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ABOUT ADSP-BF538/BF538F SILICON ANOMALIES
These anomalies represent the currently known differences between revisions of the Blackfin®ADSP-BF538/BF538F product(s) and the
functionality specified in the ADSP-BF538/BF538F data sheet(s) and the Hardware Reference book(s).

SILICON REVISIONS

A silicon revision number with the form "-x.x" is branded on all parts. The implementation field bits <15:0> of the DSPID core MMR
register can be used to differentiate the revisions as shown below.

Silicon REVISION DSPID<15:0>

0.5 0x0005

0.4 0x0004

ANOMALY LIST REVISION HISTORY

The following revision history lists the anomaly list revisions and major changes for each anomaly list revision.

Date Anomaly List Revision Data Sheet Revision Additions and Changes

12/21/2015 L E Style/consistency updates

03/14/2014 K E Added Anomalies: 05000503, 05000506
Removed Silicon Revision 0.3

05/23/2011 J D Added Anomalies: 05000489, 05000491, 05000494, 05000501

05/25/2010 I B Added Anomalies: 05000473, 05000475, 05000477, 05000481

07/10/2009 H B Added Anomalies: 05000443, 05000461, 05000462

09/18/2008 G B Added Anomalies: 05000425, 05000426, 05000436
Revised Anomalies: 05000283, 05000315

06/18/2008 F B Added Silicon Revision 0.5
Added Anomalies: 05000416

02/08/2008 E 0 Added Anomalies: 05000374, 05000402, 05000403

11/15/2007 D 0 Added Anomalies: 05000355, 05000357, 05000366, 05000371,
05000375

03/13/2007 C PrD Added Silicon Revision 0.4
Added Anomalies: 05000315, 05000317

12/07/2006 B PrD Added Anomalies: 05000245, 05000310, 05000312, 05000313

09/15/2006 A PrD Initial Revision
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SUMMARY OF SILICON ANOMALIES
The following table provides a summary of ADSP-BF538/BF538F anomalies and the applicable silicon revision(s) for each anomaly.

No. ID Description Rev
 0.4

Rev
 0.5

  1 05000074 Multi-Issue Instruction with dsp32shiftimm in slot1 and P-reg Store in slot2 Not Supported x x

  2 05000119 DMA_RUN Bit Is Not Valid after a Peripheral Receive Channel DMA Stops x x

  3 05000122 Rx.H Cannot Be Used to Access 16-bit System MMR Registers x x

  4 05000166 PPI Data Lengths between 8 and 16 Do Not Zero Out Upper Bits x x

  5 05000179 PPI_COUNT Cannot Be Programmed to 0 in General Purpose TX or RX Modes x x

  6 05000180 PPI_DELAY Not Functional in PPI Modes with 0 Frame Syncs x x

  7 05000193 False I/O Pin Interrupts on Edge-Sensitive Inputs When Polarity Setting Is Changed x x

  8 05000219 NMI Event at Boot Time Results in Unpredictable State x x

  9 05000229 SPI Slave Boot Mode Modifies Registers from Reset Value x x

 10 05000233 PPI_FS3 Is Not Driven in 2 or 3 Internal Frame Sync Transmit Modes x x

 11 05000245 False Hardware Error from an Access in the Shadow of a Conditional Branch x x

 12 05000253 Maximum External Clock Speed for Timers x x

 13 05000265 Sensitivity To Noise with Slow Input Edge Rates on External SPORT TX and RX Clocks x x

 14 05000272 Certain Data Cache Writethrough Modes Fail for Vddint <= 0.9V x x

 15 05000294 Timer Pin Limitations for PPI TX Modes with External Frame Syncs x x

 16 05000310 False Hardware Errors Caused by Fetches at the Boundary of Reserved Memory x x

 17 05000312 Errors when SSYNC, CSYNC, or Loads to LT, LB and LC Registers Are Interrupted x .

 18 05000355 Regulator Programming Blocked when Hibernate Wakeup Source Remains Active x .

 19 05000357 Serial Port (SPORT) Multichannel Transmit Failure when Channel 0 Is Disabled x .

 20 05000366 PPI Underflow Error Goes Undetected in ITU-R 656 Mode x x

 21 05000371 Possible RETS Register Corruption when Subroutine Is under 5 Cycles in Duration x .

 22 05000374 Entering Hibernate State with Peripheral Wakeups Enabled Draws Excess Current x .

 23 05000403 Level-Sensitive External GPIO Wakeups May Cause Indefinite Stall x x

 24 05000416 Speculative Fetches Can Cause Undesired External FIFO Operations x x

 25 05000425 Multichannel SPORT Channel Misalignment Under Specific Configuration x x

 26 05000426 Speculative Fetches of Indirect-Pointer Instructions Can Cause False Hardware Errors x x

 27 05000436 Specific GPIO Pins May Change State when Entering Hibernate x x

 28 05000443 IFLUSH Instruction at End of Hardware Loop Causes Infinite Stall x x

 29 05000461 False Hardware Error when RETI Points to Invalid Memory x x

 30 05000462 Synchronization Problem at Startup May Cause SPORT Transmit Channels to Misalign x x

 31 05000473 Interrupted SPORT Receive Data Register Read Results In Underflow when SLEN > 15 x x

 32 05000475 Possible Lockup Condition when Modifying PLL from External Memory x x

 33 05000477 TESTSET Instruction Cannot Be Interrupted x x

 34 05000481 Reads of ITEST_COMMAND and ITEST_DATA Registers Cause Cache Corruption x x

 35 05000489 PLL May Latch Incorrect Values Coming Out of Reset x x

 36 05000491 Instruction Memory Stalls Can Cause IFLUSH to Fail x x

 37 05000494 EXCPT Instruction May Be Lost If NMI Happens Simultaneously x x

 38 05000501 RXS Bit in SPI_STAT May Become Stuck In RX DMA Modes x x

 39 05000503 SPORT Sign-Extension May Not Work x x

 40 05000506 Hardware Loop Can Underflow Under Specific Conditions x x

Key: x = anomaly exists in revision
          . = Not applicable
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DETAILED LIST OF SILICON ANOMALIES
The following list details all known silicon anomalies for the ADSP-BF538/BF538F including a description, workaround, and identification
of applicable silicon revisions.

1.  05000074 - Multi-Issue Instruction with dsp32shiftimm in slot1 and P-reg Store in slot2 Not Supported:

DESCRIPTION:
A multi-issue instruction with dsp32shiftimm in slot 1 and a P register store in slot 2 is not supported. It will cause an exception.

The following type of instruction is not supported because the P3 register is being stored in slot 2 with a dsp32shiftimm in slot 1:

    R0 = R0 << 0x1 || [ P0 ] = P3 || NOP;      // Not Supported - Exception 
 
This also applies to rotate instructions:

    R0 = ROT R0 by 0x1 || [ P0 ] = P3 || NOP;  // Not Supported - Exception
 
Examples of supported instructions:

    R0 = R0 << 0x1 || [ P0 ] = R1 || NOP;
    R0 = R0 << 0x1 || R1 = [ P0 ] || NOP;
    R0 = R0 << 0x1 || P3 = [ P0 ] || NOP;
    R0 = ROT R0 by R0.L || [ P0 ] = P3 || NOP;
 

WORKAROUND:
In assembly programs, separate the multi-issue instruction into 2 separate instructions.   This workaround may be built into the
development tool chain and/or into the operating system source code. For tool chains and operating systems supported by Analog
Devices (VisualDSP++, VDK, CrossCore Embedded Studio, the GNU Tool Chain, and the Linux kernel), please consult the "Silicon Anomaly
Tools Support" help page in the applicable documentation and release notes for details.

For all other tool chains and operating systems, see the appropriate supporting documentation for details.

APPLIES TO REVISION(S):
0.4,  0.5

2.  05000119 - DMA_RUN Bit Is Not Valid after a Peripheral Receive Channel DMA Stops:

DESCRIPTION:
After completion of a Peripheral Receive DMA, the DMAx_IRQ_STATUS:DMA_RUN bit will be in an undefined state.

WORKAROUND:
The DMA interrupt and/or the DMAx_IRQ_STATUS:DMA_DONE bits should be used to determine when the channel has completed
running.

APPLIES TO REVISION(S):
0.4,  0.5
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3.  05000122 - Rx.H Cannot Be Used to Access 16-bit System MMR Registers:

DESCRIPTION:
When accessing 16-bit system MMR registers, the high half of the data registers may not be used.  If a high half register is used, incorrect
data will be written to the system MMR register, but no exception will be generated. For example, this access would fail:

    W[P0] = R5.H;   // P0 points to a 16-bit System MMR
 

WORKAROUND:
Use other forms of 16-bit transfers when accessing 16-bit system MMR registers. For example:

    W[P0] = R5.L;   // P0 points to a 16-bit System MMR
    R4.L = W[P0];
    R3 = W[P0](Z);
    W[P0] = R3;
 
This workaround may be built into the development tool chain and/or into the operating system source code. For tool chains and
operating systems supported by Analog Devices (VisualDSP++, VDK, CrossCore Embedded Studio, the GNU Tool Chain, and the Linux
kernel), please consult the "Silicon Anomaly Tools Support" help page in the applicable documentation and release notes for details.

For all other tool chains and operating systems, see the appropriate supporting documentation for details.

APPLIES TO REVISION(S):
0.4,  0.5

4.  05000166 - PPI Data Lengths between 8 and 16 Do Not Zero Out Upper Bits:

DESCRIPTION:
For PPI data lengths greater than 8 and less than 16, the upper bits received into memory that are not part of the PPI data should be zero. 
For example, if the user is using 10-bit PPI data length, the upper 6 bits in memory should be zero.  Instead, the PPI captures whatever
data is on the upper 6 PPI data pins (muxed as PFx pins).

WORKAROUND:
The software workaround is to mask out the upper 6 bits when processing received data.

APPLIES TO REVISION(S):
0.4,  0.5

5.  05000179 - PPI_COUNT Cannot Be Programmed to 0 in General Purpose TX or RX Modes:

DESCRIPTION:
In General Purpose modes, the PPI must receive or transmit blocks of at least 2 words. Single word transfers (PPI_COUNT value of 0) are
not functional.

WORKAROUND:
None

APPLIES TO REVISION(S):
0.4,  0.5
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6.  05000180 - PPI_DELAY Not Functional in PPI Modes with 0 Frame Syncs:

DESCRIPTION:
In self-triggered, continuous sampling operation of the PPI, the delay count specified in the PPI_DELAY register is ignored. As soon as this
mode is enabled, data is transferred.

WORKAROUND:
If a delay is needed, either ignore received data in software or use a mode with at least one frame sync.

APPLIES TO REVISION(S):
0.4,  0.5

7.  05000193 - False I/O Pin Interrupts on Edge-Sensitive Inputs When Polarity Setting Is Changed:

DESCRIPTION:
Consider the following scenario:

1) Pins are configured as edge-sensitive inputs.
2) The interrupt occurs on the rising edge.
3) Input level is constant and 0.
4) Change the polarity setting to set the interrupt to occur on the falling edge instead.

In this case, an erroneous interrupt will occur, even though no edge was physically present at the input.  This will also occur at any
subsequent writes of a 1 to this bit of the polarity register.  If the polarity register is reset to 0, no interrupt is generated, as expected.

In the opposite case, with the external pin level equal to 1, the erroneous interrupt is generated when the polarity bit is changed from 1 to
0 (and any subsequent writes of a 1 to this bit of the polarity register), and not when changed from 0 to 1.

In the case of multiple I/O pins configured as edge-sensitive interrupts, ANY change to the polarity register will affect all those I/O pins in
the above manner.  The workaround in this case needs to be applied to all of those pins.

Similar considerations apply to the input enable register.  Changing this setting while edge-sensitive interrupts are enabled will also cause
unwanted interrupts.

WORKAROUND:
Prior to changing the polarity (and/or input enable) register(s), disable the interrupts (i.e., by clearing the PFA or PFB IMASK bit), change
the register setting, clear the interrupt request as you normally would (write to the data or clear registers), and then re-enable the
interrupt again.

APPLIES TO REVISION(S):
0.4,  0.5

8.  05000219 - NMI Event at Boot Time Results in Unpredictable State:

DESCRIPTION:
If the NMI pin is asserted at boot time, the boot process will fail because there is no handler in the boot ROM. The behavior is not
predictable.

WORKAROUND:
Do not assert the NMI pin during a boot sequence.

APPLIES TO REVISION(S):
0.4,  0.5
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9.  05000229 - SPI Slave Boot Mode Modifies Registers from Reset Value:

DESCRIPTION:
In this Boot Mode, the DMA5_CONFIG and SPI_CTL registers are not restored to their default (reset) states before executing the user's
application code.  The DMA5 channel remains enabled in stop mode and the SPI remains enabled in RX DMA mode.

WORKAROUND:
The user's application must reset these registers before either the SPI or DMA channel 5 can be used.

APPLIES TO REVISION(S):
0.4,  0.5

10.  05000233 - PPI_FS3 Is Not Driven in 2 or 3 Internal Frame Sync Transmit Modes:

DESCRIPTION:
In this mode, if the PORT_CFG field in the PPI_CONTROL register is set to #b11 (Sync PPI_FS3 to PPI_FS2), the PPI_FS3 frame sync signal is
not driven to the PF3 flag pin. It is, however, correctly driven to PF3 when the PORT_CFG field is set to #b01 (Sync PPI_FS3 to PPI_FS1).

WORKAROUND:
None

APPLIES TO REVISION(S):
0.4,  0.5

ADSP-BF538/BF538F

NR003277L   |   Page 6 of 26   |   December 2015

  Silicon Anomaly List

http://www.analog.com/ADSP-BF538
http://www.analog.com/ADSP-BF538F


11.  05000245 - False Hardware Error from an Access in the Shadow of a Conditional Branch:

DESCRIPTION:
If a load accesses reserved or illegal memory on the opposite control flow of a conditional jump to the taken path, a false hardware error
will occur.

The following sequences demonstrate how this can happen:

Sequence #1:
For the "predicted not taken" branch, the pipeline will load the instructions that sequentially follow the branch instruction that was
predicted not taken. By the pipeline design, these instructions can be speculatively executed before they are aborted due to the branch
misprediction. The anomaly occurs if any of the three instruction slots following the branch contain loads which might cause a hardware
error:

    BRCC X [predicted not taken]
    R0 = [P0];     // If any of these three loads accesses non-existent 
    R1 = [P1];     // memory, such as external SDRAM when the SDRAM
    R2 = [P2];     // controller is off, then a hardware error will result.
 

Sequence #2:
For the "predicted taken" branch, the one instruction slot at the destination of the branch cannot contain an access which might cause a
hardware error:

    BRCC X (BP)
    Y: ...
       ...
    X: R0 = [P0];  // If this instruction accesses non-existent memory,
                   // such as external SDRAM when the SDRAM controller
                   // is off, then a hardware error will result.
 

WORKAROUND:
If you are programming in assembly, it is necessary to avoid the conditions described above.

This workaround may be built into the development tool chain and/or into the operating system source code. For tool chains and
operating systems supported by Analog Devices (VisualDSP++, VDK, CrossCore Embedded Studio, the GNU Tool Chain, and the Linux
kernel), please consult the "Silicon Anomaly Tools Support" help page in the applicable documentation and release notes for details.

For all other tool chains and operating systems, see the appropriate supporting documentation for details.

APPLIES TO REVISION(S):
0.4,  0.5

12.  05000253 - Maximum External Clock Speed for Timers:

DESCRIPTION:
The General-Purpose Timers can generate PWM output waveforms on the TMRx pin whose timing is quantified in either system clock
(SCLK) periods or in periods of an externally supplied clock (TMRCLK or TACLK). For proper operation, SCLK must be faster than the source
that is utilized, TMRCLK or TACLK.

The specification in the data sheet and hardware reference manual allows for a SCLK::TMRCLK and SCLK::TACLK ratio of up to 2::1.
However, the maximum rate is less than this limit.

WORKAROUND:
A minimum SCLK::TMRCLK or SCLK::TACLK ratio of 3::1 is safe to use.

APPLIES TO REVISION(S):
0.4,  0.5
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13.  05000265 - Sensitivity To Noise with Slow Input Edge Rates on External SPORT TX and RX Clocks:

DESCRIPTION:
A noisy board environment combined with slow input edge rates on external SPORT receive (RSCLK) and transmit clocks (TSCLK) may
cause a variety of observable problems. Unexpected high frequency transitions on the RSCLK/TSCLK can cause the SPORT to recognize an
extra noise-induced glitch clock pulse.

The high frequency transitions on the RSCLK/TSCLK are most likely to be caused by noise on the rising or falling edge of external serial
clocks. This noise, coupled with a slowly transitioning serial clock signal, can cause an additional bit-clock with a short period due to high
sensitivity of the clock input. A slow slew rate input allows any noise on the clock input around the switching point to cause the clock
input to cross and re-cross the switching point. This oscillation can cause a glitch clock pulse in the internal logic of the serial port.

Problems which may be observed due to this glitch clock pulse are:

• In stereo serial modes, this will show up as missed frame syncs, causing left/right data swaps.
• In multichannel mode, this will show up as MFD counts appearing inaccurate or skipped frames.
• In Normal (Early) Frame sync mode, data words received will be shifted right one bit. The MSB may be incorrectly captured in sign

extension mode.
• In any mode, received or transmitted data words may appear to be partially right shifted if noise occurs on any input clocks between

the start of frame sync and the last bit to be received or transmitted.

In Stereo Serial mode (bit 9 set in SPORTx_RCR2), unexpected high frequency transitions on RSCLK/TSCLK can cause the SPORT to miss
rising or falling edges of the word clock. This causes left or right words of Stereo Serial data to be lost. This may be observed as a Left/
Right channel swap when listening to stereo audio signals. The additional noise-induced bit-clock pulse on the SPORT's internal logic
results in the FS edge-detection logic generating a pulse with a smaller width and, at the same time, prevents the SPORT from detecting
the external FS signal during the next ‘normal' bit-clock period. The FS pulse with smaller width, which is the output of the edge-detection
logic, is ignored by the SPORT's sequential logic. Due to the fact that the edge detection part of the FS-logic was already ‘triggered', the
next ‘normal' RSCLK will not detect the change in RFS anymore. In I2S/EIAJ mode, this results in one stereo sample being detected/
transferred as two left/right channels, and all subsequent channels will be word-swapped in memory.

In multichannel mode, the mutlichannel frame delay (MFD) logic receives the extra sync pulse and begins counting early or double
counting (if the count has already begun). A MFD of zero can roll over to 15, as the count begins one cycle early.

In early frame sync mode, if the noise occurs on the driving edge of the clock the same cycle that FS becomes active, the FS logic receives
the extra runt pulse and begins counting the word length one cycle early. The first bit will be sampled twice and the last bit will be
skipped.

In all modes, if the noise occurs in any cycle after the FS becomes active, the bit counting logic receives the extra runt pulse and advances
too rapidly. If this occurs once during a work unit, it will finish counting the word length one cycle early. The bit where the noise occurs
will be sampled twice, and the last bit will be skipped.

WORKAROUND:
1) Decrease the sensitivity to noise by increasing the slew rate of the bit clock or make the rise and fall times of serial bit clocks short,

such that any noise around the transition produces a short duration noise-induced bit-clock pulse. This small high-frequency pulse
will not have any impact on the SPORT or on the detection of the frame-sync. Sharpen edges as much as possible, if this is suitable
and within EMI requirements.

2) If possible, use internally generated bit-clocks and frame-syncs.
3) Follow good PCB design practices. Shield RSCLK with respect to TSCLK lines to minimize coupling between the serial clocks.
4) Separate RSCLK, TSCLK, and Frame Sync traces on the board to minimize coupling which occurs at the driving edge when FS

switches.

A specific workaround for problems observed in Stereo Serial mode is to delay the frame-sync signal such that noise-induced bit-clock
pulses do not start processing the frame-sync. This can be achieved if there is a larger serial resistor in the frame-sync trace than the one in
the bit-clock trace. Frame-sync transitions should not cross the 50% point until the bit-clock crosses the 10% of VDD threshold (for a
falling edge bit-clock) or the 90% threshold (for a rising edge bit-clock).

APPLIES TO REVISION(S):
0.4,  0.5
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14.  05000272 - Certain Data Cache Writethrough Modes Fail for Vddint <= 0.9V:

DESCRIPTION:
Data can become corrupted if data cache is enabled in write through mode and the AOW bit of the DCPLB is not set and Vddint is 0.9V or
less.

WORKAROUND:
When Vddint <= 0.9V, either operate data cache in write back mode or set the AOW bit of the DCPLB when operating in write through
mode.  When Vddint is greater than 0.9V, the anomaly does not exist.

APPLIES TO REVISION(S):
0.4,  0.5

15.  05000294 - Timer Pin Limitations for PPI TX Modes with External Frame Syncs:

DESCRIPTION:
For certain PPI configurations, the general-purpose timers can be utilized as frame sync signals.  When the PPI is set up for transmit modes
that utilize one or more external frame syncs, the general-purpose timers will have limited functionality.

WORKAROUND:
In all transmit modes with external frame sync(s), the timer pin(s) associated with the frame sync(s) (TMR1 and/or TMR2) must be
configured as inputs. The Timer(s) must be enabled in EXT_CLK mode (TMODE = 11) with the output pad disable feature activated
(OUT_DIS = 1).

For PPI_FS1:

    *pTIMER1_CONFIG = OUT_DIS | EXT_CLK;
    *pTIMER_ENABLE |= TIMEN1;
 

For PPI_FS2:

    *pTIMER2_CONFIG = OUT_DIS | EXT_CLK;
    *pTIMER_ENABLE |= TIMEN2;
 
Note: If used as an external frame sync, the timer is not available for general-purpose use.

APPLIES TO REVISION(S):
0.4,  0.5
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16.  05000310 - False Hardware Errors Caused by Fetches at the Boundary of Reserved Memory:

DESCRIPTION:
Due to fetches near boundaries of reserved memory, a false Hardware Error (External Memory Addressing Error) is generated under the
following conditions:

1) A single valid CPLB spans the boundary of the reserved space.  For example, a CPLB with a start address at the beginning of L1
instruction memory and a size of 4MB will include the boundary to reserved memory.

2) Two separate valid CPLBs are defined, one that covers up to the byte before the boundary and a second that starts at the boundary
itself. For example, one CPLB is defined to cover the upper 1kB of L1 instruction memory before the boundary to reserved memory,
and a second CPLB is defined to cover the reserved space itself.

As long as both sides of the boundary to reserved memory are covered by valid CPLBs, the false error is generated. Note that this anomaly
also affects the boundary of the L1_code_cache region if instruction cache is enabled. In other words, the boundary to reserved memory,
as described above, moves to the start of the cacheable region when instruction cache is turned on.

WORKAROUND:
Leave at least 76 bytes free before any boundary with a reserved memory space.  This will prevent false hardware errors from occurring.

This workaround may be built into the development tool chain and/or into the operating system source code. For tool chains and
operating systems supported by Analog Devices (VisualDSP++, VDK, CrossCore Embedded Studio, the GNU Tool Chain, and the Linux
kernel), please consult the "Silicon Anomaly Tools Support" help page in the applicable documentation and release notes for details.

For all other tool chains and operating systems, see the appropriate supporting documentation for details.

APPLIES TO REVISION(S):
0.4,  0.5
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17.  05000312 - Errors when SSYNC, CSYNC, or Loads to LT, LB and LC Registers Are Interrupted:

DESCRIPTION:
When instruction cache is enabled, invalid code may be executed when any of the following instructions are interrupted:

• CSYNC
• SSYNC
• LCx =
• LTx = (only when LCx is non-zero)
• LBx = (only when LCx is non-zero)

When this problem occurs, a variety of incorrect things could happen, including an illegal instruction exception.  Additional errors could
show up as an exception, a hardware error, or an instruction that is valid but different than the one that was expected.

WORKAROUND:
Place a cli before all SSYNC, CSYNC, "LCx =", "LTx =", and "LBx =" instructions to disable interrupts, and place an sti after each of
these instructions to re-enable interrupts. When these instructions are executed in code that is already non-interruptible, the problem will
not occur.

In an interrupt service routine that will enable interrupt nesting, be sure to push the LCx, LTx, and LBx registers before pushing RETI,
which enables interrupt nesting. Following the inverse during the ISR context restore will guarantee that RETI is popped before the loop
registers are loaded, thus disabling nested interrupts and protecting the loads from this anomaly situation.  For example:

    INT_HANDLER:
       [--sp] = astat;
       [--sp] = lc0; // push loop registers before pushing RETI
       [--sp] = lt0;
       [--sp] = lb0;
       [--sp] = lc1;
       [--sp] = lt1;
       [--sp] = lb1;
       [--sp] = reti; // push RETI to enable nested interrupts
       [--sp] = ...
          // body of interrupt handler
       ...  = [sp++];
       reti = [sp++]; // pop RETI to disable interrupts
       lb1 = [sp++];  // it is now safe to load the loop registers
       lt1 = [sp++];
       lc1 = [sp++];
       lb0 = [sp++];
       lt0 = [sp++];
       lc0 = [sp++];
       astat = [sp++];
 

Finally, as the workaround involves Supervisor Mode instructions to disable and enable interrupts, this does not apply to User Mode. In
user space, do not use CSYNC or SSYNC instructions. Also, do not load the loop registers directly. Instead, utilize hardware loops which
can be implemented with the LSETUP instruction, which limits loop ranges to 2046 bytes.

This workaround may be built into the development tool chain and/or into the operating system source code. For tool chains and
operating systems supported by Analog Devices (VisualDSP++, VDK, CrossCore Embedded Studio, the GNU Tool Chain, and the Linux
kernel), please consult the "Silicon Anomaly Tools Support" help page in the applicable documentation and release notes for details.

For all other tool chains and operating systems, see the appropriate supporting documentation for details.

APPLIES TO REVISION(S):
0.4
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18.  05000355 - Regulator Programming Blocked when Hibernate Wakeup Source Remains Active:

DESCRIPTION:
After the processor is placed into the hibernate state, a subsequent peripheral wakeup event can take the part out of hibernate. If that
wakeup source remains asserted throughout the initiated reset sequence, writes to the VR_CTL register will not get latched into the
regulator when the IDLE sequence is executed. Latching into the regulator circuit will be blocked until the wakeup source de-asserts.

The write will effectively be lost, however, the written value will go to the VR_CTL register's physical memory-mapped address. If no
further writes to VR_CTL are performed, the "lost" write will be latched into the regulator hardware when the next IDLE instruction is
executed.

WORKAROUND:
Ensure that the peripheral hibernate wakeup source de-asserts before attempting to program the regulator via the IDLE sequence
required after the write to VR_CTL.

APPLIES TO REVISION(S):
0.4

19.  05000357 - Serial Port (SPORT) Multichannel Transmit Failure when Channel 0 Is Disabled:

DESCRIPTION:
When configured in multi-channel mode with channel 0 disabled, DMA transmit data will be sent to the wrong SPORT channel if all of the
following criteria are met:

1) External Receive Frame Sync (IRFS = 0 in SPORTx_RCR1)
2) Window Offset = 0 (WOFF = 0 in SPORTx_MCMC1)
3) Multichannel Frame Delay = 0 (MFD = 0 in SPORTx_MCMC2)
4) DMA Transmit Packing Disabled (MCDTXPE = 0 in SPORTx_MCMC2)

When this specific configuration is used, the multi-channel transmit data gets corrupted because whatever is in the channel 0 placeholder
in non-packed mode gets sent first, even though channel 0 is disabled. The result is a one-word data shift in the output window, which
repeats for each subsequent window in the serial stream. For example, if the non-packed transmit buffer is {0, 1, 2, 3, 4, 5, 6, 7}, and the
window size is 8 channels with channel 0 disabled and channels 1-7 enabled to transmit, the expected data sequence in a series of output
windows is:

1234567--1234567--1234567--1234567 

With this anomaly, the output looks like this instead:

0123456--7012345--6701234--5670123

WORKAROUND:
There are several possible workarounds to this:

1) Disable Multichannel Mode
2) Use Internal Receive Frame Syncs
3) Use a Multichannel Frame Delay > 0
4) Use a Window Offset > 0
5) Enable DMA Transmit Packing
6) Do not disable Channel 0

APPLIES TO REVISION(S):
0.4
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20.  05000366 - PPI Underflow Error Goes Undetected in ITU-R 656 Mode:

DESCRIPTION:
If the PPI port is configured in ITU-R 656 Output Mode, the FIFO Underrun bit (UNDR in PPI_STATUS) does not get set when a PPI FIFO
underrun occurs. An underrun can happen due to limited bandwidth or the PPI DMA failing to gain access to the bus due to arbitration
latencies.

WORKAROUND:
None.

APPLIES TO REVISION(S):
0.4,  0.5

21.  05000371 - Possible RETS Register Corruption when Subroutine Is under 5 Cycles in Duration:

DESCRIPTION:
The RTS instruction can fail to return correctly if placed within four execution cycles of the beginning of a subroutine. For example:

    CALL STUB_CODE;
    ...
    ...
    ...
    STUB_CODE:
       RTS;
 
When this happens, potential bit failures in RETS will cause the processor to vector to the wrong address, which can cause invalid code to
be executed.

WORKAROUND:
If there are at least four execution cycles in the subroutine before the RTS, the CALL and RTS instructions can never align in the manner
required to encounter this problem. Since a NOP is a 1-cycle instruction, the following is a safe workaround for all potential failure cases:

    CALL STUB_CODE;
    ...
    ...
    ...
    STUB_CODE:
       NOP;      // These 4 NOPs can be any combination of instructions
       NOP;      // that results in at least 4 core clock cycles.
       NOP;
       NOP;
       RTS;
 
Branch prediction does not factor into this scenario. Conditional jumps within the subroutine that arrive at the RTS instruction inside of 4
cycles will not result in the scenario required to cause this failure. Asynchronous events (interrupts, exceptions, and NMI) are also not
susceptible to this failure.

This workaround may be built into the development tool chain and/or into the operating system source code. For tool chains and
operating systems supported by Analog Devices (VisualDSP++, VDK, CrossCore Embedded Studio, the GNU Tool Chain, and the Linux
kernel), please consult the "Silicon Anomaly Tools Support" help page in the applicable documentation and release notes for details.

For all other tool chains and operating systems, see the appropriate supporting documentation for details.

APPLIES TO REVISION(S):
0.4
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22.  05000374 - Entering Hibernate State with Peripheral Wakeups Enabled Draws Excess Current:

DESCRIPTION:
If the VR_CTL register is configured with any of the peripheral wakeup bits set to 1 prior to putting the processor into the Hibernate State,
the processor will consume ~10 mA instead of the documented 50 uA.

This excessive current consumption is not present when none of the peripheral wakeups are enabled (i.e., only assertion of the /RESET pin
can take the processor out of Hibernate).

WORKAROUND:
None.

APPLIES TO REVISION(S):
0.4

23.  05000403 - Level-Sensitive External GPIO Wakeups May Cause Indefinite Stall:

DESCRIPTION:
When level-sensitive GPIO events are used to wake the processor from the low-power sleep mode of operation, the processor may stall
indefinitely if the width of the wakeup pulse is too short. When this occurs, the PLL begins transitioning from the sleep mode due to the
level sensed on the GPIO pin, but then reverts back to the sleep mode if the trigger level is removed before the core has had sufficient
time to break the idle state to resume execution.

As a result, the processor does not wake up properly, at which point only a hardware reset can exit the resulting stall condition.

WORKAROUND:
There are two ways to avoid this anomaly:

1) Use edge-sensitivity for the pin(s) being used to generate the wakeup event.
2) Ensure that the edge on the wakeup signal is clean and held at the trigger level for at least 3 system clock (SCLK) cycles.

APPLIES TO REVISION(S):
0.4,  0.5
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24.  05000416 - Speculative Fetches Can Cause Undesired External FIFO Operations:

DESCRIPTION:
When an external FIFO device is connected to an asynchronous memory bank, memory accesses can be performed by the processor
speculatively, causing improper operations because the FIFO will provide data to the Blackfin, and the data will be dropped whenever the
fetch is made speculatively or if the speculative access is canceled. "Speculative" fetches are reads that are started and killed in the
pipeline prior to completion. They are caused by either a change of flow (including an interrupt or exception) or when performing an
access in the shadow of a branch. This behavior is described in the Blackfin Programmer's Reference.

Another case that can occur is when the access is performed as part of a hardware loop, where a change of flow occurs from an exception.
Since exceptions can't be disabled, the following example shows how an exception can cause a speculative fetch, even with interrupts
disabled:

    CLI R3;                            /* Disable Interrupts */
    LSETUP( loop_s, loop_e) LC0 = P2;
       loop_s: R0 = W[P0];             /* Read from a FIFO Device  */
       loop_e: W[P1++] = R0;           /* Write that Generates a Data CPLB Page Miss */
    STI R3;                            /* Enable Interrupts */
    RTS;
 
In this example, the read inside the hardware loop is made to a FIFO with interrupts disabled. When the write inside the loop generates a
data CPLB exception, the read inside the loop will be done speculatively.

WORKAROUND:
First, if the access is being performed with a core read, turn off interrupts prior to doing the core read. The read phase of the pipeline must
then be protected from seeing the read instruction before interrupts are turned off:

    CLI R0;
    NOP; NOP; NOP;  /* Can Be Any 3 Instructions */
    R1 = [P0];
    STI R0;
 
To protect against an exception causing the same undesired behavior, the read must be separated from the change of flow:

    CLI R3;                           /* Disable Interrupts */
    LSETUP( loop_s, loop_e) LC0 = P2;
       loop_s: NOP;                   /* 2 NOPs to Pad Read */
               NOP;
               R0 = W[P0];
       loop_e: W[P1++] = R0;
    STI R3;                           /* Enable Interrupts */
    RTS;
 
The loop could also be constructed to place the NOP padding at the end:

    LSETUP( .Lword_loop_s, .Lword_loop_e) LC0 = P2;
       .Lword_loop_s: R0 = W[P0];
                      W[P1++] = R0;
                      NOP;          /* 2 NOPs to Pad Read */
       .Lword_loop_e: NOP;
 
Both of these sequences prevent the change of flow from allowing the read to execute speculatively. The 2 inserted NOPs provide
enough separation in the pipeline to prevent a speculative access. These NOPs can be any two instructions.

Reads performed using a DMA transfer do not need to be protected from speculative accesses.

APPLIES TO REVISION(S):
0.4,  0.5
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25.  05000425 - Multichannel SPORT Channel Misalignment Under Specific Configuration:

DESCRIPTION:
When using the Serial Port in Multi-Channel Mode, the transmit and receive channels can get misaligned if a very specific configuration
for the SPORT is met, as follows:

1) Window Offset (WOFF) = 0.
2) Window Size is an odd multiple of 8 (i.e., WSIZE is an even number > 0).
3) The time between RFS pulses is exactly equal to the window duration.

Note: The anomaly does NOT apply when WSIZE = 0.

When this exact configuration is used, the multi-channel mode channel enable registers are mislatched after the first window concludes,
which results in the TDV signal being driven according to incorrect channel assignments and receive data being sampled on the wrong
channels. So, the first window will send and receive properly, but all windows after the first will be misaligned, and data sent and received
will be corrupted.

This error occurs for external and internal clocks and RFS.

WORKAROUND:
There are several workarounds possible:

1) Use a window offset other than 0.
2) Use a window size that is an even multiple of 8.
3) For internal RFS, make sure that SPORTx_RFSDIV is at least equal to the window size (# of enabled channels * SLEN).

APPLIES TO REVISION(S):
0.4,  0.5
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26.  05000426 - Speculative Fetches of Indirect-Pointer Instructions Can Cause False Hardware Errors:

DESCRIPTION:
A false hardware error is generated if there is an indirect jump or call through a pointer which may point to reserved or illegal memory on
the opposite control flow of a conditional jump to the taken path. This commonly occurs when using function pointers, which can be
invalid (e.g., set to -1). For example:

    CC = P2 == -0x1; 
    IF CC JUMP skip; 
    CALL (P2);
  skip: 
    RTS; 
 
Before the IF CC JUMP instruction can be committed, the pipeline speculatively issues the instruction fetch for the address at -1 (0xffffffff)
and causes the false hardware error. It is a false hardware error because the offending instruction is never actually executed. This can
occur if the pointer use occurs within two instructions of the conditional branch (predicted not taken), as follows:

    BRCC X [predicted not taken]
    Y: JUMP (P-reg);  // If either of these two p-regs describe non-existent
       CALL (P-reg);  // memory, such as external SDRAM when the SDRAM
    X: RTS;           // controller is off, then a hardware error will result.
 

WORKAROUND:
If instruction cache is on or the ICPLBs are enabled, this anomaly does not apply.

If instruction cache is off and ICPLBs are disabled, the indirect pointer instructions must be 2 instructions away from the branch
instruction, which can be implemented using NOPs:

    BRCC X [predicted not taken]
    Y: NOP;          // These two NOPs will properly pad the indirect pointer
       NOP;          // used in the next line.
       JUMP (P-reg);
       CALL (P-reg);
    X: RTS;
 

This workaround may be built into the development tool chain and/or into the operating system source code. For tool chains and
operating systems supported by Analog Devices (VisualDSP++, VDK, CrossCore Embedded Studio, the GNU Tool Chain, and the Linux
kernel), please consult the "Silicon Anomaly Tools Support" help page in the applicable documentation and release notes for details.

For all other tool chains and operating systems, see the appropriate supporting documentation for details.

APPLIES TO REVISION(S):
0.4,  0.5
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27.  05000436 - Specific GPIO Pins May Change State when Entering Hibernate:

DESCRIPTION:
When reset, the GPIO ports C, D, and E pins select their peripheral function, and the PORTxIO_FER  registers must be programmed by
software in order to use them as GPIO pins. When hibernate state is entered, the GPIO ports are reset, thus configuring all Port C, D, and E
pins to their peripheral function.  Subsequently, the processor will drive any peripheral output pins to the peripheral pin's inactive state
immediately before the processor enters hibernate, at which point the pins are tri-stated, as documented in the processor datasheet. For
example, the CANTX pin (PC0) will be driven inactive HIGH just before it tri-states, thus resulting in potentially unexpected signaling if the
pin is used for GPIO purposes during normal operation. If the pin was already driving high, there is no issue. However, if it was driving low,
the unexpected high pulse may have negative system implications. The table below depicts the affected GPIO pins:

PIN NAME CURRENT STATE: LOW CURRENT STATE: HIGH CURRENT STATE: HI-Z

CANTX/PC0 Low --> High --> Hi-Z High --> Hi-Z Hi-Z --> High --> Hi-Z

TX1/PD11 Low --> High --> Hi-Z High --> Hi-Z Hi-Z --> High --> Hi-Z

TX2/PD13 Low --> High --> Hi-Z High --> Hi-Z Hi-Z --> High --> Hi-Z

The proper way to read this table is "For PIN NAME, if the state of the pin at the time of executing the hibernate sequence is CURRENT
STATE: X, then the pin will be driven to the states defined in the CURRENT STATE: X column". In the table, the normal behavior is to go
from the current state directly to Hi-Z. The anomaly is the intermittent state shown between the current state and Hi-Z.

WORKAROUND:
The best workaround is to not use the pins in the table above if other devices in the system cannot tolerate the indicated pin transition
before the pin goes to Hi-Z.

APPLIES TO REVISION(S):
0.4,  0.5

28.  05000443 - IFLUSH Instruction at End of Hardware Loop Causes Infinite Stall:

DESCRIPTION:
If the IFLUSH instruction is placed on a loop end, the processor will stall indefinitely. For example, the following two code examples will
never exit the loop:

    P1 = 2;
    LSETUP (LOOP1_S, LOOP1_E) LC1 = P1;
    LOOP1_S: NOP;
    LOOP1_E: IFLUSH[P0++];
 
    LSETUP (LOOP2_S, LOOP2_E) LC1 = P1;
    LOOP2_S: NOP; NOP; NOP; NOP;       // Any number of instructions...
    LOOP2_E: IFLUSH[P0++];
 

WORKAROUND:
Do not place the IFLUSH instruction at the bottom of a hardware loop. If the IFLUSH is padded with any instruction at the bottom of the
loop, the problem is avoided:

    LSETUP (LOOP_S, LOOP_E) LC1 = P1;
    LOOP_S: IFLUSH[P0++];
    LOOP_E: NOP;                     // Pad the loop end
 

This workaround may be built into the development tool chain and/or into the operating system source code. For tool chains and
operating systems supported by Analog Devices (VisualDSP++, VDK, CrossCore Embedded Studio, the GNU Tool Chain, and the Linux
kernel), please consult the "Silicon Anomaly Tools Support" help page in the applicable documentation and release notes for details.

For all other tool chains and operating systems, see the appropriate supporting documentation for details.

APPLIES TO REVISION(S):
0.4,  0.5
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29.  05000461 - False Hardware Error when RETI Points to Invalid Memory:

DESCRIPTION:
When using CALL/JUMP instructions targeting memory that does not exist, a hardware error condition will be triggered. If interrupts are
enabled, the Hardware Interrupt (IRQ5) will fire. Since the RETI register will have an invalid location in it, it must be changed before
executing the RTI instruction, even if servicing a different interrupt. Consider the following sequence:

    P2.L = LO (0xFFAFFFFC);  // Load Address in Illegal Memory to P2
    P2.H = HI (0xFFAFFFFC);
    CALL(P2);                // Call to Bad Address Generates Hardware Error IRQ5
    ....
 
    IRQ5_code:               // Hardware Error Interrupt Routine
    RAISE 14;                // (1)
    RTI;                     // (2)
 
    IRQ14_code:
    [--SP] = ( R7:0, P5:0 ); // (3)
    [--SP] = RETI;           // (4)
    ....
 
When the hardware error occurs, the program counter points to the invalid location 0xFFAFFFFC, which is loaded into the RETI register
during the service of the IRQ5 hardware error event. When the RTI instruction (2) is executed, a fetch of the instruction pointed to by the
RETI register, which is an illegal address, is requested before hardware sees the level 14 interrupt pending. This fetch causes another
hardware error to be latched, even though this instruction is not executed. Execution will go to IRQ14 (3). As soon as interrupts are re-
enabled (4), the pending hardware error will fire.

WORKAROUND:
1) Ensure that code doesn't jump to or call bad pointers.
2) Always set the RETI register when returning from a hardware error to something that will not cause a hardware error on the memory

fetch.

APPLIES TO REVISION(S):
0.4,  0.5
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30.  05000462 - Synchronization Problem at Startup May Cause SPORT Transmit Channels to Misalign:

DESCRIPTION:
When the SPORT is configured in multichannel mode with an external SPORT clock, a synchronization problem may occur when the
SPORT is enabled. This synchronization issue manifests when the skew between the external SPORT clock and the Blackfin processor's
internal System Clock (SCLK) causes the channel counters inside the SPORT to get out-of-sync. When this occurs, a "dead" channel is
inserted at the beginning of the window, and the rest of the transmit channels are right-shifted one location throughout the active
window. The last channel data will be sent as the first enabled transmit channel data in the second window after another "dead" channel
is inserted. All data will be sent sequentially and in its entirety, but it is transmitted on the wrong channels with respect to the frame sync
and will never recover.

WORKAROUND:
When this error occurs, the SPORT must be restarted and checked again for this error. The failure is extremely rare to begin with, so the
probability of seeing consecutive restarts showing the failure is infinitesimally small.

A software solution is possible based on the timing of the SPORT interrupt. In the SPORT ISR, the CYCLES register can be set to zero the
first time the interrupt occurs and then read back the second time the interrupt occurs. This will provide a time reference in core clocks for
the frequency of the SPORT interrupt itself. If the value read the second time exceeds the duration of the multichannel window (in core
clocks), then a "dead" channel was inserted into the stream, and the SPORT must be restarted.

Hardware workarounds are going to be heavily dependent on how the multichannel mode SPORT is configured. In multichannel mode,
TFS functions as a Transmit Data Valid (TDV) signal and will always be driven to the active state (as governed by the LTFS bit in the
SPORTx_TCR1 register) during transmit channels. Therefore, the TDV signal can be routed to one of the GPIO pins configured to generate
an interrupt upon detection of the TDV pin changing states, based upon how the application configures the channels within the active
frame, to detect the "dead" channel. If all the channels in the window are configured as transmit channels and there is no window offset
and no multichannel frame delay, then TDV should go active as soon as the RFS pulse is received. If the period of the RFS pulse is exactly
the window size (i.e., there are no extra clocks after the active window before the next RFS is detected), then TDV will remain active
throughout operation. Therefore, if TDV goes inactive while the SPORT is on, the failure happened and the SPORT must be restarted and
run again with this test in place until the failure is not detected.

For applications that have a window offset, a multichannel frame delay, extra clocks between the end of the active window and the next
frame sync, and/or non-transmit channels inside the active window, the first TDV assertion would need to be tracked manually to detect
the "dead" channel. One idea might be to do the following:

1) Connect TFS (TDV) to a GPIO interrupt and configure the interrupt to occur when TDV goes active.
2) Connect RFS to a GPIO interrupt and configure the interrupt to occur when RFS goes active.
3) Connect the SPORT receive clock to a TMRx pin configured in EXT_CLK mode.

When the GPIO interrupt for the active RFS pulse signifying the start of the window occurs, enable the Timer that is being used to track
the SPORT receive clock. When the GPIO interrupt for the TDV signal transition occurs, check the TIMERx_COUNTER register to determine
how many SPORT clocks have passed since the frame started. If it is one channel's worth over the expected value, the error occurred and
the SPORT must be restarted and tested again. The GPIO interrupts should also be disabled if the startup condition is not detected.

APPLIES TO REVISION(S):
0.4,  0.5
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31.  05000473 - Interrupted SPORT Receive Data Register Read Results In Underflow when SLEN > 15:

DESCRIPTION:
A SPORT receive underflow error can be erroneously triggered when the SPORT serial length is greater than 16 bits and an interrupt
occurs as the access is initiated to the 32-bit SPORTx_RX register. Internally, two accesses are required to obtain the 32-bit data over the
internal 16-bit Peripheral Access Bus, and the anomaly manifests when the first half of the access is initiated but the second is held off due
to the interrupt. Application code vectors to service the interrupt and then issues the read of the SPORTx_RX register again when it
subsequently resumes execution after the interrupt has been serviced. The previous read that was interrupted is still pending awaiting
the second half of the 32-bit access, but the SPORT erroneously sends out two requests again. The first access completes the previous
transaction, and the second access generates the underflow error, as it is now attempting to make a read when there is no new data
present.

WORKAROUND:
The anomaly does not apply when using valid serial lengths up to 16 bits, so setting SLEN < 16 is one workaround.

When the length of the serial word is 17-32 bits (16 <= SLEN < 32), accesses to the SPORTx_RX register must not be interrupted, so
interrupts must be disabled around the read. In C:

    int temp_IMASK;
 
    temp_IMASK = cli();
    RX_Data = *pSPORT0_RX;
    sti(temp_IMASK);
 
In assembly:

    P0.H = HI(SPORT0_RX);
    P0.L = LO(SPORT0_RX);
 
    CLI R0;
    R1 = [P0];
    STI R0;
 

APPLIES TO REVISION(S):
0.4,  0.5

32.  05000475 - Possible Lockup Condition when Modifying PLL from External Memory:

DESCRIPTION:
Synchronization logic in the EBIU can get corrupted if PLL alterations are made by code that resides in external memory. When this
occurs, an infinite stall will occur, and the part will need to be reset. The lockup is dependent on what the original ratio was, what the new
ratio is, and other factors, thus making it impossible to specify any cases where this is safe.

WORKAROUND:
The CCLK::SCLK ratio should not be changed via the external interface, whether it's from asynchronous memory or SDRAM. Only make
modifications to the PLL_CTL and PLL_DIV registers from code executing in on-chip memory.

APPLIES TO REVISION(S):
0.4,  0.5
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33.  05000477 - TESTSET Instruction Cannot Be Interrupted:

DESCRIPTION:
When the TESTSET instruction gets interrupted, the write portion of the TESTSET may be stalled until after the interrupt is serviced. After
the ISR completes, application code continues by reissuing the previously interrupted TESTSET instruction, but the pending write
operation is completed prior to the new read of the TESTSET target data, which can lead to deadlock conditions.

For example, in a multi-threaded system that utilizes semaphores, thread A checks the availability of a semaphore using TESTSET. If this
original TESTSET operation tested data with a low byte of zero (signifying that the semaphore is available), then the write portion of
TESTSET sets the MSB of the low byte to 1 to lock the semaphore. When this anomaly occurs, the write doesn't happen until TESTSET is re-
issued after the interrupt is serviced. Therefore, thread A writes the byte back out with the lock bit set and then immediately reads that
value back, now erroneously indicating that the semaphore is locked. Provided the semaphore was actually still free when TESTSET was
reissued, this means that the semaphore is now permanently locked because thread A thinks it was locked already, and any other threads
that subsequently pend on the same semaphore are being locked out by thread A, which will now never release it.

WORKAROUND:
The TESTSET instruction must be made uninterruptible to avoid this condition:

    CLI R0;
    TESTSET(P0);
    STI R0;
 
There is no workaround other than this, so events that cannot be made uninterruptible, such as an NMI or an Emulation event, will always
be sensitive to this issue. Additionally, due to the need to disable interrupts, User Mode code cannot implement this workaround.

This workaround may be built into the development tool chain and/or into the operating system source code. For tool chains and
operating systems supported by Analog Devices (VisualDSP++, VDK, CrossCore Embedded Studio, the GNU Tool Chain, and the Linux
kernel), please consult the "Silicon Anomaly Tools Support" help page in the applicable documentation and release notes for details.

For all other tool chains and operating systems, see the appropriate supporting documentation for details.

APPLIES TO REVISION(S):
0.4,  0.5

34.  05000481 - Reads of ITEST_COMMAND and ITEST_DATA Registers Cause Cache Corruption:

DESCRIPTION:
Reading the ITEST_COMMAND or ITEST_DATA registers will erroneously trigger a write to these registers in addition to reading the
current contents of the register. The erroneous write does not update the read state of the register, however, the data written to the
register is acquired from the most recent MMR write request, whether the most recent MMR write request was committed or speculatively
executed. The bogus write can set either register to perform unwanted operations that could result in:

1) Corrupted instruction L1 memory and/or instruction TAG memory.
and/or
2) Garbled instruction fetch stream (stale data used in place of new fetch data).

WORKAROUND:
Never read ITEST_COMMAND or ITEST_DATA. The only exception to this strict workaround is in the case of performing the read atomically
and immediately after a write to the same register. In this case, the erroneous write will still occur, but it will be with the exact same data
as the intentional write that preceded it.

APPLIES TO REVISION(S):
0.4,  0.5
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35.  05000489 - PLL May Latch Incorrect Values Coming Out of Reset:

DESCRIPTION:
It is possible that the PLL can latch incorrect SSEL and CSEL values during reset when VDDINT is powered before VDDEXT. If this problem
occurs, the PLL_DIV register will show the correct default value when read via software, but the actual SSEL and CSEL values being
provided to the PLL may be incorrect. This results in different values for the core and system clocks from what the default values would be
coming out of reset. If this problem occurs, the most likely result will be system and core clocks that are not the default (CCLK = 10xCLKIN,
SCLK = 2xCLKIN), which will be corrected when the application programs the PLL to the desired frequencies.  However, the random
nature of the values latched could lead to the PLL getting illegally programmed, which can cause the boot process to fail.

WORKAROUND:
There are a few workarounds for this issue. Any one of the following will avoid the issue:

1) Use the on-chip regulator.
2) Issue a second hardware reset after the power-on reset.
3) Ensure that VDDEXT reaches at least the Vddext minimum specification before turning on VDDINT.
4) If powering VDDINT first, keep RESET de-asserted until after VDDEXT has been established, then assert RESET per the power-on reset

specification.

It is extremely unlikely that this anomaly will occur. If it has not been observed in existing designs, it is recommended that one of the
above workarounds be implemented at the next logical point of the design cycle. For systems in development, implementing one of the
above workarounds is strongly encouraged.

APPLIES TO REVISION(S):
0.4,  0.5

36.  05000491 - Instruction Memory Stalls Can Cause IFLUSH to Fail:

DESCRIPTION:
When an instruction memory stall occurs when executing an IFLUSH instruction, the instruction may fail to invalidate a cache line. This
could be a problem when replacing instructions in memory and could cause stale, incorrect instructions in cache to be executed rather
than initiating a cache line fill.

WORKAROUND:
Instruction memory stalls must be avoided when executing an IFLUSH instruction. By placing the IFLUSH instruction in L1 memory, the
prefetcher will not cause instruction cache misses that could cause memory stalls. In addition, padding the IFLUSH instruction with NOPs
will ensure that subsequent IFLUSH instructions do not interfere with one another, and wrapping SSYNCs around it ensures that any fill/
victim buffers are not busy. The recommended routine to perform an IFLUSH is:

    SSYNC;          // Ensure all fill/victim buffers are not busy 
    LSETUP (LS, LE)
    LS:  IFLUSH;
         NOP;
         NOP;
    LE:  NOP;
    SSYNC;          // Ensure all fill/victim buffers are not busy
 
Since this loop is four instructions long, the entire loop fits within one loop buffer, thereby turning off the prefetcher for the duration of
the loop and guaranteeing that successive IFLUSH instructions do not interfere with each other.

APPLIES TO REVISION(S):
0.4,  0.5
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37.  05000494 - EXCPT Instruction May Be Lost If NMI Happens Simultaneously:

DESCRIPTION:
A software exception raised by issuing the EXCPT instruction may be lost if an NMI event occurs simultaneous to execution of the EXCPT
instruction. When this precise timing is met, the program sequencer believes it is going to service the EXCPT instruction and prepares to
write the address of the next sequential instruction after the EXCPT instruction to the RETX register. However, the NMI event takes priority
over the Exception event, and this address erroneously goes to the RETN register. As such, when the NMI event is serviced, program
execution incorrectly resumes at the instruction after the EXCPT instruction rather than at the EXCPT instruction itself, so the software
exception is lost and is not recoverable.

WORKAROUND:
Either do not use NMI or protect against this lost exception by forcing the exception to be continuously re-raised and verified in the
exception handler itself. For example:

    EXCPT 0;
    JUMP -2;  // add this jump -2 after every EXCPT instruction
 
Then, in the exception handler code, read the EXCAUSE field of the SEQSTAT register to determine the cause of the exception.
If EXCAUSE < 16, the handler was invoked by execution of the EXCPT instruction, so the RETX register must then be modified to skip over
the JUMP -2 that was inserted in the workaround code:

    R2 = SEQSTAT;
    R2 <<= 0x1A;
    R2 >>= 0x1A;   // Mask Everything Except SEQSTAT[5:0] (EXCAUSE)
    R1 = 0xF (Z);
    CC = R2 <= R1; // Check for EXCAUSE < 16
    IF !CC JUMP CONTINUE_EX_HANDLER;
    R2 = RETX;
    R2 += 2;       // Modify RETX to Point to Instruction After Inserted JUMP -2;
    RETX = R2;
    JUMP END_EX_HANDLER;
 
    CONTINUE_EX_HANDLER: // Rest of Exception Handler Code Goes Here
       .
       .
       .
    END_EX_HANDLER: RTX;
 
In this fashion, the JUMP -2 guarantees that the soft exception is re-raised when this anomaly occurs. When the NMI does not occur, the
above exception handler will redirect the application code to resume after the JUMP -2 workaround code that re-raises the exception.

A workaround may be built into the development tool chain and/or into the operating system source code. For tool chains and operating
systems supported by Analog Devices (VisualDSP++, VDK, the GNU Tool Chain, and the Linux kernel), please consult the "Silicon Anomaly
Tools Support" help page in the applicable documentation and release notes for details.

For all other tool chains and operating systems, see the appropriate supporting documentation for details.

APPLIES TO REVISION(S):
0.4,  0.5
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38.  05000501 - RXS Bit in SPI_STAT May Become Stuck In RX DMA Modes:

DESCRIPTION:
When in SPI receive DMA modes, the RXS bit in SPI_STAT can get set and erroneously get stuck high if the SPI port is disabled as hardware
is updating the status of the RXS bit. When in RX DMA mode, RXS will set as a word is transferred from the shift register to the internal
FIFO, but it is then automatically cleared immediately by the hardware as DMA drains the FIFO. However, there is an internal 2 system
clock (SCLK) latency for the status register to properly reflect this. If software disables the SPI port in exactly this window of time before
RXS is cleared, the RXS bit doesn't get cleared and will remain set, even after the SPI is disabled. If the SPI port is subsequently re-enabled,
the set RXS bit will cause one of two problems to occur:

1) If enabled in core RX mode, the SPI RX interrupt request will be raised immediately even though there is no new data in the SPI_RDBR
register.

2) If enabled in RX DMA mode, DMA requests will be issued, which will cause the processor to DMA data from the SPI FIFO even though
there is actually no new data present.

In master mode, the SPI will continue issuing clocks after RX DMA is completed until the SPI port is disabled. If any SPI word is received
exactly as software disables the SPI port, the problem will occur.

In slave mode, the host would have to continue providing clocks and the chip-select for this possibility to occur.

WORKAROUND:
Reading the SPI_RDBR register while the SPI is disabled will clear the stuck RXS condition and not trigger any other activity. If using RX
DMA mode, be sure to include this dummy read after the SPI port disable.

APPLIES TO REVISION(S):
0.4,  0.5

39.  05000503 - SPORT Sign-Extension May Not Work:

DESCRIPTION:
In multichannel receive mode, the SPORT sign-extension feature (RDTPYE=b#01 in SPORTx_RCR1) is not reliable for channel 0 data when
configured for MSB-first data reception. This is regardless of any channel offset and/or multichannel frame delay.

WORKAROUND:
1) If possible, use receive bit order of LSB-first.
2) Do not use channel 0.
3) Ignore channel 0 data.
4) Use software to manually apply sign extension to the channel 0 data before processing.

APPLIES TO REVISION(S):
0.4,  0.5
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40.  05000506 - Hardware Loop Can Underflow Under Specific Conditions:

DESCRIPTION:
When two consecutive hardware loops are separated by a single instruction, and the two hardware loops use the same loop registers, and
the first loop contains a conditional jump to its loop bottom, the first hardware loop can underflow.  For example:

    P0 = 16;
    LSETUP(loop_top1, loop_bottom1) LC0 = P0;
       loop_top1:    nop;
                     if CC JUMP loop_bottom1;
                     nop;
                     nop;
       loop_bottom1: nop;
 
    nop;                         // Any single instruction
 
    LSETUP(loop_top2, loop_bottom2) LC0 = P0;
       loop_top2:    nop;
       loop_bottom2: nop;
 

If a stall occurs on the instruction that is between the two loops, the top loop can decrement its loop count from 0 to 0xFFFFFFFF and
continue looping with the incorrect loop count.

WORKAROUND:
There are several workarounds to this issue:

1) Do not use the same loop register set in consecutive hardware loops.
2) Ensure there is not exactly one instruction between consecutive hardware loops.
3) Ensure the first loop does not conditionally jump to its loop bottom.

APPLIES TO REVISION(S):
0.4,  0.5
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