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In the last couple of years consumer audio/video 

products have moved from closed single format (ex. 
MPEG2/AC-3) to closed single format video with 
multi-format audio (ex. AC-3, MP3, WMA, etc.).  In 
the next few years, these products will need to 
support a whole host of new audio, video and image 
formats as they become more open network 
connected appliances.  These products include: 
networked Personal Video Recorders (PVR), Digital 
Media Adapters (DMA), Internet Protocol based 
Television (IPTV), Networked Digital Receivers, IP 
based Video On Demand players (IP-VOD) and IP 
Set Top Boxes (IP-STB).   

It is impossible to release a product with all the 
Audio and Video codecs, DRM schemes,  media 
server protocols, and audio/video transport 
capabilities built in, so it is critical that these network 
connected devices be field upgradeable.   

To allow the products to be widely deployed and 
accepted they must allow an OEM to customize the 
“look and feel” of the device.  The “look and feel” is 
very important to OEM’s so that a device fits in with 
the rest of their product line.  Another critical 
characteristic is that these products must be 
affordable.  To accomplish this, system design must 
utilize the available low cost processor in a highly 
efficient manner.   Although the devices have a lot in common, each 

has a different set of additional requirements.  For 
example: an IP-VOD player needs to communicate 
with a specific media server, or a PVR needs to be 
able to place broadcast content onto a storage 
device, and later stream from that device.   

IP-STB Example 
An IP-STB is generally connected to an ISP’s 

WAN that has media servers directly connected.   

Common requirements 
All of these products need to stream compressed 

audio/video over a network, process the stream 
containers, decode the streams, and present a 
synchronized audio/video output to the consumer.  
All these tasks must be done in hard real time.  
Failure to perform these tasks in real time, cause an 
unpleasant and unacceptable user experience.  To 
achieve this level of performance on a low cost 
processor, such as an Analog Devices Blackfin®, 
the SW architecture must achieve a very high level 
of hardware efficiency. 

Since these devices can be connected to the 
internet, many different codecs will be required.  
Also, digital rights management (DRM) is a key 
enabler to network based media appliances since 
the value of the content must be protected.  This 
content protection must be proven before content 
owners will allow it to be available via an open 
network. 

Figure 1 - IP-STB use model 
 
The Internet is connected into the ISP’s WAN via 

a bridge or firewall device.  This configuration 
requires that the IP-STB and the specific media 



server understand exactly how to communicate with 
each other.  

 

IP-STB’s also need to be able to browse the 
internet and the media server’s program guide.   
This requires the IP-STB to integrate a standard 
web browser, including many of the capabilities of a 
desktop browser (i.e. Flash® player, scalable fonts, 
progressive JPEG codec, cookies, etc.).  Embedded 
browsers are widely available, but generally require 
an OS, such as Linux. 

The ability to use the IP-STB as a karaoke 
machine is a common request from many regions of 
the world.  Since the IP-STB has all the interfaces, 
Audio, Video, and Graphics, adding the SW and 
User interface is a fairly straightforward Linux 
application. 

 
Figure 2 - Streaming Multimedia System 

Streaming Multimedia “Virtual Hardware” 
Architecture The Streaming Multimedia System (SMS) 

guarantees presentation of video media at the 
requisite display rate (e.g., 30 frames of D1 
resolution per second for television output) and 
audio media at the output sample rate (e.g., 48 KHz 
for DVD quality audio).  These hard real time 
constraints are met by the entire system as a whole, 
not by individual software components (i.e., the 
media codec software).  As illustrated in Figure 3, 
the system delivers the flow of data to the DACs at 
their output rates by ensuring that all elements in the 
data path operate congruously to meet this 
requirement, including the Streaming Multimedia: 
Network Engine (SMNE), Transport Engine (SMTE), 
Audio Engine (SMAE) and Video Engine (SMVE), 
and the Audio and Video DAC drivers. 

The basic architecture of a single chip 
Application & Multimedia processor requires that 
both hard real time deadlines are met, while in the 
same system allowing an application to have access 
to all the resources it needs.  When a web browser 
is running, it should get close to 100% of the 
processor resources to give the user a satisfying 
experience. 

When a user requests to watch a video from the 
media server, they will not tolerate pauses in the 
video, obvious dropped frames, or sound problems.  
Thus, when decoding a media stream, whatever 
level of processor resources needed will be applied 
to decoding and presenting the audio and video. 

To accomplish this, we have two separate 
scheduling domains, a custom hard real time 
scheduler that is specifically designed to support the 
real time requirements of streaming multimedia 
decoders (called “Streaming Multimedia Kernel” or 
SMK), and Linux as a convenient widely available 
application scheduler. 

 

 
Figure 3 - Streaming Multimedia System: Data Flow 

Taken all together, the functions scheduled by 
SMK make up a virtual hardware device.  That is,  to 
the application running on top of Linux, the device 
looks like any other hardware audio/video decoder 
peripheral. 



Network Packet Transport 
SMNE is a reduced implementation of the 

network layer of the TCP/IP protocol stack, required 
to allow timely and efficient delivery of streaming 
media IP packets to the SMTE from the network 
device.  SMNE caters especially to media streams 
encapsulated in IP packets, because: it determines 
which IP packets belong to the media stream as 
soon as they arrive from the network device (e.g. 
Ethernet controller), and it forwards only the 
designated media stream packets to the SMTE in 
the most efficient way.  This scheme is different from 
traditional TCP/IP implementations in which network 
packet data must be processed by several layers 
before the streaming media application can process 
it.  The results of the SMNE-based network transport 
mechanism are: streamed media packets are in the 
network stack for a much shorter period of time 
(lower latency – faster response time), a lot more IP 
packets can be processed per unit time to allow 
transport for even high bit-rate media streams 
(higher throughput), and system resources are used 
more efficiently resulting in lower processor, 
memory, and I/O consumption. 

Video Processing 
Video processing generally takes much more 

processing time than audio processing.  For some 
codec types, this video processing time can exceed 
more than the allotted time to output a video frame 
(e.g., 33 milliseconds for 30 Hz interleaved video 
output) or a sequence of video frames.  In these 
special cases, the data path provides the 
appropriate level of buffering to compensate for this 
brief shortage of resource. 

Audio Processing 
Audio processing must guarantee lossless output 

at the sample level as compared to video, since the 
human ear is much more sensitive to sound than the 
eye is to motion video.  Because of this 
physiological bias, the audio output generally serves 
as the “master” clock in a multi-media system.  
Although audio processing takes less time than 
video, the audio output buffers must always be kept 
non-empty to guarantee lossless output.  
Conversely, the video output may, at the worst case, 
drop frames if its buffer levels cannot be maintained. 

Audio/Video Synchronization 
The system maintains two types of media 

synchronization:  intra-stream sync – 
synchronization within audio or video stream 

between source and sink, and inter-stream sync – 
synchronization between both audio and video 
streams.  Intra-stream synchronization requires 
locking the source clock derived from the 
presentation timestamps within the media packets to 
the output clocks.  Inter-stream synchronization 
requires use of the audio output clock as the 
“master” system clock, for reasons cited above. 

Managing memory bandwidth 
Video codecs require megabytes of memory for 

both compressed and decompressed video data, 
even for standard definition television resolutions.  
On-chip memory in low-cost processors is usually 
offered in kilobytes - orders of magnitude below 
what is required.  This requires allocation of external 
system memory, typically SDRAM.  Although 
SDRAM offers a large amount of memory at a low 
cost, access time is several orders of magnitude 
above that of on-chip static memory.  Low-cost 
processors usually provide two facilities to reduce 
this access time:  instruction and data cache 
memory and direct-memory-access (DMA).  
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Figure 4 – Video Codec Memory Bandwidth 

Requirements 
 
Figure 4 describes some characteristics of 

memory accesses during video processing.  The 
video codecs operate mostly on 2D regions of fixed 
block sizes.  These 2D blocks reside in memory in 
both linear (e.g., compressed and reference data) 
and raster (e.g., video output data) forms.   

Data caches typically perform well when data 
accesses are performed in linear fashion.  The 
performance, however, is not optimal when these 
accesses are non-linear, such as for raster 2D 
blocks.  For this reason, some processors such as 
the Blackfin offer two strides in the memory-to-
memory DMA engines to allow 2D blocks to be 
transported between external and internal 
memories.  Because DMA is independent of 



processor execution, it can be pipe-lined with 
processor execution to allow the most optimal 
processing of 2D data regions. 

Aside from video processing, other software and 
hardware components in a multimedia system 
require use of DMA engines, including system 
peripherals, audio codecs, network stack, transport 
layer, and application-level software.  Hence, the 
DMA controllers and internal buses are resources 
shared by all of these system components and must 
be managed.  Some low-cost processors, such as 
Blackfin, provide facilities to allow system software 
to manage these resources, including DMA priority 
assignment, traffic control, and bus arbitration 
policy.  SMS utilizes all of these facilities for 
optimum system performance. 

Managing Processor utilization 
Multimedia processors, such as Blackfin, value 

low cost over extremely high clock rates.  Unlike 
higher cost general-purpose processors, multimedia 
processors are designed with “just enough” 
performance.  This lack of excessive MIPS 
emphasizes the need to manage processor 
execution as efficiently as possible.  Since code 
execution is based on execution context (interrupt 
servicing and task processing), two factors are 
responsible for execution efficiency:  interrupt 
priority assignment and task scheduling. 

Interrupt sources range from peripherals and 
DMA controllers (hardware interrupts) to code 
(software interrupts and exceptions).  The variety of 
peripherals in a multimedia system is made even 
more complex by the persistent use of DMA.  The 
interrupt frequency and service time determine the 
priority of the interrupt.  For example, audio 
interrupts occur as frequently as every microsecond 
to process each sample from an AC’97 controller 
operating at 48 KHZ.  The AC’97 interrupt service 
routines also consume significant processor cycles.  
Because of these characteristics, the AC’97 interrupt 
may be assigned a much higher priority than other 
interrupt sources 

SMK executes the audio and video codecs at a 
higher priority level than all other tasks and 
processes in the system.  All other tasks, including 
the overlying operating system (e.g., uCLinux), are 
considered to execute in the “slack” period, when 
audio and video codecs do not require the 
processor.  When the multimedia codecs are 
executing for prolonged periods (for example, when 
the video codec has to process successive frames 
of high motion), execution of these non-critical tasks 
are delayed accordingly.  Consequently, these tasks 

follow a “best effort” scheduling policy, whereas the 
multimedia codecs execute as interrupt-driven, 
“hard” real time tasks. Hence, the response time of 
the multimedia codecs is directly proportional to 
interrupt latency; the response time of the “best-
effort” tasks is dependant upon the instantaneous 
requirements of the multimedia codecs. 

Managing I/O and Memories 
Since SM accesses arbitrary regions in the full 

processor address space, it utilizes and manages 
the following system resources:  fast on-chip SRAM, 
slow off-chip SDRAM, memory-mapped peripherals, 
and  memory management unit.  As all of these 
resources may be used system-wide, SM is 
responsible for controlling access to these shared 
system resources. 

Since the size of on-chip memory makes it a 
valuable system resource, SM reserves most of it for 
use under its own discretion.  This reservation is 
made statically during system initialization, along 
with allocation of reserved areas in off-chip 
memories.  These reserved regions in the processor 
address space are supplemented by all address 
spaces occupied by peripherals.  The memory-
mapped I/O regions that belong to the peripherals 
controlled by SM are also reserved (ex. memory-
mapped audio and video output peripherals).  All 
other memory-mapped regions that are not reserved 
by SM are left to the discretion of the overlying 
operating environment (e.g., uCLinux). 

Although many desktop processors provide an 
on-chip memory management unit (MMU) with 
virtual memory support, they are not widely used in 
the multimedia processor market.  In multimedia 
processors a memory protection and cache 
management unit is much more beneficial. Virtual 
memory adds non-determinism to the execution 
environment.  The Blackfin processor provides 
Cache Protection Look aside Buffers (CPLBs) to 
support deterministic multimedia applications.  This 
hardware unit allows attributes to be assigned to 
memory regions, or “pages”.  These pages are 
designated as either cached or non-cached, with an 
access mode (user-mode only, supervisor-mode 
only, or both), and size.  CPLBs are separately 
available for both instruction and data memories, to 
allow independent management of both spaces.  
The SM manages on-chip (and off-chip) memories 
by statically allocating these resources, it also 
controls memory access by managing the CPLBs.  
CPLB management includes:  assignment of page 
attributes, page replacement, and cache operation.  



uC Linux 
The standard micro-C Linux kernel requires 

certain modifications, albeit small, in order to 
interoperate with the Streaming Multimedia System 
(SMS).  These modifications fortunately are only 
needed in the machine-dependant portion of the 
Linux kernel, credited to the elegant design of the 
operating system.  In addition to these minimal core 
kernel changes, several new kernel modules are 
needed to interface to the SMS. 

Core Kernel Requirements 

Kernel Bootstrap 
The standard uCLinux kernel assumes little, if 

nothing at all, of the machine state during core 
kernel initialization.  Consequently, it initializes the 
entire machine state for the kernel run-time 
environment, including kernel stack, core machine 
registers, interrupt and exception vectors, and 
memories.  However, in the multimedia framework 
of the SMS, the run-time environment has already 
been initialized for the most part and only certain 
interrupt and exception vectors and portions of 
memory need to be set up.  The multimedia 
framework also supplies the kernel boot parameters 
as standard string-based command-line options. 

Exception Handling 
The standard uCLinux kernel has its own 

exception vector table, that has kernel entry points 
for handling hardware and software exception 
events.  The SMS now handles all of these events.  
Only those exceptions that need to be delivered to 
the Linux kernel are system calls.  This is performed 
through a Deferred Exception Handler (DEH), which 
executes as a Linux exception handler.  The DEH 
executes at a higher execution level than the kernel, 
possible through software interrupt priority 
assignment on the Blackfin architecture. 

Interrupt Handling 
The uCLinux kernel manages two types of 

interrupts:  the core timer interrupt and peripheral 
interrupts. 

The core timer serves as the system clock, 
whose value is held by the global kernel variable 
“jiffies”.  In order to maintain reliable system 
response time and synchronization, this timer should 
have marginal variance.  SMS automatically 
guarantees this low level of clock jitter by fixed 

hardware assignment in the Blackfin processor of 
the core timer interrupt at the highest priority level. 

Peripheral interrupts are only managed for those 
devices controlled by the uCLinux OS.  All others 
are handled in the SMS.  All Linux device interrupts 
share a common hardware interrupt priority level for 
two reasons: the standard uCLinux kernel has a 
common interrupt dispatcher that is invoked when 
any hardware interrupt event occurs, and all 
interrupt vectors are managed in the SMS. 

In order to maintain low interrupt latency 
throughout the multimedia system, timer and Linux 
device interrupt service routines execute in on-chip 
instruction memory.  Since this memory is a 
valuable system resource, these routines need to be 
minute in code size and execution time. 

Memory Allocation 
The standard uCLinux kernel consists of 

following types of memory sections: init/exit text and 
data, run-time text and read-only data, run-time 
read/write kernel data, ramdisk area, and 
uninitialized kernel data (bss).  The kernel reclaims 
the init sections for heap and processes.  All of 
these regions need not be contiguous in physical 
memory, and so are assigned in a fragmented 
fashion by the SMS.  This assignment is made 
statically in the linker description file used during 
both the kernel build and SMS build. 

SMS Interface 
Linux and its applications must be able to 

communicate with the SMS for several reasons: 
sending media control and other commands to the 
SMS, transmitting and receiving network packets on 
the same interface as the SMS, making DMA 
requests, and passing “raw” audio data for mixing 
with audio codec data. 

SM Command Device Driver 
A character-mode device driver is required for 

uCLinux applications to communicate with the SMS.  
This communication may include sending media 
control commands (e.g., PAUSE, STOP, PLAY, 
etc.), triggering SM functions (e.g., Display Graphics 
Overlay function), and message passing (e.g., 
setting media parameters and modes). 

VHNE Device Driver 
A uCLinux Ethernet device driver module is 

required for receiving packets from the network 
interface and delivering them to the Linux TCP/IP 
network stack.  This driver interfaces directly to the 



SMNE, which forwards all packets to uCLinux other 
than those destined for SM and transmits packets 
from uCLinux applications on the network interface. 

SMDE Device Driver 
The uCLinux kernel file-systems, device drivers, 

and applications may utilize the memory-to-memory 
DMA controller to facilitate data movement.  A 
kernel module is required to communicate with the 
SM DMA Engine (SMDE) to make these DMA 
requests and receive end-of-DMA notifications.  Just 
as the other shared peripherals (eg. network 
interface), no guarantees are made when the 
requests will be serviced; that is, the requests are 
processed “best-effort”. 

SMAE Device Driver 
A sound driver is required to supply audio data to 

be mixed with the audio codec output within the 
SMS.  This data may originate from WAV files or 
compressed formats at the Linux kernel or 
application level.  This driver also interfaces directly 
to the SMS to supply the data and control the mixing 
operation. 

Application framework 
From the application developers viewpoint, the 

system must have all the functionality available on a 
standard embedded microprocessor system.  The 
interaction between the SMS and the application 
must be well defined and the debug environment 
must have the capability to efficiently integrate a 
user application with the media decoder.  To 
implement a complete system the application will 
require; multiple processes and threads, inter-
process communications and synchronization, Linux 
device drivers for all SMS capabilities, shared data 
and program objects, memory management 
functionality, and a debug server (such as GDB 
server). 

Conclusion 
The days of implementing media-centric products 

using two separate processors: a general purpose 
applications processor, and a media processor, are 
coming to a close.  By using our Streaming 
Multimedia System (SMS) software framework, we 
are able to deliver full DVD quality multimedia 
decode of a variety of different compression formats 
(WM, MPEG2, MPEG4, JPEG, etc.).  All this on a 
single low cost 600MHz Blackfin.  This same 
Blackfin also runs uCLinux and applications that 

utilize both the uCLinux OS capabilities and our 
SMS “Virtual Hardware.”  This network connected, 
field upgradeable system makes this pure software 
approach uniquely suited to keep up with the 
accelerating rate of change in this new category of 
network connected media processing client devices. 
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