
Engineer To Engineer Note EE-149 
 

a 
 

Technical Notes on using Analog Devices' DSP components and development tools
Contact our technical support by phone: (800) ANALOG-D or e-mail: dsp.support@analog.com
Or visit our on-line resources http://www.analog.com/dsp and http://www.analog.com/dsp/EZAnswers
 

 

Tuning C Source Code for the Blackfin® Processor Compiler 
Contributed by DSP Tools Compiler Group May 26, 2003 

 

Copyright 2003, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of 
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property 
of their respective holders. Information furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however 
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices’ Engineer-to-Engineer Notes. 
 

Introduction 
This document provides some guidelines for 
obtaining the best code execution performance 
from the Blackfin® processor family’s C/C++ 
compiler using VisualDSP++™ release 2.0. 

Use the optimizer 
There is a vast difference in the performance of 
C code that has been compiled optimized and 
non-optimized. In some cases optimized code 
can run ten or twenty times faster. Optimization 
should always be attempted before measuring 
performance or shipping code as product. Note 
that the default setting is for non-optimized 
compilation, the non-optimized default being 
there to assist programmers in diagnosing 
problems with their initial coding. 

The optimizer in the Blackfin processor compiler 
is designed to generate efficiently-executing 
code from C which has been written in a 
straightforward manner. The basic strategy for 
tuning a program is to present the algorithm in a 
way that gives the optimizer excellent visibility 
of the operations and data, hence the greatest 
freedom to safely manipulate the code. Note that 
future releases will enhance the optimizer, and 
expressing algorithms simply will provide the 
best path for reaping the benefits of such 
enhancements. 

Use the Statistical Profiler 
Tuning source begins with an understanding of 
what areas of the application are the hot spots. 
Statistical profiling provided in VisualDSP++ is 
an excellent means for finding those hot spots.  

If the application is unfamiliar to you, compile it 
with diagnostics and run it unoptimized. This 
will give you results that connect directly to the 
C source. You will obtain a more accurate view 
of your application if you build a fully optimized 
application and obtain statistics that relate 
directly to the assembly code. The only problem 
may be in relating assembly lines to the original 
source. Do not strip out function names when 
linking. If you have the function names then you 
can scroll the assembly window to locate the hot 
spots. In very complicated code you can locate 
the exact source lines by counting the loops – 
unless they are unrolled. Look at the line 
numbers in the .s file. Note that the compiler 
optimizer may have moved code around. 

Data Types 
 char  8-bit signed integer 
 unsigned char  8-bit unsigned integer 
 short  16-bit signed integer 
 unsigned short  16-bit unsigned integer 
 int  32-bit signed integer 
 unsigned int  32-bit unsigned integer 
 long  32-bit signed integer 
 unsigned long  32-bit unsigned integer 

Table 1: Fixed-Point Data Types (Native Arithmetic) 
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The compiler directly supports ten scalar data 
types as shown in Table 1 and Table 2. double is 
equivalent to float on Blackfin processors, since 
64-bit values are not supported directly on the 
hardware. 
 float  32-bit floating point 
 double  32-bit floating point 

Table 2: Floating-Point Data Types (Emulated 
Arithmetic) 

Fractional data types can be represented as either 
short or int. Manipulation of these types is best 
done by using intrinsics, which will be described 
in a subsequent section. 

Avoid Float/Double Arithmetic 
Floating-point arithmetic operations are 
implemented by library routines and, 
consequently, are far slower than integer 
operations. An arithmetic floating-point 
operation inside a loop will prevent the optimizer 
from using a hardware loop. 

Avoid Integer Division in Loops 
The hardware does not provide direct support for 
32-bit integer division, so the division and 
modulus operations on int variables are multi-
cycle operations. The compiler will convert an 
integer division by a power of two to a right-shift 
operation if the value of the divisor is known. 

If the compiler has to issue a full division 
operation, it will issue a call to a library function. 
In addition to being a multi-cycle operation, this 
will prevent the optimizer from using a hardware 
loop for any loops around the division. 
Whenever possible, do not use divide or modulus 
operators inside a loop. 

Indexed Arrays versus Pointers 
C allows you to program data accesses from an 
array in two ways: either by indexing from an 
invariant base pointer or by incrementing a 

pointer. These two versions of the vector 
addition illustrate the two styles: 

void va_ind( short a[], short b[], 
             short out[], int n)  
{ 
  int i; 
  for (i = 0; i < n; ++i) 
    out[i] = a[i] + b[i]; 
} 

Listing 1: Indexed Arrays 

void va_ptr( short a[], short b[], 
             short out[], int n)  
{ 
  int i; 
  short *pout = out, *pa = a, *pb = b; 
  for (i = 0; i < n; ++i) 
    *pout++ = *pa++ + *pb++; 
} 

Listing 2: Pointers 

Common thought might indicate that the chosen 
style should not make any difference to the 
generated code, but sometimes it does. Often, 
one version of an algorithm will generate better 
optimized code than the other, but it is not 
always the same style that is better; the generated 
code is affected by the surrounding code, which 
is why there may be differences. The pointer 
style introduces additional variables that compete 
with the surrounding code for resources during 
the optimizer’s analysis. Array accesses, on the 
other hand, must be transformed to pointers by 
the compiler, and sometimes it does not do the 
job as well as you could do by hand. 

The best strategy is to start with array notation. If 
this looks unsatisfactory try using pointers. 
Outside the important loops, use the indexed 
style, because it is easier to understand. 

Use the -ipa Switch 
To ensure the best performance, the optimizer 
often needs to know things that can only be 
determined by looking outside the routine which 
it is working on. In particular, it helps to know 
the alignment and value of pointer parameters 
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and the value of loop bounds. The -ipa compiler 
switch enables inter-procedural analysis (IPA), 
which makes this information available. This 
may be switched on from the IDDE by checking 
the Interprocedural Optimization box in the Compile 
tab of the Project Options dialogue selected from 
the Project menu. 

When this switch is used the compiler may be 
called again from the link phase to recompile the 
program using additional information obtained 
during previous compilations. 

Because it only operates at link time, the 
effects of -ipa will not be seen if you 
compile with the -S switch. To see the 
assembler file put -save-temps in the 
Additional Options text box in the Compile 
tab of the Project Options dialogue and 
look at the .s file produced after your 
program has been built. 

Much of the following advice assumes that the  
-ipa switch is being used. 

Initialize Constants Statically 
Inter-procedural analysis will also identify 
variables that only have one value and replace 
them with constants, which can enable better 
optimization. For this to happen, a variable must 
have a single value throughout the program.  

#include <stdio.h> 
static int val = 3; // initialized 
                    // once 
void init() { 
} 
void func() { 
  printf("val %d",val); 
} 
int main() { 
  init(); 
  func(); 
} 

Listing 3: Optimal (IPA knows val is 3) 

If the variable is statically initialized to zero, as 
all global variables are by default, and is 
subsequently assigned to some other value at 

another point in the program, then the analysis 
sees two values and will not consider the variable 
to have a constant value. 

#include <stdio.h> 
static int val; // initialized to zero 
void init() { 
  val = 3; // re-assigned 
} 
void func() { 
  printf("val %d",val); 
} 
int main() { 
  init(); 
  func(); 
} 

Listing 4: Non-optimal (IPA cannot see that val is a 
constant) 

Word-align Your Data 
To make most efficient use of the hardware, it 
must be kept fed with data. In many algorithms, 
the balance of data accesses to computations is 
such that, to keep the hardware fully utilized, 
data must be fetched with 32-bit loads.  

Although the Blackfin architecture supports byte 
addressing, the hardware requires that references 
to memory be naturally aligned. Thus, 16-bit 
references must be at even address locations, and 
32-bit at word-aligned addresses. So, for the 
most efficient code to be generated, you should 
ensure that data are word-aligned. 

The compiler helps establish the alignment of 
array data. The stack frames are kept word-
aligned. Top-level arrays are allocated at word-
aligned addresses, regardless of their data types. 

If you write programs that only pass the address 
of the first element of an array as a parameter 
and loops that process input arrays an element at 
a time, starting at element zero, then inter-
procedural analysis should be able to establish 
that the alignment is suitable for 32-bit accesses. 

Where the inner loop processes a single row of a 
multi-dimensional array, be certain that each row 
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begins on a word boundary, possibly inserting 
dummy data to do so. 

Loop Guidelines 
Appendix A gives an overview of how the 
optimizer transforms a loop to generate highly 
efficient code. It describes the "loop unrolling" 
optimization technique. 

Do not unroll loops yourself 

Not only does loop unrolling make the program 
harder to read but it also prevents optimization. 
The compiler must be able to unroll the loop 
itself in order to use wide loads and both 
accumulators automatically. 

void va1(short a[], short b[],  
         short c[], int n) 
{ 
  int i; 
  for (i = 0; i < n; ++i) { 
    c[i] = b[i] + a[i]; 
  } 
} 

Listing 5: Optimal (compiler unrolls and uses both 
computational blocks) 

void va2(short a[], short b[],  
         short c[], int n) 
{ 
  short xa, xb, xc, ya, yb, yc; 
  int i; 
  for (i = 0; i < n; i+=2) { 
    xb = b[i]; yb = b[i+1]; 
    xa = a[i]; ya = a[i+1]; 
    xc = xa + xb; yc = ya + yb; 
    c[i] = xc; c[i+1] = yc; 
  } 
} 

Listing 6: Non-optimal (compiler leaves 16-bit loads) 

In this example, the first version of the loop runs 
almost three times faster than the second, in 
cases where inter-procedural analysis can 
determine that the initial values of a, b, and c are 
aligned on 32-bit boundaries and n is a multiple 
of two. 

Avoid loop-carried dependencies 

A loop-carried dependency is where 
computations in a given iteration of a loop 
cannot be completed without knowing the values 
calculated in earlier iterations. When a loop has 
such dependencies, the compiler cannot overlap 
loop iterations. 

Some dependencies are caused by scalar 
variables that are used before they are defined in 
a single iteration. 

for (i = 0; i < n; ++i) 
  x = a[i] - x; 

Listing 7: Non-optimal (scalar dependency) 

An optimizer can reorder iterations in the 
presence of the class of scalar dependencies 
known as reductions. These are loops that reduce 
a vector of values to a scalar value using an 
associative and commutative operator. The most 
common example is multiply and accumulate. 

for (i = 0; i < n; ++i) 
  x = x + a[i] * b[i]; 

Listing 8:Optimal (a reduction) 

In the first case, the scalar dependency is the 
subtraction operation; the variable x changes in a 
manner which will give different results if the 
iterations are performed out of order. In contrast, 
in the second case, the properties of the addition 
operator mean that the compiler can perform the 
operations in any order and still get the same 
result. 

Do not rotate loops by hand 

Loops in DSP code are often "rotated" by hand, 
attempting to do loads and stores from earlier 
and future iterations at the same time as 
computation from the current iteration. This 
technique introduces loop-carried dependencies 
that prevent the compiler from rearranging the 
code effectively. It is better to give the compiler 
a "normalized" version, and leave the rotating to 
the compiler. 
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int ss(short *a, short *b, int n) { 
  short ta, tb; 
  int sum = 0; 
  int i = 0; 
  ta = a[i]; tb = b[i]; 
  for (i = 1; i < n; i++) { 
    sum += ta + tb; 
    ta = a[i]; tb = b[i]; 
  } 
  sum += ta + tb; 
  return sum; 
} 

Listing 9: Non-optimal (rotated by hand) 

By rotating the loop, the scalar variables ta and 
tb have been added, and they have introduced 
loop-carried dependencies which prevent the 
compiler from issuing iterations in parallel. The 
optimizer is capable of doing this kind of loop 
rotation itself. 

int ss(short *a, short *b, int n) { 
  short sum = 0; 
  int i; 
  for (i = 0; i < n; i++) { 
    sum += a[i] + b[i]; 
  } 
  return sum; 
} 

Listing 10:Optimal (rotated by the compiler) 

Avoid array writes in loops 

Other dependencies can be caused by writes to 
array elements. In the following loop, the 
optimizer cannot determine whether the load 
from a reads a value defined on a previous 
iteration or one that will be overwritten in a 
subsequent iteration. 

for (i = 0; i < n; ++i) 
  a[i] = b[i] * a[c[i]]; 

Listing 11: Non-optimal (array dependency) 

for (i = 0; i < n; ++i) 
  a[i+4] = b[i] * a[i]; 

Listing 12: Optimal (induction variables) 

The optimizer can resolve access patterns where 
the addresses are expressions that vary by a fixed 
amount on each iteration. These are known as 
"induction variables". 

Avoid aliases 

void fn(short a[], short b[], int n)  
{ 
  for (i = 0; i < n; ++i) 
    a[i] = b[i]; 
} 

Listing 13: Non-optimal (potential aliasing) 

It may seem that a loop that looks like this does 
not contain any loop-carried dependencies, but a 
and b are both parameters, and, although they are 
declared with [ ], they are in fact pointers, which 
may point to the same array. When the same data 
may be reachable through two pointers, we say 
they may alias each other. 

If the -ipa switch is enabled, the compiler will be 
able to look at the call sites of fn and possibly 
determine whether they ever point to the same 
array. 

Even with the -ipa switch it is quite easy to create 
apparent aliases. The interprocedural analysis 
works by associating pointers with sets of 
variables that they may refer to at some point in 
the program. To simplify the analysis no account 
is taken of the control flow, and if the sets for 
two pointers are found to intersect then both 
pointers are assumed to point to the union of the 
two sets. 

If the function fn above were to be called in two 
places with global arrays as arguments, then for 
the following cases the inter-procedural analysis 
will have the results shown: 
Case 1: 
fn(glob1, glob2, N); Sets do not intersect: a and b 
fn(glob1, glob2, N); are not aliases (optimal) 

Case 2: 
fn(glob1, glob2, N); Sets do not intersect: a and b 
fn(glob3, glob4, N); are not aliases (optimal) 

Case 3: 



 a 

 

Tuning C Source Code for the Blackfin® Processor Compiler (EE-149) Page 6 of 10 

fn(glob1, glob2, N); Sets intersect: a and b 
fn(glob3, glob1, N); may be aliases (non-optimal) 

The third case shows that IPA considers the 
union of all calls, at once, rather than considering 
each call individually, when determining whether 
there is a risk of aliasing. If each call were 
considered individually, IPA would have to take 
flow control into account, and the number of 
permutations would make compilation time 
impracticably long. 

Do as much work as possible in the inner loop 

The optimizer focuses on the inner loops because 
this is where most programs spend the majority 
of their time. It is considered a good trade-off for 
an optimization to slow down the code before 
and after a loop if it is going to make the loop 
body run faster.  So, make sure that your 
algorithm also spends most of its time in the 
inner loop. Otherwise, it may actually be made to 
run slower by optimization. 

A useful technique is "loop switching". If you 
have nested loops where the outer loop runs 
many times and the inner loop runs a small 
number of times, it may be possible to rewrite 
the loops so that the outer loop has fewer 
iterations. 

Avoid conditional code in loops 

If a loop contains conditional code, there may be 
a large penalty incurred if the decision often has 
to branch against the compiler’s prediction. In 
some cases, the compiler will be able to convert 
if-else and ?: constructs into conditional 
moves. In other cases, it will be able to relocate 
expression evaluation outside of the loop 
entirely. However, for important loops, linear 
code should be written. 

Keep loops short 

For maximum compiler efficiency, loops should 
be as small as possible. Large loop bodies are 
usually more complex and difficult to optimize. 

Additionally, they may require that register data 
be stored in memory. This will cause a decrease 
in code density and execution performance. 

Do not place function calls in loops 

The compiler will not generate hardware loops if 
the loop contains a function call because of the 
expense of saving and restoring the context of a 
hardware loop. In addition to obvious function 
calls, such as printf(), hardware loop generation 
will also be prevented by operations such as: 
integer division and modulus, floating-point 
arithmetic, and conversion between integer and 
floating-point data. These operations may require 
implicit calls to support routines. 

Use integers for loop control variables and array 
indices 

For loop control variables and array indices, it is 
always better to use ints rather than shorts. The C 
standard states that shorts should be widened to 
integer sizes before carrying out computation, 
and then truncated back to short size afterwards.  

Frequently, the compiler is able to deal with short 
loop counters and still detect zero-overhead 
loops and pointer induction variables. However, 
it does make the compiler’s life harder and may 
occasionally result in less-optimized code. 

Loop pragmas and aiding vectorization 

void copy(short *a, short *b)  
{ 
  int i; 
  for (i=0; i<100; i++) 
    a[i] = b[i]; 
} 

Listing 14: Non-optimal (without pragma) 

If we call the function copy in Listing 14 twice, 
say copy(x, y) and, later, copy(y, z), then 
interprocedural analysis will not be able to tell 
that a never aliases b, as described above. 
Therefore, the loop contains a loop-carried 
dependence and cannot be vectorized. A solution 
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in this case is to use the vector_for pragma. 
This tells the compiler that the computation in 
one iteration of the loop is not dependent on data 
computed in the previous iteration. 

The following code uses the vector_for 

pragma to allow the loop to perform two 
iterations in parallel. 

void copy(short *a, short *b)  
{ 
  int i; 
  #pragma vector_for 
  for (i=0; i<100; i++) 
    a[i] = b[i]; 
} 

Listing 15: Optimal (with pragma) 

Note that this pragma does not force the compiler 
to vectorize the loop; the optimizer will check 
various properties of the loop and will not 
vectorize it if it believes it is unsafe or if it 
cannot deduce various properties necessary for 
the vectorization transformation. The pragma 
assures the compiler that there are no loop-
carried dependencies, but there may be other 
properties of the loop preventing vectorization. 

In cases where vectorization is impossible (for 
example, if array a were aligned on a word 
boundary, but b were not), then the information 
given in the assertion made by vector_for may 
still be put to good use in aiding other 
optimizations. 

Const Data is Constant 
By default, the compiler will assume that the data 
pointed to by a pointer to const data will not 
change. Therefore, another way to tell the 
compiler that the two arrays a and b do not 
overlap is to use the const keyword. 

The example in Listing 16 will have a similar 
effect to the vector_for pragma. In fact, the 
const implementation is better since it also 
allows the optimizer, after vectorization, to rotate 
the loop, which requires knowing that it is not 
just adjacent iterations of the loop which have no 

dependence on each other, but iterations further 
apart, too. 

void copy(short *a, const short *b)  
{ 
  int i; 
  for (i=0; i<100; i++) 
    a[i] = b[i]; 
} 

Listing 16: Usage of const keyword 

In C, it is legal, though bad programming 
practice, to use casts to allow the data pointed at 
by pointers to const data to change. This should 
be avoided since, by default, the compiler will 
generate code that assumes const data does not 
change. However, if you have a program that 
modifies const data through a pointer, you can 
generate correct code by using the compile-time 
flag -const-read-write. 

Fractional Data 
Fractional data, represented as 16-bit and 32-bit 
integers, can be manipulated in two ways. The 
recommended way, giving you the most control 
over your data, is by use of intrinsics. Let us 
consider the fractional scalar product. This may 
be written as: 

int sp(short *a, short *b)  
{ 
  int i; 
  int sum=0; 
  for (i=0; i<100; i++) { 
    sum += ((a[i]*b[i]) >> 15); 
  } 
  return sum; 
} 

Listing 17: Non-optimal (uses shifts) 

However, this presents some problems to the 
optimizer. Normally, the code generated here 
would be a multiply, followed by a shift, 
followed by an accumulation. However, the 
Blackfin processor has a fractional multiply 
accumulate instruction that performs all these 
tasks in one cycle. Moreover, it can do two of 
these instructions in parallel. 
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The compiler recognizes this idiom and 
acknowledges that, in the DSP world, the 
preference is for saturating arithmetic. The 
multiply/shift is replaced by a saturating 
fractional multiply. The transformation can be 
disabled by using the -no_int_to_fract switch in 
case saturation is not required. 

However, this was a simple case. In more 
complicated cases, where perhaps the multiply is 
further separated from the shift, the compiler 
may not detect the possibility of using a 
fractional multiply. The recommended coding 
style is to use the intrinsics. In the following 
example, add_fr1x32() and mult_fr1x32 are 
used to add and multiply fractional 32-bit data, 
respectively. 

#include <fract.h> 
fract32 sp(fract16 *a, fract16 *b) { 
  int i; 
  fract32 sum=0; 
  for (i=0; i<100; i++) { 
    sum = add_fr1x32(sum, 
    mult_fr1x32(a[i],b[i])); 
  } 
  return sum; 
} 

Listing 18: Optimal (uses intrinsics) 

The full list of fractional operations is given in 
the Blackfin processor C/C++ Compiler manual, 
together with descriptions of other intrinsics 
available. The intrinsic functions provide 
operations that generally operate on single 16- or 
32-bit values; the compiler will recognize when a 
loop can be vectorized and will generate 2x16 
operations in such circumstances. Just as it is 
better to leave loop rotation to the compiler, the 
intrinsics leave operation-pairing to the compiler 
as well. 

If Possible put Arrays into 
Different Memory Sections 
The Blackfin processor can support two memory 
operations on a single instruction line. However, 
this will only complete in one cycle if the two 
addresses are situated in different memory 

blocks; if both access the same block, then a stall 
will be incurred. Take as an example the dot 
product (as shown in the previous section). 

Because data is loaded from arrays a and b in 
every cycle, it may be useful to ensure that these 
arrays are located in different memory blocks. As 
an example, consider defining two banks in the 
MEMORY portion of the .LDF file. 

MEMORY { 
  BANK_A1 {  
   TYPE(RAM) WIDTH(8)   
   START(0xFF900000) END(0xFF900FFF) 
  } 
  BANK_A2 {  
   TYPE(RAM) WIDTH(8) 
   START(0xFF901000) END(0xFF901FFF) 
  } 
} 

Listing 19: LDF Memory Layout 

Then, configure the SECTIONS portion to tell the 
linker to place data sections in specific memory 
banks, as shown below. 

SECTIONS { 
  bank_a1 { 
    INPUT_SECTION_ALIGN(2) 
    INPUT_SECTIONS( $OBJECTS(bank_a1)) 
  } >BANK_A1 
  bank_a2 { 
    INPUT_SECTION_ALIGN(2) 
    INPUT_SECTIONS( $OBJECTS(bank_a2)) 
  } >BANK_A2 
} 

Listing 20: LDF Section Assignment 

section("bank_a1") short a[100]; 
section("bank_a2") short b[100]; 

Listing 21: Section Assignment in C sources 

In the C source code, sections are defined with 
the section("section_name") construct 
preceding a buffer declaration. 

Note that explicit placement of data in sections 
can only be done for global data. Please see the 
"VisualDSP++ 2.0 Linker & Utilities Manual for 
Blackfin processors" for further details. 
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Appendix A: How the optimizer 
works 
We will use the following fractional scalar 
product loop to show how the optimizer works. 

#include <fract.h> 
fract32 sp(fract16 *a, fract16 *b) { 
  int i; 
  fract32 sum=0; 
  for (i=0; i<100; i++) { 
    sum = add_fr1x32(sum, 
    mult_fr1x32(a[i],b[i])); 
  } 
  return sum; 
} 

Listing 22: Fractional Dot Product 

After code generation and conventional scalar 
optimizations, the compiler will have generated a 
loop that looks something like this: 

P2 = 100; 
LSETUP(.P1L3, .P1L4 – 2) LC0 = P2; 
.P1L3: 
R0 = W[P0++] (X); 
R2 = W[P1++] (X); 
A0 += R0.L * R2.L; 
.P1L4: 
R0 = A0.w; 

Listing 23: Compiler output 

The loop exit test has been moved to the bottom 
and the loop counter rewritten to count down to 
zero. The sum is being accumulated in A0. P0 
and P1 hold pointers that are initialized with the 
parameters A and B, respectively, and are 
incremented on each iteration. In order to use 32-
bit memory accesses, the optimizer unrolls the 
loop to run two iterations in parallel. Sum is now 
being accumulated in A0 and A1, which must be 
added together after the loop to produce the final 
result. In order to use word loads, the compiler 
has to know that P0 and P1 have initial values 
that are multiples of four bytes. Note also that, 
unless the compiler knows that original loop was 
executed an even number of times, a 
conditionally-executed odd iteration must be 
inserted outside the loop. 

P2 = 50; 
A1 = A0 = 0; 
LSETUP(.P1L3, .P1L4 – 4) LC0 = P2; 
.P1L3: 
R0 = [P0++]; 
R2 = [P1++]; 
A1+=R0.H*R2.H, A0+=R0.L*R2.L; 
.P1L4: 
R0 = (A0+=A1); 

Listing 24: Additional Odd Iteration 

Finally the optimizer rotates the loop, unrolling 
and overlapping iterations to obtain highest 
possible use of functional units. The following 
code is finally generated: 

A1=A0=0 || R0 = [P0++] || NOP; 
R2 = [I1++]; 
P2 = 49; 
LSETUP(.P1L3,.P1L4-8) LC0 = P2; 
.P1L3: 
A1+=R0.H*R2.H, A0+=R0.L*R2.L || R0 = 
[P0++] || R2 = [I1++]; 
.P1L4: 
A1+=R0.H*R2.H, A0+=R0.L*R2.L; 
R0 = (A0+=A1); 

Listing 25: Optimizer output 

Appendix B: Compiler switches 
The optimization switches supported by the 
compiler are: 

-O  optimize for speed 
-Os optimize for size 

-Ox assume values in shorts remain in 
16-bit range 

-Ofp change frame pointer offsets to 
enable use of shorter instructions 

-ipa do inter-procedural optimization 
Table 3: Optimizer-related command-line switches 

More details of these switches can be found in 
the .VisualDSP++ 2.0 C/C++ Compiler and 
Library Manual for Blackfin processors.. 
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