
Is It Really Possible to Play DVD-quality Media while executing Linux
Applications on the same Low Cost Processor?

Russell Rivin Rajesh Mishra
Analog Devices, Inc. Analog Devices, Inc.
One Technology Way One Technology Way
Norwood, MA 02062 Norwood, MA 02062
USA USA
(781) 461 – 4092 (781) 461 - 3558
Russell.Rivin@Analog.com Rajesh.Mishra@Analog.com

In the last couple of years consumer audio/video

products have moved from closed single format (ex.
MPEG2/AC-3) to closed single format video with
multi-format audio (ex. AC-3, MP3, WMA, etc.). In
the next few years, these products will need to
support a whole host of new audio, video and image
formats as they become more open network
connected appliances. These products include:
networked Personal Video Recorders (PVR), Digital
Media Adapters (DMA), Internet Protocol based
Television (IPTV), Networked Digital Receivers, IP
based Video On Demand players (IP-VOD) and IP
Set Top Boxes (IP-STB).

It is impossible to release a product with all the
Audio and Video codecs, DRM schemes, media
server protocols, and audio/video transport
capabilities built in, so it is critical that these network
connected devices be field upgradeable.

To allow the products to be widely deployed and
accepted they must allow an OEM to customize the
“look and feel” of the device. The “look and feel” is
very important to OEM’s so that a device fits in with
the rest of their product line. Another critical
characteristic is that these products must be
affordable. To accomplish this, system design must
utilize the available low cost processor in a highly
efficient manner. Although the devices have a lot in common, each

has a different set of additional requirements. For
example: an IP-VOD player needs to communicate
with a specific media server, or a PVR needs to be
able to place broadcast content onto a storage
device, and later stream from that device.

IP-STB Example
An IP-STB is generally connected to an ISP’s

WAN that has media servers directly connected.

Common requirements
All of these products need to stream compressed

audio/video over a network, process the stream
containers, decode the streams, and present a
synchronized audio/video output to the consumer.
All these tasks must be done in hard real time.
Failure to perform these tasks in real time, cause an
unpleasant and unacceptable user experience. To
achieve this level of performance on a low cost
processor, such as an Analog Devices Blackfin®,
the SW architecture must achieve a very high level
of hardware efficiency.

Since these devices can be connected to the
internet, many different codecs will be required.
Also, digital rights management (DRM) is a key
enabler to network based media appliances since
the value of the content must be protected. This
content protection must be proven before content
owners will allow it to be available via an open
network.

Figure 1 - IP-STB use model

The Internet is connected into the ISP’s WAN via

a bridge or firewall device. This configuration
requires that the IP-STB and the specific media

server understand exactly how to communicate with
each other.

IP-STB’s also need to be able to browse the
internet and the media server’s program guide.
This requires the IP-STB to integrate a standard
web browser, including many of the capabilities of a
desktop browser (i.e. Flash® player, scalable fonts,
progressive JPEG codec, cookies, etc.). Embedded
browsers are widely available, but generally require
an OS, such as Linux.

The ability to use the IP-STB as a karaoke
machine is a common request from many regions of
the world. Since the IP-STB has all the interfaces,
Audio, Video, and Graphics, adding the SW and
User interface is a fairly straightforward Linux
application.

Figure 2 - Streaming Multimedia System

Streaming Multimedia “Virtual Hardware”
Architecture The Streaming Multimedia System (SMS)

guarantees presentation of video media at the
requisite display rate (e.g., 30 frames of D1
resolution per second for television output) and
audio media at the output sample rate (e.g., 48 KHz
for DVD quality audio). These hard real time
constraints are met by the entire system as a whole,
not by individual software components (i.e., the
media codec software). As illustrated in Figure 3,
the system delivers the flow of data to the DACs at
their output rates by ensuring that all elements in the
data path operate congruously to meet this
requirement, including the Streaming Multimedia:
Network Engine (SMNE), Transport Engine (SMTE),
Audio Engine (SMAE) and Video Engine (SMVE),
and the Audio and Video DAC drivers.

The basic architecture of a single chip
Application & Multimedia processor requires that
both hard real time deadlines are met, while in the
same system allowing an application to have access
to all the resources it needs. When a web browser
is running, it should get close to 100% of the
processor resources to give the user a satisfying
experience.

When a user requests to watch a video from the
media server, they will not tolerate pauses in the
video, obvious dropped frames, or sound problems.
Thus, when decoding a media stream, whatever
level of processor resources needed will be applied
to decoding and presenting the audio and video.

To accomplish this, we have two separate
scheduling domains, a custom hard real time
scheduler that is specifically designed to support the
real time requirements of streaming multimedia
decoders (called “Streaming Multimedia Kernel” or
SMK), and Linux as a convenient widely available
application scheduler.

Figure 3 - Streaming Multimedia System: Data Flow

Taken all together, the functions scheduled by
SMK make up a virtual hardware device. That is, to
the application running on top of Linux, the device
looks like any other hardware audio/video decoder
peripheral.

Network Packet Transport
SMNE is a reduced implementation of the

network layer of the TCP/IP protocol stack, required
to allow timely and efficient delivery of streaming
media IP packets to the SMTE from the network
device. SMNE caters especially to media streams
encapsulated in IP packets, because: it determines
which IP packets belong to the media stream as
soon as they arrive from the network device (e.g.
Ethernet controller), and it forwards only the
designated media stream packets to the SMTE in
the most efficient way. This scheme is different from
traditional TCP/IP implementations in which network
packet data must be processed by several layers
before the streaming media application can process
it. The results of the SMNE-based network transport
mechanism are: streamed media packets are in the
network stack for a much shorter period of time
(lower latency – faster response time), a lot more IP
packets can be processed per unit time to allow
transport for even high bit-rate media streams
(higher throughput), and system resources are used
more efficiently resulting in lower processor,
memory, and I/O consumption.

Video Processing
Video processing generally takes much more

processing time than audio processing. For some
codec types, this video processing time can exceed
more than the allotted time to output a video frame
(e.g., 33 milliseconds for 30 Hz interleaved video
output) or a sequence of video frames. In these
special cases, the data path provides the
appropriate level of buffering to compensate for this
brief shortage of resource.

Audio Processing
Audio processing must guarantee lossless output

at the sample level as compared to video, since the
human ear is much more sensitive to sound than the
eye is to motion video. Because of this
physiological bias, the audio output generally serves
as the “master” clock in a multi-media system.
Although audio processing takes less time than
video, the audio output buffers must always be kept
non-empty to guarantee lossless output.
Conversely, the video output may, at the worst case,
drop frames if its buffer levels cannot be maintained.

Audio/Video Synchronization
The system maintains two types of media

synchronization: intra-stream sync –
synchronization within audio or video stream

between source and sink, and inter-stream sync –
synchronization between both audio and video
streams. Intra-stream synchronization requires
locking the source clock derived from the
presentation timestamps within the media packets to
the output clocks. Inter-stream synchronization
requires use of the audio output clock as the
“master” system clock, for reasons cited above.

Managing memory bandwidth
Video codecs require megabytes of memory for

both compressed and decompressed video data,
even for standard definition television resolutions.
On-chip memory in low-cost processors is usually
offered in kilobytes - orders of magnitude below
what is required. This requires allocation of external
system memory, typically SDRAM. Although
SDRAM offers a large amount of memory at a low
cost, access time is several orders of magnitude
above that of on-chip static memory. Low-cost
processors usually provide two facilities to reduce
this access time: instruction and data cache
memory and direct-memory-access (DMA).

SDRAMData In 1 MB/S

D
ata In 1 M

B
/S

R
eference D

ata In 30 M
B

/S

Loop Filter D
ata In 15 M

B
/S

R
ef

er
en

ce
 D

at
a

O
ut

 1
5

M
B

/S

Lo
op

 F
ilt

er
 D

at
a

O
ut

 1
5

M
B

/S

V
id

eo
 D

at
a

O
ut

 2
0

M
B

/S

A
ud

io
 D

at
a

O
ut

 1
 M

B
/S

A
pplication S

w
ap In 4.3 M

B/S

A
pp

lic
at

io
n

S
w

ap
 O

ut
 4

.3
 M

B/
S

CCIR656 Out 27 MB/S

L1

Figure 4 – Video Codec Memory Bandwidth

Requirements

Figure 4 describes some characteristics of

memory accesses during video processing. The
video codecs operate mostly on 2D regions of fixed
block sizes. These 2D blocks reside in memory in
both linear (e.g., compressed and reference data)
and raster (e.g., video output data) forms.

Data caches typically perform well when data
accesses are performed in linear fashion. The
performance, however, is not optimal when these
accesses are non-linear, such as for raster 2D
blocks. For this reason, some processors such as
the Blackfin offer two strides in the memory-to-
memory DMA engines to allow 2D blocks to be
transported between external and internal
memories. Because DMA is independent of

processor execution, it can be pipe-lined with
processor execution to allow the most optimal
processing of 2D data regions.

Aside from video processing, other software and
hardware components in a multimedia system
require use of DMA engines, including system
peripherals, audio codecs, network stack, transport
layer, and application-level software. Hence, the
DMA controllers and internal buses are resources
shared by all of these system components and must
be managed. Some low-cost processors, such as
Blackfin, provide facilities to allow system software
to manage these resources, including DMA priority
assignment, traffic control, and bus arbitration
policy. SMS utilizes all of these facilities for
optimum system performance.

Managing Processor utilization
Multimedia processors, such as Blackfin, value

low cost over extremely high clock rates. Unlike
higher cost general-purpose processors, multimedia
processors are designed with “just enough”
performance. This lack of excessive MIPS
emphasizes the need to manage processor
execution as efficiently as possible. Since code
execution is based on execution context (interrupt
servicing and task processing), two factors are
responsible for execution efficiency: interrupt
priority assignment and task scheduling.

Interrupt sources range from peripherals and
DMA controllers (hardware interrupts) to code
(software interrupts and exceptions). The variety of
peripherals in a multimedia system is made even
more complex by the persistent use of DMA. The
interrupt frequency and service time determine the
priority of the interrupt. For example, audio
interrupts occur as frequently as every microsecond
to process each sample from an AC’97 controller
operating at 48 KHZ. The AC’97 interrupt service
routines also consume significant processor cycles.
Because of these characteristics, the AC’97 interrupt
may be assigned a much higher priority than other
interrupt sources

SMK executes the audio and video codecs at a
higher priority level than all other tasks and
processes in the system. All other tasks, including
the overlying operating system (e.g., uCLinux), are
considered to execute in the “slack” period, when
audio and video codecs do not require the
processor. When the multimedia codecs are
executing for prolonged periods (for example, when
the video codec has to process successive frames
of high motion), execution of these non-critical tasks
are delayed accordingly. Consequently, these tasks

follow a “best effort” scheduling policy, whereas the
multimedia codecs execute as interrupt-driven,
“hard” real time tasks. Hence, the response time of
the multimedia codecs is directly proportional to
interrupt latency; the response time of the “best-
effort” tasks is dependant upon the instantaneous
requirements of the multimedia codecs.

Managing I/O and Memories
Since SM accesses arbitrary regions in the full

processor address space, it utilizes and manages
the following system resources: fast on-chip SRAM,
slow off-chip SDRAM, memory-mapped peripherals,
and memory management unit. As all of these
resources may be used system-wide, SM is
responsible for controlling access to these shared
system resources.

Since the size of on-chip memory makes it a
valuable system resource, SM reserves most of it for
use under its own discretion. This reservation is
made statically during system initialization, along
with allocation of reserved areas in off-chip
memories. These reserved regions in the processor
address space are supplemented by all address
spaces occupied by peripherals. The memory-
mapped I/O regions that belong to the peripherals
controlled by SM are also reserved (ex. memory-
mapped audio and video output peripherals). All
other memory-mapped regions that are not reserved
by SM are left to the discretion of the overlying
operating environment (e.g., uCLinux).

Although many desktop processors provide an
on-chip memory management unit (MMU) with
virtual memory support, they are not widely used in
the multimedia processor market. In multimedia
processors a memory protection and cache
management unit is much more beneficial. Virtual
memory adds non-determinism to the execution
environment. The Blackfin processor provides
Cache Protection Look aside Buffers (CPLBs) to
support deterministic multimedia applications. This
hardware unit allows attributes to be assigned to
memory regions, or “pages”. These pages are
designated as either cached or non-cached, with an
access mode (user-mode only, supervisor-mode
only, or both), and size. CPLBs are separately
available for both instruction and data memories, to
allow independent management of both spaces.
The SM manages on-chip (and off-chip) memories
by statically allocating these resources, it also
controls memory access by managing the CPLBs.
CPLB management includes: assignment of page
attributes, page replacement, and cache operation.

uC Linux
The standard micro-C Linux kernel requires

certain modifications, albeit small, in order to
interoperate with the Streaming Multimedia System
(SMS). These modifications fortunately are only
needed in the machine-dependant portion of the
Linux kernel, credited to the elegant design of the
operating system. In addition to these minimal core
kernel changes, several new kernel modules are
needed to interface to the SMS.

Core Kernel Requirements

Kernel Bootstrap
The standard uCLinux kernel assumes little, if

nothing at all, of the machine state during core
kernel initialization. Consequently, it initializes the
entire machine state for the kernel run-time
environment, including kernel stack, core machine
registers, interrupt and exception vectors, and
memories. However, in the multimedia framework
of the SMS, the run-time environment has already
been initialized for the most part and only certain
interrupt and exception vectors and portions of
memory need to be set up. The multimedia
framework also supplies the kernel boot parameters
as standard string-based command-line options.

Exception Handling
The standard uCLinux kernel has its own

exception vector table, that has kernel entry points
for handling hardware and software exception
events. The SMS now handles all of these events.
Only those exceptions that need to be delivered to
the Linux kernel are system calls. This is performed
through a Deferred Exception Handler (DEH), which
executes as a Linux exception handler. The DEH
executes at a higher execution level than the kernel,
possible through software interrupt priority
assignment on the Blackfin architecture.

Interrupt Handling
The uCLinux kernel manages two types of

interrupts: the core timer interrupt and peripheral
interrupts.

The core timer serves as the system clock,
whose value is held by the global kernel variable
“jiffies”. In order to maintain reliable system
response time and synchronization, this timer should
have marginal variance. SMS automatically
guarantees this low level of clock jitter by fixed

hardware assignment in the Blackfin processor of
the core timer interrupt at the highest priority level.

Peripheral interrupts are only managed for those
devices controlled by the uCLinux OS. All others
are handled in the SMS. All Linux device interrupts
share a common hardware interrupt priority level for
two reasons: the standard uCLinux kernel has a
common interrupt dispatcher that is invoked when
any hardware interrupt event occurs, and all
interrupt vectors are managed in the SMS.

In order to maintain low interrupt latency
throughout the multimedia system, timer and Linux
device interrupt service routines execute in on-chip
instruction memory. Since this memory is a
valuable system resource, these routines need to be
minute in code size and execution time.

Memory Allocation
The standard uCLinux kernel consists of

following types of memory sections: init/exit text and
data, run-time text and read-only data, run-time
read/write kernel data, ramdisk area, and
uninitialized kernel data (bss). The kernel reclaims
the init sections for heap and processes. All of
these regions need not be contiguous in physical
memory, and so are assigned in a fragmented
fashion by the SMS. This assignment is made
statically in the linker description file used during
both the kernel build and SMS build.

SMS Interface
Linux and its applications must be able to

communicate with the SMS for several reasons:
sending media control and other commands to the
SMS, transmitting and receiving network packets on
the same interface as the SMS, making DMA
requests, and passing “raw” audio data for mixing
with audio codec data.

SM Command Device Driver
A character-mode device driver is required for

uCLinux applications to communicate with the SMS.
This communication may include sending media
control commands (e.g., PAUSE, STOP, PLAY,
etc.), triggering SM functions (e.g., Display Graphics
Overlay function), and message passing (e.g.,
setting media parameters and modes).

VHNE Device Driver
A uCLinux Ethernet device driver module is

required for receiving packets from the network
interface and delivering them to the Linux TCP/IP
network stack. This driver interfaces directly to the

SMNE, which forwards all packets to uCLinux other
than those destined for SM and transmits packets
from uCLinux applications on the network interface.

SMDE Device Driver
The uCLinux kernel file-systems, device drivers,

and applications may utilize the memory-to-memory
DMA controller to facilitate data movement. A
kernel module is required to communicate with the
SM DMA Engine (SMDE) to make these DMA
requests and receive end-of-DMA notifications. Just
as the other shared peripherals (eg. network
interface), no guarantees are made when the
requests will be serviced; that is, the requests are
processed “best-effort”.

SMAE Device Driver
A sound driver is required to supply audio data to

be mixed with the audio codec output within the
SMS. This data may originate from WAV files or
compressed formats at the Linux kernel or
application level. This driver also interfaces directly
to the SMS to supply the data and control the mixing
operation.

Application framework
From the application developers viewpoint, the

system must have all the functionality available on a
standard embedded microprocessor system. The
interaction between the SMS and the application
must be well defined and the debug environment
must have the capability to efficiently integrate a
user application with the media decoder. To
implement a complete system the application will
require; multiple processes and threads, inter-
process communications and synchronization, Linux
device drivers for all SMS capabilities, shared data
and program objects, memory management
functionality, and a debug server (such as GDB
server).

Conclusion
The days of implementing media-centric products

using two separate processors: a general purpose
applications processor, and a media processor, are
coming to a close. By using our Streaming
Multimedia System (SMS) software framework, we
are able to deliver full DVD quality multimedia
decode of a variety of different compression formats
(WM, MPEG2, MPEG4, JPEG, etc.). All this on a
single low cost 600MHz Blackfin. This same
Blackfin also runs uCLinux and applications that

utilize both the uCLinux OS capabilities and our
SMS “Virtual Hardware.” This network connected,
field upgradeable system makes this pure software
approach uniquely suited to keep up with the
accelerating rate of change in this new category of
network connected media processing client devices.

	Common requirements
	IP-STB Example
	Architecture
	Streaming Multimedia “Virtual Hardware”
	Network Packet Transport
	Video Processing
	Audio Processing
	Audio/Video Synchronization
	Managing memory bandwidth
	Managing Processor utilization
	Managing I/O and Memories

	uC Linux
	Core Kernel Requirements
	Kernel Bootstrap
	Exception Handling
	Interrupt Handling
	Memory Allocation

	SMS Interface
	SM Command Device Driver
	VHNE Device Driver
	SMDE Device Driver
	SMAE Device Driver

	Application framework

	Conclusion

