Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

ViU UDSP - 5.0

User’s Guide

Revision 3.0, August 2007

Part Number:
82-000420-02

Copyright Information

©2007 Analog Devices, Inc., ALL RIGHTS RESERVED. This document
may not be reproduced in any form without prior, express written consent
from Analog Devices, Inc.

Printed in the USA.
Disclaimer

Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice

The Analog Devices logo, the CROSSCORE logo, Visual DSP++,
SHARC, TigerSHARC, Blackfin, and EZ-KIT Lite are registered trade-

marks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

CONTENTS

PREFACE

Purpose of This Manualcccccciiiiiiniiiiii, xxiii
Intended AUdIEnCeuiiiiiieiiiiie e xxiii
Manual CONTENES ..ouuuiiiiiiiieeeiiiee e XXiv
What’s New in This Manualcoooviiiiiiiiiiiiiieeeee, XXV
Technical or Customer SUPPOTT .eovuvveeriiiiiiiiiiiicericeecece XxXvi
Supported Processorsccovueeeeiriiiiieiniiiieceeieece e Xxvil
Product Informationceeeeiiiiiieiiiiiiie e Xxviii
MyAnalog.comocoviiiiniiiiiiiiciic e xxviii
Processor Product Informationcceeeeeeeiiiiiiiiiiiiiiiieeeeeeeee, XXIX
Related DoCUMENTS ...coovvveniiiiiiieeiiiieeeeeee e XXX
Online Technical Documentationccoeeeevviiieeeeeeiiineneennnn. XXX1
Accessing Documentation From Visual DSP++ xxxil
Accessing Documentation From Windowsc.cccccoceeenee xxxil
Accessing Documentation From the Webc...c.... Xxx1il
Embedded Processing & DSP Knowledge Base xxxiii
Printed Manualscooovuiiiiiiiiiiiiiiee e Xxxiii

Visual DSP++ 5.0 User’s Guide -1il

CONTENTS

Hardware Tools Manualsccoevviiiiiiiiiiniiiiis xxxiii
Processor Manualscceeeviciiiiiiiiieeeiniiiiiceee e XXXIV

Data Sheets .ooovvviiiiiiiiiieeiiic e XXXiv
Notation CONVENTIONSvvurrriiieiiriiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees XXXV

INTRODUCTION TO VISUALDSP++

VisualDSP++ Features ...cccuvvviiiieeiiiiiiiiiiiiiiee e 1-1
Integrated Development and Debuggingc.cccccovveiriiiiinnncen. 1-2
Code Development Toolscceeeeieviiiiiiiiiiiiiciiiiiiciiiiecceeee 1-2
Source File Editing Featuresccocoeeiviiiiniiiiiniiiiniccneee 1-3
Project Management Featurescccccooviiiiiiiiiiniiiiiiiiiiiiiiinnn, 1-4
Debugging Featurescccociiiiiiiiiiiiiiiiiiiiiiciiccicc e 1-5
VDK Features ...ceeeieiiiiiiiiiiiiieee ettt 1-6
VisualDSP++ 5.0 Featuresccoovvvviiiiniiiiieiniiieeeiiiieeeeee 1-7
Product Updates and Upgradesccceevviiiiniiiiiiiiiiiniiiiniinn, 1-10
Visual DSP++ Product Upgradescccceeeviiiiniiiiniiiinieenne 1-10
Visual DSP++ Product Updatesccoceevuiiiiniiiiniiiiiniiiiniieene 1-10
Project Developmentcoccceiiiiiiiiiiiiiiiiiiiiiiiceeecc e 1-11
Overview of Programming With VisualDSP++ccooceieinien. 1-12
Project Development Stagescceeevveieniiiiniiiiniiiciieceieene 1-14
TArgets ..ovviiiiiiiiiiiiii 1-15
Simulation Targetsccccovviiiniiiiniiiieiiiececee e 1-16
EZ-KIT Lite Targets ...ccceeerveuirieeiniiiieeiniieee e 1-16
Emulator Targetsccocoviiiiiiiiiiiiiiiiiiiiiicc 1-17
PlatfOrms ueeeeiiiieieeeee e e e e e e e 1-17

iv Visual DSP++ 5.0 User’s Guide

CONTENTS

Debugging OVerviewccccceeviiiiiiiiiiiiiiiiiiiicniecccieeecen. 1-20
VisualDSP++ Kernel ...o.oooviiiiiiiiiiiiiiiicciece 1-22
Program Development Stepsccocveeviiieniiiieniiieniieciiieeeee. 1-22
Step 1: Create a Projectccooovvviiiiiiiiiiiiiiiiiiiiiiiceciiis 1-23
Step 2: Configure Project Optionsc.ccceevcuveercuieennueeennnn. 1-23
Step 3: Add and Edit Project Source Filesccocveernnennne. 1-23
Adding Files to Your Projectcccccceiviiiiiiiiiiinincnnnnn. 1-24
Creating Files to Add to Your Projectccccceeviviinnncne 1-24
Editing Filescoooiiiiiiiiiiiiiiiccecccee 1-24
Managing Project Dependenciesccccoeviiiiiiiiniinn. 1-24

Step 4: Specifying Project Build Optionscccocuveevnnenne. 1-24
ConfIgUration ..c....ecevieieriiiieniiieeee e 1-25
Project-Wide File and Tool Optionscccccevviiiiiininnn 1-25
Individual File and Tool Optionsc.cccceevviirniiiinnncnne 1-26

Step 5: Build a Debug Version of the Projectccovuueeennee. 1-26
Step 6: Create a Debug Session and Load the Executable 1-26
Step 7: Run and Debug the Programcccccceviiieniien 1-26
Step 8: Build a Release Version of the Projectccoueennee. 1-27
Code Development Toolscccueeeiimiiiiiiiiiiiiiiiiiiccieccee 1-27
COMPILET weeiiiiiiiiiiie e 1-28
C++ Run-Time Librariesc.coocooiiiiiiiiiiiiiiiiie, 1-29
Dinkum Abridged C++ Librarycccccooviiniiiiniiniininnn. 1-29
Assembler .o..uiiiiii e 1-30
LINKer .oooooiiiiiiiiiiiiic e 1-31

Visual DSP++ 5.0 User’s Guide v

CONTENTS

Expert Linker ..o.ccooiiiiiiiiiiiiiie 1-34
Expert Linker Windowcccociiiiiiiiniiiiniiiiicieeee, 1-35
Memory Map Pane Right-Click Menucocceeeviiienineenen. 1-36
Stack and Heap Usagecccocuieviiiiiiiiiiniiiiniiiiiciieeee 1-38

ATCRIVET ittt 1-41

SPLIELET et 1-41

Loader coooiiiiiiieieeee e 1-42

Processor Projectseiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiisiseeeeaes 1-43

Project Wizardoccceeeiiiiiiiiiiiiiieceiceee e 1-44

Startup Code ...evvviiiiiiiiiiiii 1-45
LDF File wuvvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieteeeaaavavaeaneneaes 1-46

Project OPtions ..eeeeeeeiiiiiiiiiiiiie et 1-47

Project GIOUPS .ooevveieiiiiiiiieieiiiee ettt 1-48
Project Group Filescocoviiiiiiiiiiiiiiiicece 1-49

Source Code Control (SCC) .oovvvueviiiiiiieeiiiiiee e 1-50

MaKEFILES ovieiiieeeiiiiie e 1-51
RULES ettt 1-52
Output Windoweeeeviiiiniiiiiniieeiieceeeeec e 1-53
Example Makefilecoooeiiniiiiniiiiiiiic 1-53

Project Configurationsccceeeveerrieernieeeniieeenieeesieeeeeeeen 1-56

Project Build .ooovviiiiiiiiii 1-57
Build Optionsccoooiiiiiiiiiiiiiiec e 1-58
File Buildingcoociiiiiiiiiiiiiiiecececc e 1-58
Batch Builds ..ooveiiiiiiiiii 1-59

vi Visual DSP++ 5.0 User’s Guide

CONTENTS

Pre-Build and Post-Build Optionscccccoeeiiiniiiiiinnnnnnn. 1-59
Command SyNtaxcccecceeeemiiieeniieeniiieeniee e 1-60
Project Dependenciescoocuveeviieeniiiieniiiciiiiciieceeee 1-60
Visual DSP++ Help Systemooooviiiiiiiiiiiiiiicc 1-61
ENVIRONMENT
Project WIndowc.ecoeiiieiiiiiiniieeniieeeieeeiec e 2-2
Project VIEW ...oooiiiiiiiiiiiiii 2-3
Kernel Tab oo 2-4
Project Dependenciescocvveiiiiiiniiiiniiiiiiiiciec e 2-4
Project NOAEs ..oouviiiiiiiiiiiiiiiiceeee et 2-6
Project Folderscooiiiiiiiiiiiiiiiiiiic e 2-6
Project Files ..cocoviiiiiiiiiiiiiii 2-8
Project Window Icons for Source Code Control (SCC) 2-9
Project Page Right-Click Menusc.ccooviiiiiiniiiiniiinicneee. 2-10
Project Group Icon Right-Click Menucoccoveeniiienneennnn. 2-10
Project Icon Right-Click Menuccccceceviiiiniiiiiniiiininenne. 2-11
Folder Icon Right-Click Menuccccceviiiiiiiiicniicniienne. 2-12
File Icon Right-Click Menuccccoooviiiniiiiniiiiniiienieee 2-12
Project Window Rulescooiiiiiiiiiiiiiniiiiiicieceieceen 2-13
File ASSOCIAtIONS ..vvviiiieiiiiiiiiiiiiieiee e e e et 2-14
Automatic File Placementccceeeeviiiiiiiiiiieeeeeiiiiiieeeeeenn, 2-15
File Placement Rulesccooeeiiiiiiiiiiiiiiiiiiiiieeiecee 2-15
Example oo 2-16
Editor Windowscceeeeiiiiiiiiiieeeeeeeieee e 2-16

Visual DSP++ 5.0 User’s Guide

vii

CONTENTS

Editor Window Featurescccccoovviiiiiiiiiiiiiiiiiiiiiiicceee e, 2-17
Editor Window Symbolsccociiiiiiiiiiiiiiniiiiiicece 2-18
BoOKMarksc.cooeiiiiiiiiiiiiiiie e 2-19
Syntax Coloringccccciiviiiiiiiiiiiiiiii 2-19
Viewing Modes: Source Mode vs. Mixed Modecccueeeee. 2-20
Source Modevviiiiiiiiiiiiiiiie e 2-20
Mixed Mode ...oooeiiiiiiiiiiiiiiiiee e 2-20
Editor Tab Modeocoviiiiiiiiiiiiiieeeeeeee e 2-21
Context-Sensitive Expression Evaluationccooceeinieennne. 2-23
Viewing an EXpressioncccccoceiiiiiiiiiniiiiiniiiiiiicens 2-24
Highlighting an Expressioncccocceeviiiiniiiiinicinieeene. 2-24
Compiler ANNOTALIONS ...vveeruviieniiieiriiieeiiee et 2-24
Right-Click Menucoceiiiiiiiiiiiniiiiiiiiicciccecceccec 2-27
Output Window .oo.eeeeviiiiiiiiiiiiiceieeeeiee e 2-28
Build Page and Console Pageccoccuvieviiiiniiiiiniiiiniiecnieene 2-29
Code Development Tools Batch Processing Messages 2-31
Message Severity Hierarchyccococoviiiiniiiniiinncnn. 2-31
Syntax of Help for Error Messagescccccevvuveeriiicrnneennne. 2-32
Viewing Error Message Detailsccccocoiiiiiiiinnn, 2-33
Promoting, Demoting, and Suppressing Error Messages 2-35

Example 1: Compiling from the Command Line (Interface) 2-36

Example 2: Promoting Warnings to Errors 2-36
Example 3: Demoting Messages to Remarks 2-37
Example 4: Suppressing Messagescccovvveernveeenneeenne. 2-37

Viil

Visual DSP++ 5.0 User’s Guide

CONTENTS

Suppressing Compiler Warnings and Remarks 2-37

Log File i 2-38
Output Window Customizationccceecuveervureeriieeennieeennnnee. 2-38
Right-Click Menuccocviiiiiiiiiiiiiiiiiiiccicceeeiccce e 2-39
Script Command OULPUL ..eeevvrieriiieiiiiceieceiee e 2-40
Debugging Windowscooouiiiiiiiiiiiiiiiiceieceeecceeee e 2-43
Disassembly Windowscccooiiiiiiiiiiiiiiiiniiccee, 2-45
Other Disassembly Window Featurescccccceevviieinnnenne. 2-47
Right-Click Menucooviiiiiiiiiniiiiiieciieceiec e 2-48
Disassembly Window Symbolsccccccoviiiiiinniiinnne 2-49
Expressions Windowc.cccccovviiiniiiiiniiieniiieiiecenieec e 2-50
Expressions Permitted in an Expression Window 2-51
Trace WIndOowsccoovuiiiiiiiiiiiiiiiiiieceeiec e 2-52
Locals Windowoccuieieiiiiiiiiiiiieceieceece e 2-54
Statistical/Linear Profiling Windowccocceevviiniiiniinnn 2-55
Window COMPONENLS ..eeevruririieriiiiieeiiiiieeeeeieeeeeeiiieeeeenas 2-55
Left Pane .ooooouveiiiiiiiiiiiiiic e 2-56
Right Pane ...ccoooiiiiiiiii e 2-56
Status Bar ..o 2-57
Right-Click Menuc.cooviiiiiiiiiiiiiiiiiiciiiceniecceee 2-57
Window Operationsc.ceeeereeeenireenireenniieenneeeenieeennees 2-58
Changing the Window Viewcccccooiiriiiniiiniiiinnnne. 2-59
Displaying a Source Fileccocceiiiiiiiiiiiiiiiiiee 2-59
Displaying Functions in Librariescccccceeeiiniiinnee. 2-59

Visual DSP++ 5.0 User’s Guide

X

CONTENTS

Working With Rangescccociiiiiiiiiiiiniiiiiis 2-60
Switching Display Modescovcuviiriiiiiniiiiiniiiinieeenne 2-60
Filtering PC Samples With No Debug Information 2-62
Call Stack Windowccceviieiiiiiiiiiiiiieeeeee e 2-63
Applications Built With Debug Informationc............. 2-64
Applications Built When Debug Information is Not Available 2-64
Memory Windowsccceeeiimiiiieiniiiieeeeieeee e 2-67
Number Formats in Memory Windowsccocoeereneennne. 2-67
Memory Window Right-Click Menuccooovveiniiienicenne. 2-69
Expression Tracking in a Memory Windowcc.cc..... 2-69
Memory Window Display Customizationccccevuueeeee. 2-72
Background Telemetry Channels (BTCs)ccoeevivieniieennnnen. 2-73
BTC Definitions in Your Programcccceeevieniienneennns 2-73
Enabling BTC on ADSP-2126x and ADSP-BF36x Processors 2-74
BTC Priority ..cooocciiiiiiiiiiiiiiiiiiiiicccceeeieeeeeee e 2-75
BTC Memory Windowccccceevviiiiiimniiiieenniiiee e 2-75
BTC Memory Window Right-Click Menuc.cccccoueeenee. 2-78
Register Windowsccocoueiiiiiiiniiiiiniieciiiceec e 2-78
Stack Windowscoeeiiiiiiiiiiiiiiiee e 2-80
Custom Registers Windowscccecvieviiiiniiiiiniieniieenieenne 2-81
Custom Board SUpportccceeeveiiiiiiiiiniiiiiicceceec e 2-82
Custom Board Support Filesccocccviiiniiiiiiiniiiiiinnn. 2-82
Processor Definition Filesccccvviiiiiiiiiniiiiiiiiiieeeeeees 2-83
Multiprocessor Windowccoecveeriiieiniiieniiieenieeiiee e 2-83

X Visual DSP++ 5.0 User’s Guide

CONTENTS

Multiprocessor Window Pagescccceeeviiiiiiiiiiiiiiininens 2-84
Status Page ...ccooeeiiiiiiiii 2-84
Groups Pageccceviiiiiiiiii 2-85

Operating on Multiprocessor Groupsccccceeevcveeinneenne. 2-86

FOCUS et 2-86

Right-Click Menucoooiiiiiiiiiniiiiiiciieceieccecceec 2-87

Pipeline Viewer Windowcccccccceemiiiiiiiiniiieciinniiieeeeneeeee. 2-88

Right-Click Menu of Pipeline Viewer Window 2-89

Pipeline Viewer Properties Dialog Boxccccceeviiiinieennn. 2-90

Pipeline Viewer Window Event Iconsccccoveiiiiinnnnnne. 2-91

Pipeline Instruction Event Detailscoooviiniiiiniiiinniinn. 2-92

Cache Viewer Windowcccooviiiiiiiiiiiiiiiiiiiccceeieee e 2-93

Configuration Pagecccccocvieiiiiiiiiiiiiiiiiiiciccc 2-96

Detailed View Pagecccovvviiiiiiiiiiiiiiiiciicieceece, 2-97

History Pageoooooviiiiiiii 2-98

Performance Pagecccceeviiiiiiiiiiiiiiiniiiniccicccee 2-99

Histogram Pageccccciiiiiiiiiiii, 2-100

Address View Pageccccooviiiiniiiiiniiiiniiiciieceeceee 2-102

VDK Status Windowccccoeviiiiiiiiiiiiiiiiiiiiiiieeeee e 2-103
VDK State History Windowccocceeeviiiiniiieniiicniieeeee. 2-105

Thread Status and Event Colorscccveveeviiiiiiinniiieennns 2-106

Window OPerationscccueeeeereuieeeennieeeeenniuieeeesniineeens 2-107

Right-Click Menucoooiiiiiiiiiiiiiiiiciiicnc e 2-108

Target Load Windowccccceriiiiiiiiiiiiiiiniiccnicceeec e 2-108

Visual DSP++ 5.0 User’s Guide

X1

CONTENTS

Plot WINdOWS ...cciiiiiiiiiiiiiiieee e 2-109
Plot Window Featurescooevviviiiiiiieeeeiiiiiiiiiieeeeee e 2-110
Status Bar ... 2-110
TOOl Bar oooeieeiiiiiiieee e 2-111
Right-Click Menucocoviiniiiiiniiiiiiiiiiiiiceieceieen 2-111
Plot Window StatiSticscoevveeeerriiirieeiiiiiieeeeiiiieee e 2-112
Plot Configurationccccceeviiiiiiiiieniiienieenicceceee 2-114
Plot Window Presentationcccceeeeeeeeereiiiiiiiieeeeeeeennnnns 2-116
Plot Presentation OPtionsccceeevvuveeenireeniieeenieeennieenns 2-117
Image VIEWETccviiiiiiiiiiiiiiiiiiiiiiii 2-119
Automation Interfaceoooecviiiiiiiieiiiiiiiiieeeeeeee 2-120
TOOIDAr eiiiiiiiiiie 2-120
Status Barooeiviiiiiiiiiiiiiie 2-121
Right-Click Menucccceeviiiiiiiiiiniiiiiiicecceec e 2-121
DEBUGGING
Debug SESSIONS ..eeuvviiriiiiiiiiieiiiic et 3-1
Debug Session Managementccoceeeviuiiiiiiieiiiieiniieeeneeene 3-3
Simulation vs. Emulationcccoccoiiiiiiiiiiiiiee e, 3-3
Breakpoints «ooveeeeiiiiiiiiiiiiiiceic e 3-3
WatChPOINES ..veeriiiiiiiiiiiiiie e 3-4
Multiprocessor (MP) System Debuggingccccceveviiniiiennnnen. 3-4
Setting Up a Multiprocessor Debug Sessioncccccueeeneee. 3-4
Debugging a Multiprocessor Systemccccceeeviiiiniiiennnen. 3-5
Focus and Pinningc.ccccovvieiiiiiiiniiiiniiiciie e, 3-6

xii VisualDSP++ 5.0 User’s Guide

CONTENTS

Window Title Bar Informationcccceovviiveinniiieeenninn. 3-6
Additional Focus Indicationccccoviveiieeeienniciiiieennn. 3-7

Code Analysis TOOIS ..ccooviiiiiiiiiiiiiiiiciecece e 3-7
Statistical Profiles and Linear Profilesccccceveeviiiiiiiiniiinennnns 3-8
Simulation: Linear Profilingcccocccooviiiiniiiiniiinene. 3-8
Emulation: Statistical Profilingccccccooviiiiiiiiiniiiinieen 3-8
TEACES vttt 3-9
Program Execution Operationsccccceeeeiiiiiiiiiiiiiiiiiiiniinnnn. 3-10
Selecting a New Debug Session at Startupcccceevveernieeennnee. 3-10
Loading the Executable Programc.cccoccveviiiiniiiiniiinicnnnnens 3-11
Program Execution Commandsccccceeevivieniiiienineeniineennnen. 3-11
Restarting the Programccoocceiniiiiniiiniiiiccec 3-12
Performing a Restart During Simulationcccccoeiennee. 3-12
Performing a Restart During Emulationccccccooeee 3-13
Breakpointscoviiiiriiiiiiiiciiceec e 3-13
Unconditional and Conditional Breakpointsccccccccevueennee. 3-14
Automatic Breakpointscccovviieniiiiiiiiiciniiiiniccieceee, 3-14
WatChpOInTs wooevveiiiiiiiiiiciiiecec e 3-15
Hardware Breakpointscccooviiiiiiiniiiiiiiniiiiccceee, 3-16
Latency cooeeieiiiiiiiieeie e 3-16
RESTIICTIONS wevviiiiiiiiiieiiiiiiieeeee e 3-16
Simulation Toolscooiiiiiiiiiiiiii 3-16
INEEITUPES woviiiiiiiiiiiiiiiiic 3-17
Input/Output Simulation (Data Streams)cccceeevevveerneeennne. 3-17

Visual DSP++ 5.0 User’s Guide xiii

CONTENTS

Plot TYpPes cevveevveeeniiieiiieciiieeeieene
Line Plots ooccvvveeeiiiiiieeiiiiieeeee,
XY PlOtS wvvveeeeeeiiiiiiiiieeeeeeeee
Constellation Plotscccvvvvveeeeeeennnne.
Eye Diagramscccoeevvviiinininnnnnnnn.
Waterfall Plotsccovviveeieniiiiiieenne,
Spectrogram Plotsccccceeiiernneenns
Flash Programmercccccoeveiiniicnnnneen.
Stand-Alone Flash Programmer
Flash Devicescovvveeeeeiiiciiiiiineeeennn.
Flash Programmer Functions

Flash Driver w.ooeeeeeeeeoeeeeeeeeeeeeeeeeeen,

REFERENCE INFORMATION

Support Informationcceceeeriiiiinnncnne
IDDE Command-Line Parameters
Extensive Scriptingcccccccoeeviiiinnnnnnn.
File TYpes .eeeeevieeeniieiniieeniieceiceeeee

Parts of the User Interfaceccooveveunennn..

X1V

VisualDSP++ 5.0 User’s Guide

CONTENTS

Additional Information in Title Barscccceeevvviiviieennnnnnn. A-17
Title Bar Right-Click Menuccoooieiiiiiiiniiiiniiiiiiiceee. A-17
Control Menu ...ccovviiiiiiiiiiiieieiiiee e A-18
Program Iconscccoociiiiiiiiiiiii A-18
Editor Windowsceeeveiiiiiiiiieee e A-18
Debugging Windowsccocveiiriiiiniiiiiniieeiieeeiee e A-19
Menu Bar ..o A-19
Toolbars and User Toolsccoveuiiiiiiiiieiieiiiiiieee e, A-19
Built-In Toolbarscccceeeiiiiiiiiiiiiiiiieiiieceeieee e, A-20
Toolbar Customizationeeeeeeeeriiiiiiiiiieeeeeeieiiiiieeeeenn A-21
USEr TOOIS niiiiiiiiieeee e A-21
Toolbar BUttonsccevviiiiiiiiiiiiieiiiiccee e A-22
Toolbar Operationcccccceeimiiiiiiiiiiiieciiicceeecc e, A-27
Toolbar Button Appearancecccceecveeriieeriieeenieeennnen. A-27
Toolbar Shapec..coiviiiiiiiiiiiiiicc e A-28
Toolbars: Docked vs. Floatingcccccoevviiiiiiniiiniiennnnn, A-28
Toolbar Rulesuvviiiieiiiiiiiiiiiieeeeeeeee e A-29
Status Bar ..., A-29
Keyboard Shortcutscccoviiiiiiiiiiiiiiiiiciccce e A-31
Working With Filesccccooiiiiiiiiiiiiiiiiccceeeee A-31
Moving Within a Filec.ccccooiiiiiiiiiiicc, A-32
Cutting, Copying, Pasting, Moving Textccccccciiiinnnnn. A-33
Selecting Text Within a Fileooocoiiiiiiiniiiini, A-34
Working With Bookmarks in an Editor Window A-34

Visual DSP++ 5.0 User’s Guide

XV

CONTENTS

Building Projectscocoiiiiiiiiiiiiiiiiiii A-35
Using Keyboard Shortcuts for Program Execution A-35
Working With Breakpointsccovveeeiiiiiniiiiniiiiiiic e A-36
Obtaining VisualDSP++ Help ...ccccoooiiiiiiiiiii A-36
Miscellaneousc.eeeeieiiiiiiiiiiiiii e A-37
Window OPerationscoecueeerrueeernieeeniieenireenireesnieeeeneeeenanne A-37
Window Manipulationcccceeviiiiiiiniiiiiiiniiciecee A-37
Right-Click Menu Optionsccccoecvvieviiiiniiiieniieciiieeeieens A-38
Scroll Bars and Resize Pull-Tabcccccooiiiiiiiiiniiiiiicie A-38
Windows: Docked vs. Floatingcccceeviiiiiiiiiiniiinniennn. A-39
Docked Windowscoeeiiiiiiiiiiiiiiiiiiiieeeeeiece e A-39
Floating Windowsccoceiimiiiiiniiiiiiiiciieceneceeeee A-39
Window Position Ruleseeeeiviiiiiiiiiiiiiiiiiiiiiccee, A-42
Standard Windows Buttonscceccvveeeiniiiiiiiiniiieeiiiiieeeee A-42
Text OPErationseeeeieeuuiieeiiiiiiieeeiiiiee et e e e e A-44
Regular Expressions vs. Normal Searchescccccoeeiiiiie A-44
Specific Special Charactersccoecveeriiiiiniiieeniiieiieeenne A-45
Special Rules for Sequencescocouveeviiiiiniiiieniiecenieeene A-46
Repetition and Combination Charactersccccceeevuueenee. A-46
Match Rules .oooouviiiiiiiiiiiiiie e A-47
Tagged Expressions in Replace Operationscccocveervuneennee A-47
Comment Start and Stop Stringsccccevviiiiniiiiniiiiniinn, A-48
Online Documentationeeeeriiiieiiiiiiieeiniiiee e A-49
Printing Online Documentationccccceeeveiieeniieiniieennneenne A-50

XVi Visual DSP++ 5.0 User’s Guide

CONTENTS

Invoking Online Helpocccoiiiiiiiiiiiiie A-51
Help Categoriescccuieriiiiiiiiiiiiieeiiicceieeeee e A-52
Online Help .oooiiiiiiiiiicccc e A-53
Help Windowccceiiimiiiiiiiiiieceeeeec e A-53
Context-Sensitive Help ...c.oooiviiiiiiiiiiii A-54
Viewing Menu, Toolbar, or Window Helpo...... A-56
Viewing Dialog Box Helpccccoooiiiiii A-56
Viewing Window Help ...cccceeviiiiiiiiiiiiiicece A-57
Copying Example Code From Helpcooooviiiiiiiiiniiininnn. A-57
Printing Help ..o, A-57
Bookmarking Frequently Used Help Topicscccovuvverninecnnn. A-58
Navigating in Online Help ...occoeiiiiiiniiiiiiiicece, A-59
Searching Help ..o, A-60
Full-Text Searchescccceeiiiiiiiiiiiiiiiiiiice, A-60
Rules for Full-Text Searchesccccoceviiiiiniiiniiinnicn. A-62
Advanced Search Techniquesccocveeriiiiiiiiiiniiiinieene A-62
Wildcard EXpressionsc.ccceevceveeriieeiiieennieeenieeenenee. A-63
Boolean Operatorscccceeevieiiniiieeniieeniieeiiec e A-63
Nested EXPressionsceceerveeeeimniieeeenniieeenniieeeeeennees A-64
Rules for Advanced Searchescoooviiiiiiiniiiiiinnineen. A-65
GLOSSATY ettt A-66

SIMULATION OF SHARC PROCESSORS

Anomaly OPtionscoccuieiiriiiiiiiiiiiiceeiec e B-1
ADSP-21x6x Processor Anomalieseeeueeeeeeeeeeieeeeieeeeeeieeeennn, B-2

Visual DSP++ 5.0 User’s Guide Xvil

CONTENTS

Shadow Write FIFO Anomaly (ADSP-2116x Only)c....... B-2
SIMD Read from Internal Memory With Shadow Write FIFO Hit
Anomaly (ADSP-2116x Only) ..ccocoveiriiiiiniiiiniiieiiieceeee B-3
Event OPtions ..cc.eeeiiiiiiiiiiiiiiiie ettt B-4
FP DENOIM wetiiiiiiiiiiiiiiiiiee ettt B-4
Short Word Anomalycoooiiiiiiiiiiiiiccc B-4
Access to ADSP-21065L Short-Word Internal Memory 9th Column at
Even Addressescoovueiiiiiiiiieiiiiiiiieeiieece e B-7
Recording a Simulator Anomaly or Eventccooieiiiiiiniiiinnneen. B-7
Select Processor ID OPtionsccoccveeeeeeniiieeeiniiieeeeniiieeeeiieeeenn B-10
Simulator OPtionscceeeevciiiiiiiiiiiiiieiie e B-10
NO BOOt MOde ...vviiiiiiiiiiiciieccceceec e B-10
Load Sim Loader Optionscceeviiiiiiniiiiiiiniiieceniieecceieeeenn B-11
SPI Simulation in Slave Modecccceeviiiiiiiiiiniiiiiiiciieceieces B-13
SIMULATION OF TIGERSHARC PROCESSORS
ADSP-TS101 Processorscccomeueeeeemiuieeeeniiieeeenniereeeesieeee e C-1
Simulator Timing Analysis Overviewcccccoevviiiiiiiiininnn. C-2
Pipeline Stagescoccveeeviiieniiiiiiiiieeiee et C-2
STallS e C-3
Stalls Due to IALU Dependencyccoecvveiiiniiiiciiniiinecnnns C-3
Stalls Due to Compute Block Dependencyccccevveeennee. C-4
ADOTES ettt C-5
Aborts Due to an Unpredicted Change of Flow C-5
Abort Due to Mispredicted Change of Flowc.ccccceeeees C-6

xviil Visual DSP++ 5.0 User’s Guide

CONTENTS

Branch Target Buffer Hitsccccoooiiiiiiniiiiiis C-7
Pipeline Viewer and Disassembly Window Operations C-7
Current Program Counter Valuecccooiiiiiiiiiniiiiniieennn. C-8
SEPPING vvviiiiiiiiiiii i C-9
Simulator Optionsccovviiiriiiiniiiiiiiecececee e C-11
ADSP-TS20X ProCessorsccuuveeeeriuirieeriiiieeeiiiiieeeeniieeeeeeieeeee s C-12
Simulator Timing Analysis Overviewcccccceeviiiiiiiiiinnnn. C-12
Pipeline Stagesccovveiiriiiiniiieiiiieeiee e C-13
STallS oo e C-14
Stalls Due to IALU Dependencyccceeevviviiiinniinecennnne. C-14
Stalls Due to Compute Block Dependencycccceeevuneenee C-15
Stalls Due to a Cache Missoovviiiiniiiiniiiiiniiiciieceieens C-15
ADOITS .ot C-15
Aborts Due to an Unpredicted Change of Flow C-16
Abort Due to Mispredicted Change of Flowcccccec... C-18
Branch Target Buffer Hitsccccoooiiiiiiniiiiiii C-19
Pipeline Viewer and Disassembly Window Operations C-19
Current Program Counter Valuecccoooiviiniiiiniiieniicen. C-20
StEPPING evviiiiiiiiiiii i C-21
Simulator Optionsccccceeviiiiiiiiiiiiieenieeeeceee e C-22

SIMULATION OF BLACKFIN PROCESSORS

Peripheral Support in Simulatorsccooceeeviieiniiiiniiiiiicees D-2
Special Considerations for Peripheralsccocceeiviiiiniiiiniiiinice, D-7
Universal Asynchronous Receiver/Transmitter Peripheral D-7

Visual DSP++ 5.0 User’s Guide

XiX

CONTENTS

Timer (TMR) Peripheralcccccoviiiiiiiiiiiiiiiiiceee D-8
Simulator Instruction Timing Analysis for ADSP-BF535 Processors D-9
Stall REasonseceviiiiriiiiiiiiiiiic e D-9
Kill REASONS ..viiiiuiiiiiiiiiiiiiciiiiiec e D-10
Pipeline Viewer Window Examplesc.ccccoviiiiniiiiiniinnnen. D-11
Pipeline Viewer Window Messagesccccoveeernieienueeennnen. D-12
Pipeline Viewer Detail View Stall Event Messages D-12

Kills Detected Messagesccocuveerviieerniieinieeenieeenieeeae D-16
Multicycle InStructionscoeeveeenieeiniieeniiieiniee e D-17
Abbreviations in Pipeline Viewer Messagescccoccueeenunen. D-17
Simulator Instruction Timing Analysis for ADSP-BF531, ADSP-BF532,
ADSP-BF533, and ADSP-BF561 Processorsoeeeeeveeeeeveeeunnnn. D-19
Stall Reasonsccuueviiiiiiiiiiiiiiiiiciiic e D-19
Kill REASONS w.veeiiuiiiiiiiiiiiiee ittt D-20
Pipeline Viewer Window Examplescccccevviiiiniiiiniicennen. D-20
Multicycle Instructions and Latenciesoeeevvuiieiiniiiiecennnnneee. D-22
Multicycle InStructionsocceeeveveeiiiieiniiieeniieeeiee e D-22
Push Multiple or Pop Multiplecccceveiviiiiniiiiniiiiiinene D-22
32-Bit Multiply (modulo 232)ccccociiiiiiiiiiiiii, D-23

Call and Jump ..ooocviiiiiiiiii e D-23
Conditional Branch ... D-23
RETUIN Loiiiiiiiiiiii D-24

Core and System Synchronizationccccccceeviveennneenne. D-24
Linkage .oooovviiiiiiiiiii e D-25
Interrupts and Emulation ..o, D-25

XX Visual DSP++ 5.0 User’s Guide

CONTENTS

TESTSET e D-25
Instruction Latencieso.eueuuivereeiiiiiiiiiiiiiieee e D-26
Accumulator to Data Register Latenciescccceeveeennnenns D-27
Register Move Latenciesccccooevuviiiiiiiiiiiiiiiiiiiinnnnnnn, D-28
Move Conditional and Move CC Latenciesccuee....... D-30
Loop Setup Latenciescccccceeeiiiiiiniiiiiiiieiiiiiiiiiiieeeeenn, D-31
Latencies Due to Instructions Within Hardware Loops D-32
Instruction Alignment Unit Empty Latenciesc........ D-33
L1 Data Memory Stallscooomiiiiiniiiiniiiiiiiciicneccneeee D-34
Minibank Access Collisionccceeviuiieeeiniiiieeiniiieeee, D-35
SRAM Access (1-Cycle Stall) ooveviieiiiiiiiiiiiiiiiie, D-35
Cache Access (1-Cycle Stall) .oooeriiiiiniiiiiiiiiie D-36
Memory-Mapped Register (MMR) Accessccocveeennnen. D-39
System Minibank Access Collisionc.ccceevvvieriiiinnncnns D-39
Store Buffer Overflowcooooiiiiiiiiiiiiiiiiiieiiiccee, D-39
Store Buffer Load Collisionccccovvuvveeeiiiiiiieeiniiieeeee, D-40
Load/Store Size Mismatchcccccovveeiiiiiiiiiiiiiieeeeees D-40
Store Data Not Readycccceeviiiiiiiiiniiiiiiiiciiiceieeens D-41
INStruction GrOUPS ...eeeeeeriirieiiiiiiieeeriieee e D-41
Register Groupsccueviiiiiiiiiiiiiiiiiiieeeiee e D-42
Compiled Simulationcocvieriiiiiiiiiii e D-44
Specifying a Session for Compiled Simulationc..c...... D-44
INDEX

Visual DSP++ 5.0 User’s Guide XX1

-xxii Visual DSP++ 5.0 User’s Guide

PREFACE

Thank you for purchasing Analog Devices, Inc. development software for

digital signal processing (DSP) applications.

Purpose of This Manual

The VisualDSP++ 5.0 User’s Guide describes the features, components,
and functions of VisualDSP++. Use this guide as a reference for develop-

ing programs for SHARC®, TigerSHARC®, and Blackfin® processors.

This manual does not include detailed procedures for building and debug-

ging projects. For how-to information, refer to VisualDSP++ online Help
and the VisualDSP++ 5.0 Getting Started Guide.

Infended Audience

The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. This manual assumes that the audience
has a working knowledge of the appropriate processor architecture and
instruction set. Programmers who are unfamiliar with Analog Devices
processors can use this manual, but should supplement it with other texts
(such as the appropriate hardware reference and programming reference
manuals) that describe your target architecture.

VisualDSP++ 5.0 User’s Guide xxiii

Manual Contents

Manual Contents

The manual consists of:

Chapter 1, “Introduction to VisualDSP++”
Describes Visual DSP++ features, license management, project
development, code development tools, and DSP projects

Chapter 2, “Environment”
Focuses on window features, operations, and customization for the
main window and debugging windows.

Chapter 3, “Debugging”
Describes debug sessions, code analysis tools, program execution
operations, simulation tools, and utilities.

Appendix A, “Reference Information”

Describes file types, keyboard shortcuts, command-line parameters,
scripting, toolbar buttons, and text operations; also provides a
glossary and describes online Help features and operations.

Appendix B, “Simulation of SHARC Processors”

Describes the simulator options available on the Anomalies,
Events, Simulator, Load Sim Loader, and Select Processor ID
submenus under Settings; also explains how to record simulator
anomalies and events, and describes SPI simulation in slave mode.

Appendix C, “Simulation of TigerSHARC Processors”

Describes simulator instruction timing analysis, pipeline stages, the
Pipeline Viewer, stalls, aborts, the current program counter value,
stepping, and the Select Loader Program command on the Simu-
lator submenu under Settings.

Appendix D, “Simulation of Blackfin Processors”

Provides an overview of peripheral support for Blackfin simulators
and describes limitations of the simulation software models, simu-
lator instruction timing analysis, and compiled simulation.

XX1V

Visual DSP++ 5.0 User’s Guide

Preface

What's New in This Manual

The VisualDSP++ 5.0 User’s Guide supports all Analog Devices, Inc.
processor families and processors listed in “Supported Processors” on
page -Xxvii.

For a list of new VisualDSP++ 5.0 user interface features, refer to
“Visual DSP++ 5.0 Features” on page 1-7. See VisualDSP++ Help for
details.

Also refer to the VisualDSP++ 5.0 Product Release Bulletin for information
on features that are new, updated, or removed. This document provides
release-specific information and should be of particular interest to those
users who are familiar with previous versions of VisualDSP++.

Visual DSP++ 5.0 User’s Guide XXV

Technical or Customer Support

Technical or Customer Support

You can reach Analog Devices, Inc. Customer Support in the following
ways:

* Visit the Embedded Processing and DSP products Web site at

http://www.analog.com/processors/technicalSupport

* E-mail tools questions to
processor.tools.support@analog.com

* E-mail processor questions to
processor.support@analog.com (World wide support)
processor.europe@analog.com (Europe support)
processor.china@analog.com (China support)

* Phone questions to 1-800-ANALOGD

* Contact your Analog Devices, Inc. local sales office or authorized
distributor

* Send questions by mail to:
Analog Devices, Inc.
One Technology Way
P.0. Box 9106
Norwood, MA 02062-9106
USA

XXVi Visual DSP++ 5.0 User’s Guide

http://www.analog.com/processors/technicalSupport
mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

Preface

Supported Processors

The following is the list of Analog Devices, Inc. processors supported in
Visual DSP++ 5.0.

TigerSHARC (ADSP-TSxxx) Processors

The name “TigerSHARC? refers to a family of floating-point and
fixed-point [8-bit, 16-bit, and 32-bit] processors. VisualDSP++ currently
supports the following TigerSHARC processors:

ADSP-TS101 ADSP-TS201 ADSP-TS202 ADSP-TS203

SHARC (ADSP-21xxx) Processors

The name “SHARC?” refers to a family of high-performance, 32-bit,
floating-point processors that can be used in speech, sound, graphics, and

imaging applications. VisualDSP++ currently supports the following
SHARC processors:

ADSP-21020 ADSP-21060 ADSP-21061 ADSP-21062
ADSP-21065L ADSP-21160 ADSP-21161 ADSP-21261
ADSP-21262 ADSP-21266 ADSP-21267 ADSP-21362
ADSP-21363 ADSP-21364 ADSP-21365 ADSP-21366
ADSP-21367 ADSP-21368 ADSP-21369 ADSP-21371
ADSP-21375

Blackfin (ADSP-BFxxx) Processors

The name “Blackfin” refers to a family of 16-bit, embedded processors.
VisualDSP++ currently supports the following Blackfin processors:

VisualDSP++ 5.0 User’s Guide

Xxvil

Product Information

ADSP-BF531 ADSP-BF532
ADSP-BF533 ADSP-BF535
ADSP-BF561 ADSP-BF534
ADSP-BF536 ADSP-BF537
ADSP-BF538 ADSP-BF539
ADSP-BF522 ADSP-BF525
ADSP-BF527 ADSP-BF542
ADSP-BF544 ADSP-BF548
ADSP-BF549

Product Information

You can obtain product information from the Analog Devices Web site,
from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. This Web site provides
information about a broad range of products—analog integrated circuits,
amplifiers, converters, and digital signal processors.

MyAnalog.com

MyAnalog.com is a free feature of the Analog Devices Web site that allows
customization of a Web page to display only the latest information on
products you are interested in. You can also choose to receive e-mail
notifications containing updates to the Web pages that meet your inter-
ests, including documentation errata against all manuals. MyAnalog.com
provides access to books, application notes, data sheets, code examples,
and more.

xxviii Visual DSP++ 5.0 User’s Guide

Preface

Registration

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as a means to select the
information you want to receive.

If you are already a registered user, just log on. Your user name is your
e-mail address.

Processor Product Information

For information on embedded processors and DSPs, visit our Web site at
www.analog.com/processors, which provides access to technical publica-
tions, data sheets, application notes, product overviews, and product
announcements.

You may also obtain additional information about Analog Devices and its
products in any of the following ways.

* E-mail questions or requests for information to
processor.support@analog.com (World-wide support)
processor.europe@analog.com (Europe support)
processor.china@analog.com (China support)

* Fax questions or requests for information to
1-781-461-3010 (North America)
+49-89-76903-157 (Europe)

e Access the FTP Web site at
ftp ftp.analog.comor ftp 137.71.25.69
ftp://ftp.analog.com

VisualDSP++ 5.0 User’s Guide XXIX

Product Information

Related Documents

For information on product related development software, see these
publications:

VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 Getting Started Guide

VisualDSP++ 5.0 Assembler and Preprocessor Manual
VisualDSP++ 5.0 C/C++ Compiler Manual for SHARC Processors
VisualDSP++ 5.0 Run-Time Library Manual for SHARC Processors

VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

VisualDSP++ 5.0 C/C++ Compiler and Library Manual for Blackfin

Processors
VisualDSP++ 5.0 Linker and Utilities Manual
VisualDSP++ 5.0 Loader and Utilities Manual

VisualDSP++ 5.0 Device Drivers and System Services Manual
for Blackfin Processors

VisualDSP++ 5.0 Kernel (VDK) User’s Guide
VisualDSP++ 5.0 Installation Quick Reference Card
VisualDSP++ 5.0 Licensing Guide

Throughout this manual and online Help, tools manuals are often
identified by their titles, but without their software version (that is,
the 5.0 is not shown).

XXX

Visual DSP++ 5.0 User’s Guide

Preface

For hardware information, refer to your processors’s hardware reference,
instruction set reference (or programming reference), and data sheet. All
documentation is available online. Most documentation is available in
printed form.

Visit the Technical Library Web site to access all processor and tools man-
uals and data sheets:

http://www.analog.com/processors/resources/technicallibrary

Online Technical Documentation

Online documentation comprises the Visual DSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, the Dinkum
Abridged C++ library, and Flexible License Manager (FlexLM) network
license manager software documentation. You can easily search across the
entire VisualDSP++ documentation set for any topic of interest. For easy
printing, supplementary .PDF files of most manuals are also provided.

Each documentation file type is described as follows.

File Description

.CHM Help system files and manuals in Help format

JHTM Dinkum Abridged C++ library and FlexLM network license manager software doc-

or umentation. Viewing and printing the . HTML files requires a browser, such as

CHTML Internet Explorer 6.0 (or higher).

.PDF Visual DSP++ and processor manuals in Portable Documentation Format (PDF).
Viewing and printing the . PDF files requires a PDF reader, such as Adobe Acrobat
Reader (4.0 or higher).

If documentation is not installed on your system as part of the software
installation, you can add it from the VisualDSP++ CD-ROM at any time
by running the Tools installation. Access the online documentation from
the Visual DSP++ environment, Windows® Explorer, or the Analog
Devices Web site.

VisualDSP++ 5.0 User’s Guide xXX1

http://www.analog.com/processors/resources/technicalLibrary

Product Information

Accessing Documentation From VisualDSP++
From the Visual DSP++ environment:

* Access VisualDSP++ online Help from the Help menu’s Contents,
Search, and Index commands.

* Open online Help from context-sensitive user interface items (tool-
bar buttons, menu commands, and windows).

Accessing Documentation From Windows

In addition to any shortcuts you may have constructed, there are many
ways to open Visual DSP++ online Help or the supplementary documenta-
tion from Windows.

Help system files (.CHM) are located in the Visual DSP++ software installa-
tion’s Help folder, and .PDF files are located in the Docs folder of your
Visual DSP++ installation CD-ROM. The Docs folder also contains the
Dinkum Abridged C++ library and the FlexLM network license manager
software documentation.

Using Windows Explorer

* Double-click the vdsp-help.chm file, which is the master Help sys-
tem, to access all the other . CHM files.

* Double-click any file that is part of the Visual DSP++ documenta-
tion set.

XXXil Visual DSP++ 5.0 User’s Guide

Preface

Using the Windows Start Button

e Access VisualDSP++ online Help by clicking the Start button and
choosing Programs, Analog Devices, Visual DSP++, and
Visual DSP++ Documentation.

Accessing Documentation From the Web

Download manuals at the following Web site:
http://www.analog.com/processors/manuals

Select a processor family and book title. Download archive (.ZIP) files, one
for each manual. Use any archive management software, such as WinZip,
to decompress downloaded files.

Embedded Processing & DSP Knowledge Base

Search all our technical documents—everything from application notes,
data sheets, questions and answers, to code examples, manuals and more.

Point your browser to the following Analog Devices Web site:

http://search.analog.com/DSPKB/home.aspx

Printed Manuals

For general questions regarding literature ordering, call the Literature

Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

Hardware Tools Manuals

To purchase EZ-KIT Lite™ and In-Circuit Emulator (ICE) manuals, call
1-603-883-2430. The manuals may be ordered by title or by product

number located on the back cover of each manual.

Visual DSP++ 5.0 User’s Guide xxxiii

http://www.analog.com/processors/manuals
http://search.analog.com/DSPKB/home.aspx

Product Information

Processor Manuals

Hardware reference and instruction set reference manuals may be ordered
through the Literature Center at 1-800-ANALOGD (1-800-262-5643),
or downloaded from the Analog Devices Web site. Manuals may be
ordered by title or by product number located on the back cover of each
manual.

Data Sheets

All data sheets (preliminary and production) may be downloaded from the
Analog Devices Web site. Only production (final) data sheets (Rev. 0, A,
B, C, and so on) can be obtained from the Literature Center at
1-800-ANALOGD (1-800-262-5643); they also can be downloaded from
the Web site.

To have a data sheet faxed to you, call the Analog Devices Faxback System
at 1-800-446-6212. Follow the prompts and a list of data sheet code
numbers will be faxed to you. If the data sheet you want is not listed,
check for it on the Web site.

XXXIV Visual DSP++ 5.0 User’s Guide

Preface

Notation Conventions

Text conventions in this manual are identified and described as follows.

Example

Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
VisualDSP++ environment’s menu system (for example, the Close
command appears on the File menu).

{this | that)

Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that]

Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,..] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipse; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ... A Note provides supplementary infor-
mation on a related topic. In the online version of this book, the word
Note appears instead of this symbol.

Caution: Incorrect device operation may result if ...

Caution: Device damage may result if ...

A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...

A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

VisualDSP++ 5.0 User’s Guide XXXV

Notation Conventions

XXXV1 Visual DSP++ 5.0 User’s Guide

1 INTRODUCTION TO
VISUALDSP++

This manual describes VisualDSP++, a flexible management system that
provides a suite of tools for developing processor applications and
projects.

This chapter contains the following topics:
e “Visual DSP++ Features” on page 1-1
* “Product Updates and Upgrades” on page 1-10
* “Project Development” on page 1-11
* “Code Development Tools” on page 1-27
* “Processor Projects” on page 1-43

e “VisualDSP++ Help System” on page 1-61

VisualDSP++ Features

Visual DSP++ includes all the tools needed to build and manage processor
projects.

Visual DSP++ includes:

* Integrated Development and Debugging Environment (IDDE)
with VisualDSP++ Kernel (VDK) integration

e C/C++ optimizing compiler with run-time library

Visual DSP++ 5.0 User’s Guide 1-1

VisualDSP++ Features

¢ Assembler and linker
e Simulator software
* Example programs

This section briefly describes Visual DSP++ features.

Integrated Development and Debugging

The Visual DSP++ IDDE provides complete graphical control of the edit,
build, and debug process. In this integrated environment, you can move
easily between editing, building, and debugging activities.

Code Development Tools

Depending on the code development tools purchased, Visual DSP++
includes one or more of the following components.

* C/C++ compiler with run-time library

* Assembler, linker, preprocessor, and archiver

* Loader and splitter

e Simulator

e EZ-KIT Lite%o evaluation system (must be purchased separately)

* Emulator (must be purchased separately)

Visual DSP++ supports ELF/DWAREF-2 executable files. VisualDSP++
supports all executable file formats produced by the linker.

If your system is configured with third-party development tools,
you can select the compiler, assembler, linker, or loader to use
for a particular target build.

1-2 Visual DSP++ 5.0 User’s Guide

Introduction to VisualDSP++

Source File Editing Features

VisualDSP++ simplifies tasks involving source files. All the activities
necessary to create, view, print, move within, and locate information are
easy to perform.

* Edit text files. Create and modify source files and view listing or
map files generated by the code development tools.

Source files are the C/C++ language or assembly language files that
make up your project. Processor projects can include additional
files such as data files and a Linker Description File (.1df), which
contains command input for the linker. For more information
about .1df files, see “Linker” on page 1-31.

* Editor windows. Open multiple editor windows (source windows)
to view and edit related files, or open multiple editor windows for a
single file. The Visual DSP++ editor is an integrated code-writing
tool that enables you to focus on code development.

* Specify syntax coloring. Configure options that specify the color of
text objects viewed in an editor window.

This feature enhances the view and helps locate portions of the
text, because keywords, quotes, and comments appear in distinct
colors.

* Context-sensitive expression evaluation. Move the mouse pointer
over a variable that is in the scope to view the variable’s value.

* Status icons. View icons that indicate breakpoints, bookmarks, and
the current PC position.

* View error details and offending code. From the Output window’s
Build view, display error details by highlighting the error code
(such as cc0251) and pressing the F1 key. Double-click an error
line to jump to the offending code in an editor window.

Visual DSP++ 5.0 User’s Guide 1-3

VisualDSP++ Features

Project Management Features

Visual DSP++ provides flexible project management for the development
of processor applications, including access to all the activities necessary to
create, define, and build processor projects.

Define and manage projects. Identify files that the code develop-
ment tools process to build your project. Create this project
definition once, or modify it to meet changing development needs.

Access and manage code development tools. Configure options to
specify how the code development tools process inputs and gener-
ate outputs. Tool settings correspond to command-line switches
for code development tools. Define these options once, or modify
them to meet your needs.

View and respond to project build results. View project status
while a build progresses and, if necessary, halt the build.

Double-click on an error message in the Output window to view
the source code causing the error, or iterate through error messages.

Manage source files. Manage source files and track file dependen-
cies in your project from the Project window to provide a display
of software file relationships. VisualDSP++ uses code development
tools to process your project and to produce a processor program.
It also provides a source code control (SCC) interface, which
enables you to access SCC applications without leaving the IDDE.

1-4

Visual DSP++ 5.0 User’s Guide

Introduction to VisualDSP++

Debugging Features

While debugging your project, you can:

View and debug mixed C/C++ and assembly code. View C/C++
source code interspersed with assembly code. Line number and
symbol information help you to source-level debug assembly files.

Run command-line scripts. Use scripts to customize key debug-
ging features.

Use memory expressions. Use expressions that refer to memory.

Use breakpoints to view registers and memory. Quickly add and
remove, and enable and disable breakpoints.

Set simulated watchpoints. Set watchpoints on stacks, registers,
memory, or symbols to halt program execution.

Statistically profile the target processor’s PC (JTAG emulator
debug targets only). Take random samples and display them graph-

ically to see where the program uses most of its time.

Linearly profile the target processor’s PC (Simulation only).
Sample every executed PC and provide an accurate and complete
graphical display of what was executed in your program.

Generate interrupts using streaming I/0O. Set up serial port

(SPORT) or memory-mapped 1/O.

Create customized register windows. Conﬁgure a custom register
window to display a specified set of registers.

Plot values from processor memory. Choose from multiple plot
styles, data processing options, and presentation options.

Visual DSP++ 5.0 User’s Guide 1-5

VisualDSP++ Features

Trace program execution history. Trace how your program arrives
at a certain point and show reads, writes, and symbolic names.

View pipeline depth of assembly instructions. Display the pipeline
stage by querying the target processor(s) through the pipeline
interface.

For details, refer to the VisualDSP++ Getting Started Guide and
VisualDSP++ Help.

VDK Features

The Visual DSP++ Kernel (VDK) is a scalable software executive specially
developed for effective operations on Analog Devices processors. The
VDK is tightly integrated with Visual DSP++.

The kernel enables you to abstract the details of the hardware implemen-
tation from the software design. As a result, you can concentrate on the
processing algorithms.

The kernel provides all the basic building blocks required for application

development. Properties of the kernel can be characterized as follows.

Automatic. Visual DSP++ automatically generates source code
framework for each user-requested object in the user-specified
language.

Deterministic. VisualDSP++ specifies whether the execution time
of a VDK API is deterministic.

Multitasking. Kernel tasks (threads) are independent of one
another. Each thread has its own stack.

Modular. The kernel comprises various components. Future
releases may offer additional functionality.

1-6

Visual DSP++ 5.0 User’s Guide

Introduction to VisualDSP++

* Portable. Most of the kernel components can be written in ANSI
Standard C or C++ and are portable to other Analog Devices
processors.

* Pre-emptive. The kernel’s priority-based scheduler enables the
highest-priority thread not waiting for a signal to be run at any
time.

* Prototypical. The kernel and VisualDSP++ create an initial file set
based on a series of template files. The entire application is proto-
typed and ready to be tested.

* Reliable. The kernel provides run-time error checking.

e Scalable. If a project does not include a kernel feature, the support
code is not included in the target system.

VisualDSP++ 5.0 Features

Visual DSP++ 5.0 includes the following new features and enhancements.

* New Processor Support. Refer to the processors listed in
“Supported Processors” on page -xxvii.

* Binary File Support for Fill and Dump. You can choose to fill
from a binary file or dump to a binary file in addition to a text file.
You can also choose the byte order (little endian or big endian) of
the data in the binary file.

e Core File Support. You can dump the entire state of registers and
the memory content of a stopped target to a core file, which can be
loaded later by the IDDE to restore the saved target state so that
the target can be examined. This enables Analog Devices Support
to diagnose customer problems. The core file can also be used to
migrate a running . dxe from an ICE to a simulator session to study
a sequence in greater detail. You can set a breakpoint just before
the sequence of interest, then export the core file and load it to the

Visual DSP++ 5.0 User’s Guide 1-7

VisualDSP++ Features

simulator. This assumes that the simulator shares the same set of
registers with the ICE and can access all the memory blocks rele-
vant to the program as the ICE does. Another benefit of this
capability is in understanding the effects of a program sequence.
You can generate a core file, step over a subroutine, and then gen-
erate a second core file. Then, convert both core files to text file
format and “diff” the files to show all the effects of the subroutine.

Categories in Help. You can “filter” VisualDSP++ Help by setting
a preference or by launching a particular category of Help via the
Windows Start menu. Now there are three processor-specific Help
categories (one for each processor family) and a complete Help that
contains information about all processor families; an “automatic”
options displays Help for currently selected debug session. Each
Help category (for example, Blackfin processor family Help) dis-
plays information pertinent to that specific family of processors. By
selecting a Help category, in effect, you remove information about
other families of processors from Help; this improves your ability
to quickly locate information in Help, especially when running a
“search” or looking up an entry in the Help Index.

Enhanced Licensing and Registration. Software licence borrowing
for floating licenses allows you to check out a floating license from
a server for a predetermined length of time. On the Licenses page
of the About dialog box, when a client license is installed, the
server_name appears under Serial Number, “client” appears under
Family, and “use_server” appears under Status. The “Machine ID”
box displays the C: drive’s volume ID. If you are running off a
server-based (floating) license, this box displays the MAC address
of the primary Ethernet controller in the machine.

New Project Types. The Project Wizard has been changed to
simplify the process of creating a new project.

1-8

Visual DSP++ 5.0 User’s Guide

Introduction to VisualDSP++

* Control over Automatic Breakpoints. You can configure whether
automatic breakpoints are set after a program is loaded. You can
specify additional breakpoints to be set after a load and you can
specify each additional breakpoint as being a software breakpoint
or a hardware breakpoint.

* Enhancements to Call Stack Window. To improve the debugging
of “Release” configurations, a call stack is provided regardless
whether debug information is present. When using the Call Stack
window when debug information is not available, double-clicking
on an item in the window will open a Disassembly window (if one
is not already open), and jump to the address linked to the specific
item in the Call Stack window. From these two windows, you can
now set the display format on a per-expression basis. Additional
columns are available to display the expression’s type, address, size,
and format.

* Stand-Alone Flash Programmer. This utility provides flash pro-
gramming support between the development/prototype stage and
early pre-production runs. The Stand-Alone Flash Programmer
enables the development engineer to script or automate this process
with a license-free tool, allowing the manufacturing technician to
repeatedly program any number of boards prior to major
production.

Consult VisualDSP++ Help for details and how to use these new features.

Visual DSP++ 5.0 User’s Guide 1-9

Product Updates and Upgrades

Product Updates and Upgrades

Visual DSP++ is a licensed software product. Installation and licensing
are described in the VisualDSP++ Licensing Guide, which is available
from Help. This section describes product updates and upgrades. Various
support functions are available from the About dialog box, as described in
“Support Information” on page A-2.

VisualDSP++ Product Upgrades

From time to time, Analog Devices releases new software versions

(upgrades).

Starting with Visual DSP++ 3.5, new versions of Visual DSP++ are discrete
upgrades. Your PC can maintain multiple versions of VisualDSP++.

Refer to online Help for details on upgrading your software. The upgrade
procedure does not change the previous version’s folder structure or
license file. The new installation process uses the previous version’s path
and license.

Check the Analog Devices Web site to ensure that you have the
latest software version.

VisualDSP++ Product Updates

As of Visual DSP++ Version 4.0, software updates are available from the
Analog Devices Web site. The content of an update is inclusive of all pre-
vious updates. In addition, the Release Notes for past updates are appended
to the current update's Release Notes.

Updates to Visual DSP++ address problems and stabilize the release.
Updates do not contain significant new functionality. However, incre-
mental support (e.g., emulation, example programs, header files, default

1-10 Visual DSP++ 5.0 User’s Guide

Introduction to VisualDSP++

LDF, errata accommodations, EZ-KIT Lite software, and so on) for new
semiconductor products will be added as these products become available
and gain support within the VisualDSP++ tools.

Starting with Visual DSP++ 3.5, new versions of Visual DSP++ are discrete
upgrades. Your PC can maintain multiple versions of VisualDSP++.

Refer to online Help for details on updating your software. Help explains
how to identify the update currently installed on your system.

Project Development

During project development, Visual DSP++ helps you interactively observe
and alter the data in the processor and in memory.

This section describes:
e “Overview of Programming With VisualDSP++” on page 1-12
e “Project Development Stages” on page 1-14
e “Targets” on page 1-15
* “Platforms” on page 1-17
* “Debugging Overview” on page 1-20
e “VisualDSP++ Kernel” on page 1-22

* “Program Development Steps” on page 1-22

Visual DSP++ 5.0 User’s Guide 1-11

Project Development

Overview of Programming With VisualDSP++

Programming effectively with VisualDSP++ depends on how well you
master a four-step process. You must learn how to:

1.

Lol

Work with Visual DSP++
Implement structured software design with VisualDSP++
Optimize performance with Visual DSP++

Test and debug your programs with VisualDSP++

Working With VisualDSP++:

You should have a working knowledge of Visual DSP++, the front end for
all available targets and platforms. You should know how and when to use
its various features and have a firm foundation in these project basics:

Work with “property pages”. These pages of the Project Options

dialog box provide options analogous to command-line switches.

Set up debug sessions. Know the distinctions between the three
development stages: simulation, evaluation (via an EZ-KIT Lite
evaluation system), and emulation.

Understand how program sections and memory segments relate to
physical processor memory. Become familiar with Expert Linker.

Access peripherals. This task includes setting up and handling
interrupts in both C and assembly.

Visual DSP++ 5.0 User’s Guide

Introduction to VisualDSP++

Designing Structured Software With VisualDSP++:
Consider elements of software design, code reuse, and interoperability. If
you are new to embedded systems, try to acquire a clear understanding of:

* The role of and motivation behind component software
¢ The role of an RTOS

* How to use VDK to manage multiple threads of execution and the
communication between those threads

Optimizing Performance With VisualDSP++:

At this stage, you should understand how to access the features of the
processor and how to use a structured approach to develop software. Next,
optimize your software to take full advantage of the processor’s computa-
tional power. This entails:

* Understanding the compiler optimizer

* Writing mixed C and assembly programs

* Accessing C/C++ data structures in assembly
* Harnessing the power of C++

* Setting up and using overlays

* Configuring emulation L1 memory for cache versus SRAM with
cache visualization

* Using statistical profiling

Visual DSP++ 5.0 User’s Guide 1-13

Project Development

Testing and Debugging With VisualDSP++:

At this stage, you should have a good understanding of the various facili-
ties available for producing optimal software. The last step, applying
software testing and debugging techniques, includes:

* Collecting and viewing data using the advanced plot windows
* Using compiled simulation

e Using ActiveX and COM Automation to create regression test
environments and taking advantage of interoperability with other
applications

Project Development Stages

The typical project includes three phases: simulation, evaluation, and
emulation. These phases are shown in Figure 1-1.

Simulation [J No hardware is required.
EZ-KIT Lite
Evaluation D
DsP
Board

Emulation

Figure 1-1. Project Development Stages

Visual DSP++ provides debugging tools for each of these phases; refer to
Table 1-2 on page 1-20.

1-14 Visual DSP++ 5.0 User’s Guide

Introduction to VisualDSP++

Simulation

Project development typically begins in a simulation environment while
hardware engineers are developing the new hardware (cell phone, com-
puter, and so on). Simulation mimics system memory and I/O, which
allows portions of the target system hardware behavior to be viewed. A
simulator is software that mimics the behavior of a processor. Running
Visual DSP++ with a simulation target (without a physical processor)
enables you to build, edit, and debug your program, even before a proces-
sor is manufactured.

Evaluation

Use an EZ-KIT Lite evaluation system in your project’s early planning
stage to determine the processor that best fits your needs. Your PC con-
nects to the EZ-KIT Lite board via a cable, enabling you to monitor
processor behavior.

Emulation

Once the hardware is ready, move directly to a JTAG emulator, which
connects your PC to the actual processor target board. Emulators provide
fast communications between the board and your PC. An emulator
enables application software to be downloaded and debugged from within
Visual DSP++. Emulator software performs the communications that
enable you to see how your code affects processor performance.

Targets

A targer (or debug target) refers to the communication channel between
Visual DSP++ and a processor (or group of processors). A target can be a
simulator, EZ-KIT Lite evaluation board, or an emulator. Your system
can include multiple targets.

Visual DSP++ 5.0 User’s Guide 1-15

Project Development

For example, the JTAG emulator communicates with one or more
physical devices over the host PC’s PCI bus, and the HPUSB-ICE

emulator communicates with a device via the PC’s USB port.

Simulation Targets

A simulation target, such as the ADSP-2106x Family Simulator, is a pure
software module and does not require the presence of a processor or any

related hardware for debugging.

During simulation, Visual DSP++ reads an executable (.DXE) file and exe-
cutes it in software, similar to the way a processor executes a processor
image in hardware. Visual DSP++ simulates the memory and I/O devices
specified in an .1df file. Some processors permit you to run a compiled
simulation. Refer to “Compiled Simulation” on page D-44.

Hardware Simulation

When connected to a simulation target in VisualDSP++, you can simulate
the following hardware conditions.

* Random interrupts that can occur during program execution
* Data transfer through the processor’s I/O pins
* DProcessor booting from a PROM or host processor

Setting up VisualDSP++ to generate random interrupts during program
execution enables you to exercise interrupt service routines (ISR) in your
code.

EZ-KIT Lite Targets

An EZ-KIT Lite target is a development board used to evaluate a particular
processor. Analog Devices provides EZ-KIT Lite evaluation systems (for
each processor family) and demonstration programs.

1-16 Visual DSP++ 5.0 User’s Guide

Introduction to VisualDSP++

Emulator Targets

An emulator target is a module that controls a physical processor con-
nected to a JTAG emulator system. For example, the USB-ICE emulator
communicates with one or more physical devices through the host USB

port.

Platforms

A platform refers to the configuration of processors with which a target
communicates. Several platforms may exist for a given debug target. For
example, if three emulators are installed on your system, you might select
emulator 2 as the platform that you want to use. The platform that you
use depends on your project development stage. (See Table 1-1.)

Table 1-1. Development Stages and Supported Platforms

Stage

Platform

Simulation

Typically one or more processors of the same type. By default, the plat-
form name is the identical simulator. Some processors support compiled
simulation; refer to “Compiled Simulation” on page D-44.

Evaluation

An EZ-KIT Lite evaluation system

Emulation

Any combination of devices. You configure the platform for a particular
target with the VisualDSP++ Configurator. When the debug target is a
JTAG emulator, “platform” refers to a JTAG chain of specific device

types.

VisualDSP++ Configurator

Use the VisualDSP++ Configurator (Figure 1-2) to align the external
hardware target with an emulator so that the appropriate IDDE debug ses-
sion can be established.

Visual DSP++ 5.0 User’s Guide

1-17

Project Development

'} ¥isualDSP++ Configurator H

| Flatfarm Templates | Platfarms

B& AD5P-210650 EZ-KIT Lite
ADSP211B0 EZ-KIT Lite
ADSP-21161 EZ-KIT Lite
ADSP-21262 EZ-KIT Lite
ADSP-21364 EZ-KIT Lite
ADSP-21369 EZ-KIT Lite
ADSP-21379EZ-KIT Lite
ADSPBFS33EZ-KIT Lite
ADSPBFEISEZ-KIT Lite
ADSP-BFS37 EZ-KIT Lite
ADSP-BFE3EF EZKIT Lite e
B8 ADSP-BFSE1 EZ-KIT Lite
H}?ADSP-THM EZKIT Lite
4

(e |

|»

ADSP-BF537 via HPUSE-ICE

Mew... | Madify... | Delete... | Delete All... Save...

-
| ;I_I
Ok I Cancel | Test... | Help |

Figure 1-2. VisualDSP++ Configurator

After the EZ-KIT Lite evaluation system or emulator has been connected,
powered up, and recognized in the Windows Device Manager, you can
select or create the appropriate platform needed for configuring a debug
session. If the appropriate platform is not shown, you can create or config-

ure one by specifying its name, type and JTAG chain (scan path).

You can also use the Visual DSP++ Configurator to run ICE Test, a utility
that checks the functionality of your emulator; refer to Figure 1-3.

Refer to VisualDSP++ Help for details about using the Visual DSP++
Configurator and the ICE Test utility.

1-18 Visual DSP++ 5.0 User’s Guide

Intfroduction to VisualDSP++

HPPLI-ICE -
DCE0

DCve
I

Figure 1-3. ICE Test Utility

Visual DSP++ 5.0 User’s Guide 1-19

Project Development

Debugging Overview

Once you have successfully built a processor project and generated an
executable file, you can debug the project. Projects developed in

Visual DSP++ are run as hardware and software debug sessions.

In Table 1-2, “Yes” indicates the debugging tools that are available during
the process of building and debugging a program.

Table 1-2. Tools Available During Simulation, Evaluation, and Emulation

Tool Simulation Evaluation | Emulation
Linear profiles on page 3-8 Yes

Interrupts on page 3-17 Yes

Streams on page 3-17 Yes

Traces (SHARC processors only) Yes

on page 3-9

Pipeline Viewer (not SHARC processors) Yes

on page C-2

Cache Viewer on page 2-93 Yes

Breakpoints on page 3-13 Yes Yes Yes
Watchpoints on page 3-15 Yes

Hardware breakpoints on page 3-16 Yes
Plotting on page 3-20 Yes Yes Yes
Statistical profiles on page 3-8 Yes

You can attach to and control the operation of any Analog Devices
processors or simulator. Download your application code to the processor
and use VisualDSP++’s debugging facilities to ensure that your application

functions as desired.

1-20

Visual DSP++ 5.0 User’s Guide

Introduction to VisualDSP++

VisualDSP++ is a window into the inner workings of the target processor
or simulator. From this user interface, you can:

* Run, step, and halt the program and set breakpoints and
watchpoints

* View the state of the processor’s memory, registers, and stacks
e Perform a cycle-accurate statistical profile or linear profile

e DPerform integrated multiprocessor debugging (emulator sessions
only)

Visual DSP++ 5.0 User’s Guide 1-21

Project Development

VisualDSP++ Kernel

A project can optionally include the VisualDSP++ Kernel (VDK), which is
a software executive between algorithms, peripherals, and control logic.

The Project window’s Kernel tab accesses a tree control for structuring
and scaling application development. From this tree control, you can add,
modify, and delete Kernel elements such as thread types, boot threads,
round-robin priorities, semaphores, events, event bits, interrupts, and
device drivers.

Two VDK-specific windows, VDK State History and Target Load, pro-
vide views of VDK information. Another VDK window, VDK Status,
provides thread status data when a VDK-enabled program is halted. Refer
to the VisualDSP++ Kernel (VDK) User’s Guide for details.

Program Development Steps

In the VisualDSP++ environment, program development consists of the
following steps.

1. Create a project.

Conlfigure project options.

Add and edit project source files.

Specify project build options.

Build a debug version (executable file) of the project.
Create a debug session and load the executable.

Run and debug the program.

® N & s B Db

Build a release version of the project.

1-22 Visual DSP++ 5.0 User’s Guide

Introduction to VisualDSP++

By following these steps, you can build projects consistently and accu-
rately with minimal project management. This process reduces
development time and lets you concentrate on code development.

These steps, described below, are covered in detail in Visual DSP++ Help
and in the “Basic Tutorial” chapter of the VisualDSP++ Getting Started
Guide.

Step 1: Create a Project

All development in VisualDSP++ occurs within a project. The project
(.dpj) file stores your program’s build information: source files list and
development tools option settings.

Visual DSP++ includes a Project wizard that simplifies the creation of a
new project. Refer to the VisualDSP++ Getting Started Guide for a tutorial
or to Visual DSP++ Help.

Step 2: Configure Project Options

Define the target processor and set up your project options (or accept
default settings) before adding files to the project. The Project Options
dialog box (also called property pages) provides access to project options,
which enable the corresponding build tools to process the project’s files
correctly.

Step 3: Add and Edit Project Source Files

A project normally contains one or more C, C++, or assembly language
source files. After creating a project and defining its target processor, add
new or existing files to the project by importing or writing them. Use the
Visual DSP++ editor to create new files or edit any existing text files.

Visual DSP++ 5.0 User’s Guide 1-23

Project Development

Adding Files to Your Project

You can add any type of file to the project. The development tools selec-
tively process only recognized file types when you build the project.

Creating Files to Add to Your Project

You can create new text files. The editor can read or write text files with
arbitrary names. Adding files to your project updates the project’s file tree
in the Project window.

Editing Files

You can edit the file(s) that you add to the project. To open a file for
editing, double-click on the file icon in the Project window.

The editor has a standard Windows-style user interface and supports
normal editing operations and multiple open windows. You can customize
language- and processor-specific syntax coloring, and create and search for
bookmarks.

Managing Project Dependencies

Project dependencies control how source files use information in other
files, and consequently determine the build order. Visual DSP++ maintains
a makefile, which stores dependency information for each file in the
project. VisualDSP++ updates dependency information when you change
the project’s build options, add a file to the project, or choose Update
Dependencies from the Project menu.

Step 4: Specifying Project Build Options

After creating a project, setting the target processor, and adding or editing
the project’s source files, configure your project’s build options. Specify
options or accept the default options in VisualDSP++ before using the

1-24 Visual DSP++ 5.0 User’s Guide

Introduction to VisualDSP++

development tools that create your executable file. You can specify options
for a whole project or for individual files, or you can specify a custom

build.

Visual DSP++ retains your changes to the build options. Settings
reflect your last changes, not necessarily the original defaults.

Configuration

A project’s configuration setting controls its build. By default, the choices
are Debug or Release.

* Selecting Debug and leaving all other options at their default set-
tings builds a project that can be debugged. The compiler generates
debug information.

* Selecting Release and leaving all other options at their default set-
tings builds a project with limited or no debug capabilities. Release
builds are usually optimized for performance. Your test suite
should verify that the Release build operates correctly without
introducing significant bugs.

You can modify VisualDSP++’s default operation for either configuration
by changing the appropriate entries on the Compile, Assemble, and Link
pages. You can create custom configurations that include the build
options and source files that you want.

Project-Wide File and Tool Options

Next, you must decide whether to use project-wide option settings or
individual file settings.

For projects built entirely within VisualDSP++ with no pre-existing object
or archive (library) files, you typically use project-wide options. New files
added to the project inherit these settings.

Visual DSP++ 5.0 User’s Guide 1-25

Project Development

Individual File and Tool Options

Occasionally, you may want to specify tool settings for individual files.
Each file is associated with two property pages: a General page, which lets
you choose output directories for intermediate and output files, and a
tool-specific property page (Compile, Assemble, Link, and so on), which
lets you choose options. For information about each tool’s options, see the
online Help or the manual for each tool.

Step 5: Build a Debug Version of the Project
Next, build a debug version of the project.

Status messages from each code development tool appear in the Output
window as the build progresses.

The output file type must be an executable (.DXE) file to produce
debugger-compatible output.

Step 6: Create a Debug Session and Load the Executable

After successfully building an executable file, set up a debug session. You
run projects that you develop as hardware or software sessions. After
specifying the processor, connection type, and platform, load your
project’s executable file. From the General page of the Preferences dialog
box, you can configure VisualDSP++ to load the file automatically and
advance to the main function of your code.

Step 7: Run and Debug the Program

After successfully creating a debug session and building and loading your
executable program, run and debug the program.

If the project is not current (has outdated source files or dependency
information), Visual DSP++ prompts you to build the project before
loading and debugging the executable file.

1-26 Visual DSP++ 5.0 User’s Guide

Introduction to VisualDSP++

Step 8: Build a Release Version of the Project

After you finish debugging your application, build a Release version of
your project to run on the product’s processor.

Code Development Tools

This section describes the following development tools.
e “Compiler” on page 1-28
e “C++ Run-Time Libraries” on page 1-29
* “Assembler” on page 1-30
e “Linker” on page 1-31
* “Expert Linker” on page 1-34
e “Archiver” on page 1-41
e “Splitter” on page 1-41
* “Loader” on page 1-42

Available code development tools differ, depending on the processor.
The options available on the pages of the Project Options dialog box
enable you to specify tool preference.

Visual DSP++ supports ELF/DWAREF-2 (Executable Linkable Format/
Debug With Arbitrary Records Format) executable files. VisualDSP++
supports all executable file formats produced by the linker.

If your system is configured with third-party development tools, you can
select the compiler, assembler, or linker to be used for a particular target

build.

Visual DSP++ 5.0 User’s Guide 1-27

Code Development Tools

Compiler

The compiler processes C/C++ programs into assembly code. The term
compiler refers to the compiler utility shipped with the VisualDSP++
software.

The compiler generates a linkable object file by compiling one or more
C/C++ source files. The compiler’s primary output is a linkable object file
with a .D0J extension.

To specify compiler options for your build, choose Project -> Project
Options. From the tree control of the ensuing Project Options dialog
box, expand Compile and click a subpage.

Compiler options are grouped into the subpages described in Table 1-3.

Table 1-3. Compiler Option Subpages

Category Provides

General Optimization, compilation, and termination options

Source Language Settings related to the dialect of C or C++ accepted by the compiler
Settings

Preprocessor Macro and directory search options

Processor Processor-specific options

Profile-guided Options used while performing profile-guided optimization (PGO)
Optimization

Warning Warning and error reporting options

The available subpages and options depend on your target proces-
sor and your code development tools.

For more information about compile options, refer to your processor’s
VisualDSP++ C/C++ Compiler and Library manual and VisualDSP++
Help.

1-28 Visual DSP++ 5.0 User’s Guide

Introduction to VisualDSP++

C++ Run-Time Libraries

You must be running Visual DSP++ to use the C++ run-time
libraries.

The C and C++ run-time libraries (RTLs) are collections of functions,
macros, and class templates that can be called from source programs.
Many functions are implemented in the processor assembly language.

C and C++ programs depend on library functions to perform operations
that are basic to the C and C++ programming languages. These operations
include memory allocations, character and string conversions, and math
calculations. The libraries also include multiple signal processing func-
tions that ease processor code development. The RTL simplifies software
development by providing code for a variety of common needs.

The compiler provides a broad collection of C functions including those
required by the ANSI standard and additional Analog Devices-supplied
functions of value for processor programming. This release of the compiler
software includes both the Standard C Library and the Abridged Library, a
conforming subset of the Standard C++ Library. For more information
about the algorithms on which many of the C library’s math functions are
based, refer to the Cody and Waite text Software Manual for the Elemen-
tary Functions from Prentice Hall (1980).

For more information about the C++ library portion of the ANSI/ ISO
Standard for C++, refer to the Plauger text Draft Standard C++ Library
from Prentice Hall (1994) (ISBN: 0131170031).

Dinkum Abridged C++ Library

The Dinkum Abridged C++ library software documentation is located on
the Visual DSP++ installation CD in the <install_path>\Docs\Reference
folder. Viewing or printing these files requires a browser, such as Internet
Explorer 6.0 (or higher). You can copy these files from the installation CD
onto another disk.

Visual DSP++ 5.0 User’s Guide 1-29

Code Development Tools

Assembler

The assembler generates an object file by assembling source, header, and
data files. The assembler’s primary output is an object file with a . doj
extension.

To specify assembler options, choose Project -> Project Options, and

click Assemble (in the Project Options dialog box).
Assembler terms are defined as follows.
instruction set

Set of assembly instructions that pertain to a specific processor.
For information about the instruction set, refer to your processor’s
hardware documentation.

preprocessor commands

Commands that direct the preprocessor to include files, perform
macro substitutions, and control conditional assembly

assembler directives

Directives that tell the assembler how to process source code and
set up processor features. Use directives to structure your program
into logical segments or sections that support the use of a Linker
Description File (.1df) to construct an image suited to the target
system.

For detailed information, refer to the VisualDSP++ Assembler and
Preprocessor Manual or Visual DSP++ Help

1-30 Visual DSP++ 5.0 User’s Guide

Introduction to VisualDSP++

Linker

The linker links separately assembled files (object files and library files) to
produce executable (.dxe) files, shared memory (.sm) files, and overlay
(.ov1) files, which can be loaded onto the target.

The linker’s output files (.dxe, .sm, .ov1) are binary, executable, and link-
able files (ELF). To make an executable file, the linker processes data from
a Linker Description File (.1df) and one or more object (.doj) files. The
executable files contain program code and debugging information. The
linker fully resolves addresses in executable files.

To specify linker options, choose Project -> Project Options, and click
Link tab (on the Project Options dialog box). From the Link page, select
a Category of options. Linker options are grouped into the following
subpages.

* General

* LDF Preprocessing

* Elimination

* Processor
Linker terms are defined as follows.
link against

Functionality that enables the linker to resolve symbols to which
multiple executables refer. For instance, shared memory (. sm)
executable files contain sections of code that other processor

Visual DSP++ 5.0 User’s Guide 1-31

Code Development Tools

executable (.dxe) files link against. Through this process, a shared
item is available to multiple executable files without being

duplicated.
link objects

Object files (. doj) that become linked and other items, such as
executable (.dxe, .sm, .ov1) files, that are linked against

.LDF file

File that contains the commands, macros, and expressions that
control how the linker arranges your program in memory

memory

Definitions that provide a description of your target processor sys-
tem to the linker

overlays

Files that your overlay manager swaps in and out of run-time
memory, depending on code operations. The linker produces
overlay (.ov1) files.

sections

Declarations that identify the content for each executable file that
the linker produces

For detailed information, refer to the VisualDSP++ Linker and Utilities
Manual or Visual DSP++ Help.

Linker Description File (.1df)

A Linker Description File (.1df) describes the target system and maps
your program code with the system memory and processors.

1-32 Visual DSP++ 5.0 User’s Guide

Introduction to VisualDSP++

The .1df file creates an executable file by using:
* The target system memory map
* Defined segments in your source files

The parts of an . 1df file, from the beginning to the end of the file, are
described as follows.

* Memory map — describes the processor’s physical memory (located
at the beginning of the .1df file)

* SEARCH_DIR, $LIBRARIES, and $0BJECTS commands — define the
path names that the linker uses to search and resolve references in
the input files

* MEMORY command — defines the system’s physical memory and
assigns labels to logical segments within it. These logical segments
define program, memory, and stack memory types.

* SECTIONS command — defines the placement of code in physical
memory by mapping the sections specified in program files to the
sections declared in the MEMORY command. The INPUT_SECTIONS
statement specifies the object file that the linker uses to resolve the

mapping.
For details, refer to the VisualDSP++ Linker and Utilities Manual.

Visual DSP++ 5.0 User’s Guide 1-33

Code Development Tools

Expert Linker

Expert Linker is a graphical tool that enables you to:
* Define a target processor’s memory map
* Place a project’s object sections into that memory map

* View how much stack or heap has been used after you run a proces-
sor program

This interactive tool speeds up the configuration of system memory. It
uses your application’s target memory description, object files, and librar-
ies to create a memory map that you can manipulate to optimize your
system’s use of memory.

Expert Linker works with the linker. For more information about
linking, refer to the VisualDSP++ Linker and Utilities Manual.

Expert Linker graphically displays the available project information in an
.1df file as input. This information includes object files, LDF macros,
libraries, and target memory descriptions. Use the drag-and-drop function
to arrange the object files in a graphical memory-mapping representation.
When you are satisfied with the memory layout, generate the executable
file (.DXE) via VisualDSP++ project options.

Visual DSP++ uses a default . 1df file when a project does not have
one. For an exiting Blackfin project, you can add an .1df file via
the Add Startup Code/LDF subpage of the Project Options dialog
box. For SHARC and TigerSHARC projects, use the Create LDF

Wizard to create and customize a new .1df file.

When opened in a project that already includes an . 1df file, Expert Linker
parses the . 1df file and graphically displays the target processor’s memory
map and the object mappings. The memory map appears in the Expert

1-34 Visual DSP++ 5.0 User’s Guide

Introduction to VisualDSP++

Linker window (Figure 1-4 on page 1-36). Use this display to modify the
memory map or the object mappings. When the project is ready to be
built, Expert Linker saves the changes to the .1df file.

Expert Linker can graphically display space allocated to program heap and
stack. After you load and run your program, Expert Linker indicates the
used portion of the heap and stack. You can then reduce the size of the
heap or stack to minimize the memory allocated for the heap and stack.
Freeing up memory in this way enables it to be used for storing other
things like processor code or data.

You can launch the Expert Linker (see Figure 1-4) from VisualDSP++ in
three ways:

* Double-click the .1df file in the Project window.

* Right-click the .1df file in the Project window to display a menu
and then choose Open in Expert Linker.

* From the VisualDSP++ main menu, choose Tools, Expert Linker,
and Create LDF.

Expert Linker Window

The Expert Linker window (Figure 1-4) enables you to modify the mem-
ory map or the object mappings. You can specify a color for each type of
object (internal memory, external memory, unused memory, reserved
memory, output sections, object sections, overlays in live space, and over-
lays in run space). The objects are displayed in color when you view the
Memory Map pane in graphical memory map mode. When the project is
ready to be built, Expert Linker saves the changes to the . 1df file.

Visual DSP++ 5.0 User’s Guide 1-35

Code Development Tools

[®] Expert Linker [_ O] =]

Input Sections: temory Map:
cohstdata :I SegmenUSection | Start Address | End Address |;|
E :!il $LIERARIES -~ - PROGRAM 040000000 OwFO025
- =48 lbedb =8 G HEAP 0w0030000 OxfOD37HE
@ ibevent. dib LB a HE&P
@ exception.doi [libepp_blkfr.dib fctor)
@ raissin. doi o STACK 040038000 CwfO03df
& libaithdib — r_—:, ETACK
] |!'3'3|:'|:'—b"<fn-':"b cit. doj [programm)
i !:Ej?f’;-lflkfn-dlb - -[E dotorod,doi foroaram] hd
« | LI_‘ ﬁP Shated Merd 1.5 J O | ©F shared Mem 2 |

Figure 1-4. Expert Linker Window
The Expert Linker window contains two main panes:

* The Input Sections pane displays a tree structure of the input
sections.

* The Memory Map pane displays each memory map in a tree or
graphical representation.

You can dock or float the Expert Linker window in the Visual DSP++
main window.

Memory Map Pane Right-Click Menu
Table 1-4 describes the commands on the Memory Map right-click menu.

Table 1-4. Memory Map Pane Right-Click Menu

Command Purpose

View Mode -> Memory Map Displays the memory map in tree mode

Tree

View Mode -> Graphical Displays the memory map in graphical blocks
Memory Map

1-36 Visual DSP++ 5.0 User’s Guide

Introduction to VisualDSP++

Table 1-4. Memory Map Pane Right-Click Menu (Cont’d)

Command

Purpose

View ->Mapping Strategy
(Pre-Link)

Displays the memory map, which shows where you intended to
place object sections

View -> Link Results
(Post-Link)

Displays the memory map, which shows where the object sec-
tions are actually placed

New -> Memory Segment

Opens the Memory Segment Properties dialog box, from which
you specify the name, address range, type, width, and so on of
the memory segment that you want to add

New -> Output Section

Adds an output section to the selected memory segment

Note: Right-click on a memory segment to access this command.

New -> Shared Memory

Opens the Shared Memory Properties dialog box, from which
you specify the name of the shared memory output file and pro-
cessors that share the memory

This command is not available on single-processor systems.

New -> Overlay

Opens the Overlay Properties dialog box, from which you add a
new overlay to the selected output section or memory segment

Note: The new overlay’s run space is in the selected output sec-
tion.

Delete

Deletes the selected object

Pin-to-Output Section

Pins an object section to an output section to prevent it from
overflowing to another output section

This command is available only after you right-click on an object
section that is part of an output section set to overflow to
another section.

View Section Contents

Opens the Section Contents dialog box, which displays the con-
tents of the input or output section

This command is available only after you link or build the
project and then right-click on an input or object section.

Visual DSP++ 5.0 User’s Guide 1-37

Code Development Tools

Table 1-4. Memory Map Pane Right-Click Menu (Cont’d)

Command

Purpose

Add Hardware Page Overlay
Support

Sets up hardware overlay live and run spaces for all available

hardware pages by:

a) Checking if memory segments are currently defined in all
hardware pages. If memory segments are located, you are
queried about whether to delete those segments.

b) Creating a memory segment containing an overlay (live space)
in each hardware page

c) Creating a memory segment containing all overlay run spaces
in hardware page 0

d) Creating a default mapping for each overlay. The default
mapping maps objects containing the section, “pmpage0”
to the hardware overlay on PM page 0, “pmpagel” to PM
page 1, “dmpage0” to DM page 0, and so on.

View Symbols

Opens the View Symbols dialog box and displays the symbols for

the project, overlay, or input section

This command is available after you link the project and then
right-click on the Memory Map pane for a processor, memory
segment, output section, or input section.

Expand All

Expands all items in the memory map tree to make their con-
tents visible

View Legend

Opens the Legend dialog box, which shows all possible icons in
the tree window, with a brief description of each icon.

The Colors page displays a list of colors used in the graphical
memory map. You can specify each object’s color.

View Global Properties

Opens the Global Properties dialog box for the selected object.

The dialog box’s title and content depend on the selected object.

Stack and Heap Usage

Expert Linker enables you to adjust the size of the stack and heap, and
make better use of memory.

1-38

Visual DSP++ 5.0 User’s Guide

Introduction to VisualDSP++

Expert Linker can:

* Locate stacks and heaps and fill them with a marker value

This operation occurs after you load the program into a processor
target. The stacks and heaps are located by their memory segment
names, which may vary across processor families.

 Search the heap and stack for the highest memory locations written
to by the processor program

This operation occurs when the target halts after you run the pro-
gram. Assume that these values are the start of the unused portion
of the stack or heap. Expert Linker updates the memory map to
show how much of the stack and heap are unused.

Be aware of the following stack and heap restrictions.

* The heap, stack, and system stack must be defined in output
sections named HEAP, STACK, and SYSSTACK, respectively.

* The heap, stack, and system stack must be the only items in those
output sections. You cannot place other objects in those output
sections.

For other processor families, the restrictions on memory segment names
differ according to what is used in the default . 1df files. If you do not
heed these restrictions, you cannot view stack and heap usage after run-
ning your program.

Visual DSP++ 5.0 User’s Guide 1-39

Code Development Tools

Figure 1-5 shows an example memory map after you run a SHARC C

program.
b emony b ap: ﬁl@gla
aooo zeq_rth aooo il
B aoff
zeg_init 3100 J
$E0_pmco 2110
afff
zeq_pmda 3300
e 1
9fff % 9fff
=00 zeq_dmda 000
i
geg_heap dooo
d4ff
zeg_ztak dsoo
dfff % """""" dfff
20000
ffffff
1000000
Ceo |

Figure 1-5. Memory Map Example After Running a SHARC Program

1-40

Visual DSP++ 5.0 User’s Guide

Introduction to VisualDSP++

Archiver

The Visual DSP++ archiver (e1far.exe) combines object (.doj) files into
library (.d1b) files, which serve as reusable resources for project develop-
ment. The linker searches library files for routines (library members)
referred to by other objects and links them in your executable program.

Run the archiver from within VisualDSP++ or from the command line.
From VisualDSP++, create a library file as your project’s output.

To modify or list the contents of a library file (or perform other operations
on it), you must run the archiver from a command line. For details, refer
to the VisualDSP++ Linker and Utilities Manual.

Splitter

The splitter (e1fspl121k.exe) processes executable files to prepare
non-bootable programmable read-only memory (PROM) image files.
These files are executed from the processor’s external memory.

The splitter’s primary output is a PROM file with these extensions:
* .s_#, .h_i# and .stk (SHARC processors)
e .1dr (Blackfin and TigerSHARC processors)

For TigerSHARC processors, output from the splitter is 32 bit. For
SHARC processors, output from the splitter is 32 bit, 40 bit, 48 bit, or 64
bit.

To specify splitter options, choose Project > Project Options, and in the
tree control, click the Split page (or the Splitter subpage).

Splitter terms are defined as follows.

Visual DSP++ 5.0 User’s Guide 1-41

Code Development Tools

non-bootable PROM-image files

The splitter’s output, which consists of PROM files that cannot be
used to boot-load a system

splitter

The splitter application, such as e1fsp121k.exe, contained in the
software release

For more information about the splitter and options used to generate
loader files, refer to the VisualDSP++ Loader and Utilities Manual or
Visual DSP++ Help

Loader

The loader (e1floader.exe) generates boot-loadable files by processing
executable files in addition to a loader kernel. The loader output (. 1dr)
file enables the processor to boot from an external device (host or ROM).

The loader creates programs that execute from internal memory.
The splitter generates programs that execute from external
memory.

To specify loader options, choose Project > Project Options, and open

the Load pages.

Loader terms are defined as follows:

1-42 Visual DSP++ 5.0 User’s Guide

Introduction to VisualDSP++

boot kernel

The executable file that performs memory initialization on the
target

boot-loadable file

The loader’s output (. 1dr), which contains the boot loader and the
formatted system configurations. This is a bootable image file.

boot loading

The process of loading the boot loader, initializing system memory,
and starting the application on the target

loader

The loader application, such as e1floader.exe, contained in the
software release

For more information about the loader, refer to the Visual/DSP++ Loader
and Utilities Manual or Visual DSP++ Help.

Processor Projects

Your goal is to create a program that runs on a single-processor
(or multiprocessor) system. A project is the structure where programs are
built. All development in Visual DSP++ occurs within a project.

A project refers to the collection of source files and tool configurations
used to create a processor program. The project file (. dpj) stores program
build information.

VisualDSP++ provides flexibility for setting up projects. You configure
settings for code development tools and configurations, and you specify
build settings for the project and for individual files. You can set up fold-
ers that contain your source files. A project can include VDK support.

Visual DSP++ 5.0 User’s Guide 1-43

Processor Projects

Use the Project window to manage projects from start to finish. Within
the context of a project, you can:

* Specify code development tools

* Specify project-wide and individual-file options for Debug or

Release configurations of project builds
e Create source files

Visual DSP++ facilitates movement among editing, building, and debug-
ging activities.

This section describes the following topics.
e “Project Wizard” on page 1-44
e “Project Options” on page 1-47
e “Project Groups” on page 1-48
* “Source Code Control (SCC)” on page 1-50
* “Makefiles” on page 1-51
* “Project Configurations” on page 1-56

* “Project Build” on page 1-57

Project Wizard

Visual DSP++ provides a Project Wizard (Figure 1-6) to simplify the
creation of a new project. The Project Wizard provides pages of options to
configure your new project. Depending on selections, various page and
options are available.

1-44 Visual DSP++ 5.0 User’s Guide

Introduction to VisualDSP++

First, the wizard queries you as to what you want configured. Then it
generates a custom startup code file based on your choices, adds it to the
project, and modifies the linker settings to link in the customized .1df
file. After defining the project, you can project changes later via the
Project Options dialog box.

Project Wizard E E

Project Information
Choose the type, name, and location of the project that wou would like to create.

&
ck Type

ck Processor Froject types:

@ Application Sattings Standard application

g Finish Iy Library

@ LwIP Ethernet applization
WDK application

M arme:

INewF‘roiect

Directany:
IC:\Dncumenls and Settingzs\LLLLLLL “My DocumentshizualDs J

< Back | Mewt » | Finizh I Cancel |

Figure 1-6. Example: Project Wizard Upon Opening

Startup Code

The ability to add startup code is available for Blackfin processor
projects only.

Startup code is a procedure that initializes and configures the processor
before the application program's main() function is executed. It sets the
machine to a known state, initializes selected features, and enables the
standard Blackfin run-time model.

Visual DSP++ 5.0 User’s Guide 1-45

Processor Projects

Generate customized startup code for your project if you want to config-
ure the processor’s cache, the processor’s clock and power settings,
run-time initialization options, or compiler-instrumented profiling. If you
do use startup code, your application is built with the default behavior.

.LDF File

The ability to add a customized . 1df file to a project via the Project
Wizard is available for Blackfin processor projects only.

.1df file generation options relate to the user heap, system stack, system
heap, external memory, and so on. At a later time, you can modify the
.1df file via the Project Options dialog box.

There are also special sections in the . 1df file in which you can insert your
own LDF commands, comments, and so on. These sections are preserved
each time the .1df is re-generated; the information is stored in the
basiccrt.s file.

1-46 Visual DSP++ 5.0 User’s Guide

Project Options

Introduction to VisualDSP++

Project options apply to the entire project. Specify project options in the
Project Options dialog box. Figure 1-7 shows an example of this

multi-paged dialog box.

Project Options for BTC_audio_demo

—@ Project
- [igh General
EIE Compile

- [igly General

@ Source Language Setti
[y Preprocessor
[y Processor (1)
[y Processor (2)
[y Profile-guided Optimizz

[y Warning

iy Project
— Target
Proceszor: ¥ | Bevision: I.&utnmatic "I
Tope: IEHeculabIe file j
I arre: IBTC_audin_demn
— Tool Chain

% Assemble Compiler: |E£E++ Campiler far Blackfin j
= Link

[General dzzembler: | Blackfin Family Assembler -

I bl Blackfin Family & b
[k LDF P i
- PrepracEssng Linker: | Blackfin Famiy Linker -
% Elirnination
[y Processor Loader: IBIackfin Family Loader j
[—]E Load |
Options Spliker: *
Spli

[y Kernel

Splittar
K = :@ B | _PILI Settings for configuration: | D ebug j

QK. I Cancel |

Figure 1-7. Example: Project Options Dialog Box Showing Project Page

For each code development tool (compiler, assembler, linker, splitter, and
loader), one or more pages provide options that control how each tool
processes inputs and generates outputs. The available pages depend on
your target. Options correspond to tool command-line switches. You can
define these options once or modify them to meet changing development

needs.

Tools can also be accessed from the operating system’s command

line.

Visual DSP++ 5.0 User’s Guide

1-47

Processor Projects

Project options also specify the following information.

* Project target
¢ Tool chain
* Output file directories

* Pre- and post-build options

Project Groups

A project group enables you to work with a number of projects at once. A
project group can be empty or contain any number of projects. Opening a
project adds it to the project group. Closing a project removes it from the
project group. Similar functionality is found in Microsoft Visual Studio.

The Project window (Figure 1-8) displays the project group icon and the

projects opened in that workspace.

iProject: BTC_AsmDemo.dpj* - [Of =

Project group: 2 project[z]
E@ vectadd
{ EIE Source Files

o shell.c
=123 Linker Files

R wilke-2191 Idf
[Header Files
[Kemnel Files
E@ BTC_AsmDemo=

-1 Source Files
-] Linker Files

------ [Header Files

N .-'.ﬁ Project I

Figure 1-8. Project Window

Project group icon
indicates the number of
open projects.

Bold typeface indicates
the active project.

1-48

Visual DSP++ 5.0 User’s Guide

Introduction to VisualDSP++

Each workspace has one project group. When you switch among work-
spaces, the project group is loaded and the same set of projects are opened
just as when you last closed the workspace.

One project is active at a time. The active project responds to commands
and messages from menus and toolbars. The Project window displays the
active project with bold typeface. A Project box, located by default with
the toolbar buttons, displays the name of the active project (see

Figure 1-9).

i E|£7 E|ﬁﬁq¢%
§ ||BTE_.¢‘-.stem|:| o leel:.L
Project box

| & 0 a =] ‘ indicates the

active project.

Figure 1-9. Project Box Showing the Active Project

Though commands are sent to the active project, they may also be carried
out by a project on which the active project depends. For example, assume
that project A is active and depends on project B. Executing a Rebuild All
command on project A builds project B first. The same logic applies to the
Clean command, which deletes intermediate and target files.

Exporting a makefile exports one makefile for each open project. In the
makefile of a project depending on another project, one sub-target is cre-
ated for each project on which it depends. Thus, building a project builds
all dependent projects first.

Project Group Files

You can save project group information to a file so you can restore that
project group and share it conveniently.

Visual DSP++ 5.0 User’s Guide 1-49

Processor Projects

The project group file (.dpg), which is in XML format, contains a list of
project entries. Each project entry corresponds to a project in the group
and contains project information, including the path to the project file
(.dpJ) and its dependent projects. Batch build specifications are saved in
the .dpg file for later use (so you can load and execute them without
re-specifying the same build targets). In the Project window, the root
node shows the project group’s file name without an extension.

Source Code Control (SCQC)

Visual DSP++ includes Source Code Control (SCC), which enables you to
use the Microsoft Common Source Code Control (MCSCC) interface to
connect the Visual DSP++ IDDE to SCC applications installed on your
machine.

Various SCC products (such as Microsoft Visual SourceSafe or PVCS
Version Manager) support the MCSCC interface. From Visual DSP++
interface, you can access the commonly used features of these applications
without leaving the IDDE. You can launch the SCC application from the
plug-in menu to use non-supported features.

When you create a project, you are prompted to add the project to SCC.
When you open a project in the IDDE, the SCC plug-in connects to the
selected SCC application and locates a controlled copy of the project and
its source files. If a controlled copy is not located, the SCC application
must locate it. Typically, you are queried to browse for it. If the controlled
copy is successfully found or added, the plug-in keeps its application-spe-
cific path in the project file and reconnects with this path in the future.
You can subsequently reconnect to the controlled copy without having to
browse for it.

Operations executed on large numbers of files tend to take longer to fin-
ish. A message box provides status information by displaying the operation
currently executing. A button on the message box cancels the operation.

1-50 Visual DSP++ 5.0 User’s Guide

Introduction to VisualDSP++

The Output window’s Console view displays finished operations. Mes-
sages indicate what has been done. Warnings and error messages may also
appear in the Output window.

SCC applications provide dialog boxes and GUI displays for some file
operations such as show history, show difference, and show properties.
These operations can be run from VisualDSP++.

For complete details, refer to Visual DSP++ Help.

Makefiles

Use a makefile (.mak or .mk) to automate builds within VisualDSP++.
The output make rule is compatible with the gnumake utility (GNU
Make V3.77 or higher) or other make utilities. VisualDSP++ generates a
project makefile that controls the orderly sequence of code generation in
the target. You can also export a makefile for use outside of VisualDSP++.
For more information about makefiles, go to:

http://www.gnu.org/manual/make/

A project can have multiple makefiles, but only one makefile can be
enabled (active).

The project in Figure 1-10 includes an active makefile (indicated by).

The active makefile, with its explicit gmake command line, builds the
project. When no makefile is enabled for a project, VisualDSP++ uses
specifications configured in the Project Options dialog box.

Visual DSP++ 5.0 User’s Guide 1-51

Processor Projects

N . ¥} Project I

Figure 1-10. Makefile in Project Window

You can view a makefile’s command line. To change the makefile’s target,
use the Configuration box, shown in Figure 1-11.

||merakEFile Target j JJE
0O e R R &

Figure 1-11. Makefile in Configuration Box

When you close a project, the Make commands and the target list associ-
ated with each makefile are serialized in the project (.DPY) file.

Rules

You can enable only one makefile when building a project. If you enable
more than one makefile, VisualDSP++ generates an error message. After
you build your project with an external makefile, the executable file is not
automatically loaded (even when this option is configured).

1-52 Visual DSP++ 5.0 User’s Guide

Introduction to VisualDSP++

Ovutput Window

Make command error messages and standard output appear in the Output
window. Double-clicking on an error-message position opens the makefile
in an editor window to the line of code causing the error.

Keywords in the makefile are syntax-colored.

Note: The error message format of gmake is parsed correctly when you
double-click on an error message. If you use another make utility, the
double-click feature does not function.

Example Makefile

An example of a makefile appears below.

1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Generated by the VisualDSP++ IDDE

Note: Any changes made to this Makefile will be Tost the next
time the matching project file is loaded into the IDDE. If you
wish to preserve changes, rename this file and run it
externally to the IDDE.
The syntax of this Makefile is such that GNU Make v3.77 or
higher is required.
The current working directory should be the directory in which
this Makefile resides.
Supported targets:

Debug

Debug_clean

Release

Release_clean
Define ADI_DSP if it is not already defined. Define this
variable if you wish to run this Makefile on a host other than
the host that created it and VisualDSP++ may be installed in a
different directory.

Visual DSP++ 5.0 User’s Guide 1-53

Processor Projects

ifndef ADI_DSP
ADI_DSP=C:\Program Files\Analog Devices\VisualDSP
endif
$VDSP is a gmake-friendly version of ADI_DIR
empty:=
space:= $(empty) $(empty)
VDSP_INTERMEDIATE=$(subst \,/,$(ADI_DSP))
VDSP=$(subst $(space),\$(space),$(VDSP_INTERMEDIATE))
Define the command to use to delete files (which is different
on Win95/98 and Windows NT/2000)
ifeq ($(0S),Windows_NT)
RM=cmd /C del /F /Q
else
RM=command /C del
endif
1
Begin "Debug" configuration
1
ifeq ($(MAKECMDGOALS),Debug)
Debug : ./debug/mean.dxe
./debug/mean.doj :./mean.c ../../../include/stdio.h
$(VDSP)/cc2lk -c .\Mean.c -g -proc ADSP-21062 -o
.\Debug\Mean.doj
./debug/benchmark.doj :./benchmark.asm
./../../include/asm_sprt.h ../../../include/def21060.h
$(VDSP)/easm2lk.exe -proc ADSP-21062 -o
.\Debug\benchmark.doj -g .\benchmark.asm
./debug/mean.dxe :./debug/mean.doj ./debug/benchmark.doj
$(VDSP)/cc2lk.exe .\Debug\Mean.doj .\Debug\benchmark.doj -proc
ADSP-21062 -L .\Debug -flags-link -od,.\Debug -o .\Debug\Mean.dxe
endif
ifeq ($(MAKECMDGOALS),Debug_clean)
Debug_clean:$(RM) ".\Debug\Mean.doj"
$(RM) ".\Debug\benchmark.doj"

1-54 Visual DSP++ 5.0 User’s Guide

Introduction to VisualDSP++

$(RM) ".\Debug\Mean.dxe"
$(RM) ".\Debug*.ipa"
$(RM) ".\Debug*.opa"
$(RM) ".\Debug*.ti"
endif
Begin "Release" configuration
1
ifeq ($(MAKECMDGOALS),Release)
Release : ./release/mean.dxe

./release/mean.doj :./mean.c
$(VDSP)/cc2lk -c .\Mean.c -01 -proc ADSP-21062 -o
.\Release\Mean.do]
./release/benchmark.doj :./benchmark.asm
$(VDSP)/easm21lk.exe -proc ADSP-21062 -o .\Release\benchmark.doj
.\benchmark.asm
./release/mean.dxe :./release/mean.doj ./release/benchmark.doj
$(VDSP)/cc2lk.exe .\Release\Mean.doj .\Release\benchmark.doj
-proc ADSP-21062 -L .\Release -flags-link -od,.\Release -0
.\Release\Mean.dxe
endif
ifeq ($(MAKECMDGOALS),Release_clean)
Release_clean:
$(RM) ".\Release\Mean.doj"
$(RM) ".\Release\benchmark.doj"
$(RM) ".\Release\Mean.dxe"
$(RM) ".\Release*.ipa"
$(RM) ".\Release*.opa"
$(RM) ".\Release*.ti"
endif

Visual DSP++ 5.0 User’s Guide 1-55

Processor Projects

Project Configurations

By default, a project includes two configurations, Debug and Release,
described in Table 1-5. In previous software releases, the term configura-
tion was called “build type.”

Table 1-5. Default Project Configurations

Configuration Description

Debug Builds a project that enables the use of VisualDSP++
debugging capabilities

Release Builds a project with optimization enabled

Available configurations appear in the configuration box, which, by
default, is located in the Project toolbar, as shown in Figure 1-12.

B =

Figure 1-12. Configuration Box

@ You cannot delete the Release or Debug configuration.

Customized Project Configurations You can add a configuration to your
project. A customized project configuration can include various project
options and build options to help you develop your project. Figure 1-13
shows a customized configuration (Version2) listed in the configuration
box.

1-56 Visual DSP++ 5.0 User’s Guide

Introduction to VisualDSP++

S L [Debug <]
e
Flt:llt: ﬂISE

VersionZ ™
Ii

A customized configuration
named Version2 is added.

Figure 1-13. Selecting a Project Configuration

Project Build

The term build refers to the process of performing operations (such as
preprocessing, assembling, and linking) on projects and files. During a
build, VisualDSP++ processes project files that have been modified since
the previous build as well as project files that include modified files.

A build differs from a rebuild all. When you execute the Rebuild All
command, VisualDSP++ processes all the files in the project, regardless of
whether they have been modified.

Building a project builds all outdated files in the project and enables you
to make your program. An outdated file is a file that has been modified
since the last time it was built or a file that includes (#include) a modified
file. For example, if a C file that has not been modified includes a header
file that has been modified, the C file is out of date.

Visual DSP++ 5.0 User’s Guide 1-57

Processor Projects

VisualDSP++ uses dependency information to determine which files,
if any, must be updated during a build.

@ Note the following;:

* A file with an unrecognized file extension is ignored at build
time.

e Ifan included header file is modified, VisualDSP++ builds
the source files that include (#include) the header file,
regardless of whether the source files have been modified
since the previous build.

* File icons in the Project window indicate file status (such as
excluded files or files with specific options that override
project settings).

This section describes the following topics.
* “Build Options” on page 1-58
e “File Building” on page 1-58
e “Batch Builds” on page 1-59
e “Pre-Build and Post-Build Options” on page 1-59

* “Project Dependencies” on page 1-60

Build Options

You can specify options for the entire project and for individual files.
Table 1-6 describes these build options.

File Building

Building a file compiles or assembles the file and locates and removes
errors. You can build a single file or multiple files that you select.

1-58 Visual DSP++ 5.0 User’s Guide

Introduction to VisualDSP++

Table 1-6. Build Options

Options Description

Project Specify these options from a tabbed page (for example, Compile or
Link) for each of the code development tools.

Individual file These settings override project-wide settings.

Custom build For maximal flexibility, edit the command line(s) issued to build a
particular file. For example, you might call a third-party utility.

The build process updates the selected source file’s output (. obj) file and
the output file’s debug information. Building a single file is very fast.
Large projects, however, may require hours to build.

If you change a common header file that requires a full build, you can
build only the current file to ensure that your change fixes the error in the
current file.

Batch Builds

Performing a batch build builds one or more build targets in the open
project group. You must configure the batch build before you can build it.

A build target in a project group is formed by the combination of a project
and a project configuration (such as a Release configuration). Refer to
Visual DSP++ Help for details on configuring and running a batch build.

Pre-Build and Post-Build Options

Pre-build and post-build options are typically DOS commands that are
executed before building a project and after a successful project build.
These commands invoke external tools. You can configure these options
via the Project Options dialog box.

For example, you can use a post-build command to copy the final output
file to another location on the hard drive or to invoke an application
automatically.

Visual DSP++ 5.0 User’s Guide 1-59

Processor Projects

Automatically copying files and cleaning up intermediate files after a suc-
cessful build can be very useful.

Command Syntax

Place “c:\windows\command.com /C” at the beginning of each DOS
command line. For example, to execute “copy a.txt b.txt”, type:

c:\windows\command.com /C copy a.txt b.txt

@ The letter “C” after the slash character must be uppercase.

Project Dependencies

Dependency data determines which files must be updated during a build.
The following are examples of dependency information.

.\include\cplus\cstddef
.\include\cplus\exception
.\include\cplus\new
.\include\cplus\xstddef
.\include\def21060.h
A\include\limits.h
.\include\cplus\stddef
.\include\stdio.h
.\Ninclude\string.h
A\include\VDK_Internals.h
.\include\VDK_Public.h
.\includelyvals.h

P g
P e

1-60 Visual DSP++ 5.0 User’s Guide

Introduction to VisualDSP++

VisualDSP++ Help System

The VisualDSP++ Help system is designed to help you obtain information
quickly. Use the Help system’s table of contents, index, full-text search
function, and extensive hyperlinks to jump to topics. Bookmark topics
that you plan to revisit.

Visual DSP++ Help is comprised of multiple Help systems (. chm files).
Each file is identified with a book icon £ in the software installation’s
Help folder.

The majority of the Help system files are VisualDSP++ manuals and
hardware documentation. These manuals are also available in PDF format
(on the installation disk) for printing. Manuals are also available from
Analog Devices as printed books.

Each window, toolbar button, and menu-bar command in Visual DSP++ is
linked to a topic in Help. Other portions of the VisualDSP++ Help system
provide procedures for configuring and using tools.

Some . chm files support pop-up messages for dialog box controls (buttons,
fields, and so on). These messages, which appear in little yellow boxes,
comprise part of the context-sensitive Help in Visual DSP++.

For more information about the Help system, refer to “Online Help” on

page A-53 and to “Using this Help System” in VisualDSP++ Help.

Visual DSP++ 5.0 User’s Guide 1-61

VisualDSP++ Help System

1-62 Visual DSP++ 5.0 User’s Guide

2 ENVIRONMENT

Visual DSP++ is an intuitive, easy-to-use user interface for programming
Analog Devices processors. This chapter introduces the VisualDSP++
work environment, including the main window and debugging windows.
Graphics are used to illustrate concepts and available window options.

From the application’s main window, you can open the Project window,
editor windows, the Output window, and various debugging windows.

Customize Visual DSP++ to meet your needs. Refer to Visual DSP++ Help
for “how to” information. This chapter is organized as follows.

e “Project Window” on page 2-2 provides a project hierarchy
* “Editor Windows” on page 2-16 allow you to view and edit files

* “Output Window” on page 2-28 provides I/O messages and a
scripting input
e “Debugging Windows” on page 2-43 focuses on each debugging

window, presenting its purpose and features

For information about the Visual DSP++ title bar, menu bar and control
menu, toolbars and user tools, and status bars, refer to “Parts of the User
Interface” on page A-15

Visual DSP++ 5.0 User’s Guide 2-1

Project Window

Project Window

To open a Project window, choose View and Project Window. Figure 2-1
shows a Project window with VDK enabled.

Project: TestvDE. dpj*

Project group: 1 project(z)

= I@"Eﬂ:iﬁce Files The project includes
" a Kernel Files folder
o B e il when the project has
D Liriker Files VisualDSP++ kernel
-1 Kemel Files m—— support.

ﬁ Project l Kernel I

Kernel tab displays
a VDK view.

Project tab displays
a project view.

Figure 2-1. Example Project Window With Kernel Tab

An additional folder, titled Generated Files, may be present when a
project includes startup files.

The Project window can include two sub-tabs:

e The Project tab ¥ Project I, which is always available, displays a
hierarchal representation of a debug session’s projects, folders, files,
and dependencies.

e The Kernel tab | Kernel | appears when VDK is enabled for a
project. It displays VDK-related information.

2-2 Visual DSP++ 5.0 User’s Guide

Environment

This section describes the following topics:
* “Project View” on page 2-3
e “Kernel Tab” on page 2-4
e “Project Dependencies” on page 2-4
e “Project Nodes” on page 2-6
e “Project Page Right-Click Menus” on page 2-10
* “File Associations” on page 2-14

e “Automatic File Placement” on page 2-15

Project View

The Project view displays a project group, which may contain any number
of projects. Only one project, however, is active at a time. Nodes are
arranged in a hierarchy similar to the file structure in Windows Explorer.

Figure 2-2 shows an example of information that displays in Project view.

Number of
projects in this
project group

Project Name of the
group active project’s
icon project file

——
Projeck: dts.dpj* = =]

vil) Project group
-0y tiger
&0 acadia

N ¥ Project I

Active
project

Figure 2-2. Project View

Visual DSP++ 5.0 User’s Guide 2-3

Project Window

Kernel Tab

The Kernel tab of the Project window is available only for VDK-enabled
projects.

From the Kernel view, you can add, modify, and delete kernel elements
such as thread types, priorities, semaphore, and events. VisualDSP++
automatically updates vdk_config.cpp and vdk_config.h to reflect the
changes made on the Kernel view.

The example in Figure 2-3 shows an expanded view of the elements on the
Kernel tab for a VDK-enabled project.

For information about VDK, refer to the VisualDSP++ Kernel (VDK)
User’s Guide.

Project Dependencies

A project may depend on other projects. The g# icon indicates depen-
dency and identifies the dependency. Building a project also builds the
sub-projects on which your project depends.

2-4

Visual DSP++ 5.0 User’s Guide

Environment

R - |
Paramet
----- Clock Frequency [MHz) 200
----- Tick Period [mz) 5
----- Hiztory Buffer Size 256
----- Instrumnentation Level true
Threads
E=l Maxirmum Bunming Threa.. 10
~Z= Thread Types
B~z thread2
Pricirity [
Stack Size 1024
Source File thread?.cpp
Header File thread2 h
B2 Boot Threads
=2 boot_thread!
B .3. boot_thread2
[Thread Type thread?2
----- " Round-Fobin Pricrities
2 Semaphores
2] Maximum Active Semap... 0
Ewent Bitz
Ewents
Interrupts
10 Interface
Bzl Mawimum 120 Objects 20
i Device Drivers
- IPC
Source File IPC.cpp
Header File IPC.h
T Booat [0 Objects
= Device Flags
=] Mawimum Active Device ... 0
temary Pools [Total Size = 0]
E=] Maximum Active Memory... 0
Mezzages
=l Maximum Messages o

.-'.ii Project Kernel I

Figure 2-3. Expanded View of Elements on the Kernel Tab

Visual DSP++ 5.0 User’s Guide 2-5

Project Window

Figure 2-4 shows how project dependencies appear in the Project view.

Praoject: dsfs,dpj*

Praoject group: 3 project(z]
=Dy tiger

=1--3 Source Files
=23 Linker Files
=23 Header Files
= [Component Files The tiger project
[Documentation depends on the
p¥ acadia acadia project.
-y acadia The acadia project
=23 Source Files has no project
=23 Linker Files dependencies.
----- 3 Component Files
----- [Documentation

=Dy dts
=23 Source Files
& Linker Files

----- L3 Header Files
..... i c-...:ama_l The dts project
..... @ tiger J depends on two

projects.

N ¥} Project I

Figure 2-4. Projects Dependencies Indicated in the Project View

Project Nodes

The Project window comprises the types of nodes described in Table 2-1.

Project Folders

Project window folders (£ and ‘_3) organize files within a project. You

can specify properties for folders.

2-6 Visual DSP++ 5.0 User’s Guide

Environment

Table 2-1. Types of Nodes in the Project Window

Node

Icon

Description

Project group

-
R

Only one project group permitted in a debug ses-
sion

Project Multiple projects permitted, but only one is active
@ (indicated with bold typeface)

Folder Closed folder
=
E Opened folder revealing its contents

File = File that uses project settings

File whose options differ from the project options

)

File excluded from the current configuration

Enabled (active) makefile

Project dependency

% | =)

Project on which another project depends

Folders can be nested to any depth. Folders carry no attributes to the build
process, as they do not reflect the file system. Folders do not appear in
directory listings, as in Windows Explorer.

When you add files to the project tree with automatic file placement, each
file is placed in the first folder configured with the same file extension.
After automatic placement, you can manually move a file anywhere.

Visual DSP++ 5.0 User’s Guide

2-7

Project Window

Project Files

To move a file out of one folder and into another folder, select the file and
drag it onto the other folder.

In the Project window, files are represented by the icons in Table 2-2.

Table 2-2. File Icons in the Project Window

Icon Description

— Files that use project options

— Files that use options that differ from project options
=t

p— Files excluded from the current configuration

I

p— Enabled (active) makefile

The files appear in an expandable and collapsible node tree.

Source files are the C/C++ language or assembly language files in your
project. Source files provide the project with code and data. You can add,
delete, and modify source files.

Each project must include one . 1df file, which contains command input
for the linker. If an . 1df file is not included in the project, the project is
built with a default .1df file.

A project can also include data files and header files.

2-8

Visual DSP++ 5.0 User’s Guide

Environment

Project Window Icons for Source Code Control (SCC)

Icons in the Project window indicate source code control (SCC) status.
An icon with a green check mark (¢) indicate that the file is under SCC
and is checked in. An icon with a red check mark (v) indicate that the
file is under SCC and is checked out. Files that are not connected to a
controlled copy under SCC do not display a check mark.

Table 2-3 shows examples of file icons used to indicate SCC status.

Table 2-3. SCC Status Icons

Icon

Description

LY

File is under SCC and is checked in

File is under SCC and is checked out

= | B

Project file is checked out

=

File includes a file-specific build command and is checked out

Makefile is checked out

| =

File is excluded from the build and is checked out

Visual DSP++ 5.0 User’s Guide 2-9

Project Window

Project Page Right-Click Menus

Right-click menus (also called context menus or pop-up menus) operate
on Project window objects (the project group, projects, folders, and files).
These menus provide fast access to many menu bar and toolbar com-
mands. The commands available in a right-click menu depend on context
(the selected object).

Project window right-click menus offer these standard commands:
* Allow Docking (dock the Project window to the frame)
* Hide (remove the Project window from view)

¢ Float in Main Window

Project Group Icon Right-Click Menu

The project group icon () right-click menu (Figure 2-5) provides a
project group context from which to:

* Create a new project

* Open a project and add it to the project group
e View the project group’s properties

Mewy Project. ..

Open Project. ..
Close all Projects

v fllow Docking
Hide

Flaat In Main Window

Propetties, ..

Figure 2-5. Project Group Icon’s Right-Click Menu

2-10 Visual DSP++ 5.0 User’s Guide

Environment

Project Icon Right-Click Menu

The project icon ([y) right-click menu (Figure 2-6) provides a project
context from which to:

Build Project

Clean

Mew Folder. ..

&dd File(s) ko Project, ..
Set as Ackive Project
Close

Build the project

Clean (delete intermediate and target files)
Specify the active project

Add folders and files

View and specify project options

View project properties

Praojeck Cptions. ..

v Allov Docking

Hide

Flaat In Main Window

Properties. ..

Figure 2-6. Project Icon’s Right-Click Menu

Visual DSP++ 5.0 User’s Guide 2-11

Project Window

Folder Icon Right-Click Menu
The selected folder icon (3 or Z3) right-click menu (Figure 2-7) pro-

vides a “container” context from which to perform these “local”
operations:

e Add or delete a folder
e Add files to the folder

* View folder properties

Mew Falder...
A&dd File[z] to Folder...
Delete Folder

Allov Docking
Hide

Flaat In b ain bafindow

Froperties...

Figure 2-7. Folder Icon Right-Click Menu

File Icon Right-Click Menu

The selected file icon (£l or B or E) right-click menu (Figure 2-8 on
page 2-13) provides a file context from which to:

* Open the selected file for editing
* Build the file

* Remove the file from a project

2-12 Visual DSP++ 5.0 User’s Guide

Environment

* Specify options for the file

* View the file’s properties

Open File
Build File
Bemowve File from Project

File Options...

Allowe Docking
Hide

Flaat In kain Wwindow

Froperties...

Figure 2-8. File Icon Right-Click Menu

File icon commands apply to the selected file in the Project win-
dow, not to a source file in an editor window.

Project Window Rules

The Project window displays a project’s files, as shown in Figure 2-9.

The following rules dictate how files and subfolders behave in the Project
window’s file tree.

* You can include any file in a project.
* Only one .1df file is permitted.
* You cannot add the same file into the same project more than once.

* Only one project (project node) is permitted.

Visual DSP++ 5.0 User’s Guide 2-13

Project Window

Praoject: MyPraoject.dpi*

EIEE MyProject

-2 Asp source files

C E] el amm

CLE] Aem? amm

-3 Ce+ source files

. |5 Filelcpp
File2 cpp

L3 Debug

N @ Project I

Figure 2-9. Example of Project Files

* A file with an unrecognized file extension is ignored at build time.

* When you add a file to a project, the file is placed in the first folder
configured with the same extension. If no such folders are present,
an added file goes to the project level.

File Associations

Visual DSP++ associates the file extensions in Table 2-4 as the input to
particular code development tools.

Table 2-4. File Associations

Tool File Extensions
Compiler .C, .Cpp, and .cxx
Assembler .asm, .s,and .dsp
Linker .1df, .d1b, and .doj

@ Visual DSP++ is case insensitive to file extensions.

2-14 Visual DSP++ 5.0 User’s Guide

Automatic File Placement

Environment

Automatic file placement is a feature that enables you to drag and drop
files into designated folders on the Project page in the Project window.
This saves time when you add files to a project.

File placement rules and the folder properties that you specify determine
where files are placed. By default, project folders are associated with the
file extensions listed in Table 2-5.

Table 2-5. Default Files Associations in Project Folders

Folder Default Associations

Source Files .C, .Cpp, .CXX, .asm, .dsp, .S
Header Files .h, .hpp, .hxx

Linker Files .1df, .d1b, .doj

Kernel Files .vdk

File Placement Rules

The following rules dictate file placement when you add files to a project.

* Dragging and dropping files

When you drag and drop a file onto the Project page, the file is
added to the first folder associated with the file’s extension. The
Project page accepts dragged files only when a project is opened.

* Using menu commands to add files

Files are added to the folders that you select on the Project page. If
you add a file to a project that has no folders, the file is added at
the project level (root level).

If you select the project node or a file node, the file is added to the
first folder associated with the file’s extension.

Visual DSP++ 5.0 User’s Guide

2-15

Editor Windows

Example

You create a folder labeled “C Source Files” and specify it with .c, .cpp,
and .cxx file extensions. You create a second folder labeled “Asm Files”
and associate it with .asm files.

If you drag three files (filel.cpp, filel.asm, and file2.c) into the
Project window, filel.cpp and file2.c go into the C Source Files
folder, and filel.asm goes into the Asm Files folder.

After automatic file placement, you can manually move a file
anywhere by selecting and dragging the file.

Editor Windows

Use editor windows to view and edit files. Open as many editor windows
as you like from the Project window by double-clicking on a file or by
choosing Open File from a file’s right-click menu.

This section describes the following topics:
* “Editor Window Features” on page 2-17
* “Editor Window Symbols” on page 2-18
* “Bookmarks” on page 2-19
e “Syntax Coloring” on page 2-19
* “Viewing Modes: Source Mode vs. Mixed Mode” on page 2-20
e “Editor Tab Mode” on page 2-21
* “Context-Sensitive Expression Evaluation” on page 2-23
e “Compiler Annotations” on page 2-24

* “Right-Click Menu” on page 2-39

2-16 Visual DSP++ 5.0 User’s Guide

Environment

Editor Window Features

Figure 2-10 shows items that can be customized in editor windows.

Control menu Specify colors for text objects.

. 'rdflpa.da
L

=

Toggle —=)

book- —
marks -
1] >
|
Specify) Specify comment start
tab widths Specify font and end strings

Figure 2-10. Customizable Items in Editor Windows

Editor windows support:

* User-defined color-coded comments, strings, keywords, and tab
settings (syntax coloring)

* Two viewing modes: source mode and mixed mode
* Printing, print preview, and user-defined headers and footers
* Bookmarking

* Finding/replacing with wrap-around search and regular expression
matching

Visual DSP++ 5.0 User’s Guide 2-17

Editor Windows

Going to a line number (and the display of line numbers)
Jumping to the next or previous syntax error

Copying, cutting, pasting, undoing, and redoing functions. Each
open file has a deep stack (500+ items).

Tabs for fast switching between source files
Compiler annotations (indications of optimizations)

Location of matching brace characters and auto-positioning of
brace characters (to line up with the preceding opening brace)

Opening header files by right-clicking on #include statements

Dragging-and-dropping highlighted sections of text (usually a valid
source statement) to an open Expressions window. When dropped,
the text is automatically added to the window and is evaluated.

Running scripts

Many of these features are described next. Refer to Visual DSP++ Help for
how-to information.

Editor Window Symbols

The gutter (left margin) in an editor window displays icons to indicate
breakpoints, bookmarks, and the current position of the program counter

(PC). Table 2-6 describes these icons.
Table 2-6. Editor Window Symbols

Symbol

Indicates

e

Current source line to be executed (PC location)

Enabled software breakpoint

Visual DSP++ 5.0 User’s Guide

Table 2-6. Editor Window Symbols (Cont'd)

Environment

Symbol

Indicates

&

Disabled software breakpoint

@

Enabled hardware breakpoint

&

Disabled hardware breakpoint

J

Bookmark

Bookmarks

Bookmarks are pointers in editor windows. Place a bookmark in a location
to return to it quickly at a later time.

Syntax Coloring

Specifying colors can help you locate information in the types of files

listed in Table 2-7.

Table 2-7. File Types That Support Syntax Coloring

File Type File Extension

Assembly .asm

C .C

Linker Description Files J1df

C+ .CPP

Header H

Script Various extensions, such as .JS and .VBS

Visual DSP++ 5.0 User’s Guide

2-19

Editor Windows

Viewing Modes: Source Mode vs. Mixed Mode

Specify an editor window to display in source mode or mixed mode.

Source Mode

Source mode, as shown in Figure 2-11, displays C code only.

B Convolution.c _ (O]
float index = 0.0; /4 Used for AI
float conwersion = 0.0; A4 Conwersic

A/ Ok first generate the 3ine Table

for(i=0: i<=3607 i+)
i
Ff Comwert degrees to radians then l:alClJJ

i = 1i:
conversion = I'BADIMIS *3:
Table[i] = sin(conwversion);
1 -

K1 2y

Figure 2-11. Example: Editor Window in Source Mode

Mixed Mode

Mixed mode displays assembled code immediately after the corresponding
C code. The assembly code takes a specified color.

2-20 Visual DSP++ 5.0 User’s Guide

Environment

Observe these conventions:

* To be viewable in mixed mode, the source file must be compiled
with debugging information enabled.

* The display of pipeline symbols can be enabled or disabled in

mixed mode.

* When optimized, a program can re-order the generated instruc-
tions so that they bear little resemblance to the order of the original
source lines. In mixed mode, assembly instructions are re-ordered
again so that all the instructions for a given source line are gathered
together under that source line.

Figure 2-12 shows an example of the mixed mode format.

Editor Tab Mode

Editor Tab mode provides an alternative, tab-based user interface for
managing multiple source files in editor windows. When this mode is
enabled via the View menu, a tab for each open source file appears at the
bottom of the editor window.

Visual DSP++ 5.0 User’s Guide 2-21

Editor Windows

B Exampled.c _ O]
void second(int ¥) AI

maini) J
i
[D0004E] 21 = md

[O0004F] wd = i4d
[O00050] dmi{id,n?) = =i
[000051] =i = toppostack
[O00052] dmi{id,m?) = =i
[O00053] wh = Ox3££2
[000054] wodify (id,m5)
[OO0055] =i = w0
[O00056] dmi{id,n?) = =i

int x;

int y[10]:

while {11 {
outside = 10;
& [000057] ar = Ox000a

[000058] dmfoutside) = ar
outsidel = 10;

[000059] dm{outsidel) = ar
outsideZ = 10;

[000054] ar = Ox000a -

< ' o[

Figure 2-12. Example: Editor Window in Mixed Mode

2-22

Visual DSP++ 5.0 User’s Guide

Environment

Figure 2-13 shows an editor window with the Editor Tab option enabled.

E ActiveXMagr.cpp !E[E

A
B ActivexWnd.cpp =] &3 g
A A S S S .
S g brud

S ActiveXlind . cpp Tins
77 Thiz file contains CActiveXlnd anc fdir
< clasmses used to contain and disple Wir

< Copyright (c) 2001 Analog Devices L1

S S L
¥include "stdafz h'
finclude "debugapp.h”
#include <comdef h:»
finclude "vdebug h"

#include "activexwnd h'
#include "utility h”

tinclude "mainfrm . h" -
Finclude "userpref=. h"

FTRLE. TTTTTT

Activerin'nd.cp... | Activexiar.cp...

Click a tab to view the source file.
Figure 2-13. Switching Between Editor Windows Using Editor Tab Mode

Context-Sensitive Expression Evaluation

When a .dxe program has been loaded for debugging, you can evaluate
expressions in an editor window.

As you move the mouse pointer over a variable, with the pointer still on
top of the variable, VisualDSP++ evaluates the variable. If the variable is
in scope, the value appears in a tool tip window.

Visual DSP++ 5.0 User’s Guide 2-23

Editor Windows

Viewing an Expression

Expressions can be viewed in different ways. When the editor window is
in mixed mode, view an expression by moving the pointer over a register
in an assembly instruction. The register contents are displayed in a tool

tip.
Highlighting an Expression

Highlight an expression in the editor window and then move the pointer
on top of the highlighted expression to display its value in a tool tip.

Compiler Annotations

When enabled, the compiler can perform a large number of optimizations
in order to generate the assembly code. The decisions taken by the com-
piler as to whether certain optimizations are safe or worthwhile may be
viewed. This information can help you understand how close to “optimal”
a program is and what can be done to improve the generated code. For
more information about optimizing code, refer to your processor’s

VisualDSP++ C/C++ Compiler and Library Manual.

The compiler optimizer’s feedback is provided as annotations made to the
assembly file generated by the compiler. You can view compiler annota-
tions in C/C++ files in editor windows. The annotations are inserted

2-24 Visual DSP++ 5.0 User’s Guide

Environment

immediately below the corresponding source lines, similar to mixed mode.
When first viewed, the editor window displays an icon (Figure 2-14) to
indicate the presence of a compiler annotation.

B annot_vect_advice.c

Compiler int 1i: -
annotation int =1 = 0; _ I
icon —_— for (i=0; i< n: i++) {
sl += =m[i]*y[i]:
} -
4|| v

Figure 2-14. Compiler Annotation Icon in Editor Window

Hover the mouse cursor over an annotation icon to display the compiler
annotations in a tooltip (if it fits a tooltip). When there are multiple anno-
tations, the number of compiler annotations appears in the tooltip. (See
Figure 2-15).

annot_vect_ad

int 1]
int =1 = 0:
wl for (i=0; i< n; i++) A
=1 += m[1]#=y[1];

7 compiler annokations (6 info, 1 advice, 0 Failures),

4
—LI Double-click, on the compiler annotation icon ko view o hide the annokation ek,

Figure 2-15. Displaying Compiler Annotation in a Tooltip

Visual DSP++ 5.0 User’s Guide 2-25

Editor Windows

Tip: Double-click to display the compiler annotations. Double-click again
to hide the annotations.

o

wl for (i=0; i< n; i+4+) A

[Info] This loop executes 1 iterations of the origina

[Info] unknown trip count

[Info] Succesfully found modulo schedule.

[Info] Hodulo schedule parameters: II = 2, SC = 2, MY

[Advice] Consider using pragmna loop count to specify

[Failure] Thi= loop would wectorize if alignment were
=1l += p=[1]=py[1]:

Figure 2-16. Displaying the Compiler Annotations

There are three types of messages. Each compiler annotation is prefixed
with [infol, [advicel, or [failure] to indicate its type.

Right-clicking on the icon (or the line of code) provides commands to
view the annotations at that line or all annotations. This menu also allows
you to select the annotation types (failure, information, or advice) that

appear.

The compiler annotations toolbar provides a quick way to view/hide
annotations and to navigate the editor window to locate previous/next
compiler annotations.

P TN OR TR

Figure 2-17. Compiler Annotations Toolbar

2-26 Visual DSP++ 5.0 User’s Guide

Environment

Right-Click Menu

The editor window’s right-click menu provides the commands shown in
Figure 2-18.

Lndo
Redo

Cuk

Copy
Faste

Togagle Eookmark,
Mexk Bookmark F2

Insert Breakpoint F9

Line Murbers
Fun ko Cursar Chrl4+F10

Match Erace Ckrl+E

Go To.., Chrl+G

Find. .. Ckrl+F
W SoUrce

Mixed

Select Format 4 v Hexadecimal
Floak
Unsigned Inteqer
Integer
ksl

Figure 2-18. Example: Editor Window Right-Click Menu

The available formats under Select Format depend on the target
processor. An additional command, Source Script, is available
when you are editing a script.

Visual DSP++ 5.0 User’s Guide 2-27

Output Window

Ovutput Window

The Output window displays:
e Standard I/O text messages such as file load status
* Build status information for the current project build

* Code development tools messages and provides access to errors in
source files

The Output window also serves as a scripting interface.

The example Output window in Figure 2-19 shows build status informa-
tion. Display the Output window by choosing View and Output
Window.

"C:nProgram Files“Analog Devices VisualDSPwccts" - ~dit.c -g -default «
"C:~Program Files“Analog Devices Vi=zualDSP ootz exe" “Debughdft . doj -TS
Euild completed succeszsfully.

Windons

"
=]
[l

o
jm]

o]

(4[4 TR console A Buitd / (KTNSO

Figure 2-19. Viewing Build Status Information in the Output Window

This section describes the following topics:
* “Build Page and Console Page” on page 2-29

* “Code Development Tools Batch Processing Messages” on

page 2-31
* “Log File” on page 2-38

e “Output Window Customization” on page 2-38

2-28 Visual DSP++ 5.0 User’s Guide

Environment

* “Right-Click Menu” on page 2-39

e “Script Command Output” on page 2-40

Build Page and Console Page

The Output window’s two tabs, Console and Build, provide different
information and capabilities.

Build Page
The Build page (Figure 2-20) displays error messages generated during a
build.

S =
* 1l error detected in the compilation of " . ~dft.c”.

z ootz Fatal Error: Compilation failed

9 Tool failed with exitse=zception code: 1.

= Build was unsuccessful.

Ed [4] 4> [>T Gonsole 2, Build | NN} 2

Figure 2-20. Example: Error Messages in the Output Window

Choosing Next Error or Prev Error from the Edit menu allows you to
scroll through error messages.

Double-clicking on an error message displays the offending code in an edi-
tor window. For more information, see “Viewing Error Message Details”
on page 2-33..

By default, Visual DSP++ output is blue and tool output is black. You can
modify these colors by using the Preferences dialog box.

Visual DSP++ 5.0 User’s Guide 2-29

Output Window

Console Page
The Output window’s Console page (Figure 2-24 on page 2-39) allows
you to:

View Visual DSP++ or target status error messages
View STDIO output from C/C++ programs
View I/O (streams) messages

Scroll through previous commands by pressing the keyboard’s up
arrow and down arrow keys

Perform multiline selection, copy, paste, and clear
Issue script commands and view script command output
Auto-complete script commands

Execute a previously issued script command by double-clicking on
the command

Enter multiline script commands by adding a backslash character
(\) to the end of a statement

Use bookmarks
Toggle a bookmark by pressing Ctrl+F2
Move to the next bookmark by pressing the keyboard’s F2 key

All text that displays on the Console page is written to the Visual DSP++
log file.

2-30

Visual DSP++ 5.0 User’s Guide

Environment

Code Development Tools Batch Processing

Messages

The code development tools that perform batch processing can produce
error and warning messages when returning a result. These messages
appear on the Build page in the Output window.

Every message is identified with a unique code (such as pp0019) that is
consistent between versions of Visual DSP++. Message descriptions
include an explanation of the condition that caused the error/warning

message and a suggested remedy to fix the problem. Where applicable,
messages include the source file’s name and the line number of the offend-

ing code.

Message Severity Hierarchy

Each message has one or more severity levels.

Table 2-8. Message Severity Levels

Severity Level

Description

Fatal error

Identifies errors so severe that further processing of the input is suspended.
Fatal errors are sometimes called catastrophic errors.

Error Identifies problems that cause the tool to report a failure. An error might
allow further processing of the input to permit the reporting of additional
problems to be reported.

Warning Identifies situations that do not prevent the tool from processing the input,
but may indicate potential problems

Remark Provides information of possible interest

You can change the severity level of a message marked with a “10}”, which

means “discretionary”. The severity level of a message without a ¢

<

(D} is

“non-discretionary” and cannot be changed.

Visual DSP++ 5.0 User’s Guide 2-31

Output Window

Syntax of Help for Error Messages

In VisualDSP++ Help, each error message can include several parts. The
available information depends on the tool and the message. Table 2-9
describes the syntax of the error message description in Help.

To view the details of a message, it must be viewed from the Help
window. If you run a tool from a command-line interface (such as a
Command Prompt window or MS-DOS Prompt window), the
message shows only the ID code, error text, and error location.

Table 2-9. Syntax for Error Message Help

Part Description

Identification Code Six-character code, unique to the message. The first two char-
acters identify the tool:

e ar (archiver)

* cc (compiler)

e ea (assembler)

e el (expert linker)

« id (IDDE)

e 17 (linker)

* pp (preprocessor)

e si (simulator)

* xml (custom board support)

Error Text Text that appears after the identification code in the Output
window

Description Detailed description of the message

Severity The degree of hardship imposed by the error. Some messages,

display a “{D}“. These are discretionary messages and can take
more than one severity level. You cannot change the severity
level of non-discretionary messages.

Recovery Extra information, provided only if applicable
Example Example code

How to Fix The remedy for correcting the error

Related Information Link(s) to more information

2-32 Visual DSP++ 5.0 User’s Guide

Environment

Viewing Error Message Details

Each tool error message includes associated explanatory text that can be
viewed in the Help window.

To view Help information about an error message that appears in the
Output window's Build page:

1. Select the error identifier (for example, cc0276), then press F1.
Note that selection is sometimes easier from right to left.

E4E

" IPC . cpp". line 33 {ccl276) error: n:
hamespace naim

con=t YDE: :ThreadIDkHoQuner = static_c

"o " ine 33 276 =rror: nhE
1T | bibli§ Console JH Build E

Error Code

E
=]
=
E
z
=)
=
=1
el
=l
=2

Figure 2-21. Error Code in Output Window

Visual DSP++ 5.0 User’s Guide 2-33

Output Window

2. The Help window appears, showing the descriptive text.

Descriptive text

cc0276

Compiler Fatal Error: name followed by ":"
must be a class or hamespace name
Description

The identifier followed by a ":" was not a class
symbal.

Severity —

Fatal Errar
Recovery
The compiler cannot recover from this errar.

Example

clas=s Base

{

puablic: j
it Waam -

Figure 2-22. Viewing Details of an Error Message in Help

2-34 Visual DSP++ 5.0 User’s Guide

Environment

Promoting, Demoting, and Suppressing Error Messages

You can change the severity level of an error marked “(D}” (discretionary).
Refer to the tools documentation for command-line switches that override
error message severity. The Project Options dialog box provides options
you can use to override severity.

A discretionary message can be promoted, demoted, or suppressed. For
example, you might promote a remark or warning to an error, or you
might decide to demote an error to a warning or remark.

Say, for example, that a condition in the input is crashing the tool. You
could restrict the severity level of the problem to report an error (instead
of a fatal error).

Another way to suppress the reporting of an individual error message is to
use pragmas in the input source via the tool’s command line. For more
information about pragmas, refer to your processor’s VisualDSP++ C/C++
Compiler and Library manual.

The following examples demonstrate how to promote, demote, and sup-
press messages. The source file, test.c, is being compiled.

$#include <stdio.h>

int foo(void)

{

printf("In foo\n"); // doesn't return a value

int main(void)

{

int x; // no initial value
printf("x = %d\n", x);
return foo();

}

Visual DSP++ 5.0 User’s Guide 2-35

Output Window

Example 1: Compiling from the Command Line (Interface)
Compiling test.c yields two warning messages (cc0117 and cc0549):

$ cc2lk -c test.c

"test.c", line 5: cc0117: {D} warning: non-void function "foo"
should return a value

}

"test.c", line 10: cc0549: {D} warning: variable "x" is

used before its value is set

printf("x = %d\n", x);

A

build completed successfully

Notice that the compiler appended the letter “D” to each warning message,
indicating that the message is discretionary.

Example 2: Promoting Warnings to Errors

For example, typing $ cc2lk -c test.c -Werror 549 in a command win-
dow promotes one of the two warnings (cc0549) to an error.

$ cc2lk -c test.c -Werror 549

"test.c", line 5: error cc0117: {D} warning: non-void function
"foo" should return a value

}

"test.c", line 10: cc0549: {D} error: variable "x" is

used before its value is set

printf("x = %d\n", x);

1 error detected in the compilation of “test.c”.

cc2lk: Fatal Error: Compilation failed

2-36 Visual DSP++ 5.0 User’s Guide

Environment

Example 3: Demoting Messages to Remarks

You can demote messages to remarks. By default, the compiler does not
display anything less significant than a warning.

The -Wremarks flag in the following command outputs the two warnings
plus additional remarks.

$ cc2lk -c test.c -Wremarks

The -Wremark 549,117 flag in the following command demotes two spe-
cific messages to remarks. The command produces no output because all
the messages are changed to remarks, which are not displayed.

$ cc2lk -c test.c -Wremark 549,117

The following command changes the two warnings to remarks and then
displays all seven remarks.

$ cc2lk -c test.c -Wremark 549,117 -Wremarks

Example 4: Suppressing Messages

The following command suppresses two specific warning messages. The
command outputs five remarks, but the two warnings do not display even
though the -Wremarks flag requests all the remarks.

$ cc2lk -c test.c -Wsuppress 549,117 -Wremarks

Suppressing Compiler Warnings and Remarks
You can suppress compiler warnings as well as compiler remarks.

You cannot suppress compiler warnings without also suppressing
remarks.

Specify warning options from the Compile page (Warning subpage) of the
Project Options dialog box.

Visual DSP++ 5.0 User’s Guide 2-37

Output Window

Log File

The Visual DSP++ log file contains all the status and error messages that
have been written to the Output window’s Console page.

Figure 2-23 shows a sample log file.

E YizualDS5P_Log.txt - Notepad

File Edit Search Help

| Loading C:%Program FilesyAnalog DevicesiVi
Load complete.
Hit breakpoint at 8x18
Loading C:“\Program Files\Analog Devices‘Ui
Load complete.
Hit breakpoint at 8x18
Loading C:\Program Files\Analog DeviceshiUi

Figure 2-23. Portion of a Sample Log File

Messages are saved to the log file, VisualDSP_Log.txt, which, by
default, is located in the <install_path>\Data directory.

All sessions append to the log file. Occasionally, open the file and

delete parts of it (or all of it) to conserve disk space.

Output Window Customization

You can specify preferences that:
* Configure Output window fonts and colors
* Enable command auto-completion

* Display file names only while building (hide complete command
lines)

2-38 Visual DSP++ 5.0 User’s Guide

Environment

By default, the Output window resides at the bottom of the main applica-
tion window. You can resize or move the Output window to a different
portion of the screen by dragging it to the selected location. You can dock,
hide, or float the window.

The Output window’s Console page interacts with script engines. All
script input and output is sent to the Console page, as shown in
Figure 2-24.

Dutput Window x|
FO: Loading C:\Cnnvnlutinn\CDnleutiDn_D6[AI

Fl: Load complete.
d=pzetbreal: —proces=or P2 020004
there iz already a breakpoint at address [

I4->R Console /4 Build / 1Ll D

-

Figure 2-24. Messages in the Output Window’s Console Page

These messages are saved to the log file, VisualDSP_Log.txt, which is
located in the installation’s Data directory.

Right-Click Menu

The Output window’s right-click menu is shown in Figure 2-25.

This menu enables you to:

Load a script or enable the debugger
Clear the text in the window or copy selected text
Toggle bookmarks

Select a scripting language

Visual DSP++ 5.0 User’s Guide 2-39

Output Window

Load Script...
Enable Rehigger

Clear
]) i E
Toggle Bookrmark Ctrl+FZ2

Language 3 v Tl

. VBScoript
Print...

Find...

JI=cript

v Allow Docking
Hide

Flaat In Main Wwindow

Figure 2-25. Output Window’s Right-Click Menu

e Print or find text in the window

* Dock, hide, or float the window. (To display the hidden window,
choose Output Window from the View menu.)

Script Command Ouvutput

Scripts provide a powerful means of developing full-blown test applica-
tions of processor systems. VisualDSP++ includes a language-independent
scripting host that uses the Microsoft ActiveX® script host framework.
This scripting host permits the use of multiple scripting languages that
conform to the Microsoft ActiveX script engine.

2-40 Visual DSP++ 5.0 User’s Guide

Environment

The main benefit of calling scripts in these languages is that they have
support for COM scripting, which allows access to the VisualDSP++
Automation API. VisualDSP++ supports the following Microsoft ActiveX
script engines (languages):

* Visual Basic® (Scripting Edition)
* JScript®

@ The Tool Command Language (Tcl) interpreter included with
VisualDSP++ is not a Microsoft ActiveX script engine.
Visual DSP++ permits the use of other script engines (languages)
that are not supported by Analog Devices technical support.

Script output is logged to VisualDSP_Log. txt for viewing and analysis. By
default, this file is located in the installation’s Data directory.

In the Output window’s Console view, you can:
* Issue script commands and view script command output

For more information about issuing script commands, refer to
“Extensive Scripting” on page A-8.

* Enable the Microsoft script debugger

Right-click in the Output window and choose Enable Debugger.
The debugger steps through code, sets breakpoints, and so on.
Once enabled, the debugger stops on the first error encountered in
the script.

Although most script engines (languages) support this option,
some may not. Consult the script engine’s documentation for fur-
ther details on whether it supports the debugging interfaces within
the Microsoft ActiveX script engine framework.

Visual DSP++ 5.0 User’s Guide 2-41

Output Window

* Specify the scripting language

Right-click in the Console view and select a language from the list
of scripting languages installed on your machine.

The name of the current scripting language appears in the status
bar at the bottom of the Visual DSP++ main window, as shown in

Figure 2-26.
Current scripting language J
1 3
o g TN
|Halted | \ JIseript) | [MUM | i

Figure 2-26. Scripting Language Displayed in Status Bar

* Load a script

You can load a script by selecting Load Script from the File menu,
from the Console view’s right-click menu or the editor window’s
right-click menu. The script loads and runs until it finishes run-
ning or until you halt the script by choosing Halt Script from the
Debug menu.

The Console view supports script command auto-completion, which you
can enable on the General page of the Preferences dialog box, accessible
via the Settings menu.

The Visual DSP++ installation directory includes example scripts in the
“Scripting Examples” folder located under the processor family name
(for example, 21k) and the Examples folder.

2-42 Visual DSP++ 5.0 User’s Guide

Environment

Debugging Windows

Visual DSP++ provides debugging windows to display program operation
and results. Table 2-10 describes these windows.

Table 2-10. Debugging Windows

Window

Provides

Output
(on page 2-28)

A Console page that displays standard I/O text messages such as file load
status, and error messages and streams, and a Build page that displays
build messages. You can interactively enter script commands and view
script output.

Editor
(on page 2-16)

Syntax coloring, context-sensitive expression evaluation, and status icons
that indicate breakpoints, bookmarks, and the current PC position

Disassembly
(on page 2-45)

Code in disassembled format. This window provides fill and dump capa-
bility.

Expressions
(on page 2-50)

I'he means to enter an expression and see its value as you step through
y
program execution

Trace
(on page 2-52)

A history of processor activity during program execution, including buffer
depth (instruction lines), cycle count, and instructions executed such as
memory fetches, program memory writes, and data/memory transfers
(SHARC processors only)

Locals

(on page 2-54)

All local variables within a function. Use this window with Step or Halt
commands to display variables as you move through your program.

Linear Profiling
(on page 2-55)

(Simulation only) Samples of the target’s PC register taken at every
instruction cycle, which provides an accurate picture of where instructions
were executed. Linear profiling is much slower than statistical profiling.

Statistical Profiling
(on page 2-55)

(JTAG emulation only) Random samples of the target processor’s program
counter (PC) and a graphical display of the resulting samples, showing
where the application spends time

Call Stack
(on page 2-63)

A means of moving the call stack back to the previous debug context

Register
(on page 2-78)

Pre-configured windows display current values of registers. You can change
register contents and change the number format.

Visual DSP++ 5.0 User’s Guide

2-43

Debugging Windows

Table 2-10. Debugging Windows (Cont'd)

Window

Provides

Custom Registers
(on page 2-81)

User-defined windows display the values of registers. Select the Analog
Devices processor memory-mapped registers [MMRs]) registers that you
want to monitor.

Custom Registers
(on page 2-82)

Custom board support. Display contents of registers on custom boards.
View any register (not just Analog Devices processor memory-mapped
registers [MMRs]). User-defined layout.

Memory
(on page 2-67)

A view of processor memory. Similar number format and edit features as
register windows, plus fill and dump capability.

BTC Memory
(on page 2-73)

A view of background telemetry channel contents in real time. The win-
dow displays the contents of the address that you want to see.
(SHARC and Blackfin emulator sessions only)

Plot
(on page 2-109)

A graphical display of values from memory addresses. The window sup-
ports linear and FFT (real and complex) visualization modes and allows
you to export an image to a file, the clipboard, or to a printer.

Multiprocessor
(on page 2-83)

Current status of each processor in a multiprocessor system (emulator ses-
sions only). This window allows you to define and manage groups of pro-
cessors for synchronous multiprocessor commands.

Pipeline Viewer
(on page 2-88)

Display of instructions in the pipeline and event details

(TigerSHARC and Blackfin processors only)

Cache Viewer
(on page 2-93)

Analysis of an application’s use of cache, which is helpful in optimizing
application performance

VDK State History
(on page 2-105)

(VDK-enabled projects only) History buffer of threads and events

Target Load
(on page 2-108)

(VDK-enabled projects only) Percent of time the target spent in the idle
thread

VDK Status
(on page 2-103)

(VDK-enabled projects only) At a program halt, thread state and status
data

Image Viewer
(on page 2-119)

A view of BMP, JPEG, PPM, or MPEG data from processor memory or
from a file on your PC. You can edit, copy, print, or export image data.

2-44

Visual DSP++ 5.0 User’s Guide

Environment

Disassembly Windows

By default, a Disassembly window appears when you open a new session.
You can open a Disassembly window by choosing View, Debug Win-
dows, and Disassembly.

Figure 2-27 and Figure 2-28 show examples of Disassembly windows, one
with and one without the address bar enabled. The address bar shows
recently used addresses, symbols, and expressions.

Disassembly
[0o000E ~}—J— Address bar
[@2811%] r2=m3; =]

[62611A] dmi@xfifffifa, 16)=r2;
® [02011E] ri=6

[62011C] dmi@xfifffifd, 16)=r2;

[626110] dm{@xfifffifc, 16)=r2;

o [@2011E] [Fl=8; !_I
[02011F] dm{®@xfFfffffh, i6)=rl;
[020120] dn{®@xfTfffffa, i6)=rl;
[628121] |[re=8; |

= 2

Figure 2-27. Example: Disassembly Window Showing Address Bar

Visual DSP++ 5.0 User’s Guide 2-45

Debugging Windows

Dizazzembly x|
[@20119] r2=m3; N
[@2811A] dm(@xfffffffa, i6)=rz;

® [02011B] ri=6;

[62011C] dm(@xfffffffd, i6)=r2;
[620110] dm(@xfffffffc, i6)=r2;

o [62611E] |[rl=@; !_I

D [@2011F] dm{@xfffffffh, ia)=rl;

F [@20128] dni@xfffffffa, ia)=rl;
[@20121] [r@=@; |

&a 2

Figure 2-28. Example: Disassembly Window Without Address Bar

Disassembly windows display code in disassembled form, which is useful
for temporarily modifying the code to test a change or to view code when
no source is available. The Disassembly window enables you to examine
the assembly code generated by the C/C++ compiler. Choosing View
Source from the Disassembly window’s right-click menu enables you to
view the C/C++ source code for the loaded file.

A single-processor debug session provides one Disassembly window only,
but multiple instances of the window may be opened for different views.
In a multiprocessor debug session, multiple Disassembly windows are
available.

To make changes permanent, modify the code and rebuild the project.
Disassembly windows provide:

* Number format and edit features, similar to register windows

* Dump and fill capabilities

e Symbols at the far left of the window, denoting program execution
stages and pipeline stages

2-46 Visual DSP++ 5.0 User’s Guide

Environment

You can enable and disable the display of pipeline symbols in
mixed mode (C/C++ and assembly).

* An optional address bar that enables you to navigate to an address,
symbol, or expression. The address bar maintains a most recently
used history of visited locations.

To display the address bar, right-click in a Disassembly window
and choose Address Bar. A check mark next to this option on the
right-click menu indicates that this feature is enabled.

By default, the current source line to be executed is highlighted by a
light-blue horizontal bar, as shown in Figure 2-29.

2 [0026005] [JUNp T1Lrads (dbl: |

Figure 2-29. Example: Current Source Line in the Disassembly Window

The color of the current source line and other window items are user con-

figurable. Refer to VisualDSP++ Help for detail.

Other Disassembly Window Features

From the Disassembly window, you can perform the operations described

in Figure 2-11.

Table 2-11. Disassembly Window Operations

To...

Place the mouse pointer over...

Move to a different address

An address field and double-click. Then select the address from
the ensuing Go To dialog box. Note that you can also use the
address bar to navigate to an address, symbol, or expression.

Insert or remove a break-
point

An instruction and double-click

Toggle (enable or disable)
a breakpoint

An instruction and right-click. Then choose the appropriate com-
mand from the ensuing menu.

Visual DSP++ 5.0 User’s Guide 2-47

Debugging Windows

Right-Click Menu

The Disassembly window’s right-click menu provides access to the com-
mands shown in Figure 2-30.

Figure 2-30. Disassembly Window Right-Click Menus

2-48 VisualDSP++ 5.0 User’s Guide

Environment

Disassembly Window Symbols

Symbols at the far left of the Disassembly window indicate program
execution stages (Figure 2-12).

Table 2-12. Disassembly Window Symbols

Symbol

Description

e

(Gray arrow) The current instruction is being aborted due to a branch or jump
instruction.

Enabled software breakpoint

o

Disabled software breakpoint

&

Enabled hardware breakpoint

Disabled hardware breakpoint

- &

(SHARC processors only) This instruction is currently in the Fetch Address
stage of the pipeline.

P (ADSP-2136x SHARC targets only) This instruction is currently in the Prede-
code (Fetch2) stage of the pipeline.

D (SHARC processors only) This instruction is currently in the Instruction
Decode stage of the pipeline.

A (ADSP-2136x SHARC targets only) This instruction is currently in the Address

Decode stage of the pipeline.

Visual DSP++ 5.0 User’s Guide 2-49

Debugging Windows

Table 2-12. Disassembly Window Symbols

Symbol Description

E (SHARC targets only) The instruction is in the Execute pipeline stage.

(Yellow arrow) This instruction is currently in the Execute stage of the pipeline.

e

The display of pipeline stages is available only when:
* The session is connected to a SHARC simulator target

* Enable pipeline display is selected on the General page of the
Preferences dialog box (via the Settings menu)

Expressions Window

The Expressions window (Figure 2-31) lets you enter an expression to
evaluate in your program. Evaluations are based on the current debug con-
text. Open this window by choosing View, Debug Windows, and
Expressions.

The Name and Value columns are always visible. Other columns
(Address, Type, Size, and Format) are user-defined. You can select the
number format used by the window (global format). You can override the
global format and specify each expression's format (per-expression basis).
Changing the window's global format overrides any per-expression for-
matting; for example, if the global format is set to Hexadecimal and you
set the format of a single expression to Integer, changing the global format
to Float will change the format of every expression to Float.

Because of the way registers are saved and restored on the stack, the
register value on which the expression relies may be incorrect if you
change Visual DSP++’s context from the Call Stack window.

2-50 Visual DSP++ 5.0 User’s Guide

Environment

Expressions [Hexadecimal] | =]
M arne | Walue I Address | Type I Size I Farmat
lindex 0x00000004 O=x0002fffa int O0=x00000001 Hemadecimal
primes[4] 11 0=00028004 int 0=z00000001 TUnsigned Integer
pi 3.14159 Oz0002fffd float 0=z00000001 Float

primes ...}

0=00028000 int[] 0=z00000014 Hezadecimal

Figure 2-31. Expressions Window

Expressions Permitted in an Expression Window

Figure 2-13 lists and describes the types of expressions that may be
entered in an Expressions window.

Table 2-13. Types of Expressions Permitted in an Expressions Window

Expression

Description

Memory address

Precede memory identifiers with a $ sign, for
example: $dm(0xF0000000)

Register expression

Precede register names with a $ sign, for example: $r0, $r1,
$ipend, $po, or $imask

C/C++ statements

Use standard C/C++ arithmetic and logical operators.

Multiprocessor expression
(emulator sessions only)

Expressions can be evaluated on a particular processor by using
the format:

@processor_name(expression)

where processor_name is the name of one of your MP proces-
sors, and expression is the expression that you want to evaluate
on that processor.

For example, on an MP system with two processors (master and
slave), this expression evaluates the PC register on master:
@master($PC)

Visual DSP++ 5.0 User’s Guide 2-51

Debugging Windows

As you step through your program, the Expressions window displays the
current value of each listed expression. Expressions evaluation is based on
the current debug context.

For example, if you enter expression “a” and a global variable “a” exists,
b4 g

you see its value. If you then step into a function that has local variable

«_»

a”, the local value displays until the debug context leaves the function.
When a variable goes out of context, a string displays next to the variable,
informing you that the variable is out of context.

The expressions described above are C expressions. The current syntax
also allows the use of registers in expressions.

For example, the following expression is valid.
$RO + $1I0
Register expressions and C expressions can be mixed in an expression.
Register expressions follow these rules:
* A dollar sign character ($) must precede register names.
* Register names can be in uppercase or lowercase characters.
* Registers have no context. A register expression always evaluates to

the current value of the register.

Trace Windows

Perform a trace (also called an execution trace or a program trace) to
analyze the run-time behavior of a processor program, to enable I/O
capabilities, and to simulate source-to-target data streaming. Figure 2-32
shows an example of data in a Trace window.

2-52 Visual DSP++ 5.0 User’s Guide

Environment

Clock cycle Address

Buffer when the of the Disassembled
instruction executed ; ;
depth ; X instruction
occurred instruction
I l | l
Trace =]
[GE008808] Cycle [@8006dFL] PM[@802823c] rl2=rll+rl2, rll=rll-rl12;
[GE00E887] RD PM [2802823e] 4dfefefoass
[EE008883]| Cycle [@E00GAF2] PM[E002823d] if eq r@=r@+rz;
EEEREEEER RD PM [@8E828237] =320bO00806al
[EEEEEA0G] Cycle [@EOOGIFI] PM[EOO2823e] il2=dm(m7,16);
EEEREEERS RD DM [@283Fff3] ©002813d
EEEREEEEY RD PM [@8E828240] 2207000800037
[E008A0a] Cycle [@OAGIFL] PM[EOE2E23T] rll=dm(@xl,i7):
CEEREEET RD DM [@883TTTl] 9000808
[GOEEaa8d] RD PM [@80828241] 933734000080
Access Memory Address Data value
Memory results type type (written or read)
(RD/WR) (PM/DM

Figure 2-32. Example of Data in a Trace Window
The Trace window displays:
e Buffer depth (Custom in the Trace Buffer Depth dialog box)
* The clock cycle when the instruction occurred
* The address of the instruction executed
* The disassembled instruction
Note the following:
e For SHARC and TigerSHARC processors, depth is limited by your

system's virtual memory

e Trace is not supported in Blackfin simulator sessions, but is sup-
ported in Blackfin emulator sessions. The depth is limited by
on-board physical memory reserved for this feature.

Visual DSP++ 5.0 User’s Guide 2-53

Debugging Windows

Memory results have the following fields.
* Access type (RD or WR)
* Memory type (PM or DM)
e The address, in brackets ([1)
* The data value written or read

Refer to “Code Analysis Tools” on page 3-7 for related information.

Locals Window

The Locals window displays the value of local variables within a function,
as shown in Figure 2-33. Open this window from the View menu by
choosing Debug Windows and Locals.

Locals [Hexadeaimal] R
Iame | Value | Address | Type | Size | Farmat |

=] 1 i 0=xf£901eal 53 0=0000010c Hexadecimal

0=00000000 0xff901eal un=igned int 0=00000004 Hexadecimal

O=0000 Oxff90lead short Ox00000002 Hexadecimnal

1 N Oxff901eal 52[1] 0=00000104 Hexadecimal

1 N Oxff901eal 52 0=00000034 Hexadecimal

1 N Oxff30lede 52 0=00000034 Hexadecimal

1 N O=f£901£10 52 0=00000034 Hexadecimal

1 N O=ff901f44 52 0=00000034 Hexadecimal

1 N O=f£901£78 52 0=00000034 Hexadecimal

i Ox00000000 Oxff90lfec int O=x00000004 Hexadecimnal

3 0=00000000 O=f£901£d0 int 0=00000004 Hexadecimal

Figure 2-33. Example: Locals Window

Use the Locals window with a Step or Halt command to display the cur-
rent value of variables when moving through your program.

You can select the number format used by the window (global format).
You can override the global format and specify each expression's format
(per-expression basis). Changing the window's global format overrides any
per-expression formatting; for example, if the global format is set to Hexa-

2-54 Visual DSP++ 5.0 User’s Guide

Environment

decimal and you set the format of a single expression to Integer, changing
the global format to Float will change the format of every expression to
Float.

Complex variables, C structures, and C++ classes appear with a plus
sign. Click on the plus sign to display all variable information.

Statistical/Linear Profiling Window

To open a profiling results window, choose Tools, (Statistical Profiling or
Linear Profiling), and New. Depending on the target, the window’s title
is Statistical Profiling or Linear Profiling. The window comprises two
panes, as shown in Figure 2-34.

Linear Profiling: ADSP-BF535 Blackfin Flemory Instruction Samples 1

Hi=togran #| Execution Unit % Line Ho. | H:“~Delme“test.c ~
|] 38.05% | start 2. 34% 14 | {
[] 22 60% main() 1.04% [FFAOOEDE] S5YHC
[] 22.34% foo(int) 1.30% [FFAOO5DE] LINK O=14
] 5. 5B% | _mi_initialize 15 int i, r:
] 4.29%| bar{int) 16
| 3.90%| _e=it 8.57% 17 for{i=0; i<5.; i++)
| 1.82%| _ getargv 0.13% [FFAOOSDC] B3 = 0
0.39%| __install_ ... 0.13% [FFAOOEDE] S5YNC
0.39% | PC[O0=ffa00610] 0.91% [FFAOOSED] [FP + -8] = R3 .
0.13% | PC[O=ffal0efe] M| 2.47% [FFAOOEEZ2] B2 = [FF + -8] &
Total Samples: 770 Elapsed Time: , 00:00:00 Enabled

Figure 2-34. Example of a Linear Profiling Window

Window Components

The window, which comprises two panes and a status bar, provides a
right-click menu for performing various window functions.

Visual DSP++ 5.0 User’s Guide 2-55

Debugging Windows

Left Pane

The window’s left pane displays a list of the executed functions, assembly
source lines, and PCs (with no debug information). The time that each
item spends on execution appears as a histogram and as a percent. The
order of the items in the display is determined by the percentage of global
execution time for each item.

The left pane includes the information described in Table 2-14.

Table 2-14. Left Pane Information

Column Displays Purpose
Histogram Horizontal bars Graphically represents the execution
percentage
% A percent with two decimal Displays execution in percent or as a
-or- places, for example: count. Right-click and choose View
Count Execution Percent to view execution
15.01% as a percent, or choose View Sample
-or- Count to view the PC sample count.
a number
Execution Unit Functions, assembly source lines, | These items are sorted by the percent-
and PCs for which no debug age of global execution time that each
information exists item took to execute. The highest per-
centage items appear at the top of the
list

Double-clicking on a line with a function or assembly source line in the
left pane displays the corresponding source file in the right pane. The top
of the function or assembly source line is shown in the source file. If you
double-click on a PC address with no debug information, the
Disassembly window opens to that address.

Right Pane

The right pane includes the information described in Figure 2-15.

2-56 Visual DSP++ 5.0 User’s Guide

Environment

Table 2-15. Information in the Right Pane

Column Displays
% Execution percent in text format with two decimal places, for example:
1.03%
-or-
the PC sample count for each source line
Line Line numbers of the source file
File Entire source file. Each source line occupies one line in the grid control.
Status Bar

The status bar at the bottom of the window indicates the total number of
collected PC samples, the total elapsed time, and indicates whether statis-
tical profiling is enabled.

Right-Click Menu

The Statistical Profiling and Linear Profiling windows provide a
right-click menu. The menu commands depend on the context (whether
you right-click in the left pane or right pane) and the current settings.

Table 2-16 describes the right-click menu commands.

Table 2-16. Rig

ht-Click Menu Commands in Profiling Windows

Command

Description

Enable

Enables or disables profiling

Load Profile

Opens the Select a Statistical /Linear Profile to Load dialog box
from which you can load profile data saved from a previous run

Save Profile

Saves the current run’s data to a file

Concatenate Profile

Merges profiling data stored from a previous run with current data

Clear Profile

Clears statistics saved from a previous run

Visual DSP++ 5.0 User’s Guide 2-57

Debugging Windows

Table 2-16. Right-Click Menu Commands in Profiling Windows (Contd)

Command Description

View Execution Percent Displays the execution percent in each execution unit or source
line. This value is the sample count for that execution unit divided
by the total number of samples.

View Sample Count Displays the sample count for that execution unit

Mixed Sets the display mode for C/C++ source lines from the right pane
-or- only. Choose Mixed to display both C/C++ source lines and assem-

Source bly lines. C/C++ source lines appear in black type, and assembly

lines appear in gray. Profiling data appears for each assembly line.
Choose Source to display only the C/C++ source lines.

Properties Opens the Profile Window Properties dialog box, where you can
view or change window settings. When performing linear profiling,
you can select display options such as cache hits, cache misses, exe-
cution count, reads, and writes.

Window Operations

You can select various options for the Statistical/Linear Profiling window
and perform various window operations.

For power estimation, this window displays two additional columns. Refer
to “Energy-Aware Programming” on page 3-31 for more information.

2-58 Visual DSP++ 5.0 User’s Guide

Changing the Window View

Environment

After you specify window properties for the Statistical/Linear Profiling
and enable profiling, the profiler collects data when you run a program.
Depending on the filtering options selected, the window’s Execution Unit

column displays:

* Function names (such as main)

» Single addresses, for example, PC(0x2000)

e Address ranges, for example, [2000-2050]

Single addresses and address ranges display in hexadecimal format.
The “0x” notation, however, appears beside single addresses only.

Displaying a Source File

Double-clicking on a function name in the Execution Unit column not

only displays the source of the function in the right pane but also displays
profiling data for each line of the function. Table 2-35 shows an example
of code displayed for a function.

]| Histo. .. | °/o| Exzecution Un:i.tlA °/o| L.. I C: ~TestLab~Generic. . . |‘
| 17 B6% mainl) 1

=] | 4.12% foo{int) 2 ¥Finclude <=s=tdlib . h:

Z 3.57% PC[O0=f00000207] 2.75% 3 int fool(int i) —
o | 2. .75 PC[O=f00003f=] 4

= | 2. 75k PC[O=f00003fa] 1.37% 5 return i++;

E | 1.3%7% PClO=x=£000009%<] &

=1l 1.37% bar(int) 7

= 1.3%7% PC[O=f00000ac] 0.55% 8 woid bar{int i)

e | 1 37% PCrOmfAAANaf] I CHIFS [|
B | Total Samples: 364 |Elapsed Time: 00:00:00 |Enabled

Figure 2-35. Example: Code Displayed for a Function

Displaying Functions in Libraries

The profiling window enables you to display functions in libraries, as
shown in Figure 2-36.

Visual DSP++ 5.0 User’s Guide

2-59

Debugging Windows

ADSP-BFS33 Blackfin Memary Instruckion Samples 1

Hi=togram | Kl Execution Unit |4
% =tart

% _init_devdrvtab

¥ _init_devtab
-

A

_mi_initialize
__getargv

4

1.62% PC[O0xffalddda]
N an% Pr[N«ffand?nn]
0

.18% PC[O0=xffaldefz] -
Total Samples: 556 Elapsed Time:

Figure 2-36. Profiling Window Showing Library Functions

To use this feature, right-click in the profiling window and choose
Properties to open the Profile Window Properties dialog box.

Next, click the Filter tab, select C/C++ functions, and click the Add but-
ton to open the Add Functions dialog box. Then select the Show all
functions option.

Working With Ranges

Clicking on the icon in an address range expands or contracts the list of
functions within that address range.

When expanded, the list of functions appears and the profiling data
appear immediately after the address range.

Switching Display Modes

The right-click menu’s Mixed and Source commands simplify switching
between two views. Table 2-37 shows the source mode view and

Figure 2-38 shows the mixed mode view. Note that you can display the
right pane in source mode, while in mixed mode you can display C/C++
source lines and assembly code.

2-60 Visual DSP++ 5.0 User’s Guide

Environment

ZILine.._ IC:\PrGgram Files-Analog D...I:J

2| voi1d barf{int 1)}
ER

10 1++;

11

1z

12 maing)

14 £

15 int 1, x:

16

17 for{i=0; 1<5; 14+

1a 1

14 r = foo{i};

20 T

21 —

22 barizr); ;I

Figure 2-37. Source Mode View

leine... IC:\Pngram File=s~Analog D...I:J
[FOooOo1l4A] JUME (¢ FO 3

1z
12 maini)

[FOOOO14C] LINE O=18
14 £

15 int i. T
16
17 for{i=0; 1<5; 1++)

[FOooOoolso0] R3 = 0O
[FOoooo1l52] [FE + —12]

[FOOOO154] R2 = [FF + —. ..
[FODOO15e] R1 = 5
[FOooOool58] CC2 = R2 « R1
[FOooOo1l5A] IF | CC JUOME . ..

1s 1 :j

Figure 2-38. Mixed Mode View

When you view the window in mixed mode, profiling data for each assem-
bly line displays, as shown in Table 2-39. Mixed mode displays profiling

statistics for individual assembly instructions.

Visual DSP++ 5.0 User’s Guide 2-61

Debugging Windows

Hi=to. .. | °/°| Execution nit °/°| L. . I C: ~TestLab-Generic~test™. ~te. . . I;I
[] 24 2% maini) 0.37% 13 maini)
w L] 5.60% foo{int) 0.37% [FoooooC2] LINKE 0Oxld
11 1.87% bar{int) 14 1
15 int i, r:
16 J
9.70% 17 for(i=0; i<5; i++)
0.37% [FoooooCe] R3 = 0
0.37% [Fooooocs] [FER + —-12] = RE3
2.24% [FOOO0OCA] R2 = [FF + —12]
2.24% [FoOo0o0CC] R1 = 5 ¢ LI
= | Tatal Samples: 265 Elapsed Time: 00:00:00 Enabled

Figure 2-39. Profiling Data for Each Assembly Line (Mixed Mode)

Filtering PC Samples With No Debug Information

Since you spend most of your time building a debug version of your code,
eliminate non-debug code, such as C run-time library initialization code.

The profiling results in Table 2-40 show where a lot of time is spent
before filtering.

H.. | °4| Execution Unit ‘Xl L. | C . “TestLab“Generic test~, . . |‘
1 7.46% @ [£0000022 — f00000bE] 1
" 1. 87% bariint) 2 #¥include <stdlib . h:
il 5 60 foo(int) 3.73% 3 int foo(int i)
4 I
1.87% 5 return 1++;
b}
7
0.75% 2 woid bar{int i)}
9
i 0.75% 10 it Jid|
fel | Tokal Samples: 268 |Elapsed Time: 00:00:00 |Enahled

Figure 2-40. Profiling Results Before Filtering

The profiling results after filtering (Table 2-41) reflect the difference.

2-62 Visual DSP++ 5.0 User’s Guide

Environment

H. . . I XI Execution Unit XI L. I C:“TestLab“Genericxwtest . .. |+
[] 33.58% g [f0000022 — £00000bLE] 1
m 1.87% bar{int) 2 #include <stdlib.h:
= || 5.60% fooiint) 3.73% 3 int fooiint i)
1 4 —
1.87% 5 return i4++:
3
7
0.75% 8 woid bar{int 1}
99
0.75% 10 14+ LI
o |Total Samples: 268 [Elapsed Time: 00:00:00 |Enabled

Figure 2-41. Profiling Results After Filtering

Call Stack Window

The Call Stack window enables you to double-click on a stack location to
move the call stack back to a previous debug context. Open this window

by choosing View, Debug Windows, and Call Stack.

The Call Stack window cannot be guaranteed to provide correct
information when code does not adhere to compiler standards.
Two such instances are when main is not used, or when
_lib_prog_term or exit is not used. The unrolling of the stack
depends on the existence of these points; if they do not exist, the
stack may unroll beyond the valid frames.

Use the Call Stack window to analyze the state of parent functions when
erroneous data is being passed to the currently executing function and to
see the context from which the current function is being called.

Double-clicking on an item in the Call Stack window opens an editor
window (if the source is known) or the Disassembly window (if it is not
already open) and jumps to the specific item in the Call Stack window.

Visual DSP++ 5.0 User’s Guide 2-63

Debugging Windows

Use this debugging feature by walking up the call stack and viewing local
variables in different scopes. Use this window to analyze the state of par-
ent functions when erroneous data is being passed to the currently
executing function and to see the context from which the current function

is being called.
The Call Stack window provides call stack information when:
* Debug information is available

* Debug information is not available

Applications Built With Debug Information

When debug information is available, the call stack provides the C func-

tion names starting with current program context. A program is built with
debug information using the default “Debug” configuration, or alternately
by selecting Generate debug information on the Project Options dialog,
or manually using the compiler's -g command-line switch). See

Figure 2-42.

Applications Built When Debug Information is Not Available

An application may be build with limited or no debug information. In this
instance, the Call Stack window will be based partly on debug informa-
tion, and partly on the frame pointer alone. This Call Stack window will
provide a call stack that may contain assembly labels with offsets, as well as
C functions. If code is being executed that does not adhere to the compiler
standards, the call stack cannot be guaranteed.

When debug information is not available at all, the Call Stack window
(Figure 2-43) will provide limited information based on symbol table
information. If symbols have been stripped from the executable, simple
addresses will be displayed. When debug information is not available (for

2-64 Visual DSP++ 5.0 User’s Guide

Environment

Call Stack
tion

== Double-clicking on a function
functiondi) opens an editor window
function?() or the Disassembly window

functionli)

mainf) Disassembly =]

\ _functiond ol

[FFA110FC] IF CC RO = R1 :.,]
[FFA110FE] RTS ;
functiond

FFa11100] LIKK 0x3

FFAal11104] B3 = 5

FFA11106] [FP + -4] = R3 ;

FFAa11108] PL.L = O=4 :

FFA1110C] PL.H = 0=ff30 : ‘_J

FF411110] P2 = FP ;

FFA11112] P2 += -44
1
1
1
]
1

FFAa11114] PO = 10 :

FFa11116] LSETUP { 4 ~*0xFFAlllli=~ | &
FFAa11114] R2 = [P1 ++]

FFA1111C] [P2 ++] = B2

FFA1111E] RO.L = 184 :

@ testzource.c BEE
a
Caxrekxxxfinotion dxexexesx,
£3
£
£3
s £
vold functiond (void)

- I ey
long myarray[10] = {1.2,3.4.5,6,7,8,9,10%;

printf("hi from function 4: "):
j += 6:
for{3=5; J<10; j++)

printf ("%i," nyarray[j]=10);
I

printf("~n");

Bl o

Figure 2-42. Application Built With Debug Information

Visual DSP++ 5.0 User’s Guide 2-65

Debugging Windows

example, in a “Release” configuration), the call stack may be invalid
around function boundaries (or when programs do not adhere to compiler
standards).

Frame pointers in the call stack that do not have debug symbols
associated with them may appear in the Call Stack window as man-
gled assembly labels or memory addresses with an offset.

Call Stack [x]
;< functiond + Ozd> —— Double-clicking on a function

<_functioma + Ozbo: opens an editor window
¢_function? + 0=703 or the Disassembly window

<_functionl + O=66:

<_main + 0=x8»

Disassembly B
I_functicnml vl_l

[FFA110AE] RTS : =
_functiond
[FFA110B0] LINE 0x28 :
& [FFA110E4] [[—SF] = (B7:4 , P55 3 . |

[FFA110BE] I0.L = O=d :

[FFA110BA] I0.H = O=xff90 ;

[FFA110EE] SP 4= —-12

[FFA&11l0C0] PO = FP _I
[FFA110CZ2] P1 = 9

[FFA110C4] HOP

[FF4110C6] HOP

[FFA110C8] RO = [I0 ++] :

[FFA110CA] PO += —40 ;

[FFA110CC] LSETUR (4 ~=0xFFA110D0%/ . 4 ~=(
[FF4110D0] MNOP || [PO ++] = R0 || RO =
[FF4110D8] [PO ++ 1 = RO : -

0l | 207

Figure 2-43. Application Built When Debug Information is Not Available

2-66 Visual DSP++ 5.0 User’s Guide

Environment

Memory Windows

Use Memory windows to:
* View and edit memory contents

* Display the address of a value. Move the mouse pointer over the

value, and hold down the keyboard’s Ctrl key.

* Lock the number of columns currently displayed. This action
resizes the window horizontally without altering the display.

* Track one expression
You open memory windows from the Memory menu.
Memory windows provide:

e Number format and edit features

* Fill and dump capabilities

* An optional address bar for fast navigation to recently used
addresses, symbols, or expressions

To display the address bar, right-click in a memory window and
choose Address Bar. A check mark next to this command on the
right-click menu indicates that this option is enabled.

Number Formats in Memory Windows

The memory windows in the following figures show examples of different
memory number formats.

Visual DSP++ 5.0 User’s Guide 2-67

Debugging Windows

Data(DM) Memary [Binary]
[00D108] o00o00o0o00o000010000001111100a00 *I
[00D10%] O00000o0000000001000000111110000
[00D10AT 011111121311111311111111311111111111
[O0D10E] O0000000000000001000000111110000 J
[O0D10C] o00oo00o0o00o00001000000111110110
[00D10D] 111111111lllllllllllllllllllllll_lll
H

Kl

Figure 2-44. SHARC Memory Window in Binary Format

DakafDr) Memory [Ockal]
[00D108] 00000100760 AI
[00D10%9] 00000100760
[O0D10A] 17777777777
[0OD10E] OOO0OO100%&0 _I
[00D10C] 0OODO100%766A
[O0DL1OD] 37777777777

-

= 2

Figure 2-45. SHARC Memory Window in Octal Format

Datal D) Memory [Hexadecimal]

[0OD1EE] 00002509 QOO0084ES *I
[0OD1IBA] OOO0QE4ES Q0O0O084ES
[0OD1IBC] 0000B4ES QOOO0OB4ES _I
[0OD1IEBE] 0000E4ES Q0O0084ES
[0OD1cC0] o000E4ES QOOO0B4ES
[0OD1C2] 0000EB4ES QOOO8539 -

4 2

Figure 2-46. SHARC Memory Window in Hexadecimal Format

2-68 Visual DSP++ 5.0 User’s Guide

Environment

DakafDi) Memory [Unsigned Integer]
[00D1BE] 34057 34021 -
[00D1BAT 34021 34021
[0O0D1BC] 34021 34021
[DOD1BE] 34021 34021 _I
[00D1CO] 34021 34021
[00D1C2] 34021 34105 -
KN M

Figure 2-47. SHARC Memory Window in Unsigned Integer Format

Memory Window Right-Click Menu

Memory windows provide a right-click menu. Choosing the Select For-
mat command enables you to change the display’s number format.
Figure 2-48 shows the formats available for SHARC processors. Available
formats depend on the processor.

Expression Tracking in a Memory Window

While you are stepping through code, a memory window configured for
expression tracking shows the memory at the address specified by the
expression. The title bar displays the tracking expression. See Figure 2-49.

When the target halts, the tracking expression is evaluated and the mem-
ory window jumps to that address. For example, when the tracking
expression is “$PC”, the memory window behaves like the Disassembly
window.

Rules

* In a memory window, several expressions for tracking can be
configured.

* In a memory window, only one expression (the active expression)
can be tracked at any time.

Visual DSP++ 5.0 User’s Guide 2-69

Debugging Windows

Go To... Ctrl+G
Curmnp...
Fill. ..

Lock Colurmns
v Address Bar

t Format v Hexadecimal

. Einary
Mew Tracking... el
v Allow Docking Signed Inkeger
Close Unsigned Integer

Floating Point 32 bik
Signed Fractional
Unsigned Fractional
Signed Integer 32 bit
Signed Integer 16 bit
Unsigned Integer 32 bit
Unsigned Inkeger 16 bit

Floak In Main Window

Available
formats depend ——p» Signed Fractional 32 bit
on processor Signed Fractional 16 bit

Unsigned Fractional 32 bit
Unsigned Fractional 16 bit
Hex32

Hexleg

Hexd

Binary 32 bit

Binary 16 bit

Binary & bit

Character

Aasembly

Figure 2-48. Example: Memory Window Formats for SHARC Processors

e The active expression appears in the memory window’s title bar.

2-70 Visual DSP++ 5.0 User’s Guide

Title bar _I

Dat- D) Short Whord Mernory [Hexadecimal]

Environment

-

[04006E]
[040073]
[040078]
[04007D]
[040082]
[040087]
[04008C]
[040091]
[040096]
[04009E]

ki

oooz
063E
oaoa
EtFFE
0402
OF0o
a000
14ZE
oooz
063E

oFan
eqoo
142E
oaonz
0e3E
oaoa
SFFE
040z
oFan
eqoo

ooan
LFFE
0402
OF0o
000
14ZE
oonz
063E
ooan
LFFE

142B
oonz
063E
oaoa
tFFE
040z
OF0o
a000
142B
oonz

o402
OFoo
eqoo

14ZE

oaonz

063E

oaoa

SFFE

o402

OF00 o
F

=1

||

Select the
expression
you want
to track

Edit
Go To...
Durp. ..
Fill...

Ctrl+3

Lock Columns

Select Format

Mew Tracking. ..
Delete Tracking. ..

Select Tracking

v Allow Cocking
Close

Flaat In Main Window

v $PC
$10

Figure 2-49. Expression Tracking in a Memory Window

Visual DSP++ 5.0 User’s Guide

2-71

Debugging Windows

e The memory window’s right-click menu displays a list of config-
ured expressions, from which to select only one expression for

tracking.

e To track multiple expressions, open multiple memory windows
and track one expression per window.

Memory Window Display Customization

You can specify the colors used for symbols, data, address values modified
values, and undefined memory regions. You can also adjust the width of
the window to display a particular number of data columns. For example,
the memory window in Figure 2-50 is sized to display five columns.

Tigersharc Memory [Hexadecimal]

[1000&84] oO0OOOOO
[100089] 00100089
[10008E] 0010008E
[100093] 00100093
[100098] 00100098
[10005D] 00100090
[100042] 00100042
[10004A7] 00100047
[10004AC] 0O01000AC

Kl

datad_

buf_hi

ooooaooao
00100084
ooloo0o8r
oo1o00094
oo1o0o0399
0010009%E
00100043
0010004As
001000AD

oooooooo oooooooo ooio0028
0010008 0010008C 0010008D
00100090 00100091 00100092
00100095 00100096 00100097
00100094 0010009E 0010009C _J
001000%F 00100040 001000A1
00100044 00100045 001000A6
001000A% 00100044 OO1000AR
001000AE 001000AF DDIDDDBEJ:J
2

Figure 2-50. Example: Memory Window Sized to Display Five Columns

The commands available via the menu bar’s Memory menu and the
memory window’s right-click menu depend on the processor that
you are debugging.

2-72

Visual DSP++ 5.0 User’s Guide

Environment

Background Telemetry Channels (BTCs)

Background telemetry channels (BT Cs) enable VisualDSP++ and a pro-
cessor to exchange data via the JTAG interface while the processor is
executing. Before BTC, all communication between Visual DSP++ and a
processor took place while the processor was in a halted state.

Background telemetry channels are supported only in SHARC and
Blackfin emulator sessions. For information about using BTCs,
refer to the VisualDSP++ Getting Started Guide and online Help.

BTC Definitions in Your Program

Background telemetry channels are defined on a per program (.DXE) basis.
The channels are defined when a specific program is loaded onto a proces-
sor. Define channels in your program by using simple macros.

The following example code shows channel definitions.

#include "btc.h"
.section/DM seg_dmda; // for ADSP-2126x processors

BTC_MAP_BEGIN
BTC_MAP_ENTRY ('Channel0', 0xf0001000, 0x00100)
BTC_MAP_ENTRY ('Channell', 0xf0002000, 0x01000)
BTC_MAP_ENTRY ('Channel2', 0xf0003000, 0x10000)
BTC_MAP_END

The first step in defining channels in a program is to include the BTC
macros by using the #include btc.h statement. Then each channel is
defined with the macros. The definitions begin with BTC_MAP_BEGIN,

Visual DSP++ 5.0 User’s Guide 2-73

Debugging Windows

which marks the beginning of the BTC map. Next, each individual chan-
nel is defined with the BTC_MAP_ENTRY macro, which takes the parameters
described in Table 2-17.

Table 2-17. Parameters for the BTC_MAP_ENTRY_ASM Macro

Parameter Description

Name Name of the channel (32 characters max)

Starting address Starting address of the channel in memory

Length Length of the channel in 32-bit words for ADSP-2126x processors

Once the channels are defined, end the BTC map by using the
BTC_MAP_END macro.

Enabling BTC on ADSP-2126x and ADSP-BF36x Processors

After the channel definitions are added, the BTC must be initialized with
a call to the _btc_init function during the application’s start-up code.

After initialization, BTC commands from the host are processed via the
low-priority emulator interrupt (EMULI). A vector to the interrupt service
routine must first be installed.

In assembly language, the vector can be installed with a jump to a
_btc_isr instruction placed at the EMULI vector location:

JUMP _btc_isr;

After the interrupt vector is installed, the interrupt itself must be enabled
with the following code:

// setup imask
ustatl = imask;
BIT SET ustatl EMULT;
imask = ustatl;

2-74 Visual DSP++ 5.0 User’s Guide

Environment

// enable interrupts
ustatl = model;

BIT SET ustatl IRPTEN;
model = ustatl;

In C/C++, the vector can be installed with the interrupt function as
follows:

interrupt (SIG_EMUL, btc_isr);
In C/C++, the interrupt function enables the interrupt for you.

After adding code to initialize BTC and enable the BTC interrupt, you
must link with the BTC library (1ibbtc26x.d1b for assembly applications
or 1ibcbtc26x.d1b for C/C++ applications). This library contains the ini-
tialization function, interrupt service routine, and other functions that
permit data transfer over the BTC.

BTC Priority

On ADSP-2126x and ADSP-BFBF36x SHARC processors, BT'C data
transfer is handled through the low-priority emulator interrupt (EMULI).
Since the priority of this interrupt is fixed, the priority of BTC is also
fixed.

The priority of the BTC can impact the response time from when the host
requests data and the processor responds. Once the processor begins to
service the request, interrupts can still be serviced by the processor. BTC
performance can be affected by the frequency of system interrupts.

BTC Memory Window

The BTC Memory window lets you view background telemetry channel
contents in real time. The window displays the contents of the address
that you want to see. Change the window’s view to meet your needs.

Visual DSP++ 5.0 User’s Guide 2-75

Debugging Windows

Open this window by choosing View, Debug Windows, and BTC

Memory.

Figure 2-51 shows the contents of a specified channel only (for example,

Channell).

[BTC Memory

=1 E3

IEhanneH

-~

[FO002000]
[FO002010]
[FO002020]
[FO002030]
[FO002040]
[FO002050]
[FO002060]
[FO002070]
[FO002080]
[FO002090]
[FOO020A0]
[FO0020B0]
[FO0020C0]
[FO0020D0]
[FOO020ED]

03020101
13121110
23222120
33323130
43424140

07060504
17161514
27262524
37363534
47464544

0b0a0908
1blal91s
2b2az923
3b3a3%38
4b4z4948

53525150 |57565554| 5b555958

63626160
73727170
83828180
93929190
aidazalal
b3b2b1b0
c3cdclcl
d3d2d4140
=lelelel

676B6564
77767574
87868584
97969594
a7ababad
b7beb5Sbd
c7obchod
d7d645d4
=7e6=bed

6hbab968
7h7a7978
8b8ag988
9b959998
abasa%al
bbbabdb8
choac9c8
dbdad9ads
ebea=9e4d

0f0e0d0c
1fleldic
2f2e2d2c
3f3e3dic
4f dedddc
5fEebdbc
6fbebdbc
7f7e7d7c
8f8=8dic
9f9=9d9c
afasadac
bfbebdbc
cfcecdoc
dfdedddc
efesedec

=

=

Figure 2-51. Example: Viewing Contents of a Specified Channel Only

2-76

Visual DSP++ 5.0 User’s Guide

Environment

Figure 2-52 shows the list of currently defined channels and the contents

of the selected channel.

F BTC Memory !El m

Mame I Start Address | Length [in Bytes]

Channell

0100
01000

Chatnel2 0+f0003000 010000

[FOOOZ2000] (03020101 07060504 0b0a0908
[FOOO20107 13121110 17161514 1bla1918
[FOOOZ2020] 23222120 27262524 2b2a2928
[FOOOZ2030] 33323130 37363534 3b3a3938
[FOOOZ20407 43424140 47464544 4b4=24948
[FOOO2050] 53525150 57565554 ShEaG958
[FOOOZ2060] 63626160 67666564 Bbeat9cd
[FOOOZ2070] 73727170 77767574 7h7a7978
[FOOOZ2080] 83828180 87868534 8b8s3988
[FOOOZ20907 93929190 97969594 9b9=59998
[FOOO2040] a3aZalal a7afabad abaaafal

0f0=0dic
lfleldlc
2f2edic
3f3eiddic
4fde=ddic
5f&ebdbc
GfGebdec
Tf7e?die
af8=8dac
9f9=9d9c
afasadac

=

Figure 2-52. Defined Channels and Contents of a Selected Channel

Visual DSP++ 5.0 User’s Guide

2-77

Debugging Windows

BTC Memory Window Right-Click Menu

Table 2-18 describes the BTC Memory window’s right-click menu.

Table 2-18. BTC Memory Window Right-Click Menu

Command Purpose

Go To Opens the Go To dialog box, in which you specify an address. The
specified address appears in the top-left corner of the display. The
address must be within the range defined for the channel currently
being displayed.
Tip: Double-clicking in the address column also opens the Go To dia-
log box.

Show Map Shows or hides a more informative map display of all the current chan-

or nel definitions
Hide Map Show Map displays a channel list. Double-click a channel to display its

contents in the lower portion of the window.
Hide Map removes the list of channels. The selected channel remains
in the display.

Lock Columns

Locks or unlocks the number of columns currently displayed in the
window

Select Format

Specifies how to display data in the window. Choices include double
words (32 bits), words (16 bits), and bytes (8 bits).

Refresh Rate

Specifies the refresh rate, which is used when Auto Refresh is chosen.
The display is updated at the selected interval.

Auto Refresh

Enables the window to refresh itself at given intervals. The rate is spec-
ified by Refresh Rate. Auto Refresh mode is valid only while the pro-

cessor is running.

Channel Timeout

Specifies the length of time to wait for any single response from the
BTC. If the timeout value is exceeded, the current transaction ends.

Register Windows

Access various register windows via the Visual DSP++ Register menu. The
available commands (and subsequent windows) depend on the processor.

2-78

Visual DSP++ 5.0 User’s Guide

Environment

Figure 2-53 shows an example Register menu tree for a SHARC

processor.
Register File Program Counters
Manage. .. DaE1 (DR Loop Counters
CAG2 (PM) Cyele Count
nkerrupts
(mone) Interrupk
Courkers ¢ Loop Address
Reqisker Stacks L Loop Counker
Custom — Status ¥ PC Stack
a Inactive Registers ¥ Skakus
Lore Cther »
=ystem " ASTAT
IoF — System Contraol LUSTAT
W C STR¥
: MODE1
DMA Addressing MODES
DMA Skakus
External Port Control Reqisker File'
SPORT Mulkichannel Cankral DAGL (DM)
SPORT Divisors ErSets (AUl
SDEAM Cankral MR Registers
I Part Contral P¥ Reqisters
[} Ports Skatus 125 Mode Cache Control
SPORT Control F— DSP Serial Mode Cache Contents
Tirmer Contral Multi Channel Mode

Figure 2-53. Example: Register Menu Tree for a SHARC Processor

Visual DSP++ 5.0 User’s Guide 2-79

Debugging Windows

Figure 2-54 shows an example of a data register file in a register window.

Active Beqgister File H

RO geodadlzad RE oeododalan
R1 IED@3FCSE6 RS @egdadadasd
RZ2 Ga@aaealaéd Rl 4aC3aFDESS
F2 aegeadalad R11 &8080818d
R4 aeaaadlsad R1Z 080808180
RS geg@agaaasd R13 000808080
Fo @@gaaals@d R14 000808080
R7 oegaaalasd R15 000808080

Figure 2-54. Example Register Window

A register window enables you to:
* View and change register contents
* Change the window’s presentation (number format)

Register window number formats include standard formats, such as hexa-
decimal, octal, and binary. Depending on the processor, other formats
may be available.

You can change a register’s data directly from within a register window.
The modified register content is used during program execution. Edits to
data do not affect your source files. To make changes permanent, edit the
source file and rebuild your project.

Stack Windows

Depending on your processor, access to various stack windows is available,
including:

e PC stack

e Counter stack

2-80 Visual DSP++ 5.0 User’s Guide

Environment

* Loop tack
e Status stack

Access stack windows via the Register menu. For more information about
g
your processor’s stack windows, consult Visual DSP++ Help.

Custom Registers Windows

While debugging, you can configure and display Custom Registers
windows. To create a Custom Registers window, choose Register,
Custom, and Manage. Then configure and add the registers that you want
to display. The Custom Registers window appears immediately after it is
created.

Each Custom Registers window displays a customizable title and the
registers that you choose to monitor. The Custom Registers window
shown in Figure 2-55 displays the contents of five registers.

Custom Reqgiskers

RO 0000204200

R4 0000204200

R3' 0000000000

RS 0000000000
USTAT1 00000000

Figure 2-55. Example: A Customized Registers Window

Visual DSP++ 5.0 User’s Guide 2-81

Debugging Windows

Custom Board Support

VisualDSP++ 5.0 allows you to:

* Maintain custom board support files. New versions (upgrades) of
Visual DSP++ or software updates will not overwrite these files.

* Associate a custom board support file with a particular debug ses-
sion. There is no need to rename files as there was with previous
versions of VisualDSP++.

@ This feature is available only when using Emulator and EZ-KIT

debug sessions.

As of VisualDSP++ 5.0, you no longer need to edit the .xm1 files supplied
by Analog Devices in the <install_path>\System\ArchDef directory.
Instead, you can construct custom board support files that modify base
specifications and add new content.

Custom Board Support Files

Custom board support files are XML files created by end users. A custom
board support file may contain definitions for custom registers, register
resets, and register windows. A custom board support file, which is parsed
after a processor definition file is parsed, may override definitions in the
processor definition file.

Custom board support files enable you to:
e Customize the content and layout of register windows

* Specify register reset values for your custom board

2-82 Visual DSP++ 5.0 User’s Guide

Environment

View the content of any register on your custom board (not just
Analog Devices processor memory-mapped registers [MMRs])

* Display your custom register windows via the VisualDSP++
IDDE's Register menu (you configure menu items that open the
customized register windows)

For detailed information and examples on using custom board support,
refer to online Help.

Processor Definition Files

Processor definition files are shipped with VisualDSP++ and are installed
into the <install_path>\VisualDSP\System\ArchDef directory. These
XML files contain definitions for a processor's registers, register resets,
register windows, and memory types.

Analog Devices recommends that you do not modify the standard
processor definition files because they (and any changes you might
make to them) may be overwritten when a VisualDSP++ update is
installed. Instead, place your customizations in custom board sup-
port files, which will not be overwritten by VisualDSP++ updates.

The processor definition file is parsed before the custom board support file
(if used) is parsed. Specifications in the custom board support file will
augment and/or override the specifications in the processor definition file.

Multiprocessor Window

The SHARC and TigerSHARC simulators do not support

multiprocessor (MP) debugging; multiprocessing for these proces-
sors is available in emulator sessions only. Multiprocessing support
for Blackfin ADSP-BF561 and ADSP-BF566 processors is available

in simulation.

Visual DSP++ 5.0 User’s Guide 2-83

Debugging Windows

Use the Multiprocessor window (Figure 2-56) to select and control the
different processors in a multiprocessor debug session.

Multiprocessor x|

Froceszsor I State I
& PO Halhed
g Haled
P2 Halted

@ P3 Halted

@ P4 Halted

@ PR Halted

AL (R, status

Figure 2-56. Example: Multiprocessor Window

Multiprocessor Window Pages

The Multiprocessor window has two tabbed pages, Status and Groups.

Status Page

The Status page (Figure 2-57) shows the status of each processor in the
multiprocessor system. A horizontal bar highlights the processor with

focus.

Change focus by clicking on a processor in the list.

2-84 Visual DSP++ 5.0 User’s Guide

Environment

Multiprocessor x|
Processar I State I

S Pl Halted
@ M Halted
o p2 Halted
@ P3 Halted
P4 Halted
S PR Halted

4 |]

[B satus A Groups f

Figure 2-57. Multiprocessor Window — Status Page

Groups Page

The Groups page (Figure 2-58) shows the current list of multiprocessor
groups. A Default group is created with each new multiprocessor session.
The members of the Default group are the processors that you checked off
under Multiprocessor System in the New Session dialog box.

[Eroup Mame F'EI F'1 F'2 P3 P4 | P&
gru:uup.-’-'-.

wmmmmlw

test group

1 |]

A>T stetes f, Groups /

Figure 2-58. Example: Multiprocessor Window — Groups Page

Visual DSP++ 5.0 User’s Guide 2-85

Debugging Windows

From the Groups page, you can assign one or more processors to a group.
Performing a multiprocessor operation (MP Run, MP Halt, MP Step,
MP Reset, and MP Restart) affects only the processors in the currently
selected group.

Right-clicking on the Group page displays a context menu for adding or
removing a group.

Operating on Multiprocessor Groups

For example, if a session contains three processors (A, B, and C) and a
group is created that contains A and C. Running the MP Run command
runs A and C only, and B remains unaffected.

Focus

Processor focus changes, depending on the window currently selected.
To move focus among the processors, click on a processor listed in the
Multiprocessor window (Figure 2-56).

You can pin a register window, a memory window, or Disassembly win-
dow to a specific processor. Select the processor in the Multiprocessor
window and right-click in the window that you want to pin. Then choose
Pin to Processor to lock the window to the selected processor. A window
pinned to a processor always displays that processor’s data, regardless of
the currently focused processor.

For example, if a register window is pinned to Processor 1 and a memory
window is pinned to Processor 2, selecting the register window moves the
focus to Processor 1. Selecting the memory window moves the focus to
Processor 2. The Multiprocessor window’s Status page reflects the change
in focus.

2-86 Visual DSP++ 5.0 User’s Guide

Right-Click Menu

Environment

The Multiprocessor window’s right-click menu (Figure 2-59) offers these
commands:

Add Mew Group
Bename Group
Delete Group

Add New Group
Rename Group

Delete Group

Select All Processors
Unselect All Processors
Allow Docking

Hide

Float in Main Window

Select All Processors
Unzelect &ll Processors

Allow Docking
Hide

Flaat [r M ain SwAindow

Figure 2-59. Multiprocessor Window’s Right-Click Menu

Visual DSP++ 5.0 User’s Guide

2-87

Debugging Windows

Pipeline Viewer Window

(TigerSHARC and Blackfin processors in simulation only) The Pipeline
Viewer window (Figure 2-60) displays instructions in the pipeline and
allows you to view event details. Open this window by choosing View,

Debug Windows, and Pipeline Viewer.

5| B 118K 0x44
¥ LINK 0=44 : 8
) LINE 0x:44 X LINK 0x:44
) LINE 0x=44 ¥) LINK 0x=44
LINE 0x44 ¥ LINE 0xd4

'I ST --""h..__ |z 1az; 1 I ‘\ [T
EIEE L3 A L T [== = B THE f:aa . - ut el
wi o+ | - - P H
EE70 1 L E T [57 ia “IH g . i B “IHE
w1 1o+ Iz | - - TIE N7 . i T EH
E372 D FEE 1 nx. .. [TZ Za “IHE Oxaa . = T ZIHE 0xas . - i
R L1 = | f'= = 1o+ lix ILowe i T TR T 1 T
E:7a EL.H 0. . L K EE 1 ... [“IHE 0maa . - X ZIHE
e [NTRC F e (R | it= = 1o+ L 1 T
E27E F0 FL1... = -t FL.LH o . 3. L : N L 5 ta —IHE
ww th eepeno- [[[N P » . (Rl | 7r- - 1
E57% CAalT (oo Fo FL ... 32 - FL.LH o . 3. L : . EF
wien [1 th -eren - - [RTCI F - 11
EEE0 1] Call (ua- Fo FL1... £ -i FL.H
wimn e wem - @ - B oo o - = Lone h ttren - e - L=
E3E2 L3 2 L T LIIZ3 lall [IHE 0::0 . Iz B CTHE 00 . CalT [ueerz Fi
i [T | - - K e - H 1 B ok e - = [Th
Eifa 1 L E T [57 ia =IHE oz . I B “IHE 00 L B _1HE
il 1o+ lix | fr- - HIE i - g L i TR T H Lowe B ux
E33E D FEE 1 nx. .. [TZ Za ZIHE 030 . Iz X1 ZIHE 00 . I tal B “1HE
winy L= | 7t Ty I 1 TP AR 1 TS

Figure 2-60. Pipeline Viewer Window

For SHARC processors, the Disassembly window displays symbols

(F, D, or E), indicating an instruction’s pipeline stage.

Column headings refer to pipeline stages for the processor’s core registers.
Refer to your processor’s hardware documentation for details.

2-88

Visual DSP++ 5.0 User’s Guide

Environment

Right-Click Menu of Pipeline Viewer Window

The Pipeline Viewer window’s right-click menu provides the commands

described in Table 2-19.

Table 2-19. Pipeline Viewer Right-Click Menu

Item Purpose

Enabled Enables and disables collection of pipeline data while running or step-
ping

Clear Empties the current sample buffer

Display Format

Controls the display format of data

Address shows the hexadecimal-formatted address of the pipeline stage
(for example, 0x1234). Use this format to follow a particular address
route through the pipeline.

Disassembly disassembles the instruction at that address and shows the
opcode mnemonic, similar to a Disassembly window. Use this format to
determine why a particular event is occurring.

Opcode format is the hexadecimal representation of the disassembly
mnemonic.

Save Opens the Save As dialog box, where you export the collected data to a
text file
Properties Opens the Pipeline Viewer Properties dialog box, where you view and

specify properties (buffer and display depth, display format, column
widths, grid lines, and the appearance of stages) for the Pipeline Viewer
window. You can also modify window colors.

Visual DSP++ 5.0 User’s Guide 2-89

Debugging Windows

Pipeline Viewer Properties Dialog Box

From the Pipeline Viewer Properties dialog box, you can specify how the
Pipeline Viewer window displays pipeline events. Display is specified in
depth and format. Table 2-20 describes the Pipeline Viewer properties.

Table 2-20. Pipeline Viewer Properties

Property Item Purpose

Buffer depth Specifies the total number of pipeline samples to retain at any
time. When this buffer overflows, the oldest data shifts out to
make room for new samples. The default is 100.

Display depth Specifies the number of samples to display.

Adjust this number to meet your performance needs. The lower
the depth, the faster the target can run. This option cannot be set
greater than the Buffer depth. The default is 20.

Display format Specifies the data’s format

Address includes the hexadecimal-formatted address of the pipe-
line stage (for example, 0x1234).

Disassembly includes the opcode mnemonic, similar to the for-
mat displayed in a Disassembly window.

Opcode format is the hexadecimal representation of the disassem-
bly mnemonic.

Show gridlines Toggles the display of gridlines in the window. The default is On.

Auto-size columns Automatically sizes all columns to have the same width as samples

are collected. The default is On.

Stages to view Specifies the stages to appear in the window. Note that all stages
are collected, but you view only the stages that you select to

appear.

From the dialog box’s Colors tab, you can specify the colors that display
in the Pipeline Viewer window. The current color appears under Current
Color. Click a color in the color palette or click Other to specify a custom
color. Click the Reset button to restore the default colors.

2-90 Visual DSP++ 5.0 User’s Guide

Environment

Pipeline Viewer Window Event Icons

Table 2-21 shows Pipeline Viewer window icons that indicate pipeline

stage events for ADSP-TS101 and ADSP-TS20x TigerSHARC processors.

Table 2-21. Pipeline Viewer Event Icons

Icon Event Description
Abort A stage contains an instruction that has been aborted.
Invalid A stage contains a placeholder representing a result of an
Instruction in | invalid fetch. This condition occurs when an instruction
}:: fetch pipe alignment buffer is full; or the fetch pipe was flushed because
of an abort in the execution pipeline.
Stall A stall has been generated at a stage of the pipeline.
Wait An instruction at a stage of the pipeline waits to be executed
W (because of a stall down the pipeline).
Bubble The pipeline stage contains an invalid instruction as a result of
B a stall up the pipeline.
Hit An instruction at a stage is a branch target buffer hit. The

address of the last slot of the instruction line was found in the

branch target buffer.

The icons in the above table are listed in descending priority. When more
than one event occurs at a certain stage at a certain cycle, only one icon
displays—the icon with highest priority. For example, if an instruction
that was a Branch Target Buffer hit is aborted, the Abort icon [f} appears.

Visual DSP++ 5.0 User’s Guide 2-91

Debugging Windows

Pipeline Instruction Event Details

To view event details, press and hold down the keyboard’s Ctrl key and
move the mouse pointer over the cell in the Pipeline Viewer window. The
pipeline event details appear in a tool tip (message) box, as shown in

Figure 2-61.

8|

B rive 0=x44 . @ LINK

Details for stage ADDRESS (cycle 6369) LINK
Address: Invalid

Instruction: Irsalid

Event O: LINK

Type: Stall LINK

Cause: Il empky LINK

Details: Skall in skage DEC LINK

[FF

[FF

R1.L

RO = RO = -12 : R1.H

Figure 2-61. Example: Tool Tip Box Showing Pipeline Event Details

A pipeline event can include the details described in Table 2-22.

Table 2-22. Pipeline Event Details

Item Displays

Address Address of the pipeline stage at that cycle (if valid)
Instruction Assembly instruction of that address (if valid)

Type Type of event

Cause Cause of the event condition

Details Further explanation of the cause of the event (if applicable)

2-92

Visual DSP++ 5.0 User’s Guide

Environment

Cache Viewer Window

(Simulation only) The VisualDSP++ Cache Viewer window provides a
means to visualize a processor’s cache and locate problem areas. The tool
shows how instructions are being executed. Use this information to boost
your application’s performance.

The Cache Viewer window (Figure 2-62) displays each instruction’s exe-
cution characteristics. Cache Viewer information indicates the type of
cache event and describes the cause of the event. Each instruction that exe-
cutes from cache is marked with an H (hit) or an M (miss). Hits represent
cache instructions executed without a stall. Misses identify instructions
fetched from slower parts of memory, because they were not found in
cache.

[»] Cache Yiewer M=l Eq
Ilcache 'I

Set # | Way O | Way 1 | Way 2 | Way I+]
73 M o=x00002138
74 M 0=00002158
75 M o=00002168 0=00002978
76 [l 0=x00002198 M| 0=x00002980
77 . 0z00002153 Uz000hetails for set 76, way 1

78
79 [0=x00002120
20 [oxoo00z2218
21 W o=xo0002238
g2
a3

0x000 Cycle: 23997
ne00g PC Address: 0x00002930
O=000 Ref Address: 0x00002980
Symbol Lookup:
0=000 yalid: Yes
O=000 Ewent Type: Compulsary Miss
D000 Description: Data was accessed Far first bime,

EEEzEEEE

Kl
Configuration I Detailed Yiew | History _ i}

Figure 2-62. Viewing a Cache Event’s Details in the Cache Viewer

Visual DSP++ 5.0 User’s Guide 2-93

Debugging Windows

Use the hit or miss information to increase an application’s performance

by locating instructions in the cache when they are needed. Ensuring that
no cache misses are located in frequently executed areas of an application
(as highlighted by the profiler utility) is a critical step in optimizing your
application’s software performance.

As shown in Figure 2-62, the Cache Viewer window enables you to view
the details of any cache event. These descriptive details help you under-
stand the cause of the cache event. Use this information to isolate areas
where performance can be improved.

For example, based on cache event details, you might:
* Modify an application’s layout in memory to avoid cache thrashing
* Prefetch instructions to avoid compulsory misses

* Lock down ways in the cache to avoid a conflict miss with a fre-
quently accessed instruction

Open the Cache Viewer window by choosing View, Debug Windows,
and Cache Viewer.

The Cache Viewer consists of several tabbed pages, described in

Table 2-23.

Table 2-23. Cache Viewer Window Pages

Page Displays

Configuration Cache configuration information
Detailed View Location (set and way) of cache event
History List of cache events

Performance Cache performance metrics

Histogram A plot of cache activity

Address View Cache events on an Address vs. Cycle plot

2-94 Visual DSP++ 5.0 User’s Guide

Environment

The Cache Viewer window’s right-click menu (described in Table 2-24)
enables you to read, write, and step a cache events log, which is a file that

records cache events.

Table 2-24. Cache Viewer Window’s Right-Click Menu

Menu Option

Description

Enabled Enables and disables collection of cache data while the target is
running or stepping
Clear Clears all displays and deletes all stored cache data

Map References

Opens the Map References dialog box, where you specify the

cache reference map (start address and end address)

Event Log -> Read

Opens the File Open dialog box, where you select and open a
cache events log file. The log file data is used by the Cache

Viewer window’s Configuration view.

Event Log -> Write

Opens the File Save dialog box, where you save a cache events
log file. Cache events are written to this log file.

Event Log -> Step

Executes one cache event at a time from the cache events log
file. The cache event displays in the Detailed View, History,
and Histogram pages of the Cache Viewer window.

By default, this option is enabled when a cache log file is
opened for reading.

Properties

Opens the Cache Viewer Properties dialog box, where you
specify the Cache Viewer window’s appearance

The cache events log file does not include icons. Thus, the Cache
Viewer window’s Detailed View page does not display icons.

Stepping enables you to execute one cache event at a time from the cache
events log file. The cache event displays on the Detailed View, History,
and Histogram pages. When stepping is configured, a check mark appears
next to the Step command on the right-click menu. By default, this
option is enabled when a cache events log file is opened for reading.

Visual DSP++ 5.0 User’s Guide 2-95

Debugging Windows

Configuration Page

The Configuration page (Figure 2-63) displays configuration information
for configured cache.

CacheViewsr [N

lcache j
ke | Walue
Cache Mame lcache
Murmber of Sets 128
Murmber of ‘W aps 4
Cache Size 0 Kbytes
Line Size 32 bytes
1| |]
Eunfiguratiunl Detailed ... I Histury] Ferfurmance] Histogram | Address ___ I

Figure 2-63. Example: Configuration Page

The Cache Selection pull-down box (top of dialog box) lists cache dis-
plays. When multiple caches are configured, use this list to change cache
displays.

The Cache Configuration list box (below the Cache Selection pull-down
box) displays a list of items and their values. The first three items (Cache
Name, Number of Sets, and Number of Ways) are required. The target
may display additional items, such as Cache Size and Line Size. The list of
items depends on the selection in the Cache Selection pull-down box.

2-96 Visual DSP++ 5.0 User’s Guide

Detailed View Page

Environment

The Detailed View page (Figure 2-64) displays a grid, depicting cache sets

(rows) and cache ways (columns).

CacheViewer N9
|zache j

Set # | Way O

|I'.Ta5,r 1

| Way 3]

|Ha5,r 2

10
11 [o=foooo17s
12 [o=foooo19s
13 [ozfoo001bs
14 [o=fo00014ds
15

16

17 :
18 [ozfoooo0ass
19 [o=fo000a7s8
20 M| 0=f0000a80
21
22
23

Kl

B o=ioo00598
B oziooo0o0chs
B o0xfoooosds

|

ol

Configuration | Detailed .. l Histur_v] F‘erfurmance] Histugram] Address . I

Figure 2-64. Example: Detailed View Page

Data received from a cache event is placed in the cell corresponding to the

cache set and way. The most recent cache events are highlighted.

Each cell has an icon and text entry. The icon indicates the type of cache
event (hit, miss, and so on) that occurred. Depending on the selected
objects, details (such as reference address, PC address, cycle count, event
type, event description, and so on) can be shown.

Visual DSP++ 5.0 User’s Guide

2-97

Debugging Windows

Pressing down the keyboard’s Ctrl key and moving the mouse over a cell
displays a tooltip, showing cache event and cache line information.

A lock icon in the column header indicates that the cache way is locked.

A reference map icon in the Set # column indicates the results of the refer-
ence mapper function. Double-clicking on a cell switches the display to
the history view (History page) for the selected cell.

History Page

The History page (Figure 2-65) displays detailed information for each

cache event that occurred in the selected set and way.

Cache Viewer |53
lcache j
Set # I,-'l'-.ll vl Wadan § I,-’:-.II vI
Index # | Set#t [waytt | Cvcle | PCaddess | Refaddess | SymbolL.. [ves
2 5 1] 13, 0=f00004b8 OxfO0004b3 Yei
1 a] 13.. 0=f00004b0 O«f00004b0 e
0 5 0 13, 0«f00004a8 OwfOOOQ4a3 _init_argy e
a B] 13.. 0=f00004d8 O«f00004d3 e
v B] 13.. 0=f00004d0 O«f00004d0 e
B B i 13.. 0«f00004c8 O«f00004cE e
a B] 13.. 0=f00004cD O«f00004c0 e
4 B] 13.. 0=f00004d8 O«f00004d3 e
3 G i 13.. 0=f00004d5 Oxf00004d5 e
2 B] 13.. 0=f00004d0 O«f00004d0 e
1 B] 13.. 0=f00004c8 O«f00004c8 e
i E i 13, 0=f00004c0 Oxf00004c0 Y'e
2 v] 13.. 0=f00003f O«f0000360 e
1 7 n 13 M fONTREN T=FONCITRET e
4| PI' 3
Eunfiguratiun] Detailed __. I Histuryl Perfurmance] Histugram] Address __. I

Figure 2-65. Example: History Page

2-98

Visual DSP++ 5.0 User’s Guide

Environment

Select the set and way from the pull-down control (top of dialog box) or
by double-clicking a cell on the Detailed View page.

You can specify the number of stored cache events. Sort the rows by click-
ing on any column heading. An up arrow in a column heading indicates
an ascending sort order; a down arrow indicates a decending sort order.

Table 2-25 describes cache event history information.

Table 2-25. History Information for Cache Events

Item Description

Index # Shows the order in which the cache events were received. The
index starts at zero and increments each time a cache event is
received.

Set # Displays the set number where the cache event occurred

Way # Displays the way number where the cache event occurred

Cycle Displays the cycle count when the cache event occurred

PC Address Displays the PC address of the cache event

Ref Address Displays the reference address of the cache event

Symbol Lookup

Displays the symbol name when the reference address resolves
to a symbol in memory

Valid Displays the cache line valid flag. (The values are Yes or No.)
Event Type Displays the cache event type, such as Hit or Miss
Description Displays the cache event’s description

Performance Page

The Performance page (Figure 2-66) shows a list of performance metrics
(items and values), which are determined by the target.

The target updates this list. The update rate, however, is not

predetermined.

Visual DSP++ 5.0 User’s Guide 2-99

Debugging Windows

CacheViewer N
lcache j
Item | W alue
hizz Count 26
Capacity Mizzs Count]
Compulzony Mizs Count 26
Conflict Mizz Count]
Hit Count 2104
[rata Prefetch Count]
Penalty Count 0
| |]
Eunfiguraliun] Detailed ... I Histur_v] Perfurmancel Histogram | Addrezs ... I

Figure 2-66. Example: Performance Page

Histogram Page

The Histogram page (Figure 2-67) shows a plot of the total number of

cache events that occurred in each cache set.

A vertical line displays for each cache set. The line starts at zero and ends
at the total number of cache events. Use this plot to identify the most
active cache sets.

2-100 Visual DSP++ 5.0 User’s Guide

Environment

CacheViews

| lcache
Histograrm

100

/ 100 125

Set Mumber

Configuration | Detailed ... | History | Performance | Histogram | Address ___

=~

Figure 2-67. Example: Histogram Page

VisualDSP++ 5.0 User’s Guide

2-101

Debugging Windows

Address View Page

The Address View page (Figure 2-68) displays cache events on an Address
versus Cycle plot. Use this view to display the cache events for the speci-
fied addresses over time.

CacheViewer @

| lzache -

Start address:

Count; 100

15,000 2 25,000

o L o U

Configuration | Detailed ... | History | Perfformance | Histogram | Address]_

Figure 2-68. Example: Address View Page — Address Range View

Cache events display as icons, identical to the icons used in the detailed
view. A start address and count are required. Enter the start address as a
hexadecimal value or a symbol. Click the browse (...) button to browse for
a symbol.

The count determines the number of addresses displayed. After entering a
start address and count, click Update to display the cache event data. Use
horizontal and vertical scroll bars to scroll the view.

2-102 Visual DSP++ 5.0 User’s Guide

VDK Status Window

Environment

The VDK Status window (Figure 2-69) is available when an executable

file is built with VDK support enabled. Open this window by choosing
View, VDK Windows, and Status.

Thread I W alue
o A
[F-~z= ldle Thread Ready

[~z Thread 0 [kSypstemStant T hread]

[
[

[

Template D

Pricrity

Stack Address
MumTimezRun
CreationT ime [cycles)
RunStartTime [cycles)
RunLaztTime [cycles)
RunTatalTime [cocles]
CreationT ime [ticksz)
RunStartTime [ticks]
FRunLasztTime [ticks]

i~ Thread 1 [kPhilogzopherT bread]
i~ Thread 2 [kPhilozopherT hread]
[z~ Thread 3 [kPhilozopherT hread)

Template D

Pricrity

Stack Address
HumTimesRun
CreationT ime [cycles)
RunStartTime [cycles)
RunLaztTime [cycles)
RunTatalTime [cycles]
CreationT ime [ticks)
FRunStartTime [ticks]
FRunLasztTime [ticks]

i--~= Thread 4 [kPhilozopherT bread]

Ready [kPriority1 0]
0=00000000 [kSyztemStart T bread]
000000075 [kPriority10)
Q0030424

E

a045

36038

39234

22274

]

1

1

Rurning [kPriorite]

Feady [kPriarite]

Sleeping [0 Ticks Remaining]
000000007 [kPhilozopherT bread]
0=0000007 a [kPricrity]
Q0032294

3

22198

R3733

R3733

1407

]

3

3

Sleeping [0 Ticks Remaining]

Figure 2-69. Example: VDK Status Window

Visual DSP++ 5.0 User’s Guide

2-103

Debugging Windows

When the execution of a VDK-enabled program is halted, VisualDSP++
reads data for threads, semaphores, events, event bits, device flags, mem-
ory pools, and messages. It then displays state and status data in this
window. When one of the above VDK entities is created, it is added to the
display. An entity is removed from the display when it is destroyed.

Initially, information is displayed in a collapsed state, which shows only
the name of the entity and, in some cases, its current state. When a thread

is in the Ready state, its priority displays.

Clicking the plus sign () next to the name of an entity expands the

view.

The possible thread states are as follows.

Running

Ready

SemaphoreBlocked
EventBlocked
DeviceFlagBlocked
MessageBlocked
SemaphoreBlocked WithTimeout
EventBlocked WithTimeout
DeviceFlagBlockedWithTimeout
MessageBlockedWithTimeout
Sleeping

Unknown

See the VisualDSP++ Kernel (VDK) User’s Guide for details.

2-104

Visual DSP++ 5.0 User’s Guide

Environment

VDK State History Window

VDK state history is available only for executable files with VDK support.
During execution of a VDK-enabled program, if Full Instrumentation is
specified for the project, thread and event data are collected in a history
buffer. When a running program is halted, the history buffer data is plot-
ted in the VDK State History window, described in Figure 2-70. Some
features become available only when the data cursor is enabled. Open this

window by choosing View, VDK Windows, and History.
The VDK State History window has the following components:
e A cursor.

* Horizontal bars representing threads. The bar color indicates the
thread state.

* A green vertical line indicating a thread switch.

e Arrows representing thread events. The arrow color indicates the
event type.

* Status bar showing event details.

* A green line indicating an active thread. The length of the line
indicates the time the thread was active.

e A thread status bar.

Each thread appears as a horizontal bar (thread status bar). The ThreadIDd
and the name of the thread type appear to the left of the bar. When a
thread is destroyed, the name of the thread type is no longer displayed.
Each thread event appears as an arrow above a thread.

Visual DSP++ 5.0 User’s Guide 2-105

Debugging Windows

Bar Cursor Thread Thread
Cursor representing position switch event
thread line arrow

YDK State History I EE— &

Idle Thread

Threadstatusihange, Tick: 4, Yalue: 0 Status: From Ready
State History £ TargetLoad / -

Status bar— Active thread Thread status Active thread
indication duration

Figure 2-70. VDK State History Window

Thread Status and Event Colors

Threads and events are coded by color, based on thread status and event
type. The colors appear in the horizontal bars (threads) and colored arrows
(events) used throughout the plot. Events of the same type are drawn in
the same color.

Right-click on the plot and choose Legend to display legends that define
each color in the VDK State History window. To customize colors,
right-click on the plot and choose Properties.

2-106 Visual DSP++ 5.0 User’s Guide

Environment

Trace thread-switched history by following the thin green line, which
winds through the display, passing under threads to indicate the running
thread at any particular time. When a context switch occurs and changes
the running thread, a vertical green line is drawn from the previously run-
ning thread to the next running thread.

When you use the data cursor, a yellow triangle to the left of a thread
name identifies the currently running thread.

Window Operations

The status bar (at the bottom of the plot) on the State History page shows
the event’s details and thread status when the data cursor is enabled. Event
details include the event type, the tick when the event occurred, and an
event value. The value for a thread-switched event indicates the thread
being switched in or out.

Right-click on the plot and choose Data Cursor to activate the data cur-
sor, which is used to display event and thread status details. Based on the
event that occurred, the thread status changes. Press the keyboard’s right
arrow key or left arrow key to move to the next or previous event. When
the data cursor hits a thread-switched event, it moves to the thread being
switched in. The yellow triangle to the left of the thread name indicates
the currently active thread.

You can zoom in on a region to examine that area in more detail. Perform
this procedure:

1. Hold the left mouse button down while dragging the mouse to cre-
ate a selection box.

2. Release the mouse button to expand the plot.

3. To restore the plot to its original scale, right-click on the plot and
choose Reset Zoom.

Visual DSP++ 5.0 User’s Guide 2-107

Debugging Windows

Right-Click Menu

The VDK State History window’s right-click menu provides easy access
to operations that can be performed from the state history plot.

Target Load Window

Clicking the Target Load tab from the VDK State History window dis-
plays the Target Load window. A target load plot (Figure 2-71) shows the
percentage of time that the target spent in the Idle thread.

Target Load

Target Load

Figure 2-71. Target Load Window Plot

A load of 0% indicates that VDK spent all of its time in the Idle thread. A
load of 100% indicates that the target did not spend any time in the Idle
thread.

Load data is processed by means of a moving window average.

2-108 Visual DSP++ 5.0 User’s Guide

Environment

Plot Windows

Use a plot window to display a memory plot, which is a visualization of
values obtained from processor memory. You can display one or multiple

plot windows by choosing View, Debug Windows, Plot, and New.

In the Plot Configuration dialog box, specify the contents of a plot. In the
Plot Settings dialog box, specify the plot’s presentation. You can modify a
plot’s configuration and immediately view the revised plot.

Figure 2-72 shows an example of a plot window.

¥ Line Plot Example

Line Plat Example

Line Plot

Figure 2-72. Plot Window

From a plot window, you can zoom in on a potion of a plot or view the
values of a data point.

VisualDSP++ 5.0 User’s Guide 2-109

Debugging Windows

You can print a plot, save the plot image to a file, or save the plot’s data to
a file. For details, refer to VisualDSP++ Help.

Plot Window Features

Plot windows include a status bar, toolbar, and a right-click menu.

Status Bar

The status bar, located at the bottom of the plot window, displays the plot
type and other information, depending on the plot type and other
settings.

The following examples show different plot information displayed on the

status bar.

| Line Plot | |
AF=Y40 EL=220 Wigterfall Plot FFT |
[ca5, 13 %] | Lime Plot | |

|BTC Buffer Capacity: 38% |Live |Line Plat

Figure 2-73. Status Bar Information for Plots

In a waterfall plot, the status bar indicates the azimuth and elevation view-
ing angles. If you zoom in on a region, the status bar indicates that zoom
is enabled. When using the data cursor, the status bar shows the selected
point’s data value.

When a plot window’s auto-refresh mode is enabled in BTC mode, the
status bar indicates current buffer capacity (for example, 38%) and data
logging status.

2-110 Visual DSP++ 5.0 User’s Guide

Environment

Buffer capacity, which dynamically changes between 0 and 100%, indi-
cates the portion of the buffer currently in use. The ideal size is a little
below 100%. Readings of 100% indicate lost data.

Table 2-26 describes the data logging status indicators in a plot window.

Table 2-26. Data Logging Status Indicators in a Plot Window

Status Indicates
Record Real-time data being displayed is also being saved (logged) to a . BIN file.
Live Data is being displayed in real time.
Playback A previously saved data (log) file is being viewed.
Tool Bar

The plot window’s toolbar, shown in Figure 2-74, provides buttons for
recording and playing back streaming data and a box for specifying
streamed data (.bin) file names.

Right-Click Menu

The plot window’s right-click menu is shown in Figure 2-75.

This menu provides access to the standard window options (docking,
closing, and floating in the main window) and to the plot window features
described in Table 2-27 on page 2-114.

Visual DSP++ 5.0 User’s Guide 2-111

Debugging Windows

Play New
Stop —‘ Record | Open Filename
| I I

= b4 OBl

Lett

Figure 2-74. Plot Window’s Toolbar

Plot Window Statistics

View various statistics (mean, standard deviation, signal-to-noise ratio
(SNR), minimum data value, and maximum data value) while displaying a
plot. Note that statistics apply only to the portion of data that is visible.
When the plot is zoomed, the statistics are recalculated only for the visible
area.

Figure 2-76 shows statistics displayed for a portion of audio data.

For details about viewing statistics, refer to VisualDSP++ Help.

2-112 Visual DSP++ 5.0 User’s Guide

Environment

Figure 2-75. Plot Window’s Right-Click Menu

Visual DSP++ 5.0 User’s Guide 2-113

Debugging Windows

Table 2-27. Plot Window Operations

Feature

Description

Data Cursor

Displays the data value associated with the position of the plot
window’s data cursor. View the value on the left side of the plot
window’s status bar. Press the keyboard’s arrow keys to move
around the graph.

Reset Zoom

Resets the plot window to its initial full-scale display

Configure Opens the Plot Configuration dialog box, where you add, remove,
or modify data sets. You can also change the plot type and rename
the plot.

Modify Settings Opens the Plot Setting dialog box, where you customize the plot’s

appearance. You can specify plot settings (grids, colors, margins,
fonts, axes, and so on) and settings for each data set (data process-

ing).

Save Settings

Saves plot configuration settings for future use. The configuration
is stored, but not the data. You can retrieve settings (. VPS file) and
load new plot data.

Export

Exports the plot image to various destinations including the Win-
dows clipboard. Save the plot image as a file (JPG, GIF, TIF, EPS,
TXT, or DAT format) or print a hard copy.

Auto Refresh

Enables a plot window to refresh automatically based on settings
that you specify. The auto-refresh timer starts. Streaming data is
read and displayed. When this option is deselected, the timer is
stopped and streaming data is not processed. You can specify
auto-refresh options such as BTC, refresh rate, and missing data
indication.

Auto Refresh Settings

Enables you to configure options that control auto-refresh settings
for plot windows. These settings determine the method in which
memory is transferred.

Plot Configuration

A plot configuration comprises two parts: data values and presentation

(configuration) settings.

2-114

Visual DSP++ 5.0 User’s Guide

Environment

Audio Data

Audio Data

LI |Foom |Line Plat [-
4

Figure 2-76. Statistics Displayed for a Portion of Audio Data

A plot window must contain at least one data set, a series of data values in
processor memory. Create data sets in the Plot Configuration dialog box,
shown in Figure 2-77.

Specify the type of plot (for example, waterfall), the memory location, the
number of values, the axis associated with each data set, and other options
that identify the data. Note that three-dimension (3-D) plots require addi-
tional specifications for row and column counts.

The Settings button enables the configuration of presentation options
(such as titles, grids, fonts, colors, and axis presentation) for each data set.
You can recall a plot from a saved settings file (. vps). Visual DSP++ uses
these settings and reads processor memory to display a plot window.

VisualDSP++ 5.0 User’s Guide 2-115

Debugging Windows

Plat ConFiguration

: Data sets: E — Plat
Type: |Line Plat j
Title: [Untitled
—Daata Setting

Marne: ID ata Setl

fdemary: I D

Address: I Brnme...lﬂfhet: IEI
Add Court: IEI Fow count: IEI
Femnve Stride; I‘l Column count: IEI

New | D ata: Ichar

L

i

Kl

— Az Selection

o ey

OF, | Cancel | Settings... |

Figure 2-77. Plot Configuration Dialog Box

Plot Window Presentation

Customize the presentation of a plot window to fit your needs. Configure

presentation settings from the Plot Settings dialog box, which you can
invoke by:

* Right-click from within a plot window.

* Click the Settings button in the Plot Configuration dialog box.

2-116 Visual DSP++ 5.0 User’s Guide

Environment

The Plot Settings dialog box provides the tabs shown in Figure 2-78.

: Plot Settings

Gieneral I 20 .-’-'-.:-:isl Fant I Shyle I Data F'ru:u:essingl
Figure 2-78. Tabs in the Plot Setting Dialog Box
Options on the tab pages enable you to configure the plot window’s

presentation. On the Style page, for example, you can easily specify sym-
bols for a data set as well as line type and width, as shown in Figure 2-79.

—

Figure 2-79. Specifying Line Styles

In addition to the many presentation options, you can select a rectangular
area, as shown in Figure 2-80, and zoom in on it.

Plot Presentation Options

Depending on the selected plot type, many plot presentation options are
available.

In the Plot Settings dialog box, these options are grouped by function on
tabbed pages, as described in Table 2-28.

You can specify a plot’s presentation options before generating the plot
(while configuring the plot) or after generating the plot.

Visual DSP++ 5.0 User’s Guide 2-117

Debugging Windows

¥ Line Plot Example

=]

-

=
[=3
E

I

100

Liree Plat

Figure 2-80. Zooming in on a Selected Area

Table 2-28. Plot Settings Options by Page

Page Options That You Can Specify

General Title and subtitle, grid lines, margins, background colors, and legend
2-D Axis For X-axis and Y-axis: axis titles, start and increment values, scales

3-D Axis For X-axis, Y-axis, and Z-axis: axis titles, Z-axis settings, step sizes, scale

multipliers, color and mesh

Font Font name, color, and size
Style For a data set: line type, width, color; symbol and type
Data Processing For a data set: data processing algorithm, sample rate, and triggering

2-118 Visual DSP++ 5.0 User’s Guide

Environment

Image Viewer

The Image Viewer window reads and displays image data from processor
memory or a file on your PC. Use this window to configure image

attributes and to view images. This display is ideal for testing image-pro-
cessing algorithms.

Figure 2-81 shows a typical Image Viewer window. The status bar indi-
cates the DSP address, RGB values, and pixel coordinates.

Tools
(mageviewsr 9%
22 QQRAMHS R BN

Elnm 21 |Address:0x1 DC4?5IRGEH: 0xB7 0x17 0x23 [col:200 row:1 39] _ILI
1 | »

Zoom status Status bar

Figure 2-81. Image Viewer Window

Visual DSP++ 5.0 User’s Guide 2-119

Debugging Windows

You select the image source (from processor memory or a file on your PC)
and specify image attributes. If the image is located in processor memory,
you must specify the image’s address, size, and format.

The Image Viewer supports the following pixel formats: Grayscale 8,
Grayscale 12, Grayscale 16, RGB555, RGB565, RGB24, and RGB32.

To open the Image Viewer window, choose View, Debug Windows, and
Image Viewer.

Refer to Help for information about format types, packed data, and
detailed how-to information.

Automation Interface

The Image Viewer has an automation interface that permits COM-aware
languages to access Image Viewer functions, such as loading, retrieving,
displaying, and saving data.

Toolbar

The top of the window provides these tools:

Table 2-29. Image Viewer Window Toolbar Buttons

Button Purpose

Configure. Opens the Image Configuration dialog box

Refresh. Reads processor memory and updates the image display

+3

Zoom In. Zooms in by a factor of two

2-120 Visual DSP++ 5.0 User’s Guide

Environment

Table 2-29. Image Viewer Window Toolbar Buttons (Cont'd)

Button

Purpose

Zoom Out. Zooms out by a factor of two

Zoom Cancel

Save. Opens a Save dialog box, from which to save the image.

ol & ® @&

Print

By

Copies the image to the Windows clipboard

Status Bar

As you move the mouse over the image, the status bar indicates:

e Zoom status

* Processor address where the selected pixel is located

* Dixel values for color images, intensity values for gray-scale images

* DPixel coordinates (column and row)

@ Pixel color depth (24 bits for color images and 8 bits for gray-scale

images)

Right-Click Menu

The Image Viewer window's right-click menu provides these commands:

Visual DSP++ 5.0 User’s Guide 2-121

Debugging Windows

Table 2-30. Right-Click Menu Commands

Command Purpose

Configure Opens the Image Configuration dialog box, from which to specify
image attributes

Refresh Reads the image data from processor memory

Color - Gamma Adjust

Opens the Image Effects dialog box, from which to adjust gamma
and view the resulting image

Rotate

Provides four selections: 0, 90, 180, or 270

Flip

Provides four selections: None, Horizontal, Vertical, or Both.

Auto-Refresh

A black check mark indicates that auto-refresh is enabled (based
user-specified settings)

Auto-Refresh Settings

Opens the Auto-Refresh Settings dialog box, from which to config-
ure auto-refresh settings

2-122

Visual DSP++ 5.0 User’s Guide

3 DEBUGGING

This chapter describes VisualDSP++ debugging tools used during
single-processor and multiprocessor debug sessions. The topics are
organized as follows.

e “Debug Sessions” on page 3-1

e “Code Analysis Tools” on page 3-7

e “Program Execution Operations” on page 3-10
e “Simulation Tools” on page 3-16

e “Plots” on page 3-19

* “Flash Programmer” on page 3-26

* “Energy-Aware Programming” on page 3-31

Debug Sessions

You run the projects that you develop as debug sessions (sessions).

A session is defined by the elements listed in Table 3-1.

Table 3-1. Specifying a Debug Session

Element Description

Processor When you create an executable file, the processor is specified by the Linker
Description File (. 1df) and other source files.

Visual DSP++ 5.0 User’s Guide 3-1

Debug Sessions

Table 3-1. Specifying a Debug Session (Cont’d)

Connection
type

The connection type (target) is the software module that controls a type of
debug target (a simulator or an emulator).

A simulator is software that mimics the behavior of a processor chip. Simula-
tors are used to test and debug processor code before a processor chip is man-
ufactured.

The choice of an EZ-KIT Lite connection type uses a “debug agent” as the
platform.

An emulator is software that “talks” to a hardware board that contains one or
more actual processors.

Platform

For a given debug target, several platforms may exist. For a simulator, the
platform defaults to the identically-named simulator. When the debug target
is an EZ-KIT Lite® board, the platform is the board in the system on which
to focus. When the debug target is a JTAG emulator, the platforms are the
individual JTAG chains.

The processor, connection type, and platform specify the debug session.
By default, a session name is generated automatically. You can further
identify the session by modifying the default name, choosing a more
meaningful name.

@ A well-chosen name can prevent confusion later.

This section describes the following topics:

e “Debug Session Management” on page 3-3

e “Simulation vs. Emulation” on page 3-3

e “Multiprocessor (MP) System Debugging” on page 3-4

The processor, connection type, and platform specify the debug session.
By default, a session name is generated automatically. You can further
identify the session by modifying the default name, choosing a more
meaningful name.

@ A well-chosen name can prevent confusion later.

Visual DSP++ 5.0 User’s Guide

Debugging

Debug Session Management

You can run several debug sessions at once and can switch dynamically
between sessions.

The typical reasons for running multiple debug sessions are:

* To write different versions of your program to compare their
operating efficiencies

* To debug completely different programs without having to run
multiple instances of VisualDSP++

Simvulation vs. Emulation

While connected to a simulator session, you may open as many sessions as
your system’s memory can handle.

While connected to actual hardware through an emulator, only one debug
session may be connected to one emulator at any time. If multiple emula-
tors are installed and are connected to multiple target boards, one debug
session may be connected to each individual emulator.

In a JTAG emulator session, only one debug session may be con-
nected to each physical target/emulator combination. Otherwise,
contention issues may arise. Upon switching to a different session,
Visual DSP++ detaches from the old session before attaching to the
new session.

Breakpoints

In a simulator session, a breakpoint can be set at any address in your
executable program’s memory. Program execution halts at the address
where the breakpoint is located.

Hardware breakpoints can be used in emulator debug sessions only;
see “Hardware Breakpoints” on page 3-16.

Visual DSP++ 5.0 User’s Guide 3-3

Debug Sessions

Watchpoints

Watchpoints are like breakpoints that trap on a specified condition.You
can set watchpoints on registers, stacks, and memory ranges. Reaching the
condition halts program execution and updates all windows.

@ Watchpoints are available only during simulation.

Multiprocessor (MP) System Debugging

Often, performance-based products require two or more processors.

A system built with multiple processors is called a multiprocessor system
(MP system). A system built with a single processor is called a single-pro-
cessor system.

The SHARC and TigerSHARC simulators do not support

multiprocessor (MP) debugging; multiprocessing for these proces-
sors is available in emulator sessions only. Multiprocessing support
for Blackfin ADSP-BF561 and ADSP-BF566 processors is available

in simulation.

Setting Up a Multiprocessor Debug Session

The first step in setting up a multiprocessor debug session is to develop a
multiprocessor project by using the multiprocessing capabilities of the
linker and an . 1df file to describe the multiprocessor system. Refer to the
VisualDSP++ Linker and Utilities Manual, especially sections about the
SHARED_MEMORY {} and MPMEMORY {} commands.

The second step is to use the VisualDSP++ Configurator utility to
describe the hardware to the Visual DSP++ software if you are running a
JTAG emulator session. Visual DSP++ uses this description when you set
up your debug session. Refer to VisualDSP++ Help for information about
using the VisualDSP++ Configurator.

3-4

Visual DSP++ 5.0 User’s Guide

Debugging

When running a multiprocessor simulator debug session, select the desired
configuration from the Select Platforms page of the Session Wizard. After
specifying your hardware system, build your project.

The first time that you launch VisualDSP++ for a new project, the Session
Wizard opens to enable you to configure the MP session. The next time
Visual DSP++ is launched, the debug session is configured automatically.

Debugging a Multiprocessor System

Debugging a multiprocessor system requires that you synchronously run,
step, halt, and observe program execution operations in all the processors

at once.

The following capabilities help to speed a multiprocessor debug session.

Multiprocessor debug commands (Debug -> Multiprocessor)
operate similar to commands used to debug a single processor.
The only difference is that MP commands work synchronously
on all active processors in the currently selected MP group

Multiprocessor window (refer to “Multiprocessor Window” on
page 2-83)

The Status page displays the status of each processor and lets you
switch processor focus.

The Group page enables you to group processors into multiple,
logical units to which all MP commands are applied.

Window pinning. Note that you can use pinning and the processor
status items in the Multiprocessor window with single-processor
debug commands to debug individual processors in an MP session.

Window color specification (see VisualDSP++ Help)

Visual DSP++ 5.0 User’s Guide 3-5

Debug Sessions

Focus and Pinning

Often, in a multiprocessor debug session, you have to examine the
behavior of a single processor to better understand its interaction with the
other processors on the target.

When you debug a single processor in an MP session, the processor being

debugged has the focus.

By pinning a window to a processor, you dedicate that window (such as a
memory window) to a particular processor in a multiprocessor group.
Pinning associates a window to a specific processor statically.

Before debugging, open and pin the register windows and memory
windows that you plan to use. If these windows are not pinned,
they display information for any processor that has focus.

When a window is pinned to a processor, a pin icon appears in the win-
dow’s upper-left corner.

For example: [Pl

Window Title Bar Information

Figure 3-1 shows a pinned window in a multiprocessor debug session.
The title bar of a pinned window shows:

* A pushpin icon (#) to indicate that it is a pinned window

e The processor’s name

* Window title

e Number format, such as hexadecimal (for windows that support
multiple formats)

3-6

Visual DSP++ 5.0 User’s Guide

Debugging

ﬂ (030088
| [O3E06C]
‘5 [B30E18]
3| [930024]
= |INEGEEEEE)
E‘ [B3083C]
| [930948)
58| [930054]
-1

-f"

Elelelolelolele)
BRAaHaH0
BRAaHaH0
BOHOHOEHE
BOHOHOEHE
BRHAHEHE
AAAAAIAE
Elelelolelolele)

GadaaEd
GadaaEn
Gadadads
eliclalclo
eliclalclo
elatclatclalcle
ARG GGG
BEdE e

Figure 3-1. Pinned Window in a Multiprocessor Debug Session

Additional Focus Indication

If configured, VisualDSP++ shades unfocused windows with a specified
color. You can specify the background color of focused and unfocused
windows. For details, refer to Visual DSP++ Help.

Code Analysis Tools

You use code analysis tools to examine your code’s behavior and locate
areas that may be optimized for better performance.

Visual DSP++ provides these code analysis tools:

e “Statistical Profiles and Linear Profiles” on page 3-8

e “Traces” on page 3-9

e “Plot Windows” on page 2-109

* “Pipeline Viewer Window” on page 2-88

e “Cache Viewer Window” on page 2-93

Visual DSP++ 5.0 User’s Guide 3-7

Code Analysis Tools

Statistical Profiles and Linear Profiles

VisualDSP++ provides two profiling methods that measure program
performance by sampling the target’s Program Counter (PC) register to
collect data. Use linear profiling with simulator targets, and use statistical
profiling with emulator targets.

The Linear Profiling window and Statistical Profiling window display the
data collected by these two profiling methods and indicate where the

application is spending its time. Refer to “Statistical/Linear Profiling Win-
dow” on page 2-55 for details.

The window’s title (Linear Profiling or Statistical Profiling) depends on
whether this tool is used during simulation or emulation.

Simulation: Linear Profiling

Linear profiling with the simulator is not statistical because the simulator
samples every PC executed. This feature provides an accurate and com-
plete picture of program execution.

Linear profiling is much slower than statistical profiling. Simulator targets
support linear profiling, but do not support statistical profiling.

Emulation: Statistical Profiling

A statistical profile measures the performance of a user program by
sampling the target’s PC register at random intervals while the target is
running the program. Most of the execution time in the program is in the
areas where most of the PC registers are concentrated.

Statistical profiling provides a more generalized form of profiling that is
well suited to JTAG emulator debug targets. Emulator targets do not sup-
port linear profiling.

JTAG sampling is completely non-intrusive, so the process does not incur
additional run-time overhead.

3-8 Visual DSP++ 5.0 User’s Guide

Debugging

Statistical Profiling of Short Run Programs

Statistical profiling of short run programs does not display any results.
Statistical profiling requires a minimum number of samples. The more
samples, the more accurate. Below a minimum, it is not worth reporting.
For a 600-MHz Blackfin processor, at 10 MHz the emulator collects
about 60000 samples per second, which is about a 10000-to-1 ratio versus
the number of instructions the processor executes per second. If the pro-
gram has fewer than 10000 instructions, the profile will contain only one
sample (at most), which is not useful information.

Statistical profiling is meant to be run in an operational system over time,
allowing you to evaluate repetitive code (such as FFTs and ISRs) which
are called often in the running system. This requires a longer time to
become statistically stable.

Traces

(SHARC processors only) A trace captures a history of processor activity
during program execution. Run a trace (execution trace or a program trace)
to analyze the run-time behavior of your application program, enable I/O
capabilities, and simulate source-to-target data streaming.

Visual DSP++ provides a Trace window. Refer to “Trace Windows” on
page 2-52 and to Help for details.

A trace includes the following information.
* Buffer depth (instruction lines)
* Cycle count

* Instructions executed such as memory fetches, program memory
writes, and data/memory transfers

Viewing the disassembled instructions that were performed can also help
in analyzing code behavior.

Visual DSP++ 5.0 User’s Guide 3-9

Program Execution Operations

Program Execution Operations

By default, when Visual DSP++ starts up, it attaches to the previous ses-
sion. You can override this behavior, and instead, force Visual DSP++ to
start a new session.

When loading and running your program, use Visual DSP++ features to

step, break, and halt the program.

Selecting a New Debug Session at Startup

If you had a problem, such as a corrupted workspace, in your last debug
session, use the following procedure to force a fresh session at startup.

Visual DSP++ must be closed before performing the following
procedure.

1. Hold down the keyboard’s Ctrl key.

Do not release the Ctrl key until the Session Wizard appears, as
described in the next step.

2. Invoke Visual DSP++ as you normally do.

Typical methods include using the Windows Start button
sequences, clicking desktop icons, or using Windows Explorer.

The Session Wizard appears.
3. Specify and activate a debug session.

When launching Visual DSP++ in stand-alone mode, ensure that
the session is configured correctly before loading the program.

3-10 Visual DSP++ 5.0 User’s Guide

Debugging

Loading the Executable Program

Once you have specified the debug session, begin the session by loading
the executable program.

After a successful build of the target executable program, Visual DSP++

(if configured) loads the program automatically to the current session
when the session processor type matches the project’s processor. If the cur-
rent session processor does not match the project’s processor type, you are
prompted to choose another session.

If automatic load is not configured, VisualDSP++ does not try to load the
executable program automatically after a successful build.

@ The target must be an executable (.DXE) file.

This debugging feature saves time, because you do not have to load the
executable target manually. You can start to debug immediately after
successfully building the project.

Program Execution Commands

Run program execution commands from the Debug menu or from the
toolbar.

Executable files run until an event such as a breakpoint, watchpoint, or
user-issued Halt command stops execution. When program execution
halts, all windows are updated to current addresses and values.

Multiprocessor (MP) commands operate like single-processor commands
with one exception—they perform an action on a// processors in the MP
group. MP Run, MP Halt, and MP Step are synchronous operations,
which means that all processors in the currently selected MP group exe-
cute on exactly the same clock cycle. Some commands have keyboard
shortcuts; refer to “Keyboard Shortcuts” on page A-31.

Use the commands described in Table 3-2 to control program execution.

Visual DSP++ 5.0 User’s Guide 3-11

Program Execution Operations

Table 3-2. Commands Used to Control Program Execution

Command Description

Run Runs an executable program. The program runs until an event stops it, such as
a breakpoint or user intervention. When program execution halts, all windows
update to current addresses and values.

Halt Stops program execution. All windows are updated after the processor halts.
Register values that changed are highlighted, and the status bar displays the
address where the program halted.

Run to Cursor | Runs the program to the line where you left your cursor. You can place the
cursor in editor windows and Disassembly windows.

Step Over (C/C++ code only in an editor window) Single-steps forward through program
instructions. If the source line calls a function, the function executes com-
pletely, without stepping through the function instructions.

Step Into (editor window or Disassembly window) Single-steps through the program
one C/C++ or assembly instruction at a time. Encountered functions are
entered.

Step Out Of (C/C++ code only in an editor window) Performs multiple steps until the cur-

rent function returns to its caller, and stops at the instruction immediately fol-
lowing the call to the function.

Restarting the Program

You can set the Program Counter (PC) to the first address of the interrupt
vector table.

Performing a Restart During Simulation

In the simulator, restart works like a reset; however, the target’s memory
does not change. All registers are reset to their initial values.

Memory is not reset. Thus, C and assembly global variables are nor
reset to their original values. Your program may behave differently
after a restart. To re-initialize these values, reload your .DXE file.

3-12 Visual DSP++ 5.0 User’s Guide

Debugging

Performing a Restart During Emulation
In the emulator, a restart works exactly like a reset. Only registers with

default reset values are affected. All other registers remain unchanged.

Breakpoints

An enabled breakpoint halts program execution at a specific instruction or
address. You can enable and disable breakpoints as well as add and delete
breakpoints.

A disabled breakpoint is set up, but not turned on. A disabled breakpoint

does not stop program execution. It is dormant and may be used later.
A break occurs when the conditions that you specify are met.

You can quickly place an unconditional breakpoint at an address in a
Disassembly window or editor window by:

* Selecting an address and clicking Toggle Breakpoint button ﬂl
* Double-clicking a line in a Disassembly window or editor window

Symbols in the left margin of a Disassembly window or editor window
indicate breakpoint status, as shown in Table 3-3.

Table 3-3. Breakpoint Status Symbols

Symbol Indicates

Enabled (set) software breakpoint

G

Disabled software breakpoint (recognized, but cleared)

Visual DSP++ 5.0 User’s Guide 3-13

Program Execution Operations

Table 3-3. Breakpoint Status Symbols

Symbol Indicates

Enabled hardware breakpoint

&

Disabled hardware breakpoint

&

Unconditional and Conditional Breakpoints

A breakpoint configured to occur when the Program Counter reaches a
specific address is an unconditional breakpoint. The breakpoint occurs
when it is reached.

A breakpoint configured to occur when various conditions (criteria) are
met is called a conditional breakpoint. The conditions may include:

e A user-defined expression that must evaluate to TRUE

* A skip (count) that specifies the number of times to skip over the
breakpoint before finally halting

If both an expression and skip are set, execution stops when the break-
point is reached “~” times when the expression is true, where 7 represents
the skip count. When the expression is empty, execution stops when the
breakpoint is reached “~” times.

Automatic Breakpoints

You can configure whether the “automatic” breakpoints are set after a pro-
g p p

gram is loaded. (In VisualDSP++ 4.0 and earlier releases, after a program

is loaded, software breakpoints were automatically set at main.) Also, you

3-14 Visual DSP++ 5.0 User’s Guide

Debugging

can specify additional breakpoints to be set after a load and you can spec-
ify each additional breakpoint as being a software breakpoint or a
hardware breakpoint.

You conifer the automatic breakpoints via the Automatic page of the
Breakpoints dialog box. Next to each label in the breakpoint list, is a brief
description of the breakpoint location like “start of program” for main,
“end of program” for ___1ib_prog_term, and so on. User-defined break-
points are labeled “user breakpoint” if you do not provide a description.

Automatic breakpoints may be set as software breakpoints or hardware
breakpoints. If the IDDE is connected to a simulator target, the “hard-
ware/software” specification is ignored since all breakpoints are software
breakpoints. If the IDDE is connected to an emulator target that supports
hardware breakpoints, you can specify each automatic breakpoint as being
a hardware breakpoint or a software breakpoint in the target. Automatic
breakpoints are specified, saved, and restored on a per-session basis.

Multiprocessor Sessions. In a multiprocessor session, you must configure
the automatic breakpoints one processor at a time by setting focus on a
processor, opening the Automatic page of the Breakpoints dialog box, and
specifying/enabling the breakpoints for the processor that has the focus.

Watchpoints

Similar to breakpoints, watchpoints stop program execution when
user-specified conditions are satisfied. Watchpoints, however, are used to
set a condition, such as a memory read or stack pop, for halting events.

@ Use watchpoints only during simulation.

Watchpoints, unlike breakpoints, are not attached to a specific address.
A watchpoint halts anywhere in your program once the watchpoint
conditions are satisfied.

Visual DSP++ 5.0 User’s Guide 3-15

Simulation Tools

Hardware Breakpoints

Similar to simulator watchpoints, hardware breakpoints enable you to set
breaks on instructions or data transfers within a user-defined memory
range.

Choosing Hardware Breakpoints from the Settings menu opens the
Hardware Breakpoints dialog box, from which to configure the hardware
breakpoints.

Refer to VisualDSP++ Help for your processor family (SHARC ICE,
TigerSHARC ICE, or Blackfin ICE) for details about configuring the

hardware breakpoints.

Latency

Hardware breakpoints do not assert until one (1) or two (2) instruction
cycles after the actual break condition occurs. Note that the program
counter is not placed on the instruction that caused the break.

Restrictions

When using hardware breakpoints, do not place breaks at any address
where a JUMP, CALL, or IDLE instruction would be illegal.

Do not place breaks in the last few instructions of a D0 LOOP or in the
delay slots of a delayed branch. For more information on these illegal loca-
tions, refer to your processor’s hardware documentation.

Simulation Tools

Before you have the processor, you can use interrupts and data streams
within VisualDSP++ to simulate the processor’s behavior.

3-16 Visual DSP++ 5.0 User’s Guide

Debugging

Interrupts

Use interrupts to simulate external interrupts in your program. When you
use interrupts with watchpoints and streams, your program simulates
real-world operation of your processor system.

Input/Output Simulation (Data Streams)

In many products, processors exist as part of a larger system where they
can act as a host or a slave. They can drive other devices or take part in
processing a subset of data. Because of their extensive I/O capabilities,
Analog Devices processors excel in these roles.

Use data streams to transmit data between:
e A device and a file
e A device and a device

e A device in one processor and a device in another processor in a
multiprocessor system

Using background telemetry channel (BTC) technology, VisualDSP++
permits the streaming of data from a target processor without halting the
processor.

@ This capability applies to emulation targets only.

The plot window receives and displays a stream of data from processor
memory. If the target supports background telemetry, the plot window
reads memory and updates the display without halting the target. Other-
wise, the plot window halts the processor, reads memory, updates the plot,
and resumes the processor.

The plot window allows data to be streamed to (or from) a binary data
file. The data file can be converted into ASCII format for input to other
applications such as MATLAB and Excel.

Visual DSP++ 5.0 User’s Guide 3-17

Simulation Tools

The processor application may collect and transfer data in four different
ways:

e Sampling a test point over time

* Transferring a data array over BTC at a specified point in the
application (SHARC and Blackfin emulation targets only)

* Using GetMem() directly
* Deriodically halting the target to read memory

For information about using BTC, refer to the VisualDSP++ Getting
Started Guide.

3-18 Visual DSP++ 5.0 User’s Guide

Debugging

Plots

Use the Visual DSP++ data plotting capability to display data in processor
memory as a plot (graph) in a plot window (Figure 3-2). A data plot can
assist you by allowing you to visualize data.

Refer to “Plot Windows” on page 2-109 for plot window configuration
information. For complete details on configuring plots, refer to

Visual DSP++ Help.

I¥ Line Plot Example

Lire Plot Example

Lire Plot

Figure 3-2. Plot Window Displaying Processor Memory

VisualDSP++ 5.0 User’s Guide 3-19

Plots

When plotting processor memory, you can:

* Choose from multiple plot types and specify the plot’s data and

presentation

* Apply a data processing algorithm to the processor’s memory data

* Modify a plot’s configuration and immediately view the results

e Zoom in on a plot area or view data point values, in a plot window

rint a plot, save the plot image to a file, or save the plot’s data to a
e Printa plot the plot image to a fil the plot

file

Plot Types

Each plot must be specified to be one of the plot types in Table 3-4.

Table 3-4. Available Plot Types

Plot Type

Description

Requires

Line
(on page 3-21)

Displays points connected by a
line

Y value for each data point

X-Y
(on page 3-21)

Similar to a line plot, but also
uses X-axis data

X value and Y value for each
data point

Constellation
(on page 3-22)

Displays a symbol at each data
point

X value and Y value for each
data point

Eye diagram
(on page 3-23)

Typically used to show the sta-
bility of a time-based signal

Y value for each data point

Waterfall
(on page 3-24)

3-D plot typically used to show
the change in frequency content
of signal over time

Z value for each data point

Spectrogram
(on page 3-206)

2-D plot displays amplitude data

as a color intensity

Z value for each data point

The X, Y, and Z values are read from processor memory.

3-20

Visual DSP++ 5.0 User’s Guide

Debugging

Line Plots

A line plot (Figure 3-3) displays a range of processor memory values con-
nected by a line. The values read from processor memory are assigned to
the Y-axis. The corresponding X-axis values are automatically generated.

¥ Example 2 !E

Example 2

Lire Plat

Figure 3-3. Line Plot

Multiple data sets can be plotted on a single graph.

X-Y Plots

An X-Y plot (Figure 3-4) requires an X value and a Y value for each data
point. Unlike a line plot, an X-Y plot requires X-axis data.

VisualDSP++ 5.0 User’s Guide 3-21

Plots

¥ XY Plot Example

#% Plot Example

R-4 Plot

Figure 3-4. X-Y Plot

The X and Y data are specified separately in a user-defined memory loca-
tion. The number of X and Y points must be equal.

Constellation Plots

A constellation plot (Figure 3-5) displays a symbol at each (X,Y) data
point.

The X and Y data are specified separately in a user-defined processor
memory location. The number of X and Y points must be equal.

3-22 Visual DSP++ 5.0 User’s Guide

Debugging

¥ Constellation Plot Example

Constellation Plot Example

Constellation Plot

Figure 3-5. Constellation Plot

Eye Diagrams

An eye diagram plot (Figure 3-06) is typically used to show the stability of a
time-based signal. The more defined the eye shape, the more stable the
signal.

This plot works like a storage oscilloscope by displaying an overlapped his-
tory of a time signal. The eye diagram plot processes the input data and
optionally looks for a threshold crossing point (default is 0.0). A trace is
plotted when the threshold crossing is reached. Plotting continues for the
remainder of the trace data.

When a breakpoint occurs (or a step is performed), the plot data is
updated and a new trace is plotted. The eye diagram uses a data shifting
technique that stores the desired number of traces in a plot buffer (default

VisualDSP++ 5.0 User’s Guide 3-23

Plots

I Eye Diagram

Eve Diagram

Figure 3-6. Eye Diagram Plot

is ten traces). When the number of traces is exceeded, the first trace shifts
out of the buffer and the new trace shifts into the last buffer location. This
technique is referred to as first in, first our (FIFO).

You can modify options for threshold value, rising trigger, falling trigger,
and the number of overlapping traces.

Waterfall Plots

A waterfall plot (Figure 3-7) is typically used to show the change in fre-
quency content of signal over time.

The plot comprises multiple line plot traces in a three-dimensional (3-D)
view. Each line plot trace represents a slice of the waterfall plot.

The easiest way to create a waterfall plot is to define a 2-D array in C code
(a grid). The first array dimension is the number of rows in the grid, and
the second dimension is the number of columns in the grid. The number
of columns is equal to the number of data points in each line trace.

3-24 Visual DSP++ 5.0 User’s Guide

Debugging

¥ Waterfall Plot Example
Wiaterfall Plot Example

Traercy [z
1
-

|
[
B
B
=
=
]
|
|
=1

Af=-T40 EL=220 aterfall Plot FFT

Figure 3-7. Waterfall Plot

A time-based signal is sampled at a predefined sampling rate and stored as
a slice in the grid (row 0, columns 0-N).

Figure 3-8 shows a grid of sampled data. In the drawing, the sampled
points labelled 1 and 2 are stored in the first two cells of Slice 1.

The next time a signal is sampled it is stored in row 1, columns 0-/V (slice
1). This process continues until all the rows are filled.

By default, an FFT performed on each slice results in a frequency output
display. Use a color map on the 3-D Axis page of Color Settings dialog
box to enhance the display. Each color corresponds to a range of ampli-
tude values.

VisualDSP++ 5.0 User’s Guide 3-25

Flash Programmer

Slice 1 (shaded row)

['o N 12

Timg — ==

M Sampled points
Time ———=

Figure 3-8. Grid of Sampled Data

The plot output displays a legend showing each color and associated range
of values.

You can rotate the waterfall plot to any desired azimuth and elevation by
using the keyboard’s arrow keys.

Spectrogram Plots

A spectrogram plot (Figure 3-9) displays the same data as a waterfall plot,
except in a two-dimensional (2-D) format.

Each (X,Y) location displays as a color representing the amplitude of the
data. By default, an FFT performed on each slice results in a frequency
output display. A legend displays the colors and associated range of values.

Flash Programmer

The VisualDSP++ Flash Programmer provides a convenient, generic inter-
face to numerous processors and flash memory devices. This utility
simplifies the process of changing data values on a flash device and modi-
fying its memory. You no longer have to remove the flash memory from
the board, use a separate Flash Programmer, and then replace the flash.

3-26 Visual DSP++ 5.0 User’s Guide

Debugging

¥ Spectrogram Example

Spectrogram Example

[
[

Sec)

E
L10
E
-

10 15
Freguency (kHz)

Spectrogram Plot FFT

Figure 3-9. Spectrogram Plot

For complete details on using the Flash Programmer utility, refer to
Visual DSP++ Help.

Beginning with VisualDSP++ 5.0, the Stand-Alone Flash Programmer
provides flash programming support between the development/prototype
stage and early pre-production runs. Refer to VisualDSP++ Help for
details.

Flash Programmer API

The Visual DSP++ Flash Programmer API provides a generic interface
between the Visual DSP++ Flash Programmer and the flash driver.

To use this tool, you must load an accompanying flash driver into the
processor. The flash driver is the processor executable code that handles
commands from the Flash Programmer and actually manipulates the flash.

Visual DSP++ 5.0 User’s Guide 3-27

Flash Programmer

Analog Devices supplies sample flash drivers for use with EZ-KIT Lite
evaluation systems (or custom hardware that uses flash devices similar to

those found on EZ-KIT Lite boards).

You may write your own flash drivers by following this API specification.
This allows you to implement new algorithms, modify existing ones, or
add support for a new flash device/processor combination with the current
Flash Programmer. Flash drivers may be implemented in C or assembly
language. To provide a completely generic flash loader interface, the
Visual DSP++ Flash Programmer API uses a set of named symbols, their
associated addresses, and a few numbered commands.

Stand-Alone Flash Programmer

The Stand-Alone Flash Programmer provides flash programming support
between the development/prototype stage and early pre-production runs.
Because of shortened development cycles and component lead times, it is
often necessary and desirable to build a large quantity of boards for early
evaluation.

Typically, these builds are on the order of a hundred or fewer units.
Programming each unit with the beta production image via VisualDSP++
is typically performed by a manufacturing technician/worker rather than
the development engineer. The Stand-Alone Flash Programmer enables
the development engineer to script or automate this process with a
license-free tool, allowing the manufacturing technician to repeatedly
program any number of boards prior to major production.

Refer to online Help for details.

3-28 Visual DSP++ 5.0 User’s Guide

Debugging

Flash Devices

Flash memory parts are non-volatile memories that can be read, pro-
grammed, and erased. In most applications, flash devices store:

* Boot code that the processor loads at startup
* Data that must persist over time and through the loss of power

Typically, flash device programming is performed with a device program-
mer at the factory or by an application developer. When a flash device is

wired appropriately to the processor, the processor can program the flash
device.

Flash Programmer Functions

Use the Flash Programmer to:

* Load a flash algorithm (driver) program onto the processor at any
time

e Obtain the flash manufacturer and device codes
e Reset the flash
e Program the flash from a data file

 Fill portions of flash memory with a value and quickly “punch-in”
data

* Erase the entire flash or a single sector

* Send custom commands to the driver for batch processes or
user-defined behavior

The Flash Programmer utility stores the most recently used information in
the registry for retrieval when the utility is next started up. A message box
shows the utility’s current state.

Visual DSP++ 5.0 User’s Guide 3-29

Flash Programmer

Flash Driver

To use the Flash Programmer utility, you must first load a flash driver
onto the processor. The driver is a processor application that interfaces
with the Flash Programmer and performs all the interaction with the flash
device. Analog Devices supplies sample drivers for use with certain
EZ-KIT Lite evaluation systems.

Flash Programmer Window

Figure 3-10 shows an example of the Flash Programmer window.

Flash Programmer H

Flash sector map:

Sechor | Start Offset | End CFfset | “a used| -

Driver | Frogramming I Comnmands I

Driver File: Oo | 0x00000000 | 0x00003FFF | 727
I CipProgram Filesanalog Devices|visuslDSP 4.00BlackfiniFla: O: 00004000 | Cx0000SFFF | 797 s

D 2 000000500 | Ox00007FFF | 737

Load Driver Brawse ... | Os= 000008000 | Ox0000FFFF | #97

—Flash infarmation D 4 000010000 | OxD001FFFF | 7397

Manufacturer code! 0x20 5 0x00020000 | 0x0002FFFF | 777

Device code! 0x22ch Oc | 0x00030000 OxOO003FFFF | 777

Part description: M29W32008 07 | 0x00040000 | OxDDO4FFFF | 777

c — O= | 0x00050000 | Cx000SFFFF | 727
Sripary: 2 THIresecrantcs O¢ | oxo0060000 | OxO006FFFF | 7ee =]

i~ Driver information Message center:
Build date: Oct & 2005

Version: 1.00.2

Mame: ADSP-BFS37 EZ-KIT Lite driver _ILI
Kl -

oK I Cancel |

Success! Driver loaded. -

Figure 3-10. Flash Programmer Window in Driver View

3-30 Visual DSP++ 5.0 User’s Guide

Debugging

Energy-Aware Programming

Energy-aware programming is the ability to use simulation to view the
relative impact of instructions, source lines, functions, programs,
frequency, and voltage on an application’s estimated energy profile. This
allows you to make trade-offs that minimize power usage. The technique
used to estimate the energy of the application is a partial implementation
of a process known as Instruction Level Energy Estimation (ILEE).

For details on ILEE, refer to EE-294 on the Analog Devices Web site.

Ranking

The Linear Profiling window in the simulator displays an Energy Units
column. The numbers accumulated in the Energy Units column represent
the “ranking” of each instruction executed with regard to a power change
of the processor’s core voltage. These numbers are generated by measuring
the core voltage while running test code for each instruction.

Utilizing these readings as absolute measurements would not be accurate
enough considering factors (such as leakage current, temperature, and fab-
rication process of the chip) that play a part in an application’s power.
Therefore, these measurements are referred to as instruction “ranking”.

Example

The following example demonstrates how energy-aware programming can
be used to profile the core power used by an application.

To set up the Linear Profiling window for power profiling:

1. From the Tools menu, choose Linear Profiling, and then choose
New Profile.

2. Right-click on the Linear Profiling window, choose Properties,
and select Energy Units. Then click OK.

Visual DSP++ 5.0 User’s Guide 3-31

Energy-Aware Programming

When you profile your code, each instruction “ranking” is converted to
Energy and the PLL values are used for voltage and frequency scaling.

To create a project that enables Processor Clock and Power Settings:

1.

From the File menu, choose New, and then choose Project. The

Project Wizard appears.

In Name, enter a name for the new project. In Project types, select
Standard application. Then click Next.

In Processor types, select one of these processors: ADSP-BF531,
ADSP-BF532, or ADSP-BF533. Then click Next.

Under Do you want to?, select Add startup code only. Then click
Next.

In the tree control (left side of Project Wizard), click Processor
Clock and Power Settings.

Select Configure clock and power settings. Then click Finish.

In the Project window, add application source file(s) to the new
project.

Build and run your application. The numbers in the Energy Units column
of the Linear Profiling window are an accumulation of the ranking of
every instruction after it has been converted to Energy. This display allows
you to view the relationship between power settings in different parts of
your code. Use these numbers to verify your power savings.

Figure 3-11 shows the profiling results when the Configure clock and
power settings option is enabled. Figure 3-12 shows the results when
Configure clock and power settings is disabled. Note that both of these
illustrations show only the left side of the Linear Profiling window.

3-32

Visual DSP++ 5.0 User’s Guide

Debugging

Using the profiled numbers in the “Count” and “Energy Units” columns
of both displays and referring to ___float32_mul, we can calculate a
power savings of approximately 50%.

[»] Linear Profiling: ADSP-BF537 Blackdin Memory Instruction Samples 1

Histogram Count | Exzecution Unit Energy nits| =

[] 563948 _ float32_mul 216047368

[] 430000 __=int 136062000

B 307970 ___int3Z_to_floatid 122235457

[| a0e000) ___ float3iZ2_add 116292000

| 126039 PowerProfile: (Mem. . . 49527032

| 112038 PowerFrofile: (Mat. . . 43548596

| 106042 PowerFrofile::Cal. .. 41471746

| 96000 __ floatdZ_adi_lt ag02go0n

| 84000 __ floatdZ_to_int. .. a3le0aonn

| 70036 | PowerProfile: :Set . . . 27431639

| 63036 PowerProfile: Mow. . . 26643602

| 43000 __ float3Z_sub 13888000
2879 udiw32 2037437
341 | _adi_ebiu_ApplyConfig 196300
263 adi_pwr Init{cons. .. 206955 LII

Total Samples: 2373622

Figure 3-11. Power Savings On

First, we calculate the average Energy for the function by dividing the
“Energy Units” by the number of cycles in the “Count” column:

* DPower Savings On = 2160473/5639 = 383.13
* Power Savings Off = 4307328/5639 = 763.84
The ratio of these two numbers (383.13/763.84) is 0.501580. This is the

power savings.

In the following example, the “ranking” measurements are based on an
EZ-KIT Lite evaluation system configured at 1.2 volts and 250 MHz.
Having enabled power savings, the voltage changes to .85 volts. We apply
these numbers to the “Voltage and Frequency Scaling” equation described
in EE-229:

Visual DSP++ 5.0 User’s Guide 3-33

Energy-Aware Programming

[»] Linear Profiling: ADSP-BF537 Blackfin Memory Instruction Samples 1

Hi=ztogram Count | Execution Tnit Energy Tnit=| -
[] 563948 | _ float32_mul 430732847
[] 480000 | __=inf arzoszo000
B 307970 ___int32_to _floati? 227936804
[| a0e000 | _ float3?_add 230307136
| 126039 PowerProfile: Mem. .. 98751979
| 112038 PowerProfile: :Mat. .. 87445111
| 106042 PowerProfile: :Cal. .. 82685403
| 96000 __ float3Z_adi_1t 75844000
| 24000 __ float32_to_int. .. E616E000
| 70036 PowerProfile: :Set. .. 4509201
| 63036 PowerProfile: Mow. .. 44939127
| 48000 __ float3Z_sub 35912000
127 | _init_dewdrwtab 99264
91 | _init_dewtab 74208
60 _exit c2672 ||
Total Samples: 2368803

Figure 3-12. Power Savings Off

PDDDYN@V = PDDDYN®@V0 * (V/V0)2 * (F/F0)

The voltage and frequency power scaling ratio derived via this calculation
is very close to the power savings ratio obtained via the values displayed in
“Energy Units” columns of Figure 3-11 and Figure 3-12.

(.85/1.2)2 * (250/250) = 0.501736

In an application where voltage and frequency are manipulated dynami-
cally during different functions to achieve a more efficient energy profile,
proper tallying of energy at changing voltage and frequency settings is
handled correctly so overall energy profile improvements can be seen by
comparing different profiles of an application at different settings.

3-34 Visual DSP++ 5.0 User’s Guide

A REFERENCE INFORMATION

This appendix includes a glossary (on page A-66) and collection of other
reference material. Take advantage of the many features in VisualDSP++

so you can speed up program development. Sections include:
e “Support Information” on page A-2
e “IDDE Command-Line Parameters” on page A-7
e “Extensive Scripting” on page A-8
e “File Types” on page A-12
e “Parts of the User Interface” on page A-15
* “Keyboard Shortcuts” on page A-31
e “Window Operations” on page A-37
e “Text Operations” on page A-44
* “Online Documentation” on page A-49
* “Online Help” on page A-53
e “Glossary” on page A-66

Visual DSP++ 5.0 User’s Guide

Support Information

Support Information

Choose the About Visual DSP++ command from the Help menu to open
the About dialog box. This dialog box provides access to the following
types of support information.

[»] About [7

| Licensesl En:nmpn:nnentsl ‘-.fersicnnsl Suppcnrtl
iﬁ VisuglDSP++ 4.5
Copyright & 1395-2005 Analog Devices, Inc.

Regiztered Uzer: Author Arthur

Compary: Analog Devices lhe.

Froduct Yerzsion: 4.5.0.0
IDDE Yersion: F.0.0.0
Build Date: Dec 25 2005

Inztallation Directony: E:%4.5

|] I Help

Figure A-1. Example of the General Page

e Software versions

The General page (Figure A-1), which displays version information
about the VisualDSP++ software. This information includes the
name of the registered user and company, the version of IDDE and
its build date, and the directory path in which Visual DSP++ is

A-2 Visual DSP++ 5.0 User’s Guide

Reference Information

installed.
* License management

The Licenses page (Figure A-2) provides a centralized view of your
current licenses. You can view license status and perform all neces-
sary licensing activities (installing, registering, and validating).

(| About E

General Licenzes |Enmpnnents| "Jersin:unsl Suppn:urtl

Sernial Murmber | F amnily | Status |

ADT-153-256-3434434-35 SHARLC Walidated [Permanent]
ADT-160-266-3434434-117 Blackfin Yalidated [Permanent]

Host 1D
Hew... Hegietern.. Walidater.. ”7 11111111

oK, Help |

Figure A-2. Example of the Licenses Page

Visual DSP++ 5.0 User’s Guide A-3

Support Information

* Component versions

The Components page (Figure A-3) displays a list of your system’s
components and provides information (name, version, provider)
about your debug target, symbol manager, and processor library.

[»] About EHE

— Component Information:

Debug T arget:
ADSP-2126% Family Simulator 3.1.0.0 by Analog Devices, Inc.

Syrnbal b anager;
DwfaRF Symbol Manager DLL 3.3.3.4 by Analog Devices, Inc.

Proceszor Librany:
ADSP-215xx Family Proceszor DLL 3.0.0.6 by Analog Devices, [nc.

Platfarm:
ADSP-2136% Sirmulator

Processzor and Silicon Rewvizion:
ADSP-21362, revizion unknom

] I Help

Figure A-3. Example of the Components Page

A-4 Visual DSP++ 5.0 User’s Guide

Reference Information

e Software Versions

The Versions page (Figure A-4) displays a list of your system’s
tools. Each tool includes a description, version number, and a
timestamp (day and time).

[»] About

Generall Licensesl Comporents |

File Yersionz
Companent | Y erzion | Timestamp |A
Aok ene 7200 12/20/2005 0613
Acchblkfnexe F20n 12/2042008 018
Aochzexe 7200 12/20/20058 0B:13
Acoff2ell. exe 21.00 12/20/20058 0613
Acommentconverter exe 1.003 12/20/2005 0613
Adanube exe 2580560 12/20/2008 0613
Aeazmdl k. exe 2401 12/20/20058 0B:13
AeazmBLEFM. exe 1102 12/20/20058 0613
AeazmT 5. exe 1.601 12/20/2005 0613

] I Help

Figure A-4. Example of the Versions Page

Visual DSP++ 5.0 User’s Guide A-5

Support Information

* Links to support on the Web
The Support page (Figure A-5) provides direct links to various

Web pages that contain support information such as application
notes, code examples, the DSP Knowledgebase, processor and tools
anomalies and workarounds, manuals and data sheets, product
comparisons, tools updates, and more. You can also generate the
body of an e-mail that automatically contains your system’s
description.

[»] About HE

Analog Devices' DSP Toolz Product Line fully zupportz all DSP: Developrment
toals productz. To initiate a suppart request, click the 'E-mail Support' buttan
to gend an e-mail ko processor tools. supporti@analog. com, or visit the
Technical Support web site.

Analog Devices DSP:
hittp: /A wave. analon. com/processors

Analog Devices DSP Tools:
http: £ v, analog. condproceszors/indes. himl

YisualD SP++ Updates:
htkp: £ Awaviwe. analon. comndproceszorzs/techrical S upport/toolzupgrades. html

Technical Suppoart:
hittp: £ Ao, analog. comdprocessore/technicalS upportAindes, hitml

ok | hHep |

Figure A-5. Example of the Support Page

Visual DSP++ 5.0 User’s Guide

Reference Information

IDDE Command-Line Parameters

Visual DSP++ can be invoked from a command line or a shortcut.
Syntax:

idde.exe [-f script_name]
[-s session_name]
[-p project_name]

Note: Specify the full path to idde.exe. Only one instance of each
parameter is permitted.

Table A-1 describes the idde.exe command-line parameters.

Table A-1. idde.exe Command-Line Parameters

Item Description

-f script_name Loads and executes the script specified by script_name. Use this
parameter to automate regression tests. You can also manipulate Visu-
alDSP++ by running a script from a library of common commands
that you create. If an error is encountered while executing this script,
Visual DSP++ exits automatically.

-s session_name Specifies the session to which VisualDSP++ connects when it starts.
The session must already exist. Use this parameter when you debug
more than one target board. Having multiple shortcuts to idde.exe
allows you to run a different session. This overrides VisualDSP++
default behavior of connecting to the last session.

-p project_name Specifies the project to load at startup. The project must already exist.

Examples:
idde.exe -f "c:\\scripts\\myscript.vbs"
idde.exe -s "My BF535 JTAG Emulator Session"

idde.exe -p "c:\\projects\\myproject.dpj"

Visual DSP++ 5.0 User’s Guide A-7

Ext

ensive Scripting

Extensive Scripting

You can issue script commands from a command window, the Output
window’s Console view, from a menu, from an editor window, or from a
user tool. Refer to “Script Command Output” on page 2-40 for details on
scripting.

e Command window issuance
Load a script from a command window with an idde command by
typing the following:
idde -f script_filename

Optionally, add -s and the session name to specify a previously
created session. If no session name is specified, the last session is
used.

If the script encounters an error during execution, Visual DSP++
automatically exits.

* Output window issuance

Load a script from the Output window’s Console view by typing
one of the following commands.

For the Microsoft ActiveX script engine, type:
Idde.LoadScript script_filename

For Tdl, type:
source filename

Similar to C/C++, use a backslash (\) as an escape character. If you
specify paths in the Windows environment, you must escape the
escape character, as shown in this example:

A-8

Visual DSP++ 5.0 User’s Guide

Reference Information

c:\\my_dir\\my_subdir\\my_file.vbs

For Tcl only, you may also use forward slashes to delimit
directories in a path, as shown in this example:

source c:/my_dir/my_subdir/my_file.tcl

Command execution is deferred until a line is typed without a
trailing backslash. This permits the entry of an entire block of code
(or entire procedure) for the script interpreter to evaluate at once.

Use the built-in Idde object to easily access the properties and
methods of the Visual DSP++ Automation API when using a
Microsoft ActiveX script engine. For example:

Idde.ActiveSession.ActiveProcessor

Evaluate expressions by using the “?” character when a Microsoft
ActiveX script engine is selected. For example:

? Idde.FullName
¢ Menu issuance

You can quickly issue frequently used scripts. From the File menu,
choose Recent Scripts and then select the script.

Visual DSP++ 5.0 User’s Guide A-9

Extensive Scripting

e FEditor window issuance

In an open editor window that contains a script, right-click and
choose Load Script, as shown in Figure A-6.

B test.tcl [_|O0|
=zet HAX ITER 100 |

e
for { ==t iter Fedn

puts "Iter: - :

Vithout the - SOHY
On a real tax Faste
]
{

n a =simulatc
I think the Toggle Bookrmark

dzpreset Mext Boalmark F2

ﬁ Ui;h —wait. 1 Line Murmbers
SPreset BT Ehr Rl

1

Match Brace Ctrl+B
G0 Ta.., Ctrl+G
Find... Ctrl+F

Laoa |:| S r'i Flt

Se|ect Farmat ¥

Figure A-6. Running a Script in an Editor Window

e User tool issuance

From the User Tools toolbar, click a user tool. Alternatively,
choose a user tool from the Tools menu.

A-10 Visual DSP++ 5.0 User’s Guide

Reference Information

You can invoke a script (such as . js or .vbs) automatically when launch-
ing Visual DSP++ from a shortcut on your Window’s desktop or Start

button. Right-click on the shortcut and select Properties and the Shortcut
tab. Then append - f and the name of the script file to the executable file

in the Target text box.

The example shown in Figure A-7 runs myscript.js automatically when

idde.exe is launched.

¥isualDSP++ 3.5 IDDE Properties

General Shorbcut I Securit_l,ll

ﬁ Yizuall5P++ 2.5 IDDE

Target bppe:

Target location: System /\
T anget; albsP 351 E-Eiit'\S_l,lstem'\Idde.e:-:{' -f ryscript = j
I¥ | B it separate memenspace | B as diW

Start in: I

Shartcut key: IN ane

Fur: I Marmnal window j

Comment; I

Find T arget... | Ehangelcun...l

| k. I Cancel | Apply |

Figure A-7. Example: Loading a Script From a Shortcut

Script name

Visual DSP++ 5.0 User’s Guide

A-11

File Types

File Types

Table A-2 describes processor project files

Table A-2. Files Used With Visual DSP++

used by VisualDSP++.

Extension Name Purpose

.asm Assembly source file Source file comprising assembly language
instructions

.C C source file Source file comprising ANSI standard C
code and Analog Devices extensions

.cpp C++ source file Preprocessed compiler files that are

. CXX inputs to the C/C++ compiler. These

.hpp files comprise ANSI standard C++ code.

. hxx

.dpj Project file Contains a description of how your
source files combine to build an execut-
able program

Jdf Linker Description File Linker command source file is a text file
that contains commands for the linker in
the linker’s scripting language

s Intermediate files Preprocessed assembly files generated by

.pp the preprocessor

.S

.doj Assembler object file Binary output of the assembler

.d1b Archiver file Archiver’s binary output in ELF format

.h Header file Dependency file used by the preproces-
sor, and a source file for the assembler
and compiler

.dat Data file Dependency file used by the assembler
for data initialization

.dlo Debugging files Binary output files from the linker in

.dxe ELF/DWAREF format

.oV

.sm

A-12 Visual DSP++ 5.0 User’s Guide

Reference Information

Table A-2. Files Used With Visual DSP++ (Contd)

Extension Name Purpose

.map Linker memory map file Optional output for the linker. This text
file contains memory and symbol infor-
mation for executable files.

.tel Tool Command Language | Tcl scripting language files used to script

.tc8 files work

.obj Assembled object file (Previous releases only, replaced by . doj)
Output of the assembler

st Listing file Optional file output by the assembler

.bnm Loader format files The loader’s output in ASCII format.

.h Different varieties exist. Used to create

Jldr boot PROMS.

Ch_ff PROM format files The loader’s output in ASCII format.

.s_it Different varieties exist. Used to create

.stk boot PROMs.

.ach Architecture file (Used in previous releases only, replaced
by .1df)

Jtxt Linker command-line file (Used in previous releases only, replaced
by .1df) ASCII text file that contains
command-line input for the linker

.exe Debugging file (Used in previous releases only, replaced
by .DXE)

.exe Compiled simulation file Enables faster execution speed compared
to a standard . dxe program

.vdk VisualDSP++ kernel Enables VDK support

support file

.Js Script files Enable you to perform script work for

.vbs test applications. Scripting languages let
you access the Automation API to inter-
act with the IDDE.

.processor Assembly source file Source file comprising assembly language
instructions

Visual DSP++ 5.0 User’s Guide

A-13

File Types

Table A-2. Files Used With VisualDSP++ (Cont'd)

Extension Name Purpose
.mak Makefiles The output make rule file is used for
.mk project builds
.dpg Project group An . xm] file containing information
about projects
A-14 Visual DSP++ 5.0 User’s Guide

Reference Information

Parts of the User Interface

When you open VisualDSP++, the application’s main window appears.
Figure A-8 shows an example of the Visual DSP++ main window.

[»] anialag De suallSP++ - [Target: ADSP-TS101 TigerSHARC Cyele accurake Simulator Platform] - [Project: dft_c.dpi] M =]
File Edit Session Miew Project Register Memory Debug Settings Tools Window Help
T R R T L Il
5 B R e & i s 5] | demes |
EEE LI
Project Window ==

Project group: 0 project(s]

N .-'.B Praoject I

Feady .

=
[=
)
=
i=2
=1
=]

=l
Ml{l }lbll\. Canzole)’\ Build / ||LL| LI
Ready |Halted [[Tl [[4

Figure A-8. VisualDSP++ Main Window

This work area contains everything necessary to build, manage, and debug
a project. You can set up preferences that specify the appearance of appli-
cation objects (fonts, visibility, and so on). You can open project files by
dragging and dropping them into the main window.

Visual DSP++ 5.0 User’s Guide A-15

Parts of the User Interface

The Visual DSP++ main window includes these parts:
e Title bar and control menu
¢ Menu bar, toolbars, and status bar
* Project window
* Output window

Visual DSP++ also provides access to many debugging windows to facili-
tate project development. For more information, see “Debugging
Windows” on page 2-43. You have to learn only one interface to debug all
your processor applications.

Visual DSP++ supports ELF/DWAREF-2 executable files. VisualDSP++
supports all executable file formats produced by the linker.

Title Bar

Figure A-9 shows the different parts of the title bar, which has been split
into three parts to fit the page.

[»| Analog Devices VisualD5P++ -

[Target: ADSP-EFS35 ADSP-BFS3S Family Simulator]

[Project: dot_product_asm.dpj]

Figure A-9. Title Bar

The title bar includes these components:
* Control menu button
* Application name — Analog Devices Visual DSP++

* Name of the active target

A-16 Visual DSP++ 5.0 User’s Guide

Reference Information

* Project name

e File name (when an editor window is maximized in the main
window)

e Standard Windows buttons

Clicking the control menu button opens the control menu, which
contains commands for positioning, resizing, minimizing, maximizing,
and closing the window. Double-clicking the control button closes
VisualDSP++. The title bar right-click menu (Figure A-10) and control
menu (Figure A-11) are identical.

Additional Information in Title Bars

A register window’s title bar displays its numeric format (such as octal).
An editor window’s title bar displays the name of the source file.

Title Bar Right-Click Menu

A menu like the one in Figure A-10 appears when you right-click within
the VisualDSP++ title bar or within the title bar of a child (sub) window.

Bestare
Move
Size
kinimize
b aximize

Close Alt+F4

Figure A-10. Right-Clicking in the Visual DSP++ Window’s Title Bar

Visual DSP++ 5.0 User’s Guide A-17

Parts of the User Interface

From the Visual DSP++ title bar’s right-click menu, you can:

* Resize or move the application window

¢ Close VisualDSP++

Control Menu

Control menu (system menu) commands move, size, or close a window.

Restare
Move
Size
kinimize
b aimize

Close Alt+F4

Figure A-11. Visual DSP++ Control Menu

Program Icons
Click one of the following program icon to open a control menu.
Program icon for the application and debugging windows
Program icon for editor windows

Placing the mouse pointer over a control menu command displays a brief
description of the command in the status bar at the bottom of the applica-
tion window.

Editor Windows

A floating editor window’s control menu includes the Next command,
which moves the focus to another window.

A-18 Visual DSP++ 5.0 User’s Guide

Reference Information

When an editor window floats in the main application window, its pro-
gram icon resides at the left side of its title bar. When an editor window is
maximized, the program icon resides at the left end of the menu bar.
Editor windows are described on page 2-16.

Debugging Windows

Each debugging window has a control menu. You can open a debugging
window’s control menu only when the window is floating in the main
window. For more information, see “Debugging Windows” on page 2-43.

Menu Bar

By default, the menu bar (Figure A-12) appears directly below the applica-
tion title bar. It displays menu headings, such as File and Edit.

File Edt Session Miew Project Hegister Memary Debug Setting: Tool: Window Help

Figure A-12. VisualDSP++ Menu Bar

To display menu commands and submenus, click a menu heading. You
can also run many menu bar commands by:

* Clicking toolbar buttons
* Typing keyboard shortcuts

Right-clicking and choosing a command from a context menu

Toolbars and User Tools

A toolbar is a set of buttons. You can run a command quickly by clicking
a toolbar button.

Visual DSP++ 5.0 User’s Guide A-19

Parts of the User Interface

Use toolbars to organize the tasks that you use most often. Position tool-
bars on the screen for fast access to the tools that you plan to use.

Visual DSP++ includes standard (built-in) toolbars. You can create custom
toolbars. Refer to “Toolbar Operation” on page A-27 for more informa-
tion about toolbars.

Built-In Toolbars
Table A-3 shows the standard (default) toolbars.
Table A-3. Built-In Toolbars

Name Toolbar

File

N EEIERIE

Edit

b 0| @] | |t w|T[a] %% %]

Help ‘Eﬂl.{?l ? |

Project
Window E|m|%|@||
Debug

B I I o o e e ke e RS = 2

Debug Session

Multiprocessor | @ | | ilﬂl}l t# |

A-20 Visual DSP++ 5.0 User’s Guide

Reference Information

Table A-3. Built-In Toolbars

Name Toolbar

User Tools A|A|A|A|A|A|A|A|A|A|

Workspaces |||E|@|@|||E|@|

To obtain information about a tool, move the mouse pointer over the tool
and press the keyboard’s F1 key.

Toolbar Customization

By default, nine standard toolbars (Table A-3) appear near the top of the

application window, below the menu bar.
You can change the appearance of toolbars by:
* Moving, docking, or floating the toolbars
* Adding buttons to (or removing from) toolbars
* Displaying large buttons
You can also:
* Hide toolbars from view

e Add and delete custom-built toolbars

User Tools

Save time running commands by configuring user tools. A maximum of
ten user tools may be configured.

Visual DSP++ 5.0 User’s Guide A-21

Parts of the User Interface

A user tool runs a command, which can:
* Contain parameters to launch an application
* Bea script command

Access configured user tools from the Tools menu or from the User Tools
toolbar, as shown in Figure A-13.

2| 2| 2| A A A A 2 A 2]

Figure A-13. Default User Tools

When a user tool is configured, its menu name (label) appears in the
Tools menu. The label also appears when you move the mouse pointer
over a user tool button.

Toolbar Buttons

The toolbar comprises separate tool buttons and provides quick mouse
access to commands.

The toolbar is a Windows docking bar which you can move it to different
areas of the screen by dragging it to the selected location.

Table A-4. Toolbar Buttons

Button Purpose

Connects to the debug target, or disconnects from the debug target

Creates a new document

2=
N

Opens an existing document

| &,

A-22 Visual DSP++ 5.0 User’s Guide

Reference Information

Table A-4. Toolbar Buttons (Cont’d)

Button

Purpose

Saves the active document or template with the same name

Saves all open files that have been modified, including files not in the current
project

Prints the active document

Loads a program into the target

Reloads the most recent program into the target

Cuts selected data from the document and store it on the clipboard

Copies the selection to the clipboard

Pastes the contents of the clipboard at the insertion point

Undoes previous edit command (multilevel undo)

2|5 |18 || @ | e ||E |6 || | |2 ||

Redoes the command undone by the previous Undo command (multilevel

redo)

Finds a text block in an editor window

Finds again or repeats the previous find command

2 = |[Z|]

Replaces the selected text with other text

Visual DSP++ 5.0 User’s Guide A-23

Parts of the User Interface

Table A-4. Toolbar Buttons (Cont’d)

Button Purpose

Searches through files for text or regular expressions

Goes to or moves to the specified location

Displays the current source file

Toggles the bookmark at selected line in the active editor window

Goes to the next bookmarked line in the editor window

Goes to the previous bookmarked line in the editor window

Clears all bookmarks in the editor window

|82 e |E |G ||

"
=

Opens VisualDSP++ Help to the Search page

Provides context-sensitive Help for a button command or portion of

VisualDSP++

Opens the About VisualDSP++ dialog box

Adds a source file to the project

Removes the selection from the project

Opens an existing project

2 (R | ||= |5 | |2

A-24 Visual DSP++ 5.0 User’s Guide

Reference Information

Table A-4. Toolbar Buttons (Cont’d)

Button

Purpose

Saves the open project

Opens the Project Options dialog box, where you specify project options

Builds the selected source file

Builds the project (update outdated files)

Builds all files in the project

Stops the current project build

Arranges windows as tall non-overlapping tiles

Arranges windows as wide non-overlapping tiles

Arranges windows so they overlap

Closes all open windows

Refreshes all the debugging windows

Runs (starts or continues) the current program

Restarts the current program

Visual DSP++ 5.0 User’s Guide A-25

Parts of the User Interface

Table A-4. Toolbar Buttons (Cont’d)

Button Purpose

Stops the current program

Resets the target

Toggles a breakpoint for the current line

Clears all current breakpoints

Enables or disables one breakpoint

Disables all breakpoints

Steps one line

Steps over the current statement

Steps out of the current function

EHERCHERENE e

Runs the program to the line containing the cursor

"1

Opens the Expressions window

Opens the Locals window

Opens the Call Stack window

ERR:=E

A-26 Visual DSP++ 5.0 User’s Guide

Table A-4. Toolbar Buttons (Cont’d)

Reference Information

Button

Purpose

Opens the Disassembly window

Runs the command associated with the user tool (one of ten)

Opens the associated workspace (one of ten)

Toolbar Operation

This section describes the toolbars and shows how to customize their

appearance. Refer to “Toolbars and User Tools” on page A-19 for more
information about toolbars.

Toolbar Button Appearance

You can specify the appearance of the toolbar buttons. An option, large

buttons, increases the size of each button (Table A-5).

Table A-5. Toolbars in Different Viewing Options

Option Settings

Docked

Floating

Large buttons — Off

|2

Large buttons — On

TR

Visual DSP++ 5.0 User’s Guide

A-27

Parts of the User Interface

Toolbar Shape

You can change the shape of a floating toolbar. Table A-6 shows two tool-
bar shapes.

Table A-6. Toolbars in Two Orientations

Horizontal Vertical

Depending on the number of tools in the toolbar, you can create other
length and width arrangements.

Toolbars: Docked vs. Floating

By default, toolbars are located under the application’s menu bar, but you
can move them to these locations:

¢ Over a docked window
¢ On the main window
* Anywhere on the desktop

A toolbar attached to a window is called a docked toolbar. You can tell
when a toolbar is going to dock by the size and shape of its moving outline
as you drag it. Its outline becomes slightly smaller than its floating outline.
To prevent a toolbar from docking, press and hold the Ctrl key while
dragging the toolbar to a new location.

A-28 Visual DSP++ 5.0 User’s Guide

Reference Information

A toolbar can be detached from a window and moved to another location
anywhere on the desktop. A floating toolbar is a stand-alone window, as it
is not docked. A docked toolbar does not show its name; however, a float-
ing toolbar displays its title.

Figure A-14 shows a floating Help toolbar.

2]

Figure A-14. Floating Help Toolbar

Toolbar Rules
When working with toolbars, be aware of these rules:

* You can customize a built-in toolbar (for example, by removing a
button from the File toolbar), but you cannot delete a built-in
toolbar. You can reset the buttons in a built-in toolbar to their
original default settings.

* You can change the name of a user-defined toolbar, but not the
name of a built-in toolbar. For example, the File toolbar cannot be
changed to a different name.

Refer to VisualDSP++ Help for details.

Status Bar

The status bar, which is located at the bottom of the main application
window, provides various informational messages. Figure A-15 shows
examples of information displayed on the status bar.

Visual DSP++ 5.0 User’s Guide A-29

Parts of the User Interface

Ready Halted ,yjl
Step one line Halted | \o0oooo00 [
For Help, press F1 |Line 21, Cal 1 | |NUM | ,—/jl

Figure A-15. Status Bar Appearance Depends on Context

The type of information that appears in the status bar depends on your
context (what you are doing).

* Moving the mouse pointer over a toolbar button or a menu bar
command displays a brief description of the button or command.

* Halting program operation with a Halt command displays the
address where the program halted.

e When using script commands, the status bar provides information,
such as when the menu item has focus.

While editing a file, the right side of the status bar displays editor window
information, as described in Table A-7.

Table A-7. Status Bar Information While Editing

Item Indicates

Line ### Cursor current line number

Col ### Cursor current column number

CAP The keyboard’s Caps Lock key is latched down
NUM The keyboard’s Num Lock key is latched down
SCRL The keyboard’s Scroll Lock key is latched down

A-30 Visual DSP++ 5.0 User’s Guide

Reference Information

Keyboard Shortcuts

Visual DSP++ includes keyboard shortcuts (also called shortcut keys) for
commonly used operations. These keyboard shortcuts appear in the tables
below. You can also access and run commands by:

* Clicking on menu items (and commands) in the menu bar
* Clicking toolbar buttons

* Right-clicking from a particular context, such as from the Project
window

* Clicking configured user tools (for example, ﬁl)
* Clicking buttons in dialog boxes

* Running scripts (via the File menu, Output window, or editor
window)

e Choosing a command from a control menu

Working With Files

When working with files, use the keyboard shortcuts listed in Table A-8.

Table A-8. Keyboard Shortcuts for Working With Files

Action Key(s)
Open a new file Curl+N
Open an existing file Ctl+O
Save a file Cul+S
Print a file Cul+P

Visual DSP++ 5.0 User’s Guide A-31

Keyboard Shortcuts

Table A-8. Keyboard Shortcuts for Working With Files (Cont’d)

Action Key(s)
Go to the next window F6
Go to the previous window Shift+F6

Moving Within a File

To move within a file, use the keyboard shortcuts listed in Table A-9.

Table A-9. Keyboard Shortcuts for Moving Within a File

Action

Key(s)

Move the cursor to the left one character

Left Arrow (<)

Move the cursor to the right one character

Right Arrow (—)

Move the cursor to the beginning of the file Ctrl+Home
Move the cursor to the end of the file Ctrl+End
Move the cursor to the beginning of the line Home
Move the cursor to the end of the line End

Move the cursor down one line

Down Arrow (¥)

Move the cursor up one line

Up Arrow M

Move the cursor one page down Page Down
Move the cursor one page up Page Up
Move the cursor right one tab Shift

Move the cursor left one tab Shift+Tab

Move the cursor left one word

Ctrl+Left Arrow (<)

Move the cursor right one word

Ctrl+Right Arrow (—)

Move to the matching brace character within a file

Ctrl+B

Go to the next bookmark

F2

A-32

Visual DSP++ 5.0 User’s Guide

Reference Information

Table A-9. Keyboard Shortcuts for Moving Within a File (Cont’d)

Action Key(s)

Go to a line Cul+G
Find text Ctrl+F
Find the next occurrence of text F3

Cutting, Copying, Pasting, Moving Text

To edit text, use the keyboard shortcuts listed in Table A-10.

Table A-10. Keyboard Shortcuts for Editing Text

Action Key(s)

Copy text Ctrl+C or Crrl+Insert

Copy text Select with cursor and Ctrl+drag
Cut text Ctrl+X or Shift+Delete

Delete text

Delete (selection or forward)

Delete text

Backspace (selection or backward)

Move text Select with cursor and drag
Move selected text right one tab Tab
Move selected text left one tab Shift+Tab

Paste text

Ctrl+V or Shift+Insert

Undo the last edit

Ctrl+Z or Alt+Backspace

Redo an edit command

Shift+Ctrl+Z

Replace text

Ctrl+H or Ctrl+R

Visual DSP++ 5.0 User’s Guide

A-33

Keyboard Shortcuts

Selecting Text Within a File

To select text within a file, use the keyboard shortcuts listed in

Table A-11.

Table A-11. Keyboard Shortcuts for Selecting Text Within a File

Action

Key(s)

Select all text in a file

Ctrl+A

Select the character on the left

Shift+Left Arrow (<)

Select the character on the right

Shift+Right Arrow (—)

Select all text to the beginning of the file | Shift+Ctrl+Home
Select all text to the end of the file Shift+Ctrl+End
Select all text to the beginning of the line | Shift+Home
Select all text to the end of the line Shift+End

Select all text to the line below

Shift+Down Arrow ({)

Select all text to the line above

Shife+Up Arrow (T)

Select all text to the next page

Shift+PgDn

Select all text to the above page

Shift+PgUp

Select the word on the left

Shift+Ctrl+Left Arrow (<)

Select the word on the right

Shift+Cerl+Right Arrow (—)

Select by column

Place cursor, press and hold down Alt and drag the
cursor (selects by column-character instead of by
line-character)

Working With Bookmarks in an Editor Window

When working with bookmarks in an editor window, use the keyboard

shortcuts listed in Table A-12.

A-34

Visual DSP++ 5.0 User’s Guide

Reference Information

Table A-12. Keyboard Shortcuts for Bookmarks

Action Key(s)
Toggle a bookmark Ctrl+F2
Go to next bookmark F2

Building Projects

To build projects, use the keyboard shortcuts listed in Table A-13.

Table A-13. Keyboard Shortcuts for Building Projects

Action Key(s)
Build the current project F7
Build only the current source file Cul+F7

Using Keyboard Shortcuts for Program Execution

For program execution, use the keyboard shortcuts listed in Table A-14.

Table A-14. Keyboard Shortcuts for Program Execution

Action Key(s)
Load a Program Cul+L
Reload a Program Cul+R
Dump to File Cul+D
Run F5
Multiprocessor Run Cul+F5
Run to Cursor Ctrl+F10
Halc Shift+F5
Step Over F10

Visual DSP++ 5.0 User’s Guide

A-35

Keyboard Shortcuts

Table A-14. Keyboard Shortcuts for Program Execution (Cont’d)

Action Key(s)
Step Into F11
Multiprocessor Step Cul+F11
Step Out Of Ale+F11
Halt a Script Cul+H

Working With Breakpoints

When working with breakpoints, use the keyboard shortcuts listed in
Table A-15.

Table A-15. Keyboard Shortcuts for Breakpoints

Action Key(s)
Open the Breakpoints dialog box Alt+F9
Enable/disable a breakpoint Ctrl+F9

Toggle between setting a software or hardware breakpoint | Shift+F9

Toggle (add or remove) a breakpoint F9

Obtaining VisualDSP++ Help

To obtain VisualDSP++ Help, use the keyboard shortcuts listed in
Table A-16.

Table A-16. Keyboard Shortcuts for Obtaining Online Help

Action Key(s)

View VisualDSP++ Help for the selected object F1

Obtain context-sensitive Help for controls (buttons, fields, | Shift+F1
menu items)

A-36 Visual DSP++ 5.0 User’s Guide

Reference Information

Miscellaneous

For windows and workspaces, use the keyboard shortcuts listed in

Table A-17.

Table A-17. Miscellaneous Keyboard Shortcuts

Action Key(s)

Refresh all windows F12

Alt+1 ... Alt+0

Select workspace 1 through 10

Window Operations

Similar to many Windows applications, VisualDSP++ provides multiple
ways to adjust the view of the user interface.

Window Manipulation

The Window menu commands (Figure A-16) enable you to manipulate
your window display and update windows during program execution.
Refer to your Windows documentation for more information.

Window

= Tile Horizonkally
[T Tile Yertically

% Cascade
Ef cClose all

Refresh Fi1z
IT 1 dotprod_main.c

Figure A-16. Window Menu Commands

Visual DSP++ 5.0 User’s Guide A-37

Window Operations

Right-Click Menu Options

A menu appears when you right-click in a window or on its title bar. The
menu options in Table A-18 affect window behavior.

Table A-18. Window Right-Click Menu Commands

Option Description

Allow Docking Enables or disables docking

Close Closes the window

Float in Main Window Causes the window to become a normal MDI child window
(like an editor window) and disables its docking ability

Scroll Bars and Resize Pull-Tab

Scroll bars appear along the right and bottom edges of the application or
document window, as shown in Figure A-17.

M=] B3
41- Scroll bar
- \ Scroll box
Ld— Pull-tab

Figure A-17. Scrolling the View Area

The scroll boxes inside the scroll bars indicate the vertical and horizontal
location in the document. Use the mouse to scroll to other parts of the
document.

A-38 Visual DSP++ 5.0 User’s Guide

Reference Information

When the application window is not maximized, the resize pull-tab
appears in the lower-right corner of the window. Click and drag the
pull-tab to resize the application window.

Windows: Docked vs. Floating

A window attached to the application’s frame is referred to as a docked
window.

You can detach a window from the main window and move it to another
location anywhere on the desktop. A floating window stands alone, because
it is not docked.

Depending on your needs, you can:
* Dock a window to the application’s main window (frame)
* Float a window

A window’s right-click menu provides commands for docking or floating
the window. The Allow Docking command and the Float In Main Win-
dow commands are mutually exclusive.

Docked Windows

The Project window in Figure A-18 is docked. (The docking option,
Allow Docking, is enabled.)

To prevent a window from docking, hold down the keyboard’s Ctrl key
while dragging the window to another position.

Floating Windows

The Project window in Figure A-19 is floating in the main window.
(Float In Main Window is enabled). The presence of an icon in the
top-left corner of a window indicates that it is floating.

Visual DSP++ 5.0 User’s Guide A-39

Window Operations

[ENERER

) G B I | B OO 0 e B &

Project: mixedCandaSM.opi [SES

ittt Winchosy

Project 1= ;I

2 DIRIIRc.DSP

Figure A-18. Example of a Docked Project Window

B 0O e DR E

i Project: mixedCandAS___ [B[=] E3
¥ e
shell.c
zetupllR.dzp
DIRIRCDSP

L ﬂ\ Project I

Figure A-19. Project Window Floating in Main Window (1 of 2)

The Project window in Figure A-20 is also floating in the main window.
(Float In Main Window is enabled.)

The Project window in Figure A-21 is floating, but not in the main win-
dow. (Float In Main Window is not selected.)

A-40 Visual DSP++ 5.0 User’s Guide

Reference Information

T OO e B &

ate. AI
oject: mixedCandAS ... =] E3

rriiiir

: zetupllR.dzp
[DIRIRCDSP

[j Project I

Figure A-20. Project Window Floating in Main Window (2 of 2)

@ E Project: mixedCandaSM.dpj 3 |
riiiir
- [Z] shelc
rojec :
zetupllR.dsp
“|[2] DIRIRC.DSP

N @ Project I

Figure A-21. Example: Project Window is Not Floating in Main Window

Visual DSP++ 5.0 User’s Guide A-41

Window Operations

Window Position Rules

The following rules apply to window positions.

e Unless Allow Docking is disabled, a window must reside within
the main window.

e An editor window cannot be docked to the main window.

* A window specified as an MDI child cannot be positioned over a
docked window.

* Unless the Output window is floating in the main window, a
window specified as an MDI child cannot be positioned over the
Output window.

Standard Windows Buttons

The standard Windows buttons are located on the right side of the title
bar, as shown in Figure A-22.

- [Project: MyProject.dpil - [fir_fr16.asm] = B4

Figure A-22. Example: Title Bar Showing Standard Window Buttons

These buttons resize and close the window as described in Table A-19.

A-42 Visual DSP++ 5.0 User’s Guide

Reference Information

Table A-19. Standard Windows Buttons

Button

Name — Purpose

Minimize — reduces the window to its Windows icon

Maximize — enlarges the window to fill the screen

O
=]

Restore — returns the window to its last non-minimized, non-maximized
position after you maximize the window

|

Close — closes the application window and exits the program

Visual DSP++ 5.0 User’s Guide A-43

Text Operations

Text Operations

Visual DSP++ allows the use of regular expressions and tagged expressions
in find/replace operations and comments in your code.

Regular Expressions vs. Normal Searches

Normally, when you search for text, the search mechanism scans for an
exact, character-by-character match of the search string, which does not
have to be an entire word. Every character in the search string is examined.
If there are embedded spaces, for instance, the exact number is matched.

Regular expression matching provides much more flexibility and power
than a normal search. A regular expression can be a simple string, which
yields the same matches as normal searches. Some characters in a regular
expression string, however, have special interpretations, which provide
greater flexibility.

For example, with regular expression matching, you can find the
following.

e All occurrences of either hot or cold

* Occurrences of for followed by a left parenthesis, with any number
of intervening spaces

* A semicolon (;) only when it is the last character on a line
e The string ADSP followed by a sequence of digits

Using a regular expression as the search pattern for replacement provides
ways to identify and recover the variable portions of the matched strings.

A-44 Visual DSP++ 5.0 User’s Guide

Reference Information

Specific Special Characters

Regular expressions assign special meaning to the following characters.

If you have to match on one of these characters, you must escape it by
preceding it with a backslash (\). Thus, \» matches the » character, yet »
matches the beginning of the line.

Table A-20. Special Search Characters

Character Description

A A caret matches the beginning of the line.

$ A dollar sign matches the end of the line.

A period (.) matches any character.

[abc] A bracketed sequence of characters matches one character, which may be
any of the characters inside the brackets. Thus, [abc] matches an a, b,
or c.

[0-9] This shorthand form is valid within the sequence brackets. It specifies a
range of characters, from first through last, exactly as if they had been
written explicitly.

Ranges may be combined with explicit single characters and other ranges
within the sequence. Thus, [-+.0-9] matches any constituent character
of a signed decimal number; and [a-zA-Z0-9_] matches a valid identi-
fier character, either lowercase or uppercase.

Ranges follow the ordering of the ASCII character set.

[~abc] A caret () that is the first character of a sequence matches all characters

[7r0-9] except for the characters specified after the caret.

(material) The material inside the parentheses can be any regular expression. It is
treated as a unit, which can be used in combination with other expres-
sions.

Parenthesized material is also assigned a numerical tag, which may be
referenced by a replace operation.

Visual DSP++ 5.0 User’s Guide A-45

Text Operations

Special Rules for Sequences

The normal special character rules of regular expressions do not apply
within a bracketed sequence. Thus, [*&] matches an asterisk or
ampersand.

Certain characters have special meaning within a sequence. These include
~ (not), - (range), and 1 (end of sequence). By placing these characters
appropriately, you can specify these characters to be part of the sequence.

To search for a right bracket character, place] as the first character of the
search string. To search for a hyphen character, place - as the first charac-
ter of the search string after 1, if present. Place a caret anywhere in the
search string except at the front, where it means “not.”

Repetition and Combination Characters

Each character described in Table A-21 extends the meaning of the item
that immediately precedes it. This item may be a single character, a
sequence in braces, or an entire regular expression in parentheses.

Table A-21. Match Characters

Character Description

* An asterisk matches the preceding any number of times, including none at all.

Thus, ap*1e matches apple, aple, appppple and ale.

For example, * *void matches only when void occurs at the beginning of a
line and is preceded by zero or more spaces.

+ A plus character matches the preceding any number of times, but at least one
time. Thus, ap+1e matches apple and aple, but does not match ale.

? A question mark matches the preceding either zero or one time, but not more.
Thus, ap?1e matches ale and aple, but nothing else.

The pipe character (|) matches either the preceding or following item. For
example, (hot) | (cold) matches either hot or cold.

Spaces are characters. Thus, (hot) | (cold) matches “hot “or” cold”.

A-46 Visual DSP++ 5.0 User’s Guide

Reference Information

Match Rules

If multiple matches are possible, the *, +, and ? characters match the long-
est candidates. The | character matches the left-hand alternative first.

For more information, see the many reference texts available on this topic,
such as Mastering Regular Expressions, Powerful Techniques for Perl and
Other Tools by Jeftrey E. F. Friedl, (c) 1997 O’Reilly & Associates, Inc.

Tagged Expressions in Replace Operations

Use a tagged expression as part of the string in the Replace field for a
replace operation.

A tagged expression must be enclosed between parentheses characters.

In the Replace field, the operators in Table A-22 represent tagged expres-
sions from the Find field.

Table A-22. Using Tagged Expressions in Replace Operations

Find Field Replace Field

Entire matched substring \0

Tagged expressions within parentheses () from left to right \1 \2 \3 \4 \5
\6 \7 \8 \9

Entire match expression &

The replace expression can specify an ampersand (&) character, meaning
that the & represents the substring that was found. For example, if the sub-
string that matched the regular expression is “abcd”, a replace expression
of “xyz&xyz” changes it to “xyzabcdxyz”. The replace expression can also

Visual DSP++ 5.0 User’s Guide A-47

Text Operations

be expressed as “xyz\0xyz”, where the “\0” indicates a tagged expression
representing the entire matched substring. Similarly, you can have another
tagged expression represented by “\17, “\2”.

Although the tagged expression 0 is always defined, the tagged
expressions 1, 2, and so on, are defined only when the regular
expression used in the search has enough sets of parenthesis. Some
examples are shown in Table A-23.

Table A-23. Examples of Replace Operations

String Search Replace Result
M. (Mr)(\.) \1s\2 Ms.

abc ()b(c) &-\1-\2 abc-a-c

bed (ab)c*d &-\1 bed-b
abede (el &-\1-\2 abede-ab-de
cde (ablcd)e &-\1 cde-cd

Comment Start and Stop Strings

Use start comment strings and stop comment strings for comment
highlighting colors. Table A-24 describes the two types of comment
strings that you can set for each file type.

Table A-24. Start and Stop Comment Strings

String Purpose

! Starts an assembly style, single-line comment
/* Starts a C/C++ style, multiline comment

// Starts a C/C++ style, single-line comment
Carriage return Ends a single-line comment (C and assembly)

A-48

Visual DSP++ 5.0 User’s Guide

Reference Information

Table A-24. Start and Stop Comment Strings (Cont'd)

String Purpose
*/ Ends a C/C++ style, multiline comment
(blank) Ends a C/C++ style, single-line comment

Online Documentation

Visual DSP++ includes three types of user documentation: Help files,
PDF files, and HTML files.

Table A-25. Types of User Documentation

Files Purpose

.chm Visual DSP++ Help system files and VisualDSP++ manuals are provided in Microsoft
HTML Help format. Installing VisualDSP++ automatically copies these files to the
<installation>\Help folder. VisualDSP++ Help is ideal for searching the entire
tools manual set. Invoke Help from the VisualDSP++ Help menu or via the
Windows Start button. The . chm files require Internet Explorer 6.0 (or higher) or
the installation of a component that provides a . CHM file viewer.

.pdf Manuals and data sheets in Portable Documentation Format are located in the instal-
lation CD’s Docs folder. Viewing and printing a . pdf file requires a PDF reader,
such as Adobe Acrobat Reader (4.0 or higher). Running setup.exe on the installa-
tion CD provides easy access to these documents. You can also copy PDF files from
the installation CD onto another disk.

.htm Dinkum Abridged C++ library and FLEXnet network license manager software doc-
or umentation is located on the installation CD in the Docs\Reference folder. View-
chtml ing or printing these files requires a browser, such as Internet Explorer 6.0 (or

higher). You can copy these files from the installation CD onto another disk.

The Visual DSP++ software installation procedure does not copy
PDF versions of books and data sheets or supplemental reference
documentation to the VisualDSP++ installation directory.

Visual DSP++ 5.0 User’s Guide A-49

Online Documentation

Printing Online Documentation

Besides printing topics from VisualDSP++ Help (on page A-50), you can
print large documents (Visual DSP+ manuals, hardware manuals and data
sheets, and more) from the VisualDSP++ Tools Installation CD-ROM.

To print documents:

1.

Insert the VisualDSP++ Tools Installation CD-ROM in the
CD-ROM drive.

Open the Docs folder by using one of these options:

From the Visual DSP++ Tools Installation main menu, click View
Documentation. (If the main menu does not appear, run
setup.exe.)

In Windows Explorer, select the CD-ROM drive (for example, D:)
and open the Docs folder.

Open the folder where the document is located.

The Data Sheets folder contains processor data sheets. Be sure to
check the Analog Devices Web site for updated versions.

The Hardware Manuals folder contains hardware manuals.

The Reference folder includes the .HTML files that comprise the
Dinkum Abridged C++ library and the FlexLM network license

documentation.
The Tools Manuals folder contains Visual DSP++ tools manuals.

Double-click the document that you want to print. Selecting a
.pdf file opens Adobe Acrobat Reader and displays the document.
Selecting an .htm1 file opens a browser and displays the document.

From the File menu, choose Print and specify the pages that you
want to print (and other print options).

A-50

Visual DSP++ 5.0 User’s Guide

Reference Information

Invoking Online Help

Invoke VisualDSP++ Help from within VisualDSP++ or outside of
Visual DSP++. You can also access Help manually via Windows Explorer.

Access online Help from the VisualDSP++ Help menu by choosing

Contents, Search, or Index.

To access online Help from the Windows Start button, click the Start
button and choose Programs, Analog Devices, Visual DSP++<version>,
Visual DSP++ Documentation, and then Visual DSP++ Documentation
for All Families or Visual DSP++ Documentation for Blackfin, SHARC,
or TigerSHARC>.

The Help function is programmed to look for the Help system in the
Visual DSP++ Help folder.

By default, the VisualDSP++ software installation procedure places the
complete set of Help files in the installation’s He1p folder.

If you receive an error message after invoking Help, the Help system:
* May not have been loaded onto your PC
* May have been deleted
* May reside in a directory other than the default directory

To locate the help (. chm) files manually, use the Windows Search function
as follows.

1. Record the Help file (. chm) named in the error message.

2. From the Windows Start button, choose Search and For Files or
Folders. Enter the name of the .chm file from Step 1.

3. After locating the file, launch it manually by clicking the file name
from the Search Results window (or from Windows Explorer).

Visual DSP++ 5.0 User’s Guide A-51

Online Documentation

Help Categories

Visual DSP++ provides three processor-specific Help categories, one for
each processor family, that filter/adjust the content of Help. Each Help
category (for example, Blackfin processor family Help) displays the infor-
mation pertinent to that specific family of processors only.

A fourth category, provides access to the entire documentation set of all
three processor families (similar to software releases prior to version 5.0).

By selecting a Help category, in effect, you remove information about
other families of processors from Help; this improves your ability to
quickly locate information in Help, especially when running a “search” or
looking up an entry in the Help Index.

You can also specify a user preference that selects a category. You can also
switch among the different Help categories. Refer to VisualDSP++ online
Help for details.

A-52 Visual DSP++ 5.0 User’s Guide

Reference Information

Online Help

Visual DSP++ online Help refers to the application (product) Help
packaged together with the VisualDSP++ tool suite. This section describes
the following topics:

Portions of the VisualDSP++ Help window
Context-sensitive Help

Copying example code from Help

Printing from Help

Bookmarking frequently used Help topics
Navigating in online Help

Search features

Help Window

The Visual DSP++ Help window comprises three parts:

The navigation pane provides tabbed pages (Contents, Index,
Search, and Favorites) that provide different views.

The viewing pane displays the selected object (Help topic,
Web page, video, .pdf file, application).

Toolbar buttons provide navigation and allow you to specify
options.

Visual DSP++ 5.0 User’s Guide A-53

Online Help

Figure A-23 shows the parts of the Visual DSP++ Help window.

Viewing pane

E? visualDSP++ 3.5 Helo Far 16-Bif Prncas

Toolbar ——p = = -~ = B~
buttons Forward Home Frink Dptions

Locate Back

LContents Ilﬂdex I §earch| Favor_itesl

MNew Features in This Version

Click below for a brief description of
what's new,

D Wl acome o WisualDSP+. 3.5 Help
EI@: Agsistance
: Organization of thiz Help Sy-te

Support for new

Multiple project

NaVigatiOl’] — [Z1 Software License Managemen processor support
Support . .
pane @ %ttingpgtarted Data streaming License
(1 Graphical Environment and logging management in
@ t anuals 1DDE
-7y Technical Articles on the \web Profile—guided Integrated

L‘I‘Qj Uszing thiz Help Spstem

optimization in

source code

IDDE control (SCCY

Profiling code
with Expert

Linker

Automation
aware scripting

engine

<1 |+l

Figure A-23. Parts of the VisualDSP++ Help Window

Move through the Help system and view Help topics by using the Help
window’s navigational aids, as shown in Figure A-24.

Other standard Microsoft HIML Help buttons are described in
Table A-26.

Context-Sensitive Help

You can view context-sensitive Help (information pertinent to your
current activity) for various items (toolbar buttons, menu commands,
windows, and dialog box controls) in VisualDSP++.

A-54 Visual DSP++ 5.0 User’s Guide

Reference Information

Move through viewed topics Jump to the ADI DSP tools Web site

E? ¥isualDSP ++ 3.0 Help for Blackfin DSPs

T B oG &

Hide Locate ™~.Back Fomwgd ame Print Options

C++ Run-Time Libraries

Mote: You must run YisualDSP++ to use the C++ run-
tirne libraries. YisualDSP does not support C++.,

The C and C++ run-time libraries are collections of
functions, macros, and class templates that can be

Open a bookmarked topic

Figure A-24. Help Window Navigational Aids

Table A-26. Standard Microsoft HTML Help Buttons

Button Purpose

Hides the Help window’s left pane. This button narrows the Help
— window.
1|

Hide

Displays the Help window’s left pane. This button restores a full
view after you click Hide.

Show
Highlights the name of the current topic on the Contents pane.
- After you jump around the Help system, this button shows the cur-
rent topic’s relation to other topics.
Locate Note: The Locate mechanism does not operate at all times. It oper-

ates after using a “search” but does not operate after using the
“index”.

Visual DSP++ 5.0 User’s Guide A-55

Online Help

Viewing Menu, Toolbar, or Window Help
To view Help information for a menu, toolbar, or window:
1. Click the toolbar’s Help button (K2) or press Shift+F1.
The mouse pointer becomes a Help pointer (k2).

2. Move the Help pointer over a menu command, toolbar button, or
window.

3. Click the mouse. The Help window opens (if not already open) to
the object’s description, which appears in the right pane.
Viewing Dialog Box Help

To view Help for a dialog box control (button or field), perform one of
the following actions:

* Select a field or button in a dialog box and press F1 or Shift+F1.

* Click the question mark button (#]) in the top-right corner of the
dialog box.

The mouse pointer becomes a Help pointer (N2).

Next, move the Help pointer over a dialog box control (button or
field) and click the mouse. A description of the object appears in a
yellow pop-up window.

* DPosition the mouse pointer over a label or control (button or field)
in a dialog box and right-click.

A What’s This button (| What's This? |) appears. Move the mouse
pointer over the What’s This button and click.

“What’s This” Help is not configured for all items.

A-56 Visual DSP++ 5.0 User’s Guide

Reference Information

Viewing Window Help
To view window Help:
1. Click the window to make it active.

2. Press the F1 key.

A description of the window appears in the right pane.

Copying Example Code From Help

You can copy code from Help and then paste it into your application.
Be aware that the copied text may carry unwanted control codes. For
example, if you copy a hyphen with a parameter, the actual code of the
copied hyphen may be an ASCII 0x96 instead of an ASCII 0x2D. The
hyphen may look OK, but it will cause an error when the command is
run.

Printing Help

You can print a specific Help topic or multiple Help topics (an entire

section of Visual DSP++ Help).

Table A-27. How to Print Help Topics

To print Do this
Current topic Right-click within the help topic and choose Print.
Selected topic On the Contents page:

Right-click the topic (@) and choose Print.

Entire section of | On the Contents page:
Help Right-click a book icon (@ or l:@) and choose Print. Then choose Print
the selected heading and all subtopics.

Visual DSP++ 5.0 User’s Guide A-57

Online Help

Tip: From the Help window’s Contents page, click (£), located at the
top of the window.

Bookmarking Frequently Used Help Topics

Bookmarking a topic in Visual DSP++ Help is just like bookmarking a
page in a book. This feature is also called “setting up favorite places.”

Note: Each time a Microsoft HTML Help topic is bookmarked, a record
is recorded in the file, hh.dat. This file not only records VisualDSP++
Help bookmarks, but also the bookmarks placed in other application Help
systems that use . chm files.

Once a bookmark is placed onto a topic, you can view a list of book-
marked topics and quickly open one.

To place a bookmark at a topic:
1. Display the topic.
2. On the left side of the Help window, click the Favorites tab.
3. Click Add.
Remove a bookmark by selecting the name and clicking Remove.

The Help system adds the topic and displays it in the alphabetized
list.

To open a bookmarked topic:
1. On the left side of the Help window, click the Favorites tab.
2. Perform one of these actions:
* Double-click the topic.
* Select the topic and click Display.

A-58 Visual DSP++ 5.0 User’s Guide

Reference Information

Navigating in Online Help

To move around in the Help system, click the following.

* A hyperlink within text. The text is underlined and displayed in a
color that is different from the regular black text.

* A topic listed under a See Also heading. The text is underlined
and displayed in a color that is different from the regular black
text.

* A mini button or its associated text. The button is a small gray
square and the underlined text is in a different color.

* A topic name on the Contents page (Figure A-25)

@ How To
E||:L'j_f| Reference Click a page icon

to view the topic
i |E] Glozsary

- [£] C++ Run-Time Libraries

Figure A-25. Contents Page — Online Manual Topics

Visual DSP++ 5.0 User’s Guide A-59

Online Help

* An index entry on the Index page (Figure A-26)

Build settings <€&——— Clickanindexentry ...
custom
individual File ——. . . to view the associated topics
project wide

Figure A-26. Index Entries on the Index Page

* A topic name on the Search page. The bottom portion of the
Search page displays the located topics (hits) that include your
search string.

Searching Help

Visual DSP++ Help provides full-text and advanced search capabilities for
finding information.

Full-Text Searches

A full-text search locates every occurrence of a text string within the Help
system. Specify a particular word or phrase to find only the topics that
contain that word or phrase.

You can search previous results, match similar words, and search through
the topic titles only.

A basic search consists of the word or phrase that you want to locate. Use
similar word matches, a previous results list, or topic titles to further
define your search.

You can run an advanced search, which uses Boolean operators and wild-
card expressions to further narrow the search criteria. Figure A-27 shows
an example of a Boolean search for “new AND plot”.

A-60 Visual DSP++ 5.0 User’s Guide

Qontenlsl Index Search |Favorjtes|

Reference Information

Specifying Data Processing for a

Type in the word(s) to search for: Data Set
AND plot | . .
Inew Pe J J For each data set in a [dlajd, vou can specif
: ! ¥ SpeciTy
List Topics | Display | data processing options that determine
- sampling rate, triggering, and the data
Select topic: Found: 7 processing algorithm you want,

Title

Hankl

Speciying Data .
Flat window Fe.. “isualD..
Configuring a Plot - MizualD...
Plot window Pre... WigualD...
Wiewing aPlat .. WisualD..
Mew Features in... WisualD...

The following procedure assumes that the
Settings dialog box is open.

To specify data processing for a data set

1. Click the Data Processing tab.

(=R RN PL RN

Figure A-27. Example: Boolean Search

To find information with a full-text search:

Click the Help viewer’s Search tab.

In Type in the word(s) to search for, type the word or phrase you
want to find.

Select Search previous results to narrow the search.

Select Match similar words to find words that are similar to the
search string.

Select Search titles only to search for words in topic titles only.

Click the Options button () at the top of the Help Viewer
window to highlight all instances of search terms found in topic

files. Then choose Search Highlight On.

Click List Topics, select the topic you want, and then click
Display.

Sort the list by clicking the Title, Location, or Rank column
heading.

Visual DSP++ 5.0 User’s Guide A-61

Online Help

Rules for Full-Text Searches

Observe these rules when formulating queries:

®

Searches are not case sensitive. You may type search strings in
uppercase or lowercase characters.

You can search for any combination of letters (a—z) and numbers

(0-9).

Searches ignore punctuation marks such as the period, colon,
semicolon, comma, and hyphen.

Group the elements of your search by using double quote
characters or parentheses to set apart each element.

You cannot search for quotation marks.

When searching for a file name with an extension, group the entire
string in double quotes (for example, “filename.ext”). Otherwise,
the period breaks the file name into two separate terms. The
default operation between terms is AND, which creates the logical
equivalent to filename AND ext.

Advanced Search Techniques

Use the following search techniques to narrow your searches for more
precise results.

Wildcard expressions
Boolean operators

Nested expressions

A-62

Visual DSP++ 5.0 User’s Guide

Reference Information

Wildcard Expressions

Wildcard expressions let you search for one or more characters by using a
question mark or asterisk. Table A-28 describes the results of these differ-
ent kinds of searches.

Table A-28. How to Use Wildcard Expressions to Define a Search

Search Target | Example Results

A single word | project Locates topics that contain the word “project”.
Other grammatical variations, such as “projects”
are located.

A phrase “project window” Locates topics that contain the literal phrase
(note the quotation “project window” and all its grammatical varia-
characters) tions.
project window Without the quotation characters, the query is

equivalent to specifying “project AND window”,
which finds topics containing both of the individ-
ual words, instead of the phrase.

Wildcard Tink* Locates topics that contain the terms “linker”,
expressions “linking”, “links”, and so on. The asterisk cannot
-or- be the only character in the term.

.c?? Locates topics that contain the terms “. cpp” or

“.cxx”. The question mark cannot be the only
character in the term.

Boolean Operators

Use the Boolean AND, OR, NOT, and NEAR operators to precisely define your
search by creating a relationship between search terms.

Insert a Boolean operator by typing the operator (AND, OR, NOT, or NEAR) or
by clicking the arrow button.

When no operator is specified, AND is used. For example, the query
call stack is equivalent to call AND stack.

Visual DSP++ 5.0 User’s Guide A-63

Online Help

Table A-29 describes the results of using Boolean operators to define a
search.

Table A-29. Examples: Boolean Operators Used to Define a Search

Search Target Example Results

Both terms in the same new AND plot Locates topics that contain both the words
topic “new” and “plot”

Either term in a topic new OR plot Locates topics that contain either the

word “new” or the word “plot” or both

The first term without the | new NOT plot Locates topics that contain the word

second term “new”, but not the word “plot”

Both terms in the same new NEAR plot Locates topics that contain the word

topic, close together “new” within eight words of the word
“olot”

Do not use the |, &, or ! characters as Boolean operators. You must use OR,
AND, or NOT.

Nested Expressions

Use nested expressions to create complex searches for information.

For example, new AND ((plot OR waterfall) NEAR window) finds topics
containing the word “new” along with the words “plot” and “window”
close together, or topics containing “new” along with the words “water-
fall” and “window” close together.

A-64 Visual DSP++ 5.0 User’s Guide

Reference Information

Rules for Advanced Searches
These rules apply to advanced searches:

* Expressions in parentheses are evaluated before the rest of the
query.

* Ifa query does not contain a nested expression, it is evaluated from
left to right. For example, “folder NOT file OR project” finds
topics containing the word “folder” without the word “file,” or
topics containing the word “project”. The expression
“folder NOT (file OR project)”, however, finds topics contain-
ing the word “folder” without either of the words “file” or
“project.”

* You cannot nest expressions deeper than five levels.

Visual DSP++ 5.0 User’s Guide A-65

Glossary

Glossary

The following terms are important toward understanding VisualDSP++.

Application Programming Interface (API) functions

A set of functions available to an applications programmer. These
functions, which are part of an application, can be accessed by
other applications. For VDK, API refers to a library of C/C++
functions and assembly macros that define VDK services. These
services are essential for kernel-based application programs. The
services include interrupt handling, thread management, and sema-
phore management.

archiver

The Visual DSP++ archiver, elfar.exe, combines object (.doj)
files into library (.DLB) files, which serve as reusable resources for
project development. The linker searches library files for routines
(library members) that are referred to by other objects, and links
them in your executable program.

breakpoint

User-defined halt in an executable program. Toggle breakpoints
(turn them on or off) by double-clicking on a location in a
Disassembly window or editor window.

break condition

Hardware condition under which the target breaks and returns
control of the target back to the user. For example, a break condi-
tion could be set up to occur when address 0x8000 is read from or
written to.

A-66

Visual DSP++ 5.0 User’s Guide

Reference Information

build

Performing a build (or project build) refers to the operations (pre-
processing, assembling, and linking) that VisualDSP++ performs
on projects and files. During a build, VisualDSP++ processes the
files in the project that have been modified (or depend on files that
have been modified) since the previous build. A build differs from
a rebuild all. During a rebuild all, VisualDSP++ processes all the
files in the project, regardless of whether they have been modified.

build type
Replaced by “configuration”
channel

A transmission path between two communicating locations, usually
the smallest subdivision of a transmission system. For VDK, chan-
nel refers to a FIFO queue into which messages sent to a thread are
placed. Each thread has 15 channels. Messages are received in
priority order from the lowest numbered channel to the highest.

COFF

Common Object File Format. Visual DSP++ does not support files
formatted in COFF.

configuration (or project configuration)

A project is developed in stages (configurations). By default, a
project includes two configurations: Debug and Release.

A configuration refers to the collection of options (tool chain and
individual options for files) specified for the configuration. You
can add a configuration to your project at any time. You can delete
a customized configuration that you created, but you cannot delete
the Debug or Release configurations.

Visual DSP++ 5.0 User’s Guide A-67

Glossary

connection type

A simulator, EZ-KIT Lite development system, or an emulator.
Previously called “session type”.

context switch

A process of saving/restoring the processor’s state. The scheduler
performs the context switch in response to the system change.

A hardware interrupt can occur and change the state of the system
at any time. Once the processor’s state has changed, the currently
running thread may be swapped with a higher-priority thread.
When the kernel switches threads, the entire processor’s state is

saved and the processor’s state for the thread being switched in is
restored.

critical region

A sequence of instructions whose execution cannot be interrupted
or swapped out. Suspending all interrupt service routines (ISRs)
before calling the critical region ensures that the execution of a crit-
ical region is not interrupted. Once the critical region routine
concludes, ISRs are enabled.

CROSSCORE®

Analog Devices processor development tools, which provide easier
and more robust methods for engineers to develop and optimize
systems by shortening product development cycles for faster
time-to-market. CROSSCORE components include the Visu-
alDSP++ software development environment and EZ-KIT Lite
evaluation systems and emulators for rapid on-chip debugging.

A-68

Visual DSP++ 5.0 User’s Guide

Reference Information

current directory

Directory where the .DPJ file is saved. The build tools use the
current directory for all relative file path searches. See also “default
directories.”

data set

A series of data values in processor memory used as input to a plot.
You can create data sets and configure the data for each data set.
You specify the memory location, the number of values, and other
options that identify the data. Additional specifications for row and
column counts are required for 3-D plots.

Debug configuration

For a debug configuration, you can accept the default options or
specify your own options and save them. The configuration refers
to the specified options for all the tools in the tool chain. See also
“configuration.”

debug session

The combination of a processor, connection type, and platform.
For example, a debug session might consist of an ADSP-21262
processor, an EZ-KIT Lite connection, and an ADSP-21262
EZ-KIT Lite board.

Processor projects being developed are run as debug sessions. The
two types of sessions are hardware and software. When setting up a
session, set the focus on a series of more specific elements.

debug target

See “target”.

Visual DSP++ 5.0 User’s Guide A-69

Glossary

default intermediate and output file directories

These file directories (folders) are \Debug (for the debug configura-
tion) and \Release (for the release configuration). By default,
Visual DSP++ creates these directories as children of the directory
where the .dpj file is saved, which is called the project’s current
directory. See also “current directory.”

dependencies

Visual DSP++ uses dependency information to determine which
files, if any, are updated during a build. If an included header file is
modified, VisualDSP++ builds the source files that include
(#include) the header file, regardless of whether the source files
have been modified since the previous build.

dependency files

Usually user files or system header (.h) files, these files are refer-
enced from a source file by a preprocessor #include command.

device

A single processor. With regard to JTAG emulation and the JTAG
EZ-ICE Configurator, a device refers to any physical chip in the
JTAG chain.

device driver

A user-written model that abstracts the hardware implementation
from the application code. User code accesses device drivers
through a set of device driver API functions.

DSP

(digital signal processor) or processor

A-70 Visual DSP++ 5.0 User’s Guide

Reference Information

DWARE-2

(Debug With Arbitrary Records Format) A format for debugging
source-level assembly code via improved line and symbol
information

editor window

(source window) A document window that displays a source file for
editing. When an editor window is active, you can move about
within the window and perform typical text editing activities such
as searching, replacing, copying, cutting, pasting, and so on.

ELF
Executable Linking Format

emulator
Hardware used to connect a PC to a processor target board. This
hardware allows application software to be downloaded and
debugged from within the VisualDSP++ environment. Emulator
software performs the communications that enable you to see how
your code affects processor performance.

event

A signal (similar to a semaphore or message) used to synchronize
multiple threads in a system. An event is a logical switch, having
two binary states (available/true and unavailable/false) that control
thread execution. When an event becomes available, all pending
(waiting) threads in the wait list are set to a ready-to-run state.
When an event is available and a thread pends on it, the thread
continues running and the event remains available.

To facilitate error handling, threads can specify a timeout period
when pending on an event.

Visual DSP++ 5.0 User’s Guide A-71

Glossary

An event is a code object of global scope, so any thread can pend
on any event. Event properties include the EventBit mask,
EventBit value, and combination type. Events are statically allo-
cated and enumerated at run time. An event cannot be destroyed,
but its properties can be changed.

event bit

A flag set or cleared to post the event. The event is posted
(available) when the current values of the system Event Bits match
the event bit’s mask and event bits” values defined by the event’s
combination type.

A system has only one Event Bits word, the size of a data word
minus one. For ADSP-TSxxx processors, the size is 31 bits.

executable file

A file or program written and built in VisualDSP++

EZ-KIT Lite evaluation system

focus

A development board, software, and cable for evaluating a particu-
lar processor. The kit includes fundamental debugging software to
facilitate architecture evaluations via a PC-hosted tool set. Use the
kit to evaluate Analog Devices processors, learn about processor
applications, simulate and debug applications, and prototype
applications.

Refers to the active processor in a multiprocessor (MP) debugging
session

A-72

Visual DSP++ 5.0 User’s Guide

Reference Information

ICE

In-Circuit Emulator. Analog Devices offers emulators that provide
non-intrusive target-based debugging of processor systems. An
emulator can single-step or execute a processor at full speed to
facilitate viewing or altering a processor’s register and memory
contents.

IDDE

Integrated Development and Debugging Environment for Analog
Devices processor development tools

interrupt

An external or internal condition detected by the hardware inter-
rupt controller. In response to an interrupt, the kernel processes a
subroutine call to a predefined interrupt service routine (ISR).

Interrupts have the following specifications.

Latency — interrupt disable time. The period between the interrupt
occurrence and the first ISR’s executed instruction.

Response — interrupt response time. The period between the inter-
rupt occurrence and a context switch.

Recovery — interrupt recovery time. The period needed to restore
the processor’s context and to start the return-from-interrupt

(RTI) routine.
interrupt service routine (ISR)

A routine executed as a response to a software interrupt or hard-
ware interrupt. VDK supports nested interrupts, which means that
the kernel recognizes other interrupts, services interrupts, or both

Visual DSP++ 5.0 User’s Guide A-73

Glossary

JTAG

with higher priorities while executing the current ISR. For VDK,
the ISRs are written in assembly language. VDK reserves the timer
and the lowest priority (reschedule) interrupt.

Joint Test Action Group. This committee is responsible for imple-
menting the IEEE boundary scan specification, enabling in-circuit
emulation of ICs.

JTAG ICE configurator

kernel

See “Visual DSP++ configurator”.

The main module of a real-time operating system. The kernel loads
first and permanently resides in the main memory and manages
other modules of the real-time operating system. Typical services
include context switching and communication management
between OS modules.

keyboard shortcuts

The keyboard provides a quick means of running the commands
used most often, such as simultaneously typing the keyboard’s Ctrl
and G keys (indicated with the symbols Ctrl+G) to go to aline in a
file.

librarian

A utility that groups object files into library files. When linking
your program, specify a library file and the linker automatically
links any file in the library that contains a label used in your pro-
gram. Source code is provided so you can adapt the routines to
your needs.

A-74

Visual DSP++ 5.0 User’s Guide

Reference Information

library files

The Visual DSP++ archiver, e1far.ex, combines object (.D0J) files
into library (.d1b) files, which serve as reusable resources for
project development. The linker searches library files for routines
(library members) that are referred to from other objects, and links
them into your executable program.

linear profiling

A debugging feature that samples the target’s PC register at every
instruction cycle. Linear profiling gives an accurate picture of
where instructions were executed, since every PC value is collected.
The trade-off, however, is that linear profiling is much slower than
statistical profiling. A display of the resulting samples appears in
the Linear Profiling window, which graphically indicates where
the application is spending its time. Simulator targets support lin-
ear profiling. See also “Statistical profiling.”

linker

The linker creates executable files, shared memory files, and overlay
files from separately assembled object and library files. It assigns
memory locations to code and data in accordance with a
user-defined .1df file, which describes the memory configuration
of the target system.

Linker Description Files (.1df files)

The .1df files describe the target system and map your program
code within the system memory and processors. The .1df file cre-
ates an executable file using the target system memory map and
defined segments in your source files.

Visual DSP++ 5.0 User’s Guide A-75

Glossary

loader

A utility that transforms an executable file into a boot file. The
loader creates a small kernel, which is booted into internal memory
at chip reset. A program of arbitrary size can then be loaded into
the processor’s internal and external memory.

makefile

Visual DSP++ can export a makefile (make rule file), based on your
project options. Use a makefile (.mak or .mk) to automate builds
outside of VisualDSP++. The output make rule is compatible with
the gnumake utility (GNU Make V3.77 or higher) or other make

utilities.
memory pool

An area of memory containing a specified number of uniformly
sized blocks of memory available for allocation and subsequent use
in an application. The number and size of the blocks in a particular
memory pool are defined at pool creation.

message

For VDK, a signal (similar to an event or semaphore) used to syn-
chronize two threads in a system or to communicate information
between threads. A message is sent to a specified channel on the
recipient thread (and can optionally pass a reference to a payload to
facilitate the transfer of data between threads). Posting a message
takes a deterministic amount of time and may incur a context
switch.

mixed mode

One of the two editor window display formats (the other being
source mode). Mixed mode displays assembled code after the line
of the corresponding C code.

A-76 Visual DSP++ 5.0 User’s Guide

Reference Information

multiprocessor group

The assignment of one or more processors to a group, enabling a
single multiprocessor operation (MP Run, MP Halt, MP Step,
MP Reset, and MP Restart) to affect the processors in the cur-
rently selected group.

multiprocessor system

A system built with multiple processors. Often, performance-based
products require two or more processors. A system built with a
single processor is called a single-processor system. Debugging a
multiprocessor system requires that you synchronously run, step,
halt, and observe program execution operations in all the proces-
sors at once. The SHARC and TigerSHARC simulators do not
support this capability.

non-bootable PROM-image file

Splitter output, consisting of PROM files that cannot be used to
boot-load a system

outdated file
A file that has been edited since the last build
payload

For VDK, an arbitrary amount of data associated with a message.
A reference to the payload can be passed between threads as part of
a message to enable the recipient thread to access the data buffer
that contains the payload.

pinning a window

A technique that statically associates a window to a specific
processor

Visual DSP++ 5.0 User’s Guide A-77

Glossary

pipelining

A feature that helps you analyze and tune your code for optimal
performance. For TigerSHARC processors and Blackfin processors,
Visual DSP++ provides a simulation-only debugging window
(Pipeline Viewer) to help visualize the pipeline by displaying pipe-
line stalls and aborts. For SHARC processors, the Disassembly
window displays symbols (F, D, or E) to indicate an instruction’s
pipeline stage.

platform

The device with which a target communicates. For simulation, a
platform is typically one or more processors of the same type. For
emulation, you specify the platform with the VisualDSP++ config-
urator, and the platform can be any combination of devices.

The platform represents the hardware upon which one or more

devices reside. You typically define a platform for a particular tar-
yp y p p

get. For example, if three emulators are installed on your system, a

platform selection might be emulator two.

Several platforms may exist for a given debug target. For a simula-
tor, the platform defaults to the identical processor simulator.
When the debug target is a JTAG emulator, the platforms are the
individual JTAG chains. When the debug target is an EZ-KIT Lite
board, the platform is the board in the system on which you wish
to focus.

pre-emptive kernel

A priority-based kernel in which the currently running thread of
the highest priority is pre-empted, or suspended, to give system
resources to the new highest-priority thread

A-78 Visual DSP++ 5.0 User’s Guide

Reference Information

processor

(DSP) An individual chip contained on a specific platform within a
target system. When you create the executable file, the processor is

specified in the Linker Description File (. 1df file) and other source
files.

profile-guided optimization (PGO)

A process that involves setting up and executing data sets to pro-
duce an optimized application. A data set is the association of zero
or more input streams with one . PGO output file. Refer to the Visu-
alDSP++ Getting Started Guide for a tutorial and to VisualDSP++
Help for “how-to” information.

profiling

A technique used during simulation to examine program execution
within selected ranges of code. Profiling helps you determine: per-
centage of time spent executing instructions, number of clock
cycles spent executing instructions, number of instructions exe-
cuted, and the number of times memory is read or written.

The profiler is non-intrusive. It does not report on execution
within a called function (“daughter” function). Use profiling to
monitor program memory. By watching one or more profile
ranges, you can find areas of code that may be optimized for better
performance. A profile session must include one memory range at a
minimum. For each range, specify a start and end address. You can
use symbols or hexadecimal numbers to represent addresses.

Visual DSP++ 5.0 User’s Guide A-79

Glossary

project

This term refers to the collection of source files and tool configura-
tions used to create a processor program. Through a project, you
can add source files, define dependencies, and specify build options
related to producing your output executable program. A project
(.dpj) file stores your program’s build information.

VisualDSP++ helps you manage projects from start to finish in an
integrated user interface. Within the context of a processor project,
you define project and tool configurations, specify project-wide
and individual file options for debug or release modes of project
builds, and create source files. Visual DSP++ facilitates easy move-
ment among editing, building, and debugging activities.

project configuration

This configuration includes all of the settings (options) for the
tools used to build a project.

project file tree display
See “Project window”.
Project window

This window displays your project’s files in a zree view, which can
include folders to organize your project files. Right-clicking on an
icon (the project itself, a folder, or a file) opens a menu of actions
that you can perform on the selected item. Double-clicking on the
project icon or a folder icon opens or closes the tree list.
Double-clicking a file icon opens the file in an editor window

A-80 Visual DSP++ 5.0 User’s Guide

Reference Information

Project wizard

Simplifies the creation of a new project by opening a series of pages
from which to specify options. For Blackfin processors, additional
pages facilitate the inclusion of startup code. You can modify
project options at a later time via the Project Options dialog box.

property pages
Refers to pages of the Project Options dialog box.
real-time operating system (RTOS)

A software executive that handles processor algorithms, peripherals,
and control logic. The RTOS comprises these components: kernel,
communication manager, support library, and device drivers. An
RTOS enables structured, scalable, and expandable processor
application development while hiding OS complexity.

rebuild all
See “build”.
registers

For information on available registers, see the corresponding pro-
cessor documentation or view the associated online Help.

release configuration

You can accept the default set of options, or you can specify the
options you want and save them. The configuration refers to the
specified options for all the tools in the tool chain. See also
“Configuration.”

reset

This command resets the processor to a known state and clears
processor memory.

Visual DSP++ 5.0 User’s Guide A-81

Glossary

restart

right-c

round-

schedu

This command sets your program to the first address of the inter-
rupt vector table. Unlike a reset, a restart does not reload memory.

lick

This action opens a right-click menu (sometimes called a context
menu, pop-up menu, or shortcut menu). The commands that
appear depend on the context (what you are doing). Right-click
menus provide access to many commonly used commands.

robin scheduling

For VDK, a scheduling scheme whereby all threads at a given pri-
ority are given processor time automatically in fixed duration
intervals. Round-robin priorities are specified at build time.

ler

For VDK, a kernel component responsible for scheduling system
threads and interrupt service routines. VDK is a priority-based
kernel in which the highest-priority thread is executed first.

scripting

You can interact with the IDDE by using a single command or a

script file. Scripting languages include VBScript, JavaScript, and

Tcl. Output displays in the Console view of the Output window.
The output is also logged to the VisualDSP_log.txt file.

semaphore

For VDK, a signal (similar to an event or message) used to synchro-
nize multiple threads in a system. A semaphore is a data object
whose value is zero or a positive integer (limited by the maximum
setup at creation time). The two states (available/greater than zero
and unavailable/zero) control thread execution. Unlike an event,

A-82

Visual DSP++ 5.0 User’s Guide

Reference Information

whose state is automatically calculated, a semaphore is directly
manipulated. Posting a semaphore takes a deterministic amount of
time and may incur a context switch.

serial port data

You can automatically transfer serial port (SPORT) data to and
from on-chip memory by using DMA block transfers. Each serial
port offers a time division multiplexed (TDM) multichannel mode.

session
See “debug session”.

session name

Although the choice of target, platform, and processor define the
session, you may want to further identify the session. To prevent
confusion later, modify the default session name when you first
create the debug session. A session name can be any string and can
include space characters. There is no limit to the number of charac-
ters in a session name, but the Session List dialog box can display
about 32 characters.

session type

See “connection type”.
shortcuts

See “keyboard shortcuts”.

signal

For VDK, a method of communicating between multiple threads.

VDK supports four types of signals: semaphores, events, messages,
and device flags.

Visual DSP++ 5.0 User’s Guide A-83

Glossary

simulator

The simulator is software that mimics the behavior of a processor
chip. Simulators are often used to test and debug code before the
processor chip is manufactured.

The way a simulator runs an executable program in software is
similar to the way a processor does in hardware. The simulator also
simulates the memory and I/O devices specified in the . 1df file.
Visual DSP++ lets you interactively observe and alter the data in the
processor and in memory. The simulator reads executable files. A
simulator’s response time is slower than that of an emulator.

source files

The C/C++ language and assembly language files that make up
your project. Other source files that a project uses, such as the .1df
file, contain command input for the linker and dependency files
(data files and header files). View source files in editor windows.

source mode

One of the two editor window display formats (the other being
mixed mode). Source mode displays C code only.

splitter

A PROM splitter utility that transforms an executable file into a
non-boot-loadable image. This file is loaded onto external proces-
SOr memory.

statistical profiling

A debugging feature that provides a more generalized form of pro-
filing that is well suited to JTAG emulator debug targets. With
statistical profiling, Visual DSP++ randomly samples the target pro-

A-84 Visual DSP++ 5.0 User’s Guide

Reference Information

cessor’s program counter (PC) and presents a graphical display of
the resulting samples in the Statistical Profiling window. This win-
dow graphically indicates where the application is spending time.

JTAG sampling is completely non-intrusive, so the process does
g y
not incur additional run-time overhead. See also “linear profiling.”

stepping

A technique for moving through source or assembly code to
observe instruction execution

streams

A debug tool used during simulation to drive other devices or take
part in processing a subset of data. Use streams to simulate data
input and output.

symbols

Labels for sections, subroutines, variables, data buffers, constants,
or port names. For more information, refer to the related build tool
documentation.

system configurator

For VDK, the system configuration control is accessible from the
Kernel page of the Project window. The Kernel page provides a
graphical representation of the data contained in the vdk.h and
vdk.cpp files.

target

(also called “debug target”) The communication channel between
Visual DSP++ and a processor (or group of processors). Targets
include simulators, emulators, and EZ-KIT Lite evaluation sys-

Visual DSP++ 5.0 User’s Guide A-85

Glossary

tems. Several targets may be installed on your system. Simulator
targets, such as the ADSP-TS101 cycle-accurate simulator, differ
from emulator targets in that the processor exists only in software.

The Summit-ICE emulator communicates with one or more physi-
cal devices over the host PC’s PCI bus. The USB-ICE emulator
communicates with a device through the PC’s USB port.

threads

ticks

For VDK, a kernel system component that performs a predeter-
mined function and has its own share of system resources. VDK
supports multithreading, a run-time environment with concur-
rently executed independent threads.

Threads are dynamic objects that can be created and destroyed at
runtime. Thread objects can be implemented in C, C++, or assem-
bly language. A thread’s properties include an ID, priority, and
current state (wait, ready, run, or interrupted). Each thread main-
tains its own C/C++ stack.

The system-level timing mechanism. Every system tick is a timer
interrupt.

tool chain

trace

The collection of tools (utilities) used to build a project
configuration

Provides a history of program execution. A trace is sometimes
called an execution trace or a program trace. Trace results show
how the program arrived at a certain point and show program
reads, writes, and memory fetches. Blackfin and TigerSHARC
processors do not support traces.

A-86

Visual DSP++ 5.0 User’s Guide

Reference Information

unscheduled regions

For VDK, a sequence of instructions whose execution can be inter-
rupted, but cannot be swapped out. The kernel acknowledges and
services interrupts when an unscheduled region routine is running.

VDK
See “Visual DSP++ Kernel (VDK).”
VisualDSP++

An Integrated Development and Debugging Environment (IDDE)
for Analog Devices processor development tools

Visual DSP++ Configurator

Previously called JTAG ICE Configurator or ICE Configurator,
use this utility to describe the hardware to Visual DSP++ when con-
necting to a JTAG emulator session. VisualDSP++ requires this
description to set up the debug session. The Visual DSP++
Conlfigurator also provides access to ICE Test, a utility for testing
the target.

VisualDSP++ Kernel (VDK)

The RTOS kernel from Analog Devices, a software executive
between processor algorithms, peripherals, and control logic. The
kernel is integrated with the Integrated Development and Debug-
ging Environment (IDDE), assembler, compiler, and linker
programs into the development tool chain.

Refer to the VisualDSP++ Kernel (VDK) User’s Guide for details.
watchpoints

For simulation only. Similar to breakpoints, watchpoints stop
program execution. Unlike breakpoints, which are attached to
specific addresses, watchpoints are attached to user-defined

Visual DSP++ 5.0 User’s Guide A-87

Glossary

conditions, such as memory reads or stack pops. The program halts
when the conditions are met. SHARC processors do not support
watchpoints.

workspace

You can open multiple windows, arrange them in any configura-
tion, and save the layout as a workspace setting that can be recalled
(loaded) at a later time. Each debug session’s default workspace is
automatically saved when you close the session and is automatically
restored when you load that session.

By default, each session includes two workspaces. You can create
any number of workspaces and switch among them. Suggested
workspaces include an edit workspace, a debug workspace, and a
plot workspace.

A-88

Visual DSP++ 5.0 User’s Guide

B SIMULATION OF SHARC
PROCESSORS

Depending on your selected target processor, several simulator options are
available on submenus under the Settings menu.

This appendix describes the options that help you simulate SHARC

processors.
The information is organized as follows.
* “Anomaly Options” on page B-1
e “Event Options” on page B-4
* “Recording a Simulator Anomaly or Event” on page B-7
e “Select Processor ID Options” on page B-10
* “Simulator Options” on page B-10
* “Load Sim Loader Options” on page B-11
e “SPI Simulation in Slave Mode” on page B-13

Anomaly Options

The Anomalies submenu (under the Settings menu) provides commands
to help you determine where an anomaly might be affecting your code.
This submenu appears only when the simulator supports anomaly com-
mands for the selected processor.

Visual DSP++ 5.0 User’s Guide B-1

Anomaly Options

ADSP-21xé6x Processor Anomalies

If you know that your silicon has anomalies, the simulator lets you
configure reporting for the following anomaly events. By default, these

options are OFF (disabled).

e Shadow Write — This command opens the Configure Simulator
Event dialog box, from which to configure reporting for shadow
write anomalies.

e SIMD FIFO - This command opens the Configure Simulator
Event dialog box, from which to configure reporting for SIMD
FIFO anomalies.

Shadow Write FIFO Anomaly (ADSP-2116x Only)

For examples and workarounds, refer to anomaly 39 at the Analog Devices

embedded processors and DSPs Web site.

This anomaly has been identified in the shadow write FIFOs that exist
between the internal memory array of the ADSP-21160M and core I/O
processor (IOP) buses that access the memory. (Refer to the hardware doc-
umentation for more details on shadow register operation.) A particular
sequence of a core write followed by a read of the same internal memory
address (in conjunction with a certain type of IOP activity) can cause the
core read to return incorrect data.

Under the circumstances described below, the read from Addr 1 incor-
rectly returns the data for Addr 2.

This problem is caused by the shadow write FIFO erroneously returning
data for a core read when data should have been returned from internal
memory. During write operations, data is placed in the first stage of a
two-stage shadow write FIFO. Data is moved from first to second stage

B-2 Visual DSP++ 5.0 User’s Guide

Simulation of SHARC Processors

when a second write is performed (by processor core or IOP). Similarly,
data is moved from the second stage of the FIFO to internal memory
when neither the core nor the IOP accesses memory in a core cycle.

On read operations, address compare logic allows data to be fetched from
internal memory or from the FIFOs. Note that each memory block has
one shadow register FIFO, which all core and IOP accesses to internal
memory use. The internal memory clock (not visible to the user) runs at
twice the core clock frequency. So, each core cycle consists of two memory

cycles, with one memory cycle dedicated to the core and the other dedi-
cated to the IOP.

SIMD Read from Internal Memory With Shadow
Write FIFO Hit Anomaly (ADSP-2116x Only)

For examples and workarounds, refer to anomaly 40 at the Analog Devices

Web site.

This anomaly has been identified in the shadow write FIFOs that exist
between the internal memory array of the ADSP-21160M and core /IOP
buses that access the memory. (Refer to the hardware documentation for
details on shadow register operation.)

When SIMD reads cross long word address boundaries (that is, odd
normal word addresses or non-long word boundary-aligned short word
addresses) and the data for the read is in the shadow write FIFO, the result
is Revision 0.0 behavior for the read.

Visual DSP++ 5.0 User’s Guide B-3

Event Options

Event Options

The Events submenu provides the following options.

* FP Denorm — This command opens the Configure Simulator
Event dialog box, from which to configure the reporting of the
generation of a floating-point denormal result. By default, this

option is OFF (disabled).

* Short Word Anomaly (all ADSP-2106x processors except the
ADSP-21065L) — This command opens the Configure Simulator
Event dialog box, from which to configure reporting for

short-word accesses that fail. By default, this option is OFF
(disabled).

e Access to 21065L 9th column Even Address (ADSP-21065L
processors only) — This command opens the Configure Simulator
Event dialog box, from which to configure reporting for invalid
memory access. By default, this option is ON (enabled).

FP Denorm

You can configure what happens when an FP Denorm event occurs.
Denormal operands flush to zero when input to a computation unit and
do not generate an underflow exception. Refer to your processor’s hard-
ware documentation for more information about floating-point
operations.

Short Word Anomaly

This option applies to all ADSP-2106x processors except the
ADSP-21065L processor.

B-4 Visual DSP++ 5.0 User’s Guide

Simulation of SHARC Processors

Short-word accesses (read or write) fail following a stalled instruction. Any
access (read or write) to short-word memory space can fail if it follows a
stalled instruction or causes an instruction stall (see the example below).

A DMA process cannot cause this anomaly. It is restricted to conditions
set up in the core processor. A DMA process is not impacted by this
anomaly (that is, the DMA will function correctly even if the anomaly
occurs). Refer to your processor's hardware documentation.

The occurrence of the failure varies with temperature, voltage, and
frequency.

An instruction can stall because of the following circumstances.
1. DAG stalls

An instruction that loads a DAG register followed by an instruc-
tion that uses the same DAG for a memory access causes the second
instruction to stall.

L2= 8;

DM(IO, MO) = R1; // Both L2 and I0 reside in DAGIL,
// causing this instruction
// to stall.

Failure can occur if 10 points to a short-word space or if the above
instruction sequence is followed by a short word access.

2. PM memory data access (cache misses)

Any instruction that uses the PM bus to perform a data access
causes an instruction stall the first time it is executed.

PM(I8,M8) = RI;

3. Memory block conflicts

Visual DSP++ 5.0 User’s Guide B-5

Event Options

If an instruction requires two accesses to the same memory block,
the instruction stalls.

DM(IO, MO)=RO, PM (I8,M8) = R1;
// A stall will occur when both address

// pointers point to the same memory block.
4. Wait states for external memory accesses

An instruction that contains an external memory access where the
wait state setting for that memory bank is greater than 0 or the
access is held off because of the ACK signal or through bus arbitra-
tion causes that instruction to stall.

5. Multiple bus accesses to IOP registers in the same IOP register
group

An instruction may be stalled because of multiple buses trying to
access IOP registers in the same group. For this anomaly, the only
applicable case is if an external host or processor accesses the same
group of registers at the same time as the core.

DM(MSGRO) = R1; // Instruction executed while
// the host or another processor

/] writes to MSGRZ.
6. Executing instructions from external memory with wait states

Any instruction being executed from external memory where the
wait state setting for that memory bank is greater than 0 or the
access is held off because of the ACK signal causes that instruction to
stall.

A workaround for cases 1-5 above is to insert a NOP between the stallable
instruction and the short-word access (or remove the stall condition).

B-6 Visual DSP++ 5.0 User’s Guide

Simulation of SHARC Processors

Case 6 has no workaround.

Ensure that a failing sequence does not occur when you use the
delayed branch (DB) option with jumps, calls, and returns. For
example, ensure that the two instructions in RTI (DB) do not cause
an instruction stall in a return to code that includes short-word
accesses.

Access to ADSP-21065L Short-Word Internal
Memory 9th Column at Even Addresses

An Access to ADSP-21065L 9th column Even Address event is a simula-
tor anomaly. The event occurs during access to an ADSP-21065L
short-word internal memory 9th column even addresses. The simulator
allows the event, but the processor does not.

The simulator issues a warning when the event occurs. Visual DSP++ lets
you suppress the warning (in various ways). Selecting this option lets you
control the simulator’s behavior when the event occurs. When this option
is not selected, a message box pops up and a warning appears in the Out-
put window’s Console view.

Recording a Simulator Anomaly or Event

You can record various simulator anomalies and events for ADSP-21x6x
processors.

Visual DSP++ 5.0 User’s Guide B-7

Recording a Simulator Anomaly or Event

To record a simulator anomaly or event:
1. From the Settings menu, choose Anomalies or Events.
2. Choose the anomaly or event to record.
The anomalies are: Shadow Write or SIMD FIFO

The events are: FP Denorm, Short Word Anomaly, or Access to
21065L 9th column Even Address

The Configure Simulator Event dialog box (Figure B-1) appears,
displaying the selected anomaly or event (for example, FP
Denorm) in the title bar of the dialog box.

Configure Simulator Event: FP Denorm

—Ewent Fire Dptions——————————————— Sewverity Optiohs
Fire Unique ﬂ IW.-’-‘«F!N j
— Event Achion
[Enabled ¥ “erbose
v Frint [Halt
)8 I Cancel

Figure B-1. Configure Simulator Event Dialog Box

From this dialog box, configure the simulator to handle the
anomaly or event.

B-8 Visual DSP++ 5.0 User’s Guide

Simulation of SHARC Processors

3. Specify options, described in Table B-1.

Table B-1. Options in the Configure Simulator Event Dialog Box

Item Purpose

Event Fire These options specify the frequency of reporting an event.

Options Fire Once logs the event only the first time it occurs.
Fire Unique logs the event once for each unique event (a unique set of occur-
rences which is specific to the event type). Select this option to prevent the
reporting of multiple messages for the same event.
Events (for example, FP Denorm) — If a PC has had this event before, it is
not unique and is not reported.
Anomalies (for example, Shadow Write, SIMD FIFO, or Short Word) — If
the PC at the time of the memory write and the PC at the time of the mem-
ory read taken as a pair have had this event before, it is not unique and is not
reported.
Fire All logs every occurrence of the event.

Severity This option specifies the degree of the event.

INFO writes a message in black typeface to the Output window.

WARN writes a message in black typeface to the Output window.

ERROR writes a message in red typeface to the Output window and rings a
bell.

FATAL writes a message in red typeface to the Output window and rings a
bell.

Event Actions

Print writes messages to the Output window.
Halt stops processing after the event has occurred. This option is similar to
using a watchpoint.

Enabled

Enables this event check

Verbose

Specifies that multi-line messages are written to the Output window

When this option is not selected, messages are one line long.

4. Click OK.

Visual DSP++ 5.0 User’s Guide B-9

Select Processor ID Options

Select Processor ID Options

For ADSP-2106x or ADSP-2116x processors only, you can configure the
simulator processor ID. Select Single Processor or a particular processor
in a multiprocessor group (for example: Processor 1, Processor 2, and so

on).

Simulator Options

The Simulator submenu (under the Settings menu) provides the
CLKDBL command for ADSP-21161 processors only. Use this command
to double the clock speed circuitry.

Clock-doubling lets you set control bits, but it does not affect how
the simulator runs.

You can configure the processor’s CLKOUT pin to be 1x or 2x the rate of
CLKIN. The appearance of a check mark () beside the CLKDBL command
on the Simulator submenu indicates that this option is selected.

No Boot Mode

(ADSP-2106x and ADSP-2116x processors only).

The Simulation submenu’s NoBootMode command is available for
ADSP-21x6x simulators to support development code in configurations
where the processor is in “NoBoot” mode (starting execution from exter-
nal memory for pre-ADSP-2126x processors, or starting execution from
internal ROM for ADSP-2126x and ADSP-2136x processors).

B-10 Visual DSP++ 5.0 User’s Guide

Simulation of SHARC Processors

When this mode is selected, check mark (,) appears beside the NoBoot-
Mode command in the Simulation submenu. Also, a message displays,
reminding you to load a program or choose Debug -> Reset to complete
the mode change.

Changing to NoBoot mode is not persistent. Each time you bring
up the simulator and/or change sessions, the mode reverts back to
its default state, which is Boot Mode.

The processor has a “boot” mode and a “NoBoot” mode. In boot mode,

the ITVT bit is ignored and the interrupt vector table (IVT) and starting

PC are in internal memory. In NoBoot mode, the 11VT bit is significant,
and the initial location of the IVT and PC are in external memory (pre-

ADSP-2126x processors) and in internal ROM (ADSP-2126x processors
and later).

Before VisualDSP++ 4.0, all of the SHARC (ADSP-21x6x) simulators
supported “Boot” mode only, regardless whether an .1df file was being
booted because most users develop code whose final form is booted into
the processor.

Load Sim Loader Options

Depending on the target processor, the Load Sim Loader submenu
provides these boot options:

* Boot from Host (32-bit Host, 16-bit Host, or 8-bit Host)
* Boot from PROM
* Boot from Link (ADSP-21060, ADSP-21062, and ADSP-2116x

processors only)

Visual DSP++ 5.0 User’s Guide B-11

Load Sim Loader Options

* Boot from SPI (32-bit Host, 16-bit Host, or 8-bit Host) for
ADSP-2116x processors only

e None of Above (disables boot mode)

Create a boot loader file (. 1dr) based on the peripheral from which you
are loading. In a simulation target session, choose a peripheral (boot
option) and boot file as follows.

To create a boot loader file

1. From the Settings menu, choose Load Sim Loader and a boot
option (such as Boot from Host) to open the Open a Boot File
dialog box.

2. Navigate to the .1dr file and select it. Then click Open and OK.
A message instructs you to issue a reset instruction to execute the
loader.

3. From the Debug menu, choose Reset. The simulator runs and
boots in the boot-kernel (also called loader-kernel). A message
instructs you to issue a run instruction, which executes the loader.

4. From the Debug menu, choose Run (F5) to execute the loader.
The loader runs to completion and then displays a message,
indicating that the loader is finished and that it is OK to run the
application.

@ Before clicking Run, load the symbols for the program as follows.

a. From the File menu, choose Load Symbols to open
the Load a Processor Program's Symbols dialog box.

b. Select the .dxe file that was used to create the .1dr
file. A message indicates that the selected symbols are
loading.

5. From the Debug menu, choose Run (F5) to run the application.

B-12 Visual DSP++ 5.0 User’s Guide

Simulation of SHARC Processors

For booting information, refer to the processor’s hardware documentation

or the VisualDSP++ Linker and Utilities Manual.

SPI Simulation in Slave Mode

For ADSP-21161 processors, the external SPI is not modeled in simula-
tion. Since the master controls the timing, there is no timing information
for the transfers in slave mode. Except during booting, the BAUDR field of
the slave SPICTL is used for the timing of the external master. Since this
field has no effect in slave mode in the hardware, you can use it for
simulation.

When the SPI is enabled in slave mode and the SPITX buffer is not empty,
an SPI transmit/receive operation occurs. If the SPITX and the SPIRX buff-
ers are empty, a word is read speculatively into SPIRX buffer. The SPI
reads a maximum of one word ahead. Once the SPIRX buffer is emptied by
a DMA operation or a read, the SPI reads another word in the time speci-
fied by the BAUDR field of SPICTL.

During booting, the SPI operates at its fastest supported baud rate. When
you rely on the BAUDR field in slave mode, a maximum value of 0x5 is used
for this field. The “End of file” and “File not connected” errors are sup-
pressed until a read of SPIRX or a valid DMA is set up.

Refer to the ADSP-21161 SHARC DSP Hardware Reference for details.

Visual DSP++ 5.0 User’s Guide B-13

SPI Simulation in Slave Mode

B-14 Visual DSP++ 5.0 User’s Guide

C SIMULATION OF
TIGERSHARC PROCESSORS

This appendix describes how to simulate TigerSHARC processors.
The information is organized as follows.

e “ADSP-TS101 Processors” on page C-1

e “ADSP-TS20x Processors” on page C-12

ADSP-TS101 Processors

This section includes the following topics, which apply to ADSP-TS101
processors.

e “Simulator Timing Analysis Overview” on page C-2
* “Pipeline Stages” on page C-2

e “Stalls” on page C-3

e “Aborts” on page C-5

* “Pipeline Viewer and Disassembly Window Operations” on

page C-7

e “Simulator Options” on page C-11

Visual DSP++ 5.0 User’s Guide C-1

ADSP-TS101 Processors

Simulator Timing Analysis Overview

The ADSP-TS101 simulator is a cycle-accurate simulator. It not only
models the instruction set functionally, but also correctly models pipeline
effects (stalls and aborts).

Currently, the processor's external port and link ports are not
modeled in a cycle-accurate manner. The simulator cycle-counts
the code, but the cycle counts used for the external port or link
ports are rough estimates of cycle counts that you could obtain
by running the code on the chip. Do not rely on these counts for
performance evaluation.

The Pipeline Viewer window shows the flow of instructions through the
pipeline and any stalls due to sequencer or memory events. It helps you
understand how processor timing affects the execution of your program.
For information about configuring and using the Pipeline Viewer, see
“Pipeline Viewer Window” on page 2-88 or Visual DSP++ online Help.

Pipeline Stages

The ADSP-TS101 Pipeline Viewer window provides a representation of
instruction flow through the processor’s pipeline. Table C-1 lists the pipe-
line stages.

Table C-1. Pipeline Stages — ADSP-TS101 Processor

Stage Abbreviation in Pipeline Viewer
Instruction Fetch 1 F1

Instruction Fetch 2 F2

Instruction Fetch 3 F3

Decode DECODE

Integer INT

Access ACCESS

C-2 Visual DSP++ 5.0 User’s Guide

Simulation of TigerSHARC Processors

Table C-1. Pipeline Stages — ADSP-TS101 Processor (Contd)

Stage Abbreviation in Pipeline Viewer
Execute Stage 1 EX1
Execute Stage 2 EX2

Pipeline stages F1 through F3 represent the fetch unit pipe. Stages
DECODE through EX2 represent the execution pipe. Fetch unit pipe
stages contain raw quads of 32-bit words fetched from memory, not valid
instruction lines.

When you view the Pipeline Viewer window in disassembly format (by
means of the right-click menu), instructions that appear in the fetch unit
pipe are not valid instruction lines, but merely bits and pieces. Valid
instruction lines appear in the execution pipe stages.

Stalls

The examples that follow illustrate how the Pipeline Viewer displays dif-
ferent types of stall events for ADSP-TS101 processors. For a complete list
of pipeline effects and memory transaction timing, refer to the processor’s
hardware specification.

Stalls Due to IALU Dependency

The following sequence of instructions causes a 4-cycle stall at the Decode

stage.
J10=0x0;;
xr5 = [J10 + 11;; // This instruction is stalled in Decode

// until previous instruction reaches E2:

Visual DSP++ 5.0 User’s Guide C-3

ADSP-TS101 Processors

Cycle | F1 | Fz | Fa| DECODE INT ACCESS | EX1 EX2 -
a1 5 w n j2 = 0X1:: J. . HT . . . m. nop:
82 3 b b klo = 0X15;; 3. . Jja. .. . nop: nop. nop::
83 j b 3 410 = 0 k.. 2. .. g. =r5 = r& + r5::
g4 Ed 5K 5 i =rS = [410 + 0X1]. .. i, . ki. .. 5. i3 = 0¥S::
55 B4 B3 B3 i =x5 = [i10 + 0H11... B[5. J1.. k. iz = 0X1:;
56 B4 B3 jE3 i@ =r5 = [d10 + 0X11... B|5...B|41... 3. k10 = 0X15::
27 B4 B3 B4 i =x5 = [410 + 0¥11... B|5...B|l41... B| 3. iln = 0
g8 B4 B4 iBd8 i =r5s = [H10 + 0X11... B|/5...B|/41... B| 1. Bl 510 = 0::
59 B3B3 B35 i3 - §3 - §z2:: = .. Bl 1. . Bl 5. B| 10 = 0::
90 Bl ijBd i 1IF njeq. JUMP locp. .. M ... xr. . . Bl 5. B| ji0 = 0::
91 SEd iEd iWl IF njeq. JUMF loop. .. i .. B|=r. .. =. B| ji0 = 0:: =

Figure C-1. Stall Due to IALU Dependency

Stalls Due to Compute Block Dependency

The following sequence of instructions causes a one-cycle stall at the
Integer pipeline stage.

YR3
YR4

R3 - RZ2;;
R4 - R3;; // This instruction is stalled in Integer for

// 1 cycle. The source register (R2) is a
// destination in the previous instruction.

Cycle | Fl1 | FZ2| F3| DECODE INT ACCESS | EX1 EX2 =

41 = Bl n wrd = 0XE:: nop: : nop: : 3 j0 = 0H1 =rl =
42 n hod J wr3d = 0X1:: vrd = DXL nop: : n. . 0 = 0X1 =rl] =
43 n 1 = vr2 = 0;: vr3i = 0X1;:; VI, . n.. nop;

44 j n n jlo = 0;; vre = 0;: i V.. nop

45 iBli n wra - r3a - . 10 = 0:: vr... V.. yrd = 0XS

46 BEBEBEi vrs=-rs— vrd = r3 — ri:: 1. vrd = 0X1

47 B4 Bl IF nyaeq. ... M vri = r4 — r3;; vr. .. i, vr2 = 0

49 v B iW| IF nyaeg. ... yrd = rd — r3:: B|vr. 10 = 0;

49 n w 3 30 = 0H1: IF nyaeq. JUH vr E b vr3d = r3 — r2;:
50 3 n 7 ilo0 = 0;; j0 = 0¥1; I . .. IF. .. V.. Eyr3 = r3l — r2

51 = 3 n wr3 = r3i —. .. jlo = 0:; Jjo. .. I.. vrd = rd4d — r3;; -

Figure C-2. Stall Due to Compute Block Dependency

C-4 Visual DSP++ 5.0 User’s Guide

Simulation of TigerSHARC Processors

Aborts

The following examples show how the Pipeline Viewer displays different
types of abort events for ADSP-TS101 processors. For a complete list of
pipeline effects and memory transaction timing, refer to the processor’s
hardware specification.

Aborts Due to an Unpredicted Change of Flow

In the following example, the abort at the Decode stage is due to an
unpredicted jump, predicated upon an IALU condition. Aborted stages in
the fetch unit pipe are marked with an B8, and aborted instructions in the
execution pipe are marked with an Y .

vy
Cycle | F1| F2| F3| DECODE INT ACCESS | EX1 EX2 =

q i n vz =42z -0%1; =mr3=r .. Bk . Blr. . k. 2 = 0E6: 113 = r5 = .
10 2 i n j2 =42 -0¥l: =rd =r .. Bk . Blki.. . Bk kil = 0Xl: =r3 = r2 + .
11 B3 = i IF njle. JUMP OxG(NF): ... i Blk1i.. . Bk Bl ki = 0¥1: =r3 = r2 + .
12 nBd B8 i nop: I... 32... Blk... Blkl =08l;: =r3 =12+ .
13 vy nfdi j0=0%1; =0=r4d+r .. FAn .. IF .. i B|kl = 0HL; =rd3 = r2 + .
14 v v on J0 = 0¥1; =r0 = rd + ... j ﬂ nop; ; I. j2 = j2 — 0X1; =r9 = ...
15 n ¥ ¥ nop ... J0. .ﬂn. IF njle. JUMP 0O=xG({HP;....
16 i W vy yrd = DES; n. . in. .. j. A nop:

17 pe 5 n wr3d = 01 V.. nop j. J0 = 0¥1; =r0 = rd4 + .. .
13 n ® Jj wr2=0:: V.. kies n. j0 = 0¥1; =r0 = rd4 + . .
19 n n = Jjl0 = 0:: V.. kies V. nop; ; =

Figure C-3. Abort Due to an Unpredicted Change of Flow

Visual DSP++ 5.0 User’s Guide C-5

ADSP-TS101 Processors

Abort Due to Mispredicted Change of Flow

In the following example, an abort appears at pipeline stage E1 because of
a mispredicted change of flow at the end of a loop, predicated on a com-
pute block condition.

£

ineli 5
Cycle | Fl1 | F2| F3| DECODE | INT ACCESS | EX1 EX2 AI

7z H-BEi . .. ;.. IF...| v... Blvri=13-12:;

73 il v v... j1... H1.. yrd = rd - r3:;

74 nBAGBAiAIF... Avy.. HAvyr... Ai... M IF nyaeg. JUMP loop2:

75 n nfdi i0... AI.. Avyr.. Av... Wi10 =0

76 i w5 w q0... i A BAy... Bvyr3-=rx3-r2;;

77 = J n nop; J... jD...ﬂI.. ﬂyr4=r4—r3;;

78 n b 3 no. .. n. . J0. . 3. HIF nyaeqg, JUMP loop?:

79 n n = Hr . .. n. . nop 3. J0 = 0¥1; =xr0 = rd4 + . .

a0 v n n 33, .. H. . no. n.. J0 = 0¥1; =r0 = rd + . ..

a1 5 ¥ n j2 ... j.. HT . n.. nop; ;

az 5 g v k1., j.. 3. .. nop; hop. nop: -

Figure C-4. Abort Due to Mispredicted Change of Flow

C-6 Visual DSP++ 5.0 User’s Guide

Simulation of TigerSHARC Processors

Branch Target Buffer Hits

In the following example, the jump instruction was found in the Branch
Target Buffer and is marked with B . The branch is predicted and taken,

and no penalty is exacted for the change of flow.

23 v. ¥ k.. IF njle. JUHP loop:... . ki ... i.. 0 = 0DX1: =r0 = r4d + x3; yrld = 5. ..
24 Wy v v Go=0%1:; =0-=74 WMI. 2. . k.. 40 =0%1: =0 = rd +ri; yrl = r5. .
25 LMy v, kl=o0¥l: =3 =712 ;. @l IF .. k1l = 0DEl; =r? = r2 + rd; yrl = r6...
26 vy, kMv. 42 -2 -o0%1; =r9. .. k. 50 ... MI.. j2=42-0¥1: =mr9% -2+ rd yrl...
27 . 7 k.. IF njle, JUHP loop: ... j k1 .]. IF njle, JUHF loop; k1 = 01, wrb...
28 .y bl i j0 = 0DX1: =r0D = r4 . I 32)4 j0 = 0X1: =r0 = 4 + r3; yr0 = r5
29 LMy v k1= 0¥1: =3 =12 ;. WIF .. kil = 0El: =rd = r2 + rd: yrl o= rh. ..
30 v, kMv. q2-d2z-0¥1. =9... k. 0 .. MI.. 42 =2 - 0L, =rd = r2 + 4. wyrl...
! y. v k. [l IF njle. JUMP loop: ikl i. M IF nile. JUMF loop: k1 = DX1: yrh
32 By + v Go-=-o081; =0-x4& . WI. 2. k.. §0 = 0El: =r0 = v4 + r3: yrl = r5. ..
33 KMy v, k1= 0%l =rd = r2... M IF k1= 0%l; =rd =12+ rd; yrs = rh...
34 v, kM~ i2 = 47 — 0¥1: =r9d k| 40 H i7 = 47 - OX1: =r9 = r2 + v4 wrl =

Figure C-5. Branch Target Buffer Hits

Pipeline Viewer and Disassembly Window
Operations

This section includes the following topics.
e “Current Program Counter Value”

e “Stepping”

Visual DSP++ 5.0 User’s Guide C-7

ADSP-TS101 Processors

Current Program Counter Value

The program counter value, marked by = in the Disassembly window, is
the address of the instruction at pipeline stage E1. When a breakpoint is
set at a certain address, the simulator halts after the instruction as this
address is executed at stage E1.

You can specify which instruction the simulator executes next by manually
changing the program counter (PC) value in the PC Register window.
Note, however, that the current instruction, indicated by = in the Disas-
sembly window, is executed prior to the user-specified instruction. When
you change a PC value, the simulator flushes the pipeline and aborts all its
instructions. After the pipeline is flushed, normal execution resumes from
a memory address indicated by the new PC value. The simulator contin-
ues to run until an instruction at the new PC reaches stage E1 of the

pipeline.

/ Manually changing the PC value during simulation can result in

unpredictable program behavior. VisualDSP++ does not safeguard
against invalid PC values. Ensure that the specified PC indicates a
valid instruction within program address space.

An example of an invalid PC is a data memory address whose con-
tents is not recognized as an instruction by the simulator. In this
case, the simulator generates an unhandled software exception.

Another example of an erroneous PC is the middle of an instruc-
tion line. Only part of the instruction line is executed, while
instructions in the beginning of the line are ignored.

C-8 Visual DSP++ 5.0 User’s Guide

Simulation of TigerSHARC Processors

Figure C-6 shows how the program counter value is used for the
ADSP-TS101 processor.

*[cycle | F1 | F2 | F3 | DEcoDE | INT| accEss | Exi | Ex2 | |
2 47 i El B 1F. . Wy v... ilo = 0;; V..

43 v, TBdiWIF . v.B| v. . gr3 = r3 — r2;: 5.,

49 n. v 7. i0 ... I. v... Blwr3 =23 - r2;; V.

50 i. n w. 5i0... i I.. yrd4 = rd4d — 13 ; Bl v. .

51 = 3 . vrd. .. 3. .. IF nvaeg, JUMP loopZ2: n. .. V..

52 n. = J. vrd. .. 7. 3. j0 = 0X1; =r0 = rd + 3. . . I..
= (] i EH BEBi. 1r... By v. 310 = 0:: i..

54 H- -FEiwIF v.Blv.. yrd = rd — r2;: i..

[=
o
=
[

progran ;I
[oooooo] 50 = 0X1; =r0 = rd + r3; wrl = r5% + rh::
[0o0o0o03] 32 = 0E6; rl3 = rh = r3;;

loop
[000005] k1 = 0D¥1; =r3d = r2 + r4; vwrb5 = rb + r7; wrE = r9 * rl0;;
[ooooo9] 52 = 42 — 0¥1: =r9 = »2 + »d; wrl2 = r6 + r7; wrld = r9 = r10;:
[o0o00D] IF njle, JUMP loop: k1 = 0X1:; vr5 = r6 + 7 vr8 = r9 = r10;;
[000011] nop::
& [000012] nop;:

[000013] yrd = 0XS::
[000014] yrd = 0X1::
[000015] yr2 = 0;:
loop2 —I
[000016] 310 = O;;
o [000017] [wed = v3 — r2;;]
[000018] yrd = rd — +3;;

[O000019] IT nyaesg. JUHMD loop2: nop:; :
[00001E] nop::

[00001C] nop; nop: hop:;;

[00001F] =r5 = 5 + »5:;

[oooozo] 33 = 05 ;

[Oo0021] j2 = 0X1::

[oo0022] kio = 0XE1G::
LI (0000237 j10 = 0:: ﬂ
Figure C-6. Using the Program Counter Value (ADSP-TS101 Processor)
Stepping

When single-stepping through a program, the simulator performs an
instruction line step and skips invalid instructions (aborted, bubbles, or
slots occupied by an invalid fetch).

Visual DSP++ 5.0 User’s Guide C-9

ADSP-TS101 Processors

Sometimes a step takes more than one cycle, and the Pipeline Viewer win-
dow advances by several lines, while the yellow arrow = , which marks
the current program counter location in the Disassembly window, moves
to the next instruction line.

While skipping invalid instructions (aborted, bubbles, or an invalid
fetch), the simulator still processes memory transactions. When the
step is completed and the memory window is updated, a surpris-
ingly large number of new values may appear. When debugging
DMA, be aware that a single step may cause several DMA transac-
tions to be completed.

C-10 Visual DSP++ 5.0 User’s Guide

Simulation of TigerSHARC Processors

Simulator Options

The Simulator submenu (under Settings menu) provides the Configure
DMA File I/0O command, which opens the DMA File I/O Configuration
dialog box (Figure C-7). This is used to specify files as sources, destina-
tions, or both for DMA transfers.

D4 File I Configuration

[T Enable Descriptinn:l[l Estermal Part

[11 External Port Path: Cource

(]2 Ewmternal Paort

[]3 External Part I _ —I

(14 Link Output Preview: |

(15 Link Qutput

(16 Link Output

(17 Link Qutput

[18 Link Input

[19 Link Input

(1710 Link, Inpat :

(711 Link Input I Cicular

112 Auto D&, On Mew Sequence = Rewind % Continue

[173 Auto DA On Chair " Fewind i Caontinue
Path: Destination
Format: IHE:-:adecimaI j
Camment; |
On Mew Sequence % Ovenarite " Append

[~ Halt On Erars Ot Chair Owenwrite % Append

| F, I Cancel | Save bz, Load From...

Figure C-7. DMA File I/O Configuration Dialog Box

Visual DSP++ 5.0 User’s Guide C-11

ADSP-TS20x Processors

For information about dialog box options and simulating a DMA transfer
in the simulator, refer to VisualDSP++ online Help.

ADSP-TS20x Processors

This section includes the following topics, which apply to the
ADSP-TS201, ADSP-TS202, and ADSP-TS203 processors.

e “Simulator Timing Analysis Overview”
e “Pipeline Stages”

e “Stalls”

e “Aborts”

* “Pipeline Viewer and Disassembly Window Operations”

Simulator Timing Analysis Overview

The ADSP-TS20x simulator is a cycle-accurate simulator which not only
models the instruction set functionally, but also correctly models pipeline
effects (stalls and aborts) and internal memory transactions timing.

Currently, the processor’s external port and link ports are not mod-
eled in a cycle-accurate manner. The simulator cycle-counts the
code, but the cycle counts used for the external port or link ports
are rough estimates of cycle counts that you could obtain by run-
ning the code on the chip. Do not rely on these counts for
performance evaluation.

Use the Pipeline Viewer window to understand how processor timing
affects the execution of your program. For information about configuring
and using the Pipeline Viewer, see “Pipeline Viewer Window” on

page 2-88 or refer to VisualDSP++ online Help.

C-12 Visual DSP++ 5.0 User’s Guide

Simulation of TigerSHARC Processors

Pipeline Stages

The ADSP-TS20x Pipeline Viewer window provides a representation of
instruction flow through the processor’s pipeline. Table C-2 lists the pipe-
line stages.

Table C-2. Pipeline Stages — ADSP-TS20x Processors

Stage Abbreviation in Pipeline Viewer
Instruction Fetch 1 F1
Instruction Fetch 2 F2
Instruction Fetch 3 F3
Instruction Fetch 4 F4
Predecode PD
Decode D
Integer I
Access A
Execute Stage 1 EX1
Execute Stage 2 EX2

Stages F1 through F4 represent the fetch unit pipe. Stages PD through

EX2 represent the execution pipe. Fetch unit pipe stages contain raw

quads of 32-bit words fetched from memory, not valid instruction lines.
When you view the Pipeline Viewer window in disassembly format (by

means of the right-click menu), instructions that appear in the fetch unit
pipe are not valid instruction lines, but merely bits and pieces. Valid
instruction lines appear in the execution pipe stages.

Visual DSP++ 5.0 User’s Guide C-13

ADSP-TS20x Processors

Stalls

The examples that follow illustrate the way that the Pipeline Viewer dis-
plays different types of stall events for ADSP-TS20x processors. For a
complete list of pipeline effects and memory transaction timing, refer to
the processor’s hardware specification.

Stalls Due to IALU Dependency

The following sequence of instructions causes a 4-cycle stall at the

PreDecode stage.

J0
J1

0x40000;;
J31 + J0;;

//
/7

This

instruction

is stalled

in PreDecode

until the previous instruction reaches EZ:

Cycle F1|F2 | F3 | F4 | FPD D 1|2 E1]E2

1 HEHBBHB X HE B B

2 &< I << <] HEH B

3 i JH B K&] HEH B

1 n 3 ifd B4 E BHEEHEBHR

5 n n 3 k4

3 n n n 3§ 30 = 0X40000; .

7 n n n nflil= {31 +50; ... 30 = 0X40000;. ..

[n n n nflil=431+40; ... B|j0 = 0Xd0000;. ..

9 n n n nfil= 31+ 50; . Bl §0 = 040000 ... B H|

10 n n n nfllil=431+40; ... B|lj0 = ox40000;... B|B/: 4

11 n n n n 3l =431 + i0: B| 50 = 0¥4n000: B| B| -B| i 40 = 0¥40000: nop: nop:

12 ¥ n n n nop; nop; nop i1 = §31 + j0... B| B|-B| iB| j0 = 0X40000: nop: nop:

13 = o4 n n nop nop; nop nop nop; n... E :E jm j0 = 0X40000; nop; nop;:

14 n = = n nop: nop: nop nop nop: mn.. :ﬂ jm 30 = 0X40000: nop: nop::

15 n n = = nop nop; nop nop nop; n. b jg j0 = 0X40000; nop: nop::

16 n n n = nop nop: nop nop nop: n. I n jl = j31 + j0; mnop: nop n
4] | |

Figure C-8. Stall Due to IALU Dependency

C-14

Visual DSP++ 5.0 User’s Guide

Simulation of TigerSHARC Processors

Stalls Due to Compute Block Dependency

The following sequence of instructions causes a one-cycle stall at the
Decode stage.

XR2
XR3

RO + R1::
RO + R2;; // This instruction is stalled in Decode for
// 1 cycle. The source register (R2) is a

// destination in the previous instruction.

Cycle F1|F2 | F3 | F4 | PD | D I 4| E.| E2 =
20 n n n n . nop; nop; nop. .. nop; hop; ho. .. 1 nop; hop; hop! hop;;
21 n n n n = zr2 = 0 + rl; ... nop; hop; no. .. 1 nop; hop; hop; hop;;
22 = n n n n.. =rd = rl + r2:; ®r2 = vl + rl;.. . 1 nop; nop; nop; nop;;
23 n ®¥ n nM n. =ri=rzrl+ r2; E =r2 = r0 + rl;. .. 1 nhop; nop; hop; hop::
24 n b4 n n. nop: nop: nop. .. ®rd = rl0 + r2:. .. E I nop: nop: hop: hop::
25 n = n nop; nop: hop nop: hop: ho E: ®=r? = r0 + r1; nop: nop;
28 n n. nop; nop; nop. .. nop; hop; ho. .. :m xr2 = rl + rl; nop: nop;
27 n. nop; nop; nop. .. nop; hop; ho. .. 1 ®rd = rl + r2; nop: nop;
28 n n. nop; nop; nop. .. nop; hop; ho. .. 1 nop; hop; hop! hop;;
29 1 n . nop; nop; nop. .. nop: nop; no. .. 1 nop: nop; nop; nop:;;
30 n n n n. nop; nop; nop. .. nop; nop; no... 1 nop; nop; nop; nop;;
31 n n n n ®¥. nNOop; nop; nop... nop; hop; no. .. 1 hop; hop; hop; hop:;
32 n_n n n n. =rld = [40 + 3. .. nop: nop: ho. .. 1 nop: nop: hnob: hoD: T

< | B

Figure C-9. Stall Due to Compute Block Dependency

Stalls Due to a Cache Miss

The following register load transaction causes a six-cycle stall because of a
cache miss.

XRO=[JO0 + J311;;

Aborts

The examples that follow illustrate how the Pipeline Viewer displays
different types of abort events for ADSP-TS20x processors. For a com-
plete list of pipeline effects and memory transaction timing, refer to the
processor’s hardware specification.

Visual DSP++ 5.0 User’s Guide C-15

ADSP-TS20x Processors

Cycle F1|F2 | F3 | F4 | PD | D I A | E1 E2
33 n 1 n n n n = nop nop:; nop: ... nop; nop; nop; nop;
34 n n n n n n n nop nop:; nop: ... nop; nop; nop; nop:
35 = n n n n. n n =rld = [30 + j317... nop; nop; nop; nop;;
36 n = n nMn.MnMnMﬂer = [j0 + j317. ®rl = [40 + j31]; nop; nop; nop;:
37 n n b4 nMn.MnMnMﬂer = [j0 + j31]... ﬂxrﬂ = [j0 + 331]: nop: nop: nop::
38 n 1 n anMnMnMEXrD = [40 + §31] Exr[l = [j0 + j31]: nop: nop: nop!:
39 1 1 1 nMn.MnMnMEer = [40 + 331]... Exrﬂ = [40 + §31]: mnop: nop: nop::
40 1 1 nMn.MnMnMEer = [40 + 331]... Exrﬂ = [40 + j31]: mnop: nop: nop::
41 1 nMn.MnMnMEer = [40 + 331]... Exrﬂ = [40 + §31]: mnop: nop: nop::
42 1 1. n n nop; nop; nop; ... E xrl = [40 + j31]: nop: nop: nop::
43 n n n nop nop; nop; ... nop; nop; nop; nop;;
44 n n n nop; nop; nop; nop; nop; nop; nop;

< | 3

Figure C-10. Stall Due to a Cache Miss

Aborts Due to an Unpredicted Change of Flow

In the following example, the abort at the PreDecode stage is due to an
unpredicted jump, predicated upon an IALU condition. The jump is
unpredicted because the branch target buffer is disabled in this particular
example.

C-16 Visual DSP++ 5.0 User’s Guide

Simulation of TigerSHARC Processors

Aborted stages in the fetch pipe are marked with an B, and aborted

instructions in the execution pipe are marked with an Y .

Cycle Fi|F2 | Fa|F4 [FD| D I &|E|E2 -
10 i n v v iBlxl = 0%l mr3 = r2 !
11 = 3 n y. jﬂ k1l = 0K1: =r3 = r2 El j0 = 0X¥1: =r0 = r4 + r3
12 n = 3 n 4Bkl = 0¥l; =r3 =2 ... B|IB| j2 = 0¥h: rl3 = r§ *® ri;;
13 n n = 3 1 j2 =42 -0%1; =r9 ... B/IB| B] ki = 0Xl: x=r3 =x2 + ...
14 <] (4] IF njle, JUMP loop: Bl B| Bkl - 0KL; =r3 - r2 + rd. ..
15 v k4 I B/ Bkl = 061; =rd = x2 + vd. ..
16 v v kK4 4] Bkl = 0¥1; =r3 = 12 + rd...
17 v v v kB B BEA i2 = 2 — 0XLl; =mr9 = r2...
18 v v v vEd BEAF | IF nile. JUMP loop: k1 ...
19 L AN AN - HEEA
20 n v v v j k1l = 0X1: =r3 =r2 ...
21 i om v w I 92 = 92 — 0El: =mry ... < I <B4
22 it <] (4] IF njle. JUMFP loop:]
23 vk X
24 v v kB I3 4] kl = 0X1; =rd = r2 + rd... =

Figure C-11. Abort Due to an Unpredicted Change of Flow

Visual DSP++ 5.0 User’s Guide C-17

ADSP-TS20x Processors

Abort Due to Mispredicted Change of Flow

In the following example, an abort appears at stage E2 because of a
mispredicted change of flow at the end of a loop, predicated on a compute
block condition.

Cycle Fl F2 | F3 |F4 |PD/ D | I | A& E|E2 =
100 . I._ T . vr4 = r4 — ri::
101 W 1 1B ; [1F nyaeq. JUMP loop?: nop::
102 i - sm ilo = 0.
103 s M yrd = r3 - r2;;
104 . y b 1 :. J yr3d = r3 — r2;:
105 j. y . I.} H yrd = rd - ri;;
1 MWy HBE W1 B M I1F nvaeq. JUMP loop2: nop::
107 o K A AAAAR-o;
108 b n ﬂﬂ.ﬂﬂﬂyr3=r3—r2;;
109] n n ﬂﬂﬂﬂyr3=r3—r2::
110 # i1 n nEA BEEBAHAHA ! -4 - o3
111 n =] n P4 (4] IF nyaeq. JUMP loopl: nop::
112 n n = 3 T 1
113 ¥ n n = 1 1
114 J Vi n n] 3 T =

Figure C-12. Abort Due to Mispredicted Change of Flow

C-18 Visual DSP++ 5.0 User’s Guide

Simulation of TigerSHARC Processors

Branch Target Buffer Hits

In the following example, the first iteration of the loop causes a four-cycle
penalty because of the unpredicted change of flow. On the second itera-
tion, the change of flow instruction was found in the branch target buffer
and is marked with an M. The branch is predicted and taken, and no
penalty is exacted for the change of flow.

Cycle Fi|Fz | Fa | Fa|FD|[D 1| alE|E2 -
76 i 3 v n I vyrd = £t - 13 | vrd = 0¥1;:
77 f <] W T yrd = x4 - r3:: Bl - yr2 = 0::
73 b < (4] IF nyaeg. JUMF locp2: . .. <B| J10 = 0:;
79 H- B A T B yr3 - r3 - r2:;
80 M- K 4] Bl yr3 = r3 - r2;;
81 H-: By B B EHEA yrd = rd4 — ri3;;
82 3j 7 3 7 b X m IF nyaeg. JUMFP loop2: nop::
83 Wy H-y s v Jl0 = 0:: HEERA
94 My My 5 vri=ri:-zr2; HEE
a5 HW- B> Bt -t -3 1
g6 il v j.yWI vrd = r4 — r3;; Ef
a7 W M~y i M IF nyaeg, JUMP loop2;... <B| J10 = 0:; |
88 MWy My s ito0- BW: Bl vr3-=ax3-rz;
39 .v j.v J v vr3d = r3i - ri;; . ﬂvr3=r3—r2;;
90 _j.y_j.y.l.yr4=r4—r3;; b ._yr4=r4—r3;; LI

Figure C-13. Branch Target Buffer Hits

Pipeline Viewer and Disassembly Window
Operations

This section includes the following topics.
e “Current Program Counter Value”

e “Stepping”

Visual DSP++ 5.0 User’s Guide C-19

ADSP-TS20x Processors

Current Program Counter Value

The program counter (PC) value, marked by = in the Disassembly win-
dow, is the address of the instruction at stage E2. When a breakpoint is set
at a certain address, the simulator halts after the instruction at this address
is executed at stage E2.

You can specify which instruction the simulator executes next by manually
changing the program counter value in the PC Register window. Note,
however, that the current instruction, indicated by = in the Disassembly
window, is executed prior to the user-specified instruction. When you
change a PC value, the simulator flushes the pipeline and aborts all its
instructions. After the pipeline is flushed, normal execution resumes from
a memory address indicated by the new PC value. The simulator contin-
ues to run until an instruction at the new PC reaches stage E2 of the

pipeline.

/ Manually changing the PC value during simulation can result in

unpredictable program behavior. Visual DSP++ does not safeguard
against invalid PC values. Ensure that the specified PC indicates a
valid instruction within program address space.

An example of an invalid PC is a data memory address whose con-
tents is not recognized as an instruction by the simulator. In this
case, the simulator generates an unhandled software exception.

Another example of an erroneous PC is the middle of an instruc-
tion line. Only part of the instruction line is executed, while
instructions in the beginning of the line are ignored.

C-20 Visual DSP++ 5.0 User’s Guide

Simulation of TigerSHARC Processors

Figure C-14 shows how the program counter value is used for
ADSP-TS20x processors.

Cycle F1 | F2 |F3 |F4 |PD | D I [a |[E1 [E2 -

663 .. = ' < | H = sqctlst = yrl;;

664 : v, = v B A sactlst = yri;;

13 V.. ; V. H. i. V.

313 : V. : V. . 1. v

667 i v. = 3. i vH4

668 .. §. v. r = i i v

669 [N S. r. = i i. yr20 = DX80100;;

670 7. 7. [i. v.Ms r = 4. ivsw = yrao::

671 .. 7. 7. [.Wv s Blr r = §3 = 0Z30000000;;

672 .. 7. 7. % w. w. sBlr =r =r0-=0;::

673 2. ?. ? w. wv. v SBlr. r4=o0xrooooo::

674 2. 7. v MBMv v v S.Blr4=o0xvooono::

675 Wy, v.Bly v y. STAT = r4::

676 v. v. vBlvy v wyr0 = DYFFFFFFFF;:

677 V. V. v vBly., wrl =20:;

678 y..y. v v y.ﬂyrl =0;::

679 My. y.ﬂy v v. wir2 = rl + rl;; (.
| |_’|_/
Disassembly

[080020] yr0 = OXFFFFFFEFF; : -l

[080021] yrl = 0::

o [080022] [pEz2 = 0 + =1, . |

[080023] yr3 = ODX7PFE00000;;

[080025] yrd4 = ODXFF800000;:

[080027] wrS = r3 + rd:;

[080028] wrS = (r3 — r3)s2;; ||

[0B0029] wirE = r3 + rd, vwire = r3 — rd;;

[0B0024] wr5 = MANT frd::

[0B002E] yr? = OXBOSFFFFF::

[08002D] wfr8 = RSORTS x7::

[0B00ZE] [33 += 0X1] = =x0;: &
L H o4

Figure C-14. Using the Program Counter Value (ADSP-TS20x Processors)

Stepping

When single-stepping through a program, the simulator performs an
instruction line step and skips invalid instructions (aborted, bubbles, or
slots occupied by an invalid fetch).

Visual DSP++ 5.0 User’s Guide C-21

ADSP-TS20x Processors

Sometimes a step takes more than one cycle, and the Pipeline Viewer win-
dow advances by several lines, while the yellow arrow = , which marks
the current program counter location in the Disassembly window, moves
to the next instruction line.

While skipping invalid instructions (aborted, bubbles, or an invalid
fetch), the simulator still processes memory transactions. When the
step is completed and the memory window is updated, a surpris-
ingly large number of new values may appear. When debugging
DMA, be aware that a single step may cause several DMA transac-
tions to be completed.

Simulator Options

The Simulator submenu under Settings provides the Select Loader
Program command. This command opens the Open File dialog box, from
which to specify a custom loader program. Once selected, the loader pro-
gram automatically runs before a user program is loaded. The simulator
defaults to a standard loader program (TS20x_prom.dxe, where x is 1, 2,
or 3), but you can define your own loader by compiling a program into a
.dxe file. If you create your own loader, your code must contain the label
_init_debug_end to ensure that the loader is executed.

C-22 Visual DSP++ 5.0 User’s Guide

D SIMULATION OF BLACKFIN
PROCESSORS

This appendix provides Blackfin simulator-specific information.
The information is organized as follows:

e “Peripheral Support in Simulators” on page D-2

Note that Visual DSP++ online Help includes the most recent
information about Blackfin processor simulation support.

e “Special Considerations for Peripherals” on page D-7

e “Simulator Instruction Timing Analysis for ADSP-BF535 Proces-
sors” on page D-9

e “Simulator Instruction Timing Analysis for ADSP-BF531,
ADSP-BF532, ADSP-BF533, and ADSP-BF561 Processors” on
page D-19

e “Multicycle Instructions and Latencies” on page D-22

* “Compiled Simulation” on page D-44

Visual DSP++ 5.0 User’s Guide D-1

Peripheral Support in Simulators

Peripheral Support in Simulators

Use the following key for the tables in this section.

Table D-1.
Symbol
v Implemented
NA Not applicable
NP Not planned for implementation
FR Planned for a future release

Table D-2 summarizes peripheral support in the ADSP-BF535 simulator.

Table D-2. Peripheral Support in the ADSP-BF535 Simulator

Peripheral Support Modeled Streamable Bootable
SPORT v v NA
UART v v NA
PCI NP NP NP
USB NP NP NP
Flags v v NA
System Timers v v NA
RTC v NA NA
EBIU NP NA NA
SPI v v NP
Watch Unit NP NA NA
Trace Unit NP NA NA
Core Timer v v NA

Visual DSP++ 5.0 User’s Guide

Simulation of Blackfin Processors

Table D-2. Peripheral Support in the ADSP-BF535 Simulator (Contd)

Peripheral Support Modeled Streamable Bootable
MEMDMA v NA FR
DMA v v FR
PROM FR NA FR

Table D-3 summarizes peripheral support in the ADSP-BF535 compiled

simulator.

Table D-3. Peripheral Support in the ADSP-BF535 Compiled Simulator

Peripheral Support Modeled Streamable Bootable
SPORT v v FR
UART FR FR FR
PCI NP NP NP
USB NP NP NP
Flags v v NA
System Timers v v NA
RTC v NA NA
EBIU NP NA NA
SPI FR FR NP
Watch Unit FR NA NA
Trace Unit FR NA NA
Core Timer v FR NA
MEMDMA v NA FR
DMA v v FR
PROM NP NA NP

Visual DSP++ 5.0 User’s Guide

D-3

Peripheral Support in Simulators

Table D-3. Peripheral Support in the ADSP-BF535 Compiled Simulator

Peripheral Support Modeled Streamable Bootable
GPIO FR FR NA
Watchdog Timer v NA NA

D-4 Visual DSP++ 5.0 User’s Guide

Simulation of Blackfin Processors

Table D-4 summarizes peripheral support for ADSP-BF52x,
ADSP-BF533, ADSP-BF534, ADSP-BF536, ADSP-BF537,
ADSP-BF538, and ADSP-BF539 processors.

ADSP-BF54x processors have no support for any system peripherals.
Only the simulator core peripherals are supported.

Table D-4. Peripheral Support in the ADSP-BF533 Simulator

Peripheral Support Modeled Streamable Bootable
SPORT v % FR
UART v v FR
Flags FR FR NA
System Timers v v NA
RTC v NA NA
EBIU ! v NA NA
PPI v v NP
SPI FR FR NP
Watch Unit v NA NA
Trace Unit v NA NA
Core Timer v NA NA
Watchdog Timer FR NA NA
PROM FR NA FR
MEMDMA v NA FR
DMA v v FR

1 SDRAM only. Not all configuration settings affect simulation.

Table D-5 summarizes peripheral support in the ADSP-BF533 compiled

simulator.

Visual DSP++ 5.0 User’s Guide D-5

Peripheral Support in Simulators

Table D-5. Peripheral Support in the ADSP-BF533 Compiled Simulator

Peripheral Support Modeled Streamable Bootable
SPORT v v FR
UART FR FR FR
Flags NP NP NA
System Timers v v NA
RTC v NA NA
EBIU NP NA NA
PPI FR FR NP
SPI FR FR NP
Watch Unit FR NA NA
Trace Unit FR NA NA
Core Timer v FR NA
Watchdog Timer v NA NA
GPIO FR FR NA
PROM NP NA FR
MEMDMA v NA FR
DMA v v FR

Table D-6 summarizes peripheral support in the ADSP-BF561 simulator.

Table D-6. Peripheral Support in the ADSP-BF561 Simulator

Peripheral Support Modeled Streamable Bootable
SPORT FR FR FR
UART FR FR FR
Flags FR FR NA
System Timers v v NA

D-6 Visual DSP++ 5.0 User’s Guide

Simulation of Blackfin Processors

Table D-6. Peripheral Support in the ADSP-BF561 Simulator

Peripheral Support Modeled Streamable Bootable
EBIU ! v NA NA
PPI v v NP
SPI FR FR NP
Watch Unit v NA NA
Trace Unit FR NA NA
Core Timer v NA NA
Watchdog Timer FR NA NA
PROM FR NA FR
MEMDMA v NA FR
DMA v v FR

1 Not all configuration settings affect simulation.

Special Considerations for Peripherals

This section describes the limitations of the simulation software models.

Universal Asynchronous Receiver/Transmitter
Peripheral

You can manipulate all the UART configuration bits. Currently, you can-
not simulate the data error (Framing Error, Parity Error, Break Interrupt)
conditions or the Modem Status register status bits (Data Carrier Detect,
Ring Indicator, Data Set Ready, Clear To Send). You can specify Set
Break in the Line Control register, but this setting has no effect. The cur-
rent simulator does not model the IRCR register.

Visual DSP++ 5.0 User’s Guide D-7

Special Considerations for Peripherals

Timer (TMR) Peripheral

In Width Capture (WDTH_CAP) mode, the timer counts the number of
clocks in both the width and period. The waveform that the timer reads is
attached via the Streams dialog box in Visual DSP++.

You can attach a file to the following device names.
® TIMERO_WDTH_CAP
e TIMERI_WDTH_CAP
e TIMERZ_WDTH_CAP

The format of the input file is as follows.

PERIOD_COUNT
WIDTH_COUNT
PERIOD_COUNT
WIDTH_COUNT

In WDTH_CAP mode, the timer reads two 32-bit values from the input file.
The first value is the number of pulses (clocks) in the period. The second
value is the number of pulses in the width.

When PULSE_HI is set, the timer delivers high widths and low periods.
When PULSE_HI is not set, the timer delivers low widths and high periods.

D-8 Visual DSP++ 5.0 User’s Guide

Simulation of Blackfin Processors

Simulator Instruction Timing Analysis for
ADSP-BF535 Processors

The ADSP-BF535 Family Simulator is a core cycle-accurate simulator
with an eight-stage pipeline. The simulator models all the sequencer and
memory events of the ADSP-BF535 processor.

The Pipeline Viewer shows the flow of instructions through the pipeline
and any stalls due to sequencer or memory events. It enables you to
understand the execution timing of your program. For information about
configuring and using the Pipeline Viewer, see “Pipeline Viewer Window”
on page 2-88 or VisualDSP++ online Help.

The Pipeline Viewer for the ADSP-BF535 processor displays stages
Decode through Writeback. The first two stages of the pipeline,
(IF1 and IF2) are not displayed because the information, provided
by the simulator, in those stages is not significant.

Stall Reasons

The stall reasons are grouped into three categories:

* Multicycle instructions latencies (see “Multicycle Instructions and
Latencies” on page D-22)

* Instructions latencies (see “Instruction Latencies” on page D-26)

e L1 data memory latencies (see “L1 Data Memory Stalls” on

page D-34)
They are reported in the Pipeline Viewer as:
* Data address generator (DAG) read-after-write (RAW) hazard

* Data register (dreg) hazard: two cycle

Visual DSP++ 5.0 User’s Guide D-9

Simulator Instruction Timing Analysis for ADSP-BF535 Processors

* Dreg register (dreg) hazard: one cycle
* Memory stall

* Memory-mapped register (MMR) stall
e CSYNC stall

e SSYNC or IDLE SYNC stall

* Raise stall

» Single-step (SS) mode

* RET read after write

* Unidentified stall

Kill Reasons
The kill reasons are as follows.
* Branch Kill — change of flow
e Mispredict — mispredicted conditional change of flow
* Refetch — refetch, such as following an IDLE instruction

* Interrupt — interrupt/exception

D-10 Visual DSP++ 5.0 User’s Guide

Pipeline Viewer Window Examples

Simulation of Blackfin Processors

Figure D-1 shows a RAW hazard stall.

Pipeline Yiewer

;| Cycle Decode Address Ezecutel Ezecute Executeld Writeback AI
14 I0 = RO : RO = 4 ; HOF n HOP HOF
15 Bd = [I0 ++] : I0 = RO ; RO = &4 ; HOP HOFP
16 8R4 = [10 ++] : Bl 10 = RO - RO = 4 : NOP . J
17 S|R4 = [I0 ++ 1 ; B B I0 = RO RO = 4 ; HOP ;
18 S|R4 = [I0 ++] : B B B I0 = RO RO = 4
19 RS = [I0 ++] ; Ré = [I0 ++ 1 : B B B| 10 = RO ; |
Figure D-1. RAW Hazard Stall
These stalls are detected in the Decode stage. The instruction stalls there
until all DAG registers required and updated in later pipeline stages are
available.
In this example, the instruction “I10 = R0;” in the Executel stage (cycle
16), Execute2 stage (cycle 17) and Execute3 stage (cycle 18) is stalling the
“R4 = [10++ 1;~ instruction in the Decode stage. This stall is caused by
the first instruction because it updates the value of 10 in the Writeback
stage, while the second instruction needs the value of 10 in the Address
stage to increment 10.
Figure D-2 shows a fetch stall.
Cycle Decode Address Ezecutel Ezecute2 Ezecutel Writeback -
12 HCE | HOE HOF NCE ;
12 HOE HOE : HOP HOP
14 NOP - NOP - HOP - HOP
15 HOF HOP NOP NOP
16 Fl =0 ; F NOF NOE ; HOE J
17 R2 = 1 Rl = F HOE HOP ;
18 HOP R2 = El =10 : F HOF
s e e o 4 o1~ . = = hd|
Figure D-2. Fetch Stall
Visual DSP++ 5.0 User’s Guide D-11

Simulator Instruction Timing Analysis for ADSP-BF535 Processors

Fetch stalls are detected in the Decode stage and are caused by memory
latencies when an instruction is fetched.

In this example, two fetch stalls appear in the Decode stage (cycles 14 and
15) because of a memory latency when the “R1 = 0;” instruction is
fetched. These fetch latencies are then propagated in the pipeline:
“Address” stage (cycles 15 and 16), “Execute 17 stage (cycles 16 and 17),
and so on.

Pipeline Viewer Window Messages

When you hold down the Ctrl key and pause the mouse over a pipeline
viewer event icon indicating instructions, the Pipeline Viewer window
displays informational messages. An example is shown in Figure D-4 on
page D-20.

These types of messages may appear:
e Stalls detected
* Kills detected

e Multicycle instruction messages

Pipeline Viewer Detail View Stall Event Messages

Table D-7 shows the messages that occur when a stall is detected.

Table D-7. Stalls Detected Messages (ADSP-BF535 Processor)

Message Explanation Example
ICache miss Instruction cache miss

IAU empty Instruction alignment unit empty

DCache miss Data cache miss

DCache store buffer Data cache buffer overflow. The processor stalls

full until the FIFO moves forward and a space is free.

D-12 Visual DSP++ 5.0 User’s Guide

Simulation of Blackfin Processors

Table D-7. Stalls Detected Messages (ADSP-BF535 Processor) (Contd)

Message Explanation Example
DCache load while A load access collides with a pending store access
store pending in the store buffer. (They are tying to access the
same address.)
DCache load while Load access size is different from that of the store
store pending w/ size access. The buffer must be flushed before the
mismatch load can be carried out.
DCache bank collision | The addresses in a dual- memory access com-
mand are accessing the same minibank. It does
not matter whether both are loads, or load and
store.
SYNC with store pend- | SYNC instructions force all speculative, transient | SSYNC;
ing in the core/system to be completed before pro-
ceeding.
EU->MUL/MACRAW | Execution unit, Multiply or Multiply accumulate | RO = R1 + RO;
hazard with a read after write hazard PO = RO;
RETx RAW hazard Writing to one of the RETx (RETS, RETI, RETX = RO;
RETX, RETN, or RETE) registers immediately RTX;
followed by the corresponding return instruc-
tions.
Dagreg WAW hazard Writing to one of the DAG registers, and imme- | I3 = R3;
diately writing to it again. I3 += MO;
Dagreg RAW hazard Writing to one of the DAG registers, and imme- | I3 = R3;
diately reading [I3] = R7;
dsp32alu implied ireg
dependency RAW haz-
ard
ccMV preg->dreg RAW | A conditional move of a preg into a dreg, fol- If CC RO = P1;
hazard lowed by a read of the dreg RO = R1;
ccMV dreg->dreg RAW | A conditional move of a dreg into a dreg, fol- If CC RO = RI1;
hazard lowed by a read of the source dreg R2 = RO;
ccMV dpreg->preg A conditional move of a dreg into a preg, fol- If CC PO = R1l;
RAW hazard lowed by a read of the preg P1 = PO ;
VisualDSP++ 5.0 User’s Guide D-13

Simulator Instruction Timing Analysis for ADSP-BF535 Processors

Table D-7. Stalls Detected Messages (ADSP-BF535 Processor) (Cont’d)

Message Explanation Example
loopsetup WAW hazard | A LSETUP instruction followed by another LSETUP
LSETUP, both writing to the same LC reg (LS,LE)LCO=PO;
LSETUP

(LS,LE)LCO=P1;

loopsetup while Ic is Using an LSETUP instruction and writing a LSETUP

nonzero value other than zero to the Lereg (LS,LE)LCO=PO;
Nop;

loop top/bot RAW haz- | Writing to a loop top/bottom register, followed | LTO = RO;

ard by a read of the same register R2 = LTO;

write to loop cnt stall | A write to a LCreg, followed by any op LCO = RO;

Nop; (anyop)

multicycle ALU20p A two-operand ALU instruction requiring more | RO *= R1;
instruction than one cycle to complete
multicycle DAG [--SP] =
instruction (R7:0,P5:0);
CC2dreg RAW hazard | Reading the CC register into a dreg, and then RO = CC;
reading that register CC = RO;
Mac/video after regmv | Register move of a system register to a dreg, fol- RO = LCO;
sysreg to dreg raw haz- | lowed by a MAC or video instruction R2.H = R1.L * RO.H;
ard
Regmv sysreg to dreg Writing a system register to a dreg, followed by RO = LCO;
followed by ALU op an ALU operation using that dreg as an operand | R2 = R1 + RO;

dreg raw hazard

Video after extracted
3-input add dreg raw
hazard

Extracted 3-input add
followed by special

dsp32 instruction

Search followed by exu
operation dreg raw haz-

ard

A search instruction followed by any execution
instruction with an operand of a dreg used in the
search instruction

(R3,R0) = search R1
(LE);
R2.H =R1.L * RO.H;

Visual DSP++ 5.0 User’s Guide

Simulation of Blackfin Processors

Table D-7. Stalls Detected Messages (ADSP-BF535 Processor) (Contd)

Message Explanation Example
Regmv hazard: preg to | A register move of a preg to a dreg, followed by | RO = PO;
dreg -> dreg to sys/preg | another register move of that same dreg to a sys- | ASTAT = RO;
RAW tem register or preg
Regmv hazard: sysreg | A register move of a system register to a dreg, fol- | RO = ASTAT;
to dreg -> dreg to dreg | lowed by another register move of that same dreg | R1 = RO;
RAW to a dreg
Regmv hazard: sysreg | A register move of a system register to a dreg, fol- | RO = LCO;
to dreg -> dreg to sysreg | lowed by another register move of that same dreg | ASTAT = RO;
RAW to a system register
Regmv hazard: sysreg | A register move of a system register to an accu- AO.w = LCO;
to areg -> dreg to areg | mulator register, followed by another register A0 =RO;
WAW move of a dreg to the same accumulator register
Regmv hazard: sysreg A register move of a system register to an accu- AO.w = LCO;
to areg -> preg to areg | mulator register, followed by another register A0 =PO;
WAW move of a preg to that same accumulator register
Regmv hazard: sysreg A register move of a system register to an accu- AO.w = LCO;
to areg -> areg to areg | mulator register, followed by another register A0 =A1;
WAW move of an accumulator register to that same

accumulator register
Regmv hazard: sysreg | A register move of a system register to an accu- AO.w = LCO;
to areg -> areg to dreg | mulator register, followed by another register RO =A0;
RAW move of that same accumulator register to a dreg
Regmv hazard: sysreg A register move of a system register to an accu- AO.w = LCO;
to areg -> areg to sysreg | mulator register, followed by another register ASTAT = AO.w;
RAW move of that same accumulator register to a sys-

tem register
Regmv hazard: sysreg | A register move of a system register to an accu- AO.w = LCO;
to areg -> load to areg | mulator register, followed by a load to the same | AO.w = [10];
WAW accumulator register
Regmv hazard: sysreg A register move of a system register to an accu- AO.w = LCO;
to areg -> exu op using | mulator register, followed by any execution unit | A0 = A0(S);

areg RAW

operation using that accumulator register as an
operand

Visual DSP++ 5.0 User’s Guide

D-15

Simulator Instruction Timing Analysis for ADSP-BF535 Processors

Table D-7. Stalls Detected Messages (ADSP-BF535 Processor) (Cont’d)

Message

Explanation

Example

AQreg hazard: move to
AQ -> exu op using AQ
RAW

CCreg hazard: move to
CC -> exu op using CC
RAW

Kills Detected Messages

Table D-8 shows the messages that occur when a kill is detected.

Table D-8. Kills Detected Messages (ADSP-BF535 Processor)

Message Explanation Example
change-of-flow kill A branch CALL (PO):
rti change-of-flow kill Return from interrupt kills RTI;

mispredicted

change-of-flow kill

Kills due to mispredicted
branches

RO = 0; CC = RO;
If CC JUMP next (bp);

hardware loop bottom kill

interrupt kill

Instructions in the pipeline are
killed due to an interrupt

RAISE 1

sync kill

SYNC instructions force all
speculative, transient in the
core/system to be completed
before proceeding, killing
instructions in the pipe

SSYNC;

Visual DSP++ 5.0 User’s Guide

Simulation of Blackfin Processors

Multicycle Instructions

Multicycle instructions are a category of instructions that cannot complete
in fewer than two cycles. Consequently, the extra cycles generated by such
an instruction cannot be removed without removing the multicycle
instruction itself.

In Figure D-3, multicycle instruction “[--SP]1 = (R7:6, P5:3)” enters the
pipeline Decode stage at cycle 16 and takes five cycles to complete (1 cycle
per register to push on the stack SP). The next instruction “R7 = 0” takes
only one cycle.

Cycle Decode Address Executel Execute2 Executeld Writeback -
15 HOF ; HOF ; HOF ; HOF

16 Mr—cspr71. .. HOF ; HOF ; HOF

17 Mr—-sp1... @1 —csFr1. .. HOF ; HOF

18 Mr—-sr1... @M1 -—-sr1... @[—5F1... HOF ;

19 Mr—-sr1.. . @Mri—csr1... @M1 —sp1... @[—5F1...

20 Mri—-sr1... @Mri-—-csr1... @M1 —=sp1... MAr—sp1... @M1 —¢sp ...

21 R? = 0 : Mt —sp1.. @Mt —csp1.. Mr—-csp1... Mr—csp1... Mt —sp1 .

22 RE = 0 : R? = 0 : Mt —-sp1... @Mt —sp1... @Mt —sp1... M1 —csp1 .

23 F5 =0 ; RE = 0 ; R? = 0 : Mt —sp1... @Mt —sp1... @1 —csp1 .

24 P4 =0 : FS =0 : R6 = 0 : R? = 0 : Mt —-sp1... @M1 —csp1 .
25 F3 =10 : P4 =0 : F5 = 0 R6 = 0 : R? = 0 : (14 =
26 NOP : F3 =10 : F4 = 0 F5 = 0 R6 = 0 R7 = 0 ;

27 NOP : NOP : F3 =10 F4 = 0 FS =0 : R6 = 0 =

Figure D-3. Example of a Multicycle Instruction in the Pipeline Viewer

For details about multicycle instructions, see “Multicycle Instructions and
Latencies” on page D-22.

Abbreviations in Pipeline Viewer Messages

Table D-9 shows abbreviations that may appear in the Pipeline Viewer
window.

Visual DSP++ 5.0 User’s Guide D-17

Simulator Instruction Timing Analysis for ADSP-BF535 Processors

Table D-9. Abbreviations in the Pipeline Viewer Window

Abbreviation Meaning

ALU Arithmetic Logic Unit operations (Logical ops, Bit ops, Shift/Rotate ops,
Arithmetic ops excluding Mult, Vector ops excluding Mult/MAC)

ALU20p A two-operand ALU instruction

AQreg

CC2dreg CC register move to a dreg

ccMV Conditional move

CCreg CC register. This multipurpose flag typically holds the result of an arithmetic
comparison.

DAG Data Address Generator unit

Dagreg A DAG register (for example, P5-0, 13-0, M3-0, B3-0, and L3-0)

dreg Data register (for example, R7-0 or A1-0)

Dsp32alu A 32-bit DSP ALU instruction

EXU Execution unit

AU Instruction Alignment Unit

MAC Multiplier/Accumulator Unit

MUL Multiplier Unit operations (for example, Vector Multiply, 32-bit Multiply,
Vector MAC)

preg Pointer register (for example, P5-0, FP, USP, or SSP)

RAW Read after write

regmv A register move

sysreg System Register (for example, LC1/0, LB1/0, LT1/0, SYSCFG, SEQSTAT,
ASTAT, RETS, RETI, RETX, RETN, RETE, CYCLES, and CYCLE2)

WAW Write after write

Video Video operations (video pixel operations)

D-18 Visual DSP++ 5.0 User’s Guide

Simulation of Blackfin Processors

Simulator Instruction Timing Analysis for
ADSP-BF531, ADSP-BF532, ADSP-BF533,
and ADSP-BF561 Processors

The simulator for the ADSP-BF531, ADSP-BF532, ADSP-BF533, and
ADSP-BF561 processors is a core cycle-accurate simulator with a ten-stage
pipeline. The simulator models all sequencer and memory events.

The Pipeline Viewer shows the flow of instructions through the pipeline
and any stalls due to sequencer or memory events. It enables you to under-

stand the execution timing of your program. For information about
configuring and using the Pipeline Viewer, see “Pipeline Viewer Window”
on page 2-88 or VisualDSP++ online Help.

Stall Reasons

The stall reasons are as follows.

Data address generator (DAG) read-after-write (RAW) hazard
Memory stall

Memory-mapped register (MMR) stall

Unidentified stall

Data register (dreg) hazard: two cycle

Dreg hazard: one cycle

CSYNC stall

SSYNC or IDLE SYNC stall

LSETUPO and not LPO_ALLOWED

Visual DSP++ 5.0 User’s Guide D-19

Simulator Instruction Timing Analysis for ADSP-BF531,
ADSP-BF532, ADSP-BF533, and ADSP-BF561 Processors

* Awkward loop

* Raise stall

e SS mode

* RET read after write

Kill Reasons

The kill reasons are as follows.
* Branch Kill — change of flow
* Mispredict — mispredict conditional change of flow
* Interrupt — interrupt/exception

* Refetch — refetch, such as following an IDLE instruction

Pipeline Viewer Window Examples

Figure D-4 shows a RAW hazard stall.

[»] Pipeline Viewer [_[O0]
Cycle Decode Address E. | E | Ezecute? Executeld Writeback ‘I
149 R4 = [F1 —] . I0 = RS ; F E PLE-1=... [H [|
150 B0 = R4 R4 = [P1... I F PL1.L=20=x... P1.H = 0Dx.. .
151 10 = =tart_memdnagu. . . B0 = R4 F 1 RS = [P1... P1.L = 0=.. P1.H = 0O=f£f&0
152 MO =8 (X) 10 = star E F IO =RE : RS = [P1 P1.1 = 0=400
153 R4.L = W [I0 ++] . MO = 8 (I E R4=[F1 10 = R5 R5 = [Pl ++]
154 Q R4.L = W [I0 4+] ¢ m ¥ I BEO=RY: R4 = [F1.. 10 = R5 ¢
155 Details for stage Decode [cycle 154] m 3 10 = =star... B0 = R4 R4 = [PL —]
156 ﬁ.ﬂﬁ'fiﬁgf“giufi”&[m]; v ... B Bl MO o= B[... 10 = star.. B0 = R4
157 Event 0 + FB| B| HO = 8 (10 = start_mendn
Tupe: Stal -+ % EB| B MO =& (X) : [
Cause: Sequencer or Memoar stalls W j

Details: DAG Read-Atterwiite Hazard

Figure D-4. RAW Hazard Stall

D-20 Visual DSP++ 5.0 User’s Guide

Simulation of Blackfin Processors

These stalls are detected in the Decode stage. The instruction stalls until
all the required DAG registers, which are updated in later pipeline stages,
are available.

In the example, 10=R5 in the Execute3 stage is stalling the instruction in
decode, which wants to increment I0.

Figure D-5 shows an MMR stall.

[®] Pipeline Viewer [_ (O]
Cycle Decode Address Ezxecutel Ezxecutel Ezecute? Ezecutel Writeback =
%] [PO ++] RO.H = —96 . RO.L = 226 : 8/ [PO ++] B RO.H = —96 : RO.L = 225 :
54 RO.L = 230 : [PO ++].. RO.H = -96 . |Details for stage Executel [cycle 53] RO.H = -96 :
55 RO.H = -96 : RO.L = 230 ; [PO ++ 1.. ﬁiﬁfgﬁ-ﬂfﬁ{'gﬂ”ﬁ?ﬂn: [P0 ++ 1. .. B
1) [PO ++ 1... RO.H = 96 RO.L = 230 : | EventO: ROL = 228 [PO ++ 1 ... =|

Type: Stall
Cause: Sequencer or Memory stalls
Details: MR Stall

Figure D-5. MMR Stall

MMR stalls occur in E1 while the MMR value is being returned.
Figure D-6 shows a branch kill.

[»] Pipeline Viewer [_ (O] %]
Cycle Decods Address Executel Executel Ezecute? Ezecuteld Writeback =
140 CALL mend. . . R3.L = 256 . R3.H=-1... R1.H =4 ; R1.L = 64 ; RO.L =10 ; E0.H = -128 ;

141 . CALL mend. . R3.L = 256 RIH=-1... R1.H =14 ; El1.L = 64 ; R0O.L =10 :

142 Details for stage Decode [cycle 141) CALL mend R3I.L = 256 : RIH = -1 R1.H = 4 : R1.L = 64

143 fddress: Invald_ CALL memd R3.I = 256 : R3.H = -1 RLH = 4 :

144 Event O [] CALL memd. .. R3.L = 256 Ri.H = —128

145 Tweckil -]] CALL memd. R3.L = 256

ause; Migpredict, Intenupt, Refelcl

1:2 Dete Branch kil L H - 0 = = = K CALL nenda

148 P1.L = 0x... P1.E=0x... H [] []

149 RS = [Pl P1.1L = Dx 1.H = 0=] [] |
150 I0 = RE RE = [F1 I = 0x Fl.H = 0Ox] LI

Figure D-6. Branch Kill

In this example, an unconditional control transfer kills several stages that
were behind it. Fetching begins at the destination of the control transfer
instruction after the killed stages.

Visual DSP++ 5.0 User’s Guide D-21

Multicycle Instructions and Latencies

Multicycle Instructions and Latencies

This section contains a description of all Blackfin processor multicycle
instructions and latencies.

Multicycle behavior exists when an instruction, sometimes only under cer-
tain circumstances, is completed in more than one cycle. This cycle loss
cannot be avoided without removing the instruction that caused it.

A latency condition exists when a pair of instructions incur extra cycles
between them because of their proximity to each other in the code. Avoid
a latency condition’s cycle loss by separating the two instructions by as
many instructions as the cycles lost. Each multicycle and latency entry
indicates whether it is currently supported in the simulation environment.

All multicycle and latency conditions described here are native to the first
implementation of the Blackfin processor architecture. Future implemen-
tations may be different. The tables in this section show the cycle latencies
of the 10x core processors, represented by the ADSP-BF532 and the
ADSP-BF535 processor.

Multicycle Instructions

All instructions not mentioned here are completed in one cycle. This sec-
tion describes instructions that take more than one cycle. Instruction
names are consistent with the Blackfin Processor Instruction Set Reference.
The cycle counts in the following examples represent the entire cycle time
of the instruction shown.

Push Multiple or Pop Multiple

PushPopMultiple is completed in 7 cycles, where 7 is the number of regis-

ters pushed or popped.

D-22 Visual DSP++ 5.0 User’s Guide

Simulation of Blackfin Processors

Table D-10. PushPopMultiple Instructions and Cycles

Instruction ADSP-BF532 ADSP-BF535
[--SP] = (R7:0,P5:0); 14 cycles 14 cycles
(R7:0,P5:3) = [SP++]; 11 cycles 11 cycles

32-Bit Multiply (modulo 232)

Table D-11 lists bit multiply instructions and cycles.

Table D-11. Bit Multiply Instruction and Cycles

Instruction

ADSP-BF532

ADSP-BF535

RO *= R1;

3 cycles

5 cycles

Call and Jump

Table D-12 lists call and jump instructions and cycles.

Table D-12. Call and Jump Instructions and Cycles

Instruction ADSP-BF532 ADSP-BF535
CALL 0x22; 5 cycles 4 cycles
CALL (PC + P0); 5 cycles 4 cycles
CALL (P0); 5 cycles 4 cycles
JUMP 0x22; 5 cycles 4 cycles
JUMP (PC + P0); 5 cycles 4 cycles
JUMP (P0); 5 cycles 4 cycles

Conditional Branch

The number of cycles that a branch takes depends on the prediction as
well as the actual outcome.

Visual DSP++ 5.0 User’s Guide

D-23

Multicycle Instructions and Latencies

Table D-13. Conditional Branch Cycles

Prediction | taken not taken
Outcome taken not taken taken not taken
Cycle BF532 | BF535 | BF532 | BF535 BF532 | BF535 | BF532 | BF535
Tim
¢ 4 cycles | 4 cycles | 8 cycles | 7 cycles | 8 cycles |7 cycles | 1 cycle |1 cycle
Return
Table D-14 lists return instructions and cycles.
Table D-14. Return Instructions and Cycles
Instruction ADSP-BF532 ADSP-BF535
RTX; 5 cycles 7 cycles!
RTE; 5 cycles 7 cycles!
RTN; 5 cycles 7 cycles!
RTL; 5 cycles 7 cycles
RTS; 5 cycles 4 cycles

1 Best case

Core and System Synchronization

Table D-15 lists core and system synchronization instructions and cycles.

Table D-15. Core and System Synchronization Instructions and Cycles

Instruction ADSP-BF532 ADSP-BF535
CSYNCG; 10 cycles 7 cycles
SSYNC; 10 cycles 7 cycles
D-24 VisualDSP++ 5.0 User’s Guide

Linkage

Table D-16 lists linkage instructions and cycles.

Table D-16. Linkage Instructions and Cycles

Simulation of Blackfin Processors

Instruction ADSP-BF532 ADSP-BF535
LINK 8; 3 cycles 4 cycles
UNLINK; 2 cycles 3 cycles

Interrupts and Emulation

Table D-17 lists interrupts and emulation instructions and cycles.

Table D-17. Interrupts and Emulation Instructions and Cycles

Instruction ADSP-BF532 ADSP-BF535
RAISE 10; 3 cycles 3 cycles
EXCPT 3; 3 cycles 7 cycles
EMUEXCPT; 3 cycles 3 cycles!
STI R4; 3 cycles 3 cycles!

1 Best case as determined by physical characteristics of external memory

TESTSET

The TESTSET instruction is a multicycle instruction that is executed in a
variable number of cycles. It depends on the cycles needed for a read
acknowledge from off-core L2 memory and whether the address being
tested is both in the cache and dirty. The number of cycles is determined
as follows.

cycles = 1 (instruction) + 1 (stall) + x (read ack) + y (cache
penalty)

Visual DSP++ 5.0 User’s Guide D-25

Multicycle Instructions and Latencies

In an optimal environment, x would be 5 and y would be zero. If the
address resides in a dirty line, y is determined by the cycles to fill the dirty
line plus any core boundary latencies. The address should not reside dirty
in the cache as the address contents are meant to be updated across multi-
ple processors and not be a local variable. This instruction depends on
off-core conditions, so it is not modeled by the simulation environment.

Table D-18. TESTSET Instruction

Instruction ADSP-BF535

TESTSET (P0); 7+ cycles!

1 Best case as determined by physical characteristics of external memory

Instruction Latencies

In addition to being based on instructions, instruction latencies are con-
tingent on placement of specific instruction pairs relative to one another.
Avoid latencies by separating them by as many instructions as the number
of cycles incurred between them. For example, if a pair of instructions
incur a 2-cycle latency, separate them by two instructions to eliminate that
latency.

In the tables that follow, note that bold typeface identifies register depen-
dencies within the instruction pairs. Non-bold typface in an entry means
that the latency condition occurs regardless of the registers used.

For a list of accumulator-to-data register (Areg2Dreg), math, video, multi-
ply, and ALU operations, as well as register groupings, see “Instruction
Groups” on page D-41 and “Register Groups” on page D-42. Instruction
names are consistent with the Blackfin Processor Instruction Set Reference.

Calculate the total cycle time of each entry by adding the cycles taken by
the instruction to the number of stall cycles for the instruction.

D-26 Visual DSP++ 5.0 User’s Guide

Simulation of Blackfin Processors

Accumulator to Data Register Latencies

Table D-19. Accumulator to Data Register Latencies

Description

Example

<cycles + stalls > instruction

BF532

BF535

dreg = Areg2Dreg op
video op using dreg
as src

1
1

+1

<1 > R1 = R6.L * R4.H (IS);
<1+2> R5=BYTEOPIP (R3:2, R1:0);

dreg = Areg2Dreg op
rnd12/rnd20 using
dreg as src

<1 > R4L = (A0 = R3.H*RI.H);
<1+1> RO.H=R2+R4 (RNDI12);

dreg = Areg2Dreg op
shift/rotate op using
dreg as src

<1 > R4.L = (A0 = R3.H*R1.H);
<1+1> R1=ROTR2BYR4.L;

dreg = Areg2Dreg op
add on sign using
dreg as src

<1 > R0.H=R0.L=SIGN(R2.H)*R3.H+SIGN(R2.L)*R3.L;
<1+1> R6.H=R6.L= SIGN(R0.H)*R1.H+SIGN(R0.L)*R1.L;

dreg = math op
Areg2Dreg op using
dreg as src

<1 > R2 =R3 + RI;
<1+1> R4.H=R2L*RO.H;

Visual DSP++ 5.0 User’s Guide D-27

Multicycle Instructions and Latencies

Register Move Latencies

In each of the following cases, the stall condition occurs when the same
register is used in both instructions.

Table D-20. Register Move Latencies

Description Example

<cycles + stalls > instruction

ADSP-BF532 | ADSP-BF535
dreg = sysreg 1 <1 > RO = LCO;
ALU op using dreg as src 1 <1+1> R2=R1+R0;
(or vector ALU op) 1 <1 > R2 = LCO0;

1 <1+1> R1.L=R2 (RND);
dreg = preg 1 <1 > RO = PO;
sysreg = dreg 1 <1+ 1> ASTAT = RO;
dreg = sysreg 1 <1 > RO = ASTAT;
dreg = dreg 1 <1+1> R1=R0;
dreg = sysreg 1 <1 > RO = LCO;
multiply/video op with dreg assrc | 1 + 1 <1+2> R2.H=RI1.L*R0.H;
dreg = sysreg 1 <1 > RO = LCO;
accreg = dreg 1 <1+1> AO=RO0;
preg = dreg 1 <1 > PO = R3;
any processor op using preg 1+4 <1+3> RO=P0;
dagreg = dreg 1 <1 > I3 =R3;
any processor op using dagreg 1+4 <1+3> RO =1I3;
dreg = sysreg 1 <1 > RO = LCO;
sysreg = dreg 1 <1+ 1> ASTAT = RO;
accreg = sysreg 1 <1 > AO0.w = LCO;
accreg = dreg 1 <1+1> A0=RO0;
accreg = sysreg 1 <1 > AO0.w = LCO;
accreg = preg 1 <1+1> AO0.w=D0;

D-28 Visual DSP++ 5.0 User’s Guide

Simulation of Blackfin Processors

Table D-20. Register Move Latencies (Cont'd)

Description Example

<cycles + stalls > instruction

ADSP-BF532 | ADSP-BF535
accreg = sysreg 1 <1 > A0.w = LCO;
accreg = accreg 1 <1+1> Al =AO0;
accreg = sysreg 1 <1 > AO0.w = LCO;
dreg = accreg 1 <1+1> RO.L=A0.x;
accreg = sysreg 1 <1 > AO0.w = LCO;
sysreg = accreg 1 <1+ 1> ASTAT = AO0.w;
accreg = sysreg 1 <1 > Al.x = LCO;
math op using accreg as src 1 <1+ 1> R1.H=(A0+=Al);
accreg = sysreg 1 <1 > A0.w = LCO;
POP to accreg 1 <1+1> A0.w=[SP ++];
POP to dagreg 1 <1 > 13 = [SP++];
any processor op using dagreg 1+3 <1+3> R0O=1I3;
LOAD/POP to preg 1 <1 > P3 = [SP++];
any processor op using preg 1+3 <1+3> R0O=P3;
RO.L = R1.L+R2.L The 10x core considers register halves to be independent, so
R3 = RO.H*R4.L this condition is not a register hazard.

Visual DSP++ 5.0 User’s Guide D-29

Multicycle Instructions and Latencies

Move Conditional and Move CC Latencies

In each of the following cases, the stall condition occurs when the same
register is used in both instructions.

Table D-21. Move Conditional and Move CC Latencies

Description Example(s)
<cycles + stalls > instruction
ADSP-BF532 ADSP-BF535
dreg = CC 1 <1 > RO = CC;
if CC dreg = dreg 1 <1+1> if CCR1 =RO0;
if CC dreg = dreg 1 <1 > if CCRO = R1;
multiply/video op using dreg as src | 1 + 1 <1+1> R2.H=RI.L*R0.H;
1 <1 > if CCR1 = R3;
1+1 <1+ 1> SAA (R3:2, R1:0);
if CC dreg = preg 1 <1 > if CC RO = PO;
math op using dreg as src 1 <1+1> R2=RI1 +R0;
1 <1 > if CCR3 = P1;
1 <1+ 1> SAA (R3:2, R1:0);
dreg = CC 1 <1 > RO = CC;
math op using dreg as src 1 <1+2> R2.H=RI.L*R0.H;
1 <1 > R1 = CG;
1 <1 +2> SAA (R3:2, R1:0);
dreg = CC 1 <1 > RO = CC;
CC = dreg 1 <1+2> CC=R0;
if CC preg = dpreg 1 <1 > if CCP0 =RI;
any op using preg 1+4 <1+3> R4=P0;
if CC dreg = dpreg 1 <1 > if CCRO = R1;
CC = dreg 1 <1+1> CC=R0;

D-30 Visual DSP++ 5.0 User’s Guide

Simulation of Blackfin Processors

Loop Setup Latencies

Table D-22. Loop Setup Latencies

Description Example

<cycles + stalls > instruction

BF532 BF535
loop setup 1 <1 > LSETUP (topl, bottom1) LCO = P0;
loop setup with same LC 1+6 <1+ 1> LSETUP (top2, bottom2) LCO = P1;
modification of LT or LB 1 <1 > LTO0 = [SP++];
loop setup with same loop registers | 1 +9 <1+ 3> LSETUP (top, bottom) LCO = PO;
loop setup with LCO and LCO!=0 |1 <1 > LSETUP (top, bottom) LCO = PO;
any processor op 1 <1+1> NOP;
loop setup with LC1 and LC1!=0 | 1 <1 > LSETUP (top, bottom) LC1 = P0;
any processor op 1 <1+1> NOP;
LCO/LCI reg written to 1 <1 > LCO = RO0;
any processor op 1+9 <1+4> NOP;
LT0/LBO written to and LCO != 0 1 <1 > LTO = [SP++];
any processor op 1+9 <1+4> NOP;
LT1/LB1 written to and LC1 != 0 1 <1 > LB1 = P0O;
any processor op 1+9 <1+4> NOP;
kill while loop buffer is being 0 3-cycle stall
written due to: interrupt, exception,
NMI, emulation events

Visual DSP++ 5.0 User’s Guide D-31

Multicycle Instructions and Latencies

Latencies Due to Instructions Within Hardware Loops

The following stall conditions occur when the listed instruction or condi-
tion within a hardware loop results in a 3-cycle stall at the next iteration of

the loop.

A move conditional or POP into any of the LC/LB/LT registers

A loop setup through the use of the same loop count registers in
the first three instructions of the loop

A branch in the first three instructions of the loop (JUMP, CALL,
conditional branch)

An interrupt or exception in the first four instructions of the loop
CSYNC or SSYNC

The inner hardware loop’s bottom is strictly within the outer hard-
ware loop’s first four instructions.

If the inner hardware loop’s bottom is equal to the outer hardware
loop’s bottom, a 3-cycle stall applies to each iteration of the inner
loop in addition to the 3-cycle stall of the outer loop.

RTS, RTN, RTE, RTX, RTI

If the loop’s top instruction is not executed in the first iteration of
the loop, a one-time 3-cycle stall penalty is incurred at the begin-
ning of the second iteration (for example, a jump into the hardware
loop to any instruction but the first).

D-32

Visual DSP++ 5.0 User’s Guide

Simulation of Blackfin Processors

* None of the above applies to the 10x core. The 10x core stalls when
the loop start does not directly follow the LSETUP. This condition
causes a one-time 3-cycle stall while the loop buffer is filled at the
beginning of the second loop iteration.

* LSETUP to the same loop count register in the shadow of a previous
LSETUP is held in D code until the first LSETUP commits.

Instruction Alignment Unit Empty Latencies

If the instruction alignment unit (IAU) is empty of the next instruction,
that next instruction incurs a 1-cycle stall while the IAU is being filled.
The following conditions can result in an IAU empty stall.

e An instruction cache miss or SRAM fetch miss

* A change of flow to an instruction address aligned across a 64-bit
boundary

* The second instruction after a hardware loop is aligned across a

64-bit boundary

* The sixth instruction within a hardware loop is aligned across a

64-bit boundary

Table D-23. Instruction Alignment Unit Empty Latencies

Description Example(s)

<cycles + stalls > instruction

BF532 | BF535

Move register or POP to 10 or I1 1 <1 > 11 = [SP++];

SAA,BYTEOP2PBYTEOP3P 1+4 <1+5> RO =BYTEOP3P (R1:0, R1:0)
(HI;

Move register or POP to 10 or I1 1 <1 > 10 = RO;

BYTEOP1P/16P/16M, BYTEUNPACK | 1 + 4 <1+5> R3=BYTEOPIP (R3:2, R1:0);

Visual DSP++ 5.0 User’s Guide D-33

Multicycle Instructions and Latencies

L1

Table D-23. Instruction Alignment Unit Empty Latencies (Contd)

Description

Example(s)

<cycles + stalls > instruction

BF532 | BF535
Write to return register (RT[S,N,E,X,I]) | 1 <1 > RETI = PO;
return op 1+4 <1+4> RTIL;
1 <1 > RETS = P3;
1+4 <1+4> RTS;
math op 1 <1 > R3=R2 + R4;
video op with RAW data dependency 1+1 <1+ 1> SAA (R3:2, R1:0);
dreg = search 1 <1 > (R3, R0) = SEARCH R1 (LE);
math op using dreg 1+2 <1+2> R2.H=RI.L*R0.H;
core and system MMR access <1+2> RO =[P0]; // PO =MMR address
LO0/BO = dreg 1+4 <1 > L0 = RO;
10 modulo update 1+4 <1+3> R1=[I0++];
1+4 <1 > B1=R2;
In general, any length and base dagreg 1+4 <1+3> 11 +=4;
assignment to a dreg followed by the 1+4 <1 > L2 = R3;
corresponding index dagreg modulo 1+4 <1+3> R4 =[12++M2];
update 1+4 <1 > B3 = R5;
1+4 <1+3> 13 +=M2;

Data Memory Stalls

L1 data memory (DM) stalls are incurred through reading from or writing
to L1 data memory. Accesses can be direct (to or from DM SRAM) or
indirect (to or from DM cache). Some of these stalls are multicycle
instruction conditions (they occur as a result of a specific instruction).

Some stalls are latency conditions (they occur only when the two offend-
ing instructions are too close). The specifics are described in each entry.
The following memory configurations apply to the ADSP-BF535 proces-
sor. Note that the causal factors in offending instructions and the stall

consequences appear in bold typeface.

D-34

Visual DSP++ 5.0 User’s Guide

Simulation of Blackfin Processors

Minibank Access Collision

This section describes the following stalls.
¢ SRAM access

e (Cache access

SRAM Access (1-Cycle Stall)

This stall can occur only when an instruction accesses a bank configured
as SRAM. The memory regions associated with SRAM banks are calcu-
lated when an offset is added to the value of SRAM_BASE_ADDRESS MMR. The
start addresses for banks A and B are:

e Bank A: (SRAM_BASE_ADDRESS << 22) + 0x000000
e Bank B: (SRAM_BASE_ADDRESS << 22) + 0x100000

The minibanks are contiguous 4096-byte (4-KB) chunks within the A and
B address space. With two simultaneous accesses (via a multi-issue instruc-
tion) to the same minibank, a 1-cycle stall is incurred. For example:

(I0 is address 0x001348, I1 is address 0x001994)

Rl = R4.L * R5.H (IS), R2 = [I10++], [I1++] = R3;

<1 cycle stall> (due to a collision in the second minibank
in superbank A)

A collision occurs regardless of whether the accesses are both loads, or a
load and a store. If the first access is a load (DAGO) and the second is a
store (DAG1), the cycles incurred are seen by the store buffer (see “Store
Buffer Overflow” on page D-39). Since the SRAM_BASE_ADDRESS value
must be 4-MB aligned (thus each minibank starts at 0xXXXXX000), it is easy
to determine whether two addresses are going to collide in a minibank. If
((addr1>>12)==(addr2>>12)), a collision occurs.

Visual DSP++ 5.0 User’s Guide D-35

Multicycle Instructions and Latencies

Cache Access (1-Cycle Stall)

This stall can occur only when one or both banks are configured as cache.

Only One Bank is Configured as Cache

In this case, data memory accesses are cached to the same superbank, so
you have to determine only the cache minibank. First, you must find out
how much data bank memory is modeled in the implementation of the
Blackfin processor that you are using.

The standard Blackfin processor architecture model is 16KB, thus four
4-KB minibanks. In this case, you have to look at bits 13 and 12 only of
the address to see which minibank the data memory access is cached.

Table D-24. Minibanks Selected for 16KB of Data Bank Memory

Addr[13:12] Minibank Selected

00 minibank 1 (0x0000—0x1000)
01 minibank 2 (0x1000—0x2000)
10 minibank 3 (0x2000-0x3000)
11 minibank 4 (0x3000-0x4000)

Every time the available bank memory is doubled, another bit must be
used. For example, if an implementation of Blackfin processor architec-

ture has 32KB of data bank memory (eight 4-KB memory banks), bits 14,
13, and 12 must be used.

Table D-25. Minibanks Selected for 32KB of Data Bank Memory

Addr[14:12] Minibank Selected

000 minibank 1 (0x0000-0x1000)
001 minibank 2 (0x1000-0x2000)
010 minibank 3 (0x2000-0x3000)

D-36 Visual DSP++ 5.0 User’s Guide

Simulation of Blackfin Processors

Table D-25. Minibanks Selected for 32KB of Data Bank Memory

Addr[14:12] Minibank Selected

011 minibank 4 (0x3000-0x4000)
100 minibank 5 (0x4000-0x5000)
101 minibank 6 (0x5000-0x6000)
110 minibank 7 (0x6000-0x7000)
111 minibank 8 (0x7000-0x8000)

For simplicity, this document assumes the standard 16-KB data memory
model. If the addresses in a dual-memory access (multi-issue) instruction
is cached to the same minibank, a 1-cycle stall is incurred.

(I0 is address 0x002348, I1 is address 0x002994)
Rl = R4.L * R5.H (IS), R2 = [I0++], [I1++] = R3;
<1 cycle stall> (due to a collision in minibank 3)

A collision occurs regardless of whether the accesses are both loads, or a
load and a store. If the first access is a load (DAGO) and the second is a
store (DAG1), the cycles incurred are seen by the store buffer (see “Store
Buffer Overflow” on page D-39). If (Addr1[13:12]== Addr2[13:121), a
collision occurs.

Both Banks Are Configured as Cache

If both banks are cacheable, you must determine which superbank the
accesses are cached to (in addition to the minibank) to determine whether
a stall exists. This information depends on the value of the DCBS bit of the
DMEM_CONTROL memory-mapped register. If DCBS is 1, address bit 23 is used
as bank select. If DCBS is 0, address bit 14 is used as bank select.

(Note that these values are used for the 16-KB implementation of Blackfin
processor data memory). Refer to “Cache Access (1-Cycle Stall)” on

page D-306 for details about how to determine the minibank. The follow-
ing table assumes that DCBS is 0.

Visual DSP++ 5.0 User’s Guide D-37

Multicycle Instructions and Latencies

Table D-26. Superbank, Minibank Selected When DCBS is 0

Addr[14:12] Superbank, Minibank Selected

000 superbank A, minibank 1 (0x0000-0x1000)
001 superbank A, minibank 2 (0x1000-0x2000)
010 superbank A, minibank 3 (0x2000-0x3000)
011 superbank A, minibank 4 (0x3000-0x4000)
100 superbank B, minibank 1 (0x0000-0x1000)
101 superbank B, minibank 2 (0x1000-0x2000)
110 superbank B, minibank 3 (0x2000-0x3000)
111 superbank B, minibank 4 (0x3000-0x4000)

If the addresses in a dual-memory access (multi-issue) instruction is
cached to the same superbank and minibank, a 1-cycle stall is incurred.

(I0 is address 0x002348, I1 is address 0x002994)
Rl = R4.L * R5.H (IS), R2 = [I10++], [I1++] = R3;
<1 cycle stall> (due to a collision in minibank 3)

A collision occurs regardless of whether the accesses are both loads, or a
load and a store. If the first access is a load (DAGO) and the second is a store
(DAG1), the cycles incurred are seen by the store buffer (see “Store Buffer
Overflow” on page D-39).

When DCBS is 0 and (Addr1[14:12]== Addr2[14:12]), a collision occurs.
When DCBS is 1 and (Addr1[23,13:12]== Addr2[23,13:121), a collision
occurs.

D-38 Visual DSP++ 5.0 User’s Guide

Simulation of Blackfin Processors

Memory-Mapped Register (MMR) Access

A read from any MMR space (on-core and off-core) results in a 2-cycle
stall because the Blackfin processor architecture must wait for acknowl-
edgement from the peripherals mapped to the MMRs being accessed.

(I0 contains an address between OxFFC00000 and OxFFEO0000)
R2 = [I0++]; (In Supervisor Mode)
<2 cycle stall>

System Minibank Access Collision

A system access occurs when an external device, such as another processor
in a multiple core system, accesses the Blackfin processor’s L1 memory.
Whenever the system accesses a minibank currently being accessed by the
core, a <l-cycle stall> is incurred because system memory accesses have
higher priority than core accesses.

Store Buffer Overflow

The store buffer is a 5-entry FIFO that manages Blackfin processor
instruction stores to L1 and L2 memory. All instruction stores must go
through the store buffer. Thus, if the buffer is full, the Blackfin processor
stalls until the FIFO moves forward and a space is freed.

The earliest time that a store can leave the buffer is four instructions (not
cycles necessarily) after it was entered. Consequently, under ideal circum-
stances a continuous series of stores will take up four out of the five slots
in the store buffer. If only one of the stores is delayed by an extra cycle, no
penalty is imposed as the store buffer has five slots. Many scenarios can
cause the store buffer to become full. To account for them, you must keep
track of the proximity of stores and how many cycles they each take.

Visual DSP++ 5.0 User’s Guide D-39

Multicycle Instructions and Latencies

If a multicycle store is required, you must ensure that it is not followed
too closely by other stores as they may become backed up. Multicycle
stores include:

* Stores to non-cacheable memory (for example, MMR space)

* Stores to external L2 memory (memory addressed beyond L1

SRAM)

e Minibank conflict where the store is from DAG1 (the second
access in a load/store multi-issue instruction—see “Minibank

Access Collision” on page D-35)

Store Buffer Load Collision

This section describes cases in which a load access collides with a pending
store access in the store buffer because they have the same address (refer to
section “Store Buffer Overflow” on page D-39 for a description of the
store buffer).

Load/Store Size Mismatch

If the load access’s size (8-bit, 16-bit, 32-bit) is different from that of the
store access, the store buffer must be flushed before the load can be carried
out. The stall time depends on how many stores are currently in the buffer
and how long they each take to complete.

W [PO] = RO;
<N cycle stall as the buffer is flushed>
R1 = B [PO];

D-40 Visual DSP++ 5.0 User’s Guide

Simulation of Blackfin Processors

Store Data Not Ready

The data portion of a store does not necessarily have to be ready when it is
entered into the store buffer. Store data coming from the DAG registers
and pregs has no delay, but all other store data is delayed by three instruc-
tions. If a load access collides with a store whose data is not ready, the
Blackfin processor stalls for four cycles.

W [PO] = RO; [PO] = P3;
<3 cycles> <0 cycles>
Rl = W [PO]; R1 = [PO];

Instruction Groups

All instruction group members conform to naming conventions used in
the Blackfin Processor Instruction Set Reference. Instruction groups
described are not necessarily mutually exclusive in that the same instruc-
tion can belong to multiple groups.

Table D-27. Math Ops Instruction Groups

Math Ops

Video Ops Mult Ops ALU Ops

Video Pixel Ops Vector Multiply Logical Ops
32-bit Multiply Bit Ops
Vector MAC Shift/Rotate Ops

Arithmetic Ops (except Mult)

Vector Ops (except Mult/MAC)

Visual DSP++ 5.0 User’s Guide D-41

Multicycle Instructions and Latencies

Table D-28. Areg2Dreg Ops Instruction Groups

Areg2Dreg Ops

MAC to half reg

MAC to data reg

Vector Multiply

RND12 RND20 Add on Sign
Modify — Increment, only this case: [dreg|dreg_hi|dreg_lo] = (A0 += Al);
Register Groups

Table D-29 lists register groups.

Table D-29. Allreg Register Groups
allreg
Dreg Preg sysreg dagreg
RO PO ASTAT 10
R1 P1 RETS I1
R2 P2 RETX 12
R3 P3 RETI 13
R4 P4 RETN MO
R5 P5 RETE M1
R6 FP LCO M2
R7 SP LTo M3
statbits accreg LBO Lo
ASTAT [0]: AZ A0 LC1 L1
ASTAT [1]: AN A0.x LT1 L2
ASTAT [2]: AC AO0.w LB1 L3
ASTAT [3]: AVO Al CYCLES BO
ASTAT [4]: AV1 Al.x CYCLES2 B1

D-42

Visual DSP++ 5.0 User’s Guide

Simulation of Blackfin Processors

Table D-29. Allreg Register Groups

allreg
ASTAT [5]: CC Al.w SEQSTAT B2
ASTAT [6]: AQ SYSCFG B3

Visual DSP++ 5.0 User’s Guide

D-43

Compiled Simulation

Compiled Simulation

A traditional simulator decodes and interprets one instruction at a time.
Each executed instruction often requires repeated decoding. Compiled
simulation removes the overhead of having to decode each instruction
repeatedly.

In VisualDSP++ 3.5, compiled simulation required you to first build a
compiled simulation .exe file from a .dxe program file and then load and
execute the program in a compiled simulation debug target.

In Visual DSP++ 4.0, the intermediate step is no longer required. You can
load the . dxe program into the compiled simulation debug target directly.
When you run, the debug target compiles the processor code into native
code and executes the native code.

Specifying a Session for Compiled Simulation

(Blackfin processors only). You must configure the debug session for com-
piled simulation.

1. From the VisualDSP++ Session menu, choose New Session. The
New Session dialog box appears.

2. In Debug target, select Blackfin Family Compiled Simulator.
3. In Platform, select Blackfin Family Compiled Simulator.

4. In Processor, select ADSP-BF535, ADSP-BF531, ADSP-BF532,
or ADSP-BF533.

5. In Session name, enter a name for this session.

6. Click OK.

D-44 Visual DSP++ 5.0 User’s Guide

| INDEX

Numerics
3-D waterfall plots, See waterfall plots

A

abbreviations
Pipeline Viewer messages
(ADSP-BF535), D-17
aborts
Pipeline Viewer for ADSP-TS101, C-5
Pipeline Viewer for ADSP-TS20x, C-15
About dialog box, A-2
Access to ADSP-21065L 9th column Even
Address event, B-7
.ach files, A-13
ActiveX
script support, 2-40
address bar
Disassembly windows, 2-45
memory window, 2-67
ADSP-21x6x processors
reporting anomalies, B-2
annotations
editor window, 2-24
anomalies
ADSP-2116x processors, B-10
ADSP-21x6x processors, B-2
recording events, B-7
shadow write FIFO, B-2
short word, B-4
SIMD FIFO, B-3

Anomalies submenu (SHARC), B-1

Shadow Write, B-2

SIMD FIFO, B-3
API

defined, A-66
application

estimated energy profile, 3-31
archiver, 1-41
.asm files, 2-14, A-12
assembler, 1-30

file associations for tools, 2-14

input files, 2-14

options, 1-30

terms, 1-30
assembling

language files into object files, 1-30
assembly instructions

profiling statistics, 2-61
auto-completion

scripts, 2-42
automatic breakpoints, 3-15
automatic file loading, 1-26
automatic file placement, 2-15
automation

Image Viewer, 2-120
Automation API, 2-41

B

background telemetry channels, See BT Cs
batches
building, 1-59

Visual DSP++ 5.0 User’s Guide

I-1

INDEX

Blackfin processors
peripherals supported in simulators, D-2
.bnm files, A-13
bookmarks
editor windows, 2-17, 2-19
Help, A-58
keyboard shortcuts, A-34
Output window, 2-30
Boolean operators
searching Help, A-63
boot
kernel, 1-43
loading or booting, B-12
options, B-11
booting, 1-43
simulating, 1-16
boot-loadable files, B-12
boot loading, 1-43
break condition
defined, A-66
breakpoints
about, 3-13
automatic, 3-15
conditional, 3-14
Disassembly windows, 2-47
hardware, 3-3
icons, 3-13
keyboard shortcuts, A-36
MP sessions, 3-11
simulation vs. emulation, 3-3
symbols, 3-13
unconditional, 3-14
using, 3-13
BTC_MAP_ENTRY_ASM macro, 2-74
BTC_MAP_ENTRY macro, 2-74
BTC Memory window
about, 2-75
right-click menu, 2-78

BTCs
about background telemetry channels,
2-73
BTC Memory window, 2-75
changing BTC priority, 2-75
channel definitions, 2-73
defining channels, 2-73
list of defined channels, 2-77
streams, 3-17
build date, A-3
building projects, See projects
build options
about, 1-58
custom, 1-59
files, 1-25
individual file, 1-59
projects, 1-25
project wide, 1-58
specifying, 1-24
Build page
about, 2-29
build status
viewing, 2-29
build type, See configuration
buttons
appearance on toolbars, A-27
built-in toolbars, A-20
standard Windows functions, A-42

C

cache events, 2-93
log, 2-95

cache hits, 2-94

cache misses, 2-94

cache thrashing, 2-94

[-2

Visual DSP++ 5.0 User’s Guide

Cache Viewer
about, 2-93
Address View page, 2-102
cache events log file, 2-95
Configuration page, 2-96
Detailed View page, 2-97
Histogram page, 2-100
History page, 2-98
Performance page, 2-99
right-click menu, 2-95
cache ways, 2-94
Call Stack window, 2-63
categories in Help, A-52
.c files, 2-14, A-12
channels
BTC, 2-73
definition, A-67
CLKOUT pin, configuring, B-10
clock doubling, ADSP-21161 processors,
B-10
code analysis tools, 3-7
code development tools
about, 1-2
batch processing messages, 2-31
list of, 1-27
COFF
defined, A-67
colors
Output window, 2-29
plots, 3-26
command-line parameters
idde.exe, A-7
commands
control menu, A-18
DOS, 1-60
program execution, 3-11
single-stepping, 3-11
stepping, 3-11
user tools, A-21

INDEX

comments
rules for, A-48
start and stop strings, A-48
compiled simulation, D-44
preparing a program from a .dxe file,
D-44
compiler, 1-28
annotations in editor windows, 2-24
file associations for tools, 2-14
input files, 2-14
options, 1-28, 1-31
suppressing warnings and remarks, 2-37
compiling
C programs, 1-28
C++ programs, 1-28
conditional breakpoints, 3-14
configurations
customized, 1-56
project, 1-56
configurators
VisualDSP++ Configurator, 1-17
Configure Simulator Event dialog box, B-8
connection type
specifying, 3-2
Console page
about, 2-30
constellation plots
about, 3-22
context switch
defined, A-68
control menu, A-17, A-18
.cpp files, 2-14, A-12
C programs, compiling, 1-28
C++ programs, compiling, 1-28
critical region
defined, A-68
CROSSCORE
defined, A-68

C++ run-time libraries, 1-29

Visual DSP++ 5.0 User’s Guide

I-3

INDEX

current program counter value
ADSP-TS101 processors, C-8
ADSP-TS20x processors, C-20
custom board support, 2-82
custom-build options, 1-25, 1-59
customizing
Output window, 2-38
plot windows, 2-115
register windows, 2-81
toolbars, A-21
.cxx files, 2-14, A-12

D

data
files, 1-30
I/O simulation, 3-17
plotting, 3-19
simulating transfers, 1-16
data collection
methods, 3-18
data logging
displaying status in plot windows, 2-111
data sets, 2-115
definition, 2-114
data streams
purpose, 3-17
data structures, 1-13
.dat files, A-12
debug agent, 3-2
Debug configuration, 1-56
debugging
IDDE features, 1-5
multiple processors, 3-4
overview of, 1-20
programs, 1-26
tools list, 1-20
VisualDSP++ features, 1-5

debug sessions, 1-20
about, 3-1
compiled simulation, D-44
defined, A-69
definition, 3-1
management, 3-3
managing, 3-3
multiple, 3-3
selecting a new session at startup, 3-10
selection at startup, 3-10
setting up, 3-1
specifying, A-7
specifying for multiprocessing, 3-4
switching, 3-3
types, 3-1
viewing list of, 3-3
debug target, See targets
demoting
error messages, 2-35
dependencies, project, 1-57
device drivers
defined, A-70
Dinkum abridged C++ library, 1-29
Disassembly windows, 2-46
address bar, 2-45
examples, 2-45
features, 2-46, 2-47
going to an address, 2-47
invoking, 2-45
opening multiple, 2-46
pipeline stages, 2-50
right-click menu, 2-48
symbols, 2-49
discretionary errors, 2-31
discretionary messages, 2-35
.dlb files, 2-14, A-12
.dlo files, A-12
docked windows, A-39

debugging windows docking
control menu, A-19 toolbars. A-28
list of, 2-43 ’
[-4 VisualDSP++ 5.0 User’s Guide

documentation
printing, A-50
.doj files, 1-28, 1-30, 1-31, 2-14, A-12
DOS commands
running, 1-60
.dpg files, 1-49, A-14
.dpj files, 1-43, A-12
dsp files, 2-14, A-13
DSPs, See processors
dumping
memory, 2-67
DWARE-2, 1-27
defined, A-71
.dxe files, 1-31, A-12
automatic loading, 1-26

E
editing
features, 1-3
files, 1-24
keyboard shortcuts, A-33
editor files
comments in, A-48
Editor Tab mode, 2-21
editor windows
about, 2-16
bookmarks, 2-17, 2-19
breakpoints, 3-13
compiler annotations, 2-24
Editor Tab mode, 2-21
expression evaluation, 2-24
operations, 2-17
parts of, 2-17
program icon, A-18
right-click menu, 2-27
source mode vs. mixed mode, 2-20
switching among, 2-23
symbols, 2-18
syntax coloring, 2-19

INDEX

ELF
defined, 1-27
ELF/DWAREF format, A-12
elfloader.exe, 1-42
Embedded Processing & DSP
Knowledgebase, -xxxiii
emulation
available tools, 1-20
debug session management, 3-3
restarting programs, 3-12
targets, 1-17
vs. simulation, 3-3
emulator
defined, A-71
when to use, 1-15
emulator targets
statistical profiling, 3-8
energy
calculating for functions, 3-33
energy-aware programming, 3-31
error messages, 2-43
demoting, 2-35
displaying offending code, 2-29
log file, 2-38, 2-39
Output window, 2-28, 2-31
promoting, 2-35
scrolling in Output window, 2-29
severity hierarchy, 2-31
suppressing, 2-35
syntax, 2-32
errors
discretionary, 2-31
estimated energy profile, 3-31
evaluating
expressions in editor windows, 2-23
evaluation
available tools, 1-20
event bit

defined, A-72

Visual DSP++ 5.0 User’s Guide

I-5

INDEX

events
cache, 2-93
defined, A-71
Pipeline Viewer, 2-91
thread, 2-107
using data cursor, 2-107
events log
cache, 2-95
Events submenu (SHARC), B-4
Access to ADSP-21065L 9th column
Even Address, B-7
FP Denorm, B-4
Short Word Anomaly, B-4
Excel
data files, 3-17
plot window data, 3-17
executables
automatic loading, 1-26
loading, 3-11
execution traces, 2-52, 3-9
.exe files, A-13
Expert Linker
about, 1-34
overview, 1-34
stack and heap usage, 1-38
window, 1-35

expressions
C expressions, 2-52
context-sensitive evaluation, 2-23
evaluating in editor windows, 2-23
Expressions window, 2-52
memory windows, 2-69
nested, searching Help, A-64
register, 2-52
regular, A-44
tagged, A-47
tracking, 2-69
tracking in memory windows, 2-67
viewing value of, 2-24
Expressions window
about, 2-50
valid expressions, 2-51
external interrupts
generating, 3-17
simulating, 1-16
eye diagrams
about, 3-23
example of, 3-23
EZ-KIT Lite evaluation systems
as targets, 1-16
flash drivers, 3-30
planning, 1-15
specifying as platform, 3-2

F

fatal errors, 2-31

features
new in Visual DSP++ 5.0, 1-7
project management, 1-4
VDK, 1-6
VisualDSP++, 1-1

file building options, 1-25

I-6

Visual DSP++ 5.0 User’s Guide

files
.asm, 2-14
assembly, 1-30
association with tools, 2-14
automatic placement, 2-15
building, 1-58, 1-59
., 2-14
cache events log, 2-95
compiler, 1-28
.cpp, 2-14
.cxx, 2-14
data, 1-30
dlb, 2-14
doj, 1-31,2-14
.dpg, 1-49
.dpj, 1-43
dsp, 2-14
DSP project, A-12
executable, 1-32
extensions in VisualDSP++, A-12
keyboard shortcuts, A-31, A-32, A-36
language, 1-30
Adf, 1-30, 1-32, 1-33, 2-14
linker, 1-31, 1-32
list of, A-12
log, 2-38, 2-39
.mak, 1-51
.mk, 1-51
nested folders in Project window, 2-6
object, 1-31
options, 1-26
overlay, 1-31
placing into folders automatically, 2-6
processor definition files, 2-83
project, 2-8
project group, 1-49
Project window rules, 2-13
PROM, 1-41, 1-42
s, 2-14
vdk_config.cpp, 2-4

INDEX

vdk_config.h, 2-4
VisualDSP_log. txt, 2-39
vps, 2-110, 2-115
xml, 2-82
file tree, 2-2
icons, 2-2
Project window, 2-2
filling
memory, 2-67
filtering
PC samples, 2-62
finding
regular expressions in find/replace
operations, A-44
tagged expressions, A-47
find/replace operations
regular expressions, A-44
Flag 1O (FIO) peripheral
Blackfin, D-2
flash
programming, 3-29
programming at production, 3-28
programming in production, 3-28
flash algorithm
loading, 3-29
flash devices
changing data, 3-26
flash drivers
loading, 3-29
flash memory
about, 3-29
erasing, 3-29
filling, 3-29
programming, 3-26
resetting, 3-29

Visual DSP++ 5.0 User’s Guide

I-7

INDEX

Flash Programmer
about, 3-26
flash driver, 3-30
functions, 3-29
Stand-Alone, 3-27
user interface, 3-30
Flash Programmer window, 3-30
floating toolbars, A-28
floating windows, A-39
focus
definition, 3-6
multiprocessor debug session, 2-84
folders
automatic file placement, 2-15
project, 2-6
Project window, 2-2, 2-6
Project window rules, 2-13
font color in Output window, 2-29
FP Denorm, B-4
functions
displaying, 2-59
displaying local variables, 2-54

G

global build options, 1-25
glossary, A-66
graphing

processor memory, 3-19
grouping

processors, 2-86
groups

multiprocessor, 2-85

H

halting
programs, 3-12
hardware

specifying, 3-5

hardware breakpoints, 3-3
about, 3-16
latency, 3-16
restrictions, 3-16
use, 3-16

Hardware Breakpoints dialog box, 3-16

hardware conditions
simulating, 1-16

header files, 1-30

heaps
usage in Expert Linker, 1-38

Help
about, 1-61
bookmarking, A-58
categories, A-52
context-sensitive, A-54
copying example code, A-57
features and operations, A-53
invoking, A-51, A-52
keyboard shortcuts, A-36
navigating, A-54, A-59
printing, A-57
searching, A-60
window, A-53

.h files, A-12, A-13

b # files, A-13

.hpp files, A-12

hxx files, A-12

I

ICEs
defined, A-73
specifying as platform, 3-2
ICE Test, 1-18, A-87
icons
editor windows, 2-18
Pipeline Viewer events, 2-91
Project window, 2-6
ID
processor, B-10

I-8

Visual DSP++ 5.0 User’s Guide

IDDE, 1-2
command-line parameters, A-7
invoking with command-line
parameters, A-7
source code control, 1-50
version, A-3
idde.exe
command-line parameters, A-7
Idle thread
time spent in, 2-108
ILEE, 3-31
images
displaying, 2-119
Image Viewer window
automation interface, 2-120
features, 2-119
right-click menu, 2-121
status bar, 2-121
toolbar, 2-120
instruction groups, Blackfin processors,
D-41
instruction latencies, Blackfin processors,
D-26
accumulator to data register, D-27
instruction alignment unit empty, D-33
instructions within hardware loops,
D-32
loop setup, D-31
move conditional and move CC, D-30
register move, D-28
instruction timing analysis
ADSP-TS101 processors, C-2
ADSP-TS20x processors, C-12
interrupts
about, 3-17
defined, A-73

simulating, 1-16

INDEX

interrupt service routines
defined, A-73
I/0
simulating data transfer, 1-16
is files, A-12
ISRs

exercising, 1-16

J

JScript
scripting with, 2-41

Jjs files, A-13

JTAG emulator
breakpoints, 3-13
debug sessions, 3-3
exchanging data without halting, 2-73
platforms, 3-2
project development, 1-15
statistical profiles, 3-8
statistical profiling, 2-55

JTAG interface
exchanging data, 2-73

K

kernel
defined, A-74
kernel, See VDK
Kernel tab
about, 2-4
keyboard shortcuts, A-31
kills detected messages, Pipeline Viewer

(ADSP-BF535), D-16

Visual DSP++ 5.0 User’s Guide

I-9

INDEX

L

L1 data memory stalls, D-34
cache access (1-cycle stall), D-36
minibank access collision, D-35
MMR access, D-39
SRAM access (1-cycle stall), D-35
store buffer load collision, D-40
store buffer overflow, D-39
system minibank access collision, D-39
latencies, D-22
df files, 1-31, 2-14, A-12
customized, 1-46
Adr files, A-13, B-12
legends
in plots, 3-26
librarian
defined, A-74
libraries
C++ run-time, 1-29
Dinkum abridged C++, 1-29
library functions
displaying, 2-59
licenses
list of, A-3
management, 1-10
status, A-3
linear profiling
features, 3-8
minimizing energy, 3-31
Linear Profiling window, 2-57, 3-8
about, 2-55
power savings, 3-32
line plots
about, 3-21
linker
file associations for tools, 2-14
input files, 2-14
overview, 1-31
Linker Description Files, See .Idf files
linking, object files, 1-31, 1-32

loader
about, 1-42
specifying options, 1-42
terms, 1-42
loading
executable programs, 3-11
programs, 3-11
scripts, 2-42
scripts from a shortcut, A-11
Load Sim Loader submenu options, B-11
local build options, 1-25
Locals window
about, 2-54
Locate button, A-55
log file, VisualDSP++, 2-38
st files, A-13

M

main window
program icon, A-18
status bar, A-29
makefiles, 1-51, A-14
example of, 1-53
Output window, 1-53
rules, 1-52
.mak files, See makefiles
manuals
online, A-49
printing, A-50
.map files, A-13
MATLAB
data files, 3-17
plot window data, 3-17
measuring
performance, 3-8
memory
displaying an address’s value, 2-67
dumping, 2-46, 2-67
filling, 2-46, 2-67

I-10

Visual DSP++ 5.0 User’s Guide

memory map
defining, 1-33
using Expert Linker, 1-40
memory plots, 2-109
memory pool
defined, A-76
memory segments, 1-12
memory windows
customization, 2-72
expression tracking, 2-69
locking columns, 2-67
number format examples, 2-67
number formats, 2-67
right-click menu, 2-69
tracking an expression, 2-67
tracking expressions, 2-69
menu bar
about, A-19
menus
application menu bar, A-19
control menu, A-17, A-18
right-click, A-38
system, A-18
title bar right-click, A-17
messages
Console page of Output window, 2-30
kills detected (ADSP-BF535), D-16
Pipeline Viewer (ADSP-BF535), D-12,
D-17
stalls detected (ADSP-BF535), D-12
VDK defined, A-76
VisualDSP_Log. txt file, 2-38
Microsoft Script Debugger
enabling, 2-41
mixed mode, 2-20
editor window, 2-20
pipeline symbols, 2-21
.mk files, See makefiles
multicycle behavior, D-22

INDEX

multicycle instructions, D-22
32-bit multiply, D-23
ADSP-BF535, D-17
call and jump, D-23
conditional branch, D-23
core and system synchronization, D-24
interrupts and emulation, D-25
linkage, D-25
push or pop multiple, D-22
return, D-24
TESTSET, D-25

multiprocessor debug sessions, 3-4
debugging, 3-5
focus and pinning, 2-86, 3-6
managing, 2-84
program execution, 3-11
setting up, 3-4

multiprocessor groups, 2-86

multiprocessor systems, See multiprocessor

debug sessions

Multiprocessor window, 2-83
debugging with, 3-5
Groups page, 2-85
Status page, 2-84

N

nested expressions

defining Help searches, A-64
nested folders, 2-6
No Boot Mode command, B-10
nodes, Project window, 2-2

@)

object files, See .obj files
.obj files, 1-30, A-13
online Help, See Help
operations
program execution, 3-11
program execution commands, 3-11

VisualDSP++ 5.0 User’s Guide

[-11

INDEX

optimizing pinning
programs, 2-94 definition, 3-6
Output window, 2-28, 2-43 pipeline
bookmarks, 2-30 kill reasons (ADSP-BF531,
Build page, 2-29 ADSP-BF532, ADSP-BF533,
capturing messages to log file, 2-38 ADSP-BF561), D-20
Console page, 2-30 kill reasons (ADSP-BF535), D-10
scripting, 2-41 stage event icons in Pipeline Viewer, 2-91
customization, 2-38 stall reasons (ADSP-BF531,
error messages, 2-31 ADSP-BF532, ADSP-BF533,
loading scripts, 2-39 ADSP-BF561), D-19
makefile errors, 1-53 stall reasons (ADSP-BF535), D-9
parts of, 2-29 pipeline stages
printing, 2-40 ADSP-TS101 processors, C-2
right-click menu, 2-39 ADSP-TS20x processors, C-13
scripts, 2-39 Disassembly windows, 2-50
scrolling previous commands, 2-30 pipeline symbols
overlays, 1-13, 1-32 mixed mode, 2-21
overriding Pipeline Viewer
project-wide options, 1-58 aborts (ADSP-TS101), C-5
.ovl files, 1-31, A-12 aborts (ADSP-TS20x), C-15
current program counter value
P (ADSP-TS101), C-8
current program counter value
PC samples (ADSP-T$20x), C-20

filtering, 2-62 event details, 2-92

performar.lce event icons, 2-91
mez?sulrling, 3-8 message abbreviations (ADSP-BF535),
o'ptlmlzlng, 2-94 D-17

peripherals pipeline stages (ADSP-TS101), C-2
Blackfin, simulating, D-1 pipeline stages (ADSP-TS20x), C-13

limitations in simulation for Blackfin,

specifying properties, 2-90

D-7 stalls (ADSP-TS101), C-3
support in simulators for Blackfin, D-2 stalls (ADSP-TS20x), C-14
Timer (TMR), Blackﬁn, D-8 stepping (ADSP—TSIOD, C-9
UART for Blackfin, D-7 stepping (ADSP-TS20x), C-21
PGO window, 2-88, C-20
deflned, A-79 window messages (ADSP-BF535), D-12
physical memory Pipeline Viewer window, 2-88, C-2

defining, 1-33

I-12 Visual DSP++ 5.0 User’s Guide

pipelining
defined, A-78

platforms
about, A-78
definition, 1-17
specifying, 3-2

plots
See also plot windows
buffer capacity, 2-111
colors, 3-26
configuring, 2-109, 2-115
constellation, 3-22
data logging status, 2-111
data sets, 2-115
DSP memory, 3-19
eye diagram, 3-23
legends, 3-26
line, 3-21
presentation options, 2-117
spectrogram, 3-26
types of, 3-20
viewing statistics, 2-112
waterfall, 3-24
X-Y, 3-21

plot windows, 2-109
See also plots
BTC mode, 2-110
configuring, 2-114
features, 2-110
operations in, 2-114
presentation of, 2-116
right-click menu, 2-111
status bar, 2-110
streams, 3-17
toolbar, 2-111
types of, 3-20
viewing statistics, 2-112

INDEX

positioning
windows, A-42
post-build options, 1-59
command syntax, 1-60
power
minimizing, 3-31
power profiling
setting up, 3-31
.pp files, A-12
pragmas, 2-35
pre-build options, 1-59
preferences
load file and advance to main, 1-26
VisualDSP++ and tool output color,
2-29
Preferences dialog box, 1-26, 2-29
printing
hardware manuals, A-50
online Help, A-57
Visual DSP++ manuals, A-50
processor
loading into simulator, B-10
specifying, 3-1
processor definition files, 2-83
processor ID
configuring, B-10
product information, A-3
profile-guided optimization
defined, A-79
profiling
about, 3-8
assembly instructions, 2-61
defined, A-79
functions, 2-60
profiling windows, 2-55
Program Counter (PC) register
setting, 3-12

VisualDSP++ 5.0 User’s Guide

I-13

INDEX

program development steps
adding and editing project source files,
1-23
building a debug version of the project,
1-26
building a release version of project, 1-27
creating a project, 1-23
setting project options, 1-23
program execution
commands, 3-11
halting, 3-11
keyboard shortcuts, A-35
program icons, A-18
programming tips, 1-12
program operations
breakpoints, 3-13
execution commands, 3-11
hardware breakpoints, 3-16
restarting programs, 3-12
selecting a debug session at startup, 3-10
unconditional & conditional
breakpoints, 3-14
watchpoints, 3-15
programs
debugging, 1-26
optimizing, 2-94
running, 1-26
program sections, 1-12
program traces, 2-52, 3-9
Project box (showing active project), 1-49
project build
specifying options, 1-24
project dependencies
example of, 1-60
project group files, 1-49
project groups, 1-48
project management
features, 1-4
Project Options dialog box, 1-12

projects

adding files, 1-24

build options, 1-25, 1-58

configurations, 1-56

customized configurations, 1-56

debugging, 1-5, 1-20

defined, A-80

dependencies, 1-24

development overview, 1-11

development stages, 1-14

files, 2-8

folders, 2-2

keyboard shortcuts, A-35

loading, A-7

managing, 1-4

nodes, 2-2

programming overview, 1-12

project groups, 1-48

specifying tool options, 1-47

subfolders, 2-2

Visual DSP++, 1-43
project-wide file and tool options, 1-25
Project window, 2-2

about, 2-2

files, 2-2

folders, 2-6

Kernel tab, 1-22, 2-4

makefiles, 1-51

nodes, 2-3, 2-6

Project view, 2-3

right-click menu, 2-10

rules, 2-13

source code control icons, 2-9
Project Wizard

about, 1-44
Project wizard, 1-23, A-81
PROM files, 1-41, 1-42
promoting

error messages, 2-35

[-14

Visual DSP++ 5.0 User’s Guide

property pages, 1-23
definition, 1-12
pull-tabs, A-38

R

ranking, 3-31
register expressions, 2-52
register groups, Blackfin processors, D-42
register windows

about, 2-78

custom, 2-81
regression tests, 1-14
regular expressions, A-44

reference texts, A-47

special characters, A-45
Release configuration, 1-56
remarks, 2-31
replace operations

tagged expressions, A-47
replacing

tagged expressions, A-47
restarting

programs, 3-12
running

programs, 1-206, 3-12
running to cursor, 3-12

S
SCC, See source code control (SCC)

scripting
about, 2-40
specifying the language, 2-42

INDEX

scripts
auto-completion, 2-42
examples, 2-42
issuing, 2-30
loading, 2-42
loading from a shortcut, A-11
loading from Output window, 2-39
running, A-7
viewing script command status, A-9
scroll bars
using, A-38
searches
normal, A-44
regular expressions vs. normal, A-44
special character rules, A-46
searching
Help, A-60
Select Processor ID submenu options, B-10
semaphores
defined, A-82
sequences
special characters, A-46
sessions
configuring, 3-5
sessions, See debug sessions
Session Wizard, 3-5, 3-10
.s files, 2-14, A-12
.s_# files, A-13
shadow write FIFO anomaly, B-2
shortcut keys, See keyboard shortcuts
short word anomaly, B-4

SIMD FIFO, B-3

VisualDSP++ 5.0 User’s Guide

I-15

INDEX

simulating
See also simulation
booting, 1-16
data transfers, 1-16
external interrupts, 1-16
hardware, 1-16
input/output data, 3-17
random interrupts, 1-16
SHARC processors, B-1
TigerSHARC processors, C-1
simulation
See also simulating
Blackfin processors, D-1
compiled (Blackfin), D-44
debug session management, 3-3
limitations of software models (Blackfin),
D-7
loading a processor, B-10
options, B-1
platforms, 1-17
restarting programs, 3-12
SPI in slave mode, B-13
targets, 1-16
Timer (TMR) peripheral, Blackfin, D-8
UART peripheral in Blackfin, D-7
vs. emulation, 3-3
simulator
ADSP-21065L processors, B-4, B-7
ADSP-2106x processors, B-4, B-10
ADSP-21161 processors, B-10, B-13
ADSP-2116x processors, B-2, B-3, B-10
ADSP-21x6x processors, B-2, B-7, B-11
ADSP-TS101 processors, C-1
ADSP-TS20x processors, C-12
Blackfin peripheral support, D-2
instruction timing analysis
(ADSP-TS101 processors), C-2
instruction timing analysis
(ADSP-TS20x processors), C-12
sampling PC, 3-8

simulator instruction timing analysis
ADSP-BF531, ADSP-BF532,
ADSP-BF533, ADSP-BF561
processors, D-19
ADSP-BF535 processors, D-9
simulators
as targets, 1-16
Simulator submenu options (SHARC),
B-10
simulator targets
linear profiling, 3-8
single-stepping, available commands, 3-11
.sm files, 1-31, A-12
software
updates, 1-10
upgrades, 1-10
software versions, A-5
source code control (SCC)
about, 1-50
Project window symbols, 2-9
source files
comments in, A-48
editing features, 1-3
management, 1-4
project, 2-8
source code control, 1-50
source mode, 2-20
spectrogram plots, 3-26
example of, 3-26
FFT output, 3-26
SPI simulation in slave mode, B-13
splitter
about, 1-41
specifying options, 1-41
stacks
usage in Expert Linker, 1-38
stack windows, 2-80
stalls, Pipeline Viewer
ADSP-TS101, C-3
ADSP-TS20x, C-14

I-16

Visual DSP++ 5.0 User’s Guide

stalls detected messages
(ADSP-BF535), D-12
Stand-Alone Flash Programmer, 3-27, 3-28
about, 3-28
standard output
viewing, 2-30
startup code, 2-2
Project Wizard, 1-45
statistical profiling, 3-8
samples, 3-9
Statistical Profiling window, 2-55, 2-57,
3-8
statistics
viewing in plots, 2-112
status bar
examples, A-29
Image Viewer window, 2-121
plot windows, 2-110
status icons
editor window, 2-18
Pipeline Viewer, 2-91
status messages, log file, 2-38
stepping
available commands, 3-11, 3-12
cache events log, 2-95
into instructions, 3-12
out of instructions, 3-12
over instructions, 3-12
Pipeline Viewer (ADSP-TS101), C-9
Pipeline Viewer (ADSP-TS20x), C-21
stk files, A-13
streams
simulating data I/O, 3-17
used with interrupts, 3-17
subfolders, project tree, 2-2
support
Visual DSP++, A-6
support information, A-2
suppressing
error messages, 2-35

INDEX

switching
among editor windows, 2-21
symbols
Disassembly window, 2-49
editor window, 2-18
syntax coloring
editor windows, 2-19
system components, A-4
system configurator
VDK defined, A-85

system menu, A-18

T

tagged expressions
finding and replacing, A-47
Target Load window, 2-108
targets, 1-15
defined, A-85
emulators, 1-17
EZ-KIT Lite evaluation systems, 1-16
platforms, 1-17
simulation, 1-16
target status messages
Output window, 2-30
.tc8 files, A-13
Tcl
interpreter, 2-41
menu issuance, A-9
running commands, A-8
.tcl files, A-13
technical documentation
locating, -xxxiii
terms
VisualDSP++, A-66
text
locating using regular expressions, A-44
text manipulation
keyboard shortcuts, A-33
text selection
keyboard shortcuts, A-34

VisualDSP++ 5.0 User’s Guide

I-17

INDEX

third-party tools, 1-2
threads, 2-103
defined, A-86
idle, 2-108
status, 2-103, 2-107
tracing, 2-107
Timer (TMR) peripheral
Blackfin, D-8
title bar, A-17
components, A-16
indicating focus, 3-6
TMR (see Timer peripheral), D-8
toggling
breakpoints, 3-13
toolbars, A-20
built-in, A-20
button appearance, A-27
customization, A-21
docked vs. floating, A-28
Image Viewer window, 2-120
list of buttons, A-22
plot windows, 2-111
shape, A-28
tools
code analysis, 3-7
code development, 1-2
command-line invocation, 1-47
context-sensitive Help, A-21
debugging, 1-20
documentation, A-50
file associations, 2-14
options, 1-26
third-party, 1-2
user configured, A-21
Tools menu, user tools, A-21
traces, 2-53
about, 3-9
Trace windows, 2-52, 3-9

tracking
expressions, 2-69
.xt files, A-13

U
UART peripheral in Blackfin, D-7

unconditional breakpoints, 3-14
updates
VisualDSP++, 1-10
upgrades
VisualDSP++, 1-10
user tools, A-21
utilities

ICE Test, 1-18, A-87

\%

variables
global vs. local, 2-52
.vbs files, A-13
VDK
about, 1-22
defined, A-87
features, 1-6
Kernel tab, 2-4
load, 2-108
overview of, 1-6
Project window, 2-4
VDK State History window, 2-105
VDK Status window, 2-103
vdk_config.cpp, 2-4
vdk_config.h, 2-4
vdk files, A-13
VDK State History window, 2-105
right-click menu, 2-108
VDK Status window, 2-103
Visual Basic
scripting with, 2-41

I-18

Visual DSP++ 5.0 User’s Guide

VisualDSP++
Automation API, 2-41
Configurator, 1-17
control menu, A-18
debugging facilities, 1-20
debugging features, 1-5
editing features, 1-3
editor windows, 2-16
environment, 1-2
features, 1-1
file association for tools, 2-14
files, A-12
glossary, A-66
Help system, 1-61, A-53
IDDE, 1-2
kernel, 1-22
keyboard shortcuts, A-31
licenses, A-3
log file, 2-30, 2-38
main window parts, A-16
menu bar, A-19
new features, 1-7
Output window, 2-28
overview of, 1-1
printing documentation, A-50
product updates, 1-10
product upgrades, 1-10
programming overview, 1-12
project development, 1-14
projects, 1-43
Project window, 2-2
software versions, A-5
source code control, 1-50
source file editing features, 1-3
support, A-6
system components, A-4
toolbar buttons, A-22
user interface, A-15

INDEX

VisualDSP++ Configurator

about, 1-17

multiprocessor debug sessions, 3-4
Visual DSP_Log.txt, 2-39

script output, 2-41
.vps files, 2-115

W

warnings, 2-31
watchpoints
about, 3-4, 3-15
MP sessions, 3-11
used with interrupts, 3-17
using, 3-15
waterfall plots
about, 3-24
grid of sampled data, 3-25
rotating, 3-24
ways
cache, 2-94
Windows
standard buttons, A-42

VisualDSP++ 5.0 User’s Guide

I-19

INDEX

windows
BTC Memory, 2-75
buttons, A-42
Call Stack, 2-63, 2-64
custom register, 2-81
debugging, 2-43
Disassembly, 2-45, 2-47
docked, A-39
Expert Linker, 1-35
Expressions, 2-50
Flash Programmer, 3-30
floating, A-39
focus in an MP debug session, 3-6
Help, A-53
Image Viewer, 2-119
keyboard shortcuts, A-37
Linear Profiling, 2-55, 3-8
Locals, 2-54
MDI, A-38
Multiprocessor, 2-84
operating on, A-37
Output, 2-28

Pipeline Viewer, See Pipeline Viewer

window
plot, 2-109
positions, A-42
profiling, 2-55
Project, 2-2
pull-tabs, A-38
register, 2-78
right-click menus, A-38
scroll bars, A-38
stack, 2-80
Statistical Profiling, 2-55, 3-8
Target Load, 2-108
Trace, 2-52, 3-9
VDK State History, 2-105
VDK Status, 2-103
Visual DSP++, A-15

wizards
Project, 1-23, A-81
workspaces

keyboard shortcuts, A-37

X

xml files, 2-82
X-Y plots, 3-21

I-20

Visual DSP++ 5.0 User’s Guide

	Contents
	Preface
	Purpose of This Manual xxiii
	Intended Audience xxiii
	Manual Contents xxiv
	What’s New in This Manual xxv
	Technical or Customer Support xxvi
	Supported Processors xxvii
	Product Information xxviii
	MyAnalog.com xxviii
	Processor Product Information xxix
	Related Documents xxx
	Online Technical Documentation xxxi
	Accessing Documentation From VisualDSP++ xxxii
	Accessing Documentation From Windows xxxii
	Accessing Documentation From the Web xxxiii
	Embedded Processing & DSP Knowledge Base xxxiii

	Printed Manuals xxxiii
	Hardware Tools Manuals xxxiii
	Processor Manuals xxxiv
	Data Sheets xxxiv

	Notation Conventions xxxv

	Introduction to VisualDSP++
	VisualDSP++ Features 1-1
	Integrated Development and Debugging 1-2
	Code Development Tools 1-2
	Source File Editing Features 1-3
	Project Management Features 1-4
	Debugging Features 1-5
	VDK Features 1-6
	VisualDSP++ 5.0 Features 1-7

	Product Updates and Upgrades 1-10
	VisualDSP++ Product Upgrades 1-10
	VisualDSP++ Product Updates 1-10

	Project Development 1-11
	Overview of Programming With VisualDSP++ 1-12
	Project Development Stages 1-14
	Targets 1-15
	Simulation Targets 1-16
	EZ-KIT Lite Targets 1-16
	Emulator Targets 1-17

	Platforms 1-17
	Debugging Overview 1-20
	VisualDSP++ Kernel 1-22
	Program Development Steps 1-22
	Step 1: Create a Project 1-23
	Step 2: Configure Project Options 1-23
	Step 3: Add and Edit Project Source Files 1-23
	Adding Files to Your Project 1-24
	Creating Files to Add to Your Project 1-24
	Editing Files 1-24
	Managing Project Dependencies 1-24

	Step 4: Specifying Project Build Options 1-24
	Configuration 1-25
	Project-Wide File and Tool Options 1-25
	Individual File and Tool Options 1-26

	Step 5: Build a Debug Version of the Project 1-26
	Step 6: Create a Debug Session and Load the Executable 1-26
	Step 7: Run and Debug the Program 1-26
	Step 8: Build a Release Version of the Project 1-27

	Code Development Tools 1-27
	Compiler 1-28
	C++ Run-Time Libraries 1-29
	Dinkum Abridged C++ Library 1-29

	Assembler 1-30
	Linker 1-31
	Expert Linker 1-34
	Expert Linker Window 1-35
	Memory Map Pane Right-Click Menu 1-36
	Stack and Heap Usage 1-38

	Archiver 1-41
	Splitter 1-41
	Loader 1-42

	Processor Projects 1-43
	Project Wizard 1-44
	Startup Code 1-45
	.LDF File 1-46

	Project Options 1-47
	Project Groups 1-48
	Project Group Files 1-49

	Source Code Control (SCC) 1-50
	Makefiles 1-51
	Rules 1-52
	Output Window 1-53
	Example Makefile 1-53

	Project Configurations 1-56
	Project Build 1-57
	Build Options 1-58
	File Building 1-58
	Batch Builds 1-59
	Pre-Build and Post-Build Options 1-59
	Command Syntax 1-60

	Project Dependencies 1-60

	VisualDSP++ Help System 1-61

	Environment
	Project Window 2-2
	Project View 2-3
	Kernel Tab 2-4
	Project Dependencies 2-4
	Project Nodes 2-6
	Project Folders 2-6
	Project Files 2-8
	Project Window Icons for Source Code Control (SCC) 2-9

	Project Page Right-Click Menus 2-10
	Project Group Icon Right-Click Menu 2-10
	Project Icon Right-Click Menu 2-11
	Folder Icon Right-Click Menu 2-12
	File Icon Right-Click Menu 2-12

	Project Window Rules 2-13
	File Associations 2-14
	Automatic File Placement 2-15
	File Placement Rules 2-15
	Example 2-16

	Editor Windows 2-16
	Editor Window Features 2-17
	Editor Window Symbols 2-18
	Bookmarks 2-19
	Syntax Coloring 2-19
	Viewing Modes: Source Mode vs. Mixed Mode 2-20
	Source Mode 2-20
	Mixed Mode 2-20

	Editor Tab Mode 2-21
	Context-Sensitive Expression Evaluation 2-23
	Viewing an Expression 2-24
	Highlighting an Expression 2-24

	Compiler Annotations 2-24
	Right-Click Menu 2-27

	Output Window 2-28
	Build Page and Console Page 2-29
	Code Development Tools Batch Processing Messages 2-31
	Message Severity Hierarchy 2-31
	Syntax of Help for Error Messages 2-32
	Viewing Error Message Details 2-33
	Promoting, Demoting, and Suppressing Error Messages 2-35
	Example 1: Compiling from the Command Line (Interface) 2-36
	Example 2: Promoting Warnings to Errors 2-36
	Example 3: Demoting Messages to Remarks 2-37
	Example 4: Suppressing Messages 2-37
	Suppressing Compiler Warnings and Remarks 2-37

	Log File 2-38
	Output Window Customization 2-38
	Right-Click Menu 2-39
	Script Command Output 2-40

	Debugging Windows 2-43
	Disassembly Windows 2-45
	Other Disassembly Window Features 2-47
	Right-Click Menu 2-48
	Disassembly Window Symbols 2-49

	Expressions Window 2-50
	Expressions Permitted in an Expression Window 2-51

	Trace Windows 2-52
	Locals Window 2-54
	Statistical/Linear Profiling Window 2-55
	Window Components 2-55
	Left Pane 2-56
	Right Pane 2-56
	Status Bar 2-57
	Right-Click Menu 2-57

	Window Operations 2-58
	Changing the Window View 2-59
	Displaying a Source File 2-59
	Displaying Functions in Libraries 2-59
	Working With Ranges 2-60
	Switching Display Modes 2-60
	Filtering PC Samples With No Debug Information 2-62

	Call Stack Window 2-63
	Applications Built With Debug Information 2-64
	Applications Built When Debug Information is Not Available 2-64

	Memory Windows 2-67
	Number Formats in Memory Windows 2-67
	Memory Window Right-Click Menu 2-69
	Expression Tracking in a Memory Window 2-69
	Memory Window Display Customization 2-72

	Background Telemetry Channels (BTCs) 2-73
	BTC Definitions in Your Program 2-73
	Enabling BTC on ADSP-2126x and ADSP-BF36x Processors 2-74
	BTC Priority 2-75
	BTC Memory Window 2-75
	BTC Memory Window Right-Click Menu 2-78

	Register Windows 2-78
	Stack Windows 2-80
	Custom Registers Windows 2-81
	Custom Board Support 2-82
	Custom Board Support Files 2-82
	Processor Definition Files 2-83

	Multiprocessor Window 2-83
	Multiprocessor Window Pages 2-84
	Status Page 2-84
	Groups Page 2-85

	Operating on Multiprocessor Groups 2-86
	Focus 2-86
	Right-Click Menu 2-87

	Pipeline Viewer Window 2-88
	Right-Click Menu of Pipeline Viewer Window 2-89
	Pipeline Viewer Properties Dialog Box 2-90
	Pipeline Viewer Window Event Icons 2-91
	Pipeline Instruction Event Details 2-92

	Cache Viewer Window 2-93
	Configuration Page 2-96
	Detailed View Page 2-97
	History Page 2-98
	Performance Page 2-99
	Histogram Page 2-100
	Address View Page 2-102

	VDK Status Window 2-103
	VDK State History Window 2-105
	Thread Status and Event Colors 2-106
	Window Operations 2-107
	Right-Click Menu 2-108

	Target Load Window 2-108
	Plot Windows 2-109
	Plot Window Features 2-110
	Status Bar 2-110
	Tool Bar 2-111
	Right-Click Menu 2-111

	Plot Window Statistics 2-112
	Plot Configuration 2-114
	Plot Window Presentation 2-116
	Plot Presentation Options 2-117

	Image Viewer 2-119
	Automation Interface 2-120
	Toolbar 2-120
	Status Bar 2-121
	Right-Click Menu 2-121

	Debugging
	Debug Sessions 3-1
	Debug Session Management 3-3
	Simulation vs. Emulation 3-3
	Breakpoints 3-3
	Watchpoints 3-4

	Multiprocessor (MP) System Debugging 3-4
	Setting Up a Multiprocessor Debug Session 3-4
	Debugging a Multiprocessor System 3-5
	Focus and Pinning 3-6
	Window Title Bar Information 3-6
	Additional Focus Indication 3-7

	Code Analysis Tools 3-7
	Statistical Profiles and Linear Profiles 3-8
	Simulation: Linear Profiling 3-8
	Emulation: Statistical Profiling 3-8

	Traces 3-9

	Program Execution Operations 3-10
	Selecting a New Debug Session at Startup 3-10
	Loading the Executable Program 3-11
	Program Execution Commands 3-11
	Restarting the Program 3-12
	Performing a Restart During Simulation 3-12
	Performing a Restart During Emulation 3-13

	Breakpoints 3-13
	Unconditional and Conditional Breakpoints 3-14
	Automatic Breakpoints 3-14
	Watchpoints 3-15
	Hardware Breakpoints 3-16
	Latency 3-16
	Restrictions 3-16

	Simulation Tools 3-16
	Interrupts 3-17
	Input/Output Simulation (Data Streams) 3-17

	Plots 3-19
	Plot Types 3-20
	Line Plots 3-21
	X-Y Plots 3-21
	Constellation Plots 3-22
	Eye Diagrams 3-23
	Waterfall Plots 3-24
	Spectrogram Plots 3-26

	Flash Programmer 3-26
	Stand-Alone Flash Programmer 3-28
	Flash Devices 3-29
	Flash Programmer Functions 3-29
	Flash Driver 3-30
	Flash Programmer Window 3-30

	Energy-Aware Programming 3-31
	Ranking 3-31
	Example 3-31

	Reference Information
	Support Information A-2
	IDDE Command-Line Parameters A-7
	Extensive Scripting A-8
	File Types A-12
	Parts of the User Interface A-15
	Title Bar A-16
	Additional Information in Title Bars A-17
	Title Bar Right-Click Menu A-17

	Control Menu A-18
	Program Icons A-18
	Editor Windows A-18
	Debugging Windows A-19

	Menu Bar A-19
	Toolbars and User Tools A-19
	Built-In Toolbars A-20
	Toolbar Customization A-21
	User Tools A-21
	Toolbar Buttons A-22
	Toolbar Operation A-27
	Toolbar Button Appearance A-27
	Toolbar Shape A-28
	Toolbars: Docked vs. Floating A-28
	Toolbar Rules A-29

	Status Bar A-29

	Keyboard Shortcuts A-31
	Working With Files A-31
	Moving Within a File A-32
	Cutting, Copying, Pasting, Moving Text A-33
	Selecting Text Within a File A-34
	Working With Bookmarks in an Editor Window A-34
	Building Projects A-35
	Using Keyboard Shortcuts for Program Execution A-35
	Working With Breakpoints A-36
	Obtaining VisualDSP++ Help A-36
	Miscellaneous A-37

	Window Operations A-37
	Window Manipulation A-37
	Right-Click Menu Options A-38
	Scroll Bars and Resize Pull-Tab A-38
	Windows: Docked vs. Floating A-39
	Docked Windows A-39
	Floating Windows A-39

	Window Position Rules A-42
	Standard Windows Buttons A-42

	Text Operations A-44
	Regular Expressions vs. Normal Searches A-44
	Specific Special Characters A-45
	Special Rules for Sequences A-46
	Repetition and Combination Characters A-46
	Match Rules A-47

	Tagged Expressions in Replace Operations A-47
	Comment Start and Stop Strings A-48

	Online Documentation A-49
	Printing Online Documentation A-50
	Invoking Online Help A-51
	Help Categories A-52

	Online Help A-53
	Help Window A-53
	Context-Sensitive Help A-54
	Viewing Menu, Toolbar, or Window Help A-56
	Viewing Dialog Box Help A-56
	Viewing Window Help A-57

	Copying Example Code From Help A-57
	Printing Help A-57
	Bookmarking Frequently Used Help Topics A-58
	Navigating in Online Help A-59
	Searching Help A-60
	Full-Text Searches A-60
	Rules for Full-Text Searches A-62

	Advanced Search Techniques A-62
	Wildcard Expressions A-63
	Boolean Operators A-63
	Nested Expressions A-64
	Rules for Advanced Searches A-65

	Glossary A-66

	Simulation of SHARC Processors
	Anomaly Options B-1
	ADSP-21x6x Processor Anomalies B-2
	Shadow Write FIFO Anomaly (ADSP-2116x Only) B-2
	SIMD Read from Internal Memory With Shadow Write FIFO Hit Anomaly (ADSP-2116x Only) B-3

	Event Options B-4
	FP Denorm B-4
	Short Word Anomaly B-4
	Access to ADSP-21065L Short-Word Internal Memory 9th Column at Even Addresses B-7

	Recording a Simulator Anomaly or Event B-7
	Select Processor ID Options B-10
	Simulator Options B-10
	No Boot Mode B-10

	Load Sim Loader Options B-11
	SPI Simulation in Slave Mode B-13

	Simulation of TigerSHARC Processors
	ADSP-TS101 Processors C-1
	Simulator Timing Analysis Overview C-2
	Pipeline Stages C-2
	Stalls C-3
	Stalls Due to IALU Dependency C-3
	Stalls Due to Compute Block Dependency C-4

	Aborts C-5
	Aborts Due to an Unpredicted Change of Flow C-5
	Abort Due to Mispredicted Change of Flow C-6
	Branch Target Buffer Hits C-7

	Pipeline Viewer and Disassembly Window Operations C-7
	Current Program Counter Value C-8
	Stepping C-9

	Simulator Options C-11

	ADSP-TS20x Processors C-12
	Simulator Timing Analysis Overview C-12
	Pipeline Stages C-13
	Stalls C-14
	Stalls Due to IALU Dependency C-14
	Stalls Due to Compute Block Dependency C-15
	Stalls Due to a Cache Miss C-15

	Aborts C-15
	Aborts Due to an Unpredicted Change of Flow C-16
	Abort Due to Mispredicted Change of Flow C-18
	Branch Target Buffer Hits C-19

	Pipeline Viewer and Disassembly Window Operations C-19
	Current Program Counter Value C-20
	Stepping C-21
	Simulator Options C-22

	Simulation of Blackfin Processors
	Peripheral Support in Simulators D-2
	Special Considerations for Peripherals D-7
	Universal Asynchronous Receiver/Transmitter Peripheral D-7
	Timer (TMR) Peripheral D-8

	Simulator Instruction Timing Analysis for ADSP-BF535 Processors D-9
	Stall Reasons D-9
	Kill Reasons D-10
	Pipeline Viewer Window Examples D-11
	Pipeline Viewer Window Messages D-12
	Pipeline Viewer Detail View Stall Event Messages D-12
	Kills Detected Messages D-16
	Multicycle Instructions D-17

	Abbreviations in Pipeline Viewer Messages D-17

	Simulator Instruction Timing Analysis for ADSP-BF531, ADSP-BF532, ADSP-BF533, and ADSP-BF561 Processors D-19
	Stall Reasons D-19
	Kill Reasons D-20
	Pipeline Viewer Window Examples D-20

	Multicycle Instructions and Latencies D-22
	Multicycle Instructions D-22
	Push Multiple or Pop Multiple D-22
	32-Bit Multiply (modulo 232) D-23
	Call and Jump D-23
	Conditional Branch D-23
	Return D-24
	Core and System Synchronization D-24
	Linkage D-25
	Interrupts and Emulation D-25
	TESTSET D-25

	Instruction Latencies D-26
	Accumulator to Data Register Latencies D-27
	Register Move Latencies D-28
	Move Conditional and Move CC Latencies D-30
	Loop Setup Latencies D-31
	Latencies Due to Instructions Within Hardware Loops D-32
	Instruction Alignment Unit Empty Latencies D-33

	L1 Data Memory Stalls D-34
	Minibank Access Collision D-35
	SRAM Access (1-Cycle Stall) D-35
	Cache Access (1-Cycle Stall) D-36

	Memory-Mapped Register (MMR) Access D-39
	System Minibank Access Collision D-39
	Store Buffer Overflow D-39
	Store Buffer Load Collision D-40
	Load/Store Size Mismatch D-40
	Store Data Not Ready D-41

	Instruction Groups D-41
	Register Groups D-42

	Compiled Simulation D-44
	Specifying a Session for Compiled Simulation D-44

	Index

	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	MyAnalog.com
	Processor Product Information
	Related Documents
	Online Technical Documentation
	Accessing Documentation From VisualDSP++
	Accessing Documentation From Windows
	Accessing Documentation From the Web
	Embedded Processing & DSP Knowledge Base

	Printed Manuals
	Hardware Tools Manuals
	Processor Manuals
	Data Sheets

	Notation Conventions

	1 Introduction to VisualDSP++
	VisualDSP++ Features
	Integrated Development and Debugging
	Code Development Tools
	Source File Editing Features
	Project Management Features
	Debugging Features
	VDK Features
	VisualDSP++ 5.0 Features

	Product Updates and Upgrades
	VisualDSP++ Product Upgrades
	VisualDSP++ Product Updates

	Project Development
	Overview of Programming With VisualDSP++
	Project Development Stages
	Targets
	Simulation Targets
	EZ-KIT Lite Targets
	Emulator Targets

	Platforms
	Debugging Overview
	VisualDSP++ Kernel
	Program Development Steps
	Step 1: Create a Project
	Step 2: Configure Project Options
	Step 3: Add and Edit Project Source Files
	Step 4: Specifying Project Build Options
	Step 5: Build a Debug Version of the Project
	Step 6: Create a Debug Session and Load the Executable
	Step 7: Run and Debug the Program
	Step 8: Build a Release Version of the Project

	Code Development Tools
	Compiler
	C++ Run-Time Libraries
	Dinkum Abridged C++ Library

	Assembler
	Linker
	Expert Linker
	Expert Linker Window
	Memory Map Pane Right-Click Menu
	Stack and Heap Usage

	Archiver
	Splitter
	Loader

	Processor Projects
	Project Wizard
	Startup Code
	.LDF File

	Project Options
	Project Groups
	Project Group Files

	Source Code Control (SCC)
	Makefiles
	Rules
	Output Window
	Example Makefile

	Project Configurations
	Project Build
	Build Options
	File Building
	Batch Builds
	Pre-Build and Post-Build Options
	Project Dependencies

	VisualDSP++ Help System

	2 Environment
	Project Window
	Project View
	Kernel Tab
	Project Dependencies
	Project Nodes
	Project Folders
	Project Files
	Project Window Icons for Source Code Control (SCC)

	Project Page Right-Click Menus
	Project Group Icon Right-Click Menu
	Project Icon Right-Click Menu
	Folder Icon Right-Click Menu
	File Icon Right-Click Menu

	Project Window Rules
	File Associations
	Automatic File Placement
	File Placement Rules
	Example

	Editor Windows
	Editor Window Features
	Editor Window Symbols
	Bookmarks
	Syntax Coloring
	Viewing Modes: Source Mode vs. Mixed Mode
	Source Mode
	Mixed Mode

	Editor Tab Mode
	Context-Sensitive Expression Evaluation
	Viewing an Expression
	Highlighting an Expression

	Compiler Annotations
	Right-Click Menu

	Output Window
	Build Page and Console Page
	Code Development Tools Batch Processing Messages
	Message Severity Hierarchy
	Syntax of Help for Error Messages
	Viewing Error Message Details
	Promoting, Demoting, and Suppressing Error Messages

	Log File
	Output Window Customization
	Right-Click Menu
	Script Command Output

	Debugging Windows
	Disassembly Windows
	Other Disassembly Window Features
	Right-Click Menu
	Disassembly Window Symbols

	Expressions Window
	Expressions Permitted in an Expression Window

	Trace Windows
	Locals Window
	Statistical/Linear Profiling Window
	Window Components
	Window Operations

	Call Stack Window
	Applications Built With Debug Information
	Applications Built When Debug Information is Not Available

	Memory Windows
	Number Formats in Memory Windows
	Memory Window Right-Click Menu
	Expression Tracking in a Memory Window
	Memory Window Display Customization

	Background Telemetry Channels (BTCs)
	BTC Definitions in Your Program
	Enabling BTC on ADSP-2126x and ADSP-BF36x Processors
	BTC Priority
	BTC Memory Window
	BTC Memory Window Right-Click Menu

	Register Windows
	Stack Windows
	Custom Registers Windows
	Custom Board Support
	Custom Board Support Files
	Processor Definition Files

	Multiprocessor Window
	Multiprocessor Window Pages
	Operating on Multiprocessor Groups
	Focus
	Right-Click Menu

	Pipeline Viewer Window
	Right-Click Menu of Pipeline Viewer Window
	Pipeline Viewer Properties Dialog Box
	Pipeline Viewer Window Event Icons
	Pipeline Instruction Event Details

	Cache Viewer Window
	Configuration Page
	Detailed View Page
	History Page
	Performance Page
	Histogram Page
	Address View Page

	VDK Status Window
	VDK State History Window
	Thread Status and Event Colors
	Window Operations
	Right-Click Menu

	Target Load Window
	Plot Windows
	Plot Window Features
	Plot Window Statistics
	Plot Configuration
	Plot Window Presentation
	Plot Presentation Options

	Image Viewer
	Automation Interface
	Toolbar
	Status Bar
	Right-Click Menu

	3 Debugging
	Debug Sessions
	Debug Session Management
	Simulation vs. Emulation
	Breakpoints
	Watchpoints

	Multiprocessor (MP) System Debugging
	Setting Up a Multiprocessor Debug Session
	Debugging a Multiprocessor System

	Code Analysis Tools
	Statistical Profiles and Linear Profiles
	Simulation: Linear Profiling
	Emulation: Statistical Profiling

	Traces

	Program Execution Operations
	Selecting a New Debug Session at Startup
	Loading the Executable Program
	Program Execution Commands
	Restarting the Program
	Performing a Restart During Simulation
	Performing a Restart During Emulation

	Breakpoints
	Unconditional and Conditional Breakpoints
	Automatic Breakpoints
	Watchpoints
	Hardware Breakpoints
	Latency
	Restrictions

	Simulation Tools
	Interrupts
	Input/Output Simulation (Data Streams)

	Plots
	Plot Types
	Line Plots
	X-Y Plots
	Constellation Plots
	Eye Diagrams
	Waterfall Plots
	Spectrogram Plots

	Flash Programmer
	Stand-Alone Flash Programmer
	Flash Devices
	Flash Programmer Functions
	Flash Driver
	Flash Programmer Window

	Energy-Aware Programming
	Ranking
	Example

	A Reference Information
	Support Information
	IDDE Command-Line Parameters
	Extensive Scripting
	File Types
	Parts of the User Interface
	Title Bar
	Additional Information in Title Bars
	Title Bar Right-Click Menu

	Control Menu
	Program Icons
	Editor Windows
	Debugging Windows

	Menu Bar
	Toolbars and User Tools
	Built-In Toolbars
	Toolbar Customization
	User Tools
	Toolbar Buttons
	Toolbar Operation
	Toolbar Button Appearance
	Toolbar Shape
	Toolbars: Docked vs. Floating
	Toolbar Rules

	Status Bar

	Keyboard Shortcuts
	Working With Files
	Moving Within a File
	Cutting, Copying, Pasting, Moving Text
	Selecting Text Within a File
	Working With Bookmarks in an Editor Window
	Building Projects
	Using Keyboard Shortcuts for Program Execution
	Working With Breakpoints
	Obtaining VisualDSP++ Help
	Miscellaneous

	Window Operations
	Window Manipulation
	Right-Click Menu Options
	Scroll Bars and Resize Pull-Tab
	Windows: Docked vs. Floating
	Docked Windows
	Floating Windows

	Window Position Rules
	Standard Windows Buttons

	Text Operations
	Regular Expressions vs. Normal Searches
	Specific Special Characters
	Special Rules for Sequences
	Repetition and Combination Characters
	Match Rules

	Tagged Expressions in Replace Operations
	Comment Start and Stop Strings

	Online Documentation
	Printing Online Documentation
	Invoking Online Help
	Help Categories

	Online Help
	Help Window
	Context-Sensitive Help
	Viewing Menu, Toolbar, or Window Help
	Viewing Dialog Box Help
	Viewing Window Help

	Copying Example Code From Help
	Printing Help
	Bookmarking Frequently Used Help Topics
	Navigating in Online Help
	Searching Help
	Full-Text Searches
	Advanced Search Techniques

	Glossary

	B Simulation of SHARC Processors
	Anomaly Options
	ADSP-21x6x Processor Anomalies
	Shadow Write FIFO Anomaly (ADSP-2116x Only)
	SIMD Read from Internal Memory With Shadow Write FIFO Hit Anomaly (ADSP-2116x Only)

	Event Options
	FP Denorm
	Short Word Anomaly
	Access to ADSP-21065L Short-Word Internal Memory 9th Column at Even Addresses

	Recording a Simulator Anomaly or Event
	Select Processor ID Options
	Simulator Options
	No Boot Mode

	Load Sim Loader Options
	SPI Simulation in Slave Mode

	C Simulation of TigerSHARC Processors
	ADSP-TS101 Processors
	Simulator Timing Analysis Overview
	Pipeline Stages
	Stalls
	Stalls Due to IALU Dependency
	Stalls Due to Compute Block Dependency

	Aborts
	Aborts Due to an Unpredicted Change of Flow
	Abort Due to Mispredicted Change of Flow
	Branch Target Buffer Hits

	Pipeline Viewer and Disassembly Window Operations
	Current Program Counter Value
	Stepping

	Simulator Options

	ADSP-TS20x Processors
	Simulator Timing Analysis Overview
	Pipeline Stages
	Stalls
	Stalls Due to IALU Dependency
	Stalls Due to Compute Block Dependency
	Stalls Due to a Cache Miss

	Aborts
	Aborts Due to an Unpredicted Change of Flow
	Abort Due to Mispredicted Change of Flow
	Branch Target Buffer Hits

	Pipeline Viewer and Disassembly Window Operations
	Current Program Counter Value
	Stepping
	Simulator Options

	D Simulation of Blackfin Processors
	Peripheral Support in Simulators
	Special Considerations for Peripherals
	Universal Asynchronous Receiver/Transmitter Peripheral
	Timer (TMR) Peripheral

	Simulator Instruction Timing Analysis for ADSP-BF535 Processors
	Stall Reasons
	Kill Reasons
	Pipeline Viewer Window Examples
	Pipeline Viewer Window Messages
	Pipeline Viewer Detail View Stall Event Messages
	Kills Detected Messages
	Multicycle Instructions

	Abbreviations in Pipeline Viewer Messages

	Simulator Instruction Timing Analysis for ADSP-BF531, ADSP-BF532, ADSP-BF533, and ADSP-BF561 Processors
	Stall Reasons
	Kill Reasons
	Pipeline Viewer Window Examples

	Multicycle Instructions and Latencies
	Multicycle Instructions
	Push Multiple or Pop Multiple
	32-Bit Multiply (modulo 232)
	Call and Jump
	Conditional Branch
	Return
	Core and System Synchronization
	Linkage
	Interrupts and Emulation
	TESTSET

	Instruction Latencies
	Accumulator to Data Register Latencies
	Register Move Latencies
	Move Conditional and Move CC Latencies
	Loop Setup Latencies
	Latencies Due to Instructions Within Hardware Loops
	Instruction Alignment Unit Empty Latencies

	L1 Data Memory Stalls
	Minibank Access Collision
	Memory-Mapped Register (MMR) Access
	System Minibank Access Collision
	Store Buffer Overflow
	Store Buffer Load Collision

	Instruction Groups
	Register Groups

	Compiled Simulation
	Specifying a Session for Compiled Simulation

	I Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

