. In particular, the statement may spread over
multiple lines. You are recommended not to split a string over more than
one line, but to use the C language’s string concatenation feature. If you
are placing the inline assembly statement in a preprocessor macro, see
“Compound Macros” on page 1-400.

This is an example of multiple instructions in a template:

/* (pseudo code) r7 = x; r6 =y; result = x + y; */
asm ("r7=%1;"

"r6=%2;"

"%0=r6+r7;"
"=d" (result) /* output */
"d" (x), "d" (y) /* input */
"r7", "re"); /* clobbers */

Do not attempt to produce multiple-instruction asm constructs via
a sequence of single-instruction asm constructs, as the compiler is
not guaranteed to maintain the ordering.

1-186 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

For example, avoid the following;:

/* BAD EXAMPLE: Do not use sequences of single-instruction
** asms. Use a single multiple-instruction asm instead. */

asm("r7=%0;" : : "d" (x) : "r7");
asm("r6=%0;" : : "d" (y) : "ré6");
asm("%0=r6+r7;" : "=d" (result));

Assembly Construct Reordering and Optimization

For the purpose of optimization, the compiler assumes that the side effects
of an asm() construct are limited to changes in the output operands or the
items specified using the clobber specifiers. This does not mean that you

cannot use instructions with side effects, but be careful to notify the com-

piler that you are using them by using the clobber specifiers. (See
Table 1-24.)

The compiler may eliminate supplied assembly instructions (if the output
operands are not used), move them out of loops, or reorder them with
respect to other statements, where there is no visible data dependency.
Also, if the instruction has a side effect on a variable that otherwise
appears not to change, the old value of the variable may be reused later if
it happens to be found in a register.

Use the keyword volatile to prevent an asm() instruction from being
moved or deleted. For example,

fidefine set_priority(x) \
asm volatile ("STI %0;": /* no outs */ : "d" (x))

A sequence of asm volatile() constructs is not guaranteed to be com-
pletely consecutive; it may be moved across jump instructions or in other
ways that are not significant to the compiler. To force the compiler to
keep the output consecutive, use one asm volatile() construct only, or
use the output of the asm() construct in a C/C++ statement.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-187
for Blackfin Processors

C/C++ Compiler Language Extensions

Assembly Constructs With Input and Output Operands

When an asm construct has both inputs and outputs, there are two aspects
to consider:

1. Whether a value read from an input variable will be written back to
the same variable or a different variable, on output.

2. Whether the input and output values will reside in the same regis-
ter or different registers.

The most common case is when both input and output variables and
input and output registers are different. In this case, the asm construct
reads from one variable into a register, performs an operation which leaves
the result in a different register, and writes that result from the register
into a different output variable.

asm("%0 = %1;" : "=p" (newptr) : "p" (oldptr));

When the input and output variables are the same, the input and output
registers are usually the same register. In this case, use the “+” constraint.
asm("%0 += 4;" : "+p" (sameptr));

When the input and output variables are different, but the input and out-
put registers have to be the same (usually because of requirements of the
assembly instructions), you indicate this to the compiler by using a differ-
ent syntax for the input’s constraint. Instead of specifying the register or
class to be used, specify the output to which the input must be matched.

For example,

asm("%0 += 4;"

:"=p

(newptr) // an output, given a preg,

// stored into newptr.
:"0" (oldptr)); // an input, given same reg as %0,
// initialized from oldptr

This specifies that the input o1dptr has 0 (zero) as its constraint string,
which means it must be assigned the same register as 40 (newptr).

1-188 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Assembly Constructs With Compile-Time Constants

The n input constraint informs the compiler that the corresponding input
operand should not have its value loaded into a register. Instead, the com-
piler is to evaluate the operand, and then insert the operand’s value into
the assembly command as a literal numeric value. The operand must be a
compile-time constant expression.

For example,

int r; int arr[100];
asm("%0 = %1;" : "=d" (r) : "d" (sizeof(Carr))); // "d"

produces code like

RO = 400 (X); // compiler loads value into register
R1 = RO; // compiler replaces %1 with register
whereas:

int r; int arr[100];
asm("%0 = %1;" : "=d" (r) : "n" (sizeof(Carr))); // "n"

produces code like
R1 = 400; // compiler replaces %1 with value

If the expression is not a compile-time constant, the compiler gives an
error:

int r; int arr[100];
asm("%0 = %1;" : "=d" (r) : "n" (arr));
// error: operand
// for "n" constraint
// must be a compile-time constant

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-189
for Blackfin Processors

C/C++ Compiler Language Extensions

Assembly Constructs and Flow Control

Do not place flow-control operations within an asm() construct
that “leaves” the asm() construct functions, such as calling a proce-
dure or performing a jump to another piece of code that is not
within the asm() construct itself. Such operations are invisible to
the compiler, may result in multiple-defined symbols, and may vio-
late assumptions made by the compiler.

For example, the compiler is careful to adhere to the calling conventions
for preserved registers when making a procedure call. If an asm() construct
calls a procedure, the asm() construct must also ensure that all conven-
tions are obeyed, or the called procedure may corrupt the state used by the
function containing the asm() construct.

It is also inadvisable to use labels in asm() statements, especially when
function inlining is enabled. If a function containing such asm statements
is inlined more than once in a file, there will be multiple definitions of the
label, resulting in an assembler error. If possible, use PC-relative jumps in
asm statements.

Guidelines for Using asm() Statements

Certain operations are performed more efficiently using other compiler
features, and result in source code that is more clear and easier to read.

Accessing System Registers

System registers are accessed most efficiently using the functions in
sysreg.h instead of using asm() statements (see also “System Built-In
Functions” on page 1-259).

Accessing Memory-Mapped Registers (MMRs)

MMRs can be accessed using the macros in the cdef*.h files (for example,
cdefBF531.h) that are supplied with VisualDSP++ (see also “Mem-
ory-Mapped Register Access Built-In Functions” on page 1-275).

1-190 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Bank Qualifiers

Bank qualifiers can be attached to data declarations to indicate that the
data resides in particular memory banks. For example,

int bank("blue") *ptrl;
int bank("green") *ptr2;

The bank qualifier assists the optimizer because the compiler assumes that
if two data items are in different banks, they can be accessed together
without conflict.

The bank name string literals have no significance, except to differentiate
between banks. There is no interpretation of the names attached to banks,
which can be any arbitrary string. There is a current implementation limit
of ten different banks.

For any given function, three banks are defined automatically. These are:

e The default bank for global data.
The “static” or “extern” data that is not explicitly placed into
another bank is assumed to be within this bank. Normally, this
bank is called “__data“, although a different bank can be selected
with #pragma data_bank(bankname).

e The default bank for local data.
Local variables of “auto” storage class that are not explicitly placed
into another bank are assumed to be within this bank. Normally,
this bank is called “__stack”, although a different bank can be
selected with #pragma stack_bank(bankname).

e The default bank for the function’s instructions.
The function itself is placed into this bank. Normally, it is called
“__code”, although a different bank can be selected with
ffpragma code_bank(bankname).

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-191
for Blackfin Processors

C/C++ Compiler Language Extensions

Each memory bank can have different performance characteristics. For
more information on memory bank attributes, see “Memory Bank Prag-
mas” on page 1-341.

Placement Support Keyword (section)

The section() keyword directs the compiler to place an object or func-
tion in an assembly . SECTION of the compiler’s intermediate output file.
You name the assembly . SECTION with the string literal parameter of the
section() keyword. If you do not specify a section() keyword for an
object or function declaration, the compiler uses a default section. The
.1df file supplied to the linker must also be updated to support the addi-
tional named section. For information on the default sections, see “Using
Memory Sections” on page 1-422.

Applying section() is meaningful only when the data item is something
that the compiler can place in the named section. Apply section() only to
top-level, named objects that have static duration (for example, objects
that are explicitly static, or are given as external-object definitions).

The following example shows the declaration of a static variable that is
placed in the section called bingo.

static section("bingo") int x;

The section() keyword has the limitation that section initialization qual-
ifiers cannot be used within the section name string. The compiler may
generate labels containing this string, which will result in assembly syntax
errors. Additionally, the keyword is not compatible with any pragmas that
precede the object or function. For finer control over section placement
and compatibility with other pragmas, use #pragma section.

Refer to “#pragma section/#pragma default_section” on page 1-310 for
more information.

1-192 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

@ The section keyword replaces the segment keyword in earlier

releases of the compiler. Although the segment () keyword is
supported by the compiler of the current release, Analog Devices
recommends that you revise legacy code.

Placement of Compiler-Generated Code and
Data

If the section() keyword is not used, the compiler emits code and data
into default sections. The -section switch (on page 1-72) can be used to
specify alternatives for these defaults on the command-line, and the
“#pragma section/#pragma default_section” on page 1-310 can be used to
specify alternatives for some of them within the source file.

In addition, when using certain features of C/C++, the compiler may be
required to produce internal data structures. The -section switch and the
default_section pragma allow you to override the default location where

the data would be placed.

For example, the following code instructs the compiler to place all the
C++ virtual function look-up tables into the vtb1_data section, rather
than the default vtb1 section.

ccblkfn -section vtbl=vtbhbl_data test.cpp -c++

It is the user’s responsibility to ensure that appropriately named
sections exist in the . 1df file.

The compiler currently supports the following section identifiers:

code Controls placement of machine instructions.
Default is program.

data Controls placement of initialized variable data.
Default is datal.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-193
for Blackfin Processors

C/C++ Compiler Language Extensions

constdata

bsz

sti

switch

vibl

vtable
strings
autoinit

alldata

Controls placement of constant data.
Default is constdata.

Controls placement of zero-initialized variable data.
Default is bsz.

Controls placement of the static C++ class constructor “start” functions
Default is program. For more information, see “Constructors and Destruc-
tors of Global Class Instances” on page 1-419.

Controls placement of jump tables used to implement C/C++ switch
statements. Default is constdata.

Controls placement of the C++ virtual lookup tables.
Default is vtb1.

Synonym for vtb]l
Controls the placement of string literals
Controls placement of data used to initialize aggregate autos

Controls placement of data, constdata, bsz, strings, and
autoinit all at once

When both -section switches and default_section pragmas are used, the
default_section pragmas take priority.

Long ldentifiers

The compiler supports C identifiers of up to 1022 characters in length;
C++ identifiers typically have a slightly shorter limit, as the limit applies
to the identifier after name mangling is used to transform it into a suitable
symbol for linking, and for C++, some of the symbol space is required to

represent the identifier’s type.

1-194

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Compiler Built-In Functions

The compiler supports intrinsic (built-in) functions that enable efficient
use of hardware resources. These functions are:

e “Fractional Value Built-In Functions in C” on page 1-196

e “ETSI Support” on page 1-217

* “Fractional Value Built-In Functions in C++” on page 1-232
e “fractl6 and fract32 Literal Values in C” on page 1-234

e “Converting Between Fractional and Floating-Point Values” on

page 1-235
* “Complex Fractional Built-In Functions in C” on page 1-238
e “Changing the RND_MOD Bit” on page 1-242
e “Complex Operations in C++” on page 1-243
e “Packed 16-Bit Integer Built-In Functions” on page 1-245
e “Division Functions” on page 1-246
e “Full-Precision Accumulator Built-In Functions” on page 1-247
e “Viterbi History and Decoding Functions” on page 1-253
e “Search Built-in Functions” on page 1-255
e “Circular Buffer Built-In Functions” on page 1-256
* “Endian-Swapping Intrinsics” on page 1-259
e “System Built-In Functions” on page 1-259
e “Cache Built-In Functions” on page 1-261

e “Compiler Performance Built-In Functions” on page 1-264

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-195
for Blackfin Processors

C/C++ Compiler Language Extensions

e “Video Operation Built-In Functions” on page 1-267
* “Misaligned Data Built-In Functions” on page 1-274

e “Memory-Mapped Register Access Built-In Functions” on
page 1-275

* “Miscellaneous Built-In Functions” on page 1-276

Knowledge of these functions is built into the ccb1kfn compiler. Your
program uses them via normal function call syntax. The compiler notices
the invocation and generates one or more machine instructions, just as it
does for normal operators, such as + and *.

Built-in functions have names that begin with __builtin_. Note that
identifiers beginning with double underscores (__) are reserved by the C
standard, so these names will not conflict with user program identifiers.
The header files also define more readable names for the built-in functions
without the __builtin_ prefix. These additional names are disabled if the
-no-builtin command-line switch is used.

These functions are specific to individual architectures, and the following
sections list built-in functions currently supported on Blackfin processors.
Various system header files provide definitions and access to the intrinsics
as described below.

Fractional Value Built-In Functions in C

Two approaches may be used to access the fractional arithmetic and the
parallel 16-bit operations supported by the Blackfin processor instruc-
tions. One is to use the native fixed-point types fract and accum. This
approach is discussed in “Using Native Fixed-Point Types” on

page 1-104. Alternatively, built-in functions may be used to specify frac-
tional operations. This section discussed the use of these built-in
functions.

1-196 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Table 1-25. Fractional Value C Types

C type Usage

fractlé Single 16-bit signed fractional value, typedef to short
fract32 Single 32-bit signed fractional value, typedef to long
fract Single 16-bit signed fractional value, native type
Tong fract Single 32-bit signed fractional value, native type
fract2xl6 Double 16-bit signed fractional value

The various C types used in the built-in functions described in this section
are described in Table 1-25.

See “Using Data Storage Formats” on page 1-443 for information
on how fractl6, fract32, fract, long fract, and fract2x16 types
are represented. See the Blackfin Processor Programming Reference
for information on saturation, rounding (biased and unbiased), and
truncating,.

Because fractional arithmetic uses slightly different instructions to normal
arithmetic, you cannot normally use the standard C operators on the
fractl6 and fract32 data types and get the right result. Instead, use the
built-in functions described here to work with fractional data.

The fract.h header file provides access to the definitions for each of the
built-in functions that support fractional values. These functions have
names with suffixes _fr1x16 for single fract16, _fr2x16 for dual fractls,
and _fr1x32 for single fract32. All the functions in fract.h are marked as
inline, so when compiling with the compiler optimizer, the built-in func-
tions are inlined.

The 16-bit fractional shift built-in functions without “_c1ip” in
the name ignore all but the least significant five bits of the shift
magnitude. The 32-bit fractional shift built-in functions without

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-197
for Blackfin Processors

C/C++ Compiler Language Extensions

“_c11ip” in the name ignore all but the least significant 6 bits of the
shift magnitude. The _c11p variants of these built-in functions
automatically clip the shift magnitude to within a 5- or 6-bit range.

For example, where a 5-bit (-16..+15) range is required, the
“_c1ip” variants would clip the value +63 to be +15, while the
non-“_clip” variant would discard the upper bits and interpret
bit 5 as the sign bit, giving a value of -1. To avoid unexpected
results, use the “_c1ip” variants of the functions unless the shift
magnitude is known to be within the 5- or 6-bit range.

See “16-Bit Fractional Built-In Functions” on page 1-198 for descriptions
of built-in functions that work primarily with fract16 data. See “32-Bit
Fractional Built-In Functions” on page 1-203 for descriptions of built-in
functions that work primarily with fract32 data.

See “fract2x16 Built-In Functions” on page 1-207 for descriptions of
built-in functions that work primarily with fract2x16 data. Note that
when compiling programs that use the single data fract16 operations, the
compiler optimizer attempts to automatically detect cases where parallel
operations can be performed. In other words, recoding an algorithm to
make explicit use of fract2x16 built-in functions in place of the
fract1x16 ones does not always yield a performance benefit.

See “ETSI Built-In Functions” on page 1-215 for information on map-
ping the European Telecommunications Standards Institute (ETSI) fract
functions onto the compiler built-in functions.

16-Bit Fractional Built-In Functions

All the built-in functions described here are saturating unless otherwise
stated. These built-ins operate primarily on the fract16 and fract types
although one of the multiplies returns a fract32.

1-198 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

The following built-in functions are available.

fractle add_frlxl6(fractle fl,fractl6 f2)
fract add_fxlxlée(fract fl,fract f2)

Performs 16-bit addition of the two input parameters (f1+f2). The fract
version is included for completeness only; it is exactly equivalent to the +
operator on fract types.

fractle sub_frixl6(fractle fl,fractle f2)
fract sub_fxlxl6e(fract fl,fract f2)

Performs 16-bit subtraction of the two input parameters (f1-f2). The
fract version is included for completeness only; it is exactly equivalent to
the - operator on fract types.

fractle mult_frlxl6(fractle fl,fractle f2)
fract mult_fxIxl6(fract fl,fract f2)

Performs 16-bit multiplication of the input parameters (f1*f2).
The result is truncated to 16 bits. The fract version is exactly equivalent
to the * operator on fract types in the truncation rounding mode.

fractle multr_frixl6(fractle fl,fractl6 f2)
fract multr_fx1lxl6(fract fl,fract f2)

Performs a 16-bit fractional multiplication (f1*f2) of the two input
parameters. The result is rounded to 16 bits. Whether the rounding is
biased or unbiased depends on what the RND_MOD bit in the ASTAT register
is set to. The fract version is exactly equivalent to the * operator on fract
types when the biased or unbiased rounding mode is used.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-199
for Blackfin Processors

C/C++ Compiler Language Extensions

fract32 mult_frix32(fractle fl,fractle f2)
long fract mult_fxIx32(fract fl,fract f2)

Performs a fractional multiplication on two 16-bit fractions, returning the
32-bit result. The fract version is included for completeness only; it is
exactly equivalent to writing (Tong fract)fl * (long fract)f2.

fractl6e abs_frlxl6(fractle f1)
fract abs_fxlxl6(fract f1)

Returns the 16-bit value that is the absolute value of the input parameter.
Where the input is 0x8000, saturation occurs and 0x7fff is returned. The
fract version is included for completeness only; it is exactly equivalent to
the absr function.

fractle min_frlxl6(fractl6e f1l, fractle f2)
fract min_fxlxle(fract fl, fract f2)

Returns the minimum of the two input parameters.

fractle max_frlxl6(fractlé fl, fractle f2)
fract max_fxlxle(fract fl, fract f2)

Returns the maximum of the two input parameters.

1-200 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

fractl6 negate_frlxl6(fractle f1)
fract negate_fx1lxlé6(fract f1)

Returns the 16-bit result of the negation of the input parameter (-f1).

If the input is 0x8000, saturation occurs and 0x7fff is returned. The fract
version is included for completeness only; it is exactly equivalent to writ-
ing - f1.

fractle shl_frlxl6(fractl6 src, short shft)
fract shl_fxlxle(fract src, short shft)

Arithmetically shifts the src variable left by shft places. The empty bits
are zero-filled. If shft is negative, the shift is to the right by abs(shft)
places with sign extension.

fractle shl_frlxlé_clip(fractlé src, short shft)
fract shl_fx1xl6_clip(fract src, short shft)

Arithmetically shifts the src variable left by shft (clipped to 5 bits) places.
The empty bits are zero filled. If shft is negative, the shift is to the right
by abs(shft) places with sign extension.

fractle shr_frlxl6(fractl6 src, short shft)
fract shr_fxlxle(fract src, short shft)

Arithmetically shifts the src variable right by shft places with sign
extension. If shft is negative, the shift is to the left by abs(shft) places,
and the empty bits are zero-filled.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-201
for Blackfin Processors

C/C++ Compiler Language Extensions

fractle shr_frixl6_clip(fractlé src, short shft)
fract shr_fxlxlé_clip(fract src, short shft)

Arithmetically shifts the src variable right by shft (clipped to 5 bits)
places with sign extension. If shft is negative, the shift is to the left by
abs(shft) places, and the empty bits are zero-filled.

fractle shrl_frlxl6(fractlet src, short shft)
fract shri_fxlxl6(fract src, short shft)

Logically shifts the src variable right by shft places. There is no sign
extension and no saturation — the empty bits are zero-filled.

fractl6é shrl_frixl6_clip(fractl6 src, short shft)
fract shrl_fxIx16_clip(fract src, short shft)

Logically shifts the src variable right by shft (clipped to 5 bits) places.
There is no sign extension and no saturation — the empty bits are

zero-filled.

int norm_frlxlée(fractle f1)
int norm_fxlxlée(fract f1)

Returns the number of left shifts required to normalize the input variable
so that it is either in the interval 0x4000 to 0x7fff, or in the interval
0x8000 to 0xc000. In other words,

fractlée x;
shl_frlx16(x,norm_frixl16(x));

Returns a value in the range 0x4000 to 0x7fff, or in the range
0x8000 to 0xc000, except in the special case where x is zero. The
fract version is equivalent to the countlsr function.

1-202 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

32-Bit Fractional Built-In Functions

All the built-in functions described here are saturating unless otherwise
stated. These built-in functions operate primarily on the fract32 and Tong
fract types, although there are a couple of functions that convert between
16- and 32-bit fractional types.

fract32 add_fri1x32(fract32 fl,fract32 f2)
long fract add_fx1x32(long fract fl,long fract f2)

Performs 32-bit addition of the two input parameters (f1+2). The Tong
fract version is included for completeness only; it is exactly equivalent to
the + operator on Tong fract types.

fract32 sub_frlx32(fract32 f1,fract32 f2)
long fract sub_fx1x32(long fract fl,long fract f2)

Performs 32-bit subtraction of the two input parameters (f1-f2). The
long fract version is included for completeness only; it is exactly
equivalent to the - operator on Tong fract types.

fract32 mult_frix32x32(fract32 fl,fract32 f2)
long fract mult_fx1x32x32(Tlong fract fl,long fract f2)

Performs 32-bit multiplication of the input parameters (f1*f2).

The result (which is calculated internally with an accuracy of 40 bits) is
rounded (biased rounding) to 32 bits. You might also consider using the *
operator on the Tong fract type in biased rounding mode. This provides
better rounding precision and may offer comparable performance.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-203
for Blackfin Processors

C/C++ Compiler Language Extensions

fract32 multr_frix32x32(fract32 fl,fract32 f2)
long fract multr_fx1x32x32(long fract fl,long fract f2)

Same as mult_fr1x32x32 and mult_fx1x32x32 but with additional round-
ing precision. You might also consider using the * operator on the Tong
fract type in biased rounding mode, which offers comparable perfor-
mance. The results may differ in the rounding performed.

fract32 mult_fr1x32x32NS(fract32 fl, fract32 f2)
long fract mult_fxIx32x32NS(long fract fl, long fract f2)

Performs 32-bit non-saturating multiplication of the input parameters
(f1*f2). This is somewhat faster than mul1t_fri1x32x32 ormult_fx1x32x32.
The result (which is calculated internally with an accuracy of 40 bits) is
rounded (biased rounding) to 32 bits. You might also consider using the *
operator on the Tong fract type in biased rounding mode. This performs
a saturating multiplication and gives a more precisely-rounded result at
some cost of efficiency.

fract32 abs_fri1x32(fract32 f1)
long fract abs_fxIx32(long fract f1)

Returns the 32-bit value that is the absolute value of the input parameter.
Where the input is 0x80000000, saturation occurs and 0x7 fffffff is
returned. The Tong fract version is included for completeness only; it is
exactly equivalent to the abs1r function.

fract32 min_fr1x32(fract32 fl, fract32 f2)
long fract min_fx1x32(long fract fl, Tong fract f2)

Returns the minimum of the two input parameters

1-204 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

fract32 max_fri1x32(fract32 fl1, fract32 f2)
long fract max_fx1x32(long fract fl, long fract f2)

Returns the maximum of the two input parameters

fract32 negate_frlx32(fract32 f1)
long fract negate_fx1x32(long fract f1)

Returns the 32-bit result of the negation of the input parameter (-f1).
If the input is 0x80000000, saturation occurs and 0x7 fffffff is returned.
The Tong fract version is included for completeness only; it is exactly
equivalent to writing - f1.

fract32 shl_fri1x32(fract32 src, short shft)
long fract shl_fx1x32(long fract src, short shft)

Arithmetically shifts the src variable left by shft places. The empty bits
are zero filled. If shft is negative, the shift is to the right by abs(shft)
places with sign extension.

fract32 shl_frilx32_clip(fract32 src, short shft)
lTong fract shl_fx1x32_clip(long fract src, short shft)

Arithmetically shifts the src variable left by shft (clipped to 6 bits) places.
The empty bits are zero filled. If shft is negative, the shift is to the right
by abs(shft) places with sign extension.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-205
for Blackfin Processors

C/C++ Compiler Language Extensions

fract32 shr_frlx32(fract32 src, short shft)
long fract shr_fx1x32(long fract src, short shft)

Arithmetically shifts the src variable right by shft places with sign exten-
sion. If shft is negative, the shift is to the left by abs(shft) places, and
the empty bits are zero-filled.

fract32 shr_fr1x32_clip(fract32 src, short shft)
long fract shr_fxI1x32_clip(long fract src, short shft)

Arithmetically shifts the src variable right by shft (clipped to 6 bits)
places with sign extension. If shft is negative, the shift is to the left by
abs(shft) places, and the empty bits are zero-filled.

fractlé sat_frlx32(fract32 f1)
fract sat_fx1x32(long fract f1)

If F1>0x00007fff, it returns 0x7fff. If f1<Oxffff8000, it returns 0x8000.
Otherwise, it returns the lower 16 bits of 1.

fractlé round_frlx32(fract32 f1)
fract round_fx1x32(long fract f1)

Rounds the 32-bit fract to a 16-bit fract using biased rounding. The
lTong fract version is equivalent to casting a Tong fract to fract in
biased rounding mode.

1-206 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

int norm_frilx32(fract32 f1)
int norm_fx1x32(long fract f1)

Returns the number of left shifts required to normalize the input variable
so that it is either in the interval 0x40000000 to 0x7fffffff, or in the
interval 0x80000000 to 0xc0000000. In other words,

fract32 x;
shl_fr1x32(x,norm_frix32(x));

Returns a value in the range 0x40000000 to 0x7fffffff, or in the
range 0x80000000 to 0xc0000000, except in the special case where x
is zero. The Tong fract version is equivalent to the countlsir
function.

fractl6 trunc_frix32(fract32 f1)
fract trunc_fx1x32(long fract f1)

Returns the top 16 bits of f1—it truncates f1 to 16 bits. The Tong fract
version is equivalent to casting a Tong fract to fract in truncation
rounding mode.

fract2x16 Built-In Functions

All built-in functions described here are saturating unless otherwise stated.
These built-ins operate primarily on the fract2x16 type, although there
are composition and decomposition functions for the fract2x16 type,
multiplies that return fract32 and Tong fract results, and operations on a
single fract2x16 pair that return fractl6 and fract types.

The notation used to represent two fractl6 or fract values packed into a
fract2x16 is {a,b}, where “a” is the fract16 or fract packed into the
high half, and “b” is the fract16 or fract packed into the low half. A
fract2x16 can be thought of as two fract16s or two fracts as the repre-
sentation of the two types is the same.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-207
for Blackfin Processors

C/C++ Compiler Language Extensions

fract2xle compose_frZ2xle(fractle fl, fractle f2)
fract2xl6 compose_fx_fr2xlé(fract fl, fract f2)

Takes two 16-bit fractional values, and returns a fract2x16 value.
Input: two fractl6 or fract values

Returns: {f1,f2}

fractle high_of_fr2xl6(fract2xl6 f)
fract high_of_fx_fr2xlé6(fract2xle f)

Takes a fract2x16 and returns the “high half” fract16 or fract.
Input: f{a,b}

Returns: a

fractle low_of_fr2xlée(fractexle f)
fract low_of_fx_fr2xl6(fract2xle f)

Takes a fract2x16 and returns the “low half” fract16 or fract
Input: f{a,b)

Returns: b

fract?2xl6 add_fr2xl6(fract2xle fl,fract2xle f2)
Adds two packed fracts.
Input: f1{a.b} f2{c.d}

Returns: {a+c,b+d}

1-208 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

fract2xl6 sub_fr2xl6(fract2xl6 fl,fract2xle f2)
Subtracts two packed fracts.
Input: f1{a,b} f2{c,d}

Returns: {a-c,b-d}

fract2xle mult_fr2xle(fractZ2xle fl,fract2xl6 f2)
Multiplies two packed fracts. Truncates the results to 16 bits.
Input: f1{a,b} f2{c.d}

Returns: {truncl6(a*c),truncl6(b*d)}

fract?2xl6 multr_fr2xl6(fractexle fl,fractexle f2)

Multiplies two packed fracts. Rounds the result to 16 bits. Whether the
rounding is biased or unbiased depends on what the RND_MO0D bit in the
ASTAT register is set to.

Input: f1{a,b} f2{c,d}

Returns: {roundl6f{a*c},roundl6{b*d}}

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-209
for Blackfin Processors

C/C++ Compiler Language Extensions

fract2x16 negate_fr2xl6(fract2xl6 f1)

Negates both 16-bit fracts in the packed fract. If one of the fract16 val-
ues is 0x8000, saturation occurs and 0x7fff is the result of the negation.

Input: f1{a,b}

Returns: {-a,-b}

fract?2xl6 shl_fr2xl6(fract2xl6e fl,short shft)

Arithmetically shifts both fract16s in the fract2x16 left by shft places,
and returns the packed result. The empty bits are zero-filled. If shft is
negative, the shift is to the right by abs(shft) places with sign extension.

Input: f1{a,b} shft

Returns: {a<<shft,b<<shft}

fract2xlée shl_fr2xlée_clip(fract2xle fl,short shft)

Arithmetically shifts both fract16s in the fract2x16 left by shft (clipped
to 5 bits) places, and returns the packed result. The empty bits are zero
filled. If shft is negative, the shift is to the right by abs(shft) places with
sign extension.

1-210 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

fract2xl6 shr_fr2xl6(fract2xl6 fl,short shft)

Arithmetically shifts both fractl6s in the fract2x16 right by shft places
with sign extension, and returns the packed result. If shft is negative, the
shift is to the left by abs(shft) places and the empty bits are zero-filled.

Input: f1{a,b} shft

Returns: {a>>shft,b>>shft}

fract2x16 shr_fr2x16_clip(fract2x16 fl,short shft)

Arithmetically shifts both fract16s in the fract2x16 right by shft
(clipped to 5 bits) places with sign extension, and returns the packed
result. If shft is negative, the shift is to the left by abs(shft) places and
the empty bits are zero-filled.

fract2xl6 shri_fr2xle(fract?2xl6 fl,short shft)

Logically shifts both fract16s in the fract2x16 right by shft places.
There is no sign extension and no saturation — the empty bits are

zero-filled.
Input: f1{a,b} shft

Returns: {a>>shft,b>>shft} //logical shift

fract2xle shrl_fr2xlée_clip(fractZ2xle fl,short shft)

Logically shifts both fract16s in the fract2x16 right by shft places
(clipped to 5 bits). There is no sign extension and no saturation — the
empty bits are zero-filled.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-211
for Blackfin Processors

C/C++ Compiler Language Extensions

fract2x16 abs_fr2xl6(fract2xle f1)
Returns the absolute value of both fract16s in the fract2x16.
Input: f1{a,b}

Returns: {abs(a),abs(b)}

fractZ2xle min_fr2xl6(fract2xle fl,fract2xle f2)

Returns the minimums of the two pairs of fract16s in the two input
fract2xleés.

Input: f1{a,b} f2{c.d}

Returns: {min(a,c),min(b,d)}

fract?2x16 max_fr2xl6(fract2xl6e fl,fract2xl6 f2)

Returns the maximums of the two pairs of fract16s in the two input
fractZ2xl6s.

Input: f1{a,b} f2{c,d}

Returns: {max(a,c),max(b,d)}

1-212 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

fractle sum_fr2xl6e(fract2xle f1)
fract sum_fx_fr2xle(fractexle f1)

Performs a sideways addition of the two fractlés or fractsin fl.
Input: f1{a,b}

Returns: a+b

fract?2x16 add_as_frZxl6(fract2xle fl,fract2xle f2)
Performs a vector add/subtract on the two input fract2x16s.
Input: f1{a,b} f2{c.d}

Returns: {a+c,b-d}

fract?2x16 add_sa_fr2xl6(fract2xle fl,fract2xle f2)
Performs a vector subtract/add on the two input fract2x16s.
Input: f1{a,b} f2{c,d}

Returns: {a-c,b+d}

fractle diff_hl_fr2xl6(fract2xle f1)
fract diff_hl_fx_fr2xl6(fract2xle f1)

Takes the difference (high-low) of the two fractlés or fracts in the
fractexle.

Input: f1{a,b}

Returns: a-b

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-213
for Blackfin Processors

C/C++ Compiler Language Extensions

fractle diff_Th_fr2xl6(fract2xle f1)
fract diff_Th_fx_fr2xlé6(fract2xle f1)

Takes the difference (low-high) of the two fract16s or fracts in the
fract2exle.

Input: f1{a,b}

Returns: b-a

fract32 mult_T1_fr2xl6(fract2xl6 fl, fract2xle f2)
long fract mult_T1_fx_fr2xle(fractexle fl, fract2xle f2)

Cross-over multiplication. Multiplies the low half of f1 with the low half
of f2.

Input: f1{a.b} f2{c.d}

Returns: (fract32) b*d or (Tong fract) b*d

fract32 mult_hl_fr2xl6(fractexl6e fl, fract2xle f2)
long fract mult_hl_fx_fr2xl6(fract2xle fl, fract2xle f2)

Cross-over multiplication. Multiplies the high half of f1 with the low half
of 2.

Input: f1{a,b} f2{c.d}

Returns: (fract32) a*d or (long fract) a*d

1-214 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

fract32 mult_Th_fr2xl6(fract2xl6 fl, fract2xle f2)
long fract mult_Th_fx_fr2xle(fractZ2xle fl, fract2xle f2)

Cross-over multiplication. Multiplies the low half of f1 with the high half
of f2.

Input: f1{a,b} f2{c,d}

Returns: (fract32) b*c or (long fract) b*c

fract32 mult_hh_fr2xl6(fract2xl6 fl, fract2xle f2)
long fract mult_hh_fx_frZ2xle(fractZxle fl, fract2xle f2)

Cross-over multiplication. Multiplies the high half of f1 with the high
half of 2.

Input: f1{a,b} f2{c.d}

Returns: (fract32) a*c or (Tong fract) a*c

ETSI Built-In Functions

If fract.h is included with ETST_SOURCE defined, the macros listed below
are also defined, mapping from the European Telecommunications
Standards Institute (ETSI) fract functions onto the compiler built-in
functions. The mappings are done in fract_math.h (included by
fract.h).

add() abs_s()

sub () saturate()

sh1() extract_h()

shr() extract_1()

mult() L_deposit_1()
mult_r() div_s()

negate() norm_s()

round () norm_1()

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-215

for Blackfin Processors

C/C++ Compiler Language Extensions

L_add() L_Extract()
L_sub() L_Comp()
L_abs() Mpy_32()
L_negate() Mpy_32_16()
L_sh1() L_mult()
L_shr() L_mac()
L_msu() L_shr_r()

div_1(0)

Here is a description of the ETSI functions that do not map exactly to
compiler built-in functions:

fract32 L_mac(fract32 acc,fractle fl, fractlée f2)

Multiply accumulate. Returns acc+=f1*f2.

fract32 L_msu(fract3?2 acc,fractle fl, fractle f2)

Multiply subtract. Returns acc-=f1*f2.

fract32 L_Comp(fractlée fl, fractle f2)

Composes a 32-bit value from the given high and low components. The
sign is provided with the low half, and the result is calculated as:
f1<K16 + f2<K<1.

fract32 Mpy_32_16(short hi, short 1o, fractlé n)

Multiplies a fract32 (decomposed to hi and 10) by a fractl6, and returns
the result as a fract32.

1-216 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

void L_Extract(fract32 fl, fractle *f2, fractl6e *f3)

Decomposes a 32-bit fract into two 16-bit fracts.

fract32 Mpy_32(short hil, short 1ol, short hi2, short 102)

Multiplies two fract32 numbers, and returns the result as a fract32.
The input fracts have both been split up into two shorts.

fractleé div_s(fractlée fl, fractle f2)

Produces a result which is the fractional division of f1 by f2. Not a
built-in function as written in C code.

By default, the following ETSI functions map to clipping versions of the
built-in fract shifts.

fractl6é shl(fractl6 _x, short _y);
fractlé shr(fractl6 _x, short _y);
fract32 L_shl(fract32 _x, short _y);
fract32 L_shr(fract32 _x, short _y);

To map them to the faster, non-clipping, versions of the built-in frac-
tional shifts, define the macro _ADI_FAST_ETSI in your source before you
include fract_math.h or on the compile command line.

ETSI Support

Visual DSP++ 5.0 provides ETSI support routines in the T1ibetsi*.d1b
library, which contains routines for manipulation of the fract16 and
fract32 data types as stipulated by ETSI. The routines provide
bit-accurate calculations for common operations, and conversions
between fractl6 and fract32 data types.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-217
for Blackfin Processors

C/C++ Compiler Language Extensions

To use the ETSI routines, the header file 1ibetsi.h must be included,
and all source code must be compiled with the ETSI_SOURCE macro

defined.

These routines are:

e “32-Bit Fractional ETSI Routines Using Double-Precision For-
mat” on page 1-220

e “32-Bit Fractional ETSI Routines Using 1.31 Format” on
page 1-223

e “16-Bit Fractional ETSI Routines” on page 1-227

Several of the ETSI routines are provided with carry and overflow check-
ing. Where overflow or carry occurs, the global variables Carry and
Overflow are set. It is your responsibility to reset these variables in
between operations.

The Carry and Overflow variables are represented by integers and are pro-
totyped in the 1ibetsi.h system header file.

Two types of 1ibetsi libraries are provided with VisualDSP++ 5.0:

e Those with a name of the form Tibetsi*co.d1b have been com-
piled with checking and setting of Overflow and Carry.

e Those with a name of the form 1ibetsi*.d1b (with no “co”) have
the checking and setting of Overflow and Carry disabled for opti-
mal performance. To use the Carry and Overflow checking versions
of the library, use the compiler flag “-1 etsi*co”. When rebuild-
ing 1ibetsi, Carry and Overflow checking is enabled with the C
and assembler macro definition __SET_ETSI_FLAGS=1.

By default, the carry/overflow setting function libraries (1ibetsi*co.d1b)
are not built by the supplied makefiles. To rebuild the carry and overflow
setting versions of the libraries, define compiler macro __ SET_ETSI_FLAGS
=1 during compilation.

1-218 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

The carry/overflow setting versions of the following functions will not set
the Carry and/or Overflow variables correctly on the ADSP-BF535
processor, due to differences in the way the hardware flags are set on the

ADSP-BF535 processor.

shi shr shr_r
L_msuNs L_shi L_shr L_shr_r

Many routines in the library are also represented by built-in functions.
Where built-in functions exist, the compiler replaces the functional code
with an optimal inline assembler representation. To disable the use of the
ETSI built-in functions and use the library versions, compile with the
macro NO_ETSI_BUILTINS defined. However, use of the built-in functions
results in better performance since there is an overhead in making the
function call to the library.

The built-in versions of the functions do not set the Carry and
Overflow flags.

The built-in versions of some ETSI functions are affected by the
RND_MOD flag in the ASTAT register. For bit-exact results, set the
RND_MOD flag to provide biased rounding. For more information, see
“Changing the RND_MOD Bit” on page 1-242.

If the macro RENAME_ETSI_NEGATE is defined, the ETSI function “negate”
will be renamed to etsi_negate(). This is useful because the C++ Stan-
dard declares a template function called negate() (found in the C++
include “functional”).

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-219
for Blackfin Processors

C/C++ Compiler Language Extensions

The following routines are available in the ETSI library. These routines
are commonly classified into three groups:

* Those that return or primarily operate on 32-bit fractional values
in double-precision format

* Those that return or primarily operate on 32-bit fractional values
in 1.31 format

* Those that return or primarily operate on 16-bit fractional values
in 1.15 format

32-Bit Fractional ETSI Routines Using Double-Precision Format
Double-precision format (DPF) is represented as:
L_32 = (hi<k16) + (10<K1)
where:
e L_32isa 32-bit signed integer (though it is listed as fract32)

* hiand lo are 16-bit signed integers (though they are listed as
fract16)

The ETSI operations that use DPF are:
fract32 L_Comp(fractl6é hi, fractle 1o)

Composes a 32-bit value from the given high and low DPF components.
The sign is provided with the low half, and the result is calculated as:

(hi<<16) + (1o<K1);

A built-in version of this function is also provided.

1-220 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

void L_Extract(fract32 src, fractlé *hi, fractl6 *1o)

Extracts low and high halves of a 32-bit value into 16-bit DPF component
values pointed to by the hi and lo parameters. The values calculated are:

*hi bitleé to bit3l of src

*1o

(src - (hik<16))>>1

A built-in version of this function is also provided.

fract32 Mpy_32(fractl6é hil,fractl6 1ol, fractlé hi2,fractle 1o2)

Performs the multiplication of two 32-bit values, each provided as high
and low DPF components. The result returned is calculated as:

Res = L_mult(hil, hi2);
Res = L_mac(Res, mult(hil, 1o02), 1);
Res = L_mac(Res, mult(lol, hi2), 1);

A built-in version of this function is also provided.

fract32 Mpy_32_16(fractlée hi, fractlée lo, fractlée v)

Multiplies the parameter v, which is a fract16 value, by a 32-bit DPF
value provided as high and low halves, and returns the result as a 32-bit
value. A built-in version of this function is also provided.

fract32 Div_32(fract32 L_num, fractl6 denom_hi, fractlé denom_T0)

Performs a 32-bit fractional division using a 32-bit dividend (L_num) and a
32-bit DPF divisor (denom_hi and denom_10). Both the dividend and the

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-221
for Blackfin Processors

C/C++ Compiler Language Extensions

divisor must be positive fractional values. Also, the value of the dividend
must be less than the value of the divisor, and the value of the divisor must
not be less than 0x40000000 (which is equivalent to the value 0.5).

The result of Div_32 is accurate to 24 bits of precision.

Use of these functions typically requires fractional data to be converted to
and from DPF. The L_Extract() and L_Comp() functions can be used for
this purpose.

An example that uses these DPF operators follows. The example imple-
ments a 32-bit fractional multiplication (also implemented by the
compiler built-in function mult_frix32x32()).

ffidefine ETSI_SOURCE

#include <libetsi.h>

fract32 mul32by32_etsi(fract32 a, fract32 b) {
fract32 exp_prec_res;
fractlé lol, hil, 102, hi2, hi, lo;
fract32 res;

/* Extract two 16-bit DPF components from a 32-bit fract */
L_Extract(a, &hil, &lol)

/* Extract two 16-bit DPF components from a 32-bit fract */
L_Extract(b, &hi2z, &lo2)

/* 32-bit extended precision Multiply */
exp_prec_res = Mpy_32(hil, Tlol, hi2, To02);

/* Extract two 16-bit DPF components from a 32-bit integer */
L_Extract(exp_prec_res, &hi, &lo);

/* Compose a 32-bit integer from two 16-bit DPF components */
res = L_Comp(hi, 10);

1-222 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

/* return result */
return res;

32-Bit Fractional ETSI Routines Using 1.31 Format

The following functions return or primarily operate on 32-bit fractional
data, in 1.31 format.

fract32 L_add_c(fract32 a, fract32 b)

Performs a 32-bit addition of the two input parameters. When using a ver-
sion of the library compiled with __SET_ETSI_FLAGS, the Carry and
Overflow flags are set when carry and overflow/underflow occur during
addition.

fract32 L_abs(fract32 a)

Returns the 32-bit absolute value of the input parameter. In cases where
the input is equal to 0x80000000, saturation occurs and 0x7fffffff is
returned. A built-in version of this function is also provided.

fract32 L_add(fract32 a, fract32 b)

Returns the 32-bit saturated result of the addition of the two input param-
eters. If the library is compiled with __SET_ETSI_FLAGS, the Overflow flag
is set when overflow occurs. A built-in version of this function is also

provided.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-223
for Blackfin Processors

C/C++ Compiler Language Extensions

fract32 L_deposit_h(fractlé hi)

Deposits the 16-bit parameter into the 16 most significant bits of the
32-bit result. The least 16 bits are zeroed. A built-in version of this func-
tion is also provided.

fract32 L_deposit_I(fractl6 lo)

Deposits the 16-bit parameter into the 16 least significant bits of the
32-bit result. The most significant bits are set to sign extension for the
input. A built-in version of this function is also provided.

fract32 L_mac(fract32 acc, fractlé fl, fractlée f2)

Performs a fractional multiplication of the two 16-bit parameters and
returns the saturated sum of the multiplication result with the 32-bit
parameter. A built-in version of this function is also provided.

fract32 L_macNs(fract32,fractle, fractl6)

Performs a non-saturating version of the L_mac operation. If the library is
compiled with __SET_ETSI_FLAGS, the Overflow and Carry flags are set
when carry or overflow/underflow occurs.

fract32 L_mls (fract32, fractl6)

Multiplies both the most significant bits and the least significant bits of a
lTong, by the same short.

1-224 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

fract32 L_msu(fract32, fractl6e, fractl6)

Performs a fractional multiplication of the two 16-bit parameters and
returns the saturated subtraction of the multiplication result with the
32-bit parameter. A built-in version of this function is also provided.

fract32 L_msuNs(fract32, fractl6e, fractl6)

Performs a non-saturating version of the L_msu operation. If the library is
compiled with __SET_ETSI_FLAGS, the Overflow and Carry flags are set
when carry or overflow/underflow occurs.

fract32 L_mult(fractl6, fractl6)

Returns the 32-bit saturated result of the fractional multiplication of the
two 16-bit parameters. A built-in version of this function is also provided.

fract32 L_negate(fract32)

Returns the 32-bit result of the negation of the parameter. Where the
input parameter is 0x80000000 saturation occurs and 0x7fffffff is
returned. A built-in version of this function is also provided.

fract32 L_sat(fract32)

The resultant variable is set to 0x80000000 if Carry and Overflow flags are
set (underflow condition); else, if Overflow is set, the resultant is set to
0x7fffffff. The default revision of the library simply returns as no check-
ing or setting of the Overflow and Carry flags is performed.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-225
for Blackfin Processors

C/C++ Compiler Language Extensions

fract32 L_shl(fract32 src, fractlé shft)

Arithmetically shifts the 32-bit first parameter to the left by the value
given in the 16-bit second parameter. The empty bits of the 32-bit value
are zero-filled. If the shifting value, shft, is negative, the source is shifted
to the right by -shft, sign-extended. The result is saturated in cases of
overflow and underflow.

If the library is compiled with __SET_ETSI_FLAGS, the Overflow flag is set
when overflow occurs. A built-in version of this function is also provided.

fract32 L_shr(fract32, fractl6)

Arithmetically shifts the 32-bit first parameter to the right by the value
given in the 16-bit second parameter with sign extension. If the shifting
value is negative, the source is shifted to the left. The result is saturated in
cases of overflow and underflow.

If the library is compiled with __SET_ETSI_FLAGS, the Overflow flag is set
when overflow occurs. A built-in version of this function is also provided.

fract32 L_shr_r(fract32, fractl6)

Performs the shift-right operation as per L_shr but with rounding. If the
library is compiled with __SET_ETSI_FLAGS, the Overflow and Carry flags
are set when carry or overflow/underflow occurs.

fract32 L_sub(fract32, fract32)

Returns the 32-bit saturated result of the subtraction of two 32-bit param-
eters (first-second). A built-in version of this function is also provided.

1-226 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

fract32 L_sub_c(fract32 fl, fract32 f2)

Performs 32-bit subtraction of two fractional values (f1 - f2). When
using a version of the library compiled with __SET_ETSI_FLAGS, the Carry
and Overflow flags are set when carry and overflow/underflow occur dur-
ing subtraction.

16-Bit Fractional ETSI Routines

The following functions return or primarily operate on 16-bit fractional
data.

fractlé abs_s(fractl6)

Returns the 16-bit value that is the absolute value of the input parameter.
Where the input is 0x8000, saturation occurs and 0x7fff is returned. A
built-in version of this function is also provided.

fractlée add(fractle, fractl6)
Returns the 16-bit result of adding the two fract16 input parameters.

Saturation occurs with the result being set to 0x7fff for overflow and
0x8000 for underflow. If the library is compiled with __SET_ETSI_FLAGS,
the Overflow and Carry flags are set when carry or overflow/underflow
occurs. A built-in version of this function is also provided.

fractleé div_1l (fract32, fractl6)

This function produces a result which is the fractional integer division of
the first parameter by the second. Both inputs must be positive and the
least significant word of the second parameter must be greater or equal to
the first; the result is positive (leading bit equal to 0) and truncated to 16
bits. The function calls abort () on division error conditions.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-227
for Blackfin Processors

C/C++ Compiler Language Extensions

fractle div_s(fractlé fl, fractlée f2)

Returns the 16-bit result of the fractional integer division of f1 by f2.
Both f1 and f2 must be positive fractional values with f2 greater than 1.
A built-in version of this function is also provided.

fractle extract_1(fract32)

Returns the 16 least significant bits of the 32-bit fract parameter provided.
A built-in version of this function is also available.

fractle extract_h(fract32)

Returns the 16 most significant bits of the 32-bit fract parameter pro-
vided. A built-in version of this function is also available.

fractlé mac_r(fract32 acc, fractle fl, fractlée f2)

Performs an L_mac operation using the three parameters provided. The
result is the rounded 16 most significant bits of the 32-bit results from the
L_mac operation.

fractleé msu_r(fract32, fractl6, fractl6)

Performs an L_msu operation using the three parameters provided. The
result is the rounded 16 most significant bits of the 32-bit result from the
L_msu operation.

1-228 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

fractle mult(fractl6, fractl6)

Returns the 16-bit result of the fractional multiplication of the input
parameters. The result is saturated. A built-in version of this function is
also provided.

fractle mult_r(fractl6, fractl6)

Performs a 16-bit multiply with rounding of the result of the fractional
multiplication of the two input parameters. A built-in version of this func-
tion is also provided.

@ The inline version of the mult_r () function is implemented using
the multr_frix16() compiler intrinsic, which in turn does a nor-
mal 16-bit fractional multiply:

Rx.L = Ry.L * Rz.L;

This instruction’s result is affected by the RND_MOD bit in the ASTAT
register, which means that the results are not always ETSI-compli-
ant. To avoid this issue, set RND_MOD before using the inline version
or use the 1ibetsi library-defined version of the function (which
sets the bit). For more information, see “Changing the

RND_MOD Bit” on page 1-242.

fractl6 negate(fractl6)

Returns the 16-bit result of the negation of the input parameter. If the
input is 0x8000, saturation occurs and 0x7fff is returned. A built-in ver-
sion of this function is also provided.

@ This function generates the Blackfin SIGNBITS instruction.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-229
for Blackfin Processors

C/C++ Compiler Language Extensions

int norm_1(fract32)

Returns the number of left shifts required to normalize the input variable
so that it is either in the interval 0x40000000 to 0x7fffffff, or in the
interval 0x80000000 to 0xc0000000. In other words,

fract32 x;
shl_fri1x32(x,norm_frlx32(x));

returns a value in the range 0x40000000 to 0x7fffffff, or in the range
0x80000000 to 0xc0000000.

int norm_s(fractlo6)

Returns the number of left shifts required to normalize the input variable
so that it is either in the interval 0x4000 to 0x7fff, or in the interval
0x8000 to 0xc000. In other words,

fractle x;
shl_frixl6(x,norm_frlxl6(x));

returns a value in the range 0x4000 to 0x7fff, or in the range 0x8000 to
0xc000.

@ This function generates the Blackfin SIGNBITS instruction.

fractlé round(fract32)

Rounds the lower 16 bits of the 32-bit input parameter into the most sig-
nificant 16 bits with saturation. The resulting bits are shifted right by 16.
A built-in version of this function is also provided.

1-230 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

fractlé saturate(fract32)

Returns the 16 least significant bits of the input parameter. If the input
parameter is greater than 0x7fff, 0x7fff is recurned. If the input parame-
ter is less than 0x8000, 0x8000 is returned. A built-in version of this
function is also available.

fractleé shil(fractle src, fractl6é shft)

Arithmetically shifts the src variable left by shft places. The empty bits
are zero-filled. If shft is negative, the shift is to the right by shft places.

If the library is compiled with __SET_ETSI_FLAGS, the Overflow and Carry
flags are set when carry or overflow/underflow occurs. A built-in version
of this function is also provided.

fractle shr(fractlée, fractlo6)

Arithmetically shifts the src variable right by shft places with sign exten-
sion. If shft is negative, the shift is to the left by shft places.

If the library is compiled with __SET_ETSI_FLAGS, the Overflow and Carry
flags are set when carry or overflow/underflow occurs. A built-in version
of this function is also provided.

fractleé shr_r(fractlée, fractl6)

Performs a shift to the right as per the shr() operation with additional
rounding and saturation of the result.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-231
for Blackfin Processors

C/C++ Compiler Language Extensions

fractle sub(fractle fl, fractlée f2)

Returns the 16-bit result of the subtraction of the two parameters (f1 -
f2). Saturation occurs with the result being set to 0x7fff for overflow and
0x8000 for underflow.

If the library is compiled with __SET_ETSI_FLAGS, the Overflow and Carry
flags are set when carry or overflow/underflow occurs. A built-in version
of this function is also provided.

Fractional Value Built-In Functions in C++

The compiler provides support for two C++ fractional classes. The fract
class uses a fract32 C type for storage of the fractional value, whereas the
shortfract class uses a fract16 C type for storage of the fractional value.

Instances of the shortfract and fract classes are initialized using values
with the “r” suffix, provided they are within the range [-1,1). The fract
class is implemented by the compiler as representing the internal type
fract. For example,

finclude <fract>
int main ()
{

fract X = 0.5r;
}

Instances of the shortfract class can be initialized using “r” values in the
same way, but are not represented as an internal type by the compiler.
Instead, the compiler produces a temporary fract, which is initialized
using the “r” value. The value of the fract class is then copied to the
shortfract class using an implicit copy, and the fract is destroyed.

The fract and shortfract classes contain routines that allow basic
arithmetic operations and movement of data to and from other data types.
The example below shows the use of the shortfract class with * and +
operators.

1-232 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

The mathematical routines for addition, subtraction, division, and multi-
plication for both fract and shortfract classes are performed using the
ETSI-defined routines for the C fractional types (fract16 and fract3?).
Inclusion of the fract and shortfract header files implicitly defines the
macro ETSI_SOURCE to be 1. This is required for use of the ETSI routines,
which are defined in 1ibetsi.h and located in the 1ibetsi53*.d1b
libraries.

Hinclude <shortfract>
#include <stdio.h>
jfdefine N 20

shortfract x[N] = {
.5r,.5r, .5, .5, .51,
.5r,.5r,.5r,.5r,.5r,
.5r,.5r,.5r,.5r,.5r,
.5r, . br, . br, . 5r, 061

shortfract y[N] = {
0,.1r,.2r,.3r,.4r,
.br,.6r,.7r,.8r,.9r,
.10r, . 1r,.2r,.3r, . 4r,
.5r,.6r,.7r,.8r,.91};

shortfract fdot(int n, shortfract *x, shortfract *y)
{

int j;

shortfract s;

s =0;

for (j=0; j<n; j++) |

s +=x[3) * y[id;
}

return s;

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-233
for Blackfin Processors

C/C++ Compiler Language Extensions

int main(void)
{
fdot(N,x,y);

fractl6 and fract32 Literal Values in C

This section discusses natural ways to define fract16 and fract3? literal
values. For discussion of literals of the native fixed-point types fract and
accum, see “Native Fixed-Point Constants” on page 1-107.

When compiling a program in C mode, a constant with an “r” suffix is
defined to be a native fixed-point constant of fract type. This should not
be used to initialize a fract16 or fract32 constant since the type conver-
sion will yield an unexpected result (see “Data Type Conversions and
Fixed-Point Types” on page 1-110 for more details). However, in C++
mode the “r” suffix denotes values of the fract class. If a C program is
compiled in C++ mode, fract16 and fract32 variables can be initialized
using “r” literal values; the compiler automatically converts from the
fract class values to the C types. When adopting this approach, be aware
of any semantic differences between the C and C++ languages that might
affect your program.

The suffixes “r32” and “r16” can be used in C mode to represent fract32
and fract16 literals. They allow users to naturally express literals in frac-
tional format. These literals are represented as 32-bit signed integral types.

For example,
0x4000 is the same as 0.5r16
0x40000000 is the same as 0.5r32

These literals cannot be used in the expressions of the preprocessing direc-
tives #if or ffelif.

1-234 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Despite appearances, literal values expressed in this syntax are still
“normal” integer values, and are subject to the usual rules of inte-
ger arithmetic and type promotion/conversion. Be sure to use the
built-in functions if you require fractional arithmetic.

Converting Between Fractional and Floating-Point Values

The Visual DSP++ run-time libraries contain high-level support for con-
verting between fractional and floating-point values. The include file
fract2float_conv.h defines functions which perform conversions
between fractlé, fract32, and float types.

The following functions are defined:

fract32 frlé_to_fr32(fractl6); // Deposits a fractl6é to make
// a fract32

fractle fr32_to_frl6(fract32); // Truncates a fract32 to make
// a fractlé

fract32 float_to_fr32(float); // Converts a float to fract32
fractle float_to_frl6(float); // Converts a float to fractl6

float frl6_to_float(fractl6); // Converts a fractl6e to float
float fr32_to_float(fract32); // Converts a fract32 to float

In addition, the following functions are defined for use on the native
fixed-point types fract and Tong fract. These are provided for complete-
ness only, as casts between the different types provide the same
functionality.

long fract fxl6_to_fx32(fract); // Deposits a fract to make
// a long fract

fract fx32_to_fx16(long fract); // Truncates a long fract to make
// a fract

long fract float_to_fx32(float); // Converts a float

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-235
for Blackfin Processors

C/C++ Compiler Language Extensions

fract float_to_fxl6(float);

float fxl6_to_float(fract);
float fx32_to_float(long fract);

// to a long fract
// Converts a float to a fract

// Converts a fract to a float
// Converts a long fract

// to a float

The float-to-fract conversions are saturating such that the result lies in the
range of the fractional data type.

These functions can be employed to aid implementation of critical parts
of applications using fractional arithmetic that would otherwise use
floating-point arithmetic. Such implementations usually requires data
to be scaled into the fractional range before converting to fract16 or
fract32, and this is still true when using the functions defined in
fract2float_conv.h.

Listing 1-3 implements a floating-point multiplication using an ETSI
fract implementation.

Listing 1-3. Floating-Point Multiplication Using fracts

ffidefine ETSI_SOURCE

#include <fract2float_conv.h>
f##include <fract_typedef.h>
#include <libetsi.h>

#include <stdlib.h>

f#include <math.h>

/* return a*b calculated using fract implementation */
float mul_fp(float a, float b) f{
int sign_a, sign_b, sign_res;
float scaled_a, scaled_b, fract_div_res, result;
int exp_a, exp_b, exp_res;
fract32 fract_a, fract_b, fract_res;

1-236 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

fract32 fract_exp_a, fract_exp_b, fract_exp_res;
fractlé hia, loa, hib, 1ob;

/* if either input is 0, return 0 */
if (a ==0.0 || b==20.0)
return 0.0;

/* get sign and take absolute of inputs */
if (*(unsigned int *)&a & 0x80000000) {
sign_a=-1;
a = fabs(a);
} else
sign_a=1;

if (*(unsigned int *)&b & 0x80000000) {
sign_b=-1;
b = fabs(b);

} else
sign_b=1;

/* compute sign of result */
sign_res = sign_a * sign_b;

/* scale inputs */
scaled_a = frexpf(a, &exp_a);
scaled_b = frexpf(b, &exp_b);

/* convert scaled inputs to fract */
fract_a = float_to_fr32(scaled_a);
fract_b = float_to_fr32(scaled_b);

/* extract the 16-bit DPF words from the fract inputs */
L_Extract(fract_a, &hia, &loa);
L_Extract(fract_b, &hib, &lob);

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-237
for Blackfin Processors

C/C++ Compiler Language Extensions

/* do fractional multiplication in extended precision */
fract_res = Mpy_32(hia, loa, hib, lob);

/* multiply exponents by adding */
exp_res = exp_a + exp_b;

/* convert mul result back to float */
fract_div_res = fr32_to_float(fract_res);

/* compose the floating-point result */
result = Tdexpf(fract_div_res, exp_res);

/* negate result if necessary */
result = result * sign_res;
/* return result */
return result;
b /* mul_fp */

Complex Fractional Built-In Functions in C

The complex_fractl6 type is used to hold complex fractional numbers.
[t contains real and imaginary values, both as 16-bit fractional numbers.

typedef struct ({
fractle re, im;
} complex_fractlé6;

The complex_fract32 type is used to hold complex fractional numbers.
It contains real and imaginary values, both as 32-bit fractional numbers.

typedef struct ({
fract32 re, im;
} complex_fract3?;

1-238 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

The complex_fract16 and complex_fract32 types are defined by the
complex.h header file. Additionally, there are numerous library functions
for manipulating complex fracts. These functions are documented in

“DSP Run-Time Library Reference” on page 4-75.

The compiler also supports the following built-in operations for complex
fracts. For each of these built-ins, fractional results values are rounded
and saturated as required. The rounding mode is determined by the
RND_MOD bit in the ASTAT register.

* The following built-in function generates instructions to perform a
complex fractional multiplication of _a and _b, the result of which
is accumulated with _sum, saturating the accumulation at 32 bits:

complex_fractlée cmac_frl6(complex_fractlée _sum,
complex_fractlé _a,
complex_fractlée _b);

* The following built-in function generates instructions to perform a
complex fractional multiplication of _a and _b, the result of which
is subtracted from _sum, saturating the result at 32 bits:

complex_fractlée cmsu_frl6(complex_fractlée _sum,
complex_fractlé _a,
complex_fractlée _b);

* The following built-in function generates instructions to calculate
and returns the complex fractional square of _a.

complex_fractlée csqu_frle(complex_fractle _a);

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-239
for Blackfin Processors

C/C++ Compiler Language Extensions

* The following built-in functions generate instructions to calculate
the square of the distance between inputs _x and _y.

fractle cdst_frle(complex_fractle _x,
complex_fractle _y);
fract32 cdst_fr32(complex_fractlé _x,
complex_fractle _y);
fract cdst_fx_frlée(complex_fractle _x,
complex_fractle _y);
long fract cdst_fx_fr32(complex_fractl6 _x,
complex_fractle _y);

* Complex fractional multiply accumulate and complex fractional
multiply subtract operations with internal operations performed
saturating to 40-bits in the accumulator registers.

complex_fractlée cmac_frl6_s40(complex_fractle _sum,
complex_fractlée _a,
complex_fractle _b);

complex_fractle cmsu_frl6_s40(complex_fractlée _sum,
complex_fractlée _a,

complex_fractl6e _b);

* The following functions can be used to extract the real (real_fr32)
and imaginary (imag_fr32) parts of the complex_fractl6 or
complex_fract32 input _a.

fractlé real_frl6(complex_fractle _a);
fractl6 imag_frl6(complex_fractl6 _a);
fract real_fx_frl6(complex_fractlé _a);
fract imag_fx_frl6(complex_fractle _a);
fract32 real_fr32(complex_fract32 _a);

1-240 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

fract32 imag_fr32(complex_fract32 _a);
long fract real_fx_fr32(complex_fract32 _a);
long fract imag_fx_fr32(complex_fract32 _a);

* The following functions can be used to create a complex_fractl6
or complex_fract32 type instance from two fractional inputs which
correspond to the required result’s real and imaginary parts.

complex_fractl6é ccompose_frl6

(fractle _real, fractlée _imag);
complex_fractlé ccompose_fx_frl6

(fract _real, fract _imag);
complex_fract32 ccompose_fr32

(fract32 _real, fract32 _imag);
complex_fract32 ccompose_fx_fr32

(long fract _real, long fract _imag);

* The following function performs a complex addition of the inputs
and returns the result.

complex_fract32 cadd_fr32(complex_fract32 _a,
complex_fract32 _b);

* The following function performs a complex subtraction of the
inputs and returns the result.

complex_fract32 csub_fr32(complex_fract32 _a,
complex_fract32 _b);

* The following function returns the complex conjugate of the input.
complex_fract32 conj_fr32(complex_fract32 _a);

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-241
for Blackfin Processors

C/C++ Compiler Language Extensions

Changing the RND_MOD Bit

Three built-in functions (set_rnd_mod_biased, set_rnd_mod_unbiased,
and restore_rnd_mod) provide a convenient way to change the state of the
RND_MOD bit that controls whether the hardware performs biased or
unbiased rounding. The builtins.h header file should be included to use
these built-in functions.

e The following built-in function generates instructions to set the
RND_BIT bit. This will mean that instructions that depend on the
state of the RND_MOD bit will perform biased rounding. The previous
state of the RND_MOD bit is returned.

int set_rnd_mod_biased(void);

* The following built-in function generates instructions to unset the
RND_BIT bit. This will mean that instructions that depend on the
state of the RND_MOD bit will perform unbiased rounding. The previ-
ous state of the RND_MOD bit is returned.

int set_rnd_mod_unbiased(void);

* The following built-in function generates instructions to reset the
RND_BIT bit to a previous value, which is passed into the function.

void restore_rnd_mod(int);
The following example shows how you might use these built-in functions.

#include <stdfix.h>
#include <builtins.h>
fract divide_biased(fract num, fract denom)
{

fract rtn;

int prev_rnd_mod = set_rnd_mod_biased();
#fpragma FX_ROUNDING_MODE BIASED;

rtn = num / denom;

1-242 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

restore_rnd_mod(prev_rnd_mod) ;
return rtn;
}

Note that the pragma to set FX_ROUNDING_MODE is necessary due to the use
of the fract type in the example. This pragma does not affect the state of
the RND_MOD bit. See “#pragma FX_ROUNDING_MODE {TRUNCA-
TION|BIASED|UNBIASED}” on page 1-299 and “Setting the Rounding
Mode” on page 1-128 for further details.

Complex Operations in C++

The C++ complex class is defined in the <complex> header file, and defines
a template class for manipulating complex numbers. The standard arith-
metic operators are overloaded, and there are real() and imag() methods
for obtaining the relevant part of the complex number.

For example, the determinate and inverse of a 2x2 matrix of complex
doubles may be computed using the following C++ function:

#include <complex>
using std::complex;

complex<double> inverse2d(const complex<double> mx[4],
complex<double> mxinv[4])
{

complex<double> det = mx[0] * mx[3] - mx[2] * mx[1];

if((det.real() != 0.0) || (det.imag() != 0.0)) {
complex<double> invdet = complex<double>(1.0,0.0) / det;

mxinv[0] = invdet * mx[3];
mxinv[1l] = -(invdet * mx[1]);
mxinv[2] = -(invdet * mx[2]);
mxinv[3] = invdet * mx[0];

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-243
for Blackfin Processors

C/C++ Compiler Language Extensions

return det;
}

By comparison, the equivalent function in C is:

ffinclude <complex.h>

complex_double inverse2d(const complex_double mx[4],
complex_double mxinv[4])
{

complex_double det;

complex_double invdet;

complex_double tmp;

det = cmIt(mx[0],mx[31);
tmp = cmlt(mx[2],mx[1]);
det = csub(det,tmp);

if((det.re !=0.0) || (det.im !=0.0)) {
invdet = cdiv((complex_double){1.0,0.0},det);

mxinv[0] = cmlt(invdet,mx[31);
mxinv[1l] = cmlt(invdet,mx[1]);

mxinv[1l].re = -mxinv[1l].re;
mxinv[1].im = -mxinv[1].im;
mxinv[2] = cmlt(invdet,mx[2]1);
mxinv[2].re = -mxinv[2].re;
mxinv[2].im = -mxinv[2].im;

mxinv[3] = cmlt(invdet,mx[0]);
}
return det;

1-244 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Packed 16-Bit Integer Built-In Functions

The compiler provides built-in functions that manipulate and perform
basic arithmetic functions on two 16-bit integers packed into a single
32-bit type, int2x16. Use of the built-in functions produce optimal code
sequences, using vectorized operations where possible. The types and
operations are defined in the 12x16.h header file.

Composition and decomposition of the packed type are performed with
the following functions:

int2x16 compose_i2xl6(short _x, short _y);
short high_of_i2xl6(int2xlée _x);
short Tow_of_i2x16(int2x16 _x);

The following functions perform vectorized arithmetic operations:

int2x16 add_i2x16(int2x16 _x, int2xl6 _y);
int2x16 sub_i2x16(int2x16 _y, int2x16 _y);
int2x1e mult_izZ2xle(int2xl6 _x, intZxl6 _y);
int2x16 abs_i2x16(int2x16 _x);

int2xle min_iZ2x16(int2x16 _x, int2x1l6 _y);
int2x16e max_i2x16(int2xl6e _x, int2xlée _y);

The following function performs summation of the two packed
components:

int sum_i2x16(int2x16 _x);

The following functions provide cross-wise multiplication:

int mult_T1_12x16(int2x16 _x, int2x16 _y)
int mult_hl_i2x16(int2x16 _x, int2x16 _y)
int mult_Th_i2x16(int2x16 _x, int2xl6e _y);
int mult_hh_i2x16(int2x16 _x, int2x16 _y)
Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-245

for Blackfin Processors

C/C++ Compiler Language Extensions

Division Functions

Two built-in functions (divs and divq) provide access to the “divide
primitive” instructions:

#include <builtins.h>
int divs(int numerator, int denominator ,int *aq);
int divg(int partialres, int denominator, int *aq);

The divs() and divq() built-in functions give access to the respective
Blackfin instructions, DIVS and DIVQ, that are the foundation elements of a
non-restoring, conditional, add-subtract, integer division algorithm.

The dividend (numerator) is a 32-bit value, and the divisor (denominator)
is a 16-bit value; the high half of denominator is ignored. For details of
the instructions, refer to “DIVS, DIVQ (Divide Primitive)” in the
Blackfin Processor Programming Reference.

First, divs () initializes the processor’s AQ flag and the quotient’s sign bit
(the initial value for partialres); successive uses of divq() generate a value
bit for the quotient, producing a new partialres, and update the AQ flag.
The aq parameter is used by the compiler to track the value of the AQ flag;
divs () writes to *aq, and each invocation of divq() updates *agq.
Typically, when optimizing, these reads and writes will be optimized
away.

The following example uses the divs() and divq() primitives to imple-
ment a saturating, fractional division algorithm.

#include <builtins.h>
#include <fract.h>
fractlé saturating_fract_divide(fractl6 nom, fractlé denom)
{
int partialres = (int)nom;
int divisor = (int)denom;
fractlé rtn;
int 1;

1-246 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

int aq; /* initial value irrelevant */
if (partialres == 0) {

/* 0/anything gives 0 */

rtn = 0;
} else if (partialres >= divisor) f{

/* fractl6 values have the range -1.0 <= x < +1.0,

/* so our result cannot be as high as 1.0.

/* Therefore, for x/y, if x is larger than y, */

/* saturate the result to positive maximum. */
rtn = Ox7fff;

} else {
/* nom is a 16-bit fractional value, so move */
/* the 16 bits to the top of partialres. */

/* (promote fractl6 to fract32) */

partialres <<= 16;

/* initialize sign bit and AQ, via divs(). */
partialres = divs(partialres, divisor, &aq);

/* Update each of the value bits of the partial
/* and reset AQ via divqg().
for (i=0; i<15; i++) |
partialres = divg(partialres, divisor, &aq);

rtn = (fractl6) partialres;

}
return rtn;

Full-Precision Accumulator Built-In Functions

Compiler

*/
*/

result */

*/

The compiler provides built-in functions to take advantage of the full

40-bit precision of the accumulator registers.

Listing 1-4 shows a dot product that is guaranteed to accumulate in

40-bits and to saturate the final sum to 32-bits.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

1-247

C/C++ Compiler Language Extensions

Listing 1-4. Fractional Dot Product Implemented with Accumulator
Built-Ins

#include <builtins.h>

fract32 dot(fractl6 al], fractl6 b[], int n) {
int i;
acc40 sum = 0;
for (i = 0; 1 < n; ++i)
sum = A_mac(sum, alil, b[il);
return A_mad(sum);

Accumulator Built-In Function Prototypes

Table 1-26 lists all the full-precision accumulator built-in functions with
their characteristic instruction. Each function implements the same com-
putation as this characteristic instruction, but the compiler may generate
an alternative instruction sequence to do so. See the Blackfin Processor
Programming Reference for details of the instructions.

Table 1-26. Accumulator Built-In Functions

Function Instruction

acc40 A_mult(fract16, fractl16); An = Dx.lh * Dy.lh

acc40 A_mult_FU(fract16, fract16);

An = Dx.Ih * Dy.lh (FU)

acc40 A_mult_M(fract16, fractl6);

Al = Dx.lh * Dy.lh (M)

acc40 A_mult_IS(short, short);

An = Dx.Ih * Dy.lh (IS)

acc40 A_mulc_MIS(short, unsigned short);

Al = Dx.lh * Dy.lh (M,IS)

acc40 A_mac(acc40,fract16, fract16);

An += Dx.lh * Dy.lh

acc40 A_mac_FU(acc40,fract16, fract16);

An += Dx.lh * Dy.lh (FU)

acc40 A_mac_M/(acc40,fract16, fract16);

Al += Dx.lh * Dy.lh (M)

acc40 A_mac_IS(acc40,short, short);

An += Dx.lh * Dy.lh (IS)

1-248 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

Table 1-26. Accumulator Built-In Functions (Cont’d)

Function Instruction
acc40 A_mac_MIS(acc40,short, unsigned short); Al += Dx.lh * Dy.lh (M,IS)
acc40 A_msu(acc40,fract16, fract16); An -= Dx.lh * Dy.lh
acc40 A_msu_FU(acc40,fract16, fract16); An -= Dx.lh * Dy.lh (FU)
acc40 A_msu_M(acc40,fract16, fract16); Al -= Dx.lh * Dy.lh (M)
acc40 A_msu_IS(acc40,short, short); An -= Dx.1h * Dy.lh (IS)
acc40 A_msu_MIS(acc40,short, unsigned short); Al -= Dx.lh * Dy.lh (M,IS)
int A_eq(acc40, acc40); CC=A0==Al
int A_lt(acc40, acc40); CC=A0<Al
int A_le(acc40, acc40); CC=A0<=Al
acc40 A_add(acc40, acc40); A0 += Al
acc40 A_sub(acc40, acc40); A0 -= Al
acc40 A_neg(acc40); An = -An
acc40 A_abs(acc40); An = ABS An
int A_bitmux_ASR(int, int, acc40, int*, acc40*); BITMUX(Dx, Dy, A0) (ASR)
int A_bitmux_ASL(int, int, acc40, int*, acc40*); BITMUX(Dx, Dy, A0) (ASL)
short A_bxorshift_mask32(acc40, int, int*); Dn.L = CC = BXORSHIFT(A0, Dx)
short A_bxor_mask32(acc40, int, int*); Dn.L = CC = BXOR(A0, Dx)
acc40 A_bxorshift_mask40(acc40, acc40, int); A0 = BXORSHIFT(A0, A1, CC);
short A_bxor_mask40(acc40, acc40, int, int*); Dn.L = CC = BXOR(AO0, A1, CC);
short A_signbits(acc40); Dx.L = SIGNBITS Anj;
acc40 A_ashift(acc40, short); An = ASHIFT An BY Dx.LL %
An = An >>> uimm5
An = An << uimm5
acc40 A_lshift(acc40, short); An = LSHIFT An BY Dx.L. #
An = An >> uimm5
An = An << uimm5

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-249
for Blackfin Processors

C/C++ Compiler Language Extensions

Table 1-26. Accumulator Built-In Functions (Cont’d)

Function Instruction
acc40 A_sat(acc40); An = An (S)
fract32 A_mad(acc40); Dn = An
fract32 A_mad_FU(acc40); Dn = An (FU)

fract32 A_mad_S2RND(acc40);

Dn = An (S2RND)

int A_mad_ISS2(acc40);

Dn = An (ISS2)

fract16 A_madh(acc40);

Dn.lh = An +

fract16 A_madh_FU(acc40);

Dn.lh = An (FU)

short A_madh_IS(acc40);

Dn.lh = An (IS)

unsigned short A_madh_IU(acc40);

Dn.lh = An (IU)

fract16 A_madh_T(acc40);

Dn.lh = An (T)

fract16 A_madh_TFU/(acc40);

Dn.lh = An (TFU)

fract16 A_madh_S2RND(acc40);

Dn.lh = An (S2RND) t

short A_madh_ISS2(acc40);

Dn.lh = An (ISS2)

short A_madh_IH(acc40);

Dn.lh = An (IH) T

The results of the functions marked with a dagger (1) in
Table 1-26 on page 1-248 are affected by the setting of the RND_MOD
bit in the ASTAT register. See the Blackfin Processor Programming

Reference for details.

@ The functions marked with a double dagger (%) in Table 1-26 on

page 1-248 will return their first operand An shifted left by Dx.L
places if Dx.L is positive, or shifted right by ABS(Dx.L) places if
Dx.L is negative. See the Blackfin Processor Programming Reference

for details.

1-250

Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

Table 1-27. Types Used in Table 1-26 on page 1-248

C Type Usage

acc40 Any value in an accumulator. This is a signed 64-bit integer containing the
40-bit accumulator value. The most significant 24 bits are ignored by these
built-in functions. 40-bit accumulator values are sign-extended to 64 bits
when moving values from accumulator registers to other registers or
memory.

fract32 32-bit signed or unsigned fractional value

fractlé 16-bit signed or unsigned fractional value

int 32-bit signed integer value

unsigned 32-bit unsigned integer value

short 16-bit signed integer value

unsigned short | 16-bit unsigned integer value

Dx, Dy, Dn Data registers (RO ... R7)

1h A low-half specifier (.L) or a high-half specifier (.H)

An Accumulator registers (A0 or Al)

Accumulator Built-In Functions and the Optimizer

The compiler will usually generate an accumulator instruction for each

call to an accumulator built-in function, but it will not map acc40 typed
variables to accumulator registers unless optimization is enabled. See the
-0 (enable optimizations) switch on page 1-60.

Other circumstances may impact the efficiency of the generated code; for
example, the Blackfin processor has two 40-bit accumulator registers, so C
code that has more than two acc40 variables in use at the same time will
require some inefficient shuffling of values in and out of the accumulators
to perform the calculation.

The accumulator data type acc40 is a signed 64-bit integral type, so arith-
metic operators can be used with variables of this type. However, this is
not equivalent to using the accumulator intrinsics and usually translates to

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-251
for Blackfin Processors

C/C++ Compiler Language Extensions

expensive 64-bit arithmetic, which may offset any performance benefit of
using an accumulator. In addition, the acc40 type should not be confused

with the native fixed-point type accum available through the stdfix.h
header file.

Since the acc40 type is a signed 64-bit integral type, constants used to ini-
tialize it are interpreted as 64 bits in size. For example, the code:

#Hinclude <builtins.h>
accd40 acc = 0x80000000;

will result in the accumulator register being initialized to 0x0080000000,
not Oxff80000000.

When optimization is enabled, the compiler may also use accumulator
registers to implement short multiplication and int addition operations.
This use of a 40-bit accumulator to implement 32-bit addition will pro-
duce the same results as long as the 32-bit operation would not have
overflowed. Consequently, the two versions of dot product in Listing 1-5
on page 1-252 may translate to the same assembly code depending on
compilation options, but only the version that uses the A_mac_IS built-in
function is guaranteed to compute the same result as an assembly function
which uses an accumulator register, for all possible inputs and with any
compiler option. If your computations are at risk of overflow and you
want to be certain that saturation does not occur, consider using the
-no-saturation switch (on page 1-58). This switch will prevent the use of
accumulator registers for addition operations but at the expense of
reduced performance.

Listing 1-5. Comparison of Two Dot Products
#include <builtins.h>
/* may accumulate in 40 bits with optimization,

** put not guaranteed.
*/

1-252 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

int dot32(short all], short b[], int n) {
int 1;
int sum = 0;
for (i = 0; 1 < n; ++1)
sum += alil * b[i];
return sum;

/* guaranteed to accumulate in 40 bits */
int dot40(short al], short b[], int n) {
int 1;
acc40 sum = 0;
for (i = 0; 1 < n; ++1)
sum = A_mac_IS(sum, alil, b[il);
return (int)sum;

Viterbi History and Decoding Functions

Four built-in functions provide the selection function of a Viterbi
decoder. Specifically, these four functions provide the maximum value
selection and history update parts. The functions use the A0 accumulator
to maintain the history value. (The accumulator register maintains the
history values by shifting the previous value along one place and setting
a bit to indicate the result of the current iteration’s selection.)

To use the Viterbi functions, you must include ccb1kfn.h in the source
modules in which they are used. Failure to do so leads to errors at
compile-time.

The four Viterbi functions allow for left- or right-shifting (setting the least
or most significant bit, accordingly) and for 1x16 or 2x16 operands.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-253
for Blackfin Processors

C/C++ Compiler Language Extensions

The first two functions provide left- and right-shifting operations for
single 16-bit input operands:

short Tvitmaxlxl6(int value, int oldhist, int *newhist)
short rvitmaxlxl6(int value, int oldhist, int *newhist)

Tvitmax1x16() and rvitmax1x16() perform selection-and-update opera-
tions for two 16-bit operands, which are in the high and low halves of
value. The o1dhist operand contains the history value from the preceding
iteration. The short value returned contains the selection result, and the
pointer newhist contains the history state after the operation.

The returned value is set to contain the largest half of value. The newhist
operand is set to contain the o1dhist value, shifted one place (left for
1vitmax, right for rvitmax), and with one bit (LSB for 1vitmax, MSB for
rvitmax) set to 1 if the high half was selected; 0 otherwise.

The next two Viterbi functions provide left- and right-shifting operations
for pairs of 16-bit input operands. The functions are:

int TvitmaxZxl6(int val_x, int val_y, int oldhist, int *newhist)
int rvitmax2xl6(int val_x, int val_y, int oldhist, int *newhist)

The two functions, 1vitmax2x16() and rvitmax2x16(), perform two
selection-and-update operations. Each of the val_x and val_y input
expressions contain two 16-bit operands. A selection operation is
performed on the two 16-bit operands in val_x, and another selection
operation is performed on the two 16-bit operands in val_y. The oldhist
value is shifted and updated into newhist, as described above.

However, in this example, o1dhist is shifted two places, and two bits are
set. The history value is shifted one place, and a bit is set to indicate the
result of the val_x selection operation. Then, the history value is shifted a
second place, and another bit is set to indicate the result for the val_y
selection operation.

1-254 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

The selected value from val_x is stored in the low half of the returned
value, and the selected value from val_y is stored in the high half.

Search Built-in Functions

The compiler provides several built-in functions for locating the largest or
smallest 16-bit signed values in an array, using a loop. Each version of the
search built-in function has the following signature:

int2x16 *search_op(int2x16 cmp_vals,
int2xlé *cmp_ptr,
int2x16 *prev_hi_ptr,
int2x16 *prev_lo_ptr,
short prev_hi,
short prev_lo,
int2x16 **new_Tlo_ptr,
short *new_hi,
short *new_10);

The available search functions are listed in Table 1-28 on page 1-256.
Each invocation of a search function compares two values from the array
against current best solutions, updating those partial results if appropriate.
If a value being tested is better than the current solution, the function also
saves the current pointer.

Upon completion of the search process, the function will have identified

two parallel sets of results, one for the values in the low half of the int2x16
value, and one for the values in the high half. Each set of results contains
the best solution identified (for example, the largest or smallest value) and
the corresponding pointer value.

The function returns the new pointer value for the low half comparison,
and passes the new pointer value for the high half comparison back via
new_lo_ptr. The new partial results are returned in new_hi and new_1o.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-255
for Blackfin Processors

C/C++ Compiler Language Extensions

Table 1-28. Built-in Search functions

Function name Operation

search_gt new = (cmp > prev)? cmp : prev
new_ptr = (cmp > prev)? cmp_ptr : prev_ptr

search_ge new = (cmp >= prev)? cmp : prev
new_ptr = (cmp >= prev)? cmp_ptr : prev_ptr

search_1t new = (cmp < prev)? cmp : prev
new_ptr = (cmp < prev)? cmp_ptr : prev_ptr

search_le new = (cmp <= prev)? cmp : prev
new_ptr = (cmp <= prev)? cmp_ptr : prev_ptr

Circular Buffer Built-In Functions

The C/C++ compiler provides built-in functions that use the Blackfin
processor’s circular buffer mechanisms. These functions provide auto-
matic circular buffer generation, circular indexing, and circular pointer
references.

Automatic Circular Buffer Generation

If optimization is enabled, the compiler automatically attempts to use
circular buffer mechanisms where appropriate. For example,

void func(int *array,int n,int incr)
{
int i;
for (i = 0;1 < n;i++)
array [1 % 10] += incr;
}

The compiler recognizes that the “[1 % 10 17 expression is a circular
reference, and uses a circular buffer if possible. There are cases where the
compiler is unable to verify that the memory access is always within the
bounds of the buffer. The compiler is conservative in such cases, and does
not generate circular buffer accesses.

1-256 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

The compiler can be instructed to still generate circular buffer accesses
even in such cases, by specifying the -force-circbuf switch. (For more
information, see “-force-circbuf” on page 1-39.)

Explicit Circular Buffer Generation

The compiler also provides built-in functions that can explicitly generate
circular buffer accesses, subject to available hardware resources. The
built-in functions provide circular indexing and circular pointer refer-
ences. Both built-in functions are defined in the ccb1kfn.h header file.

Circular Buffer Increment of an Index
The following operation performs a circular buffer increment of an index.
long circindex(long index, long incr, unsigned long nitems);
The operation is equivalent to:

index += incr;

if (index < 0)
index += nitems;

else if (index >= nitems)
index -= nitems;

An example of this built-in function is:

#include <ccblkfn.h>
void func(int *array, int n, int incr, int len)
{

int i, idx = 0;

for (i = 0; i < n; i++) |
array[idx] += incr;
idx = circindex(idx, incr, len);

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-257
for Blackfin Processors

C/C++ Compiler Language Extensions

Circular Buffer Increment of a Pointer
The following operation performs a circular buffer increment of a pointer.

void *circptr(void *ptr, long incr
void * base, unsigned long buflen);

Both incrand buflen are specified in bytes, since the operation deals in
void pointers.

The operation is equivalent to:

ptr += incr;

if (ptr < base)
ptr += buflen;

else if (ptr >= (basetbuflen))
ptr -= buflen;

An example of this built-in function is:

#include <ccblkfn.h>
void func(int *array, int n, int incr, int len)
{

int i, idx = 0;

int *ptr = array;

// scale increment and length by size
// of item pointed to.

incr *= sizeof(*ptr);

len *= sizeof(*ptr);

for (i = 0; i < n; i++) |
*ptr += incr;
ptr = circptr(ptr, incr, array, len);

1-258 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Endian-Swapping Intrinsics

The following two intrinsics are available for changing data from
big-endian to little-endian, or vice versa.

#include <ccblkfn.h>
int byteswap4(int);
short byteswap2(short);

For example, byteswap2(0x1234) returns 0x3412.

Since Blackfin processors use a little-endian architecture, these intrinsics
are useful when communicating with big-endian devices, or when using a
protocol that requires big-endian format. For example,

struct bige_buffer {

int len;

char data[MAXLENI;
} buf;

int i, len;

buf = get_next_buffer();

len = byteswap4(buf.Ten);

for (i = 0; 1 < len; i++)
process_byte(buf.datali]);

System Built-In Functions

The following built-in functions allow access to system facilities on
Blackfin processors. The functions are defined in the ccbTkfn.h header
file. Include the cch1kfn.h file before using these functions. Failure to do
so leads to unresolved symbols at link-time.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-259
for Blackfin Processors

C/C++ Compiler Language Extensions

Stack Space Allocation
void *alloca(unsigned)

This function allocates the requested number of bytes on the local stack,
and returns a pointer to the start of the buffer. The space is freed when the
current function exits.

The compiler supports this function via __builtin_alloca().
System Register Values

unsigned int sysreg_read(int reg)

void sysreg_write(int reg, unsigned int val)

unsigned Tong long sysreg_read64(int reg)

void sysreg_write64(int reg,unsigned long long val)

These functions get (read) or set (write) the value of a system register.
In all cases, req is a constant from the file <sysreg.h>.

IMASK Values
unsigned cli(void)
void sti(unsigned mask)

The c11 () function retrieves the old value of IMASK, and disables inter-
rupts by setting IMASK to all zeros. The sti () function installs a new value
into IMASK, enabling the interrupt system according to the new mask
stored.

Interrupts and Exceptions
void raise_intr(int)

void excpt(int)

1-260 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

These two functions raise interrupts and exceptions, respectively. In both
cases, the parameter supplied must be an integer literal value.

Idle Mode

void idle(void)

places the processor in idle mode.
Synchronization

void csync_int(void)

void ssync_int(void)

These two functions provide synchronization. The csync() function is a
core-only synchronization—it flushes the pipeline and store buffers. The
ssync() function is a system synchronization, and also waits for an ACK
instruction from the system bus.

When it is known that interrupts are disabled at the point a csync or
ssync is required, the csync_int() and ssync_int () functions may be
used instead. These functions issue the csync and ssync instructions as
expected, however the workaround for the 05-00-0312 anomaly (disabling
interrupts around the csync/ssync instruction) will not be applied.

Cache Built-In Functions

The following built-in functions can be used to control the instruction
and data caches.

flush
void __builtin_flush(void * __a);
When compiled, this built-in function will be replaced by the assembly:

FLUSH[Pregl; // Preg is loaded with the address __a

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-261
for Blackfin Processors

C/C++ Compiler Language Extensions

__builtin_flush (data cache line flush) causes the data cache to synchro-
nize the cache line associated with the specified address with higher levels
of memory. If the cached data line is dirty, the instruction writes the line
out and marks the line clean in the data cache. If the specified data cache
line is already clean or does not exist, the instruction functions like a NOP.
flushinv
void __builtin_flushinv(void * __a);
When compiled, this built-in function will be replaced by the assembly:

FLUSHINV[Pregl; // Preg is loaded with the address __a

__builtin_flushinv (data cache line flush and invalidate) causes the data

cache to perform the same function as flush (on page 1-261) and then

invalidate the specified line in the cache. If the line is in the cache and

dirty, the cache line is first written out. The Valid bit in the cache line is

then cleared. If the line is not in the cache, flushinv functions like a NOP.
flushinvmodup

void * __builtin_flushinvmodup(void * __a);

When compiled, this built-in function will be replaced by the assembly:

FLUSHINV[Preg++]; // Preg is loaded with the address __a

__builtin_flushinvmodup functions exactly the same way as flushiny

(on page 1-262); however, the specified address is post-incremented by

the size of a cache block (for example, 32 bytes) and then returned.
flushmodup

void * __builtin_flushmodup(void * __a);

When compiled, this built-in function will be replaced by the assembly:

FLUSH[Preg++]; // Preg is loaded with the address __a

1-262 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

__builtin_flushmodup functions exactly the same way as flush
(on page 1-261); however, the specified address is post-incremented by
the size of a cache block (for example, 32 bytes) and then returned.

iflush
void * __ builtin_iflush(void * __a);
When compiled, this built-in function will be replaced by the assembly:
IFLUSH[Pregl; // Preg is loaded with the address __a

__builtin_iflush (instruction cache flush) causes the instruction cache to
invalidate the cache line associated with the address specified. The instruc-
tion cache contains no dirty bit. Consequently, the contents of the
instruction cache are never flushed to higher levels.

iflushmodup
void * __builtin_iflushmodup(void * __a);
When compiled, this built-in function will be replaced by the assembly:
IFLUSH[Preg++]; // Preg is loaded with the address __a

__builtin_iflushmodup functions exactly the same way as iflush
(on page 1-263); however, the specified address is post-incremented by
the size of a cache block (for example, 32 bytes) and then returned.

prefetch
void * __builtin_prefetch(void * __a);
When compiled, this built-in function will be replaced by the assembly:
PREFETCH[Pregl; // Preg is loaded with the address __a

__builtin_prefetch (data cache prefetch) causes the data cache to
prefetch the cache line that is associated with the specified address. The

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-263
for Blackfin Processors

C/C++ Compiler Language Extensions

operation causes the line to be fetched if it is not currently in the data
cache and if the address is cacheable. If the line is already in the cache or if
the cache is already fetching a line, prefetch performs like a NOP.

prefetchmodup
void * __builtin_prefetchmodup(void * __a);
When compiled, this built-in function will be replaced by the assembly:
PREFETCH[Preg++]; // Preg is loaded with the address __a

__builtin_prefetchmodup functions exactly the same way as prefetch
(on page 1-263); however, the specified address is post-incremented by
the size of a cache block (for example, 32 bytes) and then returned.

Compiler Performance Built-In Functions

The expected_true and expected_false functions provide the compiler
with information about the expected behavior of the program. You can
use these built-in functions to tell the compiler which parts of the pro-
gram are most likely to be executed; the compiler can then arrange for the
most common cases to be those that execute most efficiently.

#include <ccblkfn.h>
int expected_true(int cond);
int expected_false(int cond);

For example, consider the code

extern int func(int);
int example(int call_the_function, int value)
{
int r =0;
if (call_the_function)
r = func(value);

1-264 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

return r;

}

If you expect that parameter call_the_function to be true in the majority
of cases, you can write the function in the following manner:

extern int func(int);
int example(int call_the_function, int value)
{

int r =0;

if (expected_true(call_the_function))

// indicate most likely true
r = func(value);

return r;

}

This indicates to the compiler that you expect call_the_function to be
true in most cases, so the compiler arranges for the default case to be to
call function func().

On the other hand, if you write the function as follows, the compiler
arranges the generated code to default to the opposite case, of not calling
function func().

extern int func(int);
int example(int call_the_function, int value)
{

int r =0;

if (expected_false(call_the_function))

// indicate most likely false
r = func(value);
return r;

}

These built-in functions do not change the operation of the generated
code, which will still evaluate the boolean expression as normal. Instead,
they indicate to the compiler which flow of control is most likely, helping

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-265
for Blackfin Processors

C/C++ Compiler Language Extensions

the compiler to ensure that the most commonly-executed path is the one
that uses the most efficient instruction sequence.

The expected_true and expected_false built-in functions take effect
only when optimization is enabled in the compiler. They are supported in
conditional expressions only.

Known Values

The __builtin_assert() function provides the compiler with informa-
tion about the values of variables which it may not be able to deduce from
the context. For example, consider the code

int example(int value, int loop_count)
{

int r = 0;

int i;

for (i = 0; 1 < loop_count; i++) {

r += value;

}

return r;
}

The compiler has no way of knowing what values may be passed to the
function. If you know that the loop count will always be greater than four,
you can allow the optimizer to make use of that knowledge using
__builtin_assert().

int example(int value, int loop_count)
{
int r =0;
int 1;
__builtin_assert(loop_count > 4);
for (i = 0; i < Toop_count; i++) |
r += value;

1-266 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

return r;

}

The optimizer can now omit the jump over the loop body it would other-
wise have to emit to cover Toop_count == 0. In more complicated code,
further optimizations may be possible when bounds for variables are
known.

Video Operation Built-In Functions

The C/C++ compiler provides built-in functions for using the Blackfin
processor’s video pixel operations. Include the video.h header file before
using these functions.

Some video operation built-in functions take an 8-byte sequence of data,
and select from it a sequence of four bytes to use as input. The operation
selects the four bytes at an offset of 0, 1, 2, or 3 bytes from lowest byte
of the 8-byte sequence, depending on the value of a pointer parameter.
Where reverse variants of the operations exist (the operation name is suf-
fixed by “r”), the two 4-byte halves of the 8-byte sequence are accessed in
reverse order.

Where a video operation generates more than one result, the operation
may be implemented by more than one built-in function. In these cases,
macros are provided to generate the appropriate built-in calls.

For further information regarding the underlying Blackfin processor
instructions that implement the video operations, refer to the Blackfin
Processor Programming Reference.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-267
for Blackfin Processors

C/C++ Compiler Language Extensions

Function Prototypes
Align Operations
int align8(int srcl, int src2); /* 1 byte offset */
int alignl6(int srcl, int src2); /* 2 byte offset */
int align24(int srcl, int src2); /* 3 byte offset */

These three operations treat their two inputs as a single 8-byte sequence,
and extract a specific 4-byte sequence from it, starting at offset 1, 2, or 3
bytes, as shown.

Packing Operations
int bytepack(int srcl, int src2);

This operation treats its two inputs as four 16-bit values, and packs each
16-bit value into an 8-bit value in the result. Effectively, it converts an
array of four shorts to an array of four chars.

long Tong compose_i64(int Tow, int high);

This operation produces a 64-bit value from the two 32-bit values pro-
vided as input and can be used to efficiently generate a Tong Tong type
that is needed for many of the following operations.

Misaligned Loads
int Toadbytes(int *ptr);

This operation is used to load a 4-byte sequence from memory using ptr
as the address, where ptr may be misaligned. The actual data retrieved is
aligned by masking off the bottom two bits of ptr, where ptr is intended
to select bytes from input operands in subsequent operations. Misaligned
read exceptions are prevented from occurring.

1-268 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Unpacking
byteunpack(long Tong src, char *ptr, int dstl, int dst2)
byteunpackr(long long src, char *ptr, int dstl, int dst2)

These macros provide the unpacking operations, where PTR selects four
bytes from the eight-byte sequence in SRC. Each of the four bytes is
expanded to a 16-bit value. The first two 16-bit values are returned in
DST1, and the second two are returned in DST2.

Quad 8-Bit Add Subtract

add_1i4x8(long long srcl, char *ptrl, long long src2,
char *ptr2, int dstl, int dst2);

add_i4x8r(long long srcl, char *ptrl, long long srce,
char *ptr2, int dstl, int dst2);

sub_i4x8(long long srcl, char *ptrl, long long src2,
char *ptr2, int dstl, int dst2);

sub_i4x8r(Tong long srcl, char *ptrl, long long src?,
char *ptr2, int dstl, int dst2);

These macros provide the operations to select two four-byte sequences
from the two eight-byte operands provided, add or subtract the corre-
sponding bytes, and generate four 16-bit results. The first two results are
stored in DST1, and the second two are stored in DST2. PTR1 selects the
bytes from SRC1, and PTR2 selects the bytes from SRC2. The add_i4x8r ()
and sub_i4x8r () variants produce the same instructions as add_i4x8()
and sub_i4x8(), but with the “reverse” option enabled; this swaps the
order of the two 32-bit elements in the SRC parameters.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-269
for Blackfin Processors

C/C++ Compiler Language Extensions

Dual 16-Bit Add/Clip

int addclip_lo(long long srcl, char *ptrl, long long src?2,
char *ptr2);

int addclip_hi(long Tong srcl, char *ptrl, long long src?2,
char *ptr2);

int addclip_lor(long long srcl, char *ptrl, long long srcZ,
char *ptr2);

int addclip_hir(long long srcl, char *ptrl, long long src2,
char *ptr2);

These operations select two 16-bit values from srcl using ptrl, and two
8-bit values from src2 using ptr2. The pairs are added and then clipped to
the range 0 to 255, producing two 8-bit results. The _10 versions select
bytes 3 and 1 from src?2, while the _hi versions select bytes 2 and 0. The
_lor and _hir versions reverse the order of the 32-bit elements in srcl
and src?

Quad 8-Bit Average

int avg_1i4x8(long long srcl, char *ptrl, Tong long src2,
char *ptr2);

int avg_1i4x8_t(long Tong srcl, char *ptrl, long long src?2,
char *ptr2);

int avg_i4x8_r(long long srcl, char *ptrl, long long src2,
char *ptr2);

int avg_i4x8_tr(long long srcl, char *ptrl, long long src2,
char *ptr2);

These operations select two 4-byte sequences from srcl and src2, using
ptrland ptr2. They add the corresponding bytes from each sequence, and
then shift each result right once to produce four byte-size averages. There

1-270 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

are four variants of the operation to select the reverse and truncate options
for the operation.

int avg_i2x8_1o (long long srcl, char *ptrl, long long src2);
int avg_i2x8_lot (long Tong srcl, char *ptrl, long long src?);
int avg_i2x8_lor (long long srcl, char *ptrl, long long src?);
int avg_i2x8_lotr(long long srcl, char *ptrl, long long src?);
int avg_i2x8_hi (long long srcl, char *ptrl, long long src?);
int avg_i2x8_hit (long long srcl, char *ptrl, long long src?);
int avg_i2x8_hir (long long srcl, char *ptrl, long long src?);
int avg_i2x8_hitr(long Tong srcl, char *ptrl, long long src?);

These operations produce two 8-bit average values. Each selects two
four-byte sequences from srcl and src2 using ptr, and then produces
averages of the 4-byte sequences as two 2x2-byte clusters. The two results
are byte-sized, and are stored in two bytes of the output result; the other
two bytes are set to zero. The variants allow for the generation of different
options: truncate or round, reverse input pairs, or store results in the low

or high bytes of each 16-bit half of the result register.
Accumulator Extract With Addition

extract_and_add(long long srcl, long long src2, int dstl,
int dst2);

This macro provides the operation to add the high and low halves of SRC1
with the high and low halves of SRC2 to produce two 32-bit results.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-271
for Blackfin Processors

C/C++ Compiler Language Extensions

Subtract Absolute Accumulate

saa(long long srcl, char *ptrl, long long src2, char *ptr2,
int suml, int sum2, int dstl, int dst2);

saar(long long srcl, char *ptrl, long long src2, char *ptr2,
int suml, int sum2, int dstl, int dst2);

These macros provide the operations to select two 4-byte sequences from
SRC1 and SRC2, using PTR1 and PTR2 to select. The bytes from SRC2 are sub-
tracted from their corresponding bytes in SRC1, and then the absolute
value of each subtraction is computed. These four results are then added
to the four 16-bit values in SUM1 and SUM2, and the results are stored in
DST1 and DST2, as four 16-bit values.

Example of Use: Sum of Absolute Difference

As an example use of the video operation built-in functions, a block-based
video motion estimation algorithm might use sum of absolute difference
(SAD) calculations to measure distortion. A reference SAD function may
be implemented as:

int ref_SAD16x16(unsigned char *image, unsigned char *block,
int imgWidth)

int dist = 0;
int x, y;

for (y = 0; y < 165 y++) |
for (x = 0; x < 16; x++)
dist += abs(image[x] - block[x1);
image += 16+ (imgWidth-16);
block += 16;
}

return dist;

1-272 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Using video operation built-in functions, the code could be written

as follows (Note: imgWidth should be divisible by 4):

int vid_SADl16x16(unsigned char *image, unsigned char *block,

int imgWidth)

int x, y;

long long srcl, srcB;

int bytesIl, byteslI?2, bytesBl, bytesB2;
int suml, sum?, resl, res2;

suml = sum2 = 0;

bytesl?2 = bytesB2 = 0;

/* get 4-byte aligned pointers */
int *iPtr = ((int)image)&~3;
int *bPtr = ((int)block)&~3;

for (y = 0; y < 16; y++) {
bytesIl *iPtr;
bytesBl1 *bPtr;

for (x = 0; x < 16; x += 8) {
iPtr++; bytesl?2 = *iPtr++;
bPtr++; bytesB2 *bPtr++;

srcl compose_1i64(bytesIl, bytesI?2);

srcB = compose_i64(bytesBl, bytesB2);

saa(srcl, image, srcB, block, suml, sum2, sumz2) ;
bytesIl = *iPtr;
bytesBl = *bPtr;
srcl = compose_i64(bytesIl, bytesI?);
srcB = compose_i64(bytesBl, bytesB2);
Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-273

for Blackfin Processors

C/C++ Compiler Language Extensions

saar(srcl, image, srcB, block, suml, sumZ2, suml, sum2);
}
iPtr += (imgWidth - 16)/4;
}
extract_and_add(suml, sum2, resl, res2);
return resl + res?;

Misaligned Data Built-In Functions

The following intrinsic functions allow you to explicitly perform loads
from misaligned memory locations and stores to misaligned memory loca-
tions. These functions generate expanded code to read and write from
such memory locations, regardless of whether the access is aligned or not.

#include <ccblkfn.h>

short misaligned_loadl6(void *);

short misaligned_loadl6_vol(volatile void *);

void misaligned_storel6(void *, short);

void misaligned_storel6_vol(volatile void *, short);

int misaligned_load32(void *);

int misaligned_load32_vol(volatile void *);

void misaligned_store32(void *, int);

void misaligned_store32_vol(volatile void *, int);

long Tong misaligned_load64(void *);

long lTong misaligned_load64_vol(volatile void *);

void misaligned_store64(void *, Tong long);

void misaligned_store64_vol(volatile void *, long long);

Note that there are also volatile variants of these functions. Because of the
operations required to read from and write to such misaligned memory
locations, no assumptions should be made regarding the atomicity of these

1-274 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

operations. Refer to “#pragma pack (alignopt)” on page 1-284 for more
information.

Memory-Mapped Register Access Built-In Functions

The following built-in functions can be used to ensure that the compiler
applies any necessary silicon anomaly workarounds for memory-mapped
register (MMR) accesses. These workarounds may be necessary for any
source that uses non-literal address type accesses (particularly when the
-no-assume-vols-are-mmrs switch (on page 1-52) is specified) as the
compiler is not normally able to identify such code as implementing
MMR accesses. An example of this is where an access is made via a pointer
whose value cannot be determined at compile time.

The prototypes for the following functions that implement this support
are defined in the ccb1kfn.h include file:

unsigned short mmr_readl6(volatile void *);

// Performs 16-bit MMR Toad
unsigned int mmr_read32(volatile void *);

// Performs 32-bit MMR load
void mmr_writel6(volatile void *,

unsigned short); // Performs 16-bit MMR store
void mmr_write32(volatile void *,
unsigned int); // Performs 32-bit MMR store

The compiler generates equivalent code for uses of these built-in functions
as it would for a normal dereference of the specified pointer. The only dif-
ference when the built-ins are used is that the compiler can ensure that the
generated code avoids any silicon anomalies that impact MMR accesses,
provided the workarounds are enabled by building for the appropriate
silicon revision, or are explicitly enabled via the -workaround switch

(on page 1-81).

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-275
for Blackfin Processors

C/C++ Compiler Language Extensions

Miscellaneous Built-In Functions
int __builtin_funcsize(const void *func)

The __builtin_funcsize built-in function returns the size in bytes of
pointer to function func. The result is calculated from the difference
between the start and end labels for the function operand. The compiler
creates these labels for all C/C++ functions.

The start label is the mangled name of the function. The end label used is
a dot (“.”) followed by the start label followed by “.end”. For example,
for C function foo, these labels are “_foo:” and “._foo.end:”.

When using the __builtin_funcsize built-in for assembly functions, the
start and end labels need to be correctly defined for it to work.

Example

#include <stdio.h>
#include <builtins.h>

void foo() {
}

void main(void) {
long size = __builtin_funcsize(foo);
printf("Function foo is size %1d bytes\n", size);

The __builtin_funcsize built-in does not work for functions
defined in different modules than it is used, because end labels are
not usually externally visible.

1-276 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Pragmas

The Blackfin C/C++ compiler supports pragmas. Pragmas are implemen-
tation-specific directives that modify the compiler’s behavior. There are
two types of pragma usage: pragma directives and pragma operators.

Pragma directives have the following syntax:

ffpragma pragma-directive pragma-directive-operands new-1ine
Pragma operators have the following syntax:

_Pragma (string-literal)

When processing a pragma operator, the compiler effectively turns it into
a pragma directive using a non-string version of string-literal. This
means that the following pragma directive

#fpragma Tinkage_name mylinkname
can also be equivalently expressed using the following pragma operator.
_Pragma ("linkage_name mylinkagename")
The examples in this manual use the directive form.
The C compiler supports pragmas for:
e Arranging alignment of data
* Defining functions that can act as interrupt handlers
e Changing the optimization level, midway through a module
* Changing how an externally visible function is linked
* DProviding header file configurations and properties

* Giving additional information about loop usage to improve
optimizations

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-277
for Blackfin Processors

C/C++ Compiler Language Extensions

The compiler issues a warning when it encounters an unrecognized
pragma directive or pragma operator.

The following sections describe the supported pragmas:

“Pragmas With Declaration Lists” on page 1-279
“Data Alignment Pragmas” on page 1-279
“Interrupt Handler Pragmas” on page 1-286
“Loop Optimization Pragmas” on page 1-287
“General Optimization Pragmas” on page 1-297
“Fixed-Point Arithmetic Pragmas” on page 1-298
“Inline Control Pragmas” on page 1-301
“Linking Control Pragmas” on page 1-303
“Function Side-Effect Pragmas” on page 1-318
“Class Conversion Optimization Pragmas” on page 1-330
“Template Instantiation Pragmas” on page 1-333
“Header File Control Pragmas” on page 1-335
“Diagnostic Control Pragmas” on page 1-338
“Memory Bank Pragmas” on page 1-341
“Exceptions Tables Pragma” on page 1-347

1-278

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Pragmas With Declaration Lists

When using pragmas that can be applied to declarations, in most cases,
they only affect the immediately-following definition, even if it is part of a
list; for example:

ffpragma align 8
int i1, i2, i3;

In the above example, the pragma applies only to i1, meaning i1 is 8-byte
aligned, while 12 and 13 use the default alignment. The single exception
to this is the “section” pragma, which applies to the entire declaration list
that follows it; for example:

fipragma section("foo")
int x, vy, z;

In the above example, x, y, and z are placed in section foo, and the
compiler issues warning cc1738 to allow you to decide whether this is
what was intended.

Data Alignment Pragmas

Data alignment pragmas are used to modify how the compiler arranges
data within the processor’s memory. Since the Blackfin processor
architecture requires memory accesses to be naturally aligned, each data
item is normally aligned at least as strongly as itself—two-byte shorts
have an alignment of 2, and four-byte 1ongs have an alignment of 4.
An 8-byte Tong 1ong also has an alignment of 4.

When a struct is defined, the struct’s overall alignment is the same as the
field which has the largest alignment. The struct’s size may need padding
to ensure that all fields are properly aligned and that the struct’s overall
size is a multiple of its alignment.

Sometimes, it is useful to change these alignments. A struct may have its
alignment increased to improve the compiler’s opportunities in

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-279
for Blackfin Processors

C/C++ Compiler Language Extensions

vectorizing access to the data. A struct may have its alignment reduced so
that a large array occupies less space.

If a data item’s alignment is reduced, the compiler cannot safely
access the data item without the risk of causing misaligned memory
access exceptions. Programs that use reduced-alignment data must
ensure that accesses to the data are made using data types that
match the reduced alignment, rather than the default one. For
example, if an int has its alignment reduced from the default (4)
to 2, it must be accessed as two shorts or four bytes, rather than as
a single int.

Data alignment pragmas include the align, pack, and pad pragmas.
Alignments specified using these pragmas must be a power of two. The
compiler rejects uses of those pragmas that specify alignments that are not
powers of two.

#pragma align num

The align pragma may be used before variable declarations and field
declarations. It applies to the variable or field declaration that immedi-
ately follows the pragma.

The pragma’s effect is that the next variable or field declaration is forced
to be aligned on a boundary specified by num, as follows:

 If the pragma is being applied to a local variable (which will be
stored on the stack), the alignment of the variable will only be
changed when num is not greater than the stack alignment, that is 4
bytes. If num is greater than the stack alignment, a warning is given
that the pragma is being ignored.

e If numis greater than the alignment normally required by the fol-
lowing variable or field declaration, the variable or field
declaration’s alignment is changed to num.

1-280 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

e If numis less than the alignment normally required, the variable or
field declaration’s alignment is changed to num, and a warning is
given that the alignment has been reduced.

The pragma also allows the following keywords as allowable alignment
specifications:

_WORD — Specifies a 32-bit alignment
_LONG — Specifies a 64-bit alignment
_QUAD — Specifies a 128-bit alignment

If the pack pragma (on page 1-284) or pad pragma (on page 1-286) are
currently active, then align overrides the immediately-following field
declaration.

The following examples show how to use #pragma align.

struct sf

f#fpragma align 8 /* field a aligned on 8-byte boundary */
int a;
int bar;

#fpragma align 16 /* field b aligned on 16-byte boundary */
int b;
botl2];

#fpragma align 256
int arr[128]; /* declares an int array with 256 alignment */

The following example shows a use that is valid, but emits a compiler
warning.

#fpragma align 1

int warns; /* declares an int with byte alignment, */
/* causes a compiler warning */
Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-281

for Blackfin Processors

C/C++ Compiler Language Extensions

The following is an example of an invalid use of #pragma align. Since the
alignment is not a power of two, the compiler rejects it and issues an error.

#fpragma align 3
int errs; /* INVALID: declares an int with non-power of */
/* two alignment, causes a compiler error */

The align pragma only applies to the immediately-following
definition, even if that definition is part of a list. For example,

ffpragma align 8
int i1, i2, 13; // pragma only applies to il

#pragma alignment_region (alignopt)

Sometimes it is desirable to specify an alignment for a group of consecu-
tive data items rather than individually. This can be done using the
alignment_region and alignment_region_end pragmas:

* jpragma alignment_region sets the alignment for all following
data symbols up to the corresponding alignment_region_end
pragma

* ftpragma alignment_region_end removes the effect of the active
alignment region and restores the default alignment rules for data
symbols

The rules concerning the argument are the same as for the align pragma
(on page 1-280). The compiler faults an invalid alignment (such as an
alignment that is not a power of two). The compiler warns if the align-
ment of a data symbol within the control of an alignment_region is
reduced below its natural alignment (as for #pragma align).

Use of the align pragma overrides the region alignment specified by the
currently active alignment_region pragma (if there is one). The currently
active alignment_region does not affect the alignment of fields.

1-282 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Example:

#fpragma align 16

int aa; /* alignment 16 */
int bb; /* alignment 4 */

#fpragma alignment_region (8)

int cc; /* alignment 8 */
int dd; /* alignment 8 */
int ee; /* alignment 8 */

ffpragma align 16

int ff; /* alignment 16 */
int gg; /* alignment 8 */
int hh; /* alignment 8 */

ffpragma alignment_region_end
int i1; /* alignment 4 */
#fpragma alignment_region (2)

long double jj; /* alignment 2, but the compiler warns
about the reduction */

ffpragma alignment_region_end
ffpragma alignment_region (5)
long double kk; /* the compiler faults this, alignment

is not a power of two */

#fpragma alignment_region_end

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-283
for Blackfin Processors

C/C++ Compiler Language Extensions

#pragma pack (alignopt)

The pack pragma may be applied to struct definitions. It applies to all
struct definitions that follow, until the default alignment is restored by
omitting alignopt (for example, by #pragma pack() with empty
parentheses).

The pack pragma is used to reduce the default alignment of the struct to
be alignopt. If fields within the struct have a default alignment greater
than align, their alignment is reduced to alignopt. If fields within the
struct have alignment less than a1ign, their alignment is unchanged.

If alignopt is specified, it is illegal to invoke ffipragma pad until the default
alignment is restored. The compiler generates an error message if the pad
and pack pragmas are used in a manner that conflicts.

The following example shows how to use #pragma pack:

#fpragma pack(1)
/* struct minimum alignment now 1 byte, uses of
"ffpragma pad" would cause a compilation error now */

struct is_packed f{
char a;
/* normally the compiler would add three padding bytes here,
pbut not now because of prior pragma pack use */
int b;
botl2]; /* t definition requires 10 packed bytes */

#fpragma pack()
/* struct minimum alignment now, not one byte,
"ffpragma pad"can now be used legally */

struct is_packed ul2]; /* u definition requires 10 packed
bytes */
/* struct not_packed is a new type, and will not be packed. */

1-284 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

struct not_packed {

char a;
/* compiler will insert three padding bytes here */
int b;
bowl2]; /* w definition required 16 bytes */

The Blackfin processor does not support misaligned memory accesses at
the hardware level; the compiler generates additional code to correctly
handle reads from (and writes to) misaligned structure members. The code
generated will not necessarily be as efficient as reading from (or writing to)
an aligned structure member, but that is the trade-off that must be
accepted in return for getting packed structures.

Only direct reads from (and writes to) misaligned structure members are
automatically handled by the compiler. As a result, taking the address of a
misaligned field and assigning it to a pointer causes the compiler to emit a
warning. The reason for the warning is that the compiler does not detect a
misaligned memory access if the address of a misaligned field is taken and
stored in a pointer of a different type to that of the structure.

Since ffpragma pack reduces alignment constraints, and therefore
reduces the need for padding within the struct, the overall size of
the struct can be reduced; in fact, this reduction in size is often the
reason for using the pragma. Be aware, however, that the reduced
alignment also applies to the struct as a whole, so instances of the
struct may start on alignopt boundaries instead of the default
boundaries of the equivalent unpacked struct.

Prior to Visual DSP++ 4.0, this was not the case. The compiler
reduced internal alignment, but maintained overall alignment.
Since Visual DSP++ 4.0, packed structures may start on different
boundaries from unpacked structures. To maintain the overall start
alignment, use #pragma align (on page 1-279) on the first field of
the structure.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-285
for Blackfin Processors

C/C++ Compiler Language Extensions

#pragma pad (alignopt)

Th pad pragma may be applied to struct definitions. It applies to struct
definitions that follow until the default alignment is restored by omitting
alignopt (for example, by fipragma pad() with empty parentheses).

The pad pragma is effectively shorthand for placing fipragma align before
every field within the struct definition. Like the pack pragma, it reduces
the alignment of fields that default to an alignment greater than a7ignopt.

However, unlike the pack pragma, it also increases the alignment of fields
that default to an alignment less than a7ignopt.

Although the pack alignopt pragma emits a warning when a field
alignment is reduced, the pad alignopt pragma does not.

If alignopt is specified, it is illegal to invoke #pragma pack until the
default alignment is restored.

The following example shows how to use #pragma pad().

#fpragma pad(4)
struct {

int 1;

int j;
J s {1,2};
#fpragma pad()

Interrupt Handler Pragmas

The interrupt, nmi, and exception pragmas declare that the following
function declaration or definition is to be used as an entry in the event
vector table (EVT). The compiler arranges for the function to save its con-
text. This is more than the usual called-preserved set of registers. The
function returns using an instruction appropriate to the type of event

specified by the pragma.

1-286 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Normally, these pragmas are not used directly; macros are provided by the
sys\exception.h file. See “Interrupt Handler Support” on page 1-365 for
more information.

Interrupt handler pragmas may be specified on a function’s declaration or
its definition. Only one of the three pragmas listed above may be specified
for a particular function.

The interrupt_reentrant pragma is used with the interrupt pragma to
specify that the function’s context-saving prologue should also arrange for
interrupts to be re-enabled for the duration of the function’s execution.

The interrupt_level_interrupt pragmas are also used to specify that a
function should be compiled as an interrupt service routine (ISR). Use
these pragmas instead of the interrupt pragma when compiling interrupt
handler functions with the -isr-imask-check workaround enabled, or
when the workaround is enabled by default for the targeted processor and
silicon revision. These pragmas are supported for interrupt levels 5
(ffpragma interrupt_level_5) to 15 (#pragma interrupt_level_15).

If the isr-imask-check workaround is enabled, ISRs declared without
explicit interrupt levels—such as those declared using
EX_INTERRUPT_HANDLER()—check for interrupts occurring while a CLI
instruction is committed and return immediately if this is detected.
They do not attempt to re-raise the interrupt.

Loop Optimization Pragmas

Loop optimization pragmas give the compiler additional information
about usage within a particular loop, allowing the compiler to perform
more aggressive optimization. These pragmas are placed before the loop
statement, and apply to the statement that immediately follows, which
must be a for, while, or do statement to have effect. In general, it is most
effective to apply loop optimization pragmas to inner-most loops, since
the compiler can achieve the most savings there.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-287
for Blackfin Processors

C/C++ Compiler Language Extensions

The optimizer always attempts to vectorize loops when it is safe to do so.
The optimizer exploits the information generated by the interprocedural
analysis to increase the cases where it knows it is safe to do so. (See “Inter-
procedural Analysis” on page 1-98.)

Consider the code:

void copy(short *a, short *b) {
int 1;
for (i=0; i<100; i++)
alil = blil;
}

If you call copy with two calls, such as copy (x,y) and later copy(y,z),
interprocedural analysis is unable to tell that “a” never aliases “b”.
Therefore, the optimizer cannot be sure that one iteration of the loop is
not dependent on the data calculated by the previous iteration of the loop.
If it is known that each iteration of the loop is not dependent on the pre-
vious iteration, then the vector_for pragma can be used to explicitly
notify the compiler that this is the case.

#pragma all_aligned

The a11_aligned pragma applies to the subsequent loop. This pragma
asserts that all pointers are initially aligned on the most desirable
boundary.

#pragma different_banks

The different_banks pragma allows the compiler to assume that groups
of memory accesses based on different pointers within a loop reside in
different memory banks. By scheduling them together, memory access
performance may be improved.

1-288 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

#pragma extra_loop_loads

The extra_loop_loads pragma instructs the compiler that the immedi-
ately-following loop is allowed to do additional reads past the end of the
indicated memory areas, as if the loop were doing an additional iteration,
if this allows the compiler to generate faster code. For example,

short dotprod_normal(int n, short *x, short *y)
{

int i;

short sum = 0;
#fpragma no_vectorization

for (i = 0; 1 < n; i++)

sum += x[i] * y[i];
return sum;

short dotprod_with_pragma(int n, short *x, short *y)
{

int 1;

short sum = 0;
ffpragma no_vectorization
ffpragma extra_loop_loads

for (i = 0; i < n; i++)

sum += x[i] * y[i];
return sum;

}

These examples use the no_vectorization pragma to force the compiler to
generate simpler versions of the function. Without the no_vectorization
pragma, the compiler generates vectorized and non-vectorized versions of
the loop, which does not invalidate the extra_loop_loads pragma, but
makes the example more difficult to follow.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-289
for Blackfin Processors

C/C++ Compiler Language Extensions

In the example, the dotprod_normal () function only reads array elements
x[0]..x[n-11 and y[01..y[n-11, using the following code:

_dotprod_normal:

Pl = R2

P2 = RO ;

CC = RO <= 0;

RO = 0;

IF CC JUMP ._P2L8 ;

I0 = R1

P2 += -1;

LSETUP (._P2L5 , ._P2L6-8) LCO = P2;
CC = P2 = 0;

MNOP || RO = WLP1++] (X) || RL.L = WLIO++];
IF CC JUMP ._P2L6
.align 8;
._P2L5:
A0 += RO.L*RI.L (IS) || RO = WLP1++] (X) ||
R1.L = WLIO++];

._P2L6:
A0 += RO.L*R1.L (IS);
RO = AO.w;
RO = RO.L (X);
._P2L8:

RTS;

The compiler has scheduled the reads from x[i+1] and y[i+1] in parallel
with the addition of x[11 and y[i1, for best performance. This can only
be done for n-1 iterations, and so the compiler produces a loop of n-1 iter-
ations and does the nth addition after the loop terminates. Since n is
unknown, the compiler must compute n-1, and verify that it is not zero
before entering the loop.

1-290 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Compare this with the code generated by the compiler for the function
dotprod_with_pragma():

_dotprod_with_pragma:

Pl = R2
P2 = RO ;
CC = RO <= 0;
RO = 0;
IF CC JUMP ._P1L8
.align 8;
10 = R1 ;
AO =0 || RO = WLPI++1 (X) || NOP;
R1.L = WLIO++];
LSETUP (._P1L5 , ._P1L6-8) LCO = P2;
._P1L5:
A0 += RO.L*R1.L (IS) || RO = WLP1++1 (X) ||
R1.L = WLIO++];
._PlL6:
RO = AO.w;
RO = RO.L (X);
._P1L8:
RTS;

The compiler has generated a loop that has the same instruction in the
body of the loop, but here the compiler executes it n times, rather than
n-1 times. This means that the nth iteration of the loop will be reading
x[n] and y[n], which does not happen for dotprod_normal(). The values
retrieved by these reads are discarded, since they are not needed, but the
compiler has gained a benefit because it does not have to compute n-1 and
determine whether it prevents the loop from executing.

The additional memory reads are only valid if neither x[] nor y[] are at
the end of a valid memory area. If you use the extra_loop_loads pragma,
you must ensure that the memory ranges within the loop are contiguous

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-291
for Blackfin Processors

C/C++ Compiler Language Extensions

with valid memory areas, so that if another iteration’s worth of loads is
attempted, the loads read from valid addresses.

Note that when the no_vectorization pragma is omitted, the compiler
will attempt to produce a vectorized loop. The extra_loop_loads pragma
will not affect the vectorized version, since the compiler will have to con-
ditionally execute a single final iteration anyway, for the cases where the
loop count is not an even number.

The extra_loop_loads pragma has no effect when:

e The loads are from volatile addresses; such cannot be accessed
speculatively

e The loads are from memory banks that cost more than a single
cycle to read

e The compiler can determine the number of iterations that the loop
will require, either through constant propagation, or through
Toop_count pragmas. In such cases, the compiler does not need to
speculatively execute loads.

e The compiler’s speed/space ratio prevents it from rotating/pipelin-
ing the loop in this manner, because of the increase in code size

See also the -extra-1oop-loads switch (on page 1-37).

#pragma loop_count(min, max, modulo)

The Toop_count pragma appears just before the loop it describes. It asserts
that the loop iterates at least min times, no more than max times, and a
multiple of modulo times. This information enables the optimizer to omit
loop guards and to decide whether the loop is worth completely unrolling
and whether code needs to be generated for odd iterations.

1-292 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Any of the parameters of the pragma that are unknown may be left blank.

For example,

int i;
fipragma loop_count(24, 48, 8)
for (i=0; 1 < n; i++)

#pragma loop_unroll N

The Toop_unrol1 pragma can be used only before a for, while, or
do.. while loop. The pragma takes one positive integer argument, N,
and instructs the compiler to unroll the loop N times prior to further

transforming the code.
In the most general case, the effect of

ffpragma loop_unroll N

for (init statements; condition; increment code)

loop_body
}

is equivalent to transforming the loop to

for (init statements; condition; increment code)

loop_body /* copy 1 */
increment_code
if (lcondition)

break;

loop_body /* copy 2 */
increment_code
if (lcondition)

break;

loop_body /* copy N-1 */

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

1-293

C/C++ Compiler Language Extensions

increment_code
if (lcondition)
break;

loop_body /* copy N */
}

Similarly, the effect of

ffpragma loop_unroll N

while (condition) f{
loop_body

}

is equivalent to transforming the loop to:

while (condition) f{
loop_body /* copy 1 */
if (lcondition)

break;

Toop_body /* copy 2 */

if (lcondition)
break;

Toop_body /* copy N-1 */

if (lcondition)
break;

loop_body /* copy N */

}
1-294 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

and the effect of:

#fipragma loop_unroll N
do f

loop_body
} while (condition)

is equivalent to transforming the loop to

do {

loop_body /* copy 1 */

if (lcondition)
break;

loop_body /* copy 2 */

if (lcondition)
break;

loop_body /* copy N-1 */

if (lcondition)
break;

loop_body /* copy N */

} while (condition)

#pragma no_alias

Compiler

Use the no_alias pragma to inform the compiler that the following loop
has no loads or stores that conflict. When the compiler finds memory
accesses that potentially refer to the same location through different point-
ers (known as “aliases”), the compiler is restricted in how it may reorder
or vectorize the loop, because all the accesses from earlier iterations must
be complete before the compiler can arrange for the next iteration to start.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

1-295

C/C++ Compiler Language Extensions

For example,

void vadd(int *a, int *b, int *out, int n) |
int i;
#fpragma no_alias
for (i=0; 1 < n; i++)
outlil = alil + bl[il;
}

The no_alias pragma appears just before the loop it describes. This
pragma asserts that in the next loop, no lToad or store operations conflict
with each other. In other words, no 1oad or store in any iteration of the
loop has the same address as any other 1oad or store in the current or in
any other iteration of the loop. In the example above, if pointers a and b
point to two memory areas that do not overlap, no Toad from b is using
the same address as any store to a. Therefore, a is never an alias for b.

Using the no_alias pragma can lead to better code because it allows any
number of iterations to be performed concurrently, thus providing better
software pipelining by the optimizer.

#pragma no_vectorization

The no_vectorization pragma turns off all vectorization for the loop on
which it is specified.

#pragma vector_for

The vector_for pragma notifies the optimizer that it is safe to execute two
iterations of the loop in parallel. The vector_for pragma does not force
the compiler to vectorize the loop. The optimizer checks various proper-
ties of the loop and does not vectorize it if it believes to be unsafe or if it
cannot deduce that the various properties necessary for the vectorization
transformation are valid.

1-296 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Strictly speaking, the pragma simply disables checking for loop-carried
dependencies.

void copy(short *a, short *b) {
int 1;
ffpragma vector_for
for (i=0; i<100; i++)
alil = blil;
}

In cases where vectorization is impossible (for example, if array a is aligned
on a word boundary but array b is not), the information given in the asser-
tion made by vector_for may still be put to good use in aiding other
optimizations.

General Optimization Pragmas

The compiler supports several pragmas which can change the optimization
level while a given module is being compiled. These pragmas must be used
globally, immediately prior to a function definition. The pragmas do not
just apply to the immediately-following function; they remain in effect
until the end of the compilation, or until they are superseded by one of
the following optimize_ pragmas.

®* ffpragma optimize_off
This pragma turns off the optimizer, if it was enabled. It has the
same effect as compiling with no optimization enabled.

* Jpragma optimize_for_space
This pragma turns on the optimizer, if it was disabled, or sets the
focus to give reduced code size a higher priority than high perfor-
mance, where these conflict.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-297

for Blackfin Processors

C/C++ Compiler Language Extensions

* dJpragma optimize_for_speed
This pragma turns on the optimizer, if it was disabled, or sets the
focus to give high performance a higher priority than reduced code
size, where these conflict.

* dJpragma optimize_as_cmd_line
This pragma resets the optimization settings to be those specified
on the cch1kfn command line when the compiler was invoked.

The following are code examples of optimize_ pragmas.

ffpragma optimize_off
void non_op() { /* non-optimized code */ }

ffpragma optimize_for_space
void op_for_si() { /* code optimized for size */ }

ffpragma optimize_for_speed
void op_for_sp() { /* code optimized for speed */ }
/* subsequent functions declarations optimized for speed */

Fixed-Point Arithmetic Pragmas

The compiler supports several pragmas which can change the semantics of
arithmetic on the native fixed-point types fract and accum. These are
#ipragma FX_CONTRACT {ON|OFF} and #pragma FX_ROUNDING_MODE {TRUN-
CATION|BIASED|UNBIASED}. In addition, #pragma STDC
FX_FULL_PRECISION {ON|OFF|DEFAULT}, #pragma STDC
FX_FRACT_OVERFLOW {SAT|DEFAULT}, and #pragma STDC
FX_ACCUM_OVERFLOW {SAT|DEFAULT} are accepted by the compiler but have
no effect on generated code.

These pragmas may be used at file scope, in which case they apply to all
following functions until another pragma is respecified to change the
pragma state. Alternatively, they may be specified in a { } delimited scope

1-298 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

(or compound statement), where they will temporarily override the
current setting of the pragma’s state until the end of the scope.

#pragma FX_CONTRACT {ON] OFF}

The FX_CONTRACT {ON|OFF} pragma may be used to control the precision
of intermediate results of calculations on the native fixed-point types
fract and accum. If FX_CONTRACT is ON, where an intermediate result is not
stored back to a named variable, the compiler may choose to keep the
intermediate result in greater precision than that mandated by the
ISO/IEC C Technical Report 18037. It will do this where maintaining

the higher precision allows more efficient code to be generated.

When FX_CONTRACT is OFF, the compiler will adhere strictly to the
ISO/IEC Technical Report 18037 and will convert all intermediate results
to the type dictated in this standard before use.

The following example shows the use of this pragma.

accum mac(accum a, fract fl, fract f2) {
f#fpragma FX_CONTRACT ON

a += fl * f2; /* compiler creates multiply-accumulate
instruction */

return a;

}

The default state of the FX_CONTRACT pragma is ON.

#pragma FX_ROUNDING_MODE {TRUNCATION | BIASED | UNBIASED}

The FX_ROUNDING_MODE {TRUNCATION|BIASED|UNBIASED} pragma may be
used to control the rounding mode used during calculations on the native
fixed-point types fract and accum.

When FX_ROUNDING_MODE is set to TRUNCATION, the exact mathematical
result of a computation is rounded by truncating the least significant bits

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-299
for Blackfin Processors

C/C++ Compiler Language Extensions

beyond the precision of the result type. This is equivalent to rounding
towards negative infinity.

When FX_ROUNDING_MODE is set to BIASED, the exact mathematical result of
a computation is rounded to the nearest value that fits in the result type. If
the exact result lies exactly half-way between two consecutive values in the
result type, the result is rounded up to the higher one. Note that this
rounding mode pragma should be used in conjunction with the
set_rnd_mod_biased() built-in function. For more information, see

“Changing the RND_MOD Bit” on page 1-242.

When FX_ROUNDING_MODE is set to UNBIASED, the exact mathematical result
of a computation is rounded to the nearest value that fits in the result
type. If the exact result lies exactly half-way between two consecutive val-
ues in the result type, the result is rounded to the even value. Note that
this rounding mode pragma should be used in conjunction with the
set_rnd_mod_unbiased() built-in function. For more information, see

“Changing the RND_MOD Bit” on page 1-242.
The following example shows the use of this pragma.

fract divide_biased(fract fl, fract f2) {
f#fipragma FX_ROUNDING_MODE BIASED
set_rnd_mod_biased();
return f1 / f2; /* compiler creates divide with biased
rounding */

}

The default state of the FX_ROUNDING_MODE pragma is TRUNCATION.

#pragma STDC FX_FULL_PRECISION {ON | OFF | DEFAULT}

The STDC FX_FULL_PRECISION {ON|OFF|DEFAULT} pragma is used by the
ISO/IEC Technical Report 18037 to permit an implementation to gener-
ate faster code for fixed-point arithmetic, but produce lower-accuracy
results.

1-300 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

The Visual DSP++ compiler always produces full-accuracy results. There-
fore, although the pragma is accepted by the compiler, the code generated
will be the same regardless of the state of FX_FULL_PRECISION.

#pragma STDC FX_FRACT_OVERFLOW {SAT| DEFAULT}

The STDC FX_FRACT_OVERFLOW {SAT|DEFAULT} pragma is used by the
ISO/IEC Technical Report 18037 to permit an implementation to
generate code that does not saturate fract-typed results on overflow.

fract arithmetic with the VisualDSP++ compiler always saturates on
overflow. Therefore, although the pragma is accepted by the compiler,
the code generated will be the same regardless of the state of
FX_FRACT_OVERFLOW.

#pragma STDC FX_ACCUM_OVERFLOW {SAT| DEFAULT}

The STDC FX_ACCUM_OVERFLOW {SAT|DEFAULT} pragma is used by the
ISO/IEC Technical Report 18037 to permit an implementation to
generate code that does not saturate accun-typed results on overflow.

accum arithmetic with the VisualDSP++ compiler always saturates on
overflow. Therefore, although the pragma is accepted by the compiler, the
code generated will be the same regardless of the state of
FX_ACCUM_OVERFLOW.

Inline Control Pragmas

The compiler supports three pragmas to control the inlining of code
(#fpragma always_inline, #pragma inline, and f#fpragma never_inline).

#pragma always_inline

The always_inline pragma may be applied to a function definition to

indicate to the compiler that the function should always be inlined, and
never called “out of line”. The pragma may only be applied to function
definitions with the in1ine qualifier, and may not be used on functions

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-301
for Blackfin Processors

C/C++ Compiler Language Extensions

with variable-length argument lists. This pragma is not valid for function
definitions that have interrupt-related pragmas associated with them.

If the function in question has its address taken, the compiler cannot
guarantee that all calls are inlined, so a warning is issued.

See “Function Inlining” on page 1-159 for details of pragma precedence
during inlining.

The following are examples of the always_inline pragma.

int funcl(int a) { // only consider inlining
return a + 1; // if -0a switch is on
}
inline int func2(int b) { // probably inlined, if optimizing

return b + 2;

#fpragma always_inline
inlTine int func3(int c) { // always inline, even unoptimized
return ¢ + 3;

#fpragma always_inline
int func4(int d) { // error: not an inline function
return d + 4;

#pragma inline

The inline pragma instructs the compiler to inline the function if it is
considered desirable. The pragma is equivalent to specifying the inline
keyword, but may be applied when the in1ine keyword is not allowed

1-302 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

(such as when compiling in MISRA-C mode). For more information, see
“MISRA-C Compiler” on page 1-143.
#fpragma inline
int func5(int a, int b) /* can be inlined */
return a / b;
}

#pragma never_inline

The never_inline pragma may be applied to a function definition to indi-
cate to the compiler that function should always be called “out of line”,
and that the function’s body should never be inlined.

This pragma may not be used on function definitions that have the inline
qualifier.

See “Function Inlining” on page 1-159 for details of pragma precedence
during inlining.

The following are code examples for the never_inline pragma.

#fpragma never_inline
int funchb(int e) { // never inlined, even with -0a switch
return e + 5;

#fpragma never_inline
inline int funcb(int f) { // error: inline function
return f + 6;

Linking Control Pragmas

Linking control pragmas (1inkage_name, core, retain_name, section,
file_attr, symbolic_ref, and weak_entry) change how a given global
function or variable is viewed during the linking stage.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-303
for Blackfin Processors

C/C++ Compiler Language Extensions

#pragma linkage_name identifier

The Tinkage_name pragma associates the identifier with the next exter-
nal function declaration. It ensures that the identifier is used as the
external reference, instead of following the compiler’s usual conventions.
If the identifieris not a valid function name, as could be used in normal
function definitions, the compiler generates an error. See also the asm key-

word (on page 1-355).
The following example shows the use of this pragma.

#fipragma linkage_name realfuncname
void funcname ();
void func() {
funcname () ; /* compiler will generate a call to realfuncname
*/
}

#pragma core

When building a project that targets multiple processors or multiple cores
on a processor, a link stage may produce executable files for more than one
core or processor. The interprocedural analysis (IPA) framework requires
that some conventions be adhered to in order to successfully perform its
analyses for such projects.

Because the IPA framework collects information about the whole pro-
gram, including information on references which may be to definitions
outside the current translation unit, the IPA framework must be able to
distinguish these definitions and their references without ambiguity.

If any confusion were allowed about which definition a reference refers to,
then the IPA framework could potentially cause bad code to be generated,
or could cause translation units in the project to be continually recom-
piled ad infinitum. Global symbols are relevant in this respect. The IPA
framework correctly handles locals and static symbols because multiple

1-304 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

definitions are not possible within the same file, so there can be no
ambiguity.

In order to disambiguate all references and the definitions to which they
refer, each definition within a given project must have a unique name. It is
illegal to define two different functions or variables with the same name.
This is illegal in single-core projects because this would lead to multiple
definitions of a symbol and the link would fail. In multi-core projects,
however, it may be possible to link a project with multiple definitions
because one definition could be linked into each link project, resulting in
a valid link. Without detailed knowledge of what actions the linker had
performed, however, the IPA framework would not be able disambiguate
such multiple definitions. For this reason, to use the IPA framework, you
must ensure unique names even in projects targeting multiple cores or
processors.

There are a few cases for which it is not possible to ensure unique names
in multi-core or multiprocessor projects. One such case is main. Each pro-
cessor or core will have its own _main function, and these need to be
disambiguated for the IPA framework to be able to function correctly.
Another case is where a library (or the C run-time startup) references a
symbol which the user may wish to define differently for each core.

For this reason, the #pragma core(corename) is provided.

The core pragma can be provided immediately prior to a definition or a
declaration. The pragma allows you to give a unique identifier to each def-
inition. It also allows you to indicate to which definition each reference
refers. The IPA framework uses this core identifier to distinguish all
instances of symbols with the same name and will therefore be able to
carry out its analyses correctly.

The specified corename, which is case-sensitive, must consist of
alphanumeric characters only.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-305
for Blackfin Processors

C/C++ Compiler Language Extensions

Use the core pragma on:

* Every definition (not in a library) for which there needs to be a
distinct definition for each core.

* Every declaration of a symbol (not in a library) for which the
relevant definition includes the use of #pragma core. The core
specified for a declaration must agree with the core specified for the
definition.

The IPA framework will not need to be informed of any distinction if
there are two identical copies of the same function or data with the same
name. Functions or data that come from objects and that are duplicated in
memory local to each core, for example, will not need to be distinguished.
The IPA framework does not need to know exactly which instance each
reference will get linked to because the information processed by the
framework is identical for each copy. Essentially, the pragma only needs to
be specified on items where there will be different functions or data with
the same name incorporated into the executable for each core.

The following example of fipragma core usage distinguishes two different
main functions:

/* foo.c */
f#fipragma core("coreA")
int main(void) { /* Code to be executed by core A */

}
/* bar.c */
#fpragma core("coreB")
int main(void) |
/* Code to be executed by core B */
}

Omitting either instance of the pragma will cause the IPA framework to
issue a fatal error, indicating that the pragma has been omitted on at least
one definition.

1-306 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

The following example issues an error because the name contains a
non-alphanumeric character:

ffpragma core("core/A")
int main(void) { /* Code to executed on core A */
}

In the following example, the core pragma must be specified on a declara-
tion as well as the definitions. A library contains a reference to a symbol,
which is expected to be defined for each core. Two more modules define
the main functions for the two cores. Two further modules, each only used
by one of the cores, references this symbol, and therefore require the
pragma.

/* Tibc.c */

#include <stdio.h>

extern int core_number;

void print_core_number(void) {
printf("Core %d\n", core_number);

}

/* maina.c */

extern void fooa(void);

f#fpragma core("coreA")

int core_number = 1;

#fpragma core("coreA™)

int main(void) |
/* Code to be executed by core A */
print_core_number();
fooa();

}

/* mainb.c */

extern void foob(void);

f#fipragma core("coreB")

int core_number = 2;

#fpragma core("coreB")

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-307
for Blackfin Processors

C/C++ Compiler Language Extensions

int main(void) {
/* Code to be executed by core B */
print_core_number();
foob();
}
/* fooa.c */
#include <stdio.h>
#fpragma core("coreA™)
extern int core_number;
void fooa(void) {
printf("Core: is core%c\n", "A'" - 1 + core_number);
}
/* foob.c */
#include <stdio.h>
j#ipragma core("coreB")
extern int core_number;
void fooa(void) {
printf("Core: is core%c\n", "A' - 1 + core_number);

}

In general, it is only necessary to use #pragma core in this manner when
there is a reference from outside the application (in a library, for example)
where there is expected to be a distinct definition provided for each core,
and where there are other modules that also require access to their respec-
tive definition. Notice also that the declaration of core_number in 1ib.c
does not require the use of the core pragma because it is part of a transla-
tion unit to be included in a library.

A project that includes more than one definition of main will undergo
extra checking to catch problems that would otherwise occur in the IPA
framework. For any non-template symbol that has more than one defini-
tion, the tool chain will fault any definitions that are outside libraries that
do not specify a core name with the core pragma. This check does not
affect the normal behavior of the prelinker with respect to templates and
in particular the resolution of multiple template instantiations.

1-308 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

To clarify:

Inside a library, #pragma core is not required on declarations or defini-
tions of symbols that are defined more than once. However, a library can
be responsible for forcing the application to define a symbol more than
once (that is, once for each core). In this case, the definitions and declara-
tions require the core pragma to be used outside the library to distinguish
the multiple instances.

The tool chain cannot check that uses of #pragma core are consis-
tent. If you use the pragma inconsistently or ambiguously, the IPA
framework may cause incorrect code to be generated or may cause
continual recompilation of the application’s files.

It is also important to note that the core pragma does not change the
linkage name of the symbol it is applied to in any way.

For more IPA information, see “Interprocedural Analysis” on page 1-98.
#pragma retain_name

The retain_name pragma indicates that the function or variable declara-
tion that follows the pragma is not to be removed even though it has no
apparent use. Normally, when interprocedural analysis or linker elimina-
tion are enabled, the Visual DSP++ tools will identify unused functions
and variables and will eliminate them from the resulting executable to
reduce memory requirements. The retain_name pragma instructs the tools
to retain the specified symbol regardless.

The following example shows how to use this pragma.

int delete_me(int x) {
return x-2;

#fpragma retain_name
int keep_me(int y) {

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-309
for Blackfin Processors

C/C++ Compiler Language Extensions

return y+2;

int main(void) |
return 0;
}

Since the program has no uses for delete_me () or keep_me (), the compiler
removes delete_me (), but keeps keep_me () because of the pragma. You do
not need to specify retain_name for main().

The pragma is only valid for global symbols. It is not valid for the follow-
ing kinds of symbols:

e Symbols with static storage class
* Function parameters

* Symbols with auto storage class (locals). These are allocated on the
stack at runtime.

e Members/fields within structs/unions/classes
e Type declarations

For more information on IPA, see “Interprocedural Analysis” on

page 1-98.
#pragma section/#pragma default_section

The section pragma and default_section pragma provide greater con-
trol over the sections in which the compiler places symbols.

The section(SECTSTRING [, QUALIFIER, ...1]) pragma is used to
override the target section for any global or static symbol immediately
following it. The pragma allows greater control over section qualifiers
compared to the section keyword.

1-310 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

The default_section(SECTKIND [, SECTSTRING [, QUALIFIER, ...11)
pragma is used to override the default sections in which the compiler is
placing its symbols.

The default sections fall into the categories listed under SECTKIND. Except
for the STI category, this pragma remains in force for a section category
until its next use with that particular category, or the end of the file. The
STI is an exception, in that only one STI default_section can be specified
and its scope is the entire file scope, not just the part following the use of
STI. A warning is issued if several STI sections are specified in the same

file.

The omission of a section name results in the default section being reset to
be the section that was in use at the start of the file, which can be either a
compiler default value, or a value set by the user through the -section
command-line switch (for example, -section SECTKIND=SECTSTRING).

In all cases (including STI), the default_section pragma overwrites the
value specified with the -section command line switch.

ffpragma default_section(DATA, "NEW_DATA1")

int x;

#fipragma default_section(DATA, "NEW_DATA2")
int x=5;

#fipragma default_section(DATA, "NEW_DATA3")
int x;

In this case, x is placed in NEW_DATA?2 because the definition of x is within
its scope.

A default_section pragma can only be used at global scope, where global
variables are allowed.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-311
for Blackfin Processors

C/C++ Compiler Language Extensions

SECTKIND can be one of the keywords shown in Table 1-29.

Table 1-29. SECTKIND Keywords

Keyword Description

CODE Section is used to contain procedures and functions

ALLDATA Shorthand notation for DATA, CONSTDATA, BSZ, STRINGS, and AUTOINIT

DATA Section is used to contain “normal data”

CONSTDATA Section is used to contain read-only data

BSZ Section is used to contain uninitialized data

SWITCH Section is used to contain jump tables to implement C/C++ switch statements

VTABLE Section is used to contain C++ virtual-function tables

STI Section that contains code required to be executed by C++ initializations.
For more information, see “Constructors and Destructors of Global Class
Instances” on page 1-419.

STRINGS Section that stores string literals

AUTOINIT Contains data used to initialize aggregate autos

SECTSTRING is a double-quoted string containing the section name, exactly
as it will appear in the assembler file.

Changing one section kind has no effect on other section kinds. For
instance, even though STRINGS and CONSTDATA are, by default, placed by
the compiler in the same section, if the default section for CONSTDATA is
changed, the change has no effect on the STRINGS data.

1-312

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Note that ALLDATA is not a real section, but rather pseudo-kind that stands
for DATA, CONSTDATA, STRINGS, AUTOINIT, and BSZ. Changing ALLDATA is

equivalent to changing all of these section kinds. Therefore,

ffpragma default_section(ALLDATA, params)

is equivalent to the sequence:

ffpragma default_section(DATA, params)
ffpragma default_section(CONSTDATA, params)
#fpragma default_section(STRINGS, params)
ffpragma default_section(AUTOINIT, params)
#fpragma default_section(BSZ, params)

QUALIFIER can be one of the keywords in Table 1-30.

Table 1-30. QUALIFIER Keywords

Keyword Description
ZERO_INIT Section is zero-initialized at program startup
NO_INIT Section is not initialized at program startup

RUNTIME_INIT

Section is user-initialized at program startup

DOUBLE32 Section may contain 32-bit but not 64-bit doubles
DOUBLE64 Section may contain 64-bit but not 32-bit doubles
DOUBLEANY Section may contain either 32-bit or 64-bit doubles

There may be any number of comma-separated section qualifiers within
such pragmas, but they must not conflict with one another. Qualifiers
must also be consistent across pragmas for identical section names, and
omission of qualifiers is not allowed, even if at least one such qualifier has
appeared in a previous pragma for the same section. If any qualifiers have
not been specified for a particular section by the end of the translation
unit, the compiler uses default qualifiers appropriate for the target

processor.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

1-313

C/C++ Compiler Language Extensions

The following specifies that f () should be placed in a section foo which is
DOUBLEANY qualified:

#fpragma section("foo", DOUBLEANY)
void f() {}

The compiler always tries to honor the section pragma as its highest

p y prag g
priority, and the default_section pragma is always the lowest priority of
the two.

For example, the following code results in function f being placed in the
section foo:

f#fpragma default_section(CODE, "bar")
#fpragma section("foo")
void f() {)

The following code results in x being placed in section zeromem:

#fpragma default_section(BSZ, "zeromem")
int x;

In cases where a C++ STL object is required to be placed in a
specific memory section, using #pragma section/default_section
does not work. Instead, a non-default heap must be used as
explained in “Allocating C++ STL Objects to a Non-Default
Heap” on page 1-427.

#pragma file_attr(*name[=value]” [, “name[=value]” [...]])

The file_attr pragma directs the compiler to emit the specified attri-
butes when it compiles a file containing the pragma. Multiple #pragma
file_attr directives are allowed in one file.

If "=value" is omitted, the default value of "1" will be used.

1-314 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

The value of an attribute is all the characters after the '=" symbol
and before the closing '”' symbol, including spaces. A warning will
be emitted by the compiler if you have a preceding or trailing space
as an attribute value, as this is likely to be a mistake.

See “File Attributes” on page 1-471 for more information on using
attributes.

#pragma symbolic_ref

The symbolic_ref pragma may be used before a public global variable,
to indicate to the compiler that references to that variable should only be
through the variable’s symbolic name. Loading the address of a variable
into a pointer register can be an expensive operation, and the compiler
usually avoids this when possible. Consider the case where

int x;
int y;
int z;
void foo(void) { x =y + z; }

Given that the three variables are in the same data section, the compiler
can generate the following code:

_foo:

PO.L = .epcbss;
PO.H = .epchss;
RO = [PO+ 471;
R1 = [PO+ 817;
RO = R1 + RO;
[PO+ 0] = RO;
RTS;

.section/ZERO_INIT bsz;

.align 4;

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-315

for Blackfin Processors

C/C++ Compiler Language Extensions

.epcbss:
.type .epcbss,STT_OBJECT;
.byte _x[47;
.global _x;
.type _x,STT_OBJECT;
.byte _y[47;
.global _y;
.type _y,STT_OBJECT;
.byte _z[4];
.global _z;

.type _z,STT_OBJECT;
.epcbss.end:

Having loaded a pointer to “x” (which shares the address of the start of the
.epchbss section), the compiler can use offsets from this pointer to access
“y” and “z7, avoiding the expense of loading addresses for those variables.
However, this forces the linker to ensure that the relative offsets between

X, ¥, z, and .epcbss do not change during the linking process.

There are cases when you might wish the compiler to reference a variable
only through its symbolic name, such as when you are using RESOLVE()
in the .1df file to explicitly map the variable to a particular address.

The compiler automatically uses symbolic references for:

e Volatile variables
* Variables specified with fipragma weak_entry
* Variables greater than or equal to 16 bytes in size

If other cases arise, you can use #pragma symbolic_ref to explicitly
request this behavior. For example,

int x;
#fpragma symbolic_ref
int y;
1-316 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

int z;
void foo(void) { x =y + z; }

produces
_foo:
PO.L = .epcbss;
I0.L = _y;
PO.H = .epchss;
I0.H = _y;
MNOP || RO = [PO+ 4] || Rl = [I0];
RO = RO + RI1;
[PO+ 0] = RO;
RTS;

.section/ZERO_INIT bsz;

.align 4;
.epcbss:

.type .epcbss,STT_OBJECT;

.byte _x[47;

.global _x;

.type _x,STT_OBJECT;

.byte _z[4];

.global _z;

.type _z,STT_OBJECT;
.epcbss.end:

.align 4;

.global _y;

.type _y,STT_OBJECT;

.byte _y[41];
._y.end:

Note that variable y is referenced explicitly by name, rather than using the
common pointer to .epcbss, and it is declared outside the bounds of the

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-317
for Blackfin Processors

C/C++ Compiler Language Extensions

(.epcbss, .epcbss.end) pair. The (_y, ._y.end) form a separate pair that
can be moved by the linker, if necessary, without affecting the functional-
ity of the generated code.

The symbolic_ref pragma can only be used immediately before declara-
tions of global variables, and only applies to the immediately-following
declaration.

#pragma weak_entry

The weak_entry pragma may be used before a static variable or function
declaration or definition. It applies to the function/variable declaration or
definition that immediately follows the pragma. Use of this pragma causes
the compiler to generate the function or variable definition with weak

linkage.
The following are example uses of the #pragma weak_entry directive.

ffpragma weak_entry
int w_var = 0;

ffpragma weak_entry
void w_func(){}

@ When a symbol definition is weak, it may be discarded by the

linker in favor of another definition of the same symbol. Therefore,
if any modules in the application use the weak_entry pragma,
interprocedural analysis is disabled because it would be unsafe for
the compiler to predict which definition will be selected by the
linker. For more information, see “Interprocedural Analysis” on

page 1-98.

Function Side-Effect Pragmas

Function side-effect pragmas (alloc, pure, const, inline, misra_func,
noreturn, regs_clobbered, overlay, and resu]t_aﬁgnment) are used
before a function declaration to give the compiler additional information

1-318 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

about the function to improve the code surrounding the function call.
These pragmas should be placed before a function declaration and should
apply to that function. For example,

ffpragma pure
long dot(short*, short*, int);

#pragma alloc

The a1loc pragma tells the compiler that the function behaves like the
library function “malloc”, returning a pointer to a newly allocated object.
An important property of these functions is that the pointer returned by
the function does not point at any other object in the context of the call.

In the following example, the compiler can reorder the iterations of the
loop because the fipragma alloc tells it that a and b cannot overlap out.

f#fpragma alloc

short *new_buf(void);

short *copy_buf(short *a) ({
int i;
short * p = a;
short * g = new_buf();
for (i=0; i<100; i++)

*pHt+ = *qtt;

return p;
}

The GNU attribute malloc is also supported with the same meaning.

#pragma const

The const pragma is a more restrictive form of the pure pragma
(on page 1-321). It tells the compiler that the function does not read from
global variables, does not write to them, or read or write volatile variables.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-319
for Blackfin Processors

C/C++ Compiler Language Extensions

The result is therefore a function of its parameters. If any parameters are
pointers, the function may not read the data they point at.

#pragma inline

The inline pragma is placed before a function prototype or definition.
It tells the compiler that this function is to be treated as inline.

#pragma misra_func(arg)

The misra_func pragma is placed before a function prototype. It is used to
support MISRA-C rules 20.4, 20.7, 20.8, 20.9, 20.10, 20.11, and 20.12.
The arg indicates the type of function with respect to the MISRA-C rule.
Functions following rule 20.4 would take arg heap, 20.7 arg jmp, 20.8
arg handler, 20.9 arg io0, 20.10 arg string_conv, 20.11 arg system,
and 20.12 arg time.

#pragma noreturn

The noreturn pragma can be placed before a function prototype or defini-
tion. It tells the compiler that the function to which it applies will never
return to its caller. For example, a function such as the standard C func-
tion “exit” never returns.

The use of this pragma allows the compiler to treat all code following a
call to a function declared with the pragma as unreachable and hence
removable.

#fpragma noreturn
void func() {
while(1l);

main() {
func();
/* any code here will be removed */

1-320 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

#pragma pgo_ignore

The pgo_ignore pragma tells the compiler that no profile should be gener-
ated for this function when using profile-guided optimization. This is
useful when the function is concerned with error checking or diagnostics.

For example,

extern const short *x, *y;
int dotprod(void) {
int i, sum = 0;
for (i = 0; i < 100; i++)
sum += x[i] * y[i];
return sum;

f#fpragma pgo_ignore

int check_dotprod(void)
/* The compiler will not profile this comparison */
return dotprod() == 100;

#pragma pure

The pure pragma tells the compiler that the function does not write to any
global variables, and does not read or write any volatile variables. Its
result, therefore, is a function of its parameters or of global variables. If
any of the parameters are pointers, the function may read the data they
point at but may not write to the data.

Since the function call has the same effect every time it is called (between
assignments to global variables), the compiler need not generate the code
for every call.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-321
for Blackfin Processors

C/C++ Compiler Language Extensions

Therefore, in the following example, the compiler can replace the ten calls
to sdot with a single call made before the loop.

ffpragma pure
long sdot(short *, short *, int);

long tendots(short *a, short *b, int n) {
int 1;
long s = 0;
for (i =1; i < 10; ++i)
s += sdot(a, b, n); // call can get hoisted out of loop
return s;}

#pragma regs_clobbered string

The regs_clobbered pragma may be used with a function declaration or
definition to specify which registers are modified (or clobbered) by that
function. The string contains a list of registers and is case-insensitive.

When used with an external function declaration, this pragma acts as an
assertion, telling the compiler something it would not be able to discover
for itself.

In the following example, the compiler knows that only registers r5, p5,
and i3 may be modified by the call to f, so it may keep local variables in
other registers across that call.

ffpragma regs_clobbered "r5 p5 3"
void f(void);

The regs_clobbered pragma may also be used with a function definition,
or a declaration preceding a definition (when it acts as a command to the
compiler to generate register saves, and restores on entry and exit from the
function) to ensure it only modifies the registers in string.

1-322 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

For example,

f#fipragma regs_clobbered "r3 m4 p5"
int g(int a) |
return a+3;

The regs_clobbered pragma may not be used in conjunction with
#pragma interrupt. If both pragmas are specified, a warning is
issued and the regs_clobbered pragma is ignored.

To obtain optimal results with the pragma, it is best to restrict the clob-
bered set to be a subset of the default scratch registers. When considering
when to apply the regs_clobbered pragma, it may be useful to look at the
output of the compiler to see how many scratch registers were used.
Restricting the volatile set to these registers will produce no impact on the
code produced for the function but may free up registers for the caller to
allocate across the call site.

The regs_clobbered pragma cannot be used in any way with
pointers to functions. A function pointer cannot be declared to
have a customized clobber set, and it cannot take the address of a
function which has a customized clobber set. The compiler raises
an error if either of these actions are attempted.

String Syntax

A regs_clobbered string consists of a list of registers, register ranges,
or register sets that are clobbered. Items in the list are separated by spaces,
commas, or semicolons.

A register is a single register name—the same name may be used in an
assembly file.

A register range consists of start and end registers, which reside in the
same register class, separated by a hyphen. All registers between the two
(inclusive) are clobbered.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-323
for Blackfin Processors

C/C++ Compiler Language Extensions

A register set is a name for a specific set of commonly-clobbered regis-
ters that is predefined by the compiler.

When the compiler detects an illegal string, a warning is issued and the
default volatile set is used instead. (See “Scratch Registers” on

page 1-433.)
Unclobberable and Must-Clobber Registers

There are certain caveats as to what registers may or must be placed in the
clobbered set.

On Blackfin processors, the SP and FP registers may not be specified in the
clobbered set, as the correct operation of the function call requires their
values to be preserved. If the user specifies them in the clobbered set, a
warning is issued and they are removed from the specified clobbered set.

Registers from the following classes may be specified in the clobbered set,
and code is generated to save them as necessary.

I, P, D, M, ASTAT, A0, Al, LC, LT, LB

The L registers are required to be zero on entry and exit from a function.
A user may specify that a function clobbers the L registers. If it is a com-
piler-generated function, then it leaves the L registers zero at the end of

the function. If it is an assembly function, it may clobber the L registers.
In that case, the L registers are re-zeroed after any call to that function.

The SEQSTAT, RETI, RETX, RETN, SYSCFG, CYCLES, and CYCLES? registers are
never used by the compiler and are never preserved.

Register P1 is used by the linker to expand CALL instructions, so it may be
modified at the call site regardless of whether the regs_clobbered pragma
says it is clobbered. Therefore, the compiler never keeps P1 live across a
call. However, the compiler accepts the pragma when compiling a func-
tion in case the user wants to keep P1 live across a call that is not expanded
by the linker. It is your responsibility to make sure such calls are not

expanded by the linker.

1-324 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

User-Reserved Registers

User-reserved registers, indicated via the -reserve switch (on page 1-71),
are never preserved in the function wrappers, whether in the clobbered set
or not.

Function Parameters

Function calling conventions are visible to the caller and do not affect the
clobbered set that may be used on a function.

In the following example, the parameters a and b are passed in registers R0
and R1, respectively. No matter what happens in function f, after the call
returns, the values of R0 and R1 remain 2 and 3, respectively.

#fpragma regs_clobbered "" // clobbers nothing
void f(int a, int b);
void g() {

f(2,3);

}
Function Results

The registers in which a function returns its result must always be clob-
bered by the callee and retain their new value in the caller. They may
appear in the clobbered set of the callee, but it does not matter to the gen-
erated code—the return registers are not saved and restored. Only the
return register used by the particular function return type is special.
Return registers used by different return types are treated in the clobbered
list in the convention way.

For example,

typedef struct { int x; int y; } Point;
typedef struct { int x[101; } Big;
int f(); // Result in RO.
// R1, PO may be preserved across call.
Point g(); // Result in RO and RI1.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-325
for Blackfin Processors

C/C++ Compiler Language Extensions

// PO may be preserved across call.
Big f(); // Result pointer in PO.
// RO, R1 may be preserved across call.

#pragma regs_clobbered_call string

The regs_clobbered_call pragma may be applied to a statement to indi-
cate that the call within the statement uses a modified volatile register set.
The pragma is closely related to #pragma regs_clobbered, but avoids
some of the restrictions that relate to that pragma.

These restrictions arise because the regs_clobbered pragma applies to a
function’s declaration—when the call is made, the clobber set is retrieved
from the declaration automatically. This is not possible when the declara-
tion is not available, because the function being called is not directly tied
to a declaration of a specific function. This affects:

e DPointers to functions

e (Class methods

e DPointers to class methods
e Virtual functions

In such cases, the regs_clobbered_call pragma can be used at the call site
to inform the compiler directly of the volatile register set to be used dur-
ing the call.

The pragma’s syntax is as follows:

#fpragma regs_clobbered_call clobber_string
Statement

where ciobber_string follows the same format as for the regs_clobbered
pragma, and statement is the C statement containing the call expression.

There must be only a single call within the statement; otherwise, the state-
ment is ambiguous.

1-326 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

For example,

f#fipragma regs_clobbered "r0 rl pl"
int func(Cint arg) { /* some code */ }

int (*fnptr)(int) = func;

int caller(int value) {
int r;

ffpragma regs_clobbered_call "r0 rl1”
r = (*fnptr)(value);
return r;

When using the regs_clobbered_call pragma, ensure that the
called function does indeed only modify the registers listed in the
clobber set for the call—the compiler does not check this for you.
It is valid for the callee to clobber fewer registers than those listed
in the call’s clobber set. It is also valid for the callee to modify
registers outside of the call’s clobber set, as long as the callee saves
the values first and restores them before returning to the caller.

The following examples show this.
Example 1:

#fpragma regs_clobbered "r0 rl1"
void callee(void) { ... }

#fpragma regs_clobbered_call "r0 rl"
callee(); // Okay - clobber sets match

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-327
for Blackfin Processors

C/C++ Compiler Language Extensions

Example 2:

#fipragma regs_clobbered "r0"
void callee(void) { ... }

#fpragma regs_clobbered_call "r0 rl"
callee(); // Okay - callee clobber set is a subset
// of call's set

Example 3:

f#fpragma regs_clobbered "r0 rl1 r2"
void callee(void) { ... }

#fpragma regs_clobbered_call "r0 rl1"
callee(); // Error - callee clobbers more than
// indicated by call.

Example 4:

void callee(void) { ... }

#fpragma regs_clobbered_call "r0 rl1"
callee(); // Error - callee uses default set larger
// than indicated by call.

Limitations

Pragma regs_clobbered_call may not be used on constructors or
destructors of C++ classes.

The pragma only applies to the call in the immediately-following state-
ment. If the immediately-following line contains more than one
statement, the pragma only applies to the first statement on the line:

#fpragma regs_clobbered_call "r0 rl1"
x = foo(); y = bar(); // only "x = foo();" is affected
// by the pragma.

1-328 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Similarly, if the immediately-following line is a sequence of declarations
that use calls to initialize the variables, only the first declaration is

affected:

#fpragma regs_clobbered_call "r0 r1"
int x = foo(), y = bar(); // only "x = foo()" is affected
// by the pragma.

Moreover, if the declaration with the call-based initializer is not the first
in the declaration list, the pragma will have no effect:

#fpragma regs_clobbered_call "r0 rl1"
int w=14, x = foo(); y = bar(); // pragma has no effect
// on *w = 47,

The pragma has no effect on function calls that get inlined. Once a func-
tion call is inlined, the inlined code obeys the clobber set of the function
into which it has been inlined. It does not continue to obey the clobber set
that will be used if an out-of-line copy is required.

#pragma overlay

When compiling code that involves one function calling another in the
same source file, the compiler optimizer can propagate register informa-
tion between the functions. This means that it can record which scratch
registers are clobbered over the function call. This can cause problems
when compiling overlaid functions, as the compiler may assume that cer-
tain scratch registers are not clobbered over the function call, but they are
clobbered by the overlay manager. The #pragma overlay, when placed on
the definition of a function, will disable this propagation of register infor-
mation to the function’s callers.

For example,

#fpragma overlay
int add(int a, int b)
{

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-329
for Blackfin Processors

C/C++ Compiler Language Extensions

// callers of function add() assume it clobbers
// all scratch registers
return atb;

#pragma result_alignment (n)

The result_alignment pragma asserts that the pointer or integer returned
by the function has a value that is a multiple of n. The pragma is often
used in conjunction with the #pragma alloc of custom-allocation func-
tions that return pointers more strictly aligned than could be deduced
from their type.

Class Conversion Optimization Pragmas

The class conversion optimization pragmas (param_never_null and
suppress_null_check) allow the compiler to generate more efficient code
when converting class pointers from a pointer-to-derived-class to a
pointer-to-base-class, by asserting that the pointer to be converted will
never be a null pointer. This allows the compiler to omit the null check
during conversion.

#pragma param_never_null param_name [...]

The param_never_null pragma must immediately precede a function defi-
nition. It specifies a name or a list of space-separated names, which must
correspond to the parameter names declared in the function definition.

It checks that the named parameter is a class pointer type. Using this
information allows it to generate more efficient code for a conversion from
a pointer to a derived class to a pointer to a base class. It removes the need
to check for the null pointer during the conversion. For example,

#include <iostream>
using namespace std;
class A {

int a;

1-330 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Vs

class B {
int b;

Vs

class C: public A, public B {
int c;

C obj;
B *bpart = &obj;
bool fail = false;

#fipragma param_never_null pc
void func(C *pc)
{

B *pb;

pb = pc; /* without pragma the code generated has to

check for NULL */
if (pb != bpart)
fail = true;

int main(void)
{
func(&obj);

if (fail)
cout << "Test failed" << endl;
else
cout << "Test passed" << endl;
return 0;
}
Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-331

for Blackfin Processors

C/C++ Compiler Language Extensions

#pragma suppress_null_check

The suppress_null_check pragma must immediately precede an assign-
ment of two pointers or a declaration list.

If the pragma precedes an assignment, it indicates that the second operand
pointer is not null and generates more efficient code for a conversion from
a pointer to a derived class to a pointer to a base class. It removes the need
to check for the null pointer before assignment.

On a declaration list, it marks all variables as not being the null pointer.
If the declaration contains an initialization expression, that expression is
not checked for null.

#include <iostream>

using namespace std;

class A {
int a;

}s

class B {
int b;

b

class C: public A, public B {
int c;

C obj;
B *bpart = &obj;
bool fail = false;

void func(C *pc)
{

B *pb;
ffpragma suppress_null_check
pb = pc; /* without pragma the code generated has to
check for NULL */
1-332 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

if (pb != bpart)

fail = true;

void func2(C *pc)

{

int

ffpragma suppress_null_check

Compiler

B *pb = pc, *pb2 = pc; /* pragma means these initializations

need not check for NULL.

It also marks pb and pb?2

as never being NULL, so the compiler will not
generate NULL checks in class conversions using

these pointers. */
if (pb != bpart || pb2 != bpart)
fail = true;

main(void)

func(&obj);
func2(&obj);
if (fail)

cout << "Test failed" << endl;
else

cout << "Test passed" << endl;
return 0;

Template Instantiation Pragmas

The template instantiation pragmas (instantiate, do_not_instantiate,

and can_instantiate) provide fine-grained control over where (that is, in
which object file) the individual instances of template functions, member
functions, and static members of template classes are created. The creation

of these instances from a template is known in “C++ speak” as

Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

1-333

C/C++ Compiler Language Extensions

instantiation. As templates are a feature of C++, these pragmas are allowed
only in C++ mode.

Refer to “Compiler C++ Template Support” on page 1-466 for more
information on how the compiler handles templates.

The instantiation pragmas take the name of an instance as a parameter,
as shown in Table 1-31.

Table 1-31. Instance Names

Name Parameter

Template class name A<int>

Template class declaration class Adint>

Member function name Aint>::f

Static data member name A<int>:: 1

Static data declaration int A<int>::1

Member function declaration void A<int>::f(int, char)
Template function declaration char* f(int, float)

If the instantiation pragmas are not used, the compiler selects object files
where all required instances automatically instantiate during the prelink-
ing process.

#pragma instantiate instance

The instantiate pragma requests the compiler to instantiate 7nstance in
the current compilation.

The following example causes all static members and member functions
for the int instance of a template class Stack to be instantiated, whether
they are required in this compilation or not.

#fpragma instantiate class Stack<int>

1-334 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

The following example causes only the individual member function
Stack<int>::push(int) to be instantiated.

ffpragma instantiate void Stack<int>::push(int)

#pragma do_not_instantiate instance

The do_not_instantiate pragma directs the compiler not to instantiate
instance in the current compilation.

The following example prevents the compiler from instantiating the static
data member Stack<float>::use_count in the current compilation.

ffpragma do_not_instantiate int Stack<float>::use_count

#pragma can_instantiate instance

The can_instantiate pragma tells the compiler that if instance is
required anywhere in the program, it should be instantiated in this
compilation.

Currently, this pragma forces the instantiation, even if it is not
required anywhere in the program. Therefore, it has the same effect
as f#fpragma instantiate.

Header File Control Pragmas

The header file control pragmas (hdrstop, no_implicit_inclusion,

no_pch, once, and system_header) help the compiler to handle header
files.

#pragma hdrstop

The hdrstop pragma is used with the -pch (precompiled header) switch
(on page 1-66). The -pch switch instructs the compiler to look for a
precompiled header (.pch file), and, if it cannot find one, to generate a file
for use on a later compilation. The .pch file contains a snapshot of all the
code preceding the header stop point.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-335
for Blackfin Processors

C/C++ Compiler Language Extensions

By default, the header stop point is the first non-preprocessing token in
the primary source file. The #pragma hdrstop can be used to set the point
earlier in the source file.

In the following example, the default header stop point is the start of the
declaration i.

#include "standard_defs.h"
#include "common_data.h"
#include "frequently_changing_data.h"

int i;

This might not be a good choice, as “frequently_changing_data.h”
might change frequently, causing the .pch file to be regenerated often,
and, therefore, losing the benefit of precompiled headers. The hdrstop
pragma can be used to move the header stop to a more appropriate place.

In the following example, the precompiled header file would not include
the contents of frequently_changing_data.h, as it is included after the
hdrstop pragma, and so the precompiled header file would not need to be
regenerated each time frequently_changing_data.h was modified.

f#include "standard_defs.h"

f#include "common_data.h"

#fpragma hdrstop

#include "frequently_changing_data.h"

int i;
#pragma no_implicit_inclusion

With the -c++ switch (on page 1-26), for each included header file (.h or
non-suffixed), the compiler attempts to include the corresponding . c or
.cpp file. This is called “émplicit inclusion”.

1-336 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

If #pragma no_implicit_inclusion is placed in an .h (or non-suffixed)
file, the compiler does not implicitly include the corresponding .c or . cpp
file with the -c++ switch. This behavior only affects the .h (or non-suf-
fixed) file with #tpragma no_implicit_inclusion within it and the
corresponding . c or .cpp files.

For example, if there are the following files,
t.c containing

#include "m.h"

and m.h and m.c are both empty, then
ccblkfn -c++ t.c -M

shows the following dependencies for t.c:

t.doj: t.c
t.doj: m.h
t.doj: m.c

If the following line is added to m.h,
ffpragma no_implicit_inclusion

running the compiler as before would not show m.c in the dependencies
list, such as:

t.doj: t.c
t.doj: m.h

#pragma no_pch

The no_pch pragma overrides the -pch (precompiled headers) switch
(on page 1-66) for a particular source file. It directs the compiler not to
look for a .pch file and not to generate one for the specified source file.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-337
for Blackfin Processors

C/C++ Compiler Language Extensions

#pragma once

The once pragma, which should appear at the beginning of a header file,
tells the compiler that the header is written in such a way that including it
several times has the same effect as including it once. For example,

ffpragma once
#ifndef FILE_H
jtdefine FILE_H

. contents of header file ...

ffendif

In this example, #pragma once is actually optional because the
compiler recognizes the #ifndef, ffdefine, or #fendif idioms and
does not reopen a header that uses it.

#pragma system_header

The system_header pragma identifies an include file as a file supplied with
Visual DSP++. The Visual DSP++ compiler uses this information to help
optimize uses of the supplied library functions and inline functions that
these files define. Do not use this pragma in user application source.

Diagnostic Control Pragmas

The compiler supports fipragma diag, which allows selective modification
of the severity of compiler diagnostic messages.

The directive has three forms:
* Modify the severity of specific diagnostics
* Modify the behavior of an entire class of diagnostics

* Save or restore the current behavior of all diagnostics

1-338 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Modifying the Severity of Specific Diagnostics
This form of the directive has the following syntax:
ffpragma diag(ACTION: DIAG [, DIAG ...1[: STRINGI)

The action: qualifier can be one of the keywords in Table 1-32.

Table 1-32. Keywords for ACTION Qualifier

Keyword Action

suppress Suppresses all instances of the diagnostic

remark Changes the severity of the diagnostic to a remark

warning Changes the severity of the diagnostic to a warning

error Changes the severity of the diagnostic to an error

restore Restores the severity of the diagnostic to what it was originally at the start
of compilation after all command-line options were processed

If not in MISRA-C mode, the DIAG qualifier can be one or more
comma-separated compiler diagnostic message numbers without any
preceding “cc” or zeros. The choice of error numbers is limited to those
that may have their severity overridden (such as those that display “(p}”
in the error message).

In addition, some diagnostics are global (for example, diagnostics emitted
by the compiler back-end after lexical analysis and parsing, or before pars-
ing begins), and these global diagnostics cannot have their severity
overridden by the diagnostic control pragmas. To modify the severity of
global diagnostics, use the diagnostic control switches. For more informa-
tion, see “~W{error|remark|suppress|warn}” on page 1-79.

In MISRA-C mode, the 0146 qualifier is a list of MISRA-C rule numbers
in the form misra_rule_6_3 and misra_rule_19_4 for rules 6.3 and 19.4,
and so on. Rules 10.1 and 10.2 are a special case, in which both rules split
into four distinct rule checks. For example, 10.1(c) should be stated as
misra_rule_10_1_c.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-339
for Blackfin Processors

C/C++ Compiler Language Extensions

The third optional argument is a string-literal to insert a comment regard-
ing the use of the #pragma diag.

Modifying the Behavior of an Entire Class of Diagnostics

This form of the directive has the following syntax, which is not allowed

in MISRA-C mode:
#fpragma diag(ACTION)
The effects are as follows:

* fpragma diag(errors)
This pragma can be used to inhibit all subsequent warnings and
remarks (equivalent to the -w switch option).

* Jpragma diag(remarks)
This pragma can be used to enable all subsequent remarks and
warnings (equivalent to the -Wremarks switch option)

* fpragma diag(warnings)
This pragma can be used to restore the default behavior when
neither -w or -Wremarks is specified, which is to display warnings
but inhibit remarks.

Saving or Restoring the Current Behavior of All Diagnostics
This form has the following syntax:
#fpragma diag(ACTION)
The effects are as follows:

* Jfpragma diag(push)
This pragma may be used to store the current state of the severity
of all diagnostic error messages.

1-340 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

* dJpragma diag(pop)
This pragma restores all diagnostic error messages that were
previously saved with the most recent push.

All #pragma diag(push) directives must be matched with the same num-
ber of #tpragma diag(pop) directives in the overall translation unit, but
need not be matched within individual source files, unless in MISRA-C
mode. Note that the error threshold (set by the remarks, warnings, or
errors keywords) is also saved and restored with these directives.

The duration of such modifications to diagnostic severity are from the
next line following the pragma to the end of the translation unit, the next
#pragma diag(pop) directive, or the next overriding #pragma diag()
directive with the same error number. These pragmas may be used any-
where and are not affected by normal scoping rules.

All command-line overrides to diagnostic severity are processed first, and
any subsequent #pragma diag() directives take precedence, with the
restore action changing the severity back to that at the start of compilation
after processing the command-line switch overrides.

Directives to modify specific diagnostics are singular (for example,
« » i s !)

error”), and the directives to modify classes of diagnostics are
plural (for example, “errors”).

Memory Bank Pragmas

The memory bank pragmas provide additional performance characteristics
for the memory areas used to hold code and data for the function.

By default, the compiler assumes that there are no external costs associated
with memory accesses. This strategy allows optimal performance when the
code and data are placed into high-performance internal memory. In cases
where the performance characteristics of memory are known in advance,
the compiler can exploit this knowledge to improve the scheduling of gen-
erated code.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-341
for Blackfin Processors

C/C++ Compiler Language Extensions

Note that memory banks are different from sections:

* Section is a “hard” placement, using a name that is meaningful to
the linker. If the . 1df file does not map the named section, a linker
error occurs.

* A memory bank is a “soft” placement, using a name that is not
visible to the linker. The compiler uses optimization to take advan-
tage of the bank’s performance characteristics. However, if the . 1df
file maps the code or data to memory that performs differently,
the application still functions (albeit with a possible reduction in
performance).

#pragma code_bank(bankname)

The code_bank pragma informs the compiler that the instructions for the
immediately-following function are placed in a memory bank called bank-
name. Without this pragma, the compiler assumes that instructions are
placed into a bank called “__code”. When optimizing the function, the
compiler is aware of attributes of memory bank bankname, and determines
how long it takes to fetch each instruction from the memory bank.

In the following example, the add_slowly() function is placed into the
“slowmem” bank, which may have different performance characteristics
from the “__code” bank, into which add_quickly() is placed.

f#fpragma code_bank(s1owmem)
int add_slowly (int x, int y) { return x + y; }
int add_quickly(int a, int b) { return a + b; }

#pragma data_bank(bankname)

The data_bank pragma informs the compiler that the immediately-follow-
ing function uses the memory bank bankname as the model for memory
accesses for non-local data that does not otherwise specify a memory bank.
Without this pragma, the compiler assumes that non-local data should use
the bank “__data” for behavioral characteristics.

1-342 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

In both green_func() and blue_func() of the following example, i is
associated with the memory bank “blue”, and the retrieval and update of i
are optimized to use the performance characteristics associated with
memory bank “blue”.

#fpragma data_bank(green)

int green_func(void)

{
extern int arrl[32];
extern int bank("blue") 1i;
i &= 31;
return arrl[i++];

}

int blue_func(void)

{
extern int arr2[32];
extern int bank("blue") 1i;
i &= 31;

return arr2[i++];

}

The array arrl does not have an explicit memory bank in its declaration.
Therefore, it is associated with the memory bank “green”, because
green_func() has a specific default data bank. In contrast, arr? is
associated with the memory bank “__data”, because blue_func() does not
have a fipragma data_bank preceding it.

#pragma stack_bank(bankname)

The stack_bank pragma informs the compiler that all locals for the
immediately-following function are to be associated with memory bank
bankname, unless they explicitly identify a different memory bank.
Without this pragma, all locals are assumed to be associated with the
memory bank “__stack”.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-343
for Blackfin Processors

C/C++ Compiler Language Extensions

In the following example, the dotprod() function places the sum and i
values into memory bank “mystack”, while fib() places r, a, and b into
memory bank “__stack”, because there is no stack_bank pragma.

The count_ticks() function does not declare any local data, but any
compiler-generated local storage uses the “sysstack” memory bank’s
performance characteristics.

fipragma stack_bank(mystack)
short dotprod(int n, const short *x, const short *y)
{
int sum = 0;
int 1 = 0;
for (i = 0; 1 < n; i++)
Sum += *x++ * Fy++;
return sum;
}
int fib(int n)
{

int r;

if (n < 2) |
r=1

} else {
int a = fib(n-1);
int b = fib(n-2);
r=a+ b;

}

return r;

}
ffinclude <sys/exception.h>
#fpragma stack_bank(sysstack)
EX_INTERRUPT_HANDLER(count_ticks)
{

extern int ticks;

ticks++;

1-344 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

#pragma bank_memory_kind(bankname, kind)

The bank_memory_kind pragma informs the compiler of what kind of
memory the memory bank bankname is. The compiler allows the following
kinds of memory:

* Internal — The memory bank is high-speed in-core memory
* L2 — The memory bank is on-chip, but not in-core
* External — The memory bank is external to the processor

The pragma must appear at global scope, outside any function definitions,
but need not immediately precede a function definition.

In the following example, the compiler knows that all accesses to the
datal] array are to the “bTue” memory bank, and hence to internal,
in-core memory.

#fpragma bank_memory_kind(blue, internal)
int sum_list(const int bank("blue") *data, int n)
{

int sum

= 0;
while (n--)

sum += dataln];
return sum;

}

#pragma bank _read_cycles(bankname, cycles)

The bank_read_cycles pragma tells the compiler that each read operation
on the memory bank bankname requires cycies cycles before the resulting
data is available. This allows the compiler to schedule sufficient code
between the initiation of the read and the use of its results, to prevent
unnecessary stalls.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-345
for Blackfin Processors

C/C++ Compiler Language Extensions

In the following example, the compiler assumes that a read from *x takes a
single cycle, as this is the default read time, but that a read from *y takes
twenty cycles, because of the pragma.

ffpragma bank_read_cycles(sTowmem, 20)
int dotprod(int n, const int *x, bank("slowmem") const int *y)
{

int i, sum;

for (i=sum=0; i < n; i++)

sum += Fx++ * Fy++;

return sum;

}

The pragma must appear at global scope, outside any function definitions,
but need not immediately precede a function definition.

#pragma bank_write_cycles(bankname, cycles)

The bank_write_cycles pragma tells the compiler that each write opera-
tion on memory bank bankname requires cycles cycles before it completes.
This allows the compiler to schedule sufficient code between the initiation
of the write and a subsequent read or write to the same location, to pre-
vent unnecessary stalls.

In the following example, the compiler knows that each write through ptr
to the “output” memory bank takes six cycles to complete.

void write_buf(int n, const char *buf)
{
volatile bank("output") char *ptr = REG_ADDR;
while (n--)
*ptr = *buf++;
}
#fpragma bank_write_cycles(output, 6)

1-346 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

The pragma must appear at global scope, outside any function definitions,
but need not immediately precede a function definition. This is shown in
the preceding example.

#pragma bank_optimal_width(bankname, width)

The bank_optimal_width pragma informs the compiler that width is the
optimal number of bits to transfer to/from memory bank bankname in a
single cycle. This can be used to indicate to the compiler that some mem-
ories can benefit from vectorization and similar strategies more than
others. The width parameter must be 8, 16, 24, or 32.

In the following example, the compiler knows that the instructions for the
generated function would be best fetched in multiples of 16 bits, and so
can select instructions accordingly.

void memcpy_simple(char *dst, const char *src, size_t n)
{
while (n--)
*dst++ = *src++;
}
#fpragma bank_optimal_width(__code, 16)

The pragma must appear at global scope, outside any function definitions,
but need not immediately precede a function definition. This is shown in
the preceding example.

Exceptions Tables Pragma
ffpragma generate_exceptions_tables

The generate_exceptions_tables pragma may be applied to a C function
definition to request the compiler to generate tables that enable C++
exceptions to be thrown through executions of this function.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-347
for Blackfin Processors

C/C++ Compiler Language Extensions

This example consists of two source files. The first is a C file that contains
the pragma applied to the definition of function call_a_call_back.

ffpragma generate_exceptions_tables
void call_a_call_back(void pfn(void)) f{
pfn(); /* without pragma program terminates
when throw_an_int throws an exception */
}

The second source file contains C++ code. The function main calls
call_a_call_back, from the C file listed above, which in turn calls
throw_an_int. The exception thrown by throw_an_int will be caught by
the catch handler in main because use of the pragma ensured the compiler
generated an exceptions table for call_a_call_back.

#include <iostream>
extern "C" void call_a_call_back(void pfn());

static void throw_an_int() {
throw 3;

int main() {
try |
call_a_call_back(throw_an_int);
} catch (int i) |
if (i == 3) std::cout << "Test passed\n";

}

An alternative to using f#fipragma generate_exceptions_tables is to
compile C files with the -eh (enable exception handling) switch

(on page 1-35) which, for C files, is equivalent to using the pragma before
every function definition.

1-348 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

GCC Compatibility Extensions

The compiler provides compatibility with many features of the C dialect
accepted by version 3.4 of the GNU C Compiler. Many of these features
are available in the ISO/IEC 9899:1999 C standard. A brief description of
the extensions is included in this section. For more information, refer to

the following Web address:

http://gcc.gnu.org/onlined-
ocs/gcc-3.4.6/gcc/index.htmlfftoc_C-Extensions

The GCC compatibility extensions are only available in C dialect
mode. They are not accepted in C++ dialect mode.

Statement Expressions

A statement expression is a compound statement enclosed in parentheses.
Because a compound statement itself is enclosed in braces as “{ }”, this
construct is enclosed in parentheses-brace pairs, as “({ })7.

The value computed by a statement expression is the value of the last
statement (which should be an expression statement). The statement
expression may be used where expressions of its result type may be used.
But they are not allowed in constant expressions.

Statement expressions are useful in the definition of macros as they allow
the declaration of variables local to the macro.

In the following example, the foo() and thing() statements get called
once each because they are assigned to the variables __x and __y, which are
local to the statement expression that min expands to. The min() can be
used freely within a larger expression because it expands to an expression.

fidefine min(a,b) ({ \
short __x=(a),__y=(b),__res; \
if (x> _y) \
_res = _y; \
Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-349

for Blackfin Processors

http://gcc.gnu.org/onlinedocs/gcc-3.2.1/gcc/C-Extensions.html#C%20Extensions
http://gcc.gnu.org/onlinedocs/gcc-3.2.1/gcc/C-Extensions.html#C%20Extensions
http://gcc.gnu.org/onlinedocs/gcc-3.2.1/gcc/C-Extensions.html#C%20Extensions

C/C++ Compiler Language Extensions

else \
__res = __X; \
__res; \

1)

int use_min() {
return min(foo(), thing()) + 2;
}

Labels local to a statement expression can be declared with the __Tabel__
keyword. For example,

fidefine checker(p) (f

__Tlabel__ exit;

int i;

for (i=0; plLil; ++i) |
int d = get(p[il);
if (lcheck(d)) goto exit;
process(d);

}

exit:

e e e e e~

i3
1)

extern int g_pl[1007;

int checkit() {
int local_i = checker(g_p);
return local_i;

Statement expressions are not supported in C++ mode. Statement
expressions are an extension to C originally implemented in the
GCC compiler. Analog Devices supports the extension primarily to
aid porting code written for that compiler. When writing new

1-350 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

code, consider using inline functions, which are compatible with
ANSI/ISO standard C++ and C99, and are as efficient as macros

when optimization is enabled.

Type Reference Support Keyword (typeof)

The typeof(expression) construct can be used as a name for the type of
expression without actually knowing what that type is. It is useful for
making source code that is interpreted more than once, such as macros or
include files, more generic. The typeof keyword may be used wherever a
typedef name is permitted such as in declarations and in casts.

The following example shows typeof used in conjunction with a state-
ment expression to define a “generic” macro with a local variable
declaration.

J#fdefine abs(a) ({
typeof(a) __a = a;
if (__a<0)_a=- a;

— - =

a;

)

The argument to typeof may also be a type name. Because typeof itself is
a type name, it may be used in another typeof(type-name) construct.
This can be used to restructure the C-type declaration syntax.

The following example declares y to be an array of four pointers to char.

j#define pointer(T) typeof (T *)
f#idefine array(T, N) typeof(T [NI])

array (pointer (char), 4) y;

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-351
for Blackfin Processors

C/C++ Compiler Language Extensions

The typeof keyword is not supported in C++ mode.

The typeof keyword is an extension to C originally implemented
in the GCC compiler. It should be used with caution because it is
not compatible with other dialects of C/C++ and has not been
adopted by the more recent C99 standard.

GCC Generalized lvalues

A cast is an 1value (may appear on the left-hand side of an assignment)
if its operand is an Tvalue. This is an extension to C, provided for com-
patibility with GCC. It is not allowed in C++ mode.

A comma operator is an Tvalue if its right operand is an 1value. This is an
extension to C, provided for compatibility with GCC. It is a standard fea-
ture of C++.

A conditional operator is an 1value if its last two operands are 1values of
the same type. This is an extension to C, provided for compatibility with

GCC. It is a standard feature of C++.

Conditional Expressions With Missing Operands

The middle operand of a conditional operator can be omitted. If the con-
dition is nonzero (true), the condition itself is the result of the expression.
This can be used for testing and substituting a different value when a
pointer is NULL. The condition is evaluated only once; therefore,
repeated side effects can be avoided.

»

The following example calls Tookup () once, and substitutes the string “-
if it returns NULL. This is an extension to C, provided for compatibility
with GCC. It is not allowed in C++ mode.

printf("name = %s\n", Tookup(key)?:"-");

1-352 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Zero-Length Arrays

Arrays may be declared with zero length. This anachronism is supported
to provide compatibility with GCC. Use variable-length array members
instead.

GCC Variable Argument Macros

The final parameter in a macro declaration may be followed by dots (...)
to indicate the parameter stands for a variable number of arguments.

For example,

ffdefine trace(file,line,msg ...) \
Togmsg(file,line, 4HF msg);

can be used with differing numbers of arguments,
trace("a.c", 22, "Got herel\n”);
trace("b.c", 99, "i = %d\n", 1);
trace("c.c", 72, "x = %f, y = %f\n", x, y);

The #HF operator has a special meaning when used in a macro definition
before the parameter that expands the variable number of arguments:
if the parameter expands to nothing, it removes the preceding comma.

The variable argument macro syntax comes from GCC. The
compiler supports both GCC and C99 variable argument macro
formats in C89, C99, and C++ modes. (“Variable Argument Mac-
ros” on page 1-164).

Line Breaks in String Literals

String literals may span many lines. The line breaks do not need to be
escaped in any way. They are replaced by the character \n in the generated
string. This extension is not supported in C++ mode. The extension is not

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-353
for Blackfin Processors

C/C++ Compiler Language Extensions

compatible with many dialects of C, including ANSI/ISO C89 and C99.
However, it is useful in asm statements, which are intrinsically
non-portable.

This extension may be disabled via the -no-multiline switch
on page 1-57.
Arithmetic on Pointers to Void and Pointers to Functions

Addition and subtraction is allowed on pointers to void and pointers to
functions. The result is as if the operands had been cast to pointers to
char. The sizeof operator returns one for void and function types.

Cast to Union

A type cast can be used to create a value of a union type, by casting a value
of one of the union member’s types.

Ranges in Case Labels

A consecutive range of values can be specified in a single case by separating
the first and last values of the range with ... (three periods).

For example,

case 200 ... 300:

Escape Character Constant

The escape character “\e” may be used in character and string literals.

It maps to the ASCII Escape code, 27.

Alignment Inquiry Keyword (__alignof_)

The __alignof__ (type-name) construct evaluates to the alignment
required for an object of a type. The __alignof__ expression construct

1-354 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

can also be used to give the alignment required for an object of the
expression type.

If expressionisan 1value (may appear on the left side of an assignment),
the returned alignment takes into account alignment requested by prag-
mas and the default variable allocation rules.

(asm) Keyword for Specifying Names in Generated Assem-
bler

The asm keyword can be used to direct the compiler to use a different
name for a global variable or function. (See also “#pragma linkage name
identifier” on page 1-304.)

The following example instructs the compiler to use the label €11045 in
the assembly code it generates wherever it needs to access the source level
variable N. By default, the compiler would use the label _N.

int N asm("C11045");

The asm keyword can also be used in function declarations, but not in
function definitions. However, a definition preceded by a declaration has
the desired effect. For example,

extern int f(int, int) asm("func");

int f(int a, int b) {

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-355
for Blackfin Processors

C/C++ Compiler Language Extensions

Function, Variable, and Type Attribute Keyword
(__attribute_)

The __attribute__ keyword can be used to specify attributes of functions,
variables, and types, as in the following examples:

void func(void) __attribute__ ((section("fred")));
int a __attribute__ ((aligned (8)));
typedef struct {int al4];} __attribute__((aligned (4))) Q;

Support for the __attribute__ keyword means that fewer changes may be
required when porting GCC code. All attributes accepted by GCC on
ix86 are accepted. Only attributes with corresponding pragmas (see “Prag-
mas” on page 1-277) will be used by the compiler; all other attributes are
ignored.

Unnamed struct/union Fields Within struct/unions

The compiler allows you to define a structure or union that contains,
as fields, structures and unions without names. For example:

struct {
int fieldl;
union {
int field?;
int field3;
Vs
int field4;
} myvar;

This allows you to access the members of the unnamed union as though
they were members of the enclosing struct or union, for example,
myvar.field?2.

1-356 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Preprocessor-Generated Warnings

The preprocessor directive fiwarning causes the preprocessor to generate a
warning and continue preprocessing. The text that follows the #warning
directive on the line is used as the warning message. For example,

fhifndef __ADSPBLACKFIN__
f#fwarning This program is written for Blackfin processors
ffendif

Blackfin Processor-Specific Functionality

This section provides information about functionality that is specific to
Blackfin processors.

This section describes:
e “Startup Code Overview” on page 1-357
e “Support for argv/argc” on page 1-358
e “Profiling With Instrumented Code” on page 1-359
e “Controlling System Heap Size and Placement” on page 1-364
* “Interrupt Handler Support” on page 1-365
e “Caching and Memory Protection” on page 1-373

Startup Code Overview

Startup code, which is invoked when the processor starts running,
initializes a default environment before calling main(). The VisualDSP++
Project Wizard can be used to generate startup code based on specified
options.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-357
for Blackfin Processors

Blackfin Processor-Specific Functionality

If you select not to add a generated CRT in the Project Wizard, your
application will normally link using a pre-built default CRT from the
<install_path>\Blackfin\1ib folder in the VisualDSP++ installation.
The source for these default CRT objects can be found in
<install_path>\Blackfin\Tib\src\libc\crt\basiccrt.s.

If you decide not to use a generated file but instead to customize the
startup code, copy the basiccrt.s source into your project and make the
desired customizations. If you are using a default . 1df file, you must
define the USER_CRT linker macro. Refer to “C/C++ Run-Time Header and
Startup Code” on page 1-410 for more information.

Support for argv/argc

By default, the facility to specify arguments that are passed to your main()
(argv/argc) at run-time is enabled. However, to correctly set up argc and
argv requires additional configuration by the user. Modify your applica-
tion as follows:

* Define your command-line arguments in C by defining a variable
called “__argv_string”. When linked, your new definition over-
rides the default zero definition otherwise found in the C run-time
library.

For example,

extern const char __argv_string[] =
"prog_name -in x.gif -out y.jpeg";

* To use command-line arguments as part of profile-guided optimi-
zation (PGO), it is necessary to define __argv_string within a
memory section called MEM_ARGV. Therefore, define a memory sec-
tion called MEM_ARGV in your .1df file and include the definition of
__argv_string in it if you are using PGO. The default . 1df files
do this for you if macro IDDE_ARGS is defined at link-time. They do

1-358 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

this using a RESOLVE statement to map __argv_string to the start
of MEM_ARGV. For this to succeed, it can be necessary for the defini-
tion of __argv_string to be preceded by #pragma symbolic_ref.

Profiling With Instrumented Code

The profiling facilities determine how many times each function is called
and how many cycles are used while the function is active. The informa-
tion is gathered by an additional library linked into the executable file.
The profiling routine is invoked by additional function calls at the start
and end of each function. The compiler inserts these extra calls when pro-

filing is enabled.
@ The compiler profiling facilities are different from linear profiling

and statistical profiling features.

@ The compiler profiling facilities are designed for single-core and
single-threaded systems. The compiler driver issues warning cc3106
if either the -multicore switch (on page 1-50) or -threads switch
(on page 1-70) is used together with the -p[1]2] switch
(on page 1-65).

Generating Instrumented Code

The -pl[1]2] switch (on page 1-65) turns on the compiler’s profiling
facility when converting C/C++ source into assembly code. The compiler
cannot instrument assembly files or files that have already been compiled
to object files.

* The -pl option causes the generated application to write accumu-
lated profile data to file mon.out.

e The -p2 option causes the generated application to write accumu-
lated profile data to standard output.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-359
for Blackfin Processors

Blackfin Processor-Specific Functionality

e The -p option causes the generated application to write accumu-
lated profile data to both standard output and the mon.out file.

When created, the mon.out file will reside in the same folder as the appli-
cation is run.

Running the Executable

The executable may produce two forms of output. The first (generated by
-p and -p?2) is a dump of data to standard output once the program com-
pletes. This output lists the approximate address of each profiled function,
how many times the function was invoked, and the inclusive and exclusive
cycle counts.

* Exclusive cycle counts include only the cycles spent processing the
function.

* Inclusive cycle counts also include the sum total of cycle counts in
any function invoked from this specified function.

* The cycle counts generated are the total cycles spent in all invoca-
tions of the specified function within the program.

The second form of output is a file in the current directory called mon.out
(-p and -p1). The mon.out is a binary file that contains a copy of the data
written to standard output. There is no way to change the file name used.

For example, in the following program, assume that apple() takes 10
cycles per call and banana () takes 20 cycles per call, of which 10 are
accounted for by its call to apple().

int apples, bananas;
void apple(void) {
apples++; // 10 cycles

1-360 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

void banana(void) {
bananas++; // 10 cycles
apple(); // 10 cycles

} // 20 cycles total

int main(void) {

apple(); // 10 cycles
apple(); // 10 cycles
banana(); // 20 cycles
return 0; // 40 inclusive cycles total

} // + exclusive cycles for main itself

When run, the program calls apple() three times: twice directly, and once
indirectly through banana(). The apple () function clocks up 30 cycles of
execution, and this is reported for both its inclusive and exclusive times,
since apple() does not call other functions.

The banana () function is called only once. It reports 10 cycles for its
exclusive time, and 20 cycles for its inclusive time. The exclusive cycles are
for the time when banana() is incrementing bananas and is not “waiting”
for another function to return, and so it reports 10 cycles. The inclusive
cycles include these 10 exclusive cycles and the 10 cycles apple() used
when called from banana(), giving a total of 20 inclusive cycles.

The main() function is called only once, and calls three other functions
(apple() twice, and banana() once). Between them, apple() and
banana () use up to 40 cycles, which appear in the main()’s inclusive
cycles. The main()’s exclusive cycles are for the time when main() is run-
ning, but is not in the middle of a call to either apple() or banana().

Example of stdout profiling output:

version=2 nrecs=3 Profiler cycles=5818

Addr:ffa096c4 ExecCount: 1 ExCyc: 10 IncCyc: 10
Addr:ffa0967c ExecCount: 3 ExCyc: 30 IncCyc: 30
Addr:ffa0969e ExecCount: 1 ExCyc: 10 IncCyc: 20

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-361
for Blackfin Processors

Blackfin Processor-Specific Functionality

Post-Processing the mon.out File

The profblkfn program processes the contents of the mon.out file.
It reads both the mon.out file and the . dxe file that produced it.
It displays:

e Function Name — The name of the function being profiled
e ExecCount — The number of times the function is called

e fn Only — The total number of cycles spent processing this func-
tion; that is, the “exclusive cycle count”

e fn+nested — The total number of cycles spent processing this func-
tion and any functions it calls; that is, the “inclusive cycle count”

The profblkfn program is invoked as:
profblkfn prog.dxe

Specify the .dxe file only. The mon.out file must be present in the
current directory and must be produced by the named .dxe file.

Example of profblkfn output:

Function Name ExecCount Fn Only Fn+nested
_main 1 10 50
_apple 3 30 30
_banana 1 10 20
where:

ExecCount is the number of times the function is executed. Fn Only is the
total cycle count for all executions of the function ignoring any function
calls made within that function (for example, each call to _banana is 10
cycles plus the call to _apple; so the value of Fn 0Only for _banana is 10
cycles per call to _banana). Fn+nested is the total cycle count (Fn 0nly) of
the function, plus the individual cycle counts of any other functions that
are called.

1-362 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Profiling Data Storage

The profiling information is stored at runtime in memory allocated from
the system heap. If the profiling run-time support cannot allocate from
the heap (usually because it is exhausted), the profiling runtime issues an
error (“Profiler Resource Error: heap allocation failed so profiling cannor be
completed”) and stops storing information. The application will continue
to execute but may fail if the application also uses the system heap. The
profiling data available when this happens will be incomplete and will
probably not be very useful. To avoid this problem, increase the size of the
system heap until the error is no longer seen when running. See “Control-
ling System Heap Size and Placement” on page 1-364 for details.

Computing Cycle Counts

When profiling is enabled, the compiler instruments the generated code
by inserting calls to a profiling library at the start and end of each com-
piled function. The profiling library samples the processor’s cycle counter
and records this figure against the function just started or just completed.

The profiling library itself consumes some cycles, whose overhead is not
included in the figures reported for each function, so the total cycles
reported for the application by the profiler will be less than the cycles con-
sumed during the life of the application. In addition to this overhead,
there is some approximation involved in sampling the cycle counter,
because the profiler cannot guarantee how many cycles will pass between a
function’s first instruction and the sample. This is affected by the optimi-
zation levels, the state preserved by the function, and the contents of the
processor’s pipeline. The profiling library knows how long the call entry
and exit takes “on average”, and adjusts its counts accordingly.

Because of this adjustment, profiling using instrumented code provides an
approximate figure, with a small margin of error. This error margin is
more significant for functions with a small number of instructions than
for functions with a large number of instructions.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-363
for Blackfin Processors

Blackfin Processor-Specific Functionality

Controlling System Heap Size and Placement

The system heap is the default heap used by calls to allocation functions
like mal1oc() in C and the new operator in C++. System heap placement
and size are specified in the application’s . 1df file.

.1df files created by the Project Wizard can be controlled using selections
on the LDF Settings : System Heap page of the Project Options dialog
box. If an .1df file has not been added to the project either by using the
Project Wizard or by using a custom file, a default . 1df file from the
<install_path>/Blackfin/1df directory will be used.

By default, the compiler uses the file arch.1df, where arch is specified
via the -proc arch switch. For example, if -proc ADSP-BF537 is used,
the compiler defaults to using adsp-BF537.1df. The entry controlling
the heap has a format similar to

// macro that defines minimum system heap size
ffdefine HEAP_SIZE 7K
L1_DATA
{
INPUT_SECTION_ALIGN(4)
// allocate minimum of HEAP_SIZE to system heap
RESERVE(sys_heap, sys_heap_length = HEAP_SIZE, 4)
} > MEM_LI1_DATA_A

// all other uses of MEM_LI1_DATA_A

sys_heap

{
INPUT_SECTION_ALIGN(4)
// if any of MEM_L1_DATA_A is unused, add to system heap
RESERVE_EXPAND(sys_heap, sys_heap_length, 0, 4)
// define symbols to configure the heap for runtime support
l1df_heap_space = sys_heap;
1df_heap_end = 1df_heap_space + sys_heap_length;

1-364 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

1df_heap_length = 1df_heap_end - 1df_heap_space;
} > MEM_LI1_DATA_A

In this example, the minimal size of the heap can be modified by changing
the definition of the HEAP_SIZE macro. If this value is larger than the
memory output section being used, the linker issues error 112040.

The default . 1df files support the placement of heaps in scratchpad
(where available), L1, L2 (where available), or SDRAM. By default, L1
is used. To select alternate heap placement, the following macros can be

defined when linking:

* USE_SCRATCHPAD_HEAP — Causes scratchpad memory to be used for
the system heap. Limited to 4K capacity, but provides fast access
and uses memory that might otherwise be unused.

* USE_LIDATA_HEAP — (default) Places the heap in L1 data bank A
* USE_L2_HEAP — Causes L2 memory to be used for the system heap

* USE_SDRAM_HEAP — Causes SDRAM memory to be used for the sys-
tem heap. It provides large capacity but is slow to access. Enabling
data cache for the memory used reduces the performance impact.

See “Using Multiple Heaps” on page 1-423 for more information.

Interrupt Handler Support

The Blackfin C/C++ compiler provides support for interrupts and other
events used by the Blackfin processor architecture (Table 1-33).

The Blackfin system has several different classes of events, not all of which
are supported by the ccb1kfn compiler. Handlers for these events are
called interrupt service routines (ISRs).

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-365
for Blackfin Processors

Blackfin Processor-Specific Functionality

Table 1-33. System Events

Event Priority Supported
Emulation Highest No
Reset Yes
NMI Yes
Exception Yes
Interrupt Lowest Yes

Resets are supported by treating them like general-purpose interrupts for
code-generation purposes. This means that the C/C++ compiler supports
interrupt, exception, and NMI events.

The compiler provides facilities for defining an ISR function, registering it
as an event handler, and for obtaining the saved processor context.

Defining an ISR

To define a function as an ISR, the sys/exception.h header file must be
included and the function must be declared and defined using macros
defined within this header file. There is a macro for each of the three kinds
of events the compiler supports:

EX_INTERRUPT_HANDLER
EX_EXCEPTION_HANDLER
EX_NMI_HANDLER

By default, ISRs generated by the compiler are not re-entrant; they disable
the interrupt system on entry, and re-enable it on exit. You may also
define ISRs for interrupts that are re-entrant, and which re-enable the
interrupt system soon after entering the ISR.

A different macro is used to specify a re-entrant interrupt handler:

EX_REENTRANT_HANDLER

1-366 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

For example, the following code declares and defines my_isr() as a han-
dler for interrupt-type events (for example, the routine returns using an
RTI instruction).

ffinclude <sys/exception.h>
static volatile int number_of_interrupts;

EX_INTERRUPT_HANDLER(my_isr)
{

number_of_interrupts++;
}

The macro used for defining the ISR is also suitable for declaring it as a
prototype:

EX_INTERRUPT_HANDLER(my_isr);

The EX_INTERRUPT_HANDLER() macro uses a generic pragma, ffpragma
interrupt, to indicate that the function is an interrupt handler. This
generic pragma does not indicate which interrupt the function handles.
The -workaround isr-imask-check switch selection (on page 1-81) for
hardware anomaly 05-00-0071 on the ADSP-BF535 processor requires
explicit information on the level of interrupt being handled, so that the
interrupt can be re-raised if the interrupt is taken while a CLI instruction is
being committed.

Such an ISR is defined as:

EX_HANDLER_PROTO(Cinterrupt_Tlevel_6, my_handler) {
}

Eleven level-specific pragmas, 5 through 15, correspond to the Blackfin
event table entries for interrupts.

If the isr-imask-check workaround is enabled, ISRs declared without
explicit interrupt levels—such as those declared using
EX_INTERRUPT_HANDLER()—check for interrupts occurring while a CL1I

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-367
for Blackfin Processors

Blackfin Processor-Specific Functionality

instruction is committed and return immediately if this is detected.
They do not attempt to re-raise the interrupt.

/ While thread-safe variants of the C/C++ run-time libraries exist,

many functions are not interrupt-safe as they access global data
structures. It is therefore recommended that ISRs do not make
library function calls, as unexpected behavior may result if the
interrupt occurs during a call to such a function. An alternative
approach is to disable interrupts before the application makes
run-time library calls. This may be disadvantageous
for time-critical applications as interrupts may be disabled for a
long period of time. The DSP run-time library functions do not
modify global data structures and are therefore interrupt-safe.

To define a static ISR, place the “static” qualifier within the appropriate
macro’s brackets — but not before the macro itself; for example:

ffinclude <sys/exception.h>
EX_REENTRANT_HANDLER(static Sportl_TX_ISR)
{

// ISR code

}

Registering an ISR

ISRs, once defined, can be registered in the event vector table (EVT) using
the register_handler_ex() or register_handler() functions, both of
which also update the IMASK register so that the interrupt can take effect.
Only the register_handler_ex() function will be discussed here, as it is
an extended version of the register_handler() function. Refer to
“register_handler_ex” on page 3-270 for more information.

The register_handler_ex() function takes three parameters, defining the
event, the ISR, and specifying whether the interrupt should be enabled,
disabled, or left in its current state. It also returns the previously registered

1-368 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

ISR (if any). The event is specified using the interrupt_kind enumeration
from exception.h.

typedef enum {
ik_emulation, ik_reset, ik_nmi, ik_exception,
ik_global_int_enable, ik_hardware_err, ik_timer,ik_ivg7,
ik_ivg8, ik_ivg9, ik_ivgl0, ik_ivgll, ik_ivgl2, ik_ivgl3,
ik_ivgld, ik_ivglb

} interrupt_kind;

ex_handler_fn register_handler_ex(interrupt_kind kind,

ex_handler_fn fn, int enable);

Two special values of fn can be passed to register_handler_ex() in place
of real ISRs:

e EX_INT_IGNORE
Leaves the currently-installed handler in place, but disables the
interrupt (subject to the enable parameter)

e EX_INT_DEFAULT
Clears the event vector table entry for this event, so no handler is
installed, and disables the interrupt (subject to the enable
parameter)

The enable parameter may have one of the following values:

e EX_INT_KEEP_IMASK
Causes the event handler to be installed without changing the
“enabled” status of the event. If the event was previously enabled,
it remains so. If the event was previously disabled, it remains so.
This value has no effect if fnis EX_INT_DISABLE or EX_INT_IGNORE.

e EX_INT_DISABLE
Causes the event to be disabled before installing the new handler;
the event will be disabled on return from register_handler_ex().
This value has no effect if fnis EX_INT_DISABLE or EX_INT_IGNORE.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-369
for Blackfin Processors

Blackfin Processor-Specific Functionality

e EX_INT_ENABLE
Causes the event to be enabled after installing the new handler;
the event will be enabled on return from register_handler_ex().
This value has no effect if fnis EX_INT_DISABLE or EX_INT_IGNORE.

e EX_INT_ALWAYS_ENABLE
Causes the event to be enabled after installing the new handler;
the event will be enabled on return from register_handler_ex().
This value takes effect even if fnis EX_INT_DISABLE or
EX_INT_IGNORE.

ISRs and ANSI C Signal Handlers

ISRs provide similar functionality to ANSI C signal handlers, and their
behavior is related. An ISR is a function that can be registered directly in
the processor’s event vector table (EVT). The ISR function saves its own
context, as required. In contrast, an ANSI C signal handler is a normal C
function that has been registered as a handler; when an event occurs, some
other dispatcher must save the processor context before invoking the sig-
nal handler.

ISRs and signal handlers are not interchangeable. A signal handler cannot
act as an ISR, because it does not save or restore the context, nor does it
terminate with the correct return instruction. An ISR cannot act as a sig-
nal handler, because it terminates the event directly rather than returning
to the dispatcher.

When a signal handler is installed, a default ISR is also installed in the
EVT which invokes the signal handler when the event occurs. When the
raise() function is used to invoke a signal handler explicitly, raise()
actually generates the corresponding event (if possible). This causes the

ISR to invoke the signal handler.

You may choose to install normal C functions as signal handlers or register
ISRs directly, but do not do both for a given event.

1-370 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

ANSI C signals are registered using signal() or using the Analog Devices
extension interrupt(), unlike ISRs, which are registered using
register_handler_ex() or register_handler().

Saved Processor Context

When generating code for an ISR, the compiler creates a prologue that
saves the processor context on the supervisor stack. This context is accessi-
ble to the ISR. The exception.h file defines a structure, interrupt_info,
that contains fields for all the information that defines the kind of event
that occurred.

To save an event’s context (in the handler), the get_interrupt_info
function can be called. The prototype for get_interrupt_info() is:

void get_interrupt_info(
interrupt_kind int_kind, interrupt_info *int_info);

An example use of get_interrupt_info() would be to save interrupt
information for later use as shown in the example below:

ffinclude <sys/exception.h>
static interrupt_info last_int_info;

EX_INTERRUPT_HANDLER(ivg7_fielder)

{
get_interrupt_info(ik_ivg7, &last_int_info);
// handle the interrupt

}

The get_interrupt_info() function does not provide facilities to save
register values.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-371
for Blackfin Processors

Blackfin Processor-Specific Functionality

Fetching Event Detalils

The following function fetches the information about the event that
occurred:

void get_interrupt_info(interrupt_kind, interrupt_info *)

The sort of data retrieved includes the value of SEQSTAT and addresses that
caused exceptions. Note that at present, the function must be told which
kind of event it is investigating.

The structure contains:

interrupt_kind kind;
int value;

void *pc;

void *addr;

unsigned status;

These fields are set as:

* Exceptions
The pc field is set to the value of RETX, and value is set to the value
of SEQSTAT.
For exceptions that involve address faults, the addr and status
fields are set to the values of the memory-mapped registers
(MMRs) for DATA_FAULT_ADDR and DATA_FAULT_STATUS or for
CODE_FAULT_ADDR and CODE_FAULT_STATUS, as appropriate.

* Hardware Errors
The pc field is set to the value of RETI, and value is set to the value
of SEQSTAT.

* NMI Events
The pc field is set to the value of RETN.

e All Other Events
The pc field is set to the value of RETI.

1-372 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Caching and Memory Protection

Blackfin processors support the caching of external memory or L2 SRAM
(where available) into L1 SRAM, for both instruction and data memory.
Caching can eliminate much of the performance penalty of using external

memory with minimal effort on the application developer’s part.

This section describes:

«

___cplb_ctrl Control Variable” on page 1-374
“CPLB Installation” on page 1-376

“Cache Configurations” on page 1-378

“Default Cache Configuration” on page 1-379
“Changing Cache Configuration” on page 1-383
“Cache Invalidation” on page 1-383

“Default .1df Files and Cache” on page 1-385

“CPLB Replacement and Cache Modes” on page 1-388
“Cache Flushing” on page 1-389

“Using the _cplb_mgr Routine” on page 1-390
“Caching and Asynchronous Change” on page 1-392

“Migrating .1df Files From Previous Visual DSP++ Installations” on
page 1-393

The Blackfin processor caches are configurable devices. Instruction and
data caches can be enabled together or separately, and the memory spaces
they cache are configured separately. The cache configuration is defined

through the memory protection hardware, using tables that define

cacheability protection lookaside buffers (CPLBs). These CPLBs define

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-373
for Blackfin Processors

Blackfin Processor-Specific Functionality

the start addresses, sizes, and attributes of areas of memory for which
memory accesses are permitted (including whether the area of memory is

to be cached).

Refer to the appropriate Blackfin processor’s Hardware Reference
for details.

The Blackfin run-time library provides support for cache configuration by
providing routines that can be used to initialize and maintain the CPLBs
from a configuration table.

Both the Project Wizard-generated C/C++ run-time (CRT) headers and
default pre-compiled CRT objects use these library routines. The default
configuration does not enable CPLBs. The support routines are designed
such that they can easily be incorporated into users’ systems, and so that
the configuration can be turned on or off via a debugger, without having
to re-link the application. (See “C/C++ Run-Time Header and Startup
Code” on page 1-410 for more information.)

___cplb_ctrl Control Variable

CPLB support is controlled through a global integer variable,
___cplb_ctrl. Its C name has two leading underscores, and its assembler
name has three leading underscores. The value of this variable determines
whether the startup code enables the CPLB system. By default, the vari-
able has the value 0 (zero), indicating that CPLBs are not enabled.

The variable’s value is a bitmask, based on the macros defined in the
<cplb.h> header. The macros are:

e (CPLB_ENABLE_ICPLBS
Turns on instruction CPLBs

e (CPLB_ENABLE_ICACHE
Turns on instruction caching into L1 Instruction memory

1-374 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

e C(CPLB_ENABLE_DCPLBS
Turns on data CPLBs

e CPLB_ENABLE_DCACHE
Turns on data caching into L1 Data A memory

e CPLB_ENABLE_DCACHEZ
Turns on data caching into L1 Data B memory

* C(CPLB_SET_DCBS
Sets the data cache bank select bit in the DMEM_CONTROL register.
This specifies which bit of a memory address determines the data
cache bank (A or B) used to cache the location. Depending on the
placement of data within the application memory space, one
setting or the other ensures more data is cached at runtime.
This bit has no effect unless both CPLB_ENABLE_DCACHE and
CPLB_ENABLE_DCACHE? bits are also set. Refer to the processor’s
Hardware Reference for further details.

These macros are OR’d together to produce the value for ___cplb_ctrl.
Note that:

e IfCPLB_ENABLE_DCACHE? is set, CPLB_ENABLE_DCACHE must also be
set.

e If any of the three cache bits are set, the corresponding
CPLB_ENABLE_ICPLBS or CPLB_ENABLE_DCPLBS bit must also be set.

* __ cplb_ctrl must be placed in a locked CPLB.

There is a default definition of ___cp1b_ctr1 in the C run-time library,
which defaults to disabling CPLBs and caching. This default definition is
overridden by any definition in the CRT startup code generated by the

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-375
for Blackfin Processors

Blackfin Processor-Specific Functionality

Project Wizard, or alternatively by providing your own definition within
your application. For example,

#include <stdio.h>
#include <cplb.h>
#fpragma section("cplb_data")
int __cplb_ctrl = // C syntax with two underscores
CPLB_ENABLE_ICPLBS |
CPLB_ENABLE_ICACHE;
int main(void) {
printf("Hello world\n");
return 0;

}

The new definition enables CPLBs and turns on instruction caching;
data caching is not enabled.

CPLB Installation

When ___cplb_ctrl indicates that CPLBs are to be enabled, the startup
code calls the routine _cplb_init. This routine sets up instruction and
data CPLBs from a table, and enables the memory protection hardware.

There are sixteen CPLBs for each instruction and data space. On a simple
system, this is sufficient, and _cplb_init installs all available CPLBs from
its configuration table into the active table. On more complex systems,
there may need to be more CPLBs than can be active at once. In such sys-
tems, a time may come when the application attempts to access memory
that is not covered by one of the active CPLBs. This raises a CPLB miss
exception.

For these occasions, the library includes a CPLB management routine,
_cplb_mgr. This routine should be called from an exception handler that
has determined that a CPLB miss has occurred (either a data miss or an
instruction miss). The _cp1b_mgr routine identifies the inactive CPLB that

1-376 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

needs to be installed to resolve the access, and replaces one of the active
CPLBs with this one.

If CPLBs are to be enabled, the default startup code installs a default
exception handler called _cp1b_hdr; this does nothing except test for
CPLB miss exceptions, which it delegates to _cp1b_mgr. It is expected that
users have their own exception handlers that deal with additional events.

If data CPLBs are enabled, it is necessary to ensure that __cplb_ctrl is
mapped to data that is covered by a locked CPLB as it is loaded in the
default exception handler (cp1b_hdr) prior to calling cp1b_mgr to handle
CPLB exceptions. This can be done by using a #pragma section to define
___cplb_ctrl in a section that is mapped to a memory range that is cov-
ered by a locked CPLB. The default and generated . 1df files provide

sections that can be used for this purpose.

It is not possible to recover from a CPLB miss that occurs when handling
a prior miss exception. To avoid this, ensure that the code and data used
when handling a CPLB miss is covered by an active CPLB. The CPLB
management code is placed into a section called cpib_code. The data used
is the stack to save and restore registers and the variable cplb_ctrl.

It is necessary to ensure that the CPLBs for these are:

* Flagged as being “locked”, so they are not replaced by inactive
CPLBs during misses

* Flagged as “dirty” if the caching mode is set to write-back mode

The cplb_data section is used to contain the CPLB configuration tables.
It is not necessary to have a locked CPLB covering this section because the
CPLB management code disables CPLBs before accessing the data these
tables contain.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-377
for Blackfin Processors

Blackfin Processor-Specific Functionality

When enabling CPLBs, _cplb_init checks that the CPLB entries are
valid. If an issue is identified, control will jump to an infinite loop around

a label describing the problem. These labels are described in Table 1-34.

Table 1-34. CPLB Issues

Label

Error

cplb_address_is_misaligned_for_cplb_size

Alignment of CPLB does not correspond
to CPLB size. Each CPLB must have a
minimum alignment equal to the size of

the CPLB.

too_many_locked_data_cplbs

More than 16 locked data CPLBs are
present. Only 16 data CPLBs are avail-
able, so additional data CPLBs cannot
become active.

too_many_locked_instruction_cplbs

More than 16 locked instruction CPLBs
are present. Only 16 instruction CPLBS
are available, so additional instruction
CPLBs cannot become active.

Cache Configurations

Although CPLBs may be used for their protection capabilities, most often
they are used to enable caching. The ___cplb_ctrl variable is the means
by which the application directs the run-time library to install CPLBs for

caching.

The library defines the following configurations, although not all configu-
rations may be available on all Blackfin processors:

e No cache

L1 SRAM Instruction as cache

L1 SRAM Data A as cache

L1 SRAM Data A and B as cache

1-378 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

e L1 SRAM Instruction and Data A as cache
e L1 SRAM Instruction, Data A and Data B as cache

Note that if any cache is enabled, the corresponding data or instruction
CPLBs must also be enabled. Furthermore, if you are using the default
.1df files, you must also tell the linker that the cache is enabled; this is
discussed in more detail in “Default Cache Configuration” and “Default

Adf Files and Cache” on page 1-385.

If any cache is enabled, the respective caches are set up during _cplb_init,
using the CPLB configuration tables. On ADSP-BF535 processors, if
cache is enabled, the current cache contents are invalidated using the
functions described in “Cache Invalidation” on page 1-383. With other
Blackfin processors, the cache is automatically invalidated at power-up.

Default Cache Configuration

Although the default value for ___cplb_ctr1 is that no cache or CPLBs
are enabled, the default system contains CPLB configuration tables that
permit caching. The default configuration tables differ for the parts
available.

The default configuration tables are defined in files called cpibtabn.s
in VisualDSP/Blackfin/1ib/src/1ibc/crt, where nis the part number.

Table 1-35 lists the default CPLB configuration files.

Table 1-35. Default CPLB Configuration Files

Blackfin Processor Configuration file
ADSP-BF504 cplbtab504.s
ADSP-BF504F cplbtab504f.s
ADSP-BF506F cplbtab506f.s
ADSP-BF512 cplbtabbl2.s
ADSP-BF514 cplbtabbl4.s
Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-379

for Blackfin Processors

Blackfin Processor-Specific Functionality

Table 1-35. Default CPLB Configuration Files (Cont'd)

Blackfin Processor Configuration file
ADSP-BF516 cplbtabb16.s
ADSP-BF518 cplbtabb18.s
ADSP-BF522 cplbtabb22.s
ADSP-BF523 cplbtabb523.s
ADSP-BF524 cplbtabb24.s
ADSP-BF525 cplbtab525.s
ADSP-BF526 cplbtabb26.s
ADSP-BF527 cplbtabb27.s
ADSP-BF531 cplbtabb31.s
ADSP-BF532 cplbtabb32.s
ADSP-BF533 cplbtabb533.s
ADSP-BF534 cplbtab534.s
ADSP-BF535 cplbtabb35.s
ADSP-BF536 cplbtabb36.s
ADSP-BF537 cplbtabb37.s
ADSP-BF538 cplbtabb538.s
ADSP-BF539 cplbtabb539.s
ADSP-BF542 cplbtabb42.s
ADSP-BF542M cplbtabb542M.s
ADSP-BF544 cplbtabb44.s
ADSP-BF544M cplbtabb544M.s
ADSP-BF548 cplbtabb48.s
ADSP-BF548M cplbtab548M.s
ADSP-BF549 cplbtabb549.s
ADSP-BF549M cplbtab549M.s

1-380

Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

Table 1-35. Default CPLB Configuration Files (Contd)

Blackfin Processor Configuration file
ADSP-BF561 (Core A) cplbtabb56la.s
ADSP-BF561 (Core B) cplbtabb56lb.s

If memory protection or caching has been selected through the
Visual DSP++ Project Wizard, you are allowed to generate a cus-
tomizable CPLB table. For more information, refer to the
description of the “VisualDSP++ Project Wizard” available from
VisualDSP++ Help.

Each file defines two tables:
1. icplbs_table[] — Instruction CPLBs
2. dcplbs_table[] — Data CPLBs

The table’s structure is defined by cpibtab.h, specifying the start address
of each area of memory, and the controlling attributes for that area. The
definitions of the macros that are used to define these attributes are con-
tained in the defblackfin.h standard include file and are documented in
the appropriate Hardware Reference manual.

The default tables include areas of memory for L1 SRAM, internal L2
(where present), external asynchronous and SDRAM memory, and other
memory spaces. The external areas are configured to be cacheable using
write-through mode by default. If no cache is enabled and CPLBs are
enabled, the run-time library masks off the cacheable flags on the CPLBs
before making them active.

The tables are defined by OR’ing a combination of the macros defined
in cp1b.h and the core-specific header files (def_LPBlackfin.h or
defblackfin.h). The macrosin cp1b.h define bitmasks that specify
common CPLB configurations.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-381
for Blackfin Processors

Blackfin Processor-Specific Functionality

A brief description of these macros follows:

CPLB_I_PAGE_MGMT

Default instruction CPLB configuration for memory page covering
page management code in cplb_code section. The CPLB is locked
(so it cannot be evicted), and valid.

CPLB_DEF_CACHE
Default data cache configuration — memory page is cached in
write-through mode

CPLB_DEF_CACHE_WT
Same as CPLB_DEF_CACHE

CPLB_DEF_CACHE_WB
Default data cache configuration — memory page is cached in
write-back mode

CPLB_ALL_ACCESS
Memory protection properties — specifies all accesses are allowed to

this page

CPLB_DNOCACHE
All accesses are allowed, CPLB is valid, but page is not cached

CPLB_DDOCACHE
Same as CPLB_DNOCACHE, but page is cached

CPLB_DDOCACHE_WT
Same as CPLB_DNOCACHE, but page cached in write-through mode

CPLB_DDOCACHE_WB
Same as CPLB_DNOCACHE, but page cached in write-back mode

1-382

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

® CPLB_INOCACHE
Instruction memory read-only access, CPLB is valid, page is not

cached

e (CPLB_IDOCACHE
Same as CPLB_INOCACHE, but page is cached

None of the above macros specify a page size, so they should be OR’d with
PAGE_SIZE_1KB, PAGE_SIZE_4KB, PAGE_SIZE_1MB, or PAGE_SIZE_4MB
(defined in core-specific header) as appropriate.

Changing Cache Configuration

The value of ___cplb_ctrl may be changed in several ways:

e The Project Wizard can be used to generate CRT startup code that
includes a definition of the ___cpl1b_ctr1 variable, based on the

selected cache configuration.

* It may be defined as a new global variable with an initialization
value. This definition supersedes the definition in the library.
The example in “___cplb_ctrl Control Variable” on page 1-374
uses this approach.

* The linked-in version of the variable may be altered in a debugger,
after loading the application but before running it, so that the
startup code sees a different value.

Cache Invalidation

The cache_invalidate routine may be used to invalidate the processor’s
instruction and/or data caches. It is defined as:

#include <cplbtab.h>

void cache_invalidate(int cachemask);

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-383
for Blackfin Processors

Blackfin Processor-Specific Functionality

Its parameter is a bitmask, indicating which caches should be cleared.

Table 1-36. Bitmasks and Caches to be Cleared

Bit set Cache invalidated
CPLB_ENABLE_ICACHE Instruction cache
CPLB_ENABLE_DCACHE Data cache A
CPLB_ENABLE_DCACHE? Data cache B

The cache_invalidate routine uses several supporting routines:

f##include <cplbtab.h>

void icache_invalidate(void);

void dcache_invalidate(int a_or_b);
void dcache_invalidate_both(void);

The icache_invalidate routine clears the instruction cache.

The dcache_invalidate routine clears a single data cache, determined by
the a_or_b parameter:

® (CPLB_INVALIDATE_A invalidates data cache A
e (PLB_INVALIDATE_B invalidates data cache B

The dcache_invalidate_both routine clears data cache A and data
cache B. On ADSP-BF535 processors, this is done by calling
dcache_invalidate for each cache. On other Blackfin processors,

it toggles control bits in the DMEM_CONTROL register, which invalidates
the contents of both data caches in a single operation.

The dcache_invalidate and dcache_invalidate_both routines
do not flush any modified cache entries to memory first, if any
memory pages are cached in write-back mode. To flush such data
prior to invalidation, use the functions described in “Cache Flush-
ing” on page 1-389.

1-384 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Default .Idf Files and Cache

The default . 1df files supplied with Visual DSP++ are designed to support
caching with minimal effort.

The default .1df files have three basic configurations:

1. No external SDRAM and no caching. All code and data are placed
into internal SRAM. This is the default configuration.

2. External SDRAM and no caching. Code and data are placed into
both internal SRAM and external SDRAM. Code and data are
placed into internal SRAM where possible. This configuration is
enabled by passing the -MDUSE_SDRAM flag to the linker at link-time.

3. External SDRAM and caching enabled. This will require one or
more of the LDF caching macros to be defined when linking.

Configuration 1 is most efficient but is not suitable for larger applications
that will not fit into internal memory.

Configuration 2 allows larger applications to occupy external memory but
they will incur significant performance overheads when running code or
accessing data that is mapped to external memory.

Configuration 3 is an efficient configuration for larger applications

(than would fit in L1) as it allows larger applications to use external
memory while minimizing the performance overhead by using the cache
hardware. As mentioned previously, this configuration requires the defini-
tion of one or more macros when using the default . 1df file. These macros
are used to ensure that the .1df file does not map code or data to memory
that will be configured as cache. These macros are normally defined using
the linker’s -MD switch and must match the cache configuration defined by
___cplb_ctrl.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-385
for Blackfin Processors

Blackfin Processor-Specific Functionality

Table 1-37 lists these macros.

Table 1-37. Macros for Caching

Macro Function

USE_INSTRUCTION_CACHE Indicates that L1 instruction SRAM is reserved for use as cache,
for example, when ___cplb_ctrl is defined with
CPLB_ENABLE_ICACHE.

USE_DATA_A_CACHE Indicates that L1 data bank A is reserved for use as cache, for
example, when ___cplb_ctr]l is defined with
CPLB_ENABLE_DCACHE.

USE_DATA_B_CACHE Indicates that L1 data bank B is reserved for use as cache, for
example, when ___cplb_ctrl is defined with
CPLB_ENABLE_DCACHEZ2.

USE_CACHE Indicates that caching is being enabled. It must be defined when
one or more of USE_INSTRUCTION_CACHE, USE_DATA_A_CACHE,
or USE_DATA_B_CACHE is defined.

If none of USE_INSTRUCTION_CACHE, USE_DATA_A_CACHE, and
USE_DATA_B_CACHE are defined when USE_CACHE is the default,
the .1df file works as if USE_INSTRUCTION_CACHE,
USE_DATA_A_CACHE, and USE_DATA_B_CACHE were all defined.

If cache is not enabled, the macros listed above should not be used or the
memory they refer to will be unused.

Therefore, if the .1df file believes cache is to be used, but ___cplb_ctrl
specifies otherwise, resources are wasted, but the application still func-
tions. In fact, this is the case if only code or data caches are requested by
___cplb_ctrl, but not both.

The last entry of Table 1-37 shows a configuration that must be avoided
since mapping code/data into L1 SRAM, which is then configured as
cache, leads to corrupt code/data. This scenario can also be difficult to

1-386 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

debug, so the run-time library provides a mechanism for protecting
against this case, such as:

e The default . 1df files define global “guard” symbols, setting their
addresses to be 0 or 1, according to the LDF caching macros
(USE_INSTRUCTION_CACHE,USE_DATA_A_CACHE,and
USE_DATA_B_CACHE) that are defined at link-time. If objects are
mapped into a cache area during linking, the guard symbol is set
to O (indicating this cache area is not available); otherwise, it is set
to 1 (indicating that the cache area is available).

e When _cplb_init is enabling CPLBs and cache, the run-time
library tests the guard symbols. If a cache has been requested via
__cplb_ctrl, but the corresponding guard symbol indicates that
the cache area has already been allocated during link-time, the
library signals an error. It does so by jumping to an infinite loop
around labels with names that describe the problem.

These are defined as follows:

11_code_cache_enabled_when_11_used_for_code:
JUMP 0;

11_data_a_cache_enabled_when_used_for_data:
JUMP 0;

11 _data_b_cache_enabled_when_used_for_data:
JUMP 0;

The guard symbols have the following names:
~_11_code_cache
__ 11 _data_cache_a

__11_data_cache_b

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-387
for Blackfin Processors

Blackfin Processor-Specific Functionality

CPLB Replacement and Cache Modes

As previously noted, no more than 16 CPLBs may be active concurrently
for each instruction space or data space. Large applications may need to
address more memory than this, and may eventually access a memory
location not covered by the currently-active CPLBs. At this point, a CPLB
“miss exception” occurs, and the application’s exception handler must
select one of the active CPLBs for removal to make way for a new CPLB
that covers the address being accessed. This victimization and replacement
process is handled by the _cp1b_mgr routine within the run-time library.
The process varies, depending on which cache modes are active.

Blackfin processors support two variants of caching: write-through mode
and write-back mode.

e In write-through mode, writes to cached memory are written to
both the cache and the memory location. Consequently,
write-through mode primarily provides performance gains for
memory reads. The memory location is kept up-to-date.

e In write-back mode, writes to cached memory are only written to
the cache. They are not written to the memory location until the
cache line is victimized (by an access to another memory location)
or flushed (through programmatic means).

The cache mode (write-through, write-back, or off) is specified on a
per-CPLB basis, so one page may be cached in write-through mode,
another in write-back mode, and a third not cached at all.

By default, write-back pages are “clean”, in that they do not have the
DIRTY flag set. When a write occurs to a clean write-back page, a protec-
tion violation exception is raised to indicate that the page is being written
to. The _cp1b_mgr routine flags the page’s CPLB as DIRTY, and allows the
write to continue. This time, it succeeds. If the DIRTY flag is set when the
CPLB is first installed, no exception will be generated on first write.

1-388 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

This DIRTY flag can be used to identify which pages may contain data not
yet propagated back to memory; if the cache needs to propagate data back
to memory so that it can evict the data and cache another address, the
DIRTY flag will not be cleared.

Because write-through pages always update the memory location with the
new cached value, write-through pages need not be marked as DIRTY.
Consequently, write-through pages do not trigger an exception on first
write to the page.

The victimization process chooses victim CPLBs in the following order of
preference:

1. Unused (for example, invalid) CPLBs
2. Unlocked CPLBs

Note that only unlocked CPLBs are selected as victims. Locked CPLBs are
never selected. In particular, it is necessary to ensure that the CPLB man-
agement routines reside in pages that are covered by locked CPLBs to
prevent the CPLB management routines from evicting themselves.

To assist in this, the CPLB management routines reside in the cp1b_code
section. This section must be explicitly mapped to memory that is covered
by a locked and valid CPLB. It is also necessary to ensure that the data
stack and cache control variable ___cplb_ctrl is always valid in the same
way.

Cache Flushing

If desired, write-back data can be flushed back to memory using the
flush_data_cache routine. The routine searches all active pages for valid,
modified pages that are cached in write-back mode, and flushes their
contents back to memory. This time-consuming process is dependent on

the size of the modified data page.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-389
for Blackfin Processors

Blackfin Processor-Specific Functionality

Table 1-38. Flushing Costs per Page Size

Page Size Approximate cost of flushing
1K 400 instructions

4K 1500 instructions

IM 6000 instructions

4M 6000 instructions

The costs in Table 1-38 are approximate, because they only take into
account the number of instructions executed, and do not include the costs
of data transfers from cache to external memory. The actual cost is greatly
influenced by the amount of modified data residing in the caches.

If it is necessary to ensure that smaller areas of memory are flushed to
memory, the flush_data_buffer routine may be used:

#include <cplbtab.h>
void flush_data_buffer(void *start, void *end, int invalidate);

This routine flushes back to memory any changes in the data cache that
apply to the address range specified by the start and end parameters.

If the invalidate parameter is non-zero, the routine also invalidates the
data cache for the address range, so that the next access to the range will
require a re-fetch from memory.

Using the _cplb_mgr Routine

The _cp1b_mgr routine is intended to be invoked by the application’s
exception handler. The source for _cplb_mgr can be found within your
Visual DSP++ installation in the Blackfin/1ib/src/1libc/crt/cplbmgr.s
file. A minimal exception handler, _cp1b_hdr, is installed by the default
startup code, and its source is in Blackfin/1ib/src/libc/crt/cplbhdr.s.

1-390 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Typically, the exception handler delegates CPLB misses and protection
violations by calling _cp1b_mgr and handles all other exceptions itself.
The _cp1b_mgr routine is defined as (in C nomenclature):

int cplb_mgr(int code, int cplb_ctrl);

where code indicates the kind of exception raised (Table 1-39).

Table 1-39. Exception Mask Codes

Code Value Meaning
0 Instruction CPLB miss
1 Data CPLB miss
2 Protection violation (assumed to be first-write to write-back data page)

The routine accepts the current value of ___cplb_ctrl as the second

parameter.

There are several error codes that _cplb_mgr can return, defined in
<cplb.h> as shown in Table 1-40.

Table 1-40. CPLB Return Codes

Return Code

Meaning

CPLB_RELOADED

Successfully updated CPLB table

CPLB_NO_UNLOCKED

All CPLBs are locked; thus, they cannot be evicted. This indicates
that the CPLBs in the configuration table are badly configured, as
this should never occur.

CPLB_NO_ADDR_MATCH

The address being accessed, that triggered the exception, is not
covered by any of the CPLBs in the configuration table. The
application is presumably misbehaving.

CPLB_PROT_VIOL

The address being accessed, that triggered the exception, is not a
first-write to a clean write-back data page, and so presumably is a
genuine violation of the page’s protection attributes. The applica-
tion is misbehaving.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-391

for Blackfin Processors

Blackfin Processor-Specific Functionality

If _cplb_mgr returns an error indicator, the exception handler must decide
how to handle the error. The default exception handler installed by the
startup code delegates each of these failure conditions—plus one other—
to handler functions in the run-time library.

These functions are:

void _unknown_exception_occurred(void);
void _cplb_miss_all_locked(void);

void _cplb_miss_without_replacement(void);
void _cplb_protection_violation(void);

These functions are stubs that can be replaced for comprehensive error
handling. They enter an infinite loop with verbose labels, indicating the
kind of error that has occurred. For assistance when debugging, automatic
breakpoints are placed on these functions.

The _cp1b_mgr routine modifies the following registers:
RO-R3, P0-P2, I0-12, ASTAT, LCO, LC1, LBO, LB1, LTO, and LT1

It is therefore necessary that an exception handler, calling _cp1b_mgr, saves
these registers before calling _cp1b_mgr and restores them before returning
from the exception.

Caching and Asynchronous Change

Care must be taken when using the cache in systems with asynchronous
change. There are two levels of asynchronous data change:

* Data that may change beyond the scope of the current thread, but
within the scope of the system. This includes variables that may be
updated by other threads in the system (if using a multi-threaded
architecture). This kind of data must be marked volatile, so that
the compiler knows not to store local copies in registers (but may
be located in cached memory), since all threads access the data
through the cache.

1-392 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

* Data that may change beyond the scope of the cache as well as
beyond the scope of the current thread. This includes mem-
ory-mapped registers (which cannot be cached) and data in
memory that is updated by external means, such as DMA transfers
or host/target file I/O. Such data must be marked as volatile, so
that the compiler knows not to keep copies in registers. This data
may not be placed in cached memory since the cache does not see
the change and provides date copies to the application. Alterna-
tively, the cache copy must be invalidated before accessing
memory, in case it has been updated.

Migrating .ldf Files From Previous VisualDSP++ Installations

The .1df files which have been used in VisualDSP++ 4.5 projects require
updating before they can be used in VisualDSP++ 5.0.

For customized .1df files, you must make the changes manually.

For .1df files generated by the Project Wizard, these changes can be
applied automatically, as follows:

1. Open the project using Visual DSP++ 5.0. The Visual DSP++
IDDE will ask for confirmation before upgrading the project to
VisualDSP++5.0. Click “Yes”.

2. In Project Options, LDF Settings, change one of the settings, and
click on OK. The Project Wizard will regenerate your .1df file.

3. In Project Options, LDF Settings, change the setting back to its
original value and click on OK. The Project Wizard will regenerate
your . 1df file again. Your .1df file will now be ready for use.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-393
for Blackfin Processors

Blackfin Processor-Specific Functionality

The changes are described in:
e “C++ Support Tables (ctor, gdt)” on page 1-394

e “Dual-Core Single-Application Per Core Shared Data” on
page 1-395

e “C++ Run-Time Libraries Rationalization” on page 1-396
e “Multi-Threaded Libraries” on page 1-397

e “Fixed-Point I/O Support” on page 1-399

C++ Support Tables (ctor, gdt)
@ This change is required.

Linker changes in Visual DSP++ 5.0 make it possible for non-contiguous
placement of highly-aligned data. This means that order of mapping in
output memory sections is not necessarily maintained. This will result in
linker warning 112040, which can be avoided by using the
FORCE_CONTIGUITY directive when contiguous placement is required, and
NO_FORCE_CONTIGUITY otherwise.

The C++ static constructor mechanism (ctor/ctorl) and exceptions han-
dling support (.gdt/.gdt1) use table inputs terminated using the sections
ending in “1”. This requires contiguous placement of these sections, so use
of FORCE_CONTIGUITY is recommended.

For example, replace:

L1_data_b {
INPUT_SECTION_ALIGN(4)
INPUT_SECTIONS($0BJECTS(L1_data_b) $LIBRARIES(LI_data_b))
INPUT_SECTIONS($0BJECTS(ctor) $LIBRARIES(ctor))
INPUT_SECTIONS($0BJECTS(ctorl) $LIBRARIES(ctorl))
INPUT_SECTIONS($0BJECTS(.gdt) $LIBRARIES(.gdt))
INPUT_SECTIONS($0BJECTS(.gdt1) $LIBRARIES(.gdt1))

1-394 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

//
} >MEM_L1_DATA_B

with:

/* one-to-one mapping first */
L1_data_b {

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($OBJECTS(LI1_data_b) $LIBRARIES(LI1_data_b))
} >MEM_L1_DATA_B

L1_data_b_tables {
INPUT_SECTION_ALIGN(4)
FORCE_CONTIGUITY
INPUT_SECTIONS($0BJECTS(ctor) $LIBRARIES(ctor))
INPUT_SECTIONS($0BJECTS(ctorl) $LIBRARIES(ctorl))
INPUT_SECTIONS($0BJECTS(.gdt) $LIBRARIES(.gdt))
INPUT_SECTIONS($0BJECTS(.gdtl) $LIBRARIES(.gdtl))
} >MEM_LI1_DATA_B

L1_data_b {
INPUT_SECTION_ALIGN(4)
//

} >MEM_LI1_DATA_B

For more information, see “Constructors and Destructors of Global Class
Instances” on page 1-419.

Dual-Core Single-Application Per Core Shared Data

This change is required for dual-core profiles that use the sin-
gle-application/dual-core approach.

When linking the core B . dxe file of a single application per core
multi-core configuration (see “One Application Per Core” on page A-7),
it is necessary to ensure that shared data is resolved by linking against the

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-395
for Blackfin Processors

Blackfin Processor-Specific Functionality

core A .dxe file rather than a core-specific definition. If the linker sees a
RESOLVE directive for a symbol linked locally and separately in the core,
it will issue warning 112143.

There is a particular case that can cause this to happen in the default . 1df
files which has been avoided in VisualDSP++ 5.0. The change was to
delete the use of mc_data561.doj by removing the following lines:

#if defined(__ADI_MULTICORE) && defined(COREA)
RT_OBJ_NAME(mc_datab61), /* multi-core shared data */
fendif

and modifying the use of Tibmc*.d1b to use a linker attribute filter to
ensure that core B does not link a local instance of shared library data.

This is done by modifying:

J#if defined(__ADI_MULTICORE)
RT_LIB_NAME(mch61), /* multi-core library */
fendif

to:

#if defined(COREB)
RT_LIB_NAME(mc561) {!sharing("MustShare")},
/* multi-core shared data */
ffelse
RT_LIB_NAME(mc561),
/* multi-core library */
ffendif

C++ Run-Time Libraries Rationalization

@ This change is optional.

In previous versions of Visual DSP++, it was necessary to link against
libcpp*.dlb, Tibcpprt*.dlb, and 1ibx*.d1b when C++ exceptions sup-
port was required. In VisualDSP++ 5.0, it is only necessary to link against

1-396 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

the 1ibcpp*.d1b library. Therefore, it is possible to simplify your .1df file
by removing references to the 1ibx*.d1b and 1ibcpprt*.d1b libraries.

Multi-Threaded Libraries

@ This change is optional.

In VisualDSP++ 5.0 Update 8 and earlier, the -threads switch did not
link against thread-safe libraries unless the application used VDK. As of
Visual DSP++ 5.0 Update 9, non-VDK .1df files will also use the
thread-safe libraries when the -threads switch is specified.

The changes in the default . 1df files are not trivial. They are controlled by
the presence of the _ADI_THREADS link-time macro, which the compiler
driver automatically defines when -threads is specified. There are two
types of change:

1. New macros RT_LIB_NAME_MT(n) and RT_LIB_NAME_EH_MT(n) are
defined. These will specify the libraries used depending on whether
the -eh switch is active. The definitions on the macros depend on
_ADI_THREADS: if _ADI_THREADS is defined, the macros name the
thread-safe libraries, otherwise they name the non-thread-safe
libraries.

2. Libraries which are delivered in thread-safe and non-thread-safe
flavors are identifies using these two new macros.

As an example of the first case, consider the file ADSP-BF548.1df. In Visu-
alDSP++ 5.0 Update 8, this file contains the following definitions:

f# define RT_LIB_NAME(x) 1ib #H x ## y.d1b

define RT_OBJ_NAME(x) x # y.doj

f# if defined(__ADI_LIBEH__)

1 define RT_LIB_NAME_EH(x) 1ib fHF x #Hf yx.d1b
else /* __ADI_LIBEH__ */

1 define RT_LIB_NAME_EH(x) 1ib #4 x ## y.d1b
endif

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-397
for Blackfin Processors

Blackfin Processor-Specific Functionality

In VisualDSP++ 5.0 Update 9, these definitions have been augmented
with choices dependent on the presence of _ADI_THREADS:

define RT_LIB_NAME(n) 1ib # n 4 y.d1b
define RT_OBJ_NAME(n) n ## y.doj
if defined(_ADI_THREADS)

define RT_LIB_NAME_MT(n) 1ib ## n #4 mty.d1b
i if defined(__ADI_LIBEH__)

define RT_LIB_NAME_EH_MT(n) 1ib 44t n #Hf mtyx.d1b
else /* _ ADI LIBEH _ */

define RT_LIB_NAME_EH_MT(n) 1ib ## n #4 mty.d1b
i endif

else /* _ADI_THREADS */
define RT_LIB_NAME_MT(n) 1ib #4 n ## y.d1b

if defined(__ADI_LIBEH__)

1 define RT_LIB_NAME_EH_MT(n) 1ib ## n 4 yx.d1b
1 else /* __ADI_LIBEH__ */

define RT_LIB_NAME_EH_MT(n) 1ib 44 n 44t y.d1b
endif

endif /* _ADI THREADS */

Consider the same file again, for an example of the second set of changes.
In VisualDSP++ 5.0 Update 8, the file contains the following library list

(comments removed for clarity):

$LIBRARIES =
RT_LIB_NAME(smal1532),
...0ther Tibraries elided...
#if defined(USE_FILEIO) || defined(USE_PROFGUIDE)
RT_LIB_NAME(rt_fileiob32),
ffelse
RT_LIB_NAME(rt532),#endif
RT_LIB_NAME(event532),
RT_LIB_NAME_EH(cpp532),
#if defined(IEEEFP)
RT_LIB_NAME(sftf1th32),
ffendif

1-398 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

...0ther libraries elided...
RT_LIB_NAME(profileb32)

In Visual DSP++ 5.0 Update 9, the same list now uses the new macros
(once again, comments removed for clarity):

$LIBRARIES =
RT_LIB_NAME_MT(smal1532),

...0ther libraries elided..

#if defined(USE_FILEIO) || defined(USE_PROFGUIDE)
RT_LIB_NAME_MT(rt_fileiob32),

ffelse
RT_LIB_NAME_MT(rt532),

ffendif
RT_LIB_NAME_MT(eventb32),
RT_LIB_NAME_EH_MT(cpp532),

#if defined(IEEEFP)
RT_LIB_NAME(sftf1t532),

fendif
...0ther libraries elided...
RT_LIB_NAME(profileb32)

Notice that not all the libraries in the list employ the new macros—not all
libraries require thread-safety.

Fixed-Point I/O Support

This change is only required if your application requires format-
ted-1/O support for fixed-point types.

As of VisualDSP++ 5.0 Update 9, fixed-point types are natively supported
by the compiler, and formatted-1/O support is optionally available, when
the _ADI_FX_LIBIO macro is defined at link time. This is achieved by link-
ing against a different I/O library when the macro is defined.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-399
for Blackfin Processors

Blackfin Processor-Specific Functionality

For example, ADSP-BF548.1df in VisualDSP++ 5.0 Update 8 contains the
following definitions (comments removed for clarity):

#if defined(_DINKUM_IO)
RT_LIB_NAME(c532),
RT_LIB_NAME(i0532),

ffelse
RT_LIB_NAME(i0532),
RT_LIB_NAME(c532),

ffendif

In VisualDSP++ 5.0 Update 9, the definitions have been augmented by
the _ADI_FX_LIBIO macro, which is automatically defined by the compiler
driver when the -fixed-point-io switch is specified at link time (once
again, comments removed for clarity):

fHif defined(_DINKUM_IO)
RT_LIB_NAME_MT(c532),
RT_LIB_NAME_MT(i0532),

felse

#if defined(_ADI_FX_LIBIO)

RT_LIB_NAME_MT(jofx532),
ffelse

RT_LIB_NAME_MT(i0532),
#endif
RT_LIB_NAME_MT(c532),

ffendif

Notice that the definitions also use the new macros for selecting the
thread-safe libraries if required; see “Multi-Threaded Libraries” on

page 1-397.

1-400 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

C/C++ Preprocessor Features

Several features of the C/C++ preprocessor are used by Visual DSP++

to control the programming environment. The ccb1kfn compiler provides
standard preprocessor functionality, as described in any C text. The fol-
lowing extensions to standard C are also supported:

/! end of line (C++ style) commands
ffwarning directive

For more information about these extensions, see “Preprocessor-Gener-
ated Warnings” on page 1-357 and “C++ Style Comments” on
page 1-173. For ways to write macros, refer to “Writing Preprocessor

Macros” on page 1-405.
This section contains:
e “Predefined Macros” on page 1-401

* “Writing Preprocessor Macros” on page 1-405

Predefined Macros

The ccb1kfn compiler defines macros to provide information about the
compiler, source file, and options specified. These macros can be tested,
using #ifdef and related directives, to support your program’s needs.
Similar tailoring is done in the system header files.

@ For the list of predefined assertions, see “-A” on page 1-27.

Macros such as __DATE__ can be useful if incorporated into the text
strings. The # operator within a macro body is useful in converting such
symbols into text constructs.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-401
for Blackfin Processors

C/C++ Preprocessor Features

Table 1-41 describes the predefined compiler macros.

Table 1-41. Predefined Compiler Macros

Macro

Function

_ADI_FX_LIBIO

Defined as 1 when compiling with the - fixed-point-io switch.

_ADI_COMPILER

Defined as 1.

__ADSPBF50x__

Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF504, ADSP-BF504F, or ADSP-BF506F

processor.

__ADSPBF5Ix__

Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF512, ADSP-BF514, ADSP-BF516, or
ADSP-BF518 processor.

__ADSPBFb52x__

Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF522, ADSP-BF524, ADSP-BF526,
ADSP-BF523, ADSP-BF525, or ADSP-BF527 processor.

__ADSPBFb52xLP__

Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF522, ADSP-BF524, or ADSP-BF526 pro-

CEessor.

__ADSPBF53x__

Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF531, ADSP-BF532, ADSP-BF533,
ADSP-BF534, ADSP-BF536, ADSP-BF537, ADSP-BF538, or
ADSP-BF539 processor.

Note: This does not include the ADSP-BF535 processor.

__ADSPBFb54x__

Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF542, ADSP-BF544, ADSP-BF547,
ADSP-BF548, or ADSP-BF549 processor.

__ADSPBFb56x__

Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF561 processor.

__ADSPBF59x__

Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF592-A processor.

__ADSPBLACKFIN__

Always defined as 1.

1-402

Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

Table 1-41. Predefined Compiler Macros (Contd)

Macro

Function

__ADSPLPBLACKFIN__

Defined as 1 when the target processor (set using the -proc
switch) is one of low-power core parts. These include
ADSP-BF504, ADSP-BF504F, ADSP-BF506F, ADSP-BF512,
ADSP-BF514, ADSP-BF516, ADSP-BF518, ADSP-BF522,
ADSP-BF523, ADSP-BF524, ADSP-BF525, ADSP-BF526,
ADSP-BF527, ADSP-BF531, ADSP-BF532, ADSP-BF533,
ADSP-BF534, ADSP-BF536, ADSP-BF537, ADSP-BF538,
ADSP-BF539, ADSP-BF542, ADSP-BF547, ADSP-BF548,
ADSP-BF549, ADSP-BF561, or ADSP-BF592-A processors.

__ADSPBF506F_FAMILY__

Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF504, ADSP-BF504F, or ADSP-BF506F

processor.

__ADSPBF518_FAMILY__

Equivalent to __ADSPBF51x__.

__ADSPBF526_FAMILY__

Equivalent to __ADSPBF52xLP__.

__ADSPBF527_FAMILY__

Equivalent to __ADSPBF52x__.

__ADSPBF533_FAMILY__

Equivalent to __ADSPBF53x__.

__ADSPBF535_FAMILY__

Defined as 1 when the target processor (set using the -proc

switch) is the ADSP-BF535.

__ADSPBF537_FAMILY__

Equivalent to __ADSPBF53x__.

__ADSPBF538_FAMILY__

Equivalent to __ADSPBF53x__.

__ADSPBF548_FAMILY__

Equivalent to __ADSPBF54x__.

__ADSPBF548M_FAMILY__

Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF542M, ADSP-BF544M, ADSP-BF547M,
ADSP-BF548M, or ADSP-BF549M.

__ADSPBF592_FAMILY__

Defined as 1 when the target processor (set using the -proc
switch) is the ADSP-BF592-A processor.

__ANALOG_EXTENSIONS__

Defined as 1. If MISRA compliance checking is enabled, this
macro will not be defined.

__cplusplus

Defined as 199711L when you compile in C++ mode.

__DATE__

The preprocessor expands this macro into the preprocessing date
as a string constant. The date string constant takes the form
mm dd yyyy (ANSI standard).

Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

1-403

C/C++ Preprocessor Features

Table 1-41. Predefined Compiler Macros (Cont’d)

Macro

Function

__ DOUBLES_ARE_FLOATS__

Defined as 1 when the size of the double type is the same as the
single-precision float type. When the compiler -dou-
ble-size-64 switch is used, the macro is not defined.

ECC

Always defined as 1.

__EDG__

Always defined as 1. This definition signifies that an Edison
Design Group front end is being used.

__EDG_VERSION__

Always as an integral value representing the version of the com-
piler’s front end.

__EXCEPTIONS Defined as 1 when C++ exception handling is enabled (using the
-eh switch on page 1-35).
_FILE__ The preprocessor expands this macro into the current input file

name as a string constant. The string matches the name of the file
specified on the command line or in a preprocessor #include
command (ANSI standard).

_INSTRUMENTED_PROFILING

Defined as 1 when instrumented profiling is enabled (using the
-p switches on page 1-65).

_LANGUAGE_C

Always defined as 1.

_LINE__

The preprocessor expands this macro into the current input line
number as a decimal integer constant (ANSI standard).

_MISRA_RULES

Defined as 1 when compiling in MISRA-C mode.

__NO_BUILTIN

Defined as 1 when you compile with the -no-builtin com-
mand-line switch (on page 1-53).

__NUM_CORES__

Defined to be the number of cores in the currently-selected target
processor. For example, when compiling for the ADSP-BF533
processor, __NUM_CORES__ is defined as 1, whereas when compil-
ing for the ADSP-BF561 processor, __NUM_CORES__ is defined as
2.

__RTTI

Defined as 1 when C++ run-time type information is enabled
(using the -rtti switch on page 1-90).

_ SIGNED_CHARS__

Defined as 1, unless you compile with the -unsigned-char
command-line switch (on page 1-78).

1-404 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

Table 1-41. Predefined Compiler Macros (Contd)

Macro

Function

__STDC__

Always defined as 1.

__STDC_VERSION__

Defined as 199409L when compiling in C89 mode, and as
199901L when compiling in C99 mode.

__TIME__

The preprocessor expands this macro into the preprocessing time
as a string constant. The date string constant takes the form
hh:mm:ss (ANSI standard).

__VERSION__

Defined as a string constant giving the version number of the
compiler used to compile this module.

_VERSIONNUM__

Defined as a numeric variant of __VERSION__ constructed from
the version number of the compiler. Eight bits are used for each
component in the version number, and the most significant byte
of the value represents the most significant version component.
For example, a compiler with version 7.1.0.0 defines
__VERSIONNUM__ as 0x07010000 and 7.1.1.10 would define
__VERSIONNUM__ to be 0x0701010A.

__VISUALDSPVERSION__

The preprocessor defines this macro to be an eight-digit hexadeci-
mal representation of the VisualDSP++ release, in the form
OxMMmmuurr, where:

— MM is the major release number

— mm is the minor release number

— uu is the update number

—rris “00”, and is reserved for future use

For example, VisualDSP++5.0 Update 1 would be 0x05000100.

__WORKAROUNDS_ENABLED

Defines this macro to be 1 if any hardware workarounds are
implemented by the compiler. This macro is set if the
-si-revision switch (on page 1-74) has a value other than
“none” or if any specific workaround is selected by means of the
-workaround switch (on page 1-81).

Writing Preprocessor Macros

A macro is a user-defined name or string for which the preprocessor
substitutes a user-defined block of text. Use the ftdefine preprocessor
command to create a macro definition. When a macro definition has

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-405

for Blackfin Processors

C/C++ Preprocessor Features

arguments, the block of text the preprocessor substitutes can vary with
each new set of arguments.

Compound Macros

Whenever possible, use inline functions rather than compound macros.
If compound macros are necessary, define such macros to allow invocation
like function calls. This makes your source code easier to read and main-
tain. If you want your macro to extend over more than one line, you must
escape the newlines with backslashes.

The following two code segments define two versions of the macro
SKIP_SPACES.

/* SKIP_SPACES, regular macro */
ffdefine SKIP_SPACES(p, Tlimit) { \

char *Tim = (1imit); \
while (p != Tim) { A\
if (*(p)++ =" ") {\
(p)--; \

break; \

} \

} \

/* SKIP_SPACES, enclosed macro */
fidefine SKIP_SPACES(p, limit) \

do { \

char *Tim = (Timit); \

while ((p) = 1im) [\

if (*(p)++ =" ") {\
(p)--3 \

break; \

} \

1-406 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

} \
b while (0)

Enclosing the first definition within the do {..} while (0) pair changes
the macro from expanding to a compound statement to expanding to a
single statement. With the macro expanding to a compound statement,
you would sometimes need to omit the semicolon after the macro call in
order to have a legal program. This leads to a need to remember whether a
function or macro is being invoked for each call and whether the macro
needs a trailing semicolon or not. With the do {..} while (0) construct,
you can treat the macro as a function and put the semicolon after it.

For example,

/* SKIP_SPACES, enclosed macro, ends without *;’ */
if (*p 1= 0)

SKIP_SPACES (p, Tim);
else ..

This expands to:

if (*p = 0)
do {

b while (0);
else
Without the do {..} while (0) construct, the expansion would be:

if (*p 1= 0)
{

Vs /* Probably not intended syntax */

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-407
for Blackfin Processors

C/C++ Run-Time Model and Environment

C/C++ Run-Time Model and
Environment

This section describes the Blackfin processor C/C++ run-time model and
run-time environment. The C/C++ run-time model, which applies to
compiler-generated code, includes descriptions of layout of the stack, data
access, and call/entry sequence. The C/C++ run-time environment
includes the conventions that C/C++ routines must follow to run on
Blackfin processors. Assembly routines linked to C/C++ routines must
follow these conventions.

Analog Devices recommends that assembly programmers maintain
stack conventions.

Figure 1-2 provides an overview of the run-time environment issues that
must be considered when writing assembly routines that link with C/C++
routines including the “C/C++ Run-Time Header and Startup Code” on
page 1-410. The run-time environment issues include the following items.

* Memory usage conventions
“Using Memory Sections” on page 1-422
“Using Multiple Heaps” on page 1-423
“Using Data Storage Formats” on page 1-443
* Register usage conventions
“Dedicated Registers” on page 1-432
“Call-Preserved Registers” on page 1-433
“Scratch Registers” on page 1-433
“Stack Registers” on page 1-435

1-408 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

* Program control conventions

)
Required
Memory
—
)
Compiler
Registers

A
)

User
Registers

—
)
Compiler
Registers
—
)
Compiler
Registers

~—
)

Compiler
Registers

~—

“Managing the Stack” on page 1-435

Compiler

“Transferring Function Arguments and Return Value” on

page 1-439

[C/C++

A

A

Interface
Macros

A

4

A

!

Compiler
Registers

)

)
Stack

Usage
—

)
Argument
Transfer

—_

)

Function
Address

—_

)
Data
Storage

—

C/C++
Run-Time

Header

Figure 1-2. Assembly Language Interfacing Overview

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

1-409

C/C++ Run-Time Model and Environment

C/C++ Run-Time Header and Startup Code

The C/C++ run-time (CRT) header is code that is executed after the
processor jumps to the start address on reset. The CRT header sets the
machine into a known state and calls _main. CRT code can be included in
a project in one of the following ways:

* The Project Wizard can be used to automatically generate a cus-

tomized CRT in a project. Refer to VisualDSP++ Help for details.

* The macro USER_CRT can be defined at link-time to specify a cus-
tom user-defined CRT object is to be included in the project build.

* Default CRT objects are provided for all platforms in the run-time
libraries, and are linked against for all C/C++ projects if the
link-time macro USER_CRT is not defined.

This section contains:
e “CRT Header Overview”

e “CRT Description” on page 1-412

CRT Header Overview

The CRT ensures that when execution enters _main, the processor’s state
obeys the C application binary interface (ABI), and that global data
declared by the application have been initialized as required by the C/C++
standards. It arranges things so that _main appears to be “just another
function” invoked by the normal function invocation procedure.

Not all applications require the same configuration. For example, C++
constructors are invoked only for applications that contain C++ code.
The list of optional configuration items is long enough that determining
whether to invoke each one in turn at runtime would be overly costly.

For this reason, the Project Wizard allows a CRT to be generated which
includes the minimal amount of code necessary given the user-selected

1-410 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

options. Additionally, the pre-built CRTSs are supplied in several different

configurations, which can be specified at link-time via LDF macros.

The CRT header is used for projects that use C, C++, and VDK.
Assembly language projects do not provide a default run-time header;
you must provide your own.

The source assembly file for the pre-compiled CRTs is located under the
Visual DSP++ installation directory, in the file basiccrt.s, in the
directory Blackfin/1ib/src/1ibc/crt. Each of the pre-built CRT objects
are built from this default CRT source. The different configurations are
produced by the definition of various macros.

The list of operations performed by the CRT (startup code) can include
(not necessarily in the following order):

 Setting registers to known/required values

* Disabling hardware loops

* Disabling circular buffers

* Setting up default event handlers and enabling interrupts
* Initializing the stack pointer and frame pointer

* Enabling the cycle counter

* Configuring the memory ports used by the two DAGs
* Copying data from the flash memory to RAM

* Initializing device drivers

 Setting up memory protection and caches

* Changing processor interrupt priority

* Initializing profiling support

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-411
for Blackfin Processors

C/C++ Run-Time Model and Environment

* Invoking C++ constructors
* Invoking _main, with supplied parameters
* Invoking _exit on termination

What the CRT Does Not Do

The CRT does not initialize actual memory hardware. The initialization
of the external SDRAM is left to the boot loader because it is possible (and
even likely) that the CRT itself will need to be moved into external mem-
ory before being executed.

CRT Description

The following sections describe the main operations that may be per-
formed by the CRT, dependent on the selected Project Wizard options, or
which of the pre-built CRTs is included in the build.

Declarations

The CRT begins with preprocessor directives that “include” the
appropriate platform-definition header and set up a few constants:

e 1VB1 and IVBh give the address of the event vector table

* UNASSIGNED_VAL is a bit pattern that indicates that the regis-
ter/memory location has not yet been written to by the application.
See “Mark Registers” on page 1-417 and “Terminate Stack Frame
Chain” on page 1-418.

1-412 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

INTERRUPT_BITS is the default interrupt mask. By default, it enables
the lowest-priority interrupt, IVG15. This default mask can also be
overridden at runtime by your own version of
__dinstall_default_handlers; see “Event Vector Table” on

page 1-413 for details.

For some platforms, SYSCFG_VALUE is the initialization value for the
system configuration register (SYSCFG).

Start and Register Settings

The CRT declares its first code label as start. This required label is
referenced by .1df files, which explicitly resolve this label to the
processor’s reset address.

First, the CRT disables facilities that could be enabled on start-up, due to
their random power-up states, as follows:

SYSCFG is set to SYSCFG_VALUE, according to anomaly 05-00-0109
for ADSP-BF531, ADSP-BF532, ADSP-BF533, and ADSP-BF561

processors.

Hardware loops are disabled to prevent jump-back-to-loop-start
behavior, should the “loop bottom” register correspond to the start
of an instruction.

Circular buffer lengths are set to zero. The CRT makes use of the
Iregs and calls functions that may use them. Furthermore, the
C/C++ ABI requires that circular buffers are disabled on entry to
(and exit from) compiled functions, so the circular buffers must be
disabled before invoking _main.

Event Vector Table

The reset vector (fixed) and emulation events (not touched by the C ABI),
are not defined by the CRT. The processor’s lowest-priority event, 1VG15,
is set to point to supervisor_mode, a label that appears later in the CRT

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-413
for Blackfin Processors

C/C++ Run-Time Model and Environment

and is used to facilitate the switch to supervisor mode. The remaining
entries of the event vector table are loaded with the address of the
__unknown_exception_occurred dummy event handler, which results in

defined behavior to aid debugging.

Additionally, if caching or memory protection is enabled (either selected
via the Project Wizard, or configured by the user-defined value of the
___cplb_ctrl variable), an exception handler is required to process possi-
ble events raised by the memory system. Therefore, the default handler,
___cplb_hdr, is installed into the exception entry of the event vector table.

For details on ___cplb_ctrl, refer to “Caching and Memory Protection”

on page 1-373.

You may install additional handlers; for your convenience, the CRT calls a
function to do this. The function, __install_default_handlers, is an
empty stub, which you may replace with your own function that installs
additional or alternative handlers, before the CRT enables events. The
function’s C prototype is:

p J—

short _install_default_handlers(short mask);

The CRT passes the default enable mask, (INTERRUPT_BITS), as a
parameter, and considers the return value to be an updated enable mask.
If you install additional handlers, you must return an updated enable
mask to reflect this.

See the VisualDSP++ Kernel (VDK) User's Guide for details on how
to configure ISRs for applications that use VDK.

Stack Pointer and Frame Pointer

The stack pointer (SP) is set to point to the top of the stack, as defined in
the .1df file by the symbol 1df_stack_end. Specifically, the stack pointer
is set to point just past the top of the stack. Because stack pushes are
pre-decrement operations, the first push moves the stack pointer so that it
refers to the actual stack top.

1-414 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

The user stack pointer (USP) and frame pointer (FP) are set to point to the
same address.

Twelve bytes are then claimed from the stack. This is because the C ABI
requires callers to allocate stack space for the parameters of callees, and
that all functions require at least twelve bytes of stack space for registers
RO-R2. Therefore, the CRT claims these twelve bytes as the incoming
parameters for functions called before invoking _main.

Cycle Counter

The CRT enables the cycle counter, so that the CYCLES and CYCLES2
registers are updated. This is not necessary for general program operation,
but is desirable for measuring performance.

DAG Port Selection

For ADSP-BF531, ADSP-BF532, ADSP-BF533, ADSP-BF534,
ADSP-BF536, ADSP-BF537, ADSP-BF538, ADSP-BF539, and
ADSP-BF561 processors, the CRT configures the DAGs to use different
ports for accessing memory. This reduces stalls when the DAGs issue
memory accesses in parallel.

Memory Initialization
Memory initialization is a two-stage process:

1. At link-time, the Memory Initializer utility processes the . dxe file
to generate a table of code and data memory areas that must be
initialized during booting.

2. At runtime, when the application starts, the run-time library
function _mi_initialize processes the table to copy the code and
data from the flash device to volatile memory.

If the application has not been processed by the Memory Initializer, or if
the Memory Initializer did not find any code or data that required such
movement, the _mi_initialize function returns immediately. If the

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-415
for Blackfin Processors

C/C++ Run-Time Model and Environment

“Enable run-time memory initialization” option is selected in the Project
Wizard, the generated CRT includes a call to _mi_initialize. The
default CRT source always includes the call.

The CRT does not enable external memory. The configuration of
physical memory hardware is the responsibility of the boot loader
and must be complete before the CRT is invoked.

Device Initialization
The process of initializing device drivers that support stdio involves:
1. Initializing the internal file tables

2. Invoking the initialization routine for each device driver registered
at build-time

3. Associating stdin, stdout, and stderr with the default device
driver

By default, this process occurs automatically when a device is first
accessed. For information on the device drivers supported by stdio, refer

to “Extending I/O Support to New Devices” on page 3-44.

If the C/C++ 1/0O and I/0O device support option on the Run-Time
Initialization page of the Project Wizard is selected (which is the default),
explicit device initialization is included in the generated CRT. Support for
the device drivers for stdio may be disabled under the Project Wizard by
de-selecting the option.

CPLB Initialization

When cacheability protection lookaside buffers (CPLBs) are to be
enabled, the CRT calls the function _cplb_init, passing the value of
___cplb_ctrl as a parameter.

The declaration and initialization of the global variable ___cp1b_ctr1 is
included in the generated CRT if memory protection or caching has been

1-416 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

selected through the Project Wizard. The default library definition of the
variable is used if they are not overridden by a declaration in user code.
Refer to “Caching and Memory Protection” on page 1-373.

Lower Processor Priority

The CRT lowers the process priority to the lowest supervisor mode level
(1vG15). It first raises IVG15 as an event, but this event cannot be serviced
while the processor remains at the higher priority level of Reset.

The CRT sets RETI to be the sti11_interrupt_in_ipend label, at which
there is an RTI instruction, and is the next instruction to be executed.
This results in all bits representing interrupts of a higher priority than
I1VG15 being cleared. In normal circumstances, this would include only the
reset interrupt, but occasionally this may not be the case (for example,

if the program is restarted during an ISR).

The pending 1VG15 interrupt is now allowed to proceed, and the handler
set up earlier in the CRT (at the label supervisor_mode) is executed.
Thus, execution flows from the “return” from Reset level to the
supervisor_mode label, while changing processor mode from the highest
supervisor level to the lowest supervisor level.

If other events are enabled (memory system exceptions or other
events installed via your own version of the default handlers stub),
they could be taken between the return from Reset and entering
1VG15. Therefore, the remaining parts of the CRT may not execute
when event handlers are triggered.

The CRT’s first action after entering IVG15 is to re-enable the interrupt
system so that other higher-priority interrupts can be processed.

Mark Registers

The UNASSTGNED_FILL value is written into R2-R7 registers and P0-P5
registers if the Project Wizard option “Initialize data registers to a known

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-417
for Blackfin Processors

C/C++ Run-Time Model and Environment

value” is selected (or if the UNASSIGNED_FILL macro is defined when
rebuilding the default CRT source).

Terminate Stack Frame Chain

Each stack frame is pointed to by the frame pointer and contains the pre-
vious values of the frame pointer and RETS. The CRT pushes two instances
of UNASSIGNED_VAL onto the stack, indicating that there are no further
active frames. The C++ exception support library uses these markers to
determine whether it has walked back through all active functions without
finding one with a catch for the thrown exception.

Again, the CRT allocates twelve bytes for outgoing parameters of func-
tions that will be called from the CRT.

Profiler Initialization

If profiling is selected (via the Project Wizard option “Enable Profiling”),
the CRT initializes the instrumented-code profiling library by calling
monstartup. This routine zeroes all counters and ensures that no profiling
frames are active. The instrumented-code profiling library uses stdio
routines to write the accumulated profile data to stdout or to a file.

Instrumented-code profiling is specified with the -p, -p1, and -p2
compiler switches. (See “-p[1|2]” on page 1-65.) These are added to the
compilation options if necessary by the Project Wizard. If any of the
object files were compiled to include this profiling, the prelinker detects
this and sets link-time macros, which selects a profiler-enabled pre-built

CRT object (if the Project Wizard is not in use).

C++ Constructor Invocation

The ___ctorloop function runs all of the global-scope constructors, and is
always called from the Project Wizard-generated CRT and from the C++
enabled pre-built CRTs (which the .1df file selects if a C++ compiled
object has been detected).

1-418 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

For more information, see “Constructors and Destructors of Global Class
Instances” on page 1-419.

Multi-Threaded Applications

The CRT can be built to work in a multi-threaded environment.
The _ADI_THREADS macro guards the code suitable for multi-threaded
applications.

Argument Parsing

The __getargv function is called to parse any provided arguments
(normally an empty list) into the __Argv global array. This function
returns the number of arguments found which, along with __Argv, form
the argc and argv parameters for _main. Within the default CRT source,
if FIOCRT is not defined, argc is set to zero and argv is set to an empty list,

statically defined within the CRT.

Calling _main and _exit

The _main function is called, using the argc and argv just defined.
Embedded programs are not expected to return from _main, but many leg-
acy and non-embedded programs do. Therefore, the return value from
_main is immediately passed to _exit to gracefully terminate the applica-
tion. _exit is not expected to return.

Constructors and Destructors of Global Class
Instances

Constructors for global class instances are invoked by the C/C++ run-time
header during start-up. Several components allow this to happen:

* The associated data space for the instance

e The associated constructor (and destructor, if one exists) for the
class

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-419
for Blackfin Processors

C/C++ Run-Time Model and Environment

* A compiler-generated “start” routine
* A compiler-generated table of such “start” routines
e A compiler-constructed linked-list of destructor routines
e The run-time header itself
The interaction of these components is as follows.

The compiler generates a “start” routine for each module that contains
globally-scoped class instances that need constructing or destructing.
There is at most one “start” routine per module; it handles all the
globally-scoped class instances in the module:

e For each such instance, it invokes the instance’s constructor. This
may be a direct call, or it may be inlined by the compiler optimizer.

 If the instance requires destruction, the “start” routine registers this
fact for later, by including pointers to the instance and its destruc-
tor into a linked list.

The start routine is named after the first such instance encountered,
though the classes are not guaranteed to be constructed or destructed in
any particular order (with the exception that destructors are called in the
reverse order of the constructors). Such instances should not have any
dependency on construction order; the -check-init-order switch

(on page 1-87) is useful for verifying this during system development, as it
plants additional code to detect uses of unconstructed objects during
initialization.

A pointer to the “start” routine is placed into the ctor section of the
generated object file. When the application is linked, all ctor sections are
mapped into the same ctor output section, forming a table of pointers to
the “start” routines. An additional ctor1 object is appended to the end of
the table; this contains a terminating NULL pointer.

1-420 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

When the run-time header is invoked, it calls _ctor_loop(), which walks
the table of ctor sections, calling each pointed-to “start” function until it
reaches the NULL pointer from ctorl. In this manner, the run-time
header calls each global class instance's constructor, indirectly through the
pointers to “start” functions.

When the program reaches exit (), either by calling it directly or by
returning from main(), the exit () routine follows the normal process of
invoking the list of functions registered through the atexit() interface.
One of these is a function that walks the list of destructors, invoking each
in turn (in reverse order from the constructors).

This function is registered with atexit () via_mark_dtors(); the compiler
plants a call to this function at the start of every main() that is compiled in
C++ mode.

Functions registered with atexit() may not reference global class
instances, as the destructor for the instance may be invoked before
the reference is used.

Constructors, Destructors, and Memory Placement

By default, the compiler places the code for constructors and destructors
into the same section as any other function's code. This can be changed
either by specifying the section specifically for the constructor or destruc-
tor (see “#pragma section/#pragma default_section” on page 1-310 and
“Placement Support Keyword (section)” on page 1-192), or by altering
the default destination section for generated code (see “#pragma sec-
tion/#pragma default_section” on page 1-310 and “-section” on

page 1-72).

While normal compiler-generated code is placed into the CODE area, the
“start” routine is placed into the STI area. Both C0DE and STI default to
the same section, but may be changed separately using #pragma
default_section or the -section switch (since the “start” function is an

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-421
for Blackfin Processors

C/C++ Run-Time Model and Environment

internal function generated by the compiler, its placement cannot be
affected by #pragma section).

The pointer to the “start” routine is placed into the ctor section. This is
not configurable, as the invocation process relies on all of the “start”
routine pointers being in the same section during linking, so that they
form a table. It is essential that all relevant ctor sections are mapped
during linking; if a ctor section is omitted, the associated constructor will
not be invoked during start-up, and run-time behavior will be incorrect.

If destructors are required, the compiler generates data structures pointing
to the class instance and destructor. These structures are placed into the
default variable-data section (the DATA area).

Using Memory Sections

The C/C++ run-time environment requires that a specific set of memory
section names are used to place code in memory. In assembly language
files, these names are used as labels for the .SECTION directive. In the .1df
file, these names are used as labels for the output section names within the
SECTIONS{) command. For information on .1df file syntax and other
information on the linker, see the VisualDSP++ Linker and Utilities
Manual.

Code Storage

The code section, program, is where the compiler puts all the program
instructions that it generates when compiling the program. The cp1b_code
section exists so that memory protection management routines can be
placed into sections of memory that are always configured as being
available. A noncache_code section is mapped to memory that cannot be
configured as cache. The noncache_code section is used by the run-time

library (RTL).

Data Storage
The data section, datal, is where the compiler puts global and static data
in memory. The data section, constdata, is where the compiler puts data

1-422 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

that has been declared as const. By default, the compiler places global
zero-initialized data into a “BSS-style” section, called bsz, unless the com-
piler is invoked with the -no-bss option (on page 1-53). The cpib_data
section exists so that configuration tables used to manage memory protec-
tion can be placed in memory areas that are always flagged as accessible.

Run-Time Stack

The run-time stack is positioned in memory section stack and is required
for the run-time environment to function. The section must be mapped in
the . 1df file.

The run-time stack is a 32-bit-wide structure, growing from high memory
to low memory. The compiler uses the run-time stack as the storage area
for local variables and return addresses. See “Managing the Stack” on
page 1-435 for more information.

Run-Time Heap Storage

The run-time heap section, heap, is where the compiler puts the run-time
heap in memory. When linking, use your .1df file to map the heap sec-
tion. To dynamically allocate and deallocate memory at run-time, the C
run-time library includes four functions:

malloc() calloc() realloc() free()

Additionally, the C++ new and delete operators are available to allocate
and free memory from the run-time heap. By default, all heap allocations
are from the heap section of memory. The .1df file must define symbolic
constants 1df_heap_space, 1df_heap_end, and 1df_heap_length to allow
the heap management routines to function.

Using Multiple Heaps

The Blackfin C/C++ run-time library supports the standard heap manage-
ment functions calloc, free, malloc, and realloc. By default, a single
heap, called the default heap, serves all allocation requests that do not

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-423
for Blackfin Processors

C/C++ Run-Time Model and Environment

explicitly specify an alternative heap. The default heap is defined in the

standard linker description file and the run-time header.

Any number of additional heaps can be defined. These heaps serve alloca-
tion requests that are explicitly directed to them. These additional heaps
can be accessed via the extension routines heap_calloc, heap_free,
heap_malloc, and heap_realloc.

Multiple heaps allow the programmer to serve allocations using
fast-but-scarce memory or slower-but-plentiful memory as appropriate.

The following sections describe how to define a heap, work with heaps,
use the heap interface, and free space in the heap.

Defining a Heap

Heaps can be defined at link-time or at runtime. In both cases, a heap has
three attributes:

* Start (base) address (the lowest usable address in the heap)
* Length (in bytes)
e User identifier (userid, a number >= 1)

The default system heap, defined at link-time, always has userid 0.

In addition, heaps have indices. This is like the userid, except that the
index is assigned by the system. All the allocation and deallocation
routines use heap indices, not heap user IDs. A userid can be converted
to its index using _heap_lookup(). (See “Defining Heaps at Link-Time”.)
Be sure to pass the correct identifier to each function.

Defining Heaps at Link-Time

Link-time heaps are defined in the heaptab.s file in the library, and their
start address, length, and userid are held in three 32-bit words. The heaps
are in a table called “_heap_table”. This table must contain the default

1-424 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

heap (userid 0) first and must be terminated by an entry that has a base
address of zero.

The addresses placed into this table can be literal addresses, or they can be
symbols that are resolved by the linker. The default heap uses symbols
generated by the linker through the .1df file.

The _heap_table table can live in constant memory. It is used to initialize
the run-time heap structure,
made. When allocating from any heap, the library initializes ___heaps
using the data in _heap_table, and sets ___nheaps to be the number of
available heaps.

heaps, when the first request to a heap is

Because the allocation routines use heap indices instead of heap user IDs,
a heap installed in this fashion must have its userid mapped into an index
before it can be used explicitly:

int _heap_lookup(int userid); // returns index

Defining Heaps at Runtime

Heaps may also be defined and installed at runtime, using the
heap_install() function:

int _heap_install(void *base, size_t length, int userid);

This function can take any section of memory and start using it as a heap.
It returns the heap index allocated for the newly installed heap, or a nega-
tive value if there was some problem. (See “Tips for Working With
Heaps™.)

Reasons why _heap_install() may return an error status include, but are
not limited to:

* A heap using the specified userid already exists

* A new heap appears too small to be usable (length too small)

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-425
for Blackfin Processors

C/C++ Run-Time Model and Environment

Tips for Working With Heaps

Heaps may not start at address zero (0x0000 0000). This address is
reserved and means “no memory could be allocated”. It is the null pointer
on the Blackfin platform.

Not all memory in a heap is available to users. 32 bytes per heap and
12 bytes per allocation (rounded to ensure the allocation is 8-byte aligned)

are used for housekeeping. Thus, a heap of 256 bytes is unable to serve
four blocks of 64 bytes.

Memory reserved for housekeeping precedes the allocated blocks. Thus,
if a heap begins at 0x0800 0000, this particular address is never returned to
the user program as the result of an allocation request; the first request
returns an address some way into the heap.

The base address of a heap must be appropriately aligned for an 8-byte
memory access. This means that allocations can then be used for vector
operations.

The lengths of heaps should be multiples of powers of two for most
efficient space usage. The heap allocator works in block sizes such as 256,

512, or 1024 bytes.

For C++ compliance, calls to malloc and calloc with a size of 0 will allo-
cate a block of size 1.

Standard Heap Interface

The standard functions, calloc and malloc, allocate a new object from
the default heap. If realloc is called with a null pointer, it too allocates a
new object from the default heap.

Previously allocated objects can be deallocated with the free or realloc
functions. When a previously allocated object is resized with realloc, the
returned object is in the same heap as the original object.

1-426 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

The space_unused function returns the number of bytes unallocated in
the heap with index 0. Note that you may not be able to allocate all of this
space due to heap fragmentation and the overhead that each allocated

block needs.

Allocating C++ STL Objects to a Non-Default Heap

C++ STL objects can be placed in a non-default heap through use of a
custom allocator. To do this, you must first create your custom allocator.
Below is an example custom allocator that you can use as a basis for your
own. The most important part of customalloc.h in most cases is the
allocate function, where memory is allocated to the STL object. Cur-
rently, the pertinent line of code assigns to the default heap (0):

Ty* ty = (Ty*) heap_malloc(0, n * sizeof(Ty));

Simply by changing the first parameter of heap_malloc(), you can allocate
to a different heap:

* 0 is the default heap

e 1 is the first user heap

* 2 is the second user heap
* Andsoon

Once you have created your custom allocator, you must inform your STL
object to use it. Note that the standard definition for “list™:

Tist<int> a;
is the same as writing:

1ist<int, allocator<int> > a;

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-427
for Blackfin Processors

C/C++ Run-Time Model and Environment

« »

where “allocator” is the default allocator. Therefore, we can tell list “a” to
use our custom allocator as follows:

1ist<int, customallocator<int> > a;

Once created, the list “a” can be used as normal. Also, example.cpp
(below) is a simple example that shows the custom allocator being used.

customalloc.h

template <class Ty>
class customallocator {
public:
typedef Ty value_type;
typedef Ty* pointer;
typedef Ty& reference;
typedef const Ty* const_pointer;
typedef const Ty& const_reference;

typedef size_t size_type;
typedef ptrdiff_t difference_type;

template <class Other>
struct rebind { typedef customallocator<Other> other; };
pointer address(reference val) const { return &val; }
const_pointer address(const_reference val)

const { return &val; }
customallocator(){}
customallocator(const customallocator<Ty>&){}
template <class Other>
customallocator(const customallocator<Other>&) {}
template <class Other>

customallocator<Ty>& operator=(const customallocator&)
{ return (*this); }

pointer allocate(size_type n, const void * = 0) {

1-428 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Ty* ty = (Ty*) heap_malloc(0, n * sizeof(Ty));

cout << "Allocating 0x" << ty << endl;
return ty;

void deallocate(void* p, size_type) |
cout << "Deallocating Ox" << p << endl;
if (p) free(p);

void construct(pointer p, const Ty& val)
{ new((void*)p)Ty(val); }
void destroy(pointer p) { p->~Ty(); }
size_type max_size() const { return size_t(-1);

example.cpp

#Hinclude <iostream>
#include <list>

Compiler

#include <customalloc.h> // include your custom allocator

using namespace std;

main(){
cout << "creating list" << endl;
list <int, customallocator<int> > a;

// create Tist with custom allocator

cout.setf(ios_base::hex,ios_base::basefield);

cout << "pushing some items on the back" << endl;
a.push_back(Oxaaaaaaaa); // push items as usual

a.push_back(Oxbbbbbbbb);
while(la.empty()){
cout << "popping:0x" << a.front() << endl;
//read item as usual
a.pop_front(); //pop items as usual

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

1-429

C/C++ Run-Time Model and Environment

cout << "finished." << endl;

Using the Alternate Heap Interface

The C run-time library provides the alternate heap interface functions
heap_calloc, heap_free, heap_malloc, and heap_realloc. These routines
work in exactly the same way as the corresponding standard functions
without the heap_ prefix, except that they take an additional argument
that specifies the heap index.

For example,

void *_heap_calloc(int idx, size_t nelem, size_t elsize)
void *_heap_free(int idx, void *)

void *_heap_malloc(int idx, size_t length)

void *_heap_realloc(int idx, void *, size_t length)

The actual entry point names for the alternate heap interface routines have
an initial underscore. The std1ib.h standard header file defines macro
equivalents without the leading underscores.

Note that for

heap_realloc(idx, NULL, Tength)
the operation is equivalent to
heap_malloc(idx, length)
However, for

heap_realloc(idx, ptr, Tength)

where ptr != NULL, the supplied idx parameter is ignored; the reallocation
is always done from the heap that ptr was allocated from, even if a memcpy
function is required within the heap.

1-430 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Similarly,
heap_free(idx, ptr)

ignores the supplied index parameter, which is specified only for consis-
tency—the space indicated by ptr is always returned to the heap from
which it was allocated.

The heap_space_unused(int idx) function returns the number of bytes
unallocated in the heap with index idx. The function returns -1 if there is
no heap with the requested heap index.

C++ Run-Time Support for the Alternate Heap Interface

The C++ run-time library provides support for allocation and release of
memory from an alternative heap via the new and delete operators.

Heaps should be initialized with the C run-time functions as described.
These heaps can then be used via the new and delete mechanism by sim-
ply passing the heap index to the new operator. There is no need to pass
the heap index to the delete operator as the information is not required
when the memory is released.

The routines are used as in the example below.

ffinclude <heapnew>

char *alloc_string(int size, int heapidx)

{
char *retVal = new(heapidx) charl[sizel;
return retVal;

void free_string(char *aString)
{
delete aString;

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-431
for Blackfin Processors

C/C++ Run-Time Model and Environment

Freeing Space

When space is “freed”, it is not returned to the “system”. Instead, freed
blocks are maintained on a free list within the heap in question. The
blocks are coalesced where possible.

p

It is possible to reinitialize a heap, emptying the free list and returning all
the space to the heap itself, using the _heap_init function:

int _heap_init(int index)

This returns zero for success, and nonzero for failure. Note, however, that
this discards all records within the heap, so it may not be used if there are
any live allocations on the heap still outstanding,.

Dedicated Registers

The C/C++ run-time environment specifies a set of registers whose con-
tents should not be changed except in specific defined circumstances.

If these registers are changed, their values must be saved and restored.
The dedicated register values must always be valid for every function call
(especially for library calls) and for any possible interrupt.

The dedicated registers are SP, FP, and L0-L3.

* SPand FP are the stack pointer and the frame pointer registers,
respectively. The compiler requires that both point to valid 4-byte
aligned addresses within the stack section.

e The L0-L3 registers define the lengths of the DAG’s circular buf-
fers. The compiler uses the DAG registers, both in linear mode and
in circular buffering mode. The compiler assumes that the Length
registers are zero, both on entry to functions and on return from
functions, and ensures this is the case when it generates calls or
returns. Your application may modify the Length registers and use
the circular buffers, but you must ensure that the Length registers

1-432 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

are appropriately reset when calling compiled functions, or
returning to compiled functions. Interrupt handlers must save
and restore the Length registers, if using DAG registers.

Call-Preserved Registers

The C/C++ run-time environment specifies a set of registers whose con-
tents must be saved and restored. Your assembly function must save these
registers during the function’s prologue and restore the registers as part of
the function’s epilogue. The call-preserved registers must be saved and
restored if they are modified within the assembly function; if a function

does not change a particular register, it does not need to save and restore
the register. The registers are:

P3-P5

R4-R7

Scratch Registers

The C/C++ run-time environment specifies a set of registers whose
contents need not be saved and restored. Note that the contents of these
registers are not preserved across function calls.

Table 1-42 lists the scratch registers, supplying notes when appropriate.

Table 1-42. Scratch Registers

Scratch Register Notes

PO Used as the aggregate return pointer
P1-P2

RO-R3

The first three words of the argument list are always passed in R0, R1, and
R2 if present (R3 is not used for parameters).

LBO-LB1

LCO-LCL

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-433

for Blackfin Processors

C/C++ Run-Time Model and Environment

Table 1-42. Scratch Registers (Cont'd)

Scratch Register Notes

LTO-LTL

ASTAT Including CC

AO-Al

10-13

BO-B3

MO-M3

Loop Counters, Overlays, and DMA'd Code

The compiler does not ensure that the loop counter registers (LC0 and LC1)
are zero on entry or exit from a function. This does not normally cause a
problem because the exit point of a hardware loop is unique within the
program, and the compiler ensures that the only path to the exit is
through the corresponding loop setup instruction.

If overlays are being used, or if code is being DMA’d into faster memory
for execution, this may no longer be the case. It is possible for an overlay
or a DMA’d function to set up a loop that terminates at address A, and
then for a different overlay or DMA’d function to have different code
occupying address A at a later point in time. If a hardware loop is still
active—LC0 or LC1 is non-zero—at the point when the instruction at
address A is reached, then undefined behavior results as the hardware loop
“jumps” back to the start of the loop.

Therefore, in such cases, it is necessary for the overlay manager or the
DMA manager to reset loop counters to ensure no hardware loops remain
active that might relate to the address range covered by the variant code.

1-434 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Stack Registers

The C/C++ run-time environment reserves a set of registers that control
the run-time stack. These registers may be modified for stack manage-
ment, but must be saved and restored. The stack registers include sp
(stack pointer) and FP (frame pointer).

Managing the Stack

The C/C++ run-time environment uses the run-time stack to store auto-
matic variables and return addresses. The stack is managed by a frame
pointer (FP) and a stack pointer (SP) and grows downward in memory,
moving from higher to lower addresses.

A stack frame is a section of the stack used to hold information about the
current context of the C/C++ program. Information in the frame includes
local variables, compiler temporaries, and parameters for the next
function.

The frame pointer serves as a base for accessing memory in the stack
frame. Routines refer to locals, temporaries, and parameters by their offset
from the frame pointer.

Figure 1-3 shows an example section of a run-time stack.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-435
for Blackfin Processors

C/C++ Run-Time Model and Environment

Incoming Arguments

argn

g Previous
ar.g.;' > Frame
arg 1

_/

Ep 44 Return Address RETS

Caller's (old) FP (OFP)
FP —>»

local var 1

Frame
local var n

Register Save Area

SP ——» Outgoing Arguments

Figure 1-3. Example Run-Time Stack

In Figure 1-3, the currently executing routine, Current (), was called by
Previous(), and Current() in turn calls Next (). The state of the stack is
as if Current () has pushed all the arguments for Next () onto the stack and
is just about to call Next ().

Stack usage for passing any or all of a function’s arguments
depends upon the number and types of parameters to the function.

1-436 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

As you write assembly routines, note that operations to restore stack and
frame pointers are the responsibility of the called function.

To enter and perform a function, follow this sequence of steps:

* Linking Stack Frames — The return address and the caller’s FP are
saved on the stack, and FP is set pointing to the beginning of the
new (callee) stack frame. SP is decremented to allocate space for
local variables and compiler temporaries.

* Register Saving — Any registers that the function needs to preserve
are saved on the stack frame, and SP is set pointing to the top of the
stack frame.

At the end of the function, these steps must be performed:

* Restore Registers — Any registers that had been preserved are
restored from the stack frame, and SP is set pointing to the top of
the stack frame.

* Unlinking Stack Frame — The frame pointer is restored from the
stack frame to the caller’s FP, RETS is restored from the stack frame
to the return address, and SP is set pointing to the top of the caller’s
stack frame.

A typical function prologue would be:

LINK 16;
[--SPI=(R7:4);
SP += -16;

[FP+8]=R0; [FP+12]1=R1; [FP+16]=R2;
where:

LINK 16;

is a special linkage instruction that saves the return address and the
frame pointer, and updates the stack pointer to allocate 16 bytes
for local variables.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-437
for Blackfin Processors

C/C++ Run-Time Model and Environment

[--SPI=(R7:4);
allocates space on the stack and saves the registers in the save area.

SP += -16;

allocates space on the stack for outgoing arguments. Always allo-
cate at least 12 bytes on the stack for outgoing arguments, even if
the function being called requires less than this.

[FP+81=R0O; [FP+12]=R1; [FP+16]=R2;
saves the argument registers in the argument area.

A matching function epilogue would be:

SP += 16;

PO=[FP+47;

(R7:4)=[SP++1;

UNLINK;

JUMP (PO);

where:
SP += 16;
reclaims the space on the stack that was used for outgoing
arguments.
PO=[FP+4]
loads the return address into register PO.
(R7:4)=[SP++];
restores the registers from the save area and reclaims the area.
UNLINK;
is a special instruction that restores the frame pointer and stack
pointer.
JUMP (PO);
returns to the caller.

1-438 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

“Transferring Function Arguments and Return Value” on
page 1-439 provides additional details on function call
requirements.

Transferring Function Arguments and Return Value

The C/C++ run-time environment uses a set of registers and the run-time
stack to transfer function parameters to assembly routines. Your assembly
language functions must follow these conventions when they call (or when
called by) C/C++ functions. This section describes:

e “Passing Arguments” on page 1-439
e “Passing a C++ Class Instance” on page 1-441

* “Return Values” on page 1-441

Passing Arguments

The details of argument passing are most easily understood in terms of a
conceptual argument list. This is a list of words on the stack. Double argu-
ments are placed starting on the next available word in the list, as are
structures. Each argument appears in the argument list exactly as it would
in storage, and each separate argument begins on a word boundary.

The actual argument list is like the conceptual argument list except that
the contents of the first three words are placed in registers RO, R1, and R2.
Normally, this means that the first three arguments (if they are integers or
pointers) are passed in registers R0 to R2 with any additional arguments
being passed on the stack.

If any argument is greater than one word, it occupies multiple registers.
The caller is responsible for extending any char or short arguments to
32-bit values.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-439
for Blackfin Processors

C/C++ Run-Time Model and Environment

When calling a C function, at least twelve bytes of stack space must
be allocated for the function’s arguments, corresponding to RO-R2.
This applies even for functions with fewer than 12 bytes of argu-
ment data, or that have fewer than three arguments. Note that the
called function is permitted to modify the contents of this stack
space.

The details of argument passing do not change for variable argument lists.

For example, a function declared as follows may receive one or more
arguments.

int varying(char *fmt, ...) { /* ... */ }

As with other functions, the first argument, fmt, is passed in R0, and other
arguments are passed in R1, and then R2, and then on the stack, as
required.

Variable argument lists are processed using the macros defined in the
stdarg.h header file. The va_start () function obtains a pointer to the list
of arguments which may be passed to other functions, or which may be
walked by the va_arg() macro.

To support this, the compiler begins variable argument functions by
flushing RO, R1, and R2 to their reserved spaces on the stack:

_varying:
[SP+0] = RO;
[SP+4] = R1;
[SP+8] = RZ;

The va_start() function can then take the address of the last non-varying
argument (fmt, in the example above, at [SP+0]), and va_arg() can walk
through the complete argument list on the stack.

1-440 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Passing a C++ Class Instance

A C++ class instance function parameter is always passed by reference
when a copy constructor has been defined for the C++ class. If a copy con-
structor has not been defined for the C++ class then the C++ class instance
function parameter is passed by value.

Consider the following example.

class fr
{
public:
int v;
public:
fr () {}
fr (const fr& rcl) : v(rcl.v) {}

extern int fn(fr x);
frv;

int main()
return fn (Y);
}

The function call fn (Y) in main will pass the C++ class instance Y by
reference because a copy constructor for that C++ class has been defined
by fr (const fr& rcl) : v(rcl.v) {}.If this copy constructor were
removed, then Y would be passed by value.

Return Values

If a function returns a short or a char, the callee is responsible for sign- or
zero-extending the return value into a 32-bit register. So, for example, a
function that returns a signed short must sign-extend that short into RO.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-441
for Blackfin Processors

C/C++ Run-Time Model and Environment

Similarly, a function that returns an unsigned char must zero-extend that
unsigned char into RO.

* For functions returning aggregate values occupying fewer than or
equal to 32 bits, the result is returned in RO.

* For aggregate values occupying greater than 32 bits, and fewer than
or equal to 64 bits, the result is returned in register pair R0, R1.

* For functions returning aggregate values occupying more than 64
bits, the caller allocates the return value object on the stack and the
address of this object is passed to the callee as a hidden argument in
register PO.

Table 1-43 provides examples of passed parameters.

Table 1-43. Examples of Parameter Passing

Function Prototype Parameters Passed as Return Location
int test(int a, int b, a in RO, in RO
int c) b in R1,
c in R2
char test(int a, char b, |a in RO, in RO
char ¢) b in R1,
c in R2
int test(int a) a in RO in RO
int test(char a, char b, [a in RO, in RO
char c, char d, char e) b in R1,
c in R2,
d in [FP+207],
e in [FP+24]
int test(struct *a, int |a (addr) in RO, in RO
b, int c) b in R1,
c in R2
1-442 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

Table 1-43. Examples of Parameter Passing (Cont'd)

Function Prototype

Parameters Passed as

Return Location

const void *))

struct s2a { x.ta and x.ub in RO, in RO
char ta; x.vc in R1,
char ub; b in R2,
int vec;) ¢ in [FP+20]
int test(struct s2a x,
int b, int ¢)
struct foo *test(int a, a in RO, (address) in RO
int b, int ¢) b in R1,
c in R2
void gsort(void *base, base(addr) in RO,
int nel, int width, int nel in R1,
(*compare)(const void *, | idth in R2,

compare(addr) in [FP+20]

struct s2 { a in RO, in RO (s.t and s.u) and
char t; b in R1, in Rl (s.v)

char u; c in R2

int v;

}

struct s2 test(int a,

int b, int ¢)

struct s3 { a in RO, in *P0 (based on value
char t; b in R1, of PO at the call, not
char u: c in R2 necessarily at the

int v return)

int w;

}

struct s3 test(int a,

int b, int ¢)

Using Data Storage Formats

The sizes of intrinsic C/C++ data types are selected by Analog Devices so
that normal C/C++ programs execute with hardware-native data types,
and, therefore, at high speed. The C/C++ run-time environment uses the

Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

1-443

C/C++ Run-Time Model and Environment

intrinsic C/C++ data types and data formats that appear in Table 1-44 and
are shown in Figure 1-4 on page 1-449 and Figure 1-5 on page 1-450.

Table 1-44. Data Storage Formats and Data Type Sizes

Type Bit Size Number Representation sizeof returns
bool 8 bits signed 8-bit two’s complement 1
char 8 bits signed 8-bit two’s complement 1
unsigned char 8 bits unsigned 8-bit unsigned magnitude 1
short 16 bits signed 16-bit two’s complement 2
unsigned short 16 bits unsigned | 16-bit unsigned magnitude 2
int 32 bits signed 32-bit two’s complement 4
unsigned int 32 bits unsigned | 32-bit unsigned magnitude 4
Tong 32 bits signed 32-bit two’s complement 4
unsigned long 32 bits unsigned 32-bit unsigned magnitude 4
Tong long 64 bits signed 64-bit two’s complement 8
unsigned long long | 64 bits unsigned | 64-bit unsigned magnitude 8
pointer 32 bits 32-bit two’s complement 4
function pointer 32 bits 32-bit two’s complement 4
double 32 bits 32-bit IEEE single-precision 4
float 32 bits 32-bit IEEE single-precision 4
double 64 bits 64-bit IEEE double-precision | 8
Tong double 64 bits 64-bit IEEE 8
fract 16 bits signed s1.15 fract 2
Tong fract 32 bits signed s1.31 fract 4
unsigned short 16 bits unsigned | 0.16 fract 2
fract

unsigned fract 16 bits unsigned | 0.16 fract 2
unsigned long 32 bits unsigned | 0.32 fract 4
fract

1-444 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

Table 1-44. Data Storage Formats and Data Type Sizes (Contd)

Type Bit Size Number Representation sizeof returns
short accum 40 bits signed $9.31 fixed-point 8
accum 40 bits signed $9.31 fixed-point 8
Tong accum 40 bits signed $9.31 fixed-point 8
unsigned short 40 bits unsigned | 8.32 fixed-point 8
accum

unsigned accum 40 bits unsigned | 8.32 fixed-point 8
unsigned long 40 bits unsigned 8.32 fixed-point 8
accum

fractl6 16 bits signed 1.15 fract 2
fract32 32 bits signed 1.31 fract 4

The floating-point and 64-bit data types are implemented using
software emulation, and are expected to run more slowly than

N
N

hardware-supported native data types. The emulated data types are
float, double, Tong double, Tong long, and unsigned long long.

The native fixed-point types fract and accum are not available in
C++. In C, they are available only when the stdfix.h header file is
included.

The fract16 and fract32 are not actually intrinsic data types—
they are typedefs to short and Tong, respectively. In C, you need
to use built-in functions to do basic arithmetic. (See “Fractional
Value Built-In Functions in C++” on page 1-232.) You cannot do
fractl6*fractl6 and get the right result. In C++, for fract data,
the classes “fract” and “shortfract” define the basic arithmetic
operators, while in C, the native fixed-point types fract and accum
provide a more natural alternative to fract16 and fract32.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual

1-445

for Blackfin Processors

C/C++ Run-Time Model and Environment

Floating-Point Data Size

On Blackfin processors, the f1oat data type is 32 bits, and the double data
type default size is 32 bits. This size is chosen because it is the most effi-
cient. The 64-bit Tong double data type is available if more precision is
needed, although this is more costly because the type exceeds the data sizes
supported natively by hardware.

In the C language, floating-point literal constants default to the double
data type. When operations involve both float and double, the float
operands are promoted to double and the operation is done at doub1e size.
By having double default to a 32-bit data type, the Blackfin compiler
usually avoids additional expense during these promotions. This does not,
however, fully conform to the C and C++ standards which require that the
double type supports at least 10 digits of precision.

The -double-size-64 switch (on page 1-34) sets the size of the double
type to 64 bits if additional precision, or full standard conformance, is
required.

The -double-size-64 switch causes the compiler to treat the double data
type as a 64-bit data type, instead of a 32-bit data type. This means that
all values are promoted to 64 bits, and consequently incur more storage
and cycles during computation. The switch does not affect the size of the
float data type, which remains at 32 bits.

Consider the following case.
float add_two(float x) { return x + 2.0; } // has promotion

When compiling this function, the compiler promotes the float value x
to double, to match the literal constant 2.0. The addition becomes a
double operation, and the result is truncated back to a f1oat before being
returned.

By default, or with the -double-size-32 switch (on page 1-34), the pro-
motion and truncation operations are empty operations—they require no

1-446 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

work because the float and double types default to the same size. Thus,
there is no cost.

With the -double-size-64 switch, the promotion and truncation opera-
tions require work because the double constant 2.0 is a 64-bit value. The x
value is promoted to 64 bits, a 64-bit addition is performed, and the result
is truncated to 32 bits before being returned.

In contrast, since the literal constant 2.0f in the following example has an
“f” suffix, it is a float-type constant, not a double-type constant.

float add_two(float x) { return x + 2.0f; } // no promotion

Thus, both operands to the addition are of type f1oat, and no promotion
or truncation is necessary. This version of the function does not produce
any performance degradation when the -double-size-64 switch is used.

You must be consistent in your use of the -double-size-{32|64} switch.
Consider the two files, such as:

file x.c:

double add_nums(double x, double y) { return x + y; }

file y.c:
extern double add_nums(double, double);
double times_two(double val) { return add_nums(val, val); }

Both files must be compiled with the same usage of -double-size{32]64}.
Otherwise, times_two() and add_nums () will be exchanging data in mis-
matched formats, and incorrect behavior will occur. Table 1-45 shows the
results for the various permutations:

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-447
for Blackfin Processors

C/C++ Run-Time Model and Environment

Table 1-45. Use of the -double-size-{32|64} Switch

x.C y.c Result
defaule default Okay
default -double-size-32 Okay
-double-size-32 default Okay
“double-size-32 “double-size-32 Okay
-double-size-64 -double-size-64 Okay
-double-size-32 -double-size-64 Error
-double-size-64 -double-size-32 Error

If a file does not make use of any double-typed data, it may be compiled
with the -double-size-any switch (on page 1-34), to indicate this fact.
Files compiled in this way may be linked with files compiled with
-double-size-32 or with -double-size-64, without conflict.

Conflicts are detected by the linker and result in linker error 1911151,
“Input sections have inconsistent qualifiers”.

Floating-Point Binary Formats

The Blackfin compiler supports IEEE floating-point format.

IEEE Floating-Point Format

By default, the Blackfin compiler provides floating-point emulation using
IEEE single- and double-precision formats. Single-precision IEEE format
(Figure 1-4 on page 1-449) provides a 32-bit value, with 23 bits for the
mantissa, 8 bits for the exponent, and 1 bit for the sign. This format is
used for the float data type, and for the double data type by default and
when the -double-size-32 switch is used.

1-448 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Single Word (32 bits)
23 22 0
[T rrrrfrr PP PP PP PPy
1 |

Iy
Sign Bit 8-Bit Exponent Mantissa
Biased by +127

31
L]

Figure 1-4. Data Storage Format for Float and Double Types
In Figure 1-4, the single word (32-bit) data storage format equates to:

Sign 2(Exp0nent— 127)

-1 X 1. Mantissa X
where:

* Sign — Comes from the sign bit.

* Mantissa — Represents the fractional part of the mantissa, 23 bits.
(The “1.” is assumed in this format.)

* Exponent — Represents the 8-bit exponent.

Double-precision IEEE format (Figure 1-5 on page 1-450) provides a
64-bit value, with 52 bits for the mantissa, 11 bits for the exponent, and 1
bit for the sign. This format is used for the Tong double data type, and for
the double data type when the -double-size-64 switch is used.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-449
for Blackfin Processors

C/C++ Run-Time Model and Environment

at Memory Aadaress N at Miemory Aadress N+1
63 51
62 52 31 0
O T T T T T T T T T T LT
L Il |
Sign Bit 11-Bit Exponent Mantissa

Biased by +1023

Figure 1-5. Double-Precision IEEE Format

In Figure 1-5, the two-word (64-bit) data storage format equates to:

Si . E t—1023
— 1" X 1. Mantissax 250")

where:
e Sign — Comes from the sign bit.

* Mantissa — Represents the fractional part of the mantissa, 52 bits.
(The “1.” is assumed in this format.)

* Exponent — Represents the 11-bit exponent.
Variants of IEEE Floating-Point Support

The Blackfin compiler supports two variants of IEEE floating-point
support. These variants are implemented in terms of two alternative
emulation libraries, selected at link-time.

The two alternative emulation libraries are:

* The default IEEE floating-point library
It is a high-performance variant, which relaxes some of the IEEE
rules in the interest of performance. This library assumes that its

1-450 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

inputs will be value numbers, rather than Not-a-Number values.
This library can also be selected explicitly via the -fast-fp switch
(on page 1-38).

* An alternative IEEE floating-point library
It is a strictly-conforming variant, which offers less performance,
but includes all the input-checking that has been relaxed in the
default library. The strictly-conforming library can be selected via
the -ieee-fp switch (on page 1-45).

The default . 1df file links in the appropriate archive(s), depending on the
setting of the link-time macro IEEEFP. If the -ieee-fp switch has been
specified, the compiler defines the macro and the .1df file links the
application against the non-default, IEEE-conforming library. Conversely,
if the link-time macro IEEEFP is not defined, then the default .14df file
arranges for the application to be linked against the default, high-perfor-
mance, floating-point archives.

fract and accum Data Representation

The fract and accum types are native fixed-point types that can be used to
write code using saturating, fixed-point arithmetic. They should not be
confused with the fract16 and fract32 typedefs which may be used to
write fixed-point arithmetic via built-in functions only. The native
fixed-point types are discussed in “Using Native Fixed-Point Types” on
page 1-104.

The short fract and fract types represent a single 16-bit signed
fractional value, while the Tong fract type represents a 32-bit signed
fractional value. Both types have the same range, [-1.0,+1.0). However,
long fract has twice the precision.

The short fract, fract, and Tong fract data representations are shown
in Figure 1-6 on page 1-452.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-451
for Blackfin Processors

C/C++ Run-Time Model and Environment

Short fract, fract (1.15)

Bit 15 14 13 2 1 0

Weight | (-1) 2-1 2-2 2-13 2-14 | o-15

Long fract (1.31)

Bit 31 30 29 2 1 0

Weight | (-1) 21 22 2-29 230 | 231

Figure 1-6. Data Storage Format for short fract, fract, and 1ong fract

Therefore, to represent 0.25 in fract, the HEX representation would be
0x2000 (27%). For -0.25 in Tong fract, the HEX representation is 0xe000
0000 (-1+2°'427%). For -1, the HEX representation in fract is 0x8000.
short fract, fract, and Tong fract cannot represent +1 exactly, but they
get quite close with 0x7fff for short fract and fract, or Ox7fff ffff for
long fract.

The unsigned short fract and unsigned fract types represent a single
16-bit unsigned fractional value, while the unsigned Tong fract type rep-
resents a 32-bit unsigned fractional value. Both types have the same range,
[0.0,+1.0). However, unsigned long fract has twice the precision.

The unsigned short fract, unsigned fract and unsigned long fract
data representations are shown in Figure 1-7 on page 1-453.

Therefore, to represent 0.25 in unsigned fract, the HEX representation
would be 0x4000 (2'2). For 0.125 in unsigned long fract, the HEX is
0x2000 0000 (2’3). unsigned short fract, unsigned fract and unsigned

1-452 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Unsigned short fract, unsigned fract (0.16)

Bit 15 14 13 2 1 0

Weight 21 22 23 214 | 215 2-16

Unsigned long fract, unsigned fract (0.32)

Bit 31 30 29 2 1 0

Weight 21 22 23 2-30 | 2-31 2-32

Figure 1-7. Data Storage Format for unsigned short fract, unsigned
fract, and unsigned long fract

long fract cannot represent +1 exactly, but they get quite close with
Oxffff for unsigned short fract and unsigned fract, or Oxffff ffff
for unsigned long fract.

The short accum, accum, and Tong accum types represent a single 40-bit
signed fixed-point value. The three types have the same range,
[-256.0,+256.0). They should not be confused with the acc40 type, which

is a container for a value held in the accumulator register.

The short accum, accum, and Tong accum data representations are shown
in Figure 1-8 on page 1-454.

Therefore, to represent 12.25 in any of the signed accum types, the HEX
representation would be 0x06 2000 0000 (234224272). For -256.0, the
HEX representation in the signed accum types is 0x80 0000 0000. short
accum, accum, and Tong accum cannot represent +256.0 exactly, but they
get quite close with 0x7f ffff ffff.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-453
for Blackfin Processors

C/C++ Run-Time Model and Environment

short accum, accum, long accum (9.31)

Bit 39 38 37 2 1 0
Weight (_28) 27 26 2-29 230 [o-31
Sian Bit

Figure 1-8. Data Storage Format for short accum, accum, and Tong accum

The unsigned short accumand unsigned accum types represent a single
40-bit unsigned fixed-point value. The three types have the same range,
[0.0,+256.0).

The unsigned short accum, unsigned accum, and unsigned long accum
data representations are shown in Figure 1-9.

Unsigned short accum, unsigned accum, unsigned long accum (8.32)

Bit 39 38 37 2 1 0

Weight 27 26 25 2-30 231 | 9-32

Figure 1-9. Data Storage Format for unsigned short accum, unsigned
accum, and unsigned Tong accum

Therefore, to represent 12.25 in any of the unsigned accum types, the
HEX representation would be 0x0c 4000 0000 (234224272). unsigned
short accum, unsigned accum, and unsigned long accum cannot represent
+256.0 exactly, but they get quite close with 0xff ffff ffff.

1-454 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Fractl6 and Fract32 Data Representation

The fract16 type represents a single 16-bit signed fractional value, and
the fract32 type represents a 32-bit signed fractional value. Both types
have the same range, [-1.0,+1.0). However, fract32 has twice the
precision. They are not intrinsic data storage formats, they are simply
typedefs.

typedef short fractl6;
typedef long fract32;

The fract data representation is shown in Figure 1-10

Signed Fractional (1.15)

Bit 15 14 13 2 1 0
- | 42 4| 4] A
Weight N 27| 2 a PR) 5
Sign Bit

Signed Fractional (1.31)

Bit 3130 29 2 1 0

-1 -2 -29| ~-30 -31

Weight (-1) 2 2 2 2 2
Sign Bit

Figure 1-10. Data Storage Format for fract16 and fract32

Therefore, to represent 0.25 in fract16, the HEX representation would be
0x2000 (27%). For -0.25 in fract32, the HEX would be 0xe000 0000

(-1+2714272). For -1, the HEX representation in fract16 would be 0x8000
(-1). fract16 and fract32 cannot represent +1 exactly, but they get quite
close with 0x7fff for fract16, or 0x7fff ffff for fract32. There is also a
fract2x16 data type, which is two fract1l6s packed into 32 bits. The first
two bytes belong to one fract16, and the second two bytes belong to the

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-455
for Blackfin Processors

C/C++ and Assembly Interface

other. There are also built-in functions that work with fract2x16
parameters.

C/C++ and Assembly Interface

This section describes how to call assembly language subroutines from
within C/C++ programs, and how to call C/C++ functions from within
assembly language programs. Before attempting to perform either of these
operations, familiarize yourself with the information about the C/C++
run-time model (including details about the stack, data types, and how
arguments are handled) in “C/C++ Run-Time Model and Environment”
on page 1-408. At the end of this reference, a series of examples demon-
strate how to mix C/C++ and assembly code.

This section describes:

e “Calling Assembly Subroutines From C/C++ Programs” on
page 1-456

e “Calling C/C++ Functions From Assembly Programs” on

page 1-459

* “Exceptions Tables in Assembly Routines” on page 1-462

Calling Assembly Subroutines From C/C++
Programs

Before calling an assembly language subroutine from a C/C++ program,
create a prototype to define the arguments for the assembly language sub-
routine and the interface from the C/C++ program to the assembly
language subroutine. Even though it is legal to use a function without a
prototype in C/C++, prototypes are a strongly-recommended practice for
good software engineering. When the prototype is omitted, the compiler
cannot perform argument-type checking and assumes that the return value

1-456 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

is of type integer and uses K&R promotion rules instead of ANSI promo-
tion rules.

The compiler prefaces the name of any external entry point with an
underscore. Therefore, declare your assembly language subroutine’s name
with a leading underscore.

The run-time model defines some registers as scratch registers and others
as preserved or dedicated registers. Scratch registers can be used within the
assembly language program without worrying about their previous con-
tents. If more room is needed (or an existing code is used) and you wish to
use the preserved registers, you must save their contents and then reszore
those contents before returning.

Use the dedicated or stack registers for their intended purpose
only; the compiler, libraries, debugger, and interrupt routines
depend on having a stack available as defined by those registers.

The compiler also assumes the machine state does not change during exe-
cution of the assembly language subroutine.

Do not change any machine modes (for example, certain registers
may be used to indicate circular buffering when those register val-
ues are noNzero).

The compiler will always align arrays on a 32-bit word boundary, and the
compiler will normally use this knowledge when optimizing accesses. It is
therefore necessary to ensure that arrays that are defined in assembly code
that are accessed in C/C++ code are similarly aligned. This is normally
achieved by preceding array definitions in assembly with the .align 4
assembly directive.

If arguments are on the stack, they are addressed via an offset from the
stack pointer or frame pointer. A good way to explore how arguments are
passed between a C/C++ program and an assembly language subroutine is
to write a dummy function in C/C++ and compile it using the IDDE’s
Save temporary files option (or the -save-temps command-line switch).

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-457
for Blackfin Processors

C/C++ and Assembly Interface

The following example includes the global volatile variable assignments to
indicate where the arguments can be found upon entry to asmfunc.

// Sample file for exploring compiler interface ..

// global variables .. assign arguments there just so

// we can track which registers were used

// (type of each variable corresponds to one of arguments):

int global_a;
float global_b;
int * global_p;

// the function itself:

int asmfunc(int a, float b, int * p)
{
// do some assignments so assembly file will show
where args are:

global_a = a;
global_b = b;
global_p = p;

// value gets loaded into the return register:
return 12345;
}

When compiled with the -save-temps and -no-annotate -0 switches,
the following code is produced.

.section program;

.align 2;
_asmfunc:
PO.L = .epcbss;
PO.H = .epcbss;
[P0+ 01 = RO;
1-458 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

RO = 0x1234 (X);

[PO+ 4] = R1;
[PO+ 8] = R2;
RTS;

._asmfunc.end:
.global _asmfunc;
.type _asmfunc,STT_FUNC;

.section datal;

.align 4;
.epcbss:
.byte _global_al[4];
.global _global_a;
.type _global_a,STT_OBJECT;
.byte _global_b[4];
.global _global_b;
.type _global_b,STT_OBJECT;
.byte _global_pl[47;
.global _global_p;
.type _global_p,STT_OBJECT;
.epcbss.end:

Calling C/C++ Functions From Assembly Programs

You may want to call C/C++ callable library and other functions from
within an assembly language program. As discussed in “Calling Assembly
Subroutines From C/C++ Programs” on page 1-456, you may want to cre-
ate a test function to do this in C/C++, and then use the code generated by
the compiler as a reference when creating your assembly language program
and the argument setup. Using volatile global variables may help clarify
the essential code in your test function.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-459
for Blackfin Processors

C/C++ and Assembly Interface

The run-time model defines some registers as scrazch registers and others
as preserved or dedicated. The contents of the scratch registers may be
changed without warning by the called C/C++ function. If the assembly
language program needs the contents of any of those registers, you must
save their contents before the call to the C/C++ function and then restore
those contents after returning from the call.

Use the dedicated registers for their intended purpose only; the
compiler, libraries, debugger, and interrupt routines depend on
having a stack available as defined by those registers.

Preserved registers can be used; their contents are not changed by calling a
C/C++ function. The function always saves and restores the contents of
preserved registers if they are going to change.

If arguments are on the stack, they are addressed via an offset from the
stack pointer or frame pointer. Explore how arguments are passed between
an assembly language program and a function by writing a dummy func-
tion in C/C++ and compiling it with the save temporary files option.
(See the -save-temps switch on page 1-72.) By examining the contents of
volatile global variables in a *.s file, you can determine how the C/C++
function passes arguments, and then duplicate that argument setup pro-
cess in the assembly language program.

The stack must be set up correctly before calling a C/C++ callable func-
tion. If you call other functions, maintaining the basic stack model also
facilitates the use of the debugger. The easiest way to do this is to define a
C/C++ main program to initialize the run-time system; maintain the stack
until it is needed by the C/C++ function being called from the assembly
language program; and then continue to maintain that stack until it is
needed to call back into C/C++. However, ensure that the dedicated regis-
ters are correct. You do not need to set the FP prior to the call; the caller’s
FP is never used by the recipient.

The assembly interface requires all calling functions to reserve stack space
for the first twelve bytes (R0-R2) of parameter space for a callee, even when

1-460 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

the callee does not require that much space. In VisualDSP++ 5.0, the
compiler makes increased use of this stack space to store temporary values,
if it does not find that the space is needed for other purposes (such as stor-
ing the register-based parameter itself). Therefore, all assembly functions
that call compiled functions must follow the correct procedure; with
Visual DSP++ 5.0, the compiler makes more efficient use of stack space,
but there is a corresponding risk that functions that violate the ABI may
find that live values are corrupted in the process.

If you call other functions, maintaining the basic stack model also
facilitates the use of the debugger. The easiest way to do this is by defining
a C/C++ main program to initialize the run-time system, maintaining the
stack until it is needed by the C/C++ function being called from the
assembly language program, and then continuing to maintain that stack
until it is needed to call back into C/C++. However, ensure that the
dedicated registers are correct. You do not need to set the FP prior to the
call; the caller’s FP is never used by the recipient.

Using Mixed C/C++ and Assembly Naming Conventions

You can use C/C++ symbols (function or variable names) in assembly
routines and use assembly symbols in C/C++ code. This section describes
how to name and use C/C++ and assembly symbols.

To name an assembly symbol that corresponds to a C symbol, add an
underscore prefix to the C symbol name when declaring the symbol in
assembly. For example, the C symbol main becomes the assembly symbol
_main. C++ global symbols are usually “mangled” to encode the additional
type information. Declare C++ global symbols using extern “C” to disable
the mangling.

To use a C/C++ function or variable in an assembly routine, declare it as
global in the C program. Import the symbol into the assembly routine by
declaring the symbol with the . EXTERN assembler directive.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-461
for Blackfin Processors

C/C++ and Assembly Interface

To use an assembly function or variable in your C/C++ program, declare
the symbol with the .GLOBAL assembler directive in the assembly routine
and import the symbol by declaring the symbol as extern in the C
program.

Table 1-46 shows several examples of the C/C++ and assembly interface
naming conventions.

Table 1-46. C/C++ Naming Conventions for Symbols

In the C/C++ Program In the Assembly Subroutine

int c_var; /*declared global*/ .extern _c_var;
.type _c_var,STT_OBJECT;

void c_func(void); .global _c_func;
.type _c_func,STT_FUNC;

extern int asm_var; .global _asm_var;
.type _asm_var,STT_OBJECT;
.byte = 0x00,0x00,0x00,0x00

extern void asm_func(void); .global _asm_func;
.type _asm_func,STT_FUNC;
asm_func:

Exceptions Tables in Assembly Routines

Assembly routines that both call C++ functions and are called by C++
functions and require exceptions thrown by callees to be caught by callers
must be provided with a “function exceptions table” to enable the
run-time library to restore registers to the values they held on entry to the
routine.

The assembly routine must allocate a stack frame using FP and SP as
described in “Managing the Stack” on page 1-435. On entry to the assem-
bly routine, call-preserved registers (on page 1-433) that are modified in
the routine should be saved into a contiguous region within the stack
frame, called the save area. Registers are saved at ascending addresses in the
save area in the order given in Table 1-48 on page 1-404.

1-462 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

A word in the .gdt section must be initialized with the address of the
function exceptions table. This word must be marked with the
.RETAIN_NAME directive to prevent it being removed by linker data
elimination. The function exceptions table itself must be initialized as

illustrated in Table 1-47.

Table 1-47. Function Exceptions Table

Offset Size in bytes Meaning

0 4 Start address of the routine

4 4 First address after end of routine

8 4 Signed offset from FP of register save area

12 8 Bit set indicating which registers are saved
20 4 Always zero. Indicates this is not C++ code

The bit set field of the function exceptions table contains a bit for each
register. The bits corresponding to registers saved in the save area must be
set to one and the other bits set to zero. The bit numbers corresponding to
each register are given in Table 1-48, where bit 0 is the least significant bit
of the lowest addressed word, bit 31 is the most significant bit of that
word, bit 32 is the least significant bit of the second lowest addressed
word, and so on.

Bit numbering may best be explained by the C code to test bit number.

int wed = r/32;
int bit Tu << (r%32);
if (bitsetlwrd]l & bit)
/* register r was saved */

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-463
for Blackfin Processors

C/C++ and Assembly Interface

Table 1-48. Function Exception Table Register Numbers

Register Bit Number Bytes taken in save area if saved
LB1 0 4
LBO 1 4
LT1 2 4
LTO 3 4
LC1 4 4
LCO 5 4
M3 6 4
M2 7 4
M1 8 4
MO 9 4
B3 10 4
B2 11 4
Bl 12 4
BO 13 4
13 14 4
12 15 4
I1 16 4
10 17 4
L3 18 4
L2 19 4
L1 20 4
Lo 21 4
A1X 22 4
A1W 23 4
A0X 24 4
AOW 25 4
1-464 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

Table 1-48. Function Exception Table Register Numbers (Cont’d)

Register Bit Number Bytes taken in save area if saved
P5 26 4
P4 27 4
P3 28 4
P2 29 4
P1 30 4
Po 31 4
R7 32 4
R6 33 4
R5 34 4
R4 35 4
R3 36 4
R2 37 4
R1 38 4
RO 39 4
ASTAT 40 4

This example shows an assembly routine with function exceptions table,

.section program;

_asmfunc:

.LN._asmfunc:
LINK O; /* setup FP */
[--SP] = (R7:5, P5:4); /* save R5,R6,R7,P4,P5 at FP-20 */

/* use R5,R6,R7,P4,P5 call a C++ function */

(R7:5, P5:4) = [SP++]; /* restore registers */
UNLINK;
RTS;

.LN._asmfunc.end:

._asmfunc.end:

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-465
for Blackfin Processors

Compiler C++ Template Support

.global _asmfunc;
.type _asmfunc, STT_FUNC;

.section .edt; /* conventionally function exceptions
tables go in .edt */
.align 4;
.byte4 .function_exceptions_table[6] =
.LN._asmfunc, /* first address of _asmfunc */
.LN._asmfunc.end, /* first address after _asmfunc */
-20, /* offset of save area from FP */

0x0c000000, 0x00000007, /* bit set, bits 26=P5,
27=P4,32=R7,33=R6,34=R5 */

0; /* always zero for non-c++ */
.section .gdt;
.align 4;
.fet_index:
.byted = .function_exceptions_table;

/* address of table in .gdt */

.retain_name .fet_index;

Compiler C++ Template Support

The compiler provides template support C++ templates as defined in the
ISO/IEC 14882:2003 C++ standard.

Template Instantiation

Templates are instantiated automatically during compilation using a
linker feedback mechanism. This involves compiling files, determining
any required template instantiations, and then recompiling those files
making the appropriate instantiations. The process repeats until all
required instantiations have been made. Multiple recompilations may be

1-466 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

required in the case when a template instantiation is made that requires
another template instantiation to be made.

Implicit Instantiation

The compiler uses a method called implicit instantiation, which is com-
mon practice. It results in having both the specification and definition
available at the point of instantiation.

Implicit instantiation does not conform to the ISO/IEC
14882:2003 C++ standard, and does not work with exported
templates. Implicit instantiation is enabled by default. It can be
disabled via the -no-implicit-inclusion switch on page 1-89.

Implicit instantiation involves placing template specifications in a header
(for example, “.h”) file and the definitions in a source (for example,
“.cpp”) file. Any file being compiled that includes a header file containing
template specifications will instruct the compiler to implicitly include the
corresponding “.cpp” file containing the definitions of the template.

For example, you may have the header file “tp.h”
template <typename A> void func(A var)

and source file “tp.cpp”

template <typename A> void func(A var)
{

...code...

}

Two files “filel.cpp” and “file2.cpp” that include “tp.h” will have file
“tp.cpp” included implicitly to make the template definitions available to
the compilation.

When generating dependencies, the compiler will only parse each implic-
itly included . cpp file once. This parsing avoids excessive compilation
times in situations where a header file that implicitly includes a source file

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-467
for Blackfin Processors

Compiler C++ Template Support

is included several times. If the . cpp file should be included implicitly
more than once, the -full-dependency-inclusion switch (on page 1-88)
can be used. (For example, the file may contain macro guarded sections of
code.) This may result in more time required to generate dependencies.

Exported Templates

The compiler supports the export keyword, which provides an alternative
implementation for templates. An exported template does not need to be
present in a translation unit that uses the template. For example, the fol-
lowing is a valid C++ program consisting of two translation units:

// File 1

#include <iostream>

static void print(void) { std::cout << "File 1" << std::endl;}
export template <class T> T const &maxii(T const &a, T const &b);
int main()

{

print();

return maxii(7,8);

}
// File 2

#include <iostream>

static void print(void) { std::cout << "File 2" << std::endl;}
export template <class T> T const &maxii(T const &a, T const &b)
{

print();

return (a>b) ? a : b;

}

The two files are separate translation units; one is not included in the
other. This allows the two functions print() to coexist (with external

linkage).

1-468 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

The automatic instantiation of exported templates is similar to that of
regular (included) templates. An instantiation of an exported template
involves at least two translation units: one that requires the instantiation,
and one that contains the template definition.

When a file containing a definition of an exported template is compiled, a
file with a “.et” suffix is created and some extra information is included in
the associated “.ti” file. The “.et” files are used by the compiler to find
the translation units that define a given exported template.

Generated Template Files

Regardless of whether implicit instantiation is used, the compilation
process involves compiling one or more source files and generatinga “. t1”
file corresponding to the source files being compiled. These “. ti” files are
then used by the prelinker to determine the templates to be instantiated.
The prelinker creates a “.11” file and recompiles one or more of the files
instantiating the required templates.

The prelinker ensures that only one instantiation of a particular template
is generated across all objects. For example, the prelinker ensures that if
both “filel.cpp” and “file2.cpp” invoked the template function with an
int, the resulting instantiation would be generated in just one of the
objects.

Identifying Un-Instantiated Templates

If for some reason the prelinker is unable to instantiate all the templates
that are required for a particular link, then a link error will occur. For
example:

[Error 1110217 The following symbols referenced in processor 'P0O'
could not be resolved:

"Complex<T1> Complex<T1>::_conjugate() const [with Tl=short]
[_conjugate__16Complex__tm__2_ sCFv_18Complex__tm__4_717]"' refer-
enced from '.\Debug\main.doj'

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-469
for Blackfin Processors

Compiler C++ Template Support

'"T1 *Buffer<Tl>::_getAddress() const [with T1=Complex<short>]
[_getAddress__33Buffer__tm__19_16Complex__tm__2_sCFv_PZ17]"'
referenced from '.\Debug\main.doj'

'"T1 Complex<T1>::_getReal() const [with Tl=short]
[_getReal__16Complex__tm__2_sCFv_Z17]1" referenced from
".\Debug\main.doj"'

Linker finished with 1 error

Careful examination of the linker errors reveals which instantiations have
not been made. Below are some examples.

Missing instantiation:
Complex<short> Complex<short>::conjugate()

Linker Text:
"Complex<T1> Complex<T1>::_conjugate() const [with Tl=short]
[_conjugate__16Complex__tm__2_sCFv_18Complex__tm__4_7177"
referenced from '.\Debug\main.doj'

Missing instantiation:
Complex<short> *Buffer<Complex<short>>::getAddress()

Linker Text:
"T1 *Buffer<T1>::_getAddress() const [with T1=Complex<short>]
[_getAddress__33Buffer__tm__19_16Complex__tm__2_sCFv_PZ177"'
referenced from '.\Debug\main.doj'

Missing instantiation:
Short Complex<short>::getReal()

Linker Text:
'"T1 Complex<T1>::_getReal() const [with Tl=short]
[_getReal__16Complex__tm__2_sCFv_Z17]" referenced from
".\Debug\main.doj"'

There could be many reasons for the prelinker being unable to instantiate
these templates, but the most common is that the .ti and .11 files

1-470 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

associated with an object file have been removed. Only source files that
can contain instantiated templates will have associated . ti and .11 files,
and without this information, the prelinker may not be able to complete
its task. Removing the object file and recompiling will normally fix this

problem.

Another possible reason for un-instantiated templates at link time is when
implicit inclusion (described above) is disabled but the source code has
been written to require it. Explicitly compiling the . cpp files that would
normally have been implicitly included and adding them to the final link
is normally all that is needed to fix this.

Another likely reason for seeing the linker errors above is invoking the
linker directly. It is the compiler’s responsibility to instantiate C++
templates, and this is done automatically if the final link is performed via
the compiler driver. The linker itself contains no support for instantiating
templates.

File Attributes

A file attribute is a name-value pair that is associated with a binary object,
whether in an object file (.doj) or in a library file (.d1b). One attribute
name can have multiple values associated with it. Attribute names and
values are strings. A valid attribute name consists of one or more
characters matching the following pattern:

[a-zA-7Z_1la-zA-7_0-91*

An attribute value is a non-empty character sequence containing any
characters apart from NUL.

Attributes help with the placement of run-time library functions. All of
the run-time library objects contain attributes that allow you to place
time-critical library objects into internal (fast) memory. Using attribute

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-471
for Blackfin Processors

File Attributes

filters in the .1df file, you can place run-time library objects into internal
or external (slow) memory, either individually or in groups.

This section describes:

* “Automatically-Applied Attributes” on page 1-472

e “Default LDF Placement” on page 1-474

* “Sections Versus Attributes” on page 1-475

e “Using Attributes” on page 1-476

For more information, see “Library Attributes” in Chapter 3, C/C++
Run-Time Library.

Automatically-Applied Attributes

By default, the compiler applies a number of attributes automatically
when compiling a C/C++ file. For example, it applies the Content and
FuncName attributes. These automatically-applied attributes can be
disabled using the -no-auto-attrs switch (on page 1-52).

Figure 1-11 shows a content attribute tree.

The Content attribute can be used to map binary objects according to
their kind of content, as show in Table 1-49.

Table 1-49. Interpreting Values of the Content Attribute

CodeData This is the most general value, indicating that the binary object contains a mix of
content types.

Code The binary object does not contain any global data, only executable code. This can
be used to map binary objects into program memory, or into ROM.

Data The binary object does not contain any executable code. The binary object may
not be mapped into dedicated program memory. The kinds of data used in the
binary object vary.

1-472 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

Table 1-49. Interpreting Values of the Content Attribute (Cont’d)

ZeroData

The binary object contains only zero-initialized data. Its contents must be mapped
into a memory section with the ZERO_INIT qualifier, to ensure correct initializa-
tion.

InitData

The binary object contains only initialized global data. The contents may not be
mapped into a memory section that has the ZERO_INIT qualifier.

VarData

The binary object contains initialized variable data. It must be mapped into
read-write memory, and may not be mapped into a memory section with the
ZERO_INIT qualifier.

ConstData

The binary object contains only constant data (data declared with the C const
qualifier). The data may be mapped into read-only memory (but see also the
-const-read-write switch (on page 1-31) and its effects).

Empty

The binary object contains neither functions nor global data.

CodeData Empty

Code Data

ZeroData InitData

VarData ConstData

Figure 1-11. Content Attributes

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-473
for Blackfin Processors

File Attributes

Default LDF Placement

The default .1df file is written in such manner that the order of prefer-
ence for putting an object in section data or program depends on the value
of the prefersMem attribute. Precedence is given in the following order:

1. Highest priority is given to binary objects that have a prefersMem
attribute with a value of internal.

2. Next priority is given to binary objects that have no prefersMen
attribute, or a prefersMem attribute with a value that is neither
internal nor external.

3. Lowest priority is given to binary objects with a prefersMem attri-
bute with the value external.

Although the default .1df files only reference the values internal and
external, prefersMem may have other values. For example, an object using
a value such as L2 will be given second priority, as the value is neither
internal nor external. You may modify your .1df file to assign
appropriate priority to any value you choose, by mapping objects with
higher-priority values before objects with lower-priority values.

The prefersMemNum attribute is similar to the prefersMem attribute, but is
given numerical values instead of textual values. This makes it easier to
assign priority when there are many different levels, because you can use
relational comparisons in the .1df file instead of just equalities and
inequalities. Table 1-50 shows the numerical values used by the run-time
library for each corresponding prefersMem attribute value.

Table 1-50. Values for prefersMemNum Attribute

prefersMem Attribute Value |prefersMemNum Attribute Value
internal 30
any 50
external 70
1-474 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Compiler

Sections Versus Attributes

File attributes and section qualifiers (on page 1-192) can be thought of as
being somewhat similar, since both affect how the application is linked.

There are important differences, however, that affect whether you choose
to use sections or file attributes to control the placement of code and data.

Granularity

Individual components—global variables and functions—in a binary
object can be assigned different sections, and then those section assign-
ments can be used to map each component of the binary object
differently. In contrast, an attribute applies to the whole binary object.
This means you do not have as fine control over individual components
using attributes as when using sections.

Hard Mapping Versus Soft Mapping

A section qualifier is a “hard” constraint. When the linker maps the object
file into memory, it must obey all the section qualifiers in the object file,
according to instructions in the .1df file. If this cannot be done, or if the
.1df file does not give sufficient information to map a section from the
object file, the linker reports an error.

In contrast, with attributes, the mapping is “soft”. The default . 1df files
use the prefersMem attribute as a guide to give a better mapping in
memory, but if this cannot be done, the linker will not report an error.
For example, if there are more objects with prefersMem=internal than
will fit into internal memory, the remaining objects will spill over into
external memory. Likewise, if there are fewer objects with the attribute
prefersMem!=external than are needed to fill internal memory, some
objects with the attribute prefersMem=external may be mapped to
internal memory.

Section qualifiers are rules that must be obeyed. Attributes are guidelines,
defined by convention, that can be used if convenient and ignored if not.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-475
for Blackfin Processors

File Attributes

The Content attribute is an example of this: you can use the Content attri-
bute to map Code and ConstData binary objects into read-only memory, if
this is a convenient partitioning of your application, but you need not do
so if you choose to map your application differently.

Number of Values

Any given element of an object file is assigned exactly one section quali-
fier, to determine into which section it should be mapped. In contrast, an
object file may have many attributes (or even none), and each attribute
may have many different values. Since attributes are optional and act as

guidelines, you need only pay attention to the attributes that are relevant
to your application.

Using Attributes

You can add attributes to a file in two ways:
e Use#pragma file_attr (on page 1-314)
e Use the -file-attr switch (on page 1-38)

The run-time libraries have attributes associated with the objects in them.

For more information, see “Library Attributes” in Chapter 3, C/C++
Run-Time Library.

Example 1

This example uses attributes to encourage the placement of library
functions in internal memory.

Suppose the file “test.c” exists, as shown below:

f#define MANY_ITERATIONS 500
void main(void) {
int i;

1-476 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

for (i = 0; i < MANY_ITERATIONS; i++) {
fft_1ib_function();
frequently_called_Tib_function();
}
rarely_called_1ib_function();
}

Also suppose:

* The objects containing frequently_called_1ib_function and
rarely_called_1ib_function are both in the standard library, and
have the attribute prefersMem=any.

e There is only enough internal memory to map fft_1ib_function
(which has prefersMem=internal) and one other library function
into internal memory.

* The linker chooses to map rarely_called_l1ib_function to
internal memory.

In this example, for optimal performance,
frequently_called_lib_function should be mapped to the internal
memory in preference to rarely_called_lib_function.

The .1df file defines a macro $0BJS_LIBS_INTERNAL to store all the objects
that the linker should try to map to internal memory, as follows:

$O0BJS_LIBS_INTERNAL =
$OBJECTS{prefersMem("internal")},
$LIBRARIES{prefersMem("internal")};

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-477
for Blackfin Processors

File Attributes

If all the objects do not fit in internal memory, the remainder is placed in
external memory and no linker error will occur. To add the object that
contains frequently_called_Tib_function to this macro, extend the
definition to read:

$0BJS_LIBS_INTERNAL =
$0BJECTS{prefersMem("internal™)},
$LIBRARIES{prefersMem("internal")},
$OBJECTS{ TibFunc("frequently_called_lib_function") };

This ensures that the binary object that defines
frequently_called_lib_function is among those to which the linker
gives highest priority when mapping binary objects to internal memory.

Note that it is not necessary to know which binary object (or even which
library) defines frequently_called_1ib_function. All the binary objects
in the run-time libraries define the 1ibFunc attribute so that you can select
the binary objects for particular functions without needing to know
exactly where in the libraries a function is defined. The modified line uses
this attribute to select the binary object (or objects) for
frequently_called_lib_function and append it (or them) to the
$0BJS_LIBS_INTERNAL macro. The .1df file maps objects in
$0BJS_LIBS_INTERNAL to internal memory in preference to other objects,
so frequently_called_lib_function is mapped to L1.

For more information, see “Library Attributes” in Chapter 3, C/C++
Run-Time Library.

1-478 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler

Example 2

Suppose you want the contents of test.c to be mapped to external
memory by preference. You can do this by adding the following pragma to
the top of test.c:

ffpragma file_attr("prefersMem=external™)
or use the -file-attr switch:
ccblkfn -file-attr prefersMem=external switches test.c

Both methods will cause the resulting object file to have the attribute
prefersMem=external. The .1df files give objects with this attribute the
lowest priority when mapping objects into internal memory, so the object
is less likely to consume valuable internal memory space, which could be
more usefully allocated to another function.

Since file attributes are used as guidelines rather than rules, if space
is available in internal memory after higher-priority objects have
been mapped, it is permissible for objects with
prefersMem=external to be mapped into internal memory.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 1-479
for Blackfin Processors

File Attributes

1-480 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

2 ACHIEVING OPTIMAL
PERFORMANCE FROM
C/C++ SOURCE CODE

This chapter provides guidance on tuning your application to achieve the
best possible code from the compiler. Since implementation choices are
available when coding an algorithm, understanding their impact is crucial
to attaining optimal performance.

This chapter contains:

“General Guidelines” on page 2-3

provides a four-step basic strategy for designing applications. It also
describes topics such as data types, memory usage, and indexed
arrays versus pointers.

“Improving Conditional Code” on page 2-33

describes the expected_true and expected_false built-in func-
tions, which control the compiler’s optimization of conditional
branches.

“Loop Guidelines” on page 2-38

describes how to help the compiler produce the most efficient loop
code, including keeping loops short, and avoiding unrolling loops
and loop-carried dependencies.

“Manipulating Fixed-Point and Fractional Data” on page 2-49
discusses ways to manipulate fixed-point and fractional data.

“Using Built-In Functions in Code Optimization” on page 2-54
describes how to use built-in functions to efficiently use low-level
features of the processor hardware while programming in C.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-1
for Blackfin Processors

e “Smaller Applications: Optimizing for Code Size” on page 2-57
provides tips and techniques about optimizing the application for
full performance and for space.

e “Using Pragmas for Optimization” on page 2-60
describes how to use pragmas to finely tune source code.

e “Useful Optimization Switches” on page 2-70
lists compiler switches useful during the optimization process.

* “How Loop Optimization Works” on page 2-70
introduces concepts used in loop optimization.

e “Assembly Optimizer Annotations” on page 2-96
describes annotations, which indicate how close to optimal a
program is, and suggest what else can be done to improve the
generated code.

* “Analyzing Your Application” on page 2-135
describes various techniques that can be used to analyze and debug
a program. Instrumented profiling, code coverage and stack and
heap tracing are discussed.

This chapter helps you get maximal code performance from the compiler.
Most of these guidelines also apply when optimizing for minimum code
size, although some techniques specific to that goal are also discussed.

The first section looks at some general principles, and explains how the
compiler can help your optimization effort. Optimal coding styles are
then considered in detail. Special features such as compiler switches,
built-in functions, and pragmas are also discussed. The chapter ends with
a short example to demonstrate how the optimizer works.

Small examples are included throughout this chapter to demonstrate
points being made. Some show recommended coding styles, while others
identify styles to be avoided or code that it may be possible to improve.
These are commented in the code as “G00D” and “BAD”, respectively.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

General Guidelines

This section contains:

“How the Compiler Can Help” on page 2-4
“Data Types” on page 2-15

“Getting the Most From IPA” on page 2-21
“Indexed Arrays Versus Pointers” on page 2-27
“Using Function Inlining” on page 2-28
“Using Inline asm Statements” on page 2-30

“Memory Usage” on page 2-31

Remember the following strategy when writing an application:

1.

Choose the language as appropriate.

Your first decision is whether to implement your application in C
or C++. Performance considerations may influence this decision.
C++ code using only C features has very similar performance to
pure C code. Many higher level C++ features (for example, those
resolved at compilation, such as namespaces, overloaded functions
and also inheritance) have no performance cost.

However, use of some other features may degrade performance.
Carefully weigh performance loss against the richness of expression
available in C++ (such as virtual functions or classes used to imple-
ment basic data types).

Choose an algorithm suited to the architecture being targeted. For
example, the target architecture will influence any trade-off
between memory usage and algorithm complexity.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-3
for Blackfin Processors

General Guidelines

3. Code the algorithm in a simple, high-level generic form. Keep the
target in mind, especially when choosing data types.

4. Tune critical code sections. After your application is complete,
identify the most critical sections. Carefully consider the strengths
of the target processor and make non-portable changes where nec-
essary to improve performance.

How the Compiler Can Help

The compiler provides many facilities to help the programmer to achieve
optimal performance, including the compiler optimizer, statistical pro-
filer, profile-guided optimizer (PGO), and interprocedural optimizers.

This section contains:
e “Using the Compiler Optimizer” on page 2-4
e “Using Compiler Diagnostics” on page 2-5
* “Using the Statistical Profiler” on page 2-8
e “Using Profile-Guided Optimization” on page 2-9

* “Using Interprocedural Optimization” on page 2-13

Using the Compiler Optimizer

There is a vast difference in performance between code compiled opti-
mized and code compiled non-optimized. In some cases, optimized code
can run ten or twenty times faster. Always use optimization when measur-
ing performance or shipping code as product.

The optimizer in the C/C++ compiler is designed to generate efficient
code from source that has been written in a straightforward manner. The
basic strategy for tuning a program is to present the algorithm in a way
that gives the optimizer the best possible visibility of the operations and

2-4 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

data, and hence the greatest freedom to safely manipulate the code. Future
releases of the compiler will continue to enhance the optimizer. Express-
ing algorithms simply will provide the best chance of benefiting from such
enhancements.

The default setting (“Debug” configuration within the VisualDSP++
IDDE) is for non-optimized compilation in order to assist programmers
in diagnosing problems with their initial coding. The optimizer is enabled
in VisualDSP++ by selecting the Enable optimization check box on the
Project Options : Compile page or by using the -0 switch (on page 1-60).
A “release” build from within Visual DSP++ automatically enables
optimization.

Using Compiler Diagnostics

There are many features of the C and C++ languages that, while legal,
often indicate programming errors. There are also aspects that are valid
but may be relatively expensive for an embedded environment. The com-
piler can provide the following diagnostics, which may save time and
effort in characterizing source-related problems:

e Warnings and remarks (on page 2-6)
* Assembly annotations (on page 2-7)

These diagnostics are particularly important for obtaining high-perfor-
mance code, since the optimizer aggressively transforms the application to
yield the best performance, discarding unused or redundant code. If this
code is redundant because of a programming error (such as omitting an
essential volatile qualifier (on page 2-14) from a declaration), then the
code will behave differently from a non-optimized version. Using the
compiler’s diagnostics may help you identify such situations before they
become problems.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-5
for Blackfin Processors

General Guidelines

Warnings and Remarks

By default, the compiler emits warnings to the standard error stream at
compile-time when it detects a problem with the source code. Warnings
can be disabled individually, with the -Wsuppress switch (on page 1-79)
or as a class, with the -w switch (on page 1-80), disabling all warnings and
remarks. However, disabling warnings is inadvisable until each instance
has been investigated for problems.

A typical warning involves a variable being used before its value has been
set.

Remarks are diagnostics that are less severe than warnings. Like warnings,
they are produced at compile-time to the standard error stream, but unlike
warnings, remarks are suppressed by default. Remarks are typically for sit-
uations that are probably correct, but less than ideal. Remarks may be
enabled as a class with the -Wremarks switch (on page 1-80) or the Enable
remarks option (Project : Compile : Warning page of Project Options
dialog box).

A typical remark involves a variable being declared, but never used.

A remark may be promoted to a warning through the -Wwarn switch
(on page 1-79). Remarks and warnings may be promoted to an error
through the -Werror switch (on page 1-79).

To improve overall code quality:

1. Enable remarks and build the application. Gather all warnings and
remarks generated.

2. Examine the generated diagnostics and choose those message types
that you consider most important. For example, you might select
just cc0223, a remark that identifies implicitly-declared functions.

2-6 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

3. Promote those remarks and warnings to errors, using the -Werror
switch (for example, “-Werror 0223”), and rebuild the application.
The compiler will now fault such cases as errors, so you will have to
fix the source to address the issues before your application will

build.

4. Once your application rebuilds, repeat the process for the next
most important diagnostics.

Diagnostics you might typically consider first include:
* cc0223: function declared implicitly
* cc0549: variable used before its value is set
* ccl665: variable is possibly used before its value is set, in a loop
* c0187: use of “=” where “==” may have been intended
* ccl045: missing return statement at the end of non-void function
* cc0111: statement is unreachable

If you have particular cases that are correct for your application, do not let
them prevent your application from building because you have raised the
diagnostic to an error. For such cases, temporarily lower the severity again
within the source file in question by using #pragma diag (on page 1-338).

Assembly Annotations

By default, the compiler emits annotations that are embedded in the gen-
erated assembly code. Annotations can be used to find out why the
compiler has generated code in a particular manner.

For more information, see “Assembly Optimizer Annotations” on

page 2-96.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-7
for Blackfin Processors

General Guidelines

Using the Statistical Profiler

Tuning an application begins with identifying areas of the application that
are most frequently executed, where improvements would provide the
largest gains. The Visual DSP++ statistical profiler provides an easy way to
find these areas. VisualDSP++ Help explains how to use the profiler in
detail.

The advantage of statistical profiling is that it is completely unobtrusive.
Other forms of profiling insert instrumentation into the code, disturbing
the original optimization, code size, and register allocation.

The best methodology is usually to compile with both optimization and
debug information generation enabled. You can then obtain a profile of
the optimized code while retaining function names and line number infor-
mation. This gives you accurate results that correspond directly to the
C/C++ source. Note that the compiler optimizer may have moved code
between lines.

If you build your application optimized but without debug information
generation, the profile will obtain statistics that relate directly to the
assembly code. This kind of profile provides the most precise view of your
application but not usually the easiest to use because you must relate
assembly lines to the original source. Do not strip out function names
when linking, since keeping function names means you can scroll through
the assembly window to instructions of interest.

In complex code, you can locate the exact source lines by counting the
loops, unless they are unrolled. Looking at the line numbers in the assem-
bly file may also help. (Use the -save-temps switch to retain compiler
generated assembly files, which have the .s filename extension.) The com-
piler optimizer may have moved code around, so that it does not appear in
the same order as in your original source.

2-8 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Using Profile-Guided Optimization

Profile-guided optimization (PGO) is an excellent way to tune the com-
piler’s optimization strategy for the typical run-time behavior of a
program. There are many program characteristics that cannot be known
statically at compile-time but can be provided through PGO. The com-
piler can use this knowledge to improve its code generation. The benefits
include more accurate branch prediction, improved loop transformations,
and reduced code size. The technique is most relevant where the behavior
of the application over different data sets is expected to be very similar.

@ Note that PGO is supported in the simulator only.

An example application that demonstrates how to use PGO is in “Example

of Profile-Guided Optimization” on page 2-37.

Using Profile-Guided Optimization With a Simulator

The PGO process is illustrated in Figure 2-1.

Source files

Data

Compile with Profile with

Compile with
-O -pguide simulator

-Ov num

.dxe .pgo .dxe

Figure 2-1. PGO Process

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-9
for Blackfin Processors

General Guidelines

1.

®

Compile the application with the -pguide switch (on page 1-67) or
Prepare application to create new profile option. This creates an
executable file containing the necessary instrumentation for gather-
ing profile data. For best results, use the Enable optimization
option/-0 switch (on page 1-60) or Interprocedural analysis
option/-ipa (on page 1-47) switch.

Gather the profile. Presently, this may only be done using a simula-
tor. Run the executable with one or more training data sets. These
training data sets should be representative of the data that you
expect the application to process in the field. Note that
unrepresentative training data sets can cause performance degrada-
tions when the application is used on real data. The profile is
stored in a file with the extension .pgo.

Recompile the application using this gathered profile data. Place
the .pgo file on the command line. Optimization should also be
enabled at this stage.

When C/C++ source files are specified in a compiler command
line, any specified .pgo files will be used to guide compilation.
However, any recompilation due to .doj files provided on the
command line will reread the same .pgo file as when the source was
previously compiled. For example, prof2.pgo is ignored in the fol-
lowing commands:

ccblkfn -0 f2.c -o f2.doj profl.pgo

ccblkfn -o prog.dxe fl.asm f2.doj profZ.pgo

See also “Using PGO in Function Profiling” on page 2-37.

2-10

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Using Profile-Guided Optimization With Non-Simulatable Applications

It may not be possible to run a complex application in its entirety in a
simulation session (for example, if peripherals not modeled by the simula-
tor are used). It may, however, still be possible to use PGO as follows.

1.

®

If the application is structured in a modular fashion, it will be pos-
sible to extract the core performance-critical algorithm from the
application.

Create a “wrapper” project, which can be run under simulation
that drives input values into the core algorithm, replacing the por-
tions of the application that can not be run under simulation. This
project can be used to generate PGO information, which can
subsequently be used to optimize the full application. As described
earlier, it is essential that the input values are representative of real
data to achieve best performance.

Leave as much of the core algorithm unmodified as possible, keep-
ing file and function names the same. The .pgo files generated
from execution of the wrapper project can then be used to optimize
the same functions in the full application by including the .pgo
files in the full application build.

When compiling with a . pgo file, the compiler emits a warning and
ignores the data for a function if it detects the function has
changed from when the PGO data was generated. Therefore, any
functions that you do modify to get the algorithm to work properly
outside the application will not benefit from the profile
information.

Profile-Guided Optimization and Multiple Source Uses

In some applications, it is convenient to build the same source file in more
than one way within the same application. For example, a source file

might be conditionally compiled with different macro settings. Alterna-
tively, the same file might be compiled once, but linked more than once

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-11
for Blackfin Processors

General Guidelines

into the same application in a multi-core or multiprocessor environment.
In such circumstances, the typical behaviors of each instance in the appli-
cation might differ. Identify the separate instances so that they can be
profiled separately and optimized accordingly.

The -pgo-session switch (on page 1-67) (or PGO session name option)
is used to separate profiles in such cases. It is used during both stage 1,
where the compiler instruments the generated code for profiling, and dur-
ing stage 3, where the compiler uses gathered profiles to guide the
optimization.

During stage 1, when the compiler instruments the generated code, if the
-pgo-session switch is used, then the compiler marks the instrumentation
as belonging to the session’s session-id.

During stage 3, when the compiler reads gathered profiles, if the
-pgo-session switch is used, then the compiler ignores all profile data not
generated from code that was marked with the same session-id.

Therefore, the compiler can optimize each variant of the source’s build
according to how the variant is used, rather than according to an average
of all uses.

Profile-Guided Optimization and the -Ov num Switch

When a .pgo file is placed on the command line, the optimization (-0)
switch, by default, tries to balance between code performance and
code-size considerations. It is equivalent to using the -0v 50 switch.

To optimize solely for performance while using PGO, use the -0v 100
switch. The -0v n switch (on page 1-61) is discussed further along with
optimization for space in “Smaller Applications: Optimizing for Code
Size” on page 2-57.

Profile-Guided Optimization and Multiple PGO Data Sets

When using profile-guided optimization with an executable constructed
from multiple source files, the use of multiple PGO data sets will result in

2-12 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

the creation of a temporary PGO information file (.pgi). This file is used
by the compiler and prelinker to ensure that temporary PGO files can be
recreated and to identify cases where objects and PGO data sets are
invalid.

The compiler reports an error if any of the PGO data files have been mod-
ified between the initial compilation of an object and any recompilation
that occurs at the final link stage. To avoid this error, perform a full
recompilation after running the application to generate .pgo data files.

When to Use Profile-Guided Optimization

PGO should be performed as the last optimization step. If the application
source code is changed after gathering profile data, this profile data
becomes invalid. The compiler does not use profile data when it can detect
that it is inaccurate. However, it is possible to change source code in a way
that is not detectable to the compiler (for example, by changing con-
stants). The programmer should ensure that the profile data used for
optimization remains accurate.

For more details on PGO, refer to “Optimization Control” on page 1-95.

An example application demonstrates how to use PGO in “Example of
Profile-Guided Optimization” on page 2-37.

Using Interprocedural Optimization

To obtain the best performance, the optimizer often requires information
that can only be determined by looking outside the function on which it is
working. For example, it helps to know what data can be referenced by
pointer parameters or whether a variable actually has a constant value. The
-ipa compiler switch (on page 1-47) enables interprocedural analysis
(IPA), which can make this information available. When this switch is
used, the compiler is called again from the link phase to recompile the
program, using additional information obtained during previous
compilations.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-13
for Blackfin Processors

General Guidelines

This gathered information is stored within the object file generated during
initial compilation. IPA retrieves the gathered information from the object
file during linking and uses it to recompile available source files where
beneficial. Because recompilation is necessary, IPA-built modules in
libraries can contribute to the optimization of application sources, but do
not themselves benefit from IPA, as their source is not available for
recompilation.

Because it operates only at link-time, the effects of IPA are not seen if you
compile with the -S switch (on page 1-71). To see the assembly file when
IPA is enabled, use the -save-temps switch (on page 1-72) and look at the
.s file produced after your program has been built.

As an alternative to IPA, you can achieve many of the same benefits by
adding pragma directives and other declarations such as
__builtin_aligned to provide information to the compiler about how
each function interacts with the rest of the program.

These directives are further described in “Using __builtin_aligned” on
page 2-24 and “Using Pragmas for Optimization” on page 2-60.

The Volatile Type Qualifier

The volatile type qualifier is used to inform the compiler that it may not
make any assumptions about a variable or memory location (or a series of
them), and that such variables must be read from or written to as specified
and in the same order as in the source code.

Failure to use volatile when necessary is a common programming error
that can cause an application to fail when built in Release configuration
with compiler optimizations enabled. This is because the compiler
assumes that all non-volatile memory is modified explicitly and does not
change in a way the compiler cannot see. This assumption is used exten-
sively during optimization, where values held in memory may not be
reloaded if they do not appear to have changed. Since the cases listed
below do not adhere to the compiler’s assumptions, the compiler must be

2-14 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

informed of these situations through the use of the volatile type
qualifier.

It is essential to make the following types of objects volatile-qualified in
your application source:

* An object that is a memory-mapped register (MMR) or a mem-
ory-mapped device

* An object that is shared between multiple concurrent threads of

execution. This includes data that is shared between processors or
data written by DMA.

* An object that is modified by an asynchronous event handler
(for example, a global variable modified by an interrupt handler)

* An automatic storage duration object declared in a function that
calls setjmp () and whose value is changed between the call to
setjmp() and a corresponding call to Tongjmp ()

Data Types
Table 2-1 shows compiler-supported scalar data types.

Table 2-1. Scalar Data Types

Data Type ‘Description
Single-Word Fixed-Point Data Types: Native Arithmetic
char 8-bit signed integer
unsigned char 8-bit unsigned integer
short 16-bit signed integer
unsigned short 16-bit unsigned integer
int 32-bit signed integer
unsigned int 32-bit unsigned integer
Tong 32-bit signed integer
Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-15

for Blackfin Processors

General Guidelines

Table 2-1. Scalar Data Types (Contd)

Data Type

Description

unsigned long

32-bit unsigned integer

Fixed-Point Data Types: Native and Emulated Arithmetic

short fract (C only)

16-bit signed fractional

fract (C only)

16-bit signed fractional

Tong fract (C only)

32-bit signed fractional

unsigned short fract (C only)

16-bit unsigned fractional

unsigned fract (C only)

16-bit unsigned fractional

unsigned long fract (C only)

32-bit unsigned fractional

short accum (C only)

40-bit signed fixed-point

accum (C only)

40-bit signed fixed-point

Tong accum (C only)

40-bit signed fixed-point

short unsigned accum (C only)

40-bit unsigned fixed-point

unsigned accum (C only)

40-bit unsigned fixed-point

Tong unsigned accum (C only)

40-bit unsigned fixed-point

Double-Word Fixed-Point Data Types: Emulated Arithmetic

long Tlong

64-bit signed integer

unsigned Tong long

64-bit unsigned integer

2-16 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Table 2-1. Scalar Data Types (Contd)

Data Type ‘Description

Floating-Point Data Types: Emulated Arithmetic

float 32-bit float

double The size of the doub1e type differs depending on the
options used. If the Double size option or the -dou-
ble-size-64 switch is used, double is a 64-bit float-
ing-point type; otherwise, it is a 32-bit floating-point
type.

Tong double 64-bit floating-point

The fixed-point data types fract and accum may be used in C mode by
including the stdfix.h header file. Alternatively, the fractional data types
fract16 and fract32 can be used, which are typedefs to integer types.
Manipulation of these data types is best done by using the built-in func-
tions, described in “Using System Support Built-In Functions” on

page 2-54.

Optimizing a struct

Memory can be saved if a struct is declared with the members ordered by
size. The following example occupies 8 bytes of memory.

struct optimal_struct f{
char elementl,element?;
short element3;
int element4;

b

However, the following example occupies 12 bytes of memory.

struct non_optimal_struct {
char elementl; /* 3 bytes of padding */
int element?;
short element3;

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-17
for Blackfin Processors

General Guidelines

char element4; /* 1 byte of padding */
b

When the compiler generates a memory access, the access will be to a 1-,
2-, or 4-byte unit. Such accesses must be naturally aligned, meaning that
2-byte accesses must be to even addresses, and 4-byte accesses must be to
addresses on a 4-byte boundary. Failure to align addresses results in a mis-
aligned memory access exception.

The compiler is required to retain the order of members of a struct, and
must ensure these alignment constraints are met. Therefore, by default,
the compiler inserts any necessary padding to ensure that elements are
aligned on their required boundaries. Padding is also inserted after the last
member of a struct if required, to ensure that the struct’s size is a multi-
ple of the struct’s strictest member alignment.

Be aware of the following additional rules of padding:

* If any member has a 4-byte alignment, the struct is a multiple of
4 bytes in size.

* Otherwise, if any member has a two-byte alignment, the struct is
a multiple of two bytes in size.

* Otherwise, no end-of-struct padding is required.
Therefore, for a concrete example, if you have
struct non_optimal_struct test[2];

and if the compiler did not insert padding into the struct
non_optimal_struct, the size of struct non_optimal_struct would be
8 bytes, and test[] array would be 16 bytes in size. Then, if

int x = test[1l].element?;

2-18 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

this would be attempting to read an int (4 bytes) from a misaligned
address (address of test+9), and thus a hardware exception (misaligned
access) would occur.

Because the compiler adds appropriate padding in the struct
non_optimal_struct, the int read will read a 4-byte aligned address
(address of test+16), and the access will succeed.

As a rule of thumb, to get the smallest possible struct, place elements in
the struct in the following order:

typedef struct efficient_struct{
size_l_elements a,...;
size_2_elements b,...;
size_4_or_greater_elements c¢,...;
}

The compiler supports greater density of structs through the use of the
#pragma pack(n) directive. This allows you to reduce the necessary pad-
ding required in structs without reordering the struct’s members. There is
a trade-off implied, because the compiler must still observe the architec-
ture's address-alignment constraints. When #pragma pack(n) is used, it
means that a struct member is being accessed across the required align-
ment boundary, and the compiler must decompose the member into
smaller, appropriately-aligned components and issue multiple accesses.

See “#pragma pad (alignopt)” on page 1-286 for more details.

Bit-Fields

The use of bit-fields in code can reduce the amount of data storage
required by an application, but will normally increase the amount of code
for an application (and thus make the application slower). This is because
more code is needed to access a bit-field than to access an intrinsic type
(char, int, and so on). Also, bit-fields may prevent the compiler from per-
forming optimizations that it could do on intrinsic types. However,

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-19
for Blackfin Processors

General Guidelines

depending on the use of bit-fields, the total data bytes plus total code
bytes may be less when using bit-fields instead of intrinsic types.

The struct in the following example packs a 5-bit item, a 3-bit item,
an 8-bit item, and a 16-bit item into 4 bytes.

struct bitf {
int iteml:5;
int item2:3;

char item3;
short item4;
b

The array struct bitf arr[1000] would save a significant amount of data
space over a non-bit-field version. However, compared to not using a
bit-field, more code would be generated to access the bit-field members of
the struct, and that code would be slower.

Avoiding Emulated Arithmetic

Arithmetic operations for some data types are implemented by library
functions because the processor hardware does not directly support these
types. Consequently, operations for these data types are far slower than
native operations—sometimes by a factor of a hundred—and also produce
larger code. These types are marked as “Emulated Arithmetic” in “Data
Types” on page 2-15.

The hardware does not provide direct support for division, so division and
modulus operations are almost always multi-cycle operations, even on
integral type inputs. If the compiler has to issue a full-division operation,
it usually needs to generate a call to a library function. One instance in
which a library call is avoided is for integer division when the divisor is a
compile-time constant and is a power of two. In this case, the compiler
generates a shift instruction. Even then, a few fix-up instructions are
needed after the shift if the types are signed. If you have a signed division

2-20 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

by a power of two, consider whether you can change it to unsigned to
obtain a single-instruction operation.

When the compiler has to generate a call to a library function for an arith-
metic operator not supported by the hardware, performance would suffer

not only because the operation takes multiple cycles, but also because the

effectiveness of the compiler optimizer is reduced.

For example, such operations in a loop can prevent the compiler from
using efficient zero-overhead hardware loop instructions. Also, calling the
library to perform the required operation can change values held in scratch
registers before the call, so the compiler has to generate more stores and
loads from the data stack to keep values required after the call returns.
Avoid emulated arithmetic operators where possible, especially in loops.

Getting the Most From IPA

Interprocedural analysis (IPA) is designed to try to propagate information
about the program to parts of the optimizer that can use it. This section
looks at what information is useful, and how to structure your code to
make this information easily accessible for analysis.

The performance features are:
* “Initializing Constants Statically” on page 2-21
e “Word-Aligning Your Data” on page 2-23
e “Using __builtin_aligned” on page 2-24
* “Avoiding Aliases” on page 2-25

Initializing Constants Statically

IPA identifies variables that have only one value and replaces them with
constants, resulting in a host of benefits for the optimizer’s analysis.
For this to happen, a variable must have a single value throughout the

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-21
for Blackfin Processors

General Guidelines

program. If the variable is statically initialized to zero (as are all global
variables, by default) and is subsequently assigned some other value at
another point in the program, then the analysis sees two values and does
not consider the variable to have a constant value.

For example,

// BAD: IPA cannot see that val is a constant.
#include <stdio.h>
int val; // initialized to zero

void init() {
val = 3; // reassigned

void func() f{
printf("val %d",val);
}
int main() {
init();
func();
}

The code is better written as:

//G00D: IPA knows val is 3.
#include <stdio.h>
const int val = 3; // initialized once

void init() f
}

void func() {
printf("val %d",val);

2-22 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

int main() {
init();
func();

Word-Aligning Your Data

To make most efficient use of the hardware, it must be continually fed
with data. In many algorithms, the balance of data accesses to computa-
tions is such that, to keep the hardware fully utilized, data must be fetched
with loads wider than 8 or 16 bits.

The hardware requires that references to memory be naturally aligned.
Thus, 16-bit references must be at even address locations, and 32-bit ref-
erences must be at word-aligned addresses. Therefore, to generate the
most efficient code, ensure that data buffers are word-aligned.

The compiler helps to establish the alignment of array data. Top-level
arrays are allocated at word-aligned addresses, regardless of their data
types. In order to do this for local arrays, the compiler also ensures that
stack frames are kept word-aligned. However, arrays within structures are
not aligned beyond the required alignment for their type. It may be worth
using the #pragma align 4 directive to force the alignment of arrays in
this case.

If you write programs that pass only the address of the first element of an
array as a parameter, and loops that process these input arrays an element
at a time, starting at element zero, then IPA should be able to establish
that the alignment is suitable for full-width accesses.

Where an inner loop processes a single row of a multi-dimensional array,
try to ensure that each row begins on a word boundary. In particular,
two-dimensional arrays should be defined in a single block of memory
rather than as an array of pointers to rows all separately allocated with
malloc. Itis difficult for the compiler to keep track of the alignment of the

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-23
for Blackfin Processors

General Guidelines

pointers in the latter case. It may also be necessary to insert dummy data
at the end of each row to make the row length a multiple of four bytes.

Using __ builtin_aligned

To avoid the need to use IPA to propagate alignment, and for situations
when IPA cannot guarantee the alignment (but you can), use the
__builtin_aligned function to assert the alignment of important point-
ers, meaning that the pointer points to data that is aligned.

When adding this declaration, you are responsible for ensuring that
it is valid. If the assertion is not true, the code produced by the
compiler is likely to malfunction.

The assertion is particularly useful for function parameters, although you
may assert that any pointer is aligned.

When compiling the following function, for example, the compiler does
not know the alignment of pointers a and b if IPA is not being used.

// BAD: Without IPA, the compiler does not know the alignment
// of a and b.
void copy(char *a, char *b) {

int i;
for (i=0; i<100; i++)
alil = b[i];

}

However, by modifying the function as follows, the compiler is told that
the pointers are aligned on word boundaries.

// GOOD: Both pointer parameters are known to be aligned.
void copy(char *a, char *b) {

int 1;

__builtin_aligned(a, 4);

__builtin_aligned(b, 4);

for (i=0; i<100; i++)

2-24 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

ali] = bli];
}

To assert instead that both pointers are always aligned one char before a
word boundary, use the following;:

// GOOD: Both pointer parameters are known to be misaligned.
void copy(char *a, char *b) {
int i;
__builtin_aligned(a+l, 4);
__builtin_aligned(b+1, 4);
for (i=0; i<100; i++)
alil = bli];
}

The expression used as the first parameter to the built-in function obeys
the usual C rules for pointer arithmetic. The second parameter should give
the alignment in bytes as a literal constant.

Avoiding Aliases

It may seem that the iterations can be performed in any order in the fol-
lowing loop:

// BAD: a and b may alias each other.
void fn(char al], char b[], int n) {

int 1;
for (i = 0; 1 < n; ++i)
alil = bli];

}

But a and b are both parameters, and, although they are declared with [,
they are pointers that may point to the same array. When the same data
may be reachable through two pointers, they are said to alias each other.

If IPA is enabled, the compiler looks at the call sites of fn and tries to
determine whether a and b can ever point to the same array.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-25
for Blackfin Processors

General Guidelines

Even with IPA, it is easy to create what appears to the compiler as an alias.
The analysis works by associating pointers with sets of variables that they
may refer to some point in the program. If the sets for two pointers inter-
sect, then both pointers are assumed to point to the union of the two sets.

If fn above were called only in two places, with global arrays as arguments,
then IPA would have the results shown below:

// GOOD: sets for a and b do not intersect:
// a and b are not aliases.

fn(globl, glob2, N);

fn(globl, glob2, N);

// GOOD: sets for a and b do not intersect:
// a and b are not aliases.
fn(globl, glob2, N);
fn(glob3, glob4, N);

// BAD: sets intersect - both a and b may access globl;
// a and b may be aliases.
fn(globl, glob2, N);

fn(glob3, globl, N);

The third case arises because IPA considers the union of all calls at once,
rather than considering each call individually, when determining whether
there is a risk of aliasing. If each call were considered individually, IPA
would have to take flow control into account and the number of permuta-
tions would significantly lengthen compilation time.

The lack of control flow analysis can also create problems when a single
pointer is used in multiple contexts. For example, it is better to write

// GOOD: p and q do not alias.
int *p = a;
int *q b

2-26 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

// some use of p
// some use of q

than

// BAD: Uses of p in different contexts may alias.
int *p = a;

// some use of p
p = b;

// some use of p

because the latter may cause extra apparent aliases between the two uses.

Indexed Arrays Versus Pointers

The C language allows a program to access data from an array in two ways:
either by indexing from an invariant base pointer, or by incrementing a

pointer. The following two versions of vector addition illustrate the two
styles.

Style 1: Using indexed arrays (indexing from a base pointer)

void va_ind(const short al]l, const short b[], short out[], int n)
{

int i;
for (i = 0; 1 < n; ++1)
outlil = ali]l + b[il;
}

Style 2: Incrementing a pointer

void va_ptr(const short al[], const short b[], short out[], int n)
{

int 1;

short *pout = out;

const short *pa = a, *pb = b;

for (i = 0; i < n; ++1)

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-27
for Blackfin Processors

General Guidelines

*pout++ = *pa++ + *pb+t+;

Trying Pointer and Indexed Styles

One might hope that the chosen style would not matter to the generated
code, but this is not always the case. Sometimes, one version of an algo-
rithm generates better optimized code than the other, but it is not always
the same style that is better.

@ Try both pointer and indexed styles.

The pointer style introduces additional variables that compete with the
surrounding code for resources during the compiler optimizer’s analysis.
Array accesses, on the other hand, must be transformed to pointers by the
compiler, and sometimes this is accomplished better by hand.

The best strategy is to start with array notation. If the generated code
looks unsatisfactory, try using pointers. Outside the critical loops, use the
indexed style, since it is easier to understand.

Using Function Inlining

Function inlining may be used in two ways:

* By annotating functions in the source code with the inline key-
word. In this case, function inlining is performed only when
optimization is enabled.

* By turning on automatic inlining with the -0a switch
(on page 1-60) or the Inlining -> Automatic option, automatically
enabling optimization.

@ Inlining small frequently executed functions should improve appli-
cation performance as it avoids call overheads and allows the
compiler to optimize the code more effectively.

2-28 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

You can use the compiler’s inline keyword to indicate that functions
should have code generated inline at the point of call. Doing this avoids
various costs such as program flow latencies, function entry and exit
instructions, and parameter passing overheads.

Using an inline function also has the advantage that the compiler can
optimize through the inline code and does not have to assume that scratch
registers and condition states are modified by the call. Prime candidates
for inlining are small, frequently-used functions because they cause the
least code-size increase while giving most performance benefit.

As an example of the usage of the in1ine keyword, the function below
sums two input parameters and returns the result.

// GOOD: use of the inline keyword.
inline int add(int a, int b) {
return (a+b);

}

Inlining has a code size-to-performance trade-off that should be consid-
ered. With -0a, the compiler automatically inlines small functions where
possible. If the application has a tight upper code-size limit, the resulting
code-size expansion may be too great. Consider using automatic inlining
in conjunction with the -0v num switch (on page 1-61) or the Optimize
for code speed/size slider to restrict inlining (and other optimizations
with a code-size cost) to parts of the application that are performance-crit-
ical. It is discussed in more detail later in this chapter.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-29
for Blackfin Processors

General Guidelines

Using Inline asm Statements

The compiler allows use of inline asm statements to insert small sections of
assembly into C code.

Avoid use of inline asm statements where built-in functions may be
used instead.

The compiler does not intensively optimize code that contains
inline asm statements because it has little understanding about what
the code in the statement does. In particular, use of an asm state-
ment in a loop may inhibit useful transformations.

The compiler offers many built-in functions that generate specific hard-
ware instructions. These are designed to allow the programmer to more
finely tune the code produced by the compiler, or to allow access to sys-
tem support functions. A complete list of compiler’s built-in functions is
given in “Compiler Built-In Functions” on page 1-195.

Use of these built-in functions is much preferred to using inline asm state-
ments. Since the compiler knows what each built-in does, it can easily
optimize around them. Conversely, since the compiler does not parse asm
statements, it does not know what they do, and so is hindered in optimiz-
ing code that uses them. Note also that errors in the text string of an asm
statement are caught by the assembler and not by the compiler.

Examples of efficient use of built-in functions are given in “Using System
Support Built-In Functions” on page 2-54.

2-30 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Memory Usage

The compiler, in conjunction with the use of the linker description file
(.1df), allows the programmer control over data placement in memory.
This section describes how to best lay out data for maximum performance.

Try to put arrays into different memory sections to support effi-
cient memory operations.

The processor hardware can support two memory operations on a single
instruction line, combined with a compute instruction. Two memory
operations will only complete in one cycle if the two addresses are situated
in different memory blocks. If both access the same block, the processor
stalls.

Consider the dot product loop below. Because data is loaded from both
array a and array b in every iteration of the loop, it may be useful to ensure
that these arrays are located in different blocks.

Therefore,

// BAD: compiler assumes that two memory accesses together
// may give a stall.
for (i=0; i<100; i++)

sum += ali]l * b[i];

First, define two memory banks in the MEMORY portion of the .1df file.

Example: MEMORY portion of the .1df file modified to define memory
banks.

MEMORY {
BANK_AT {
TYPE(RAM) WIDTH(8)
START(start_address_1) END(end_address_1)

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-31
for Blackfin Processors

General Guidelines

BANK_A2 {
TYPE(RAM) WIDTH(8)
START(start_address_2) END(end_address_2)

}

Then, configure the SECTIONS portion to tell the linker to place data sec-
tions in specific memory banks.

Example: SECTIONS portion of the . 1df file modified to define memory
banks.

SECTIONS {
bank_al f
INPUT_SECTION_ALIGN(4)
INPUT_SECTIONS($0BJECTS(bank_al))
} >BANK_AL
bank_a2 ({
INPUT_SECTION_ALIGN(4)
INPUT_SECTIONS($0BJECTS(bank_a2))
} >BANK_AZ
}

In the C source code, declare arrays with the section("section_name")
construct preceding a buffer declaration; in this case,

section("bank_al") short a[l100];
section("bank_a2") short b[1007;

This ensures that the two array accesses in the dot product loop may occur
simultaneously without incurring a stall.

Using the Bank Qualifier

The bank qualifier can be used to write functions that use the fact that
buffers are placed in separate memory blocks.

2-32 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

For example, it might be useful to create a function if you would like to
call func in different places, but always with pointers to buffers in differ-
ent sections of memory.

// GOOD: uses bank qualifier to allow simultaneous access
// to p and q.
void func(int bank("red") *p, int bank("blue") *qg) {
// some code
}

The bank qualifier tells the compiler that the buffers are in different sec-
tions without requiring that the sections themselves be specified.

Therefore, func may be called with the first parameter pointing to mem-
ory in section("bank_al") and the second pointing to data in
section("bank_a2") or vice versa. You must still explicitly place the data
buffers in the memory sections. The bank qualifier merely informs the
compiler that it may assume this has been done to generate more efficient
code. Refer to “Bank Qualifiers” on page 1-191 for more information.

Improving Conditional Code

When compiling conditional statements, the compiler attempts to deter-
mine whether the condition will usually evaluate to true or to false, and
will arrange for the most efficient path of execution to be that which is
expected to be most commonly executed. The compiler makes these deci-
sions based on the information in the following order:

1. If you have generated an execution profile of the function using
profile-guided optimization (PGO), the compiler will compare the
relative counts of the true/false paths for the branch, and will mark
the path with the highest execution count as the predicted path.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-33
for Blackfin Processors

Improving Conditional Code

2. Otherwise, if you have used one of the compiler built-in functions
for explicit branch prediction (“Compiler Performance Built-In
Functions” on page 1-264) the compiler will make the prediction
as directed.

3. In the absence of all other information, the compiler will attempt
to predict the branch based on heuristics and information within
the source code.

This section describes:
e “Using Compiler Performance Built-In Functions” on page 2-34

e “Using PGO in Function Profiling” on page 2-37

Using Compiler Performance Built-In Functions

You can use the expected_true and expected_false built-in functions to
control the compiler’s optimization of conditional branches. By using
these functions, you can tell the compiler which way a condition is most
likely to evaluate. This influences the default flow of execution.

The following example shows two nested conditional statements.

if (buffer_valid(data_buffer))
if (send_msg(data_buffer))
system_failure();

If it was known that, for this example, buffer_valid() would usually
return true, but that send_msg() would rarely do so, the code could be
written as:

if (expected_true(buffer_valid(data_buffer)))
if (expected_false(send_msg(data_buffer)))
system_failure();

2-34 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Example of Compiler Performance Built-in Functions

The following example project demonstrates the use of these compiler per-
formance built-in functions:

Blackfin/Examples/No Hardware Required/
Compiler Features/Branch Prediction

The example project, called branch_prediction, loops through a section
of character data, counting the different types of characters it finds.

It produces three overall counts: lowercase letters, uppercase letters, and
non-alphabetic characters. The effective test is as follows:

if (isupper(c))

NAZ++; // count one more uppercase letter
else if (islower(c))
naz++; // count one more lowercase letter
else
nx++; // count one more non-alphabetic character

The performance of the application is determined by the compiler’s ability
to correctly predict which of these two tests is going to evaluate as true
most frequently.

In the source code for this example, the two tests are enclosed in two
macros, EXPRA(c) and EXPRB(c):

if (EXPRA(isupper(c)))

NAZ++; // count one more uppercase letter
else if (EXPRB(islower(c)))
naz++; // count one more lowercase letter
else
nx++; // count one more non-alphabetic character

The macros are conditionally defined according to the macro EXPRS, at
compile-time, as shown by Table 2-2. By setting EXPRS to different values,
you can see the effect the compiler performance built-in functions have on

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-35
for Blackfin Processors

Improving Conditional Code

the application’s overall performance. By leaving the EXPRS macro unde-
fined, you can see how the compiler’s default heuristics compare.

Table 2-2. How Macro EXPRS Affects Macros EXPRA and EXPRB

Value of EXPRS EXPRA expected to be |EXPRB expected to be
Undefined No prediction No prediction

1 True True

2 False True

3 True False

4 False False

To use the example, do the following;:

1.

2.

Create a simulator session for the ADSP-BF533 Blackfin processor.
Open the branch_prediction project.

Build the project, load it into the simulator, and execute it. You
will see some output on the console as the project reports the num-
ber of characters of each type found in the string. The application
will also report the number of cycles used.

Open the Project Options dialog box, and go to the Preprocessor
area of the Compile page.

In the Defines field, add ExPrRS=1. Click OK.

Rebuild and rerun the application. You will receive the same
counts from the application, but the cycle counts will be different.

Try using values 2, 3, or 4 for EXPRS instead, and determine which
combination of expected_true() and expected_false() built-in
functions produces the best performance.

2-36

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

See “Compiler Performance Built-In Functions” on page 1-264 for more
information.

Using PGO in Function Profiling

The compiler can also determine the most commonly-executed branches
automatically, using profile-guided optimization (PGO). See “Optimiza-
tion Control” on page 1-95 for more details.

Example of Profile-Guided Optimization

Continuing with the same example (on page 2-35), PGO can determine
the best settings for the branches in EXPRA(c) and EXPRB(c) (and all other
parts of the source code) using profiling.

To use the example, do the following;:

1. Create a simulator session for the ADSP-BF533 Blackfin processor.

2. Open the branch_prediction project.

3. Open the Project Options dialog box, and display the Preprocessor
area of the Compile page.

4. Make sure that the Defines field does not include a definition for
the EXPRS macro. Click OK.

5. Via Tools, PGO, select Manage Data Sets. The Manage Data Sets
dialog box appears.

6. Click New. The Edit Data Set dialog box appears.

7. In the Output filename (.pgo) field, enter the path name where the
simulator should create the generated execution profile. This path
name must have a .pgo extension. Click OK.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-37

for Blackfin Processors

Loop Guidelines

8. Click OK again, to close the Manage Data Sets dialog box.

9. Via Tools, PGO, select Execute Data Sets. VisualDSP++ will do
the following:

a. Build the application with the -pguide switch, which pre-
pares it to gather a profile.

b. Run the executable in the simulator, using the data sets pro-
vided. The profile will be stored in the .pgo file you
specified.

c. Rebuild the application with the gathered profile, which
selects the branch prediction according to the most-fre-
quently executed paths of control.

d. Open a window displaying the difference in performance as
a result of the profile-based tuning.

Normally, when using PGO, you would configure one or more input files
as part of your data set. The application would read its inputs from these
files, and the data would influence the gathered profile. For this example,
all the input data is embedded in the application source, so the data set is
a null set containing no input files.

Loop Guidelines

Loops are where an application ordinarily spends the majority of its time.
It is therefore useful to look in detail at how to help the compiler to pro-
duce the most efficient loop code.

This section describes:
* “Keeping Loops Short” on page 2-39
e “Avoiding Unrolling Loops” on page 2-39

2-38 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

* “Avoiding Loop-Carried Dependencies” on page 2-40

* “Avoiding Loop Rotation by Hand” on page 2-41

* “Avoiding Complex Array Indexing” on page 2-42

e “Inner Loops Versus Outer Loops” on page 2-43

* “Avoiding Conditional Code in Loops” on page 2-43

e “Avoiding Placing Function Calls in Loops” on page 2-44
e “Avoiding Non-Unit Strides” on page 2-45

e “Using 16-Bit Data Types and Vector Instructions” on page 2-46
* “Loop Control” on page 2-47

* “Using the Restrict Qualifier” on page 2-48

* “Avoiding Long Latencies” on page 2-49

Keeping Loops Short

For best code efficiency, loops should be short. Large loop bodies are usu-
ally more complex and difficult to optimize. Large loops may also require
register data to be stored in memory, which decreases code density and
execution performance.

Avoiding Unrolling Loops

@ Do not unroll loops yourself.

Not only does loop unrolling make the program harder to read, but also
prevents optimization by complicating the code for the compiler.

// GOOD: the compiler unrolls if it helps.
void val(const short al], const short b[], short c[], int n) {

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-39
for Blackfin Processors

Loop Guidelines

int i;
for (i =0; i < n; ++i) |
cli] = bl[i] + alil;

}

// BAD: harder for the compiler to optimize.
void va2(const short al], const short b[], short c[], int n) {
short xa, xb, xc, ya, yb, yc;

int i;

for (i = 0; i < n; i+=2) {
xb = blil; yb = b[i+1];
xa = alil; ya = ali+l];

XC = xa + xb; yc = ya + yb;
cli] = xc; cli+l] = yc;

Avoiding Loop-Carried Dependencies

A loop-carried dependency exists when a computation in a given iteration
of a loop cannot be completed without knowledge of values calculated in
earlier iterations. When a loop has such dependencies, the compiler can-
not overlap loop iterations. Some dependencies are caused by scalar
variables that are used before they are defined in a single iteration.

However, if the loop-carried dependency is part of a reduction computa-
tion, the optimizer can reorder iterations. Reductions are loop
computations that reduce a vector of values to a scalar value using an asso-
ciative and commutative operator. A multiply and accumulate in a loop is
a common example of a reduction.

2-40 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

// BAD: loop-carried dependence in variable x.
for (i =0; 1 < n; ++i)
x =alil - x;

// GOOD: loop-carried dependence is a reduction.
for (i =0; i < n; ++1)
x +=alil * blil;

In the first case, the scalar dependency is the subtraction operation. The
variable x is modified in a manner that would give different results if the
iterations were performed out of order. In contrast, in the second case,
because the addition operator is associative and commutative, the com-
piler can perform the iterations in any order and still get the same result.
Other examples of reductions are bitwise and/or and min/max operators.
The existence of loop-carried dependencies that are not reductions pre-
vents the compiler from vectorizing a loop—that is, executing more than
one iteration concurrently.

Avoiding Loop Rotation by Hand

@ Do not rotate loops by hand.

Programmers are often tempted to “rotate” loops in DSP code by hand,
attempting to execute loads and stores from earlier or future iterations at
the same time as computation from the current iteration. This technique
introduces loop-carried dependencies that prevent the compiler from rear-
ranging the code effectively. It is better to give the compiler a simpler
version, and leave the rotation to the compiler.

For example,

// GOOD: is rotated by the compiler.
int ss(short *a, short *b, int n) {
int sum = 0;
int 1;
for (i = 0; i < n; i++) |

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-41
for Blackfin Processors

Loop Guidelines

sum += ali] + b[i];
}

return sum;
}

// BAD: rotated by hand: hard for the compiler to optimize.
int ss(short *a, short *b, int n) {

short ta, tb;

int sum = 0;

int i = 0;

ta = alil; tbh = blil;

for (i =1; i < n; i++) |

sum += ta + tb;
ta = alil; tb = bl[i];
}
sum += ta + tb;
return sums;
}

Rotating the loop required adding the scalar variables ta and tb and
introducing loop-carried dependencies.

Avoiding Complex Array Indexing

Other dependencies can be caused by writes to array elements. In the fol-
lowing loop, the optimizer cannot determine whether the load from a
reads a value defined on a previous iteration or one that will be overwrit-
ten in a subsequent iteration.

// BAD: has array dependency.
for (i = 0; i < n; ++i)
alil = bli] * alclill;

2-42 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

The optimizer can resolve access patterns where the addresses are expres-
sions that vary by a fixed amount on each iteration. These are known as
“induction variables”.

// GOOD: uses induction variables.
for (i = 0; i < n; ++i)
ali+4] = bli] * alil;

Inner Loops Versus Outer Loops

@ Inner loops should iterate more than outer loops.

The optimizer focuses on improving the performance of inner loops
because this is where most programs spend the majority of their time. It is
considered a good trade-off for an optimization to slow down the code
before and after a loop to make the loop body run faster. Therefore, try to
make sure that your algorithm also spends most of its time in the inner
loop; otherwise it may actually run slower after optimization. If you have
nested loops where the outer loop runs many times and the inner loop
runs a small number of times, try to rewrite the loops so that the outer
loop has fewer iterations.

Avoiding Conditional Code in Loops

If a loop contains conditional code, control-flow latencies may incur large
penalties if the compiler has to generate conditional jumps within the
loop. In some cases, the compiler is able to convert if-then-else and ?:
constructs into conditional instructions. In other cases, it can evaluate the
expression entirely outside of the loop. However, for important loops, lin-
ear code should be written where possible.

There are several techniques for removing conditional code. For example,
there is hardware support for min and max. The compiler usually succeeds
in transforming conditional code equivalent to min or max into the single

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-43
for Blackfin Processors

Loop Guidelines

instruction. With particularly convoluted code the transformation may be
missed, in which case it is better to use min or max in the source code.

The compiler can sometimes perform the loop transformation that inter-
changes conditional code and loop structures. Nevertheless, instead of
writing

// BAD: loop contains conditional code.
for (i=0; i<100; i++) |
if (mult_by_b)
suml += ali]l * b[i];
else
suml += alil * cl[il;
}

it is better to write the following if this is an important loop.

// GOOD: two simple Toops can be optimized well.
if (mult_by_b) {
for (i=0; i<100; i++)
suml += alil * b[i];
} else |
for (i=0; i<100; i++)
suml += alil * c[i];

Avoiding Placing Function Calls in Loops

The compiler usually is unable to generate a hardware loop if the loop
contains a function call due to the expense of saving and restoring the con-
text of a hardware loop. In addition, operations such as division, modulus,
and some type coercions may implicitly call library functions. These are
expensive operations which you should try to avoid in inner loops. For
more details, see “Data Types” on page 2-15.

2-44 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Avoiding Non-Unit Strides

If you write a loop, such as

// BAD: non-unit stride means division may be required.
for (i=0; i<n; i+=3) |

// some code
}

then for the compiler to turn this into a hardware loop, it needs to work
out the loop trip count. To do so, it must divide n by 3. The compiler may
decide that this is worthwhile as it speeds up the loop, but division is an
expensive operation. Try to avoid creating loop control variables with
strides other than 1 or -1.

In addition, try to keep memory accesses in consecutive iterations of an
inner loop contiguous. This is particularly applicable to multi-dimen-
sional arrays. Therefore,

// GOOD: memory accesses contiguous in inner loop.
for (i=0; i<100; i++)
for (j=0; j<100; j++)
sum += alilljl;

is likely to be better than

// BAD: Toop cannot be unrolled to use wide loads.
for (i=0; i<100; i++)
for (j=0; j<100; j++)
sum += aljIlil;

as the former is more amenable to vectorization.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-45
for Blackfin Processors

Loop Guidelines

Using 16-Bit Data Types and Vector Instructions

If a 16-bit, rather than 32-bit, native data type is used within a critical
yp
processing loop, the opportunities for parallel execution are increased.
This is because the compiler can potentially use vector instructions, which
P p y
perform simultaneous operations on multiple 16-bit values. For example,
consider the simple function:

int func(int *a, int *b, int size) {
int i;
int x = 0;

for (i= 0; i < size; i++) |
x +=a[i]l + b[i];
}
return x;
}

When compiled to assembly with optimizations enabled, the compiler
generates code that can potentially execute one iteration of the loop in two
cycles. The equivalent function that uses the short data type is as follows:

short func(short *a, short *b, int size) {
int i;
short x = 0;

for (i= 0; i < size; i++) |
x +=a[i]l + b[i];
}
return x;
}

Here the compiler generates code that executes two iterations of the loop
in two cycles with use of a vector addition. In this example, using a short
data type doubles the performance of the loop.

2-46 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Fractional arithmetic can also use vector instructions, and code generated
from fractl6 built-in functions also uses these instructions as much as

possible.

For more information, see “Effect of Data Type Size on Code Size” on

page 2-59.

Loop Control

Use int types for loop control variables and array indices.
Use automatic variables for loop control and loop exit test.

For loop control variables and array indices, use signed ints rather than
other integral types. For other integral types, the C standard requires vari-
ous type promotions and standard conversions that complicate the code
for the compiler optimizer. Frequently, the compiler is still able to deal
with such code and create hardware loops and pointer induction variables;
however, it is more difficult for the compiler to optimize and may result in
under-optimized code.

The same advice goes for using automatic (local) variables for loop con-
trol. It is easy for a compiler to see that an automatic scalar whose address
is not taken may be held in a register during a loop. But it is not as easy
when the variable is a global or a function static.

Therefore, the following code may not create a hardware loop if the com-
piler cannot be sure that the write into the array a does not change the
value of the global variable. The globvar variable must be reloaded each
time around the loop before performing the exit test.

// BAD: may need to reload globvar on every iteration.
for (i=0; i<globvar; i++)
alil = ali]l + 1;

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-47
for Blackfin Processors

Loop Guidelines

In this circumstance, the programmer can make the compiler’s job easier
by writing:

// GOOD: easily becomes a hardware loop.
int upper_bound = globvar;
for (i=0; i<upper_bound; i++)

alil = alil + 1;

Using the Restrict Qualifier

The restrict qualifier provides one way to help the compiler resolve
pointer aliasing ambiguities. Accesses from distinct restricted pointers do
not interfere with each other.

The loads and stores in the following loop

// BAD: possible alias of arrays a and b
void copy(short *a, short *b) {

int i;
for (i=0; i<100; i++)
alil = bl[il;

}
may be disambiguated by writing

// GOOD: restrict qualifier tells compiler that memory
// accesses do not alias

void copy(short * restrict a, short * restrict b) {

int 1;
for (i=0; i<100; i++)
alil = blil;
}
2-48 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Although the restrict keyword is particularly useful on function parame-
ters, it can be used on any variable declaration. For example, the copy
function may also be written as:

void copy(short *a, short *b) {
int i;
short * restrict p = a;
short * restrict q = b;
for (i=0; i<100; i++)
*pt+ = *qg++;

Avoiding Long Latencies

All pipelined machines introduce stall cycles when you cannot execute the
current instruction until a prior instruction has exited the pipeline. For
example, the Blackfin processor stalls for three cycles on a table lookup.
albl[i1] takes four cycles more than expected.

Manipulating Fixed-Point and Fractional
Data
Fractional data can be manipulated in different ways. This section
discusses the different approaches and their advantages and limitations. In

general, the styles using native fixed-point types or built-in functions are
recommended, as they give you the most control over your data.

The approaches are:

e “Using Integer Arithmetic to Encode Fractional Semantics” on

page 2-50
e “Using the Native Fixed-Point Types fract and accum” on
page 2-51
Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-49

for Blackfin Processors

Manipulating Fixed-Point and Fractional Data

e “Using Built-In Functions to Perform Fixed-Point Arithmetic” on

page 2-52

* “Using the shortfract and fract Classes in C++” on page 2-53

Using Integer Arithmetic to Encode Fractional
Semantics

One way to manipulate fractional data involves the use of multi-
ply-and-shift constructs. Consider the fractional dot product algorithm.
This may be written as:

// BAD: uses shifts to implement fractional multiplication.
lTong dot_product (short *a, short *b) {

int i;

long sum=0;

for (i=0; i<100; i++) |

/* this line is performance critical */

sum += (((long)alil*b[i]) << 1);

}

return sum;
}

This presents problems to the optimizer. Normally, the generated code
would be a multiply, followed by a shift, and then an accumulation.
However, the processor hardware has a fractional multiply/accumulate
instruction that performs all these tasks in one cycle.

In the example code, the compiler recognizes this idiom and replaces the
multiply followed by shift with a fractional multiply. In more complicated
cases, where perhaps the multiply is further separated from the shift, the
compiler may not detect the possibility of using a fractional multiply.

Moreover, the transformation may in fact be undesirable since it turns
non-saturating integer operations into saturating fractional ones. There-
fore, the results may change if the summation overflows. The

2-50 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

transformation is enabled by default since it usually is what the program-
mer intended.

Using the Native Fixed-Point Types fract and
accum

A good way to write fixed-point arithmetic is to use the native fixed-point
types fract and accum. Fixed-point arithmetic is provided on these types
using the standard C operators +, -, *, and /. This means that the
semantics of the arithmetic are well-defined and clear to the compiler and
programmer. Moreover, there is useful run-time library to provide further
manipulations on these types. For more information, see “Using Native
Fixed-Point Types” on page 1-104.

There are two important restrictions on using these types. Firstly, they are
not available when compiling in C++ mode, so C++ code cannot use the
native fixed-point types. Secondly, they are not compliant with MISRA,
and so are not available when compiling with the -misra switch.

You could write a dot product that operates on fractional data as follows:

// GOOD: uses native fixed-point types to implement fractional
multiplication
#include <stdfix.h>
long fract dot_product(fract *a, fract *b) {
int 1;
accum sum=0.0k;
for (i=0; i<100; i++) |
/* this line is performance critical */
sum += ali] * b[i];
}
return (long fract)sum;

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-51
for Blackfin Processors

Manipulating Fixed-Point and Fractional Data

Using Built-In Functions to Perform Fixed-Point
Arithmetic

Another way to write fractional arithmetic is to use built-in functions.
This way makes the semantics of the operations clear to the compiler and
encourages writing code that maps well to the Blackfin processor, since
the built-in functions generally represent specific machine instructions. It
also has the advantage that it may be used in both C and C++ modes, but
at the expense of being less intuitive than using the native fixed-point

types.

Built-in functions exist to manipulate 16- and 32-bit fractional data, as
well as 40-bit values held in the accumulator registers. For more informa-
tion, see “Fractional Value Built-In Functions in C++” on page 1-232 and
“Full-Precision Accumulator Built-In Functions” on page 1-247.

In the following example, a built-in function is used to multiply fractional
16-bit data.

// GOOD: uses built-ins to implement fractional multiplication
#include <math.h>
fract32 dot_product(fractl6 *a, fractl6 *b) f{
int 1;
fract32 sum=0;
for (i=0; i<100; i++) |
/* this Tine is performance critical */
sum += mult_fr1x32(alil,b[i]);
}
return sums;

}

Note that the fract16 and fract32 types used in the example above are
merely typedefs to C integer types used by convention in standard
include files. The compiler does not have any in-built knowledge of these
types and treats them exactly as the integer types to which they are
typedef’d.

2-52 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Using the shortfract and fract Classes in C++

If compiling in C++ mode, the shortfract and fract classes can be used.
Arithmetic on these types using the usual arithmetic operators will obey
fractional semantics. For more information, see “Fractional Value Built-In
Functions in C” on page 1-196.

The native fixed-point type fract represents a 16-bit fractional
value, while the C++ fract class represents a 32-bit fractional
value.

Like the native fixed-point types fract and accum (which cannot be used
in C++ mode), this style leads to readable code and makes the fractional
semantics clear to the compiler. The following example shows this
approach being used to write a dot product on fractional data.

// GOOD: uses shortfract and fract classes to implement frac-
tional multiplication
#include <fract>
ffinclude <shortfract>
fract dot_product(shortfract *a, shortfract *b) {
int i;
fract sum=0.0r;
for (i=0; i<100; i++) |
/* this Tine is performance critical */
sum += (fract)ali] * (fract)b[i];
}

return sum;

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-53
for Blackfin Processors

Using Built-In Functions in Code Optimization

Using Built-In Functions in Code
Optimization

Built-in functions, also known as compiler intrinsics, enable you to
efficiently use low-level features of the processor hardware while program-
ming in C. Although this section does not cover all the built-in functions
available, it presents some code examples where implementation choices
are available to the programmer. For more information, refer to “Com-
piler Built-In Functions” on page 1-195.

Fractional Data

Built-in functions provide one way to perform arithmetic on fixed-point

data. The different approaches that can be used to work with fixed-point

data, including the use of built-in functions, are discussed in “Manipulat-
ing Fixed-Point and Fractional Data” on page 2-49.

Using System Support Built-In Functions

Numerous built-in functions are provided to perform low-level system
management, such as system register manipulation. Built-in functions are
recommended instead of inline asm statements.

The built-in functions cause the compiler to generate efficient inline
instructions and often result in better optimization of the surrounding
code at the point where they are used. Using built-in functions also results
in improved code readability. For more information on supported built-in
functions, refer to “Compiler Built-In Functions” on page 1-195.

Examples of the two styles are:

// BAD: uses inline asm statement.
unsigned int get_cycles(void) f{
unsigned int ret_val;

2-54 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

asm("%0 = CYCLES;" : "=d" (ret_val) : :);
return ret_val;

// GOOD: uses sysreg.h.

#include <ccblkfn.h>

#include <sysreg.h>

unsigned int get_cycles(void) (|
return sysreg_read(reg_CYCLES);

}

This example reads and returns the CYCLES register.

Using Circular Buffers

Circular buffers are useful in DSP-style code. They can be used in several
ways. Consider the C code:

// GOOD: the compiler knows that b is accessed
// as a circular buffer.
for (i=0; i<1000; i++) {
sum += ali] * b[i%20];
}

The access to array b is a circular buffer. When optimization is enabled,
the compiler produces a hardware circular buffer instruction for this
access.

Consider this more complex example.

// BAD: may not be able to use circular buffer to access b.
for (i=0; i<1000; i+=n) {
sum += alil * b[i%20];

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-55
for Blackfin Processors

Using Built-In Functions in Code Optimization

In this case, the compiler does not know if n is positive and less than 20.
If it is, the access may be correctly implemented as a hardware circular
buffer. If it is greater than 20, a circular buffer increment may not yield
the same results as the C code.

The programmer has two options here.

The first option is to compile with the -force-circbuf switch

(on page 1-39). This tells the compiler that any access of the form a[i%n]
is to be considered as a circular buffer. Before using this switch, check that
this assumption is valid for your application.

1. The value of i must be positive.

2. The value of n must be constant across the loop, and greater than

zero (as the length of the buffer).

3. The value of a must be a constant across the loop (as the base
address of the circular buffer).

4. The initial value of i must be such that a[1] refers a valid position
within the circular buffer. This is because the circular buffer opera-
tions will take effect when advancing from position ali] to either
ali+m] or ali-m], by addition or subtraction, respectively. If a[1]
is not initially valid, access before the first advancement will not
access the buffer, and ali+m] and ali-m] will not be guaranteed to
reference the buffer after advancement.

/ Circular buffer operations (which add or subtract the buffer length

to a pointer) are semantically different from a[i%n] (which per-
forms a modulo operation on an index, and then adds the result to
a base pointer). If you use the -force-circbuf switch when the
above conditions are not true, the compiler generates code that
does not have the intended effect.

2-56 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

The second (preferred) option is to use either of two built-in functions
(circindex or circptr, declared in ccb1kfn.h) to perform the circular

buffering.

To inform the compiler that a circular buffer is to be used, you may write
either:

// GOOD: explicit use of circular buffer via circindex
for (i=0, j=0; i<1000; i+=n) {
sum += alil * b[j];
j = circindex(j, n, 20);

or

// GOOD: explicit use of circular buffer via circptr
int *p = b;
for (i=0, j=0; i<1000; i+=n) {
sum += ali]l * (*p);
p = circptr(p, 4*n, b, 80);
}

For more information, refer to “Circular Buffer Built-In Functions” on

page 1-256.

Smaller Applications: Optimizing for
Code Size

The same philosophy for producing fast code also applies to producing
small code. Present the algorithm in a way that gives the optimizer clear
visibility of the operations and data, hence granting it the greatest freedom
to safely manipulate the code to produce small applications.

Once the program is presented in this way, the optimization strategy
depends on the code size constraint that the program must obey. The first

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-57
for Blackfin Processors

Smaller Applications: Optimizing for Code Size

step is to optimize the application for full performance, using -0 or -ipa
switches. If this obeys the code size constraints, no more need be done.

The “optimize for space” switch -0s (on page 1-61), which may be used in
conjunction with IPA, performs every performance-enhancing transfor-
mation except those that increase code size. In addition, the -e linker
switch (-flags-1ink -e if used from the compiler command line) may be
helpful (on page 1-39). This operation performs section elimination in the
linker to remove unneeded data and code. If the code produced with the
-0s and -flags-1ink -e switches does not meet the code size constraint,
some analysis of the source code is required to try to further reduce the
code size.

Note that loop transformations such as unrolling and software pipelining
increase code size. But these loop transformations also give the greatest
performance benefit. Therefore, in many cases compiling for minimum
code size produces significantly slower code than optimizing for speed.

The compiler provides a way to balance between the two extremes of -0
and -0s. This is the sliding-scale -0v num switch described on page 1-61.
The num parameter may be a value between 0 and 100, where the lower
value corresponds to minimum code size and the upper to maximum per-
formance. An in-between value optimizes frequently-executed regions of
code for maximum performance, while keeping the infrequently-executed
parts as small as possible.

The -0v num switch is most reliable when using profile-guided optimiza-
tion (PGO), since the execution counts of the various code regions have
been measured experimentally. (See “Optimization Control” on

page 1-95.) Without PGO, the execution counts are estimated, based on
the depth of loop nesting.

Avoid using the inline keyword to inline code for functions that
are used multiple times, especially if they not very small. The -0s
switch has no effect on the use of the in1ine keyword. It does,

2-58 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

however, prevent automatic inlining (using the -0a switch) from
increasing the code size. Macro functions can also cause code
expansion and should be used with care.

See “Bit-Fields” on page 2-19 for information on how bit-fields affect
code size.

Effect of Data Type Size on Code Size

For optimal performance and code size, the Blackfin architecture favors
the use of 32-bit data types in control code and 16-bit data types within
processing loops (on page 2-43), which improves the chance of vector
instructions being used.

Consequently, using non-int-sized data in control code can often result in
increased code size.

Listing 2-1. Short versus Int in Control Code

short generate_short();
int generate_int();
void do_something();

// BAD: using short data type in control code gives
// larger code size.
void shortfunc(){
short x;
x=generate_short();
X++;
if (x==3)
do_something();

// GOOD: using int data type in control code gives
// smaller code size.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-59
for Blackfin Processors

Using Pragmas for Optimization

void intfunc(){
int x;
x=generate_int();
X++:
if (x==3)
do_something();
}

When Listing 2-1 is compiled and optimized, shortfunc() is slightly
larger (and slower) than intfunc(). This is because there is no 16-bit com-
pare instruction in the Blackfin architecture, and so x has to be
sign-extended to fill a whole register before the comparison.

Using Pragmas for Optimization

Pragmas can assist optimization by allowing the programmer to make

assertions or suggestions to the compiler. This section shows how they can
be used to finely tune source code. Refer to “Pragmas” on page 1-277 for
full details about each pragma. The emphasis of this section is to consider
under what circumstances they are useful during the optimization process.

In most cases, the pragmas serve to give the compiler information that it is
unable to deduce for itself. The programmer is responsible for making
sure that the information given by the pragma is valid in the context in
which it is used. Using a pragma to assert that a function or loop has a
quality that it does not in fact have may result in incorrect code and may
cause the application to malfunction.

Pragmas are advantageous because they allow code to remain portable,
since pragmas are normally ignored by a compiler that does not recognize
them.

The following section describes “Function Pragmas” while “Loop Optimi-
zation Pragmas” are described on page 2-65.

2-60 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Function Pragmas

Function pragmas include #pragma alloc, #fpragma const, #fpragma pure,
ffpragma result_alignment, and #pragma regs_clobbered. The optimiza-
tion #fpragma optimize_{off | for_speed|for_space|as_cmd_line} is also
useful to control the optimization strategy used for specific functions in
the source file.

#pragma alloc

The alloc pragma asserts that the function behaves like the malloc library
function. In particular, it returns a pointer to new memory that cannot
alias any pre-existing buffers. In the following code, the al1oc pragma
allows the compiler to be sure that the write into the buffer returned by
the call to new_buf does not modify the input buffer a. Therefore, the iter-
ations of the loop may be reordered.

#fpragma alloc
short *new_buf(void);
short *copy_buf(short *a) ({

int 1;
short * p = a;
short * g = new_buf();

for (i=0; i<100; i++)
*pHt+ = *qtt;

return p;

#pragma const

The const pragma asserts to the compiler that a function does not have
any side effects (such as modifying global variables or data buffers), and
the result returned is only a function of the parameter values. The const
pragma may be applied to a function prototype or definition. It helps the

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-61
for Blackfin Processors

Using Pragmas for Optimization

compiler, since two calls to the function with identical parameters always
yield the same result. In this way calls to #ipragma const functions may be
hoisted out of loops if their parameters are loop independent.

#pragma pure

Like ffipragma const, the pure pragma asserts to the compiler that a func-
tion does not have any side effects (such as modifying global variables or
data buffers). However, the result returned may be a function of both the
parameter values and any global variables. The pure pragma may be
applied to a function prototype or definition. Two calls to the function
with identical parameters yield the same result, provided that no global
variables have been modified between the calls. Hence, calls to #pragma
pure functions may be hoisted out of loops if their parameters are loop
independent and no global variables are modified in the loop.

#pragma result_alignment

The result_alignment pragma may be used on functions that have
pointer or integer results. When a function returns a pointer, the
result_alignment pragma is used to assert that the return result always
has some specified alignment. In the following example, the pragma is
applied to new_buf to indicate that the new_buf function always returns
buffers that are aligned on a word boundary.

// GOOD: uses pragma result_alignment to specify that out has
// strict alignment.

#fpragma alloc

fipragma result_alignment (4)

int *new_buf(void);

int *vmul(int *a, int *b) {
int 1;
int *out = new_buf();
for (i=0; i<100; i++)

2-62 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

outlil = ali]l * b[il;
return out;
}

Further details on this pragma are in “#pragma result_alignment (n)” on
page 1-330. Another, more laborious, way to achieve the same effect is to
use __builtin_aligned at every call site to assert the alignment of the
returned result.

#pragma regs_clobbered

The regs_clobbered pragma is a useful way to improve the performance
of code that makes function calls. The best use of the regs_clobbered
pragma is to increase the number of call-preserved registers available across
a function call. There are two complementary ways in which this may be
done.

First, suppose you have a function written in assembly that you wish to
call from C source code. The regs_clobbered pragma may be applied to
the function prototype to specify which registers are “clobbered” by the
assembly function, that is, which registers may have different values before
and after the function call.

The following simple assembly function adds two integers, and then
masks the result to fit into 8 bits.

_add_mask:
RO = RO + RI1;
RO = RO.B (z);
RTS;

._add_mask.end

The function does not modify the majority of the available scratch
registers; thus, these may instead be used as call-preserved registers. In this
way, fewer spills to the stack are needed in the caller function.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-63
for Blackfin Processors

Using Pragmas for Optimization

Using the following prototype, the compiler is told which registers are
modified by a call to the add_mask function. Registers not specified by the
pragma are assumed to preserve their values across such a call, and the
compiler may use these spare registers to its advantage when optimizing
the call sites.

// GOOD: uses regs_clobbered to increase call-preserved
// register set.

f#fipragma regs_clobbered "RO, ASTAT"

int add_mask(int, int);

The pragma is also powerful when all of the source code is written in C.
In the above example, a C implementation might be:

// BAD: function thought to clobber entire volatile register set.
int add_mask(int a, int b) {

return ((a+b)&255);
}

Since this function does not need many registers when compiled, it can be
defined using the following code to ensure that any other registers aside
from RO and the condition codes are not modified by the function.

// GOOD: function compiled to preserve most registers.
ffpragma regs_clobbered "RO, CCset"
int add_mask(int a, int b) {
return ((a+b)&255);
}

If other registers are used in the compilation of the function, they are
saved and restored during the function prologue and epilogue.

In general, it is not helpful to specify any of the condition codes as
call-preserved, as they are difficult to save and restore and are usually clob-
bered by any function. Moreover, it is usually of limited benefit to keep
them live across a function call. Therefore, it is better to use CCset

2-64 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

(all condition codes) rather than ASTAT in the clobbered set above. For

more information, refer to “#pragma regs_clobbered string” on
page 1-322.

#pragma optimize_{off|for_speed]for_space]as_cmd_line}

The optimize pragmas may be used to change the optimization setting on
a function-by-function basis. In particular, it may be useful to optimize
functions that are rarely called (for example, error handling code) for
space (f#fpragma optimize_for_space), whereas functions critical to perfor-
mance should be compiled for maximum speed (using #pragma
optimize_for_speed). The ffipragma optimize_off is useful for debugging
specific functions without increasing the size or decreasing the perfor-
mance of the overall application unnecessarily.

The #tpragma optimize_as_cmd_11ine resets the optimization settings to
those specified on the ccb1kfn command line when the compiler is
invoked. Refer to “General Optimization Pragmas” on page 1-297 for
more information.

Loop Optimization Pragmas

Many pragmas are targeted towards helping to produce optimal code for
inner loops. These are the loop_count, no_vectorization, vector_for,
all_aligned, different_banks, and no_alias pragmas.

#pragma loop_count

The Toop_count pragma enables the programmer to inform the compiler
about a loop’s iteration count. The compiler is able to make more reliable
decisions about the optimization strategy for a loop when it knows the
iteration count range. If you know that the loop count is always a multiple
of a constant, this can also be useful, as it allows a loop to be partially
unrolled or vectorized without the need for conditionally-executed itera-
tions. Knowledge of the minimum trip count may allow the compiler to

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-65
for Blackfin Processors

Using Pragmas for Optimization

omit the guards that are usually required after software pipelining.
(A “guard’ is code generated by the compiler to test a condition at run-
time rather than at compile-time.) Any of the unknown parameters of the

pragma may be left blank.
The following is an example of the Toop_count pragma:

// GOOD: the loop_count pragma gives the compiler helpful

// information to assist optimization.

ffpragma loop_count(/*minimum*/ 40, /*maximum*/ 100, /*modulo*/ 4)
for (i=0; i<n; i++)

alil = blil;

For more information, refer to “#pragma loop_count(min, max, modulo)”
on page 1-292.

#pragma no_vectorization

Vectorization (executing more than one iteration of a loop in parallel) can
slow down loops with small iteration counts, since a loop prologue and
epilogue are required. The no_vectorization pragma can be used directly
above a for or do loop to instruct the compiler not to vectorize the loop.

#pragma vector_for

The vector_for pragma is used to help the compiler resolve dependencies
that prevent it from vectorizing a loop. It tells the compiler that all itera-
tions of the loop may be run in parallel with each other, subject to

rearrangement of reduction expressions in the loop. In other words, there
are no loop-carried dependencies except reductions. An optional parame-
ter, n, may be given in parentheses to indicate that only n iterations of the
loop may be run in parallel. The parameter must be a literal value.

2-66 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

For example, the following cannot be vectorized if the compiler cannot
tell that array b does not alias array a.

// BAD: cannot be vectorized due to possible alias between
// a and b.
for (i=0; i<100; i++)

alil = blil + ali-41;

But the vector_for pragma may be added to instruct the compiler to
execute four iterations concurrently, as follows:

// GOOD: pragma vector_for disambiguates alias.
fipragma vector_for (4)
for (i=0; i<100; i++)

alil = bLi] + ali-4];

Note that this pragma does not force the compiler to vectorize the loop.
The optimizer checks various properties of the loop and does not vectorize
it if it believes that it is unsafe or cannot deduce information necessary to
carry out the vectorization transformation. The pragma assures the com-
piler that there are no loop-carried dependencies, but other properties of
the loop may prevent vectorization.

In cases where vectorization is impossible, the information given in the
assertion made by vector_for may still aid other optimizations.

For more information, refer to “#pragma vector_for” on page 1-296.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-67
for Blackfin Processors

Using Pragmas for Optimization

#pragma all_aligned

The al1_aligned pragma is used as shorthand for multiple
__builtin_aligned assertions. Prefixing a for loop with this pragma
asserts that every pointer variable in the loop is aligned on a word
boundary at the beginning of the first iteration. Thus, adding the pragma
to the following loop

// GOOD: uses all_aligned to inform compiler of alignment of
// a and b.
#fpragma all_aligned
for (i=0; i<100; i++)
alil = bli]l;

is equivalent to writing

// GOOD: uses __builtin_aligned to give alignment of a and b.
__builtin_aligned(a, 4);
_ _builtin_aligned(b, 4);
for (i=0; i<100; i++)
alil = bli]l;

In addition, the al1_aligned pragma may take an optional literal integer
argument, n, in parentheses. This tells the compiler that all pointer vari-
ables are aligned on a word boundary at the beginning of the n™ iteration.
Note that the iteration count begins at zero.

Therefore,

// GOOD: uses all_aligned to inform compiler of alignment
// of a and b.
ffpragma all_aligned (3)
for (i=99; i>=0; i--)
alil = blil;

2-68 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

is equivalent to

// GOOD: uses __builtin_aligned to give alignment of a and b.
__builtin_aligned(a+96, 4);
__builtin_aligned(b+96, 4);
for (i=99; i>=0; i--)
alil = blil;

For more information, refer to “#pragma all_aligned” on page 1-288 and
“Using __builtin_aligned” on page 2-24.

#pragma different_banks

The different_banks pragma is used as shorthand for declaring multiple
pointer types with different bank qualifiers. It asserts that any two inde-
pendent memory accesses in the loop may be issued together without
incurring a stall.

Therefore, writing the following allows a single instruction loop to be cre-
ated if it is known that a and b do not alias each other.

// GOOD: uses different banks to allow simultaneous accesses
// to a and b.
#fipragma different_banks
for (i=0; i<100; i++)
alil = blil;

See “#pragma different_banks” on page 1-288 for more information.

#pragma no_alias

When immediately preceding a loop, the no_alias pragma asserts that
no load or store in the loop accesses the same memory. This helps
to produce shorter loop kernels because it permits instructions in the loop

to be rearranged more freely. See “#pragma no_alias” on page 1-295 for
more information.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-69

for Blackfin Processors

Useful Optimization Switches

Useful Optimization Switches

Table 2-3 lists compiler switches useful during the optimization process.

Table 2-3. C/C++ Compiler Optimization Switches

Switch Name

Description

-const-read-write
on page 1-31

Specifies that data accessed via a pointer to const data may be modi-
fied elsewhere

-flags-link -e
on page 1-39

Specifies linker section elimination

-force-circbuf

Treats array references of the form array[i%n] as circular buffer

on page 1-39 operations

-ipa Turns on inter-procedural optimization. Implies use of -0.
on page 1-47 May be used in conjunction with -0s or -0v.
-no-fp-associative Does not treat floating-point multiply and addition as an associative
on page 1-55

-0 Enables code optimizations and optimizes the file for speed
on page 1-60

-0s Optimizes the file for size

on page 1-61

-0v num Controls speed vs. size optimizations (sliding scale)

on page 1-61

-save-temps
on page 1-72

Saves intermediate files (for example, . s)

How Loop Optimization Works

Loop optimization is important to overall application performance,
because any performance gain achieved within the body of a loop reaps a
benefit for every iteration of that loop. This section provides an introduc-
tion to some of the concepts used in loop optimization, helping you to use
the compiler features in this chapter.

2-70

Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

This section contains:
e “Terminology” on page 2-71
* “Loop Optimization Concepts” on page 2-74

* “A Working Example” on page 2-93

Terminology

This section describes terms that have particular meanings for compiler
behavior.

Clobbered

A register is “clobbered” if its value is changed so that the compiler cannot
usefully make assumptions about register’s new contents.

For example, when the compiler generates a call to an external function,
the compiler considers all caller-preserved registers to be clobbered by the
called function. Once the called function returns, the compiler cannot
make any assumptions about the values of those registers. This is why they
are called “caller-preserved.” If the caller needs the values in those registers,
the caller must preserve them itself.

The set of registers clobbered by a function can be changed using #pragma
regs_clobbered, and the set of registers changed by a gnu asm statement is
determined by the clobber part of the asm statement.

Live

A register is “/ive” if it contains a value needed by the compiler, and thus
cannot be overwritten by a new assignment to that register. For example,
to do “A = B + C”, the compiler might produce:

regl = load B // regl becomes Tive
reg?2 = load C // reg2 becomes live
Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-71

for Blackfin Processors

How Loop Optimization Works

regl = regl + reg?2 // reg?2 ceases to be live;
// regl still Tive, but with a different
// value

store regl to A // regl ceases to be live

Liveness determines which registers the compiler may use. In this exam-
ple, since regl is used to load B, and that register must maintain its value
until the addition, regl cannot also be used to load the value of C, unless
the value in regl is first stored elsewhere.

Spill

When a compiler needs to store a value in a register, and all usable regis-
ters are already live, the compiler must store the value of one of the
registers to temporary storage (the stack). This “spilling” process prevents
the loss of a necessary value.

Scheduling

“Scheduling” is the process of reordering the program instructions to
increase the efficiency of the generated code but without changing the
program’s behavior. The compiler attempts to produce the most efficient

schedule

Loop Kernel

The “loop kernel” is the body of code that is executed once per iteration of
the loop. It excludes any code required to set up the loop or to finalize it
after completion.

Loop Prolog

A “loop prolog” is a sequence of code required to set the machine into a
state whereby the loop kernel can execute. For example, the prolog may
pre-load some values into registers ready for use in the loop kernel. Not all
loops need a prolog.

2-72 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Loop Epilog

A “loop epilog” is a sequence of code responsible for finalizing the execu-
tion of a loop. After each iteration of the loop kernel, the machine will be
in a state where the next iteration can begin efficiently. The epilog moves
values from the final iteration to where they need to be for the rest of the
function to execute. For example, the epilog might save values to memory.
Not all loops need an epilog.

Loop Invariant

A “loop invariant” is an expression that has the same value for all iterations
of a loop. For example:

int i, n = 10;
for (i = 0; i < n; i++) {
val += 1;

}

The variable n is a loop invariant. Its value is not changed during the body
of the loop, so n will have the value 10 for every iteration of the loop.

Hoisting

When the optimizer determines that some part of a loop is computing a
value that is actually a loop invariant, it may move that computation to
before the loop. This “hoisting” prevents the same value from being
recomputed for every iteration.

Sinking

When the optimizer determines that some part of a loop is computing a
value that is not used until the loop terminates, the compiler may move
that computation to after the loop. This “sinking” process ensures the
value is only computed using the values from the final iteration.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-73

for Blackfin Processors

How Loop Optimization Works

Loop Optimization Concepts

The compiler optimizer focuses considerable attention on program loops,
as any gain in the loop's performance reaps the benefits on every iteration
of the loop. The applied transformations can produce code that appears to
be substantially different from the structure of the original source code.
This section provides an introduction to the compiler's loop optimization,
to help you understand why the code might be different.

The following examples are presented in terms of a hypothetical machine.
This machine is capable of issuing up to two instructions in parallel, pro-
vided one instruction is an arithmetic instruction, and the other is a load
or a store. Two arithmetic instructions may not be issued at once, nor may
two memory accesses:

t0 = t0 + t1; // valid: single arithmetic

t2 = [p0]; // valid: single memory access
[pl]l = t2; // valid: single memory access
t2 = tl + 4, t1 = [p0]; // valid: arithmetic and memory
th +=1, t6 -= 1; // dinvalid: two arithmetic

[p3] = t2, t4 = [p5]; // invalid: two memory

The machine can use the old value of a register and assign a new value to it
in the same cycle, for example:

t2z =tl + 4, tl = [p0]; // valid: arithmetic and memory

The value of t1 on entry to the instruction is the value used in the addi-
tion. On completion of the instruction, t1 contains the value loaded via
the p0 register.

The examples will show “START LOOP N” and “END LOOP”, to indicate the
boundaries of a loop that iterates N times. (The mechanisms of the loop
entry and exit are not relevant).

2-74 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Software Pipelining

“Software pipelining” is analogous to hardware pipelining used in some
processors. Whereas hardware pipelining allows a processor to start pro-
cessing one instruction before the preceding instruction has completed,
software pipelining allows the generated code to begin processing the next
iteration of the original source-code loop before the preceding iteration is
complete.

Software pipelining makes use of a processor's ability to multi-issue
instructions. Regarding known delays between instructions, it also sched-
ules instructions from later iterations where there is spare capacity.

Loop Rotation

“Loop rotation” is a common technique of achieving software pipelining.
It changes the logical start and end positions of the loop within the overall
instruction sequence, to allow a better schedule within the loop itself.
For example, this loop:

START LOOP N
A
B
C
D
E
E

ND LOOP
could be rotated to produce the following loop:

A
B
C
START LOOP N-1
D
E

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-75
for Blackfin Processors

How Loop Optimization Works

A
B
C
END LOOP
D
E

The order of instructions in the loop kernel is now different. It still circles
from instruction E back to instruction A, but now it starts at D, rather than
A. The loop also has a prolog and epilog added, to preserve the intended
order of instructions. Since the combined prolog and epilog make up a
complete iteration of the loop, the kernel is now executing N-1 iterations,
instead of N.

Another example—consider the following loop:

START LOOP N
t0 += 1
[pO0++] = t0
END LOOP

This loop has a two-cycle kernel. While the machine could execute the
two instructions in a single cycle—an arithmetic instruction and a mem-
ory access instruction—to do so would be invalid, because the second
instruction depends upon the value computed in the first instruction.
However, if the loop is rotated, we get:

t0 +=1

START LOOP N-1
[pO0++] = tO

t0 +=1

END LOOP
[pO++] = t0

2-76 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

The value being stored is computed in the previous iteration (or before the
loop starts, in the prolog). This allows the two instructions to be executed
in a single cycle:

t0 += 1

START LOOP N-1
[p0++] = t0, t0 += 1
END LOOP

[pO++] = t0O

Rotating the loop has presented an opportunity by which the kth iteration
of the original loop is starting (t0 += 1) while the (k-1)th iteration is
completing ([p0++] = t0). As a result, rotation has achieved software
pipelining, and the performance of the loop is doubled.

Notice that this process has changed the structure of the program slightly.
Suppose that the loop construct always executes the loop at least once;
that is, itisa 1. .N count. Then if N==1, changing the loop to be N-1 would
be problematic. In this example, the compiler inserts a conditional jump
around the loop construct for the circumstances where the compiler can-
not guarantee that N > 1:

t0 +=1

IF N ==1 JUMP L1;
START LOOP N-1
[p0++] = t0, t0 += 1
END LOOP

L1:

[pO++] = t0

Loop Vectorization

“Loop vectorization” is another transformation that allows the generated
code to execute more than one iteration in parallel. However, vectoriza-
tion is different from software pipelining. Where software pipelining uses
a different ordering of instructions to get better performance,

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-77
for Blackfin Processors

How Loop Optimization Works

vectorization uses a different set of instructions. These vector instructions
act on multiple data elements concurrently to replace multiple executions
of each original instruction.

For example, consider the following dot-product loop:

int i, sum = 0;
for (i = 0; i < n; i++) {
sum += x[i] * y[i];

}

This loop walks two arrays, reading consecutive values from each, multi-
plying them and adding the result to the on-going sum. This loop has
these important characteristics:

* Successive iterations of the loop read from adjacent locations in the
arrays.

* The dependency between successive iterations is the summation, a
commutative operation.

* Operations such as load, multiply and add are often available in
parallel versions on embedded processors.

These characteristics allow the optimizer to vectorize the loop so that two
elements are read from each array per load, two multiplies are done, and
two totals maintained. The vectorized loop would be:

t0 =tl =0

START LOOP N/2

t2 [pO++]1 (Wide) // Toad x[i] and x[i+1]

t3 [pl++] (Wide) // load y[i] and y[i+1]

t0 += t2 * t3 (Low), tl += t2 * t3 (High) // vector mulacc
END LOOP

t0 = t0 + tl // combine totals for Tow and high

Vectorization is most efficient when all the operations in the loop can be
expressed in terms of parallel operations. Loops with conditional

2-78 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

constructs in them are rarely vectorizable, because the compiler cannot
guarantee that the condition will evaluate in the same way for all the itera-
tions being executed in parallel.

Vectorization is also affected by data alignment constraints and data access
patterns. Data alignment affects vectorization because processors often
constrain loads and stores to be aligned on certain boundaries. While the
unvectorized version will guarantee this, the vectorized version imposes a
greater constraint that may not be guaranteed. Data access patterns affect
vectorization because memory accesses must be contiguous. If a loop
accessed every tenth element, for example, then the compiler would not be
able to combine the two loads for successive iterations into a single access.

Vectorization divides the generated iteration count by the number of iter-
ations being processed in parallel. If the trip count of the original loop is
unknown, the compiler will have to conditionally execute some iterations

of the loop.

If the compiler cannot determine whether the loop is “vectorizable” at
compile-time and the speed/space optimization settings allow it, the com-
piler will generate vectorized and non-vectorized versions of the loop. It
will select between the two at run-time. This allows for considerable per-
formance improvements, at the expense of code-size and an initial set-up
cost.

Vectorization and software pipelining are not mutually exclusive:
the compiler may vectorize a loop and then use software pipelining
to obtain better performance.

Modulo Scheduling

Loop rotation, as described earlier, is a simple software-pipelining method
that can often improve loop performance, but more complex examples

require a more advanced approach. The compiler uses a popular technique
known as “modulo scheduling” which can produce more efficient schedules

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-79
for Blackfin Processors

How Loop Optimization Works

for loops than simple loop rotation. See also “Modulo Scheduling Infor-
mation” on page 2-124.

Modulo scheduling is used to schedule innermost loops without control
flow. A modulo-scheduled loop is described using the following

parameters:

Initiation interval (II): the number of cycles between initiating two
successive iterations of the original loop.

Minimum initiation interval due to resources (res MII): a lower
limit for the initiation interval (II); an II lower than this would
mean at least one of the resources being used at greater capacity
than the machine allows.

Minimum initiation interval due to recurrences (rec MII): an
instruction cannot be executed until earlier instructions on which
it depends have also been executed. These earlier instructions may
belong to a previous loop iteration. A cycle of such dependencies (a
recurrence) imposes a minimum number of cycles for the loop.

Stage count (SC): the number of initiation intervals until the first
iteration of the loop has completed. This is also the number of iter-
ations in progress at any time within the kernel.

Modulo variable expansion unroll factor (MVE unroll): the num-
ber of times the loop has to be unrolled to generate the schedule
without overlapping register lifetimes.

Trip count: the number of times the loop kernel iterates.
Trip modulo: a number that is known to divide the trip count.
Trip maximum: an upper limit for the trip count.

Trip minimum: a lower limit for the trip count.

2-80

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Understanding these parameters will allow you to interpret the generated
code more easily. The compiler’s assembly annotations use these terms, so
you can examine the source code and the generated instructions, to see
how the scheduling relates to the original source. See “Assembly Opti-
mizer Annotations” on page 2-96 for more information.

Modulo scheduling performs software pipelining by:

* Ordering the original instructions in a sequence (for simplicity
referred to as the “base schedule”) that can be repeated after an
interval known as the “initiation interval” (“117);

 Issuing parts of the base schedule belonging to successive iterations
of the original loop, in parallel.

For the purposes of this discussion, all instructions will be assumed to
require only a single cycle to execute; on a real processor, stalls affect the
initiation interval, so a loop that executes in II cycles may have fewer than
II instructions.

Initiation Interval (I1) and the Kernel

Consider the loop
START LOOP N
A

B
C
D
E
F
G
H
N

END LOOP

Now consider that the compiler finds a new order for A,B,C,D,E,F,G,H
grouping; some of them on the same cycle so that a new instance of the
sequence can be started every two cycles. Say this base schedule is given in

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-81
for Blackfin Processors

How Loop Optimization Works

Table 2-4 where 11,12, ..., I8 are A,B,..., H reordered. Albeit a valid
schedule for the original loop, the base schedule is not the final modulo
schedule; it may not even be the shortest schedule of the original loop.
However the base schedule is used to obtain the modulo schedule, by
being able to initiate it every II=2 cycles, as seen in Table 2-5.

Table 2-4. Base Schedule

Cycle

Instructions

1 I1

12,13

14, I5
I6

17
18

AN N A W

Table 2-5. Obtaining the Modulo Schedule by Repeating the Base
Schedule Every II=2 Cycles (assuming a maximum of 4 instructions
executed in parallel per cycle)

Cycle Iteration 1 Iteration 2 Iteration 3 Iteration 4
1 I1

2 12,13

3 14, I5 I1

4 16 12,13

5 17 14, 15 I

6 18 16 12,13

7 17 14, 15 I1

8 18 16 12,13
9 17 14, 15
10 I8 I6

2-82

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Starting at cycle 5, the pattern in Table 2-6 repeats every 2 cycles. This

repeating pattern, the kernel, represents the modulo-scheduled loop.

Table 2-6. Loop kernel, N>=3

Cycle Iteration N-2 Iteration N-1 Iteration N
(last stage) (2nd stage) (1st stage)

IT*N-1 17 14, I5 I1

IT*N I8 16 12,13

The initiation interval has the value I1=2, because iteration i+1 can start
two cycles after the cycle on which iteration i starts. This way, one itera-
tion of the original loop is initiated every II cycles, running in parallel
with previous, unfinished iterations.

The initiation interval of the loop indicates several important characteris-
tics of the schedule for the loop:

* The loop kernel will be II cycles in length.

* A new iteration of the original loop will start every II cycles.
An iteration of the original loop will end every II cycles.

* The same instruction will execute on cycle ¢ and on cycle c+11
(hence the name modulo schedule).

Finding a modulo schedule implies finding a base schedule and an II such
that the base schedule can be initiated every II cycles.

If the compiler can reduce the value for II, it can start the next iteration
sooner, and thus increase the performance of the loop: The lower the II,
the more efficient the schedule. However, the II is limited by a number of
factors, including:

e The machine resources required by the instructions in the loop.

e The data dependencies and stalls between instructions.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-83
for Blackfin Processors

How Loop Optimization Works

These limiting factors are examined in:

e “Minimum Initiation Interval Due to Resources (Res MII)” on

page 2-84

e “Minimum Initiation Interval Due to Recurrences (Rec MII)” on

page 2-85
e “Stage Count (SC)” on page 2-85
e “Variable Expansion and MVE Unroll” on page 2-87
e “Trip Count” on page 2-92
Minimum Initiation Interval Due to Resources (Res Mil)

The first factor that limits II is machine resource usage. Let’s start with the
simple observation that the kernel of a modulo-scheduled loop contains
the same set of instructions as the original loop.

Assume a machine that can execute up to four instructions in parallel. If
the loop has 8 instructions, then it requires a minimum of two lines in the
kernel, since there can be at most 4 instructions on a line. This implies II
has to be at least 2, and we can tell this without having found a base
schedule for the loop, or even knowing what the specific instructions are.

Consider another example where the original loop contains 3 memory
accesses to be scheduled on a machine that supports at most 2 memory
accesses per cycle. This implies at least 2 cycles in the kernel, regardless of
the rest of the instructions.

Given a set of instructions in a loop, we can determine a lower bound for
the II of any modulo schedule for that loop based on resources required.
This lower bound is called the “Resource-based Minimum Initiation

Interval” (Res MII).

2-84 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Minimum Initiation Interval Due to Recurrences (Rec Mll)

A less obvious limitation for finding a low II are cycles in the data depen-
dencies between instructions.

Assume that the loop to be scheduled contains (among others) the
instructions:

i3: t3=tl1+t5; // t5 carried from the previous iteration
ib: th=t1+t3;

Assume each line of instructions takes 1 cycle. If 13 is executed at cycle c,
then t3 is available at cycle c+1 and t5 cannot be computed earlier than
c+1 (because it depends on t3), and similarly the next time we compute t3
cannot be earlier than c+2. Thus, if we execute i3 at cycle ¢, the next time
we can execute i3 again cannot be earlier than c+2. But for any modulo
schedule, if an instruction is executed at cycle c, the next iteration will
execute the same instruction at cycle c+I1. Therefore, II has to be at least
2 due to the circular data dependency path t3->t5->t3.

This lower bound for II, given by circular data dependencies (recurrences)
is called the “Minimum Initiation Interval Due to Recurrences” (Rec
MII), and the data dependency path is called “loop carry path”. There can
be any number of loop carry paths in a loop, including none, and they are
not necessarily disjoint.

Stage Count (SC)

The kernel in Table 2-6 on page 2-83 is formed of instructions which
belong to three distinct iterations of the original loop: {17,18} end the
“oldest” iteration—in other words they belong to the iteration started the
longest time before the current cycle; {14,15,16} belong to the next oldest
initiated iteration, and so on. {I1,12,13} are the beginning of the young-
est iteration.

The number of iterations of the original loop in progress at any time

within the kernel is called the “Stage Count” (SC). This is also the

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-85

for Blackfin Processors

How Loop Optimization Works

number of initiation intervals until the first iteration of the loop com-
pletes. In our example, SC=3.

The final schedule requires peeling a few instructions (the prolog) from
the beginning of the first iteration and a few instructions (the epilog) from
the end of the last iteration in order to preserve the structure of the kernel.

This reduces the trip count from N to N-(SC-1):

11;
12,13;
14,15,
I6,

LOOP N-2
17,

I8,

END LOOP

I1;

12,

14,

13;

I5,

I6,

17,
I8,

I1;
12,13;

14, 1b;

I6;
17;
18;

/7
/7
/7
/7
/7
/7
/7

/7
//
//
/7

prolog
prolog
prolog
prolog
i.e.
kernel
kernel

epilog
epilog
epilog
epilog

N-(SC-1),

where SC=3

Another way of viewing the modulo schedule is to group instructions into
stages as in Table 2-7, where each stage is viewed as a vector of height I1=2
of instruction lists (that represent parts of instruction lines).

Table 2-7. Instructions Grouped into Stages

Stage Count Instructions
SCO 11,
12,13
SC1 14, 15,
16
SC2 17,
18
2-86 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Now the schedule can be viewed as:

SCO

SC1 SCO

LOOP (N-2)

SC2 SC1

END LOOP
SC2

SCO

SC1
SC2

/1
/!
I/
//

/'
//

prolog
prolog
That is N-(SC-1),
kernel

where SC=3

epilog
epilog

where, for example, SC2 SC1 is the 2-line vector obtained from concate-

nating the lists in SC2 and SCI.

Variable Expansion and MVE Unroll

There is one more issue to address for modulo schedule correctness.

Consider the sequence of instructions in Table 2-8. Table 2-9 shows the
base schedule that is an instance of the one in Table 2-4 on page 2-82, and
Table 2-10 on page 2-88 shows the corresponding modulo schedule with

I1=2.

Table 2-8. Problematic Instance

Generic Specific instance
instruction

1 t1=[pl++]

12 t2=[p2++]

13 t3=t1+t5

14 t4=t2+1

15 t5=t1+t3

16 to=t4*t5

17 t7=t6*t3

18 [p8++]1=t7

Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

2-87

How Loop Optimization Works

Table 2-9. Base Schedule from Table 2-4 Applied to Instances in
Table 2-8

1 | tl=[pl++]

©2=[p2++],t3=tl+t5

t4d=t2+1,t5=t1+t3
t6=t4*t5

t7=t6*t3

AN N | N

[p8++]=t7

Table 2-10. Modulo Schedule Broken by Overlapping Lifetimes of t3

Iteration 1 Iteration 2 Iteration 3 ...
1 | tl=[pl++]
2 | 2=[p2++],t3=t1+t5
3 | t4=t2+1,t5=t1+t3 tl=[pl++]
4 | t6=t4*t5 2=[p2++],t3=t1+t5
5 | t7=t6*t3 td=t2+1,t5=t1+t3 tl=[pl++]
6 | [p8++]=t7 t6=t4*t5 ©2=[p2++],t3=t1+t5
7 t7=t6*t3 t4=t2+1,t5=t1+t3
8 [p8++]=t7 t6=t4*t5
9 t7=t6*t3
10 [p8++]=t7

There is a problem with the schedule in Table 2-10: t3 defined in the
fourth cycle (second column in the table) is used on the fifth cycle (first
column); however, the intended use was of the value defined on the sec-
ond cycle (first column). In general, the value of t3 used by t7=t6*t3 in
the kernel will be the one defined in the previous cycle, instead of the one
defined 3 cycles earlier, as intended. Thus, if the compiler were to use this
schedule as-is, it would be clobbering the live value in t3. The lifetime of

2-88 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

each value loaded into t3 is 3 cycles, but the loop’s initiation interval is
only 2, so the lifetimes of t3 from different iterations overlap.

The compiler fixes this by duplicating the kernel as many times as needed
to exceed the longest lifetime in the base schedule, then renaming the vari-
ables that clash—in this case, just t3.

In Table 2-11 we see that the length of the new loop body is 4, greater
than the lifetimes of the values in the loop.

So the loop becomes:

t1=[pl++];
t2=[p2++],t3=t1+th;
t4=t2+1,t5=t1+t3, tl=[pl++];

t6=t4*th, t2=[p2++]1,t3_2=t1+th;
LOOP (N-2)/2
t7=t6*t3, t4=t2+1,t5=t1+t3_2, tl=[pl++];
[p8++]=t7, t6=t4*t5, t2=[p2++],t3=t1+t5;
t7=t6*t3_2, t4=t2+1,t5=t1+t3,t1=[pl++];
[p8++]=t7, t6=t4*t5, t2=[p2++], t3_2=t1+t5;
END LOOP
t7=t6*t3, t4=t2+1,t5=t1+t3_2;
[p8++]=t7, to=t4*thH;
t7=t6*t3_2;
[p8++1=t7;
Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-89

for Blackfin Processors

How Loop Optimization Works

Table 2-11. Modulo Schedule Corrected by Variable Expansion: t3 and

t3_2
Iteration 1 Iteration 2 Iteration 3 Iteration 4 ...

1 | tl=[pl++]

2 | 2=[p2++],e3=tl+t5

3 | t4=t2+1,t5=t1+t3 tl=[pl++]

4 | t6=t4*t5 t2=[p2++],t3_2=tl+t

5

5 | t7=t6*t3 t4=t2+1,t5=t1+t3_2 | tl=[pl++]

6 | [p8++]=t7 t6=t4*t5 ©2=[p2++],t3=t1+t5

7 t7=t6*t3_2 t4d=t2+1,t5=t1+t3 tl=[pl++]

8 [p8++]=t7 t6=t4*t5 2=[p2++],e3_2=t1+t5
9 t7=t6*t3 t4=t2+1,t5=tl+t3_2
10 [p8++]=t7 t6=t4*t5

11 t7=t6*t3_2

12 [p8++]=t7

This process of duplicating the kernel and renaming colliding variables is
called variable expansion, and the number of times the compiler dupli-
cates the kernel is referred to as the modulo variable expansion factor
(MVE). Conceptually we use different set of names, “register sets”, for suc-
cessive iterations of the original loop in progress in the unrolled kernel (in
practice we rename just the conflicting variables, see Table 2-12). In terms
of reading the code, this means that a single iteration of the loop generated
by the compiler will be processing more than one iteration of the original
loop. Also, the compiler will be using more registers to allow the iterations
of the original loop to overlap without clobbering the live values.

2-90

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

In terms of stages:

SCO
SC1 SCO0_2
LOOP (N-2)/2

SC2 SC1_2 SCO
SC2_2 SC1

END LOOP
SC2

SCO0_2

SC1_2
SC2_2

/7
/1
/7

/1
/7

/1
//

prolog

prolog

That is N-(SC-1)/MVE, where
SC=3, MVE=2

kernel

kernel

epilog
epilog

where SCN_2 is SCN subject to renaming; in our case, only occurrences
of t3 are renamed as t3_2 in SCN_2.

In terms of instructions:

I1; // prolog

12,13; // prolog

4,15, [1_2; // prolog

I6, 12_2,13_2; // prolog
LOOP(N-2)/2 // That is N-(SC-1) /MVE, where SC=3, MVE=2

17, 14_2,15_2, 11; // kernel

18, I6_2, [2,13; // kernel

17_2, 14,15, 11_2; // kernel

18_2, I6, 12_2,13_2; // kernel

END LOOP

17, 14_2,15_2; // epilog

18, [6_2; // epilog

17_2; // epilog

18 2; // epilog

where IN_2 is IN subject to renaming; in our case, only occurrences of t3
are renamed as t3_2 in all IN_2, as seen in Table 2-12.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-91

for Blackfin Processors

How Loop Optimization Works

Table 2-12. Instructions After Modulo Variable Expansion

Generic Specific instance
instruction
I1 and 11_2 tl=[pl++]
12 and 12_2 t2=[p2++]
13 t3=t1+th
13_2 t3_2=t1+t5
14 and 14_2 t4=t2+1
15 th=t1+t3
15_2 th=t1+t3_2
16 and I6_2 t6=t4*th
17 t7=t6*t3
17_2 t7=t6*t3_2
I8 and I8_2 [p8++1=t7
Trip Count

Notice that as the modulo scheduler expands the loop kernel to add in the
extra variable sets, the iteration count of the generated loop changes from
(N-SC) to (N-SC)/MVE. This is because each iteration of the generated loop
is now doing more than one iteration of the original loop, so fewer gener-
ated iterations are required.

However, this also relies on the compiler knowing that it can divide the
loop count in this manner. For example, if the compiler produces a loop
with MVE=2 so that the count should be (N-SC)/2, an odd value of
(N-SC) causes problems. In these cases, the compiler generates additional
“peeled” iterations of the original loop to handle the remaining iteration.
As with rotation, if the compiler cannot determine the value of N, it will
make parts of the loop—the kernel or peeled iterations—conditional so
that they are executed only for the appropriate values of N.

2-92 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

The number of times the generated loop iterates is called the “#rip count”.
As explained above, sometimes knowing the trip count is important for
efficient scheduling. However, the trip count is not always available.

Lacking it, additional information may be inferred, or passed to the com-
piler through the 1oop_count pragma, specifying:

o “Trip modulo®: A number known to divide the trip count
* “Trip minimum”: A lower bound for the trip count

* “Trip maximum”: An upper bound for the trip count

A Working Example

The following fractional scalar product loop is used to show how the opti-
mizer works. To see the described behavior, compile the example:

* With the optimizer enabled. For more information, see “Optimiza-
tion Control” on page 1-95.

e With the -sat-associative command-line switch (on page 1-71).
This switch is required because the example uses fractional opera-
tions, which saturate. The compiler does not treat saturating
operations as associative, by default, which means they normally
prevent vectorization.

Example: C source code for fixed-point scalar product

#include <stdfix.h>

long fract sp(fract *a, fract *b) f{
int i;
accum sum=0.0k;
__builtin_aligned(a, 4);
__builtin_aligned(b, 4);
for (i=0; i<100; i++)

sum += ali]l * b[i];

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-93
for Blackfin Processors

How Loop Optimization Works

}
return (long fract) sum;
}

After code generation and conventional scalar optimizations are done, the
compiler generates a loop that looks something like the following
example:

Example: Initial code generated for fixed-point scalar product

P2 = 100;
LOOP .P1L3 LCO = P2;
.P1L3:

LOOP_BEGIN P1L3;

RO = WLPO++] (X);

R2 = W[PI++] (X);

A0 += RO.L * R2.L;

LOOP_END .P1L3;
LP1L4:

RO = AO;

The loop exit test has been moved to the bottom and the loop counter
rewritten to count down to zero, allowing a zero-overhead loop to be gen-
erated. The sum is being accumulated in A0. PO and P1 are initialized with
the parameters a and b, respectively, and are incremented on each
iteration.

To use 32-bit memory accesses, the optimizer unrolls the loop to run two
iterations in parallel. The sum is now being accumulated in A0 and A1,
which must be added together after the loop to produce the final result.
To use word loads, the compiler has to know that P0 and P1 have initial
values that are multiples of four bytes.

This is done in the example by use of __builtin_aligned, although it
could also have been propagated with IPA.

2-94 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Unless the compiler knows that the original loop was executed an
even number of times, a conditionally-executed odd iteration must
be inserted outside the loop.

@ Vectorization is only possible in this example because the
-sat-associative switch enables reordering of saturating addition
and multiplication through associativity. If the example performs
an integer scalar product instead of a fractional scalar product, the
associativity would be enabled by default.

Example: Code generated for fixed-point scalar product after vectorization

transformation

P2 = 50;

Al = A0 = 0;

LOOP .P1L3 LCO = P2Z;
.P1L3:

LOOP_BEGIN .P1L3;

RO = [PO++];

R2 = [P1++];

Al+=RO.H*RZ2.H, AO0+=R0O.L*R2.L;
LOOP_END .P1L3;

.P1L4:
AO += Al;
RO = AO;

Finally, the optimizer rotates the loop, unrolling and overlapping itera-
tions to obtain the highest possible use of functional units. Code similar
to the following is generated:

Example: Code generated for fixed-point scalar product after software

pipelining

A1=A0=0 || RO = [PO++] || NOP;
R2 [I1++];

P2 = 49;

LOOP .P1L3 LCO = PZ;

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-95
for Blackfin Processors

Assembly Optimizer Annotations

.P1L3:
LOOP_BEGIN .P1L3;
A1+=R0.H*R2.H, AO+=R0O.L*R2.L

|| RO = [PO++]
|| R2 = [I1++];
LOOP_END .P1L3;
P1L4:
Al1+=R0O.H*R2.H, AQ0+=R0O.L*R2.L;
AQ0 += Al;
RO = AO;

Assembly Optimizer Annotations

When the compiler optimizations are enabled, the compiler can perform a
large number of optimizations to generate the resultant assembly code.
The decisions taken by the compiler as to whether certain optimizations
are safe or worthwhile are generally invisible to a programmer. However,
it could be beneficial to get feedback from the compiler regarding the
decisions made during optimization. The intention of the information
provided is to give a programmer an understanding of how close to opti-
mal a program is and what more could possibly be done to improve the
generated code.

The feedback from the compiler optimizer is provided by means of anno-
tations made to the assembly file generated by the compiler. The assembly
file generated by the compiler can be saved by specifying the -S switch
(on page 1-71), the -save-temps switch (on page 1-72), or by checking
the Project Options->Compile->General->Save temporary files option in

VisualDSP++ IDDE.

For more information about the IDDE, refer to Visual DSP++
online Help.

2-96 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

The assembly code generated by the compiler optimizer is annotated with
the following information:

e “Global Information” on page 2-97

* “Procedure Statistics” on page 2-99

e “Instruction Annotations” on page 2-103

* “Loop Identification” on page 2-103

e “Vectorization” on page 2-115

e “Modulo Scheduling Information” on page 2-124

* “Warnings, Failure Messages, and Advice” on page 2-130

The assembly annotations provide information in several areas that you
can use to assist the compiler’s evaluation of your source code. In turn,
this improves the generated code. For example, annotations could provide
indications of resource usage or the absence of a particular optimization
from the resultant code. Annotations which note the absence of optimiza-
tion can often be more important than those noting its presence. Assembly
code annotations give the programmer insight into why the compiler
enables and disables certain optimizations for a specific code sequence.

The assembly output for the examples in this chapter may differ based on
optimization flags and the version of the compiler. As a result, you may
not be able to reproduce these results exactly.

Global Information

For each compilation unit, the assembly output is annotated with:
e The time of the compilation
e The options used during that compilation.

e The architecture for which the file was compiled.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-97
for Blackfin Processors

Assembly Optimizer Annotations

* The silicon revision used during the compilation

* A summary of the workarounds associated with the specified archi-
tecture and silicon revision. These workarounds are divided into:

* Disabled: these are the workarounds that were not applied

* Enabled: these are the workarounds that were applied dur-
ing the compilation.

* Always on: these are workarounds that are always applied
and that cannot be disabled, not even by using the
-si-revision none compiler switch.

For instance, if the file he110.c is compiled at 11am, on June 28 using the
following command line:

ccblkfn -0 -S hello.c
then the hello.s file will show:

.file "hello.c";

// Compilation time: Thu Jun 28 11:00:00 2007

// Compiler options: -0 -S

// Architecture: ADSP-BF532

// Silicon revision: 0.3

// Anomalies summary:

// Disabled: w05_00_0046,w05_00_0048,w05_00_0054,
// Enabled: w05_00_0189,w05_00_0198,w05_00_0202,
// Always on: w05_00_0074,w05_00_0122

2-98 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Procedure Statistics

For each function, the following is reported:

Frame size — The size of stack frame.

Registers used — Since function calls tend to implicitly clobber reg-
isters, there are several sets:

. The first set is composed of the scratch registers changed by the

current function. This does not count the registers that are implic-
itly clobbered by the functions called from the current function.

The second set are the call-preserved registers changed by the cur-
rent function. This does not count the registers that are implicitly
clobbered by the functions called from the current function.

The third set are the registers clobbered by the inner function calls.

Inlined Functions — If inlining happens, then the header of the
caller function reports which functions were inlined inside it and
where. Each inlined function is reported using the position of the
inlined call. All the functions inlined inside the inlined function
are reported as well, generating a tree of inlined calls. Each node,
except the root, has this form:

file_name:line:column'function_name
where:

function_name = name of the function inlined.

1ine = line number of the call to function_name, in the source file.
column = column number of the call to function_name, in the
source file.

file_name = name of the source file calling function_name.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-99
for Blackfin Processors

Assembly Optimizer Annotations

Example A (Procedure Statistics)
Consider the following program:

int funcl(int*);
int func2(int);

int foo(int in)
{
int locl = 20;
int loc_arr[20];
locl = funcl(Toc_arr);
in += func2(loc_arr[locl]);
return loc_arr[in];
}

The procedure statistics for foo are:

_foo:

.LN_foo:
.reference _funcl;
.reference _func?;

// Procedure statistics:

// Frame size = 96

// Scratch registers used:{RO.L,RO.H,RI.L,R1.H,

// PO-P2,ASTAT}

// Call preserved registers used:{R7.L,R7.H,P5,FP,SP,RETS}
// Registers that could be clobbered by function calls:

// {RO.L,RO.H,R1.L,R1.H,R2.L,R2.H,R3.L,R3.H,

// PO-P2,10-13,B0-B3,M0-M3,A0.W,AQ0.X,AL.W,AL.X,

// ASTAT,CC,AQ,LCO-LC1,LTO-LTI1,LBO-LBI,

// RETS,SEQSTAT,SYSCFG,USP}

J = =
// 1line "moo2.c":13
LINK 80;
2-100 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

.align 2

[--SP]1 = (R7:7, P5:5);
SP += -12;

R7 = RO;

Notes:

* The frame size is 96 bytes, indicating how much space is allocated
on the stack by the function. The frame size includes:

* 4 bytes for RETS
* 4 bytes for the frame pointer

* Space allocated by the compiler, for local variables
(80 bytes for Toc_arr[20])

* Space required to save any callee-preserved registers
(8 bytes, for R7 and P5)

* Space required for parameters being passed to functions
called by this one (none in this case)

* “Scratch registers used” refers to those registers the compiler does
not need to save before modifying. In this case, the registers are RO,
R1, PO, P1, P2, and ASTAT. This does not include any registers that
are modified only by calls to other functions.

* “Call-preserved registers used” refers to those registers which must
be saved before modification, and restored afterwards. In this case,
the compiler uses R7 and P5, and the saved value for these registers
account for 8 bytes of frame size.

* “Registers that could be clobbered by function calls” refers to the
union of all the registers that will be modified by the calls to other
functions. In this case, the registers are the default scratch register
set, modified by calls to funcl and func2.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-101
for Blackfin Processors

Assembly Optimizer Annotations

Example B (Inlining Summary)
This is an example of inlined function reporting.

void f4(int n);
__inline void f3(int n)
{

f4(n);

__inline void f2(int n)
{

9 while (n--) {

10 f3(n);

11 f3(2*n);

12 }

13}

14 void fl(volatile unsigned int 1)
15 {

16 f2(30);

17 1}

1
2
3
4
5}
6
7
8

f1 inlines the call of f2, which inlines the call of f3 in two places.
The procedure statistics for f1 reports these inlined calls:

_fl:
// Procedure statistics

//InTined in _f1l:
// ExampleB.c:16:7°_f2

// ExampleB.c:11:11°_f3

// ExampleB.c:10:11"_f3

T L L TEFEERP PP PPPPPEEEERRP
2-102 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

f1 reports that f2 was inlined at line 16 (column 7) and, implicitly, f1 also
inlined the two calls of 3 inside f2.

Instruction Annotations

Sometimes the compiler annotates certain assembly instructions. It does
so in order to point to possible inefficiencies in the original source code,
or when the -annotate-Toop-instr switch (on page 1-30) is used to anno-
tate the instructions related to modulo-scheduled loops.

The format of an assembly line containing several instructions is changed.
Instructions issued in parallel are no longer shown all on the same assem-
bly line; each is shown on a separate assembly line, so that the instruction
annotations can be placed after the corresponding instructions. Thus

instruction_l || instruction_2 || instruction_3;

is displayed as:

instruction_l || // {annotations for instruction_1}
instruction_2 || // {annotations for instruction_2}
instruction_3; // {annotations for instruction_3}

Loop Identification

One useful annotation is loop identification—that is, showing the rela-
tionship between the source program loops and the generated assembly
code. This is not easy due to the various loop optimizations. Some of the
original loops may not be present, because they are unrolled. Other loops
get merged, making it difficult to describe what has happened to them.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-103

for Blackfin Processors

Assembly Optimizer Annotations

The assembly code generated by the compiler optimizer is annotated with
the following loop information:

“Loop Identification Annotations” on page 2-104
“Resource Definitions” on page 2-106
“File Position” on page 2-110

“Infinite Hardware Loop Wrappers” on page 2-112

Finally, the assembly code may contain compiler-generated loops that do
not correspond to any loop in the user program, but rather represent con-
structs such as structure assignment or calls to memcpy.

Loop ldentification Annotations

Loop identification annotation rules are:

Annotate only the loops that originate from the C looping con-
structs do, while, and for. Therefore, any goto defined loop is not
accounted for.

A loop is identified by the position of the corresponding keyword
(do, while, for) in the source file.

Account for all such loops in the original user program.

Generally, loop bodies are delimited between the Lx: Loop at<file
position> and End Loop Lx assembly annotation. The former
annotation follows the label of the first block in the loop. The later
annotation follows the jump back to the beginning of the loop.
However, there are cases in which the code corresponding to a user
loop cannot be entirely represented between two markers. In such
cases the assembly code contains blocks that belong to a loop, but
are not contained between that loop’s end markers. Such blocks are
annotated with a comment identifying the innermost loop they
belong to, Part of Loop Lx.

2-104

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

* Sometimes a loop in the original program does not show up in the
assembly file because it was either transformed or deleted. In either
case, a short description of what happened to the loop is given at
the beginning of the function.

* A program’s innermost loops are those loops that do not contain
other loops. In addition to regular loop information, the innermost
loops with no control flow and no function calls are annotated with
additional information such as:

* Cycle count. The number of cycles needed to execute one
iteration of the loop, including the stalls.

* Resource usage. The resources used during one iteration of
the loop. For each resource we show how many of that
resource are used, how many are available and the percent-
age of utilization during the entire loop. Resources are
shown in decreasing order of utilization. Note that 100%
utilization means that the corresponding resource is used at
its full capacity and represents a bottleneck for the loop.

* Register usage. If the -annotate-Toop-instr compiler
switch is used, then the register usage table is shown. This
table has one column for every register that is defined or
used inside the loop. The header of the table shows the
names of the registers, written on the vertical, top down.
The registers that are not accessed do not show up. The col-
umns are grouped on data registers, pointer registers and all
other registers. For every cycle in a loop (including stalls)
there is a row in the array. The entry for a register has a "™

on that row if the register is either live or being defined at

that cycle.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-105
for Blackfin Processors

Assembly Optimizer Annotations

* Optimizations. Some loops are subject to optimizations
such as vectorization. These loops receive additional annota-
tions as described in the vectorization section.

* Sometimes the compiler generates additional loops that may or
may not be directly associated with the loops in the user program.
Whenever possible, the compiler annotations try to show the rela-
tion between such compiler-generated loops and the original source
code. For instance, for certain source level loops, the compiler gen-
erates two nested loops, with the outer loop behaving as an infinite
loop wrapper for the inner loop, and the outer loop is annotated as
an infinite wrapper.

Resource Definitions

For each cycle, a Blackfin processor may execute a single 16- or 32-bit
instruction, or it may execute a 64-bit multi-issued instruction consisting
of a 32-bit instruction and two 16-bit instructions. In either case, at most
one store instruction may be executed. Not all 16-bit instructions are valid
for the multi-issue slots, and not all of those may be placed into either
slot. Consequently, the resources are divided into group 1 (use of the first
16-bit multi-issue slot) and group 1 or 2 (use of either 16-bit multi-issue
slot).

The resource usage is described in terms of missed opportunities by the
compiler; in other words, slots where the compiler has had to issue a NOP
or MNOP instruction.

An instruction of the form:

RO = RO + R1 (NS) || Rl = [PO++] || NOP;

2-106 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

has managed to use both the 32-bit ALU slot and one of the 16-bit mem-
ory access slots, but has not managed to use the second 16-bit memory
access slot. Therefore, this counts as:

* 1 out of 1 possible 32-bit ALU/MAC instructions
* 1 out of 1 possible group 1 instructions

* 1 out of 2 possible group 1 or 2 instructions

* 0 out of 1 possible stores

A single-issued instruction is seen as occupying all issue-slots at once,
because the processor cannot issue other instructions in parallel.
Consequently, there are no opportunities missed by the compiler. Thus,
a single-issue instruction such as:

R2 = RO + R1
is counted as:
* 1 out of 1 possible 32-bit ALU/MAC instructions
* 1 out of 1 possible group 1 instructions
* 2 out of 2 possible group 1 or 2 instructions
* 1 out of 1 possible stores

This is because the compiler has not had to issue NOP instructions or MNOP
instructions, and so no resources have been unutilized.

Example C (Loop Identification)
Consider the following example:

1 int bar(int al[10000])

2 {

3 int i, sum = 0;

4 for (i = 0; 1 < 9999; ++i)

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-107
for Blackfin Processors

Assembly Optimizer Annotations

sum += (sum + 1);

while (i-- < 9999) /* this loop doesn't get executed */
alil = 2%i;

return sum;

W O ~N O O

}

The two loops are accounted for as follows:
_bar:

// Original Loop at "ExampleC.c" line 6 col 3
// Loop structure removed due to constant propagation.

// line "ExampleC.c":4

Pl = 9999;
.align 2
RO = 0;
// line 5
R1I = 1;
// Tine 4
LOOP .P34L2L LCO = P1;
.P34L2:
[oo
// Loop at "ExampleC.c" Tine 4 col 3
[oooooooo-oooo-o-

// This Toop executes 1 iteration of the original Toop
// in estimated 2 cycles.

[= m oo
// This loop's resource usage is:
// 16-bit Instruction used 4 out of 4 (100.0%)
// 32-bit Instruction wused 2 out of 2 (100.0%)
// Group 1 used 2 out of 2 (100.0%)
[= m oo
LOOP_BEGIN .P34L2L;
2-108 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

// Tine 5

R2 = RO + RI1;

RO = RO + R2;
// Tine 4

LOOP_END .P34L2L;
.P34L13:

// Part of top level (no loop)

// line 8
RTS;
.LN._bar.end:

Notes:
* The keywords identifying the two loops are:
e for — Its position is in the file ExampleC.c, line 4, column 3.
* while —Its position is in file ExampleC.c, line 6, column 3.

* Immediately after the procedure statistics, a message states that the
loop at line 6 in the user program was removed. The reason was
constant propagation, which in this case realizes that the value of i
after the first loop is 9999, and that the second loop does not get
executed.

* The start of the loop at line 4 is marked in the assembly by the
“Loop at ExampleC.c, line 4, column 3” annotation. This annota-
tion follows the loop label .P34L2. The loop label End Loop L2 is
used to identify the end of the loop.

e The loop resource information accounts for all instructions and
stalls inside the loop. In this particular case, the loop body is exe-
cuted in two cycles, one instruction for each cycle. Both
instructions are single-issue instructions. The compiler has not
issued any NOP or MNOP instructions, so it reports full utilization.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-109
for Blackfin Processors

Assembly Optimizer Annotations

File Position

As seen in Example C, the following file position is given, using the file
name, line number, and the column number in that file:

"ExampleC.c" line 4 col 6

This scheme uniquely identifies a source code position, unless inlining is
involved. In the presence of inlining, a piece of code from a certain file
position can be inlined at several places, which in turn can be inlined at
other places. Since inlining can happen an unspecified number of times, a
recursive scheme is used to describe a general file position.

Therefore, a <general file position>is <file position> inlined from
<general file position>.

Example D (Inlining Locations)

Consider the following source code:

5 void f2(int n);

6 inline void f3(int n)
7 {

8 while(n--)

9 f4();

10 if (n=17)

11 f2(3*n);
12}

13

14 inline void f2(int n)
15 |

16 while(n--) {

17 f3(n);

18 f3(2*n);

19 }

20}

21 void fl(volatile unsigned int i)

2-110 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

22 A
23 2(30);
24}

The annotations generated for function f1 is structured as follows:

// Inlined in _f1:

// ExampleD.c:23:5'_f2
// ExampleD.c:18:7"_f3
// ExampleD.c:17:7"'_f3

// Tine "ExampleD.c":22
LINK 0;

// Loop at "ExampleD.c" Tine 16 col 3 inlined
!/ at "ExampleD.c" line 23 col 5

// Loop at "ExampleD.c" Tine 8 col 3 inlined at "ExampleD.c"
// line 17 col 7 inlined at "ExampleD.c" line 23 col 5

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-111
for Blackfin Processors

Assembly Optimizer Annotations

// 1ine 10

// Loop at "ExampleD.c" Tine 8 col 3 inlined at "ExampleD.c"
// line 18 col 7 inlined at "ExampleD.c" line 23 col 5

Infinite Hardware Loop Wrappers

The compiler tries to generate hardware loops whenever possible to avoid
the delays involved with jump instructions. But hardware loops require a
trip count, and that is not always available. For instance, consider this
loop whose exit condition is not given by a trip count:

do {
body
} while (condition);

The compiler could generate code like this:

L_start:
body ;
CC = condition;
IF CC JUMP L_start (bp);

This way the conditional jump takes at least 5 cycles during each iteration.
However, if we had a hardware loop that could run forever, then the fol-
lowing alternative would be better:

LOOP L_start LCO = infinite;
LOOP_BEGIN L_start;

body;

CC = condition;

IF 1CC JUMP L_out;

2-112 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

LOOP_END L_start;
L _out:

This is 4 cycles better as the conditional jump takes only one cycle if it is
not taken. However, the hardware does not have infinite hardware loops,
so the compiler emulates them by using the highest possible trip count for
the hardware loop, and wrapping the loop in an infinite loop:

L_infinite_wrapper:
PO = -1;
LOOP L_start LCO = PO;
LOOP_BEGIN L_start;

body;

CC = condition;

IF ICC JUMP L_out;
LOOP_END L_start;

JUMP L_infinite_wrapper;
// end loop infinite_wrapper
L _out:

The two loops behave as a single infinite loop, with a minor overhead,
even though the hardware loop has to terminate. If the condition is never
satisfied, the outer loop is executed forever.

The compiler annotations annotate the outer loop as the infinite hardware
loop wrapper for the inner loop.

Example E (Hardware Loop Wrappers)
Consider the following example:

1 int pseudo_mod(int 1, int r)

2 |
3 while (1 > r) {
4 1 -=r;
5 }
Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-113

for Blackfin Processors

Assembly Optimizer Annotations

6 return 1;
}

and the code generated for this:

CC = R1 < RO;
if ICC jump .P34L2 ;
Pl = -1;

.P34L10:

// Loop at "ExampleE.c" Tine 3 col 3
// (infinite hardware loop wrapper)

ittt
LOOP .P34L3L LCO = P1;

.P34L3:

R ittt

// Loop at "ExampleE.c" Tine 3 col 3

[m oo
LOOP_BEGIN .P34L3L;

// line 4
RO = RO - RI;

// line 3

CC = R1 < RO;

if ICC jump .P34L2
.P3419:

LOOP_END .P34L3L;

2-114 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

// End Loop L10

I
.P34L2

[oo
// Part of top level (no loop)

[oo
// Tine 6

RTS;

Vectorization

The trip count of a loop is the number of times the loop body gets
executed.

Under certain conditions, the compiler can take two operations from con-
secutive iterations of a loop and execute them in a single, more powerful
instruction. This gives a loop a smaller trip count. The transformation in
which operations from two subsequent iterations are executed in one more
powerful single operation is called “vectorization”.

For instance, the original loop may start with a trip count of 1000.

for(i=0; i< 1000; ++i)
alil = bli]l + c[i];

After the optimization, the vectorized loop has a final trip count of 500.
The vectorization factor is the number of operations in the original loop
that are executed at once in the transformed loop. It is illustrated using
some pseudo code below.

for(i=0; i< 1000; i+=2)
(ali], ali+11) = (b[iJ,bli+1]1) .plus2. (clil, c[i+11)

In the above example, the vectorization factor is 2. A loop may be vector-
ized more than once.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-115
for Blackfin Processors

Assembly Optimizer Annotations

If the trip count is not a multiple of the vectorization factor, some itera-
tions need to be peeled off and executed unvectorized. If in the previous
example, the trip count of the original loop was 1001, then the vectorized
code would be:

for(i=0; 1< 1000; i+=2)
(ali], ali+1]1) = (bLil,b[i+1]) .plus2. (clil, cli+1]1);
al1000] = b[1000] + c[10001;
// This is one iteration peeled from
// the back of the Toop.

In the above examples, the trip count is known and the amount of peeling
is also known. If the trip count (a variable) is not known, the number of
peeled iterations depends on the trip count. In such cases, the optimized
code contains peeled iterations that are executed conditionally.

Unroll and Jam

Another vectorization-related transformation is unroll and jam. Consider
the following function:

/* unroll and jam example */
void f_unroll_and_jam(short al[][40], short *restrict c) {
int i, j;
__builtin_aligned(a, 4);
__builtin_aligned(c, 4);
for (i=0; i<60; i++) |
short sum=0;
for (j=0; j<40; j++) {
sum += al[jI1[i];
}
cli] = sum;

2-116 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

The outer loop can be unrolled twice and the result is:

void f_unroll_and_jam(short a[1[40], short *restrict c)

int i, J;
__builtin_aligned(a, 4);
__builtin_aligned(c, 4);
for (i=0; i1<60; i+=2) (|
{
short sum=0;
for (j=0; j<40; j++) {
sum += aljI[i];
}
c[i] = sum;

short sum=0;

for (j=0; j<40; j++) {
sum += aljl[i+1];

}

cli+l] = sum;

}

The two inner loops can be jammed together. We shall assume that we
have a plus_eq?2 operation which is a more powerful version of += that can

handle two short integers at a time.

The result is:

void f_unroll_and_jam(short alJ[40], short *restrict c)

int i, J;

__builtin_aligned(a, 4);

__builtin_aligned(c, 4);

for (i=0; i<60; i+=2) {
short sum0=0;

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

2-117

Assembly Optimizer Annotations

short suml=0;
for (j=0; j<40; j++) {
(sum0, suml) .plus_eq2. (alj1Cil, aljlli+11);
}
(cfil, cli+11) = (sumQ, suml);

Example F (Unroll and Jam)
The assembly-annotated code for the above f_unro11_and_jam example is:

MO = 80 (X):
LOOP ._PlL2 LC1 = PZ;
// "ExampleF.c" line 8 col 83

P2 = 39;
P1L2:
[= m oo
// Loop at "ExampleF.c" Tine 6 col 4
[= m oo
// Loop was unrolled for unroll and jam 2 times
i I
LOOP_BEGIN ._P1L2;
I0 = PO
RO = ROT Rl by O || NOP || R2 = [I0++MO];
LOOP ._P1L4 LCO = P2;
.P1L4:
[= m oo
// Loop at "ExampleF.c" Tine 8 col 8;
[= mm oo

// This jammed loop executes 2 iterations of the original Tloop
// in 1 cycle.
// (1 iteration of the inner loop for each of the 2 unrolled

2-118 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

// iterations of the outer Toop)
[mm oo
// This Toop's resource usage is:
// 32-bit ALU/MAC used 1 out of 1 (100.0%)
// Group 1 or 2 used 1 out of 2 (50.0%)
[= m oo
// Loop was jammed by unroll and jam 2 times
[mm oo
// "ExampleF.c" line 9 col 13
LOOP_BEGIN ._P1L4;
RO = RO +|+ R2 || NOP || R2 = [I0++MO];
// "ExampleF.c" line 8 col 8
RO = RO + RZ;
LOOP_END ._P1L4;
i i
// End Loop L4

// Part of Loop 2, depth 1
[/t
// "ExampleF.c" line 9 col 13

RO = RO +|+ RZ;
// "ExampleF.c" Tine 11 col 8

[P1++] = RO;

PO += 4;
// "ExampleF.c" Tine 6 col 4

LOOP_END ._P1L2;

J = e

// End Loop L2

[
Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-119

for Blackfin Processors

Assembly Optimizer Annotations

Loop Flattening

Another transformation, related to vectorization, is “loop flattening”.
Loop flattening takes two nested loops that run N1 and N2 times respec-
tively, and transforms them into a single loop that runs N1*N2 times.

Example G (Loop Flattening):
For instance, the following function
void copy_v(int a[J[100], int b[J[100]) ({
int i,J;
for (i=0; i< 30; ++i)
for (j=0; j < 100; ++j)

alilljl = blilljds
}

is transformed into

void copy_v(int al[J[1001, int b[I[1001)

int 1,7;
int *p_a = &a[0][0];
int *p_b = &b[0J[0];

for (i=0; i< 3000; ++i)
p_alil = p_b[i];
}

This may further facilitate the vectorization process:

void copy_v(int a[J[100], int b[J[100]) ({
int 1,7;
int *p_a = &a[0][0];
int *p_b = &b[0]J[0];
for (i=0; i< 3000; i+=2)
(p_alil, p_ali+1]) = (p_b[il, p_bl[i+11);

2-120 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

The assembly output for the loop flattening example is:

// Original Loop at "ExampleG.c" line 3 col 3 -- Tloop
// flattened into Loop at "ExampleG.c" line 4 col 5

.................... procedure code

._P1L2
[
!/ Loop at "ExampleG.c" Tine 4 col 5

A loop annotations

[oo
I loop body ...

[oo
// End Loop L2

[oo
._P1L3

[= m oo
// Part of top level (no loop)
[
// Tine 7

._copy_v.end:

Vectorization Annotations
For every loop that is vectorized, the following information is provided:
* The vectorization factor

* The number of peeled iterations

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-121
for Blackfin Processors

Assembly Optimizer Annotations

* The position of the peeled iterations (front or back of the loop)

* Information about whether peeled iterations are conditionally or
unconditionally executed

For every loop pair subject to unroll and jam, the following information is

provided:
e The number of times the unrolled outer loop was unrolled
* The number of times the inner loop was jammed

For every loop pair subject to loop flattening, the following information is

provided:

* The loop that is lost

e The remaining loop that it was merged with
Example H (Vectorization):
Consider the test program:

void add(short *a, short *restrict b, short *restrict c, int dim)
{
int i, Jj;
for (i =0 ; 1 < dim; ++1)
ali]l = b[i] + c[i];
}

for which the annotations produced are:

_add:

//... procedure statistics
//... loop selection code

.P34L29:

2-122 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

// Loop at "ExampleH.c" Tine 3 col 3
ittt
// This Toop executes 2 iterations of the original Toop

// in estimated 2 cycles.

ittt
... loop body

R I
// Loop was vectorized by a factor of 2.

[mm oo

// Vectorization peeled 1 conditional iteration from the back
!/ of the loop because of an unknown trip count, possibly not a
// multiple of 2.

[= s oo
// Consider using pragma loop_count to specify the trip count
// or trip modulo in order to avoid conditional peeling.

[= s oo

R ittt
// End Kernel for Loop L29

[= ooooooooooooooooooo-
.P34L23:

e it

// Loop at "ExampleH.c" Tine 3 col 3 (unvectorized version)
[oo
// This Toop executes 1 iteration of the original Tloop in

// estimated 2 cycles.

[oo
//... loop body

[= oo
// End Kernel for Loop L23
it
/...

The compiler has generated two versions of the loop: a vectorized version
and a non-vectorized version. The vectorized version will be executed as
long as all the pointers are sufficiently aligned. The compiler has peeled a

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-123
for Blackfin Processors

Assembly Optimizer Annotations

single iteration from the end of the vectorized version of the loop, which
will be executed if the pointers are all aligned, but dim is not a multiple of
two. Note that peeling could be avoided if additional information about
the loop count was provided and the compiler advice “Consider using
pragma loop_count to specify the trip count or trip modulo, in

order to avoid conditional peeling” informs the user of this.

Modulo Scheduling Information

For every modulo-scheduled loop (see also “Modulo Scheduling” on
page 2-79), in addition to regular loop annotations, the following infor-
mation is provided:

The initiation interval (II)

The final trip count if it is known: the trip count of the loop as it
ends up in the assembly code

A cycle count representing the time to run one iteration of the

pipelined loop

The minimum trip count, if it is known and the trip count is
unknown

The maximum trip count, if it is known and the trip count is
unknown

The trip modulo, if it is known and the trip count is unknown
The stage count (iterations in parallel)

The MVE unroll factor

The resource usage

2-124

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

¢ The minimum initiation interval due to resources (res MII)

* The minimum initiation interval due to dependency cycles
(rec MII)

Annotations for Modulo-Scheduled Instructions

The -annotate-loop-instr switch (on page 1-30) can be used to produce
additional annotation information for the instructions that belong to the
prolog, kernel, or epilog of the modulo-scheduled loop.

Consider the example whose schedule is in Table 2-11 on page 2-90.
Remember that this example does not use a real DSP architecture, but
rather a theoretical one able to schedule four instructions on a line, and
each line takes one cycle to execute. We can view the instructions involved
in modulo scheduling as in Table 2-13 on page 2-130.

Due to variable expansion, the body of the modulo-scheduled loop con-
tains MVE=2 unrolled instances of the kernel, and the loop body contains
instructions from 4 iterations of the original loop. The iterations in prog-
ress in the kernel are shown in the table heading, starting with Iteration
0 which is the oldest iteration in progress (in its final stage). This example
uses two register sets, shown in the table heading.

The instruction annotations contain the following information:
e The part of the modulo-scheduled loop (prolog, kernel, or epilog)

e The loop label: This is required since prolog and epilog instruc-
tions appear outside of the loop body and are subject to being
scheduled with other instructions.

e ID: A unique number associated with the original instruction in
the unscheduled loop that generates the current instruction. It is
useful because a single instruction in the original loop can expand
into multiple instructions in a modulo-scheduled loop. In our
example, the annotations for all instances of 11 and 11_2 have the

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-125
for Blackfin Processors

Assembly Optimizer Annotations

same ID, meaning they all originate from the same instruction (1)
in the unscheduled loop.

The IDs are assigned in the order the instructions appear in the
kernel and they might repeat for MVE unroll > 1.

* Loop-carry path, if any: If an instruction belongs to the loop-carry
path, its annotation will contain a ‘*’. If several such paths exist,
‘*2” is used for the second one, ‘*3’ for the third one, and so on.

* sn: The stage count to which the instruction belongs

* rs: The register set used for the current instruction (useful when
MVE unroll > 1, in which case rs can be 0, 1, ..., mve-1). If the
loop has an MVE of 1, the instruction’s rs is not shown.

* Additionally, the instructions in the kernel are annotated with:

* Iteration. Iter: specifies the iteration of the original loop an
instruction is on in the schedule.

e In a modulo-scheduled kernel, there are instructions from
(SC+MVE-1) iterations of the original loop. Iter=0 denotes
instructions from the earliest iteration of the original loop,
with higher numbers denoting later iterations.

Thus, the instructions corresponding to the schedule in Table 2-13 on
page 2-130 for a hypothetical machine are annotated as follows:

1 I1; // {L10 prolog:id=1,sn=0,rs=0}
2 12, // {L10 prolog:id=2,sn=0,rs=0}
3 13; // {L10 prolog:id=3,sn=0,rs=0}
4 14, // {L10 prolog:id=4,sn=1,rs=0}
5 15, // {L10 prolog:id=5,sn=1,rs=0}
6 11_2; // {L10 prolog:id=1,sn=0,rs=1}
7 16, // {L10 prolog:id=6,sn=1,rs=0}
8 12_2, // {L10 prolog:id=2,sn=0,rs=1}
2-126 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

9 : 13_2 // {L10 prolog:id=3,sn=0,rs=1}
10:/ /- mm s oo
11:// Loop at
L A
13:/7/ This Toop executes 2 iterations of the original loop
// in estimated 4 cycles.
L A i I I
15:// Unknown Trip Count
16:// Successfully found modulo schedule with:
17:/77/ Initiation Interval (II) =2
18:// Stage Count (SC) =3
19:// MVE Unroll Factor =2
20:// Minimum initiation interval due to recurrences
// (rec MII) =72
21:// Minimum initiation interval due to resources
// (res MIT) = 2.00
A e
23:L10:
23:L00P (N-2)/2;
25: 17, // {kernel:id=7,sn=2,rs=0,iter=0}
26: 14 2, // {kernel:id=4,sn=1,rs=1,iter=1}
27 : I5_2, // {kernel:id=5,sn=1,rs=1,iter=1,*}
28: I1; // {kernel:id=1,sn=0,rs=0,iter=2}
29: 18, // {kernel:id=8,sn=2,rs=0,iter=0}
30: 16_2, // {kernel:id=6,sn=1,rs=1,iter=1}
31: 12, // {kernel:id=2,sn=0,rs=0,iter=2}
32: 13; // {kernel:id=3,sn=0,rs=0,iter=2,*}
33: 17_2, // {kernel:id=7,sn=2,rs=1,iter=1}
34: 14, // {kernel:id=4,sn=1,rs=0,iter=2}
35: 15, // {kernel:id=b5,sn=1,rs=0,iter=2,%*}
36: 11_2; // {kernel:id=1,sn=0,rs=1,iter=3}
37: 18_2, // {kernel:id=8,sn=2,rs=1,iter=1}
38: 16, // {kernel:id=6,sn=1,rs=0,iter=2}
39: 12_2, // {kernel:id=2,sn=0,rs=1,iter=3}
Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-127

for Blackfin Processors

Assembly Optimizer Annotations

40: 13_2; // {kernel:id=3,sn=0,rs=1,iter=3,*}
41:END LOOQP

42

43:. 17, // {L10 epilog:id=7,sn=2,rs=0

44 14_2, // {L10 epilog:id=4,sn=1,rs=1

45 15_2; // {L10 epilog:id=b,sn=1,rs=1

{ }
{ }
{ }
46: 18, // {L10 epilog:id=8,sn=2,rs=0}
{ }
{ }
{ }

47: 16_2; // {L10 epilog:id=6,sn=1,rs=1
48: 17_2; // {L10 epilog:id=7,sn=2,rs=1
49:. 18_2; // {L10 epilog:id=8,sn=2,rs=1

Lines 10-22 define the kernel information: loop name and modulo-sched-
ule parameters: II, stage count, etc.

Lines 25-40 show the kernel.

Each instruction in the kernel has an annotation between {}, inside a
comment following the instruction. If several instructions are executed in
parallel, each gets its own annotation.

For instance, line 27 looks like:
27: I15_2, // {kernel:id=5,sn=1,rs=1,iter=1,*}
This annotation describes:

 That this instruction belongs to the kernel of the loop starting at
L10.

* That this and the other three instructions that have 10=5 originate
from the same original instruction in the unscheduled loop:

5: 15, // {L10 prolog:id=5,sn=1,rs=0}
27 152, // {kernel:id=5,sn=1,rs=1,iter=1,*}
2-128 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

35: 15, // {kernel:id=5,sn=1,rs=0,iter=2,*}

45 15_2; // {L10 epilog:id=b5,sn=1,rs=1}
* sn=1 shows that this instruction belongs to stage count 1.
* rs=1 shows that this instruction uses register set 1.

e Iter=1 specifies that this instruction belongs to the second itera-
tion of the original loop (Iter numbers are zero-based).

e The “*’ indicates that this is part of a loop carry path for the loop.
In the original, unscheduled loop, that path is I5 -> I3 -> I5. Due
to unrolling, in the scheduled loop the “unrolled” path is I5_2 ->
13->15->13_2->15_2.

The prolog and epilog are not clearly delimited in blocks by themselves,
but their corresponding instructions are annotated similar to the ones in
the kernel except that they do not have an Iter field and that they are
preceded by a tag specifying which prolog or epilog they belong to:

5 : 15, // {L10 prolog:id=5,sn=1,rs=0}
27 15_2, // {kernel:id=5,sn=1,rs=1,iter=1,*}
35 15, // {kernel:id=5,sn=1,rs=0,iter=2,*}
45 15_2; // {L10 epilog:id=5,sn=1,rs=1}

Note that the prolog/epilog instructions may mix with other instructions
on the same line.

This situation does not occur in this example; however, in a different
example it might have:

15_2, // {L10 epilog:id=5,sn=1,rs=1}
120;
Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-129

for Blackfin Processors

Assembly Optimizer Annotations

This shows a line with two instructions. The second instruction 120 is
unrelated to modulo scheduling, and therefore it has no annotation.

Table 2-13. Modulo-Scheduled Instructions

Part Iteration 0 Iteration 1 Iteration 2 Iteration 3 ...
Register Set 0 Register Set 1 | Register Set 0 | Register Set 1
1 prolog |11
2 prolog |[12,13
3 prolog |14, 15 1.2
4 prolog | I6 12.2,13_2
5 L: Loop ...
6 kernel |17 14 2,152 11
7 kernel |18 16_2 12, I3
8 kernel 7.2 14, I5 11 2
9 kernel 18_2 16 12_2,13_2
10 END Loop
11 epilog 17_2 14_2,15_2
12 epilog 18_2 16_2
13 epilog 17_2
14 epilog 18_2

Warnings, Failure Messages, and Advice

There are innocuous programming constructs that have a negative effect
on performance. Since you may not be aware of the hidden problems, the
compiler annotations try to give warnings when such situations occur.
Also, if a program construct keeps the compiler from performing a certain
optimization, the compiler gives the reason why that optimization was

precluded.

2-130 Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

In some cases, the compiler assumes it could do a better job if you would
change your code in certain ways. In these cases, the compiler offers advice
on the potentially beneficial code changes. However, take this cautiously.
While it is likely that making the suggested change will improve the per-

formance, there is no guarantee that it will actually do so.
Some of the messages are:

* This loop was not modulo scheduled because it was optimized for
space
When a loop is modulo-scheduled, it often produces code that has
to precede the scheduled loop (the prolog) and follow the
scheduled loop (the epilog). This almost always increases the size of
the code. That is why, if you specify an optimization that mini-
mizes the space requirements, the compiler doesn't attempt
modulo scheduling of a loop.

e This loop was not modulo scheduled because it contains calls or
volatile operations
Due to the restrictions imposed by calls and volatile memory
accesses, the compiler does not try to modulo-schedule loops con-
taining such instructions.

* This loop was not modulo scheduled because it contains too
many instructions
The compiler does not try to modulo-schedule loops that contain
many instructions, because the potential for gain is not worth the
increased compilation time.

* This loop was not modulo scheduled because it contains jump
instructions
Only single block loops are modulo-scheduled. You can attempt to
restructure your code and use single block loops.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-131
for Blackfin Processors

Assembly Optimizer Annotations

This loop would vectorize more if alignment were known

The loop was vectorized, but it could be vectorized even more if
the compiler could deduce a stronger alignment of some memory
locations used in the loop.

This loop would vectorize if alignment were known
The loop was not vectorized because of unknown pointer
alignment.

Consider using pragma loop_count to specify the trip count or
trip modulo
This information may help vectorization.

Consider using pragma loop_count to specify the trip count or
trip modulo, in order to prevent peeling

When a loop is vectorized, but the trip count is not known, some
iterations are peeled from the loop and executed conditionally
(based on the run-time value of the trip count). This can be
avoided if the trip count is known to be divisible by the number of
iterations executed in parallel as a result of vectorization.

operation of this size is implemented as a library call

This message is issued when a source code operation results in a
library call, due to lack of hardware support for performing that
operation on operands of that size.

operation is implemented as a library call

This message is issued when a source code operation results in a
library call, due to lack of direct hardware support. For instance, an
integer division results in a library call.

MIN operation could not be generated because of unsigned oper-
ands

This message is issued when the compiler detects a MIN operation
performed between unsigned values. Such an operation cannot be
implemented using the hardware MIN instruction, which requires
signed values.

2-132

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

* MAX operation could not be generated because of unsigned oper-
ands
This message is issued when the compiler detects a MAX operation
performed between unsigned values. Such an operation cannot be
implemented using the hardware MAX instruction, which requires
signed values.

* Use of volatile in loops precludes optimizations
In general, volatile variables hinder optimizations. They cannot be
promoted to registers, because each access to a volatile variable
requires accessing the corresponding memory location. The
negative effect on performance is amplified if volatile variables are
used inside loops. However, there are legitimate cases when you
have to use a volatile variable exactly because of this special treat-
ment by the optimizer. One example would be a loop polling if a
certain asynchronous condition occurs. This message does not dis-
courage the use of volatile variables, it just stresses the implications
of such a decision.

* Jumps out of this loop prevent efficient hardware loop generation
Due to the presence of jumps out of a loop, the compiler either
cannot generate a hardware loop, or was forced to generate one that
has a conditional exit.

* Consider using a 4-byte integral type for the variable name, for
more efficient hardware loop generation
Using short-typed variables as loop control variables limits optimi-
zation because the short variables may wrap.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-133
for Blackfin Processors

Assembly Optimizer Annotations

For instance, in the following example,

unsigned short 1i;
for (i = 0; i < c; i++)

if ¢ > 65536, then the loop will run forever because i wraps from
65535 back to 0. In this case, the compiler must add a wrapper.
The compiler recommends using an int variable instead (int or
unsigned int) unless the smaller size is critical to your program’s
behavior.

* There are N more instructions related to this call
Certain operations are implemented as library calls. In those cases
the call instruction in the assembly code is annotated explaining
that the user operation was implemented as a call. However the
cost of the operation may be slightly larger than the cost of the call
itself, due to additional overhead required to pass the parameters
and to obtain the result. This message gives an estimate of the
number of instructions in such an overhead associated with a
library call.

* This function calls the “alloca” function which may increase the
frame size
The assembly annotations try to estimate the frame size for a given
function. However, if the function makes explicit use of alloca
then this increases the frame size beyond the original reported
estimate.

2-134 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

Analyzing Your Application

The compiler and run-time libraries provide several features for analyzing
the run-time behavior of your application. These features allow you to
better debug errors and fine-tune the program. Features discussed in this
chapter are:

e “Profiling With Instrumented Code” on page 2-135 discusses how
to profile the application, measuring the time spent in individual
functions in an application.

* “Stack Overflow Detection” on page 2-142 details how to use the
stack overflow feature to determine when an application has
exceeded its maximum stack size.

As well as providing compiler instrumented profiling, VisualDSP++ also
provides statistical profiling. For more information, see “Using the Statis-
tical Profiler” on page 2-8.

Profiling With Instrumented Code

Instrumented profiling is an application profiling tool that provides a
summary of cycle counts for functions within an application. To produce
an instrumented profiling summary:

1. Compile your application with one of the -p switches
(on page 1-65). For best results, use the optimization switches that
will be enabled in the released version of the application.

2. Gather the profile. Run the executable with a training data set. The
training data set should be representative of the data that you
expect the application to process in the field. The profile is stored
in a file called mon.out.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-135
for Blackfin Processors

Analyzing Your Application

3.

®

®

Generate the profiling report, by invoking the profb1kfn tool:
profblkfn.exe dxe
where dxe is the name of the executable.

Based on the profiling report, modify the application to improve
performance in critical sections of code.

Instrumented profiling works by planting function calls into your
application which record the cycle count (and in multi-threaded
cases, the thread identifier) at certain points. Applications built
with instrumented profiling should be used for development and
should not be released.

Instrumented profiling requires that an I/O device is available in
the application to produce its profiling data. The default I/O
device will be used to perform I/O operations for instrumented

profiling.

Instrumented profiling is not supported with VDK-based
applications.

Generating an Application With Instrumented Profiling

The -p compiler switches (on page 1-65) enable instrumented profiling in
the compiler when compiling C/C++ source into assembly. The compiler
cannot instrument assembly files or files that have already been compiled

into object files.

To enable one of the -p switches in an IDDE project:

1.

2.

With the project loaded in the IDDE, select “Project Options...”

from the “Project” menu.

Select “Profiling” from the “Compile” section in the tree pane of
the “Project Options” dialog box.

2-136

Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

3. Select the “Enable compiler instrumented profiling” check box.
4. Click the “OK” button.

@ When compiling with the -p switch, the compiler and linker will
define the preprocessor macro _INSTRUMENTED_PROFILING with a
value of 1.

Running the Executable

To produce a profiling report, run the application either on the simulator
or on hardware. The application will produce a profiling file which is used
to create the profiling report. The profiling file will be called mon.out,
and will be located in the same directory as the executable.

The profiling output file needs to be converted into a readable report.
This can be achieved using the command-line profblkfn.exe tool. See
“Invoking the profblkfn.exe Command-Line Reporter” on page 2-137 for
information on how to produce a report from the mon.out profile data file.

Invoking the profblkfn.exe Command-Line Reporter

The profblkfn.exe command-line tool produces a plain-text report
printed to the command-line console. To produce a report:

* Invoke the profblkfn.exe tool (located in the top directory of your
Visual DSP++ installation), providing the application executable as
a parameter. For example: profblkfn.exe test.dxe

The report is displayed via standard output, typically to the console or
command line.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-137
for Blackfin Processors

Analyzing Your Application

Contents of the Profiling Report

The profiling report lists each profiled function called in the application,
how many times it was called, and the inclusive and exclusive cycle counts
for that function.

* Exclusive cycle counts include only the cycles spent processing the
function. This is referred to by the “fn only” column in generated
report files.

* Inclusive cycle counts also include the sum total of cycle counts in
any function invoked from this specified function. This is referred
to by the “fn+nested” column in generated report files.

* The cycle counts generated are the total cycles spent in all invoca-
tions of the specified function within the program.

Listing 2-2. Example Program for Instrumented Profiling
int apples, bananas;
void apple(void) f{

apples++; // 10 cycles

void banana(void) {
bananas++; // 10 cycles
apple(); // 10 cycles
}// 20 cycles

int main(void) |

apple(); // 10 cycles
apple(); // 10 cycles
banana(); // 20 cycles
return 0; // 40 inclusive cycles total

} // + exclusive cycles for main itself

2-138 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

For example, in the program shown as Listing 2-2 on page 2-138, assume
that apple() takes 10 cycles per call and assume that banana () takes 20
cycles per call, of which 10 are accounted for by its call to apple(). The
program, when run, calls apple () three times: twice directly and once
indirectly through banana(). The apple () function clocks up 30 cycles of
execution, and this is reported for both its inclusive and exclusive times,
since apple() does not call other functions. The banana() function is
called only once. It reports 10 cycles for its exclusive time, and 20 cycles
for its inclusive time. The exclusive cycles are for the time when banana()
is incrementing bananas and is not “waiting” for another function to
return, and so it reports 10 cycles. The inclusive cycles include these 10
exclusive cycles and also include the 10 cycles apple () used when called
from banana (), giving a total of 20 inclusive cycles.

The main() function is called only once, and calls three other functions
(apple() twice, banana() once). Between them, apple() and banana() use
up to 40 cycles, which appear in the main() function’s inclusive cycles.
The main() function’s exclusive cycles are for the time when main() is
running, but is not in the middle of a call to either apple() or banana().

Time spent in unprofiled functions will be added to the exclusive
cycle count for the innermost profiled function, if one is active.
(An active profiled function is a profiled function which has an
entry in the call stack, that is, it has begun execution but has not
yet returned.) For example, if apple() called the system function
malloc(), the time spent in malloc() (which is uninstrumented)
will be added to the time for apple().

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-139
for Blackfin Processors

Analyzing Your Application

profblkfn Command-Line Tool Report Format

The profblkfn.exe tool emits a report to standard output. The following
is an example of the tool’s output:

Function Name ExecCount Fn Only Fn+nested
_main 1 40 80

_apple 3 30 30
_banana 1 10 20

The “ExecCount” column contains the execution count for the given
function. The “Fn Only” column contains the exclusive cycle count for a
function. The “Fn+nested” column contains the inclusive cycle count for a
function. For more information, see “Contents of the Profiling Report”
on page 2-138.

Profiling Data Storage

The profiling information is stored at runtime in memory allocated from
the system heap. If the profiling run-time support cannot allocate from
the heap (usually because the heap is exhausted), the profiling runtime
will issue a diagnostic and stop storing information. The diagnostic is
'"Profiler Resource Error: heap allocation failed so profiling
cannot be completed'. The profiling data available when this happens
will be incomplete and probably not very useful. To avoid this problem,
increase the size of the system heap until the error is no longer seen when
running. For more information, see “Controlling System Heap Size and
Placement” on page 1-364.

Computing Cycle Counts

When profiling is enabled, the compiler instruments the generated code

by inserting calls to a profiling library at the start of and end of each com-
piled function. The profiling library samples the processor’s cycle counter
and records this figure against the function just started or just completed.
The profiling library itself consumes some cycles, and these overheads are

2-140 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

not included in the figures reported for each function, so the total cycles
reported for the application by the profiler will be less than the cycles
consumed during the life of the application. In addition to this overhead,
there is some approximation involved in sampling the cycle counter,
because the profiler cannot guarantee how many cycles will pass between a
function’s first instruction and the sample. This is affected by the optimi-
zation levels, the state preserved by the function, and the contents of the
processor’s pipeline. The profiling library knows how long the call entry
and exit takes “on average”, and adjusts its counts accordingly. Because of
this adjustment, profiling using instrumented code provides an approxi-
mate figure, with a small margin for error. This margin is more significant
for functions with a small number of instructions than for functions with
a large number of instructions.

Non-Terminating Applications

When an instrumented application is executed, it records data in the
application, finally flushing this data to the host computer upon termina-
tion. Non-terminating single-threaded applications are not supported, as
the profiled data is never flushed to the host computer.

Profiling of Interrupts

A single-threaded application (that is, not built with the -threads
compiler switch) will add any time spent in interrupts to the time of the
innermost, active profiled function that was interrupted. Time spent in
the interrupt handler will not be visible in the profiling report produced.
The compiler does not instrument functions declared as event handlers.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-141
for Blackfin Processors

Analyzing Your Application

Behavior That Interferes With Instrumented Profiling

Several features of the C and C++ programming languages can have an
impact on profiling results. The following features can result in unex-
pected results from profiling:

* Unexpected termination of application. If the application termi-
nates unexpectedly, the profiled information will not be flushed to
the host computer. To ensure the profiling information is
complete, the application must terminate by unwinding its stack
(returning from main() or their thread creation function), or by
calling exit ().

* Unexpected flow control. Functions that perform unexpected flow
control, such as C setjmp/Tongjmp, C++ exceptions or calling other
instrumented functions via asm() statements, may result in inaccu-
rate profiling information. Instrumented profiling relies on the
typical C/C++ behavior of call/return to be able to measure cycle
counts in functions. When features such as setjmp or C++ excep-
tions return through multiple stack frames, instrumented profiling
will attempt to complete the profiling information for any stack
frames unwound, but this may be inaccurate.

Stack Overflow Detection

A stack overflow is caused by the stack not being large enough for the
application. The effects of a stack overflow are undefined; the effects can
vary from data corruption to a catastrophic software crash.

The stack overflows when the stack pointer (SP) is modified to point past
the end of the memory reserved for the stack and the stack is written to
using the stack pointer or frame pointer (FP).

A stack overflow is different from stack corruption caused by a bug
in your program code.

2-142 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

Achieving Optimal Performance From C/C++ Source Code

When the stack overflows, any writes to the stack using the stack pointer
(SP) or the frame pointer (FP) will begin to corrupt an area of memory
which it should not. The results are undefined.

There are many reasons why a stack overflow can occur, for example:
1. A function defines a very large local array.

2. A function defines a very large variable-length array (Refer to
“Variable-Length Arrays” on page 1-166.)

3. A function uses the alloca() function, with an exceedingly large
value as its parameter, to allocate space in the stack frame of the
caller. (Refer to “System Built-In Functions” on page 1-259.)

4. The Linker Description File (.1df) has insufficient space set aside
for the stack.

5. A function calls itself recursively too many times.
6. A function’s call tree is too deep.

7. A re-entrant interrupt handler is called too many times before the
interrupt is fully serviced.

Debugging a stack overflow is not often easy and mostly involves setting
breakpoints or adding tracing statements at various places in your applica-
tion. A stack overflow might also not become apparent if you are building
your application in a Release configuration, when optimizations are
enabled; a stack overflow might not reveal itself until your application is
built in a Debug configuration, when optimizations are not enabled.

The timing of interrupts will also mask a stack overflow. If nested
interrupts are enabled and the time taken to service the interrupts is
insufficient before another interrupt is raised and serviced, then a stack
overflow can occur.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 2-143
for Blackfin Processors

Analyzing Your Application

Once it has been identified that a stack overflow is the cause of your
application failure, correcting the problem can be as simple as increasing
the amount of memory reserved for your stack. This is done by either
manually editing your custom Linker Description File (. 1df) or by regen-
erating your . 1df file once you have made the necessary adjustments to
your current configuration’s Project Options: LDF Settings.

If, due to hardware memory restrictions, you are unable to increase the
amount of memory used for the stack, then conduct a review of your
application, examining your use of local arrays, function calling and other
program code that leads to a stack overflow.

Compiler’s Stack Overflow Detection Facility

The -stack-detect (on page 1-74) switch turns on the compiler’s stack
overflow detection facility when converting C/C++ source into assembly
code. The compiler cannot generate stack overflow detection code for
assembly files or files that have already been compiled to object files.

Once the compiler’s stack overflow detection facility has been enabled, the
compiler will generate code in the function’s prologue and whenever the
stack pointer (SP) is modified in the function code, to check that the stack
pointer has not exceeded the stack limit. The current stack limit is held in
a global data structure called __adi_stack_bounds.

If the stack pointer, once modified, exceeds the stack limit a function,
called adi_stack_overflowed, is invoked. The function that triggered the
stack overflow can be discovered by examining the RETS register.

2-144 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

3 C/C++ RUN-TIME LIBRARY

The C and C++ run-time libraries are collections of functions, macros,
and class templates that may be called from your source programs. The
libraries provide a broad range of services, including those that are basic to
the languages such as memory allocation, character and string conversions,
and math calculations. Using the library simplifies software development
by providing code for a variety of common needs.

This chapter contains:

e “Cand C++ Run-Time Library Guide” on page 3-2
provides introductory information about the ANSI/ISO standard
C and C++ libraries. It also provides information about the ANSI
standard header files and built-in functions that are included with
this release of the ccb1kfn compiler.

* “Documented Library Functions” on page 3-58
tabulates the functions that are defined by ANSI standard header
files.

e “C Run-Time Library Reference” on page 3-64
provides reference information about the C run-time library
functions included with this release of the ccb1kfn compiler.

The ccblkfn compiler provides a broad collection of library functions,
including those required by the ANSI standard and additional functions
supplied by Analog Devices that are of value in signal processing applica-
tions. In addition to the standard C library, this release of the compiler
software includes the Abridged C++ library, a conforming subset of the

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 3-1
for Blackfin Processors

C and C++ Run-Time Library Guide

standard C++ library. The Abridged C++ library includes the embedded

C++ and embedded standard template libraries.

This chapter describes the standard C/C++ library functions supported in
the current release of the run-time libraries. Chapter 4, “DSP Run-Time

Library”, describes signal processing, vector, matrix, and statistical func-

tions that assist DSP code development.

For more information on the C standard library, see The Standard
C Library by P.]. Plauger, Prentice Hall, 1992. For information on
the algorithms on which many of the C library’s math functions are
based, see W. J. Cody and W. Waite, Software Manual for the Ele-
mentary Functions, Englewood Cliffs, New Jersey: Prentice Hall,
1980. For more information on the C++ library portion of the
ANSI/ISO Standard for C++, see Plauger, P. J. (Preface), The Draft
Standard C++ Library, Englewood Cliffs, New Jersey: Prentice
Hall, 1994, (ISBN: 0131170031).

The Abridged C++ library software documentation is located on the
VisualDSP++ installation CD in the Docs\Reference folder. Viewing or
printing these files requires a browser, such as Internet Explorer 6.0

(or higher). You can copy these files from the installation CD onto
another disk.

C and C++ Run-Time Library Guide

The C/C++ run-time libraries contain functions that can be called from
your source. This section describes how to use the library and provides
information on these topics:

e “Calling Library Functions” on page 3-3
e “Using the Compiler’s Built-In Functions” on page 3-5

e “Linking Library Functions” on page 3-5

3-2 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library

e “Library Attributes” on page 3-8

e “Library Function Re-Entrancy and Multi-Threaded Environ-
ments” on page 3-14

* “Working With Library Header Files” on page 3-20

* “Calling a Library Function From an ISR” on page 3-38
e “Abridged C++ Library Support” on page 3-38

e “File I/O Support” on page 3-44

For information on the C library’s contents, see “C Run-Time Library
Reference” on page 3-64.

For information on the Abridged C++ library’s contents, see “Abridged
C++ Library Support” on page 3-38.

Calling Library Functions

To use a C/C++ library function, call the function by name and provide
the appropriate arguments. The names and arguments for each function
are described on the reference pages, which begin in “C Run-Time Library
Reference” on page 3-64.

Like other functions, library functions should be declared. Declarations
are supplied in header files, as described in “Working With Library
Header Files” on page 3-20.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 3-3
for Blackfin Processors

C and C++ Run-Time Library Guide

Function names are C/C++ function names. If you call a C/C++ run-time
library function from an assembly program, you must use the assembly
version of the function name.

* For C functions, this is an underscore (_) at the beginning of the C
function name. For example, the C function main() is referred to
as _main from an assembly program.

* Functions in C++ modules are normally compiled with an encoded
function name. Function names in C++ contain abbreviations for
the parameters to the function and also the return type. As such,
they can become very large. The compiler “mangles” these names
to a shorter form. You can instruct the C++ compiler to use the
single-underscore convention from C, as shown by the following
example.

extern "C" {
int myfunc(int); // external name is _myfunc
}

Alternatively, compile C++ files to assembler, and see how the function
has been declared in the assembly file.

It may not be possible to call inline functions as the compiler may have
removed the definition of the function if all calls to the function are
inlined. Global static variables cannot be referred to in assembly routines
as their names are encrypted.

For more information on naming conventions, see “C/C++ and Assembly
Interface” on page 1-456.

Create a VisualDSP++ project or use the archiver (elfar),
described in the VisualDSP++ Linker and Utilities Manual, to build
library archive files of your own functions.

3-4 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library

Using the Compiler’s Built-In Functions

The C/C++ compiler’s built-in functions are a set of functions that the
compiler immediately recognizes and replaces with inline assembly code
instead of a function call. Typically, inline assembly code is faster than a
library routine, and does not incur the calling overhead. For example,
the absolute value function, abs (), is recognized by the compiler, which

subsequently replaces a call to the C/C++ run-time library version with
an inline version.

To use built-in functions, include the appropriate headers in your source;
otherwise, your program build will fail at link-time. If you want to use the
C/C++ run-time library functions of the same name, compile using the
-no-builtin compiler switch (on page 1-53).

Standard math functions, such as abs, min, and max, are imple-
mented using compiler built-in functions. They perform as
described in “C Run-Time Library Reference” on page 3-64 and
“DSP Run-Time Library Reference” on page 4-75.

Linking Library Functions

The C/C++ run-time library is organized as a set of run-time libraries and
startup files installed under the Visual DSP++ installation directory in the

Blackfin\1ib subdirectory. Table 3-1 contains a list of these library files
together with a brief description of their functions.

Table 3-1. C and C++ Library Files

Blackfin/lib Directory Description

crt*.doj C run-time startup file that sets up the system environment before

calling main()

crtn*.doj

C++ cleanup file used for C++ constructors and destructors

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 3-5
for Blackfin Processors

C and C++ Run-Time Library Guide

Table 3-1. C and C++ Library Files (Cont’d)

Blackfin/lib Directory

Description

cplbtab*.doj

Default cache configuration table; memory protection and cach-
ing attributes for each Blackfin processor’s memory map.
See “Caching and Memory Protection” on page 1-373.

idle*.doj

Normal “termination” code that enters IDLE loop after “end” of
the application

__dinitsbsz*.doj

Memory initializer support files

lTibc*.d1b

Primary ANSI C run-time library

lTibcpp*.dlb

Primary ANSI C++ run-time library

libcpprt*.dib
1ibx*.d1b

Legacy library. These libraries are empty and are provided for the
sole purpose of use with a legacy . 1df file.

lTibdsp*.dlb

DSP run-time library

lTibetsi*.dlb

ETSI run-time support library

Tibio*.d1b

Host-based 1/0O facilities, as described in“stdio.h” on page 3-31

libevent*.dlb

Interrupt handler support library

1ibf64*.d1b

64-bit floating-point emulation routines

lTibprofile*.dlb

Profile support routines

Tibrt*.d1b

C run-time support library, without file I/O

lTibrt_fileio*.dlb

C run-time support library, with file I/O

Tibsftflt*.d1b

Floating-point emulation routines

lTibsmall*.dlb

Supervisor mode support routines

prfflg0*.doj
prfflgl*.doj
prfflg2*.doj

Profiling initialization routines as selected by -p, -p1, and -p2
compiler options. See “-p[1]2]” on page 1-65.

Regarding Table 3-2, in general, several versions of each C/C++ run-time
library component are supplied in binary form; for example, variants are

available for different Blackfin architectures while other variants have been
built for use in a multi-threaded environment. Each version of a library or

Visual DSP++ 5.0 C/C++ Compiler and Library Manual

for Blackfin Processors

C/C++ Run-Time Library

startup file is distinguished by a different combination of file name
suffices.

Table 3-2 lists the file name suffices that may be used.

Table 3-2. C and C++ Library File Name Suffices

File Name Suffix Description

532 Compiled for execution on any of the ADSP-BF522, ADSP-BF525,
ADSP-BF527, ADSP-BF531, ADSP-BF532, ADSP-BF533,
ADSP-BF534, ADSP-BF536, ADSP-BF537, ADSP-BF538,
ADSP-BF539, ADSP-BF542, ADSP-BF544, ADSP-BF548, or
ADSP-BF549 processors

535 Compiled for execution on any of the ADSP-BF535 processors

561 Compiled for execution on the ADSP-BF561 processors

a Compiled for execution on core A of a dual-core processor

b Compiled for execution on core B of a dual-core processor

mt Built for multi-thread environments

X Libraries compiled with C++ exception handling enabled

y Compiled with the -si-revision switch (on page 1-74) to avoid all

known hardware anomalies

As an example, the C run-time library 1ibc535mty.d1b has been
compiled with the -si-revision switch (on page 1-74) for execu-
tion on any ADSP-BF535 processor, and has been built for VDK

multi-threaded environments.

@ Code or data built to run on a specific processor rather than a
group of processors described in Table 3-2 has a file name suffix

indicating the target part. For example, cplbtab531.doj contains
the default cache configuration for the ADSP-BF531 only.

The C/C++ run-time library provides further variants of the start-up files
(crt*.doj) that have been built from a single source file. (See “Startup

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 3-7
for Blackfin Processors

C and C++ Run-Time Library Guide

Code Overview” on page 1-357.) Table 3-3 shows the file name suffices

used to differentiate between different versions of this binary file.

Table 3-3. CRT File Name Suffices

crt File Name Suffix Description
c Startup file used for C++ applications
¢

Startup file that enables file I/O support via stdio.h

p Startup file used by applications that have been compiled with profil-

ing instrumentation

Startup file used by applications that run in supervisor mode

For example, crtcf535.doj is the start-up file that enables file I/O
support and initializes a C++ application that has been compiled to
execute in user mode on an ADSP-BF535 processor.

When an application calls a C/C++ library function, the call creates a ref-
erence that the linker resolves. One way to direct the linker to the location
of the appropriate run-time library is to use the default linker description
file (<your_targer>.1df). If you are using a customized .1df file to link the

application, add the appropriate library/libraries and startup files to the
.1df file used by the project.

Instead of modifying a customized .1df file, use the compiler’s -1
switch to specify the names of libraries to be searched by the linker.
For example, the switches -1¢532 -1cpp532 add the C library
1ibc532.d1b and the C++ library 1ibcpp532.d1b to the list of
libraries that the linker examines. For more information on the
.1df file, refer to the VisualDSP++ Linker and Utilities Manual.

Library Attributes

The run-time libraries make use of file attributes. (See “File Attributes” on
page 1-471 for details on using file attributes.)

3-8 Visual DSP++ 5.0 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library

All object files within the run-time libraries listed in Table 3-1 on
page 3-5 have the attributes listed in Table 3-4.

For each object (0bj) in the run-time libraries, the following is true:

Table 3-4. Run-Time Library Object Attributes

Attribute Name

Meaning of Attribute and Value

1ibGroup

A potentially multi-valued attribute. Each value is the name of a header file
that either defines obj or defines a function that calls obj.

lTibName

The name of the library that contains obj, without the processor and variant.
For example, suppose that obj were part of 11bdsp532y.d1b, then the value
of the attribute would be 11bdsp.

TibFunc

The name of all the functions in obj. 1ibFunc will have multiple values —
both the C and assembly linkage names will be listed. 1ibFunc will also
contain all the published C and assembly linkage names of objects in 0bj's
library that call into obj.

prefersMem

One of three values: internal, external, or any. If obj contains a function
that is likely to be application performance-critical, it will be marked as
internal. Most DSP run-time library functions fit into the internal
category. If a function is deemed unlikely to be essential for achieving the
necessary performance, it will be marked as external (all I/O library func-
tions fall into this category). Default . 1df files use this attribute to place
code and data optimally.

prefersMemNum

Analogous to prefersMem but takes a numeric string value. The attribute can
be used in . 1df files to provide a greater measure of control over the place-
ment of binary object files than is available using the prefersMem attribute.
The values "30", "50", and "70" correspond to the prefersMem values
internal, any, and external, respectively. Default . 1df files use the pre-
fersMem attribute in preference to the prefersMemNum attribute to specify
the optimal placement of files.

FuncName

Multi-valued attribute whose values are all the assembler linkage names of the
defined names in obj.

If an object in the run-time library calls into another object in the same
library, whether it is internal or publicly visible, the called object will
inherit extra 1ibGroup and 1ibFunc values from the caller.

Visual DSP++ 5.0 C/C++ Compiler and Library Manual 3-9
for Blackfin Processors

C and C++ Run-Time Library Guide

The following example demonstrates how attributes would look in a small
example library (1