
Engineer-to-Engineer Note EE-310

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Running Two Network Interfaces with ADSP-BF537 Blackfin® Processors
Contributed by Jiang Wu Rev 1 – December 12, 2006

Copyright 2006, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
This EE-Note describes how to simultaneously
run two network interfaces with ADSP-BF537
and ADSP-BF536 Blackfin® processors.

This description and all testing are based on a
hardware setup consisting of an ADSP-BF537
EZ-Kit Lite® evaluation system and a Blackfin
USB-LAN EZ-Extender card.

Hardware/Software Prerequisite
ADSP-BF537 processors are equipped with an
Ethernet MAC controller that complies to IEEE
802.3[1]. The processors use a standard MII/RMII
interface for easy connection to a wide range of
network physical layer devices (PHYs). The
ADSP-BF537 EZ-Kit Lite board includes an
SMSC LAN85C183 Ethernet physical layer
transceiver, which connects to the MII interface
of the processor[2]. With this, the EZ-Kit Lite
board readily provides one network interface.

The SMSC LAN91C111 single-chip Ethernet
controller on the Blackfin USB-LAN EZ-
Extender card provides another network
interface[3]. It includes a MAC controller and a
PHY. The extender is plugged onto the EZ-Kit
Lite board via the expansion socket. The ADSP-
BF537 processor controls the LAN91C111
Ethernet controller through its asynchronous
memory interface. The overall configuration is
illustrated in Figure 1.

Figure 1. Hardware Configuration

One way to develop a network-capable
application with Blackfin processors is to use the
VisualDSP++® 4.5 development tools. This
tools suite includes the drivers for the Ethernet
controller on the ADSP-BF537 EZ-Kit Lite
board and the USB-LAN extender card. The
tools also provide a built-in TCP/IP application
template, which is based on the
VisualDSP++ 4.5 Kernel (VDK) and the open
source TCP/IP light-weight IP (LwIP) stack. By
means of the development tool’s project wizard,
the framework of a network application,
including all the necessary C/C++ source code,
can be built with a few mouse clicks. However,
this framework is created for one network
interface only: the EZ-Kit Lite board or the
extender card.

 a

Running Two Network Interfaces with ADSP-BF537 Blackfin® Processors (EE-310) Page 2 of 6

The following section discusses how to change
the single interface code to make it work with a
second interface.

Ensure that both network devices can
work separately by following the
instructions and examples in the
hardware user’s manuals[2][3] and the
Getting Started with ADSP-BF537 EZ-
KIT Lite[4] manual.

Single Network Interface
VisualDSP++ 4.5 can be used to generate the
startup source code for a TCP/IP application with
one network interface support through its project
wizard tool by specifying the project type as
“TCP/IP Stack application using lwIP
and VDK”. The wizard walks you through
selecting the processor type, specifying the
hardware target (network devices, either from the
ADSP-BF537 EZ-Kit Lite or from the USB-
LAN extender card), the memory settings,
processor clock/power settings, and run-time
initialization settings. This skeletal code creates a
new thread type: lwIP_sysboot_threadtype
(implemented in the lwIP_sysboot_threadtype
.c and lwIP_sysboot_threadtype.h files),
which acts as the boot thread and initializes the
entire system at boot time. All of the network-
related initialization is done in the run function,
lwIP_sysboot_threadtype_RunFunction().
Users then create their own application threads
and use the network APIs supported by LwIP
without having to consider the lower-level
networking hardware.

To bring up a network interface and its related
TCP/IP stack, the following sequence of actions
must be taken (as described in LwIP User
Guide[5]). Figure 2 shows how these steps are
implemented inside the run function,
lwIP_sysboot_threadtype_RunFunction(),
except step 2, which is done with the kernel
property setting of the project.

1. Specify and use the header file for the socket
API.

2. Ensure that sufficient VDK semaphores are
configured.

3. Initialize the System Services Library (SSL)
interrupt and device driver managers.

4. Initialize and set up the kernel API library.

5. Open the device driver for the Ethernet MAC
controller and pass the handle of the driver to
the LwIP stack.

6. Configure the EBIU controller to give DMA
priority over the processor core (required
only for the MAC controller of the ADSP-
BF537 processor).

7. Supply the MAC address to the device driver.

8. Supply memory to the device driver to enable
it to support the appropriate number of
simultaneous reads and writes.

9. Notify the device driver library that the
Ethernet driver will use the Dataflow
method.

10. Initialize and configure the LwIP stack,
supplying memory for the stack to use as its
internal heap.

11. Notify the Ethernet driver that it should now
start to operate.

12. Wait for the physical link to be established.

Once these steps are executed successfully, the
network function is ready to use via the socket
API.

Dual Network Interfaces
VisualDSP++ 4.5 does not provide a project
wizard for two network interfaces. Most of the
work has to be done manually, but the code
generated for the single network interface can be
reused. Additionally, the overall procedure is the
same as in the single interface case (as shown in
Figure 2).

 a

Running Two Network Interfaces with ADSP-BF537 Blackfin® Processors (EE-310) Page 3 of 6

Initializing Network Devices

Both of the two physical network devices must
be initialized separately; however, the LwIP
TCP/IP stack only needs to be initialized once
because the two devices will share the same
TCP/IP stack. It is the stack’s responsibility to
distinguish between the two devices and present
each to the application correctly.

In Figure 2, the shaded blocks are the
initialization of the individual physical network
devices. These steps must be executed for each
network device. A practical way to do it is:

1. Use the project wizard of VisualDSP++ to
generate two TCP/IP application projects,
one for each device. Test them separately to
ensure that both work correctly[2][3][4][5].

2. Locate all device initialization codes in
lwIP_sysboot_threadtype_RunFunction
of lwIP_sysboot_threadtype.c in the two
projects (the shaded blocks of Figure 2).

3. Rename the global variables assigned the
same name in both projects to distinguish
between the two devices. For example,
ADI_ETHER_SUPPLY_MEM memtable can be
differentiated by simply adding a suffix, such
as _LAN in the extender card project and _BF
in the EZ-Kit Lite project. Note that all
references to these elements throughout the
project must be changed accordingly.

4. Choose one project as the final main project,
copy the device initialization code from the
other project, and paste it just below where
their counterparts reside in the main project.
One exception is that the USB-LAN network
device does not need “Set MAC address”,
since its driver module will set the MAC
address internally when the device is started.

Figure 2. Steps to Bring Up One Network Interface

 a

Running Two Network Interfaces with ADSP-BF537 Blackfin® Processors (EE-310) Page 4 of 6

Providing Device Handles to the TCP/IP Stack

Both of the device handles returned by
adi_dev_open() must be provided to the LwIP
TCP/IP stack. This is done through the function
call set_pli_service(), which takes two
parameters, the number of device handles and the
pointer to them. The handles must be arranged as
an array, with the first device’s handle in the
zero location and the second handle in the one
location. Listing 1 shows example code.

ADI_DEV_DEVICE_HANDLE handles[2];
#define handle_LAN (handles[0])
#define handle_BF (handles[1])
…
adi_dev_open(…, &handle_LAN, …);
adi_dev_open(…, &handle_BF, …);
…
set_pli_services(2,handles);

Listing 1. Providing Two Device Handles to the LwIP
Stack

Configuring Network Interfaces

Compiling the TCP/IP stack requires
configuration information for each network
interface. By default, this information is provided
in the source file default_user_config.c
when applications do not explicitly define
another one. The configuration parameters are
organized as a struct net_config_info. An
array of this structure type
(user_net_config_info[]) is defined to supply
the settings of all interfaces, and the number of
interfaces is derived from the size of the array.
The default configuration code
default_user_config.c defines only one
interface.

To enable two network interfaces, a new
configuration source file must be added to supply
two interface settings. Although this file can be
composed manually by expanding the default
configuration code and adding it to the project, it
can also be generated with the “TCP/IP Setting
Plug-in” of VisualDSP++ 4.5 by following the
steps below (details for this plug-in are described

in LwIP User Guide[5]). If the plug-in is not listed
in the Settings menu, it must be enabled by
choosing Settings -> Preferences and then
selecting TCP/IP Configuration Manager: on
the Plugins page of the Preferences dialog
box.

1. Choose Settings -> TCPIP Configuration
to open the configuration dialog box.

2. On the General page, select the
configuration file name.

3. On the IP page, specify Number of
Networks as 2.

4. On the Network 0 page and the Network 1
page, set the necessary properties for both
interfaces.

5. Click OK to close the configuration dialog
box.

Two configuration source files are then
generated and assigned the name of the
configuration file (specified in Step 2) with the
extensions .c and .h, respectively. They are
added to the project under Source Files and
Header Files in the Project window. In
addition, a configuration file (.tcp) is created
and added under TCP/IP Configuration in the
Project window.

Linking to Libraries

The drivers for both network devices
(ADI_ETHER_BF537.dlb for the ADSP-BF537
EZ-KIT Lite board’s MAC controller and
lan91c111bf537.dlb for the USB-LAN
extender card’s MAC Controller) are included in
VisualDSP++ 4.5 as library files. Both files must
be present in the project’s library list, which can
be set in the Project Options dialog box. In
addition, the VDK library (Kervdkbf537.dlb),
LwIP stack library (liblwIPbf537.dlb), and
TCP/IP wrapper library (Tcpipbf537.dlb) are
also necessary; the Project wizard usually adds
these files to the library list automatically.

 a

Running Two Network Interfaces with ADSP-BF537 Blackfin® Processors (EE-310) Page 5 of 6

However, to enable the two network interfaces to
work together, you must change the
Tcpipbf537.dlb before it is linked to the
project. The following steps describe how to
make the modification:

1. Open the VisualDSP++ project file
tcpip_wrapper-BF537.dpj under the
directory:
<install_path>\Analog Devices\VisualDSP
4.5\Blackfin\lib\src\lwIP\contrib\ports\
ADSP-Blackfin\proj\wrapperlib\

2. In the Project window under Source Files,
locate and open the file pkthandler.c.

3. In the implementation of the function
dhcp_configure(), locate the following
instruction at the beginning of the function.

for(i=0; i<netinfo.num_if; i+=1) {

4. Change the code to:

for(i=netinfo.num_if-1; i>=0; i-= 1) {

5. Save the file and rebuild the project as a
Release project configuration.

6. Copy the generated library file
.\Release537\tcpip_wrapper-BF537.dlb
to the library directory:
<install_path>\Analog Devices\VisualDSP
4.5\Blackfin\lib\

7. Replace the library file Tcpipbf537.dlb
with tcpip_wrapper-BF537.dlb in the
application project’s library list.

The modified TCP/IP wrapper library is included
in the associated ZIP file [6] for this EE-Note. It
can be used directly to replace the original one.

Identify Network Interfaces

Since two network interfaces are running
simultaneously, the application must be able to
identify them.

The function int gethostaddr
(int nwifce_no, char *host_addr)
declared in cglobals.h under the directory

<install path>\Analog Devices\VisualDSP
4.5\Blackfin\include\lwip can be used to
get the IP address of either interface.

This function takes the number of the interface as
its first parameter and fills its IP address as a
string in the memory space pointed to by the
second parameter. The two interfaces are
numbered 0 and 1, according to the order of their
handles in the handle array used by the
set_pli_service() call. Using the code in
Listing 1 as an example, interface number 0
corresponds to handle_LAN, and interface
number 1 corresponds to handle_BF.

After acquiring the IPs of the two interfaces,
applications can use the bind()socket API to
select either one for their connections.

Example Code
The example code that accompanies this
document brings up two network interfaces and
runs four servers simultaneously in four threads:
web server, echo server, character generation
(CharGen) server, and discard server. Each
network interface supports two servers. Most of
the work described in previous sections is
reflected in lwIP_sysboot_threadtype.c.
Please follow the instructions in Readme.txt to
run the example.

Conclusion
Two network interfaces can work simultaneously
with the ADSP-BF537 EZ-Kit Lite board and
USB-LAN Extender card to provide hardware
support, and the VDK/LwIP combination
provides the software support. Modifications
must be made to the source code that is
automatically generated by the VisualDSP++ 4.5
TCP/IP application Project wizard. The change
affects the initialization of network devices, the
configuration of network interfaces, and the
LwIP library. The example code shows the
success of this approach.

 a

Running Two Network Interfaces with ADSP-BF537 Blackfin® Processors (EE-310) Page 6 of 6

References
[1] ADSP-BF537 Blackfin Processor Hardware Reference. Rev 2.0, December 2005. Analog Devices, Inc.

[2] ADSP-BF537 EZ-KIT Lite Evaluation System Manual. Rev 2.0, June 2006. Analog Devices, Inc.

[3] Blackfin USB-LAN EZ-Extender Manual. Rev 2.0, April 2006. Analog Devices, Inc.

[4] Getting Started with ADSP-BF537 EZ-KIT Lite. Rev 1.1, April 2006. Analog Devices, Inc.

[5] LwIP User Guide (<install_path>\VisualDSP 4.5\Blackfin\lib\src\lwIP\docs\ LWIP_UserGuide.doc). Analog Devices, Inc.

[6] Associated ZIP File. Rev 1, December 2006. Analog Devices, Inc.

Document History

Revision Description

Rev 1 – December 12, 2006
by Jiang Wu

Initial Release

	Introduction
	Hardware/Software Prerequisite
	Single Network Interface
	Dual Network Interfaces
	Initializing Network Devices
	Providing Device Handles to the TCP/IP Stack
	Configuring Network Interfaces
	Linking to Libraries
	Identify Network Interfaces

	Example Code
	Conclusion
	References
	Document History

