
Engineer-to-Engineer Note EE-302

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Interfacing ADSP-BF53x Blackfin® Processors to NAND FLASH Memory
Contributed by Ke Zhan and Daniel Zhao Rev 1 – November 10, 2006

Copyright 2006, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices’ Engineer-to-Engineer Notes.

Introduction
NAND flash memory technology has emerged as
a suitable, high-density alternative to hard disk
drives in power-sensitive portable devices.
Today, most cellular telephones, Personal Digital
Assistants (PDAs), digital cameras, Portable
Media Players (PMPs), and other mobile
computing/communications/consumer products
use NAND flash memory to store increasingly
large media files, data, and operating systems.

Blackfin® processors are well-suited for portable
systems due to their low power dissipation, high
performance, and convergent architecture. As
such, there is a growing demand to interface
Blackfin processors to NAND flash memories.

This EE-Note describes how to interface both
MLC- and SLC-type NAND flash memories to
ADSP-BF53x Blackfin processors. Included are
the low-level driver functions, which were
validated on a hardware platform consisting of a
NAND flash daughter board connected to an
ADSP-BF533 EZ-KIT LITE® (rev. 1.6)
evaluation system and the VisualDSP++® 4.0
(Updated April 2006) development tools.

To provide flexibility to system designers, two
approaches are provided. The memory devices
used to demonstrate this interface are Samsung’s
K9F2G08U0M SLC NAND flash and Toshiba’s
TC58NVG3D4CTG MLC NAND flash.

NAND Flash vs. NOR Flash
NOR flash devices are widely used in the
electronics industry. They offer an easy memory
interface and are suitable for code execution,
making them ideal for devices that do not need
data storage. NOR memory offers good read
performance, but has slow write/erase times.
However, as modern devices become more and
more sophisticated, they need to store more data
and programs locally while supporting faster
erase/write times. NAND flash offers all of this,
plus better prices, in capacities ranging from 8 to
512 MB. NAND is an I/O device and requires a
relatively complicated driver for any operation.

Memory cells that are accessed frequently
become more prone to bit errors. Thus, NAND
flash devices typically include extra memory so
that the NAND flash file system can replace bad
blocks with good blocks without decreasing the
size of the available memory. A NAND flash
file system, such as JFFS2, will typically attempt
to evenly wear the whole memory to increase the
life of the device.

NAND Flash: SLC vs. MLC
There are two different types of NAND flash
devices in the market today: Single-Level-Cell
(SLC) devices and Multi-Level-Cell (MLC)
devices. MLC chip technology is capable of
storing two or more bits of data per memory cell,
while SLC chip technology allows just one bit of
data per memory cell.

 a

Interfacing ADSP-BF53x Blackfin® Processors to NAND FLASH Memory (EE-302) Page 2 of 11

MLC chips provide much larger storage capacity
than SLC; however, they also suffer from lower
bandwidth for read and write operations. Also,
the Error Correcting Code (ECC) requirement for
MLC is higher than for SLC, as MLC technology
is more prone to bit errors. The cost per bit of
MLC flash is much lower than that of SLC
devices. Figure 1 shows the comparison.

Item SLC MLC

Storage capacity Small Large

Throughput High Low

ECC 1bit/528B 4bit/528B

Write/Erase Endurance 100K times 10K times

Cost High Low

Figure 1. SLC vs. MLC Performance Comparison

MLC NAND flash memory provides a
competitive level of performance and makes
high-density NAND cards more affordable,
enabling new breakthroughs in portable

applications. SLC NAND flash is appropriate for
specific, high-performance applications.

SLC NAND flash is better suited for applications
that require speed. It performs many write/erase
cycles that require high endurance and high
reliability, such as in solid-state hard disk drives
and devices used for seismic data recording,
networking, HDTV, bar code scanners,
shockproof PCs, flight recorders, handheld code
storage devices, as well as PDAs and digital still
cameras.

Typical applications that are well-suited for
MLC NAND flash memory include digital video
and digital still camera memory cards, USB flash
drives, MP3 players, automobile diagnostic
monitors, GPS devices, animatronics devices,
video game cards, and many toy applications.
Applications that may be suited for either MLC
NAND or SLC NAND technology include
memory cards for printers (fonts), cell phones,
telecom applications, voice mail, and TV set-top
boxes. Figure 2 illustrates the classifications.

Figure 2. Typical Applications for SLC and MLC Devices

 a

Interfacing ADSP-BF53x Blackfin® Processors to NAND FLASH Memory (EE-302) Page 3 of 11

NOR flash memories and other traditional
SRAM-like devices and memories use discrete
address data buses and basic control signals.
NAND flash memory is optimized for large
block transfers, incorporating a single set of I/O
pins that are used for both address and data.

For Blackfin processors, it is possible to map the
NAND flash memory ports to asynchronous
memory space and access them as a standard
memory-mapped device. The hardware interface
for both SLC and MLC NAND flash is identical.

Basic NAND Flash Interface
NAND flash devices utilize I/O pins for both
address and data, as well as for command inputs.
The command signals and command words are
the same for both SLC and MLC NAND flash
devices. This makes the interface to both SLC
and MLC flash chips universal for all Blackfin
processors.

Flash memory is accessed by column, page, and
block. The read and program operations execute
at the page level, and erase operations are
performed at the block level.

The basic commands supported by NAND flash
memories are block erase, page program, read
status, and page read. The Chip Enable (CE#) pin
should be asserted low to access the device.
When asserted, the NAND flash can be
controlled to accept bytes provided by the host
when the Write Enable (WE#) signal is asserted
low or provide data to the host when the Read
Enable (RE#) signal is asserted low. When CE# is
high, the chip ignores RE# and WE#, and the I/O is
tri-stated. The Command Latch Enable (CLE)
signal is used to send commands to the device

when CE# is asserted. The Address Latch Enable
(ALE) signal is used to latch the address into the
address register of the flash device. Figure 3
depicts the internal register accessed as a result
of valid combinations of CLE and ALE.

ALE CLE Register Selected

0 0 Data Register

0 1 Command Register

1 0 Address Register

1 1 Reserved

Figure 3. Valid ALE/CLE Combinations

Samsung K9F2G08U0M Interface

The Samsung K9F2G08U0M is offered in a
256M x 8-bit (2G-bit) configuration with a spare
64M-bit capacity. This memory device is an
optimal solution for large nonvolatile storage
applications such as solid-state file storage and
other portable applications requiring non-volatile
memory.

The device is offered in 2.7 V, 3.3 V, and 3.6 V
supply voltage ranges. Typically, a program
operation can be performed in 200 µs on the
2112-byte page, and an erase operation can be
performed in 2 ms on a 128-Kbyte block. Each
byte in the data page can be read in 30 ns. The
I/O pins serve as the ports for address and data
input/output, as well as for command input. One
page in the K9F2G08U0M consists of 2112
bytes, and one block comprises 64 pages.
Figure 4 shows the organization of the
K9F2G08U0M flash memory device in terms of
pages and blocks.

 a

Interfacing ADSP-BF53x Blackfin® Processors to NAND FLASH Memory (EE-302) Page 4 of 11

Figure 4. K9F2G08U0M Flash Memory Organization

Toshiba TC58NVG3D4CTG10 Interface

The Toshiba TC58NVG3D4CTG10 device is a
single 3.3 V 8-Gbit NAND Electrically-Erasable
and Programmable Read-Only Memory (NAND
E2PROM), organized as 2112 (2048+64) bytes
per page, 128 pages per block, and 4160
(4096+64) blocks.

The device has two 2112-byte static registers that
allow program and read data to be transferred
between the register and the memory cell array in
2112-byte increments. The erase operation is
implemented on a single block unit.

NAND Flash Interface to the
ADSP-BF53x Processor
Because ADSP-BF53x Blackfin processors do
not have an on-chip NAND flash controller, a
software driver is used to control and access
NAND flash memory. Two approaches are used
to interface a Blackfin processor to a NAND
flash device: GPIO pins and EBIU pins.

Using GPIO Pins to Interface to NAND Flash

The first approach uses General-Purpose I/O pins
(GPIOs) to drive all the required control signals.
This approach requires careful timing for the

necessary delays to match the timing
requirements for NAND access.

Figure 5 shows details regarding the connections
between an ADSP-BF533 Blackfin processor
and a Samsung K95G08U0M flash memory
device.

Figure 5. Using GPIO for NAND Flash Interface

Using EBIU Pins to Interface to NAND Flash

A second approach is to use the External Bus
Interface Unit (EBIU) and a single GPIO pin to
communicate with the NAND flash memory
device. Standard NAND flash requires that its
CE# remains valid during the read busy period.
So, for compatibility with both standard NAND
flash and Chip Enable Don’t Care (CEDC)
NAND flash, a GPIO pin is used to drive the CE#
signal. All other signals are driven directly by the
EBIU interface.

 a

Interfacing ADSP-BF53x Blackfin® Processors to NAND FLASH Memory (EE-302) Page 5 of 11

Figure 6 shows details regarding the connections
between an ADSP-BF533 Blackfin processor
and a Samsung K9F2G08U0M flash memory
device.

Figure 6. Using EBIU Pins for NAND Flash Interface

The EBIU can be programmed to control up to
four banks of devices with very flexible timing
parameters. Each bank occupies a 1-Mbyte
segment, regardless of the size of the device
used, so these banks will only be contiguous if
each is fully populated with 1 Mbyte of memory.
The EBIU is clocked by the system clock (SCLK),

which is the frequency at which all synchronous
memories interfaced to the processor will
operate. Since the EBIU is automatically
controlled by the asynchronous memory
controller of the Blackfin processor, hooking the
NAND flash in this way is simple and yields
optimal access performance.

NAND Flash Driver Development
This EE-Note provides a basic Samsung
K9F2G08U0M and Toshiba TC58NVG3D4CTG
NAND flash driver for the two interface
approaches described above.

This section focuses on the second approach
implementation and provides timing waveforms
for each command. Listing 1 shows the code
example for the block erase code implemented.

bool _NF_Block_Erase(unsigned int Block_Address){
 unsigned char NAND_Data = 0;

 NAND_Address_Table.Value = Block_Address << 12;
 Write_Command(0x60);
 Write_Address(NAND_Address_Table.NAND_Address.NAND_Address_A12_A19,
 NAND_Address_Table.NAND_Address.NAND_Address_A20_A27,
 NAND_Address_Table.NAND_Address.NAND_Address_A28,
 NAND_Address_Table.NAND_Address.NAND_Address_A0_A7,
 NAND_Address_Table.NAND_Address.NAND_Address_A8_A11,
 0x03);

 Write_Command(0xd0);
 while(!Wait_NAND_RADY());
 Write_Command(0x70);

 delay(50000);
 NAND_Data = *pNAND_DATA_REG;
 NAND_Finish();

 if(NAND_Data != 0xe0)//0xc0)
 return false;

 else return true;
}

Listing 1. Block Erase Function

 a

Interfacing ADSP-BF53x Blackfin® Processors to NAND FLASH Memory (EE-302) Page 6 of 11

Listing 2 shows the code example using the page write function.

bool _NF_Page_Write(unsigned int Block_Address,unsigned short Page_Address,unsigned
char *psrc)
{
 int i;
 unsigned char NAND_Data;
 int NAND_Addr;

 NAND_Addr = (Block_Address << 12) | Page_Address;
 NAND_Address_Table.Value = NAND_Addr;
 Write_Command(0x80);
 Write_Address(NAND_Address_Table.NAND_Address.NAND_Address_A0_A7,
 NAND_Address_Table.NAND_Address.NAND_Address_A8_A11,
 NAND_Address_Table.NAND_Address.NAND_Address_A12_A19,
 NAND_Address_Table.NAND_Address.NAND_Address_A20_A27,
 NAND_Address_Table.NAND_Address.NAND_Address_A28,
 0x05);
 delay(100);

 for(i = 0;i<DATA_NUM;i++)
 *pNAND_DATA_REG = *(psrc+i);

 Write_Command(0x10);
 while(!Wait_NAND_RADY());
 Write_Command(0x70);

 delay(5000);
 NAND_Data = *pNAND_DATA_REG;

 NAND_Finish();

 if(NAND_Data != 0xe0)
 return false;
 else
 return true;
}

Listing 2. Page Write Function

 a

Interfacing ADSP-BF53x Blackfin® Processors to NAND FLASH Memory (EE-302) Page 7 of 11

Listing 3 shows the code example for the page read code implemented.

bool _NF_Page_Read(unsigned int Block_Address,unsigned short Page_Address,unsigned
char *pdes)
{
 int i;

 Write_Command(0x00);
 Write_Address(NAND_Address_Table.NAND_Address.NAND_Address_A0_A7,
 NAND_Address_Table.NAND_Address.NAND_Address_A8_A11,
 NAND_Address_Table.NAND_Address.NAND_Address_A12_A19,
 NAND_Address_Table.NAND_Address.NAND_Address_A20_A27,
 NAND_Address_Table.NAND_Address.NAND_Address_A28,
 0x04);
 Write_Command(0x30);
 while(!Wait_NAND_RADY());

 for(i = 0;i<DATA_NUM;i++)
 {
 delay(600);
 *(pdes+i) = *pNAND_DATA_REG;
 }
 NAND_Finish();

 return true;
}

Listing 3. Page Read Function

The basic NAND flash drivers are based on low-level operations, like Write_Command(),
Write_Address(), Wait_NAND_RADY(), and Set_CE(). These operations handle the GPIO and address
signals to manipulate the flash chip. Listing 4 is for the implementation of the write command.

void Write_Command(unsigned char command)
{
 Set_CE(0);
 Write_NAND_FLASH_Com(command);
}

Listing 4. Write_Command Function

Listing 5 is the implementation of the Set_CE signal function.

void Set_CE(bool state)
{
 if(!state)
 *pFIO_FLAG_D &= ~PF11;

 else
 *pFIO_FLAG_D |= PF11;
}

Listing 5. Set_CE Function

 a

Interfacing ADSP-BF53x Blackfin® Processors to NAND FLASH Memory (EE-302) Page 8 of 11

Listing 6 is for the implementation of the write flash command/address register function.

void Write_NAND_FLASH_Com(unsigned char Write_Data)
{
 *pNAND_COMMAND_REG = Write_Data;
}

void Write_NAND_FLASH_Addr(unsigned char Write_Data)
{
 *pNAND_ADDRESS_REG = Write_Data;
}

Listing 6. Write_NAND_FLASH_Com and Write_NAND_FLASH_Addr Functions

DMA can also be used to perform read/write
operations from/to the flash memory device. In
this case, the programmer should ensure that no
other core or DMA accesses happen to any of the
external memory banks. Any such accesses can
cause spurious RD# and/or WR# pulses to the flash

memory device, which will compromise the
integrity of the interface and yield unexpected
results.

CRO screenshots representing timing diagrams
for this interface are shown in the following
figures.

Figure 7: Erase Command

 a

Interfacing ADSP-BF53x Blackfin® Processors to NAND FLASH Memory (EE-302) Page 9 of 11

Figure 8: Write Block Command

Figure 9: Read Command

 a

Interfacing ADSP-BF53x Blackfin® Processors to NAND FLASH Memory (EE-302) Page 10 of 11

Figure 10: Read Chip ID Command

ECC for NAND Flash
Both the SLC and MLC NAND flashes require
an Error Correction Code (ECC) to detect and
correct bit errors. The Reed-Solomon algorithm
is well-suited for this and has become the
standard EEC method for both types of flash
memory.

The RS encoder and decoder for 72-bit RS
(464, 456, 4) code have been implemented and
integrated into the NAND flash read/write
drivers.

NAND Flash File Systems
NAND flash is optimized for file structures
where each word does not need to be read, but
instead provides that sectors of data can be
moved to and from the media supporting a hard-
drive-like repository structure for data storage to
support file systems and allocation tables (FAT).

Unlike NOR flash, NAND flash demands a
mechanism, such as TrueFFS, to be implemented
to map bad blocks.

File systems in the industry, such as JFFS,
JFFS2, FAT, and so on, are feasible for NAND
flash. Additionally, the YAFFS (Yet Another
Flash File System) is the only file system that
has been designed specifically for use with
NAND flash under any operating system.
YAFFS uses journaling error correction and
verification techniques to enhance robustness,
and is designed to work within the constraints
of⎯and exploit the features of⎯NAND flash in
order to maximize performance. A future
revision of this EE-note will include the
implementation of a specific file system for
NAND flash.

 a

Interfacing ADSP-BF53x Blackfin® Processors to NAND FLASH Memory (EE-302) Page 11 of 11

Conclusion
Although ADSP-BF53x Blackfin processors do
not have an on-chip NAND controller, designers
can easily connect SLC and MLC NAND flash
memory devices to EBIU or GPIO. Both
interfaces are seamless, thus requiring no
additional external logic. Designers can refer to
the code supplied with this EE-Note to develop
other NAND devices drivers.

References
[1] ADSP-BF533 Blackfin Embedded Processor Data Sheet, Rev. C, May, 2006. Analog Devices, Inc.

[2] MLC NAND Performance for Consumer Applications, Toshiba America Electronic Components, Inc.

[3] K9F2G08U0M 256M x 8 Bit / 512M x 8-Bit NAND Flash Memory Data Sheet, Rev 1.2, October 31, 2005.
Samsung Electronics, Inc.

[4] TC58NVG3D4CTG 8 GBIT (1G × 8 BIT / 512M × 16 BIT) CMOS NAND E2PROM (Multi-Level-Cell) Data Sheet,
TOSHIBA Semiconductor Company.

[5] Application Note for NAND Flash Memory, Rev. 2.0, December 1999, Memory Product & Technology Division from
Samsung Electronics, Inc.

[6] ADSP-BF533 Blackfin Processor Hardware Reference, Rev. 3.2, July 2006. Analog Devices, Inc.

[7] Interfacing NAND Flash Memory with ADSP-2126x SHARC Processors (EE-279), Rev. 1, November 2005.
Analog Devices, Inc.

Document History

Revision Description

Rev 1 – November 10, 2006
by Ke Zhan & Daniel Zhao

Initial version

	Introduction
	NAND Flash vs. NOR Flash
	NAND Flash: SLC vs. MLC
	Basic NAND Flash Interface
	Samsung K9F2G08U0M Interface
	Toshiba TC58NVG3D4CTG10 Interface

	NAND Flash Interface to the ADSP-BF53x Processor
	Using GPIO Pins to Interface to NAND Flash
	Using EBIU Pins to Interface to NAND Flash

	NAND Flash Driver Development
	ECC for NAND Flash
	NAND Flash File Systems
	Conclusion
	References
	Document History

