
Engineer To Engineer Note EE-197

a

Technical Notes on using Analog Devices' DSP components and development tools
Contact our technical support by phone: (800) ANALOG-D or e-mail: dsp.support@analog.com
Or visit our on-line resources http://www.analog.com/dsp and http://www.analog.com/dsp/EZAnswers

ADSP-BF531/532/533 Blackfin® Processor Multi-cycle Instructions and
Latencies
Contributed by Tom L. September 24, 2003

Copyright 2003, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property

Introduction
This document contains a description of the multicycle instructions and latencies specific to the ADSP-
BF531/532/533 Blackfin® Processor devices. Multicycle instructions take more than one cycle to
complete. The specific cycle count cannot be reduced without removing the instruction that caused it. A
latency condition can occur when two instructions require extra cycles to complete because they are close
to each other in the assembly program. The programmer can avoid this cycle penalty by separating the
two instructions. Other causes for latencies are memory stalls and store buffer hazards; for these
conditions, a discussion of how to improve performance is provided.

L The Pipeline Viewer within the VisualDSP++™ simulator provides a way of looking at the
way instructions are pushed through the processor’s pipeline. While the causes for various
conditions like stalls can be discovered interactively, this document contains more detail about
the nature of execution latencies.

L All of the cycle counts described in this document are based on the assumption that code is
executed from L1 memory.

Multicycle Instructions
This section describes the instructions that take more than one cycle to complete. All instructions not
mentioned in this discussion are single-cycle instructions, provided they are executed from L1 memory.

Multicycle instructions include the following categories: Push Multiple/Pop Multiple, 32-bit Multiply,
Call, Jump, Conditional Branch, Returns from Events, Core and System Synchronization, Linkage,
Interrupts and Emulation, and Testset. In the following examples, the total number of cycles needed to
complete a certain instruction is shown next to the corresponding instruction. The full descriptions of
each instruction’s functionality is provided in the Blackfin Processor Instruction Set Reference.

Push Multiple/Pop Multiple
The Push Multiple and Pop Multiple instructions take n core cycles to complete, where n is the number of
registers pushed or popped, assuming the stack is located in L1 data memory.

of their respective holders. Information furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices’ Engineer-to-Engineer Notes.

a
Example Number of Cycles

[--SP] = (R7:0, P5:0); 14 cycles

(R7:0, P5:3) = [SP++]; 11 cycles

32-bit Multiply (modulo 232)
The 32-bit by 32-bit integer multiply instruction always takes 3 cycles to complete.

Example Number of Cycles

R0 *= R1; 3 cycles

Call, Jump
All call and jump instructions take 5 cycles to complete, provided the target address is an aligned location
(see Instruction Alignment Unit Empty Latencies later in this document).

Example Number of Cycles

CALL 0x22; 5 cycles

CALL (PC + P0); 5 cycles

CALL (P0); 5 cycles

JUMP 0x22; 5 cycles

JUMP (PC + P0); 5 cycles

JUMP(P0); 5 cycles

Conditional Branch
The number of cycles a branch takes depends on the prediction as well as the actual outcome.

Prediction Taken Not taken

Outcome Taken Not taken Taken Not taken

Number of Cycles 5 cycles 9 cycles 9 cycles 1 cycle

Returns from Events
Examples Number of Cycles

RTX; // return from an exception 5 cycles

RTE; // return from emulation 5 cycles

RTN; // return from an NMI 5 cycles

ADSP-BF531/532/533 Blackfin® Processor Multi-cycle Instructions and Latencies (EE-197) Page 2 of 12

a
RTI; // return from an interrupt 5 cycles

RTS; // return from a subroutine 5 cycles

Core and System Synchronization
Examples Number of Cycles

CSYNC; 10 cycles

SSYNC; >10 cycles

Linkage
Examples Number of Cycles

LINK 4; 3 cycles

UNLINK; 2 cycles

Interrupts and Emulation
Examples Number of Cycles

RAISE 10; 3 cycles (if interrupt branch is not taken)

EXCPT 3; 3 cycles (if exception branch is not taken)

STI R4; 3 cycles

Testset
The TESTSET instruction is a multicycle instruction that executes in a variable number of cycles. It is
dependent on the cycles needed for a read acknowledge from off-core memory. It is also dependent on
whether the address being tested is both in the cache and dirty. The number of cycles can be determined as
follows,

cycles = 1 (instruction) + 1 (stall) + x (read acknowledge) + y (cache latency)

Instruction Latencies
Unlike multicycle instructions, instruction latencies are contingent on the placement of specific instruction
pairs relative to one another. They can be avoided by separating them by as many instructions as there are
cycles incurred between them. For example, if a pair of instructions incurs a two cycle latency, separating
them by two instructions will eliminate that latency.

Bold blue type is used to identify register dependencies within the instruction pairs. A dependency
occurs if a register is accessed in the instruction immediately following an instruction that modifies the
register. The lack of the color blue in a entry indicates that the latency condition will occur regardless of
what registers are used. Italicized red type is used to highlight the stall consequences.

ADSP-BF531/532/533 Blackfin® Processor Multi-cycle Instructions and Latencies (EE-197) Page 3 of 12

a
Instruction latencies are separated into these groups: Accumulator to Data Register Latencies, Register
Move Latencies, Move Conditional and Move CC Latencies, Loop Setup Latencies, Hardware Loop
Latencies, Instruction Alignment Unit Latencies, and Miscellaneous Latencies. The total cycle time of
each entry can be calculated by adding the cycles taken by each instruction to the number of stall cycles
for the instruction pair.

L Refer to the Appendix for abbreviations, instruction group descriptions, as well as register
groupings.

Accumulator to Data Register Latencies
Description Example <Cycles + Stalls>

- dreg = Areg2Dreg op

- video op using dreg as src

R1 = R6.L * R4.H (IS);

R5 = BYTEOP1P (R3:2, R1:0);

<1>

<1+1>

Register Move Latencies
In each of the following cases, the stall condition occurs when the same register is used in both
instructions.

Description Example <Cycles + Stalls>

- dreg = sysreg

- multiply/video op with dreg as src

R0 = LC0;

R2.H = R1.L * R0.H;

<1>

<1+1>

- preg = dreg

- any op using preg

P0 = R3;

R0 = P0;

<1>

<1+4>

- dagreg = dreg

- any op using dagreg

I3 = R3;

R0 = I3;

<1>

<1+4>

- POP to dagreg

- any op using dagreg

I3 = [SP++];

R0 = I3;

<1>

<1+3>

- LOAD/POP to preg

- any op using preg

P3 = [SP++];

R0 = P3;

<1>

<1+3>

- dreg = seqreg

- any ALU op using dreg

R0 = RETS;

R1 = R0 + R3;

<1>

<1+1>

- dreg = MMR register

- any ALU op using dreg

R3 = [P0]; // P0 points to an MMR

R0 = R3 – R0;

<1>

<1+1>

Move Conditional and Move CC Latencies
In each of the following cases, the stall condition occurs when the same register is used in both
instructions.

ADSP-BF531/532/533 Blackfin® Processor Multi-cycle Instructions and Latencies (EE-197) Page 4 of 12

a

Description Example <Cycles + Stalls>

- if CC dreg = dreg

- multiply/video op using dreg as src

if CC R0 = R1;

R2.H = R1.L * R0.H;

--

if CC R1 = R3;

SAA (R3:2, R1:0);

<1>

<1+1>

--

<1>

<1+1>

- if CC preg = dpreg

- any op using preg

if CC P0 = R1;

R4 = P0;

<1>

<1+4>

Loop Setup Latencies
There following are latencies specific to the configuration of the zero-overhead looping mechanism.

Description Example <Cycles + Stalls>

- loop setup

- loop setup with same LC

LSETUP (top1, bottom1) LC0 = P0;

LSETUP (top2, bottom2) LC0 = P1;

<1>

<1+6> (3 additional cycles are
required for the case “LSETUP is
not followed by the first
instruction of the loop” – see
below)

- modification of LT or LB

- loop setup with same loop registers

LT0 = [SP++];

LSETUP (top, bottom) LC0 = P0;

<1>

<1+2>

(if LC0 > 1)

- LC0/LC1 reg written to

- any op

LC0 = R0;

NOP;

<1>

<1+9>

- LT0/LB0 written to and LC0 != 0

- any op

LT0 = [SP++];

NOP;

<1>

<1+9>

- LT1/LB1 written to and LC1 != 0

- any op

LB1 = P0;

NOP;

<1>

<1+9>

Hardware Loop Latencies

Instruction Number of Stalls
LSETUP is not followed by the first instruction of the loop <3> starting at the second

iteration

ADSP-BF531/532/533 Blackfin® Processor Multi-cycle Instructions and Latencies (EE-197) Page 5 of 12

a
Instruction Alignment Unit Empty Latencies

If the instruction alignment unit (IAU) is empty of the next instruction, that next instruction will incur a
stall while the IAU is being filled. The following conditions will result in an IAU empty stall.

Event Number of Stalls

instruction cache miss or SRAM fetch miss <1>

change of flow to an instruction address aligned across a 64-bit
boundary

<1>

In the example below, a branch to instruction B at address 0xFFA0 0104 would result in a one cycle stall,
because this 64-bit instruction requires two fetches by the instruction alignment unit.

Address Data Fetched by the IAU

0xFFA0 0100 A (32-bit instruction) B (64-bit instruction)

0xFFA0 0108 B (64-bit instruction, continued) C (32-bit instruction)

0xFFA0 0110 D (32-bit instruction) E (32-bit instruction)

In order to eliminate this stall, instruction B should be moved to a 64-bit aligned location (like 0xFFA0
0110, shown below).

Address Data Fetched by the IAU

0xFFA0 0100 A (32-bit instruction) MNOP

0xFFA0 0108 B (64-bit instruction)

0xFFA0 0110 C (32-bit instruction) D (32-bit instruction)

Miscellaneous Latencies
The following latencies do not fall into any of the above categories.

Description Example <Cycles + Stalls>

- move register or POP to I0 or I1

- SAA,BYTEOP2P,BYTEOP3P

I1 = [SP++];

R0 = BYTEOP3P (R1:0, R1:0)
(HI);

<1>

<1+3>

- move register or POP to I0 or I1

- BYTEOP1P/16P/16M, BYTEUNPACK

I0 = R0;

R3 = BYTEOP1P (R3:2, R1:0);

<1>

<1+4>

- write to return register RETI = P0; <1>

ADSP-BF531/532/533 Blackfin® Processor Multi-cycle Instructions and Latencies (EE-197) Page 6 of 12

a
- return op RTI;

--

RETS = P3;

RTS;

<1+4> (number of cycles for the branch
is not included)

--

<1>

<1+4> (number of cycles for the branch
is not included)

- math op

- video op with RAW data dependency

R3 = R2 + R4;

SAA (R3:2, R1:0);

<1>

<1+1>

- dreg = search

- math op using dreg

 (R3, R0) = search R1 (LE);

R2.H = R1.L * R0.H;

<1>

<1+2>

- core and system MMR access R0 = [P0]; // P0 = MMR address <1+2> (for system MMR accesses, the
latency due to the system acknowledge
signaling will increase the total cycle
count)

- L0/B0 = dreg

- I0 modulo update (similarly for the
corresponding L1/B0 and I1 registers)

L0 = R0;

R1 = [I0++];

--

B1 = R2;

I1 += 4;

--

L1 = R3;

R4 = [I1++M2];

--

B0 = R5;

I0 += M2;

<1>

<1+4>

--

<1>

<1+4>

--

<1>

<1+4>

--

<1>

<1+4>

L1 Data Memory Stalls
L1 data memory (DM) stalls can be incurred by accessing L1 data memory. Accesses can either be
explicit (if the data memory is configured as SRAM) or implicit (if the data memory is configured as
cache). Some of these stalls are multicycle instruction conditions, and some are latency conditions. The
specifics are described in each entry.

Bold blue type is used to highlight the causal factors in offending instructions. Italicized red type is used
to highlight the stall consequences.

ADSP-BF531/532/533 Blackfin® Processor Multi-cycle Instructions and Latencies (EE-197) Page 7 of 12

a

Sub-bank Access Collision

SRAM Access (1 cycle stall)
This stall can only occur when an instruction accesses memory configured as SRAM. A major difference
between the devices in the ADSP-BF531/2/3 class is memory size and configuration. The ADSP-BF531
Blackfin Processor has one data bank (data bank A), which is divided into four contiguous 4096 byte (4
KB) sub-banks. The ADSP-BF532 Blackfin Processor has two data banks (data bank A and data bank B),
each of which is divided into four contiguous 4096 byte (4 KB) sub-banks. The ADSP-BF533 Blackfin
Processor has two data banks (data bank A and data bank B), each of which is divided into eight
contiguous 4096 byte (4 KB) sub-banks. The following table shows the memory ranges for each of the
sub-banks.

Data Memory Sub-Bank Address Range

data bank A, sub-bank 0 (ADSP-BF533) 0xFF80 0000 - 0xFF80 0FFF

data bank A, sub-bank 1 (ADSP-BF533) 0xFF80 1000 - 0xFF80 1FFF

data bank A, sub-bank 2 (ADSP-BF533) 0xFF80 2000 - 0xFF80 2FFF

data bank A, sub-bank 3 (ADSP-BF533) 0xFF80 3000 - 0xFF80 3FFF

data bank A, sub-bank 4 (ADSP-BF531/2/3) 0xFF80 4000 - 0xFF80 4FFF

data bank A, sub-bank 5 (ADSP-BF531/2/3) 0xFF80 5000 - 0xFF80 5FFF

data bank A, sub-bank 6 (ADSP-BF531/2/3) 0xFF80 6000 - 0xFF80 6FFF

data bank A, sub-bank 7 (ADSP-BF531/2/3) 0xFF80 7000 - 0xFF80 7FFF

data bank B, sub-bank 0 (ADSP-BF533) 0xFF90 0000 - 0xFF90 0FFF

data bank B, sub bank 1 (ADSP-BF533) 0xFF90 1000 - 0xFF90 1FFF

data bank B, sub-bank 2 (ADSP-BF533) 0xFF90 2000 - 0xFF90 2FFF

data bank B, sub-bank 3 (ADSP-BF533) 0xFF90 3000 - 0xFF90 3FFF

data bank B, sub-bank 4 (ADSP-BF532/3) 0xFF90 4000 - 0xFF90 4FFF

data bank B, sub bank 5 (ADSP-BF532/3) 0xFF90 5000 - 0xFF90 5FFF

data bank B, sub-bank 6 (ADSP-BF532/3) 0xFF90 6000 - 0xFF90 6FFF

data bank B, sub-bank 7 (ADSP-BF532/3) 0xFF90 7000 - 0xFF90 7FFF

A one cycle stall is incurred during a collision of simultaneous accesses only if the accesses are to the
same 32-bit word polarity (address bits 2 match), the same 4 KB sub-bank (address bits 13 and 12 match),
the same 16 KB half-bank (address bits 16 match), and the same bank (address bits 21 and 20 match).

Example <Cycles + Stalls>

R1 = R4.L * R5.H (IS) || R3 = [I0++] || R4 = [I1++];

(I0 is address 0xFF80 1004, I1 is address 0xFF80 1244)

<1+1>

(stall is due to a collision in the data bank A, sub-bank 1)

ADSP-BF531/532/533 Blackfin® Processor Multi-cycle Instructions and Latencies (EE-197) Page 8 of 12

a
When an address collision occurs, the DAGs get top priority, followed by the store buffer, and finally by
the DMA and cache fill/victim accesses.

L If the DMA transfer has been blocked for more than 16 sequential core clock cycles, then this
DMA transfer will be given top priority to ensure a level of DMA bandwidth.

Cache Access
This stall can only occur when one or both banks are configured as cache. A one cycle stall is incurred
during a collision of simultaneous accesses only if the accesses are to same 4 KB sub-bank (address bits
13 and 12 match), the same 16 KB half-bank (address bits 16 match), and the same bank (address bits 21
and 20 match).

Cache Access When One Data Bank is Configured as Cache (1 cycle stall)
When only one data bank is configured as cache, data memory accesses will always be cached to the same
data bank. Therefore, it is necessary only to determine the cache sub-bank.

The ADSP-BF532/3 Blackfin Processor devices have four 4 KB cache sub-banks within each data bank
(data bank A and data bank B). The ADSP-BF531 Blackfin Processor devices have four 4 KB cache sub-
banks within data bank A (data bank B is not available). Because only one data bank is configured as
cache, address bits 16, 20, and 21 will match. Therefore, bits 13 and 12 of the data address determine
which sub-bank the data will be cached into. In the following example, data bank A is configured as
cache:

Data Address[13:12] Sub-bank Selected (data bank A is Cache)

00 sub-bank 4 (0xFF80 4000 - 0xFF80 4FFF)

01 sub-bank 5 (0xFF80 5000 - 0xFF80 5FFF)

10 sub-bank 6 (0xFF80 6000 - 0xFF80 6FFF)

11 sub-bank 7 (0xFF80 7000 - 0xFF80 7FFF)

If the addresses in a dual memory access (multi-issue) instruction cache to the same sub-bank, a 1 cycle
stall will be incurred.

Example <Cycles + Stalls>

(I0 is address 0x2000 2348, I1 is address 0x2000 2994)

R1 = R4.L * R5.H (IS) || R2 = [I0++] || R3 = [I1++];

<1+1>

(stall is due to a collision in sub-bank 6)

Cache Access When Both Data Banks are Configured as Cache (1 cycle stall)
This configuration is possible only on the ADSP-BF532/3 Blackfin Processor devices, since the ADSP-
BF531 Blackfin Processor devices do not have data bank B memory. If both data banks are cacheable,

ADSP-BF531/532/533 Blackfin® Processor Multi-cycle Instructions and Latencies (EE-197) Page 9 of 12

a
one must also determine which data bank the accesses are cached to (in addition to sub-bank) to determine
if there is a stall. This data bank selection depends on the value of the DCBS bit of the
DMEM_CONTROL MMR. If DCBS is 1, address bit 23 is used as data bank select. If DCBS is 0,
address bit 14 is used as data bank select. The example in the following table assumes DCBS is 0:

Addr[14:12] Sub-bank Selected

000 bank A, sub-bank 4 (0xFF80 4000 - 0xFF80 4FFF)

001 bank A, sub-bank 5 (0xFF80 5000 - 0xFF80 5FFF)

010 bank A, sub-bank 6 (0xFF80 6000 - 0xFF80 6FFF)

011 bank A, sub-bank 7 (0xFF80 7000 - 0xFF80 7FFF)

100 bank B, sub-bank 4 (0xFF90 4000 - 0xFF90 4FFF)

101 bank B, sub-bank 5 (0xFF90 5000 - 0xFF90 5FFF)

110 bank B, sub-bank 6 (0xFF90 6000 - 0xFF90 6FFF)

111 bank B, sub-bank 7 (0xFF90 7000 - 0xFF90 7FFF)

If the addresses in a dual memory access (multi-issue) instruction cache to the same data bank and sub-
bank, a 1 cycle stall will be incurred.

Example <Cycles + Stalls>

(I0 is address 0x2000 2348, I1 is address 0x2000 2994)

R1 = R4.L * R5.H (IS) || R2 = [I0++] || R3 = [I1++];

<1+1>

(stall is due to a collision in data bank A, sub-bank 6)

Store Buffer Load Collision

This section describes cases where a load access collides with a pending store access in the store buffer.
This happens when the load and store are to the same address.

Store Data Not Ready
The data portion of a store does not necessarily have to be ready when it is entered into the store buffer.
Store data are delayed by three cycles.

Example < Cycles, Stalls>

W[P0] = R0;

R1 = W[P0];

<1 cycle>

<3 stalls>

<1 cycle>

[P0] = P3; <1 cycle>

ADSP-BF531/532/533 Blackfin® Processor Multi-cycle Instructions and Latencies (EE-197) Page 10 of 12

a

R1 = [P0];

<3 stalls>

<1 cycle>

Appendix
This appendix is a reference for abbreviations and mnemonics used in the main document. It consists of a
glossary, instruction group descriptions, and register group descriptions.

Glossary

MMR = memory-mapped register

RAW = read-after-write hazard

src = source

Instruction Groups

All instruction group members conform to naming conventions used in the Blackfin Processor Instruction
Set Reference. Descriptions of the instructions can be found in the chapters indicated with parentheses.
Note that instruction groups described are not necessarily mutually exclusive; that is, the same instruction
can belong to multiple groups.

math ops

video ops mult ops ALU ops

Video Pixel Operations (13) Vector Multiply (14.12) Logical Operations (7)

 32-bit Multiply (10.10) Bit Operations (8)

 Vector MAC (14.3-5) Shift/Rotate Operations (9)

 Arithmetic Operations except Multiply (10 except
10.10)

 Vector Operations except Multiply/MAC (14 except
14.3-14.5, 14.12)

areg2dreg ops

MAC to Half-Register (14.4)

MAC to Data Register (14.5)

Vector Multiply (14.12)

Round – 12 bit (10.13)

Round – 20 bit (10.14)
Add on Sign (14.1)

Modify - Increment, only this case:
[dreg|dreg_hi|dreg_lo] = (A0 += A1); (10.9)

ADSP-BF531/532/533 Blackfin® Processor Multi-cycle Instructions and Latencies (EE-197) Page 11 of 12

a

Register Groups

allreg (all registers)

dreg preg sysreg (astat and seqreg) dagreg statbits accreg

R0 P0 astat seqreg I0 ASTAT [0]: AZ A0

R1 P1 ASTAT LC0 I1 ASTAT [1]: AN A0.x

R2 P2 LT0 I2 ASTAT [2]: AC A0.w

R3 P3 LB0 I3 ASTAT [3]: AV0 A1

R4 P4 LC1 M0 ASTAT [4]: AV1 A1.x

R5 P5 LT1 M1 ASTAT [5]: CC A1.w

R6 FP LB1 M2 ASTAT [6]: AQ

R7 SP CYCLES M3

 CYCLES2 L0

 SEQSTAT L1

 SYSCFG L2

 RETS L3

 RETX B0

 RETI B1

 RETN B2

 RETE B3

Document History

Version Description

September 24, 2003 by Tom L. Initial release

ADSP-BF531/532/533 Blackfin® Processor Multi-cycle Instructions and Latencies (EE-197) Page 12 of 12

	Introduction
	Multicycle Instructions
	Push Multiple/Pop Multiple
	32-bit Multiply (modulo 232)
	Call, Jump
	Number of Cycles

	Conditional Branch
	Returns from Events
	Core and System Synchronization
	Linkage
	Interrupts and Emulation
	Testset

	Instruction Latencies
	Accumulator to Data Register Latencies
	Register Move Latencies
	Move Conditional and Move CC Latencies
	Loop Setup Latencies
	Hardware Loop Latencies
	Instruction Alignment Unit Empty Latencies
	Miscellaneous Latencies

	L1 Data Memory Stalls
	Sub-bank Access Collision
	SRAM Access (1 cycle stall)
	Cache Access
	Cache Access When One Data Bank is Configured as Cache (1 cy
	Cache Access When Both Data Banks are Configured as Cache (1

	Store Buffer Load Collision
	Store Data Not Ready

	Appendix
	Glossary
	Instruction Groups
	Register Groups

	Document History

