
Engineer-to-Engineer Note EE-315

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Changing the PHY in the Ethernet Driver for Blackfin® Processors
Contributed by Jiang Wu Rev 1 – June 21, 2007

Copyright 2007, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
This EE-Note describes how to achieve
networking functionality with ADSP-
BF536/ADSP-BF537 Blackfin® processors
together with MII-compatible Ethernet Physical
Layer Transceivers (PHYs) other than the SMSC
LAN83C185, which is populated on the ADSP-
BF537 EZ-KIT Lite® evaluation system. The
procedure is based on the VisualDSP++® 4.5
development tool suite and its Ethernet MAC
driver for the ADSP-BF537 processor. The work
was verified on an SMSC LAN8187 and on a
National Semiconductor DP83848.

Overview
ADSP-BF536/ADSP-BF537 Blackfin processors
include a built-in Ethernet MAC controller,
providing an IEEE 802.3-2002-compliant MII
interface for easy connection to any MII-
compatible PHY[1]. In addition, the
VisualDSP++ 4.5 development tools are shipped
with a driver for the MAC controller, a TCP/IP
stack (LwIP), and a project template for TCP/IP
applications[2]. This allows you to start network-
capable applications right away by using the
standard BSD socket API. This network solution
is illustrated in Figure 1.

The MAC controller driver provided by the
VisualDSP++ 4.5 tools is designed primarily for
the SMSC LAN83C185 PHY device populated
on the ADSP-BF537 EZ-KIT Lite evaluation
board[3]. If you choose to use this development

system, you can code network applications
without having to consider any hardware
details[4]. However, if you use other PHYs, you
must modify the MAC driver, because the MAC
driver uses unique vendor-specific features in
addition to MII standard PHY features.

Figure 1. Overview of ADSP-BF537 based network
applications

The source code of the MAC driver consists of
three files.

The project file (ADI_ETHER_BF537.dpj) and the
C source file (ADI_ETHER_BF537.c) are located
in the following directory:
<install_path>\Blackfin\lib\src\drivers
\ethernet\ADI_ETHER_BF537\

The ADI_ETHER_BF537.h file is located in:
<install_path>\Blackfin\include\drivers
\ethernet\

 a

Changing the PHY in the Ethernet Driver for Blackfin® Processors (EE-315) Page 2 of 8

These files are copied automatically when the
VisualDSP++ 4.5 tools are installed. Opening the
project file and building it with the VisualDSP++
4.5 development tools generates a library file
named ADI_ETHER_BF537.dlb, which can then
be linked to the network application[5].

The MAC driver is the connecting bridge
between the physical MAC controller/PHY and
the software TCP/IP stack (LwIP). On one side, it
uses two dedicated DMA channels (DMA1 and
DMA2) for the network data exchange between the
MAC controller and the system memory. On the
other side, it communicates with the TCP/IP
stack through a message box mechanism.

The MAC controller talks to the PHY via the
MII interface, which includes two parts, the
network data exchange (signals RxD[3:0],
Rx_DV, Rx_CLK, and Rx_ER for receiving; and
TxD[3:0], Tx_EN, Tx_CLK, and Tx_ER for
transmitting), and the management data
exchange (signals MDC and MDIO). The driver
controls the MAC controller by writing/reading
its memory-mapped registers (MMRs). It also
manages the PHY by commanding the MAC
controller to write/read the 32 PHY registers via
the MII management data exchange channel.

The first two of the 32 PHY registers, the
Control Register (register 0) and the Status
Register (register 1), are mandatory, according to
the MII specification, while the following 13
registers (registers 2-15) are the optional
extended register set. The remaining registers
(registers 16-31) are vendor-specific.

In the following section, the required
modifications to the MAC driver source code to
accommodate different PHYs will be described.

Modifying the MAC Driver Code
To enable the MAC driver for the ADSP-
BF536/ADSP-BF537 processor to work with
different PHYs, you must first modify the
ADI_ETHER_BF537.c source code file as
described in the following sections.

L Required changes to the source code
are explained in RED font in the code
shown in the following steps.

To make it easy to find the change locations, a
modified version of ADI_ETHER_BF537.c is
included in the .ZIP file associated with this EE-
Note[6], in which all the change locations are
marked with a comment
/*PHY_CHANGE_LOCATION*/.

static u32 adi_pdd_Open()

This function determines all the default settings
of the PHY, such as PHY address, full/half
duplex mode, speed, and auto-negotiation. They
can be set here or in the application code by
calling the device control function
adi_dev_Control() with the corresponding
COMMAND. These settings must be done only after
adi_dev_Open() and before
adi_dev_Control(…, ADI_ETHER_CMD_START,
…).

 a

Changing the PHY in the Ethernet Driver for Blackfin® Processors (EE-315) Page 3 of 8

dev->PhyAddr = 0x01; // 0x01 1.1 EZ kit and BUB, Changed to reflect the new PHY’s
address. The PHY’s address is used by the MAC’s MII management interface
to identify each PHY, since MII is able to manage up to 32 PHYs with the
same interface. It is usually determined by the strap option pins of the
PHYs. The values of these pins are sampled during PHY reset and are used
to strap the device into specific addresses.

dev->CLKIN = 25; //Ezkit, Changed to reflect the new application system’s
oscillator/crystal clock in unit of MHz. It will later be used for
setting up the MDC frequency. According to the MII standard, the minimum
high and low times for the MDC signal shall be 160 ns each, and the
minimum period for MDC shall be 400 ns. The driver uses this CLKIN value
to set up a MDC clock of 2.5MHz.

dev->FullDuplex=false; //Changed to reflect the new PHY’s Full Duplex capability
dev->Negotiate = true; //Changed to reflect the new PHY’s AUTONEGOTIATION

capability. If the PHY doesn’t support it, the driver code must be
changed to set the PHY’s capability correctly, which includes dev-
>FullDuplex and dev->Port10. A TRUE value of dev->Port10 means 10MBase,
otherwise it is 100MBase.

static SetPhy()

This function is called when the application
issues the ADI_ETHER_CMD_START command to
the MAC driver by calling adi_dev_Control

(…, ADI_ETHER_CMD_START, …). It initializes
the PHY using the default parameters set in the
adi_pdd_Open()function.

Set software reset
// issue a reset
RawWrPHYReg(dev->PhyAddr, PHYREG_MODECTL, 0x8000);
// wait half a second
period = 30000000; // assume 600 MHZ, This provides a pure delay to allow the PHY

to complete a software RESET. It needs to be changed to reflect the new
PHY’s requirements and the application system’s clock. The MII standard
requires the RESET process be completed within 0.5 seconds from the
issuing of a software reset.

ndtime = clock()+period;
while (clock()<ndtime);

Configure settling time
WrPHYReg(dev->PhyAddr, PHYREG_MODECTL, phydat);
period = 100000000; // assume 600 MHZ, Similar to step 2, it provides a pure delay

to allow the new control settings to take effect, changed to reflect the
new PHY’s requirements

ndtime = clock()+period;
while (clock()<ndtime);

 a

Changing the PHY in the Ethernet Driver for Blackfin® Processors (EE-315) Page 4 of 8

Check PHY ID
if ((RdPHYReg(dev->PhyAddr, PHYREG_PHYID1) == 0x7) && ((RdPHYReg(dev->PhyAddr,

PHYREG_PHYID2)&0xfff0) == 0xC0A0)) { // check PHYID, It checks the ID
of the PHY to ensure the connected PHY is LAN83C185(the PHY on the ADSP-
BF537 EZ-Kit Lite evaluation platform) by reading the 2 PHYID registers
of the PHY. It needs to be changed to reflect the new PHY’s ID, which
can be found in the datasheet of the PHY.

Enable PHY interrupt
WrPHYReg(dev->PhyAddr, 30, 0x0ff); // enable interrupt, It enables the interrupt of

the PHY by writing a vendor-specific register (#30). It needs to be
changed to new PHY’s counterpart. The enabling of the PHY interrupt also
requires the physical connection of the PHY’s interrupt pin to the ADSP-
BF537 processor’s PHY_INT pin. If the developer decides not to use the
interrupt, this instruction can be commented out.

static
ADI_INT_HANDLER(EtherInterruptHandler)

This function is the interrupt service routine
(ISR) for the MAC controller interrupt. The
interrupt may come from the PHY, the MAC
management counter, the Rx frame status, the Tx
frame status, and so on[1]. However, the current
version of the driver processes only the PHY
interrupt and the MAC management counter
interrupt. The PHY interrupt is indicated by the
assertion of the INT pin of the PHY and is sensed
by the ADSP-BF537 processor at the PHY_INT

pin if these two pins are connected. If you choose
to use the PHY interrupt, you must provide your
own service code in the if(systat&0x01){…}
block in this function. At a minimum, the service
code should read and clear the PHY interrupt
status bits. Note that different PHYs usually have
different interrupt structure and capability. The
current MAC driver takes auto-negotiation mode
by default, so it sets the full/half duplex mode
and PAUSE capability according to its link
partners’ ability.

 a

Changing the PHY in the Ethernet Driver for Blackfin® Processors (EE-315) Page 5 of 8

if (systat&0x01) {
 //PHY_INT
 int full=0;
 u32 opmode;
 u16 reg3,reg2,reg,phydat;
 reg2 = RdPHYReg(dev->PhyAddr,2); // read PHY id 1
 reg3 = RdPHYReg(dev->PhyAddr,3); // read PHY id 2
 if ((reg2 == 0x07) && ((reg3>>4) == 0xc0a)) { // Similar to step 3, check the ID

of the PHY to ensure the connected PHY is LAN83C185 (the PHY on the
ADSP-BF537 EZ-Kit Lite evaluation platform). Change to reflect the new
PHY’s ID.

 // SMSC LAN83C185
 reg = RdPHYReg(dev->PhyAddr,31); // read special status, this is to read

the PHY’s speed indication to determine whether full or half duplex is
being used. Change this instruction and the next one to reflect the new
PHY.

 full = (reg&0x10);
 if (full) {
 // does remote link support flow control
 phydat = RdPHYReg(dev->PhyAddr,PHYREG_ANLPAR);
 dev->FlowControl = (phydat &0x0400); // get the PAUSE capability of

the link partner and set the PAUSE option of the MAC controller
accordingly in the following instruction

 if (dev->FlowControl) {
 // we enable flow control
 pEMAC_FLC = FLCE; / flow control enabled */
 // advertize flow control supported
 }
 }
 }
 opmode = *pEMAC_OPMODE;
 if (full) {
 opmode |= 0x04000000;
 } else {
 opmode &= 0xfbffffff;
 }
 *pEMAC_OPMODE = opmode; // Set the Full/half duplex mode of the MAC controller

according to the PHY’s current mode

 systat = RdPHYReg(dev->PhyAddr,29); // read interrupt sources, read the source

of the current PHY interrupt and clear it. Change to reflect the new
PHY. The interrupt event and the status (systat) are to be passed to the
interrupt callback function. However, the callback of the current
version of the driver does not do any further processing.

 event = ADI_ETHER_EVENT_INTERRUPT_PHY;
 result = ADI_INT_RESULT_PROCESSED;
}

 a

Changing the PHY in the Ethernet Driver for Blackfin® Processors (EE-315) Page 6 of 8

Once all the edits described above are made to
the source code, rebuild the
ADI_ETHER_BF537.dpj project and copy the
generated driver library (.dlb) into:
<install_path>\Blackfin\lib\

Then, include the .dlb in the library list for the
application project. The library list can be
modified in the VisualDSP++ development tools
via the Project Options→Link sub-tree in the
Additional options dialog box, as shown in
Figure 2.

Figure 2. Adding a library to the library list

Click OK to save the changes made to the
Project Options, and your project is now set
up to include the new driver.

Conclusion
Though the MAC controller driver provided by
the VisualDSP++ 4.5 development tools is
designed for the PHY on the ADSP-BF537 EZ-
KIT Lite evaluation platform, it can be modified
to work with other PHYs that are compatible
with the MII standard. The modification involves
changes to one of the source code files and
rebuilding the MAC driver library. However, if
you want to use of the extra unique features of
the new PHY, you must make further
modifications to the driver.

 a

Changing the PHY in the Ethernet Driver for Blackfin® Processors (EE-315) Page 7 of 8

Appendix

Functions for PHY Register Access

These functions can be used for all PHYs.

static u16 RdPHYReg(u16 PHYAddr, u16 RegAddr)
static void RawWrPHYReg(u16 PHYAddr, u16 RegAddr, u32 Data)
static void WrPHYReg(u16 PHYAddr, u16 RegAddr, u32 Data)

Supported Control Commands

These control commands apply to all MII-compatible PHYs. The default settings are defined in the
function adi_pdd_Open(). For new PHY drivers, developers can use control commands after the device
is opened or use the adi_pdd_Open() function to configure the settings.

 ADI_ETHER_CMD_BF537_CLKIN

 ADI_ETHER_CMD_BF537_SET_PHY_ADDR

 ADI_ETHER_CMD_SET_LOOPBACK

 ADI_ETHER_CMD_SET_NEGOTIATE

 ADI_ETHER_CMD_SET_FULL_DUPLEX

 ADI_ETHER_CMD_SET_SPEED

MII PHY Registers Used by the Driver

The MAC driver uses the following PHY registers:

 Register 0 (basic): Control Register

 Register 1 (basic): Status Register

 Register 2 (extended): PHY ID 1 Register

 Register 3 (extended): PHY ID 2 Register

 Register 4 (extended): Auto-negotiation Advertisement Register

 Register 5 (extended): Auto-negotiation Link Partner Base Page Ability Register

 Register 29: Interrupt Source Flags

 Register 30: Interrupt Mask Register

 Register 31: PHY special Control/Status Register

In the MAC driver, the number of PHY registers and the register addresses are defined as macros (such as
NO_PHY_REGS, PHYREG_MODECTL, and so on) at the top of ADI_ETHER_BF537.c. It is likely that these
macros will be different for new PHYs. When developing new drivers, check the data sheet of the PHY to
identify the equivalent registers, and change the code accordingly.

 a

Changing the PHY in the Ethernet Driver for Blackfin® Processors (EE-315) Page 8 of 8

References
[1] ADSP-BF537 Blackfin Processor Hardware Reference. Rev 2.0, December 2005. Analog Devices, Inc.

[2] LwIP User Guide (in VisualDSP++ 4.5 package, <install_path>\Blackfin\lib\src\lwIP\docs\LWIP_UserGuide.doc).
Analog Devices, Inc.

[3] ADSP-BF537 EZ-KIT Lite Evaluation System Manual. Rev 2.0, June 2006. Analog Devices, Inc.

[4] Getting Started with ADSP-BF537 EZ-KIT Lite. Rev 1.1, April 2006. Analog Devices, Inc.

[5] VisualDSP++ 4.5 User’s Guide. Rev 2.0, April 2006. Analog Devices, Inc.

[6] Associated ZIP File for EE-315. Rev 1, May 31, 2007. Analog Devices, Inc.

Document History

Revision Description

Rev 1 – June 21, 2007
by Jiang Wu

Initial release

	Introduction
	Overview
	Modifying the MAC Driver Code
	static u32 adi_pdd_Open()
	static SetPhy()
	Set software reset
	Configure settling time
	 Check PHY ID
	Enable PHY interrupt

	static ADI_INT_HANDLER(EtherInterruptHandler)

	Conclusion
	 Appendix
	Functions for PHY Register Access
	Supported Control Commands
	MII PHY Registers Used by the Driver

	References
	Document History

