
Engineer-to-Engineer Note EE-289

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Implementing FAT32 File Systems on ADSP-BF533 Blackfin® Processors
Contributed by Jenny Jing Rev 1 – February 24, 2006

Copyright 2006, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
Blackfin® processors are commonly used in
multimedia data processing applications such as
portable media players (PMPs) and digital video
recorders (DVRs). These types of products
require storage for large amounts of compressed
multimedia data. Though there are many storage
options available, a hard drive is a good choice
when making a tradeoff between price and
performance. Using a hard drive also requires a
file system to access data in file format. This EE-
Note describes a demonstration system that
implements the FAT32 file system on a hard
drive, including hard drive detect and file
operations including open, close, read, write,
create, remove, list, directory, and search. The
option for long file names is also supported.

Both the hardware and software implementations
are discussed in this application note. Since the
FAT32 file system code is written in C, it is
totally compatible with other Blackfin processors
such as the ADSP-BF534/BF536/BF537 and
ADSP-BF561. Note that all references to ADSP-
BF533 Blackfin processors throughout this
document also apply to low-power ADSP-
BF532/BF531 derivatives as well. The FAT32
file system design is modular, so it can be used in
other Blackfin-based storage solutions (e.g.,
compact flash storage cards) with only
modification to the physical driver layers.

The demo described in this note is built on the
ADSP-BF533 EZ-KIT Lite® evaluation board.

Overview
Hard drives have the following parameters
(Figure 1):

 Platters

 Heads

 Tracks

 Cylinders

 Sectors

Figure 1. Hard Disk Physical Architecture

Platters have many concentric circles, which are
called tracks. Tracks consist of sectors. Tracks
with the same perimeters on platters form
cylinders.

At least two headers point to one platter (one on
each side, used to follow tracks). With three
parameters (cylinder, header, and sector), any
data on the hard drive can be addressed.

Sector

Cylinder

Platter

Track

Header

 a

Implementing FAT32 File Systems on ADSP-BF533 Blackfin® Processors (EE-289) Page 2 of 16

There are two ways of addressing a hard drive:
physical addressing (C/H/S) and logical
addressing (LBA). In this demo, logical
addressing is used, employing the following
conversion expressions:

1−+×+××= SHNSCNSNHLBA

Where:
NH

NS
LBA

C =

() NHNS
LBAH %=

1% += NSLBAS

NH: Number of headers per cylinder

NS: Number of sectors per tracks

C: Number of cylinders

Hard Disk Partition

The first sector of a hard drive (cylinder 0,
header 00, sector 1) is the master boot record
(MBR) sector. It includes 446 bytes of boot code,
the disk partition table (DPT), and a 2-byte end
flag (0x55AA). The MBR is independent of the
operating system and is followed by 62 system
reserved sectors, as shown in Figure 2.

DPT registers partition information, and each
partition may be formatted separately with a
specific file system. The FAT region (FAT1 and
FAT2), DOS boot record (DBR), and data region
are the basic regions included on a FAT volume.
These are discussed in detail later in this
document.

Figure 2. Hard Disk Partition Diagram

Hardware Implementation
Once the hard drive has been formatted by a host
PC, it appears to the host as a standard ATA
(IDE) disk drive. The hard drive can be
interfaced easily to the ADSP-BF533 Blackfin
processor’s asynchronous memory through the
external bus interface unit (EBIU). The EBIU
provides glueless interfaces to external
memories, as shown in Figure 3.

C0/H0/S1

2nd partition

 start

MBR

DPT+ ‘55AA’

62 reserved
sectors

(system sectors)

DBR

FAT1

FAT2

31 reserved
sectors

data region

root directory

residuary

2nd DPT + ‘55AA’

…

C0/H1/S1

63 sectors
ahead of

1st partition

1st partition

 (FAT32
for

example)

1 sector

1 sector

 a

Implementing FAT32 File Systems on ADSP-BF533 Blackfin® Processors (EE-289) Page 3 of 16

Figure 3. External Bus Interface Unit (EBIU)

The EBIU is clocked by the system clock (SCLK)
of the ADSP-BF533 Blackfin processor via
asynchronous memory bank control registers
(EBIU_AMBCTL0, EBIU_AMBCTL1). These registers
can be used to control wait states, ARDY
enable/disable, and setup/hold times for each
asynchronous memory bank. On the ADSP-
BF533 EZ-KIT Lite, the SCLK runs at 118 MHz
by default, which is more than sufficient for
accesses to hard drives since read/write access
times on hard disks are less than 120 ns
(~8 MHz). To find interface/bus timing, refer to
the ATA/ATAPI-6 standard[1].

Generally, hard disks work in two modes: PIO
mode and multiword DMA mode. This EE-Note
deals only with 16-bit transfers using PIO mode.

ADSP-BF533-to-Hard Disk Pin Mapping

Figure 4 shows the main pin-to-pin connections
between the ADSP-BF533 Blackfin processor
and the hard disk. See Appendix A for reference
schematic design details.

Figure 4. ADSP-BF533 - Hard Disk Interface

Hard Disk Signal Descriptions – PIO Mode

 CS[1:0]: Chip select signals from the ADSP-
BF533 processor used to select the command
block registers.

 DA[2:0]: 3-bit binary-coded address asserted
by the ADSP-BF533 processor to access a
register or data port in the hard disk.

 DD[15:0]: Data lines - the lower 8 bits are
used for 8-bit register transfers. Data
transfers are 16 bits wide.

 /DIOR - Device I/O read - generated by the
ADSP-BF533 processor when reading data
from the hard disk.

 /DIOW - Device I/O write - driven by the
ADSP-BF533 processor when writing data to
the hard disk.

http://www.t13.org/docs2004/d1532v2r4b-ATA-ATAPI-7.pdf

 a

Implementing FAT32 File Systems on ADSP-BF533 Blackfin® Processors (EE-289) Page 4 of 16

 /RESET - Hardware reset - generated by the
ADSP-BF533 processor when resetting the
hard disk.

 INTRQ - Device interrupt - used by the hard
disk to interrupt the ADSP-BF533 processor.
In PIO mode, INTRQ is asserted at the
beginning of each data block to be
transferred. A data block is usually a single
sector.

The ADSP-BF533 Blackfin processor hosts the
hard drive via programmed I/O. Host address
lines DA[2:0], chip selects /CS0 and /CS1,
/DIOR, and /DIOW address the disk registers.
Host address lines DA[9:3] generate the two
chip selects /CS0 and /CS1.

Chip select /CS0 accesses the eight hard disk
command block registers. Chip select /CS1 is
valid during 8-bit transfers to/from the control

block registers — alternate status and device
control — and the drive address (see Table 1).

The hard drive selects the primary or alternate
command block addresses using address bit DA7.

The command block registers are used for
sending commands to the device or posting status
from the device. These registers include the
Cylinder High, Cylinder Low, Drive/Head,
Sector Count, Sector Number, Command, Status,
Features, Error, and Data Port registers. The
control block registers are used for device
control and to post alternate status. These
registers include the device control and alternate
status registers.

Hard Disk I/O Registers

Addr -CS1FX -CS3FX SA2 SA1 SA0 Read Write

3F6 1 0 1 1 0 Alter Status Device Control Control
Block
Registers

3F7 1 0 1 1 1 Drive
Address

Not Used

1F0 0 1 0 0 0 Data Port Data Port

1F1 0 1 0 0 1 Error Register and Precomp

1F2 0 1 0 1 0 Sector Count

1F3 0 1 0 1 1 Sector Number

1F4 0 1 1 0 0 Cylinder Low

1F5 0 1 1 0 1 Cylinder High

1F6 0 1 1 1 0 Drive / Head

1F7 0 1 1 1 1 Status Command

Command
Block
Registers

Table 1. Memory-Mapped Decoding

 a

Implementing FAT32 File Systems on ADSP-BF533 Blackfin® Processors (EE-289) Page 5 of 16

Software Implementation
The software implementation for the hard disk
driver and FAT32 file system are discussed in
detail this section.

FAT32

The FAT file system was originally developed as a
simple file system suitable for floppy disk drives
less than 500 KBytes in size. Over time, it has
been enhanced to support larger media types.
Currently, there are three FAT file system types:
FAT12, FAT16, and FAT32. The basic difference
in these FAT file system types is the size (in bits)
of the entries in the actual FAT structure on the
disk. There are 12 bits in a FAT12 entry, 16 bits in
a FAT16 entry, and 32 bits in a FAT32 entry. The
FAT32 file system was chosen for this demo, as it
is widely used in most operating systems and
supports partitions of up to 32 GBytes.

A FAT32 file system volume is composed of three
basic regions, as shown in Table 2:

Disk Structure Sector Offset

Boot Sector 0

Reserved Sector 1

FAT 1 32

FAT 2 (# of Sectors per FAT) + 32

File Clusters
(Data Region)

2*(# of Sectors per FAT) + 32

Table 2. FAT32 Structure

FAT32 uses 32 binary bits to record a cluster
chain, which is why it is called FAT32, allowing a
maximum of 2T clusters. As a result, FAT32 is
theoretically able to address a 1-TeraByte partition,
even if a cluster includes only one sector. In order
to reduce FAT size and improve system
performance, FAT32 does not support partitions in
excess of 32 GBytes. Table 3 describes FAT32
partitions and cluster sizes.

FAT32 Cluster Size

Partition Size Sectors per
Partition

Cluster Size

< 8GB 8 4KB

≥ 8GB and <16GB 16 8KB

≥ 16GB and <32GB 32 16KB

≥ 32GB 64 32KB

Table 3. FAT32 Cluster Size

FAT32 treats the root directory as a normal file, so
there is no fixed offset for the root directory. Since
the root directory is the first directory file after the
disk is formatted, it usually occupies the first
cluster of the data region.

There are two FAT data structures on the volume.
This provides redundancy for the FAT data
structure so that if a sector goes bad in one of the
FATs, the data is not lost because it is duplicated
in the other FAT.

Each FAT is a single linked list of the clusters that
make up a file. These clusters map to the data
region of the volume. The first two entries in the
FAT are reserved so that logical cluster numbers
begin at 2 (Figure 5).

Offset Entry (next cluster)

0 0xFFFF FFF8

1 0xFFFF FFFF

2 0x0000 0005

3 0x0000 0004

4 0x0000 0007

5 0x0000 0006

6 0x0000 0008

7 0x0000 0009

8 0xFFFF FFFF

9 … …

Figure 5. FAT32 File System Working Diagram

1 2

3 4

5 6

7 8

Data Region

 a

Implementing FAT32 File Systems on ADSP-BF533 Blackfin® Processors (EE-289) Page 6 of 16

Software Architecture

The software includes five layers (Table 4).

Lib Functions

FAT Interface Functions

FAT Driver

IDE Interface Functions

IDE Driver

Table 4. Software Architecture

Drivers

Functions in the driver layer are ATAPI standard
compatible. These functions are basic hard disk
operation functions, which include checking I/O
registers and getting the hard disk’s status. The
driver’s source code can be found in Listing 1.

ide_base.c

/*** Copyright (c) 2003 Analog Devices Inc. All rights reserved. ***/
/* File : ide_base.C
 * Processor : ADSP-BF533
 * IDDE : VisualDSP++3.5
 * Description : define IDE driver functions including:
 * Wait_Ready();
 * Wait_ReadyBusy();
 * CheckforError();
 * IdeStandby();
 * IdeIdle();

* Function : Wait_Ready
* Description : Wait HD getting ready
* Input : None
* Output : 0-ready /error ID-HD error
*************************************/
BYTE Wait_Ready(void){
 BYTE statbyte;
 BYTE flag = 0;
 while (!flag){
 // Read Status Register
 statbyte = *pStatus;
 if (statbyte & IDE_ERROR){
 //Check HD error
 statbyte=*pErrorReg;
 //read error register if error and
 //return error ID
 return statbyte;
 }
 if (statbyte & IDE_DRDY)
 //check ready or not, set flag
 flag = 1; }
 return 0;
}
/**************************************
* Function : Wait_ReadyBusy
* Description : query HD busy or not.
* Input : none
* Output : 0-busy /error ID-HD error

 a

Implementing FAT32 File Systems on ADSP-BF533 Blackfin® Processors (EE-289) Page 7 of 16

**************************************/
BYTE Wait_ReadyBusy(void){
 BYTE statbyte;
 BYTE flag = 0;
 while (!flag){
 // Read Status Register
 statbyte = *pStatus;
 if (statbyte & IDE_ERROR){
 statbyte=*pErrorReg;
 return statbyte;
 }
 if (((statbyte & IDE_DRDY)!=0)&&((statbyte & IDE_BUSY)==0))
 // Ready bit is in pos 6
 flag = 1; }
 return 0;
}
/**************************************
* Function : CheckforError
* Description : check HD error
* Input : none
* Output : 0-no errors /error ID -yes
**************************************/
BYTE CheckforError(void){
 BYTE statbyte;
 // Read Status Register
 statbyte = *pStatus;
 if (statbyte & 0x01){
 statbyte= *pErrorReg;
 return statbyte;
 }
 else
 return 0;
}
/**************************************
* Function : IdeStandby
* Description : Set HD standby mode
* Input : none
* Output : none
**************************************/
void IdeStandby(void){
 *pCommand = 0xe0;
}
/**
* Funciton : IdeIdle
* Description : Set HD into idle mode
* Input : none
* Output : none
**/
void IdeIdle(void){
 *pCommand = 0x95;
}

Listing 1. ide_base.c

The hard disk I/O registers listed in Table 1 are
re-defined in a header file ‘ide_base.h’ as

shown in Listing 2:

 a

Implementing FAT32 File Systems on ADSP-BF533 Blackfin® Processors (EE-289) Page 8 of 16

ide_base.h

//IDE Register Address
#define IDECS0BASEADDR 0x20340000

#define pDataPort (volatile unsigned
short *)(IDECS0BASEADDR +(0x00<<1))

#define pPreComp (volatile unsigned
char *)(IDECS0BASEADDR + (0x01<<1))

#define pSectorCount (volatile
unsigned char *)(IDECS0BASEADDR +
(0x02<<1))

#define pSectorNumber (volatile
unsigned char *)(IDECS0BASEADDR +
(0x03<<1))

#define pCylinderLow (volatile
unsigned char *)(IDECS0BASEADDR +
(0x04<<1))

#define pCylinderHigh (volatile
unsigned char *)(IDECS0BASEADDR +
(0x05<<1))

#define pDriveHead (volatile unsigned
char *)(IDECS0BASEADDR + (0x06<<1))

#define pCommand (volatile unsigned
char *)(IDECS0BASEADDR + (0x07<<1))

#define pStatus (volatile unsigned
char *)(IDECS0BASEADDR + (0x07<<1))

#define pErrorReg (volatile unsigned
char *)(IDECS0BASEADDR + (0x01<<1))

Listing 2. ide_base.h

The ide_base.h header also defines some IDE
commands and structures such as data buffers.

IDE Interface Functions

IDE interface functions read/write one sector
from/to the hard disk. They also get the initial
information off the hard disk via Command
(Figure 6).

Figure 6. IDE Interface Function Flow Chart

The source code for these operations can be seen
in Listing 3:

 a

Implementing FAT32 File Systems on ADSP-BF533 Blackfin® Processors (EE-289) Page 9 of 16

ide_access.c

/***********************************
***Copyright (c) 2003 Analog Devices Inc. All rights reserved.
************************************/
/**************************************
* Function : fnIDE_BufferSector
* Description : read a logic sector
* Input :
* BYTE *buffer -reading data buffer
* DWORD LBALocation -logic sector address
* BYTE count -counts of reading sectors(up to 256), count=0
* means read 256 sectors
* Output: 0-normal; 1-error
************************************/
int fnIDE_BufferSector(WORD *buf,DWORD LBALocation,BYTE count)
{
 WORD i,temp;
 BYTE j;
 BYTE errorcode;
 Wait_ReadyBusy();
 // update current sector loaded
 buffers.SectorCurrentlyLoaded=LBALocation;
 *pDriveHead =((LBALocation >> 24) & 0xFF) | 0xE0;
 *pCylinderHigh =(LBALocation >> 16) & 0xFF;
 *pCylinderLow =(LBALocation >> 8) & 0xFF;
 *pSectorNumber =LBALocation & 0xFF;
 *pSectorCount = count; // Read sector
 *pCommand = 0x21;

 Wait_DRQ();
 j=count;
 temp=0;
 do
 {
 Wait_DRQ();
 for(i=0; i < SECTORWORDSIZE; i++)
 {
 buf[temp+i]=*pDataPort;
 }
 j--;
 temp += SECTORWORDSIZE ;
 }while(j!=0);

 errorcode = CheckforError();
 if (errorcode!=0) return 1;

 return 0;
}

Listing 3. ide_access.c

 a

Implementing FAT32 File Systems on ADSP-BF533 Blackfin® Processors (EE-289) Page 10 of 16

FAT Drivers

The FAT driver is compatible with the FAT32
standard. It is a sector-based cluster read/write
(R/W), as shown in Figure 6. The FAT driver layer
determines the strategy of files R/W, which is key
to file R/W efficiency.

Figure 6. Driver Flow Chart

Figure 7 shows the file data — including address
information in the FAT and true data — read or
write process.

The data transfer rate for the hard drive can be
differentiated into external transfer rate and
internal transfer rate. The external transfer rate
measures data transfer speed between the buffer
inside the hard disk and the external device. The
internal transfer rate is the transfer speed between
the data buffer and platters. Because of the
limitation of the hard disk’s mechanism, the
internal transfer rate is much lower than the
external transfer rate.

As a result, frequent buffer refreshing leads to
more data transfers inside the hard disk, which

keeps the external bus idle and waiting for data to
be ready.

Figure 7. Hard Disk Reading File Example

One optimization is needed in this layer
implementation, as shown in Figure 8:

Figure 8. FAT Driver Optimization Diagram

Continuous reading is the key optimization. Place
an identical data buffer outside the hard disk in
SDRAM and copy the FAT32 in the hard disk to
this buffer. As a result, when data is read from the
hard disk, the host will read FAT32 in SDRAM to
find the address of the data on the hard disk —
which is much faster than reading the hard disk
itself — then read the hard disk for the actual file
data. With this optimization, the reading rate is
upgraded to over 1000x performance.

data

buffer

FAT

Data

EBIU

FAT

SDRAM

 a

Implementing FAT32 File Systems on ADSP-BF533 Blackfin® Processors (EE-289) Page 11 of 16

When writing data to the hard disk, this optimized
architecture does not work since FAT needs to be
refreshed after each new data is written to the data
region on the hard disk.

The source code associated with these operations
is shown Listing 4.

FAT32_base.c

/**************************************
*Function : fnFAT32_SectorReader
*Description : read target sector (according to target sector offset in cluster)
* case 1 - normal, target sector is in current cluster
* case 2 - target sector is not in current cluster, find next
* cluster (according to offset)
*Input:
* currentcluster_t cluster - current cluster number (does not contain the
* sector in case 2)
* DWORD offset - offset of target sector in the cluster
*Output: cluster-current cluster number
****************************/
currentcluster_t fnFAT32_SectorReader(currentcluster_t cluster, DWORD offset)
{
 DWORD SectortoRead = 0;
 DWORD ClustertoRead = 0;
 DWORD ClusterChain = 0;
 WORD sector_per_cluster=current_fs->bpb.sector_per_cluster;
 int i;

 if(cluster.value==0xFFFFFFFF)
 return cluster;

 ClusterChain = cluster.value;
 ClustertoRead = offset / sector_per_cluster;
 SectortoRead = offset - (ClustertoRead*sector_per_cluster);

// call finFAT32_FindNextCluster() to find cluster that contains target sector

for (i=cluster.offset; i<ClustertoRead; i++)
 {
 ClusterChain = fnFAT32_FindNextCluster(ClusterChain);
 }

//register current cluster
 cluster.value=ClusterChain;
 cluster.offset=ClustertoRead;

 if (ClusterChain==0xFFFFFFFF)
 return cluster;

 //read target sector
fnIDE_BufferSector(&buffers,fnFAT32_LBAofCluster(ClusterChain)+SectortoRead,1);
 return cluster;
}

Listing 4. FAT32_base.c

 a

Implementing FAT32 File Systems on ADSP-BF533 Blackfin® Processors (EE-289) Page 12 of 16

FAT32 Interface Functions

FAT32 interface functions define some operating
functions of FAT32, such as listing directories and
searching, opening, and closing files. Figure 9
shows an example flow chart for the file list
function.

Figure 9. File List Function Flow Chart

The file search function, which is similar to the
file list function, requires an extra file name that
compares operation after getting the file pointer.

The file read and write functions are the two main
functions of the FAT32 interface. The file read
function flow chart is shown in Figure 10.

Figure 10. File Read Function Flow Chart

The file write function is similar to the file read
function, but writing files requires that target
sectors that are about to be written be read from
hard disk first in order to protect nearby sectors.
Figure 11 is a flow chart of the file write function:

 a

Implementing FAT32 File Systems on ADSP-BF533 Blackfin® Processors (EE-289) Page 13 of 16

Figure 11. File Write Function Flow Chart

Library Functions

Functions in this layer mainly supply standard
ANSI C compatible interfaces to the upper user
application, resolve requests, and call lower layer
foundational functions.

The whole project can be built into a library. You
can then achieve dedicated operation by including
the library and the stdio.h header file in the
application project and calling dedicated interface
functions declared in stdio.h.

//************************************
//Function: list a file
//Input: char *path – target path
//output: FILE_t** - file list pointer
//************************************
FILE_t** __flist(BYTE * path)

//************************************
//Function: open a file
//Input: char *path – target path
// BYTE *mode – allowable open mode

// r – read
// w – write
// a – append
// + - read & write
//output: FILE_t** - file list pointer
//************************************
FILE_t* __fopen(BYTE *path, BYTE *mode)

//************************************
//Function: read a file
//Input: char *path – target path
// BYTE *size – data unit size
// DWORD count – data unit number
// FILE_t *fp – target file pointer
//output:
//unsigned long – reading data size
//************************************
FILE_t* __fread(BYTE *path, BYTE *mode)

Listing 5. filelib.c

Results and Benchmarks
 Singe sector reading costs around 50K cycles.

 File reading is faster than file writing.

 When file size is over 1 cluster, the test result
depends on how the file data is distributed.

 This FAT32 file system adds less than 5%
overhead to the system.

 Writing larger files results in lower FAT32
overhead cost.

 When the hard disk is in DMA mode, the total
cycles cost decreases rapidly.

Test Cycles Description

flist 970195 C:/ ，12 files

fsearch 6542659 2 deep directory

frename 17959442

fopen 961171 Open 717 MB file

fseek 306 Compare 13 times

fclose 149

fcloselist 2753

Table 5. Test Results

 a

Implementing FAT32 File Systems on ADSP-BF533 Blackfin® Processors (EE-289) Page 14 of 16

Read File Test

Total Cycles Cycles of
FAT

Overhead Size

(bytes)
FAT driver &
interface
function

IDE driver &
interface
functions

FAT driver
& interface
functions

(Cycles of
FAT)/(Total
Cycles)

39k ~3.0×106 ~4.5×104 1.4%

547k ~12.0×106 ~5.5×105 4.9%

1M ~55.0×106 ~1.0×106 2.1%

33M ~18.0×109 ~50.0×106 0.3%

Write File Test

1K ~23.0×106 ~20.0×106 88%

16K ~48.0×106 ~22.0×106 44.1%

Table 6. Benchmarks

Appendix A

 a

Implementing FAT32 File Systems on ADSP-BF533 Blackfin® Processors (EE-289) Page 15 of 16

 a

Implementing FAT32 File Systems on ADSP-BF533 Blackfin® Processors (EE-289) Page 16 of 16

Conclusion
This EE-Note discusses a way to implement a FAT32 file system on the ADSP-BF533 processor. The
system will achieve a reading speed of ~6 MBytes. The hard disk works in PIO mode with a transfer rate
up to 8.3 MBytes.

The system can be built into a library in VisualDSP++® versions 3.5 and 4.0.

References
[1] Information Technology - AT Attachment with Packet Interface-7, Volume 2, Parallel Protocols and Physical

Interconnect (ATA/ATAPI-7 V2). Revision 4b. 21 April 2004. American National Standard.

[2] ADSP-BF533 Blackfin Processor Hardware Reference. Rev 3.0, September 2004. Analog Devices, Inc.

[3] ADSP-BF535 Blackfin EZ-KIT Lite CompactFlash Interface MP3 (EE-196). Rev 1, June 2004. Analog Devices, Inc.

[4] Microsoft Extensible Firmware Initiative FAT32 File System Specification, Version 1.03, December 2000.
Microsoft Corporation.

Document History
Revision Description

Rev 1 – January 24, 2006
by Jenny Jing

Initial Release

	Introduction
	Overview
	Hard Disk Partition

	Hardware Implementation
	ADSP-BF533-to-Hard Disk Pin Mapping
	Hard Disk Signal Descriptions – PIO Mode

	Software Implementation
	FAT32
	Software Architecture
	Drivers
	ide_base.c
	ide_base.h
	IDE Interface Functions
	ide_access.c
	FAT Drivers
	FAT32_base.c
	FAT32 Interface Functions
	Library Functions

	Results and Benchmarks
	Appendix A
	Conclusion
	References
	Document History

