
Engineer-to-Engineer Note EE-276

a

Technical notes on using Analog Devices DSPs, processors and development tools
Contact our technical support at processor.support@analog.com and dsptools.support@analog.com
Or visit our on-line resources http://www.analog.com/ee-notes and http://www.analog.com/processors

Video Framework Considerations for Image Processing on Blackfin®
Processors
Contributed by Kunal Singh and Ramesh Babu Rev 1 – September 8, 2005

Copyright 2005, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of
their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
In any system, memory partitioning and data
flow management are crucial elements for a
successful multimedia framework design.
Blackfin® processors have a hierarchal memory
and non-intrusive DMA with the Parallel
Peripheral Port interface. When used in your
application, they can provide very high system
efficiency.

This EE-Note discusses the following topics that
should be considered for obtaining maximum
performance on ADSP-BF533 and ADSP-BF561
Blackfin family processors in video processing
applications:

 Memory considerations

 Internal memory space

 SDRAM memory space

 Managing external data accesses

 DMA modes for PPI capture and display

 Working with ITU-R-656 input modes

 Outputting ITU-R-656 video frames

 DMA prioritization and traffic control
register

Memory Considerations
The Blackfin processor architecture supports a
hierarchical memory that allows the programmer
to access faster, smaller memories for code that
runs the most often and larger memory for data

buffers associated with video applications. The
Blackfin processor's memory has a unified
address range, which includes the internal L1
memory, (in case of the ADSP-BF561 processor
also L2 memory) SDRAM memory, and
asynchronous memory spaces.

Internal Memory Space

The L1 memory operates at core clock frequency
and hence, has lowest latency compared to the
other memory spaces. Blackfin processors have
separate Data and Instruction L1 memory.

Figure 1. Un-Optimized L1 Memory Allocation

The L1 data SRAM is constructed from single-
ported subsections, each subsection consisting of
4 Kbytes of memory. This organization results in
multi-ported behavior when there are
simultaneous access to different sub-banks or

Buffer 0

- - - - - - - - - - - - - - - -

Buffer 1
Buffer 2

- - - - - - - - - - - - - - - -

Coefficients

Core
Fetch

DMA
Access

 a

Video Framework Considerations for Image Processing on Blackfin® Processors (EE-276) Page 2 of 6

accessing one even and one odd 32-bit word
within the same 4K sub-bank.

Figure 2. Optimized L1 Memory Allocation

Figure 1 shows the un-optimized allocation of
memory for different buffers. Each block in the
figure represents a 4 Kbyte sub-bank in internal
data memory. Here the internal data buses are not
used effectively, since the processor cannot fetch
the two data words simultaneously.

Figure 2 shows the optimized memory allocation
across internal 4 Kbyte data memory banks. This
memory allocation allows simultaneous dual
DAG and a DMA access, and hence, maximum
throughput over data buses.

In video encoding and decoding applications,
optimized memory allocation reduces the latency
involved in accessing L1 data memory due to
simultaneous access from core and DMA
controller

SDRAM Memory Space

The SDRAM Controller (SDC) enables the
processor to transfer data to and from
Synchronous DRAM (SDRAM). The SDRAM
controller supports a connection to four internal
banks within the SDRAM. In end applications,
by mapping the data buffers appropriately in
different internal sub-banks, the latency involved
in accessing data by core/DMA can be

minimized. The SDC can keep track of one row
per bank (with up to four internal SDRAM
banks) at a time, hence it can switch between
four internal SDRAM banks without any stalls.

Figure 3. Un-Optimized SDRAM Memory Allocation

In image processing applications, the video
frame is bought into the memory using a PPI
DMA. Because of the image size (i.e., VGA, D-1
NTSC, D-1 PAL, 4CIF, 16CIF, etc.), each frame
of the image must be captured in SDRAM
memory using a PPI DMA channel. The
algorithm can read the pixels block by block
from SDRAM and process each block as it is
brought in. The PPI captures the next frame into
another buffer while core is processing the
previous buffer. Since both core and DMAs are
accessing the SDRAM memory simultaneously,
it is necessary to map the code, video frame, and
other buffers appropriately to minimize the
latency involved in accessing SDRAM memory.

Figure 3 shows the un-optimized memory
allocation in SDRAM internal sub-banks. In
Figure 3, both the code and video frame buffer
are mapped to SDRAM internal Bank 0. This
allocation method causes more latency because
SDRAM row activation cycles occur at almost
every cycle. This is due to alternating core
accesses (fetching the instructions) and DMA
accesses to different pages within the same

Code

Video Frame 0

Instruction

DMA

DMA

External

Bus

Unused

Video Frame 1

Ref Frame

Unused

Buffer 0

Buffer 1

Core
Fetch

DMA
Access

Buffer 2

Coefficients
Core
Fetch

 a

Video Framework Considerations for Image Processing on Blackfin® Processors (EE-276) Page 3 of 6

SDRAM internal bank. The latency may cause a
PPI FIFO overflow error (in the case of image
capture) or underflow (in the case of image
display). In order to increase throughput of
external memory accesses, it is necessary to
allocate video/reference buffers such that only
one DMA accesses an SDRAM bank at any
given time.

Figure 4. Optimized SDRAM Memory Allocation

Figure 4 shows the optimized memory allocation
within SDRAM internal banks. In this memory
allocation example, at any time, either the core or
the DMA controller is accessing the particular
internal bank of SDRAM memory. Hence, the
latency is minimized, since row activation cycles
are spread across hundreds of SDRAM accesses.

Managing External Data Accesses

Accessing the external memory is performed
more efficiently when the transfer is made in the
same direction. While accessing the SDRAM
memory, performing group transfers in a single
direction (avoiding frequent direction turn-
arounds) can reduce the latency involved in the
data transfer. Frequent turnarounds on the DMA
controller can increase the latency due to a write
followed by a read access.

DMA Modes for PPI Capture and
Display
The Blackfin DMA controller can transfer data
between its memory space and peripherals
efficiently. The designer can choose appropriate
DMA modes (for example: stop mode, auto
buffer, or descriptor-based DMA) to transfer the
data. Also, the programmer can choose the DMA
priority for a particular peripheral by using
appropriate DMA channel.

The Blackfin processor's PPI port supports the
industry-standard ITU-R-656 mode and general-
purpose I/O mode with various internal and
external frame sync options. Images can be
seamlessly captured or displayed using the PPI
along with the appropriate DMA mode. The
programmer has to choose the appropriate DMA
mode such that images can be processed in real
time without loosing a frame.

In image encoding applications, the PPI can be
programmed in descriptor chaining mode to
capture images in two or more buffers. The core
can process one buffer while DMA is filling the
other buffer. You must ensure that the core and
the DMA controller do not access the same
SDRAM bank, as discussed in SDRAM Memory
Space section.

Figure 5. PPI DMA and Core Accesses Without Any
Conflict in Accessing SDRAM Internal Sub-banks

In image encoding and decoding applications, the
number of million cycles per cycles (MIPS)

DMA

DMA

Code

Instruction

Video Frame 1

Video Frame 0

Ref Frame

External

Bus

Video Frame 1

Ref Frame

Video Frame 0

Code

Video Frame 1

Ref Frame

Video Frame 0

Code

Core
Access DMA

Access

Core
Access

DMA
Access

 a

Video Framework Considerations for Image Processing on Blackfin® Processors (EE-276) Page 4 of 6

consumed by the processor is not constant. The
MIPS consumed varies from the compression
ratio, captured image, and so on. In image
decoding applications, if the decoded frame to be
displayed is not yet ready, the PPI can transmit
the recently decoded frame again. In order to
achieve this functionality, the PPI can be
programmed in stop mode DMA. This mode has
more control over the data that needs to display
as output.

In stop mode DMA, an interrupt is generated
after each work unit and the DMA channel is in a
paused state.

Hence, if the next frame to be displayed is not
yet ready, the same frame can be re-transmitted.
This can be achieved inside the PPI DMA
interrupt subroutine.

Working with ITU-R-656 Input Modes

The PPI supports three input modes for ITU-R-
656-framed data.

 Entire field mode

 Active field only

 Vertical blanking only

In video encoding applications, the video frame
can be captured in active field only mode, so that
only Field 1 and Field 2 are captured. Since the
ITU-R-656 has interlaced video format, video
algorithms may require the video data to be in
de-interlaced format. Using Memory DMA, the
programmer can de-interlace the video frame.

Figure 6. Typical ITU-R-656 Video Frame Partitioning

In order to minimize processor overhead to de-
interlace the frame, the PPI can capture the video
frame by skipping one line after each active line
(as depicted in Figure 7). Then memory DMA
can de-interlace the Field 2 into the Field 1 by
filling the blank lines.

Figure 7. 2-D DMA Capture Alternating Lines

Figure 8. De-Interlacing Using Memory DMA

Figure 8 illustrates de-interlacing using memory
DMA. The data in Field 2 must be de-interlaced
with data in Field 1. Hence, the skipped line is
replaced with the data in Field 2. Here, the
MDMA source address should contain the
address of the first line of Field 2, and the
MDMA destination address should contain the

Active Video Line

Skipped Line

PPI captures
by skipping
 one line

Field 1

Field 2

Skipped Line

Field 2

Field 1

Active Video Line

 a

Video Framework Considerations for Image Processing on Blackfin® Processors (EE-276) Page 5 of 6

first skipped line. Both the source and destination
MDMAx_Y_MODIFY should be configured for count
to skip one line.

Outputting ITU-R-656 Video Frames

The PPI does not explicitly provide functionality
for framing an ITU-R-656 output stream with
proper preambles and blanking intervals.
However, this is achieved by first creating a
complete frame in the memory and then
transmitting the same via the PPI in zero frame
sync mode. The video data, blanking data, and
control code can be set up in memory prior to
sending out the video stream. The horizontal and
vertical blanking information can be set up in
memory (one time) and then only the active
fields can be updated on a frame-by-frame basis.

Figure 9. Blanking and Active Video in Memory

DMA Prioritization and Traffic
Control Registers
In Blackfin processors, all peripherals are DMA
capable. By default, each peripheral is linked to a
particular DMA channel. Each DMA channel has
its own priority to access the memory. DMA
channels with the lowest number have the

highest priority. Programmers can assign a
particular DMA channel to a peripheral and
hence can change the priority of peripheral
DMA.

By default, the PPI uses higher priority channels,
compared to other peripherals. If an application
has more than one DMA running in parallel, the
peripherals with high data rates or low latency
requirements can be assigned to lower numbered
(higher priority) channels via the
DMA_PERIPHERAL_MAP registers.

Using DMA Traffic Control registers, the
programmer can influence the direction of data
movement in internal DMA buses (DAB, DCB,
and DEB). Traffic control provides a way to
influence how often the transfer direction on the
data buses may change, by automatically
grouping same-direction transfers together.

The DAB, DCB, and DEB buses provide a
means for DMA-capable peripherals to gain
access to on-chip and off-chip memory with little
or no degradation in core bandwidth to memory.

The DMA controller uses the DAB bus to access
the DMA-capable peripherals. The DCB bus is
used to access internal memory. Similarly, the
DEB bus used to access external memory
through the EBIU.

Figure 10. DMA Traffic Control Register

By using the traffic control register, the
programmer can influence the direction of each

One-time initialization of horizontal,
vertical, and control codes in
memory

Active field data updated for each
frame

 a

Video Framework Considerations for Image Processing on Blackfin® Processors (EE-276) Page 6 of 6

DMA bus independently, by grouping same
direction transfers together.

Figure 10 shows the fields in the DMA_TC_PER
register. For example, consider an application in
which both the Memory DMA and PPI DMA are
active and a traffic control register is used. If
both the PPI DMA and Memory DMA request
the DEB bus (with memory DMA going “with
the traffic” and the PPI DMA going “against the
traffic”), the memory DMA is granted the DEB
bus even though PPI DMA has higher priority.
Since the PPI DMA is “against the traffic” of the
DEB bus, the effective priority of the PPI DMA
is increased by 16, and hence, the memory DMA
is granted access to the DEB bus. The PPI DMA
gets access to the DEB bus when the traffic
control counter times out (or until traffic stops or
changes direction on its own).

For more information DMA Traffic Control
registers, refer the ADSP-BF533 and ADSP-
BF561 Hardware Reference manuals.

Bus Arbitration

The DMA bus has higher priority over the core
bus while accessing internal L1 memory. By
default, when accessing external memory, the
core has higher priority over the DMA bus. By
setting the CDPRIO bit in the EBIU_AMGCTL

register, all DEB transactions to the external bus
have priority over core accesses to external
memory. Programmers can use this bit,
depending on their application requirement.

DMA and Cache Coherency

In an application, if both core and DMA access
the shared buffer and cache is enabled, the
software should provide cache coherency support
by invalidating the data in the shared buffer. In
Blackfin processors, the cache can be invalidated
using memory-mapped registers. Also, the
VisualDSP++® 4.0 development tools provide
C-callable library functions to invalidate the
individual cache banks. Software can invalidate
the cache each time before accessing the shared
“volatile” buffer.

Conclusion
By considering the various factors discussed in
this EE-Note, you can obtain maximum
performance from Blackfin processors in image
processing applications.

References
[1] ADSP-BF533 Blackfin Processor Hardware Reference. Revision 3.1 May 2005. Analog Devices, Inc.

[2] ADSP-BF561 Blackfin Processor Hardware Reference. Revision 1.0, July 2005. Analog Devices, Inc.

Document History

Revision Description

Rev 1 – September 08, 2005
by Kunal Singh

Initial Release

	Introduction
	Memory Considerations
	Internal Memory Space
	SDRAM Memory Space
	Managing External Data Accesses

	DMA Modes for PPI Capture and Display
	Working with ITU-R-656 Input Modes
	Outputting ITU-R-656 Video Frames

	DMA Prioritization and Traffic Control Registers
	Bus Arbitration
	DMA and Cache Coherency

	Conclusion
	References
	Document History

