
a

ADSP-BF538/ADSP-BF538F Blackfin®

Processor Hardware Reference

Revision 1.2, February 2013

Part Number
82-000002-01

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2013 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, Blackfin, CrossCore, EngineerZone, EZ-KIT
Lite, and VisualDSP++ are registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference iii

CONTENTS

PREFACE

Purpose of This Manual ... xliii

Intended Audience .. xliii

Manual Contents ... xliv

What’s New in This Manual ... xlviii

Technical Support .. xlix

Supported Processors .. l

Product Information .. l

Analog Devices Web Site ... li

EngineerZone .. li

Notation Conventions .. lii

Register Diagram Conventions .. liii

INTRODUCTION

Purpose of this Manual ... 1-1

Peripherals .. 1-4

Core Architecture .. 1-5

Contents

iv ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Memory Architecture .. 1-9

Internal Memory ... 1-10

External Memory .. 1-10

I/O Memory Space .. 1-11

Event Handling .. 1-11

Core Event Controller (CEC) .. 1-12

System Interrupt Controllers (SICx) 1-13

DMA Support ... 1-13

External Bus Interface Unit ... 1-14

PC133 SDRAM Controller ... 1-14

Asynchronous Controller .. 1-15

Parallel Peripheral Interface ... 1-15

General-Purpose Mode Descriptions 1-16

Input Mode .. 1-16

Frame Capture Mode .. 1-16

Output Mode ... 1-17

ITU-R 656 Mode Descriptions .. 1-17

Active Video Only Mode ... 1-17

Vertical Blanking Interval Mode .. 1-17

Entire Field Mode ... 1-18

Serial Ports (SPORTs) ... 1-18

Serial Peripheral Interface (SPI) Ports .. 1-20

Timers ... 1-21

UART Ports ... 1-21

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference v

Contents

Controller Area Network Port ... 1-23

Two-Wire Interface Port .. 1-23

Real-Time Clock ... 1-23

Watchdog Timer ... 1-24

General-Purpose I/O ... 1-25

Clock Signals .. 1-25

Dynamic Power Management .. 1-26

Full On Operating Mode (Maximum Performance) 1-26

Active Operating Mode (Moderate Power Savings) 1-26

Sleep Operating Mode (High Power Savings) 1-27

Deep Sleep Operating Mode (Maximum
Power Savings) .. 1-27

Hibernate State .. 1-28

Voltage Regulation .. 1-28

Boot Modes .. 1-28

Instruction Set Description ... 1-30

Development Tools ... 1-31

COMPUTATIONAL UNITS

Using Data Formats .. 2-3

Binary String ... 2-3

Unsigned ... 2-4

Signed Numbers: Two’s-Complement 2-4

Fractional Representation: 1.15 .. 2-4

Contents

vi ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Register Files .. 2-5

Data Register File .. 2-6

Accumulator Registers .. 2-6

Pointer Register File .. 2-7

DAG Register Set ... 2-7

Register File Instruction Summary ... 2-8

Data Types ... 2-11

Endian Byte Order .. 2-13

ALU Data Types ... 2-13

Multiplier Data Types ... 2-14

Shifter Data Types .. 2-15

Arithmetic Formats Summary .. 2-15

Using Multiplier Integer and Fractional Formats 2-16

Rounding Multiplier Results ... 2-18

Unbiased Rounding .. 2-19

Biased Rounding .. 2-20

Truncation ... 2-22

Special Rounding Instructions ... 2-22

Using Computational Status ... 2-23

ASTAT Register .. 2-23

Arithmetic Logic Unit (ALU) .. 2-25

ALU Operations ... 2-25

Single 16-Bit Operations .. 2-26

Dual 16-Bit Operations .. 2-26

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference vii

Contents

Quad 16-Bit Operations .. 2-27

Single 32-Bit Operations ... 2-28

Dual 32-Bit Operations ... 2-28

ALU Instruction Summary .. 2-29

ALU Data Flow Details ... 2-33

Dual 16-Bit Cross Options ... 2-35

ALU Status Signals .. 2-36

ALU Division Support Features ... 2-36

Special SIMD Video ALU Operations 2-37

Multiply Accumulators (Multipliers) .. 2-37

Multiplier Operation ... 2-38

Placing Multiplier Results in Multiplier Accumulator
Registers .. 2-39

Rounding or Saturating Multiplier Results 2-39

Saturating Multiplier Results on Overflow 2-40

Multiplier Instruction Summary .. 2-40

Multiplier Instruction Options .. 2-42

Multiplier Data Flow Details ... 2-44

Multiply Without Accumulate ... 2-46

Special 32-Bit Integer MAC Instruction 2-48

Dual MAC Operations .. 2-49

Barrel Shifter (Shifter) ... 2-50

Shifter Operations ... 2-50

Contents

viii ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Two-Operand Shifts ... 2-51

Immediate Shifts .. 2-51

Register Shifts ... 2-52

Three-Operand Shifts ... 2-52

Immediate Shifts .. 2-52

Register Shifts ... 2-53

Bit Test, Set, Clear, Toggle .. 2-53

Field Extract and Field Deposit ... 2-54

Shifter Instruction Summary ... 2-54

OPERATING MODES AND STATES

User Mode ... 3-3

Protected Resources and Instructions 3-4

Protected Memory .. 3-5

Entering User Mode .. 3-5

Example Code to Enter User Mode Upon Reset 3-5

Return Instructions That Invoke User Mode 3-6

Supervisor Mode .. 3-7

Non-OS Environments ... 3-7

Example Code for Supervisor Mode Coming Out of Reset ... 3-8

Emulation Mode .. 3-9

Idle State .. 3-10

Example Code for Transition to Idle State 3-10

Reset State .. 3-11

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference ix

Contents

System Reset and Power-up .. 3-12

Hardware Reset ... 3-14

SYSCR Register ... 3-14

Software Resets and Watchdog Timer 3-15

SWRST Register ... 3-16

Core-Only Software Reset .. 3-17

Core and System Reset .. 3-17

Booting Methods .. 3-19

PROGRAM SEQUENCER

Sequencer Related Registers .. 4-4

Sequencer Status (SEQSTAT) Register 4-4

Zero-Overhead Loop (LCx, LTx, LBx) Registers 4-5

System Configuration (SYSCFG) Register 4-6

Instruction Pipeline .. 4-7

Branches and Sequencing .. 4-9

Direct Short and Long Jumps .. 4-10

Direct Call ... 4-11

Indirect Branch and Call .. 4-11

PC-Relative Indirect Branch and Call 4-12

Condition Code Flag ... 4-12

Conditional Branches .. 4-13

Conditional Register Move .. 4-14

Branch Prediction .. 4-14

Loops and Sequencing ... 4-15

Contents

x ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Events and Sequencing ... 4-18

System Interrupt Processing .. 4-21

System Peripheral Interrupts .. 4-23

System Interrupt Wake-Up Enable (SIC_IWRx) Registers 4-27

System Interrupt Status (SIC_ISRx) Registers 4-29

System Interrupt Mask (SIC_IMASKx) Registers 4-32

System Interrupt Assignment (SIC_IARx) Registers 4-34

Core Event Controller Registers .. 4-39

Core Interrupt Mask (IMASK) Register 4-39

Core Interrupt Latch (ILAT) Register 4-40

Core Interrupts Pending (IPEND) Register 4-41

Global Enabling/Disabling of Interrupts 4-42

Event Vector Table .. 4-43

Emulation ... 4-44

Reset .. 4-44

NMI (Non-Maskable Interrupt) .. 4-45

Exceptions .. 4-46

Exceptions While Executing an Exception Handler 4-51

Hardware Error Interrupt ... 4-52

Core Timer ... 4-53

General-Purpose Interrupts (IVG7-IVG15) 4-53

Servicing Interrupts .. 4-54

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference xi

Contents

Nesting of Interrupts ... 4-55

Non-Nested Interrupts .. 4-55

Nested Interrupts .. 4-57

Example Prolog Code for Nested Interrupt Service
Routine .. 4-59

Example Epilog Code for Nested Interrupt Service
Routine .. 4-59

Logging of Nested Interrupt Requests 4-60

Exception Handling .. 4-61

Deferring Exception Processing .. 4-61

Example Code for an Exception Handler 4-62

Example Code for an Exception Routine 4-64

Example Code for Using Hardware Loops in an ISR 4-64

Other Usability Issues ... 4-65

Executing RTX, RTN, or RTE in a Lower Priority Event 4-65

Recommendation for Allocating the System Stack 4-66

Latency in Servicing Events ... 4-66

DATA ADDRESS GENERATORS

Addressing With DAGs ... 5-4

Frame and Stack Pointers ... 5-5

Addressing Circular Buffers ... 5-6

Addressing With Bit-Reversed Addresses 5-9

Indexed Addressing With Index and Pointer Registers 5-10

Auto-Increment and Auto-Decrement Addressing 5-11

Contents

xii ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Pre-Modify Stack Pointer Addressing 5-11

Indexed Addressing With Immediate Offset 5-12

Post-Modify Addressing ... 5-12

Modifying DAG and Pointer Registers .. 5-13

Memory Address Alignment ... 5-14

DAG Instruction Summary ... 5-17

MEMORY

Memory Architecture .. 6-1

Overview of Internal Memory ... 6-2

Overview of Scratchpad Data SRAM 6-5

L1 Instruction Memory .. 6-5

Instruction Memory Control (IMEM_CONTROL) Register ... 6-6

L1 Instruction SRAM ... 6-7

L1 Instruction Cache .. 6-9

Cache Lines .. 6-11

Cache Hits and Misses .. 6-14

Cache Line Fills .. 6-14

Line Fill Buffer ... 6-15

Cache Line Replacement ... 6-15

Instruction Cache Management .. 6-16

Instruction Cache Locking by Line 6-17

Instruction Cache Locking by Way 6-17

Instruction Cache Invalidation 6-18

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference xiii

Contents

Instruction Test Registers .. 6-20

Instruction Test Command (ITEST_COMMAND) Register .. 6-21

Instruction Test Data (ITEST_DATA1) Register 6-22

Instruction Test Data 0 (ITEST_DATA0) Register 6-23

L1 Data Memory .. 6-24

Data Memory Control (DMEM_CONTROL) Register 6-24

L1 Data SRAM ... 6-27

L1 Data Cache .. 6-30

Example of Mapping Cacheable Address Space 6-31

Data Cache Access .. 6-34

Cache Write Method ... 6-36

Interrupt Priority Register and Write Buffer Depth 6-36

Data Cache Control Instructions 6-37

Data Cache Invalidation .. 6-38

Data Test Registers .. 6-39

 Data Test Command (DTEST_COMMAND) Register 6-40

Data Test Data (DTEST_DATA1) Register 6-41

Data Test Data (DTEST_DATA0) Register 6-42

External Memory .. 6-43

Memory Protection and Properties .. 6-43

Memory Management Unit ... 6-43

Memory Pages ... 6-45

Memory Page Attributes .. 6-45

Page Descriptor Table .. 6-47

Contents

xiv ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

CPLB Management ... 6-47

MMU Application .. 6-49

Examples of Protected Memory Regions 6-51

Instruction CPLB Data (ICPLB_DATAx) Registers 6-52

Data CPLB Data (DCPLB_DATAx) Registers 6-53

Data CPLB Address (DCPLB_ADDRx) Registers 6-56

Instruction CPLB Address (ICPLB_ADDRx) Registers 6-57

Instruction and Data CPLB Status (ICPLB_STATUS,
DCPLB_STATUS) Registers .. 6-59

Instruction and Data CPLB Fault Address
(ICPLB_FAULT_ADDR, DCPLB_FAULT_ADDR)
Registers .. 6-60

Memory Transaction Model .. 6-62

Load/Store Operation ... 6-63

Interlocked Pipeline .. 6-64

Ordering of Loads and Stores .. 6-64

Synchronizing Instructions .. 6-66

Speculative Load Execution ... 6-67

Conditional Load Behavior ... 6-68

Working With Memory .. 6-68

Alignment ... 6-68

Cache Coherency .. 6-69

Atomic Operations .. 6-69

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference xv

Contents

Memory-Mapped Registers .. 6-70

Core MMR Programming Code Example 6-70

Terminology ... 6-71

CHIP BUS HIERARCHY

Internal Interfaces ... 7-1

Internal Clocks ... 7-1

Core Overview .. 7-3

System Overview ... 7-4

System Interfaces .. 7-4

Peripheral Access Bus (PAB) ... 7-5

PAB Arbitration .. 7-5

PAB Performance .. 7-5

PAB Agents (Masters, Slaves) ... 7-6

DMA Access (DAB0/DAB1), Core (DCB0/DCB1),
and External Buses (DEB0/DEB1) .. 7-7

DABx, DCBx, and DEBx Arbitration 7-7

DAB, DCB, and DEB Performance 7-9

DAB Bus Agents (Masters) .. 7-10

External Access Bus (EAB) ... 7-10

EAB Arbitration .. 7-11

EAB Performance .. 7-11

Contents

xvi ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

DYNAMIC POWER MANAGEMENT

Clocking .. 8-1

Phase-Locked Loop and Clock Control 8-2

PLL Overview .. 8-2

PLL Clock Multiplier Ratios ... 8-3

Core Clock/System Clock Ratio Control 8-4

PLL Registers .. 8-6

PLL Divide (PLL_DIV) Register ... 8-6

PLL Control (PLL_CTL) Register 8-7

PLL Status (PLL_STAT) Register .. 8-9

PLL Lock Count (PLL_LOCKCNT) Register 8-10

Dynamic Power Management Controller 8-11

Operating Modes .. 8-11

Dynamic Power Management Controller States 8-12

Full On Mode ... 8-12

Active Mode .. 8-13

Sleep Mode ... 8-13

Deep Sleep Mode .. 8-14

Hibernate State .. 8-14

Operating Mode Transitions .. 8-15

Programming Operating Mode Transitions 8-18

PLL Programming Sequence ... 8-19

PLL Programming Sequence Continues 8-21

Examples .. 8-21

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference xvii

Contents

Dynamic Supply Voltage Control ... 8-23

Power Supply Management .. 8-24

 Voltage Regulator Control (VR_CTL) Register 8-25

Changing Voltage .. 8-28

Powering Down the Core (Hibernate State) 8-29

DIRECT MEMORY ACCESS

DMA and Memory DMA MMRs .. 9-3

Naming Conventions for DMA MMRs 9-5

Naming Conventions for Memory DMA Registers 9-7

Next Descriptor Pointer (DMAx_NEXT_DESC_PTR,
MDMAx_yy_NEXT_DESC_PTR) Registers 9-8

Start Address (DMAx_START_ADDR,
MDMAx_yy_START_ADDR) Registers 9-10

DMA Configuration (DMAx_CONFIG,
MDMAx_yy_CONFIG) Registers 9-11

Inner Loop Count (DMAx_X_COUNT,
MDMAx_yy_X_COUNT) Registers 9-14

Inner Loop Address Increment (DMAx_X_MODIFY,
MDMAx_yy_X_MODIFY) Registers 9-15

Outer Loop Count (DMAx_Y_COUNT,
MDMAx_yy_Y_COUNT) Registers 9-16

Outer Loop Address Increment (DMAx_Y_MODIFY,
MDMAx_yy_Y_MODIFY) Registers 9-17

Current Descriptor Pointer (DMAx_CURR_DESC_PTR,
MDMAx_yy_CURR_DESC_PTR) Registers 9-17

Contents

xviii ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Current Address (DMAx_CURR_ADDR,
MDMAx_yy_CURR_ADDR) Registers 9-18

Current Inner Loop Count (DMAx_CURR_X_COUNT,
MDMAx_yy_CURR_X_COUNT) Registers 9-19

Current Outer Loop Count (DMAx_CURR_Y_COUNT,
MDMAx_yy_CURR_Y_COUNT) Registers 9-20

Peripheral Map (DMAx_PERIPHERAL_MAP,
MDMAx_yy_PERIPHERAL_MAP) Registers 9-21

Interrupt Status (DMAx_IRQ_STATUS,
MDMAx_yy_IRQ_STATUS) Registers 9-26

Flex Descriptor Structure .. 9-28

Two-Dimensional DMA ... 9-30

DMA Operation Flow .. 9-32

DMA Startup .. 9-35

DMA Refresh ... 9-37

To Stop DMA Transfers .. 9-38

Software Management of DMA .. 9-39

Synchronization of Software and DMA 9-40

Single-Buffer DMA Transfers .. 9-42

Continuous Transfers Using Auto Buffering 9-42

Descriptor Structures .. 9-44

Descriptor Queue Management 9-45

Descriptor Queue Using Interrupts on Every
Descriptor ... 9-46

Descriptor Queue Using Minimal Interrupts 9-47

More 2D DMA Examples ... 9-49

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference xix

Contents

Memory DMA .. 9-50

MDMA Bandwidth ... 9-52

MDMA Priority and Scheduling .. 9-53

DMA Controller Errors (Aborts) ... 9-54

DMA Performance: Prioritization and Optimization 9-57

Prioritization and Traffic Control ... 9-59

DMA Traffic Control Counter Period (DMACx_TC_PER)
and Counter (DMACx_TC_CNT) Registers 9-61

Urgent DMA Transfers .. 9-64

SPI COMPATIBLE PORT CONTROLLERS

Interface Signals .. 10-4

Serial Peripheral Interface Clock Signals (SCKx) 10-4

Serial Peripheral Interface Slave Select Input Signals
(SPIxSS) ... 10-4

Master Out Slave In (MOSIx) .. 10-5

Master In Slave Out (MISOx) .. 10-5

Interrupt Output ... 10-6

SPI Registers ... 10-7

SPI BAUD Rate (SPIx_BAUD) Register 10-8

SPI Control (SPIx_CTL) Register .. 10-9

SPI Flag (SPIx_FLG) Register .. 10-11

Slave Select Inputs .. 10-13

Use of FLS Bits in SPI0_FLG for Multiple Slave
SPI Systems .. 10-14

Special Considerations for SPI1 and SPI2 Slave Control ... 10-15

Contents

xx ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

SPI Status (SPIx_STAT) Register ... 10-15

SPI Transmit Data Buffer (SPIx_TDBR) Register 10-17

SPI Receive Data Buffer (SPIx_RDBR) Register 10-18

SPI Receive Data Buffer Shadow (SPIx_SHADOW)
Register .. 10-19

Register Functions .. 10-19

SPI Transfer Formats .. 10-20

SPI General Operation ... 10-23

Clock Signals .. 10-24

Master Mode Operation .. 10-24

Transfer Initiation From Master (Transfer Modes) 10-25

Slave Mode Operation ... 10-26

Slave Ready for a Transfer .. 10-28

Error Signals and Flags ... 10-28

Mode Fault Error (MODF) ... 10-28

Transmission Error (TXE) ... 10-30

Reception Error (RBSY) .. 10-30

Transmit Collision Error (TXCOL) 10-30

Beginning and Ending an SPI Transfer 10-30

DMA ... 10-32

DMA Functionality .. 10-32

Master Mode DMA Operation .. 10-33

Slave Mode DMA Operation ... 10-36

Timing ... 10-39

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference xxi

Contents

PARALLEL PERIPHERAL INTERFACE

PPI Registers ... 11-2

PPI_CONTROL Register .. 11-3

PPI_STATUS Register ... 11-8

PPI_DELAY Register ... 11-9

PPI_COUNT Register .. 11-11

PPI_FRAME Register .. 11-12

ITU-R 656 Modes .. 11-13

ITU-R 656 Background ... 11-13

ITU-R 656 Input Modes ... 11-17

Entire Field ... 11-18

Active Video Only .. 11-19

Vertical Blanking Interval (VBI) Only 11-19

ITU-R 656 Output Mode .. 11-20

Frame Synchronization in ITU-R 656 Modes 11-20

General-Purpose PPI Modes .. 11-21

Data Input (RX) Modes ... 11-22

No Frame Syncs .. 11-23

1, 2, or 3 External Frame Syncs 11-24

2 or 3 Internal Frame Syncs ... 11-25

Data Output (TX) Modes .. 11-25

No Frame Syncs .. 11-26

1 or 2 External Frame Syncs .. 11-26

1, 2, or 3 Internal Frame Syncs .. 11-27

Contents

xxii ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Frame Synchronization in GP Modes 11-28

Modes with Internal Frame Syncs 11-28

Modes With External Frame Syncs 11-30

DMA Operation ... 11-31

Data Transfer Scenarios .. 11-32

UART PORT CONTROLLERS

Serial Communications ... 12-2

UART Control and Status Registers .. 12-2

UART Line Control (UARTx_LCR) Register 12-3

UART Modem Control (UARTx_MCR) Register 12-4

UART Line Status (UARTx_LSR) Register 12-5

UART Transmit Holding (UARTx_THR) Register 12-6

UART Receive Buffer (UARTx_RBR) Register 12-7

UART Interrupt Enable (UARTx_IER) Register 12-8

UART Interrupt Identification (UARTx_IIR) Register 12-10

UARTx_DLL and UARTx_DLH Registers 12-12

UART Scratch (UARTx_SCR) Register 12-14

UART Global Control (UARTx_GCTL) Register 12-14

Non-DMA Mode ... 12-15

DMA Mode ... 12-16

Mixing Modes .. 12-17

IrDA Support ... 12-18

IrDA Transmitter Description ... 12-18

IrDA Receiver Description .. 12-19

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference xxiii

Contents

SERIAL PORT CONTROLLERS

SPORT Operation .. 13-8

SPORT Disable .. 13-9

Setting SPORT Modes .. 13-10

Register Writes and Effective Latency .. 13-11

SPORT Transmit Configuration
(SPORTx_TCR1, SPORTx_TCR2) Registers 13-11

SPORT Receive Configuration
(SPORTx_RCR1, SPORTx_RCR2) Registers 13-18

Data Word Formats ... 13-22

SPORT Transmit Data (SPORTx_TX) Register 13-23

SPORT Receive Data (SPORTx_RX) Register 13-25

SPORT Status (SPORTx_STAT) Register 13-28

SPORT RX, TX, and Error Interrupts 13-30

PAB Errors .. 13-31

SPORT Transmit Serial Clock Divider (SPORTx_TCLKDIV,
SPORTx_RCLKDIV) Registers .. 13-31

SPORT Transmit Frame Sync Divider (SPORTx_TFSDIV,
SPORTx_RFSDIV) Register ... 13-32

Clock and Frame Sync Frequencies .. 13-34

Maximum Clock Rate Restrictions 13-35

Frame Sync & Clock Example ... 13-35

Word Length .. 13-36

Bit Order .. 13-36

Data Type ... 13-36

Contents

xxiv ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Companding .. 13-37

Clock Signal Options .. 13-38

Frame Sync Options ... 13-39

Framed Versus Unframed .. 13-39

Internal Versus External Frame Syncs 13-40

Active Low Versus Active High Frame Syncs 13-41

Sampling Edge for Data and Frame Syncs 13-41

Early Versus Late Frame Syncs
(Normal Versus Alternate Timing) 13-43

Data Independent Transmit Frame Sync 13-45

Moving Data Between SPORTs and Memory 13-46

Stereo Serial Operation ... 13-46

Multichannel Operation ... 13-50

SPORT Multichannel Configuration (SPORTx_MCMCn)
Registers .. 13-53

Multichannel Enable ... 13-54

Frame Syncs in Multichannel Mode 13-55

The Multichannel Frame ... 13-57

Multichannel Frame Delay .. 13-58

Window Size ... 13-58

Window Offset ... 13-59

SPORT Current Channel (SPORTx_CHNL) Register 13-59

Other Multichannel Fields in SPORTx_MCMC2 13-60

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference xxv

Contents

Channel Selection Register .. 13-61

SPORT Multichannel Receive Selection
(SPORTx_MRCSn) Registers 13-62

SPORT Multichannel Transmit Selection
(SPORTx_MTCSn) Registers 13-64

Multichannel DMA Data Packing .. 13-65

Support for H.100 Standard Protocol .. 13-66

2X Clock Recovery Control ... 13-66

SPORT Pin/Line Terminations .. 13-67

Timing Examples .. 13-67

GENERAL-PURPOSE INPUT/OUTPUT PORT F

GPIO Port F Registers (MMRs) .. 14-5

GPIO Port F Direction (PORTFIO_DIR) Register 14-5

GPIO Port F Value Registers Overview 14-6

GPIO Port F Data (PORTFIO) Register 14-8

GPIO Port F Set (PORTFIO_SET), GPIO Port F Clear
(PORTFIO_CLEAR), and GPIO Port F Toggle
(PORTFIO_TOGGLE) Registers .. 14-8

GPIO Port F Mask Interrupt Registers Overview 14-11

GPIO Port F Interrupt Generation Flow 14-13

GPIO Port F Interrupt A (PORTFIO_MASKA,
PORTFIO_MASKA_CLEAR,
PORTFIO_MASKA_SET,
PORTFIO_MASKA_TOGGLE) Registers 14-15

Contents

xxvi ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

GPIO Port F Interrupt B (PORTFIO_MASKB,
PORTFIO_MASKB_CLEAR,
PORTFIO_MASKB_SET,
PORTFIO_MASKB_TOGGLE) Registers 14-17

GPIO Port F Polarity (PORTFIO_POLAR) Register 14-18

GPIO Port F Interrupt Sensitivity (PORTFIO_EDGE)
Register .. 14-19

GPIO Port F Set on Both Edges (PORTFIO_BOTH)
Register .. 14-20

GPIO Port F Input Enable (PORTFIO_INEN) Register 14-21

Performance/Throughput ... 14-22

GENERAL-PURPOSE INPUT/OUTPUT PORTS C, D, E

GPIO Memory-Mapped Registers (MMRs) 15-4

GPIO Function Enable (PORTxIO_FER) Register 15-5

GPIO Direction (PORTxIO_DIR) Register 15-6

GPIO Input Enable (PORTxIO_INEN) Register 15-9

GPIO Value Registers ... 15-11

GPIO Data (PORTxIO) Register .. 15-12

GPIO Set (PORTxIO_SET), GPIO Clear
(PORTxIO_CLEAR), and GPIO Toggle
(PORTxIO_TOGGLE) Registers 15-13

Performance/Throughput ... 15-19

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference xxvii

Contents

TIMERS

General-Purpose Timers .. 16-1

Timer Registers ... 16-4

TIMER_ENABLE Register .. 16-4

TIMER_DISABLE Register ... 16-5

TIMER_STATUS Register .. 16-6

TIMERx_CONFIG Registers .. 16-8

TIMERx_COUNTER Registers .. 16-9

TIMERx_PERIOD and TIMERx_WIDTH Registers 16-10

Using the Timer .. 16-13

Pulse-Width Modulation (PWM_OUT) Mode 16-15

Output Pad Disable .. 16-17

Single Pulse Generation ... 16-17

Pulse-Width Modulation Waveform Generation 16-17

Stopping the Timer in PWM_OUT Mode 16-19

Externally Clocked PWM_OUT 16-20

PULSE_HI Toggle Mode .. 16-21

Pulse Width Count and Capture (WDTH_CAP) Mode 16-25

Autobaud Mode .. 16-34

External Event (EXT_CLK) Mode 16-35

Using the Timers With the PPI .. 16-37

Interrupts .. 16-37

Illegal States .. 16-38

Summary .. 16-42

Contents

xxviii ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Core Timer .. 16-44

TCNTL Register ... 16-45

TCOUNT Register ... 16-46

TPERIOD Register ... 16-47

TSCALE Register .. 16-48

Watchdog Timer ... 16-48

Watchdog Timer Operation ... 16-49

WDOG_CNT Register ... 16-49

WDOG_STAT Register .. 16-50

WDMOG_CTL Register .. 16-52

REAL-TIME CLOCK

Interfaces .. 17-2

RTC Clock Requirements ... 17-2

RTC Programming Model .. 17-4

Register Writes .. 17-5

Write Latency ... 17-6

Register Reads ... 17-7

Deep Sleep .. 17-7

Prescaler Enable .. 17-8

Event Flags ... 17-8

Interrupts ... 17-11

RTC Status (RTC_STAT) Register .. 17-13

RTC Interrupt Control (RTC_ICTL) Register 17-14

RTC Interrupt Status (RTC_ISTAT) Register 17-15

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference xxix

Contents

RTC Stopwatch Count (RTC_SWCNT)
Register .. 17-16

RTC Alarm (RTC_ALARM) Register .. 17-18

RTC Prescaler Enable (RTC_PREN)
Register .. 17-18

State Transitions Summary .. 17-20

EXTERNAL BUS INTERFACE UNIT

Overview .. 18-1

Block Diagram .. 18-2

Internal Memory Interfaces .. 18-4

External Memory Interfaces ... 18-5

EBIU Programming Model .. 18-7

Error Detection ... 18-8

Asynchronous Memory Interface ... 18-9

Asynchronous Memory Address Decode 18-9

EBIU_AMGCTL Register ... 18-10

EBIU_AMBCTL0 and EBIU_AMBCTL1 Registers 18-11

Avoiding Bus Contention .. 18-15

ARDY Input Control .. 18-16

Programmable Timing Characteristics 18-17

Asynchronous Accesses by Core Instructions 18-17

Asynchronous Reads .. 18-17

Asynchronous Writes ... 18-19

Contents

xxx ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Adding Additional Wait States .. 18-21

Byte Enables ... 18-21

On-Chip Flash Memory ... 18-21

SDRAM Controller (SDC) ... 18-22

Definition of Terms .. 18-24

Bank Activate Command .. 18-24

Burst Length .. 18-24

Burst Stop Command ... 18-25

Burst Type .. 18-25

CAS Latency (CL) .. 18-25

CBR (CAS Before RAS) Refresh or Auto-Refresh 18-26

DQM Pin Mask Function ... 18-26

Internal Bank ... 18-26

Mode Register .. 18-26

Page Size .. 18-27

Pre-Charge Command .. 18-27

SDRAM Bank .. 18-28

Self-Refresh .. 18-28

tRAS ... 18-28

tRC ... 18-29

tRCD .. 18-29

tRFC ... 18-29

tRP ... 18-29

tRRD .. 18-30

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference xxxi

Contents

tWR .. 18-30

tXSR .. 18-30

SDRAM Configurations Supported 18-30

Example SDRAM System Block Diagrams 18-31

Executing a Parallel Refresh Command 18-33

EBIU_SDGCTL Register .. 18-33

Setting the SDRAM Clock Enable (SCTLE) 18-37

Entering and Exiting Self-Refresh Mode (SRFS) 18-38

Setting the SDRAM Buffering Timing Option
(EBUFE) ... 18-39

Selecting the CAS Latency Value (CL) 18-40

Selecting the Bank Activate Command Delay (TRAS) 18-41

Selecting the RAS to CAS Delay (TRCD) 18-42

Selecting the Pre-Charge Delay (TRP) 18-42

Selecting the Write to Pre-Charge Delay (TWR) 18-43

EBIU_SDBCTL Register ... 18-44

EBIU_SDSTAT Register .. 18-47

EBIU_SDRRC Register ... 18-47

SDRAM External Memory Size ... 18-50

SDRAM Address Mapping .. 18-50

16-Bit Wide SDRAM Address Muxing 18-51

Data Mask (SDQM[1:0]) Encoding 18-52

SDC Operation .. 18-52

SDC Configuration ... 18-53

Contents

xxxii ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

SDC Commands ... 18-55

Pre-Charge Commands ... 18-56

Bank Activate Command .. 18-57

Load Mode Register Command 18-57

Read/Write Command .. 18-58

Auto-Refresh Command ... 18-59

Self-Refresh Command ... 18-59

No Operation/Command Inhibit Commands 18-60

SDRAM Timing Specifications .. 18-60

SDRAM Performance .. 18-61

Bus Request and Grant ... 18-62

Operation ... 18-62

CONTROLLER AREA NETWORK (CAN) MODULE

Overview .. 19-1

Low Power Features ... 19-4

CAN Wake-Up From Hibernate State 19-4

CAN Built-In Sleep Mode .. 19-5

CAN Module Control and Configuration Registers 19-6

CAN Control (CAN_CONTROL) Register 19-6

CAN Status (CAN_STATUS) Register 19-11

CAN Clock (CAN_CLOCK) Register 19-14

CAN Timing (CAN_TIMING) Register 19-15

CAN Debug (CAN_DEBUG) Register 19-17

Data Storage ... 19-21

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference xxxiii

Contents

Mailbox Identifier Word Registers ... 19-22

CAN Mailbox Identifier 1 (CAN_MBxx_ID1) Registers 19-23

CAN Mailbox Identifier 0 (CAN_MBxx_ID0) Registers 19-25

CAN Mailbox Time Stamp (CAN_MBxx_TIMESTAMP)
Registers ... 19-26

CAN Mailbox Length (CAN_MBxx_LENGTH) Registers ... 19-27

CAN Mailbox Data (CAN_MBxx_DATAx) Registers 19-28

Mailbox Area .. 19-33

Mailbox Types .. 19-34

Mailbox Control ... 19-35

CAN Mailbox Configuration (CAN_MCx) and Direction
(CAN_MDx) Registers ... 19-35

Receive Logic .. 19-38

Acceptance Filter/Data Acceptance Filter 19-39

CAN Acceptance Mask (CAN_AMxx) Registers 19-40

Receive Control Registers .. 19-45

CAN Receive Message Pending (CAN_RMPx) Register 19-45

CAN Receive Message Lost (CAN_RMLx) Register 19-46

CAN Overwrite Protection/Single Shot Transmission
(CAN_OPSSx) Register .. 19-48

Transmit Logic .. 19-49

Retransmission .. 19-50

Single Shot Transmission ... 19-50

Transmit Priority Defined by Mailbox Number 19-51

Contents

xxxiv ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Transmit Control Registers ... 19-51

CAN Transmission Request Set
(CAN_TRSx) Registers .. 19-51

CAN Transmission Request Reset
(CAN_TRRx) Registers .. 19-53

CAN Abort Acknowledge (CAN_AAx) Register 19-56

CAN Transmission Acknowledge
(CAN_TAx) Register .. 19-57

CAN Mailbox Temporary Disable (CAN_MBTD) Register .. 19-59

CAN Remote Frame Handling
(CAN_RFHx) Registers .. 19-60

CAN Interrupts .. 19-62

CAN Interrupt (CAN_INTR) Register 19-62

Mailbox Interrupts ... 19-64

CAN Mailbox Interrupt Mask (CAN_MBIMx) Registers 19-65

CAN Mailbox Interrupt Mask Flag
(CAN_MBTIFx) Registers .. 19-67

CAN Mailbox Receive Interrupt Flag
(CAN_MBRIFx) Registers .. 19-68

Global Interrupt ... 19-70

Global Interrupt Logic .. 19-74

CAN Global Interrupt Mask (CAN_GIM) Register 19-74

CAN Global Interrupt Status (CAN_GIS) Register 19-75

CAN Global Interrupt Flag (CAN_GIF) Register 19-75

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference xxxv

Contents

Universal Counter Module .. 19-77

Time Stamp Mode ... 19-77

Watchdog Mode .. 19-78

Auto Transmit Mode ... 19-79

Event Counter Mode ... 19-79

CAN Universal Counter Configuration
(CAN_UCCNF) Register ... 19-80

CAN Universal Counter (CAN_UCCNT) Register 19-83

CAN Universal Counter Reload/Capture
(CAN_UCRC) Register .. 19-84

Programmable Warning Limit for RXECNT and TXECNT 19-84

CAN Errors and Warnings .. 19-85

CAN Error Counter (CAN_CEC) Register 19-85

CAN Error Status (CAN_ESR) Register 19-86

CAN Error Counter Warning Level
(CAN_EWR) Register .. 19-88

TWO-WIRE INTERFACE CONTROLLERS

Overview .. 20-1

Architecture .. 20-2

Register Descriptions .. 20-4

TWI Control (TWIx_CONTROL) Registers 20-4

TWI Clock Divider (TWIx_CLKDIV) Registers 20-6

TWI Slave Mode Control (TWIx_SLAVE_CTRL)
Registers ... 20-7

Contents

xxxvi ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

TWI Slave Mode Address (TWIx_SLAVE_ADDR)
Registers .. 20-9

TWI Slave Mode Status (TWIx_SLAVE_STAT)
Registers .. 20-9

TWI Master Mode Control (TWIx_MASTER_CTRL)
Registers .. 20-11

TWI Master Mode Address (TWIx_MASTER_ADDR)
Registers .. 20-14

TWI Master Mode Status (TWIx_MASTER_STAT)
Registers .. 20-14

TWI FIFO Control (TWIx_FIFO_CTRL) Registers 20-18

TWI FIFO Status (TWIx_FIFO_STAT) Registers 20-20

TWI Interrupt Mask (TWIx_INT_ENABLE) Registers 20-22

TWI Interrupt Status (TWIx_INT_STAT) Registers 20-24

TWI FIFO Transmit Data Single Byte
(TWIx_XMT_DATA8) Registers 20-27

TWI FIFO Transmit Data Double Byte
(TWIx_XMT_DATA16) Registers 20-27

TWI FIFO Receive Data Single Byte
(TWIx_RCV_DATA8) Registers 20-28

TWI FIFO Receive Data Double Byte
(TWIx_RCV_DATA16) Registers 20-29

Data Transfer Mechanics ... 20-30

Clock Generation and Synchronization 20-31

Bus Arbitration ... 20-32

Start and Stop Conditions ... 20-32

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference xxxvii

Contents

Contents

xxxviii ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

General Call Support .. 20-33

Fast Mode ... 20-34

Programming Examples .. 20-34

General Setup ... 20-35

Slave Mode ... 20-35

Master Mode Clock Setup ... 20-36

Master Mode Transmit .. 20-37

Master Mode Receive .. 20-38

Repeated Start Condition .. 20-39

Transmit/Receive Repeated Start Sequence 20-39

Receive/Transmit Repeated Start Sequence 20-40

Clock Stretching ... 20-42

Clock Stretching During FIFO Underflow 20-42

Clock Stretching During FIFO Overflow 20-44

Clock Stretching During Repeated Start Condition 20-45

Electrical Specifications .. 20-47

SYSTEM DESIGN

Pin Descriptions ... 21-1

Recommendations for Unused Pins 21-1

Resetting the Processor ... 21-1

Booting the Processor ... 21-2

Managing Clocks .. 21-4

Managing Core and System Clocks .. 21-4

Configuring and Servicing Interrupts .. 21-4

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference xxxix

Contents

Semaphores ... 21-5

Example Code for Query Semaphore 21-6

Data Delays, Latencies and Throughput 21-6

Bus Priorities .. 21-7

External Memory Design Issues ... 21-7

Example Asynchronous Memory Interfaces 21-7

Using SDRAMs Smaller Than 16M Byte 21-8

Managing SDRAM Refresh During PLL Transitions 21-8

Avoiding Bus Contention ... 21-10

High Frequency Design Considerations 21-11

Point-to-Point Connections on Serial Ports 21-11

Signal Integrity .. 21-12

Decoupling Capacitors and Ground Planes 21-12

Oscilloscope Probes ... 21-14

Recommended Reading ... 21-14

BLACKFIN PROCESSOR DEBUG

Watchpoint Unit ... 22-1

Instruction Watchpoints .. 22-4

Instruction Watchpoint Address (WPIAn) Registers 22-5

Instruction Watchpoint Address Count (WPIACNTn)
Registers ... 22-6

Instruction Watchpoint Address Control (WPIACTL)
Register .. 22-7

Data Address Watchpoints ... 22-10

Contents

xl ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Data Watchpoint Address (WPDAn) Registers 22-11

Data Watchpoint Address Count Value
(WPDACNTn) Registers .. 22-11

Data Watchpoint Address Control (WPDACTL)
Register .. 22-12

Watchpoint Status (WPSTAT) Register 22-12

Trace Unit .. 22-14

Trace Buffer Control (TBUFCTL) Register 22-16

Trace Buffer Status (TBUFSTAT) Register 22-17

Trace Buffer (TBUF) Register .. 22-17

Code to Recreate the Execution Trace in Memory 22-18

Performance Monitoring Unit ... 22-19

Performance Monitor Counter (PFCNTRn) Registers 22-19

Performance Monitor Control (PFCTL) Register 22-20

Event Monitor Table ... 22-22

Cycle Counter .. 22-23

CYCLES and CYCLES2 Registers 22-24

Product Identification Register .. 22-25

DSP Device ID (DSPID) Register 22-25

BLACKFIN PROCESSOR CORE MMR ASSIGNMENTS

L1 Data Memory Controller Registers ... A-1

L1 Instruction Memory Controller Registers A-4

Interrupt Controller Registers ... A-7

Core Timer Registers .. A-9

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference xli

Contents

Debug, MP, and Emulation Unit Registers A-9

Trace Unit Registers ... A-10

Watchpoint and Patch Registers .. A-10

Performance Monitor Registers ... A-12

SYSTEM MMR ASSIGNMENTS

Dynamic Power Management Registers ... B-2

System Reset and Interrupt Control
Registers ... B-2

Watchdog Timer Registers .. B-3

Real-Time Clock Registers ... B-4

Parallel Peripheral Interface (PPI) Registers B-4

UART Controller Registers .. B-5

SPI Controller Registers ... B-8

Timer Registers .. B-10

GPIO Port C, D, and E Registers ... B-11

GPIO Port F Registers ... B-13

SPORT Controller Registers ... B-14

DMA/Memory DMA Control Registers B-22

External Bus Interface Unit Registers .. B-25

CAN Registers ... B-26

Two-Wire Interface Registers .. B-36

xlii ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

TEST FEATURES

JTAG Standard ... C-1

Boundary-Scan Architecture ... C-2

Instruction Register ... C-4

Public Instructions .. C-6

EXTEST – Binary Code 00000 ... C-6

SAMPLE/PRELOAD – Binary Code 10000 C-6

BYPASS – Binary Code 11111 .. C-6

Boundary-Scan Register .. C-7

NUMERIC FORMATS

Unsigned or Signed: Two’s-Complement Format D-1

Integer or Fractional .. D-1

Binary Multiplication .. D-5

Fractional Mode and Integer Mode ... D-6

Block Floating-Point Format .. D-7

INDEX

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference xliii

 PREFACE

Thank you for purchasing and developing systems using Blackfin® pro-
cessors from Analog Devices, Inc.

Purpose of This Manual
ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference con-
tains information about the architecture for the ADSP-BF538 processors.
The architectural descriptions cover functional blocks, buses, and ports,
including all features and processes that they support.

For programming information, see Blackfin Processor Programming Refer-
ence. For timing, electrical, and package specifications, see
ADSP-BF538/ADSP-BF538F Embedded Processor Data Sheet.

Intended Audience
The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. The manual assumes the audience has a
working knowledge of the appropriate processor architecture and instruc-
tion set. Programmers who are unfamiliar with Analog Devices processors
can use this manual, but should supplement it with other texts, such as
hardware and programming reference manuals that describe their target
architecture.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference xliv

Manual Contents
This manual contains:

• Chapter 1, “Introduction”
Provides a high level overview of the processor. Architectural
descriptions include functional blocks, buses, and ports, including
features and processes they support.

• Chapter 2, “Computational Units”
Describes the arithmetic/logic units (ALUs), multiplier/accumula-
tor units (MACs), shifter, and the set of video ALUs. The chapter
also discusses data formats, data types, and register files.

• Chapter 3, “Operating Modes and States”
Describes the three operating modes of the processor: Emulation
mode, Supervisor mode, and User mode. The chapter also
describes Idle state and Reset state.

• Chapter 4, “Program Sequencer”
Describes the operation of the program sequencer, which controls
program flow by providing the address of the next instruction to be
executed. The chapter also discusses loops, subroutines, jumps,
interrupts, and exceptions.

• Chapter 5, “Data Address Generators”
Describes the Data Address Generators (DAGs), addressing modes,
how to modify DAG and Pointer registers, memory address align-
ment, and DAG instructions.

• Chapter 6, “Memory”
Describes L1 memories. In particular, details their memory archi-
tecture, memory model, memory transaction model, and
memory-mapped registers (MMRs). Discusses the instruction,
data, and scratchpad memory, which are part of the Blackfin pro-
cessor core.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference xlv

• Chapter 7, “Chip Bus Hierarchy”
Describes on-chip buses, including how data moves through the
system. The chapter also discusses the system memory map, major
system components, and the system interconnects.

• Chapter 8, “Dynamic Power Management”
Describes system reset and power-up configuration, system clock-
ing and control, and power management.

• Chapter 9, “Direct Memory Access”
Describes the peripheral DMA and memory DMA controllers. The
peripheral DMA section discusses direct, block data movements
between a peripheral with DMA access and internal or external
memory spaces.

The memory DMA section discusses memory-to-memory transfer
capabilities among the processor memory spaces and the L1, exter-
nal synchronous, and asynchronous memories.

• Chapter 10, “SPI Compatible Port Controllers”
Describes the serial peripheral interface (SPI) ports that provide an
I/O interface to a variety of SPI compatible peripheral devices.

• Chapter 11, “Parallel Peripheral Interface”
Describes the parallel peripheral interface (PPI) of the processor.
The PPI is a half-duplex, bidirectional port accommodating up to
16 bits of data and used for digital video and data converter
applications.

• Chapter 12, “UART Port Controllers”
Describes the Universal Asynchronous Receiver/Transmitter
(UART) ports, which convert data between serial and parallel
formats and includes modem control and interrupt handling hard-
ware. The UARTs support the half-duplex IrDA® SIR protocol as
a mode-enabled feature.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference xlvi

• Chapter 13, “Serial Port Controllers”
Describes the independent, synchronous serial port controllers that
provide an I/O interface to a variety of serial peripheral devices.

• Chapter 14, “General-Purpose Input/Output Port F”
Describes the GPIO Port F, including how to configure the pins as
inputs and outputs and how to generate interrupts.

• Chapter 15, “General-Purpose Input/Output Ports C, D, E”
Describes the general-purpose I/O pins, including how to config-
ure the pins as inputs and outputs.

• Chapter 16, “Timers”
Describes the general-purpose timers that can be configured in any
of three modes; the core timer that can generate periodic interrupts
for a variety of timing functions; and the watchdog timer that can
implement software watchdog functions, such as generating events
to the Blackfin processor core.

• Chapter 17, “Real-Time Clock”
Describes a set of digital watch features of the processor, including
time of day, alarm, and stopwatch countdown.

• Chapter 18, “External Bus Interface Unit”
Describes the External Bus Interface Unit of the processor. The
chapter also discusses the asynchronous memory interface, the
SDRAM controller (SDC), related registers, and SDC configura-
tion and commands.

• Chapter 19, “Controller Area Network (CAN) Module”
Describes the CAN module, a low bit rate serial interface intended
for use in applications where bit rates are typically up to 1Mbit/s.

• Chapter 20, “Two-Wire Interface Controllers”
Describes the Two-Wire Interface (TWI) controllers, which allow
a device to interface to an Inter IC bus as specified by the Philips
I2C Bus Specification version 2.1 dated January 2000.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference xlvii

• Chapter 21, “System Design”
Describes how to use the processor as part of an overall system. It
includes information about interfacing the processor to external
memory chips, bus timing and latency numbers, semaphores, and a
discussion of the treatment of unused pins.

• Chapter 22, “Blackfin Processor Debug”
Describes the Blackfin processor debug functionality, which can be
used for software debugging and complements some services often
found in an operating system.

• Appendix A, “Blackfin Processor Core MMR Assignments”
Lists the core memory-mapped registers, their addresses, and
cross-references to text.

• Appendix B, “System MMR Assignments”
Lists the system memory-mapped registers, their addresses, and
cross-references to text.

• Appendix C, “Test Features”
Describes test features for the processor; discusses the JTAG stan-
dard, boundary-scan architecture, instruction and boundary
registers, and public instructions.

• Appendix D, “Numeric Formats”
Describes various aspects of the 16-bit data format. The chapter
also describes how to implement a block floating-point format in
software.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference xlviii

What’s New in This Manual
This is Revision 1.2 of the ADSP-BF538/ADSP-BF538F Blackfin Processor
Hardware Reference. This revision corrects minor typographical errors and
the following issues:

• UART not half-duplex in Chapter 1, “Introduction”

• System reset code example in Chapter 3, “Operating Modes and
States”

• RETI instructions need not be first in nested interrupts and com-
plete table of hardware conditions causing hardware interrupts in
Chapter 4, “Program Sequencer”

• Core priority over DMA when accessing L1 SRAM in Chapter 7,
“Chip Bus Hierarchy”

• Removal of reference to datasheet, note on programming the
STOPCK bit, and description of the WAKE bit in Chapter 8, “Dynamic
Power Management”

• Obsolete DMA error address range deleted in Chapter 9, “Direct
Memory Access”

• Termination of SPI TX DMA operations in Chapter 10, “SPI
Compatible Port Controllers”

• Behavior on startup when using an external clock and receiver and
transmitter enable bit names standardized on RSPEN and TSPEN in
Chapter 13, “Serial Port Controllers”

• Note on the TINT bit in the TCNTL register in Chapter 16, “Timers”

• Sampling the ARDY pin when it is asserted and note on timing
dependencies for the TRP and TRAS settings in the EBIU_SDGCTL reg-
ister in Chapter 18, “External Bus Interface Unit”

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference xlix

• Detection of recessive-to-dominant edges and note on CAN_GIS and
CAN_GIF programming in Chapter 19, “Controller Area Network
(CAN) Module”

• Coverage of previously undocumented clock stretching behavior-
and miscellaneous changes across Chapter 20, “Two-Wire Interface
Controllers”

• Clarification of watchpoint ranges in Chapter 22, “Blackfin Pro-
cessor Debug”

Technical Support
You can reach Analog Devices processors and DSP technical support in
the following ways:

• Post your questions in the processors and DSP support community
at EngineerZone®:
http://ez.analog.com/community/dsp

• Submit your questions to technical support directly at:
http://www.analog.com/support

• E-mail your questions about processors, DSPs, and tools develop-
ment software from CrossCore® Embedded Studio or
VisualDSP++®:

Choose Help > Email Support. This creates an e-mail to
processor.tools.support@analog.com and automatically attaches
your CrossCore Embedded Studio or VisualDSP++ version infor-
mation and license.dat file.

• E-mail your questions about processors and processor applications
to:
processor.support@analog.com or
processor.china@analog.com (Greater China support)

http://ez.analog.com/community/dsp
http://www.analog.com/support
mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.china@analog.com

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference l

• In the USA only, call 1-800-ANALOGD (1-800-262-5643)

• Contact your Analog Devices sales office or authorized distributor.
Locate one at:
www.analog.com/adi-sales

• Send questions by mail to:
Processors and DSP Technical Support
Analog Devices, Inc.
Three Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

Supported Processors
The name “Blackfin” refers to a family of 16-bit, embedded processors.
Refer to the CCES or VisualDSP++ online help for a complete list of sup-
ported processors.

Product Information
Product information can be obtained from the Analog Devices Web site
and the CCES or VisualDSP++ online help.

http://www.analog.com/adi-sales

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference li

Analog Devices Web Site
The Analog Devices Web site, www.analog.com, provides information
about a broad range of products—analog integrated circuits, amplifiers,
converters, and digital signal processors.

To access a complete technical library for each processor family, go to
http://www.analog.com/processors/technical_library. The manuals
selection opens a list of current manuals related to the product as well as a
link to the previous revisions of the manuals. When locating your manual
title, note a possible errata check mark next to the title that leads to the
current correction report against the manual.

Also note, myAnalog is a free feature of the Analog Devices Web site that
allows customization of a Web page to display only the latest information
about products you are interested in. You can choose to receive weekly
e-mail notifications containing updates to the Web pages that meet your
interests, including documentation errata against all manuals. myAnalog
provides access to books, application notes, data sheets, code examples,
and more.

Visit myAnalog to sign up. If you are a registered user, just log on. Your
user name is your e-mail address.

EngineerZone
EngineerZone is a technical support forum from Analog Devices, Inc. It
allows you direct access to ADI technical support engineers. You can
search FAQs and technical information to get quick answers to your
embedded processing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar
design challenges. You can also use this open forum to share knowledge
and collaborate with the ADI support team and your peers. Visit
http://ez.analog.com to sign up.

http://www.analog.com
http://www.analog.com/processors/technical_library/
http://www.analog.com/MyAnalog
http://www.analog.com/MyAnalog
http://www.analog.com/MyAnalog
http://ez.analog.com

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference lii

Notation Conventions
Text conventions in this manual are identified and described as follows.

Example Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
IDE environment’s menu system (for example, the Close command
appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets delim-
ited by commas and terminated with an ellipsis; read the example as an
optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this

symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference liii

Register Diagram Conventions
Register diagrams use the following conventions:

• The descriptive name of the register appears at the top, followed by
the short form of the name in parentheses.

• If the register is read-only (RO), write-1-to-set (W1S), or
write-1-to-clear (W1C), this information appears under the name.
Read/write is the default and is not noted. Additional descriptive
text may follow.

• If any bits in the register do not follow the overall read/write con-
vention, this is noted in the bit description after the bit name.

• If a bit has a short name, the short name appears first in the bit
description, followed by the long name in parentheses.

• The reset value appears in binary in the individual bits and in hexa-
decimal to the right of the register.

• Bits marked x have an unknown reset value. Consequently, the
reset value of registers that contain such bits is undefined or depen-
dent on pin values at reset.

• Shaded bits are reserved.

 To ensure upward compatibility with future implementations,
write back the value that is read for reserved bits in a register,
unless otherwise specified.

liv ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The following figure shows an example of these conventions.

Figure 1. Register Diagram Example

00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0

TMODE[1:0] (Timer Mode)

Reset = 0x00000

Timer Configuration Registers (TIMERx_CONFIG)

0 - Negative action pulse.
1 - Positive action pulse.

This bit must be set to 1, when operat-
ing the PPI in GP Output modes.
0 - Use system clock SCLK for counter.
1 - Use PWM_CLK to clock counter.

0 - The effective state of PULSE_HI
is the programmed state.
1 - The effective state of PULSE_HI
alternates each period.

00 - No error.
01 - Counter overflow error.
10 - Period register programming error.
11 - Pulse width register programming error.

00 - Reset state - unused.
01 - PWM_OUT mode.
10 - WDTH_CAP mode.
11 - EXT_CLK mode.

PULSE_HI

CLK_SEL (Timer Clock Select)

TOGGLE_HI (PWM_OUT PULSE_HI Toggle Mode)

ERR_TYP[1:0] (Error Type) - RO

PERIOD_CNT (Period
Count)

0 - Interrupt request
disable.
1 - Interrupt request enable

0 - Count to end of width.
1 - Count to end of period.

IRQ_ENA (Interrupt
Request Enable)

0 - Sample TMRx pin or
PF1 pin.
1 - Sample UART RX pin
or PPI_CLK pin.

TIN_SEL (Timer Input
Select)

0 - Enable pad in PWM_OUT mode.
1 - Disable pad in PWM_OUT mode.

OUT_DIS (Output Pad Disable)

0 - Timer counter stops during emulation.
1 - Timer counter runs during emulation.

EMU_RUN (Emulation Behavior Select)

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 1-1

1 INTRODUCTION

The ADSP-BF538 Blackfin® processor is derived from the ADSP-BF533
processor, offering similar performance and ease of use capabilities, but
with enhanced peripheral features, targeted for the automotive and indus-
trial markets. Common peripherals share the same features and functions.

Any time a processor is referenced by name (for example, ADSP-BF538),
the information provided applies to the processor derivatives with on-chip
flash memory as well (for example, ADSP-BF538F4 and
ADSP-BF538F8).

The Blackfin processor core architecture combines a dual-MAC signal
processing engine, an orthogonal RISC-like microprocessor instruction
set, flexible single instruction multiple data (SIMD) capabilities, and mul-
timedia features into a single instruction set architecture.

Blackfin products feature dynamic power management, the ability to vary
both the voltage and frequency of operation, which optimizes the power
consumption profile to the specific task.

Purpose of this Manual
This Blackfin processor hardware reference provides architectural infor-
mation about enhanced Blackfin processors that include the ADSP-BF538
processors. The architectural descriptions cover functional blocks, buses,
and ports, including all features and processes that they support.

Purpose of this Manual

1-2 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

For programming information, see Blackfin Processor Programming Refer-
ence. For timing, electrical, and package specifications, see
ADSP-BF538/ADSP-BF538F Embedded Processor Data Sheet.

Table 1-1 can be used to identify chapters from the ADSP-BF533 Blackfin
Processor Hardware Reference that are applicable to ADSP-BF538 Blackfin
products.

For programmers familiar with the ADSP-BF533/BF532/BF531 proces-
sors, the ADSP-BF538 is very similar, as they are built from the same
processor core. The ADSP-BF538 uses many of the same peripherals that
are found on the ADSP-BF533/BF532/BF531 (see Table 1-1).

Table 1-1 is intended as a guide that can be used to identify which chap-
ters of this manual are the same/similar or new, when compared to the
ADSP-BF533 Blackfin Processor Hardware Reference chapters; such that an
experienced programmer does not need to read every chapter of this man-
ual to understand the operation of the ADSP-BF538.

• No changes—means that the reader can refer directly to
ADSP-BF533 Blackfin Processor Hardware Reference for this
chapter.

• Changed—means that ADSP-BF533 Blackfin Processor Hardware
Reference chapter has been copied into this book, but some changes
have been made or features added.

• New—means that this is an entirely new chapter and this is the
only source of reference for the material

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 1-3

Introduction

Table 1-1. Guide to Hardware Reference Chapter Differences

ADSP-BF538 ADSP-BF533 Comments

Chapter
Number

Chapter Title Chapter
Number

Status

1 Introduction 1 Changed Describes added
peripherals.

2 Computational Units 2 No changes

3 Operating Modes and States 3 Changed BMODE changes.

4 Program Sequencer 4 Changed Describes additional
interrupt sources.

5 Data Address Generators 5 No changes

6 Memory 6 No changes

7 Chip Bus Hierarchy 7 Changed Changes to block dia-
gram and descrip-
tions.

9 Direct Memory Access 9 Changed Adds a second DMA
controller.

10 SPI Compatible Port Controllers 10 Changed Adds more SPI ports.
Changes SPI slave
select and slave enable
functionality.

11 Parallel Peripheral Interface 11 No changes

12 Serial Port Controllers 12 Changed Adds more serial
ports.

13 UART Port Controller 13 Changed Adds more UART
ports.

14 General-Purpose I/O Port F 14 Changed Programmable flags
are now general-pur-
pose I/O port F pins.

15 General-Purpose I/O Ports C, D,
and E

New Describes general-pur-
pose I/O pins.

16 Timers 15 No changes

17 Real Time Clock 16 No changes

Peripherals

1-4 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Peripherals
The processor system peripherals include the following:

• Parallel peripheral interface (PPI)

• Serial ports (SPORTs)

• Serial peripheral interfaces (SPI)

• Controller area network (CAN)

• Two-wire interfaces (TWI)—for connection to an I2C© network

• General-purpose timers

• Universal asynchronous receiver transmitters (UART)

• Real-time clock (RTC)

• Watchdog timer

• General-purpose I/O

18 External Bus Interface Unit 17 No changes

19 System Design 18 Changed

20 Blackfin Processor Debug 19 No changes

21 Controller Area Network
(CAN)

New Describes the CAN
2.0B controller.

22 Two-Wire Interface Controller New Describes the TWI
controller connection

to an I2C© network.

Table 1-1. Guide to Hardware Reference Chapter Differences (Cont’d)

ADSP-BF538 ADSP-BF533 Comments

Chapter
Number

Chapter Title Chapter
Number

Status

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 1-5

Introduction

These peripherals are connected to the core via several high bandwidth
buses, as shown in Figure 1-1.

All of the peripherals, except for general-purpose I/O, real-time clock,
CAN, timers, and TWI are supported by a flexible DMA structure. There
are also four separate memory DMA channels dedicated to data transfers
between the processor memory spaces, which include external SDRAM
and asynchronous memory. Multiple on-chip buses provide enough band-
width to keep the processor core running even when there is also activity
on all of the on-chip and external peripherals.

Core Architecture
The processor core contains two 16-bit multipliers, two 40-bit accumula-
tors, two 40-bit arithmetic logic units (ALUs), four 8-bit video ALUs, and
a 40-bit shifter, as shown in Figure 1-2. The computational units process
8-, 16-, or 32-bit data from the register file.

Figure 1-1. Processor Block Diagram

UART0

SPORT0-1

WATCHDOG
TIMER

RTC

SPI0

TIMER0-2

PPI
SPI1-2

SPORT2-3

UART1-2

GPIO
PORT

F

GPIO
PORT

D

GPIO
PORT

C

GPIO
PORT

E EXTERNAL PORT
FLASH, SDRAM CONTROL

BOOT ROM

JTAG TEST AND EMULATIONVOLTAGE REGULATOR

DMA
CONTROLLER0

L1
INSTRUCTION

MEMORY

L1
DATA

MEMORY

B INTERRUPT
CONTROLLER

PERIPHERAL ACCESS BUS

D
M

A
A

C
C

E
S

S
B

U
S

0

DMA CORE BUS 0
DMA

EXTERNAL
BUS 1

P
E

R
IP

H
E

R
A

L
A

C
C

E
S

S
B

U
S

TWI0-1

CAN 2.0B

GPIO

512 KB OR 1 MB
FLASH MEMORY

(ADSP-BF538F ONLY)

DMA
CONTROLLER1

D
M

A
A

C
C

E
S

S
B

U
S

1

DMA CORE
BUS 1

DMA
EXTERNAL

BUS 0

Core Architecture

1-6 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The compute register file contains eight 32-bit registers. When perform-
ing compute operations on 16-bit operand data, the register file operates
as 16 independent 16-bit registers. All operands for compute operations
come from the multiported register file and instruction constant fields.

Figure 1-2. Processor Core Architecture

SEQUENCER

ALIGN

DECODE

LOOP BUFFER

16 16
88 8 8

40 40

A0 A1

BARREL
SHIFTER

DATA ARITHMETIC UNIT

CONTROL
UNIT

R7.H
R6.H

R5.H

R4.H

R3.H

R2.H

R1.H

R0.H

R7.L
R6.L

R5.L

R4.L

R3.L

R2.L

R1.H

R0.L

ASTAT

40 40

32 32

32

32

32
32
32LD0

LD1
SD

DAG0

DAG1

ADDRESS ARITHMETIC UNIT

I3

I2

I1

I0

L3

L2

L1

L0

B3

B2

B1

B0

M3

M2

M1

M0

SP
FP

P5

P4
P3

P2

P1

P0

DA1

DA0

32

32

32

PREGRAB
32

TO
 M

E
M

O
R

Y

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 1-7

Introduction

Each MAC can perform a 16- by 16-bit multiply per cycle, with accumu-
lation to a 40-bit result. Signed and unsigned formats, rounding, and
saturation are supported.

The ALUs perform a traditional set of arithmetic and logical operations
on 16-bit or 32-bit data. Many special instructions are included to acceler-
ate various signal processing tasks. These include bit operations such as
field extract and population count, modulo 232 multiply, divide primi-
tives, saturation and rounding, and sign/exponent detection. The set of
video instructions include byte alignment and packing operations, 16-bit
and 8-bit adds with clipping, 8-bit average operations, and 8-bit sub-
tract/absolute value/accumulate (SAA) operations. Also provided are the
compare/select and vector search instructions. For some instructions, two
16-bit ALU operations can be performed simultaneously on register pairs
(a 16-bit high half and 16-bit low half of a compute register). By also
using the second ALU, quad 16-bit operations are possible.

The 40-bit shifter can deposit data and perform shifting, rotating, normal-
ization, and extraction operations.

A program sequencer controls the instruction execution flow, including
instruction alignment and decoding. For program flow control, the
sequencer supports PC relative and indirect conditional jumps (with static
branch prediction), and subroutine calls. Hardware is provided to support
zero-overhead looping. The architecture is fully interlocked, meaning that
there are no visible pipeline effects when executing instructions with data
dependencies.

The address arithmetic unit provides two addresses for simultaneous dual
fetches from memory. It contains a multiported register file consisting of
four sets of 32-bit index, modify, length, and base registers (for circular
buffering), and eight additional 32-bit pointer registers (for C-style
indexed stack manipulation).

Core Architecture

1-8 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Blackfin products support a modified Harvard architecture in combina-
tion with a hierarchical memory structure. Level 1 (L1) memories typically
operate at the full processor speed with little or no latency. At the L1 level,
the instruction memory holds instructions only. The two data memories
hold data, and a dedicated scratchpad data memory stores stack and local
variable information.

In addition, multiple L1 memory blocks are provided, which may be con-
figured as a mix of SRAM and cache. The memory management unit
(MMU) provides memory protection for individual tasks that may be
operating on the core and may protect system registers from unintended
access.

The architecture provides three modes of operation: user, supervisor, and
emulation. User mode has restricted access to a subset of system resources,
thus providing a protected software environment. Supervisor and emula-
tion modes have unrestricted access to the system and core resources.

The Blackfin instruction set is optimized so that 16-bit opcodes represent
the most frequently used instructions. Complex DSP instructions are
encoded into 32-bit opcodes as multifunction instructions. Blackfin prod-
ucts support a limited multi-issue capability, where a 32-bit instruction
can be issued in parallel with two 16-bit instructions. This allows the pro-
grammer to use many of the core resources in a single instruction cycle.

The Blackfin assembly language uses an algebraic syntax. The architecture
is optimized for use with the C compiler.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 1-9

Introduction

Memory Architecture
The Blackfin architecture structures memory as a single, unified 4G byte
address space using 32-bit addresses. All resources, including internal
memory, external memory, and I/O control registers, occupy separate sec-
tions of this common address space. The memory portions of this address
space are arranged in a hierarchical structure to provide a good
cost/performance balance of some very fast, low latency on-chip memory
as cache or SRAM, and larger, lower-cost and lower performance off-chip
memory systems. Table 1-2 shows the memory allocation for the
ADSP-BF538.

The L1 memory system is the primary highest performance memory avail-
able to the core. The off-chip memory system, accessed through the
External Bus Interface Unit (EBIU), provides expansion with SDRAM,
flash memory, and SRAM, optionally accessing up to 132M bytes of phys-
ical memory.

The memory DMA controller provides high bandwidth data movement
capability. It can perform block transfers of code or data between the
internal memory and the external memory spaces.

Table 1-2. Memory Comparison

Type of Memory Memory size

Instruction SRAM/Cache 16 KB

Instruction SRAM 64 KB

Instruction ROM -

Data SRAM/Cache 32 KB

Data SRAM 32 KB

Scratchpad 4 KB

Total 148 KB

Memory Architecture

1-10 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Internal Memory
The processor has three blocks of on-chip memory that provide high
bandwidth access to the core:

L1 instruction memory, consisting of SRAM and a 4-way set-associative
cache. On ROM-enabled parts, this also includes a user-definable ROM
region. This memory is accessed at full processor speed.

L1 data memory, consisting of SRAM and/or a 2-way set-associative
cache. This memory block is accessed at full processor speed.

L1 scratchpad RAM, which runs at the same speed as the L1 memories but
is only accessible as data SRAM and cannot be configured as cache
memory.

External Memory
External (off-chip) memory is accessed via the EBIU. This 16-bit interface
provides a glueless connection to a bank of synchronous DRAM
(SDRAM) and as many as four banks of asynchronous memory devices
including flash memory, EPROM, ROM, SRAM, and memory-mapped
I/O devices.

The PC133-compliant SDRAM controller can be programmed to inter-
face to up to 128M bytes of SDRAM.

The asynchronous memory controller can be programmed to control up
to four banks of devices. Each bank occupies a 1M byte segment regardless
of the size of the devices used, so that these banks are only contiguous if
each is fully populated with 1M byte of memory.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 1-11

Introduction

I/O Memory Space
Blackfin products do not define a separate I/O space. All resources are
mapped through the flat 32-bit address space. On-chip I/O devices have
their control registers mapped into memory-mapped registers (MMRs) at
addresses near the top of the 4G byte address space. These are separated
into two smaller blocks: one contains the control MMRs for all core func-
tions and the other contains the registers needed for setup and control of
the on-chip peripherals outside of the core. The MMRs are accessible only
in supervisor mode. They appear as reserved space to on-chip peripherals.

Event Handling
The event controller on the processor handles all asynchronous and syn-
chronous events to the processor. The processor event handling supports
both nesting and prioritization. Nesting allows multiple event service rou-
tines to be active simultaneously. Prioritization ensures that servicing a
higher priority event takes precedence over servicing a lower priority
event. The controller provides support for five different types of events:

• Emulation

Causes the processor to enter emulation mode, allowing command
and control of the processor via the JTAG interface.

• Reset

Resets the processor.

• Nonmaskable Interrupt (NMI)

The software watchdog timer or the NMI input signal to the pro-
cessor generates this event. The NMI event is frequently used as a
power-down indicator to initiate an orderly shutdown of the
system.

Event Handling

1-12 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• Exceptions

Synchronous to program flow. That is, the exception is taken
before the instruction is allowed to complete. Conditions such as
data alignment violations and undefined instructions cause
exceptions.

• Interrupts

Asynchronous to program flow. These are caused by input pins,
timers, and other peripherals.

Each event has an associated register to hold the return address and an
associated return-from-event instruction. When an event is triggered, the
state of the processor is saved on the supervisor stack.

The processor event controller consists of two stages: the core event con-
troller (CEC) and the system interrupt controllers (SIC). The CEC works
with the SIC to prioritize and control all system events. Conceptually,
interrupts from the peripherals arrive at the SIC and are routed directly
into the general-purpose interrupts of the CEC.

Core Event Controller (CEC)
The CEC supports nine general-purpose interrupts (IVG15–7), in addition
to the dedicated interrupt and exception events. Of these general-purpose
interrupts, the two lowest-priority interrupts (IVG15–14) are recom-
mended to be reserved for software interrupt handlers, leaving seven
prioritized interrupt inputs to support peripherals.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 1-13

Introduction

System Interrupt Controllers (SICx)
The system interrupt controllers provide the mapping and routing of
events from the many peripheral interrupt sources to the prioritized gen-
eral-purpose interrupt inputs of the CEC. Although the processor
provides a default mapping, the user can alter the mappings and priorities
of interrupt events by writing the appropriate values into the Interrupt
Assignment Registers (SIC_IARx).

DMA Support
The processor has two independent DMA controllers that support auto-
mated data transfers with minimal overhead for the core. DMA transfers
can occur between the internal memories and any of its DMA-capable
peripherals. Additionally, DMA transfers can be accomplished between
any of the DMA-capable peripherals and external devices connected to the
external memory interfaces, including the SDRAM controller and the
asynchronous memory controller. DMA-capable peripherals include the
SPORTs, SPI ports, UARTs, and PPI. Each individual DMA-capable
peripheral has at least one dedicated DMA channel.

The DMA controllers support both 1-dimensional (1D) and 2-dimen-
sional (2D) DMA transfers. DMA transfer initialization can be
implemented from registers or from sets of parameters called descriptor
blocks.

The 2D DMA capability supports arbitrary row and column sizes up to
64K elements by 64K elements, and arbitrary row and column step sizes
up to +/– 32K elements. Furthermore, the column step size can be less
than the row step size, allowing implementation of interleaved data
streams. This feature is especially useful in video applications where data
can be de-interleaved on the fly.

External Bus Interface Unit

1-14 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Examples of DMA types supported include:

• A single, linear buffer that stops upon completion

• A circular, auto-refreshing buffer that interrupts on each full or
fractionally full buffer

• 1-D or 2-D DMA using a linked list of descriptors

• 2-D DMA using an array of descriptors specifying only the base
DMA address within a common page

In addition to the dedicated peripheral DMA channels, there are four
separate memory DMA channels provided for transfers between the vari-
ous memories of the system. This enables transfers of blocks of data
between any of the memories—including external SDRAM, ROM,
SRAM, and flash memory—with minimal processor intervention. Mem-
ory DMA transfers can be controlled by a very flexible descriptor-based
methodology or by a standard register-based autobuffer mechanism.

External Bus Interface Unit
The external bus interface unit on the processor interfaces with a wide
variety of industry-standard memory devices. The controller consists of an
SDRAM controller and an asynchronous memory controller.

PC133 SDRAM Controller
The SDRAM controller provides an interface to a single bank of indus-
try-standard SDRAM devices or DIMMs. Fully compliant with the
PC133 SDRAM standard, the bank can be configured to contain between
16 and 128M bytes of memory.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 1-15

Introduction

A set of programmable timing parameters is available to configure the
SDRAM bank to support slower memory devices. The memory bank is
16 bits wide for minimum device count and lower system cost.

Asynchronous Controller
The asynchronous memory controller provides a configurable interface for
up to four separate banks of memory or I/O devices. Each bank can be
independently programmed with different timing parameters. This allows
connection to a wide variety of memory devices, including SRAM, ROM,
and flash EPROM, as well as I/O devices that interface with standard
memory control lines. Each bank occupies a 1M byte window in the pro-
cessor address space, but if not fully populated, these are not made
contiguous by the memory controller. The banks are 16 bits wide, for
interfacing to a range of memories and I/O devices.

Parallel Peripheral Interface
The processor provides a parallel peripheral interface (PPI) that can con-
nect directly to parallel A/D and D/A converters, video encoders and
decoders, and other general-purpose peripherals. The PPI consists of a
dedicated input clock pin, up to 3 frame synchronization pins, and up to
16 data pins. The input clock supports parallel data rates up to SCLK/2,
while the synchronization signals can be configured as either inputs or
outputs.

The PPI supports a variety of general-purpose and ITU-R 656 modes of
operation. In general-purpose mode, the PPI provides half-duplex, bidi-
rectional data transfer with up to 16 bits of data. Up to 3 frame
synchronization signals are also provided for controlling DMA transfers.
In ITU-R 656 mode, the PPI provides half-duplex, bidirectional data
transfer with up to 10 bits of data. Additionally, on-chip decode of
embedded start-of-line (SOL) and start-of-field (SOF) preamble packets is
supported.

Parallel Peripheral Interface

1-16 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

General-Purpose Mode Descriptions
The GP modes of the PPI are intended to suit a wide variety of data cap-
ture and transmission applications. Three distinct sub-modes are
supported:

• Input mode – Frame syncs and data are inputs into the PPI.

• Frame capture mode – Frame syncs are outputs from the PPI, but
data are inputs.

• Output mode – Frame syncs and data are outputs from the PPI.

Input Mode
This mode is intended for ADC applications, as well as video communica-
tion with hardware signaling. In its simplest form, PPI_FS1 is an external
frame sync input that controls when to read data. The PPI_DELAY MMR
allows for a delay (in PPI_CLK cycles) between reception of this frame sync
and the initiation of data reads. The number of input data samples is
user-programmable and defined by the contents of the PPI_COUNT register.
Data widths of 8, 10, 11, 12, 13, 14, 15, and 16 bits are supported, as
programmed by the PPI_CONTROL register.

Frame Capture Mode
This mode allows the video source(s) to act as a slave (for example, for
frame capture). The processor controls when to read from the video
source(s). PPI_FS1 is an HSYNC output and PPI_FS2 is a VSYNC output.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 1-17

Introduction

Output Mode
This mode is used for transmitting video or other data with up to three
output frame syncs. Typically, a single frame sync is appropriate for data
converter applications, whereas two or three frame syncs could be used for
sending video with hardware signaling.

ITU-R 656 Mode Descriptions
The ITU-R 656 modes of the PPI are intended to suit a wide variety of
video capture, processing, and transmission applications. Three distinct
sub-modes are supported:

• Active Video Only Mode

• Vertical Blanking Only Mode

• Entire Field Mode

Active Video Only Mode
This mode is used when only the active video portion of a field is of inter-
est and not any of the blanking intervals. The PPI does not read in any
data between the end of active video (EAV) and start of active video (SAV)
preamble symbols, or any data present during the vertical blanking inter-
vals. In this mode, the control byte sequences are not stored to memory;
they are filtered by the PPI. After synchronizing to the start of Field 1, the
PPI ignores incoming samples until it sees an SAV code. The user specifies
the number of active video lines per frame (in PPI_COUNT register).

Vertical Blanking Interval Mode
In this mode, the PPI only transfers vertical blanking interval (VBI) data,
as well as horizontal blanking information and control byte sequences on
VBI lines.

Serial Ports (SPORTs)

1-18 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Entire Field Mode
In this mode, the entire incoming bit stream is read in through the PPI.
This includes active video, control preamble sequences, and ancillary data
that may be embedded in horizontal and vertical blanking intervals. Data
transfer starts immediately after synchronization to Field 1.

Serial Ports (SPORTs)
The processor incorporates four identical dual-channel synchronous serial
ports (SPORT0, SPORT1, SPORT2 and SPORT3) for serial and multi-
processor communications. The SPORTs support the following features:

• Bidirectional, I2S capable operation

Each SPORT has two sets of independent transmit and receive
pins, enabling 16 channels of I2S stereo audio.

• Buffered (8 deep) transmit and receive ports

Each port has a data register for transferring data words to and
from other processor components and shift registers for shifting
data in and out of the data registers.

• Clocking

Each transmit and receive port can either use an external serial
clock or can generate its own in a wide range of frequencies.

• Word length

Each SPORT supports serial data words from 3 to 32 bits in
length, transferred in most significant bit first or least significant
bit-first format.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 1-19

Introduction

• Framing

Each transmit and receive port can run with or without frame sync
signals for each data word. Frame sync signals can be generated
internally or externally, active high or low, and with either of two
pulse widths and early or late frame sync.

• Companding in hardware

Each SPORT can perform A-law or µ-law companding according
to ITU recommendation G.711. Companding can be selected on
the transmit and/or receive channel of the SPORT without addi-
tional latencies.

• DMA operations with single cycle overhead

Each SPORT can automatically receive and transmit multiple buf-
fers of memory data. The processor can link or chain sequences of
DMA transfers between a SPORT and memory.

• Interrupts

Each transmit and receive port generates an interrupt upon com-
pleting the transfer of a data word or after transferring an entire
data buffer or buffers through DMA.

• Multichannel capability

Each SPORT supports 128 channels out of a 1024-channel win-
dow and is compatible with the H.100, H.110, MVIP-90, and
HMVIP standards.

Serial Peripheral Interface (SPI) Ports

1-20 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Serial Peripheral Interface (SPI) Ports
The processor has three SPI-compatible ports that enable the processor to
communicate with multiple SPI-compatible devices.

The SPI interface uses three pins for transferring data: two data pins and a
clock pin. An SPI chip-select input pin lets other SPI devices select the
processor as a slave. SPI chip-select output pins let the processor select
other SPI devices. SPI0 has one chip-select input pin and seven chip-select
output pins. All are reconfigurable GPIO port F pins. The remaining two
SPI instantiations have one chip-select input pin and one chip-select out-
put pin. All of these chip-selects are reconfigurable GPIO port D pins.

Using these pins, the SPI port provides a full-duplex, synchronous, serial
interface, which supports both master and slave modes and multimaster
environments.

The SPI port baud rate and clock phase/polarities are programmable, and
each SPI port has an integrated DMA controller, configurable to support
either transmit or receive data streams. The SPI DMA controllers can only
service unidirectional accesses at any given time.

During transfers, the SPI ports simultaneously transmit and receive by
serially shifting data in and out of their two serial data lines. The serial
clock line synchronizes the shifting and sampling of data on the two serial
data lines.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 1-21

Introduction

Timers
There are four general-purpose programmable timer units in the proces-
sor. Three timers have an external pin that can be configured either as a
pulse width modulator (PWM) or timer output, as an input to clock the
timer, or as a mechanism for measuring pulse widths of external events.
These timer units can be synchronized to an external clock input con-
nected to the PF1 pin, an external clock input to the PPI_CLK pin, or to the
internal SCLK.

The timer units can be used in conjunction with UART0 to measure the
width of the pulses in the data stream to provide an autobaud detect func-
tion for a serial channel.

The timers can generate interrupts to the processor core to provide peri-
odic events for synchronization, either to the processor clock or to a count
of external signals.

In addition to the three general-purpose programmable timers, a fourth
timer is also provided. This extra timer is clocked by the internal processor
clock and is typically used as a system tick clock for generation of operat-
ing system periodic interrupts.

UART Ports
The processor has three full-duplex Universal Asynchronous
Receiver/Transmitter (UART) ports, which are fully compatible with
PC-standard UARTs. The UART ports provide a simplified UART inter-
face to other peripherals or hosts, providing full duplex, DMA-supported,
asynchronous transfers of serial data. The UART ports include support for
5 to 8 data bits; 1 or 2 stop bits; and none, even, or odd parity. The
UART ports support two modes of operation:

UART Ports

1-22 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• Programmed I/O (PIO)

The processor sends or receives data by writing or reading
I/O-mapped UART registers. The data is double buffered on both
transmit and receive.

• Direct memory access (DMA)

The DMA controller transfers both transmit and receive data. This
reduces the number and frequency of interrupts required to trans-
fer data to and from memory. Each UART has two dedicated
DMA channels, one for transmit and one for receive. These DMA
channels have lower priority than most DMA channels because of
their relatively low service rates.

The UART port baud rate, serial data format, error code generation and
status, and interrupts can be programmed to support the following:

• Wide range of bit rates

• Data formats from 7 to 12 bits per frame

• Generation of maskable interrupts to the processor by both trans-
mit and receive operations

In conjunction with the general-purpose timer functions, autobaud detec-
tion is supported by UART0.

The capabilities of the UARTs are further extended with support for the
Infrared Data Association (IrDA®) Serial Infrared Physical Layer Link
Specification (SIR) protocol.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 1-23

Introduction

Controller Area Network Port
The controller area network port (CAN) provides a two-wire interface for
communication with other CAN compliant devices. Features of the CAN
port include error detection, multimastering, prioritization of messages
through arbitration, and a 32-entry mailbox RAM. Transfer rates typically
approach 1M bps.

Two-Wire Interface Port
The processor has two TWI (two-wire interface) ports that support syn-

chronous serial transfers over a two-wire system with I2C compliant
devices. Features include simultaneous master and slave operation, multi-
master arbitration, 400K bps data rates, master clock synchronization, and
7-bit addressing.

Real-Time Clock
The Blackfin real-time clock (RTC) provides a robust set of digital watch
features, including current time, stopwatch, and alarm. The RTC is
clocked by a 32.768 KHz crystal external to the processor. The RTC
peripheral has dedicated power supply pins, so that it can remain powered
up and clocked even when the rest of the processor is in a low power state.
The RTC provides several programmable interrupt options, including
interrupt per second, minute, hour, or day clock ticks, interrupt on pro-
grammable stopwatch countdown, or interrupt at a programmed alarm
time.

The 32.768 KHz input clock frequency is divided down to a 1 Hz signal
by a prescaler. The counter function of the timer consists of four counters:
a 60 second counter, a 60 minute counter, a 24 hours counter, and a
32768 day counter.

Watchdog Timer

1-24 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

When enabled, the alarm function generates an interrupt when the output
of the timer matches the programmed value in the alarm control register.
There are two alarms: The first alarm is for a time of day. The second
alarm is for a day and time of that day.

The stopwatch function counts down from a programmed value, with one
minute resolution. When the stopwatch is enabled and the counter under-
flows, an interrupt is generated.

Like the other peripherals, the RTC can wake up the processor from a low
power state upon generation of any RTC wake-up event.

Watchdog Timer
The processor includes a 32-bit timer that can be used to implement a
software watchdog function. A software watchdog can improve system
availability by forcing the processor to a known state through generation
of a hardware reset, non-maskable interrupt (NMI), or general- purpose
interrupt, if the timer expires before being reset by software. The pro-
grammer initializes the count value of the timer, enables the appropriate
interrupt, then enables the timer. Thereafter, the software must reload the
counter before it counts to zero from the programmed value. This protects
the system from remaining in an unknown state where software that
would normally reset the timer has stopped running due to an external
noise condition or software error.

If configured to generate a hardware reset, the watchdog timer resets both
the CPU and the peripherals. After a reset, software can determine if the
watchdog was the source of the hardware reset by interrogating a status bit
in the watchdog control register.

The timer is clocked by the system clock (SCLK), at a maximum frequency
of fSCLK.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 1-25

Introduction

General-Purpose I/O
There are up to 54 general-purpose I/O (GPIO) pins on the processor
which span four ports—C, D, E, and F.

The GPIO ports C, D, and E functionality is muxed with peripheral pins.
By default, the peripheral function is selected. Through software, the
GPIO functionality can be selected for the pin instead.

The GPIO pins may be individually selected on a pin by pin basis; so that,
for example, if all the pins of a SPORT are not required, the remainder
may be used as GPIO. GPIO interrupt sensitivity registers – The two
GPIO interrupt sensitivity registers specify whether individual PFx pins
are level or edge sensitive and specify—if edge sensitive—whether just the
rising edge or both the rising and falling edges of the signal are significant.
One register selects the type of sensitivity, and one register selects which
edges are significant for edge sensitivity.

Clock Signals
The processor can be clocked by an external crystal, a sine wave input, or a
buffered, shaped clock derived from an external clock oscillator.

This external clock connects to the Blackfin CLKIN pin. CLKIN input can-
not be halted, changed, or operated below the specified frequency during
normal operation. This clock signal should be a TTL-compatible signal.

The core clock (CCLK) and system peripheral clock (SCLK) are derived from
the input clock (CLKIN) signal. An on-chip PLL is capable of multiplying
the CLKIN signal by a user programmable multiplication factor. The
default multiplier is 10x, but it can be modified by a software instruction
sequence. On-the-fly frequency changes can be made by simply writing to
the PLL_DIV register.

Dynamic Power Management

1-26 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

All on-chip peripherals are clocked by the system clock (SCLK). The system
clock frequency is programmable by means of the SSEL[3:0] bits of the
PLL_DIV register.

The CAN clock is derived from the system clock (SCLK), through a further
divisor. Careful selection of the input clock and SCLK is important to
obtain the correct CAN clock frequency.

Dynamic Power Management
The processor provides four operating modes, each with a different perfor-
mance/power profile. In addition, dynamic power management provides
the control functions to dynamically alter the processor core supply volt-
age to further reduce power dissipation. Control of clocking to each of the
peripherals also reduces power consumption.

Full On Operating Mode (Maximum Performance)
In the full on mode, the phase-locked loop (PLL) is enabled, not bypassed,
providing the maximum operational frequency. This is the normal execu-
tion state in which maximum performance can be achieved. The processor
core and all enabled peripherals run at full speed.

Active Operating Mode (Moderate Power Savings)
In the active mode, the PLL is enabled, but bypassed. Because the PLL is
bypassed, the Blackfin core clock (CCLK) and system clock (SCLK) run at
the input clock (CLKIN) frequency. In this mode, the CLKIN to VCO multi-
plier ratio can be changed, although the changes are not realized until the
full on mode is entered. DMA access is available to appropriately config-
ured L1 memories.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 1-27

Introduction

In the active mode, it is possible to disable the PLL through the PLL con-
trol register (PLL_CTL). If disabled, the PLL must be re-enabled before
transitioning to the full on or sleep modes.

Sleep Operating Mode (High Power Savings)
The sleep mode reduces power consumption by disabling the clock to the
processor core. The sleep mode reduces power dissipation by disabling the
clock to the processor core (CCLK). The PLL and system clock (SCLK), how-
ever, continue to operate in this mode. Typically an external event or
RTC activity wakes up the processor. When in the sleep mode, assertion
of any interrupt causes the processor to sense the value of the bypass bit
(BYPASS) in the PLL control register (PLL_CTL). If bypass is disabled, the
processor transitions to the full on mode. If bypass is enabled, the proces-
sor transitions to the active mode.

When in the sleep mode, system DMA access to L1 memory is not
supported.

Deep Sleep Operating Mode (Maximum
Power Savings)

The deep sleep mode maximizes power savings by disabling the clocks to
the processor core and to all synchronous systems. Asynchronous systems,
such as the RTC, may still be running, but can not access internal
resources or external memory. This powered-down mode can only be
exited by assertion of the reset interrupt or by an asynchronous interrupt
generated by the RTC. When in deep sleep mode, assertion of the reset
interrupt or the RTC asynchronous interrupt causes the processor to tran-
sition to the active mode.

Voltage Regulation

1-28 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Hibernate State
For lowest possible power dissipation, this state allows the internal supply
(VDDINT) to be powered down, while keeping the I/O supply (VDDEXT)
running. Although not strictly an operating mode like the four modes
detailed above, it is illustrative to view it as such.

The processor can be programmed to wake up from hibernate by reset, the
RTC, a general-purpose event, or the CAN.

Voltage Regulation
The processor provides an on-chip voltage regulator that can generate
internal voltage levels from an external 2.25 V to 3.6 V supply. The regu-
lator controls the internal logic voltage levels and is programmable with
the voltage regulator control register (VR_CTL) in increments of 50 mV.
The regulator can also be disabled and bypassed at user discretion.

Boot Modes
The processor has three mechanisms for automatically loading internal L1
instruction memory after a reset. A fourth mode is provided to execute
from external memory, bypassing the boot sequence:

• Execute from 16-bit external memory—Execution starts from
address 0x2000 0000 with 16-bit packing. The boot ROM is
bypassed in this mode. All configuration settings are set for the
slowest device possible (3-cycle hold time; 15-cycle R/W access
times; 4-cycle setup).

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 1-29

Introduction

• Boot from 8-bit or 16-bit flash memory—The 8-bit flash boot rou-
tine located in boot ROM memory space is set up using
asynchronous memory bank 0. All configuration settings are set for
the slowest device possible (3-cycle hold time; 15-cycle R/W access
times; 4-cycle setup). For ADSP-BF538F processors, the on-chip
flash memory can be booted from when the flash is mapped to
asynchronous bank 0.

• Boot from an SPI host in SPI slave Mode—The SPI0 is configured
as an SPI slave device and a host is used to boot the processor.

• Boot from an 8-/16-/24-bit addressable SPI in SPI master mode—
Support for Atmel AT45DB041B, AT45DB081B, AT45D161B
Data Flash® devices. The SPI0 uses the PF2 output pin to select a
single SPI EEPROM device.

For each of the boot modes, a 10-byte header is first read from an external
memory device. The header specifies the number of bytes to be transferred
and the memory destination address. Multiple memory blocks may be
loaded by any boot sequence. Once all blocks are loaded, program execu-
tion commences from the start of L1 instruction SRAM (0xFFA0 0000).

In addition, bit 4 of the reset configuration register can be set by applica-
tion code to bypass the normal boot sequence during a software reset. For
this case, the processor jumps directly to the beginning of L1 instruction
memory.

To augment the boot modes, a secondary software loader is provided that
adds additional booting mechanisms. This secondary loader provides the
capability to boot from 16-bit flash memory, fast flash, variable baud rate
memory, and other sources.

Instruction Set Description

1-30 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Instruction Set Description
The Blackfin processor family assembly language instruction set employs
an algebraic syntax designed for ease of coding and readability. The
instructions have been specifically tuned to provide a flexible, densely
encoded instruction set that compiles to a very small final memory size.
The instruction set also provides fully featured multifunction instructions
that allow the programmer to use many of the processor core resources in
a single instruction. Coupled with many features more often seen on
microcontrollers, this instruction set is very efficient when compiling C
and C++ source code. In addition, the architecture supports both user
(algorithm/application code) and supervisor (O/S kernel, device drivers,
debuggers, ISRs) modes of operation, allowing multiple levels of access to
core resources.

The assembly language, which takes advantage of the Blackfin unique
architecture, offers the following advantages:

• Seamlessly integrated DSP/CPU features are optimized for both
8-bit and 16-bit operations.

• A multi-issue load/store modified-Harvard architecture, which
supports two 16-bit MAC or four 8-bit ALU + two load/store +
two pointer updates per cycle.

• All registers, I/O, and memory are mapped into a unified 4G byte
memory space, providing a simplified programming model.

• Microcontroller features, such as arbitrary bit and bit-field manip-
ulation, insertion, and extraction; integer operations on 8-, 16-,
and 32-bit data-types; and separate user and supervisor stack
pointers.

• Code density enhancements include intermixing of 16- and 32-bit
instructions with no mode switching or code segregation. Fre-
quently used instructions are encoded in 16 bits.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 1-31

Introduction

Development Tools
The processor is supported by a complete set of software and hardware
development tools, including Analog Devices’ emulators and the Cross-
Core Embedded Studio or VisualDSP++ development environment. (The
emulator hardware that supports other Analog Devices processors also
emulates the processor.)

The development environments support advanced application code devel-
opment and debug with features such as:

• Create, compile, assemble, and link application programs written
in C++, C, and assembly

• Load, run, step, halt, and set breakpoints in application programs

• Read and write data and program memory

• Read and write core and peripheral registers

• Plot memory

Analog Devices DSP emulators use the IEEE 1149.1 JTAG test access
port to monitor and control the target board processor during emulation.
The emulator provides full speed emulation, allowing inspection and
modification of memory, registers, and processor stacks. Nonintrusive
in-circuit emulation is assured by the use of the processor JTAG inter-
face—the emulator does not affect target system loading or timing.

Software tools also include Board Support Packages (BSPs). Hardware
tools also include standalone evaluation systems (boards and extenders). In
addition to the software and hardware development tools available from
Analog Devices, third parties provide a wide range of tools supporting the
Blackfin processors. Third party software tools include DSP libraries,
real-time operating systems, and block diagram design tools.

Development Tools

1-32 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-1

2 COMPUTATIONAL UNITS

The processor’s computational units perform numeric processing for DSP
and general control algorithms. The six computational units are two arith-
metic/logic units (ALUs), two multiplier/accumulator (multiplier) units, a
shifter, and a set of video ALUs. These units get data from registers in the
data register file. Computational instructions for these units provide
fixed-point operations, and each computational instruction can execute
every cycle.

The computational units handle different types of operations. The ALUs
perform arithmetic and logic operations. The multipliers perform
multiplication and execute multiply/add and multiply/subtract opera-
tions. The shifter executes logical shifts and arithmetic shifts and performs
bit packing and extraction. The video ALUs perform single-instruction,
multiple-data (SIMD) logical operations on specific 8-bit data operands.

Data moving in and out of the computational units goes through the data
register file, which consists of eight registers, each 32 bits wide. In opera-
tions requiring 16-bit operands, the registers are paired, providing sixteen
possible 16-bit registers.

The processor’s assembly language provides access to the data register file.
The syntax lets programs move data to and from these registers and specify
a computation’s data format at the same time.

Figure 2-1 provides a graphical guide to the other topics in this chapter.
An examination of each computational unit provides details about its
operation and is followed by a summary of computational instructions.
Studying the details of the computational units, register files, and data

2-2 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

buses leads to a better understanding of proper data flow for
computations. Next, details about the processor’s advanced parallelism
reveal how to take advantage of multifunction instructions.

Figure 2-1 shows the relationship between the data register file and the
computational units—multipliers, ALUs, and shifter.

Single function multiplier, ALU, and shifter instructions have unrestricted
access to the data registers in the data register file. Multifunction opera-
tions may have restrictions that are described in the section for that
particular operation.

Figure 2-1. Processor Core Architecture

SP

SEQUENCER

ALIGN

DECODE

LOOP BUFFER

DAG0 DAG1

16 16

88 8 8

40 40

ACC 0 ACC 1

BARREL
SHIFTER

DATA ARITHMETIC UNIT

CONTROL
UNIT

ADDRESS ARITHMETIC UNIT

FP

P5

P4
P3

P2

P1

P0

R7
R6

R5

R4

R3

R2

R1

R0

I3

I2

I1

I0

L3

L2

L1

L0

B3

B2

B1

B0

M3

M2

M1

M0

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-3

Computational Units

Two additional registers, A0 and A1, provide 40-bit accumulator results.
These registers are dedicated to the ALUs and are used primarily for mul-
tiply-and-accumulate functions.

The traditional modes of arithmetic operations, such as fractional and
integer, are specified directly in the instruction. Rounding modes are set
from the ASTAT register, which also records status and conditions for the
results of the computational operations.

Using Data Formats
Blackfin processors are primarily 16-bit, fixed-point machines. Most oper-
ations assume a two’s-complement number representation, while others
assume unsigned numbers or simple binary strings. Other instructions
support 32-bit integer arithmetic, with further special features supporting
8-bit arithmetic and block floating point. For detailed information about
each number format, see Appendix D, “Numeric Formats”.

In the Blackfin processor family arithmetic, signed numbers are always in
two’s-complement format. These processors do not use signed-magnitude,
one’s-complement, binary-coded decimal (BCD), or excess-n formats.

Binary String
The binary string format is the least complex binary notation; in it, 16 bits
are treated as a bit pattern. Examples of computations using this format
are the logical operations NOT, AND, OR, XOR. These ALU operations
treat their operands as binary strings with no provision for sign bit or
binary point placement.

Using Data Formats

2-4 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Unsigned
Unsigned binary numbers may be thought of as positive and having nearly
twice the magnitude of a signed number of the same length. The processor
treats the least significant words of multiple precision numbers as
unsigned numbers.

Signed Numbers: Two’s-Complement
In Blackfin processor arithmetic, the word signed refers to two’s-comple-
ment numbers. Most Blackfin processor family operations presume or
support two’s-complement arithmetic.

Fractional Representation: 1.15
Blackfin processor arithmetic is optimized for numerical values in a frac-
tional binary format denoted by 1.15 (“one dot fifteen”). In the 1.15
format, 1 sign bit (the most significant bit (MSB)) and 15 fractional bits
represent values from –1 to 0.999969.

Figure 2-2 shows the bit weighting for 1.15 numbers as well as some
examples of 1.15 numbers and their decimal equivalents.

Figure 2-2. Bit Weighting for 1.15 Numbers

20 2–1 2–2 2–3 2–4 2–5 2–6 2–7 2–8 2–9 2–10 2–11 2–12 2–13 2–14 2–15

1.15 NUMBER
(HEXADECIMAL)
0x0001 0.000031
0x7FFF 0.999969
0xFFFF –0.000031
0x8000 –1.000000

DECIMAL
EQUIVALENT

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-5

Computational Units

Register Files
The processor’s computational units have three definitive register
groups—a data register file, a pointer register file, and set of data address
generator (DAG) registers.

• The data register file receives operands from the data buses for the
computational units and stores computational results.

• The pointer register file has pointers for addressing operations.

• The DAG registers are dedicated registers that manage zero-over-
head circular buffers for DSP operations.

For more information, see Chapter 5, “Data Address Generators”.

The processor register files appear in Figure 2-3.

Figure 2-3. Register Files

 Data Registers Data Address Generator Registers (DAGs)

R0

R1

R2

R3

R4

R5

R6

R7

A0

A1

A0.X A0.W

P0

P1

P2

P3

P4

P5

 SP

I0

I2

I3

L0 B0

B3L3

L2

L1 B1

B2

I1

R0.H R0.L

R1.H

R2.H

R3.H

R4.H

R5.H

R6.H

R7.H

R1.L

R2.L

R3.L

R4.L

R5.L

R6.L

R7.L

A1.X A1.W

FP

M0

M3

M1

M2

Register Files

2-6 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

 In the processor, a word is 32 bits long; H denotes the high order
16 bits of a 32-bit register; L denotes the low order 16 bits of a
32-bit register. For example, A0.W contains the lower 32 bits of the
40-bit A0 register; A0.L contains the lower 16 bits of A0.W, and A0.H
contains the upper 16 bits of A0.W.

Data Register File
The data register file consists of eight registers, each 32 bits wide. Each
register may be viewed as a pair of independent 16-bit registers. Each is
denoted as the low half or high half. Thus the 32-bit register R0 may be
regarded as two independent register halves, R0.L and R0.H.

Three separate buses (two read, one write) connect the register File to the
L1 data memory, each bus being 32 bits wide. Transfers between the data
register file and the data memory can move up to four 16-bit words of
valid data in each cycle.

Accumulator Registers
In addition to the data register file, the processor has two dedicated,
40-bit accumulator registers. Each can be referred to as its 16-bit low half
(An.L) or high half (An.H) plus its 8-bit extension (An.X). Each can also be
referred to as a 32-bit register (An.W) consisting of the lower 32 bits, or as
a complete 40-bit result register (An).

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-7

Computational Units

Pointer Register File
The general-purpose address pointer registers, also called P-registers, are
organized as:

• 6-entry, P-register files P[5:0]

• Frame pointers (FP) used to point to the current procedure’s activa-
tion record

• Stack pointer registers (SP) used to point to the last used location
on the runtime stack. See mode dependent registers in Chapter 3,
“Operating Modes and States”.

P-registers are 32 bits wide. Although P-registers are primarily used for
address calculations, they may also be used for general integer arithmetic
with a limited set of arithmetic operations; for instance, to maintain coun-
ters. However, unlike the data registers, P-register arithmetic does not
affect the arithmetic register (ASTAT) register status flags.

DAG Register Set
DSP instructions primarily use the data address generator (DAG) register
set for addressing. The DAG register set consists of these registers:

• I[3:0] contain index addresses

• M[3:0] contain modify values

• B[3:0] contain base addresses

• L[3:0] contain length values

All DAG registers are 32 bits wide.

Register Files

2-8 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The I (index) registers and B (base) registers always contain addresses of
8-bit bytes in memory. The index registers contain an effective address.
The M (modify) registers contain an offset value that is added to one of
the Index registers or subtracted from it.

The B and L (length) registers define circular buffers. The B register con-
tains the starting address of a buffer, and the L register contains the length
in bytes. Each L and B register pair is associated with the corresponding I
register. For example, L0 and B0 are always associated with I0. However,
any M register may be associated with any I register. For example, I0 may
be modified by M3. For more information, see Chapter 5, “Data Address
Generators”.

Register File Instruction Summary
Table 2-1 lists the register file instructions. For more information about
assembly language syntax, see Blackfin Processor Programming Reference.

In Table 2-1, note the meaning of these symbols:

• Allreg denotes: R[7:0], P[5:0], SP, FP, I[3:0], M[3:0],
B[3:0], L[3:0], A0.X, A0.W, A1.X, A1.W, ASTAT, RETS, RETI,

RETX, RETN, RETE, LC[1:0], LT[1:0], LB[1:0], USP, SEQSTAT,
SYSCFG, CYCLES, and CYCLES2.

• An denotes either ALU result register A0 or A1.

• Dreg denotes any data register file register.

• Sysreg denotes the system registers: ASTAT, SEQSTAT, SYSCFG, RETI,
RETX, RETN, RETE, or RETS, LC[1:0], LT[1:0], LB[1:0], CYCLES, and
CYCLES2.

• Preg denotes any pointer register, FP, or SP register.

• Dreg_even denotes R0,R2,R4, or R6.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-9

Computational Units

• Dreg_odd denotes R1,R3,R5, or R7.

• DPreg denotes any data register file register or any pointer register,
FP, or SP register.

• Dreg_lo denotes the lower 16 bits of any data register file register.

• Dreg_hi denotes the upper 16 bits of any data register file register.

• An.L denotes the lower 16 bits of accumulator A0.W or A1.W.

• An.H denotes the upper 16 bits of accumulator A0.W or A1.W.

• Dreg_byte denotes the low order 8 bits of each data register.

• Option (X) denotes sign-extended.

• Option (Z) denotes zero-extended.

• * Indicates the flag may be set or cleared, depending on the result
of the instruction.

• ** Indicates the flag is cleared.

• – Indicates no effect.

Table 2-1. Register File Instruction Summary

Instruction ASTAT Status Flags

AZ AN AC0
AC0_COPY
AC1

AV0
AVS

AV1
AV1S

CC V
V_COPY
VS

allreg = allreg ; 1 – – – – – – –

An = An ; – – – – – – –

An = Dreg ; – – – – – – –

Dreg_even = A0 ; * * – – – – *

Dreg_odd = A1 ; * * – – – – *

Register Files

2-10 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Dreg_even = A0,
Dreg_odd = A1 ;

* * – – – – *

Dreg_odd = A1,
Dreg_even = A0 ;

* * – – – – *

IF CC DPreg = DPreg ; – – – – – – –

IF ! CC DPreg = DPreg ; – – – – – – –

Dreg = Dreg_lo (Z) ; * ** ** – – – **/–

Dreg = Dreg_lo (X) ; * * ** – – – **/–

An.X = Dreg_lo ; – – – – – – –

Dreg_lo = An.X ; – – – – – – –

An.L = Dreg_lo ; – – – – – – –

An.H = Dreg_hi ; – – – – – – –

Dreg_lo = A0 ; * * – – – – *

Dreg_hi = A1 ; * * – – – – *

Dreg_hi = A1 ;
Dreg_lo = A0 ;

* * – – – – *

Dreg_lo = A0 ;
Dreg_hi = A1 ;

* * – – – – *

Dreg = Dreg_byte (Z) ; * ** ** – – – **/–

Dreg = Dreg_byte (X) ; * * ** – – – **/–

1 Warning: Not all register combinations are allowed. For details, see the functional description of
the Move Register instruction in Blackfin Processor Programming Reference.

Table 2-1. Register File Instruction Summary (Cont’d)

Instruction ASTAT Status Flags

AZ AN AC0
AC0_COPY
AC1

AV0
AVS

AV1
AV1S

CC V
V_COPY
VS

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-11

Computational Units

Data Types
The processor supports 32-bit words, 16-bit half words, and bytes. The
32- and 16-bit words can be integer or fractional, but bytes are always
integers. Integer data types can be signed or unsigned, but fractional data
types are always signed.

Table 2-3 illustrates the formats for data that resides in memory, in the
register file, and in the accumulators. In the table, the letter d represents
one bit, and the letter s represents one signed bit.

Some instructions manipulate data in the registers by sign-extending or
zero-extending the data to 32 bits:

• Instructions zero-extend unsigned data

• Instructions sign-extend signed 16-bit half words and 8-bit bytes

Other instructions manipulate data as 32-bit numbers. In addition, two
16-bit half words or four 8-bit bytes can be manipulated as 32-bit values.
For details, refer to the instructions in Blackfin Processor Programming
Reference.

In Table 2-2, note the meaning of these symbols:

• s = sign bit(s)

• d = data bit(s)

• “.” = decimal point by convention; however, a decimal point does
not literally appear in the number.

• Italics denotes data from a source other than adjacent bits.

Data Types

2-12 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Table 2-2. Data Formats

Format Representation in Memory Representation in 32-Bit Register

32.0 Unsigned
Word

dddd dddd dddd dddd dddd
dddd dddd dddd

dddd dddd dddd dddd dddd dddd dddd
dddd

32.0 Signed
Word

sddd dddd dddd dddd dddd
dddd dddd dddd

sddd dddd dddd dddd dddd dddd dddd
dddd

16.0 Unsigned
Half Word

dddd dddd dddd dddd 0000 0000 0000 0000 dddd dddd dddd
dddd

16.0 Signed
Half Word

sddd dddd dddd dddd ssss ssss ssss ssss sddd dddd dddd dddd

8.0 Unsigned
Byte

dddd dddd 0000 0000 0000 0000 0000 0000 dddd
dddd

8.0 Signed
Byte

sddd dddd ssss ssss ssss ssss ssss ssss sddd dddd

0.16 Unsigned
Fraction

.dddd dddd dddd dddd 0000 0000 0000 0000 .dddd dddd dddd
dddd

1.15 Signed
Fraction

s.ddd dddd dddd dddd ssss ssss ssss ssss s.ddd dddd dddd dddd

0.32 Unsigned
Fraction

.dddd dddd dddd dddd dddd
dddd dddd dddd

.dddd dddd dddd dddd dddd dddd dddd
dddd

1.31 Signed
Fraction

s.ddd dddd dddd dddd dddd
dddd dddd dddd

s.ddd dddd dddd dddd dddd dddd dddd
dddd

Packed 8.0
Unsigned Byte

dddd dddd dddd dddd dddd
dddd dddd dddd

dddd dddd dddd dddd dddd dddd dddd dddd

Packed 0.16
Unsigned Frac-
tion

.dddd dddd dddd dddd .dddd
dddd dddd dddd

.dddd dddd dddd dddd .dddd dddd dddd
dddd

Packed 1.15
Signed
Fraction

s.ddd dddd dddd dddd s.ddd
dddd dddd dddd

s.ddd dddd dddd dddd s.ddd dddd dddd dddd

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-13

Computational Units

Endian Byte Order
Both internal and external memory are accessed in little endian byte order.
For more information, see “Memory Transaction Model” on page 6-62.

ALU Data Types
Operations on each ALU treat operands and results as either 16- or 32-bit
binary strings, except the signed division primitive (DIVS). ALU result sta-
tus bits treat the results as signed, indicating status with the overflow flags
(AV0, AV1) and the negative flag (AN). Each ALU has its own sticky over-
flow flag, AV0S and AV1S. Once set, these bits remain set until cleared by
writing directly to the ASTAT register. An additional V flag is set or cleared
depending on the transfer of the result from both accumulators to the reg-
ister file. Furthermore, the sticky VS bit is set with the V bit and remains
set until cleared.

The logic of the overflow bits (V, VS, AV0, AV0S, AV1, AV1S) is based on
two’s-complement arithmetic. A bit or set of bits is set if the most signifi-
cant bit (MSB) changes in a manner not predicted by the signs of the
operands and the nature of the operation. For example, adding two posi-
tive numbers must generate a positive result; a change in the sign bit
signifies an overflow and sets AVn, the corresponding overflow flags. Add-
ing a negative and a positive number may result in either a negative or
positive result, but cannot cause an overflow.

The logic of the carry bits (AC0, AC1) is based on unsigned magnitude
arithmetic. The bit is set if a carry is generated from bit 16 (the MSB).
The carry bits (AC0, AC1) are most useful for the lower word portions of a
multiword operation.

ALU results generate status information. For more information about
using ALU status, see “ALU Instruction Summary” on page 2-29.

Data Types

2-14 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Multiplier Data Types
Each multiplier produces results that are binary strings. The inputs are
interpreted according to the information given in the instruction itself
(whether it is signed multiplied by signed, unsigned multiplied by
unsigned, a mixture, or a rounding operation). The 32-bit result from the
multipliers is assumed to be signed; it is sign-extended across the full
40-bit width of the A0 or A1 registers.

The processor supports two modes of format adjustment: the fractional
mode for fractional operands (1.15 format with 1 sign bit and 15 frac-
tional bits) and the integer mode for integer operands (16.0 format).

When the processor multiplies two 1.15 operands, the result is a 2.30
(2 sign bits and 30 fractional bits) number. In the fractional mode, the
multiplier automatically shifts the multiplier product left one bit before
transferring the result to the multiplier result register (A0, A1). This shift of
the redundant sign bit causes the multiplier result to be in 1.31 format,
which can be rounded to 1.15 format. The resulting format appears in
Figure 2-4.

In the integer mode, the left shift does not occur. For example, if the oper-
ands are in the 16.0 format, the 32-bit multiplier result would be in 32.0
format. A left shift is not needed and would change the numerical
representation. This result format appears in Figure 2-5.

Multiplier results generate status information when they update accumu-
lators or when they are transferred to a destination register in the register
file. For more information, see “Multiplier Instruction Summary” on
page 2-40.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-15

Computational Units

Shifter Data Types
Many operations in the shifter are explicitly geared to signed (two’s-com-
plement) or unsigned values—logical shifts assume unsigned magnitude
or binary string values, and arithmetic shifts assume two’s-complement
values.

The exponent logic assumes two’s-complement numbers. The exponent
logic supports block floating point, which is also based on two’s-comple-
ment fractions.

Shifter results generate status information. For more information about
using shifter status, see “Shifter Instruction Summary” on page 2-54

Arithmetic Formats Summary
Table 2-3, Table 2-4, Table 2-5, and Table 2-6 summarize some of the
arithmetic characteristics of computational operations.

Table 2-3. ALU Arithmetic Formats

Operation Operand Formats Result Formats

Addition Signed or unsigned Interpret flags

Subtraction Signed or unsigned Interpret flags

Logical Binary string Same as operands

Division Explicitly signed or unsigned Same as operands

Data Types

2-16 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Using Multiplier Integer and Fractional Formats
For multiply-and-accumulate functions, the processor provides two
choices—fractional arithmetic for fractional numbers (1.15) and integer
arithmetic for integers (16.0).

Table 2-4. Multiplier Fractional Modes Formats

Operation Operand Formats Result Formats

Multiplication 1.15 explicitly signed or
unsigned

2.30 shifted to 1.31

Multiplication/Addition 1.15 explicitly signed or
unsigned

2.30 shifted to 1.31

Multiplication/Subtraction 1.15 explicitly signed or
unsigned

2.30 shifted to 1.31

Table 2-5. Multiplier Arithmetic Integer Modes Formats

Operation Operand Formats Result Formats

Multiplication 16.0 explicitly signed or
unsigned

32.0 not shifted

Multiplication/Addition 16.0 explicitly signed or
unsigned

32.0 not shifted

Multiplication/Subtraction 16.0 explicitly signed or
unsigned

32.0 not shifted

Table 2-6. Shifter Arithmetic Formats

Operation Operand Formats Result Formats

Logical Shift Unsigned binary string Same as operands

Arithmetic Shift Signed Same as operands

Exponent Detect Signed Same as operands

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-17

Computational Units

For fractional arithmetic, the 32-bit product output is format adjusted—
sign-extended and shifted one bit to the left—before being added to
accumulator A0 or A1. For example, bit 31 of the product lines up with bit
32 of A0 (which is bit 0 of A0.X), and bit 0 of the product lines up with bit
1 of A0 (which is bit 1 of A0.W). The least significant bit (LSB) is
zero-filled. The fractional multiplier result format appears in Figure 2-4.

For integer arithmetic, the 32-bit product register is not shifted before
being added to A0 or A1. Figure 2-5 shows the integer mode result
placement.

With either fractional or integer operations, the multiplier output product
is fed into a 40-bit adder/subtracter which adds or subtracts the new prod-
uct with the current contents of the A0 or A1 register to produce the final
40-bit result.

Figure 2-4. Fractional Multiplier Results Format

31 31 31 31 31 31 31 31 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 167 6 5 4 3 2 1 0

P SIGN,
7 BITS MULTIPLIER P OUTPUT

A0.X A0.W

SHIFTED
OUT

ZERO
FILLED

Data Types

2-18 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Rounding Multiplier Results
On many multiplier operations, the processor supports multiplier results
rounding (RND option). Rounding is a means of reducing the precision of a
number by removing a lower order range of bits from that number’s repre-
sentation and possibly modifying the remaining portion of the number to
more accurately represent its former value. For example, the original num-
ber will have N bits of precision, whereas the new number will have only
M bits of precision (where N>M). The process of rounding, then, removes
N – M bits of precision from the number.

The RND_MOD bit in the ASTAT register determines whether the RND option
provides biased or unbiased rounding. For unbiased rounding, set RND_MOD
bit = 0. For biased rounding, set RND_MOD bit = 1.

 For most algorithms, unbiased rounding is preferred.

Figure 2-5. Integer Multiplier Results Format

31 31 31 31 31 31 31 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 1 1 1 167 6 5 4 3 2 1 0

P SIGN,
8 BITS MULTIPLIER P OUTPUT

A0.X A0.W

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-19

Computational Units

Unbiased Rounding

The convergent rounding method returns the number closest to the origi-
nal. In cases where the original number lies exactly halfway between two
numbers, this method returns the nearest even number, the one contain-
ing an LSB of 0. For example, when rounding the 3-bit,
two’s-complement fraction 0.25 (binary 0.01) to the nearest 2-bit,
two’s-complement fraction, the result would be 0.0, because that is the
even-numbered choice of 0.5 and 0.0. Since it rounds up and down based
on the surrounding values, this method is called unbiased rounding.

Unbiased rounding uses the ALU capability of rounding the 40-bit result
at the boundary between bit 15 and bit 16. Rounding can be specified as
part of the instruction code. When rounding is selected, the output regis-
ter contains the rounded 16-bit result; the accumulator is never rounded.

The accumulator uses an unbiased rounding scheme. The conventional
method of biased rounding adds a 1 into bit position 15 of the adder
chain. This method causes a net positive bias because the midway value
(when A0.L/A1.L = 0x8000) is always rounded upward.

The accumulator eliminates this bias by forcing bit 16 in the result output
to 0 when it detects this midway point. Forcing bit 16 to 0 has the effect
of rounding odd A0.L/A1.L values upward and even values downward,
yielding a large sample bias of 0, assuming uniformly distributed values.

The following examples use x to represent any bit pattern (not all zeros).
The example in Figure 2-6 shows a typical rounding operation for A0; the
example also applies for A1.

The compensation to avoid net bias becomes visible when all lower 15 bits
are 0 and bit 15 is 1 (the midpoint value) as shown in Figure 2-7.

In Figure 2-7, A0 bit 16 is forced to 0. This algorithm is employed on
every rounding operation, but is evident only when the bit patterns shown
in the lower 16 bits of the next example are present.

Data Types

2-20 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Biased Rounding

The round-to-nearest method also returns the number closest to the origi-
nal. However, by convention, an original number lying exactly halfway
between two numbers always rounds up to the larger of the two. For
example, when rounding the 3-bit, two’s-complement fraction 0.25
(binary 0.01) to the nearest 2-bit, two’s-complement fraction, this method
returns 0.5 (binary 0.1). The original fraction lies exactly midway between
0.5 and 0.0 (binary 0.0), so this method rounds up. Because it always
rounds up, this method is called biased rounding.

The RND_MOD bit in the ASTAT register enables biased rounding. When the
RND_MOD bit is cleared, the RND option in multiplier instructions uses the
normal, unbiased rounding operation, as discussed in “Unbiased Round-
ing” on page 2-19.

Figure 2-6. Typical Unbiased Multiplier Rounding

1 X X X X X X X X X X X X X X XX X X X X X X X 0 0 1 0 0 1 0 1X X X X X X X X

A0.X A0.W

1

0 X X X X X X X X X X X X X X XX X X X X X X X 0 0 1 0 0 1 1 0X X X X X X X X

UNROUNDED VALUE:

ADD 1 AND CARRY:

ROUNDED VALUE:

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-21

Computational Units

When the RND_MOD bit is set (=1), the processor uses biased rounding
instead of unbiased rounding. When operating in biased rounding mode,
all rounding operations with A0.L/A1.L set to 0x8000 round up, rather
than only rounding odd values up. For an example of biased rounding, see
Table 2-7.

Figure 2-7. Avoiding Net Bias in Unbiased Multiplier Rounding

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X X X X X X X X 0 1 1 0 0 1 1 0X X X X X X X X

UNROUNDED VALUE:

A0.X A0.W

1

ADD 1 AND CARRY:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X X X X X X X X 0 1 1 0 0 1 1 0X X X X X X X X

ROUNDED VALUE:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X X X X X X X X 0 1 1 0 0 1 1 1X X X X X X X X

A0 BIT 16 = 1:

Data Types

2-22 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Biased rounding affects the result only when the A0.L/A1.L register con-
tains 0x8000; all other rounding operations work normally. This mode
allows more efficient implementation of bit specified algorithms that use
biased rounding (for example, the global system for mobile communica-
tions (GSM) speech compression routines).

Truncation

Another common way to reduce the significant bits representing a number
is to simply mask off the N – M lower bits. This process is known as trun-
cation and results in a relatively large bias. Instructions that do not
support rounding revert to truncation. The RND_MOD bit in ASTAT has no
effect on truncation.

Special Rounding Instructions
The ALU provides the ability to round the arithmetic results directly into
a data register with biased or unbiased rounding as described above. It also
provides the ability to round on different bit boundaries. The options
RND12, RND, and RND20 extract 16-bit values from bit 12, bit 16 and bit 20,
respectively, and perform biased rounding regardless of the state of the
RND_MOD bit in ASTAT.

Table 2-7. Biased Rounding in Multiplier Operation

A0/A1 Before RND Biased RND Result Unbiased RND Result

0x00 0000 8000 0x00 0001 8000 0x00 0000 0000

0x00 0001 8000 0x00 0002 0000 0x00 0002 0000

0x00 0000 8001 0x00 0001 0001 0x00 0001 0001

0x00 0001 8001 0x00 0002 0001 0x00 0002 0001

0x00 0000 7FFF 0x00 0000 FFFF 0x00 0000 FFFF

0x00 0001 7FFF 0x00 0001 FFFF 0x00 0001 FFFF

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-23

Computational Units

For example:

R3.L = R4 (RND); performs biased rounding at bit 16, depositing the
result in a half word.

R3.L = R4 + R5 (RND12); performs an addition of two 32-bit numbers,
biased rounding at bit 12, depositing the result in a half word.

R3.L = R4 + R5 (RND20); performs an addition of two 32-bit numbers,
biased rounding at bit 20, depositing the result in a half word.

Using Computational Status
The multiplier, ALU, and shifter update the overflow and other status
flags in the processor’s Arithmetic register (ASTAT) register. To use status
conditions from computations in program sequencing, use conditional
instructions to test the CC flag in the ASTAT register after the instruction
executes. This method permits monitoring each instruction’s outcome.
The ASTAT register is a 32-bit register, with some bits reserved. To ensure
compatibility with future implementations, writes to this register should
write back the values read from these reserved bits.

ASTAT Register
Figure 2-8 describes the arithmetic register (ASTAT) register. The processor
updates the status bits in ASTAT, indicating the status of the most recent
ALU, multiplier, or shifter operation.

ASTAT Register

2-24 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 2-8. Arithmetic Status Register

00 0

VS (Sticky Dreg Overflow)

00 0 0 0 0 0 0 0 0 0 0 0

Arithmetic Status Register (ASTAT)

0 - Last result written to A0
has not overflowed

1 - Last result written to A0
has overflowed

AV0 (A0 Overflow)

Reset = 0x0000 0000

Sticky version of AV0

AV0S (Sticky A0 Overflow)

0 - Last result written to A1
has not overflowed

1 - Last result written to A1
has overflowed

AV1 (A1 Overflow)

Sticky version of AV1
AV1S (Sticky A1 Overflow)

0 - Last result written from
ALU to data register file
register has not overflowed

1 - Last result has overflowed

V (Dreg Overflow)

Sticky version of V

AN (Negative Result)

AQ (Quotient)

AZ (Zero Result)

RND_MOD (Rounding Mode)

AC1 (ALU1 Carry)

0 - Operation in ALU1 does not
generate a carry

1 - Operation generates a carry

AC0 (ALU0 Carry)

0 - Unbiased rounding
1 - Biased rounding

0 - Result from last ALU0,
ALU1, or shifter operation
is not zero

1 - Result is zero

0 - Result from last ALU0,
ALU1, or shifter operation
is not negative

1 - Result is negative

Multipurpose flag, used
primarily to hold resolution of
arithmetic comparisons. Also
used by some shifter instruc-
tions to hold rotating bits.

Quotient bit

CC (Condition Code)

0 - Operation in ALU0 does not
generate a carry

1 - Operation generates a
carry

AC0_COPY

Identical to bit 12

V_COPY

Identical to bit 24

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-25

Computational Units

Arithmetic Logic Unit (ALU)
The two ALUs perform arithmetic and logical operations on fixed-point
data. ALU fixed-point instructions operate on 16-, 32-, and 40-bit
fixed-point operands and output 16-, 32-, or 40-bit fixed-point results.
ALU instructions include:

• Fixed-point addition and subtraction of registers

• Addition and subtraction of immediate values

• Accumulation and subtraction of multiplier results

• Logical AND, OR, NOT, XOR, bitwise XOR, negate

• Functions: ABS, MAX, MIN, round, division primitives

ALU Operations
Primary ALU operations occur on ALU0, while parallel operations occur
on ALU1, which performs a subset of ALU0 operations.

Table 2-8 describes the possible inputs and outputs of each ALU.

Combining operations in both ALUs can result in four 16-bit results, two
32-bit results, or two 40-bit results generated in a single instruction.

Table 2-8. Inputs and Outputs of Each ALU

Input Output

Two or four 16-bit operands One or two 16-bit results

Two 32-bit operands One 32-bit result

32-bit result from the multiplier Combination of 32-bit result from the multiplier
with a 40-bit accumulation result

Arithmetic Logic Unit (ALU)

2-26 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Single 16-Bit Operations

In single 16-bit operations, any two 16-bit register halves may be used as
the input to the ALU. An addition, subtraction, or logical operation pro-
duces a 16-bit result that is deposited into an arbitrary destination register
half. ALU0 is used for this operation, because it is the primary resource for
ALU operations.

For example:

R3.H = R1.H + R2.L (NS); adds the 16-bit contents of R1.H (R1 high half)
to the contents of R2.L (R2 low half) and deposits the result in R3.H (R3
high half) with no saturation.

Dual 16-Bit Operations

In dual 16-bit operations, any two 32-bit registers may be used as the
input to the ALU, considered as pairs of 16-bit operands. An addition,
subtraction, or logical operation produces two 16-bit results that are
deposited into an arbitrary 32-bit destination register. ALU0 is used for
this operation, because it is the primary resource for ALU operations.

For example:

R3 = R1 +|– R2 (S); adds the 16-bit contents of R2.H (R2 high half) to
the contents of R1.H (R1 high half) and deposits the result in R3.H (R3 high
half) with saturation.

The instruction also subtracts the 16-bit contents of R2.L (R2 low half)
from the contents of R1.L (R1 low half) and deposits the result in R3.L (R3
low half) with saturation (see Figure 2-10).

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-27

Computational Units

Quad 16-Bit Operations

In quad 16-bit operations, any two 32-bit registers may be used as the
inputs to ALU0 and ALU1, considered as pairs of 16-bit operands. A
small number of addition or subtraction operations produces four 16-bit
results that are deposited into two arbitrary, 32-bit destination registers.
Both ALU0 and ALU1 are used for this operation. Because there are only
two 32-bit data paths from the data register file to the arithmetic units,
the same two pairs of 16-bit inputs are presented to ALU1 as to ALU0.
The instruction construct is identical to that of a dual 16-bit operation,
and input operands must be the same for both ALUs.

For example:

R3 = R0 +|+ R1, R2 = R0 –|– R1 (S);

performs four operations:

• Adds the 16-bit contents of R1.H (R1 high half) to the 16-bit con-
tents of R0.H (R0 high half) and deposits the result in R3.H with
saturation.

• Adds R1.L to R0.L and deposits the result in R3.L with saturation.

• Subtracts the 16-bit contents of R1.H (R1 high half) from the 16-bit
contents of the R0.H (R0 high half) and deposits the result in R2.H
with saturation.

• Subtracts R1.L from R0.L and deposits the result in R2.L with
saturation.

Explicitly, the four equivalent instructions are:

R3.H = R0.H + R1.H (S);

R3.L = R0.L + R1.L (S);

R2.H = R0.H – R1.H (S);

R2.L = R0.L – R1.L (S);

Arithmetic Logic Unit (ALU)

2-28 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Single 32-Bit Operations

In single 32-bit operations, any two 32-bit registers may be used as the
input to the ALU, considered as 32-bit operands. An addition, subtrac-
tion, or logical operation produces a 32-bit result that is deposited into an
arbitrary 32-bit destination register. ALU0 is used for this operation,
because it is the primary resource for ALU operations.

In addition to the 32-bit input operands coming from the data register
file, operands may be sourced and deposited into the pointer register file,
consisting of the eight registers P[5:0], SP, FP.

 Instructions may not intermingle pointer registers with data
registers.

For example:

R3 = R1 + R2 (NS); adds the 32-bit contents of R2 to the 32-bit contents
of R1 and deposits the result in R3 with no saturation.

R3 = R1 + R2 (S); adds the 32-bit contents of R1 to the 32-bit contents of
R2 and deposits the result in R3 with saturation.

Dual 32-Bit Operations

In dual 32-bit operations, any two 32-bit registers may be used as the
input to ALU0 and ALU1, considered as a pair of 32-bit operands. An
addition or subtraction produces two 32-bit results that are deposited into
two 32-bit destination registers. Both ALU0 and ALU1 are used for this
operation. Because only two 32-bit data paths go from the data register
file to the arithmetic units, the same two 32-bit input registers are pre-
sented to ALU0 and ALU1.

For example:

R3 = R1 + R2, R4 = R1 – R2 (NS); adds the 32-bit contents of R2 to the
32-bit contents of R1 and deposits the result in R3 with no saturation.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-29

Computational Units

The instruction also subtracts the 32-bit contents of R2 from that of R1
and deposits the result in R4 with no saturation.

A specialized form of this instruction uses the ALU 40-bit result registers
as input operands, creating the sum and differences of the A0 and A1
registers.

For example:

R3 = A0 + A1, R4 = A0 – A1 (S); transfers to the result registers two
32-bit, saturated, sum and difference values of the ALU registers.

ALU Instruction Summary
Table 2-9 lists the ALU instructions. For more information about assem-
bly language syntax and the effect of ALU instructions on the status flags,
see Blackfin Processor Programming Reference.

In Table 2-9, note the meaning of these symbols:

• Dreg denotes any data register file register.

• Preg denotes any pointer register, FP, or SP register.

• Dreg_lo_hi denotes any 16-bit register half in any data register file
register.

• Dreg_lo denotes the lower 16 bits of any data register file register.

• imm7 denotes a signed, 7-bit wide, immediate value.

• An denotes either ALU result register A0 or A1.

• DIVS denotes a divide sign primitive.

• DIVQ denotes a divide quotient primitive.

• MAX denotes the maximum, or most positive, value of the source
registers.

Arithmetic Logic Unit (ALU)

2-30 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• MIN denotes the minimum value of the source registers.

• ABS denotes the absolute value of the upper and lower halves of a
single 32-bit register.

• RND denotes rounding a half word.

• RND12 denotes saturating the result of an addition or subtraction
and rounding the result on bit 12.

• RND20 denotes saturating the result of an addition or subtraction
and rounding the result on bit 20.

• SIGNBITS denotes the number of sign bits in a number, minus
one.

• EXPADJ denotes the lesser of the number of sign bits in a number
minus one, and a threshold value.

• * Indicates the flag may be set or cleared, depending on the results
of the instruction.

• ** Indicates the flag is cleared.

• – Indicates no effect.

• d indicates AQ contains the dividend MSB exclusive-OR divisor
MSB.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-31

Computational Units

Table 2-9. ALU Instruction Summary

Instruction ASTAT Status Flags

AZ AN AC0
AC0_COPY
AC1

AV0
AV0S

AV1
AV1S

V
V_COPY
VS

AQ

Preg = Preg + Preg ; – – – – – – –

Preg += Preg ; – – – – – – –

Preg –= Preg ; – – – – – – –

Dreg = Dreg + Dreg ; * * * – – * –

Dreg = Dreg – Dreg (S) ; * * * – – * –

Dreg = Dreg + Dreg,
Dreg = Dreg – Dreg ;

* * * – – * –

Dreg_lo_hi = Dreg_lo_hi +
Dreg_lo_hi ;

* * * – – * –

Dreg_lo_hi = Dreg_lo_hi –
Dreg_lo_hi (S) ;

* * * – – * –

Dreg = Dreg +|+ Dreg ; * * * – – * –

Dreg = Dreg +|– Dreg ; * * * – – * –

Dreg = Dreg –|+ Dreg ; * * * – – * –

Dreg = Dreg –|– Dreg ; * * * – – * –

Dreg = Dreg +|+Dreg,
Dreg = Dreg –|– Dreg ;

* * – – – * –

Dreg = Dreg +|– Dreg,
Dreg = Dreg –|+ Dreg ;

* * – – – * –

Dreg = An + An,
Dreg = An – An ;

* * * – – * –

Dreg += imm7 ; * * * – – * –

Preg += imm7 ; – – – – – – –

Dreg = (A0 += A1) ; * * * * – * –

Dreg_lo_hi = (A0 += A1) ; * * * * – * –

A0 += A1 ; * * * * – – –

Arithmetic Logic Unit (ALU)

2-32 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

A0 –= A1 ; * * * * – – –

DIVS (Dreg, Dreg) ; * * * * – – d

DIVQ (Dreg, Dreg) ; * * * * – – d

Dreg = MAX (Dreg, Dreg)
(V) ;

* * – – – **/– –

Dreg = MIN (Dreg, Dreg)
(V) ;

* * – – – **/– –

Dreg = ABS Dreg (V) ; * ** – – – * –

An = ABS An ; * ** – * * * –

An = ABS An,
An = ABS An ;

* ** – * * * –

An = –An ; * * * * * * –

An = –An, An =– An ; * * * * * * –

An = An (S) ; * * – * * – –

An = An (S), An = An (S) ; * * – * * – –

Dreg_lo_hi = Dreg (RND) ; * * – – – * –

Dreg_lo_hi = Dreg + Dreg
(RND12) ;

* * – – – * –

Dreg_lo_hi = Dreg – Dreg
(RND12) ;

* * – – – * –

Dreg_lo_hi = Dreg + Dreg
(RND20) ;

* * – – – * –

Dreg_lo_hi = Dreg – Dreg
(RND20) ;

* * – – – * –

Dreg_lo = SIGNBITS Dreg ; – – – – – – –

Table 2-9. ALU Instruction Summary (Cont’d)

Instruction ASTAT Status Flags

AZ AN AC0
AC0_COPY
AC1

AV0
AV0S

AV1
AV1S

V
V_COPY
VS

AQ

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-33

Computational Units

ALU Data Flow Details
Figure 2-9 shows a more detailed diagram of the arithmetic units and the
data register file, which appears in Figure 2-1.

ALU0 is described here for convenience. ALU1 is very similar—a subset of
ALU0.

Each ALU performs 40-bit addition for the accumulation of the multiplier
results, as well as 32-bit and dual 16-bit operations. Each ALU has two
32-bit input ports that can be considered a pair of 16-bit operands or a
single 32-bit operand. For single 16-bit operations, any of the four possi-
ble 16-bit operands may be used with any of the other 16-bit operands
presented at the input to the ALU.

Dreg_lo = SIGNBITS
Dreg_lo_hi ;

– – – – – – –

Dreg_lo = SIGNBITS An ; – – – – – – –

Dreg_lo = EXPADJ (Dreg,
Dreg_lo) (V) ;

– – – – – – –

Dreg_lo = EXPADJ
(Dreg_lo_hi, Dreg_lo);

– – – – – – –

Dreg = Dreg & Dreg ; * * ** – – **/– –

Dreg = ~ Dreg ; * * ** – – **/– –

Dreg = Dreg | Dreg ; * * ** – – **/– –

Dreg = Dreg ^ Dreg ; * * ** – – **/– –

Dreg =– Dreg ; * * * – – * –

Table 2-9. ALU Instruction Summary (Cont’d)

Instruction ASTAT Status Flags

AZ AN AC0
AC0_COPY
AC1

AV0
AV0S

AV1
AV1S

V
V_COPY
VS

AQ

Arithmetic Logic Unit (ALU)

2-34 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

As shown in Figure 2-10, for dual 16-bit operations, the high halves and
low halves are paired, providing four possible combinations of addition
and subtraction.

(A) H + H, L + L (B) H + H, L – L

(C) H – H, L + L (D) H – H, L – L

Figure 2-9. Register Files and ALUs

MAC0

SHIFTER

MAC1

32b

32b

32b

OPERAND

FROM MEMORY

TO MEMORY

OPERAND

ALUs

A1 A0

R0

R1

R2

R3

R4

R5

R6

R7

R0.H R0.L

R1.H

R2.H

R3.H

R4.H

R5.H

R6.H

R7.H

R1.L

R2.L

R3.L

R4.L

R5.L

R6.L

R7.L

SELECTION SELECTION

32b 32b

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-35

Computational Units

Dual 16-Bit Cross Options

For dual 16-bit operations, the results may be crossed. “Crossing the
results” changes the location in the result register for the result of a calcu-
lation. Usually, the result from the high side calculation is placed in the
high half of the result register, and the result from the low side calculation
is placed in the low half of the result register. With the cross option, the
high result is placed in the low half of the destination register, and the low
result is placed in the high half of the destination register (see
Figure 2-11). This is particularly useful when dealing with complex math
and portions of the Fast Fourier Transform (FFT). The cross option
applies to ALU0 only.

Figure 2-10. Dual 16-Bit ALU Operations

31

Rm

Rp

 Rn

A 31

Rm

Rp

 Rn

B

31

Rm

Rp

 Rn

D31

Rm

Rp

 Rn

C

Arithmetic Logic Unit (ALU)

2-36 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

ALU Status Signals

Each ALU generates six status signals: the zero (AZ) status, the negative
(AN) status, the carry (ACn) status, the sticky overflow (AVnS) status, the
immediate overflow (AVn) status, and the quotient (AQ) status. All
arithmetic status signals are latched into the arithmetic status register
(ASTAT) at the end of the cycle. For the effect of ALU instructions on the
status flags, see Table 2-9.

Depending on the instruction, the inputs can come from the data register
file, the pointer register file, or the arithmetic result registers. Arithmetic
on 32-bit operands directly support multiprecision operations in the ALU.

ALU Division Support Features
The ALU supports division with two special divide primitives. These
instructions (DIVS, DIVQ) let programs implement a non-restoring, condi-
tional (error checking), addition/subtraction/division algorithm.

The division can be either signed or unsigned, but both the dividend and
divisor must be of the same type. Details about using division and pro-
gramming examples are available in Blackfin Processor Programming
Reference.

Figure 2-11. Cross Options for Dual 16-Bit ALU Operations

31

Rm

Rp

Rn

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-37

Computational Units

Special SIMD Video ALU Operations
Four 8-bit video ALUs enable the processor to process video information
with high efficiency. Each video ALU instruction may take from one to
four pairs of 8-bit inputs and return one to four 8-bit results. The inputs
are presented to the video ALUs in two 32-bit words from the data register
file. The possible operations include:

• Quad 8-bit add or subtract

• Quad 8-bit average

• Quad 8-bit pack or unpack

• Quad 8-bit subtract-absolute-accumulate

• Byte align

For more information about the operation of these instructions, see Black-
fin Processor Programming Reference.

Multiply Accumulators (Multipliers)
The two multipliers (MAC0 and MAC1) perform fixed-point multiplica-
tion and multiply and accumulate operations. Multiply and accumulate
operations are available with either cumulative addition or cumulative
subtraction.

Multiplier fixed-point instructions operate on 16-bit fixed-point data and
produce 32-bit results that may be added or subtracted from a 40-bit
accumulator.

Multiply Accumulators (Multipliers)

2-38 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Inputs are treated as fractional or integer, unsigned or two’s-complement.
Multiplier instructions include:

• Multiplication

• Multiply and accumulate with addition, rounding optional

• Multiply and accumulate with subtraction, rounding optional

• Dual versions of the above

Multiplier Operation
Each multiplier has two 32-bit inputs from which it derives the two 16-bit
operands. For single multiply and accumulate instructions, these operands
can be any data registers in the data register file. Each multiplier can accu-
mulate results in its accumulator register, A1 or A0. The accumulator
results can be saturated to 32 or 40 bits. The multiplier result can also be
written directly to a 16- or 32-bit destination register with optional
rounding.

Each multiplier instruction determines whether the inputs are either both
in integer format or both in fractional format. The format of the result
matches the format of the inputs. In MAC0, both inputs are treated as
signed or unsigned. In MAC1, there is a mixed-mode option.

If both inputs are fractional and signed, the multiplier automatically shifts
the result left one bit to remove the redundant sign bit. Unsigned frac-
tional, integer, and mixed modes do not perform a shift for sign bit
correction. Multiplier instruction options specify the data format of the
inputs. See “Multiplier Instruction Options” on page 2-42 for more
information.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-39

Computational Units

Placing Multiplier Results in Multiplier Accumulator
Registers

As shown in Figure 2-9, each multiplier has a dedicated accumulator, A0
or A1. Each accumulator register is divided into three sections—A0.L/A1.L

(bits 15:0), A0.H/A1.H (bits 31:16), and A0.X/A1.X (bits 39:32).

When the multiplier writes to its result accumulator registers, the 32-bit
result is deposited into the lower bits of the combined accumulator regis-
ter, and the MSB is sign-extended into the upper eight bits of the register
(A0.X/A1.X).

Multiplier output can be deposited not only in the A0 or A1 registers, but
also in a variety of 16- or 32-bit data registers in the data register file.

Rounding or Saturating Multiplier Results

On a multiply and accumulate operation, the accumulator data can be sat-
urated and, optionally, rounded for extraction to a register or register half.
When a multiply deposits a result only in a register or register half, the sat-
uration and rounding works the same way. The rounding and saturation
operations work as follows.

• Rounding is applied only to fractional results except for the IH
option, which applies rounding and high half extraction to an inte-
ger result.

For the IH option, the rounded result is obtained by adding 0x8000
to the accumulator (for MAC) or multiply result (for mult) and
then saturating to 32-bits. For more information, see “Rounding
Multiplier Results” on page 2-18.

• If an overflow or underflow has occurred, the saturate operation
sets the specified result register to the maximum positive or nega-
tive value. For more information, see the following section.

Multiply Accumulators (Multipliers)

2-40 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Saturating Multiplier Results on Overflow
The following bits in ASTAT indicate multiplier overflow status:

• Bit 16 (AV0) and bit 18 (AV1) record overflow condition (whether
the result has overflowed 32 bits) for the A0 and A1 accumulators,
respectively.

 If the bit is cleared (=0), no overflow or underflow has occurred. If
the bit is set (=1), an overflow or underflow has occurred. The AV0S
and AV1S bits are sticky bits.

• Bit 24 (V) and bit 25 (VS) are set if overflow occurs in extracting the
accumulator result to a register.

Multiplier Instruction Summary
Table 2-10 lists the multiplier instructions. For more information about
assembly language syntax and the effect of multiplier instructions on the
status flags, see Blackfin Processor Programming Reference.

In Table 2-10, note the meaning of these symbols:

• Dreg denotes any data register file register.

• Dreg_lo_hi denotes any 16-bit register half in any data register file
register.

• Dreg_lo denotes the lower 16 bits of any data register file register.

• Dreg_hi denotes the upper 16 bits of any data register file register.

• An denotes either MAC accumulator register A0 or A1.

• * Indicates the flag may be set or cleared, depending on the results
of the instruction.

• – Indicates no effect.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-41

Computational Units

Multiplier instruction options are described in “Multiplier Instruction
Options” on page 2-42.

Table 2-10. Multiplier Instruction Summary

Instruction ASTAT Status Flags

AV0
AV0S

AV1
AV1S

V
V_COPY
VS

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ; – – *

Dreg_hi = Dreg_lo_hi * Dreg_lo_hi ; – – *

Dreg = Dreg_lo_hi * Dreg_lo_hi ; – – *

An = Dreg_lo_hi * Dreg_lo_hi ; * * –

An += Dreg_lo_hi * Dreg_lo_hi ; * * –

An –= Dreg_lo_hi * Dreg_lo_hi ; * * –

Dreg_lo = (A0 = Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg_lo = (A0 += Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg_lo = (A0 –= Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg_hi = (A1 –= Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg = (An = Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg = (An += Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg = (An –= Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg *= Dreg ; – – –

Multiply Accumulators (Multipliers)

2-42 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Multiplier Instruction Options

The following descriptions of multiplier instruction options provide an
overview. Not all options are available for all instructions. For informa-
tion about how to use these options with their respective instructions, see
Blackfin Processor Programming Reference.

default No option; input data is signed fraction.

(IS) Input data operands are signed integer. No shift
correction is made.

(FU) Input data operands are unsigned fraction. No shift
correction is made.

(IU) Input data operands are unsigned integer. No shift
correction is made.

(T) Input data operands are signed fraction. When
copying to the destination half register, truncates
the lower 16 bits of the accumulator contents.

(TFU) Input data operands are unsigned fraction. When
copying to the destination half register, truncates
the lower 16 bits of the accumulator contents.

(ISS2) If multiplying and accumulating to a register:

Input data operands are signed integer. When copy-
ing to the destination register, accumulator
contents are scaled (multiplied x2 by a one-place
shift-left). If scaling produces a signed value larger
than 32 bits, the number is saturated to its maxi-
mum positive or negative value.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-43

Computational Units

If multiplying and accumulating to a half register:

When copying the lower 16 bits to the destination
half register, the accumulator contents are scaled. If
scaling produces a signed value greater than 16 bits,
the number is saturated to its maximum positive or
negative value.

(IH) This option indicates integer multiplication with
high half word extraction. The accumulator is satu-
rated at 32 bits, and bits [31:16] of the accumulator
are rounded, and then copied into the destination
half register.

(W32) Input data operands are signed fraction with no
extension bits in the accumulators at 32 bits.
Left-shift correction of the product is performed, as
required. This option is used for legacy GSM
speech vocoder algorithms written for 32-bit accu-
mulators. For this option only, this special case
applies: 0x8000 x 0x8000 = 0x7FFF.

(M) Operation uses mixed-multiply mode. Valid only
for MAC1 versions of the instruction. Multiplies a
signed fraction by an unsigned fractional operand
with no left-shift correction. Operand one is signed;
operand two is unsigned. MAC0 performs an
unmixed multiply on signed fractions by default, or
another format as specified. That is, MAC0 exe-
cutes the specified signed/signed or
unsigned/unsigned multiplication. The (M) option
can be used alone or in conjunction with one other
format option.

Multiply Accumulators (Multipliers)

2-44 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Multiplier Data Flow Details
Figure 2-12 shows the register files and ALUs, along with the
multiplier/accumulators.

Each multiplier has two 16-bit inputs, performs a 16-bit multiplication,
and stores the result in a 40-bit accumulator or extracts to a 16-bit or
32-bit register. Two 32-bit words are available at the MAC inputs, provid-
ing four 16-bit operands to chose from.

Figure 2-12. Register Files and ALUs

MAC0

SHIFTER

MAC1

32b 32b32b

32b

32b

 OPERAND

FROM MEMORY

TO MEMORY

OPERAND

ALUs

A1 A0

R0

R1

R2

R3

R4

R5

R6

R7

R0.H R0.L

R1.H

R2.H

R3.H

R4.H

R5.H

R6.H

R7.H

R1.L

R2.L

R3.L

R4.L

R5.L

R6.L

R7.L

SELECTION SELECTION

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-45

Computational Units

One of the operands must be selected from the low half or the high half of
one 32-bit word. The other operand must be selected from the low half or
the high half of the other 32-bit word. Thus, each MAC is presented with
four possible input operand combinations. The two 32-bit words can
contain the same register information, giving the options for squaring and
multiplying the high half and low half of the same register. Figure 2-13
show these possible combinations.

The 32-bit product is passed to a 40-bit adder/subtracter, which may add
or subtract the new product from the contents of the accumulator result
register or pass the new product directly to the data register file results reg-
ister. For results, the A0 and A1 registers are 40 bits wide. Each of these
registers consists of smaller 32- and 8-bit registers—A0.W, A1.W, A0.X, and
A1.X.

Figure 2-13. Four Possible Combinations of MAC Operations

31 31

Rm

Rp

39 39

MAC0 MAC0

31

39

MAC0

31

39

MAC0

A0

Rm

Rp

A0

Rm

Rp

A0

Rm

Rp

A0

A B

C D

Multiply Accumulators (Multipliers)

2-46 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Some example instructions:

A0 = R3.L * R4.H ;

In this instruction, the MAC0 multiplier/accumulator performs a multiply
and puts the result in the accumulator register.

A1 += R3.H * R4.H ;

In this instruction, the MAC1 multiplier/accumulator performs a multiply
and accumulates the result with the previous results in the A1 accumulator.

Multiply Without Accumulate
The multiplier may operate without the accumulation function. If accu-
mulation is not used, the result can be directly stored in a register from the
data register file or the accumulator register. The destination register may
be 16 bits or 32 bits. If a 16-bit destination register is a low half, then
MAC0 is used; if it is a high half, then MAC1 is used. For a 32-bit desti-
nation register, either MAC0 or MAC1 is used.

If the destination register is 16 bits, then the word that is extracted from
the multiplier depends on the data type of the input.

• If the multiplication uses fractional operands or the IH option, then
the high half of the result is extracted and stored in the 16-bit des-
tination registers (see Figure 2-14).

• If the multiplication uses integer operands, then the low half of the
result is extracted and stored in the 16-bit destination registers.
These extractions provide the most useful information in the resul-
tant 16-bit word for the data type chosen (see Figure 2-15).

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-47

Computational Units

For example, this instruction uses fractional, unsigned operands:

R0.L = R1.L * R2.L (FU);

The instruction deposits the upper 16 bits of the multiply answer with
rounding and saturation into the lower half of R0, using MAC0. This
instruction uses unsigned integer operands:

R0.H = R2.H * R3.H (IU);

The instruction deposits the lower 16 bits of the multiply answer with any
required saturation into the high half of R0, using MAC1:

R0 = R1.L * R2.L;

Regardless of operand type, the preceding operation deposits 32 bits of the
multiplier answer with saturation into R0, using MAC0.

Figure 2-14. Multiplication of Fractional Operands

A0.X A0.H A0.L

A0 0000 0000 XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX

XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX
Destination
Register

A1.X A1.H A1.L

A1 0000 0000 XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX

XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX
Destination
Register

Multiply Accumulators (Multipliers)

2-48 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Special 32-Bit Integer MAC Instruction
The processor supports a multi cycle 32-bit MAC instruction:

Dreg *= Dreg

The single instruction multiplies two 32-bit integer operands and provides
a 32-bit integer result, destroying one of the input operands.

The instruction takes multiple cycles to execute. Refer to the product data
sheet and Blackfin Processor Programming Reference for more information
about the exact operation of this instruction. This macro function is inter-
ruptable and does not modify the data in either accumulator register A0 or
A1.

Figure 2-15. Multiplication of Integer Operands

A0.X A0.H A0.L

A0 0000 0000 XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX

XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX
Destination
Register

A1.X A1.H A1.L

A1 0000 0000 XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX

XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX
Destination
Register

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-49

Computational Units

Dual MAC Operations
The processor has two 16-bit MACs. Both MACs can be used in the same
operation to double the MAC throughput. The same two 32-bit input
registers are offered to each MAC unit, providing each with four possible
combinations of 16-bit input operands. Dual MAC operations are fre-
quently referred to as vector operations, because a program could store
vectors of samples in the four input operands and perform vector
computations.

An example of a dual multiply and accumulate instruction is:

A1 += R1.H * R2.L, A0 += R1.L * R2.H;

This instruction represents two multiply and accumulate operations.

• In one operation (MAC1) the high half of R1 is multiplied by the
low half of R2 and added to the contents of the A1 accumulator.

• In the second operation (MAC0) the low half of R1 is multiplied by
the high half of R2 and added to the contents of A0.

The results of the MAC operations may be written to registers in a num-
ber of ways: as a pair of 16-bit halves, as a pair of 32-bit registers, or as an
independent 16-bit half register or 32-bit register.

For example:

R3.H = (A1 += R1.H * R2.L), R3.L = (A0 += R1.L * R2.L) ;

In this instruction, the 40-bit accumulator is packed into a 16-bit half reg-
ister. The result from MAC1 must be transferred to a high half of a
destination register and the result from MAC0 must be transferred to the
low half of the same destination register.

The operand type determines the correct bits to extract from the accumu-
lator and deposit in the 16-bit destination register. See “Multiply Without
Accumulate” on page 2-46.

Barrel Shifter (Shifter)

2-50 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

R3 = (A1 += R1.H * R2.L), R2 = (A0 += R1.L * R2.L);

In this instruction, the 40-bit accumulators are packed into two 32-bit
registers. The registers must be register pairs (R[1:0], R[3:2], R[5:4],
R[7:6]).

R3.H = (A1 += R1.H * R2.L), A0 += R1.L * R2.L;

This instruction is an example of one accumulator—but not the other—
being transferred to a register. Either a 16- or 32-bit register may be speci-
fied as the destination register.

Barrel Shifter (Shifter)
The shifter provides bitwise shifting functions for 16-, 32-, or 40-bit
inputs, yielding a 16-, 32-, or 40-bit output. These functions include
arithmetic shift, logical shift, rotate, and various bit test, set, pack,
unpack, and exponent detection functions. These shift functions can be
combined to implement numerical format control, including full float-
ing-point representation.

Shifter Operations
The shifter instructions (>>>, >>, <<, ASHIFT, LSHIFT, ROT) can be used var-
ious ways, depending on the underlying arithmetic requirements. The
ASHIFT and >>> instructions represent the arithmetic shift. The LSHIFT,
<<, and >> instructions represent the logical shift.

The arithmetic shift and logical shift operations can be further broken
into subsections. Instructions that are intended to operate on 16-bit single
or paired numeric values (as would occur in many DSP algorithms) can
use the instructions ASHIFT and LSHIFT. These are typically three-operand
instructions.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-51

Computational Units

Instructions that are intended to operate on a 32-bit register value and use
two operands, such as instructions frequently used by a compiler, can use
the >>> and >> instructions.

Arithmetic shift, logical shift, and rotate instructions can obtain the shift
argument from a register or directly from an immediate value in the
instruction. For details about shifter related instructions, see “Shifter
Instruction Summary” on page 2-54.

Two-Operand Shifts

Two-operand shift instructions shift an input register and deposit the
result in the same register.

Immediate Shifts

An immediate shift instruction shifts the input bit pattern to the right
(downshift) or left (upshift) by a given number of bits. Immediate shift
instructions use the data value in the instruction itself to control the
amount and direction of the shifting operation.

The following example shows the input value downshifted.

R0 contains 0000 B6A3;

R0 >>= 0x04;

results in
R0 contains 0000 0B6A;

The following example shows the input value upshifted.

R0 contains 0000 B6A3;

R0 <<= 0x04;

results in
R0 contains 000B 6A30;

Barrel Shifter (Shifter)

2-52 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Register Shifts

Register-based shifts use a register to hold the shift value. The entire
32-bit register is used to derive the shift value, and when the magnitude of
the shift is greater than or equal to 32, then the result is either 0 or –1.

The following example shows the input value upshifted.

R0 contains 0000 B6A3;

R2 contains 0000 0004;

R0 <<= R2;

results in
R0 contains 000B 6A30;

Three-Operand Shifts

Three-operand shifter instructions shift an input register and deposit the
result in a destination register.

Immediate Shifts

Immediate shift instructions use the data value in the instruction itself to
control the amount and direction of the shifting operation.

The following example shows the input value downshifted.

R0 contains 0000 B6A3;

R1 = R0 >> 0x04;

results in
R1 contains 0000 0B6A;

The following example shows the input value upshifted.

R0.L contains B6A3;

R1.H = R0.L << 0x04;

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-53

Computational Units

results in
R1.H contains 6A30;

Register Shifts

Register-based shifts use a register to hold the shift value. When a register
is used to hold the shift value (for ASHIFT, LSHIFT or ROT), then the shift
value is always found in the low half of a register (Rn.L). The bottom six
bits of Rn.L are masked off and used as the shift value.

The following example shows the input value upshifted.

R0 contains 0000 B6A3;

R2.L contains 0004;

R1 = R0 ASHIFT by R2.L;

results in
R1 contains 000B 6A30;

The following example shows the input value rotated. Assume the condi-
tion code (CC) bit is set to 0. For more information about CC, see
“Condition Code Flag” on page 4-12.

R0 contains ABCD EF12;

R2.L contains 0004;

R1 = R0 ROT by R2.L;

results in
R1 contains BCDE F125;

Note the CC bit is included in the result, at bit 3.

Bit Test, Set, Clear, Toggle

The shifter provides the method to test, set, clear, and toggle specific bits
of a data register. All instructions have two arguments—the source register
and the bit field value. The test instruction does not change the source
register. The result of the test instruction resides in the CC bit.

Barrel Shifter (Shifter)

2-54 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The following examples show a variety of operations.

BITCLR (R0, 6);

BITSET (R2, 9);

BITTGL (R3, 2);

CC = BITTST (R3, 0);

Field Extract and Field Deposit

If the shifter is used, a source field may be deposited anywhere in a 32-bit
destination field. The source field may be from 1 bit to 16 bits in length.
In addition, a 1- to 16-bit field may be extracted from anywhere within a
32-bit source field.

Two register arguments are used for these functions. One holds the 32-bit
destination or 32-bit source. The other holds the extract/deposit value, its
length, and its position within the source.

Shifter Instruction Summary
Table 2-11 lists the shifter instructions. For more information about
assembly language syntax and the effect of shifter instructions on the sta-
tus flags, see Blackfin Processor Programming Reference.

In Table 2-11, note the meaning of these symbols:

• Dreg denotes any data register file register.

• Dreg_lo denotes the lower 16 bits of any data register file register.

• Dreg_hi denotes the upper 16 bits of any data register file register.

• * Indicates the flag may be set or cleared, depending on the results
of the instruction.

• * 0 Indicates versions of the instruction that send results to accu-
mulator A0 set or clear AV0.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-55

Computational Units

• * 1 Indicates versions of the instruction that send results to accu-
mulator A1 set or clear AV1.

• ** Indicates the flag is cleared.

• *** Indicates CC contains the latest value shifted into it.

• – Indicates no effect.

Table 2-11. Shifter Instruction Summary

Instruction ASTAT Status Flag

AZ AN AC0
AC0_COPY
AC1

AV0
AV0S

AV1
AV1S

CC V
V_COPY
VS

BITCLR (Dreg, uimm5) ; * * ** – – – **/–

BITSET (Dreg, uimm5) ; ** * ** – – – **/–

BITTGL (Dreg, uimm5) ; * * ** – – – **/–

CC =
BITTST (Dreg, uimm5) ;

– – – – – * –

CC =
!BITTST (Dreg, uimm5) ;

– – – – – * –

Dreg =
DEPOSIT (Dreg, Dreg) ;

* * ** – – – **/–

Dreg =
EXTRACT (Dreg, Dreg) ;

* * ** – – – **/–

BITMUX (Dreg, Dreg, A0) ; – – – – – – –

Dreg_lo = ONES Dreg ; – – – – – – –

Dreg = PACK (Dreg_lo_hi,
Dreg_lo_hi);

– – – – – – –

Dreg >>>= uimm5 ; * * – – – – **/–

Dreg >>= uimm5 ; * * – – – – **/–

Dreg <<= uimm5 ; * * – – – – **/–

Dreg = Dreg >>> uimm5 ; * * – – – – **/–

Barrel Shifter (Shifter)

2-56 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Dreg = Dreg >> uimm5 ; * * – – – – **/–

Dreg = Dreg << uimm5 ; * * – – – – *

Dreg = Dreg >>> uimm4 (V) ; * * – – – – **/–

Dreg = Dreg >> uimm4 (V) ; * * – – – – **/–

Dreg = Dreg << uimm4 (V) ; * * – – – – *

An = An >>> uimm5 ; * * – ** 0/– ** 1/– – –

An = An >> uimm5 ; * * – ** 0/– ** 1/– – –

An = An << uimm5 ; * * – * 0 * 1 – –

Dreg_lo_hi = Dreg_lo_hi >>>
uimm4 ;

* * – – – – **/–

Dreg_lo_hi = Dreg_lo_hi >>
uimm4 ;

* * – – – – **/–

Dreg_lo_hi = Dreg_lo_hi <<
uimm4 ;

* * – – – – *

Dreg >>>= Dreg ; * * – – – – **/–

Dreg >>= Dreg ; * * – – – – **/–

Dreg <<= Dreg ; * * – – – – **/–

Dreg = ASHIFT Dreg BY
Dreg_lo ;

* * – – – – *

Dreg = LSHIFT Dreg BY
Dreg_lo ;

* * – – – – **/–

Dreg = ROT Dreg BY imm6 ; – – – – – *** –

Dreg = ASHIFT Dreg BY
Dreg_lo (V) ;

* * – – – – *

Dreg = LSHIFT Dreg BY
Dreg_lo (V) ;

* * – – – – **/–

Table 2-11. Shifter Instruction Summary (Cont’d)

Instruction ASTAT Status Flag

AZ AN AC0
AC0_COPY
AC1

AV0
AV0S

AV1
AV1S

CC V
V_COPY
VS

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 2-57

Computational Units

Dreg_lo_hi = ASHIFT
Dreg_lo_hi BY Dreg_lo ;

* * – – – – *

Dreg_lo_hi = LSHIFT
Dreg_lo_hi BY Dreg_lo ;

* * – – – – **/–

An = An ASHIFT BY Dreg _lo ; * * – * 0 * 1 – –

An = An ROT BY imm6 ; – – – – – *** –

Preg = Preg >> 1 ; – – – – – – –

Preg = Preg >> 2 ; – – – – – – –

Preg = Preg << 1 ; – – – – – – –

Preg = Preg << 2 ; – – – – – – –

Dreg = (Dreg + Dreg) << 1 ; * * * – – – *

Dreg = (Dreg + Dreg) << 2 ; * * * – – – *

Preg = (Preg + Preg) << 1 ; – – – – – – –

Preg = (Preg + Preg) << 2 ; – – – – – – –

Preg = Preg + (Preg << 1) ; – – – – – – –

Preg = Preg + (Preg << 2) ; – – – – – – –

Table 2-11. Shifter Instruction Summary (Cont’d)

Instruction ASTAT Status Flag

AZ AN AC0
AC0_COPY
AC1

AV0
AV0S

AV1
AV1S

CC V
V_COPY
VS

Barrel Shifter (Shifter)

2-58 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 3-1

3 OPERATING MODES AND
STATES

The processor supports the following three processor modes:

• User mode

• Supervisor mode

• Emulation mode

Emulation and supervisor modes have unrestricted access to the core
resources. User mode has restricted access to certain system resources, thus
providing a protected software environment.

User mode is considered the domain of application programs. Supervisor
mode and emulation mode are usually reserved for the kernel code of an
operating system.

The processor mode is determined by the event controller. When servicing
an interrupt, a nonmaskable interrupt (NMI), or an exception, the proces-
sor is in supervisor mode. When servicing an emulation event, the
processor is in emulation mode. When not servicing any events, the pro-
cessor is in user mode.

The current processor mode may be identified by interrogating the IPEND
memory-mapped register (MMR), as shown in Table 3-1.

 MMRs cannot be read while the processor is in user mode.

3-2 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

In addition, the processor supports the following two non-processing
states:

• Idle state

• Reset state

Figure 3-1 illustrates the processor modes and states as well as the transi-
tion conditions between them.

Table 3-1. Identifying the Current Processor Mode

Event Mode IPEND

Interrupt Supervisor 0x10
but IPEND[0], IPEND[1], IPEND[2], and
IPEND[3] = 0.

Exception Supervisor 0x08
The core is processing an exception event if
IPEND[0] = 0, IPEND[1] = 0, IPEND[2] = 0,
IPEND[3] = 1, and IPEND[15:4] are 0’s or 1’s.

NMI Supervisor 0x04
The core is processing an NMI event if IPEND[0]
= 0, IPEND[1] = 0, IPEND[2] = 1, and
IPEND[15:2] are 0’s or 1’s.

Reset Supervisor = 0x02
As the reset state is exited, IPEND is set to 0x02, and
the reset vector runs in supervisor mode.

Emulation Emulator = 0x01
The processor is in emulation mode if
IPEND[0] = 1, regardless of the state of the
remaining bits IPEND[15:1].

None User = 0x00

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 3-3

Operating Modes and States

User Mode
The processor is in user mode when it is not in reset or idle state, and
when it is not servicing an interrupt, NMI, exception, or emulation event.
User mode is used to process application level code that does not require
explicit access to system registers. Any attempt to access restricted system
registers causes an exception event. Table 3-2 lists the registers that may
be accessed in user mode.

Figure 3-1. Processor Modes and States

IDLE Instruction

Wakeup

USER

EMULATION

IDLE

RESET

SUPERVISOR

Interrupt
or
Exception

Application
level code

System code,
event handlers

Emulation
event

Emulation
event

RTE

RTI,
RTX, RTN

IDLE
instruction

RST
active

RTE

RST
inactive

Emulation event (1)

Interrupt

(1) Normal exit from Reset is to Supervisor mode. However, emulation hardware may have initiated a reset. If so
exit from Reset is to Emulation.

User Mode

3-4 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Protected Resources and Instructions
System resources consist of a subset of processor registers, all MMRs, and
a subset of protected instructions. These system and core MMRs are
located starting at address 0xFFC0 0000. This region of memory is pro-
tected from user mode access. Any attempt to access MMR space in user
mode causes an exception.

A list of protected instructions appears in Table 3-3. Any attempt to issue
any of the protected instructions from user mode causes an exception
event.

Table 3-2. Registers Accessible in User Mode

Processor Registers Register Names

Data Registers R[7:0], A[1:0]

Pointer Registers P[5:0], SP, FP, I[3:0], M[3:0], L[3:0], B[3:0]

Sequencer and register Registers RETS, LC[1:0], LT[1:0], LB[1:0], ASTAT, CYCLES,
CYCLES2

Table 3-3. Protected Instructions

Instruction Description

RTI Return from interrupt

RTX Return from exception

RTN Return from NMI

CLI Disable interrupts

STI Enable interrupts

RAISE Force interrupt/reset

RTE Return from emulation
Causes an exception only if executed outside emulation mode

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 3-5

Operating Modes and States

Protected Memory
Additional memory locations can be protected from user mode access. A
cacheability protection lookaside buffer (CPLB) entry can be created and
enabled. See “Memory Management Unit” on page 6-43 for further
information.

Entering User Mode
When coming out of reset, the processor is in supervisor mode because it
is servicing a reset event. To enter user mode from the reset state, two
steps must be performed. First, a return address must be loaded into the
RETI register. Second, an RTI must be issued. The following example code
shows how to enter user mode upon reset.

Example Code to Enter User Mode Upon Reset

Listing 3-1 provides code for entering user mode from reset.

Listing 3-1. Entering User Mode From Reset

P1.L = START ; /* Point to start of user code */

P1.H = START ;

RETI = P1 ;

RTI ; /* Return from Reset Event */

START : /* Place user code here */

User Mode

3-6 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Return Instructions That Invoke User Mode

Table 3-4 provides a summary of return instructions that can be used to
invoke user mode from various processor event service routines. When
these instructions are used in service routines, the value of the return
address must be first stored in the appropriate event RETx register. In the
case of an interrupt routine, if the service routine is interruptible, the
return address is stored on the stack. For this case, the address can be
found by popping the value from the stack into RETI. Once RETI has been
loaded, the RTI instruction can be issued.

 Note the stack pop is optional. If the RETI register is not
pushed/popped, then the interrupt service routine becomes
non-interruptible, because the return address is not saved on the
stack.

The processor remains in user mode until one of these events occurs:

• An interrupt, NMI, or exception event invokes supervisor mode.

• An emulation event invokes emulation mode.

• A reset event invokes the reset state.

Table 3-4. Return Instructions That Can Invoke User Mode

Current Process Activity Return Instruction to Use Execution Resumes at Address
in This Register

Interrupt Service Routine RTI RETI

Exception Service Routine RTX RETX

Nonmaskable Interrupt Service
Routine

RTN RETN

Emulation Service Routine RTE RETE

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 3-7

Operating Modes and States

Supervisor Mode
The processor services all interrupt, NMI, and exception events in super-
visor mode.

Supervisor mode has full, unrestricted access to all processor system
resources, including all emulation resources, unless a CPLB has been con-
figured and enabled. See “Memory Management Unit” on page 6-43 for a
further description. Only supervisor mode can use the register alias USP,
which references the user stack pointer in memory. This register alias is
necessary because in supervisor mode, SP refers to the kernel stack pointer
rather than to the user stack pointer.

Normal processing begins in supervisor mode from the reset state. Deas-
serting the RESET signal switches the processor from the reset state to
supervisor mode where it remains until an emulation event or return
instruction occurs to change the mode. Before the return instruction is
issued, the RETI register must be loaded with a valid return address.

Non-OS Environments
For non-OS environments, application code should remain in supervisor
mode so that it can access all core and system resources. When RESET is
deasserted, the processor initiates operation by servicing the reset event.
Emulation is the only event that can pre-empt this activity. Therefore,
lower priority events cannot be processed.

One way of keeping the processor in supervisor mode and still allowing
lower priority events to be processed is to set up and force the lowest pri-
ority interrupt (IVG15). Events and interrupts are described further in
“Events and Sequencing” on page 4-18. After the low priority interrupt
has been forced using the RAISE 15 instruction, RETI can be loaded with a
return address that points to user code that can execute until IVG15 is
issued. After RETI has been loaded, the RTI instruction can be issued to
return from the reset event.

Supervisor Mode

3-8 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The interrupt handler for IVG15 can be set to jump to the application code
starting address. An additional RTI is not required. As a result, the proces-
sor remains in supervisor mode because IPEND[15] remains set. At this
point, the processor is servicing the lowest priority interrupt. This ensures
that higher priority interrupts can be processed.

Example Code for Supervisor Mode Coming Out of Reset

To remain in supervisor mode when coming out of the reset state, use
code as shown in Listing 3-2.

Listing 3-2. Staying in Supervisor Mode Coming Out of Reset

P0.L = LO(EVT15) ; /* Point to IVG15 in Event Vector Table */

P0.H = HI(EVT15) ;

P1.L = START ; /* Point to start of User code */

P1.H = START ;

[P0] = P1 ; /* Place the address of start code in IVG15 of EVT

*/

P0.L = LO(IMASK) ;

R0 = [P0] ;

R1.L = EVT_IVG15 & 0xFFFF ;

R0 = R0 | R1 ;

[P0] = R0 ; /* Set (enable) IVG15 bit in Interrupt Mask register

*/

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 3-9

Operating Modes and States

RAISE 15 ; /* Invoke IVG15 interrupt */

P0.L = WAIT_HERE ;

P0.H = WAIT_HERE ;

RETI = P0 ; /* RETI loaded with return address */

RTI ; /* Return from Reset Event */

WAIT_HERE : /* Wait here till IVG15 interrupt is serviced */

JUMP WAIT_HERE ;

START: /* IVG15 vectors here */

[--SP] = RETI ; /* Enables interrupts and saves return address

to stack */

Emulation Mode
The processor enters emulation mode if emulation mode is enabled and
either of these conditions is met:

• An external emulation event occurs.

• The EMUEXCPT instruction is issued.

The processor remains in emulation mode until the emulation service rou-
tine executes an RTE instruction. If no interrupts are pending when the RTE
instruction executes, the processor switches to user mode. Otherwise, the
processor switches to supervisor mode to service the interrupt.

 Emulation mode is the highest priority mode, and the processor
has unrestricted access to all system resources.

Idle State

3-10 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Idle State
Idle state stops all processor activity at the user’s discretion, usually to
conserve power during lulls in activity. No processing occurs during the
Idle state. The Idle state is invoked by a sequential IDLE instruction. The
IDLE instruction notifies the processor hardware that the Idle state is
requested. The SSYNC instruction purges all speculative and transient states
in the core and external system.

The processor remains in the idle state until a peripheral or external
device, such as a SPORT or the real-time clock (RTC), generates an inter-
rupt that requires servicing.

In Listing 3-3, core interrupts are disabled and the IDLE instruction is exe-
cuted. When all the pending processes have completed, the core disables
its clocks. Since interrupts are disabled, Idle state can be terminated only
by asserting a WAKEUP signal. For more information, see “System Interrupt
Wake-Up Enable (SIC_IWRx) Registers” on page 4-27. (While not
required, an interrupt could also be enabled in conjunction with the
WAKEUP signal.)

When the WAKEUP signal is asserted, the processor wakes up, and the STI
instruction enables interrupts again.

Example Code for Transition to Idle State
To transition to the idle state, use code shown in Listing 3-3.

Listing 3-3. Transitioning to Idle State

CLI R0 ; /* disable interrupts */

IDLE ; /* drain pipeline and send core into IDLE state */

STI R0 ; /* re-enable interrupts after wakeup */

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 3-11

Operating Modes and States

Reset State
Reset state initializes the processor logic. During reset state, application
programs and the operating system do not execute. Clocks are stopped
while in reset state.

The processor remains in the reset state as long as external logic asserts the
external RESET signal. Upon deassertion, the processor completes the reset
sequence and switches to supervisor mode, where it executes code found at
the reset event vector.

Software in supervisor or emulation mode can invoke the reset state with-
out involving the external RESET signal. This can be done by issuing the
reset version of the RAISE instruction.

Application programs in user mode cannot invoke the reset state, except
through a system call provided by an operating system kernel. Table 3-5
summarizes the state of the processor upon reset.

System Reset and Power-up

3-12 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

System Reset and Power-up
Table 3-6 describes the five types of resets. Note all resets, except system
software, reset the core.

Table 3-5. Processor State Upon Reset

Item Description of Reset State

Core

Operating Mode Supervisor mode in reset event, clocks stopped

Rounding Mode Unbiased rounding

Cycle Counters Disabled, zero

DAG Registers (I, L, B, M) Random values (must be cleared at initialization)

Data and Address Registers Random values (must be cleared at initialization)

IPEND, IMASK, ILAT Cleared, interrupts globally disabled with IPEND bit 4

CPLBs Disabled

L1 Instruction memory SRAM (cache disabled)

L1 Data memory SRAM (cache disabled)

Cache Validity Bits Invalid

System

Booting Methods Determined by the values of BMODE pins at reset

MSEL Clock Frequency Reset value = 10

PLL Bypass Mode Disabled

VCO/Core Clock Ratio Reset value = 1

VCO/System Clock Ratio Reset value = 5

Peripheral Clocks Disabled

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 3-13

Operating Modes and States

Table 3-6. Resets

Reset Source Result

Hardware Reset The RESET pin causes a hard-
ware reset.

Resets both the core and the peripherals,
including the dynamic power management con-
troller (DPMC).
Resets the no boot on software reset bit in
SYSCR. For more information, see “SYSCR
Register” on page 3-14.

System Software
Reset

Writing b#111 to bits [2:0]
in the system MMR SWRST
at address 0xFFC0 0100
causes a system software
reset.

Resets only the peripherals, excluding the RTC
(real-time clock) block and most of the DPMC.
The DPMC resets only the no boot on software
reset bit in SYSCR. Does not reset the core.
Does not initiate a boot sequence.

Watchdog Timer
Reset

Programming the watchdog
timer appropriately causes a
watchdog timer reset.

Resets both the core and the peripherals,
excluding the RTC block and most of the
DPMC.
The software reset register (SWRST) can be read
to determine whether the reset source was the
watchdog timer.

Core Double-
Fault Reset

If the core enters a dou-
ble-fault state, and the core
double fault reset enable bit
(DOUBLE_FAULT) is set in
the SWRST register, then a
software reset occurs.

Resets both the core and the peripherals,
excluding the RTC block and most of the
DPMC.
The SWRST register can be read to determine
whether the reset source was core double fault.

Core-Only Soft-
ware Reset

This reset is caused by exe-
cuting a RAISE1 instruction
or by setting the software
reset (SYSRST) bit in the core
debug control register
(DBGCTL) via emulation soft-
ware through the JTAG port.
The DBGCTL register is not
visible to the memory map.

Resets only the core.
The peripherals do not recognize this reset.

System Reset and Power-up

3-14 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Hardware Reset
The processor chip reset is an asynchronous reset event. The RESET input
pin must be deasserted to perform a hardware reset. For more informa-
tion, see ADSP-BF538/ADSP-BF538F Embedded Processor Data Sheet.

A hardware-initiated reset results in a system-wide reset that includes both
core and peripherals. After the RESET pin is deasserted, the processor
ensures that all asynchronous peripherals have recognized and completed a
reset. After the reset, the processor transitions into the boot mode
sequence configured by the BMODE state.

The BMODE[1:0] pins are dedicated mode control pins. No other functions
are shared with these pins, and they may be permanently strapped by tying
them directly to either VDD or VSS. The pins and the corresponding bits
in SYSCR configure the boot mode that is employed after hardware reset or
system software reset. See “Reset” on page 4-44 and Table 4-11 on
page 4-47 for further information.

SYSCR Register
The values sensed from the BMODE[1:0] pins are latched into the system
reset configuration register (SYSCR) upon the deassertion of the RESET pin.
The values are made available for software access and modification after
the hardware reset sequence. Software can modify only the no boot on
software reset bit.

The various configuration parameters are distributed to the appropriate
destinations from SYSCR (see Figure 3-2).

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 3-15

Operating Modes and States

Software Resets and Watchdog Timer
A software reset may be initiated in three ways:

• By the watchdog timer, if appropriately configured

• By setting the system software reset field in the software reset regis-
ter (see Figure 3-3)

• By the RAISE1 instruction

The watchdog timer resets both the core and the peripherals. A system
software reset results in a reset of the peripherals without resetting the core
and without initiating a booting sequence.

 The system software reset must be performed while executing from
Level 1 memory (either as cache or as SRAM).

When L1 instruction memory is configured as cache, make sure the sys-
tem software reset sequence has been read into the cache.

Figure 3-2. System Reset Configuration Register

No Boot on Software Reset
 0 - Use BMODE to determine

boot source
 1 - Start executing from the

beginning of on-chip L1
memory or the beginning of
ASYNC bank 0 when
BMODE[1:0] = b#00

00000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BMODE[1:0] (Boot Mode)- RO
 00 - Bypass boot ROM,

execute from 16-bit
external memory

 01 - Use boot ROM to load
from 8-bit or 16-bit flash

 10 - SPI slave mode boot via
a master (host)

 11 - Use boot ROM to configure
and load boot code from
SPI serial EEPROM
(8-, 16-, or 24-bit address
range)

0 0 0 0 0 0 0 0 X X Reset = dependent on pin
values

System Reset Configuration Register (SYSCR)
X - state is initialized from mode pins during hardware reset

0xFFC0 0104

System Reset and Power-up

3-16 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

After either the watchdog or system software reset is initiated, the proces-
sor ensures that all asynchronous peripherals have recognized and
completed a reset.

For a reset generated by the watchdog timer, the processors transitions
into the boot mode sequence. The boot mode is configured by the state of
the BMODE and the no boot on software reset control bits.

If the no boot on software reset bit in SYSCR is cleared, the reset sequence
is determined by the BMODE[1:0] control bits.

SWRST Register
A software reset can be initiated by setting the system software reset field
in the software reset register (SWRST). Bit 15 indicates whether a software
reset has occurred since the last time SWRST was read. Bit 14 and bit 13,
respectively, indicate whether the software watchdog timer or a core
double fault has generated a software reset. Bits [15:13] are read-only and
cleared when the register is read. Bits [3:0] are read/write.

When the BMODE pins are not set to b#00 and the no boot on software reset
bit in SYSCR is set, the processor starts executing from the start of on-chip
L1 memory. In this configuration, the core begins fetching instructions
from the beginning of on-chip L1 memory.

When the BMODE pins are set to b#00 the core begins fetching instructions
from address 0x2000 0000 (the beginning of ASYNC bank 0).

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 3-17

Operating Modes and States

Core-Only Software Reset
A core-only software reset is initiated by executing the RAISE 1 instruction
or by setting the software reset (SYSRST) bit in the core debug control reg-
ister (DBGCTL) via emulation software through the JTAG port. (DBGCTL is
not visible to the memory map.)

A core-only software reset affects only the state of the core. Note the sys-
tem resources may be in an undetermined or even unreliable state,
depending on the system activity during the reset period.

Core and System Reset
To perform a system and core reset, use the code sequence shown in
Listing 3-4. As described in the code comments in the listing, the system
soft reset takes five system clock cycles to complete, so a delay loop is
needed. This code must reside in L1 memory for the system soft reset to
work properly.

Figure 3-3. Software Reset Register

Software Reset register -
RO
 0 - No SW reset since
last SWRST read
1 - SW reset occurred
since last SWRST read

0

Software Reset Register (SWRST)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

System Software Reset
 0x7 - Triggers SW reset

0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Core Double Fault Reset - RO
0 - SW reset not generated by double fault
1 - SW reset generated by double fault

Software Watchdog Timer
Source - RO
0 - SW reset not generated by
watchdog
1 - SW reset generated by
watchdog

0xFFC0 0100

Core Double Fault
Reset Enable
0 - No reset caused by
Core Double Fault
1 - Reset generated upon
Core Double Fault

System Reset and Power-up

3-18 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Listing 3-4. Core and System Reset

/* Issue system soft reset */

P0.L = LO(SWRST) ;

P0.H = HI(SWRST) ;

R0.L = 0x0007 ;

W[P0] = R0 ;

SSYNC ;

/* Wait for System reset to complete (needs to be 5 SCLKs). */

/* Assuming a worst case CCLK:SCLK ratio (15:1), use 5*15 = 75 */

/* as the loop count. */

P1 = 75;

LSETUP(start, end) LCO = P1 ;

start:

end:

NOP ;

/* Clear system soft reset */

R0.L = 0x0000 ;

W[P0] = R0 ;

SSYNC ;

/* Core reset - forces reboot */

RAISE 1 ;

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 3-19

Operating Modes and States

Booting Methods
The internal boot ROM includes a small boot kernel that can either be
bypassed or used to load user code from an external memory device. See
Table 4-10 on page 4-45 for further information. The boot kernel reads
the BMODE[1:0] pin state at reset to identify the download source (see
Table 4-7 on page 4-24). When in boot mode 0, the processor is set to
execute from 16-bit wide external memory at address 0x2000 0000
(ASYNC bank 0).

Several boot methods are available in which user code can be loaded from
an external memory device or a host device (as in the case of SPI slave
mode booting). For these modes, the boot kernel sets up the selected
peripheral based on the BMODE[1:0] pin settings.

For each boot mode, user code read in from the memory device is placed
at the starting location of L1 memory. Additional sections are read into
internal memory as specified within headers in the loader file. The boot
kernel terminates the boot process with a jump to the start of the L1
instruction memory space. The processor then begins execution from this
address.

 If booting from the serial peripheral interface (SPI0), general-pur-
pose flag pin 2 (PF2) is used as the SPI-chip select. This line must
be connected for proper operation.

A core-only software reset also vectors the core to the boot ROM. Only
the core is reset with the core-only software reset; this reset does not affect
the rest of the system. The boot ROM kernel detects a no boot on
software reset condition in SYSCR to avoid initiating a download. If this bit
is set on a software reset, the processor skips the normal boot sequence and
jumps to the beginning of L1 memory and begins execution.

Booting Methods

3-20 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The boot kernel assumes these conditions for the flash boot mode
(BMODE = 01):

• asynchronous memory bank (AMB) 0 enabled

• 16-bit packing for AMB 0 enabled

• bank 0 RDY is set to active high

• bank 0 hold time (read/write deasserted to AOE deasserted) =
3 cycles

• bank 0 read/write access times = 15 cycles

For SPI master mode boot (BMODE = 11), the boot kernel assumes that the
SPI0 baud rate is 500 kHz. SPI serial EEPROMs that are 8-bit, 16-bit,
and 24-bit addressable are supported. The SPI uses the PF2 output pin to
select a single SPI EEPROM device. The SPI0 controller submits succes-
sive read commands at addresses 0x00, 0x0000, and 0x000000 until a
valid 8-, 16-, or 24-bit addressable EEPROM is detected. It then begins
clocking data into the beginning of L1 instruction memory.

 The MISOx pin must be pulled high for SPI master mode booting
(BMODE = 11).

For each of the boot modes, 10-byte headers are first read from an external
memory device. The header specifies the number of bytes to be transferred
and the memory destination address. Once all blocks are loaded, program
execution commences from the start of L1 instruction SRAM.

For SPI slave mode boot (BMODE = 10), the hardware configuration shown
in Figure 3-4 is assumed.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 3-21

Operating Modes and States

The user-defined GPIO port F PFx is an output on the Blackfin processor
and an input on the host device. This pin allows the processor to hold off
the host device from sending data during certain sections of the boot pro-
cess. When this pin is deasserted, the host can continue to send bytes to
the processor.

Figure 3-4. SPI Slave Boot Mode

ADSP-BF538

HOST

SCLKx

SPIxSS

MISOx

PFx

MOSIx

MASTER SLAVE

Booting Methods

3-22 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-1

4 PROGRAM SEQUENCER

In the processor, the program sequencer controls program flow, constantly
providing the address of the next instruction to be executed by other parts
of the processor. Program flow in the chip is mostly linear, with the pro-
cessor executing program instructions sequentially.

The linear flow varies occasionally when the program uses nonsequential
program structures, such as those illustrated in Figure 4-1. Nonsequential
structures direct the processor to execute an instruction that is not at the
next sequential address. These structures include:

• Loops. One sequence of instructions executes several times with
zero overhead.

• Subroutines. The processor temporarily interrupts sequential flow
to execute instructions from another part of memory.

• Jumps. Program flow transfers permanently to another part of
memory.

• Interrupts and Exceptions. A runtime event or instruction triggers
the execution of a subroutine.

• Idle. An instruction causes the processor to stop operating and
hold its current state until an interrupt occurs. Then, the processor
services the interrupt and continues normal execution.

4-2 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The sequencer manages execution of these program structures by selecting
the address of the next instruction to execute.

Figure 4-1. Program Flow Variations

ADDRESS:N INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

LINEAR FLOW

LOOP

LOOP

N TIMES

JUMP

JUMP

…

CALL

SUBROUTINE

RTS

…

RTI

INTERRUPT

IRQ

VECTOR

IDLE

IDLE

WAITING
FOR IRQ
OR
WAKEUP

N + 1

N + 2

N + 3

N + 4

N + 5

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-3

Program Sequencer

The fetched address enters the instruction pipeline, ending with the pro-
gram counter (PC). The pipeline contains the 32-bit addresses of the
instructions currently being fetched, decoded, and executed. The PC
couples with the RETn registers, which store return addresses. All addresses
generated by the sequencer are 32-bit memory instruction addresses.

To manage events, the sequencer’s event controller handles interrupt and
event processing, determines whether an interrupt is masked, and gener-
ates the appropriate event vector address.

In addition to providing data addresses, the data address generators
(DAGs) can provide instruction addresses for the sequencer’s indirect
branches.

The sequencer evaluates conditional instructions and loop termination
conditions. The loop registers support nested loops. The memory-mapped
registers (MMRs) store information used to implement interrupt service
routines.

Sequencer Related Registers

4-4 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Sequencer Related Registers
Table 4-1 lists the registers within the processor that are related to the
sequencer. Except for the PC and SEQSTAT registers, all sequencer related
registers are directly readable and writable. Manually pushing or popping
registers to or from the stack is done using the explicit instructions
[--SP] = Rn (for push) or Rn = [SP++] (for pop).

Sequencer Status (SEQSTAT) Register
The sequencer status register (SEQSTAT) contains information about the
current state of the sequencer as well as diagnostic information from the
last event. SEQSTAT is a read-only register and is accessible only in supervi-
sor mode.

Table 4-1. Sequencer Related Registers

Register Name Description

SEQSTAT Sequencer status register

RETX
RETN
RETI
RETE
RETS

Return address registers: see “Events and Sequencing” on page 4-18.
Exception return
NMI return
Interrupt return
Emulation return
Subroutine return

LC0, LC1
LT0, LT1
LB0, LB1

Zero-overhead loop registers:
Loop counters
Loop tops
Loop bottoms

FP, SP Frame pointer and stack pointer: see “Data Address Generators” on
page 5-1.

SYSCFG System configuration register

CYCLES, CYCLES2 Cycle counters: see “Blackfin Processor Debug” on page 22-1.

PC Program counter

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-5

Program Sequencer

Zero-Overhead Loop (LCx, LTx, LBx) Registers
Two sets of zero-overhead loop registers implement loops, using hardware
counters instead of software instructions to evaluate loop conditions. After
evaluation, processing branches to a new target address. Both sets of regis-
ters include the loop counter (LCx), loop top (LTx), and loop bottom (LBx)
registers.

Table 4-2 describes the 32-bit loop register sets.

Figure 4-2. Sequencer Status Register

Sequencer Status Register (SEQSTAT)

EXCAUSE[5:0]
Holds information about
the last-executed excep-
tion. See Table 4-11 on
page 4-47.

Reset = 0x0000 0000

HWERRCAUSE[1:0]
Holds cause of last hardware error
generated by the core. Hardware
errors trigger interrupt number 5
(IVHW). See Table 4-13 on
page -53.

SFTRESET

0 - Last core reset was not a soft-
ware-triggered reset
1 - Last core reset was a soft-
ware-triggered reset, rather than a
hardware power-up reset

HWERRCAUSE[4:2]
See description under bits
[1:0], below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RO

Sequencer Related Registers

4-6 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

System Configuration (SYSCFG) Register
The system configuration register (SYSCFG) controls the configuration of
the processor. This register is accessible only from the supervisor mode.

Table 4-2. Loop Registers

Registers Description Function

LC0, LC1 Loop Counters Maintain a count of the remaining iterations of the
loop

LT0, LT1 Loop Tops Hold the address of the first instruction within a
loop

LB0, LB1 Loop Bottoms Hold the address of the last instruction of the loop

Figure 4-3. System Configuration Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

System Configuration Register (SYSCFG)

CCEN (Cycle-Counter Enable) SSSTEP (Supervisor Single Step)

When set, a Supervisor exception
is taken after each instruction is
executed. It applies only to User
mode, or when processing inter-
rupts in Supervisor mode. It is
ignored if the core is processing an
exception or higher-priority event. If
precise exception timing is
required, CSYNC must be used
after setting this bit.

0 - Disable 64-bit, free-running
 cycle counter
1 - Enable 64-bit, free-running
 cycle counter

Reset = 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-7

Program Sequencer

Instruction Pipeline
The program sequencer determines the next instruction address by exam-
ining both the current instruction being executed and the current state of
the processor. If no conditions require otherwise, the processor executes
instructions from memory in sequential order by incrementing the look
ahead address.

The processor has a ten-stage instruction pipeline.

Table 4-3. Stages of Instruction Pipeline

Pipeline Stage Description

Instruction Fetch 1 (IF1) Start instruction memory access.

Instruction Fetch 2 (IF2) Intermediate memory pipeline.

Instruction Fetch 3 (IF3) Finish L1 instruction memory access.

Instruction Decode (DEC) Align instruction, start instruction decode, and access
pointer register file.

Address Calculation (AC) Calculate data addresses and branch target address.

Execute 1 (EX1) Start access of data memory.

Execute 2 (EX2) Register file read.

Execute 3 (EX3) Finish accesses of data memory and start execution of
dual cycle instructions.

Execute 4 (EX4) Execute single cycle instructions.

Write Back (WB) Write states to data and pointer register files and process
events.

Instruction Pipeline

4-8 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 4-4 shows a diagram of the pipeline.

The sequencer decodes and distributes operations to the instruction mem-
ory unit and instruction alignment unit. It also controls stalling and
invalidating the instructions in the pipeline. The sequencer ensures that
the pipeline is fully interlocked and that the programmer does not need to
manage the pipeline.

The instruction fetch and branch logic generates 32-bit fetch addresses for
the instruction memory unit. The instruction alignment unit returns
instructions and their width information at the beginning of the DEC
stage.

For each instruction type (16-, 32-, or 64-bit), the alignment unit ensures
that the alignment buffers have enough valid data to be able to provide an
instruction every cycle. Since the instructions can be 16, 32, or 64 bits
wide, the alignment unit may not need to fetch data from the cache every
cycle. For example, for a series of 16-bit instructions, the alignment unit
gets data from the instruction memory unit once in 4 cycles. The align-
ment logic requests the next instruction address based on the status of the
alignment buffers. The sequencer responds by generating the next fetch
address in the next cycle, provided there is no change of flow.

The sequencer holds the fetch address until it receives a request from the
alignment logic or until a change of flow occurs. It always increments the
previous fetch address by 8 (the next 8 bytes). If a change of flow occurs,
such as a branch or an interrupt, the sequencer communicates it to the
instruction memory unit, which invalidates the data in the alignment unit.

Figure 4-4. Processor Pipeline

Inst Fetch 1 Inst Fetch 2 Inst Decode Address Calc Ex1 Ex2 Ex3 WB

Inst Fetch 1 Inst Fetch 2 Inst Decode Ex1 Ex2 Ex3 WB

Ex4Inst Fetch 3

Ex4Inst Fetch 3 Address Calc

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-9

Program Sequencer

The execution unit contains two 16-bit multipliers, two 40-bit ALUs, two
40-bit accumulators, one 40-bit shifter, a video unit (which adds 8-bit
ALU support), and an 8-entry 32-bit data register file.

Register file reads occur in the EX2 pipeline stage (for operands). Writes
occur in the WB stage (for stores). The multipliers and the video unit are
active in the EX3 stage, and the ALUs and shifter are active in the EX4
stage. The accumulators are written at the end of the EX4 stage.

Any nonsequential program flow can potentially decrease the processor’s
instruction throughput. Nonsequential program operations include:

• Jumps

• Subroutine calls and returns

• Interrupts and returns

• Loops

Branches and Sequencing
One type of nonsequential program flow that the sequencer supports is
branching. A branch occurs when a JUMP or CALL instruction begins execu-
tion at a new location other than the next sequential address. For
descriptions of how to use the JUMP and CALL instructions, see Blackfin
Processor Programming Reference.

A JUMP or a CALL instruction transfers program flow to another memory
location. The difference between a JUMP and a CALL is that a CALL automat-
ically loads the return address into the RETS register. The return address is
the next sequential address after the CALL instruction. This push makes the
address available for the CALL instruction’s matching return instruction,
allowing easy return from the subroutine.

Branches and Sequencing

4-10 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

A return instruction causes the sequencer to fetch the instruction at the
return address, which is stored in the RETS register (for subroutine
returns). The types of return instructions are return from subroutine
(RTS), return from interrupt (RTI), return from exception (RTX), return
from emulation (RTE), and return from nonmaskable interrupt (RTN). Each
return type has its own register for holding the return address.

JUMP instructions can be conditional, depending on the status of the CC bit
of the ASTAT register. They are immediate and may not be delayed. The
program sequencer can evaluate the CC status bit to decide whether to exe-
cute a branch. If no condition is specified, the branch is always taken.

Conditional JUMP instructions use static branch prediction to reduce the
branch latency caused by the length of the pipeline.

Branches can be direct or indirect. A direct branch address is determined
solely by the instruction word (for example, JUMP 0x30), while an indirect
branch gets its address from the contents of a DAG register (for example,
JUMP(P3)).

All types of JUMPs and CALLs can be PC-relative. The indirect JUMP and
CALL can be absolute or PC-relative.

Direct Short and Long Jumps
The sequencer supports both short and long jumps. The target of the
branch is a PC-relative address from the location of the instruction, plus
an offset. The PC-relative offset for the short jump is a 13-bit immediate
value that must be a multiple of two (bit zero must be a zero). The 13-bit
value gives an effective dynamic range of –4096 to +4094 bytes.

The PC-relative offset for the long jump is a 25-bit immediate value that
must also be a multiple of two (bit zero must be a zero). The 25-bit value
gives an effective dynamic range of –16,777,216 to +16,777,214 bytes.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-11

Program Sequencer

If, at the time of writing the program, the destination is known to be less
than a 13-bit offset from the current PC value, then the JUMP.S 0xnnnn

instruction may be used. If the destination requires more than a 13-bit
offset, then the JUMP.L 0xnnnnnnn instruction must be used. If the desti-
nation offset is unknown and development tools must evaluate the offset,
then use the instruction JUMP 0xnnnnnnn. Upon disassembly, the instruc-
tion is replaced by the appropriate JUMP.S or JUMP.L instruction.

Direct Call
The CALL instruction is a branch instruction that copies the address of the
instruction which would have executed next (had the CALL not executed)
into the RETS register. The direct CALL instruction has a 25-bit PC-relative
offset that must be a multiple of two (bit zero must be a zero). The 25-bit
value gives an effective dynamic range of –16,777,216 to +16,777,214
bytes.

Indirect Branch and Call
The indirect JUMP and CALL instructions get their destination address from
a data address generator (DAG) P-register. For the CALL instruction, the
RETS register is loaded with the address of the instruction which would
have executed next in the absence of the CALL instruction.

For example:

JUMP (P3) ;

CALL (P0) ;

Branches and Sequencing

4-12 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

PC-Relative Indirect Branch and Call
The PC-relative indirect JUMP and CALL instructions use the contents of a
P-register as an offset to the branch target. For the CALL instruction, the
RETS register is loaded with the address of the instruction which would
have executed next (had the CALL not executed).

For example:

JUMP (PC + P3) ;

CALL (PC + P0) ;

Condition Code Flag
The processor supports a condition code (CC) flag bit, which is used to
resolve the direction of a branch. This flag may be accessed eight ways:

1. A conditional branch is resolved by the value in CC.

2. A data register value may be copied into CC, and the value in CC
may be copied to a data register.

3. The BITTST instruction accesses the CC flag.

4. A status flag may be copied into CC, and the value in CC may be
copied to a status flag.

5. CC may be set to the result of a pointer register comparison.

6. CC may be set to the result of a data register comparison.

7. Some shifter instructions (rotate or BXOR) use CC as a portion of the
shift operand/result.

8. Test and set instructions can set and clear the CC bit.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-13

Program Sequencer

These eight ways of accessing the CC bit are used to control program flow.
The branch is explicitly separated from the instruction that sets the arith-
metic flags. A single bit resides in the instruction encoding that specifies
the interpretation for the value of CC. The interpretation is to “branch on
true” or “branch on false.”

The comparison operations have the form CC = expr where expr involves
a pair of registers of the same type (for example, data registers or pointer
registers, or a single register and a small immediate constant). The small
immediate constant is a 3-bit (–4 through 3) signed number for signed
comparisons and a 3-bit (0 through 7) unsigned number for unsigned
comparisons.

The sense of CC is determined by equal (==), less than (<), and less than or
equal to (<=). There are also bit test operations that test whether a bit in a
32-bit R-register is set.

Conditional Branches

The sequencer supports conditional branches. These are JUMP instructions
whose execution branches or continues linearly depending on the value of
the CC bit. The target of the branch is a PC-relative address from the loca-
tion of the instruction plus an offset. The PC-relative offset is an 11-bit
immediate value that must be a multiple of two (bit zero must be a zero).
This gives an effective dynamic range of –1024 to +1022 bytes.

For example, the following instruction tests the CC flag and, if it is posi-
tive, jumps to a location identified by the label dest_address:

IF CC JUMP dest_address ;

Branches and Sequencing

4-14 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Conditional Register Move

Register moves can be performed depending on whether the value of the
CC flag is true or false (1 or 0). In some cases, using this instruction instead
of a branch eliminates the cycles lost because of the branch. These condi-
tional moves can be done between any R- or P-registers (including SP and
FP).

Example code:

IF CC R0 = P0 ;

Branch Prediction
The sequencer supports static branch prediction to accelerate execution of
conditional branches. These branches are executed based on the state of
the CC bit.

In the EX4 stage, the sequencer compares the actual CC bit value to the
predicted value. If the value was predicted incorrectly, the branch is cor-
rected, and the correct address is available for the WB stage of the
pipeline.

The branch latency for conditional branches is as follows:

• If prediction was “not to take branch,” and branch was actually not
taken: 0 CCLK cycles.

• If prediction was “not to take branch,” and branch was actually
taken: 8 CCLK cycles.

• If prediction was “to take branch,” and branch was actually taken:
4 CCLK cycles.

• If prediction was “to take branch,” and branch was actually not
taken: 8 CCLK cycles.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-15

Program Sequencer

For all unconditional branches, the branch target address computed in the
AC stage of the pipeline is sent to the instruction fetch address bus at the
beginning of the EX1 stage. All unconditional branches have a latency of 4
CCLK cycles.

Consider the example in Table 4-4.

Loops and Sequencing
The sequencer supports a mechanism of zero-overhead looping. The
sequencer contains two loop units, each containing three registers. Each
loop unit has a loop top register (LT0, LT1), a loop bottom register (LB0,
LB1), and a loop count register (LC0, LC1).

When an instruction at address X is executed, and X matches the contents
of LB0, then the next instruction executed will be from the address in LT0.
In other words, when PC==LB0, then an implicit jump to LT0 is executed.

A loopback only occurs when the count is greater than or equal to 2. If the
count is nonzero, then the count is decremented by 1. For example, con-
sider the case of a loop with two iterations. At the beginning, the count is
2. Upon reaching the first loop end, the count is decremented to 1 and the
program flow jumps back to the top of the loop (to execute a second
time). Upon reaching the end of the loop again, the count is decremented
to zero but no loopback occurs (because the body of the loop has already
been executed twice).

Table 4-4. Branch Prediction

Instruction Description

If CC JUMP dest (bp) This instruction tests the CC flag, and if it is set, jumps to a location,
identified by the label, dest.
If the CC flag is set, then the branch is correctly predicted and the
branch latency is reduced. Otherwise the branch is incorrectly pre-
dicted and the branch latency increases.

Loops and Sequencing

4-16 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Since there are two loop units, loop unit 1 is assigned higher priority so
that it can be used as the inner loop in a nested loop structure. In other
words, a loopback caused by loop unit 1 on a particular instruction
(PC==LB1, LC1>=2) will prevent loop unit 0 from looping back on that
same instruction, even if the address matches. Loop unit 0 is allowed to
loop back only after the loop count 1 is exhausted.

The LSETUP instruction can be used to load all three registers of a loop unit
at once. Each loop register can also be loaded individually with a register
transfer, but this incurs a significant overhead if the loop count is nonzero
(the loop is active) at the time of the transfer.

The following code example shows a loop that contains two instructions
and iterates 32 times.

Loop

P5 = 0x20 ;

LSETUP (lp_start, lp_end) LCO = P5 ;

lp_start :

R5 = R0 + R1 (ns) || R2 = [P2++] || R3 = [I1++] ;

lp_end : R5 = R5 + R2 ;

Two sets of loop registers are used to manage two nested loops:

• LC[1:0] – the loop count registers

• LT[1:0] – the loop top address registers

• LB[1:0] – the loop bottom address registers

When executing an LSETUP instruction, the program sequencer loads the
address of the loop’s last instruction into LBx and the address of the loop’s
first instruction into LTx. The top and bottom addresses of the loop are
computed as PC-relative addresses from the LSETUP instruction plus an
offset. In each case, the offset value is added to the location of the LSETUP
instruction.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-17

Program Sequencer

LC0 and LC1 are unsigned 32-bit registers, each supporting 232 –1 itera-
tions through the loop.

When LCx = 0, the loop is disabled, and a single pass of the code executes.

The processor supports a four-location instruction loop buffer that
reduces instruction fetches while in loops. If the loop code contains four
or fewer instructions, then no fetches to instruction memory are necessary
for any number of loop iterations, because the instructions are stored
locally. The loop buffer effectively eliminates the instruction fetch time in
loops with more than four instructions by allowing fetches to take place
while instructions in the loop buffer are being executed.

A four-cycle latency occurs on the first loopback when the LSETUP specifies
a nonzero start offset (lp_start). Therefore, zero start offsets are
preferred.

The processor has no restrictions regarding which instructions can occur
in a loop end position. Branches and calls are allowed in that position.

Table 4-5. Loop Registers

First/Last Address of the
Loop

PC-Relative Offset Used to
Compute the Loop Start Address

Effective Range of the Loop
Start Instruction

Top / First 5-bit signed immediate; must be
a multiple of 2.

0 to 30 bytes away from LSETUP
instruction.

Bottom / Last 11-bit signed immediate; must
be a multiple of 2.

0 to 2046 bytes away from
LSETUP instruction (the defined
loop can be 2046 bytes long).

Events and Sequencing

4-18 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Events and Sequencing
The event controller of the processor manages five types of activities:

• Emulation

• Reset

• Non-maskable interrupts (NMI)

• Exceptions

• Interrupts

Note the word event describes all five types. The event controller manages
fifteen events in all: emulation, reset, NMI, exception, and 11 interrupts.

An interrupt is an event that changes normal processor instruction flow
and is asynchronous to program flow. In contrast, an exception is a soft-
ware initiated event whose effects are synchronous to program flow.

The event system is nested and prioritized. Consequently, several service
routines may be active at any time, and a low priority event may be pre-
empted by one of higher priority.

The processor employs a two-level event control mechanism. The proces-
sor system interrupt controllers (SICx) work with the core event controller
(CEC) to prioritize and control all system interrupts. The SICx provides
mapping between the many peripheral interrupt sources and the priori-
tized general-purpose interrupt inputs of the core. This mapping is
programmable, and individual interrupt sources can be masked in the
SICx.

The CEC supports nine general-purpose interrupts (IVG7 - IVG15) in addi-
tion to the dedicated interrupt and exception events that are described in
Table 4-6. It is recommended that the lowest two priority interrupts

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-19

Program Sequencer

(IVG14 and IVG15) be reserved for software interrupt handlers, leaving
seven prioritized interrupt inputs (IVG7 - IVG13) to support the system.
Refer to the following table.

Table 4-6. System and Core Event Mapping

Event Source Core Event Name

core events emulation (highest priority) EMU

reset RST

NMI NMI

exception EVX

reserved –

hardware error IVHW

core timer IVTMR

system inter-
rupts

PLL wake-up interrupt
DMA controller 0 error (generic)
DMA controller 1 error (generic)
PPI error interrupt
SPORT0 error interrupt
SPORT1 error interrupt
SPORT2 error interrupt
SPORT3 error interrupt
SPI0 error interrupt
SPI1 error interrupt
SPI2 error interrupt
UART0 error interrupt
UART1 error interrupt
UART2 error interrupt
CAN error interrupt

IVG7

real-time clock interrupts
DMA0 interrupt (PPI)

IVG8

Events and Sequencing

4-20 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Note the system interrupt to core event mappings shown are the default
values at reset and can be changed by software.

DMA1 interrupt (SPORT0 receive)
DMA2 interrupt (SPORT0 transmit)
DMA3 interrupt (SPORT1 receive)
DMA4 interrupt (SPORT1 transmit)
DMA8 interrupt (SPORT2 receive)
DMA9 interrupt (SPORT2 transmit)
DMA10 interrupt (SPORT3 receive)
DMA11 interrupt (SPORT3 transmit)
DMA12 interrupt (unassigned)
DMA13 interrupt (unassigned)

IVG9

DMA5 interrupt (SPI0)
DMA14 interrupt (SPI1)
DMA15 interrupt (SPI2)
DMA6 interrupt (UART0 receive)
DMA7 interrupt (UART0 transmit)
DMA16 interrupt (UART1 receive)
DMA17 interrupt (UART1 transmit)
DMA18 interrupt (UART2 receive)
DMA19 interrupt (UART2 transmit)

IVG10

timer0, timer1, timer2 interrupts
TWI0 interrupt
TWI1 interrupt
CAN receive interrupt
CAN transmit interrupt

IVG11

GPIO interrupt A/B IVG12

MDMA0 stream 0 (memory DMA)
MDMA0 stream 1 (memory DMA)
MDMA1 stream 0 (memory DMA)
MDMA1 stream 1 (memory DMA)
software watchdog timer

IVG13

Table 4-6. System and Core Event Mapping (Cont’d)

Event Source Core Event Name

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-21

Program Sequencer

System Interrupt Processing
Referring to Figure 4-5, note when an interrupt (interrupt A) is generated
by an interrupt-enabled peripheral:

• SIC_ISRx logs the request and keeps track of system interrupts that
are asserted but not yet serviced (that is, an interrupt service rou-
tine has not yet cleared the interrupt).

• SIC_IWRx checks to see if it should wake up the core from an idled
state based on this interrupt request.

• SIC_IMASKx masks off or enables interrupts from peripherals at the
system level. If interrupt A is not masked, the request proceeds to
Step 4.

• The SIC_IARx registers, which map the peripheral interrupts to a
smaller set of general-purpose core interrupts (IVG7-IVG15), deter-
mine the core priority of interrupt A.

• ILAT adds interrupt A to its log of interrupts latched by the core
but not yet actively being serviced.

• IMASK masks off or enables events of different core priorities. If the
IVGx event corresponding to interrupt A is not masked, the process
proceeds to Step 7.

The event vector table (EVT) is accessed to look up the appropriate vector
for interrupt A’s interrupt service routine (ISR).

When the event vector for interrupt A has entered the core pipeline, the
appropriate IPEND bit is set, which clears the respective ILAT bit. Thus,
IPEND tracks all pending interrupts, as well as those being presently
serviced.

Events and Sequencing

4-22 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

When the interrupt service routine for interrupt A has been executed, the
RTI instruction clears the appropriate IPEND bit. However, the relevant
SIC_ISRx bit is not cleared unless the interrupt service routine clears the
mechanism that generated interrupt A, or if the process of servicing the
interrupt clears this bit.

It should be noted that emulation, reset, NMI, and exception events, as
well as hardware error (IVHW) and core timer (IVTMR) interrupt requests,
enter the interrupt processing chain at the ILAT level and are not affected
by the system-level interrupt registers (SIC_IWRx, SIC_ISRx, SIC_IMASKx,
SIC_IARx).

If multiple interrupt sources share a single core interrupt, then the ISR
must identify the peripheral that generated the interrupt. The ISR may
then need to interrogate the peripheral to determine the appropriate
action to take.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-23

Program Sequencer

System Peripheral Interrupts
The processor system has numerous peripherals, which therefore require
many supporting interrupts. Table 4-7 lists:

• Peripheral interrupt source

• Peripheral interrupt ID used in the system interrupt assignment
registers (SIC_IARx). See “System Interrupt Assignment
(SIC_IARx) Registers” on page 4-34.

• General-purpose interrupt of the core to which the interrupt maps
at reset

Figure 4-5. Interrupt Processing Block Diagram

"INTERRUPT
A"

SYSTEM
INTERRUPT

MASK
(SIC_IMASKx)

ASSIGN
SYSTEM

PRIORITY
(SIC_IAR0..6)

CORE EVENT CONTROLLERSYSTEM INTERRUPT CONTROLLER

NOTE: NAMES IN PARENTHESES ARE MEMORY-MAPPED REGISTERS.

EMU
RESET
NMI
EVX
IVTMR
IVHW

PERIPHERAL
INTERRUPT
REQUESTS

CORE
EVENT

VECTOR
TABLE

(EVT[15:0])

CORE
PENDING
(IPEND)

CORE
STATUS

(ILAT)

CORE
INTERRUPT

MASK
(IMASK)

SYSTEM
WAKEUP

(SIC_IWRx)

SYSTEM
STATUS

(SIC_ISRx)

TO DYNAMIC POWER
MANAGEMENT
CONTROLLER

Events and Sequencing

4-24 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• The core interrupt ID used in the system interrupt assignment reg-
isters (SIC_IARx). See “System Interrupt Assignment (SIC_IARx)
Registers” on page 4-34.

Table 4-7. Peripheral Interrupt Source Reset State

Peripheral Interrupt Source Peripheral
Interrupt ID

General-Purpose Interrupt
(Assignment at Reset)

Core
Interrupt ID

PLL wake-up interrupt 0 IVG7 0

DMA controller 0 error (generic) 1 IVG7 0

PPI error interrupt 2 IVG7 0

SPORT0 error interrupt 3 IVG7 0

SPORT1 error interrupt 4 IVG7 0

SPI0 error interrupt 5 IVG7 0

UART0 error interrupt 6 IVG7 0

Real-time clock interrupts
(alarm, second, minute, hour, count-
down)

7 IVG8 1

DMA 0 interrupt (PPI) 8 IVG8 1

DMA 1 interrupt (SPORT0 receive) 9 IVG9 2

DMA 2 interrupt (SPORT0 transmit) 10 IVG9 2

DMA 3 interrupt (SPORT1 receive) 11 IVG9 2

DMA 4 interrupt (SPORT1 transmit) 12 IVG9 2

DMA 5 interrupt (SPI0) 13 IVG10 3

DMA 6 interrupt (UART0 receive) 14 IVG10 3

DMA 7 interrupt (UART0 transmit) 15 IVG10 3

Timer0 interrupt 16 IVG11 4

Timer1 interrupt 17 IVG11 4

Timer2 interrupt 18 IVG11 4

GPIO interrupt A 19 IVG12 5

GPIO interrupt B 20 IVG12 5

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-25

Program Sequencer

DMA 8/9 interrupt
(memory DMA stream 0)

21 IVG13 6

DMA 10/11 interrupt
(memory DMA stream 1)

22 IVG13 6

Software watchdog timer interrupt 23 IVG13 6

DMA controller 1 error (generic) 24 IVG7 0

SPORT2 error interrupt 25 IVG7 0

SPORT3 error interrupt 26 IVG7 0

SPI1 error interrupt 28 IVG7 0

SPI2 error interrupt 29 IVG7 0

UART1 error interrupt 30 IVG7 0

UART2 error interrupt 31 IVG7 0

CAN error interrupt 32 IVG7 0

DMA 8 interrupt (SPORT2 receive) 33 IVG9 2

DMA 9 interrupt (SPORT2 transmit) 34 IVG9 2

DMA 10 interrupt (SPORT3 receive) 35 IVG9 2

DMA 11 interrupt (SPORT3 transmit) 36 IVG9 2

DMA 12 interrupt 37 IVG9 2

DMA 13 interrupt 38 IVG9 2

DMA 14 interrupt (SPI1) 39 IVG10 3

DMA 15 interrupt (SPI2) 40 IVG10 3

DMA 16 interrupt (UART1 RX) 41 IVG10 3

DMA 17 interrupt (UART1 TX) 42 IVG10 3

DMA 18 interrupt (UART2 RX) 43 IVG10 3

DMA 19 interrupt (UART2 TX) 44 IVG10 3

TWI0 interrupt 45 IVG11 4

Table 4-7. Peripheral Interrupt Source Reset State (Cont’d)

Peripheral Interrupt Source Peripheral
Interrupt ID

General-Purpose Interrupt
(Assignment at Reset)

Core
Interrupt ID

Events and Sequencing

4-26 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The peripheral interrupt structure of the processor is flexible. By default
upon reset, multiple peripheral interrupts share a single, general-purpose
interrupt in the core, as shown in Table 4-7.

An interrupt service routine that supports multiple interrupt sources must
interrogate the appropriate system MMRs to determine which peripheral
generated the interrupt.

If the default assignments shown in Table 4-7 are acceptable, then inter-
rupt initialization involves only initialization of the core EVT vector
address entries and IMASK register, and unmasking the specific peripheral
interrupts in SIC_IMASKx that the system requires.

TWI1 interrupt 46 IVG11 4

CAN receive interrupt 47 IVG11 4

CAN transmit interrupt 48 IVG11 4

MDMA1 stream 0 (memory DMA) 49 IVG13 6

MDMA1 stream 1 (memory DMA) 50 IVG13 6

Reserved 1-63 - -

Table 4-7. Peripheral Interrupt Source Reset State (Cont’d)

Peripheral Interrupt Source Peripheral
Interrupt ID

General-Purpose Interrupt
(Assignment at Reset)

Core
Interrupt ID

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-27

Program Sequencer

System Interrupt Wake-Up Enable (SIC_IWRx)
Registers

The SICs provide the mapping between the peripheral interrupt source
and the dynamic power management controller (DPMC). Any of the
peripherals can be configured to wake up the core from its idled state to
process the interrupt, simply by enabling the appropriate bit in the system
interrupt wake-up enable register (shown in Figure 4-6 and Figure 4-7). If
a peripheral interrupt source is enabled in SIC_IWRx and the core is idled,
the interrupt causes the DPMC to initiate the core wake-up sequence in
order to process the interrupt. Note this mode of operation may add
latency to interrupt processing, depending on the power control state. For
more information, see “Dynamic Power Management” on page 8-1.

By default, all interrupts generate a wake-up request to the core. However,
for some applications it may be desirable to disable this function for some
peripherals, such as for a SPORTx transmit interrupt.

The SIC_IWRx registers have no effect unless the core is idled. The bits in
these registers correspond to those of the system interrupt mask
(SIC_IMASKx) and interrupt status (SIC_ISRx) registers.

After reset, all valid bits of the SIC_IWRx register are set to 1, enabling
the wake-up function for all interrupts that are not masked. Before
enabling interrupts, configure this register in the reset initialization
sequence. The SIC_IWRx registers can be read from or written to at any
time. To prevent spurious or lost interrupt activity, these registers should
be written only when all peripheral interrupts are disabled.

Note the wake-up function is independent of the interrupt mask function.
If an interrupt source is enabled in SIC_IWRx but masked off in
SIC_IMASKx, the core wakes up if it is idled, but it does not generate an
interrupt.

Events and Sequencing

4-28 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 4-6. System Interrupt Wake-Up Enable Register0 (SIC_IWR0)

1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Reset = 0xFFFF FFFF

For all bits, 0 - Wake-up function not enabled, 1 - Wake-up function enabled.

PLL Wakeup

DMA Controller 1 Error
(generic) Wakeup

PPI Error Wakeup

SPORT0 Error Wakeup
SPORT1 Error Wakeup

SPORT2 Error Wakeup

SPORT3 Error Wakeup

UART2 Error Wakeup

UART1 Error Wakeup

UART0 Error Wakeup

SPI2 Error Wakeup
SPI1 Error Wakeup

SPI0 Error Wakeup

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

11 1 1 1 1 1 1 1 1 1 1 1 1 1

DMA Controller 0 Error
(generic) Wakeup

DMA3 Wakeup (SPORT1 RX)
DMA4 Wakeup (SPORT1 TX)

DMA1 Wakeup (SPORT0 RX)
DMA2 Wakeup (SPORT0 TX)

Real-Time Clock WakeupDMA0 Wakeup (PPI)

DMA5 Wakeup (SPI0)
DMA6 Wakeup (UART0 RX)

Software Watchdog Timer
Wakeup

MDMA0 Stream 1
Wakeup

MDMA0 Stream 0
Wakeup

GPIO Wakeup B
GPIO Wakeup A
Timer 2 Wakeup
Timer 1 Wakeup
Timer 0 Wakeup

DMA7 Wakeup (UART0 TX)

-System Interrupt Wake-Up Enable Register 0 (SIC_IWR0)

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-29

Program Sequencer

System Interrupt Status (SIC_ISRx) Registers
The SICx include a read-only status register, the system interrupt status
register, (shown in Figure 4-8 and Figure 4-9). Each valid bit in this regis-
ter corresponds to one of the peripheral interrupt sources. The bit is set
when SICx detects the interrupt is asserted and cleared when SICx detects
that the peripheral interrupt input has been deasserted. Note for some
peripherals, such as GPIO asynchronous input interrupts, many cycles of
latency may pass from the time that an interrupt service routine initiates
the clearing of the interrupt (usually by writing a system MMR) to the
time that SICx senses that the interrupt has been deasserted.

Depending on how interrupt sources map to the general-purpose interrupt
inputs of the core, the interrupt service routine may have to interrogate
multiple interrupt status bits to determine the source of the interrupt.

Figure 4-7. System Interrupt Wake-Up Enable Register 1 (SIC_IWR1)

1 1111

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

System Interrupt Wake-Up Enable Register 1 (SIC_IWR1)

Reset = 0xFFFF FFFF

For all bits, 0 - Wake-up function not enabled, 1 - Wake-up function enabled.

DMA17 Wakeup (UART1 TX)
DMA18 Wakeup (UART2 RX)
DMA19 Wakeup (UART2 TX)

Memory DMA1 Stream 0
Wakeup

CAN Transmit Wakeup

CAN Receive Wakeup

TWI1 Wakeup

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

11 1 1 1 1 1 1 1 1 1

DMA16 Wakeup (UART1 RX)

Memory DMA1 Stream 1
Wakeup

TWI0 Wakeup

DMA15 Wakeup (SPI2)

DMA14 Wakeup (SPI1)
DMA13 Wakeup
DMA12 Wakeup
DMA11 Wakeup (SPORT3 TX)
DMA10 Wakeup (SPORT3 RX)
DMA9 Wakeup (SPORT2 TX)
DMA8 Wakeup (SPORT2 RX)

CAN Error Wakeup

Events and Sequencing

4-30 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

One of the first instructions executed in an interrupt service routine
should read SIC_ISRx to determine whether more than one of the periph-
erals sharing the input has asserted its interrupt output. The service
routine should fully process all pending, shared interrupts before execut-
ing the RTI, which enables further interrupt generation on that interrupt
input.

When an interrupt service routine is finished, the RTI instruction clears
the appropriate bit in the IPEND register. However, the relevant SIC_ISRx
bit is not cleared unless the service routine clears the mechanism that gen-
erated the interrupt.

Many systems need relatively few interrupt-enabled peripherals, allowing
each peripheral to map to a unique core priority level. In these designs,
SIC_ISRx will seldom, if ever, need to be interrogated.

The SIC_ISRx registers are not affected by the state of the system interrupt
mask register (SIC_IMASKx) and can be read at any time. Writes to
SIC_ISRx have no effect on its contents.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-31

Program Sequencer

Figure 4-8. System Interrupt Status Register 0 (SIC_ISR0)

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

System Interrupt Status Register 0 (SIC_ISR0)

Reset = 0x00000000

For all bits, 0 - Deasserted, 1 - Asserted.

PLL Wakeup interrupt

DMA Controller 1 Error
(generic) interrupt

PPI Error interrupt

SPORT0 Error interrupt
SPORT1 Error interrupt

SPORT2 Error interrupt

SPORT3 Error interrupt

UART2 Error interrupt
UART1 Error interrupt

UART0 Error interrupt

SPI2 Error interrupt

SPI1 Error interrupt

SPI0 Error interrupt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0

DMA Controller 0 Error
(generic) interrupt

DMA3 interrupt (SPORT1 RX)
DMA4 interrupt (SPORT1 TX)

DMA1 interrupt (SPORT0 RX)
DMA2 interrupt (SPORT0 TX)

Real-Time Clock Interrupts

DMA0 interrupt (PPI)

DMA5 interrupt (SPI0)
DMA6 interrupt (UART0 RX)
DMA7 interrupt (UART0 TX)

Timer 0 interrupt
Timer 1 interrupt
Timer 2 interrupt
GPIO interrupt A
GPIO interrupt B
Memory DMA0 Stream 0
interrupt
Memory DMA0 Stream 1
interrupt
Software Watchdog Timer
interrupt

Events and Sequencing

4-32 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

System Interrupt Mask (SIC_IMASKx) Registers
The system interrupt mask registers (shown in Figure 4-10 and
Figure 4-11) allow masking of any peripheral interrupt source in the SICx,
independently of whether it is enabled at the peripheral itself.

A reset forces the contents of SIC_IMASKx to all 0s to mask off all periph-
eral interrupts. Writing a 1 to a bit location turns off the mask and enables
the interrupt.

Although this register can be read from or written to at any time (in super-
visor mode), it should be configured in the reset initialization sequence
before enabling interrupts.

Figure 4-9. System Interrupt Status Register 1 (SIC_ISR1)

0 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

System Interrupt Status Register 1 (SIC_ISR1)

Reset = 0x0000 0000

For all bits, 0 = deasserted, 1 = asserted.

DMA17 interrupt (UART1 TX)

DMA18 interrupt (UART2 RX)

DMA19 interrupt (UART2 TX)

Memory DMA1 Stream 0
interrupt

CAN Transmit interrupt

CAN Receive interrupt

TWI0 interrupt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0

DMA16 interrupt (UART1 RX)

Memory DMA1 Stream 1
interrupt

TWI1 interrupt

DMA15 interrupt (SPI2) DMA14 interrupt (SPI1)

CAN Error interrupt

DMA8 interrupt (SPORT2 RX)

DMA9 interrupt (SPORT2 TX)

DMA10 interrupt (SPORT3 RX)

DMA11 interrupt (SPORT3 TX)

DMA12 interrupt

DMA13 interrupt

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-33

Program Sequencer

Figure 4-10. System Interrupt Mask Register 0 (SIC_IMASK0)

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

System Interrupt Mask Register 0 (SIC_IMASK0)

Reset = 0x00000000

For all bits, 0 - interrupt masked, 1 - interrupt enabled.

PLL Wakeup interrupt

DMA Controller 1 Error
(generic) interrupt

PPI Error interrupt

SPORT0 Error interrupt

SPORT1 Error interrupt

SPORT2 Error interrupt

SPORT3 Error interrupt

UART2 Error interrupt

UART1 Error interrupt

UART0 Error interrupt

SPI2 Error interrupt
SPI1 Error interrupt

SPI0 Error interrupt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0

DMA Controller 0 Error
(generic) interrupt

DMA3 interrupt (SPORT1 RX)

DMA4 interrupt (SPORT1 TX)

DMA1 interrupt (SPORT0 RX)

DMA2 interrupt (SPORT0 TX)

Real-Time Clock WakeupDMA0 interrupt (PPI)

DMA5 interrupt (SPI0)

DMA6 interrupt (UART0 RX)

DMA7 interrupt
(UART0 TX)

Timer 0 interrupt

Timer 1 interrupt

Timer 2 interrupt

GPIO interrupt A

GPIO interrupt B

Memory DMA0 Stream 0
interrupt
Memory DMA0 Stream 1
interrupt
Software Watchdog Timer
interrupt

Events and Sequencing

4-34 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

System Interrupt Assignment (SIC_IARx) Registers
The relative priority of peripheral interrupts can be set by mapping the
peripheral interrupt to the appropriate general-purpose interrupt level in
the core. The mapping is controlled by the system interrupt assignment
register settings, as detailed in Figure 4-12 through Figure 4-18. If more
than one interrupt source is mapped to the same interrupt, they are logi-
cally OR’ed, with no hardware prioritization. Software can prioritize the
interrupt processing as required for a particular system application.

For general-purpose interrupts with multiple peripheral interrupts
assigned to them, take special care to ensure that software correctly pro-
cesses all pending interrupts sharing that input. Software is responsible for
prioritizing the shared interrupts.

Figure 4-11. System Interrupt Mask Register 1 (SIC_IMASK1)

0 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

System Interrupt Mask Register 1 (SIC_IMASK1)

Reset = 0x0000 0000

For all bits, 0 - interrupt masked, 1 - interrupt enabled.

DMA17 interrupt (UART1 TX)

DMA18 interrupt (UART2 RX)

DMA19 interrupt (UART2 TX)

Memory DMA1 Stream 0
interrupt

CAN Transmit interrupt

CAN Receive interrupt

TWI1 interrupt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0

DMA16 interrupt (UART1 RX)

Memory DMA1 Stream 1
interrupt

TWI0 interrupt

DMA15 interrupt (SPI2) DMA14 interrupt (SPI1)

DMA13 interrupt

DMA12 interrupt

DMA11 interrupt (SPORT3 TX)

DMA10 interrupt (SPORT3 RX)

DMA9 interrupt (SPORT2 TX)

DMA8 interrupt (SPORT2 RX)

CAN Error interrupt

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-35

Program Sequencer

Figure 4-12. System Interrupt Assignment Register 0 (SIC_IAR0)

Figure 4-13. System Interrupt Assignment Register 1 (SIC_IAR1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

System Interrupt Assignment Register 0 (SIC_IAR0)

PLL Wakeup interrupt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
00 0 0 1 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x1000 0000

DMA Controller 0 Error
(Generic) interrupt IVG select

SPORT1 Error interrupt IVG
select
SPI0 Error interrupt IVG
select

Real-Time Clock interrupt
 IVG select

UART0 Error interrupt
 IVG select

SPORT0 Error interrupt
 IVG select
PPI Error interrupt
IVG select

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
10 0 1 0 0 0 1 0 0 0 1 0 0 0 0

DMA0 (PPI) interrupt IVG select

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
00 0 1 1 0 0 1 1 0 0 1 1 0 0 1

DMA4 (SPORT1 TX) interrupt
 IVG select
DMA5 (SPI) interrupt IVG select

DMA7 (UART TX) interrupt
 IVG select

DMA3 (SPORT1 RX) interrupt
IVG select

System Interrupt Assignment Register 1 (SIC_IAR1)

Reset = 0x3332 2221

DMA6 (UART RX) interrupt IVG select

DMA2 (SPORT0 TX) interrupt IVG select DMA1 (SPORT0 RX) interrupt
 IVG select

Events and Sequencing

4-36 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 4-14. System Interrupt Assignment Register 2 (SIC_IAR2)

Figure 4-15. System Interrupt Assignment Register 3 (SIC_IAR3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
10 1 1 0 0 1 1 0 0 1 1 0 0 1 0

System Interrupt Assignment Register 2 (SIC_IAR2)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 1 0 1 0 1 0 0 0 1 0 0 0 1 0

GPIO interrupt A IVG select

Reset = 0x6665 5444

Timer 0 interrupt IVG select

Memory DMA0 Stream 0
interrupt IVG select

Software Watchdog Timer
interrupt IVG select GPIO interrupt B IVG select

Memory DMA0 Stream 1
interrupt IVG select

Timer 1 interrupt IVG selectTimer 2 interrupt IVG select

SPORT3 Error interrupt IVG select

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

System Interrupt Assignment Register 3 (SIC_IAR3)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPI1 Error interrupt
 IVG select

Reset = 0x0000 0000

DMA Controller 1 Error (Generic)
interrupt IVG select

UART2 Error interrupt IVG select

SPI2 Error interrupt
 IVG select

UART1 Error interrupt IVG select

SPORT2 Error interrupt IVG select

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-37

Program Sequencer

Figure 4-16. System Interrupt Assignment Register 4 (SIC_IAR4)

Figure 4-17. System Interrupt Assignment Register 5 (SIC_IAR5)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
00 0 1 1 0 0 1 0 0 0 1 0 0 0 1

System Interrupt Assignment Register 4 (SIC_IAR4)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 1 0 0 0 1 0 0 0 1 0 0 0 0

DMA10 (SPORT3 RX)
interrupt IVG select

DMA11 (SPORT3 TX) interrupt
 IVG select

Reset = 0x3222 2220

CAN Error interrupt IVG select

DMA14 (SPI1) interrupt
 IVG select

DMA12 interrupt IVG select
DMA13 interrupt IVG select

DMA9 (SPORT2 TX) interrupt IVG select
DMA8 (SPORT2 RX)
interrupt IVG select

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
10 1 0 0 0 1 0 0 0 1 0 0 0 0 1

System Interrupt Assignment Register 5 (SIC_IAR5)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
10 0 1 1 0 0 1 1 0 0 1 1 0 0 1

DMA18 (UART2 RX) interrupt
 IVG select
DMA17 (UART1 TX) interrupt
 IVG select

DMA19 (UART2 TX)
interrupt IVG select

Reset = 0x4443 3333

DMA15 (SPI2) interrupt
 IVG select
DMA16 (UART1 RX) interrupt
 IVG select

TWI0 interrupt
 IVG select

CAN Receive interrupt
 IVG select
TWI1 interrupt IVG select

Events and Sequencing

4-38 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

These registers can be read or written at any time in supervisor mode. It is
advisable, however, to configure them in the reset interrupt service routine
before enabling interrupts. To prevent spurious or lost interrupt activity,
these registers should be written to only when all peripheral interrupts are
disabled.

Table 4-8 defines the value to write in SIC_IARx to configure a peripheral
for a particular IVG priority.

Figure 4-18. System Interrupt Assignment Register 6 (SIC_IAR6)

Table 4-8. IVG-Select Definitions

General-Purpose Interrupt Value in SIC_IARx

IVG7 0

IVG8 1

IVG9 2

IVG10 3

IVG11 4

IVG12 5

IVG13 6

IVG14 7

IVG15 8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
00 0 0 0 0 0 0 0 0 1 0 0 0 1 0

System Interrupt Assignment Register 6 (SIC_IAR6)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 1 0 0 0 1 1 0 0 1 1 0 0 1 0

Reset = 0x0044 4664

CAN Transmit interrupt
IVG select
Memory DMA1 Stream 0
interrupt IVG select

Memory DMA1 Stream 1
interrupt IVG select

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-39

Program Sequencer

Core Event Controller Registers
The event controller uses three MMRs to coordinate pending event
requests. In each of these MMRs, the 16 lower bits correspond to the 16
event levels (for example, bit 0 corresponds to “emulator mode”). The reg-
isters are:

IMASK - interrupt mask

ILAT - interrupt latch

IPEND - interrupts pending

These three registers are accessible in supervisor mode only.

Core Interrupt Mask (IMASK) Register
This register indicates which interrupt levels are allowed to be taken (see
Figure 4-19). The IMASK register may be read and written in supervisor
mode. Bits [15:5] have significance; bits [4:0] are hard-coded to 1 and
events of these levels are always enabled. If IMASK[N]==1 and ILAT[N]==1,
then interrupt N will be taken if a higher priority is not already recognized.
If IMASK[N]==0, and ILAT[N] gets set by interrupt N, the interrupt will not
be taken, and ILAT[N] will remain set.

Core Event Controller Registers

4-40 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Core Interrupt Latch (ILAT) Register
Each bit in ILAT indicates that the corresponding event is latched, but not
yet accepted into the processor (see Figure 4-20). The bit is reset before
the first instruction in the corresponding ISR is executed. At the point the
interrupt is accepted, ILAT[N] is cleared and IPEND[N] is set simultane-
ously. The ILAT register can be read in supervisor mode. Writes to ILAT
are used to clear bits only (in supervisor mode). To clear bit N from ILAT,
first make sure that IMASK[N]==0, and then write ILAT[N]=1. This write
functionality to ILAT is provided for cases where latched interrupt requests
need to be cleared (cancelled) instead of servicing them.

The RAISE instruction can be used to set ILAT[15] through ILAT[5], and
also ILAT[2] or ILAT[1].

Only the JTAG TRST pin can clear ILAT[0].

Figure 4-19. Core Interrupt Mask Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
10 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Core Interrupt Mask Register (IMASK)

IVHW (Hardware Error)
IVTMR (Core Timer)
IVG7
IVG8

IVG15
IVG14
IVG13
IVG12
IVG11
IVG10

IVG9

For all bits, 0 - interrupt masked, 1 - interrupt enabled.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000 001F

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-41

Program Sequencer

Core Interrupts Pending (IPEND) Register
The IPEND register keeps track of all currently nested interrupts (see
Figure 4-23). Each bit in IPEND indicates that the corresponding interrupt
is currently active or nested at some level. It may be read in supervisor
mode, but not written. The IPEND[4] bit is used by the event controller to
temporarily disable interrupts on entry and exit to an interrupt service
routine.

When an event is processed, the corresponding bit in IPEND is set. The
least significant bit in IPEND that is currently set indicates the interrupt
that is currently being serviced. At any given time, IPEND holds the current
status of all nested events.

Figure 4-20. Core Interrupt Latch Register

Core Interrupt Latch Register (ILAT)

RST (Reset) - RO
NMI (Non-Maskable interrupt) - RO

EMU (Emulation) - RO

IVHW (Hardware Error)
EVX (Exception) - RO

IVTMR (Core Timer)
IVG7
IVG8

IVG15
IVG14
IVG13
IVG12
IVG11
IVG10
IVG9

Reset value for bit 0 is emulator-dependent. For all bits, 0 - interrupt not latched, 1 - interrupt latched.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
X0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000 000X

Global Enabling/Disabling of Interrupts

4-42 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Global Enabling/Disabling of Interrupts
General-purpose interrupts can be globally disabled with the CLI Dreg
instruction and re-enabled with the STI Dreg instruction, both of which
are only available in supervisor mode. Reset, NMI, emulation, and excep-
tion events cannot be globally disabled. Globally disabling interrupts
clears IMASK[15:5] after saving IMASK’s current state. See “Enable Inter-
rupts” and “Disable Interrupts” in the “External Event Management”
chapter in Blackfin Processor Programming Reference.

When program code is too time critical to be delayed by an interrupt, dis-
able general-purpose interrupts, but be sure to re-enable them at the
conclusion of the code sequence.

Figure 4-21. Core Interrupt Pending Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Core Interrupt Pending Register (IPEND)

RST (Reset)
NMI (Non-Maskable interrupt)

EMU (Emulation)

IVHW (Hardware Error)

EVX (Exception)

IVTMR (Core Timer)
IVG7
IVG8

IVG15
IVG14
IVG13
IVG12
IVG11
IVG10
IVG9

RO. For all bits except bit 4, 0 - No interrupt pending, 1 - interrupt pending or active.

Global interrupt Disable
0 - Interrupts globally enabled
1 - Interrupts globally disabled
Set and cleared by event con-
troller only.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000 0010

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-43

Program Sequencer

Event Vector Table
The event vector table (EVT), shown in Table 4-9, is a hardware table
with sixteen entries that are each 32 bits wide. The EVT contains an entry
for each possible core event. Entries are accessed as MMRs, and each entry
can be programmed at reset with the corresponding vector address for the
interrupt service routine. When an event occurs, instruction fetch starts at
the address location in the EVT entry for that event.

The processor architecture allows unique addresses to be programmed into
each of the interrupt vectors; that is, interrupt vectors are not determined
by a fixed offset from an interrupt vector table base address. This approach
minimizes latency by not requiring a long jump from the vector table to
the actual ISR code.

Table 4-9 lists events by priority. Each event has a corresponding bit in
the event state registers ILAT, IMASK, and IPEND.

Table 4-9. Core Event Vector Table

Event Number Event Class Name MMR Location Notes

EVT0 Emulation EMU 0xFFE0 2000 Highest priority. Vec-
tor address is provided
by JTAG.

EVT1 Reset RST 0xFFE0 2004

EVT2 NMI NMI 0xFFE0 2008

EVT3 Exception EVX 0xFFE0 200C

EVT4 Reserved Reserved 0xFFE0 2010 Reserved vector.

EVT5 Hardware error IVHW 0xFFE0 2014

EVT6 Core timer IVTMR 0xFFE0 2018

EVT7 Interrupt 7 IVG7 0xFFE0 201C

EVT8 Interrupt 8 IVG8 0xFFE0 2020

EVT9 Interrupt 9 IVG9 0xFFE0 2024

Event Vector Table

4-44 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Emulation
An emulation event causes the processor to enter emulation mode, in
which instructions are read from the JTAG interface. It is the highest pri-
ority interrupt to the core.

For detailed information about emulation, see “Blackfin Processor
Debug” on page 22-1.

Reset
The reset interrupt (RST) can be initiated via the RESET pin or through
expiration of the watchdog timer. This location differs from that of other
interrupts in that its content is read-only. Writes to this address change
the register but do not change where the processor vectors upon reset. The
processor always vectors to the reset vector address upon reset. For more
information, see “Reset State” on page 3-11 and “Booting Methods” on
page 3-19.

The core has an output that indicates that a double-fault has occurred.
This is a non-recoverable state. The system (via the SWRST register) can be
programmed to send a reset request if a double-fault condition is detected.
Subsequently, the reset request forces a system reset for core and
peripherals.

EVT10 Interrupt 10 IVG10 0xFFE0 2028

EVT11 Interrupt 11 IVG11 0xFFE0 202C

EVT12 Interrupt 12 IVG12 0xFFE0 2030

EVT13 Interrupt 13 IVG13 0xFFE0 2034

EVT14 Interrupt 14 IVG14 0xFFE0 2038

EVT15 Interrupt 15 IVG15 0xFFE0 203C Lowest priority.

Table 4-9. Core Event Vector Table (Cont’d)

Event Number Event Class Name MMR Location Notes

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-45

Program Sequencer

The reset vector is determined by the processor system. It points to the
start of the on-chip boot ROM, or to the start of external asynchronous
memory, depending on the state of the BMODE[1:0] pins. Refer to
Table 2-10 on page 2-41.

If the BMODE[1:0] pins indicate either booting from flash or serial ROM,
the reset vector points to the start of the internal boot ROM, where a
small bootstrap kernel resides. The bootstrap code reads the system reset
configuration register (SYSCR) to determine the value of the BMODE[1:0]
pins, which determine the appropriate boot sequence. For information
about the boot ROM, see “Booting Methods” on page 3-19.

If the BMODE[1:0] pins indicate to bypass boot ROM, the reset vector
points to the start of the external asynchronous memory region. In this
mode, the internal boot ROM is not used. To support reads from this
memory region, the external bus interface unit (EBIU) uses the default
external memory configuration that results from hardware reset.

NMI (Non-Maskable Interrupt)
The NMI entry is reserved for a non-maskable interrupt, which can be
generated by the watchdog timer or by the NMI input signal to the pro-
cessor. An example of an event that requires immediate processor
attention, and thus is appropriate as an NMI, is a power-down warning.

Table 4-10. Reset Vector Addresses

Boot Source BMODE[1:0] Execution Start
Address

Execute from 16-bit external memory 00 0x2000 0000

Boot from 8-bit or 16-bit external flash memory 01 0xEF00 0000

Boot from an SPI host in SPI slave mode 10 0xEF00 0000

Boot from an 8-/16-/24-bit addressable SPI in SPI
master mode

11 0xEF00 0000

Event Vector Table

4-46 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Any exception in any event handler of exception level or above (including
NMI) will trigger a “double-fault” condition, and the address of the except-
ing instruction will be written to RETX.

 The polarity of the NMI input signal has changed from previous
Blackfin products. The ADSP-BF538 input is active low.

Exceptions
Exceptions are synchronous to the instruction stream. In other words, a
particular instruction causes an exception when it attempts to finish exe-
cution. No instructions after the offending instruction are executed before
the exception handler takes effect.

Many of the exceptions are memory related. For example, an exception is
given when a misaligned access is attempted, or when a CPLB miss or pro-
tection violation occurs. Exceptions are also given when illegal
instructions or illegal combinations of registers are executed.

An excepting instruction may or may not commit before the exception
event is taken, depending on if it is a “service” type or an “error” type
exception.

An instruction causing a service type event will commit, and the address
written to the RETX register will be the next instruction after the excepting
one. An example of a service type exception is the single-step.

An instruction causing an error type event cannot commit, so the address
written to the RETX register will be the address of the offending instruc-
tion. An example of an error type event is a CPLB miss.

Usually the RETX register contains the correct address to return to. To skip
over an excepting instruction, take care in case the “next” address is not
simply the next linear address. This could happen when the excepting
instruction is a loop end. In that case the proper “next” address would be
the loop top.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-47

Program Sequencer

The EXCAUSE[5:0] field in the sequencer status register (SEQSTAT) is writ-
ten whenever an exception is taken, and indicates to the exception handler
which type of exception occurred. Refer to Table 4-11 for a list of events
that cause exceptions.

Any exception in any event handler of exception level or above (including
NMI) triggers a “double-fault” condition, and the address of the excepting
instruction will be written to RETX.

Table 4-11. Events That Cause Exceptions

Exception EXCAUSE
[5:0]

Type:
(E) error

(S) service 1

Notes/Examples

Force Exception
instruction EXCPT with
4-bit field m

m-field S Instruction provides 4 bits of EXCAUSE.

Single step 0x10 S When the processor is in single-step mode,
every instruction generates an exception.
Primarily used for debugging.

Exception caused by an
emulation trace buffer
overflow

0x11 S The processor takes this exception when the
trace buffer overflows (only when enabled
by the trace unit control register).

Undefined instruction 0x21 E May be used to emulate instructions that
are not defined for a particular processor
implementation.

Illegal instruction com-
bination

0x22 E See section for multi-issue rules in the
Blackfin Processor Programming Reference.

Event Vector Table

4-48 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Data access CPLB pro-
tection violation

0x23 E Attempted read or write to supervisor
resource, or illegal data memory access.
Supervisor resources are registers and
instructions that are reserved for supervisor
use: supervisor only registers, all MMRs,
and supervisor only instructions. (A simul-
taneous, dual access to two MMRs using
the data address generators generates this
type of exception.) In addition, this entry is
used to signal a protection violation caused
by disallowed memory access, and it is
defined by the memory management unit
(MMU) cacheability protection lookaside
buffer (CPLB).

Data access misaligned
address violation

0x24 E Attempted misaligned data memory or data
cache access.

Unrecoverable event 0x25 E For example, an exception generated while
processing a previous exception.

Data access CPLB miss 0x26 E Used by the MMU to signal a CPLB miss
on a data access.

Data access multiple
CPLB hits

0x27 E More than one CPLB entry matches data
fetch address.

Exception caused by an
emulation watchpoint
match

0x28 E There is a watchpoint match, and one of
the EMUSW bits in the watchpoint instruc-
tion address control register (WPIACTL) is
set.

Table 4-11. Events That Cause Exceptions (Cont’d)

Exception EXCAUSE
[5:0]

Type:
(E) error

(S) service 1

Notes/Examples

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-49

Program Sequencer

Instruction fetch mis-
aligned address viola-
tion

0x2A E Attempted misaligned instruction cache
fetch. On a misaligned instruction fetch
exception, the return address provided in
RETX is the destination address which is
misaligned, rather than the address of the
offending instruction. For example, if an
indirect branch to a misaligned address held
in P0 is attempted, the return address in
RETX is equal to P0, rather than to the
address of the branch instruction. (Note
this exception can never be generated from
PC-relative branches, only from indirect
branches.)

Instruction fetch CPLB
protection violation

0x2B E Illegal instruction fetch access (memory
protection violation).

Instruction fetch CPLB
miss

0x2C E CPLB miss on an instruction fetch.

Instruction fetch mul-
tiple CPLB hits

0x2D E More than one CPLB entry matches
instruction fetch address.

Illegal use of supervisor
resource

0x2E E Attempted to use a supervisor register or
instruction from user mode. Supervisor
resources are registers and instructions that
are reserved for supervisor use: supervisor
only registers, all MMRs, and supervisor
only instructions.

1 For services (S), the return address is the address of the instruction that follows the exception.
For errors (E), the return address is the address of the excepting instruction.

Table 4-11. Events That Cause Exceptions (Cont’d)

Exception EXCAUSE
[5:0]

Type:
(E) error

(S) service 1

Notes/Examples

Event Vector Table

4-50 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

If an instruction causes multiple exceptions, only the exception with the
highest priority is taken. Table 4-12 ranks exceptions by descending
priority.

Table 4-12. Exceptions by Descending Priority

Priority Exception EXCAUSE

1 Unrecoverable event 0x25

2 I-Fetch multiple CPLB hits 0x2D

3 I-Fetch misaligned access 0x2A

4 I-Fetch protection violation 0x2B

5 I-Fetch CPLB miss 0x2C

6 I-Fetch access exception 0x29

7 Watchpoint match 0x28

8 Undefined instruction 0x21

9 Illegal combination 0x22

10 Illegal use protected resource 0x2E

11 DAG0 multiple CPLB hits 0x27

12 DAG0 misaligned access 0x24

13 DAG0 protection violation 0x23

14 DAG0 CPLB miss 0x26

15 DAG1 multiple CPLB hits 0x27

16 DAG1 misaligned access 0x24

17 DAG1 protection violation 0x23

18 DAG1 CPLB miss 0x26

19 EXCPT instruction m- field

20 Single step 0x10

21 Trace buffer 0x11

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-51

Program Sequencer

Exceptions While Executing an Exception Handler
While executing the exception handler, avoid issuing an instruction that
generates another exception. If an exception is caused while executing
code within the exception handler, the NMI handler, the reset vector, or
in emulator mode:

• The excepting instruction is not committed. All write backs from
the instruction are prevented.

• The generated exception is not taken.

• The EXCAUSE field in SEQSTAT is updated with an unrecoverable
event code.

• The address of the offending instruction is saved in RETX. Note if
the processor were executing, for example, the NMI handler, the
RETN register would not have been updated; the excepting instruc-
tion address is always stored in RETX.

To determine whether an exception occurred while an exception handler
was executing, check SEQSTAT at the end of the exception handler for the
code indicating an “unrecoverable event” (EXCAUSE = 0x25). If an unre-
coverable event occurred, register RETX holds the address of the most
recent instruction to cause an exception. This mechanism is not intended
for recovery, but rather for detection.

Hardware Error Interrupt

4-52 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Hardware Error Interrupt
The hardware error interrupt indicates a hardware error or system mal-
function. Hardware errors occur when logic external to the core, such as a
memory bus controller, is unable to complete a data transfer (read or
write) and asserts the core’s error input signal. Such hardware errors
invoke the hardware error interrupt (interrupt IVHW in the event vector
table (EVT) and ILAT, IMASK, and IPEND registers). The hardware error
interrupt service routine can then read the cause of the error from the
5-bit HWERRCAUSE field appearing in the sequencer status register (SEQSTAT)
and respond accordingly.

The hardware error interrupt is generated by:

• Bus parity errors

• Internal error conditions within the core, such as performance
monitor overflow

• The DMA access bus comparator interrupt (attempted write to an
active DMA register)

• Peripheral errors

• Bus timeout errors

The list of supported hardware conditions, with their related HWERRCAUSE
codes, appears in Table 4-13. The bit code for the most recent error
appears in the HWERRCAUSE field. If multiple hardware errors occur simulta-
neously, only the last one can be recognized and serviced. The core does
not support prioritizing, pipelining, or queuing multiple error codes. The
hardware error interrupt remains active as long as any of the error condi-
tions remain active.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-53

Program Sequencer

Core Timer
The core timer interrupt (IVTMR) is triggered when the core timer value
reaches zero. See “Timers” on page 16-1.

General-Purpose Interrupts (IVG7-IVG15)
General-purpose interrupts are used for any event that requires processor
attention. For instance, a DMA controller may use them to signal the end
of a data transmission, or a serial communications device may use them to
signal transmission errors.

Table 4-13. Hardware Conditions Causing Hardware Error Interrupts

Hardware
Condition

HWERRCAUSE
(Binary)

HWERRCAUSE
(Hexadecimal)

Notes/Examples

System MMR
Error

0b00010 0x02 An error can occur if an invalid Sys-
tem MMR location is accessed, if a
32-bit register is accessed with a
16-bit instruction, or if a 16-bit
register is accessed with a 32-bit
instruction.

External Memory
Addressing Error

0b00011 0x03 An access to reserved or uninitialized
memory was attempted.

Performance
Monitor
Overflow

0b10010 0x12 Refer to “Performance Monitoring
Unit” on page 22-19.

RAISE 5
instruction

0b11000 0x18 Software issued a RAISE 5 instruction
to invoke the Hardware Error Inter-
rupt (IVHW).

Reserved All other bit com-
binations.

All other values.

Servicing Interrupts

4-54 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Software can also trigger general-purpose interrupts by using the RAISE
instruction. The RAISE instruction can force events for interrupts
IVG15-IVG7, IVTMR, IVHW, NMI, and RST, but not for exceptions and emula-
tion (EVX and EMU, respectively).

It is recommended to reserve the two lowest priority interrupts (IVG15 and
IVG14) for software interrupt handlers.

Servicing Interrupts
The CEC has a single interrupt queueing element per event, as a bit in the
ILAT register. The appropriate ILAT bit is set when an interrupt rising edge
is detected (which takes 2 core clock cycles) and cleared when the respec-
tive IPEND register bit is set. The IPEND bit indicates that the event vector
has entered the core pipeline. At this point, the CEC recognizes and
queues the next rising edge event on the corresponding interrupt input.
The minimum latency from the rising edge transition of the general-pur-
pose interrupt to the IPEND output asserted is three core clock cycles.
However, the latency can be much higher, depending on the core’s activ-
ity level and state.

To determine when to service an interrupt, the controller logically ANDs
the three quantities in ILAT, IMASK, and the current processor priority
level.

Servicing the highest priority interrupt involves the following actions:

1. The interrupt vector in the EVT becomes the next fetch address.

2. On an interrupt, most instructions currently in the pipeline are
aborted. On a service exception, all instructions after the excepting
instruction are aborted. On an error exception, the excepting
instruction and all instructions after it are aborted.

3. The return address is saved in the appropriate return register.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-55

Program Sequencer

4. The return register is RETI for interrupts, RETX for exceptions, RETN
for NMIs, and RETE for debug emulation. The return address is the
address of the instruction after the last-executed instruction from
normal program flow.

5. Processor mode is set to the level of the event taken.

If the event is an NMI, exception, or interrupt, the processor mode
is supervisor. If the event is an emulation exception, the processor
mode is emulation.

Before the first instruction starts execution, the corresponding interrupt
bit in ILAT is cleared and the corresponding bit in IPEND is set.

Bit IPEND[4] is also set to disable all interrupts until the return address in
RETI is saved.

Nesting of Interrupts
Interrupts are handled either with or without nesting.

Non-Nested Interrupts
If interrupts do not require nesting, all interrupts are disabled during the
interrupt service routine. Note, however, that emulation, NMI, and
exceptions are still accepted by the system.

When the system does not need to support nested interrupts, there is no
need to store the return address held in RETI. Only the portion of the
machine state used in the interrupt service routine must be saved in the
supervisor stack. To return from a non-nested interrupt service routine,
only the RTI instruction must be executed, because the return address is
already held in the RETI register.

Nesting of Interrupts

4-56 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 4-22 shows an example of interrupt handling where interrupts are
globally disabled for the entire interrupt service routine.

Figure 4-22. Non-Nested Interrupt Handling

IF 1

IF 2

IF 3

DC

AC

EX1

EX2

EX3

EX4

WB

A8

1 2CYCLE:

A9

A7

A6

A5

A4

A3

A2

A1

A0 A1

A2

A3

A4

A5

A6

A7

A8

A9

A1 0

A1 0

A9

A8

A7

A6

A5

A4

A3

A2

I0 I2I1

I0 I1

I0

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

A3 A4 A5 A6 A7

A3 A4 A5 A6

A3 A4 A5

A4

A3

A3

In

In

INTERRUPTS DISABLED
DURING THIS INTERVAL.

CYCLE 1: INTERRUPT IS LATCHED. ALL POSSIBLE INTERRUPT SOURCES DETERMINED.
CYCLE 2: INTERRUPT IS PRIORITIZED.
CYCLE 3: ALL INSTRUCTIONS ABOVE A2 ARE KILLED. A2 IS KILLED IF IT IS AN RTI OR CLI
INSTRUCTION. ISR STARTING ADDRESS LOOKUP OCCURS.
CYCLE 4: I0 (INSTRUCTION AT START OF ISR) ENTERS PIPELINE.
CYCLE M: WHEN THE RTI INSTRUCTION REACHES THE EX1 STAGE, INSTRUCTION A3 IS
FETCHED IN PREPARATION FOR RETURNING FROM INTERRUPT.
CYCLE M+4: RTI HAS REACHED WB STAGE, RE-ENABLING INTERRUPTS.

m m+1 m+2 m+3 m+46543

In-1

In-1

In-1 InIn-2

In-2

In-3

RTI

RTI

RTI

RTI

RTI

P
IP

E
L

IN
E

 S
T

A
G

E

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-57

Program Sequencer

Nested Interrupts
If nested interrupts are desired, the return address to the interrupted point
in the original interrupt service routine (ISR) must be explicitly saved and
subsequently restored when execution of the nested ISR has completed.
Nesting is enabled by pushing the return address currently held in RETI
to the Supervisor stack ([--SP] = RETI), which is typically done early in
the ISR prolog of the lower priority interrupt. This clears the global inter-
rupt disable bit IPEND[4], enabling interrupts. Next, all registers that are
modified by the interrupt service routine are saved onto the supervisor
stack. Processor state is stored in the supervisor stack, not in the user
stack. Hence, the instructions to push RETI ([--SP]=RETI) and pop RETI
(RETI=[SP++]) use the supervisor stack.

Figure 4-23 illustrates that by pushing RETI onto the stack, interrupts
can be re-enabled during an ISR, resulting in only a short duration where
interrupts are globally disabled.

Nesting of Interrupts

4-58 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 4-23. Nested Interrupt Handling

IF 1

IF 2

IF 3

DC

AC

EX1

EX2

EX3

EX4

WB

A8

1

CYCLE 1: INTERRUPT IS LATCHED. ALL POSSIBLE INTERRUPT SOURCES DETERMINED.
CYCLE 2: INTERRUPT IS PRIORITIZED.
CYCLE 3: ALL INSTRUCTIONS ABOVE A2 ARE KILLED. A2 IS KILLED IF IT IS AN RTI OR CLI INSTRUCTION. ISR STARTING
ADDRESS LOOKUP OCCURS.
CYCLE 4: I0 (INSTRUCTION AT START OF ISR) ENTERS PIPELINE. ASSUME IT IS A PUS HRETI INSTRUCTION (TO ENABLE NESTING).
CYCLE 10: WHEN PUSH REACHES EX2 STAGE, INTERRUPTS ARE RE-ENABLED.
CYCLE M+1: WHEN THE POP RETI INSTRUCTION REACHES THE EX2 STAGE, INTERRUPTS ARE DISABLED.
CYCLE M+5: WHEN RTI REACHES THE WB STAGE, INTERRUPTS ARE RE-ENABLED.

2 3 4 5 6 7 8 9 10 mCYCLE:

A9

A7

A6

A5

A4

A3

A2

A1

A0 A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A1 0

A9

A8

A7

A6

A5

A4

A3

A2

PUSH I2I1

I1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

I3 I5 I6

m+1 m+2 m+3 m+4 m+5

A3 A4 A5 A6 A7

A3 A4 A5 A6

A3 A4 A5

A4

A3

A3

RT I

In
I

I

I n-3

n-2

n-1

I

I n-2

n-1

I n-1 In

PUSH

PUSH

I2

I1

PUSH

I3

I2

I1

PUSH

I4

I3

I2

I1

PUSH

I4 I5

I3

I2

I1

PUSH

I4

POP

POP

POP

POP

POP

RTI

RTI

RTI

RTI

RTI

In
In

INTERRUPTS DISABLED
DURING THIS INTERVAL.

INTERRUPTS DISABLED
DURING THIS INTERVAL.

P
IP

E
L

IN
E

 S
T

A
G

E

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-59

Program Sequencer

Example Prolog Code for Nested Interrupt Service Routine

/* Prolog code for nested interrupt service routine. Push return

address in RETI into Supervisor stack, ensuring that interrupts

are back on. Until now, interrupts have been suspended. */

ISR :

[--SP] = RETI ; /* Enables interrupts and saves return address to

stack. */

[--SP] = ASTAT ;

[--SP] = FP ;

[-- SP] = (R7:0, P5:0) ;

/* Body of service routine. Note none of the processor resources

(accumulators, DAGs, loop counters and bounds) have been saved.

It's assumed that this interrupt service routine does not use

them. */

Example Epilog Code for Nested Interrupt Service Routine

/* Epilog code for nested-interrupt service routine. Restore

ASTAT, Data and Pointer registers. Popping RETI from Supervisor

stack ensures that interrupts are suspended between load of

return address and RTI. */

(R7:0, P5:0) = [SP++] ;

FP = [SP++] ;

ASTAT = [SP++] ;

RETI = [SP++] ;

/* Execute RTI, which jumps to return address, re-enables inter-

rupts, and switches to User mode if this is the last nested

interrupt in service. */

RTI ;

Nesting of Interrupts

4-60 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The RTI instruction causes the return from an interrupt. The return
address is popped into the RETI register from the stack, an action that sus-
pends interrupts from the time that RETI is restored until RTI finishes
executing. The suspension of interrupts prevents a subsequent interrupt
from corrupting the RETI register.

Next, the RTI instruction clears the highest priority bit that is currently set
in IPEND. The processor then jumps to the address pointed to by the value
in the RETI register and re-enables the interrupts by clearing IPEND[4].

Logging of Nested Interrupt Requests
The SICs detect level-sensitive interrupt requests from the peripherals.
The CEC provides edge-sensitive detection for its general-purpose inter-
rupts (IVG7-IVG15). Consequently, the SICs generate a synchronous
interrupt pulse to the CEC and then wait for interrupt acknowledgement
from the CEC. When the interrupt has been acknowledged by the core
(via assertion of the appropriate IPEND output), the SICs generate another
synchronous interrupt pulse to the CEC if the peripheral interrupt is still
asserted. This way, the system does not lose peripheral interrupt requests
that occur during servicing of another interrupt.

Because multiple interrupt sources can map to a single core processor gen-
eral-purpose interrupt, multiple pulse assertions from the SICs can occur
simultaneously, before, or during interrupt processing for an interrupt
event that is already detected on this interrupt input. For a shared inter-
rupt, the IPEND interrupt acknowledge mechanism described above
re-enables all shared interrupts. If any of the shared interrupt sources are
still asserted, at least one pulse is again generated by the SICs. The inter-
rupt register registers indicate the current state of the shared interrupt
sources.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-61

Program Sequencer

Exception Handling
Interrupts and exceptions treat instructions in the pipeline differently:

• When an interrupt occurs, all instructions in the pipeline are
aborted.

• When an exception occurs, all instructions in the pipeline after the
excepting instruction are aborted. For error exceptions, the except-
ing instruction is also aborted.

Because exceptions, NMIs, and emulation events have a dedicated return
register, guarding the return address is optional. Consequently, the push
and pop instructions for exceptions, NMIs, and emulation events do not
affect the interrupt system.

Note, however, the return instructions for exceptions (RTX, RTN, and RTE)
do clear the least significant bit currently set in IPEND.

Deferring Exception Processing
Exception handlers are usually long routines, because they must discrimi-
nate among several exception causes and take corrective action
accordingly. The length of the routines may result in long periods during
which the interrupt system is, in effect, suspended.

To avoid lengthy suspension of interrupts, write the exception handler to
identify the exception cause, but defer the processing to a low priority
interrupt. To set up the low priority interrupt handler, use the Force
interrupt/reset instruction (RAISE).

When deferring the processing of an exception to lower priority interrupt
IVGx, the system must guarantee that IVGx is entered before returning to
the application-level code that issued the exception. If a pending interrupt
of higher priority than IVGx occurs, it is acceptable to enter the high prior-
ity interrupt before IVGx.

Exception Handling

4-62 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Example Code for an Exception Handler
Listing 4-1 is for an exception routine handler with deferred processing.

Listing 4-1. Exception Routine Handler With Deferred Processing

/* Determine exception cause by examining EXCAUSE field in SEQ-

STAT (first save contents of R0, P0, P1 and ASTAT in Supervisor

SP) */

[--SP] = R0 ;

[--SP] = P0 ;

[--SP] = P1 ;

[--SP] = ASTAT ;

R0 = SEQSTAT ;

/* Mask the contents of SEQSTAT, and leave only EXCAUSE in R0 */

R0 << = 26 ;

R0 >> = 26 ;

/* Using jump table EVTABLE, jump to the event pointed by R0 */

P0 = R0 ;

P1 = _EVTABLE ;

P0 = P1 + (P0 << 1) ;

R0 = W [P0] (Z) ;

P1 = R0 ;

JUMP (PC + P1) ;

/* The entry point for an event is as follows. Here, processing

is deferred to low-priority interrupt IVG15. Also, parame-

ter-passing would typically be done here. */

_EVENT1 :

RAISE 15 ;

JUMP.S_EXIT ;

/* Entry for event at IVG14 */

_EVENT2 :

RAISE 14 ;

JUMP.S _EXIT ;

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-63

Program Sequencer

/* comments for other events. At the end of handler, restore R0,

P0, P1 and ASTAT, and return. */

_EXIT :

ASTAT = [SP++] ;

P1 = [SP++] ;

P0 = [SP++] ;

R0 = [SP++] ;

RTI ;

_EVTABLE :

.byte2 addr_event1 ;

.byte2 addr_event2 ;

...

.byte2 addr_eventN ;

/* The jump table EVTABLE holds 16-bit address offsets for each

event. With offsets, this code is position-independent and the

table is small.

+--------------+

| addr_event1 | _EVTABLE

+--------------+

| addr_event2 | _EVTABLE + 2

+--------------+

| . . . |

+--------------+

| addr_eventN | _EVTABLE + 2N

+--------------+

*/

Exception Handling

4-64 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Example Code for an Exception Routine
Listing 4-2 provides an example framework for an exception routine that
would be jumped to from an exception handler such as that described in
Listing 4-1.

Listing 4-2. Exception Routine

[--SP] = RETX ; /* Push return address on stack. No change to

ILAT or IPEND. */

/* Put body of exception routine here. */

RETX = [SP++] ; /* To return, pop return address and jump. No

change to ILAT or IPEND. */

RTX ; /* Return from exception. Clear IPEND[3] (Exception Pend-

ing bit). */

Example Code for Using Hardware Loops in an ISR
Listing 4-3 provides shows the optimal method of saving and restoring
when using hardware loops in an ISR.

Listing 4-3. Exception Routine

lhandler

<save other registers here>

[--SP] = LC0 ; /* save loop 0 */

[--SP] = LB0 ;

[--SP] = LT0 ;

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-65

Program Sequencer

<handler code here>

/* If the handler uses loop 0, it is a good idea to have it leave

LC0 equal to zero at the end. Normally, this will happen natu-

rally as a loop is fully executed. If LC0 == 0, then LT0 and LB0

restores will not incur additional cycles. If LC0 ! = 0 when the

following pops happen, each pop will incur a 10-cycle “replay”

penalty. Popping or writing LC0 always incurs the penalty. */

LT0 = [SP++] ;

LB0 = [SP++] ;

LC0 = [SP++] ; /* This will cause a “replay,” That is, a

10-cycle refetch. */

<restore other registers here>

RTI ;

Other Usability Issues
The following sections describe other usability issues.

Executing RTX, RTN, or RTE in a Lower Priority Event
Instructions RTX, RTN, and RTE are designed to return from an exception,
NMI, or emulator event, respectively. Do not use them to return from a
lower-priority event. To return from an interrupt, use the RTI instruction.
Failure to use the correct instruction produces the following results.

If a program mistakenly uses RTX, RTN, or RTE to return from an interrupt,
the core branches to the address in the corresponding return register
(RETX, RETN, RETE). IPEND is modified correctly but the return address will
possibly be wrong.

Other Usability Issues

4-66 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

If a program mistakenly uses RTI or RTX to return from an NMI routine,
the core branches to the address in the corresponding return register
(RETI, RETX), and clears the bit in IPEND that corresponds to the return
instruction.

In the case of RTX, bit IPEND[3] is cleared. In the case of RTI, the bit of the
highest priority interrupt in IPEND is cleared.

Recommendation for Allocating the System Stack
The software stack model for processing exceptions implies that the super-
visor stack must never generate an exception while the exception handler
is saving its state. However, if the supervisor stack grows past a CPLB
entry or SRAM block, it may, in fact, generate an exception.

To guarantee that the supervisor stack never generates an exception—
never overflows past a CPLB entry or SRAM block while executing the
exception handler—calculate the maximum space that all interrupt service
routines and the exception handler occupy while they are active, and then
allocate this amount of SRAM memory.

Latency in Servicing Events
In some processor architectures, if instructions are executed from external
memory and an interrupt occurs while the instruction fetch operation is
underway, then the interrupt is held off from being serviced until the cur-
rent fetch operation has completed. Consider a processor operating at
300 MHz and executing code from external memory with 100 ns access
times. Depending on when the interrupt occurs in the instruction fetch
operation, the interrupt service routine (ISR) may be held off for around
30 instruction clock cycles. When cache line fill operations are taken into
account, the ISR could be held off for many hundreds of cycles.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 4-67

Program Sequencer

In order for high-priority interrupts to be serviced with the least latency
possible, the processor allows any high latency fill operation to be com-
pleted at the system level, while an ISR executes from L1 memory.
Figure 2-15 on page 2-48 illustrates this concept.

If an instruction load operation misses the L1 instruction cache and gener-
ates a high latency line fill operation, then when an interrupt occurs, it is
not held off until the fill has completed. Instead, the processor executes
the ISR in its new context, and the cache fill operation completes in the
background.

Note the ISR must reside in L1 cache or SRAM memory and must not
generate a cache miss, an L2 memory access, or a peripheral access, as the
processor is already busy completing the original cache line fill operation.

Figure 4-24. Minimizing Latency in Servicing an ISR

CLOCK

FETCH

INSTRUCTION
DATA

SERVICED
HERE

FETCH

INSTRUCTION
DATA

INTERRUPT
OCCURRING
HERE

SERVICED
HERE

OTHER PROCESSORS

BLACKFIN PROCESSOR

INTERRUPT
OCCURRING
HERE

Other Usability Issues

4-68 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

If a load or store operation is executed in the ISR requiring one of these
accesses, then the ISR is held off while the original external access is com-
pleted, before initiating the new load or store.

If the ISR finishes execution before the load operation has completed,
then the processor continues to stall, waiting for the fill to complete.

This same behavior is also exhibited for stalls involving reads of slow data
memory or peripherals.

Writes to slow memory generally do not show this behavior, as the writes
are deemed to be single cycle, being immediately transferred to the write
buffer for subsequent execution.

For detailed information about cache and memory structures, Chapter 6,
“Memory”.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 5-1

5 DATA ADDRESS
GENERATORS

The data address generators (DAGs) generate addresses for data moves to
and from memory. By generating addresses, the DAGs let programs refer
to addresses indirectly, using a DAG register instead of an absolute
address.

The DAG architecture, shown in Figure 5-1, supports several functions
that minimize overhead in data access routines. These functions include:

• Supply address – Provides an address during a data access

• Supply address and post-modify – Provides an address during a
data move and auto-increments/decrements the stored address for
the next move

• Supply address with offset – Provides an address from a base with
an offset without incrementing the original address pointer

• Modify address – Increments or decrements the stored address
without performing a data move

• Bit-reversed carry address – Provides a bit-reversed carry address
during a data move without reversing the stored address

The DAG subsystem comprises two DAG Arithmetic units, nine pointer
registers, four index registers and four complete sets of related modify,
base, and length registers. These registers hold the values that the DAGs
use to generate addresses. The types of registers are:

5-2 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• Index registers, I[3:0]. Unsigned 32-bit index registers hold an
address pointer to memory. For example, the instruction R3 = [I0]
loads the data value found at the memory location pointed to by
the register I0. Index registers can be used for 16- and 32-bit mem-
ory accesses.

• Modify registers, M[3:0]. Signed 32-bit modify registers provide
the increment or step size by which an index register is post-modi-
fied during a register move. For example, the R0 = [I0 ++ M1]
instruction directs the DAG to:

– Output the address in register I0
– Load the contents of the memory location pointed to by I0 into

R0

– Modify the contents of I0 by the value contained in the M1
register

• Base and length registers, B[3:0] and L[3:0]. Unsigned 32-bit base
and length registers set up the range of addresses and the starting
address of a circular buffer. Each B, L pair is always coupled with a
corresponding I-register, for example, I3, B3, L3. For more infor-
mation on circular buffers, see “Addressing Circular Buffers” on
page 5-6.

• Pointer registers, P[5:0], FP, USP, and SP. 32-bit pointer registers
hold an address pointer to memory. The P[5:0] field, FP (frame
pointer) and SP/USP (stack pointer/user stack pointer) can be
manipulated and used in various instructions. For example, the
instruction R3 = [P0] loads the register R3 with the data value
found at the memory location pointed to by the register P0. The
pointer registers have no effect on circular buffer addressing. They
can be used for 8-, 16-, and 32-bit memory accesses. For added
mode protection, SP is accessible only in supervisor mode, while
USP is accessible in user mode.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 5-3

Data Address Generators

 Do not assume the L-registers are automatically initialized to zero
for linear addressing. The I-, M-, L-, and B-registers contain ran-
dom values after reset. For each I-register used, programs must
initialize the corresponding L-registers to zero for linear addressing
or to the buffer length for circular buffer addressing.

 Note all DAG registers must be initialized individually. Initializing
a B-register does not automatically initialize the I-register.

Figure 5-1. Processor DAG Registers

 Data Address Generator Registers (DAGs)

P0

P1

P2

P3

P4

P5

User SP
Supervisor SP

Supervisor only register. Attempted read or
write in User mode causes an exception error.

FP

I0

I2

I3

L0 B0

B3L3

L2

L1 B1

B2

I1

M0

M3

M1

M2

Addressing With DAGs

5-4 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Addressing With DAGs
The DAGs can generate an address that is incremented by a value or by a
register. In post-modify addressing, the DAG outputs the I-register value
unchanged; then the DAG adds an M-register or immediate value to the
I-register.

In indexed addressing, the DAG adds a small offset to the value in the
P-register, but does not update the P-register with this new value, thus
providing an offset for that particular memory access.

The processor is byte addressed. All data accesses must be aligned to the
data size. In other words, a 32-bit fetch must be aligned to 32 bits, but an
8-bit store can be aligned to any byte. Depending on the type of data
used, increments and decrements to the DAG registers can be by 1, 2, or 4
to match the 8-, 16-, or 32-bit accesses.

For example, consider the following instruction:
R0 = [P3++];

This instruction fetches a 32-bit word, pointed to by the value in P3, and
places it in R0. It then post-increments P3 by four, maintaining alignment
with the 32-bit access.
R0.L = W [I3++];

This instruction fetches a 16-bit word, pointed to by the value in I3, and
places it in the low half of the destination register, R0.L. It then
post-increments I3 by two, maintaining alignment with the 16-bit access.
R0 = B [P3++] (Z) ;

This instruction fetches an 8-bit word, pointed to by the value in P3, and
places it in the destination register, R0. It then post-increments P3 by one,
maintaining alignment with the 8-bit access. The byte value may be
zero-extended (as shown) or sign-extended into the 32-bit data register.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 5-5

Data Address Generators

Instructions using index registers use an M-register or a small immediate
value (+/– 2 or 4) as the modifier. Instructions using pointer registers use a
small immediate value or another P-register as the modifier. For details,
see Table 5-3 on page 5-18.

Frame and Stack Pointers
In many respects, the frame and stack pointer registers perform like the
other P-registers, P[5:0]. They can act as general pointers in any of the
load/store instructions, for example, R1 = B[SP] (Z). However, FP and SP
have additional functionality.

The stack pointer registers include:

• a user stack pointer (USP in supervisor mode, SP in user mode)

• a supervisor stack pointer (SP in supervisor mode)

The user stack pointer register and the supervisor stack pointer register are
accessed using the register alias SP. Depending on the current processor
operating mode, only one of these registers is active and accessible as SP:

• In user mode, any reference to SP (for example, stack pop
R0 = [SP++] ;) implicitly uses the USP as the effective address.

• In supervisor mode, the same reference to SP (for example,
R0 = [SP++] ;) implicitly uses the supervisor stack pointer as the
effective address.

To manipulate the user stack pointer for code running in supervi-
sor mode, use the register alias USP. When in supervisor mode, a
register move from USP (for example, R0 = USP ;) moves the cur-
rent user stack pointer into R0. The register alias USP can only be
used in supervisor mode.

Addressing With DAGs

5-6 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Some load/store instructions use FP and SP implicitly:

• FP-indexed load/store, which extends the addressing range for
16-bit encoded load/stores

• Stack push/pop instructions, including those for pushing and pop-
ping multiple registers

• Link/unlink instructions, which control stack frame space and
manage the frame pointer register (FP) for that space

Addressing Circular Buffers
The DAGs support addressing circular buffers. Circular buffers are a range
of addresses containing data that the DAG steps through repeatedly,
wrapping around to repeat stepping through the same range of addresses
in a circular pattern.

The DAGs use four types of DAG registers for addressing circular buffers.
For circular buffering, the registers operate this way:

• The index (I) register contains the value that the DAG outputs on
the address bus.

• The modify (M) register contains the post-modify amount (posi-
tive or negative) that the DAG adds to the I-register at the end of
each memory access.

Any M-register can be used with any I-register. The modify value
can also be an immediate value instead of an M-register. The size of
the modify value must be less than or equal to the length (L-regis-
ter) of the circular buffer.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 5-7

Data Address Generators

• The Length (L) register sets the size of the circular buffer and the
address range through which the DAG circulates the I-register.

L is positive and cannot have a value greater than 232 – 1. If an
L-register’s value is zero, its circular buffer operation is disabled.

• The base (B) register or the B-register plus the L-register is the
value with which the DAG compares the modified I-register value
after each access.

To address a circular buffer, the DAG steps the index pointer (I-register)
through the buffer values, post-modifying and updating the index on each
access with a positive or negative modify value from the M-register.

If the index pointer falls outside the buffer range, the DAG subtracts the
length of the buffer (L-register) from the value or adds the length of the
buffer to the value, wrapping the Index pointer back to a point inside the
buffer.

The starting address that the DAG wraps around is called the buffer’s base
address (B-register). There are no restrictions on the value of the base
address for circular buffers that contains 8-bit data. Circular buffers that
contain 16- and 32-bit data must be 16-bit aligned and 32-bit aligned,
respectively. Exceptions can be made for video operations. For more infor-
mation, see “Memory Address Alignment” on page 5-14. Circular
buffering uses post-modify addressing.

Addressing With DAGs

5-8 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

As seen in Figure 5-2, on the first post-modify access to the buffer, the
DAG outputs the I-register value on the address bus, then modifies the
address by adding the modify value.

• If the updated index value is within the buffer length, the DAG
writes the value to the I-register.

• If the updated index value exceeds the buffer length, the DAG sub-
tracts (for a positive modify value) or adds (for a negative modify
value) the L-register value before writing the updated index value
to the I-register.

Figure 5-2. Circular Data Buffers

0X0

0X1

0X2

0X3

0X4

0X5

0X6

0X7

0X8

0X9

0XA

0X0

0X1

0X2

0X3

0X4

0X5

0X6

0X7

0X8

0X9

0XA

0X0

0X1

0X2

0X3

0X4

0X5

0X6

0X7

0X8

0X9

0XA

0X0

0X1

0X2

0X3

0X4

0X5

0X6

0X7

0X8

0X9

0XA

1

2

3

4

5

6

7

8

9

10

11

LENGTH = 11
BASE ADDRESS = 0X0
MODIFIER = 4

THE COLUMNS ABOVE SHOW THE SEQUENCE IN ORDER OF LOCATIONS ACCESSED IN ONE PASS.
THE SEQUENCE REPEATS ON SUBSEQUENT PASSES.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 5-9

Data Address Generators

In equation form, these post-modify and wraparound operations work as
follows, shown for “I+M” operations.

• If M is positive:

Inew = Iold + M
if Iold + M buffer base + length (end of buffer)

Inew = Iold + M – L
if Iold + M buffer base + length (end of buffer)

• If M is negative:

Inew = Iold + M
if Iold + M buffer base (start of buffer)

Inew = Iold + M + L
if Iold + M buffer base (start of buffer)

Addressing With Bit-Reversed Addresses
To obtain results in sequential order, programs need bit-reversed carry
addressing for some algorithms, particularly Fast Fourier Transform
(FFT) calculations. To satisfy the requirements of these algorithms, the
DAG’s bit-reversed addressing feature permits repeatedly subdividing data
sequences and storing this data in bit-reversed order. For detailed infor-
mation about bit-reversed addressing, see the Modify-Increment
instruction in Blackfin Processor Programming Reference.

Addressing With DAGs

5-10 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Indexed Addressing With Index and Pointer
Registers

Indexed addressing uses the value in the index or pointer register as an
effective address. This instruction can load or store 16- or 32-bit values.
The default is a 32-bit transfer. If a 16-bit transfer is required, then the W
designator is used to preface the load or store.

For example:

R0 = [I2] ;

loads a 32-bit value from an address pointed to by I2 and stores it in the
destination register R0.

R0.H = W [I2] ;

loads a 16-bit value from an address pointed to by I2 and stores it in the
16-bit destination register R0.H.

[P1] = R0 ;

is an example of a 32-bit store operation.

Pointer registers can be used for 8-bit loads and stores.

For example:

B [P1++] = R0 ;

stores the 8-bit value from the R0 register in the address pointed to by the
P1 register, then increments the P1 register.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 5-11

Data Address Generators

Auto-Increment and Auto-Decrement Addressing
Auto-increment addressing updates the pointer and index registers after
the access. The amount of increment depends on the word size. An access
of 32-bit words results in an update of the pointer by 4. A 16-bit word
access updates the pointer by 2, and an access of an 8-bit word updates the
pointer by 1. Both 8- and 16-bit read operations may specify either to
sign-extend or zero-extend the contents into the destination register.
Pointer registers may be used for 8-, 16-, and 32-bit accesses while index
registers may be used only for 16- and 32-bit accesses.

For example:

R0 = W [P1++] (Z) ;

loads a 16-bit word into a 32-bit destination register from an address
pointed to by the P1 pointer register. The pointer is then incremented by
2 and the word is zero-extended to fill the 32-bit destination register.

Auto-decrement works the same way by decrementing the address after
the access.

For example:

R0 = [I2--] ;

loads a 32-bit value into the destination register and decrements the Index
register by 4.

Pre-Modify Stack Pointer Addressing
The only pre-modify instruction in the processor uses the stack pointer
register, SP. The address in SP is decremented by 4 and then used as an
effective address for the store. The instruction [--SP] = R0 ; is used for
stack push operations and can support only a 32-bit word transfer.

Addressing With DAGs

5-12 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Indexed Addressing With Immediate Offset
Indexed addressing allows programs to obtain values from data tables,
with reference to the base of that table. The pointer register is modified by
the immediate field and then used as the effective address. The value of
the pointer register is not updated.

 Alignment exceptions are triggered when a final address is
unaligned.

For example, if P1 = 0x13, then [P1 + 0x11] would effectively be equal to
[0x24], which is aligned for all accesses.

Post-Modify Addressing
Post-modify addressing uses the value in the index or pointer registers as
the effective address and then modifies it by the contents of another regis-
ter. Pointer registers are modified by other pointer registers. Index
registers are modified by modify registers. Post-modify addressing does
not support the pointer registers as destination registers, nor does it sup-
port byte-addressing.

For example:

R5 = [P1++P2] ;

loads a 32-bit value into the R5 register, found in the memory location
pointed to by the P1 register.

The value in the P2 register is then added to the value in the P1 register.

For example:

R2 = W [P4++P5] (Z) ;

loads a 16-bit word into the low half of the destination register R2 and
zero-extends it to 32 bits. The value of the pointer P4 is incremented by
the value of the pointer P5.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 5-13

Data Address Generators

For example:

R2 = [I2++M1] ;

loads a 32-bit word into the destination register R2. The value in the Index
register, I2, is updated by the value in the modify register, M1.

Modifying DAG and Pointer Registers
The DAGs support operations that modify an address value in an index
register without outputting an address. The operation, address-modify, is
useful for maintaining pointers.

The address-modify operation modifies addresses in any DAG index and
pointer register (I[3:0], P[5:0], FP, SP) without accessing memory. If the
index register’s corresponding B- and L-registers are set up for circular
buffering, the address-modify operation performs the specified buffer
wraparound (if needed).

The syntax is similar to post-modify addressing (index += modifier). For
Index registers, an M-register is used as the modifier. For pointer registers,
another P-register is used as the modifier.

Consider the example, I1 += M2 ;

This instruction adds M2 to I1 and updates I1 with the new value.

Memory Address Alignment

5-14 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Memory Address Alignment
The processor requires proper memory alignment to be maintained for the
data size being accessed. Unless exceptions are disabled, violations of
memory alignment cause an alignment exception. Some instructions—for
example, many of the video ALU instructions—automatically disable
alignment exceptions because the data may not be properly aligned when
stored in memory. Alignment exceptions may be disabled by issuing the
DISALGNEXPT instruction in parallel with a load/store operation.

Normally, the memory system requires two address alignments:

• 32-bit word load/stores are accessed on four-byte boundaries,
meaning the two least significant bits of the address are b#00.

• 16-bit word load/stores are accessed on two-byte boundaries,
meaning the least significant bit of the address must be b#0.

Table 5-1 summarizes the types of transfers and transfer sizes supported
by the addressing modes.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 5-15

Data Address Generators

 Be careful when using the DISALGNEXPT instruction, because it dis-
ables automatic detection of memory alignment errors. The
DISALGNEXPT instruction only affects misaligned loads that use
I-register indirect addressing. Misaligned loads using P-register
addressing will still cause an exception.

Table 5-1. Types of Transfers Supported and Transfer Sizes

Addressing Mode Types of Transfers
Supported

Transfer Sizes

Auto-increment
Auto-decrement
Indirect
Indexed

To and from data
registers

LOADS:
32-bit word
16-bit, zero-extended half word
16-bit, sign-extended half word
8-bit, zero-extended byte
8-bit, sign-extended byte
STORES:
32-bit word
16-bit half word
8-bit byte

To and from pointer
registers

LOAD:
32-bit word
STORE:
32-bit word

Post-increment To and from data
registers

LOADS:
32-bit word
16-bit half word to data register high half
16-bit half word to data register low half
16-bit, zero-extended half word
16-bit, sign-extended half word
STORES:
32-bit word
16-bit half word from data register high half
16-bit half word from data register low half

Memory Address Alignment

5-16 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Table 5-2 summarizes the addressing modes. In the table, an asterisk (*)
indicates the processor supports the addressing mode.

Table 5-2. Addressing Modes

32-Bit
Word

16-Bit Half-
Word

8-Bit Byte Sign-/Zero-
Extend

Data
Register

Pointer
Register

Data
Register
Half

P Auto-inc
[P0++]

* * * * * *

P Auto-dec
[P0--]

* * * * * *

P Indirect
[P0]

* * * * * * *

P Indexed
[P0+im]

* * * * * *

FP indexed
[FP+im]

* * *

P Post-inc
[P0++P1]

* * * * *

I Auto-inc
[I0++]

* * * *

I Auto-dec
[I0--]

* * * *

I Indirect
[I0]

* * * *

I Post-inc
[I0++M0]

* *

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 5-17

Data Address Generators

DAG Instruction Summary
Table 5-3 lists the DAG instructions. For more information on assembly
language syntax, see Blackfin Processor Programming Reference. In
Table 5-3, note the meaning of these symbols:

• Dreg denotes any data register file register.

• Dreg_lo denotes the lower 16 bits of any data register file register.

• Dreg_hi denotes the upper 16 bits of any data register file register.

• Preg denotes any pointer register, FP, or SP register.

• Ireg denotes any DAG index register.

• Mreg denotes any DAG modify register.

• W denotes a 16-bit wide value.

• B denotes an 8-bit wide value.

• immA denotes a signed, A-bits wide, immediate value.

• uimmAmB denotes an unsigned, A-bits wide, immediate value that
is an even multiple of B.

• Z denotes the zero-extension qualifier.

• X denotes the sign-extension qualifier.

• BREV denotes the bit-reversal qualifier.

The Blackfin Processor Programming Reference more fully describes the
options that may be applied to these instructions and the sizes of immedi-
ate fields.

DAG instructions do not affect the ASTAT register flags.

DAG Instruction Summary

5-18 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Table 5-3. DAG Instruction Summary

Instruction

Preg = [Preg] ;

Preg = [Preg ++] ;

Preg = [Preg --] ;

Preg = [Preg + uimm6m4] ;

Preg = [Preg + uimm17m4] ;

Preg = [Preg – uimm17m4] ;

Preg = [FP – uimm7m4] ;

Dreg = [Preg] ;

Dreg = [Preg ++] ;

Dreg = [Preg --] ;

Dreg = [Preg + uimm6m4] ;

Dreg = [Preg + uimm17m4] ;

Dreg = [Preg – uimm17m4] ;

Dreg = [Preg ++ Preg] ;

Dreg = [FP – uimm7m4] ;

Dreg = [Ireg] ;

Dreg = [Ireg ++] ;

Dreg = [Ireg --] ;

Dreg = [Ireg ++ Mreg] ;

Dreg =W [Preg] (Z) ;

Dreg =W [Preg ++] (Z) ;

Dreg =W [Preg --] (Z) ;

Dreg =W [Preg + uimm5m2] (Z) ;

Dreg =W [Preg + uimm16m2] (Z) ;

Dreg =W [Preg – uimm16m2] (Z) ;

Dreg =W [Preg ++ Preg] (Z) ;

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 5-19

Data Address Generators

Dreg = W [Preg] (X) ;

Dreg = W [Preg ++] (X) ;

Dreg = W [Preg --] (X) ;

Dreg =W [Preg + uimm5m2] (X) ;

Dreg =W [Preg + uimm16m2] (X) ;

Dreg =W [Preg – uimm16m2] (X) ;

Dreg =W [Preg ++ Preg] (X) ;

Dreg_hi = W [Ireg] ;

Dreg_hi = W [Ireg ++] ;

Dreg_hi = W [Ireg --] ;

Dreg_hi = W [Preg] ;

Dreg_hi = W [Preg ++ Preg] ;

Dreg_lo = W [Ireg] ;

Dreg_lo = W [Ireg ++] ;

Dreg_lo = W [Ireg --] ;

Dreg_lo = W [Preg] ;

Dreg_lo = W [Preg ++ Preg] ;

Dreg = B [Preg] (Z) ;

Dreg = B [Preg ++] (Z) ;

Dreg = B [Preg --] (Z) ;

Dreg = B [Preg + uimm15] (Z) ;

Dreg = B [Preg – uimm15] (Z) ;

Dreg = B [Preg] (X) ;

Dreg = B [Preg ++] (X) ;

Dreg = B [Preg --] (X) ;

Dreg = B [Preg + uimm15] (X) ;

Table 5-3. DAG Instruction Summary (Cont’d)

Instruction

DAG Instruction Summary

5-20 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Dreg = B [Preg – uimm15] (X) ;

[Preg] = Preg ;

[Preg ++] = Preg ;

[Preg --] = Preg ;

[Preg + uimm6m4] = Preg ;

[Preg + uimm17m4] = Preg ;

[Preg – uimm17m4] = Preg ;

[FP – uimm7m4] = Preg ;

[Preg] = Dreg ;

[Preg ++] = Dreg ;

[Preg --] = Dreg ;

[Preg + uimm6m4] = Dreg ;

[Preg + uimm17m4] = Dreg ;

[Preg – uimm17m4] = Dreg ;

[Preg ++ Preg] = Dreg ;

[FP – uimm7m4] = Dreg ;

[Ireg] = Dreg ;

[Ireg ++] = Dreg ;

[Ireg --] = Dreg ;

[Ireg ++ Mreg] = Dreg ;

W [Ireg] = Dreg_hi ;

W [Ireg ++] = Dreg_hi ;

W [Ireg --] = Dreg_hi ;

W [Preg] = Dreg_hi ;

W [Preg ++ Preg] = Dreg_hi ;

W [Ireg] = Dreg_lo ;

Table 5-3. DAG Instruction Summary (Cont’d)

Instruction

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 5-21

Data Address Generators

W [Ireg ++] = Dreg_lo ;

W [Ireg --] = Dreg_lo ;

W [Preg] = Dreg_lo ;

W [Preg] = Dreg ;

W [Preg ++] = Dreg ;

W [Preg --] = Dreg ;

W [Preg + uimm5m2] = Dreg ;

W [Preg + uimm16m2] = Dreg ;

W [Preg – uimm16m2] = Dreg ;

W [Preg ++ Preg] = Dreg_lo ;

B [Preg] = Dreg ;

B [Preg ++] = Dreg ;

B [Preg --] = Dreg ;

B [Preg + uimm15] = Dreg ;

B [Preg – uimm15] = Dreg ;

Preg = imm7 (X) ;

Preg = imm16 (X) ;

Preg += Preg (BREV) ;

Ireg += Mreg (BREV) ;

Preg = Preg << 2 ;

Preg = Preg >> 2 ;

Preg = Preg >> 1 ;

Preg = Preg + Preg << 1 ;

Preg = Preg + Preg << 2 ;

Preg –= Preg ;

Ireg –= Mreg ;

Table 5-3. DAG Instruction Summary (Cont’d)

Instruction

DAG Instruction Summary

5-22 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-1

6 MEMORY

The processor supports a hierarchical memory model with different per-
formance and size parameters, depending on the memory location within
the hierarchy. Level 1 (L1) memories are located on the chip and are faster
than the Level 2 (L2) memory systems. The Level 2 (L2) memories are
off-chip and have longer access latencies. The faster L1 memories, which
are typically small scratchpad memory or cache memories, are found
within the core itself.

Memory Architecture
The processor has a unified 4G byte address range that spans a combina-
tion of on-chip and off-chip memory and memory-mapped I/O resources.
Of this range, some of the address space is dedicated to internal, on-chip
resources. The processor populates portions of this internal memory space
with:

• L1 static random access memories (SRAM)

• a set of memory-mapped registers (MMRs)

• a boot read-only memory (ROM)

A portion of the internal L1 SRAM can also be configured to run as cache.
The processor also provides support for an external memory space that
includes asynchronous memory space and synchronous DRAM (SDRAM)
space. See Chapter 18, “External Bus Interface Unit” for a detailed discus-
sion of each of these memory regions and the controllers that support
them.

Memory Architecture

6-2 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 6-1 provides an overview of the ADSP-BF538/ADSP-BF538F pro-
cessor system memory map. Note the architecture does not define a
separate I/O space. All resources are mapped through the flat 32-bit
address space. The memory is byte-addressable.

The memory configuration for the ADSP-BF538/ADSP-BF538F proces-
sors is shown in the ADSP-BF538/ADSP-BF538F Embedded Processor
Data Sheet.

The upper portion of internal memory space is allocated to the core and
system MMRs. Accesses to this area are allowed only when the processor is
in supervisor or emulation mode (see Chapter 3, “Operating Modes and
States”).

The lowest 1K byte of internal memory space is occupied by the boot
ROM. Depending on the booting option selected, the appropriate boot
program is executed from this memory space when the processor is reset
(see “Booting Methods” on page 3-19).

Within the external memory map, four banks of asynchronous memory
space and one bank of SDRAM memory are available. Each of the asyn-
chronous banks is 1M byte and the SDRAM bank is up to 128M byte.

Overview of Internal Memory
The L1 memory system performance provides high bandwidth and low
latency. Because SRAMs provide deterministic access time and very high
throughput, DSP systems have traditionally achieved performance
improvements by providing fast SRAM on the chip.

The addition of instruction and data caches (SRAMs with cache control
hardware) provides both high performance and a simple programming
model. Caches eliminate the need to explicitly manage data movement
into and out of L1 memories. Code can be ported to or developed for the
processor quickly without requiring performance optimization for the
memory organization.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-3

Memory

Figure 6-1. ADSP-BF538/ADSP-BF538F Memory Map

RESERVED

CORE MMR REGISTERS (2M BYTE)

RESERVED

SCRATCHPAD SRAM (4K BYTE)

INSTRUCTION SRAM (64K BYTE)

SYSTEM MMR REGISTERS (2M BYTE)

RESERVED

RESERVED

DATA BANK B SRAM / CACHE (16K BYTE)

DATA BANK B SRAM (16K BYTE)

DATA BANK A SRAM / CACHE (16K BYTE)

ASYNC MEMORY BANK 3 (1M BYTE) OR
ON-CHIP FLASH (ADSP-BF538F ONLY)

ASYNC MEMORY BANK 2 (1M BYTE) OR
ON-CHIP FLASH (ADSP-BF538F ONLY)

ASYNC MEMORY BANK 1 (1M BYTE) OR
ON-CHIP FLASH (ADSP-BF538F ONLY)

ASYNC MEMORY BANK 0 (1M BYTE) OR
ON-CHIP FLASH (ADSP-BF538F ONLY)

SDRAM MEMORY (16M BYTE - 128M BYTE)

INSTRUCTION SRAM / CACHE (16K BYTE)

IN
T

E
R

N
A

L
M

E
M

O
R

Y
M

A
P

E
X

TE
R

N
A

L
M

E
M

O
R

Y
M

A
P

0xFFFF FFFF

0xFFE0 0000

0xFFB0 0000

0xFFA1 4000

0xFFA1 0000

0xFF90 8000

0xFF90 4000

0xFF80 8000

0xFF80 4000

0xEF00 0000

0x2040 0000

0x2030 0000

0x2020 0000

0x2010 0000

0x2000 0000

0x0800 0000

0x0000 0000

0xFFC0 0000

0xFFB0 1000

0xFFA0 0000

RESERVED

RESERVED

DATA BANK A SRAM (16K BYTE)

0xFF90 0000

0xFF80 0000

RESERVED

Memory Architecture

6-4 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The L1 memory provides:

• A modified Harvard architecture, allowing up to four core memory
accesses per clock cycle (one 64-bit instruction fetch, two 32-bit
data loads, and one pipelined 32-bit data store)

• Simultaneous system DMA, cache maintenance, and core accesses

• SRAM access at processor clock rate (CCLK) for critical DSP algo-
rithms and fast context switching

Figure 6-2. Processor Memory Architecture

WATCHDOG
TIMER

GPIO
SPORT

SPI

EBIU

PPI

RTC CAN TWI

DMA
CONTROLLER

L1 MEMORYCORE
PROCESSOR INSTRUCTION

LOAD DATA

LOAD DATA

EXTERNAL
MEMORY
DEVICES

64

32

32

16

32

STORE DATA

SYSTEM CLOCK
(SCLK) DOMAIN

CORE CLOCK
(CCLK) DOMAIN

DMA ACCESS BUS
(DAB)

EXTERNAL
PORT
BUS (EPB)

EXTERNAL
ACCESS
BUS (EAB)

DMA
EXTERNAL
BUS (DEB)

DMA
CORE
BUS (DCB)

PERIPHERAL ACCESS
BUS (PAB)

UART

TIMERS

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-5

Memory

• Instruction and data cache options for microcontroller code, excel-
lent high level language (HLL) support, and ease of programming
cache control instructions, such as PREFETCH and FLUSH

• Memory protection

 The L1 memories operate at the core clock frequency (CCLK).

Overview of Scratchpad Data SRAM
The processor provides a dedicated 4K byte bank of scratchpad data
SRAM. The scratchpad is independent of the configuration of the other
L1 memory banks and cannot be configured as cache or targeted by DMA.
Typical applications use the scratchpad data memory where speed is criti-
cal. For example, the user and supervisor stacks should be mapped to the
scratchpad memory for the fastest context switching during interrupt
handling.

 The L1 memories operate at the core clock frequency (CCLK).

Scratchpad data SRAM cannot be accessed by the DMA controller.

L1 Instruction Memory
L1 instruction memory consists of a combination of dedicated SRAM and
banks which can be configured as SRAM or cache. For the 16K byte bank
that can be either cache or SRAM, control bits in the IMEM_CONTROL regis-
ter can be used to organize all four sub-banks of the L1 instruction
memory as a:

• simple SRAM

• 4-way, set associative instruction cache

• cache with as many as four locked ways

L1 Instruction Memory

6-6 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

 L1 instruction memory can be used only to store instructions.

Instruction Memory Control (IMEM_CONTROL)
Register

The instruction memory control register (IMEM_CONTROL) contains control
bits for the L1 instruction memory. By default after reset, cache and
cacheability protection lookaside buffer (CPLB) address checking is dis-
abled (see “L1 Instruction Cache” on page 6-9).

When the LRUPRIORST bit is set to 1, the cached states of all CPLB_LRUPRIO
bits (see “Instruction CPLB Data (ICPLB_DATAx) Registers” on
page 6-52) are cleared. This simultaneously forces all cached lines to be of
equal (low) importance. Cache replacement policy is based first on line
importance indicated by the cached states of the CPLB_LRUPRIO bits, and
then on LRU (least recently used). See “Instruction Cache Locking by
Line” on page 6-17 for complete details. This bit must be 0 to allow the
state of the CPLB_LRUPRIO bits to be stored when new lines are cached.

The ILOC[3:0] bits provide a useful feature only after code has been man-
ually loaded into cache. See “Instruction Cache Locking by Way” on
page 6-17. These bits specify which ways to remove from the cache
replacement policy. This has the effect of locking code present in nonpar-
ticipating ways. Code in nonparticipating ways can still be removed from
the cache using an IFLUSH instruction. If an ILOC[3:0] bit is 0, the corre-
sponding way is not locked and that way participates in cache replacement
policy. If an ILOC[3:0] bit is 1, the corresponding way is locked and does
not participate in cache replacement policy.

The IMC bit reserves a portion of L1 instruction SRAM to serve as cache.
Note reserving memory to serve as cache will not alone enable L2 memory
accesses to be cached. CPLBs must also be enabled using the EN_ICPLB bit
and the CPLB descriptors (ICPLB_DATAx and ICPLB_ADDRx registers) must
specify desired memory pages as cache-enabled.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-7

Memory

Instruction CPLBs are disabled by default after reset. When disabled, only
minimal address checking is performed by the L1 memory interface. This
minimal checking generates an exception to the processor whenever it
attempts to fetch an instruction from:

• Reserved (non populated) L1 instruction memory space

• L1 data memory space

• MMR space

CPLBs must be disabled using this bit prior to updating their descriptors
(DCPLB_DATAx and DCPLB_ADDRx registers). Note since load store ordering is
weak (see “Ordering of Loads and Stores” on page 6-64), disabling of
CPLBs should be proceeded by a CSYNC.

 When enabling or disabling cache or CPLBs, immediately follow
the write to IMEM_CONTROL with a CSYNC to ensure proper behavior.

To ensure proper behavior and future compatibility, all reserved
bits in this register must be set to 0 whenever this register is
written.

L1 Instruction SRAM
The processor core reads the instruction memory through the 64-bit wide
instruction fetch bus. All addresses from this bus are 64-bit aligned. Each
instruction fetch can return any combination of 16-, 32- or 64-bit instruc-
tions (for example, four 16-bit instructions, two 16-bit instructions and
one 32-bit instruction, or one 64-bit instruction).

The DAGs, which are described in Chapter 5, “Data Address Generators”,
cannot access L1 instruction memory directly. A DAG reference to
instruction memory SRAM space generates an exception (see “Exceptions”
on page 4-46).

L1 Instruction Memory

6-8 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Write access to the L1 instruction SRAM memory must be made through
the 64-bit wide system DMA port. Because the SRAM is implemented as a
collection of single ported sub-banks, the instruction memory is effec-
tively dual ported.

Table 6-1 lists the memory start locations of the L1 instruction memory
sub-banks.

Figure 6-3. L1 Instruction Memory Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

L1 Instruction Memory Control Register (IMEM_CONTROL)

Reset = 0x0000 0001

ENICPLB (Instruction CPLB
Enable)LRUPRIORST (LRU

Priority Reset)
0 - LRU priority functionality is enabled
1 - All cached LRU priority bits (LRUPRIO)

are cleared

0 - CPLBs disabled, minimal
address checking only

1 - CPLBs enabled

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ILOC[3:0] (Cache Way Lock)
0000 - All Ways not locked
0001 - Way0 locked, Way1, Way2, and
Way3 not locked
...
1111 - All Ways locked

IMC (L1 Instruction memory
Configuration)
0 - Upper 16K byte of LI instruction
 memory configured as SRAM, also
 invalidates all cache lines if
 previously configured as cache
1 - Upper 16K byte of L1 instruction
 memory configured as cache

0xFFE0 1004

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-9

Memory

Figure 6-4 describes the bank architecture of the L1 instruction memory.
As the figure shows, each 16K byte bank is made up of four 4K byte
sub-banks.

L1 Instruction Cache
For information about cache terminology, see “Terminology” on
page 6-71.

Table 6-1. L1 Instruction Memory Sub-Banks

Memory
Sub-Bank

Memory Start
Location

0 0xFFA0 0000

1 0xFFA0 1000

2 0xFFA0 2000

3 0xFFA0 3000

4 0xFFA0 4000

5 0xFFA0 5000

6 0xFFA0 6000

7 0xFFA0 7000

8 0xFFA0 8000

9 0xFFA0 9000

10 0xFFA0 A000

11 0xFFA0 B000

12 0xFFA0 C000

13 0xFFA0 D000

14 0xFFA0 E000

15 0xFFA0 F000

L1 Instruction Memory

6-10 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 6-4. L1 Instruction Memory Bank Architecture

TO
MEMORY

EXTERNAL

CACHE
TAG

CACHE
TAG

CACHE
TAG

CACHE
TAG

4 KB

LINE FILL
BUFFER

8 X 32 BIT

DMA
BUFFER

DMA
BUFFER

DMA
BUFFER

EAB

4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

DCB

INSTRUCTION FETCH 64 BIT

MMR ACCESS

TO
PROCESSOR
CORE

IN
S

T
R

U
C

T
IO

N
 B

A
N

K
 A

IN
S

T
R

U
C

T
IO

N
 B

A
N

K
 B

IN
S

T
R

U
C

T
IO

N
 B

A
N

K
 C

32
 K

B
 S

R
A

M
32

 K
B

 S
R

A
M

16
 K

B
 C

A
C

H
E

 O
R

 S
R

A
M

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-11

Memory

The L1 instruction memory may also be configured to contain a, 4-way
set associative instruction 16K byte cache. To improve the average access
latency for critical code sections, each 2ay or line of the cache can be
locked independently. When the memory is configured as cache, it cannot
be accessed directly.

When cache is enabled, only memory pages further specified as cacheable
by the CPLBs will be cached. When CPLBs are enabled, any memory
location that is accessed must have an associated page definition available,
or a CPLB exception is generated. CPLBs are described in “Memory Pro-
tection and Properties” on page 6-43.

Figure 6-5 shows the overall Blackfin processor instruction cache
organization.

Cache Lines

As shown in Figure 6-5, the cache consists of a collection of cache lines.
Each cache line is made up of a tag component and a data component.

• The tag component incorporates a 20-bit address tag, least recently
used (LRU) bits, a valid bit, and a line lock bit.

• The data component is made up of four 64-bit words of instruction
data.

The tag and data components of cache lines are stored in the tag and data
memory arrays, respectively.

The address tag consists of the upper 18 bits plus bits 11 and 10 of the
physical address. Bits 12 and 13 of the physical address are not part of the
address tag. Instead, these bits are used to identify the 4K byte memory
sub-bank targeted for the access.

The LRU bits are part of an LRU algorithm used to determine which
cache line should be replaced if a cache miss occurs.

L1 Instruction Memory

6-12 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The valid bit indicates the state of a cache line. A cache line is always valid
or invalid.

• Invalid cache lines have their valid bit cleared, indicating the line
will be ignored during an address-tag compare operation.

• Valid cache lines have their valid bit set, indicating the line con-
tains valid instruction/data that is consistent with the source
memory.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-13

Memory

Figure 6-5. Blackfin Processor Instruction Cache Organization

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3

LINE 127

.
32 BYTE LINE 1

32 BYTE LINE 0

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3
32 BYTE LINE 2

LINE 127

. . .

WAY 3

. . .

VALID

<1> <20>

TAG

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3

LINE 127

.
32 BYTE LINE 1

32 BYTE LINE 0

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3
32 BYTE LINE 2

LINE 127

. . .

WAY 2

. . .

VALID

<1> <20>

TAG

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3

LINE 127

.
32 BYTE LINE 1

32 BYTE LINE 0

32 BYTE LINE 2

WAY 1VALID

<1> <20>

TAG

32-BIT ADDRESS FOR LOOKUP

4:1 MUX

DATA

<64>

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3

LINE 127

.
32 BYTE LINE 1

32 BYTE LINE 0

32 BYTE LINE 5

32 BYTE LINE 4

32 BYTE LINE 3
32 BYTE LINE 2

LINE 31

. . .

WAY 0

. . .

VALID

<1> <20>

TAG

SHADED BOXES ACROSS EACH WAY CONSTITUTE A SET.

L1 Instruction Memory

6-14 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The tag and data components of a cache line are illustrated in Figure 6-6.

Cache Hits and Misses

A cache hit occurs when the address for an instruction fetch request from
the core matches a valid entry in the cache. Specifically, a cache hit is
determined by comparing the upper 18 bits and bits 11 and 10 of the
instruction fetch address to the address tags of valid lines currently stored
in a cache set. The cache set is selected, using bits 9 through 5 of the
instruction fetch address. If the address-tag compare operation results in a
match, a cache hit occurs. If the address-tag compare operation does not
result in a match, a cache miss occurs.

When a cache miss occurs, the instruction memory unit generates a cache
line fill access to retrieve the missing cache line from memory that is exter-
nal to the core. The address for the external memory access is the address
of the target instruction word. When a cache miss occurs, the core halts
until the target instruction word is returned from external memory.

Cache Line Fills

A cache line fill consists of fetching 32 bytes of data from memory. The
operation starts when the instruction memory unit requests a line-read
data transfer (a burst of four 64-bit words of data) on its external

Figure 6-6. Cache Line – Tag and Data Portions

TAG

LRUPRIO

LRU V

WD 3 WD 2 WD 1 WD 0

WD - 64-BIT DATA WORD

TAG - 20-BIT ADDRESS TAG
LRUPRIO - LRU PRIORITY BIT FOR LINE LOCKING
LRU - LRU STATE
V - VALID BIT

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-15

Memory

read-data port. The address for the read transfer is the address of the target
instruction word. When responding to a line-read request from the
instruction memory unit, the external memory returns the target instruc-
tion word first. After it has returned the target instruction word, the next
three words are fetched in sequential address order. This fetch wraps
around if necessary, as shown in Table 6-2.

Line Fill Buffer

As the new cache line is retrieved from external memory, each 64-bit word
is buffered in a four-entry line fill buffer before it is written to a 4K byte
memory bank within L1 memory. The line fill buffer allows the core to
access the data from the new cache line as the line is being retrieved from
external memory, rather than having to wait until the line has been writ-
ten into the cache.

Cache Line Replacement

When the instruction memory unit is configured as cache, bits 9 through
5 of the instruction fetch address are used as the index to select the cache
set for the tag-address compare operation. If the tag-address compare
operation results in a cache miss, the valid and LRU bits for the selected
set are examined by a cache line replacement unit to determine the entry
to use for the new cache line, that is, whether to use way0, way1, way2, or
way3. See Figure 6-5.

Table 6-2. Cache Line Word Fetching Order

Target Word Fetching Order for Next Three Words

WD0 WD0, WD1, WD2, WD3

WD1 WD1, WD2, WD3, WD0

WD2 WD2, WD3, WD0, WD1

WD3 WD3, WD0, WD1, WD2

L1 Instruction Memory

6-16 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The cache line replacement unit first checks for invalid entries (that is,
entries having its valid bit cleared). If only a single invalid entry is found,
that entry is selected for the new cache line. If multiple invalid entries are
found, the replacement entry for the new cache line is selected based on
the following priority:

• way0 first

• way1 next

• way2 next

• way3 last

For example:

• If way3 is invalid and ways0, 1, 2 are valid, way3 is selected for the
new cache line.

• If ways0 and 1 are invalid and ways2 and 3 are valid, way0 is
selected for the new cache line.

• If ways2 and 3 are invalid and ways0 and 1 are valid, way2 is
selected for the new cache line.

When no invalid entries are found, the cache replacement logic uses an
LRU algorithm.

Instruction Cache Management

The system DMA controller and the core DAGs cannot access the instruc-
tion cache directly. By a combination of instructions and the use of core
MMRs, it is possible to initialize the instruction tag and data arrays indi-
rectly and provide a mechanism for instruction cache test, initialization,
and debug.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-17

Memory

 The coherency of instruction cache must be explicitly managed. To
accomplish this and ensure that the instruction cache fetches the
latest version of any modified instruction space, invalidate instruc-
tion cache line entries, as required.

See “Instruction Cache Invalidation” on page 6-18.

Instruction Cache Locking by Line

The CPLB_LRUPRIO bits in the ICPLB_DATAx registers (see “Memory Protec-
tion and Properties” on page 6-43) are used to enhance control over which
code remains resident in the instruction cache. When a cache line is filled,
the state of this bit is stored along with the line’s tag. It is then used in
conjunction with the LRU (least recently used) policy to determine which
Way is victimized when all cache Ways are occupied when a new cache-
able line is fetched. This bit indicates that a line is of either “low” or
“high” importance. In a modified LRU policy, a high can replace a low,
but a low cannot replace a high. If all Ways are occupied by highs, an oth-
erwise cacheable low will still be fetched for the core, but will not be
cached. Fetched highs seek to replace unoccupied ways first, then least
recently used lows next, and finally other highs using the LRU policy.
Lows can only replace unoccupied ways or other lows, and do so using the
LRU policy. If all previously cached highs ever become less important,
they may be simultaneously transformed into lows by writing to the LRU-
PRIRST bit in the IMEM_CONTROL register (see “Instruction Memory Control
(IMEM_CONTROL) Register” on page 6-6).

Instruction Cache Locking by Way

The instruction cache has four independent lock bits (ILOC[3:0]) that
control each of the four ways of the instruction cache. When the cache is
enabled, L1 instruction memory has four ways available. Setting the lock
bit for a specific way prevents that way from participating in the LRU
replacement policy. Thus, a cached instruction with its way locked can
only be removed using an IFLUSH instruction, or a “back door” MMR
assisted manipulation of the tag array.

L1 Instruction Memory

6-18 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

An example sequence is provided below to demonstrate how to lock down
way0:

• If the code of interest may already reside in the instruction cache,
invalidate the entire cache first (for an example, see “Instruction
Cache Management” on page 6-16).

• Disable interrupts, if required, to prevent interrupt service routines
(ISRs) from potentially corrupting the locked cache.

• Set the locks for the other ways of the cache by setting ILOC[3:1].
Only way0 of the instruction cache can now be replaced by new
code.

• Execute the code of interest. Any cacheable exceptions, such as exit
code, traversed by this code execution are also locked into the
instruction cache.

• Upon exit of the critical code, clear ILOC[3:1] and set ILOC[0].
The critical code (and the instructions which set ILOC[0]) is now
locked into way0.

• Re-enable interrupts, if required.

If all four ways of the cache are locked, then further allocation into the
cache is prevented.

Instruction Cache Invalidation

The instruction cache can be invalidated by address, cache line, or com-
plete cache. The IFLUSH instruction can explicitly invalidate cache lines
based on their line addresses. The target address of the instruction is gen-
erated from the P-registers. Because the instruction cache should not
contain modified (dirty) data, the cache line is simply invalidated.

In the following example, the P2 register contains the address of a valid
memory location. If this address has been brought into cache, the corre-
sponding cache line is invalidated after the execution of this instruction.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-19

Memory

Example of ICACHE instruction:
iflush [p2] ; /* Invalidate cache line containing address

that P2 points to */

Because the IFLUSH instruction is used to invalidate a specific address in
the memory map, it is impractical to use this instruction to invalidate an
entire way or bank of cache. A second technique can be used to invalidate
larger portions of the cache directly. This second technique directly inval-
idates valid bits by setting the invalid bit of each cache line to the invalid
state. To implement this technique, additional MMRs (ITEST_COMMAND
and ITEST_DATA[1:0]) are available to allow arbitrary read/write of all the
cache entries directly. This method is explained in the next section.

For invalidating the complete instruction cache, a third method is avail-
able. By clearing the IMC bit in the IMEM_CONTROL register (see Figure 6-3),
all valid bits in the instruction cache are set to the invalid state. A second
write to the IMEM_CONTROL register to set the IMC bit configures the instruc-
tion memory as cache again. An SSYNC instruction should be run before
invalidating the cache and a CSYNC instruction should be inserted after
each of these operations.

Instruction Test Registers

6-20 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Instruction Test Registers
The instruction test registers allow arbitrary read/write of all L1 cache
entries directly. They make it possible to initialize the instruction tag and
data arrays and to provide a mechanism for instruction cache test, initial-
ization, and debug.

When the instruction test command register (ITEST_COMMAND) is used, the
L1 cache data or tag arrays are accessed, and data is transferred through
the instruction test data registers (ITEST_DATA[1:0]). The ITEST_DATAx
registers contain either the 64-bit data that the access is to write to or the
64-bit data that was read during the access. The lower 32 bits are stored in
the ITEST_DATA[0] register, and the upper 32 bits are stored in the
ITEST_DATA[1] register. When the tag arrays are accessed, ITEST_DATA[0]
is used. Graphical representations of the ITEST registers begin with
Figure 6-7.

The following figures describe the ITEST registers:

• Figure 6-7

• Figure 6-8

• Figure 6-9

Access to these registers is possible only in supervisor or emulation mode.
When writing to ITEST registers, always write to the ITEST_DATAx registers
first, then the ITEST_COMMAND register. When reading from ITEST registers,
reverse the sequence—read the ITEST_COMMAND register first, then the
ITEST_DATAx registers.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-21

Memory

Instruction Test Command (ITEST_COMMAND)
Register

When the instruction test command register (ITEST_COMMAND) is written
to, the L1 cache data or tag arrays are accessed, and the data is transferred
through the instruction test data registers (ITEST_DATA[1:0]).

Figure 6-7. Instruction Test Command Register

00 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0

0 00 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

000

Instruction Test Command Register (ITEST_COMMAND)

00 - Access sub-bank 0
01 - Access sub-bank 1
10 - Access sub-bank 2
11 - Access sub-bank 3
(Address bits [13:12] in
SRAM)

SBNK[1:0] (sub-bank
Access)

Reset = 0x0000 0000

RW (Read/Write Access)

WAYSEL[1:0] (Access Way)
00 - Access Way0
01 - Access Way1
10 - Access Way2
11 - Access Way3
(Address bits [11:10] in SRAM)

0 - Read access
1 - Write access

TAGSELB (Array Access)
0 - Access tag array
1 - Access data array

DW[1:0] (Double Word
Index)
Selects one of four 64-bit dou-
ble words in a 256-bit line
(Address bits [4:3] in SRAM)

SET[4:0] (Set Index)
Selects one of 32 sets
(Address bits [9:5] in SRAM)

0

0xFFE0 1300

Instruction Test Registers

6-22 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Instruction Test Data (ITEST_DATA1) Register
Instruction test data registers (ITEST_DATA[1:0]) are used to access L1
cache data arrays. They contain either the 64-bit data that the access is to
write to or the 64-bit data that the access is to read from. The instruction
test data 1 register (ITEST_DATA1) stores the upper 32 bits.

Figure 6-8. Instruction Test Data 1 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Instruction Test Data 1 Register (ITEST_DATA1)

Reset = Undefined

Reset = Undefined

Data[63:48]

Data[47:32]

When accessing tag arrays, all bits are reserved.

Used to access L1 cache data arrays and tag arrays. When accessing a data array, stores
the upper 32 bits of 64-bit words of instruction data to be written to or read from by the
access. See “Cache Lines” on page 6-11.

0xFFE0 1404

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-23

Memory

Instruction Test Data 0 (ITEST_DATA0) Register
The instruction test data 0 register (ITEST_DATA0) stores the lower 32 bits
of the 64-bit data to be written to or read from by the access. The
ITEST_DATA0 register is also used to access tag arrays. This register also
contains the valid and dirty bits, which indicate the state of the cache line.

Figure 6-9. Instruction Test Data 0 Register

X X XX X XX X

XX X X X X X

X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X XX X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X

Instruction Test Data 0 Register (ITEST_DATA0)

Reset = UndefinedX

Tag[19:4]

Tag[3:2]

Tag[1:0]

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Data[31:16]

Data[15:0]

Used to access L1 cache data arrays and tag arrays. When accessing a data array, stores the lower 32 bits of
64-bit words of instruction data to be written to or read from by the access. See “Cache Lines” on page 6-11.

Used to access the L1 cache tag arrays. The address tag consists of the upper 18 bits and bits 11 and 10 of the
physical address. See “Cache Lines” on page 6-11.

Physical address

Physical address

Physical address

Reset = Undefined

Valid
0 - Cache line is not valid
1 - Cache line contains
valid data

LRUPRIO

0 - LRUPRIO is cleared for this entry
1 - LRUPRIO is set for this entry. See “Instruction CPLB Data (ICPLB_DATAx)
Registers” on page 6-52 and “Instruction Memory Control (IMEM_CONTROL)
Register” on page 6-6.

0xFFE0 1400

L1 Data Memory

6-24 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

L1 Data Memory
The L1 data SRAM/cache is constructed from single-ported subsections,
but organized to reduce the likelihood of access collisions. This organiza-
tion results in apparent multi-ported behavior. When there are no
collisions, this L1 data traffic could occur in a single core clock cycle:

• Two 32-bit DAG loads

• One pipelined 32-bit DAG store

• One 64-bit DMA IO

• One 64-bit cache fill/victim access

 L1 data memory can be used only to store data.

Data Memory Control (DMEM_CONTROL) Register
The data memory control register (DMEM_CONTROL) contains control bits for
the L1 data memory.

The PORT_PREF1 bit selects the data port used to process DAG1
non-cacheable L2 fetches. Cacheable fetches are always processed by the
data port physically associated with the targeted cache memory. Steering
DAG0, DAG1, and cache traffic to different ports optimizes performance
by keeping the queue to L2 memory full.

The PORT_PREF0 bit selects the data port used to process DAG0
non-cacheable L2 fetches. Cacheable fetches are always processed by the
data port physically associated with the targeted cache memory. Steering
DAG0, DAG1, and cache traffic to different ports optimizes performance
by keeping the queue to L2 memory full.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-25

Memory

 For optimal performance with dual DAG reads, DAG0 and DAG1
should be configured for different ports. For example, if
PORT_PREF0 is configured as 1, then PORT_PREF1 should be pro-
grammed to 0.

The DCBS bit provides some control over which addresses alias into the
same set. This bit can be used to affect which addresses tend to remain res-
ident in cache by avoiding victimization of repetitively used sets. It has no
affect unless both data bank A and data bank B are serving as cache (bits
DMC[1:0] in this register are set to 11).

Figure 6-10. L1 Data Memory Control Register

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 10 0 0 0 0 000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

Data Memory Control Register (DMEM_CONTROL)

Reset = 0x0000 1001

ENDCPLB (Data Cacheability
Protection Lookaside Buffer
Enable)
0 - CPLBs disabled. Minimal

address checking only
1 - CPLBs enabled
DMC[1:0] (L1 Data memory
Configure)

DCBS (L1 Data Cache bank Select)

PORT_PREF1 (DAG1 Port
Preference)
0 - DAG1 non-cacheable fetches

use port A
1 - DAG1 non-cacheable fetches

use port B

PORT_PREF0 (DAG0 Port
Preference)
0 - DAG0 non-cacheable fetches

use port A
1 - DAG0 non-cacheable fetches

use port B

Valid only when DMC[1:0] = 11. Determines whether Address
bit A[14] or A[23] is used to select the L1 data cache bank.
0 - Address bit 14 is used to select bank A or B

for cache access. If bit 14 of address is 1,
select L1 Data memory Data bank A; if bit 14
of address is 0, select L1 Data memory Data bank B.

1 - Address bit 23 is used to select bank A or B for
cache access. If bit 23 of address is 1, select
L1 Data memory Data bank A; if bit 23 of
address is 0, select L1 Data memory Data bank B.

See “Example of Mapping Cacheable Address Space” on
page 6-31.

00 - Both data banks are
SRAM, also invalidates all

cache lines if previously
configured as cache

01 - Reserved
10 - Data bank A is lower

16K byte SRAM, upper
16K byte cache
Data bank B is SRAM

11 - Both data banks are
lower 16K byte SRAM,
upper 16K byte cache

0xFFE0 0004

L1 Data Memory

6-26 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The ENDCPLB bit is used to enable/disable the 16 cacheability protection
lookaside buffers (CPLBs) used for data (see “L1 Data Cache” on
page 6-30). Data CPLBs are disabled by default after reset. When dis-
abled, only minimal address checking is performed by the L1 memory
interface. This minimal checking generates an exception when the
processor:

• Addresses nonexistent (reserved) L1 memory space

• Attempts to perform a nonaligned memory access

• Attempts to access MMR space either using DAG1 or when in
User mode

CPLBs must be disabled using this bit prior to updating their descriptors
(registers DCPLB_DATAx and DCPLB_ADDRx). Note that since load store order-
ing is weak (see “Ordering of Loads and Stores” on page 6-64), disabling
CPLBs should be preceded by a CSYNC instruction.

 When enabling or disabling cache or CPLBs, immediately follow
the write to DMEM_CONTROL with a SSYNC to ensure proper behavior.

By default after reset, all L1 data memory serves as SRAM. The DMC[1:0]
bits can be used to reserve portions of this memory to serve as cache
instead. Reserving memory to serve as cache does not enable L2 memory
accesses to be cached. To do this, CPLBs must also be enabled (using the
ENDCPLB bit) and CPLB descriptors (registers DCPLB_DATAx and
DCPLB_ADDRx) must specify chosen memory pages as cache-enabled.

By default after reset, cache and CPLB address checking is disabled.

 To ensure proper behavior and future compatibility, all reserved
bits in this register must be set to 0 whenever this register is
written.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-27

Memory

L1 Data SRAM
Accesses to SRAM do not collide unless all of the following are true: the
accesses are to the same 32-bit word polarity (address bits 2 match), the
same 4K byte sub-bank (address bits 13 and 12 match), the same 16K byte
half bank (address bits 16 match), and the same bank (address bits 21 and
20 match). When an address collision is detected, access is nominally
granted first to the DAGs, then to the store buffer, and finally to the
DMA and cache fill/victim traffic. To ensure adequate DMA bandwidth,
DMA is given highest priority if it has been blocked for more than 16
sequential core clock cycles, or if a second DMA I/O is queued before the
first DMA I/O is processed.

Table 6-3 shows how the sub-bank organization is mapped into memory.

L1 Data Memory

6-28 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 6-11 shows the L1 data memory architecture.

Table 6-3. L1 Data Memory SRAM Sub-Bank Start Addresses

Memory Bank and Sub-Bank Start Address

Data bank A, sub-bank 0 0xFF80 0000

Data bank A, sub-bank 1 0xFF80 1000

Data bank A, sub-bank 2 0xFF80 2000

Data bank A, sub-bank 3 0xFF80 3000

Data bank A, sub-bank 4 0xFF80 4000

Data bank A, sub-bank 5 0xFF80 5000

Data bank A, sub-bank 6 0xFF80 6000

Data bank A, sub-bank 7 0xFF80 7000

Data bank B, sub-bank 0 0xFF90 0000

Data bank B, sub-bank 1 0xFF90 1000

Data bank B, sub-bank 2 0xFF90 2000

Data bank B, sub-bank 3 0xFF90 3000

Data bank B, sub-bank 4 0xFF90 4000

Data bank B, sub-bank 5 0xFF90 5000

Data bank B, sub-bank 6 0xFF90 6000

Data bank B, sub-bank 7 0xFF90 7000

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-29

Memory

Figure 6-11. L1 Data Memory Architecture

CACHE
TAG

CACHE
TAG

CACHE
TAG

CACHE
TAG

CACHE
TAG

CACHE
TAG

CACHE
TAG

CACHE
TAG

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB 4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

LINE FILL
BUFFER

8 X 32 BIT

DMA
BUFFER

DMA
BUFFER

VICTIM
BUFFER

8 X 32 BIT

LINE FILL
BUFFER

8 X 32 BIT

VICTIM
BUFFER

8 X 32 BIT

WRITE
BUFFER

2 TO 8 X 32 BIT

4 KB

STORE BUFFER
6 X 32 BIT

TO
PROCESSOR
CORE

TO
EXTERNAL
MEMORY

DMA

DCB

DMA

READ

READ

WRITE

WRITE

EAB

32 BIT

32 BIT

32 BIT

64 BIT

32 BIT

32 BIT

32 BIT

64 BIT

DAG1 LOAD

DAG0 LOAD

DAG1/0 STORE

SRAM SRAM OR CACHE I/O BUFFERS

32
 B

IT

32
 B

IT

32
 B

IT

P
O

R
T

A
P

O
R

T
B

D
A

TA
 B

A
N

K
 A

D
A

TA
 B

A
N

K
 B

S
C

R
A

TC
H

PA
D

L1 Data Memory

6-30 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

L1 Data Cache
For definitions of cache terminology, see “Terminology” on page 6-71.

When data cache is enabled (controlled by bits DMC[1:0] in the
DMEM_CONTROL register), either 16K byte of data bank A or 16K byte of
both data bank A and data bank B can be set to serve as cache. When con-
figured as cache memory for the processor, the upper 16K bytes of the
bank are used. Unlike instruction cache, which is 4-way set associative,
data cache is 2-way set associative. When two banks are available and
enabled as cache, additional sets rather than ways are created. When both
data bank A and data bank B have memory serving as cache, the DCBS bit
in the DMEM_CONTROL register may be used to control which half of all
address space is handled by which bank of cache memory. The DCBS bit
selects either address bit 14 or 23 to steer traffic between the cache banks.
This provides some control over which addresses alias into the same set. It
may therefore be used to affect which addresses tend to remain resident in
cache by avoiding victimization of repetitively used sets.

Accesses to cache do not collide unless they are to the same 4K byte
sub-bank, the same half bank, and to the same bank. Cache has less appar-
ent multi-ported behavior than SRAM due to the overhead in maintaining
tags. When cache addresses collide, access is granted first to the DTEST reg-
ister accesses, then to the store buffer, and finally to cache fill/victim
traffic.

Three different cache modes are available.

• Write-through with cache line allocation only on reads

• Write-through with cache line allocation on both reads and writes

• Write-back which allocates cache lines on both reads and writes

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-31

Memory

Cache mode is selected by the DCPLB descriptors (see “Memory Protection
and Properties” on page 6-43). Any combination of these cache modes can
be used simultaneously since cache mode is selectable for each memory
page independently.

If cache is enabled (controlled by bits DMC[1:0] in the DMEM_CONTROL regis-
ter), data CPLBs should also be enabled (controlled by ENDCPLB bit in the
DMEM_CONTROL register). Only memory pages specified as cacheable by data
CPLBs will be cached. The default behavior when data CPLBs are dis-
abled is for nothing to be cached.

 Erroneous behavior can result when MMR space is configured as
cacheable by data CPLBs, or when data banks serving as L1 SRAM
are configured as cacheable by data CPLBs.

Example of Mapping Cacheable Address Space

An example of how the cacheable address space maps into two data banks
follows.

When both banks are configured as cache they operate as two indepen-
dent, 16K byte, 2-way set associative caches that can be independently
mapped into the Blackfin processor address space.

If both data banks are configured as cache, the DCBS bit in the
DMEM_CONTROL register designates address bit A[14] or A[23] as the cache
selector. Address bit A[14] or A[23] selects the cache implemented by data
bank A or the cache implemented by data bank B.

• If DCBS = 0, then A[14] is part of the address index, and all
addresses in which A[14] = 0 use data bank B. All addresses in
which A[14] = 1 use data bank A.

In this case, A[23] is treated as merely another bit in the address
that is stored with the tag in the cache and compared for hit/miss
processing by the cache.

L1 Data Memory

6-32 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• If DCBS = 1, then A[23] is part of the address index, and all
addresses where A[23] = 0 use data bank B. All addresses where
A[23] = 1 use data bank A.

In this case, A[14] is treated as merely another bit in the address
that is stored with the tag in the cache and compared for hit/miss
processing by the cache.

The result of choosing DCBS = 0 or DCBS = 1 is:

• If DCBS = 0, A[14] selects data bank A instead of data bank B.

Alternating 16K byte pages of memory map into each of the two
16K byte caches implemented by the two data banks.

As a result, the cache operates as a single, contiguous, 2-way set
associative 32K byte cache. Each way is 16K byte long, and all data
elements with the same first 14 bits of address index to a unique set
in which up to two elements can be stored (one in each way).

Any data in the first 16K byte of memory could be stored only in
data bank B.

Any data in the next range (16K byte through 32K byte) – 1 could
be stored only in data bank A.

Any data in the next range (32K byte through 48K byte) – 1 would
be stored in data bank B. Alternate mapping would continue.

• If DCBS = 1, A[23] selects data bank A instead of data bank B.

With DCBS = 1, the system functions more like two independent
caches, each a 2-way set associative 16K byte cache. Each bank
serves an alternating set of 8M byte blocks of memory.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-33

Memory

For example, data bank B caches all data accesses for the first 8M
byte of memory address range. That is, every 8M byte of range vies
for the two line entries (rather than every 16K byte repeat). Like-
wise, data bank A caches data located above 8M byte and below
16M byte.

For example, if the application is working from a data set that is
1M byte long and located entirely in the first 8M byte of memory,
it is effectively served by only half the cache, that is, by data bank B
(a 2-way set associative 16K byte cache). In this instance, the appli-
cation never derives any benefit from data bank A.

• For most applications, it is best to operate with DCBS = 0.

However, if the application is working from two data sets, located in two
memory spaces at least 8M byte apart, closer control over how the cache
maps to the data is possible. For example, if the program is doing a series
of dual MAC operations in which both DAGs are accessing data on every
cycle, by placing DAG0’s data set in one block of memory and DAG1’s
data set in the other, the system can ensure that:

• DAG0 gets its data from data bank A for all of its accesses

• DAG1 gets its data from data bank B

This arrangement causes the core to use both data buses for cache line
transfer and achieves the maximum data bandwidth between the cache
and the core.

Figure 6-12 shows an example of how mapping is performed when
DCBS = 1.

 The DCBS selection can be changed dynamically; however, to ensure
that no data is lost, first flush and invalidate the entire cache.

L1 Data Memory

6-34 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Data Cache Access

The cache controller tests the address from the DAGs against the tag bits.
If the logical address is present in L1 cache, a cache hit occurs, and the
data is accessed in L1. If the logical address is not present, a cache miss
occurs, and the memory transaction is passed to the next level of memory
via the system interface. The line index and replacement policy for the
cache controller determines the cache tag and data space that are allocated
for the data coming back from external memory.

A data cache line is in one of three states: invalid, exclusive (valid and
clean), and modified (valid and dirty). If valid data already occupies the
allocated line and the cache is configured for write-back storage, the con-
troller checks the state of the cache line and treats it accordingly:

Figure 6-12. Data Cache Mapping When DCBS = 1

WAY0 WAY1

WAY0 WAY1

8MB

8MB

8MB

8MB

DATA BANK B

DATA BANK B

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-35

Memory

• If the state of the line is exclusive (clean), the new tag and data
write over the old line.

• If the state of the line is modified (dirty), then the cache contains
the only valid copy of the data.

If the line is dirty, the current contents of the cache are copied back
to external memory before the new data is written to the cache.

The processor provides victim buffers and line fill buffers. These buffers
are used if a cache load miss generates a victim cache line that should be
replaced. The line fill operation goes to external memory. The data cache
performs the line fill request to the system as critical (or requested) word
first, and forwards that data to the waiting DAG as it updates the cache
line. In other words, the cache performs critical word forwarding.

The data cache supports hit-under-a-store miss, and hit-under-a-prefetch
miss. In other words, on a write-miss or execution of a PREFETCH instruc-
tion that misses the cache (and is to a cacheable region), the instruction
pipeline incurs a minimum of a 4-cycle stall. Furthermore, a subsequent
load or store instruction can hit in the L1 cache while the line fill
completes.

Interrupts of sufficient priority (relative to the current context) cancel a
stalled load instruction. Consequently, if the load operation misses the L1
data memory cache and generates a high latency line fill operation on the
system interface, it is possible to interrupt the core, causing it to begin
processing a different context. The system access to fill the cache line is
not cancelled, and the data cache is updated with the new data before any
further cache miss operations to the respective data bank are serviced. For
more information see “Exceptions” on page 4-46.

L1 Data Memory

6-36 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Cache Write Method

Cache write memory operations can be implemented by using either a
write-through method or a write-back method:

• For each store operation, write-through caches initiate a write to
external memory immediately upon the write to cache. If the cache
line is replaced or explicitly flushed by software, the contents of the
cache line are invalidated rather than written back to external
memory.

• A write-back cache does not write to external memory until the line
is replaced by a load operation that needs the line.

The L1 data memory employs a full cache line width copyback buffer on
each data bank. In addition, a two-entry write buffer in the L1 data mem-
ory accepts all stores with cache inhibited or store-through protection. An
SSYNC instruction flushes the write buffer.

Interrupt Priority Register and Write Buffer Depth

The interrupt priority register (IPRIO) can be used to control the size of
the write buffer on port A (see “L1 Data Memory Architecture” on
page 6-29).

The IPRIO[3:0] bits can be programmed to reflect the low priority inter-
rupt watermark. When an interrupt occurs, causing the processor to
vector from a low priority interrupt service routine to a high priority inter-
rupt service routine, the size of the write buffer increases from two to eight
32-bit words deep. This allows the interrupt service routine to run and
post writes without an initial stall, in the case where the write buffer was
already filled in the low priority interrupt routine. This is most useful
when posted writes are to a slow external memory device. When returning
from a high priority interrupt service routine to a low priority interrupt

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-37

Memory

service routine or user mode, the core stalls until the write buffer has
completed the necessary writes to return to a two-deep state. By default,
the write buffer is a fixed two-deep FIFO.

Data Cache Control Instructions

The processor defines three data cache control instructions that are acces-
sible in user and supervisor modes. The instructions are PREFETCH, FLUSH,
and FLUSHINV.

• PREFETCH (data cache prefetch) attempts to allocate a line into the
L1 cache. If the prefetch hits in the cache, generates an exception,
or addresses a cache inhibited region, PREFETCH functions like a
NOP.

Figure 6-13. Interrupt Priority Register

0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

Interrupt Priority Register (IPRIO)

Reset = 0x0000 0000

IPRIO_MARK (Priority Watermark)

0000 - Default, all interrupts are low priority
0001 - Interrupts 15 through 1 are low priority,
 interrupt 0 is considered high priority
0010 - Interrupts 15 through 2 are low priority,

interrupts 1 and 0 are considered high
 priority
 ...
1110 - Interrupts 15 and 14 are low priority,

 interrupts 13 through 0 are considered
 high priority
1111 - interrupt 15 is low priority, all others
 are considered high priority

0xFFE0 2110

L1 Data Memory

6-38 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• FLUSH (data cache flush) causes the data cache to synchronize the
specified cache line with external memory. If the cached data line is
dirty, the instruction writes the line out and marks the line clean in
the data cache. If the specified data cache line is already clean or
does not exist, FLUSH functions like a NOP.

• FLUSHINV (data cache line flush and invalidate) causes the data
cache to perform the same function as the FLUSH instruction and
then invalidate the specified line in the cache. If the line is in the
cache and dirty, the cache line is written out to external memory.
The valid bit in the cache line is then cleared. If the line is not in
the cache, FLUSHINV functions like a NOP.

If software requires synchronization with system hardware, place an SSYNC
instruction after the FLUSH instruction to ensure that the flush operation
has completed. If ordering is desired to ensure that previous stores have
been pushed through all the queues, place an SSYNC instruction before the
FLUSH.

Data Cache Invalidation

Besides the FLUSHINV instruction, explained in the previous section, two
additional methods are available to invalidate the data cache when flush-
ing is not required. The first technique directly invalidates valid bits by
setting the invalid bit of each cache line to the invalid state. To implement
this technique, additional MMRs (DTEST_COMMAND and DTEST_DATA[1:0])
are available to allow arbitrary reads/writes of all the cache entries directly.
This method is explained in the next section.

For invalidating the complete data cache, a second method is available. By
clearing the DMC[1:0] bits in the DMEM_CONTROL register (see Figure 6-10),
all valid bits in the data cache are set to the invalid state. A second write to
the DMEM_CONTROL register to set the DMC[1:0] bits to their previous state
then configures the data memory back to its previous cache/SRAM config-
uration. An SSYNC instruction should be run before invalidating the cache
and a CSYNC instruction should be inserted after each of these operations.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-39

Memory

Data Test Registers
Like L1 instruction memory, L1 data memory contains additional MMRs
to allow arbitrary reads/writes of all cache entries directly. The registers
provide a mechanism for data cache test, initialization, and debug.

When the data test command register (DTEST_COMMAND) is written to, the
L1 cache data or tag arrays are accessed and data is transferred through the
data test data registers (DTEST_DATA[1:0]). The DTEST_DATA[1:0] registers
contain the 64-bit data to be written, or they contain the destination for
the 64-bit data read. The lower 32 bits are stored in the DTEST_DATA[0]
register and the upper 32 bits are stored in the DTEST_DATA[1] register.
When the tag arrays are being accessed, then the DTEST_DATA[0] register is
used.

 A CSYNC instruction is required after writing the DTEST_COMMAND
MMR.

Figure Figure 6-14 through Figure 6-16 describe the DTEST registers.
Access to these registers is possible only in supervisor or emulation mode.
When writing to DTEST registers, always write to the DTEST_DATA registers
first, then the DTEST_COMMAND register.

Data Test Registers

6-40 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

 Data Test Command (DTEST_COMMAND) Register
When the data test command register (DTEST_COMMAND) is written to, the
L1 cache data or tag arrays are accessed, and the data is transferred
through the data test data registers (DTEST DATA[1:0]).

 The data/instruction access bit allows direct access via the
DTEST_COMMAND MMR to L1 instruction SRAM.

Figure 6-14. Data Test Command Register

X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X XX X X X X X X XX X X X X

Data Test Command Register (DTEST_COMMAND)

00 - Access sub-bank 0
01 - Access sub-bank 1
10 - Access sub-bank 2
11 - Access sub-bank 3

Sub-bank Access[1:0]
(SRAM ADDR[13:12])

Reset = Undefined

Read/Write Access

Access Way/Instruction
Address Bit 11
0 - Access Way0/Instruction bit 11 = 0
1 - Access Way1/Instruction bit 11 = 1

Data/Instruction Access
0 - Access Data
1 - Access Instruction

0 - Read access
1 - Write access
Array Access
0 - Access tag array
1 - Access data array

Double Word Index[1:0]
Selects one of four 64-bit
double words in a 256-bit line

Set Index[5:0]
Selects one of 64 sets

Data bank Access
0 - Access Data bank A/Instr memory 0xFFA0 0000
1 - Access Data bank B/Instr memory 0xFFA0 8000

Data Cache Select/
Address Bit 14

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

0xFFE0 0300

0 - Reserved/Instruction bit 14 = 0
1 - Select Data Cache bank/Instruction bit 14 = 1

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-41

Memory

Data Test Data (DTEST_DATA1) Register
Data test data registers (DTEST_DATA[1:0]) contain the 64-bit data to be
written, or they contain the destination for the 64-bit data read. The data
test data 1 register (DTEST_DATA1) stores the upper 32 bits.

Figure 6-15. Data Test Data 1 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Data Test Data 1 Register (DTEST_DATA1)

Reset = Undefined

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reset = Undefined

Data[63:48]

Data[47:32]

When accessing tag arrays, all bits are reserved.

0xFFE0 0404

Data Test Registers

6-42 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Data Test Data (DTEST_DATA0) Register
The data test data 0 register (DTEST_DATA0) stores the lower 32 bits of the
64-bit data to be written, or it contains the lower 32 bits of the destina-
tion for the 64-bit data read. The DTEST_DATA0 register is also used to
access the tag arrays and contains the valid and dirty bits, which indicate
the state of the cache line.

Figure 6-16. Data Test Data 0 Register

X XX X X X X X

10 9 8 7 6 5 4 3 2

X X X

XX X X X X X

X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X XX X X X

15 14 13 12 11 1 0

X X X

Data Test Data 0 Register (DTEST_DATA0)

Reset = Undefined

Valid
0 - Cache line invalid
1 - Cache line valid

X

Tag[19:4]

Tag[3:2]

Tag

Dirty
0 - Cache line unmodified

since it was copied from
source memory

1 - Cache line modified
after it was copied
from source memory

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Data[31:16]

Data[15:0]

Used to access the L1 cache tag arrays. The address tag consists of the upper 18 bits
and bit 11 of the physical address. See “Cache Lines” on page 6-11.

Physical address

Physical address

Physical address
LRU
0 - Way0 is the least
recently used
1 - Way1 is the least
recently used

Reset = Undefined0xFFE0 0400

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-43

Memory

External Memory
The external memory space is shown in Figure 6-1. One of the memory
regions is dedicated to SDRAM support. The size of the SDRAM bank is
programmable and can range in size from 16M byte to 128M byte. The
start address of the bank is 0x0000 0000.

Each of the next four banks contains 1M byte and is dedicated to support
asynchronous memories. The start address of the asynchronous memory
bank is 0x2000 0000. For the ADSP-BF538/ADSP-BF538F processors,
the on-chip flash memory can be mapped to any of these four banks of
asynchronous memory.

Memory Protection and Properties
This section describes the memory management unit (MMU), memory
pages, CPLB management, MMU management, and CPLB registers.

Memory Management Unit
The Blackfin processor contains a page based memory management unit
(MMU). This mechanism provides control over cacheability of memory
ranges, as well as management of protection attributes at a page level. The
MMU provides great flexibility in allocating memory and I/O resources
between tasks, with complete control over access rights and cache
behavior.

The MMU is implemented as two 16-entry content addressable memory
(CAM) blocks. Each entry is referred to as a cacheability protection looka-
side buffer (CPLB) descriptor. When enabled, every valid entry in the
MMU is examined on any fetch, load, or store operation to determine
whether there is a match between the address being requested and the page
described by the CPLB entry. If a match occurs, the cacheability and

Memory Protection and Properties

6-44 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

protection attributes contained in the descriptor are used for the memory
transaction with no additional cycles added to the execution of the
instruction.

Because the L1 memories are separated into instruction and data memo-
ries, the CPLB entries are also divided between instruction and data
CPLBs. Sixteen CPLB entries are used for instruction fetch requests; these
are called ICPLBs. Another sixteen CPLB entries are used for data transac-
tions; these are called DCPLBs. The ICPLBs and DCPLBs are enabled by
setting the appropriate bits in the L1 instruction memory control
(IMEM_CONTROL) and L1 data memory control (DMEM_CONTROL) registers,
respectively. These registers are shown in Figure 6-3 and Figure 6-10,
respectively.

Each CPLB entry consists of a pair of 32-bit values. For instruction
fetches:

• ICPLB_ADDR[n] defines the start address of the page described by
the CPLB descriptor.

• ICPLB_DATA[n] defines the properties of the page described by the
CPLB descriptor.

For data operations:

• DCPLB_ADDR[m] defines the start address of the page described by
the CPLB descriptor.

• DCPLB_DATA[m] defines the properties of the page described by the
CPLB descriptor.

There are two default CPLB descriptors for data accesses to the scratchpad
data memory and to the system and core MMR space. These default
descriptors define the above space as non-cacheable, so that additional
CPLBs do not need to be set up for these regions of memory.

 If valid CPLBs are set up for this space, the default CPLBs are
ignored.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-45

Memory

Memory Pages
The 4G byte address space of the processor can be divided into smaller
ranges of memory or I/O referred to as memory pages. Every address
within a page shares the attributes defined for that page. The architecture
supports four different page sizes:

• 1K byte

• 4K byte

• 1M byte

• 4M byte

Different page sizes provide a flexible mechanism for matching the map-
ping of attributes to different kinds of memory and I/O.

Memory Page Attributes

Each page is defined by a two-word descriptor, consisting of an address
descriptor word xCPLB_ADDR[n] and a properties descriptor word
xCPLB_DATA[n]. The address descriptor word provides the base address of
the page in memory. Pages must be aligned on page boundaries that are an
integer multiple of their size. For example, a 4M byte page must start on
an address divisible by 4M byte; whereas a 1K byte page can start on any
1K byte boundary. The second word in the descriptor specifies the other
properties or attributes of the page. These properties include:

• Page size

1K byte, 4K byte, 1M byte, 4M byte

• Cacheable/non-cacheable

Accesses to this page use the L1 cache or bypass the cache.

Memory Protection and Properties

6-46 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• If cacheable: write-through/write-back

Data writes propagate directly to memory or are deferred until the
cache line is reallocated. If write-through, allocate on read only, or
read and write.

• Dirty/modified

The data in this page in memory has changed since the CPLB was
last loaded.

• Supervisor write access permission

– Enables or disables writes to this page when in Supervisor mode.
– Data pages only.

• User write access permission

– Enables or disables writes to this page when in User mode.
– Data pages only.

• User read access permission

Enables or disables reads from this page when in User mode.

• Valid

Check this bit to determine whether this is valid CPLB data.

• Lock

Keep this entry in MMR; do not participate in CPLB replacement
policy.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-47

Memory

Page Descriptor Table
For memory accesses to utilize the cache when CPLBs are enabled for
instruction access, data access, or both, a valid CPLB entry must be avail-
able in an MMR pair. The MMR storage locations for CPLB entries are
limited to 16 descriptors for instruction fetches and 16 descriptors for
data load and store operations.

For small and/or simple memory models, it may be possible to define a set
of CPLB descriptors that fit into these 32 entries, cover the entire address-
able space, and never need to be replaced. This type of definition is
referred to as a static memory management model.

However, operating environments commonly define more CPLB descrip-
tors to cover the addressable memory and I/O spaces than will fit into the
available on-chip CPLB MMRs. When this happens, a memory-based
data structure, called a page descriptor table, is used; in it can be stored all
the potentially required CPLB descriptors. The specific format for the
page descriptor table is not defined as part of the Blackfin processor archi-
tecture. Different operating systems, which have different memory
management models, can implement page descriptor table structures that
are consistent with the OS requirements. This allows adjustments to be
made between the level of protection afforded versus the performance
attributes of the memory-management support routines.

CPLB Management
When the Blackfin processor issues a memory operation for which no
valid CPLB (cacheability protection lookaside buffer) descriptor exists in
an MMR pair, an exception occurs that places the processor into supervi-
sor mode and vectors to the MMU exception handler (see “Exceptions” on
page 4-46 for more information). The handler is typically part of the
operating system (OS) kernel that implements the CPLB replacement
policy.

Memory Protection and Properties

6-48 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

 Before CPLBs are enabled, valid CPLB descriptors must be in place
for both the page descriptor table and the MMU exception han-
dler. The LOCK bits of these CPLB descriptors are commonly set so
they are not inadvertently replaced in software.

The handler uses the faulting address to index into the page descriptor
table structure to find the correct CPLB descriptor data to load into one of
the on-chip CPLB register pairs. If all on-chip registers contain valid
CPLB entries, the handler selects one of the descriptors to be replaced,
and the new descriptor information is loaded. Before loading new descrip-
tor data into any CPLBs, the corresponding group of sixteen CPLBs must
be disabled using:

• The enable DCPLB (ENDCPLB) bit in the DMEM_CONTROL register for
data descriptors, or

• The enable ICPLB (ENICPLB) bit in the IMEM_CONTROL register for
instruction descriptors

The CPLB replacement policy and algorithm to be used are the responsi-
bility of the system MMU exception handler. This policy, which is
dictated by the characteristics of the operating system, usually implements
a modified LRU (least recently used) policy, a round robin scheduling
method, or pseudo random replacement.

After the new CPLB descriptor is loaded, the exception handler returns,
and the faulting memory operation is restarted. this operation should now
find a valid CPLB descriptor for the requested address, and it should pro-
ceed normally.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-49

Memory

A single instruction may generate an instruction fetch as well as one or
two data accesses. It is possible that more than one of these memory oper-
ations references data for which there is no valid CPLB descriptor in an
MMR pair. In this case, the exceptions are prioritized and serviced in this
order:

• Instruction page miss

• A page miss on DAG0

• A page miss on DAG1

MMU Application
Memory management is an optional feature in the Blackfin processor
architecture. Its use is predicated on the system requirements of a given
application. Upon reset, all CPLBs are disabled, and the memory manage-
ment unit (MMU) is not used.

If all L1 memory is configured as SRAM, then the data and instruction
MMU functions are optional, depending on the application’s need for
protection of memory spaces either between tasks or between User and
Supervisor modes. To protect memory between tasks, the operating sys-
tem can maintain separate tables of instruction and/or data memory pages
available for each task and make those pages visible only when the relevant
task is running. When a task switch occurs, the operating system can
ensure the invalidation of any CPLB descriptors on chip that should not
be available to the new task. It can also preload descriptors appropriate to
the new task.

For many operating systems, the application program is run in user mode
while the operating system and its services run in supervisor mode. It is
desirable to protect code and data structures used by the operating system
from inadvertent modification by a running user mode application. This
protection can be achieved by defining CPLB descriptors for protected
memory ranges that allow write access only when in supervisor mode. If a

Memory Protection and Properties

6-50 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

write to a protected memory region is attempted while in user mode, an
exception is generated before the memory is modified. Optionally, the
user mode application may be granted read access for data structures that
are useful to the application. Even supervisor mode functions can be
blocked from writing some memory pages that contain code that is not
expected to be modified. Because CPLB entries are MMRs that can be
written only while in supervisor mode, user programs cannot gain access
to resources protected in this way.

If either the L1 instruction memory or the L1 data memory is configured
partially or entirely as cache, the corresponding CPLBs must be enabled.
When an instruction generates a memory request and the cache is enabled,
the processor first checks the ICPLBs to determine whether the address
requested is in a cacheable address range. If no valid ICPLB entry in an
MMR pair corresponds to the requested address, an MMU exception is
generated to obtain a valid ICPLB descriptor to determine whether the
memory is cacheable or not. As a result, if the L1 instruction memory is
enabled as cache, then any memory region that contains instructions must
have a valid ICPLB descriptor defined for it. These descriptors must either
reside in MMRs at all times or be resident in a memory-based page
descriptor table that is managed by the MMU exception handler. Like-
wise, if either or both L1 data banks are configured as cache, all potential
data memory ranges must be supported by DCPLB descriptors.

 Before caches are enabled, the MMU and its supporting data struc-
tures must be set up and enabled.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-51

Memory

Examples of Protected Memory Regions
In Figure 6-17, a starting point is provided for basic CPLB allocation for
Instruction and Data CPLBs. Note some ICPLBs and DCPLBs have com-
mon descriptors for the same address space.

Figure 6-17. Examples of Protected Memory Regions

INSTRUCTION CPLB SETUP

DATA CPLB SETUP

ASYNC: CACHEABLE
TWO 1MB PAGES

L1 INSTRUCTION:
NON-CACHEABLE 1MB PAGE

SDRAM: CACHEABLE
EIGHT 4MB PAGES

ASYNC: NON-CACHEABLE
ONE 1MB PAGE

L1 DATA:
NON-CACHEABLE ONE 4MB PAGE

ASYNC: CACHEABLE
ONE 1MB PAGE

SDRAM: CACHEABLE
EIGHT 4MB PAGES

ASYNC: NON-CACHEABLE
ONE 1MB PAGE

Memory Protection and Properties

6-52 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Instruction CPLB Data (ICPLB_DATAx) Registers
Figure 6-18 describes the ICPLB data registers (ICPLB_DATAx).

 To ensure proper behavior and future compatibility, all reserved
bits in this register must be set to 0 whenever this register is
written.

Table 6-4. ICPLB Data Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

ICPLB_DATA0 0xFFE0 1200

ICPLB_DATA1 0xFFE0 1204

ICPLB_DATA2 0xFFE0 1208

ICPLB_DATA3 0xFFE0 120C

ICPLB_DATA4 0xFFE0 1210

ICPLB_DATA5 0xFFE0 1214

ICPLB_DATA6 0xFFE0 1218

ICPLB_DATA7 0xFFE0 121C

ICPLB_DATA8 0xFFE0 1220

ICPLB_DATA9 0xFFE0 1224

ICPLB_DATA10 0xFFE0 1228

ICPLB_DATA11 0xFFE0 122C

ICPLB_DATA12 0xFFE0 1230

ICPLB_DATA13 0xFFE0 1234

ICPLB_DATA14 0xFFE0 1238

ICPLB_DATA15 0xFFE0 123C

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-53

Memory

Data CPLB Data (DCPLB_DATAx) Registers
Figure 6-19 shows the DCPLB data registers (DCPLB_DATAx).

 To ensure proper behavior and future compatibility, all reserved
bits in this register must be set to 0 whenever this register is
written.

Figure 6-18. ICPLB Data Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ICPLB Data Registers (ICPLB_DATAx)

00 - 1K byte page size
01 - 4K byte page size
10 - 1M byte page size
11 - 4M byte page size

PAGE_SIZE[1:0]

Reset = 0x0000 0000

CPLB_LOCK

CPLB_VALID

CPLB_L1_CHBL

Clear this bit whenever L1 memory
is configured as SRAM
0 - Non-cacheable in L1
1 - Cacheable in L1

0 - Invalid (disabled) CPLB
entry

1 - Valid (enabled) CPLB
entry

Can be used by software in
CPLB replacement algorithms
0 - Unlocked, CPLB entry can

be replaced
1 - Locked, CPLB entry

should not be replaced

0 - User mode read access generates
 protection violation exception
1 - User mode read access permitted

CPLB_USER_RD

CPLB_LRUPRIO
See “Instruction Cache Locking by Line” on page 6-17.
0 - Low importance
1 - High importance

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

For memory-
mapped
addresses, see
Table 6-4.

Memory Protection and Properties

6-54 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Table 6-5. DCPLB Data Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DCPLB_DATA0 0xFFE0 0200

DCPLB_DATA1 0xFFE0 0204

DCPLB_DATA2 0xFFE0 0208

DCPLB_DATA3 0xFFE0 020C

DCPLB_DATA4 0xFFE0 0210

DCPLB_DATA5 0xFFE0 0214

DCPLB_DATA6 0xFFE0 0218

DCPLB_DATA7 0xFFE0 021C

DCPLB_DATA8 0xFFE0 0220

DCPLB_DATA9 0xFFE0 0224

DCPLB_DATA10 0xFFE0 0228

DCPLB_DATA11 0xFFE0 022C

DCPLB_DATA12 0xFFE0 0230

DCPLB_DATA13 0xFFE0 0234

DCPLB_DATA14 0xFFE0 0238

DCPLB_DATA15 0xFFE0 023C

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-55

Memory

Figure 6-19. DCPLB Data Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DCPLB Data Registers (DCPLB_DATAx)

00 - 1K byte page size
01 - 4K byte page size
10 - 1M byte page size
11 - 4M byte page size

PAGE_SIZE[1:0]

Reset = 0x0000 0000

CPLB_DIRTY

CPLB_WT
Operates only in cache mode
0 - Write back
1 - Write through

CPLB_L1_CHBL

Clear this bit when L1 memory is
configured as SRAM
0 - Non-cacheable in L1
1 - Cacheable in L1

CPLB_L1_AOW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Valid only if write
through cacheable
(CPLB_VALID = 1,
CPLB_WT = 1)
0 - Allocate cache lines

on reads only
1 - Allocate cache lines

on reads and writes

Valid only if write back cacheable (CPLB_VALID = 1,
CPLB_WT = 0, and CPLB_L1_CHBL = 1)
0 - Clean
1 - Dirty
A protection violation exception is generated on store
accesses to this page when this bit is 0. The state of
this bit is modified only by writes to this register. The
exception service routine must set this bit.

CPLB_LOCK

CPLB_USER_WR

CPLB_VALID
0 - Invalid (disabled) CPLB entry
1 - Valid (enabled) CPLB entry

Can be used by software in
CPLB replacement algorithms
0 - Unlocked, CPLB entry can

be replaced
1 - Locked, CPLB entry should

not be replaced

0 - User mode read access
generates protection
violation exception

1 - User mode read access
permitted

CPLB_USER_RD

0 - User mode write access
generates protection
violation exception

1 - User mode write access
permitted

CPLB_SUPV_WR
0 - Supervisor mode write

access generates protection
violation exception

1 - Supervisor mode write
access permitted

For memory-
mapped
addresses, see
Table 6-5.

Memory Protection and Properties

6-56 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Data CPLB Address (DCPLB_ADDRx) Registers
Figure 6-20 shows the DCPLB address registers (DCPLB_ADDRx).

Table 6-6. DCPLB Address Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DCPLB_ADDR0 0xFFE0 0100

DCPLB_ADDR1 0xFFE0 0104

DCPLB_ADDR2 0xFFE0 0108

DCPLB_ADDR3 0xFFE0 010C

DCPLB_ADDR4 0xFFE0 0110

DCPLB_ADDR5 0xFFE0 0114

DCPLB_ADDR6 0xFFE0 0118

DCPLB_ADDR7 0xFFE0 011C

DCPLB_ADDR8 0xFFE0 0120

DCPLB_ADDR9 0xFFE0 0124

DCPLB_ADDR10 0xFFE0 0128

DCPLB_ADDR11 0xFFE0 012C

DCPLB_ADDR12 0xFFE0 0130

DCPLB_ADDR13 0xFFE0 0134

DCPLB_ADDR14 0xFFE0 0138

DCPLB_ADDR15 0xFFE0 013C

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-57

Memory

Instruction CPLB Address (ICPLB_ADDRx) Registers
Figure 6-21 shows the ICPLB Address registers (ICPLB_ADDRx).

Figure 6-20. DCPLB Address Registers

Table 6-7. ICPLB Address Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

ICPLB_ADDR0 0xFFE0 1100

ICPLB_ADDR1 0xFFE0 1104

ICPLB_ADDR2 0xFFE0 1108

ICPLB_ADDR3 0xFFE0 110C

ICPLB_ADDR4 0xFFE0 1110

ICPLB_ADDR5 0xFFE0 1114

ICPLB_ADDR6 0xFFE0 1118

ICPLB_ADDR7 0xFFE0 111C

ICPLB_ADDR8 0xFFE0 1120

ICPLB_ADDR9 0xFFE0 1124

ICPLB_ADDR10 0xFFE0 1128

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DCPLB Address Registers (DCPLB_ADDRx)

Upper Bits of Address for
Match[21:6]

Reset = 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Upper Bits of Address for
Match[5:0]

For memory-
mapped
addresses, see
Table 6-6.

Memory Protection and Properties

6-58 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

ICPLB_ADDR11 0xFFE0 112C

ICPLB_ADDR12 0xFFE0 1130

ICPLB_ADDR13 0xFFE0 1134

ICPLB_ADDR14 0xFFE0 1138

ICPLB_ADDR15 0xFFE0 113C

Figure 6-21. ICPLB Address Registers

Table 6-7. ICPLB Address Register Memory-Mapped Addresses (Cont’d)

Register Name Memory-Mapped Address

00 0 0 0 0 0 000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0

ICPLB Address Registers (ICPLB_ADDRx)

Upper Bits of Address for
Match[21:6]

Reset = 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Upper Bits of Address for
Match[5:0]

For memory-
mapped
addresses, see
Table 6-7.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-59

Memory

Instruction and Data CPLB Status (ICPLB_STATUS,
DCPLB_STATUS) Registers

Bits in the DCPLB status register (DCPLB_STATUS) and ICPLB status regis-
ter (ICPLB_STATUS) identify the CPLB entry that has triggered
CPLB-related exceptions. The exception service routine can infer the
cause of the fault by examining the CPLB entries.

 The DCPLB_STATUS and ICPLB_STATUS registers are valid only while
in the faulting exception service routine.

Bits FAULT_DAG, FAULT_USERSUPV and FAULT_RW in the DCPLB status regis-
ter (DCPLB_STATUS) are used to identify the CPLB entry that has triggered
the CPLB-related exception (see Figure 6-22).

Figure 6-22. DCPLB Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X 0 X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DCPLB Status Register (DCPLB_STATUS)

0 - Access was read
1 - Access was write

FAULT_RW

Reset = Undefined

FAULT[15:0]

FAULT_ILLADDR

0 - No fault
1 - Attempted access to nonexistent memory

FAULT_DAG

0 - Access was made by DAG0
1 - Access was made by DAG1

Each bit indicates the hit/miss sta-
tus of the associated CPLB entry

0 - Access was made in User
mode

1 - Access was made in
Supervisor mode

FAULT_USERSUPV

0xFFE0 0008

Memory Protection and Properties

6-60 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Bit FAULT_USERSUPV in the ICPLB status register (ICPLB_STATUS) is used to
identify the CPLB entry that has triggered the CPLB-related exception
(see Figure 6-23).

Instruction and Data CPLB Fault Address
(ICPLB_FAULT_ADDR, DCPLB_FAULT_ADDR) Registers

The DCPLB address register (DCPLB_FAULT_ADDR) and ICPLB fault address
register (ICPLB_FAULT_ADDR) hold the address that has caused a fault in the
L1 data memory or L1 instruction memory, respectively. See Figure 6-24
and Figure 6-25.

 The DCPLB_FAULT_ADDR and ICPLB_FAULT_ADDR registers are valid
only while in the faulting exception service routine.

Figure 6-23. ICPLB Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X X0X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ICPLB Status Register (ICPLB_STATUS)

Reset = Undefined

FAULT[15:0]

FAULT_ILLADDR

0 - No fault
1 - Attempted access to nonexistent memory

Each bit indicates hit/miss status
of associated CPLB entry

0 - Access was made in User
mode

1 - Access was made in
Supervisor mode

FAULT_USERSUPV

0xFFE0 1008

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-61

Memory

Figure 6-24. DCPLB Address Register

Figure 6-25. ICPLB Fault Address Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

DCPLB Address Register (DCPLB_FAULT_ADDR)

Reset = Undefined

FAULT_ADDR[15:0]
Data address that has caused
a fault in the L1 Data memory

FAULT_ADDR[31:16]
Data address that has caused
a fault in L1 Data memory

0xFFE0 000C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

ICPLB Fault Address Register (ICPLB_FAULT_ADDR)

Reset = Undefined

FAULT_ADDR[15:0]

FAULT_ADDR[31:16]
Instruction address that has
caused a fault in the L1
Instruction memory

Instruction address that has
caused a fault in the L1
Instruction memory

0xFFE0 100C

Memory Transaction Model

6-62 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Memory Transaction Model
Both internal and external memory locations are accessed in little endian
byte order. Figure 6-26 shows a data word stored in register R0 and in
memory at address location addr. B0 refers to the least significant byte of
the 32-bit word.

Figure 6-27 shows 16- and 32-bit instructions stored in memory. The dia-
gram on the left shows 16-bit instructions stored in memory with the
most significant byte of the instruction stored in the high address (byte B1
in addr+1) and the least significant byte in the low address (byte B0 in
addr).

The diagram on the right shows 32-bit instructions stored in memory.
Note the most significant 16-bit half word of the instruction (bytes B3
and B2) is stored in the low addresses (addr+1 and addr), and the least sig-
nificant half word (bytes B1 and B0) is stored in the high addresses
(addr+3 and addr+2).

Figure 6-26. Data Stored in Little Endian Order

Figure 6-27. Instructions Stored in Little Endian Order

R0

DATA IN REGISTER DATA IN MEMORY

B3 B2 B1 B0 B3 B2 B1 B0

addr+3 addr+2 addr+1 addr

16-BIT INSTRUCTIONS IN MEMORY 32-BIT INSTRUCTIONS IN MEMORY

B1 B0 B1 B0 B1 B0 B3 B2

addr+3 addr+2 addr+1 addraddr+3 addr+2 addr+1 addr

16-BIT INSTRUCTIONS 32-BIT INSTRUCTIONS

B1 B0 B3 B2 B1 B0

INST 0 INST 0

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-63

Memory

Load/Store Operation
The Blackfin processor architecture supports the RISC concept of a
load/store machine. This machine is the characteristic in RISC architec-
tures whereby memory operations (loads and stores) are intentionally
separated from the arithmetic functions that use the targets of the memory
operations. The separation is made because memory operations, particu-
larly instructions that access off-chip memory or I/O devices, often take
multiple cycles to complete and would normally halt the processor, pre-
venting an instruction execution rate of one instruction per cycle.

Separating load operations from their associated arithmetic functions
allows compilers or assembly language programmers to place unrelated
instructions between the load and its dependent instructions. If the value
is returned before the dependent operation reaches the execution stage of
the pipeline, the operation completes in one cycle.

In write operations, the store instruction is considered complete as soon as
it executes, even though many cycles may execute before the data is actu-
ally written to an external memory or I/O location. This arrangement
allows the processor to execute one instruction per clock cycle, and it
implies that the synchronization between when writes complete and when
subsequent instructions execute is not guaranteed. Moreover, this syn-
chronization is considered unimportant in the context of most memory
operations.

Load/Store Operation

6-64 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Interlocked Pipeline
In the execution of instructions, the Blackfin processor architecture imple-
ments an interlocked pipeline. When a load instruction executes, the
target register of the read operation is marked as busy until the value is
returned from the memory system. If a subsequent instruction tries to
access this register before the new value is present, the pipeline will stall
until the memory operation completes. This stall guarantees that instruc-
tions that require the use of data resulting from the load do not use the
previous or invalid data in the register, even though instructions are
allowed to start execution before the memory read completes.

This mechanism allows the execution of independent instructions between
the load and the instructions that use the read target without requiring the
programmer or compiler to know how many cycles are actually needed for
the memory-read operation to complete. If the instruction immediately
following the load uses the same register, it simply stalls until the value is
returned. Consequently, it operates as the programmer expects. However,
if four other instructions are placed after the load but before the instruc-
tion that uses the same register, all of them execute, and the overall
throughput of the processor is improved.

Ordering of Loads and Stores
The relaxation of synchronization between memory access instructions
and their surrounding instructions is referred to as weak ordering of loads
and stores. Weak ordering implies that the timing of the actual comple-
tion of the memory operations—even the order in which these events
occur—may not align with how they appear in the sequence of the pro-
gram source code. All that is guaranteed is:

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-65

Memory

• Load operations complete before the returned data is used by a sub-
sequent instruction.

• Load operations using data previously written will use the updated
values.

• Store operations eventually propagate to their ultimate destination.

Because of weak ordering, the memory system is allowed to prioritize
reads over writes. In this case, a write that is queued anywhere in the pipe-
line, but not completed, may be deferred by a subsequent read operation,
and the read is allowed to be completed before the write. Reads are priori-
tized over writes because the read operation has a dependent operation
waiting on its completion, whereas the processor considers the write
operation complete, and the write does not stall the pipeline if it takes
more cycles to propagate the value out to memory. This behavior could
cause a read that occurs in the program source code after a write in the
program flow to actually return its value before the write has been com-
pleted. This ordering provides significant performance advantages in the
operation of most memory instructions. However, it can cause side effects
that the programmer must be aware of to avoid improper system
operation.

When writing to or reading from non memory locations such as I/O
device registers, the order of how read and write operations complete is
often significant. For example, a read of a status register may depend on a
write to a control register. If the address is the same, the read would return
a value from the write buffer rather than from the actual I/O device regis-
ter, and the order of the read and write at the register may be reversed.
Both these effects could cause undesirable side effects in the intended
operation of the program and peripheral. To ensure that these effects do
not occur in code that requires precise (strong) ordering of load and store
operations, synchronization instructions (CSYNC or SSYNC) should be used.

Load/Store Operation

6-66 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Synchronizing Instructions
When strong ordering of loads and stores is required, as may be the case
for sequential writes to an I/O device for setup and control, use the core or
system synchronization instructions, CSYNC or SSYNC, respectively.

The CSYNC instruction ensures all pending core operations have completed
and the core buffer (between the processor core and the L1 memories) has
been flushed before proceeding to the next instruction. Pending core oper-
ations may include any pending interrupts, speculative states (such as
branch predictions), or exceptions.

Consider the following example code sequence:

IF CC JUMP away_from_here

csync;

r0 = [p0];

away_from_here:

In the preceding example code, the CSYNC instruction ensures:

• The conditional branch (IF CC JUMP away_from_here) is resolved,
forcing stalls into the execution pipeline until the condition is
resolved and any entries in the processor store buffer have been
flushed.

• All pending interrupts or exceptions have been processed before
CSYNC completes.

• The load is not fetched from memory speculatively.

The SSYNC instruction ensures that all side effects of previous operations
are propagated out through the interface between the L1 memories and
the rest of the chip. In addition to performing the core synchronization
functions of CSYNC, the SSYNC instruction flushes any write buffers

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-67

Memory

between the L1 memory and the system domain and generates a sync
request to the system that requires acknowledgement before SSYNC
completes.

Speculative Load Execution
Load operations from memory do not change the state of the memory
value. Consequently, issuing a speculative memory-read operation for a
subsequent load instruction usually has no undesirable side effect. In some
code sequences, such as a conditional branch instruction followed by a
load, performance may be improved by speculatively issuing the read
request to the memory system before the conditional branch is resolved.

For example,

IF CC JUMP away_from_here

RO = [P2];

…

away_from_here:

If the branch is taken, then the load is flushed from the pipeline, and any
results that are in the process of being returned can be ignored. Con-
versely, if the branch is not taken, the memory will have returned the
correct value earlier than if the operation were stalled until the branch
condition was resolved.

However, in the case of an I/O device, this could cause an undesirable side
effect for a peripheral that returns sequential data from a FIFO or from a
register that changes value based on the number of reads that are
requested. To avoid this effect, use synchronizing instructions (CSYNC or
SSYNC) to guarantee the correct behavior between read operations.

Store operations never access memory speculatively, because this could
cause modification of a memory value before it is determined whether the
instruction should have executed.

Working With Memory

6-68 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Conditional Load Behavior
The synchronization instructions force all speculative states to be resolved
before a load instruction initiates a memory reference. However, the load
instruction itself may generate more than one memory-read operation,
because it is interruptible. If an interrupt of sufficient priority occurs
between the completion of the synchronization instruction and the com-
pletion of the load instruction, the sequencer cancels the load instruction.
After execution of the interrupt, the interrupted load is executed again.
This approach minimizes interrupt latency. However, it is possible that a
memory-read cycle was initiated before the load was canceled, and this
would be followed by a second read operation after the load is executed
again. For most memory accesses, multiple reads of the same memory
address have no side effects. However, for some memory-mapped devices,
such as peripheral data FIFOs, reads are destructive. Each time the device
is read, the FIFO advances, and the data cannot be recovered and re-read.

 When accessing memory-mapped devices that have state dependen-
cies on the number of read or write operations on a given address
location, disable interrupts before performing the load or store
operation.

Working With Memory
This section contains information about alignment of data in memory and
memory operations that support semaphores between tasks. It also con-
tains a brief discussion of MMR registers and a core MMR programming
example.

Alignment
Nonaligned memory operations are not directly supported. A nonaligned
memory reference generates a misaligned access exception event (see
“Exceptions” on page 4-46). However, because some data streams (such as

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-69

Memory

8-bit video data) can properly be nonaligned in memory, alignment excep-
tions may be disabled by using the DISALGNEXCPT instruction. Moreover,
some instructions in the quad 8-bit group automatically disable alignment
exceptions.

Cache Coherency
For shared data, software must provide cache coherency support as
required. To accomplish this, use the FLUSH instruction (see “Data Cache
Control Instructions” on page 6-37), and/or explicit line invalidation
through the core MMRs (see “Data Test Registers” on page 6-39).

Atomic Operations
The processor provides a single atomic operation: TESTSET. Atomic opera-
tions are used to provide non interruptible memory operations in support
of semaphores between tasks. The TESTSET instruction loads an indirectly
addressed memory half word, tests whether the low byte is zero, and then
sets the most significant bit (MSB) of the low memory byte without
affecting any other bits. If the byte is originally zero, the instruction sets
the CC bit. If the byte is originally nonzero, the instruction clears the CC
bit. The sequence of this memory transaction is atomic—hardware bus
locking insures that no other memory operation can occur between the
test and set portions of this instruction. The TESTSET instruction can be
interrupted by the core. If this happens, the TESTSET instruction is exe-
cuted again upon return from the interrupt.

The TESTSET instruction can address the entire 4G byte memory space,
but should not target on-core memory (L1 or MMR space) since atomic
access to this memory is not supported.

The memory architecture always treats atomic operations as cache inhib-
ited accesses even if the CPLB descriptor for the address indicates cache
enabled access. However, executing TESTSET operations on cacheable

Working With Memory

6-70 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

regions of memory is not recommended since the architecture cannot
guarantee a cacheable location of memory is coherent when the TESTSET
instruction is executed.

Memory-Mapped Registers
The MMR reserved space is located at the top of the memory space
(0xFFC0 0000). This region is defined as non-cacheable and is divided
between the system MMRs (0xFFC0 0000–0xFFE0 0000) and core
MMRs (0xFFE0 0000–0xFFFF FFFF).

 If strong ordering is required, place a synchronization instruction
after stores to MMRs. For more information, see “Load/Store
Operation” on page 6-63.

All MMRs are accessible only in supervisor mode. Access to MMRs in user
mode generates a protection violation exception. Attempts to access MMR
space using DAG1 will also generate a protection violation exception.

All core MMRs are read and written using 32-bit aligned accesses. How-
ever, some MMRs have fewer than 32 bits defined. In this case, the
unused bits are reserved. System MMRs may be 16 bits.

Accesses to nonexistent MMRs generate an illegal access exception. The
system ignores writes to read-only MMRs.

Appendix A, “Blackfin Processor Core MMR Assignments” provides a
summary of all core MMRs. Appendix B, “System MMR Assignments”
provides a summary of all system MMRs.

Core MMR Programming Code Example
Core MMRs may be accessed only as aligned 32-bit words. Nonaligned
access to MMRs generates an exception event. Listing 6-1 shows the
instructions required to manipulate a generic core MMR.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-71

Memory

Listing 6-1. Core MMR Programming

CLI R0; /* stop interrupts and save IMASK */

P0 = MMR_BASE; /* 32-bit instruction to load base of MMRs */

R1 = [P0 + TIMER_CONTROL_REG]; /* get value of control reg */

BITSET R1, #N; /* set bit N */

[P0 + TIMER_CONTROL_REG] = R1; /* restore control reg */

CSYNC; /* assures that the control reg is written */

STI R0; /* enable interrupts */

 The CLI instruction saves the contents of the IMASK register and
disables interrupts by clearing IMASK. The STI instruction restores
the contents of the IMASK register, thus enabling interrupts. The
instructions between CLI and STI are not interruptible.

Terminology
The following terminology is used to describe memory.

cache block. The smallest unit of memory that is transferred to/from the
next level of memory from/to a cache as a result of a cache miss.

cache hit. A memory access that is satisfied by a valid, present entry in the
cache.

cache line. Same as cache block. In this chapter, cache line is used for
cache block.

cache miss. A memory access that does not match any valid entry in the
cache.

direct-mapped. Cache architecture in which each line has only one place
in which it can appear in the cache. Also described as 1-way associative.

Terminology

6-72 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

dirty or modified. A state bit, stored along with the tag, indicating
whether the data in the data cache line has been changed since it was cop-
ied from the source memory and, therefore, needs to be updated in that
source memory.

exclusive, clean. The state of a data cache line, indicating that the line is
valid and that the data contained in the line matches that in the source
memory. The data in a clean cache line does not need to be written to
source memory before it is replaced.

fully associative. Cache architecture in which each line can be placed any-
where in the cache.

index. Address portion that is used to select an array element (for example,
a line index).

invalid. Describes the state of a cache line. When a cache line is invalid, a
cache line match cannot occur.

least recently used (LRU) algorithm. Replacement algorithm, used by
cache, that first replaces lines that have been unused for the longest time.

Level 1 (L1) memory. Memory that is directly accessed by the core with
no intervening memory subsystems between it and the core.

little endian. The native data store format of the Blackfin processor.
Words and half words are stored in memory (and registers) with the least
significant byte at the lowest byte address and the most significant byte in
the highest byte address of the data storage location.

replacement policy. The function used by the processor to determine
which line to replace on a cache miss. Often, an LRU algorithm is
employed.

set. A group of N-line storage locations in the ways of an N-Way cache,
selected by the INDEX field of the address (see Figure 6-5).

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 6-73

Memory

set associative. Cache architecture that limits line placement to a number
of sets (or ways).

tag. Upper address bits, stored along with the cached data line, to identify
the specific address source in memory that the cached line represents.

valid. A state bit, stored with the tag, indicating that the corresponding
tag and data are current and correct and can be used to satisfy memory
access requests.

victim. A dirty cache line that must be written to memory before it can be
replaced to free space for a cache line allocation.

Way. An array of line storage elements in an N-Way cache (see
Figure 6-5).

write back. A cache write policy, also known as copyback. The write data is
written only to the cache line. The modified cache line is written to source
memory only when it is replaced. Cache lines are allocated on both reads
and writes.

write through. A cache write policy (also known as store through). The
write data is written to both the cache line and to the source memory. The
modified cache line is not written to the source memory when it is
replaced. Cache lines must be allocated on reads, and may be allocated on
writes (depending on mode).

Terminology

6-74 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 7-1

7 CHIP BUS HIERARCHY

This chapter discusses the on-chip buses, including how data moves
through the system and factors that determine the system organization.
The chapter describes the system internal chip interfaces and discusses the
system interconnects and the associated system buses.

Internal Interfaces
Figure 7-1 shows the core processor and system boundaries and the inter-
faces between them.

Internal Clocks
The core processor clock (CCLK) rate is highly programmable with respect
to CLKIN. The CCLK rate is divided down from the PLL output rate. This
divider ratio is set using the CSEL parameter of the PLL divide register.

The peripheral access bus (PAB), the DMA access buses (DAB0/DAB1),
the external access bus (EAB), the DMA core buses (DCB0–2), the DMA
external bus (DEB), the external port bus (EPB), and the external bus
interface unit (EBIU) run at the system clock frequency (SCLK domain).
This divider ratio is set using the SSEL parameter of the PLL divide register
and must be set so that these buses run as specified in
ADSP-BF538/ADSP-BF538F Embedded Processor Data Sheet, and slower
than or equal to the core clock frequency.

Internal Clocks

7-2 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

These buses can also be cycled at a programmable frequency to reduce
power consumption, or to allow the core processor to run at an optimal
frequency. Note all synchronous peripherals derive their timing from the
SCLK. For example, the UART clock rates are determined by further
dividing this clock frequency.

Figure 7-1. Processor Bus Hierarchy

WATCHDOG
TIMER

GPIO
SPORT

SPI

EBIU

PPI

RTC CAN TWI

DMA
CONTROLLER

L1 MEMORYCORE
PROCESSOR INSTRUCTION

LOAD DATA

LOAD DATA

EXTERNAL
MEMORY
DEVICES

64

32

32

16

32

STORE DATA

SYSTEM CLOCK
(SCLK) DOMAIN

CORE CLOCK
(CCLK) DOMAIN

DMA ACCESS BUS
(DAB)

EXTERNAL
PORT
BUS (EPB)

EXTERNAL
ACCESS
BUS (EAB)

DMA
EXTERNAL
BUS (DEB)

DMA
CORE
BUS (DCB)

PERIPHERAL ACCESS
BUS (PAB)

UART

TIMERS

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 7-3

Chip Bus Hierarchy

Core Overview
For the purposes of this discussion, Level 1 memories (L1) are included in
the description of the core; they have full bandwidth access from the pro-
cessor core with a 64-bit instruction bus and two 32-bit data buses.

Figure 7-2 is a block diagram that shows the core processor and its inter-
faces to the peripherals and external memory resources.

Figure 7-2. Core Block Diagram

INT

RESET
VECTOR

ACK

CORE TIMER

EVENT
CONTROLLER

DEBUG AND JTAG INTERFACE

JTAG DSP ID
(8 BITS)

SYSTEM CLOCK
AND POWER

MANAGEMENT

POWER AND
CLOCK

CONTROLLER

PERFORMANCE
MONITOR

MEMORY
MANAGEMENT

UNIT
L1 DATA L1 INSTRUCTION

L
D

0

L
D

1

S
D

D
A

0

D
A

1

IA
B

ID
B

CORE

EAB

PROCESSOR

DMA CORE BUS
(DCB)

PAB

32 32 32 32 32 32 64

System Overview

7-4 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The core can generate up to three simultaneous off-core accesses per cycle.

The core bus structure between the processor and L1 memory runs at the
full core frequency and has data paths up to 64 bits.

When the instruction request is filled, the 64-bit read can contain a single
64-bit instruction or any combination of 16-, 32-, or partial 64-bit
instructions.

When cache is enabled, four 64-bit read requests are issued to support
32-byte line fill burst operations. These requests are pipelined so that each
transfer after the first is filled in a single, consecutive cycle.

System Overview
The system includes the controllers for system interrupts, test/emulation,
and clock and power management. Synchronous clock-domain conversion
is provided to support clock domain transactions between the core and the
system.

System Interfaces
The processor system includes the peripheral set—timers, real time clock,
general-purpose I/O, UARTs, SPORTs, PPI, watchdog timer, SPIs,
TWIs, and CAN. The processor system also includes the external memory
controller (EBIU), the DMA controllers, and the interfaces between these
units, the system, and the optional external (off-chip) resources. See
Figure 7-2.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 7-5

Chip Bus Hierarchy

The following sections describe the six on-chip interfaces between the sys-
tem and the peripherals:

• “Peripheral Access Bus (PAB)” on page 7-5

• “DMA Access (DAB0/DAB1), Core (DCB0/DCB1), and External
Buses (DEB0/DEB1)” on page 7-7

• “External Access Bus (EAB)” on page 7-10

The external bus interface unit (EBIU) is the primary chip pin bus. For
more information, see “External Bus Interface Unit” on page 18-1.

Peripheral Access Bus (PAB)
The processor has a dedicated peripheral bus. A low latency peripheral bus
keeps core stalls to a minimum and allows for manageable interrupt laten-
cies to time-critical peripherals. All peripheral resources accessed through
the PAB are mapped into the system MMR space of the processor memory
map. The core can access system MMR space through the PAB bus.

The core processor has byte addressability, but the programming model is
restricted to only 32-bit (aligned) access to the system MMRs. Byte access
to this region is not supported. Also, the TESTSET instruction to system
memory mapped register space is not supported, since TESTSET produces
byte-size read-modify-write.

PAB Arbitration

The core is the only master on this bus. No arbitration is necessary.

PAB Performance

For the PAB, the primary performance criteria is latency, not throughput.
Transfer latencies for both read and write transfers on the PAB are 2 SCLK
cycles.

System Interfaces

7-6 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

For example, the core can transfer up to 32 bits per access to the PAB
slaves. With the core clock running at 2 times the frequency of the system
clock, the first and subsequent system MMR read or write accesses take 4
core clocks (CCLK) of latency.

The PAB has a maximum frequency of SCLK.

PAB Agents (Masters, Slaves)

The processor core can master bus operations on the PAB. All peripherals
have a peripheral bus slave interface which allows the core to access con-
trol and status state. These registers are mapped into the system MMR
space of the memory map. Appendix B, “System MMR Assignments”.

The slaves on the PAB bus are as follows:

• Event controller

• Clock and power management controller

• Watchdog timer

• Real time clock

• Timer0, 1, and 2

• SPORT0–3

• SPI0–2

• General-purpose I/O

• UART0–2

• PPI

• TWI0–1

• CAN

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 7-7

Chip Bus Hierarchy

• Asynchronous memory controller (AMC)

• SDRAM controller (SDC)

• DMA controller 0

• DMA controller 1

DMA Access (DAB0/DAB1), Core (DCB0/DCB1),
and External Buses (DEB0/DEB1)

The DABx, DCBx, and DEBx buses provide a means for DMA capable
peripherals to gain access to on-chip and off-chip memory with little or no
degradation in core bandwidth to memory.

DABx, DCBx, and DEBx Arbitration

There are 13 DMA capable peripherals in the processor system, including
both memory DMA controllers. 28 DMA channels and bus masters sup-
port these devices. The peripheral DMA controllers can transfer data
between peripherals and internal or external memory.

The DAB buses are implemented as two separate bus systems each inter-
facing to a DMA controller and a fixed set of peripheral DMA bus
masters. Each of the two DMA controllers access L1 memory through the
DCB buses. In the event of simultaneous requests to L1 memory, access is
granted to DMA controller 0, with DMA controller 1 having the lower
priority. Each of the two DMA controllers access external memory
through the DEB buses. In the event of simultaneous requests to external
memory, access is granted to DMA controller 0 first. This fixed priority
arrangement should be considered as each of the application specific inter-
faces are assigned to each peripheral.

System Interfaces

7-8 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Table 7-1 and Table 7-2 show the default arbitration priority of each
DAB bus.

Table 7-1. Controller 0 (DAB0) Arbitration Priority

DAB, DCB, DEB Master Default Arbitration Priority

PPI 0 - highest

SPORT0 RCV DMA controller 1

SPORT1 RCV DMA controller 3

SPORT0 XMT DMA controller 2

SPORT1 XMT DMA controller 4

SPI0 DMA controller 5

UART0 RCV controller 6

UART0 XMT controller 7

Memory DMA0 (dest) controller 8

Memory DMA0 (source) controller 9

Memory DMA1 (dest) controller 10

Memory DMA1 (source) controller 11 - lowest

Table 7-2. Controller 1 (DAB1) Arbitration Priority

DAB, DCB, DEB Master Default Arbitration Priority

SPORT2 RCV DMA controller 0 - highest

SPORT2 XMT DMA controller 1

SPORT3 RCV DMA controller 2

SPORT3 XMT DMA controller 3

Unassigned 4

Unassigned 5

SPI1 DMA controller 6

SPI2 DMA controller 7

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 7-9

Chip Bus Hierarchy

The DCB has priority over the core processor on arbitration into L1 con-
figured as data SRAM, whereas the core processor has priority over the
DCB on arbitration into L1 instruction SRAM. For off-chip memory, the
core has priority over the DEB buses on the EAB bus.

DAB, DCB, and DEB Performance

The processor DAB supports data transfers of 16 bits or 32 bits. The data
bus has a 16-bit width with a maximum frequency as specified in
ADSP-BF538/ADSP-BF538F Embedded Processor Data Sheet.

The DCB has a dedicated port into L1 memory. No stalls occur as long as
the core access and the DMA access are not to the same memory bank
(4 KB size for L1). If there is a conflict when accessing data memory,
DMA is the highest priority requester, followed by the core. If the conflict
occurs when accessing instruction memory, the core is the highest priority
requester, followed by DMA.

Note that a locked transfer by the core processor (for example, execution
of a TESTSET instruction) effectively disables arbitration for the addressed
memory bank or resource until the memory lock is deasserted. DMA con-
trollers cannot perform locked transfers.

UART1 RCV controller 8

UART1 XMT controller 9

UART2 RCV controller 10

UART2 XMT controller 11

Memory DMA2 (dest) controller 12

Memory DMA2 (source) controller 13

Memory DMA3 (dest) controller 14

Memory DMA3 (source) controller 15 - lowest

Table 7-2. Controller 1 (DAB1) Arbitration Priority (Cont’d)

DAB, DCB, DEB Master Default Arbitration Priority

System Interfaces

7-10 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

DMA access to L1 memory can only be stalled by an access already in
progress from another DMA channel. These latencies caused by these
stalls are in addition to any arbitration latencies.

The core processor and the DMA controllers must arbitrate for access to
external memory through the EBIU. This additional arbitration latency
added to the latency required to read off-chip memory devices can signifi-
cantly degrade DEB throughput, potentially causing peripheral data
buffers to underflow or overflow. If you use DMA peripherals other than
the memory DMA controller, and you target external memory for DMA
accesses, you need to carefully analyze your specific traffic patterns to
ensure that those isochronous peripherals targeting internal memory have
enough allocated bandwidth and the appropriate maximum arbitration
latencies.

DAB Bus Agents (Masters)

All peripherals capable of sourcing a DMA access are masters on this bus,
as shown in Table 7-1. A single arbiter supports a programmable priority
arbitration policy for access to the DAB.

When two or more DMA master channels are actively requesting the
DAB, bus utilization is considerably higher due to the DAB’s pipelined
design. Bus arbitration cycles are concurrent with the previous DMA
access data cycles.

External Access Bus (EAB)
The EAB provides a way for the processor core and the memory DMA
controller to directly access off-chip memory and high throughput mem-
ory-to-memory DMA transfers.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 7-11

Chip Bus Hierarchy

EAB Arbitration

Arbitration for use of the external port bus interface resources is required
because of possible contention between the potential masters of this bus. A
fixed-priority arbitration scheme is used.

EAB Performance

The EAB supports single word accesses of either 8-bit or 16-bit data types.
The EAB operates at the same frequency as the PAB and the DAB, up to
the maximum SCLK frequency specified in ADSP-BF538/ADSP-BF538F
Embedded Processor Data Sheet.

Memory DMA transfers typically result in repeated accesses to the same
memory location. Because the memory DMA controller has the potential
of simultaneously accessing on-chip and off-chip memory, considerable
throughput can be achieved. The throughput rate for an on-chip/off-chip
memory access is limited by the slower of the two accesses. An additional
1 to 2 cycles per burst access is inherent in the design.

In the case where the transfer is from on-chip to on-chip memory or from
off-chip to off-chip memory, the burst accesses cannot occur simultane-
ously. The transfer rate is then determined by adding each transfer plus
and additional cycle between each transfer.

Table 7-3 shows many types of 16-bit memory DMA transfers. In the
table, it is assumed that no other DMA activity is conflicting with ongoing
operations.

System Interfaces

7-12 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Table 7-3. EAB Performance

Source Destination Approximate SCLKs For n
Words (from start of DMA
to interrupt at end)

16-bit SDRAM L1 data memory n + 14

L1 data memory 16-bit SDRAM n + 11

16-bit async memory L1 data memory n + 12

L1 data memory 16-bit async memory n + 9

16-bit SDRAM 16-bit SDRAM 10 + (17n/7)

16-bit async memory 16-bit async memory 10 + 2xn, where x is the
number of wait states +
setup/hold SCLK cycles
(minimum x=2)

L1 data memory L1 data memory 2n + 12

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 8-1

8 DYNAMIC POWER
MANAGEMENT

This chapter describes the dynamic power management functionality of
the processor. This functionality includes:

• Clocking

• Phase-locked loop (PLL)

• Dynamic power management controller

• Operating modes

• Voltage control

Clocking
The input clock into the processor, CLKIN, provides the necessary clock
frequency, duty cycle, and stability to allow accurate internal clock multi-
plication by means of an on-chip phase-locked loop (PLL) module.
During normal operation, the user programs the PLL with a multiplica-
tion factor for CLKIN. The resulting, multiplied signal is the voltage
controlled oscillator (VCO) clock. A user-programmable value then divides
the VCO clock signal to generate the core clock (CCLK).

A user-programmable value divides the VCO signal to generate the system
clock (SCLK). The SCLK signal clocks the peripheral access bus (PAB),
DMA bus (DAB), external address bus (EAB), and the external bus inter-
face Unit (EBIU).

Clocking

8-2 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

 These buses run at the PLL frequency divided by 1–15 (SCLK
domain). Using the SSEL parameter of the PLL divide register,
select a divider value that allows these buses to run at or below the
maximum SCLK rate specified in ADSP-BF538/ADSP-BF538F
Embedded Processor Data Sheet.

To optimize performance and power dissipation, the processor allows the
core and system clock frequencies to be changed dynamically in a coarse
adjustment. For a fine adjustment, the PLL clock frequency can also be
varied.

Phase-Locked Loop and Clock Control
To provide the clock generation for the core and system, the processor
uses an analog PLL with programmable state machine control.

The PLL design serves a wide range of applications. It emphasizes embed-
ded and portable applications and low cost, general-purpose processors, in
which performance, flexibility, and control of power dissipation are key
features. This broad range of applications requires a wide range of fre-
quencies for the clock generation circuitry. The input clock may be a
crystal, a crystal oscillator, or a buffered, shaped clock derived from an
external system clock oscillator.

The PLL interacts with the dynamic power management controller
(DPMC) block to provide power management functions for the processor.
For information about the DPMC, see “Dynamic Power Management
Controller” on page 8-11.

PLL Overview

Subject to the maximum VCO frequency, the PLL supports a wide range of
multiplier ratios and achieves multiplication of the input clock, CLKIN. To
achieve this wide multiplication range, the processor uses a combination
of programmable dividers in the PLL feedback circuit and output configu-
ration blocks.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 8-3

Dynamic Power Management

Figure 8-1 illustrates a conceptual model of the PLL circuitry, configura-
tion inputs, and resulting outputs. In the figure, the VCO is an intermediate
clock from which the core clock (CCLK) and system clock (SCLK) are
derived.

PLL Clock Multiplier Ratios
The PLL control register (PLL_CTL) governs the operation of the PLL. For
details about the PLL_CTL register, see “PLL Control (PLL_CTL) Register”
on page 8-7.

The divide frequency (DF) bit and multiplier select (MSEL[5:0]) field con-
figure the various PLL clock dividers:

• DF enables the input divider

• MSEL[5:0] controls the feedback dividers
The reset value of MSEL is 0xA. This value can be reprogrammed at
startup in the boot code.

Table 8-1 illustrates the VCO multiplication factors for the various MSEL
and DF settings.

Figure 8-1. PLL Block Diagram

VCOCLKIN

DF

MSEL[5:0]

SSEL[3:0]

DIVIDER

CCLK

SCLK

BYPASS

CSEL[1:0]

LOOP
FILTER

PHASE
DETECT

CLOCK
DIVIDE

AND
MUX

/1 or /2

Clocking

8-4 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

As shown in the table, different combinations of MSEL[5:0] and DF can
generate the same VCO frequencies. For a given application, one combina-
tion may provide lower power or satisfy the VCO maximum frequency.
Under normal conditions, setting DF to 1 typically results in lower power
dissipation. See ADSP-BF538/ADSP-BF538F Embedded Processor Data
Sheet for maximum and minimum frequencies for CLKIN, CCLK, and VCO.

Core Clock/System Clock Ratio Control

Table 8-2 describes the programmable relationship between the VCO fre-
quency and the core clock. Table 8-3 shows the relationship of the VCO
frequency to the system clock. Note the divider ratio must be chosen to
limit the SCLK to a frequency specified in ADSP-BF538/ADSP-BF538F
Embedded Processor Data Sheet. The SCLK drives all synchronous, sys-
tem-level logic.

The divider ratio control bits, CSEL and SSEL, are in the PLL divide regis-
ter (PLL_DIV). For information about this register, see “PLL Divide
(PLL_DIV) Register” on page 8-6. Appendix B, “System MMR Assign-
ments”, shows the register addresses.

The reset value of CSEL[1:0] is 0x0 (/1), and the reset value of SSEL[3:0]
is 0x5. These values can be reprogrammed at startup by the boot code.

Table 8-1. MSEL Encodings

Signal name
MSEL[5:0]

VCO Frequency
DF = 0 DF = 1

0 64x 32x

1 1x 0.5x

2 2x 1x

N = 3–62 Nx 0.5Nx

63 63x 31.5x

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 8-5

Dynamic Power Management

By writing the appropriate value to PLL_DIV, you can change the CSEL and
SSEL value dynamically. Note the divider ratio of the core clock can never
be greater than the divider ratio of the system clock. If the PLL_DIV register
is programmed to illegal values, the SCLK divider is automatically increased
to be greater than or equal to the core clock divider.

The PLL_DIV register can be programmed at any time to change the CCLK
and SCLK divide values without entering the Idle state.

As long as the MSEL and DF control bits in the PLL control register
(PLL_CTL) remain constant, the PLL is locked.

Table 8-2. Core Clock Ratio

Signal Name
CSEL[1:0]

Divider Ratio
VCO/CCLK

Example Frequency Ratios (MHz)
VCO CCLK

00 1 300 300

01 2 600 300

10 4 600 150

11 8 400 50

Table 8-3. System Clock Ratio

Signal Name
SSEL[3:0]

Divider Ratio
VCO/SCLK

Example Frequency Ratios (MHz)
VCO SCLK

0000 Reserved N/A N/A

0001 1:1 100 100

0010 2:1 200 100

0011 3:1 400 133

0100 4:1 500 125

0101 5:1 600 120

0110 6:1 600 100

N = 7–15 N:1 600 600/N

Clocking

8-6 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

 If changing the clock ratio via writing a new SSEL value into
PLL_DIV, take care that the enabled peripherals do not suffer data
loss due to SCLK frequency changes.

PLL Registers
The user interface to the PLL is through four memory-mapped registers
(MMRs):

• The PLL divide register (PLL_DIV)

• The PLL control register (PLL_CTL)

• The PLL status register (PLL_STAT)

• The PLL lock count register (PLL_LOCKCNT)

All four registers are 16-bit MMRs and must be accessed with aligned
16-bit reads/writes.

PLL Divide (PLL_DIV) Register

The PLL divide register (PLL_DIV) divides the PLL output clock to create
the processor core clock (CCLK) and the system clock (SCLK). These values
can be independently changed during processing to reduce power dissipa-
tion without changing the PLL state. The only restrictions are the
resulting CCLK frequency must be greater than or equal to the SCLK fre-
quency, and SCLK must fall within the allowed range specified in
ADSP-BF538/ADSP-BF538F Embedded Processor Data Sheet. If the CCLK
and SCLK divide values are programmed otherwise, the SCLK value is auto-
matically adjusted to be slower than or equal to the core clock. Figure 8-2
shows the bits in the PLL_DIV register.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 8-7

Dynamic Power Management

PLL Control (PLL_CTL) Register

The PLL control register (PLL_CTL) controls operation of the PLL (see
Figure 8-3). Note changes to the PLL_CTL register do not take effect imme-
diately. In general, the PLL_CTL register is first programmed with new
values, and then a specific PLL programming sequence must be executed
to implement the changes. See “PLL Programming Sequence” on
page 8-19.

Figure 8-2. PLL Divide Register

Figure 8-3. The PLL Control Register

PLL Divide Register (PLL_DIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1

0 - Reserved
1-15 - SCLK = VCO / X

CSEL[1:0] (Core Select)

0 0 0 0 0 0 0 0 0 0 0 0 1 0

00 - CCLK = VCO /1
01 - CCLK = VCO / 2
10 - CCLK = VCO / 4
11 - CCLK = VCO / 8

SSEL[3:0] (System Select)

Reset = 0x000500xFFC0 0004

00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 1 0 1 0 0 1 0 0 0 0 0

See Table 8-1 on page 8-4 for
CLKIN/VCO multiplication factors

PLL Control Register (PLL_CTL)

BYPASS
0 - Do not bypass PLL
1 - Bypass PLL

MSEL[5:0]
(Multiplier Select)

DF (Divide Frequency)
0 - PLL input clock is CLKIN
1 - PLL input clock is CLKIN/2
PLL_OFF
0 - Enable power to PLL
1 - Disable power to PLL

STOPCK (Stop Clock)
0 - CCLK on
1 - CCLK off

PDWN (Power Down)
0 - All internal clocks on
1 - All internal clocks off

Reset = 0x14400xFFC0 0000

OUTDELAY[1:0] (Output Delay)
00 - Nominal output delay
01 - Add ~400ps of output delay
10 - Add ~200ps of output delay
11 - Subtract ~200ps of output delay

INDELAY[1:0]
(Input Delay)
00 - Nominal input delay
01 - Add ~200ps of input delay
10 - Subtract ~200ps of input
 delay
11 - Subtract ~400ps of input
 delay

Clocking

8-8 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The following fields of the PLL_CTL register are used to control the PLL:

• MSEL[5:0] – The multiplier select (MSEL) field defines the input
clock to VCO clock (CLKIN to VCO) multiplier.

• BYPASS – This bit is used to bypass the PLL. When BYPASS is set,
CLKIN is passed directly to the core and peripheral clocks.

• OUTDELAY[1:0] – These bits are used to adjust when the external
memory output signals (address, write data, and control) transition
with respect to CLKOUT. The 00 encoding of the OUTDELAY field rep-
resents the nominal output delay. The memory output signals can
have 200 ps or 400 ps delay added to the nominal output delay or
can have 200 ps of delay subtracted from the nominal output delay.
The default value for OUTDELAY field is 01 selecting 400 ps of delay
to be added to the nominal output delay.

• INDELAY[1:0] – These bits are used to adjust when the external
memory input signals (read data) are sampled with respect to
CLKOUT. The 00 encoding of INDELAY field selects the nominal sam-
ple point. The sample point of the memory input signals can be
either be delayed from the nominal sample point by 200 ps or can
be sampled 200 ps or 400 ps earlier than the nominal sample point.
The default value for INDELAY field is 00 selecting the nominal sam-
ple point.

• PDWN – The power down (PDWN) bit is used to place the processor in
the deep sleep operating mode.

For information about operating modes, see “Operating Modes”
on page 8-11.

• STOPCK – The stop clock (STOPCK) bit is used to enable/disable the
core clock, CCLK.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 8-9

Dynamic Power Management

• PLL_OFF – This bit is used to enable/disable power to the PLL.

• DF – The divide frequency (DF) bit controls the PLL input clock
divider which determines whether the PLL input clock is CLKIN
or CLKIN/2.

PLL Status (PLL_STAT) Register

The PLL status register (PLL_STAT) indicates the operating mode of the
PLL and processor (see Figure 8-4). For more information about operat-
ing modes, see “Operating Modes” on page 8-11.

The following fields are used in the PLL_STAT register:

• PLL_LOCKED – This field is set to 1 when the internal PLL lock
counter has incremented to the value set in the PLL lock count reg-
ister (PLL_LOCKCNT). For more information, see “PLL Lock Count
(PLL_LOCKCNT) Register” on page 8-10.

• ACTIVE_PLLDISABLED – This field is set to 1 when the processor is in
active operating mode with the PLL powered down.

• FULL_ON – This field is set to 1 when the processor is in full on
operating mode.

• ACTIVE_PLLENABLED – This field is set to 1 when the processor is in
active operating mode with the PLL powered up.

Figure 8-4. PLL Status Register

000 0 0 0 0 0

PLL Status Register (PLL_STAT)
Read only. Unless otherwise noted, 1 - Processor operating in this mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 0 1 0 0 0 1 Reset = 0x00A2

ACTIVE_PLLENABLED

FULL_ONACTIVE_PLLDISABLED

PLL_LOCKED

0xFFC0 000C

Clocking

8-10 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

PLL Lock Count (PLL_LOCKCNT) Register

When changing clock frequencies in the PLL, the PLL requires time to
stabilize and lock to the new frequency.

The PLL lock count register (PLL_LOCKCNT) defines the number of SCLK
cycles that occur before the processor sets the PLL_LOCKED bit in the
PLL_STAT register. When executing the PLL programming sequence, the
internal PLL lock counter begins incrementing upon execution of the IDLE
instruction. The lock counter increments by 1 each SCLK cycle. When the
lock counter has incremented to the value defined in the PLL_LOCKCNT reg-
ister, the PLL_LOCKED bit is set.

See ADSP-BF538/ADSP-BF538F Embedded Processor Data Sheet for more
information about PLL stabilization time and programmed values for this
register. For more information about operating modes, see “Operating
Modes” on page 8-11. For further information about the PLL program-
ming sequence, see “PLL Programming Sequence” on page 8-19.

Figure 8-5. PLL Lock Count Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

LOCKCNT
Number of SCLK cycles
before PLL Lock Count
timer expires.

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 Reset = 0x0200

PLL Lock Count Register (PLL_LOCKCNT)

0xFFC0 0010

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 8-11

Dynamic Power Management

Dynamic Power Management Controller
The dynamic power management controller (DPMC) works in conjunc-
tion with the PLL, allowing the user to control the processor’s
performance characteristics and power dissipation dynamically. The
DPMC provides these features that allow the user to control performance
and power:

• Multiple operating modes – The processor works in four operating
modes, each with different performance characteristics and power
dissipation profiles. See “Operating Modes” on page 8-11.

• Peripheral clocks – Clocks to each peripheral are disabled automat-
ically when the peripheral is disabled.

• Voltage control – The processor provides an on-chip switching reg-
ulator controller which, with some external components, can
generate internal voltage levels from the external Vdd (VDDEXT)
supply.

Depending on the needs of the system, the voltage level can be
reduced to save power. See “Voltage Regulator Control (VR_CTL)
Register” on page 8-25.

Operating Modes
The processor works in four operating modes, each with unique perfor-
mance and power saving benefits. Table 8-4 summarizes the operational
characteristics of each mode.

Dynamic Power Management Controller

8-12 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Dynamic Power Management Controller States
Power management states are synonymous with the PLL control state.
The state of the DPMC/PLL can be determined by reading the PLL status
register (see “PLL Status (PLL_STAT) Register” on page 8-9). In all
modes except sleep and deep sleep, the core can either execute instructions
or be in Idle core state. If the core is in the Idle state, it can be awakened.

In all modes except active, the SCLK frequency is determined by the
SSEL-specified ratio to VCO. In sleep mode, although the core clock is dis-
abled, SCLK continues to run at the specified SSEL ratio.

The following sections describe the DPMC/PLL states in more detail, as
they relate to the power management controller functions.

Full On Mode

Full on mode is the maximum performance mode. In this mode, the PLL
is enabled and not bypassed. Full on mode is the normal execution state of
the processor, with the processor and all enabled peripherals running at
full speed. DMA access is available to L1 memories. From full on mode,
the processor can transition directly to active, sleep, or deep sleep modes,
as shown in Figure 8-6 on page 8-16.

Table 8-4. Operational Characteristics

Operating
Mode

Power
Savings

PLL
Status Bypassed

CCLK SCLK Allowed
DMA
Access

Full On None Enabled No Enabled Enabled L1

Active Medium Enabled 1 Yes Enabled Enabled L1

Sleep High Enabled No Disabled Enabled –

Deep Sleep Maximum Disabled – Disabled Disabled –

1 PLL can also be disabled in this mode.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 8-13

Dynamic Power Management

Active Mode

In active mode, the PLL is enabled but bypassed. Because the PLL is
bypassed, the processor’s core clock (CCLK) and system clock (SCLK) run at
the input clock (CLKIN) frequency. DMA access is available to appropri-
ately configured L1 memories.

In active mode, it is possible not only to bypass, but also to disable the
PLL. If disabled, the PLL must be re-enabled before transitioning to full
on or sleep modes.

From active mode, the processor can transition directly to full on, sleep, or
deep sleep modes.

Sleep Mode

Sleep mode significantly reduces power dissipation by idling the core pro-
cessor. The CCLK is disabled in this mode; however, SCLK continues to run
at the speed configured by MSEL and SSEL bit settings. As CCLK is disabled,
DMA access is available only to external memory in sleep mode. From
sleep mode, a wake-up event causes the processor to transition to one of
these modes:

• Active mode if the BYPASS bit in the PLL_CTL register is set

• Full on mode if the BYPASS bit is cleared

The processor resumes execution from the program counter value present
immediately prior to entering sleep mode.

 The STOPCK bit is not a status bit and is therefore unmodified by
hardware when the wakeup occurs. Software must explicitly clear
STOPCK in the next write to PLL_CTL to avoid going back into sleep
mode.

Dynamic Power Management Controller

8-14 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Deep Sleep Mode

Deep sleep mode maximizes power savings by disabling the PLL, CCLK,
and SCLK. In this mode, the processor core and all peripherals except the
real-time clock (RTC) are disabled. DMA is not supported in this mode.

Deep sleep mode can be exited only by an RTC interrupt or hardware
reset event. An RTC interrupt causes the processor to transition to active
mode; a hardware reset begins the hardware reset sequence. For more
information about hardware reset, see “Hardware Reset” on page 3-14.

Note an RTC interrupt in deep sleep mode automatically resets some
fields of the PLL control register (PLL_CTL). See Table 8-5.

 When in deep sleep operating mode, clocking to the SDRAM is
turned off. Before entering deep sleep mode, software should
ensure that important information in SDRAM is saved to a
non-volatile memory.

Hibernate State

For lowest possible power dissipation, this state allows the internal supply
(VDDINT) to be powered down, while keeping the I/O supply (VDDEXT)
running. Although not strictly an operating mode like the four modes
detailed above, it is illustrative to view it as such (see Figure 8-6). Since

Table 8-5. Control Register Values after RTC Wake-up Interrupt

Field Value

PLL_OFF 0

STOPCK 0

PDWN 0

BYPASS 1

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 8-15

Dynamic Power Management

this feature is coupled to the on-chip switching regulator controller, it is
discussed in detail in “Powering Down the Core (Hibernate State)” on
page 8-29.

Operating Mode Transitions
Figure 8-6 graphically illustrates the operating modes and transitions. In
the diagram, ellipses represent operating modes. Arrows between the
ellipses show the allowed transitions into and out of each mode.

The text next to each transition arrow shows the fields in the PLL control
register (PLL_CTL) that must be changed for the transition to occur. For
example, the transition from full on mode to sleep mode indicates that the
STOPCK bit must be set to 1 and the PDWN bit must be set to 0. For informa-
tion about how to effect mode transitions, see “Programming Operating
Mode Transitions” on page 8-18.

In addition to the mode transitions shown in Figure 8-6, the PLL can be
modified while in active operating mode. Power to the PLL can be applied
and removed, and new clock-in to VCO clock (CLKIN to VCO) multiplier
ratios can be programmed. Described in detail below, these changes to the
PLL do not take effect immediately. As with operating mode transitions,
the PLL programming sequence must be executed for these changes to
take effect (see “PLL Programming Sequence” on page 8-19).

• PLL disabled: In addition to being bypassed in the active mode,
power to the PLL can be removed.

When power is removed from the PLL, additional power savings
are achieved although they are relatively small. To remove power to
the PLL, set the PLL_OFF bit in the PLL_CTL register, and then exe-
cute the PLL programming sequence.

• PLL enabled: When the PLL is powered down, power can be reap-
plied later when additional performance is required.

Dynamic Power Management Controller

8-16 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 8-6. Operating Mode Transitions

Sleep

Full OnActive

Deep
Sleep

Reset

Wakeup &
BYPASS = 0

STOPCK = 1 &
 PDWN = 0

 PDWN = 1

RTC_WAKEUP

 PDWN = 1

STOPCK = 1 &
 PDWN = 0

HARDWARE
 RESET

BYPASS = 0 & PLL_OFF = 0 &
 STOPCK = 0 & PDWN = 0

BYPASS = 1 & STOPCK = 0 &
 PDWN = 0

Wakeup &
BYPASS = 1

Hibernate
RTC_WAKEUP

 WAKE = 1 and

HARDWARE RESET
 FREQ = 00

 FREQ = 00

CAN Activity and
CANWE = 1

GPWE = 1 and falling
edge on GPW pin

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 8-17

Dynamic Power Management

Power to the PLL must be reapplied before transitioning to full on
or sleep operating modes. To apply power to the PLL, clear the
PLL_OFF bit in the PLL_CTL register, and then execute the PLL pro-
gramming sequence.

• New multiplier ratio in active mode: New clock-in to VCO clock
(CLKIN to VCO) multiplier ratios can be programmed while in active
mode.

Although the CLKIN to VCO multiplier changes are not realized in
active mode, forcing the PLL to lock to the new ratio in active
mode before transitioning to full on mode reduces the transition
time, because the PLL is already locked to the new ratio. Note the
PLL must be powered up to lock to the new ratio. To program a
new CLKIN to VCO multiplier, write the new MSEL[5:0] and/or DF
values to the PLL_CTL register; then execute the PLL programming
sequence.

• New multiplier ratio in full on mode: The multiplier ratio can also
be changed while in full on mode.

In this case, the PLL state automatically transitions to active mode
while the PLL is locking. After locking, the PLL returns to full on
state. To program a new CLKIN to VCO multiplier, write the new
MSEL[5:0] and/or DF values to the PLL_CTL register; then execute
the PLL programming sequence (see “PLL Programming
Sequence” on page 8-19).

Dynamic Power Management Controller

8-18 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Table 8-6 summarizes the allowed operating mode transitions.

 Attempting to cause mode transitions other than those shown in
Table 8-6 causes unpredictable behavior.

Programming Operating Mode Transitions

The operating mode is defined by the state of the PLL_OFF, BYPASS,
STOPCK, and PDWN bits of the PLL control register (PLL_CTL). Merely modi-
fying the bits of the PLL_CTL register does not change the operating mode
or the behavior of the PLL. Changes to the PLL_CTL register are realized
only after executing a specific code sequence, which is shown in
Listing 8-1. This code sequence first brings the processor to a known,
idled state. Once in this idled state, the PLL recognizes and implements
the changes made to the PLL_CTL register. After the changes take effect, the
processor operates with the new settings, including the new operating
mode, if one is programmed.

Table 8-6. Allowed Operating Mode Transitions

New Mode

Current Mode

Full On Active Sleep Deep Sleep

Full On – Allowed Allowed –

Active Allowed – Allowed Allowed

Sleep Allowed Allowed – –

Deep Sleep Allowed Allowed – –

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 8-19

Dynamic Power Management

PLL Programming Sequence

If new values are assigned to MSEL or DF in the PLL control register
(PLL_CTL), the instruction sequence shown in Listing 8-1 puts those
changes into effect. The PLL programming sequence is also executed
when transitioning between operating states.

 Changes to the divider-ratio bits, CSEL and SSEL, can be made
dynamically; they do not require execution of the PLL program-
ming sequence.

Listing 8-1. PLL Programming Sequence

CLI R0 ; /* disable interrupts */

IDLE ; /* drain pipeline and send core into IDLE state */

STI R0 ; /* re-enable interrupts after wakeup */

The first two instructions in the sequence take the core to an idled state
with interrupts disabled; the interrupt mask (IMASK) is saved to the R0 reg-
ister, and the instruction pipeline is halted. The PLL state machine then
loads the PLL_CTL register changes into the PLL.

If the PLL_CTL register changes include a new CLKIN to VCO multiplier or
the changes reapply power to the PLL, the PLL needs to re-lock. To
re-lock, the PLL lock counter is first cleared, and then it begins incre-
menting, once per SCLK cycle. After the PLL lock counter reaches the value
programmed into the PLL Lock count register (PLL_LOCKCNT), the PLL
sets the PLL_LOCKED bit in the PLL status register (PLL_STAT), and the PLL
asserts the PLL wake-up interrupt.

Depending on how the PLL_CTL register is programmed, the processor
proceeds in one of the following four ways:

• If the PLL_CTL register is programmed to enter either active or full
on operating mode, the PLL generates a wake-up signal, and then
the processor continues with the STI instruction in the sequence, as

Dynamic Power Management Controller

8-20 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

described in “PLL Programming Sequence Continues” on
page 8-21.

When the state change enters full on mode from active mode or
active from full on, the PLL itself generates a wake-up signal that
can be used to exit the idled core state. The wake-up signal is gen-
erated by the PLL itself or another peripheral, watchdog or other
timer, RTC, or other source. For more information about events
that cause the processor to wake up from being idled, see “System
Interrupt Wake-Up Enable (SIC_IWRx) Registers” on page 4-27.

• If the PLL_CTL register is programmed to enter the sleep operating
mode, the processor immediately transitions to the sleep mode and
waits for a wake-up signal before continuing.

When the wake-up signal has been asserted, the instruction
sequence continues with the STI instruction, as described in the
section, “PLL Programming Sequence Continues” on page 8-21,
causing the processor to transition to:

• —Active mode if BYPASS in the PLL_CTL register is set

—Full on mode if the BYPASS bit is cleared

• If the PLL_CTL register is programmed to enter deep sleep operating
mode, the processor immediately transitions to deep sleep mode
and waits for an RTC interrupt or hardware reset signal:

• —An RTC interrupt causes the processor to enter active
operating mode and continue with the STI instruction in
the sequence, as described below.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 8-21

Dynamic Power Management

—A hardware reset causes the processor to execute the reset
sequence, as described in “Reset” on page 4-44.

• If no operating mode transition is programmed, the PLL generates
a wake-up signal, and the processor continues with the STI instruc-
tion in the sequence, as described in the following section.

PLL Programming Sequence Continues

The instruction sequence shown in Listing 8-1 then continues with the
STI instruction. Interrupts are re-enabled, IMASK is restored, and normal
program flow resumes.

To prevent spurious activity, DMA should be suspended while executing
this instruction sequence.

Examples

The following code examples illustrate how to effect various operating
mode transitions. Some setup code has been removed for clarity, and the
following assumptions are made:

• P0 points to the PLL control register (PLL_CTL). P1 points to the
PLL Divide register.

• The PLL wake-up interrupt is enabled as a wake-up signal.

• MSEL[5:0] and DF in PLL_CTL are set to (b#011111) and (b#0)
respectively, signifying a CLKIN to VCO multiplier of 31x.

Active Mode to Full On Mode

Listing 8-2 provides code for transitioning from active operating mode to
full on mode.

Dynamic Power Management Controller

8-22 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Listing 8-2. Transitioning From Active Mode to Full On Mode

CLI R2; /* disable interrupts, copy IMASK to R2 */

R1.L = 0x3E00; /* clear BYPASS bit */

W[P0] = R1; /* and write to PLL_CTL */

IDLE; /* drain pipeline, enter idled state, wait for

 PLL wakeup */

STI R2; /* after PLL wakeup occurs, restore interrupts

 and IMASK */

... /* processor is now in Full On mode */

Full On Mode to Active Mode

Listing 8-3 provides code for transitioning from full on operating mode to
active mode.

Listing 8-3. Transitioning From Full On Mode to Active Mode

CLI R2; /* disable interrupts, copy IMASK to R2 */

R1.L = 0x3F00; /* set BYPASS bit */

W[P0] = R1; /* and write to PLL_CTL */

IDLE; /* drain pipeline, enter idled state, wait for

 PLL wakeup */

STI R2; /* after PLL wakeup occurs, restore interrupts

 and IMASK */

... /* processor is now in Active mode */

In the Full On Mode, Change CLKIN to VCO Multiplier From 31x to 2x

Listing 8-4 provides code for changing CLKIN to VCO multiplier from 31x
to 2x in full on operating mode.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 8-23

Dynamic Power Management

Listing 8-4. Changing CLKIN to VCO Multiplier

CLI R2; /* disable interrupts, copy IMASK to R2 */

R1.L = 0x0400; /* change VCO multiplier to 2x */

W[P0] = R1; /* by writing to PLL_CTL */

IDLE; /* drain pipeline, enter idled state, wait for

 PLL wakeup */

STI R2; /* after PLL wakeup occurs, restore interrupts

 and IMASK */

... /* processor is now in Full On mode, with the

 CLKIN to VCO multiplier set to 2x */

Dynamic Supply Voltage Control
In addition to clock frequency control, the processor provides the capabil-
ity to run the core processor at different voltage levels. As power
dissipation is proportional to the voltage squared, significant power reduc-
tions can be accomplished when lower voltages are used.

The processor uses three power domains. These power domains are shown
in Table 8-7. Each power domain has a separate VDD supply. Note the
internal logic of the processor and much of the processor I/O can be run
over a range of voltages. See ADSP-BF538/ADSP-BF538F Embedded Pro-
cessor Data Sheet for details on the allowed voltage ranges for each power
domain and power dissipation data.

Dynamic Power Management Controller

8-24 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Power Supply Management
The processor provides an on-chip switching regulator controller which,
with some external hardware, can generate internal voltage levels from the
external VDDEXT supply with an external power transistor as shown in
Figure 8-7. This voltage level can be reduced to save power, depending
upon the needs of the system.

 When increasing the VDDINT voltage, the external FET will switch
on for a longer period. The VDDEXT supply should have appropri-
ate capacitive bypassing to enable it to provide sufficient current
without drooping the supply voltage.

Table 8-7. Power Domains

Power Domain VDD Range

All internal logic except RTC Variable

Real-Time Clock I/O and internal logic Variable

All other I/O Variable

Figure 8-7. Processor Voltage Regulator

VDDEXT

VDDINT

VROUT1–0

EXTERNAL COMPONENTS

2.25V TO 3.6V
INPUT VOLTAGE
RANGE

FDS9431A

ZHCS1000
100µF 1µF

10µH

0.1µF

NOTE: VROUT1–0 SHOULD BE TIED TOGETHER EXTERNALLY
AND DESIGNER SHOULD MINIMIZE TRACE LENGTH TO FDS9431A.

100µF

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 8-25

Dynamic Power Management

 Voltage Regulator Control (VR_CTL) Register

The on-chip core voltage regulator controller manages the internal logic
voltage levels for the VDDINT supply. The voltage regulator control regis-
ter (VR_CTL) controls the regulator (see Figure 8-8). Writing to VR_CTL
initiates a PLL re-lock sequence.

The following fields of the VR_CTL register are used to control internal
logic voltage levels:

• SCKELOW — The drive SCKE low during reset (SCKELOW) control bit
protects against the default reset state behavior of setting the EBIU
pins to their inactive state. This bit should be set if the SDRAM
has been properly configured and is being placed into self-refresh
mode while the processor is in hibernate state. Failure to set this bit
results in the SCKE pin going high during reset, which takes the
SDRAM out of self-refresh mode, resulting in data decay in the
SDRAM due to loss of refresh rate.

Figure 8-8. Voltage Regulator Control Register

12

0

15 14 13 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 00 0 1 1 0 0

Voltage Regulator Control Register (VR_CTL)

Reset = 0x00DB

VLEV[3:0] (Internal Voltage Level)
See Table 8-8 for encodings

FREQ[1:0] (Voltage Frequency)
Controls the switching oscillator
frequency for the voltage regulator,
see Table 8-10 for encodings

GAIN[1:0] (Voltage Level Gain)
Controls how quickly the voltage
output settles on its final value,
see Table 8-9 for encodings

0 11

WAKE (RTC Wakeup Enable)
0 - RTC wakeup disabled
1 - RTC wakeup enabled

0xFFC0 0008

CANWE (CAN Wakeup Enable)
0 - CAN wakeup disabled
1 - CAN wakeup enabled

GPWE (General-Purpose
Wakeup Enable)
0 - GP wakeup disabled
1 - GP wakeup enabled

1

SCKELOW
0 - SCKE toggles high during
reset (normal /RESET operation)
1 - Drives SCKE low during reset.

Dynamic Power Management Controller

8-26 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

 The SCKE pin will be three-stated during hibernate. In addition to
setting the SCKELOW bit in the VR_CTL register prior to entering the
hibernate state, an external pull-down resistor on the SCKE pin is
required to also keep the pin low when the Blackfin processor is
not driving it.

• CANWE — The wake-up enable (CANWE) control bit allows the voltage
regulator to be awakened from hibernate (FREQ = b#00) when a fall-
ing edge on the CANRX input pin is detected.

• GPWE — The general-purpose wake-up enable (GPWE) control bit
allows the voltage regulator to be awakened from Hibernate
(FREQ = b#00) upon detection of a falling edge on the GPW pin.

 The GPW pin is a 5V-tolerant input-only pin.

• WAKE — The wake-up enable (WAKE) control bit allows the voltage
regulator to be awakened from hibernate (FREQ = b#00) upon an
interrupt from the RTC.

• FREQ[1:0] – The frequency (FREQ) field controls the switching
oscillator frequency for the voltage regulator. A higher frequency
setting allows for smaller switching capacitor and inductor values,
while potentially generating more EMI (electromagnetic
interference).

 To bypass on board regulation, program a value of b#00 in the
FREQ field and leave the VROUT pins floating.

• GAIN[1:0] – The gain (GAIN) field controls the internal loop gain of
the switching regulator loop; this bit controls how quickly the volt-
age output settles on its final value. In general, higher gain allows
for quicker settling times but causes more overshoot in the process.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 8-27

Dynamic Power Management

• VLEV[3:0] – The voltage level (VLEV) field identifies the nominal
internal voltage level. Refer to ADSP-BF538/ADSP-BF538F
Embedded Processor Data Sheet for the applicable VLEV voltage range
and associated voltage tolerances.

Table 8-8 lists the voltage level values for VLEV[3:0].

Table 8-9 lists the switching frequency values configured by FREQ[1:0].

Table 8-8. VLEV Encodings

VLEV Voltage

0000–0101 Reserved

0110 .85 volts

0111 .90 volts

1000 .95 volts

1001 1.00 volts

1010 1.05 volts

1011 1.10 volts

1100 1.15 volts

1101 1.20 volts

1110 1.25 volts

1111 Reserved

Table 8-9. FREQ Encodings

FREQ Value

00 Power down/bypass on board regulation

01 333 kHz

10 667 kHz

11 1 MHz

Dynamic Power Management Controller

8-28 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Table 8-10 lists the gain levels configured by GAIN[1:0].

Changing Voltage

Minor changes in operating voltage can be accommodated without requir-
ing special consideration or action by the application program. See
ADSP-BF538/ADSP-BF538F Embedded Processor Data Sheet for more
information about voltage tolerances and allowed rates of change.

 Reducing the processor’s operating voltage to greatly conserve
power or raising the operating voltage to greatly increase perfor-
mance will probably require significant changes to the operating
voltage level. To ensure predictable behavior when varying the
operating voltage, the processor should be brought to a known and
stable state before the operating voltage is modified.

The recommended procedure is to follow the PLL programming sequence
when varying the voltage. After changing the voltage level in the VR_CTL
register, the PLL will automatically enter the active mode when the pro-
cessor enters the idle state. At that point the voltage level will change and
the PLL will re-lock with the new voltage. After the PLL_LOCKCNT has
expired, the part will return to the full on state. When changing voltages, a
larger PLL_LOCKCNT value may be necessary than when changing just the
PLL frequency. See ADSP-BF538/ADSP-BF538F Embedded Processor
Data Sheet for details.

Table 8-10. GAIN Encodings

GAIN Value

00 5

01 10

10 20

11 50

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 8-29

Dynamic Power Management

After the voltage has been changed to the new level, the processor can
safely return to any operational mode so long as the operating parameters,
such as core clock frequency (CCLK), are within the limits specified in
ADSP-BF538/ADSP-BF538F Embedded Processor Data Sheet for the new
operating voltage level.

Powering Down the Core (Hibernate State)

The internal supply regulator for the processor can be shut off by writing
00 to the FREQ bits of the VR_CTL register. This disables both CCLK and
SCLK. Furthermore, it sets the internal power supply voltage (VDDINT)
to 0 V, eliminating any leakage currents from the processor. The internal
supply regulator can be woken up by several user-selectable events, all of
which are controlled in the VR_CTL register:

• Assertion of the RESET pin will always exit hibernate state and
requires no modification to the VR_CTL register.

• RTC event. Set the wake-up enable (WAKE) control bit to enable
wake up upon a RTC interrupt. This can be any of the RTC inter-
rupts (alarm, daily alarm, day, hour, minute, second, or
stopwatch).

• Activity on the CANRX pin. Set the CAN RX wake-up enable (CANWE)
control bit to enable wake up upon detection of CAN bus activity
on the CANRX pin. See “CAN Wake-Up From Hibernate State” on
page 19-4 for more details.

• Activity on the GPW pin. Set the general-purpose wake-up enable
(GPWE) control bit to enable wake up upon detection of a high to
low transition on the GPW pin. This allows an external host to take
the Blackfin processor out of the hibernate state.

Dynamic Power Management Controller

8-30 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

If the on-chip supply controller is bypassed, so that VDDINT is sourced
externally, the only way to power down the core is to remove the external
VDDINT voltage source.

 When the core is powered down, VDDINT is set to 0V, and thus
the internal state of the processor is not maintained, with the
exception of the VR_CTL register. Therefore, any critical informa-
tion stored internally (memory contents, register contents, and so
on) must be written to a non-volatile storage device prior to remov-
ing power. Be sure to set the SCKELOW (drive SCKE low during reset)
control bit in the VR_CTL register to protect against the default reset
state behavior of setting the EBIU pins to their inactive state. Fail-
ure to set this bit results in the SCKE pin going high during reset,
which takes the SDRAM out of self-refresh mode, resulting in data
decay in the SDRAM due to loss of refresh rate.

Powering down VDDINT does not affect VDDEXT. While VDDEXT is still
applied to the processor, external pins are maintained at a three-state level,
unless otherwise specified.

 The SCKE pin will be three-stated during hibernate. In addition to
setting the SCKELOW bit in the VR_CTL register prior to entering the
hibernate state, an external pull-down resistor on the SCKE pin is
required to also keep the pin low when the Blackfin processor is
not driving it.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 8-31

Dynamic Power Management

To power down the internal supply:

1. Write 0 to the SIC_IWRx registers to prevent peripheral resources
from interrupting the hibernate process.

2. Write to VR_CTL, setting the FREQ bits to b#00, and the appropriate
wake-up bit to 1 (CANWE, GPWE, WAKE). Optionally, set the SCKELOW
bit to 1 if the SDRAM is being left in self-refresh mode to maintain
the SDRAM data while the processor is put into the hibernate
state.

 The SCKE pin will be three-stated during hibernate. In addition to
setting the SCKELOW bit in the VR_CTL register prior to entering the
hibernate state, an external pull-down resistor on the SCKE pin is
required to also keep the pin low when the Blackfin processor is
not driving it.

3. Execute this code sequence:

CLI R0 ;

IDLE ;

4. When the idle state is reached, VDDINT transitions to 0 V.

5. When the processor is woken up, whether by the RTC, by the
CAN bus, by the GPW pin, or by the RESET pin, the PLL re-locks
and the boot sequence defined by the BMODE[1:0] pin settings takes
effect.

Dynamic Power Management Controller

8-32 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-1

9 DIRECT MEMORY ACCESS

The processor uses direct memory access (DMA) to transfer data within
memory spaces or between a memory space and a peripheral. The proces-
sor can specify data transfer operations and return to normal processing
while the fully integrated DMA controllers carry out the data transfers
independent of processor activity.

The processor contains two DMA engines: DMA controller 0 and DMA
controller 1. These DMA controllers are two instances of the DMA engine
documented in this chapter.

The DMA controllers can perform several types of data transfers:

• Between memory and memory DMA (MDMA) (For more infor-
mation, see “Memory DMA” on page 9-50.)

• Between memory and a serial peripheral interface (SPI) (For more
information, see “SPI Compatible Port Controllers” on page 10-1.)

• Between memory and a serial port (SPORT) (For more informa-
tion, see “Serial Port Controllers” on page 13-1.)

• Between memory and a UART port (For more information, see
“UART Port Controllers” on page 12-1.)

• Between memory and the parallel peripheral interface (PPI) (For
more information, see “Parallel Peripheral Interface” on
page 11-1.)

9-2 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The system includes 14 DMA-capable peripherals, including memory
DMA controllers (MDMA0–1). The 28 DMA channels found in
Table 9-1 support these devices.

This chapter describes the features common to all the DMA channels, as
well as how DMA operations are set up. For specific peripheral features,
see the appropriate peripheral chapter for additional information. Perfor-
mance and bus arbitration for DMA operations can be found in “DAB,
DCB, and DEB Performance” on page 7-9.

DMA transfers on the processor can be descriptor based or register based.
Descriptor based DMA transfers require a set of parameters stored within
memory to initiate a DMA sequence. This sort of transfer allows the
chaining together of multiple DMA sequences. In descriptor based DMA
operations, a DMA channel can be programmed to automatically set up
and start another DMA transfer after the current sequence completes.

Table 9-1. DMA Channels

PPI receive/transmit DMA controller UART0 transmit DMA controller

SPORT0 receive DMA controller UART1 receive DMA controller

SPORT0 transmit DMA controller UART1 transmit DMA controller

SPORT1 receive DMA controller UART2 receive DMA controller

SPORT1 transmit DMA controller UART2 transmit DMA controller

SPORT2 receive DMA controller MDMA0 stream0 transmit (destination)

SPORT2 transmit DMA controller MDMA0 stream0 receive (source)

SPORT3 receive DMA controller MDMA0 stream1 transmit (destination)

SPORT3 transmit DMA controller MDMA0 stream1 receive (source)

SPI0 receive/transmit DMA controller MDMA1 stream0 transmit (destination)

SPI1 receive/transmit DMA controller MDMA1 stream0 receive (source)

SPI2 receive/transmit DMA controller MDMA1 stream1 transmit (destination)

UART0 receive DMA controller MDMA1 stream1 receive (source)

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-3

Direct Memory Access

Register based DMA allows the processor to directly program DMA con-
trol registers to initiate a DMA transfer. On completion, the control
registers may be automatically updated with their original setup values for
continuous transfer, if needed.

DMA and Memory DMA MMRs
For convenience, discussions in this chapter use generic (non-periph-
eral-specific) DMA and memory DMA register names.

Generic DMA register names are listed in Table 9-2.

Generic memory DMA register names are listed in Table 9-4.

DMA registers fall into three categories:

• Current registers, such as DMAx_CURR_ADDR and DMAx_CURR_X_COUNT

• Parameter registers, such as DMAx_CONFIG and DMAx_X_COUNT

• Control/register registers, DMAx_IRQ_STATUS and
DMAx_PERIPHERAL_MAP

The letter x in DMAx represents a specific DMA capable peripheral. For
example, for DMA with default channel mapping, DMA6_CONFIG represents
the DMA_CONFIG register for the UART0 receive peripheral. For default
DMA channel mappings, see Table 9-5.

Only parameter registers can be loaded directly from descriptor elements;
descriptor elements are listed in Table 9-3.

DMA and Memory DMA MMRs

9-4 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Table 9-2 lists the generic names of the DMA registers. For each register,
the table also shows the MMR offset, a brief description of the register,
the register category, and reset value.

Table 9-2. Generic Name of DMA Memory-Mapped Registers

MMR
Offset

Generic
MMR Name

MMR Description Register
Category

Reset Value

0x00 NEXT_DESC_PTR Link pointer to next descriptor Parameter 0x0000 0000

0x04 START_ADDR Start address of current buffer Parameter 0x0000 0000

0x08 DMA_CONFIG DMA configuration register, includ-
ing enable bit

Parameter 0x0000

0x0C Reserved Reserved

0x10 X_COUNT Inner loop count Parameter 0x0001

0x14 X_MODIFY Inner loop address increment, in
bytes

Parameter 0x0002

0x18 Y_COUNT Outer loop count (2D only) Parameter 0x0001

0x1C Y_MODIFY Outer loop address increment, in
bytes

Parameter 0x0002

0x20 CURR_DESC_PTR Current descriptor pointer Current

0x24 CURR_ADDR Current DMA address Current

0x28 IRQ_STATUS interrupt status register
Contains completion and DMA
error interrupt status and channel
state (run/fetch/paused)

control/
register

0x2C PERIPHERAL_MAP Peripheral to DMA channel map-
ping
Contains a 4-bit value specifying the
peripheral to associate with this
DMA channel (read-only for
MDMA channels)

control/
register

0x30 CURR_X_COUNT Current count (1D) or intra-row X
count (2D), counts down from
X_COUNT

Current

0x34 Reserved Reserved

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-5

Direct Memory Access

All DMA registers can be accessed as 16-bit entities. However, the follow-
ing registers may also be accessed as 32-bit registers: NEXT_DESC_PTR,
START_ADDR, CURR_DESC_PTR, CURR_ADDR.

When these four registers are accessed as 16-bit entities, only the lower 16
bits can be accessed.

Naming Conventions for DMA MMRs
Because confusion might arise between descriptor element names and
generic DMA register names, this chapter uses the naming conventions in
Table 9-3, where:

• Note the generic names in the left column are not actually mapped
to resources in the processor.

• The middle column lists the specific MMR name. Only specific
MMR names are mapped to processor resources.

• In DMAx, the letter x represents the number of the DMA channel.
For instance, DMA3_IRQ_STATUS is the IRQ_STATUS MMR for DMA
channel #3.

• The channel number can be assigned by default or can be pro-
grammed. For the DMA channel numbers and the default
peripheral mapping, see Table 9-5.

• The last column lists the macro assigned to each descriptor element
in memory.

0x38 CURR_Y_COUNT Current row count (2D only),
counts down from Y_COUNT

Current

0x3C Reserved Reserved

Table 9-2. Generic Name of DMA Memory-Mapped Registers (Cont’d)

MMR
Offset

Generic
MMR Name

MMR Description Register
Category

Reset Value

DMA and Memory DMA MMRs

9-6 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• The macro name in the last column serves only to clarify the dis-
cussion of how the DMA engine operates.

• The left column lists the generic name of the MMR, which is used
when discussing the general operation of the DMA engine.

Table 9-3. Naming Conventions: DMA MMRs and Descriptor
Elements

Generic MMR
Name

Specific MMR Name
(x = DMA Channel Number)

Name of Corresponding Descriptor
Element in Memory

DMA_CONFIG DMAx_CONFIG DMACFG

NEXT_DESC_PTR DMAx_NEXT_DESC_PTR NDPH (upper 16 bits), NDPL
(lower 16 bits)

START_ADDR DMAx_START_ADDR SAH (upper 16 bits),
SAL (lower 16 bits)

X_COUNT DMAx_X_COUNT XCNT

Y_COUNT DMAx_Y_COUNT YCNT

X_MODIFY DMAx_X_MODIFY XMOD

Y_MODIFY DMAx_Y_MODIFY YMOD

CURR_DESC_PTR DMAx_CURR_DESC_PTR N/A

CURR_ADDR DMAx_CURR_ADDR N/A

CURR_X_COUNT DMAx_CURR_X_COUNT N/A

CURR_Y_COUNT DMAx_CURR_Y_COUNT N/A

IRQ_STATUS DMAx_IRQ_STATUS N/A

PERIPHERAL_MAP DMAx_PERIPHERAL_MAP N/A

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-7

Direct Memory Access

Naming Conventions for Memory DMA
Registers

The names of memory DMA registers differ somewhat from the names of
other DMA registers. memory DMA streams cannot be reassigned to dif-
ferent channels, whereas the peripherals associated with DMA can be
mapped to any DMA channel between 0 and 21.

The processor has two DMA controllers. Each DMA controller contains
two memory DMA streams. The letter 'x' denotes which of the DMA con-
trollers the channel is in, and letters 'yy' have four possible values:

• S0, memory DMA source stream 0

• D0, memory DMA destination stream 0

• S1, memory DMA source stream 1

• D1, memory DMA destination stream 1

Table 9-4 shows the naming conventions for memory DMA registers.

Table 9-4. Naming Conventions for Memory DMA Registers

Generic MMR
Name

Memory DMA MMR Name
(yy = S0, S1, D0, or D1
x = 0 or 1 denoting DMA Controller 0 or 1)

Name of
Corresponding
Descriptor Element in
Memory

DMA_CONFIG MDMAx_yy_CONFIG DMACFG

NEXT_DESC_PTR MDMAx_yy_NEXT_DESC_PTR NDPH (upper 16 bits),
 NDPL (lower 16 bits)

START_ADDR MDMAx_yy_START_ADDR SAH (upper 16 bits),
SAL (lower 16 bits)

X_COUNT MDMAx_yy_X_COUNT XCNT

Y_COUNT MDMAx_yy_Y_COUNT YCNT

X_MODIFY MDMAx_yy_X_MODIFY XMOD

Naming Conventions for Memory DMA Registers

9-8 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Next Descriptor Pointer (DMAx_NEXT_DESC_PTR,
MDMAx_yy_NEXT_DESC_PTR) Registers

The NEXT_DESC_PTR register specifies where to look for the start of the next
descriptor block when the DMA activity specified by the current descrip-
tor block finishes. This register is used only in small and large descriptor
list modes. At the start of a descriptor fetch in either of these modes, the
32-bit NEXT_DESC_PTR is copied into CURR_DESC_PTR. Then, during the
descriptor fetch, the CURR_DESC_PTR register increments after each element
of the descriptor is read in.

In small and large descriptor list modes, NEXT_DESC_PTR, and not
CURR_DESC_PTR, must be programmed directly via MMR access before
starting DMA operation.

In descriptor array mode, the next descriptor pointer register is disre-
garded, and fetching is controlled only by the CURR_DESC_PTR register.

Y_MODIFY MDMAx_yy_Y_MODIFY YMOD

CURR_DESC_PTR MDMAx_yy_CURR_DESC_PTR N/A

CURR_ADDR MDMAx_yy_CURR_ADDR N/A

CURR_X_COUNT MDMAx_yy_CURR_X_COUNT N/A

CURR_Y_COUNT MDMAx_yy_CURR_Y_COUNT N/A

IRQ_STATUS MDMAx_yy_IRQ_STATUS N/A

PERIPHERAL_MAP MDMAx_yy_PERIPHERAL_MAP N/A

Table 9-4. Naming Conventions for Memory DMA Registers (Cont’d)

Generic MMR
Name

Memory DMA MMR Name
(yy = S0, S1, D0, or D1
x = 0 or 1 denoting DMA Controller 0 or 1)

Name of
Corresponding
Descriptor Element in
Memory

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-9

Direct Memory Access

Figure 9-1. Next Descriptor Pointer Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0

Next Descriptor
Pointer[31:16]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Next Descriptor Pointer Register (DMAx_NEXT_DESC_PTR / MDMAx_yy_NEXT_DESC_PTR)
R/W prior to enabling channel, RO after enabling channel

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0

Next Descriptor
Pointer[15:0]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset = 0x0000 0000

Naming Conventions for Memory DMA Registers

9-10 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Start Address (DMAx_START_ADDR,
MDMAx_yy_START_ADDR) Registers

The START_ADDR register, shown in Figure 9-2, contains the start address
of the data buffer currently targeted for DMA.

Figure 9-2. Start Address Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0

DMA Start
Address[31:16]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Start Address Register (DMAx_START_ADDR / MDMAx_yy_START_ADDR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0

DMA Start
Address[15:0]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R/W prior to enabling channel, RO after enabling channel

Reset = 0x0000 0000

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-11

Direct Memory Access

DMA Configuration (DMAx_CONFIG,
MDMAx_yy_CONFIG) Registers

The DMA_CONFIG register, shown in Figure 9-3, is used to set up DMA
parameters and operating modes. Note that writing the DMA_CONFIG regis-
ter while DMA is already running causes a DMA error unless writing with
the DMA_EN bit set to 0.

Figure 9-3. Configuration Register

0 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0

 0 - Do not allow completion of
 work unit to generate an
 interrupt
 1 - Allow completion of work unit
 to generate a data interrupt

 0x0 - Stop
 0x1 - Autobuffer mode
 0x4 - Descriptor array
 0x6 - Descriptor list (small model)
 0x7 - Descriptor list (large model)

Configuration Register (DMAx_CONFIG / MDMAx_yy_CONFIG)

NDSIZE[3:0] (Flex Descriptor Size)
Size of next descriptor
 0000 - Required if in Stop or Autobuffer mode
 0001 - 1001 - Descriptor size
 1010 - 1111 - Reserved

FLOW[2:0] (Next
Operation)

DMA_EN (DMA
Channel Enable)
 0 - Disable DMA channel.
 1 - Enable DMA channel
WNR (DMA Direction)
 0 - DMA is a memory read
(transmit) operation
 1 - DMA is a memory write
(receive) operation

WDSIZE [1:0](Transfer Word
Size)
 00 - 8-bit transfers
 01 - 16-bit transfers
 10 - 32-bit transfers
 11 - Reserved
DMA2D (DMA Mode)
 0 - Linear
 1 - Two-dimensional (2D)

Reset = 0x0000

DI_SEL (Data interrupt Timing Select)

 Reserved in ID operation.
 0 - interrupt after completing
 whole buffer (outer loop)
 1 - interrupt after completing
. each row (inner loop)
 2D only

R/W prior to enabling channel, RO after enabling channel

RESTART (DMA Buffer Clear)
 0 - Retain DMA FIFO data
between work units
 1 - Discard DMA FIFO before
beginning work unit

DI_EN (Data interrupt Enable)

Naming Conventions for Memory DMA Registers

9-12 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The fields of the DMAx_CONFIG register are used to set up DMA parameters
and operating modes.

• FLOW[2:0] (next operation). This field specifies the type of DMA
transfer to follow the present one. The flow options are:

• 0 – Stop the DMA activity on this channel.

• 0x0 – Stop. When the current work unit completes, the DMA
channel stops automatically, after signalling an interrupt (if
selected). The DMA_RUN status bit in DMAx_IRQ_STATUS changes from
1 to 0, while the DMA_EN bit in DMAx_CONFIG is unchanged. In this
state, the channel is paused. Peripheral interrupts are still filtered
out by the DMA unit. The channel may be restarted simply by
another write to DMAx_CONFIG specifying the next work unit, in
which DMA_EN is set to 1.

• 0x1 – Autobuffer mode. In this mode, no descriptors in memory
are used. Instead, DMA is performed in a continuous circular-buf-
fer fashion based on user-programmed DMAx MMR settings. On
completion of the work unit, the parameter registers are reloaded
into the current registers, and DMA resumes immediately with
zero overhead. Autobuffer mode is stopped by a user write of 0 to
the DMA_EN bit in DMAx_CONFIG.

• 0x4 – Descriptor Array mode. This mode fetches a descriptor from
memory that does not include the NDPH or NDPL elements. Because
the descriptor does not contain a next descriptor pointer entry, the
DMA engine defaults to using CURR_DESC_PTR to step through
descriptors, thus allowing a group of descriptors to follow one
another in memory like an array.

• 0x6 – Descriptor list (small model) mode. This mode fetches a
descriptor from memory that includes NDPL, but not NDPH. There-
fore, the high 16 bits of the next descriptor pointer field are taken
from the upper 16 bits of the NEXT_DESC_PTR register, thus confin-
ing all descriptors to a specific 64K page in memory.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-13

Direct Memory Access

• 0x7 – Descriptor list (large model) mode. This mode fetches a
descriptor from memory that includes NDPH and NDPL, thus allowing
maximum flexibility in locating descriptors in memory.

• NDSIZE[3:0] (flex descriptor size). This field specifies the number
of DMA MMRs to load from descriptor elements in memory. This
field must be 0 if in stop or autobuffer mode. If NDSIZE and FLOW
specify a descriptor that extends beyond YMOD, a DMA error results.

• DI_EN (data interrupt enable). This bit specifies whether to allow
completion of a work unit to generate a data interrupt.

• DI_SEL (data interrupt timing select). This bit specifies the timing
of a data interrupt: after completing the whole buffer or after com-
pleting each row of the inner loop. This bit is used only in 2D
DMA operation.

• RESTART (DMA buffer clear). This bit specifies whether receive data
held in the channel’s data FIFO should be preserved (RESTART=0)
or discarded (RESTART=1) before beginning the next work unit.
Receive data is automatically discarded when DMA_EN changes from
0 to 1, typically when a channel is first enabled. Received FIFO
data should usually be retained between work units if the work
units make up a continuous data stream. If, however, a new work
unit starts a new data stream, the RESTART bit should be set to 1 to
clear out any previously received data.

• DMA2D (DMA mode). This bit specifies whether DMA mode
involves only X_COUNT and X_MODIFY (one-dimensional DMA) or
also involves Y_COUNT and Y_MODIFY (two-dimensional DMA).

Naming Conventions for Memory DMA Registers

9-14 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• WDSIZE[1:0] (Transfer Word Size). The DMA engine supports
transfers of 8-, 16-, or 32-bit items. Each request/grant results in a
single memory access (although two cycles are required to transfer
32-bit data through a 16-bit memory port), or through the 16-bit
DAB bus. The DMA address pointer increment sizes (strides) must
be a multiple of the transfer unit size: 1 for 8-bit, 2 for 16-bit, 4 for
32-bit.

For information about how to set up each DMA channel to sup-
port different transfer widths, see “Peripheral Map
(DMAx_PERIPHERAL_MAP,
MDMAx_yy_PERIPHERAL_MAP) Registers” on page 9-21.

• WNR (DMA direction). This bit specifies DMA direction: memory
read (0) or memory write (1).

• DMA_EN (DMA channel enable). This bit specifies whether to enable
a given DMA channel.

When a peripheral DMA channel is enabled, interrupts from the
peripheral denote DMA requests. When a channel is disabled, the
DMA unit ignores the peripheral interrupt and passes it directly to
the interrupt controller. To avoid unexpected results, take care to
enable the DMA channel before enabling the peripheral, and to
disable the peripheral before disabling the DMA channel.

Inner Loop Count (DMAx_X_COUNT,
MDMAx_yy_X_COUNT) Registers

For 2D DMA, the X_COUNT registers, shown in Figure 9-4, contain the
inner loop count. For 1D DMA, it specifies the number of elements to
read in. For details, see “Two-Dimensional DMA” on page 9-30. A value
of 0 in X_COUNT corresponds to 65,536 elements.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-15

Direct Memory Access

Inner Loop Address Increment (DMAx_X_MODIFY,
MDMAx_yy_X_MODIFY) Registers

The inner loop address increment (X_MODIFY) registers contain a signed,
2’s complement byte-address increment. In 1D DMA, this increment is
the stride that is applied after transferring each element.

In 2D DMA, this increment is applied after transferring each element in
the inner loop, up to but not including the last element in each inner
loop. After the last element in each inner loop, Y_MODIFY is applied
instead, except on the very last transfer of each work unit. X_MODIFY is
always applied on the last transfer of a work unit.

The X_MODIFY field may be set to 0. In this case, DMA is performed
repeatedly to or from the same address. This is useful, for example, in
transferring data between a data register and an external memory-mapped
peripheral.

Figure 9-4. Inner Loop Count Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1

X_COUNT[15:0] (Inner
Loop Count)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Inner Loop Count Register (DMAx_X_COUNT / MDMAx_yy_X_COUNT)
R/W prior to enabling channel, RO after enabling channel

Reset = 0x0001

The number of elements to
read in (1D); the number of
rows in the inner loop (2D)

Naming Conventions for Memory DMA Registers

9-16 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Outer Loop Count (DMAx_Y_COUNT,
MDMAx_yy_Y_COUNT) Registers

For 2D DMA, the outer loop count (Y_COUNT) registers contain the outer
loop count. It is not used in 1D DMA mode. This register contains the
number of rows in the outer loop of a 2D DMA sequence. For details, see
“Two-Dimensional DMA” on page 9-30.

Figure 9-5. Inner Loop Address Increment Register

Figure 9-6. Outer Loop Count Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0

X_MODIFY[15:0] (Inner Loop
Address Increment)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Inner Loop Address Increment Register (DMAx_X_MODIFY / MDMAx_yy_X_MODIFY)
R/W prior to enabling channel, RO after enabling channel

Reset = 0x0002

Stride (in bytes) to take after each
CURR_X_COUNT decrement

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1

Y_COUNT[15:0] (Outer Loop
Count)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Outer Loop Count Register (DMAx_Y_COUNT / MDMAx_yy_Y_COUNT)
R/W prior to enabling channel, RO after enabling channel

Reset = 0x0001

The number of rows in the outer
loop of a 2D DMA sequence

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-17

Direct Memory Access

Outer Loop Address Increment (DMAx_Y_MODIFY,
MDMAx_yy_Y_MODIFY) Registers

The outer loop address increment (Y_MODIFY) registers contain a signed,
2’s complement value. This byte-address increment is applied after each
decrement of CURR_Y_COUNT except for the last item in the 2D array on
which the CURR_Y_COUNT also expires. The value is the offset between the
last word of one “row” and the first word of the next “row.” For details,
see “Two-Dimensional DMA” on page 9-30.

Current Descriptor Pointer (DMAx_CURR_DESC_PTR,
MDMAx_yy_CURR_DESC_PTR) Registers

The current descriptor pointer (CURR_DESC_PTR) registers contain the
memory address for the next descriptor element to be loaded. For FLOW
mode settings that involve descriptors (FLOW=4, 6, or 7), this register is
used to read descriptor elements into appropriate MMRs before a DMA
work block begins. For descriptor list modes (FLOW=6 or 7), this register is
initialized from NEXT_DESC_PTR before loading each descriptor. Then, the
address in CURR_DESC_PTR increments as each descriptor element is read in.
When the entire descriptor has been read, CURR_DESC_PTR contains the
value of Descriptor Start Address + Descriptor Size (# of
elements).

Figure 9-7. Outer Loop Address Increment Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0

Y_MODIFY[15:0] (Outer-Loop
Address Increment)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Outer Loop Address Increment Register (DMAx_Y_MODIFY / MDMAx_yy_Y_MODIFY)
R/W prior to enabling channel, RO after enabling channel

Reset = 0x0002

Stride to take after each decrement of
CURR_Y_COUNT

Naming Conventions for Memory DMA Registers

9-18 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

For descriptor array mode (FLOW=4), this register, and not the
NEXT_DESC_PTR register, must be programmed by MMR access before
starting DMA operation.

Current Address (DMAx_CURR_ADDR,
MDMAx_yy_CURR_ADDR) Registers

The current address (CURR_ADDR) registers, shown in Figure 9-9, contain
the present DMA transfer address for a given DMA session. At the start of
a DMA session, it is loaded from the START_ADDR register, and it is incre-
mented as each transfer occurs. The current address register contains 32
bits.

Figure 9-8. Current Descriptor Pointer Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0

Current Descriptor
Pointer[31:16]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Current Descriptor Pointer Register (DMAx_CURR_DESC_PTR /
MDMAx_yy_CURR_DESC_PTR)
R/W prior to enabling channel, RO after enabling channel

Reset = 0x0000 0000

Upper 16 bits of memory
address of the next
descriptor element

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Current Descriptor
Pointer[15:0]

Lower 16 bits of memory address of
the next descriptor element

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-19

Direct Memory Access

Current Inner Loop Count (DMAx_CURR_X_COUNT,
MDMAx_yy_CURR_X_COUNT) Registers

The current inner loop count (CURR_X_COUNT) register is loaded by X_COUNT
at the beginning of each DMA session (for 1D DMA) and also after the
end of DMA for each row (for 2D DMA). Otherwise it is decremented
each time an element is transferred. Expiration of the count in this register
signifies that DMA is complete. In 2D DMA, CURR_X_COUNT is 0 only
when the entire transfer is complete. Between rows it is equal to X_COUNT.

Figure 9-9. Current Address Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0

Current Address[31:16]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Current Address Register (DMAx_CURR_ADDR / MDMAx_yy_CURR_ADDR)
R/W prior to enabling channel, RO after enabling channel

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0

Current Address[15:0]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset = 0x0000 0000

Upper 16 bits of present
DMA transfer address for
a given DMA session

Lower 16 bits of present
DMA transfer address for
a given DMA session

Naming Conventions for Memory DMA Registers

9-20 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Current Outer Loop Count (DMAx_CURR_Y_COUNT,
MDMAx_yy_CURR_Y_COUNT) Registers

The current outer loop count (CURR_Y_COUNT) register is loaded by Y_COUNT
at the beginning of each 2D DMA session. It is not used for 1D DMA.
This register is decremented each time that the CURR_X_COUNT register
expires during 2D DMA operation (1 to X_COUNT or 1 to 0 transition), sig-
nifying completion of an entire row transfer. After a 2D DMA session is
complete, CURR_Y_COUNT=1 and CURR_X_COUNT=0.

Figure 9-10. Current Inner Loop Count Register

Figure 9-11. Current Outer Loop Count Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0

CURR_X_COUNT[15:0]
(Current inner-Loop Count)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Current Inner Loop Count Register (DMAx_CURR_X_COUNT / MDMAx_yy_CURR_X_COUNT)

R/W prior to enabling channel, RO after enabling channel

Reset = 0x0000

Loaded by X_COUNT at the beginning of
each DMA session (1D DMA) or at the
beginning of each row (2D DMA)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0

CURR_Y_COUNT[15:0] (Current
Outer Loop Count)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Current Outer Loop Count Register (DMAx_CURR_Y_COUNT / MDMAx_yy_CURR_Y_COUNT)
R/W prior to enabling channel, RO after enabling channel

Reset = 0x0000

Loaded by Y_COUNT at the begin-
ning of each 2D DMA session. Not
used for 1D DMA.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-21

Direct Memory Access

Peripheral Map (DMAx_PERIPHERAL_MAP,
MDMAx_yy_PERIPHERAL_MAP) Registers

Each DMA channel PERIPHERAL_MAP register contains bits that:

• Map the channel to a specific peripheral

• Identify whether the channel is a peripheral DMA channel or a
memory DMA channel.

There are two sets of PERIPHERAL_MAP registers. One set is for the channels
associated with DMA controller 0 and the other set for the channels asso-
ciated with DMA controller 1. Peripherals are assigned to a specific
controller (0 or 1). This assignment is fixed and is not selectable by the
user.

Note that a 1:1 mapping should exist between DMA channels and periph-
erals. The user is responsible for ensuring that multiple DMA channels are
not mapped to the same peripheral and that multiple peripherals are not
mapped to the same DMA port. If multiple channels are mapped to the
same peripheral, only one channel is connected (the lowest-priority chan-
nel). If a nonexistent peripheral (for example, 0xF in the PMAP field) is
mapped to a channel, that channel is disabled—DMA requests are
ignored, and no DMA grants are issued. The DMA requests are also not
forwarded from the peripheral to the interrupt controller.

Naming Conventions for Memory DMA Registers

9-22 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Follow these steps to swap the DMA channel priorities of two channels.
Assume that channels 6 and 7 are involved.

1. Make sure DMA is disabled on channels 6 and 7

2. Write DMA6_PERIPHERAL_MAP with 0x7000 and
DMA7_PERIPHERAL_MAP with 0x6000

3. Enable DMA on channels 6 and/or 7

Figure 9-12. DMA Controller 0 Peripheral Map Register

0 000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0

 0x0 - PPI
 0x1 - SPORT0 RX
 0x2 - SPORT0 TX
 0x3 - SPORT1 RX
 0x4 - SPORT1 TX
 0x5 - SPI0
 0x6 - UART0 RX
 0x7 - UART0 TX

DMA Controller 0 Peripheral Map Register (DMAx_PERIPHERAL_MAP /
MDMAx_yy_PERIPHERAL_MAP)

PMAP[3:0] (Peripheral
Mapped to This Channel)

CTYPE (DMA Channel Type)
- RO
 0 - Peripheral DMA
 1 - Memory DMA

Reset = 0x0000

R/W prior to enabling channel, RO after enabling channel

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-23

Direct Memory Access

Table 9-5 lists the binary peripheral map settings for each DMA capable
peripheral.

Figure 9-13. DMA Controller 1 Peripheral Map Register

Table 9-5. Peripheral Mapping of DMA Controller 0

DMA Channel Default Peripheral
Mapping

Default PERIPHERAL_MAP
Setting (Binary)

Comments

DMA0 (highest
priority)

PPI 0000 0000 0000 0000

DMA1 SPORT0 RX 0001 0000 0000 0000

DMA2 SPORT0 TX 0010 0000 0000 0000

DMA3 SPORT1 RX 0011 0000 0000 0000

DMA4 SPORT1 TX 0100 0000 0000 0000

DMA5 SPI0 0101 0000 0000 0000

DMA6 UART0 RX 0110 0000 0000 0000

DMA7 UART0 TX 0111 0000 0000 0000

0 000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0

 0x0 - SPORT2 RX
 0x1 - SPORT2 TX
 0x2 - SPORT3 RX
 0x3 - SPORT3 TX
 0x4 - Unassigned
 0x5 - Unassigned
 0x6 - SPI1
 0x7 - SPI2
 0x8 - UART1 RX
 0x9 - UART1 TX
 0xa - UART2 RX
 0xb - UART2 TX

DMA Controller 1 Peripheral Map Register (DMAx_PERIPHERAL_MAP /
MDMAx_yy_PERIPHERAL_MAP)

PMAP[3:0] (Peripheral
Mapped to This Channel)

CTYPE (DMA Channel Type)
- RO
 0 - Peripheral DMA
 1 - Memory DMA

Reset = 0x0000

R/W prior to enabling channel, RO after enabling channel

Naming Conventions for Memory DMA Registers

9-24 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Table 9-6 assumes the following peripheral ID mappings into the 4-bit
PMAP field.

MDMA0_D0 Mem DMA Stream 0 TX
(destination)

0000 0000 0100 0000 Not re-assignable

MDMA0_S0 Mem DMA Stream 0 RX
(source)

0000 0000 0100 0000 Not re-assignable

MDMA0_D1 Mem DMA Stream 1 TX
(destination)

0000 0000 0100 0000 Not re-assignable

MDMA0_S1
(lowest priority)

Mem DMA Stream 1 RX
(source)

0000 0000 0100 0000 Not re-assignable

Table 9-6. Peripheral ID Mappings Into PMAP Field for DMA
Controller 0

Peripheral PMAP ID# Peripheral PMAP ID#

PPI 0000 SPORT1 TX 0100

SPORT0 RX 0001 SPI 0101

SPORT0 TX 0010 UART0 RX 0110

SPORT1 RX 0011 UART0 TX 0111

Table 9-7. Peripheral Mapping of DMA Controller 1

DMA Channel Default Peripheral
Mapping

Default PERIPHERAL_MAP
Setting (Binary)

Comments

DMA8
(highest
priority)

SPORT2 RX 0000 0000 0000 0000

DMA9 SPORT2 TX 0001 0000 0000 0000

DMA10 SPORT3 RX 0010 0000 0000 0000

Table 9-5. Peripheral Mapping of DMA Controller 0 (Cont’d)

DMA Channel Default Peripheral
Mapping

Default PERIPHERAL_MAP
Setting (Binary)

Comments

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-25

Direct Memory Access

DMA11 SPORT3 TX 0011 0000 0000 0000

DMA12 Unassigned 0100 0000 0000 0000

DMA13 Unassigned 0101 0000 0000 0000

DMA14 SPI1 0110 0000 0000 0000

DMA15 SPI2 0111 0000 0000 0000

DMA16 UART1 RX 1000 0000 0000 0000

DMA17 UART1 TX 1001 0000 0000 0000

DMA18 UART2 RX 1010 0000 0000 0000

DMA19 UART2 TX 1011 0000 0000 0000

MDMA1_D0 Mem DMA Stream 2
TX (destination)

0000 0000 0100 0000 Not re-assignable

MDMA1_S0 Mem DMA Stream 2
RX (source)

0000 0000 0100 0000 Not re-assignable

MDMA1_D1 Mem DMA Stream 3
TX (destination)

0000 0000 0100 0000 Not re-assignable

MDMA1_S1
(lowest priority)

Mem DMA Stream 3
RX (source)

0000 0000 0100 0000 Not re-assignable

Table 9-8. Peripheral ID Mappings Into PMAP Field for DMA
Controller 1

Peripheral PMAP ID# Peripheral PMAP ID#

SPORT2 RX 0000 SPI1 0110

SPORT2 TX 0001 SPI2 0111

SPORT3 RX 0010 UART1 RX 1000

SPORT3 TX 0011 UART1 TX 1001

Unassigned 0100 UART2 RX 1010

Unassigned 0101 UART2 TX 1011

Table 9-7. Peripheral Mapping of DMA Controller 1 (Cont’d)

DMA Channel Default Peripheral
Mapping

Default PERIPHERAL_MAP
Setting (Binary)

Comments

Naming Conventions for Memory DMA Registers

9-26 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Interrupt Status (DMAx_IRQ_STATUS,
MDMAx_yy_IRQ_STATUS) Registers

The interrupt register (IRQ_STATUS) register, shown in Figure 9-14, con-
tains bits that record whether the DMA channel:

• Is enabled and operating, enabled but stopped, or disabled

• Is fetching data or a DMA descriptor

• Has detected that a global DMA interrupt or a channel interrupt is
being asserted

• Has logged occurrence of a DMA error

Note the DMA_DONE interrupt is asserted when the last memory access (read
or write) has completed. For a transmit (memory read) transfer to a
peripheral, there may be up to four data words in the channel’s DMA
FIFO when the interrupt occurs. At this point, it is normal to immedi-
ately start the next work unit. If, however, the application needs to know
when the final data item is actually transferred to the peripheral, the appli-
cation can test or poll the DMA_RUN bit. As long as there is un-delivered
transmit data in the FIFO, DMA_RUN is 1.

The processor supports a flexible interrupt control structure with three
interrupt sources. Separate IRQ levels are allocated for data, peripheral
errors, and DMA errors:

• data-driven interrupts (see Table 9-7).

• peripheral error interrupts.

• DMA error interrupts (for example, bad descriptor or bus error)

All DMA channels are OR’ed together into one system-level DMA error
interrupt. The individual IRQ_STATUS words of each channel can be read
to identify the channel that caused the DMA error interrupt.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-27

Direct Memory Access

Figure 9-14. Interrupt Status Register

Table 9-9. Data Driven Interrupts

Interrupt Name Description

No interrupt Interrupts can be disabled for a given work unit.

Peripheral interrupt Peripheral (non-DMA) interrupt.

Row Completion DMA interrupts can occur on the completion of a row
(CURR_X_COUNT expiration).

Buffer Completion DMA interrupts can occur on the completion of an entire buffer
(when CURR_X_COUNT and CURR_Y_COUNT expire).

00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0

 This bit is set to 1 automatically when
 the DMA_CONFIG register is written
 0 - This DMA channel is disabled, or it
 is enabled but paused (FLOW
 mode 0)
 1 - This DMA channel is enabled and
 operating, either transferring data
 or fetching a DMA descriptor

Interrupt Status Register (DMAx_IRQ_STATUS / MDMAx_yy_IRQ_STATUS)

DFETCH (DMA Descriptor
Fetch) - RO

DMA_RUN (DMA Channel
Running) - RO

DMA_DONE (DMA Comple-
tion interrupt register) -
write-1-to-clear

 0 - No interrupt is being
 asserted for this channel
 1 - DMA work unit has
 completed, and this DMA
 channel’s interrupt is being
 asserted

 0 - No DMA error has
 occurred
 1 - A DMA error has occurred,
 and the global DMA Error
 interrupt is being asserted.
 After this error occurs,
 the contents of the DMA
 Current registers are
 unspecified. control/
 register and Parameter
 registers are unchanged.

Reset = 0x0000

 This bit is set to 1 automatically when
 the DMA_CONFIG register is written
 with FLOW modes 4–7
 0 - This DMA channel is disabled, or it
 is enabled but stopped (FLOW
 mode 0)
 1 - This DMA channel is enabled and
 presently fetching a DMA descriptor

DMA_ERR (DMA Error
interrupt register) -
write-1-to-clear

Flex Descriptor Structure

9-28 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

When switching a peripheral from DMA to non-DMA mode, the periph-
eral interrupts should be disabled during the mode switch (via the
appropriate peripheral registers or SIC_IMASKx) so that no unintended
interrupt is generated on the shared DMA/interrupt request line.

Flex Descriptor Structure
DMA flex descriptors are variable sized data structures whose contents are
loaded into DMA parameter registers. The sequence of registers in the
descriptor is essentially fixed (among three similar variations), but the
length of the descriptor is completely programmable. The DMA channel
registers are ordered so that the registers that are most commonly reloaded
per work unit are at the lowest MMR addresses. The user may choose
whether or not to use descriptors. If not using descriptors, the user can
write the DMA MMRs directly to start DMA, and use either Autobuffer
mode for continuous operation or Stop mode for single-buffer operation.

To use descriptors, the user programs the NDSIZE field of the DMAx_CONFIG
register with the number of DMA registers to load from the descriptor,
starting with the lowest MMR address. The user may select a descriptor
size from one entry (the lower 16 bits of START_ADDR) to nine entries (all
the DMA parameters).

The three variations of the descriptor value sequences depend on whether
a next descriptor pointer is included and, if so, what kind.

1. None included (descriptor array mode)

2. The lower 16 bits of the next descriptor pointer (descriptor list,
small model)

3. All 32 bits of the next descriptor pointer (descriptor list, large
model)

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-29

Direct Memory Access

All the other registers not loaded from the descriptor retain their prior val-
ues (although the CURR_ADDR, CURR_X_COUNT, CURR_Y_COUNT registers are
reloaded between the descriptor fetch and the start of DMA operation.)

There are certain DMA settings that are not allowed to change from one
descriptor to the next in a chain (small or large list and array modes).
These include DMA direction, word size, and memory space (that is,
switching between internal and external memory).

A single descriptor chain cannot control the transfer of a sequence of data
buffers which reside in different memory spaces. Instead, group the data
buffers into chains of buffers in the same space, but do not link the chains
together. Transfer the first chain, wait for its final interrupt, and then start
the next chain with an MMR write to DMA_CONFIG.

Note that while the user must locate each chain’s data buffers in the same
memory space, the descriptor structures themselves may be placed in any
memory space, and they may link from a descriptor in one space to a
descriptor in the other space without restriction.

Table 9-10 shows the descriptor offsets for descriptor elements in the
three modes described above. Note the names in the table list the descrip-
tor elements in memory, not the actual MMRs into which they are
eventually loaded.

Table 9-10. Parameter Registers and Descriptor Offsets

Descriptor
Offset

Descriptor Array
Mode

Small Descriptor List
Mode

Large Descriptor List
Mode

0x0 SAL NDPL NDPL

0x2 SAH SAL NDPH

0x4 DMACFG SAH SAL

0x6 XCNT DMACFG SAH

0x8 XMOD XCNT DMACFG

0xA YCNT XMOD XCNT

Two-Dimensional DMA

9-30 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Two-Dimensional DMA
Two-dimensional DMA supports arbitrary row and column sizes up to
64 K x 64 K elements, as well as arbitrary X_MODIFY and Y_MODIFY values
up to ±32 K bytes. Furthermore, Y_MODIFY can be negative, allowing
implementation of interleaved data streams. X_COUNT and Y_COUNT specify
the row and column sizes, where X_COUNT must be 2 or greater.

The start address and modify values are in bytes, and they must be aligned
to a multiple of the DMA transfer word size (WDSIZE[1:0] in DMA_CONFIG).
Misalignment causes a DMA error.

The X_MODIFY value is the byte-address increment that is applied after each
transfer that decrements CURR_X_COUNT. The X_MODIFY value is not applied
when the inner loop count is ended by decrementing CURR_X_COUNT from
1 to 0, except that it is applied on the final transfer when CURR_Y_COUNT is
1 and CURR_X_COUNT decrements from 1 to 0.

The Y_MODIFY value is the byte-address increment that is applied after each
decrement of CURR_Y_COUNT. However, the Y_MODIFY value is not applied
to the last item in the array on which the outer loop count (CURR_Y_COUNT)
also expires by decrementing from 1 to 0.

0xC YMOD YCNT XMOD

0xE YMOD YCNT

0x10 YMOD

Table 9-10. Parameter Registers and Descriptor Offsets (Cont’d)

Descriptor
Offset

Descriptor Array
Mode

Small Descriptor List
Mode

Large Descriptor List
Mode

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-31

Direct Memory Access

After the last transfer completes, CURR_Y_COUNT=1, CURR_X_COUNT=0, and
CURR_ADDR is equal to the last item’s address plus X_MODIFY. Note that if
the DMA channel is programmed to refresh automatically (auto buffer
mode), then these registers are loaded from X_COUNT, Y_COUNT, and
START_ADDR upon the first data transfer.

Example 1: Retrieve a 16x8 Block of Bytes From a Video Frame Buffer of
Size (N x M) Pixels:

X_MODIFY = 1

X_COUNT = 16

Y_MODIFY = N-15 (offset from the end of one row to the start of

another)

Y_COUNT = 8

This produces the following address offsets from the start address:

0,1,2,...15,

N,N+1, ... N+15,

2N, 2N+1,... 2N+15, ...

7N, 7N+1,... 7N+15,

0, ...

Example 2: Receive a Video Data Stream of Bytes, (R,G,B Pixels) x (N x
M Image Size):

X_MODIFY = (N*M)

X_COUNT = 3

Y_MODIFY = 1 - 2(N*M) (negative)

Y_COUNT = (N*M)

DMA Operation Flow

9-32 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

This produces the following address offsets from the start address:

0, (N*M), 2(N*M),

1, (N*M)+1, 2(N*M)+1,

2, (N*M)+2, 2(N*M)+2,

 ...

(N*M)-1, 2(N*M)-1, 3(N*M)-1,

0, ...

DMA Operation Flow
Figure 9-15 and Figure 9-16 describe the DMA Flow.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-33

Direct Memory Access

Figure 9-15. DMA Flow, From DMA Controller Point of View (1 of 2)

COPY FLOW, NDSIZE FROM DMA_CONFIG
INTO TEMPORARY DESCRIPTOR FETCH COUNTERS

B

COPY NEXT DESCRIPTOR POINTER
TO CURRENT DESCRIPTOR POINTER

USER WRITES SOME OR ALL DMA PARAMETER
REGISTERS, AND THEN WRITES DMA_CONFIG

SET DFETCH IN IRQ_STATUS

SET DMA_RUN IN IRQ_STATUS

BAD DMA_CONFIG?

TEST DMA_EN

TEST FLOW

TEST FLOW

Y

N

DMA ERROR

DMA_EN = 1

DMA_EN = 0

FLOW = 4, 6, OR 7

DMA STOPPED.
CLEAR DMA_RUN IN

IRQ_STATUS

FLOW = 0 OR 1
A

C

DI_EN = 0 OR
(DI_EN = 1 AND
DMA_DONE_IRQ = 1)

FLOW = 4

FLOW = 6 OR 7

DMA Operation Flow

9-34 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 9-16. DMA Flow, From DMA Controller Point of View (2 of 2)

B

A

C

TEST NDSIZE
DMA

ABORT
OCCURS

READ NDSIZE ELEMENTS
OF DESCRIPTOR INTO

PARAMETER REGISTERS
VIA CURRENT

DESCRIPTOR POINTER
FLOW = 0 OR 1

FLOW = 0

CLEAR DFETCH IN
IRQ_STATUS

DMA TRANSFER
BEGINS AND

CONTINUES UNTIL
COUNTS EXPIRE

TEST DI_EN

TEST FLOW

TEST WNR

DMA STOPPED.
CLEAR DMA_RUN IN

IRQ_STATUS.

MEMORY WRITE (DESTINATION)

MEMORY READ
(SOURCE)

FLOW = 0

DI_EN = 0

DI_EN = 1 SIGNAL AN
INTERRUPT

TO THE CORE

SET DMA_DONE
IN IRQ_STATUS

TRANSFER
DATA FROM

FIFO TO
PERIPHERAL
UNTIL EMPTY

*MAX SIZE DEPENDS ON FLOW
 IF FLOW = 4, MAX_SIZE = 7
 IF FLOW = 6, MAX_SIZE = 8
 IF FLOW = 7, MAX_SIZE = 9

NDSIZE = 0 OR
NDSIZE > MAX_SIZE*

NDSIZE > 0 AND
NDSIZE <= MAX_SIZE*

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-35

Direct Memory Access

DMA Startup
This section discusses starting DMA “from scratch.” This is similar to
starting it after it has been paused by FLOW = 0 mode.

Before initiating DMA for the first time on a given channel, be sure to ini-
tialize all parameter registers. Be especially careful to initialize the upper
16 bits of NEXT_DESC_PTR and START_ADDR, because they might not other-
wise be accessed, depending on the chosen FLOW mode of operation.

To start DMA operation on a given channel, some or all of the DMA
parameter registers must first be written directly. At a minimum, the
NEXT_DESC_PTR register (or CURR_DESC_PTR register in FLOW = 4 mode)
must be written at this stage, but the user may wish to write other DMA
registers that might be static throughout the course of DMA activity (for
example, X_MODIFY, Y_MODIFY). The contents of NDSIZE and FLOW in
DMA_CONFIG indicate which registers, if any, are fetched from descriptor
elements in memory. After the descriptor fetch, if any, is completed,
DMA operation begins, initiated by writing DMA_CONFIG with DMA_EN = 1.

When DMA_CONFIG is written directly, the DMA controller recognizes this
as the special startup condition that occurs when starting DMA for the
first time on this channel or after the engine has been stopped (FLOW = 0).

When the descriptor fetch is complete and DMA_EN=1, the DMACFG descrip-
tor element that was read into DMA_CONFIG assumes control. (Before this
point, the direct write to DMA_CONFIG had control.)

As Figure 9-15 and Figure 9-16 show, at startup the FLOW and NDSIZE bits
in DMA_CONFIG determine the course of the DMA setup process. The FLOW
value determines whether to load more current registers from descriptor
elements in memory, while the NDSIZE bits detail how many descriptor
elements to fetch before starting DMA. DMA registers not included in the
descriptor are not modified from their prior values. Moreover, the reset
values of DMA MMRs are never restored except after a system reset.

DMA Operation Flow

9-36 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

If the FLOW value specifies small or large descriptor list modes, the
NEXT_DESC_PTR is copied into CURR_DESC_PTR. Then, fetches of new
descriptor elements from memory are performed, indexed by
CURR_DESC_PTR, which is incremented after each fetch. If NDPL and/or NDPH
is part of the descriptor, then these values are loaded into NEXT_DESC_PTR,
but the fetch of the current descriptor continues using CURR_DESC_PTR.
After completion of the descriptor fetch, CURR_DESC_PTR points to the next
16-bit word in memory past the end of the descriptor.

If neither NDPH nor NDPL are part of the descriptor (that is, in descriptor
array mode, FLOW = 4), then the transfer from NDPH/NDPL into
CURR_DESC_PTR does not occur. Instead, descriptor fetch indexing begins
with the value in CURR_DESC_PTR.

If DMACFG is not part of the descriptor, the previous DMA_CONFIG settings (as
written by MMR access at startup) control the work unit operation. If
DMACFG is part of the descriptor, then the DMA_CONFIG value programmed
by the MMR access controls only the loading of the first descriptor from
memory. The subsequent DMA work operation is controlled by the low
byte of the descriptor DMACFG and by the parameter registers loaded from
the descriptor. The bits DI_EN, DI_SEL, DMA2D, WDSIZE, and WNR in the value
programmed by the MMR access are disregarded.

The DMA_RUN and DFETCH status bits in the IRQ_STATUS register indicate the
state of the DMA channel. After a write to DMA_CONFIG, the DMA_RUN and
DFETCH bits can be automatically set to 1. No data interrupts are signaled
as a result of loading the first descriptor from memory.

After the above steps, the current registers are loaded automatically from
the appropriate descriptor elements, overwriting their previous contents,
as follows.

• START_ADDR is copied to CURR_ADDR

• X_COUNT is copied to CURR_X_COUNT

• Y_COUNT is copied to CURR_Y_COUNT

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-37

Direct Memory Access

Then DMA data transfer operation begins, as shown in Figure 9-16.

DMA Refresh

On completion of a work unit, the DMA controller completes the transfer
of all data between memory and the DMA unit. If enabled by DI_EN, the
DMA controller signals an interrupt to the core and sets the DMA_DONE bit
in the channel’s IRQ_STATUS register.

When the FLOW bit is cleared (= 0) the operation is stopped by clearing the
DMA_RUN bit in IRQ_STATUS after any transmit data in the channel’s DMA
FIFO has been transferred to the peripheral.

During the fetch in FLOW modes 4, 6, and 7, the DMA controller sets the
DFETCH bit in IRQ_STATUS to 1. At this point, the DMA operation depends
on whether FLOW = 4, 6, or 7, as follows:

If FLOW = 4 (descriptor array): Loads a new descriptor from memory
into DMA registers via the contents of CURR_DESC_PTR, while
incrementing CURR_DESC_PTR. The descriptor size comes from the NDSIZE
field of the DMA_CONFIG value prior to the beginning of the fetch.

If FLOW = 6 (descriptor list small): Copies the 32-bit NEXT_DESC_PTR
into CURR_DESC_PTR. Next, fetches a descriptor from memory into DMA
registers via the new contents of CURR_DESC_PTR, while incrementing
CURR_DESC_PTR. The first descriptor element loaded is a new 16-bit value
for the lower 16 bits of NEXT_DESC_PTR, followed by the rest of the descrip-
tor elements. The high 16 bits of NEXT_DESC_PTR retain their former value.
This supports a shorter, more efficient descriptor than the descriptor list
large model, suitable whenever the application can place the channel’s
descriptors in the same 64KB range of memory.

DMA Operation Flow

9-38 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

If FLOW = 7 (descriptor list large): Copies the 32-bit NEXT_DESC_PTR into
CURR_DESC_PTR. Next, fetches a descriptor from memory into DMA regis-
ters via the new contents of CURR_DESC_PTR, while incrementing
CURR_DESC_PTR. The first descriptor elements loaded are a new 32-bit
value for the full NEXT_DESC_PTR, followed by the rest of the descriptor ele-
ments. The high 16 bits of NEXT_DESC_PTR may differ from their former
value. This supports a fully flexible descriptor list which can be located
anywhere in internal memory, external memory, or ROM.

Note if it is necessary to link from a descriptor chain whose descriptors are
in one 64KB area to another chain whose descriptors are outside that area,
only one descriptor needs to use FLOW=7–just the descriptor which con-
tains the link leaving the 64KB range. All the other descriptors located
together in the same 64KB areas may use FLOW = 6.

If FLOW = 1, 4, 6, or 7 (auto buffer, descriptor array, descriptor list
small, or descriptor list large, respectively):

(Re)loads the current registers:

 CURR_ADDR loaded from START_ADDR,

 CURR_X_COUNT loaded from X_COUNT,

 CURR_Y_COUNT loaded from Y_COUNT

The DFETCH bit in IRQ_STATUS is then cleared, after which the DMA trans-
fer begins again, as shown in Figure 9-16.

To Stop DMA Transfers

In FLOW = 0 mode, DMA stops automatically after the work unit is
complete.

If a list or array of descriptors is used to control DMA, and if every
descriptor contains a DMACFG element, then the final DMACFG element
should have a FLOW = 0 setting to gracefully stop the channel.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-39

Direct Memory Access

In auto buffer (FLOW = 1) mode, or if a list or array of descriptors without
DMACFG elements is used, then the DMA transfer process must be termi-
nated by an MMR write to the DMAx_CONFIG register with a value whose
DMA_EN bit is 0. A write of 0 to the entire register always terminates DMA
gracefully (without DMA abort).

Before enabling the channel again, make sure that any slow memory read
operations that may have started are completed (for example, reads from
slow external memory). Do not enable the channel again until any such
reads are complete.

Software Management of DMA

Several synchronization and control methods are available for use in devel-
opment of software tasks which manage DMA and MDMA (see also
“Memory DMA” on page 9-50). Such software needs to be able to accept
requests for new DMA transfers from other software tasks, integrate these
transfers into existing transfer queues, and reliably notify other tasks when
the transfers are complete.

In the processor, it is possible for each DMA peripheral and MDMA
stream to be managed by a separate task or to be managed together with
any other stream. Each DMA channel has independent, orthogonal con-
trol registers, resources, and interrupts, so that the selection of the control
scheme for one channel does not affect the choice of control scheme on
other channels. For example, one peripheral can use a linked-descrip-
tor-list, interrupt-driven scheme while another peripheral can
simultaneously use a demand-driven, buffer-at-a-time scheme synchro-
nized by polling of the IRQ_STATUS register.

DMA Operation Flow

9-40 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Synchronization of Software and DMA

A critical element of software DMA management is synchronization of
DMA buffer completion with the software. This can best be done using
interrupts, polling of IRQ_STATUS, or a combination of both. Polling for
address or count can only provide synchronization within loose tolerances
comparable to pipeline lengths.

Interrupt-based synchronization methods must avoid interrupt overrun,
or the failure to invoke a DMA channel’s interrupt handler for every inter-
rupt event due to excessive latency in processing of interrupts. Generally,
the system design must either ensure that only one interrupt per channel is
scheduled (for example, at the end of a descriptor list), or that interrupts
are spaced sufficiently far apart in time that system processing budgets can
guarantee every interrupt is serviced. Note since every interrupt channel
has its own distinct interrupt, interaction among the interrupts of differ-
ent peripherals is much simpler to manage.

Polling of the CURR_ADDR, CURR_DESC_PTR, or CURR_X/Y_COUNT registers is
not recommended as a method of precisely synchronizing DMA with data
processing, due to DMA FIFOS and DMA/memory pipelining. The cur-
rent address, pointer, and count registers change several cycles in advance
of the completion of the corresponding memory operation, as measured
by the time at which the results of the operation would first be visible to
the core by memory read or write instructions. For example, in a DMA
receive (memory write) operation to external memory, assume a DMA
write by channel A is initiated which causes the SRAM to perform a page
open operation which will take many system clock cycles. The DMA
engine may then move on to another DMA operation by channel B which
does not in itself incur latency, but which will be stalled behind the slow
operation by channel A. Software monitoring channel B could not safely
conclude whether the memory location pointed to by the channel B
CURR_ADDR has or has not been written, based on examination of the
CURR_ADDR register contents.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-41

Direct Memory Access

Polling of the current address, pointer, and count registers can permit
loose synchronization of DMA with software, however, if allowances are
made for the lengths of the DMA/memory pipeline. The length of the
DMA FIFO for a peripheral DMA channel is four locations (either four 8-
or 16-bit data elements, or two 32-bit data elements) and for an MDMA
FIFO is eight locations (or four 32-bit data elements). The DMA does not
advance current address/pointer/count registers if these FIFOs are filled
with incomplete work (including reads that have been started but not yet
finished). Next, the length of the combined DMA and L1 pipelines to
internal memory is approximately six 8- or 16-bit data elements, while the
length of the DMA and EBIU pipelines is approximately three data ele-
ments, measuring from the point where a DMA register update is visible
to an MMR read to the point where DMA and core accesses to memory
become strictly ordered. If the DMA FIFO length and the DMA/memory
pipeline length are added, an estimate can be made of the maximum num-
ber of incomplete memory operations in progress at one time. (Note this
is a maximum, as the DMA/memory pipeline may include traffic from
other DMA channels.) For example, assume a peripheral DMA channel is
transferring a work unit of 100 data elements into internal memory and its
CURR_X_COUNT register reads a value of 60 remaining elements, so that pro-
cessing of the first 40 elements has at least been started. The total pipeline
length is no greater than the sum of 4 (for the PDMA FIFO) plus 6 (for
the DMA/memory pipeline), or 10 data elements, so it is safe to conclude
that the DMA transfer of the first 40-10 = 30 data elements is complete.

For precise synchronization, software should either wait for an interrupt
or consult the channel’s IRQ_STATUS register to confirm completion of
DMA, rather than polling current-address/pointer/count registers. When
the DMA system issues an interrupt or changes an IRQ_STATUS status bit,
it guarantees that the last memory operation of the work unit has been
completed and will definitely be visible to DSP code. For memory read
DMA, the final memory read data will have been safely received in the
DMA’s FIFO; for memory write DMA, the DMA unit will have received
an acknowledge from L1 or the EBIU that the data has been written.

DMA Operation Flow

9-42 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The following examples show methods of synchronizing software with
several different styles of DMA.

Single-Buffer DMA Transfers

Synchronization is simple if peripheral DMA activity consists of isolated
transfers of single buffers. DMA activity is initiated by software writes to
the channel’s MMR control registers. The user may choose to use a single
descriptor in memory, in which case the software only needs to write the
DMA_CONFIG and the NEXT_DESC_PTR registers. Alternatively, the user may
choose to write all the MMR registers directly from software, ending with
the write to the DMA_CONFIG register.

The simplest way to signal completion of DMA is by an interrupt. This is
selected by the DI_EN bit in the DMA_CONFIG register, and by the necessary
setup of the system interrupt controllers. If it is desirable not to use an
interrupt, the software can poll for completion by reading the IRQ_STATUS
register and testing the DMA_RUN bit. If this bit is zero, the buffer transfer
has completed.

Continuous Transfers Using Auto Buffering

If a peripheral’s DMA data consists of a steady, periodic stream of signal
data, DMA auto buffering (FLOW=1) may be an effective option. Here,
DMA is transferred from or to a memory buffer using a circular addressing
scheme, using either 1- or 2-dimensional indexing with zero processor and
DMA overhead for looping. Synchronization options include:

1-D, interrupt driven—software is interrupted at the conclusion of each
buffer. The critical design consideration is that the software must deal
with the first items in the buffer before the next DMA transfer, which
might overwrite or re-read the first buffer location before it is processed by
software. This scheme may be workable if the system design guarantees
that the data repeat period is longer than the interrupt latency under all
circumstances.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-43

Direct Memory Access

 2-D, interrupt-driven (double buffering)—the DMA buffer is partitioned
into two or more sub-buffers, and interrupts are selected (set DI_SEL = 1
in DMA_CONFIG) to be signaled at the completion of each DMA inner loop.
For example, two 512-word sub-buffers inside a 1 K-word buffer could be
used to receive 16-bit peripheral data with these settings:

START_ADDR = buffer base address

DMA_CONFIG = 0x10D7 (FLOW = 1, DI_EN = 1, DI_SEL = 1, DMA2D = 1,
WDSIZ = 01, WNR = 1, DMA_EN = 1)

X_COUNT = 512

X_MODIFY = 2 for 16-bit data

Y_COUNT = 2 for two sub-buffers

Y_MODIFY = 2, same as X_MODIFY for contiguous sub-buffers

In this way, a traditional double-buffer or “ping-pong” scheme could be
implemented.

2-D, polled—if interrupt overhead is unacceptable but the loose synchro-
nization of address/count register polling is acceptable, a 2-D multi-buffer
synchronization scheme may be used. For example, if receive data needs to
be processed in packets of sixteen 32-bit elements. A four-part 2-D DMA
buffer can be allocated where each of the four sub-buffers can hold one
packet with these settings:

START_ADDR = buffer base address

DMA_CONFIG = 0x101B (FLOW = 1, DI_EN = 0, DMA2D = 1, WDSIZ = 10,
WNR = 1, DMA_EN = 1)

X_COUNT = 16

X_MODIFY = 4 for 32-bit data

DMA Operation Flow

9-44 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Y_COUNT = 4 for four sub-buffers

Y_MODIFY = 4, same as X_MODIFY for contiguous sub-buffers

The synchronization core might read Y_COUNT to determine which
sub-buffer is currently being transferred, and then allow one full sub-buf-
fer to account for pipelining. For example, if a read of Y_COUNT shows a
value of 3, then the software should assume that sub-buffer 3 is being
transferred, but some portion of sub-buffer 2 may not yet be received. The
software could, however, safely proceed with processing sub-buffers 1 or
0.

1-D un synchronized FIFO—If the system design guarantees that the pro-
cessing of peripheral data and the DMA rate of the data will remain
correlated in the steady state, but that short-term latency variations must
be tolerated, it may be appropriate to build a simple FIFO. Here, the
DMA channel may be programmed using 1-D auto buffer-mode address-
ing without any interrupts or polling.

Descriptor Structures

DMA descriptors may be used to transfer data to or from memory data
structures that are not simple 1-D or 2-D arrays. For example, if a packet
of data is to be transmitted from several different locations in memory (a
header from one location, a payload from a list of several blocks of mem-
ory managed by a memory-pool allocator, and a small trailer containing a
checksum), a separate DMA descriptor can be prepared for each memory
area, and the descriptors can be grouped in either an array or list as desired
by selecting the appropriate FLOW setting in DMA_CONFIG.

The software can synchronize with the progress of the structure’s transfer
by selecting interrupt notification for one or more of the descriptors. For
example, the software might select interrupt notification for the header’s
descriptor and for the trailer’s descriptor, but not for the payload blocks’
descriptors.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-45

Direct Memory Access

It is important to remember the meaning of the various fields in the
DMA_CONFIG descriptor elements when building a list or array of DMA
descriptors. In particular:

The lower byte of DMA_CONFIG specifies the DMA transfer to be performed
by the current descriptor (for example, interrupt-enable, 2D-mode)

The upper byte of DMA_CONFIG specifies the format of the next descriptor
in the chain. The NDSIZ and FLOW fields in a given descriptor do not corre-
spond to the format of the descriptor itself; they specify the link to the
next descriptor, if any.

On the other hand, when the DMA unit is being restarted, both bytes of
the DMA_CONFIG value written to the DMA channel’s DMA_CONFIG register
should correspond to the current descriptor. At a minimum, the FLOW,
NDSIZ, WNR, and DMA_EN fields must all agree with the current descriptor;
the WDSIZ, DI_EN, DI_SEL, RESTART, and DMA2D fields will be taken from
the DMA_CONFIG value in the descriptor read from memory (and the field
values initially written to the register are ignored).

Descriptor Queue Management

A system designer might want to write a DMA manager facility which
accepts DMA requests from other software. The DMA manager software
does not know in advance when new work requests will be received or
what these requests might contain. The software could manage these
transfers using a circular linked list of DMA descriptors, where each
descriptor’s NDPTR points to the next, and the last descriptor points to the
first.

The code which writes into this descriptor list could use the processor’s
circular addressing modes (Ix, Lx, Mx, and Bx registers), so that it does not
need to use comparison and conditional instructions to manage the circu-
lar structure. In this case, the NDPTR members of each descriptor could
even be written once at startup, and skipped over as each descriptor’s new
contents are written.

DMA Operation Flow

9-46 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The recommended method for synchronization of a descriptor queue is
through the use of an interrupt. The descriptor queue is structured so that
at least the final valid descriptor is always programmed to generate an
interrupt.

There are two general methods for managing a descriptor queue using
interrupts:

1. interrupt on every descriptor

2. interrupt minimally - only on the last descriptor

Descriptor Queue Using Interrupts on Every Descriptor

In this system, the DMA manager software synchronizes with the DMA
unit by enabling an interrupt on every descriptor. This method should
only be used if system design can guarantee that each interrupt event will
be serviced separately (no interrupt overrun).

To maintain synchronization of the descriptor queue, the non-interrupt
software maintains a count of descriptors added to the queue, while the
interrupt handler maintains a count of completed descriptors removed
from the queue. The counts are equal only when the DMA channel is
paused after having processed all the descriptors.

When each new work request is received, the DMA manager software ini-
tializes a new descriptor, taking care to write a DMA_CONFIG value with a
FLOW value of 0. Next, the software compares the descriptor counts to
determine if the DMA channel is running or not. If the DMA channel is
paused (counts equal), the software increments its count and then starts
the DMA unit by writing the new descriptor’s DMA_CONFIG value to the
DMA channel’s DMA_CONFIG register.

If the counts are unequal, the software instead modifies the next-to-last
descriptor’s DMA_CONFIG value so that its upper half (FLOW and NDSIZ) now
describes the newly enqueued descriptor. This operation does not disrupt
the DMA channel, provided the rest of the descriptor data structure is

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-47

Direct Memory Access

initialized in advance. It is necessary, however, to synchronize the software
to the DMA to correctly determine whether the new or the old
DMA_CONFIG value was read by the DMA channel.

This synchronization operation should be performed in the interrupt
handler. First, upon interrupt, the handler should read the channel’s
IRQ_STATUS register. If the DMA_RUN status bit is set, then the channel has
moved on to processing another descriptor, and the interrupt handler may
increment its count and exit. If the DMA_RUN status bit is not set, however,
then the channel has paused, either because there are no more descriptors
to process, or because the last descriptor was enqueued too late (that is,
the modification of the next-to-last descriptor’s DMA_CONFIG element
occurred after that element was read into the DMA unit.) In this case, the
interrupt handler should write the DMA_CONFIG value appropriate for the
last descriptor to the DMA channel’s DMA_CONFIG register, increment the
completed-descriptor count, and exit.

Again, this system can fail if the system interrupt latencies are large
enough to cause any of the channel DMA interrupts to be dropped. An
interrupt handler capable of safely synchronizing multiple descriptor
interrupts would need to be complex and would need to do several MMR
register accesses to ensure robust operation. In such a system environment,
a minimal-interrupt synchronization method is preferred.

Descriptor Queue Using Minimal Interrupts

In this system, only one DMA interrupt event is possible in the queue at
any time. The DMA interrupt handler for this system can also be
extremely short. Here, the descriptor queue is organized into an “active”
and a “waiting” portion, where interrupts are enabled only on the last
descriptor in each portion.

When each new DMA request is processed, the software’s non-interrupt
code fills in a new descriptor’s contents and adds it to the waiting portion
of the queue. The descriptor’s DMA_CONFIG word should have a FLOW value
of zero. If more than one request is received before the

DMA Operation Flow

9-48 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

DMA-queue-completion interrupt occurs, the non-interrupt code should
enqueue later descriptors, forming a waiting portion of queue that is dis-
connected from the active portion of queue being processed by the DMA
unit. In other words, all but the last active descriptors contain FLOW values
>= 4 and have no interrupt enable set, while the last active descriptor con-
tains a FLOW of 0 and an interrupt enable bit DI_EN set to 1. Also, all but
the last waiting descriptors contain FLOW values >=4 and no interrupt
enables set, while the last waiting descriptor contains a FLOW of 0 and an
interrupt enable bit set to 1. This ensures that the DMA unit can auto-
matically process the whole active queue and then issue one interrupt.
Also, this arrangement makes it easy to start the waiting queue within the
interrupt handler by a single DMA_CONFIG register write.

After enqueuing a new waiting descriptor, the non-interrupt software
should leave a message for its interrupt handler in a memory mailbox loca-
tion, containing the desired DMA_CONFIG value to use to start the first
waiting descriptor in the waiting queue (or 0 to indicate no descriptors are
waiting.)

It is critical that the software not modify the contents of the active
descriptor queue directly, once its processing by the DMA unit has been
started, unless careful synchronization measures are taken. In the most
straightforward implementation of a descriptor queue, the DMA manager
software would never modify descriptors on the active queue; instead, the
DMA manager waits until the DMA queue completion interrupt indicates
the processing of the entire active queue is complete.

When a DMA queue completion interrupt is received, the interrupt han-
dler reads the mailbox from the non-interrupt software and writes the
value in it to the DMA channel’s DMA_CONFIG register. This single register
write restarts the queue, effectively transforming the waiting queue to an
active queue. The interrupt handler should then pass a message back to
the non-interrupt software indicating the location of the last descriptor
accepted into the active queue. If, on the other hand, the interrupt han-
dler reads its mailbox and finds a DMA_CONFIG value of zero, indicating

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-49

Direct Memory Access

there is no more work to perform, then it should pass an appropriate mes-
sage (for example, zero) back to the non-interrupt software indicating that
the queue has stopped. This simple handler should be able to be coded in
a very small number of instructions.

The non-interrupt software which accepts new DMA work requests needs
to synchronize the activation of new work with the interrupt handler. If
the queue has stopped, that is, if the mailbox from the interrupt software
is zero, the non-interrupt software is responsible for starting the queue
(writing the first descriptor’s DMA_CONFIG value to the channel’s
DMA_CONFIG register). If the queue is not stopped, however, the non-inter-
rupt software must not write the DMA_CONFIG register (which would cause a
DMA error), but instead it should enqueue the descriptor onto the wait-
ing queue and update its mailbox directed to the interrupt handler.

More 2D DMA Examples

Examples of DMA styles supported by flex descriptors include:

• Single linear buffer that stops on completion (FLOW = stop mode).

• Linear buffer with stride greater than one (X_MODIFY > 1).

• Circular, auto-refreshing buffer that interrupts on each full buffer.

• Similar buffer that interrupts on fractional buffers
(for example, 1/2, 1/4) (2D DMA).

• 1D DMA, using a set of identical ping-pong buffers defined by a
linked ring of 3-word descriptors, each containing
{ link pointer, 32-bit address }.

• 1D DMA, using a linked list of 5-word descriptors containing
{ link pointer, 32-bit address, length, config } (ADSP-2191 style).

Memory DMA

9-50 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• 2D DMA, using an array of 1-word descriptors, specifying only the
base DMA address within a common data page.

• 2D DMA, using a linked list of 9-word descriptors, specifying
everything.

Memory DMA
This section describes the memory DMA (MDMA) controllers, which
provide memory-to-memory DMA transfers among the various memory
spaces. These include L1 memory and external synchronous/ asynchro-
nous memories.

Each MDMA controller contains a DMA FIFO, an 8-word by 16-bit
FIFO block used to transfer data to and from either L1 or the EAB bus.
Typically, it is used to transfer data between external memory and internal
memory. It will also support DMA from Boot ROM on the EAB bus. The
FIFO can be used to hold DMA data transferred between two L1 memory
locations or between two external memory locations.

Each DMA controller provides four MDMA channels:

• two source channels (for reading from memory)

• two destination channels (for writing to memory)

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-51

Direct Memory Access

There are two DMA controllers, each containing two streams. The DMA
controllers arbitrate between themselves, with DMA controller 0 taking
priority over DMA controller 1. Within each DMA controller, the two
streams have the priorities shown in Table 9-11.

Because lower priority values take precedence over higher values, memory
DMA stream 0 takes precedence over memory DMA stream 1, unless
round-robin scheduling is used. Note it is illegal to program a source
stream for memory write and it is illegal to program a destination stream
for memory read.

The channels support 8-bit, 16-bit, and 32-bit memory DMA transfers,
but both ends of the MDMA transfer must be programmed to the same
word size. In other words, the MDMA transfer does not perform packing
or unpacking of data; each read results in one write. Both ends of MDMA
FIFO for a given stream are granted priority at the same time. Each pair
shares an 8-word-deep 16-bit FIFO. The source DMA engine fills the
FIFO, while the destination DMA engine empties it. The FIFO depth
allows the burst transfers of the EAB and DAB buses to overlap, signifi-
cantly improving throughput on block transfers between internal and
external memory. Two separate descriptor blocks are required to supply
the operating parameters for each MDMA pair, one for the source channel
and one for the destination channel.

Because the source and destination DMA engines share a single FIFO buf-
fer, the descriptor blocks must be configured to have the same data size. It
is possible to have a different mix of descriptors on both ends as long as
the total count is the same.

Table 9-11. DMA Controller Stream Priorities

Highest priority Memory DMA destination stream D0

 Memory DMA source stream S0

 Memory DMA destination stream D1

Lowest priority Memory DMA source stream S1

Memory DMA

9-52 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

To start an MDMA transfer operation, the MMR registers for the source
and destination streams are written, each in a manner similar to peripheral
DMA. The only constraint is that the DMA_CONFIG register for the source
stream must be written before the DMA_CONFIG register for the destination
stream. When the destination DMA_CONFIG register is written, MDMA
operation starts, after a latency of 3 SCLK cycles.

First, if either MDMA stream has been selected to use descriptors, the
descriptors are fetched from memory. The destination stream descriptors
are fetched first. Then, after a latency of 4 SCLK cycles after the last
descriptor word is returned from memory (or typically 8 SCLK cycles after
the fetch of the last descriptor word, due to memory pipelining), the
source MDMA stream begins fetching data from the source buffer. The
resulting data is deposited in the MDMA stream 8-location FIFO, and
then after a latency of 2 SCLK cycles, the destination MDMA stream begins
writing data to the destination memory buffer.

MDMA Bandwidth
If source and destination are in different memory spaces (one internal and
one external), the internal and external memory transfers are typically
simultaneous and continuous, maintaining 100% bus utilization of the
internal and external memory interfaces. This performance is affected by
core-to-system clock frequency ratios. At ratios below about 2.5:1, syn-
chronization and pipeline latencies result in lower bus utilization in the
system clock domain. At a clock ratio of 2:1, for example, DMA typically
runs at 2/3 of the system clock rate. At higher clock ratios, full bandwidth
is maintained.

If source and destination are in the same memory space (both internal or
both external), the MDMA stream typically pre-fetches a burst of source
data into the FIFO, and then automatically turns around and delivers all
available data from the FIFO to the destination buffer. The burst length is

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-53

Direct Memory Access

dependent on traffic, and is equal to 3 plus the memory latency at the
DMA in SCLKs (typically 7 for internal transfers and 6 for external
transfers).

MDMA Priority and Scheduling
All MDMA operations have lower precedence than any peripheral DMA
operations. MDMA thus makes effective use of any memory bandwidth
unused by peripheral DMA traffic.

If two MDMA streams are used (S0-D0 and S1-D1), the user may choose
to allocate bandwidth either by fixed stream priority or by a round-robin
scheme. This is selected by programming the MDMA_ROUND_ROBIN_PERIOD
field in the DMAx_TCPER register (see “Prioritization and Traffic Control”
on page 9-59).

If this field is set to 0, then MDMA is scheduled by fixed priority.
MDMA stream 0 takes precedence over MDMA stream 1 whenever
stream 0 is ready to perform transfers. Since an MDMA stream is typically
capable of transferring data on every available cycle, this could cause
MDMA stream 1 traffic to be delayed for an indefinite time until any and
all MDMA stream 0 operations are complete. This scheme could be
appropriate in systems where low-duration but latency-sensitive data buf-
fers need to be moved immediately, interrupting long-duration,
low-priority background transfers.

If the MDMA_ROUND_ROBIN_PERIOD field is set to some nonzero value in the
range 1 <= P <= 31, then a round robin scheduling method is used. The
two MDMA streams are granted bus access in alternation in bursts of up
to P data transfers. This could be used in systems where two transfer pro-
cesses need to coexist, each with a guaranteed fraction of the available
bandwidth. For example, one stream might be programmed for inter-
nal-to-external moves while the other is programmed for
external-to-internal moves, and each would be allocated approximately
equal data bandwidth.

DMA Controller Errors (Aborts)

9-54 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

In round robin operation, the MDMA stream selection at any time is
either free or locked. Initially, the selection is free. On any free cycle avail-
able to MDMA (when no PDMA accesses take precedence), if either or
both MDMA streams request access, the higher-precedence stream is
granted (stream 0 in case of conflict), and that stream selection is then
locked. The MDMA_ROUND_ROBIN_COUNT counter field in the DMAx_TCCNT reg-
ister is loaded with the period P from MDMA_ROUND_ROBIN_PERIOD, and
MDMA transfers begin. The counter is decremented on every data trans-
fer (as each data word is written to memory). After the transfer
corresponding to a count of 1, the MDMA stream selection is passed auto-
matically to the other stream with zero overhead, and the
MDMA_ROUND_ROBIN_COUNT counter is reloaded with the period value P from
MDMA_ROUND_ROBIN_PERIOD. In this cycle, if the other MDMA stream is
ready to perform a transfer, the stream selection is locked on the new
MDMA stream. If the other MDMA stream is not ready to perform a
transfer, then no transfer is performed, and on the next cycle the stream
selection unlocks and becomes free again.

If round robin operation is used when only one MDMA stream is active,
one idle cycle will occur for each P MDMA data cycles, slightly lowering
bandwidth by a factor of 1/(P+1). If both MDMA streams are used, how-
ever, memory DMA can operate continuously with zero additional
overhead for alternation of streams (other than overhead cycles normally
associated with reversal of read/write direction to memory, for example).
By selection of various round-robin period values P which limit how often
the MDMA streams alternate, maximal transfer efficiency can be
maintained.

DMA Controller Errors (Aborts)
The two DMA controllers each have the ability to generate a DMA con-
troller error.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-55

Direct Memory Access

DMA controller errors (aborts) are detected by the DMA channel module
in the cases listed below. When a DMA error occurs, the channel is imme-
diately stopped (DMA_RUN goes to 0) and any prefetched data is discarded.
In addition, a DMA_ERROR interrupt is asserted.

There is only one DMA_ERROR interrupt for the whole DMA controller,
which is asserted whenever any of the channels has detected an error
condition.

The DMA_ERROR interrupt handler must perform the following for each
channel:

• Read each channel’s IRQSTAT register to look for a channel with the
DMA_ERR bit set (bit 1).

• Clear the problem with that channel, for example, fix register
values.

• Clear the IRQ bit (write IRQSTAT with bit 1 = 1).

The following error conditions are detected by the DMA hardware.

• A disallowed register write occurred while the channel was run-
ning. Only the DMA_CONFIG and IRQ_STATUS registers can be written
when DMA_RUN = 1.

• An address alignment error occurred during any memory access.
For example, DMA_CONFIG register WDSIZE = 1 (16 bit) but address
LSB is not equal to 0, or WDSIZE = 2 (32 bit) but two address LSBs
are not equal to 00.

• A memory space transition was attempted (internal to external or
vice versa).

• A memory access error occurred. Either an access attempt was
made to an internal address not populated or defined as cache, or
an external access caused an error (signalled by the external mem-
ory interface).

DMA Controller Errors (Aborts)

9-56 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

They result in a DMA abort interrupt and the configuration register con-
tains the following invalid values.

• Incorrect WDSIZE value (WDSIZE=11)

• Bit 15 not set to 0

• Incorrect FLOW value (FLOW=2, 3, or 5)

• NDSIZE value does not agree with FLOW. See Table 9-12.

Some prohibited situations are not detected by the DMA hardware. No
DMA abort is signalled for the following situations.

• DMA_CONFIG direction bit (WNR) does not agree with the direction of
the mapped peripheral.

• DMA_CONFIG direction bit does not agree with the direction of the
MDMA channel.

• DMA_CONFIG word size (WDSIZE) is not supported by the mapped
peripheral.

• DMA_CONFIG word size in source and destination of the MDMA
stream are not equal.

Table 9-12. Legal NDSIZE Values

FLOW NDSIZE Note

0 0

1 0

4 0 < NDSIZE <= 7 Descriptor array, no descriptor pointer fetched

6 0 < NDSIZE <= 8 Descriptor list, small descriptor pointer fetched

7 0 < NDSIZE <= 9 Descriptor list, large descriptor pointer fetched

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-57

Direct Memory Access

• Descriptor chain indicates data buffers that are not in the same
internal/external memory space.

• In 2D DMA, X_COUNT = 1.

DMA Performance: Prioritization and
Optimization

The DMA system is designed to provide maximum throughput per chan-
nel and maximum utilization of the internal buses, while accommodating
the inherent latencies of memory accesses.

A key feature of the DMA architecture is the separation of the activity on
the peripheral DMA bus (the DAB bus) from the activity on the buses
between the DMA and memory (the DCB and DEB buses). Each periph-
eral DMA channel has its own data FIFO which lies between the DAB bus
and the memory buses. These FIFOs automatically prefetch data from
memory for transmission and buffer received data for later memory writes.
This allows the peripheral to be granted a DMA transfer with very low
latency compared to the total latency of a pipelined memory access, per-
mitting the repeat rate (bandwidth) of each DMA channel to be as fast as
possible.

This allows the peripheral DMA channels to have a maximum transfer rate
of one 16-bit word per two system clocks per channel in either direction.
The MDMA channels have a maximum transfer rate of 1 16-bit word per
1 system clock, per channel.

DMA Performance: Prioritization and Optimization

9-58 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

When all DMA channel traffic is taken in the aggregate:

• Transfers between the peripherals and the DMA unit have a maxi-
mum rate of 1 16-bit transfer per system clock.

• Transfers between the DMA unit and internal memory (L1) have a
maximum rate of 1 16-bit transfer per system clock.

• Transfers between the DMA unit and external memory have a
maximum rate of 1 16-bit transfer per system clock.

Some considerations which limit the actual performance are:

• Accesses to internal or external memory which conflict with core
accesses to the same memory. This can cause delays, for example,
for accessing the same L1 bank, for opening/closing SDRAM
pages, or while filling cache lines.

• Each direction change from RX to TX on the DAB bus imposes a
1-clock delay.

• Direction changes on the DCB bus (for example, write followed by
read) to the same bank of internal memory can impose delays.

• Direction changes (for example, read followed by write) on the
DEB bus to external memory can each impose a several-cycle delay.

• MMR accesses to registers other than DMAx_CONFIG,
DMAx_IRQ_STATUSF, or DMAx_PERIPHERAL_MAP will stall all DMA
activity for 1 cycle per 16-bit word transferred. In contrast, MMR
accesses to the control/register registers do not cause stalls or wait
states.

• Reads from registers other than control/register registers use one
PAB bus wait state, delaying the core for several core clocks.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-59

Direct Memory Access

• Descriptor fetches consume one DMA memory cycle per 16-bit
word read from memory, but do not delay transfers on the DAB
bus.

• Initialization of a DMA channel stalls DMA activity for one cycle.
This occurs when DMA_EN changes from 0 to 1 or when the RESTART
bit is set to 1 in the DMAx_CONFIG register.

Several of these factors may be minimized by proper design of the applica-
tion software. It is often possible to structure the software to avoid
internal and external memory conflicts by careful allocation of data buffers
within banks and pages, and by planning for low cache activity during
critical DMA operations. Furthermore, unnecessary MMR accesses can be
minimized, especially by using descriptors or auto buffering.

Efficiency loss caused by excessive direction changes (thrashing) can be
minimized by the processor’s traffic control features, described in the next
section.

Prioritization and Traffic Control
DMA channels are ordinarily granted service strictly according to their
priority. The priority of a channel is simply its channel number, where
lower priority numbers are granted first. Thus, peripherals with high data
rates or low latency requirements should be assigned to lower numbered
(higher priority) channels using the DMAx_PERIPHERAL_MAP registers. The
memory DMA streams are always lower priority than the peripherals, but
as they request service continuously, they ensure that any time slots
unused by peripheral DMA are applied to MDMA transfers. By default,
when more than one MDMA stream is enabled and ready, only the high-
est-priority MDMA stream is granted. If it is desirable for the MDMA
streams to share the available bandwidth, however, the
MDMA_ROUND_ROBIN_PERIOD may be programmed to select each stream in
turn for a fixed number of transfers.

Prioritization and Traffic Control

9-60 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

In the processor DMA, there are two completely separate but simultane-
ous prioritization processes: the DAB bus prioritization and the memory
bus (DCB and DEB) prioritization. Peripherals that are requesting DMA
via the DAB bus, and whose data FIFOs are ready to handle the transfer,
compete with each other for DAB bus cycles. Similarly but separately,
channels whose FIFOs need memory service (prefetch or post-write) com-
pete together for access to the memory buses. MDMA streams compete
for memory access as a unit, and source and destination may be granted
together if their memory transfers do not conflict. In this way, inter-
nal-to-external or external-to-internal memory transfers may occur at the
full system clock rate (SCLK). Examples of memory conflict include simul-
taneous access to the same memory space and simultaneous attempts to
fetch descriptors. Special processing may occur if a peripheral is requesting
DMA but its FIFO is not ready (for example, an empty transmit FIFO or
full receive FIFO). For more information, see “Urgent DMA Transfers”
on page 9-64.

Traffic control is an important consideration in optimizing use of DMA
resources. Traffic control is a way to influence how often the transfer
direction on the data buses may change, by automatically grouping
same-direction transfers together. The DMA block provides a traffic con-
trol mechanism controlled by the DMACx_TC_PER and DMACx_TC_CNT
registers. This mechanism performs the optimization without real-time
processor intervention, and without the need to program transfer bursts
into the DMA work unit streams. Traffic can be independently controlled
for each of the three buses (DAB, DCB, and DEB) with simple counters.
In addition, alternation of transfers among MDMA streams can be con-
trolled with the MDMA_ROUND_ROBIN_COUNT field of the DMACx_TC_CNT
register.

Using the traffic control features, the DMA system preferentially grants
data transfers on the DAB or memory buses which are going in the same
read/write direction as the previous transfer, until either the traffic control
counter times out, or until traffic stops or changes direction on its own.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-61

Direct Memory Access

When the traffic counter reaches zero, the preference is changed to the
opposite flow direction. These directional preferences work as if the prior-
ity of the opposite-direction channels were decreased by 16.

For example, if channels 3 and 5 were requesting DAB access, but
lower-priority channel 5 is going “with traffic” and higher-priority chan-
nel 3 is going “against traffic,” then channel 3’s effective priority becomes
19, and channel 5 would be granted instead. If on the next cycle the only
channels requesting DAB transfers were all going against traffic, (channels
3 and 6), then their effective priorities become 19 and 22. One of the
channels (channel 3) is granted, even though its direction is opposite to
the current flow. No bus cycles are wasted, other than any necessary delay
required by the bus turnaround.

This type of traffic control represents a trade-off of latency to improve uti-
lization (efficiency). Higher traffic time outs might increase the length of
time each request waits for its grant, but it often dramatically improves the
maximum attainable bandwidth in congested systems, often to above
90%.

To disable preferential DMA prioritization, program the DMACx_TC_PER
register to 0x0000.

DMA Traffic Control Counter Period
(DMACx_TC_PER) and Counter (DMACx_TC_CNT)
Registers

The MDMA_ROUND_ROBIN_COUNT field shows the current transfer count
remaining in the MDMA round robin period. It initializes to
MDMA_ROUND_ROBIN_PERIOD whenever DMACx_TC_PER is written, whenever a
different MDMA stream is granted, or whenever every MDMA stream is
idle, then counts down to 0 with each MDMA transfer. When this count
decrements from 1 to 0, the next available MDMA stream is selected.

Prioritization and Traffic Control

9-62 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The DAB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DAB traffic period. It initializes to DAB_TRAFFIC_PERIOD whenever
DMACx_TC_PER is written, or whenever the DAB bus changes direction or
becomes idle, then counts down from DAB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero,
same-direction DAB accesses are preferred. When this count decrements
from 1 to 0, the opposite-direction DAB access is preferred, which may
result in a direction change. When this count is 0 and a DAB bus access
occurs, the count is reloaded from DAB_TRAFFIC_PERIOD to begin a new
burst.

The DEB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DEB traffic period. It initializes to DEB_TRAFFIC_PERIOD whenever
DMACx_TC_PER is written, or whenever the DEB bus changes direction or
becomes idle, then counts down from DEB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero,
same-direction DEB accesses are preferred. When this count decrements
from 1 to 0, the opposite-direction DEB access is preferred, which may
result in a direction change. When this count is 0 and a DEB bus access
occurs, the count is reloaded from DEB_TRAFFIC_PERIOD to begin a new
burst.

The DCB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DCB traffic period. It initializes to DCB_TRAFFIC_PERIOD whenever
DMACx_TC_PER is written, or whenever the DCB bus changes direc-
tion or becomes idle, then counts down from DCB_TRAFFIC_PERIOD to 0 on
each system clock (except for DMA stalls). While this count is nonzero,
same-direction DCB accesses are preferred. When this count decrements
from 1 to 0, the opposite-direction DCB access is preferred, which may
result in a direction change. When this count is 0 and a DCB bus access
occurs, the count is reloaded from DCB_TRAFFIC_PERIOD to begin a new
burst.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-63

Direct Memory Access

Figure 9-17. DMA Traffic Control Counter Period Register

Figure 9-18. DMA Traffic Control Counter Register

0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0

Maximum length of MDMA round-robin
bursts. If not zero, any MDMA stream which
receives a grant is allowed up to that num-
ber of DMA transfers, to the exclusion of the
other MDMA streams.

DMA Traffic Control Counter Period Registers (DMACx_TC_PER)

DAB_TRAFFIC_PERIOD[2:0]

000 - No DAB bus transfer grouping performed
 Other - Preferred length of unidirectional
bursts on the DAB bus between the DMA and
the peripherals

MDMA_ROUND_ROBIN_
PERIOD[4:0]

DCB_TRAFFIC_PERIOD[3:0]

DEB_TRAFFIC_PERIOD[3:0]

Reset = 0x0000

000 - No DCB bus transfer
grouping performed
 Other - Preferred length of uni-
directional bursts on the DCB
bus between the DMA and
internal L1 memory

000 - No DEB bus transfer
grouping performed
 Other - Preferred length of uni-
directional bursts on the DEB
bus between the DMA and
external memory

RO

0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0

Current transfer count remaining in the
MDMA round robin period

DMA Traffic Control Counter Registers (DMACx_TC_CNT)

DAB_TRAFFIC_COUNT[2:0]

Current cycle count remaining in the
DAB traffic period

MDMA_ROUND_ROBIN_
COUNT[4:0]

DCB_TRAFFIC_COUNT[3:0]

DEB_TRAFFIC_COUNT[3:0]

Reset = 0x0000

Current cycle count remaining
in the DCB traffic period

Current cycle count remaining
in the DEB traffic period

Urgent DMA Transfers

9-64 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Urgent DMA Transfers
Typically, DMA transfers for a given peripheral occur at regular intervals.
Generally, the shorter the interval, the higher the priority that should be
assigned to the peripheral. If the average bandwidth of all the peripherals
is not too large a fraction of the total, then all peripherals’ requests should
be granted as required.

Occasionally, instantaneous DMA traffic might exceed the available band-
width, causing congestion. This may occur if L1 or external memory is
temporarily stalled, perhaps for an SDRAM page swap or a cache line fill.
Congestion might also occur if one or more DMA channels initiates a
flurry of requests, perhaps for descriptor fetches or to fill a FIFO in the
DMA or in the peripheral.

If congestion persists, lower priority DMA peripherals may become
starved for data. Even though the peripheral’s priority is low, if the neces-
sary data transfer does not take place before the end of the peripheral’s
regular interval, system failure may result. To minimize this possibility,
the DMA unit detects peripherals whose need for data has become urgent,
and preferentially grants them service at the highest priority.

A DMA channel’s request for memory service is defined as urgent if both
the channel’s FIFO is not ready for a DAB bus transfer (that is, a transmit
FIFO is empty or a receive FIFO is full), and the peripheral is asserting its
DMA request line.

Descriptor fetches may be urgent, if they are necessary to initiate or con-
tinue a DMA work unit chain for a starving peripheral. DMA requests
from an MDMA channel are never urgent.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 9-65

Direct Memory Access

When one or more DMA channels express an urgent memory request, two
events occur:

1. All non-urgent memory requests are decreased in priority by 32,
guaranteeing that only an urgent request will be granted. The
urgent requests compete with each other, if there is more than one,
and directional preference among urgent requests is observed.

2. The resulting memory transfer is marked for expedited processing
in the targeted memory system (L1 or external), and so are all prior
incomplete memory transfers ahead of it in that memory system.
This may cause a series of external memory core accesses to be
delayed for a few cycles so that a peripheral’s urgent request may be
accommodated.

The preferential handling of urgent DMA transfers is completely auto-
matic. No user controls are required for this function to operate.

Urgent DMA Transfers

9-66 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 10-1

10 SPI COMPATIBLE PORT
CONTROLLERS

The processor has three serial peripheral interface (SPI) ports that provide
an I/O interface to a wide variety of SPI compatible peripheral devices.

With a range of configurable options, the SPI ports provide glueless hard-
ware interface to other SPI compatible devices. The SPI is a four-wire
interface consisting of two data pins, a device select pin, and a clock pin.
The SPI is a full-duplex synchronous serial interface, supporting master
modes, slave modes, and multimaster environments. The SPI compatible
peripheral implementation also supports programmable baud rate and
clock phase/polarities. The SPI features the use of open drain drivers to
support the multimaster scenario and to avoid data contention.

Typical SPI compatible peripheral devices that can be used to interface to
the SPI compatible interface include:

• Other CPUs or micro controllers

• Codecs

• A/D converters

• D/A converters

• Sample rate converters

• SP/DIF or AES/EBU digital audio transmitters and receivers

• LCD displays

10-2 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• Shift registers

• FPGAs with SPI emulation

The SPI is an industry-standard synchronous serial link that supports
communication with multiple SPI compatible devices. The SPI peripheral
is a synchronous, four-wire interface consisting of two data pins (MOSIx
and MISOx), one device select pin (SPIxSS), and a gated clock pin (SCKx).
With the two data pins, it allows for full-duplex operation to other SPI
compatible devices. The SPI also includes programmable baud rates, clock
phase, and clock polarity.

The SPI can operate in a multimaster environment by interfacing with
several other devices, acting as either a master device or a slave device. In a
multimaster environment, the SPI interface uses open drain outputs to
avoid data bus contention.

Figure 10-1 provides a block diagram of the SPI. The interface is essen-
tially a shift register that serially transmits and receives data bits, one bit at
a time at the SCKx rate, to and from other SPI devices. SPI data is trans-
mitted and received at the same time through the use of a shift register.
When an SPI transfer occurs, data is simultaneously transmitted (shifted
serially out of the shift register) as new data is received (shifted serially
into the other end of the same shift register). The SCKx synchronizes the
shifting and sampling of the data on the two serial data pins.

During SPI data transfers, one SPI device acts as the SPI link master,
where it controls the data flow by generating the SPI serial clock and
asserting the SPI device select signal (SPIxSS). The other SPI device acts as
the slave and accepts new data from the master into its shift register, while
it transmits requested data out of the shift register through its SPI trans-
mit data pin. Multiple processors can take turns being the master device,
as can other micro controllers or microprocessors. One master device can
also simultaneously shift data into multiple slaves (known as broadcast
mode). However, only one slave may drive its output to write data back to
the master at any given time. This must be enforced in broadcast mode on

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 10-3

SPI Compatible Port Controllers

SPI0, where several slaves can be selected to receive data from the master,
but only one slave at a time can be enabled to send data back to the
master.

In a multimaster or multidevice environment where multiple processors
are connected via their SPI ports, all MOSIx pins are connected together, all
MISOx pins are connected together, and all SCKx pins are connected
together.

For a multislave environment, the processor can make use of seven GPIO
port F, PF1–PF7, that are dedicated SPI0 slave select signals for the SPI0
slave devices. For SPI1 and SPI2, the processor uses a single GPIO pin for
a single slave-select output each. SPI1 uses the PD4 pin, and SPI2 uses the
PD9 pin in this capacity.

 At reset, the SPI is disabled and configured as a slave.

Figure 10-1. SPI Block Diagram

MOSIx MISOx SCKx

SPI INTERFACE LOGIC

SHIFT REGISTER

SPIx_RDBR
RECEIVE

REGISTER

SPIx_TDBR
TRANSMIT
REGISTER

SPIx IRQ
OR DMA
REQUEST

SPI
INTERNAL

CLOCK
GENERATOR

SPIx_CTL
SPIx_ST

16

16

PAB

DAB

FOUR-DEEP FIFO

M S S M

SPIxSS

Interface Signals

10-4 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Interface Signals
The following section discusses the SPI signals.

Serial Peripheral Interface Clock Signals (SCKx)
The SCKx signal is the SPI clock signal. This control signal is driven by the
master and controls the rate at which data is transferred. The master may
transmit data at a variety of baud rates. The SCKx signal cycles once for
each bit transmitted. It is an output signal if the device is configured as a
master, and an input signal if the device is configured as a slave.

The SCKx is a gated clock that is active during data transfers only for the
length of the transferred word. The number of active clock edges is equal
to the number of bits driven on the data lines. Slave devices ignore the
serial clock if the serial peripheral slave select input (SPIxSS) is driven
inactive (high).

The SCKx is used to shift out and shift in the data driven on the MISOx and
MOSIx lines. Clock polarity and clock phase relative to data are program-
mable in the SPI control register (SPIx_CTL) and define the transfer
format (see “SPI Transfer Formats” on page 10-20).

The SCK0 signal is dedicated. The SCK1 and SCK2 signals are GPIO pins
PD2 and PD7, respectively. Be sure to set the PORTDIO_FER register for
peripheral use. For more information, see “General-Purpose Input/Out-
put Ports C, D, E” on page 15-1.

Serial Peripheral Interface Slave Select Input
Signals (SPIxSS)

The SPIxSS signal is the SPI serial peripheral slave select input signal. This
is an active-low signal used to enable a processor when it is configured as a
slave device. This input-only pin behaves like a chip select and is provided
by the master device for the slave devices. For a master device, it can act as

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 10-5

SPI Compatible Port Controllers

an error signal input in case of the multimaster environment. In multi-
master mode, if the SPIxSS input signal of a master is asserted (driven
low), and the PSSE bit in the SPIx_CTL register is enabled, an error has
occurred. This means that another device is also trying to be the master
device.

The SPI0SS signal is the same pin as the PF0 pin. Be careful to not use PF0
as an output if intended to serve as the SPI0SS. The SPI1SS and SPI2SS
signals are GPIO pins (PD3 and PD8, respectively). Be sure to set the
PORTDIO_FER register for peripheral use. For more information, see
“General-Purpose Input/Output Ports C, D, E” on page 15-1.

Master Out Slave In (MOSIx)
The MOSI0 pin is dedicated, and the MOSI1 and MOSI2 pins are GPIO pins
(PD0 and PD5, respectively). Be sure to set the PORTDIO_FER register for
peripheral use. For more information, see “General-Purpose Input/Out-
put Ports C, D, E” on page 15-1.

The MOSIx pin is the master-out-slave-in pin, one of the bidirectional I/O
data pins. If the processor is configured as a master, the MOSIx pin
becomes a data transmit (output) pin, transmitting output data. If the
processor is configured as a slave, the MOSIx pin becomes a data receive
(input) pin, receiving input data. In an SPI interconnection, the data is
shifted out from the MOSIx output pin of the master and shifted into the
MOSIx input(s) of the slave(s).

Master In Slave Out (MISOx)
The MISOx pin is the master-in-slave-out pin, one of the bidirectional I/O
data pins. If the processor is configured as a master, the MISOx pin
becomes a data receive (input) pin, receiving input data. If the processor is
configured as a slave, the MISOx pin becomes a data transmit (output) pin,

Interface Signals

10-6 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

transmitting output data. In an SPI interconnection, the data is shifted
out from the MISOx output pin of the slave and shifted into the MISOx
input pin of the master. The following important points should be noted.

• The MISO0 pin is dedicated, and the MISO1 and MISO2 pins are
GPIO pins (PD1 and PD6, respectively). Be sure to set the
PORTDIO_FER register for peripheral use. For more information, see
“General-Purpose Input/Output Ports C, D, E” on page 15-1.

• In a multislave environment, only one slave is allowed to transmit
data at any given time.

• The processor can be booted via its SPI0 interface to allow user
application code and data to be downloaded before runtime.

The SPI configuration example in Figure 10-2 illustrates how the proces-
sor can be used as the slave SPI device. The 8-bit host microcontroller is
the SPI master.

Interrupt Output
Each SPI has two interrupt output signals: a data interrupt and an error
interrupt.

Figure 10-2. ADSP-BF538 Blackfin Processor as a Slave SPI Device

8-BIT HOST
MICROCONTROLLER

BLACKFIN PROCESSOR
SLAVE SPI DEVICE

SCLK

MOSI

MISO MISO0

SCK0

MOSI0

SPI0SSS_SEL

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 10-7

SPI Compatible Port Controllers

The behavior of the SPI data interrupt signal depends on the transfer Ini-
tiation mode bit field (TIMOD) in the SPI control register. In DMA mode
(TIMOD = 1X), the data interrupt acts as a DMA request and is generated
when the DMA FIFO is ready to be written to (TIMOD = 11) or read from
(TIMOD = 10). In non-DMA mode (TIMOD = 0X), a data interrupt is gener-
ated when the SPIx_TDBR is ready to be written to (TIMOD = 01) or when
the SPIx_RDBR is ready to be read from (TIMOD = 00).

An SPI error interrupt is generated in a master when a mode fault error
occurs, in both DMA and non-DMA modes. An error interrupt can also
be generated in DMA mode when there is an underflow (TXE when
TIMOD = 11) or an overflow (RBSY when TIMOD = 10) error condition. In
non-DMA mode, the underflow and overflow conditions set the TXE and
RBSY bits in the SPIx_STAT register, respectively, but do not generate an
error interrupt.

For more information about this interrupt output, see the discussion of
the TIMOD bits in “SPI Control (SPIx_CTL) Register” on page 10-9.

SPI Registers
The SPI peripherals include a number of user-accessible registers. Some of
these registers are also accessible through the DMA bus. Four registers
contain control and status information: SPIx_BAUD, SPIx_CTL, SPIx_FLG,
and SPIx_STAT. Two registers are used for buffering receive and transmit
data: SPIx_RDBR and SPIx_TDBR. For information about DMA-related reg-
isters, see Chapter 9, “Direct Memory Access”. The shift register, SFDR, is
internal to the SPI module and is not directly accessible.

See “Error Signals and Flags” on page 10-28 for more information about
how the bits in these registers are used to signal errors and other condi-
tions. See “Register Functions” on page 10-19 for more information about
SPI register and bit functions.

SPI Registers

10-8 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

SPI BAUD Rate (SPIx_BAUD) Register
The SPI baud rate register (SPIx_BAUD) is used to set the bit transfer rate
for a master device. When configured as a slave, the value written to this
register is ignored. The serial clock frequency is determined by this
formula:

SCKx frequency = (peripheral clock frequency SCLK)/(2 x SPIx_BAUD)

Writing a value of 0 or 1 to the register disables the serial clock. There-
fore, the maximum serial clock rate is one-fourth the system clock rate.

Table 10-1 lists several possible baud rate values for SPIx_BAUD.

Figure 10-3. SPI Baud Rate Registers

Table 10-1. SPI Master Baud Rate Example

SPIx_BAUD Decimal Value SPI Clock (SCKx) Divide
Factor

Baud Rate for
SCLK at 100 MHz

0 N/A N/A

1 N/A N/A

2 4 25 MHz

3 6 16.7 MHz

4 8 12.5 MHz

65,535 (0xFFFF) 131,070 763 Hz

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Baud Rate
SCLK / (2 SPIx_BAUD)

Reset = 0x0000

SPI Baud Rate Register (SPIx_BAUD)

SPI0 – 0xFFC0 0514
SPI1 – 0xFFC0 2314
SPI1 – 0xFFC0 2414

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 10-9

SPI Compatible Port Controllers

SPI Control (SPIx_CTL) Register
The SPI control register (SPIx_CTL) is used to configure and enable the
SPI system. This register is used to enable the SPI interface, select the
device as a master or slave, and determine the data transfer format and
word size.

The term “word” refers to a single data transfer of either 8 bits or 16 bits,
depending on the word length (SIZE) bit in SPIx_CTL. There are two spe-
cial bits which can also be modified by the hardware: SPE and MSTR.

The TIMOD field is used to specify the action that initiates transfers to/from
the receive/transmit buffers. When set to 00, a SPI port transaction is
begun when the receive buffer is read. Data from the first read needs to be
discarded since the read is needed to initiate the first SPI port transaction.
When set to 01, the transaction is initiated when the transmit buffer is
written. A value of 10 selects DMA receive mode and the first transaction
is initiated by enabling the SPI for DMA receive mode. Subsequent indi-
vidual transactions are initiated by a DMA read of the SPIx_RDBR. A value
of 11 selects DMA transmit mode and the transaction is initiated by a
DMA write of the SPIx_TDBR.

The PSSE bit is used to enable the SPIxSS input for master. When not
used, SPIxSS can be disabled, freeing up a chip pin as general-purpose
I/O.

The EMISO bit enables the MISOx pin as an output. This is needed in an
environment where the master wishes to transmit to various slaves at one
time (broadcast). Only one slave is allowed to transmit data back to the
master. Except for the slave from whom the master wishes to receive, all
other slaves should have this bit cleared.

The SPE and MSTR bits can be modified by hardware when the MODF bit of
the status register is set. See “Mode Fault Error (MODF)” on page 10-28.

SPI Registers

10-10 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 10-4 provides the bit descriptions for SPIx_CTL.

Figure 10-4. SPI Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 1 0 0 0 0 0 0 0 0 00

TIMOD (Transfer Initiation Mode)
00 - Start transfer with read of

SPIx_RDBR, interrupt when
SPIx_RDBR is full

01 - Start transfer with write of
SPIx_TDBR, interrupt when
SPIx_TDBR is empty

10 - Start transfer with DMA read
of SPIx_RDBR, request further
DMA reads as long as SPI DMA
FIFO is not empty

11 - Start transfer with DMA write
of SPIx_TDBR, request further
DMA writes as long as SPI DMA
FIFO is not full

SZ (Send Zero)
Send zero or last word when
SPIx_TDBR is empty
0 - Send last word
1 - Send zeros

GM (Get More Data)
When SPIx_RDBR is full, get
data or discard incoming data
0 - Discard incoming data
1 - Get more data, overwrite

previous data

PSSE (Slave Select Enable)
0 - Disable
1 - Enable

EMISO (Enable MISOx)
0 - MISOx disabled
1 - MISOx enabled

Reset = 0x0400

SPE (SPI Enable)
0 - Disabled
1 - Enabled

WOM (Write Open Drain
Master)
0 - Normal
1 - Open drain

MSTR (Master)
Sets the SPI module as
master or slave
0 - Slave
1 - Master

CPOL (Clock Polarity)
0 - Active high SCKx
1 - Active low SCKx

CPHA (Clock Phase)
Selects transfer format and
operation mode
0 - SCLK toggles from middle

of the first data bit, slave select
pins controlled by hardware.

1 - SCLK toggles from beginning
of first data bit, slave select
pins controller by user software.

LSBF (LSB First)
0 - MSB sent/received first
1 - LSB sent/received first

SIZE (Size of Words)
0 - 8 bits
1 - 16 bits

SPI Control Register (SPIx_CTL)

SPI0 – 0xFFC0 0500
SPI1 – 0xFFC0 2300
SPI1 – 0xFFC0 2400

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 10-11

SPI Compatible Port Controllers

SPI Flag (SPIx_FLG) Register
If the SPI is enabled as a master, the SPI uses the SPI flag register
(SPIx_FLG) to enable up to seven GPIO port F pins to be used as individ-
ual slave select lines. In slave mode, the SPIx_FLG bits have no effect, and
each SPI uses the SPIxSS input as a slave select. Figure 10-5 shows the
SPI0_FLG register diagram. For details specific to the SPI1 and SPI2 ports,
see “Special Considerations for SPI1 and SPI2 Slave Control” on
page 10-15.

Figure 10-5. SPI0 Flag Register

Reset = 0xFF00

FLS1 (Slave Select Enable 1)
0 - SPIxSEL1 disabled
1 - SPIxSEL1 enabled

FLS2 (Slave Select Enable 2)
0 - SPIxSEL2 disabled
1 - SPIxSEL2 enabled

FLS3 (Slave Select Enable 3)
0 - SPIxSEL3 disabled
1 - SPIxSEL3 enabled

FLS4 (Slave Select Enable 4)
0 - SPIxSEL4 disabled
1 - SPIxSEL4 enabled

FLS5 (Slave Select Enable 5)
0 - SPIxSEL5 disabled
1 - SPIxSEL5 enabled

FLS6 (Slave Select Enable 6)
0 - SPIxSEL6 disabled
1 - SPIxSEL6 enabled

FLS7 (Slave Select Enable 7)
0 - SPIxSEL7 disabled
1 - SPIxSEL7 enabled

FLG7 (Slave
Select Value 7)
SPIxSEL7 value

FLG6 (Slave Select
Value 6)
SPIxSEL6 value

FLG5 (Slave Select
Value 5)
SPIxSEL5 value

FLG4 (Slave Select
 Value 4)
SPIxSEL4 value

FLG3 (Slave Select Value 3)
SPIxSEL3 value

FLG2 (Slave Select Value 2)
SPIxSEL2 value

FLG1 (Slave Select Value 1)
SPIxSEL1 value

SPI0 Flag Register (SPI0_FLG)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 0 0 0 0 0 0 0

SPI0 – 0xFFC0 0504
SPI1 – 0xFFC0 2304
SPI2 – 0xFFC0 2404

SPI Registers

10-12 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The SPI0_FLG register consists of two sets of bits that function as follows.

• Slave select enable (FLSx) bits

Each FLSx bit corresponds to a GPIO port F (PFx) pin. When a
FLSx bit is set, the corresponding PFx pin is driven as a slave select.
For example, if FLS1 is set in SPI0_FLG, PF1 is driven as a slave
select (SPI0SEL1). Table 10-2 shows the association of the FLSx bits
and the corresponding PFx pins.

If the FLSx bit is not set, the GPIO port F registers (PORTFIO_DIR
and others) configure and control the corresponding PFx pin for
SPI0.

• Slave select value (FLGx) bits

• When a PFx pin is configured as a slave select output for SPI0, the
FLGx bits can determine the value driven onto the output. If the
CPHA bit in SPI0_CTL is set, the output value is set by software con-
trol of the FLGx bits. The SPI protocol permits the slave select line
to either remain asserted (low) or be deasserted between transferred
words. The user must set or clear the appropriate FLGx bits. For
example, to drive PF3 as a slave select, FLS3 in SPI0_FLG must be
set. Clearing FLG3 in SPI0_FLG drives PF3 low; setting FLG3 drives
PF3 high. The PF3 pin can be cycled high and low between transfers
by setting and clearing FLG3. Otherwise, PF3 remains active (low)
between transfers.

If CPHA = 0, the SPI hardware sets the output value and the FLGx
bits are ignored. The SPI protocol requires that the slave select be
deasserted between transferred words. In this case, the SPI hard-
ware controls the pins. For example, to use PF3 as a slave select pin,
it is only necessary to set the FLS3 bit in SPIx_FLG. It is not neces-
sary to write to the FLG3 bit, because the SPI hardware
automatically drives the PF3 pin.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 10-13

SPI Compatible Port Controllers

Slave Select Inputs

If the SPI is in slave mode, SPIxSS acts as the slave select input. When
enabled as a master, SPIxSS can serve as an error detection input for the
SPI in a multimaster environment. The PSSE bit in SPIx_CTL enables this
feature. When PSSE = 1, the SPIxSS input is the master mode error input.
Otherwise, SPIxSS is ignored.

Table 10-2. SPI0_FLG Bit Mapping to PFx Pins

Bit Name Function PFx Pin Default

0 Reserved 0

1 FLS1 SPI0SEL1 Enable PF1 0

2 FLS2 SPI0SEL2 Enable PF2 0

3 FLS3 SPI0SEL3 Enable PF3 0

4 FLS4 SPI0SEL4 Enable PF4 0

5 FLS5 SPI0SEL5 Enable PF5 0

6 FLS6 SPI0SEL6 Enable PF6 0

7 FLS7 SPI0SEL7 Enable PF7 0

8 Reserved 1

9 FLG1 SPI0SEL1 Value PF1 1

10 FLG2 SPI0SEL2 Value PF2 1

11 FLG3 SPI0SEL3 Value PF3 1

12 FLG4 SPI0SEL4 Value PF4 1

13 FLG5 SPI0SEL5 Value PF5 1

14 FLG6 SPI0SEL6 Value PF6 1

15 FLG7 SPI0SEL7 Value PF7 1

SPI Registers

10-14 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Use of FLS Bits in SPI0_FLG for Multiple Slave
SPI Systems

The FLSx bits in the SPI0_FLG register are used in a multiple slave SPI
environment. For example, if there are eight SPI devices in the system
including a processor master, the master processor can support the SPI
mode transactions across the other seven devices. This configuration
requires only one master processor in this multislave environment. For
example, assume that the SPI0 is the master. The seven GPIO port F pins
(PF1–PF7) on the processor master can be connected to each of the slave
SPI device’s SPIxSS slave-select input pins. In this configuration, the FLSx
bits in SPI0_FLG can be used in three cases.

In cases 1 and 2, the processor is the master and the seven micro control-
lers/peripherals with SPI interfaces are slaves. The processor can:

1. Transmit to all seven SPI devices at the same time in a broadcast
mode. Here, all FLSx bits are set.

2. Receive and transmit from one SPI device by enabling only one
slave SPI device at a time.

In case 3, all eight devices connected via SPI ports can be other
processors.

3. If all the slaves are also processors, then the requester can receive
data from only one processor (enabled by clearing the EMISO bit in
the six other slave processors) at a time and transmit broadcast data
to all seven at the same time. This EMISO feature may be available in
some other micro controllers. Therefore, it is possible to use the
EMISO feature with any other SPI device that includes this
functionality.

Figure 10-6 shows one processor as a master with three processors (or
other SPI compatible devices) as slaves.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 10-15

SPI Compatible Port Controllers

Special Considerations for SPI1 and SPI2 Slave Control

All functionality and control for the slave-select outputs for SPI1 and
SPI2 are exactly as described for SPI0 above. However, since SPI1 and
SPI2 can only control one slave-select output signal, the only functional
bits in the relevant SPIx_FLG registers are the FLS1/FLG1 bits. The rest of
the bits in these registers are reserved. For SPI1, modifying these bit loca-
tions affects the PD4 pin. For SPI2, modifying these bit locations affects
the PD9 pin. Be sure to verify that the PORTDIO_FER register is properly
configured to set these pins for peripheral use. See Figure 15-8 on
page 15-10 for more details.

SPI Status (SPIx_STAT) Register
The SPI status register (SPIx_STAT) is used to detect when an SPI transfer
is complete or if transmission/reception errors occur. The SPIx_STAT regis-
ter can be read at any time.

Figure 10-6. Single-Master, Multiple-Slave Configuration

MOSIMISO

SLAVE DEVICE

SCK MOSIMISO SCK MOSIMISO SCK

MOSI0MISO0 SCK0

MASTER
DEVICE

SLAVE DEVICE SLAVE DEVICE

PFxPFx

PFx

VDD

SPISS

SPI0SS

SPISS SPISS

SPI Registers

10-16 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Some of the bits in SPIx_STAT are read-only and other bits are sticky. Bits
that provide information only about the SPI are read-only. These bits are
set and cleared by the hardware. Sticky bits are set when an error condi-
tion occurs. These bits are set by hardware and must be cleared by
software. To clear a sticky bit, the user must write a 1 to the desired bit
position of SPIx_STAT. For example, if the TXE bit is set, the user must
write a 1 to bit 2 of SPIx_STAT to clear the TXE error condition. This allows
the user to read SPIx_STAT without changing its value.

 Sticky bits are cleared on a reset, but are not cleared on an SPI
disable.

The transmit buffer becomes full after it is written to. It becomes empty
when a transfer begins and the transmit value is loaded into the shift regis-
ter. The receive buffer becomes full at the end of a transfer when the shift
register value is loaded into the receive buffer. It becomes empty when the
receive buffer is read.

Figure 10-7. SPIx Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0001

SPIF (SPI Finished) - RO
Set when SPI single word
transfer complete

MODF (Mode Fault Error) -
W1C
Set in a master device when
some other device tries to
become the master

TXE (Transmission Error) -
W1C
Set when transmission
occurred with no new data in
SPIx_TDBR

SPI Status Register (SPIx_STAT)

TXCOL (Transmit Collision Error) - W1C
When set, corrupt data may
have been transmitted

RXS (RX Data Buffer register) - RO
0 - Empty
1 - Full

RBSY (Receive Error) - W1C
Set when data is received with
receive buffer full

TXS (SPIx_TDBR Data Buffer register) -
RO
0 - Empty
1 - Full

SPI0 – 0xFFC0 0508
SPI1 – 0xFFC0 2308
SPI2 – 0xFFC0 2408

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 10-17

SPI Compatible Port Controllers

 The SPIF bit is set when the SPI port is disabled.

Upon entering DMA mode, the transmit buffer and the receive buffer
become empty. That is, the TXS bit and the RXS bit are initially cleared
upon entering DMA mode.

When using DMA for SPI transmit, the DMA_DONE interrupt signifies that
the DMA FIFO is empty. However, at this point there may still be data in
the SPI DMA FIFO waiting to be transmitted. Therefore, software needs
to poll TXS in the SPIx_STAT register until it goes low for two successive
reads, at which point the SPI DMA FIFO will be empty. When the SPIF
bit subsequently goes high, the last word has been transferred.

SPI Transmit Data Buffer (SPIx_TDBR) Register
The SPI transmit data buffer register (SPIx_TDBR) is a 16-bit read-write
register. Data is loaded into this register before being transmitted. Just
prior to the beginning of a data transfer, the data in SPIx_TDBR is loaded
into the shift data register (SFDR). A read of SPIx_TDBR can occur at any
time and does not interfere with or initiate SPI transfers.

When the DMA is enabled for transmit operation, the DMA engine loads
data into this register for transmission just prior to the beginning of a data
transfer. A write to SPIx_TDBR should not occur in this mode because this
data overwrites the DMA data to be transmitted.

When the DMA is enabled for receive operation, the contents of
SPIx_TDBR are repeatedly transmitted. A write to SPIx_TDBR is permitted in
this mode, and this data is transmitted.

If the send zeros control bit (SZ in the SPIx_CTL register) is set, SPIx_TDBR
may be reset to 0 under certain circumstances.

SPI Registers

10-18 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

If multiple writes to SPIx_TDBR occur while a transfer is already in prog-
ress, only the last data written is transmitted. None of the intermediate
values written to SPIx_TDBR are transmitted. Multiple writes to SPIx_TDBR
are possible, but not recommended.

SPI Receive Data Buffer (SPIx_RDBR) Register
The SPI receive data buffer register (SPIx_RDBR) is a 16-bit read-only reg-
ister. At the end of a data transfer, the data in the shift register is loaded
into SPIx_RDBR. During a DMA receive operation, the data in SPIx_RDBR
is automatically read by the DMA. When SPIx_RDBR is read via software,
the RXS bit is cleared and an SPI transfer may be initiated (if TIMOD = 00).

Figure 10-8. SPIx Transmit Data Buffer Register

Figure 10-9. SPIx Receive Data Buffer Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Transmit Data Buffer

SPI Transmit Data Buffer Register (SPIx_TDBR)

SPI0 – 0xFFC0 050C
SPI1 – 0xFFC0 230C
SPI2 – 0xFFC0 240C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Receive Data Buffer

SPI Receive Data Buffer Register (SPIx_RDBR)
RO

SPI0 – 0xFFC0 0510
SPI1 – 0xFFC0 2310
SPI2 – 0xFFC0 2410

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 10-19

SPI Compatible Port Controllers

SPI Receive Data Buffer Shadow (SPIx_SHADOW)
Register

The SPI RDBR shadow register (SPIx_SHADOW), has been provided for use
in debugging software. This register is at a different address than the
receive data buffer, SPIx_RDBR, but its contents are identical to that of
SPIx_RDBR. When a software read of SPIx_RDBR occurs, the RXS bit in
SPIx_STAT is cleared and an SPI transfer may be initiated (if TIMOD = 00

in SPIx_CTL). No such hardware action occurs when the SPIx_SHADOW reg-
ister is read. The SPIx_SHADOW register is read-only.

Register Functions
Table 10-3 summarizes the functions of the SPI registers.

Figure 10-10. SPIx RDBR Shadow Register

Table 10-3. SPI Register Mapping

Register Name Function Notes

SPIx_CTL SPI port control SPE and MSTR bits can also be modified by
hardware (when MODF is set)

SPIx_FLG SPI port flag Bits 0 and 8 are reserved in SPI0_FLG. All bits
except FLS1 and FLG1 are reserved in
SPI1_FLG and SPI2_FLG.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

SPIx_RDBR Shadow

SPI RDBR Shadow Register (SPIx_SHADOW)
RO

SPI0 – 0xFFC0 0518
SPI1 – 0xFFC0 2318
SPI2 – 0xFFC0 2418

SPI Transfer Formats

10-20 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

SPI Transfer Formats
The SPI supports four different combinations of serial clock phase and
polarity (SPI modes 0-3). These combinations are selected using the CPOL
and CPHA bits in SPIx_CTL, as shown in Figure 10-11.

The figures “SPI Transfer Protocol for CPHA = 0” on page 10-22 and
“SPI Transfer Protocol for CPHA = 1” on page 10-22 demonstrate the
two basic transfer formats as defined by the CPHA bit. Two waveforms are
shown for SCKx—one for CPOL = 0 and the other for CPOL = 1. The
diagrams may be interpreted as master or slave timing diagrams since the
SCKx, MISOx, and MOSIx pins are directly connected between the master
and the slave. The MISOx signal is the output from the slave (slave trans-
mission), and the MOSIx signal is the output from the master (master
transmission). The SCKx signal is generated by the master, and the SPIxSS
signal is the slave device select input to the slave from the master. The dia-
grams represent an 8-bit transfer (SIZE = 0) with the most significant bit

SPIx_STAT SPI port status SPIF bit can be set by clearing SPE in
SPIx_CTL

SPIx_TDBR SPI port transmit
data buffer

Register contents can also be modified by hard-
ware (by DMA and/or when SZ = 1 in
SPIx_CTL)

SPIx_RDBR SPI port receive
data buffer

When register is read, hardware events are trig-
gered

SPIx_BAUD SPI port baud
control

Value of 0 or 1 disables the serial clock

SPIx_SHADOW SPI port data Register has the same contents as SPIx_RDBR,
but no action is taken when it is read

Table 10-3. SPI Register Mapping (Cont’d)

Register Name Function Notes

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 10-21

SPI Compatible Port Controllers

(MSB) first (LSBF = 0). Any combination of the SIZE and LSBF bits of
SPIx_CTL is allowed. For example, a 16-bit transfer with the least signifi-
cant bit (LSB) first is another possible configuration.

The clock polarity and the clock phase should be identical for the master
device and the slave device involved in the communication link. The
transfer format from the master may be changed between transfers to
adjust to various requirements of a slave device.

When CPHA = 0, the slave select line outputs, must be inactive (high)
between each serial transfer. This is controlled automatically by the SPI
hardware logic. When CPHA = 1,select line outputs SPIxSS may either
remain active (low) between successive transfers or be inactive (high). This
must be controlled by the software via manipulation of SPIx_FLG.

Figure 10-12 shows the SPI transfer protocol for CPHA = 0. Note SCKx
starts toggling in the middle of the data transfer, SIZE = 0, and LSBF = 0.

Figure 10-11. SPI Modes of Operation

C
P

O
L

 =
 0

C
P

O
L

 =
 1

C
L

O
C

K
 P

O
L

A
R

IT
Y

 (
C

P
O

L
)

CLOCK PHASE (CPHA)

CPHA = 0 CPHA = 1

MODE 0

SAMPLE
EDGE

DRIVE
EDGE

MODE 1

SAMPLE
EDGE

DRIVE
EDGE

MODE 2

SAMPLE
EDGE

DRIVE
EDGE

MODE 3

SAMPLE
EDGE

DRIVE
EDGE

SPI Transfer Formats

10-22 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 10-13 shows the SPI transfer protocol for CPHA = 1. Note SCKx
starts toggling at the beginning of the data transfer, SIZE = 0, and
LSBF = 0.

Figure 10-12. SPI Transfer Protocol for CPHA = 0

Figure 10-13. SPI Transfer Protocol for CPHA = 1

6MSB

SPIxSELy
(TO SLAVE)

SCKx
(CPOL = 0)

SCKx
(CPOL = 1)

MOSIx
(FROM MASTER)

MISOx
(FROM SLAVE)

1 2 3 4 85 6 7

5 4 3 2 1 LSB

6MSB 5 4 3 2 1 LSB

CLOCK CYCLE
NUMBER

 * *

 *

(* = UNDEFINED)

6MSB

1 2 3 4 85 6 7

5 4 3 2 1 LSB

6MSB 5 4 3 2 1 LSB

 * *

(* = UNDEFINED)

 *

 SCKx
(CPOL = 0)

SCKx
(CPOL = 1)

MOSIx
(FROM MASTER)

MISOx
(FROM SLAVE)

CLOCK CYCLE
NUMBER

SPIxSELy
(TO SLAVE)

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 10-23

SPI Compatible Port Controllers

SPI General Operation
The SPI can be used in a single master as well as multimaster environ-
ment. The MOSIx, MISOx, and the SCKx signals are all tied together in both
configurations. SPI transmission and reception are always enabled
simultaneously, unless the broadcast mode has been selected. In broadcast
mode, several slaves can be enabled to receive, but only one of the slaves
must be in transmit mode driving the MISOx line. If the transmit or receive
is not needed, it can simply be ignored. This section describes the clock
signals, SPI operation as a master and as a slave, and error generation.

Precautions must be taken to avoid data corruption when changing the
SPI module configuration. The configuration must not be changed during
a data transfer. The clock polarity should only be changed when no slaves
are selected. An exception to this is when an SPI communication link con-
sists of a single master and a single slave, CPHA = 1, and the slave select
input of the slave is always tied low. In this case, the slave is always
selected and data corruption can be avoided by enabling the slave only
after both the master and slave devices are configured.

In a multimaster or multislave SPI system, the data output pins (MOSIx
and MISOx) can be configured to behave as open drain outputs, which pre-
vents contention and possible damage to pin drivers. An external pull-up
resistor is required on both the MOSIx and MISOx pins when this option is
selected.

The WOM bit controls this option. When WOM is set and the SPI is config-
ured as a master, the MOSIx pin is three-stated when the data driven out on
MOSIx is a logic high. The MOSIx pin is not three-stated when the driven
data is a logic low. Similarly, when WOM is set and the SPI is configured as a
slave, the MISOx pin is three-stated if the data driven out on MISOx is a logic
high.

SPI General Operation

10-24 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Clock Signals
The SCKx signal is a gated clock that is only active during data transfers for
the duration of the transferred word. The number of active edges is equal
to the number of bits driven on the data lines. The clock rate can be as
high as one-fourth of the SCLK rate. For master devices, the clock rate is
determined by the 16-bit value of SPIx_BAUD. For slave devices, the value
in SPIx_BAUD is ignored. When the SPI device is a master, SCKx is an out-
put signal. When the SPI is a slave, SCKx is an input signal. Slave devices
ignore the serial clock if the slave select input is driven inactive (high).

The SCKx signal is used to shift out and shift in the data driven onto the
MISOx and MOSIx lines. The data is always shifted out on one edge of the
clock and sampled on the opposite edge of the clock. Clock polarity and
clock phase relative to data are programmable into SPIx_CTL and define
the transfer format (Figure 10-11).

Master Mode Operation
When the SPI0 is configured as a master (and DMA mode is not selected),
the interface operates in the following manner.

1. The core writes to SPI0_FLG, setting one or more of the SPI flag
select bits (FLSx). This ensures that the desired slaves are properly
deselected while the master is configured.

2. The core writes to the SPI0_BAUD and SPI0_CTL registers, enabling
the device as a master and configuring the SPI system by specifying
the appropriate word length, transfer format, baud rate, and other
necessary information.

3. If CPHA = 1, the core activates the desired slaves by clearing one or
more of the SPI flag bits (FLGx) of SPI0_FLG.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 10-25

SPI Compatible Port Controllers

4. The TIMOD bits in SPI0_CTL determine the SPI transfer initiate
mode. The transfer on the SPI link begins upon either a data write
by the core to the transmit data buffer (SPI0_TDBR) or a data read
of the receive data buffer (SPI0_RDBR).

5. The SPI then generates the programmed clock pulses on SCK0 and
simultaneously shifts data out of MOSI0 and shifts data in from
MISO0. Before a shift, the shift register is loaded with the contents
of the SPI0_TDBR register. At the end of the transfer, the contents of
the shift register are loaded into SPI0_RDBR.

6. With each new transfer initiate command, the SPI continues to
send and receive words, according to the SPI transfer initiate mode.

For SPI1 and SPI2, the same sequence above applies except the core must
first verify that the GPIO pins to be used by the SPIx ports are not
enabled as GPIOs. By default, the pins are dedicated for SPI use. For more
information, see “General-Purpose Input/Output Ports C, D, E” on
page 15-1. If the transmit buffer remains empty or the receive buffer
remains full, the device operates according to the states of the SZ and GM
bits in SPIx_CTL. If SZ = 1 and the transmit buffer is empty, the device
repeatedly transmits 0s on the MOSIx pin. One word is transmitted for
each new transfer initiate command. If SZ = 0 and the transmit buffer is
empty, the device repeatedly transmits the last word it transmitted before
the transmit buffer became empty. If GM = 1 and the receive buffer is full,
the device continues to receive new data from the MISOx pin, overwriting
the older data in the SPIx_RDBR buffer. If GM = 0 and the receive buffer is
full, the incoming data is discarded, and SPIx_RDBR is not updated.

Transfer Initiation From Master (Transfer Modes)
When a device is enabled as a master, the initiation of a transfer is defined
by the two TIMOD bits of SPIx_CTL. Based on those two bits and the status
of the interface, a new transfer is started upon either a read of SPIx_RDBR
or a write to SPIx_TDBR. This is summarized in Table 10-4.

SPI General Operation

10-26 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

 If the SPI port is enabled with TIMOD = 01 or TIMOD = 11, the hard-
ware immediately issues a first interrupt or DMA request.

Slave Mode Operation
When a device is enabled as a slave (and DMA mode is not selected), the
start of a transfer is triggered by a transition of the SPIxSS select signal to
the active state (low), or by the first active edge of the clock (SCKx),
depending on the state of CPHA.

Table 10-4. Transfer Initiation

TIMOD Function Transfer Initiated Upon Action, Interrupt

00 Transmit and
Receive

Initiate new single word trans-
fer upon read of SPIx_RDBR
and previous transfer com-
pleted.

Interrupt active when receive
buffer is full.

Read of SPIx_RDBR clears
interrupt.

01 Transmit and
Receive

Initiate new single word trans-
fer upon write to SPIx_TDBR
and previous transfer com-
pleted.

Interrupt active when transmit
buffer is empty.

Writing to SPIx_TDBR clears
interrupt.

10 Receive with
DMA

Initiate new multiword trans-
fer upon enabling SPI for DMA
mode. Individual word trans-
fers begin with a DMA read of
SPIx_RDBR, and last transfer
completed.

Request DMA reads as long as
SPI DMA FIFO is not empty.

11 Transmit with
DMA

Initiate new multiword trans-
fer upon enabling SPI for DMA
mode. Individual word trans-
fers begin with a DMA write to
SPIx_TDBR, and last transfer
completed.

Request DMA writes as long as
SPI DMA FIFO is not full.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 10-27

SPI Compatible Port Controllers

These steps illustrate SPI operation in the slave mode:

1. The core writes to SPIx_CTL to define the mode of the serial link to
be the same as the mode setup in the SPI master.

2. To prepare for the data transfer, the core writes data to be trans-
mitted into SPIx_TDBR.

3. Once the SPIxSS falling edge is detected, the slave starts shifting
data out on MISO and in from MOSI on SCKx edges, depending on
the states of CPHA and CPOL.

4. Reception/transmission continues until SPIxSS is released or until
the slave has received the proper number of clock cycles.

5. The slave device continues to receive/transmit with each new fall-
ing edge transition on SPIxSS and/or SCKx clock edge.

 For SPI1 and SPI2, the SPI pins must not be enabled for GPIO.
For more information, see “General-Purpose Input/Output Ports
C, D, E” on page 15-1.

If the transmit buffer remains empty or the receive buffer remains full, the
device operates according to the states of the SZ and GM bits in SPIx_CTL. If
SZ = 1 and the transmit buffer is empty, the device repeatedly transmits 0s
on the MISOx pin. If SZ = 0 and the transmit buffer is empty, it repeatedly
transmits the last word it transmitted before the transmit buffer became
empty. If GM = 1 and the receive buffer is full, the device continues to
receive new data from the MOSIx pin, overwriting the older data in
SPIx_RDBR. If GM = 0 and the receive buffer is full, the incoming data is
discarded, and SPIx_RDBR is not updated.

Error Signals and Flags

10-28 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Slave Ready for a Transfer
When a device is enabled as a slave, the actions shown in Table 10-5 are
necessary to prepare the device for a new transfer.

Error Signals and Flags
The status of a device is indicated by the SPIx_STAT register. See “SPI Sta-
tus (SPIx_STAT) Register” on page 10-15 for more information.

Mode Fault Error (MODF)
The MODF bit is set in SPIx_STAT when the SPIxSS input pin of a device
enabled as a master is driven low by some other device in the system. This
occurs in multimaster systems when another device is also trying to be the
master. To enable this feature, the PSSE bit in SPIx_CTL must be set. This
contention between two drivers can potentially damage the driving pins.
As soon as this error is detected, these actions occur:

Table 10-5. Transfer Preparation

TIMOD Function Action, Interrupt

00 Transmit and
Receive

Interrupt active when receive buffer is full.

Read of SPIx_RDBR clears interrupt.

01 Transmit and
Receive

Interrupt active when transmit buffer is empty.

Writing to SPIx_TDBR clears interrupt.

10 Receive with
DMA

Request DMA reads as long as SPI DMA FIFO is not empty.

11 Transmit with
DMA

Request DMA writes as long as SPI DMA FIFO is not full.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 10-29

SPI Compatible Port Controllers

• The MSTR control bit in SPIx_CTL is cleared, configuring the SPI
interface as a slave

• The SPE control bit in SPIx_CTL is cleared, disabling the SPI system

• The MODF status bit in SPIx_STAT is set

• An SPI Error interrupt is generated

These four conditions persist until the MODF bit is cleared by software.
Until the MODF bit is cleared, the SPI cannot be re-enabled, even as a slave.
Hardware prevents the user from setting either SPE or MSTR while MODF is
set.

When MODF is cleared, the interrupt is deactivated. Before attempting to
re-enable the SPI as a master, the state of the SPIxSS input pin should be
checked to make sure the pin is high. Otherwise, once SPE and MSTR are
set, another mode fault error condition immediately occurs.

When SPE and MSTR are cleared, the SPI data and clock pin drivers (MOSIx,
MISOx, and SCKx) are disabled. However, the slave select output pins revert
to being controlled by the GPIO port F registers. This could lead to con-
tention on the slave select lines if these lines are still driven by the
processor. To ensure that the slave select output drivers are disabled once
an MODF error occurs, the program must configure the GPIO port F regis-
ters appropriately.

When enabling the MODF feature, the program must configure all of the
PFx pins used as slave selects as inputs. Programs can do this by configur-
ing the direction of the slave-select pins prior to configuring the SPI. This
ensures that, once the MODF error occurs and the slave selects are automati-
cally reconfigured as programmable pins, the slave select output drivers
are disabled.

Beginning and Ending an SPI Transfer

10-30 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Transmission Error (TXE)
The TXE bit is set in SPIx_STAT when all the conditions of transmission are
met, and there is no new data in SPIx_TDBR (SPIx_TDBR is empty). In this
case, the contents of the transmission depend on the state of the SZ bit in
SPIx_CTL. The TXE bit is sticky (W1C).

Reception Error (RBSY)
The RBSY flag is set in the SPIx_STAT register when a new transfer is com-
pleted, but before the previous data can be read from SPIx_RDBR. The state
of the GM bit in the SPIx_CTL register determines whether SPIx_RDBR is
updated with the newly received data. The RBSY bit is sticky (W1C).

Transmit Collision Error (TXCOL)
The TXCOL flag is set in SPIx_STAT when a write to SPIx_TDBR coincides
with the load of the shift register. The write to SPIx_TDBR can be via soft-
ware or the DMA. The TXCOL bit indicates that corrupt data may have
been loaded into the shift register and transmitted. In this case, the data in
SPIx_TDBR may not match what was transmitted. This error can easily be
avoided by proper software control. The TXCOL bit is sticky (W1C).

Beginning and Ending an SPI Transfer
The start and finish of an SPI transfer depend on whether the device is
configured as a master or a slave, whether the CPHA mode is selected, and
whether the transfer initiation mode (TIMOD) is selected. For a master SPI
with CPHA = 0, a transfer starts when either SPIx_TDBR is written to or
SPIx_RDBR is read, depending on TIMOD. At the start of the transfer, the
enabled slave select outputs are driven active (low). However, the SCKx sig-
nal remains inactive for the first half of the first cycle of SCKx. For a slave
with CPHA = 0, the transfer starts as soon as the SPIxSS input goes low.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 10-31

SPI Compatible Port Controllers

For CPHA = 1, a transfer starts with the first active edge of SCKx for both
slave and master devices. For a master device, a transfer is considered fin-
ished after it sends the last data and simultaneously receives the last data
bit. A transfer for a slave device ends after the last sampling edge of SCKx.

The RXS bit defines when the receive buffer can be read. The TXS bit
defines when the transmit buffer can be filled. The end of a single word
transfer occurs when the RXS bit is set, indicating that a new word has just
been received and latched into the receive buffer, SPIx_RDBR. For a master
SPI, RXS is set shortly after the last sampling edge of SCKx. For a slave SPI,
RXS is set shortly after the last SCKx edge, regardless of CPHA or CPOL. The
latency is typically a few SCLK cycles and is independent of TIMOD and the
baud rate. If configured to generate an interrupt when SPIx_RDBR is full
(TIMOD = 00), the interrupt goes active one SCLK cycle after RXS is set.
When not relying on this interrupt, the end of a transfer can be detected
by polling the RXS bit.

To maintain software compatibility with other SPI devices, the SPIF bit is
also available for polling. This bit may have a slightly different behavior
from that of other commercially available devices. For a slave device, SPIF
is cleared shortly after the start of a transfer (SPIxSS going low for
CPHA = 0, first active edge of SCKx on CPHA = 1), and is set at the same
time as RXS. For a master device, SPIF is cleared shortly after the start of a
transfer (either by writing the SPIx_TDBR or reading the SPIx_RDBR,
depending on TIMOD), and is set one-half SCKx period after the last SCKx
edge, regardless of CPHA or CPOL.

The time at which SPIF is set depends on the baud rate. In general, SPIF is
set after RXS, but at the lowest baud rate settings (SPIx_BAUD < 4). The
SPIF bit is set before RXS is set, and consequently before new data is
latched into SPIx_RDBR, because of the latency. Therefore, for
SPIx_BAUD = 2 or SPIx_BAUD = 3, RXS must be set before SPIF to read
SPIx_RDBR. For larger SPIx_BAUD settings, RXS is guaranteed to be set
before SPIF is set.

DMA

10-32 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

If the SPI port is used to transmit and receive at the same time, or to
switch between receive and transmit operation frequently, then the
TIMOD = 00 mode may be the best operation option. In this mode, software
performs a dummy read from the SPIx_RDBR register to initiate the first
transfer. If the first transfer is used for data transmission, software should
write the value to be transmitted into the SPIx_TDBR register before per-
forming the dummy read. If the transmitted value is arbitrary, it is good
practice to set the SZ bit to ensure zero data is transmitted rather than ran-
dom values. When receiving the last word of an SPI stream, software
should ensure that the read from the SPIx_RDBR register does not initiate
another transfer. It is recommended to disable the SPI port before the
final SPIx_RDBR read access. Reading the SPIx_SHADOW register is not suffi-
cient as it does not clear the interrupt request.

In master mode with the CPHA bit set, software should manually assert the
required slave select signal before starting the transaction. After all data
has been transferred, software typically releases the slave select again. If the
SPI slave device requires the slave select line to be asserted for the com-
plete transfer, this can be done in the SPI interrupt service routine only
when operating in TIMOD = 00 or TIMOD = 10 mode. With TIMOD = 01 or
TIMOD = 11, the interrupt is requested while the transfer is still in progress.

DMA
The SPI ports also can use direct memory Access (DMA). For more infor-
mation on DMA, see “DMA and Memory DMA MMRs” on page 9-3.

DMA Functionality
Each SPI has a single DMA engine which can be configured to support
either an SPI transmit channel or a receive channel, but not both simulta-
neously. Therefore, when configured as a transmit channel, the received
data is essentially ignored.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 10-33

SPI Compatible Port Controllers

When configured as a receive channel, what is transmitted is irrelevant. A
16-bit by four-word FIFO (without burst capability) is included to
improve throughput on the DMA access bus (DAB).

 When using DMA for SPI transmit, the DMA_DONE interrupt signi-
fies that the DMA FIFO is empty. However, at this point there
may still be data in the SPI DMA FIFO waiting to be transmitted.
Therefore, software needs to poll TXS in the SPIx_STAT register
until it goes low for 2 successive reads, at which point the SPI
DMA FIFO will be empty. When the SPIF bit subsequently gets
set, the last word has been transferred.

 The four-word FIFO is cleared when the SPI port is disabled.

Master Mode DMA Operation
When enabled as a master with the DMA engine configured to transmit or
receive data, the SPI0 interface operates as follows.

1. The processor core writes to the appropriate DMA registers to
enable the SPI DMA channel and to configure the necessary work
units, access direction, word count, and so on. For more informa-
tion, see “DMA and Memory DMA MMRs” on page 9-3.

2. The processor core writes to the SPI0_FLG register, setting one or
more of the SPI flag select bits (FLSx).

3. The processor core writes to the SPI0_BAUD and SPI0_CTL registers,
enabling the device as a master and configuring the SPI system by
specifying the appropriate word length, transfer format, baud rate,
and so on. The TIMOD field should be configured to select either
“Receive with DMA” (TIMOD = 10) or “Transmit with DMA”
(TIMOD = 11) mode.

DMA

10-34 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

4. If configured for receive, a receive transfer is initiated upon
enabling of the SPI. Subsequent transfers are initiated as the SPI
reads data from the SPI0_RDBR register and writes to the SPI DMA
FIFO. The SPI then requests a DMA write to memory. Upon a
DMA grant, the DMA engine reads a word from the SPI DMA
FIFO and writes to memory.

If configured for transmit, the SPI requests a DMA read from
memory. Upon a DMA grant, the DMA engine reads a word from
memory and writes to the SPI DMA FIFO. As the SPI writes data
from the SPI DMA FIFO into the SPI0_TDBR register, it initiates a
transfer on the SPI link.

5. The SPI then generates the programmed clock pulses on SCK0 and
simultaneously shifts data out of MOSI0 and shifts data in from
MISO0. For receive transfers, the value in the shift register is loaded
into the SPI0_RDBR register at the end of the transfer. For transmit
transfers, the value in the SPI0_TDBR register is loaded into the shift
register at the start of the transfer.

6. In receive mode, as long as there is data in the SPI DMA FIFO (the
FIFO is not empty), the SPI continues to request a DMA write to
memory. The DMA engine continues to read a word from the SPI
DMA FIFO and writes to memory until the SPI DMA word count
register transitions from 1 to 0. The SPI continues receiving words
until SPI DMA mode is disabled.

For SPI1 and SPI2, the same sequence above applies except the
core must first verify that the GPIO pins to be used by the SPIx
ports are not enabled as GPIOs. By default, the pins are dedicated
for SPI use. For more information, see “General-Purpose
Input/Output Ports C, D, E” on page 15-1. In transmit mode, as
long as there is room in the SPI DMA FIFO (the FIFO is not full),
the SPI continues to request a DMA read from memory. The DMA
engine continues to read a word from memory and write to the SPI

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 10-35

SPI Compatible Port Controllers

DMA FIFO until the SPI DMA word count register transitions
from 1 to 0. The SPI continues transmitting words until the SPI
DMA FIFO is empty.

For receive DMA operations, if the DMA engine is unable to keep up with
the receive data stream, the receive buffer operates according to the state
of the GM bit. If GM = 1 and the DMA FIFO is full, the device continues to
receive new data from the MISOx pin, overwriting the older data in the
SPIx_RDBR register. If GM = 0, and the DMA FIFO is full, the incoming
data is discarded, and the SPIx_RDBR register is not updated. While per-
forming receive DMA, the transmit buffer is assumed to be empty (and
TXE is set). If SZ = 1, the device repeatedly transmits 0s on the MOSIx pin.
If SZ = 0, it repeatedly transmits the contents of the SPIx_TDBR register.
The TXE underrun condition cannot generate an error interrupt in this
mode.

For transmit DMA operations, the master SPI initiates a word transfer
only when there is data in the DMA FIFO. If the DMA FIFO is empty,
the SPI waits for the DMA engine to write to the DMA FIFO before start-
ing the transfer. All aspects of SPI receive operation should be ignored
when configured in transmit DMA mode, including the data in the
SPIx_RDBR register, and the status of the RXS and RBSY bits. The RBSY over-
run conditions cannot generate an error interrupt in this mode. The TXE
underrun condition cannot happen in this mode (master DMA TX mode),
because the master SPI does not initiate a transfer if there is no data in the
DMA FIFO.

Writes to the SPIx_TDBR register during an active SPI transmit DMA oper-
ation should not occur because the DMA data will be overwritten. Writes
to the SPIx_TDBR register during an active SPI receive DMA operation are
allowed. Reads from the SPIx_RDBR register are allowed at any time.

DMA requests are generated when the DMA FIFO is not empty (when
TIMOD = 10), or when the DMA FIFO is not full (when TIMOD = 11).

DMA

10-36 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Error interrupts are generated when there is an RBSY overflow error condi-
tion (when TIMOD = 10).

A master SPI DMA sequence may involve back-to-back transmission
and/or reception of multiple DMA work units. The SPI controller sup-
ports such a sequence with minimal core interaction.

Slave Mode DMA Operation
When enabled as a slave with the DMA engine configured to transmit or
receive data, the start of a transfer is triggered by a transition of the SPIxSS
signal to the active-low state or by the first active edge of SCKx, depending
on the state of CPHA.

The following steps illustrate the SPI receive or transmit DMA sequence
in an SPI slave (in response to a master command).

1. The processor core writes to the appropriate DMA registers to
enable the SPI DMA channel and configure the necessary work
units, access direction, word count, and so on. For more informa-
tion, see “DMA and Memory DMA MMRs” on page 9-3.

2. The processor core writes to the SPIx_CTL register to define the
mode of the serial link to be the same as the mode setup in the SPI
master. The TIMOD field is configured to select either receive with
DMA (TIMOD = 10) or transmit with DMA (TIMOD = 11) mode.

3. If configured for receive, once the slave select input is active, the
slave starts receiving and transmitting data on SCKx edges. The
value in the shift register is loaded into the SPIx_RDBR register at
the end of the transfer. As the SPI reads data from the SPIx_RDBR
register and writes to the SPI DMA FIFO, it requests a DMA write
to memory. Upon a DMA grant, the DMA engine reads a word
from the SPI DMA FIFO and writes to memory.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 10-37

SPI Compatible Port Controllers

 For SPI1 and SPI2, the SPI pins must not be enabled for GPIO.
For more information, see “General-Purpose Input/Output Ports
C, D, E” on page 15-1.

If configured for transmit, the SPI requests a DMA read from
memory. Upon a DMA grant, the DMA engine reads a word from
memory and writes to the SPI DMA FIFO. The SPI then reads
data from the SPI DMA FIFO and writes to the SPIx_TDBR register,
awaiting the start of the next transfer. Once the slave select input is
active, the slave starts receiving and transmitting data on SCKx
edges. The value in the SPIx_TDBR register is loaded into the shift
register at the start of the transfer.

4. In receive mode, as long as there is data in the SPI DMA FIFO
(FIFO not empty), the SPI slave continues to request a DMA write
to memory. The DMA engine continues to read a word from the
SPI DMA FIFO and writes to memory until the SPI DMA word
count register transitions from 1 to 0. The SPI slave continues
receiving words on SCKx edges as long as the slave select input is
active.

In transmit mode, as long as there is room in the SPI DMA FIFO
(FIFO not full), the SPI slave continues to request a DMA read
from memory. The DMA engine continues to read a word from
memory and write to the SPI DMA FIFO until the SPI DMA word
count register transitions from 1 to 0. The SPI slave continues
transmitting words on SCKx edges as long as the slave select input is
active.

For receive DMA operations, if the DMA engine is unable to keep up with
the receive data stream, the receive buffer operates according to the state
of the GM bit. If GM = 1 and the DMA FIFO is full, the device continues to
receive new data from the MOSIx pin, overwriting the older data in the
SPIx_RDBR register. If GM = 0 and the DMA FIFO is full, the incoming
data is discarded, and the SPIx_RDBR register is not updated. While

DMA

10-38 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

performing receive DMA, the transmit buffer is assumed to be empty and
TXE is set. If SZ = 1, the device repeatedly transmits 0s on the MISOx pin. If
SZ = 0, it repeatedly transmits the contents of the SPIx_TDBR register. The
TXE underrun condition cannot generate an error interrupt in this mode.

For transmit DMA operations, if the DMA engine is unable to keep up
with the transmit stream, the transmit port operates according to the state
of the SZ bit. If SZ = 1 and the DMA FIFO is empty, the device repeat-
edly transmits 0s on the MISOx pin. If SZ = 0 and the DMA FIFO is
empty, it repeatedly transmits the last word it transmitted before the
DMA buffer became empty. All aspects of SPI receive operation should be
ignored when configured in transmit DMA mode, including the data in
the SPIx_RDBR register, and the status of the RXS and RBSY bits. The RBSY
overrun conditions cannot generate an error interrupt in this mode.

Writes to the SPIx_TDBR register during an active SPI transmit DMA oper-
ation should not occur because the DMA data will be overwritten. Writes
to the SPIx_TDBR register during an active SPI receive DMA operation are
allowed. Reads from the SPIx_RDBR register are allowed at any time.

DMA requests are generated when the DMA FIFO is not empty (when
TIMOD = 10), or when the DMA FIFO is not full (when TIMOD = 11).

Error interrupts are generated when there is an RBSY overflow error condi-
tion (when TIMOD = 10), or when there is a TXE underflow error condition
(when TIMOD = 11).

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 10-39

SPI Compatible Port Controllers

Timing
The enable lead time (T1), the enable lag time (T2), and the sequential
transfer delay time (T3) each must always be greater than or equal to
one-half the SCKx period. See Figure 10-14. The minimum time between
successive word transfers (T4) is two SCKx periods. This is measured from
the last active edge of SCKx of one word to the first active edge of SCKx of
the next word. This is independent of the configuration of the SPI
(CPHA, MSTR, and so on).

For a master device with CPHA = 0, the slave select output is inactive
(high) for at least one-half the SCKx period. In this case, T1 and T2 are
each always be equal to one-half the SCKx period.

Figure 10-14. SPI Timing

T1 T2

SPIxSELyy
(TO SLAVE)

SCK
(CPOL =1)

T4
T3

Timing

10-40 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 11-1

11 PARALLEL PERIPHERAL
INTERFACE

The parallel peripheral interface (PPI) is a half-duplex, bidirectional port
accommodating up to 16 bits of data. It has a dedicated clock pin, three
multiplexed frame sync pins, and four dedicated data pins. Up to 12 addi-
tional data pins are available by reconfiguring the PF pins. The highest
system throughput is achieved with 8-bit data, since two 8-bit data sam-
ples can be packed as a single 16-bit word. In such a case, the earlier
sample is placed in the 8 least significant bits (LSBs).

The PPI_CLK pin can accept an external clock input up to SCLK/2. It can-
not source a clock internally. Table 11-1 shows the pin interface for the
PPI.

If a GPIO port F pin is configured for PPI use, its bit position in the
GPIO port F MMRs are read back as 0.

Table 11-1. PPI Pins

Signal Name Function Direction Alternate Function

PPI15 Data Bidirectional PF4, SPI Enable Output

PPI14 Data Bidirectional PF5, SPI Enable Output

PPI13 Data Bidirectional PF6, SPI Enable Output

PPI12 Data Bidirectional PF7, SPI Enable Output

PPI11 Data Bidirectional PF8

PPI10 Data Bidirectional PF9

PPI9 Data Bidirectional PF10

PPI8 Data Bidirectional PF11

PPI Registers

11-2 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

PPI Registers
The PPI has five memory-mapped registers (MMRs) that regulate its oper-
ation. These registers are the PPI control register (PPI_CONTROL), the PPI
status register (PPI_STATUS), the delay count register (PPI_DELAY), the
transfer count register (PPI_COUNT), and the lines per frame register
(PPI_FRAME).

Descriptions and bit diagrams for each of these MMRs are provided in the
following sections.

PPI7 Data Bidirectional PF12

PPI6 Data Bidirectional PF13

PPI5 Data Bidirectional PF14

PPI4 Data Bidirectional PF15

PPI3 Data Bidirectional N/A

PPI2 Data Bidirectional N/A

PPI1 Data Bidirectional N/A

PPI0 Data Bidirectional N/A

PPI_FS3 Frame Sync3/Field Bidirectional PF3, SPI Enable Output

PPI_FS2 Frame Sync2/VSYNC Bidirectional Timer 2

PPI_FS1 Frame Sync1/HSYNC Bidirectional Timer 1

PPI_CLK Up to SCLK/2 Input Clock N/A

Table 11-1. PPI Pins (Cont’d)

Signal Name Function Direction Alternate Function

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 11-3

Parallel Peripheral Interface

PPI_CONTROL Register
The PPI control register (PPI_CONTROL) configures the PPI for operating
mode, control signal polarities, and data width of the port. See
Figure 11-1 for a bit diagram of this MMR.

The POLC and POLS bits allow for selective signal inversion of the PPI_CLK
and PPI_FS1/PPI_FS2 signals, respectively. This provides a mechanism to
connect to data sources and receivers with a wide array of control signal
polarities. Often, the remote data source/receiver also offers configurable
signal polarities, so the POLC and POLS bits simply add increased flexibility.

The DLEN[2:0] field is programmed to specify the width of the PPI port in
any mode. Note any width from 8 to 16 bits is supported, with the excep-
tion of a 9-bit port width. Any PF pins that are unused by the PPI as a
result of the DLEN setting are free to be used in their normal PF capacity.

 In ITU-R 656 modes, the DLEN field should not be configured for
anything greater than a 10-bit port width. If it is, the PPI will
reserve extra pins, making them unusable by other peripherals.

The SKIP_EN bit, when set, enables the selective skipping of data elements
being read in through the PPI. By ignoring data elements, the PPI is able
to conserve DMA bandwidth.

When the SKIP_EN bit is set, the SKIP_EO bit allows the PPI to ignore
either the odd or the even elements in an input data stream. This is useful,
for instance, when reading in a color video signal in YCbCr format (Cb,
Y, Cr, Y, Cb, Y, Cr, Y...). Skipping every other element allows the PPI to
only read in the luma (Y) or chroma (Cr or Cb) values. This could also be
useful when synchronizing two processors to the same incoming video
stream. One processor could handle luma processing and the other (whose
SKIP_EO bit is set differently from the first processor’s) could handle
chroma processing. This skipping feature is valid in ITU-R 656 modes
and RX modes with external frame syncs.

PPI Registers

11-4 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 11-1. PPI Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PPI Control Register (PPI_CONTROL)

0 - PPI disabled
1 - PPI enabled

FLD_SEL (Active Field Select)

PORT_DIR (Direction)

XFR_TYPE[1:0] (Transfer
Type)

PORT_CFG[1:0] (Port
Configuration)

PORT_EN (Enable)

DLEN[2:0] (Data Length)
000 - 8 bits
001 - 10 bits
010 - 11 bits
011 - 12 bits
100 - 13 bits
101 - 14 bits
110 - 15 bits
111 - 16 bits

POLS

0 - PPI in Receive mode (input)
1 - PPI in Transmit mode

(output)

In Input mode:
00 - ITU-R 656, Active Field Only
01 - ITU-R 656, Entire Field
10 - ITU-R 656, Vertical Blanking

Only
11 - Non-ITU-R 656 mode
In Output mode:
00, 01, 10 - Sync-less Output

mode
11 - Output mode with 1, 2, or

3 frame syncs

Reset = 0x0000

In ITU-R 656 modes, when XFR_TYPE = 00:
0 - Field 1
1 - Fields 1 and 2
In RX mode with external frame sync, when PORT_CFG = 11:
0 - External trigger
1 - Internal trigger

0 - PPI_FS1 and
PPI_FS2 are treated
as rising edge asserted

1 - PPI_FS1 and
PPI_FS2 are treated
as falling edge
asserted

SKIP_EN (Skip Enable)

SKIP_EO (Skip Even Odd)
In ITU-R 656 and GP Input modes:
0 - Skip odd-numbered elements
1 - Skip even-numbered elements

In ITU-R 656 and GP Input modes:
0 - Skipping disabled
1 - Skipping enabled
PACK_EN (Packing Mode Enable)
0 - Disabled
1 - Output mode, unpacking enabled;

Input mode, packing enabled

In non-ITU-R 656 Input modes
(PORT_DIR = 0, XFR_TYPE = 11):
00 - 1 external frame sync
01 - 2 or 3 internal frame syncs
10 - 2 or 3 external frame syncs
11 - 0 frame syncs, triggered
In Output modes with frame syncs
(PORT_DIR = 1, XFR_TYPE = 11):
00 - 1 frame sync
01 - 2 or 3 frame syncs
10 - Reserved
11 - Sync PPI_FS3 to assertion of

PPI_FS2 rather than of
PPI_FS1.

0xFFC0 1000

POLC
0 - PPI samples data on rising edge
 and drives data on falling
 edge of PPI_CLK
1 - PPI samples data on falling edge

 and drives data on rising edge
of PPI_CLK

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 11-5

Parallel Peripheral Interface

The PACK_EN bit only has meaning when the PPI port width (selected by
DLEN[2:0]) is 8 bits. Every PPI_CLK-initiated event on the DMA bus (that
is, an input or output operation) handles 16-bit entities. In other words,
an input port width of 10 bits still results in a 16-bit input word for every
PPI_CLK; the upper 6 bits are 0s. Likewise, a port width of 8 bits also
results in a 16-bit input word, with the upper 8 bits all 0s. In the case of
8-bit data, it is usually more efficient to pack this information so that
there are two bytes of data for every 16-bit word. This is the function of
the PACK_EN bit. When set, it enables packing for all RX modes.

Consider this data transported into the PPI via DMA:

0xCE, 0xFA, 0xFE, 0xCA....

• With PACK_EN set:

This is read into the PPI, configured for an 8-bit port width: 0xCE,
0xFA, 0xFE, 0xCA...

This is transferred onto the DMA bus: 0xFACE, 0xCAFE, ...

• With PACK_EN cleared:

This is read into the PPI: 0xCE, 0xFA, 0xFE, 0xCA, ...

This is transferred onto the DMA bus: 0x00CE, 0x00FA, 0x00FE,
0x00CA, ...

For TX modes, setting PACK_EN enables unpacking of bytes. Consider this
data in memory, to be transported out through the PPI via DMA:

0xFACE CAFE.... (0xFA and 0xCA are the two most significant bits
(MSBs) of their respective 16-bit words)

• With PACK_EN set:

This is DMA’ed to the PPI:0xFACE, 0xCAFE, ...

PPI Registers

11-6 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

This is transferred out through the PPI, configured for an 8-bit
port width (note LSBs are transferred first):0xCE, 0xFA, 0xFE,
0xCA, ...

• With PACK_EN cleared:

This is DMA’ed to the PPI:0xFACE, 0xCAFE, ...

This is transferred out through the PPI, configured for an 8-bit
port width:0xCE, 0xFE, ...

The FLD_SEL bit is used primarily in the active field only ITU-R 656
mode. The FLD_SEL bit determines whether to transfer in only Field 1 of
each video frame, or both Fields 1 and 2. Thus, it allows a savings in
DMA bandwidth by transferring only every other field of active video.

The PORT_CFG[1:0] field is used to configure the operating mode of the
PPI. It operates in conjunction with the PORT_DIR bit, which sets the
direction of data transfer for the port. The XFR_TYPE[1:0] field is also
used to configure operating mode and is discussed below. See Table 11-2
for the possible operating modes for the PPI.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 11-7

Parallel Peripheral Interface

Table 11-2. PPI Possible Operating Modes

PPI Mode # of Syncs PORT_
DIR

PORT_
CFG

XFR_
TYPE

POLC POLS FLD_
SEL

RX mode, 0 frame syncs,
external trigger

0 0 11 11 0 or 1 0 or 1 0

RX mode, 0 frame syncs,
internal trigger

0 0 11 11 0 or 1 0 or 1 1

RX mode, 1 external frame
sync

1 0 00 11 0 or 1 0 or 1 X

RX mode, 2 or 3 external
frame syncs

3 0 10 11 0 or 1 0 or 1 X

RX mode, 2 or 3 internal
frame syncs

3 0 01 11 0 or 1 0 or 1 X

RX mode, ITU-R 656,
Active Field Only

embedded 0 XX 00 0 or 1 0 0 or 1

RX mode, ITU-R 656,
Vertical Blanking Only

embedded 0 XX 10 0 or 1 0 X

RX mode, ITU-R 656,
Entire Field

embedded 0 XX 01 0 or 1 0 X

TX mode, 0 frame syncs 0 1 XX 00, 01,
10

0 or 1 0 or 1 X

TX mode, 1 internal or
external frame sync

1 1 00 11 0 or 1 0 or 1 X

TX mode, 2 external frame
syncs

2 1 01 11 0 or 1 0 or 1 X

TX mode, 2 or 3 internal
frame syncs, FS3 sync’ed
to FS1 assertion

3 1 01 11 0 or 1 0 or 1 X

TX mode, 2 or 3 internal
frame syncs, FS3 sync’ed
to FS2 assertion

3 1 11 11 0 or 1 0 or 1 X

PPI Registers

11-8 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The XFR_TYPE[1:0] field configures the PPI for various modes of opera-
tion. Refer to Table 11-2 to see how XFR_TYPE[1:0] interacts with other
bits in PPI_CONTROL to determine the PPI operating mode.

The PORT_EN bit, when set, enables the PPI for operation.

 Note that, when configured as an input port, the PPI does not start
data transfer after being enabled until the appropriate synchroniza-
tion signals are received. If configured as an output port, transfer
(including the appropriate synchronization signals) begins as soon
as the frame syncs (timer units) are enabled, so all frame syncs must
be configured before this happens. Refer to the section “Frame
Synchronization in GP Modes” on page 11-28 for more
information.

PPI_STATUS Register
The PPI status register (PPI_STATUS) contains bits that provide informa-
tion about the current operating state of the PPI.

 The entire register is cleared when read, so the status word must be
parsed to evaluate which bits have been set.

The ERR_DET bit is a sticky bit that denotes whether or not an error was
detected in the ITU-R 656 control word preamble. The bit is valid only in
ITU-R 656 modes. If ERR_DET = 1, an error was detected in the preamble.
If ERR_DET = 0, no error was detected in the preamble.

The ERR_NCOR bit is sticky and is relevant only in ITU-R 656 modes. If
ERR_NCOR = 0 and ERR_DET = 1, all preamble errors that have occurred
have been corrected. If ERR_NCOR = 1, an error in the preamble was
detected but not corrected. This situation generates a PPI error interrupt,
unless this condition is masked off in the SIC_IMASKx register.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 11-9

Parallel Peripheral Interface

The FT_ERR bit is sticky and indicates, when set, that a frame track error
has occurred. It is valid for RX modes only. In this condition, the pro-
grammed number of lines per frame in PPI_FRAME does not match up with
the “frame start detect” condition (see the information note
on page 11-12). A frame track error generates a PPI error interrupt, unless
this condition is masked off in the SIC_IMASKx register.

The FLD bit is set or cleared at the same time as the change in state of F (in
ITU-R 656 modes) or PPI_FS3 (in other RX modes). It is valid for input
modes only. The state of FLD reflects the current state of the F or PPI_FS3
signals. In other words, the FLD bit always reflects the current video field
being processed by the PPI.

The OVR bit is sticky and indicates, when set, that the PPI FIFO has over-
flowed and can accept no more data. A FIFO overflow error generates a
PPI error interrupt, unless this condition is masked off in the SIC_IMASKx
register.

 The PPI FIFO is 16 bits wide and has 16 entries.

The UNDR bit is sticky and indicates, when set, that the PPI FIFO has
underrun and is data-starved. A FIFO underrun error generates a PPI
error interrupt, unless this condition is masked off in the SIC_IMASKx
register.

PPI_DELAY Register
The delay count register (PPI_DELAY) can be used in all configurations
except ITU-R 656 modes and GP modes with 0 frame syncs. It contains a
count of how many PPI_CLK cycles to delay after assertion of PPI_FS1
before starting to read in or write out data.

PPI Registers

11-10 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

 Note in TX modes using at least one frame sync, there is a
one-cycle delay beyond what is specified in the PPI_DELAY register.

Figure 11-2. PPI Status Register

Figure 11-3. Delay Count Register

PPI register Register (PPI_STATUS)

0 - Field 1
1 - Field 2

FT_ERR (Frame Track Error)

OVR (FIFO Overflow)

FLD (Field Indicator)

ERR_DET (Error
Detected)

Used only in ITU-R 656 modes
0 - No preamble error detected
1 - Preamble error detected

ERR_NCOR (Error
Not Corrected)

0 - No interrupt
1 - Frame Track Error

interrupt occurred

Reset = 0x0000

Used only in ITU-R 656
modes
0 - No uncorrected

preamble error
has occurred

1 - Preamble error
detected but not
corrected

Read to clear

0 - No interrupt
1 - FIFO Overflow Error

interrupt occurred

UNDR (FIFO Underrun)
0 - No interrupt
1 - FIFO Underrun Error

interrupt occurred

0xFFC0 1004

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Delay Count Register (PPI_DELAY)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PPI_DELAY[15:0]

Reset = 0x0000

Number of PPI_CLK cycles to
delay after assertion of
PPI_FS1 before latching in or
sending out data

0xFFC0 100C

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 11-11

Parallel Peripheral Interface

PPI_COUNT Register
The transfer count register (PPI_COUNT) is used only in cases where recur-
ring hardware frame syncs (either externally or internally generated) are
involved. It is not needed in ITU-R 656 modes or modes with 0 frame
syncs. For RX modes, this register holds the number of samples to read
into the PPI per line, minus one. For TX modes, it holds the number of
samples to write out through the PPI per line, minus one. The register
itself does not actually decrement with each transfer. Thus, at the begin-
ning of a new line of data, there is no need to rewrite the value of this
register. For example, to receive or transmit 100 samples through the PPI,
set PPI_COUNT to 99.

 Take care to ensure that the number of samples programmed into
PPI_COUNT is in keeping with the number of samples expected dur-
ing the “horizontal” interval specified by PPI_FS1.

Figure 11-4. Transfer Count Register

Transfer Count Register (PPI_COUNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PPI_COUNT[15:0]

Reset = 0x0000

In RX modes, holds one less than
the number of samples to read in
to the PPI per line. In TX modes,
holds one less than the number
of samples to write out through
the PPI per line.

0xFFC0 1008

PPI Registers

11-12 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

PPI_FRAME Register
The lines per frame (PPI_FRAME) register is used in all TX and RX modes
with external frame syncs. For ITU-R 656 modes, this register holds the
number of lines expected per frame of data, where a frame is defined as
Field 1 and Field 2 combined, designated by the F indicator in the ITU-R
stream. Here, a line is defined as a complete ITU-R 656 SAV-EAV cycle.

For non-ITU-R 656 modes with external frame syncs, a frame is defined
as the data bounded between PPI_FS2 assertions, regardless of the state of
PPI_FS3. A line is defined as a complete PPI_FS1 cycle. In these modes,
PPI_FS3 is used only to determine the original “frame start” each time the
PPI is enabled. It is ignored on every subsequent field and frame, and its
state (high or low) is not important except during the original frame start.

If the start of a new frame (or field, for ITU-R 656 mode) is detected
before the number of lines specified by PPI_FRAME have been trans-
ferred, a frame track error results, and the FT_ERR bit in PPI_STATUS is set.
However, the PPI still automatically re-initializes to count to the value
programmed in PPI_FRAME, and data transfer continues.

 In ITU-R 656 modes, a frame start detect happens on the falling
edge of F, the field indicator. This occurs at the start of Field 1.

 In RX mode with 3 external frame syncs, a frame start detect refers
to a condition where a PPI_FS2 assertion is followed by an assertion
of PPI_FS1 while PPI_FS3 is low. This occurs at the start of Field 1.

Note that PPI_FS3 only needs to be low when PPI_FS1 is asserted,
not when PPI_FS2 asserts. Also, PPI_FS3 is only used to synchro-
nize to the start of the very first frame after the PPI is enabled. It is
subsequently ignored.

 When using RX mode with 3 external frame syncs, and only 2
syncs are needed, configure the PPI for three-frame-sync operation
and provide an external pull-down to GND for the PPI_FS3 pin.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 11-13

Parallel Peripheral Interface

ITU-R 656 Modes
The PPI supports three input modes for ITU-R 656-framed data. These
modes are described in this section. Although the PPI does not explicitly
support an ITU-R 656 output mode, recommendations for using the PPI
for this situation are provided as well.

ITU-R 656 Background
According to the ITU-R 656 recommendation (formerly known as
CCIR-656), a digital video stream has the characteristics shown in
Figure 11-6 and Figure 11-7 for 525/60 (NTSC) and 625/50 (PAL) sys-
tems. The processor supports only the bit-parallel mode of ITU-R 656.
Both 8- and 10-bit video element widths are supported.

In this mode, the horizontal (H), vertical (V), and field (F) signals are sent
as an embedded part of the video data stream in a series of bytes that form
a control word. The start of active video (SAV) and end of active video
(EAV) signals indicate the beginning and end of data elements to read in
on each line. SAV occurs on a 1-to-0 transition of H, and EAV begins on
a 0-to-1 transition of H. An entire field of video is comprised of active
video + horizontal blanking (the space between an EAV and SAV code)
and vertical blanking (the space where V = 1). A field of video commences
on a transition of the F bit. The “odd field” is denoted by a value of F = 0,

Figure 11-5. Lines Per Frame Register

Lines Per Frame Register (PPI_FRAME)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PPI_FRAME[15:0]

Reset = 0x0000

Holds the number of lines
expected per frame of data

0xFFC0 1010

ITU-R 656 Modes

11-14 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

whereas F = 1 denotes an even field. Progressive video makes no distinc-
tion between Field 1 and Field 2, whereas interlaced video requires each
field to be handled uniquely, because alternate rows of each field combine
to create the actual video image.

Figure 11-6. ITU-R 656 8-Bit Parallel Data Stream for NTSC (PAL)
Systems

4 268 (280 FOR PAL) 4 1440

F
F

0
0

0
0

X
Y

8
0

1
0

8
0

1
0

8
0

1
0

F
F

0
0

0
0

X
Y

C
B

Y C
R

Y C
B

Y C
R

Y C
R

Y F
F

DIGITAL
VIDEO
STREAM

START OF
NEXT LINE

EAV
CODE
(H = 1)

SAV
CODE
(H = 0)

HORIZONTAL
BLANKING

END OF ACTIVE VIDEO START OF ACTIVE VIDEO

1716 (1728 FOR PAL)

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 11-15

Parallel Peripheral Interface

The SAV and EAV codes are shown in more detail in Table 11-3. Note
there is a defined preamble of three bytes (0xFF, 0x00, 0x00), followed by
the XY register word, which, aside from the F (field), V (vertical blanking)
and H (horizontal blanking) bits, contains four protection bits for
single-bit error detection and correction. Note F and V are only allowed to
change as part of EAV sequences (that is, transition from H = 0 to H = 1).
The bit definitions are as follows:

Figure 11-7. Typical Video Frame Partitioning for NTSC/PAL Systems for
ITU-R BT.656-4

LINE 4

FIELD 1
ACTIVE VIDEO

FIELD 1
ACTIVE VIDEO

FIELD 2
ACTIVE VIDEO

FIELD 2
ACTIVE VIDEO

FIELD 1

FIELD 2

LINE 266

LINE 313

LINE 625

LINE 3

LINE 1

EAV SAV

EAV SAV

1

20

264

283

525

1

23

311

336

624

625

LINE
NUMBER

LINE
NUMBER

F H
(SAV)

H
(EAV)

H
(SAV)

H
(EAV)

F

V

V

1-3,
266-282

4-19,
264-265

20-263

283-525

1-22,
311-312

23-310

313-335,
624-625

336-623

1

1 1

1

1

1

1

1

0

0 0

0

0

0

0

0

0

0

0

01

1

1

1

1

1

0

0

1

1

0

0

LINE #

VERTICAL
BLANKING

VERTICAL
BLANKING

VERTICAL
BLANKING

VERTICAL
BLANKING

VERTICAL
BLANKING

H
O

R
IZ

O
N

T
A

L
B

L
A

N
K

IN
G

H
O

R
IZ

O
N

T
A

L
B

L
A

N
K

IN
G

FIELD 1

FIELD 2

ITU-R 656 Modes

11-16 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• F = 0 for Field 1

• F = 1 for Field 2

• V = 1 during vertical blanking

• V = 0 when not in vertical blanking

• H = 0 at SAV

• H = 1 at EAV

• P3 = V XOR H

• P2 = F XOR H

• P1 = F XOR V

• P0 = F XOR V XOR H

In many applications, video streams other than the standard NTSC/PAL
formats (for example, CIF, QCIF) can be employed. Because of this, the
processor interface is flexible enough to accommodate different row and
field lengths. In general, as long as the incoming video has the proper
EAV/SAV codes, the PPI can read it in. In other words, a CIF image
could be formatted to be “656-compliant,” where EAV and SAV values
define the range of the image for each line, and the V and F codes can be
used to delimit fields and frames.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 11-17

Parallel Peripheral Interface

ITU-R 656 Input Modes
Figure 11-8 shows a general illustration of data movement in the ITU-R
656 input modes. In the figure, the clock CLK is either provided by the
video source or supplied externally by the system.

There are three sub-modes supported for ITU-R 656 inputs: entire field,
active video only, and vertical blanking interval only. Figure 11-9 shows
these three sub-modes.

Table 11-3. Control Byte Sequences for 8-Bit and 10-Bit ITU-R 656
Video

8-Bit Data 10-Bit Data

D9
(MSB)

D8 D7 D6 D5 D4 D3 D2 D1 D0

Preamble 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

control Byte 1 F V H P3 P2 P1 P0 0 0

Figure 11-8. ITU-R 656 Input Modes

PPIx

PPI_CLK

PPI

CLK

'656
COMPATIBLE

VIDEOSOURCE

ITU-R 656 INPUT MODE

8- OR 10-BIT DATA WITH
EMBEDDED CONTROL

ITU-R 656 Modes

11-18 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Entire Field

In this mode, the entire incoming bit stream is read in through the PPI.
This includes active video as well as control byte sequences and ancillary
data that may be embedded in horizontal and vertical blanking intervals.
Data transfer starts immediately after synchronization to Field 1 occurs,
but does not include the first EAV code that contains the F = 0
assignment.

 Note the first line transferred in after enabling the PPI will be miss-
ing its first 4-byte preamble. However, subsequent lines and frames
should have all control codes intact.

One side benefit of this mode is that it enables a “loopback” feature
through which a frame or two of data can be read in through the PPI and
subsequently output to a compatible video display device. Of course, this
requires multiplexing on the PPI pins, but it enables a convenient way to
verify that 656 data can be read into and written out from the PPI.

Figure 11-9. ITU-R 656 Input Sub-Modes

BLANKING BLANKING BLANKING

BLANKING BLANKING BLANKING

BLANKING BLANKING BLANKING

FIELD 1
ACTIVE VIDEO

FIELD 2
ACTIVE VIDEO

FIELD 2
ACTIVE VIDEO

FIELD 2
ACTIVE VIDEO

FIELD 1
ACTIVE VIDEO

FIELD 1
ACTIVE VIDEO

ENTIRE FIELD SENT BLANKING ONLY SENTACTIVE VIDEO ONLY SENT

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 11-19

Parallel Peripheral Interface

Active Video Only

This mode is used when only the active video portion of a field is of inter-
est, and not any of the blanking intervals. The PPI ignores (does not read
in) all data between EAV and SAV, as well as all data present when V = 1.
In this mode, the control byte sequences are not stored to memory; they
are filtered out by the PPI. After synchronizing to the start of Field 1, the
PPI ignores incoming samples until it sees an SAV.

 In this mode, the user specifies the number of total (active plus ver-
tical blanking) lines per frame in the PPI_FRAME MMR.

Vertical Blanking Interval (VBI) Only

In this mode, data transfer is only active while V = 1 is in the control byte
sequence. This indicates that the video source is in the midst of the verti-
cal blanking interval (VBI), which is sometimes used for ancillary data
transmission. The ITU-R 656 recommendation specifies the format for
these ancillary data packets, but the PPI is not equipped to decode the
packets themselves. This task must be handled in software. Horizontal
blanking data is logged where it coincides with the rows of the VBI. Con-
trol byte sequence information is always logged. The user specifies the
number of total lines (active plus vertical blanking) per frame in the
PPI_FRAME MMR.

Note the VBI is split into two regions within each field. From the PPI’s
standpoint, it considers these two separate regions as one contiguous
space. However, keep in mind that frame synchronization begins at the
start of Field 1, which doesn’t necessarily correspond to the start of verti-
cal blanking. For instance, in 525/60 systems, the start of Field 1 (F = 0)
corresponds to Line 4 of the VBI.

ITU-R 656 Modes

11-20 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

ITU-R 656 Output Mode
The PPI does not explicitly provide functionality for framing an ITU-R
656 output stream with proper preambles and blanking intervals. How-
ever, with the TX mode with 0 frame syncs, this process can be supported
manually. Essentially, this mode provides a streaming operation from
memory out through the PPI. Data and control codes can be set up in
memory prior to sending out the video stream. With the 2D DMA
engine, this could be performed in a number of ways. For instance, one
line of blanking (H + V) could be stored in a buffer and sent out N times
by the DMA controller when appropriate, before proceeding to DMA
active video. Alternatively, one entire field (with control codes and blank-
ing) can be set up statically in a buffer while the DMA engine transfers
only the active video region into the buffer, on a frame-by-frame basis.

Frame Synchronization in ITU-R 656 Modes
Synchronization in ITU-R 656 modes always occurs at the falling edge of
F, the field indicator. This corresponds to the start of Field 1. Conse-
quently, up to two fields might be ignored (for example, if Field 1 just
started before the PPI-to-camera channel was established) before data is
received into the PPI.

Because all H and V signalling is embedded in the data stream in ITU-R
656 modes, the PPI_COUNT register is not necessary. However, the
PPI_FRAME register is used in order to check for synchronization errors.
The user programs this MMR for the number of lines expected in each
frame of video, and the PPI keeps track of the number of EAV-to-SAV
transitions that occur from the start of a frame until it decodes the
end-of-frame condition (transition from F = 1 to F = 0). At this time, the
actual number of lines processed is compared against the value in
PPI_FRAME. If there is a mismatch, the FT_ERR bit in the PPI_STATUS regis-
ter is asserted. For instance, if an SAV transition is missed, the current
field will only have NUM_ROWS – 1 rows, but resynchronization will reoccur
at the start of the next frame.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 11-21

Parallel Peripheral Interface

Upon completing reception of an entire field, the field register bit is tog-
gled in the PPI_STATUS register. This way, an interrupt service routine
(ISR) can discern which field was just read in.

General-Purpose PPI Modes
The general-purpose (GP) PPI modes are intended to suit a wide variety
of data capture and transmission applications. Table 11-4 summarizes
these modes. If a particular mode shows a given PPI_FSx frame sync not
being used, this implies that the pin is available for its alternate, multi-
plexed processor function (that is, as a timer or flag pin). The exception to
this is that when the PPI is configured for a 2-frame-sync mode, PPI_FS3
cannot be used as a general-purpose flag, even though it is not used by the
PPI.

Table 11-4. General-Purpose PPI Modes

GP PPI Mode PPI_FS1
Direction

PPI_FS2
Direction

PPI_FS3
Direction

Data
Direction

RX mode, 0 frame syncs, external
trigger

Input Not used Not used Input

RX mode, 0 frame syncs, internal
trigger

Not used Not used Not used Input

RX mode, 1 external frame sync Input Not used Not used Input

RX mode, 2 or 3 external frame syncs Input Input Input Input

RX mode, 2 or 3 internal frame syncs Output Output Output Input

TX mode, 0 frame syncs Not used Not used Not used Output

TX mode, 1 external frame sync Input Not used Not used Output

TX mode, 2 external frame syncs Input Input Output Output

TX mode, 1 internal frame sync Output Not used Not used Output

TX mode, 2 or 3 internal frame syncs Output Output Output Output

General-Purpose PPI Modes

11-22 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 11-10 illustrates the general flow of the GP modes. The top of the
diagram shows an example of RX mode with 1 external frame sync. After
the PPI receives the hardware frame sync pulse (PPI_FS1), it delays for the
duration of the PPI_CLK cycles programmed into PPI_DELAY. The DMA
controller then transfers in the number of samples specified by PPI_COUNT.
Every sample that arrives after this, but before the next PPI_FS1 frame
sync arrives, is ignored and not transferred onto the DMA bus.

 If the next PPI_FS1 frame sync arrives before the specified
PPI_COUNT samples have been read in, the sample counter re-initial-
izes to 0 and starts to count up to PPI_COUNT again. This situation
can cause the DMA channel configuration to lose synchronization
with the PPI transfer process.

The bottom of Figure 11-10 shows an example of TX mode, 1 internal
frame sync. After PPI_FS1 is asserted, there is a latency of 1 PPI_CLK cycle,
and then there is a delay for the number of PPI_CLK cycles programmed
into PPI_DELAY. Next, the DMA controller transfers out the number of
samples specified by PPI_COUNT. No further DMA takes place until the
next PPI_FS1 sync and programmed delay occur.

 If the next PPI_FS1 frame sync arrives before the specified
PPI_COUNT samples have been transferred out, the sync has priority
and starts a new line transfer sequence. This situation can cause the
DMA channel configuration to lose synchronization with the PPI
transfer process.

Data Input (RX) Modes
The PPI supports several modes for data input. These modes differ chiefly
by the way the data is framed. Refer to Table 11-2 for information on how
to configure the PPI for each mode.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 11-23

Parallel Peripheral Interface

No Frame Syncs

These modes cover the set of applications where periodic frame syncs are
not generated to frame the incoming data. There are two options for start-
ing the data transfer, both configured by the PPI_CONTROL register.

• External trigger: An external source sends a single frame sync (tied
to PPI_FS1) at the start of the transaction, when FLD_SEL = 0 and
PORT_CFG = b#11.

• Internal trigger: Software initiates the process by setting
PORT_EN = 1 with FLD_SEL = 1 and PORT_CFG = b#11.

Figure 11-10. General Flow for GP Modes (Assumes Positive Assertion of
PPI_FS1)

INPUT

OUTPUT

PPI_COUNT

PPI_COUNT1 CYCLE
DELAY

PROG
DELAY

(PPI_DELAY)

PROG
DELAY

(PPI_DELAY)

FRAME
SYNC

(PPI_FS1)

FRAME
SYNC

(PPI_FS1)

SAMPLES
IGNORED

General-Purpose PPI Modes

11-24 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

All subsequent data manipulation is handled via DMA. For example, an
arrangement could be set up between alternating 1K memory buffers.
When one fills up, DMA continues with the second buffer, at the same
time that another DMA operation is clearing the first memory buffer for
reuse.

 Due to clock domain synchronization in RX modes with no frame
syncs, there may be a delay of at least 2 PPI_CLK cycles between
when the mode is enabled and when valid data is received. There-
fore, detection of the start of valid data should be managed by
software.

1, 2, or 3 External Frame Syncs

The 1-sync mode is intended for analog-to-digital converter (ADC) appli-
cations. The top part of Figure 11-11 shows a typical illustration of the
system setup for this mode.

Figure 11-11. RX Mode, External Frame Syncs

PPI
VIDEO

SOURCE

A/D
CONVERTER

PPIx

PPIx

PPI_CLK

PPI_CLKCLK

CLK

PPI_FS1

PPI_FS2

PPI_FS3

PPI_FS1

HSYNC

VSYNC

FIELD

FRAMESYNC

8–16 BITS DATA

8–16 BITS DATA

DATA

DATA

PPI

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 11-25

Parallel Peripheral Interface

The 3-sync mode shown at the bottom of Figure 11-11 supports video
applications that use hardware signalling (HSYNC, VSYNC, FIELD) in accor-
dance with the ITU-R 601 recommendation. The mapping for the frame
syncs in this mode is PPI_FS1 = HSYNC, PPI_FS2 = VSYNC,
PPI_FS3 = FIELD. Refer to “Frame Synchronization in GP Modes” on
page 11-28 for more information about frame syncs in this mode.

A 2-sync mode is implicitly supported by pulling PPI_FS3 to GND by an
external resistor when configured in 3-sync mode.

2 or 3 Internal Frame Syncs

This mode can be useful for interfacing to video sources that can be slaved
to a master processor. In other words, the processor controls when to read
from the video source by asserting PPI_FS1 and PPI_FS2, and then reading
data into the PPI. The PPI_FS3 frame sync provides an indication of
which field is currently being transferred, but since it is an output, it can
simply be left floating if not used. Figure 11-12 shows a sample applica-
tion for this mode.

Data Output (TX) Modes
The PPI supports several modes for data output. These modes differ
chiefly by the way the data is framed. Refer to Table 11-2 for information
on how to configure the PPI for each mode.

Figure 11-12. RX Mode, Internal Frame Syncs

PPI
IMAGE

SOURCE

PPIx

CLKPPI_CLK

PPI_FS1

PPI_FS2

HSYNC

VSYNC

8–16 BITS DATA DATA

General-Purpose PPI Modes

11-26 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

No Frame Syncs

In this mode, data blocks specified by the DMA controller are sent out
through the PPI with no framing. That is, once the DMA channel is con-
figured and enabled, and the PPI is configured and enabled, data transfers
will take place immediately, synchronized to PPI_CLK. See Figure 11-13
for an illustration of this mode.

 In this mode, there is a delay of up to 16 SCLK cycles (for > 8-bit
data) or 32 SCLK cycles (for 8-bit data) between enabling the PPI
and transmission of valid data. Furthermore, DMA must be config-
ured to transmit at least 16 samples (for > 8-bit data) or 32 samples
(for 8-bit data).

1 or 2 External Frame Syncs

In these modes, an external receiver can frame data sent from the PPI.
Both 1-sync and 2-sync modes are supported. The top diagram in
Figure 11-14 shows the 1-sync case, while the bottom diagram illustrates
the 2-sync mode.

 There is a mandatory delay of 1.5 PPI_CLK cycles, plus the value
programmed in PPI_DELAY, between assertion of the external frame
sync(s) and the transfer of valid data out through the PPI.

Figure 11-13. TX Mode, 0 Frame Syncs

CLK

PPIx

PPI_CLK

RECEIVER8- TO 16-BIT DATA

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 11-27

Parallel Peripheral Interface

1, 2, or 3 Internal Frame Syncs

The 1-sync mode is intended for interfacing to digital-to-analog convert-
ers (DACs) with a single frame sync. The top part of Figure 11-15 shows
an example of this type of connection.

The 3-sync mode is useful for connecting to video and graphics displays,
as shown in the bottom part of Figure 11-15. A 2-sync mode is implicitly
supported by leaving PPI_FS3 unconnected in this case.

Figure 11-14. TX Mode, 1 or 2 External Frame Syncs

DATA
RECEIVER

DATA
RECEIVER

PPIx

CLK

CLK

PPI_CLK

PPI_FS1

PPI_FS2

8–16 BITS DATA

8–16 BITS DATA

DATA

DATA

PPI

PPI

PPI_CLK

PPIx

PPI_FS1FRAMESYNC

FRAMESYNC1

FRAMESYNC2

General-Purpose PPI Modes

11-28 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Frame Synchronization in GP Modes
Frame synchronization in GP modes operates differently in modes with
internal frame syncs than in modes with external frame syncs.

Modes with Internal Frame Syncs

In modes with internal frame syncs, PPI_FS1 and PPI_FS2 link directly to
the pulse-width modulation (PWM) circuits of timer 1 and timer 2,
respectively. This allows for arbitrary pulse widths and periods to be pro-
grammed for these signals using the existing TIMERx registers. This
capability accommodates a wide range of timing needs. Note these PWM
circuits are clocked by PPI_CLK, not by SCLK or PF1 (as during conven-
tional timer PWM operation). If PPI_FS2 is not used in the configured

Figure 11-15. PPI GP Output

PPI VIDEO DISPLAY

PPIx CLK

PPI_CLK

PPI_CLK

PPI_FS1

PPI_FS2

HSYNC

VSYNC

8–16 BITS DATA

8–16 BITS DATA

D/A
CONVERTER

PPI_FS3

PPIx

PPI_FS1

CLK

FIELD

FRAMESYNC

1 FRAME
SYNC

3 FRAME
SYNCS

PPI

DATA

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 11-29

Parallel Peripheral Interface

PPI mode, Timer 2 operates as it normally would, unrestricted in
functionality. The state of PPI_FS3 depends completely on the state of
PPI_FS1 and/or PPI_FS2, so PPI_FS3 has no inherent programmability.

 To program PPI_FS1 and/or PPI_FS2 for operation in an internal
frame sync mode:

1. Configure and enable DMA for the PPI. See “DMA Operation” on
page 11-31.

2. Configure the width and period for each frame sync signal via
TIMER1_WIDTH and TIMER1_PERIOD (for PPI_FS1), or TIMER2_WIDTH
and TIMER2_PERIOD (for PPI_FS2).

3. Set up TIMER1_CONFIG for PWM_OUT mode (for PPI_FS1). If used,
configure TIMER2_CONFIG for PWM_OUT mode (for PPI_FS2). This
includes setting CLK_SEL = 1 and TIN_SEL = 1 for each timer.

4. Write to PPI_CONTROL to configure and enable the PPI.

5. Write to TIMER_ENABLE to enable Timer 1 and/or Timer 2.

 It is important to guarantee proper frame sync polarity between the
PPI and Timer peripherals. To do this, make sure that if
PPI_CONTROL[15:14] = b#10 or b#11, the PULSE_HI bit is cleared in
TIMER1_CONFIG and TIMER2_CONFIG. Likewise, if
PPI_CONTROL[15:14] = b#00 or b#01, the PULSE_HI bit should be
set in TIMER1_CONFIG and TIMER2_CONFIG.

To switch to another PPI mode not involving internal frame syncs:

1. Disable the PPI (using PPI_CONTROL).

2. Disable the timers (using TIMER_DISABLE).

General-Purpose PPI Modes

11-30 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Modes With External Frame Syncs

In RX modes with external frame syncs, the PPI_FS1 and PPI_FS2 pins
become edge-sensitive inputs. In such a mode, Timers 1 and 2 can be used
for a purpose not involving the TMR1 and TMR2 pins. However, timer access
to a TMRx pin is disabled when the PPI is using that pin for a PPI_FSx
frame sync input function. For modes that do not require PPI_FS2, Timer
2 is not restricted in functionality and can be operated as if the PPI were
not being used (that is, the TMR2 pin becomes available for timer use as
well). For more information on configuring and using the timers, refer to
Chapter 16, “Timers”.

 In RX Mode with 3 external frame syncs, the start of frame detec-
tion occurs where a PPI_FS2 assertion is followed by an assertion of
PPI_FS1 while PPI_FS3 is low. This happens at the start of Field 1.

Note that PPI_FS3 only needs to be low when PPI_FS1 is asserted,
not when PPI_FS2 asserts. Also, PPI_FS3 is only used to synchro-
nize to the start of the very first frame after the PPI is enabled. It is
subsequently ignored.

In TX modes with external frame syncs, the PPI_FS1 and PPI_FS2 pins are
treated as edge-sensitive inputs. In this mode, it is not necessary to config-
ure the timer(s) associated with the frame sync(s) as input(s), or to enable
them via the TIMER_ENABLE register. Additionally, the actual timers them-
selves are available for use, even though the timer pin(s) are taken over by
the PPI. In this case, there is no requirement that the time base (config-
ured by TIN_SEL in TIMERx_CONFIG) be PPI_CLK.

However, if using a timer whose pin is connected to an external frame
sync, be sure to disable the pin via the OUT_DIS bit in TIMERx_CONFIG.
Then the timer itself can be configured and enabled for non-PPI use with-
out affecting PPI operation in this mode. For more information, see
Chapter 16, “Timers”.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 11-31

Parallel Peripheral Interface

DMA Operation
The PPI must be used with the processor’s DMA engine. This section dis-
cusses how the two interact. For additional information about the DMA
engine, including explanations of DMA registers and DMA operations,
refer to Chapter 9, “Direct Memory Access”.

The PPI DMA channel can be configured for either transmit or receive
operation, and it has a maximum throughput of
(PPI_CLK) x (16 bits/transfer). In modes where data lengths are greater
than 8 bits, only one element can be clocked in per PPI_CLK cycle, and this
results in reduced bandwidth (since no packing is possible). The highest
throughput is achieved with 8-bit data and PACK_EN = 1 (packing mode
enabled). Note for 16-bit packing mode, there must be an even number of
data elements.

Configuring the PPI’s DMA channel is a necessary step toward using the
PPI interface. It is the DMA engine that generates interrupts upon com-
pletion of a row, frame, or partial-frame transfer. It is also the DMA
engine that coordinates the origination or destination point for the data
that is transferred through the PPI.

The processor’s 2D DMA capability allows the processor to be interrupted
at the end of a line or after a frame of video has been transferred, as well as
if a DMA error occurs. In fact, the specification of the DMAx_XCOUNT and
DMAx_YCOUNT MMRs allows for flexible data interrupt points. For example,
assume the DMA registers XMODIFY = YMODIFY = 1. Then, if a data frame
contains 320 x 240 bytes (240 rows of 320 bytes each), these conditions
hold:

• Setting XCOUNT = 320, YCOUNT = 240, and DI_SEL = 1 (the DI_SEL
bit is located in DMAx_CONFIG) will interrupt on every row trans-
ferred, for the entire frame.

Data Transfer Scenarios

11-32 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• Setting XCOUNT = 320, YCOUNT = 240, and DI_SEL = 0 will inter-
rupt only on the completion of the frame (when 240 rows of 320
bytes have been transferred).

• Setting XCOUNT = 38,400 (320 x 120), YCOUNT = 2, and DI_SEL = 1
will cause an interrupt when half of the frame has been transferred,
and again when the whole frame has been transferred.

Following is the general procedure for setting up DMA operation with the
PPI. Refer to “DMA and Memory DMA MMRs” on page 9-3 for details
regarding configuration of DMA.

1. Configure DMA registers as appropriate for desired DMA operat-
ing mode.

2. Enable the DMA channel for operation.

3. Configure appropriate PPI registers.

4. Enable the PPI by writing a 1 to bit 0 in PPI_CONTROL.

Data Transfer Scenarios
Figure 11-16 shows two possible ways to use the PPI to transfer in video.
These diagrams are very generalized, and bandwidth calculations must be
made only after factoring in the exact PPI mode and settings (for example,
transfer Field 1 only, transfer odd and even elements).

The top part of the diagram shows a situation appropriate for, as an exam-
ple, JPEG compression. The first N rows of video are DMA’ed into L1
memory via the PPI. Once in L1, the compression algorithm operates on
the data and sends the compressed result out from the processor via the
SPORT. Note that no SDRAM access was necessary in this approach.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 11-33

Parallel Peripheral Interface

The bottom part of the diagram takes into account a more formidable
compression algorithm, such as MPEG-2 or MPEG-4. Here, the raw
video is transferred directly into SDRAM. Independently, a memory
DMA channel transfers data blocks between SDRAM and L1 memory for
intermediate processing stages. Finally, the compressed video exits the
processor via the SPORT.

Figure 11-16. PPI Possible Data Transfer Scenarios

PPI SDRAM L1
MEMORY

L1
MEMORY

SPORT

DMA

DMA DMA

DMA DMA

PPIVIDEO
SOURCE

VIDEO
SOURCE

SPORT

COMPRESSED
VIDEO

VIDEO
DATA AND
CONTROL

Data Transfer Scenarios

11-34 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 12-1

12 UART PORT CONTROLLERS

The three universal asynchronous receiver/transmitters (UART) are
full-duplex peripherals, compatible with PC-style industry-standard
UARTs. The ADSP-BF538 has three UARTs. Each UART converts data
between serial and parallel formats. The serial communication follows an
asynchronous protocol that supports various word length, stop bits, and
parity generation options. Each UART includes interrupt handling hard-
ware. Interrupts can be generated from 12 different events.

Each UART supports the half-duplex IrDA® (Infrared Data Association)
SIR (9.6/115.2 Kbps rate) protocol. This is a mode-enabled feature.

 Modem status and control functionality is not supported by the
UART modules, but may be implemented using general-purpose
I/O (GPIO) pins.

Each UART is a DMA-capable peripheral with support for separate TX
and RX DMA master channels. It can be used in either DMA or pro-
grammed non-DMA mode of operation. The non-DMA mode requires
software management of the data flow using either interrupts or polling.
The DMA method requires minimal software intervention as the DMA
engine itself moves the data. See Chapter 9, “Direct Memory Access” for
more information on DMA.

 UART0 has dedicated pins, but UART1 and UART2 have pins
that can be used as GPIO. For more information, see “Gen-
eral-Purpose Input/Output Ports C, D, E” on page 15-1.

Serial Communications

12-2 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

For UART0, either of the peripheral timers can be used to provide a hard-
ware assisted autobaud detection mechanism. See Chapter 16, “Timers”
for more information.

 UART1 and UART2 do not provide autobaud capabilities.

Serial Communications
Each UART follows an asynchronous serial communication protocol with
these options:

• 5 to 8 data bits

• 1, 1½, or 2 stop bits

• None, even, or odd parity

• Baud rate = SCLK/(16 Divisor), where SCLK is the system clock
frequency and divisor can be a value from 1 to 65536

All data words require a start bit and at least one stop bit. With the
optional parity bit, this creates a 7- to 12-bit range for each word. The for-
mat of received and transmitted character frames is controlled by the Line
control register (UARTx_LCR). Data is always transmitted and received least
significant bit (LSB) first.

Figure 12-1 shows a typical physical bit stream measured on the TX pin.

UART Control and Status Registers
The processor provides a set of PC-style industry-standard control and
status registers for each UART. These memory-mapped registers (MMRs)
are byte-wide registers that are mapped as half words with the most signif-
icant byte zero-filled.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 12-3

UART Port Controllers

Consistent with industry-standard interfaces, multiple registers are
mapped to the same address location. The divisor latch registers
(UARTx_DLH and UARTx_DLL) share their addresses with the transmit hold-
ing register (UARTx_THR), the receive buffer register (UARTx_RBR), and the
interrupt enable register (UARTx_IER). The divisor latch access bit (DLAB) in
the line control register (UARTx_LCR) controls which set of registers is
accessible at a given time. Software must use 16-bit word load/store
instructions to access these registers.

Transmit and receive channels are both buffered. The UARTx_THR register
buffers the transmit shift register (TSR) and the UARTx_RBR register buffers
the receive shift register (LSR). The shift registers are not directly accessible
by software.

UART Line Control (UARTx_LCR) Register
The UART line control register (UARTx_LCR) controls the format of
received and transmitted character frames (see Figure 12-2). The SB bit
functions even when the UART clock is disabled. Since the TX pin nor-
mally drives high, it can be used as a flag output pin, if the UART is not
used.

Figure 12-1. Bit Stream on the TXx Pin

DATA BITS STOP BIT(S)

START BIT LSB PARITY BIT (OPTIONAL, ODD OR EVEN)

D0 D1 D2 D3 D4 D5 D6 D7

UART Control and Status Registers

12-4 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

UART Modem Control (UARTx_MCR) Register
The modem control register (UARTx_MCR) controls the UART port, as
shown in Figure 12-3. Even if modem functionality is not supported, the
modem control register is available in order to support the loop back
mode.

Loopback mode forces the TX pin to high and disconnects the receiver’s
input from the RX pin, but redirects it to the transmit output internally.

Figure 12-2. UART Line Control Register

DLAB (Divisor Latch Access)
1 - Enables access to UARTx_DLL

and UARTx_DLH
0 - Enables access to UARTx_THR,

UARTx_RBR, and UARTx_IER

SB (Set Break)
0 - No force
1 - Force TX pin to 0

STP (Stick Parity)
Forces parity to defined value if set and PEN = 1
EPS = 1, parity transmitted and checked as 0
EPS = 0, parity transmitted and checked as 1

EPS (Even Parity Select)
1 - Even parity
0 - Odd parity when PEN = 1 and STP = 0

WLS[1:0] (Word Length Select)
00 - 5-bit word
01 - 6-bit word
10 - 7-bit word
11 - 8-bit word

STB (Stop Bits)
1 - 2 stop bits for non-5-bit

word length or 1 1/2 stop
bits for 5-bit word length

0 - 1 stop bit

PEN (Parity Enable)
1 - Transmit and check parity
0 - Parity not transmitted or

checked

UART Line Control Register (UARTx_LCR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

UART0 0xFFC0 040C
UART1 0xFFC0 200C
UART2 0xFFC0 210C

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 12-5

UART Port Controllers

UART Line Status (UARTx_LSR) Register
The UART line status register (UARTx_LSR) contains UART status infor-
mation as shown in Figure 12-4.

Figure 12-3. UART Modem Control Register

Figure 12-4. UART Line Status Register

Loop (Loopback mode enable)
Forces TX to high and disconnects RX
from RSR

UART Modem Control Register (UARTx_MCR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

UART0 0xFFC0 0410
UART1 0xFFC0 2010
UART2 0xFFC0 2110

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 1 1 0 0 0 0

DR (Data Ready)TEMT (TSR and UARTx_THR Empty)

UART Line Status Register (UARTx_LSR)

0 - Full
1 - Both empty

0 - THR not empty
1 - THR empty

0 - No break interrupt
1 - Break interrupt; this indicates RX was held
 low for more than the maximum word length

BI (Break interrupt)

THRE (THR Empty)

FE (Framing Error)

0 - No new data
1 - UARTx_RBR holds new
data
OE (Overrun Error)
0 - No overrun
1 - UARTx_RBR overwritten

before read

PE (Parity Error)
0 - No parity error
1 - Parity error

0 - No error
1 - Invalid stop bit error

Reset = 0x0060

RO
UART0 0xFFC0 0414
UART1 0xFFC0 2014
UART2 0xFFC0 2114

UART Control and Status Registers

12-6 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The break interrupt (BI), overrun error (OE), parity error (PE) and framing
error (FE) bits are cleared when the UART line status register (UARTx_LSR)
is read. The data ready (DR) bit is cleared when the UART receive buffer
register (UARTx_RBR) is read.

 Because of the destructive nature of these read operations, special
care should be taken. For more information, see “Speculative Load
Execution” on page 6-67 and “Conditional Load Behavior” on
page 6-68.

The THRE bit indicates that the UART transmit channel is ready for new
data and software can write to UARTx_THR. Writes to UARTx_THR clear the
THRE bit. It is set again when data is copied from UARTx_THR to the trans-
mit shift register (TSR). The TEMT bit can be evaluated to determine
whether a recently initiated transmit operation has been completed.

UART Transmit Holding (UARTx_THR) Register
A write to the UART transmit holding register (UARTx_THR) initiates the
transmit operation (see Figure 12-5). The data is moved to the internal
transmit shift register (TSR) where it is shifted out at a baud rate equal to
SCLK/(16 Divisor) with start, stop, and parity bits appended as
required. All data words begin with a 1-to-0-transition start bit. The
transfer of data from UARTx_THR to the transmit shift register sets the trans-
mit holding register empty (THRE) status flag in the UART line status
register (UARTx_LSR).

The write-only UARTx_THR register is mapped to the same address as the
read-only UARTx_RBR and UARTx_DLL registers. To access UARTx_THR, the
DLAB bit in UARTx_LCR must be cleared. When the DLAB bit is cleared,
writes to this address target the UARTx_THR register, and reads from this
address return the UARTx_RBR register.

Note data is transmitted and received least significant bit (LSB) first (bit
0) followed by the most significant bits (MSBs).

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 12-7

UART Port Controllers

UART Receive Buffer (UARTx_RBR) Register
The receive operation uses the same data format as the transmit configura-
tion, except that the number of stop bits is always assumed to be 1. After
detection of the start bit, the received word is shifted into the receive shift
register (RSR) at a baud rate of SCLK/(16 x divisor). After the appropriate
number of bits (including stop bit) is received, the data and any status are
updated and the receive shift register is transferred to the UART receive
buffer register (UARTx_RBR), shown in Figure 12-6. After the transfer of the
received word to the UARTx_RBR buffer and the appropriate synchroniza-
tion delay, the data ready (DR) status flag is updated.

A sampling clock equal to 16 times the baud rate samples the data as close
to the midpoint of the bit as possible. Because the internal sample clock
may not exactly match the asynchronous receive data rate, the sampling
point drifts from the center of each bit. The sampling point is synchro-
nized again with each start bit, so the error accumulates only over the
length of a single word. A receive filter removes spurious pulses of less
than two times the sampling clock period.

Figure 12-5. UART Transmit Holding Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmit Hold[7:0]

UART Transmit Holding Register (UARTx_THR)WO

Reset = 0x0000

UART0 0xFFC0 0400
UART1 0xFFC0 2000
UART2 0xFFC0 2100

UART Control and Status Registers

12-8 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The read-only UARTx_RBR register is mapped to the same address as the
write-only UARTx_THR and UARTx_DLL registers. To access UARTx_RBR, the
DLAB bit in UARTx_LCR must be cleared. When the DLAB bit is cleared,
writes to this address target the UARTx_THR register, while reads from this
address return the UARTx_RBR register.

UART Interrupt Enable (UARTx_IER) Register
The UART interrupt enable register (UARTx_IER) is used to enable requests
for system handling of empty or full states of UART data registers (see
Figure 12-7). Unless polling is used as a means of action, the ERBFI and/or
ETBEI bits in this register are normally set.

Setting this register without enabling system DMA causes the UART to
notify the processor of data inventory state by means of interrupts. For
proper operation in this mode, system interrupts must be enabled, and
appropriate interrupt handling routines must be present. For backward
compatibility, the UARTx_IIR still reflects the correct interrupt status.

 The UART features three separate interrupt channels to handle
data transmit, data receive, and line status events independently,
regardless whether DMA is enabled or not.

Figure 12-6. UART Receive Buffer Register

Receive Buffer[7:0]

UART Receive Buffer Register (UARTx_RBR)RO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

UART0 0xFFC0 0400
UART1 0xFFC0 2000
UART2 0xFFC0 2100

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 12-9

UART Port Controllers

With system DMA enabled, the UART uses DMA to transfer data to or
from the processor. Dedicated DMA channels are available to receive and
transmit operation. Line error handling can be configured completely
independently from the receive/transmit setup.

The UARTx_IER register is mapped to the same address as UARTx_DLH. To
access UARTx_IER, the DLAB bit in UARTx_LCR must be cleared.

The UART DMA is enabled by first setting up the system DMA control
registers and then enabling the UART ERBFI and/or ETBEI interrupts in
the UARTx_IER register. This is because the interrupt request lines double
as DMA request lines. Depending on whether DMA is enabled or not,
upon receiving these requests, the DMA control unit either generates a
direct memory access or passes the UART interrupt on to the system inter-
rupt handling unit. However, the UART error interrupt goes directly to
the system interrupt handling unit, bypassing the DMA unit completely.

Figure 12-7. UART Interrupt Enable Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ERBFI (Enable Receive Buf-
fer Full interrupt)

UART Interrupt Enable Register (UARTx_IER)

ETBEI (Enable Transmit
Buffer Empty interrupt)

ELSI (Enable RX status interrupt)

0 - No interrupt
1 - Generate RX interrupt if

DR bit in UARTx_LSR is set

0 - No interrupt
1 - Generate TX interrupt if

THRE bit in UARTx_LSR is
set

0 - No interrupt
1 - Generate line status interrupt if
any of UARTx_LSR[4:1] is set

Reset = 0x0000

UART0 0xFFC0 0404
UART1 0xFFC0 2004
UART2 0xFFC0 2104

UART Control and Status Registers

12-10 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The ELSI bit enables interrupt generation on an independent interrupt
channel when any of the following conditions are raised by the respective
bit in the UART Line status register (UARTx_LSR):

• Receive overrun error (OE)

• Receive parity error (PE)

• Receive framing error (FE)

• Break interrupt (BI)

When the ETBEI bit is set in the UARTx_IER register, the UART module
immediately issues an interrupt or DMA request. When initiating the
transmission of a string, no special handling of the first character is
required. Set the ETBEI bit and let the interrupt service routine load the
first character from memory and write it to the UARTx_THR register in the
normal manner. Accordingly, the ETBEI bit should be cleared if the string
transmission has completed.

UART Interrupt Identification (UARTx_IIR) Register
For legacy reasons, the UART interrupt identification register (UARTx_IIR)
still reflects the UART interrupt status. Legacy operation may require
bundling all UART interrupt sources to a single interrupt channel and ser-
vicing them all by the same software routine. This can be established by
globally assigning all UART interrupts to the same interrupt priority, by
using the system interrupt controllers (SICx).

When cleared, the pending interrupt bit (NINT) signals that an interrupt is
pending. The STATUS field indicates the highest priority pending inter-
rupt. The receive line status has the highest priority; the UARTx_THR empty
interrupt has the lowest priority. In the case where both interrupts are sig-
nalling, the UARTx_IIR reads 0x06.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 12-11

UART Port Controllers

When a UART interrupt is pending, the interrupt service routine (ISR)
needs to clear the interrupt latch explicitly. The following figure shows
how to clear any of the three latches.

The TX interrupt request is cleared by writing new data to the UARTx_THR
register or by reading the UARTx_IIR register. Note the special role of the
UARTx_IIR register read in the case where the service routine does not want
to transmit further data.

If software stops transmission, it must read the UARTx_IIR register to reset
the interrupt request. As long as the UARTx_IIR register reads 0x04 or 0x06
(indicating that another interrupt of higher priority is pending), the
UARTx_THR empty latch cannot be cleared by reading UARTx_IIR.

 If either the line status interrupt or the receive data interrupt has
been assigned a lower interrupt priority by the SICx, a deadlock
condition can occur. To avoid this, always assign the lowest prior-
ity of the enabled UART interrupts to the UARTx_THR empty event.

 Because of the destructive nature of these read operations, special
care should be taken. For more information, see “Speculative Load
Execution” on page 6-67 and “Conditional Load Behavior” on
page 6-68.

Figure 12-8. UART Interrupt Identification Register

NINT (Pending interrupt)

UART Interrupt Identification Register (UARTx_IIR) RO

STATUS[1:0]
0 - interrupt pending
1 - No interrupt pending

00 - Reserved
01 - UARTx_THR empty. Write UARTx_THR or read UARTx_IIR to clear

interrupt request.
10 - Receive data ready. Read UART RBR to clear interrupt request.
11 - Receive line status. Read UARTx_LSR to clear interrupt request.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0001

UART0 0xFFC0 0408
UART1 0xFFC0 2008
UART2 0xFFC0 2108

UART Control and Status Registers

12-12 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

UARTx_DLL and UARTx_DLH Registers
The bit rate is characterized by the system clock (SCLK) and the 16-bit
divisor. The divisor is split into the UART divisor latch low byte register
(UART_DLL) and the UART divisor latch high byte register (UARTx_DLH).
These registers form a 16-bit divisor (see Figure 12-9). The baud clock is
divided by 16 so that:

BAUD RATE = SCLK/(16 x divisor)

Divisor = 65,536 when UARTx_DLL = UARTx_DLH = 0

The UART_DLL register is mapped to the same address as the UARTx_THR and
UARTx_RBR registers. The UARTx_DLH register is mapped to the same address
as the interrupt enable register (UARTx_IER). The DLAB bit in UARTx_LCR
must be set before the UART divisor latch registers can be accessed.

Figure 12-9. UART Divisor Latch Registers

Divisor Latch Low Byte[7:0]

Divisor Latch High Byte[15:8]

UART Divisor Latch Low Byte Register (UARTx_DLL)

UART Divisor Latch High Byte Register (UARTx_DLH)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0001

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

UART0 0xFFC0 0400
UART1 0xFFC0 2000
UART2 0xFFC0 2100

UART0 0xFFC0 0404
UART1 0xFFC0 2004
UART2 0xFFC0 2104

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 12-13

UART Port Controllers

 Note the 16-bit divisor formed by UARTx_DLH and UARTx_DLL resets
to 0x0001, resulting in the highest possible clock frequency by
default. If the UART is not used, disabling the UART clock saves
power. The UARTx_DLH and UARTx_DLL registers can be programmed
by software before or after setting the UCEN bit.

Table 12-1 provides example divide factors required to support most stan-
dard baud rates.

 Careful selection of SCLK frequencies, that is, even multiples of
desired baud rates, can result in lower error percentages.

Table 12-1. UART Baud Rate Examples With 100 MHz SCLK

Baud Rate DL Actual % Error

2400 2604 2400.15 .006

4800 1302 4800.31 .007

9600 651 9600.61 .006

19200 326 19171.78 .147

38400 163 38343.56 .147

57600 109 57339.45 .452

115200 54 115740.74 .469

921600 7 892857.14 3.119

6250000 1 6250000 –

UART Control and Status Registers

12-14 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

UART Scratch (UARTx_SCR) Register
The contents of the 8-bit UART scratch register (UARTx_SCR) shown in
Figure 12-10 is reset to 0x00. It is used for general-purpose data storage
and does not control the UART hardware in any way.

UART Global Control (UARTx_GCTL) Register
The UART global control register (UARTx_GCTL) contains the enable bit for
internal UART clocks and for the IrDA mode of operation of the UART
(see Figure 12-11).

Note that the UCEN bit was not present in previous UART implementa-
tions. It has been introduced to save power if the UART is not used.
When porting code, be sure to enable this bit.

The IrDA TX polarity change bit and the IrDA RX polarity change bit are
effective only in IrDA mode. The two force error bits, FPE and FFE, are
intended for test purposes. They are useful for debugging software, espe-
cially in loop back mode.

Figure 12-10. UART Scratch Register

Scratch[7:0]

UART Scratch Register (UARTx_SCR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

UART0 0xFFC0 041C
UART1 0xFFC0 201C
UART2 0xFFC0 211C

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 12-15

UART Port Controllers

Non-DMA Mode
In non-DMA mode, data is moved to and from the UART by the proces-
sor core. To transmit a character, load it into UARTx_THR. Received data
can be read from UARTx_RBR. The processor must write and read one char-
acter at time.

To prevent any loss of data and misalignments of the serial data stream,
the UART Line status register (UARTx_LSR) provides two status flags for
handshaking—THRE and DR.

The THRE flag is set when UARTx_THR is ready for new data and cleared
when the processor loads new data into UARTx_THR. Writing UARTx_THR
when it is not empty overwrites the register with the new value and the
previous character is never transmitted.

Figure 12-11. UART Global Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UCEN (Enable UART Clocks)
1 - Enable UART clocks
0 - Disable UART clocks

Reset = 0x0000

IREN (Enable IrDA Mode)
1 - Enable IrDA
0 - Disable IrDA

FPE (Force Parity Error on Transmit)
1 - Force error
0 - Normal operation

FFE (Force Framing Error on Transmit)
1 - Force error
0 - Normal operation

UART Global Control Register (UARTx_GCTL)

TPOLC (IrDA TX Polarity
Change)
1 - Serial line idles high
0 - Serial line idles low

RPOLC (IrDA RX Polarity Change)
1 - Serial line idles high
0 - Serial line idles low

UART0 0xFFC0 0424
UART1 0xFFC0 2024
UART2 0xFFC0 2124

DMA Mode

12-16 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The DR flag signals when new data is available in UARTx_RBR. This flag is
cleared automatically when the processor reads from UARTx_RBR. Reading
UARTx_RBR when it is not full returns the previously received value. When
UARTx_RBR is not read in time, newly received data overwrites UARTx_RBR
and the overrun (OE) flag is set.

With interrupts disabled, these status flags can be polled to determine
when data is ready to move. Note that because polling is processor inten-
sive, it is not typically used in real-time signal processing environments.
Software can write up to two words into the UARTx_THR register before
enabling the UART clock. As soon as the UCEN bit is set, those two words
are sent.

Alternatively, UART writes and reads can be accomplished by interrupt
service routines (ISRs). Separate interrupt lines are provided for UART
TX, UART RX, and UART Error. The independent interrupts can be
enabled individually by the UARTx_IER register.

The ISRs can evaluate the status bit field within the UART interrupt iden-
tification register (UARTx_IIR) to determine the signalling interrupt source.
If more than one source is signalling, the status field displays the one with
the highest priority. Interrupts also must be assigned and unmasked by the
processor’s interrupt controller. The ISRs must clear the interrupt latches
explicitly. See Figure 12-8.

DMA Mode
In this mode, separate receive (RX) and transmit (TX) DMA channels
move data between the UART and memory. The software does not have
to move data, it just has to set up the appropriate transfers either through
the descriptor mechanism or through auto buffer mode.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 12-17

UART Port Controllers

No additional buffering is provided in the UART DMA channel, so the
latency requirements are the same as in non-DMA mode. However, the
latency is determined by the bus activity and arbitration mechanism and
not by the processor loading and interrupt priorities. For more informa-
tion, see Chapter 9, “Direct Memory Access”.

DMA interrupt routines must explicitly write 1s to the corresponding
DMA IRQ status registers to clear the latched request of the pending
interrupt.

The UART DMA is enabled by first setting up the system DMA control
registers and then enabling the UART ERBFI and/or ETBEI interrupts in
the UARTx_IER register. This is because the interrupt request lines double
as DMA request lines. Depending on whether DMA is enabled or not,
upon receiving these requests, the DMA control unit either generates a
direct memory access or passes the UART interrupt on to the system inter-
rupt handling unit. However, the UART error interrupt goes directly to
the system interrupt handling unit, bypassing the DMA unit completely.

The UART DMA supports 8-bit operation.

Mixing Modes
Non-DMA and DMA modes use different synchronization mechanisms.
Consequently, any serial communication must be complete before switch-
ing from non-DMA to DMA mode or vice versa. In other words, before
switching from non-DMA transmission to DMA transmission, make sure
both UARTx_THR and the internal transmit shift register (TSR) are empty by
testing the THRE and the TEMT status bits in UARTx_LSR. Otherwise, the pro-
cessor must wait until the 2-bit DMA buffer status field within the
appropriate UART transmit DMA configuration register
(UARTx_CONFIG_TX) is clear.

IrDA Support

12-18 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

When switching from DMA to non-DMA operation, make sure both the
receive (RX) and transmit (TX) DMA channels have completely trans-
ferred their data, including data contained in the DMA FIFOs. While the
DMA RX interrupt indicates the last data word has been written to mem-
ory (and has left the DMA FIFO), the DMA TX interrupt indicates the
last data word has left memory (and has entered the DMA FIFO). The
processor must wait until the TX FIFO is empty, by testing that the
DMA_RUN status bit in the TX channel’s IRQ_STATUS register is clear, before
it is safe to disable the DMA channel.

IrDA Support
Aside from the standard UART functionality, the UART also supports
half-duplex serial data communication via infrared signals, according to
the recommendations of the Infrared Data Association (IrDA). The physi-
cal layer known as IrDA SIR (9.6/115.2 Kbps rate) is based on
return-to-zero-inverted (RZI) modulation. Pulse position modulation is
not supported.

Using the 16x data rate clock, RZI modulation is achieved by inverting
and modulating the non-return-to-zero (NRZ) code normally transmitted
by the UART. On the receive side, the 16x clock is used to determine an
IrDA pulse sample window, from which the RZI-modulated NRZ code is
recovered.

IrDA support is enabled by setting the IREN bit in the UART global con-
trol register. The IrDA application requires external transceivers.

IrDA Transmitter Description
To generate the IrDA pulse transmitted by the UART, the normal NRZ
output of the transmitter is first inverted, so a 0 is transmitted as a high
pulse of 16 UART clock periods and a 1 is transmitted as a low pulse for
16 UART clock periods. The leading edge of the pulse is then delayed by

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 12-19

UART Port Controllers

six UART clock periods. Similarly, the trailing edge of the pulse is trun-
cated by eight UART clock periods. This results in the final representation
of the original 0 as a high pulse of only 3/16 clock periods in a 16-cycle
UART clock period. The pulse is centered around the middle of the bit
time, as shown in Figure 12-12. The final IrDA pulse is fed to the off-chip
infrared driver.

This modulation approach ensures a pulse width output from the UART
of three cycles high out of every 16 UART clock cycles. As shown in
Table 12-1, the error terms associated with the baud rate generator are
very small and well within the tolerance of most infrared transceiver
specifications.

IrDA Receiver Description
The IrDA receiver function is more complex than the transmit function.
The receiver must discriminate the IrDA pulse and reject noise. To do
this, the receiver looks for the IrDA pulse in a narrow window centered
around the middle of the expected pulse.

Figure 12-12. IrDA Transmit Pulse

 0 1 0

8/16

9/167/16

16/16

NRZ

INVERTED

FINAL
IrDA

8/16

9/167/16

16/16

IrDA Support

12-20 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Glitch filtering is accomplished by counting 16 system clocks from the
time an initial pulse is seen. If the pulse is absent when the counter
expires, it is considered a glitch. Otherwise, it is interpreted as a 0. This is
acceptable because glitches originating from on-chip capacitive cross-cou-
pling typically do not last for more than a fraction of the system clock
period. Sources outside of the chip and not part of the transmitter can be
avoided by appropriate shielding. The only other source of a glitch is the
transmitter itself. The processor relies on the transmitter to perform
within specification. If the transmitter violates the specification, unpre-
dictable results may occur. The 4-bit counter adds an extra level of
protection at a minimal cost. Note because the system clock can change
across systems, the longest glitch tolerated is inversely proportional to the
system clock frequency.

The receive sampling window is determined by a counter that is clocked at
the 16x bit-time sample clock. The sampling window is re-synchronized
with each start bit by centering the sampling window around the start bit.

The polarity of receive data is selectable, using the IRPOL bit. Figure 12-13
gives examples of each polarity type.

• IRPOL = 0 assumes that the receive data input idles 0 and each
active 1 transition corresponds to a UART NRZ value of 0.

• IRPOL = 1 assumes that the receive data input idles 1 and each
active 0 transition corresponds to a UART NRZ value of 0.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 12-21

UART Port Controllers

Figure 12-13. IrDA Receiver Pulse Detection

 0 1

16/16

PULSE
DETECTOR

OUTPUT

SAMPLING
WINDOW

8/16 16/16

RECOVERED
NRZ INPUT 1 0

8/16

 0 1

RECEIVED
IrDA

PULSE
IR POL = 1

RECEIVED
IrDA

PULSE
IR POL = 0

IrDA Support

12-22 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-1

13 SERIAL PORT CONTROLLERS

The ADSP-BF538 processor has four identical serial ports (SPORT).
These support a variety of serial data communications protocols and can
provide a direct interconnection between processors in a multiprocessor
system.

The serial ports (SPORT0, SPORT1, SPORT2, SPORT3) provide an
I/O interface to a wide variety of peripheral serial devices. SPORTs pro-
vide synchronous serial data transfer only; the processor provides
asynchronous RS-232 data transfer via the UART. Each SPORT has one
group of pins (primary data, secondary data, clock, and frame sync) for
transmit and a second set of pins for receive. The receive and transmit
functions are programmed separately. Each SPORT is a full duplex device,
capable of simultaneous data transfer in both directions. The SPORTs can
be programmed for bit rate, frame sync, and number of bits per word by
writing to memory-mapped registers.

The naming conventions for registers and pins use a lower case x to repre-
sent a digit. For example, RFSx indicates pins RFS0, RFS1, RFS2, or RFS3,
corresponding to SPORT0, SPORT1, SPORT2 and SPORT3. LSB refers
to least significant bit, and MSB refers to most significant bit.

All SPORTs have the same capabilities and are programmed in the same
way. Each SPORT has its own set of control registers and data buffers.

The SPORTs use frame sync pulses to indicate the beginning of each word
or packet, and the bit clock marks the beginning of each data bit. External
bit clock and frame sync are available for the TX and RX buffers.

13-2 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

With a range of clock and frame synchronization options, the SPORTs
allow a variety of serial communication protocols, including H.100, and
provide a glueless hardware interface to many industry-standard data con-
verters and codecs.

The SPORTs can operate at up to an SCLK/2 clock rate with an externally
generated clock, or half the system clock rate for an internally generated
serial port clock. The SPORT external clock must always be less than the
SCLK frequency. Independent transmit and receive clocks provide greater
flexibility for serial communications.

SPORT clocks and frame syncs can be internally generated by the system
or received from an external source. The SPORTs can operate with a
transmission format of LSB first or MSB first, with word lengths select-
able from 3 to 32 bits. They offer selectable transmit modes and optional
-law or A-law companding in hardware. SPORT data can be automati-
cally transferred between on-chip and off-chip memories using DMA
block transfers. Additionally, each of the SPORTs offers a TDM
(time-division-multiplexed) multichannel mode.

Each of the SPORTs offers these features and capabilities:

• Provides independent transmit and receive functions.

• Transfers serial data words from 3 to 32 bits in length, either MSB
first or LSB first.

• Provides alternate framing and control for interfacing to I2S serial
devices, as well as other audio formats (for example, left-justified
stereo serial data).

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-3

Serial Port Controllers

• Has FIFO plus double buffered data (both receive and transmit
functions have a data buffer register and a shift register), providing
additional time to service the SPORT.

• Permits chaining of DMA operations for multiple data blocks.

• Provides two synchronous transmit and two synchronous receive
data pins and buffers in each SPORT to double the total supported
data streams.

• Performs A-law and -law hardware companding on transmitted
and received words. (See “Companding” on page 13-37 for more
information.)

• Internally generates serial clock and frame sync signals in a wide
range of frequencies or accepts clock and frame sync input from an
external source.

• Operates with or without frame synchronization signals for each
data word, with internally generated or externally generated frame
signals, with active high or active low frame signals, and with either
of two configurable pulse widths and frame signal timing.

• Performs interrupt-driven, single word transfers to and from
on-chip memory under processor control.

• Provides direct memory access transfer to and from memory under
DMA Master control. DMA can be auto buffer-based (a repeated,
identical range of transfers) or descriptor-based (individual or
repeated ranges of transfers with differing DMA parameters).

• Executes DMA transfers to and from on-chip memory. Each
SPORT can automatically receive and transmit an entire block of
data.

• Has a multichannel mode for TDM interfaces. Each SPORT can
receive and transmit data selectively from a time-division-multi-
plexed serial bit stream on 128 contiguous channels from a stream

13-4 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

of up to 1024 total channels. This mode can be useful as a network
communication scheme for multiple processors. The 128 channels
available to the processor can be selected to start at any channel
location from 0 to 895 = (1023 – 128). Note the multichannel
select registers and the WSIZE register control which subset of the
128 channels within the active region can be accessed.

Table 13-1 shows the pins for each SPORT.

 SPORT0 and SPORT1 have dedicated pins, whereas SPORT2 and
SPORT3 utilize GPIO pins. For more information, see “Gen-
eral-Purpose Input/Output Ports C, D, E” on page 15-1.

A SPORT receives serial data on its DRxPRI and DRxSEC inputs and trans-
mits serial data on its DTxPRI and DTxSEC outputs. It can receive and
transmit simultaneously for full-duplex operation. For transmit, the data
bits (DTxPRI and DTxSEC) are synchronous to the transmit clock (TSCLKx).
For receive, the data bits (DRxPRI and DRxSEC) are synchronous to the
receive clock (RSCLKx). The serial clock is an output if the processor

Table 13-1. Serial Port (SPORT) Pins

Pin1

1 A lowercase x within a pin name represents a possible value of 0, 1, 2, or 3 (corresponding to
SPORT0, SPORT1, SPORT2, or SPORT3).

Description

DTxPRI Transmit Data Primary

DTxSEC Transmit Data Secondary

TSCLKx Transmit Clock

TFSx Transmit Frame Sync

DRxPRI Receive Data Primary

DRxSEC Receive Data Secondary

RSCLKx Receive Clock

RFSx Receive Frame Sync

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-5

Serial Port Controllers

generates it, or an input if the clock is externally generated. Frame syn-
chronization signals RFSx and TFSx are used to indicate the start of a serial
data word or stream of serial words.

The primary and secondary data pins provide a method to increase the
data throughput of the serial port. They do not behave as totally separate
SPORTs; rather, they operate in a synchronous manner (sharing clock and
frame sync) but on separate data. The data received on the primary and
secondary pins is interleaved in main memory and can be retrieved by set-
ting a stride in the data address generators (DAG) unit. For more
information about DAGs, see Chapter 5, “Data Address Generators”.
Similarly, for TX, data should be written to the TX register in an alternat-
ing manner—first primary, then secondary, then primary, then secondary,
and so on. This is easily accomplished with the processor’s powerful
DAGs.

In addition to the serial clock signal, data must be signalled by a frame
synchronization signal. The framing signal can occur either at the begin-
ning of an individual word or at the beginning of a block of words.

Figure 13-1 shows a simplified block diagram of a single SPORT. Data to
be transmitted is written from an internal processor register to the
SPORT’s SPORTx_TX register via the peripheral bus. This data is optionally
compressed by the hardware and automatically transferred to the TX shift
register. The bits in the shift register are shifted out on the SPORT’s DTx-
PRI/DTxSEC pin, MSB first or LSB first, synchronous to the serial clock on
the TSCLKx pin. The receive portion of the SPORT accepts data from the
DRxPRI/DRxSEC pin synchronous to the serial clock on the RSCLKx pin.
When an entire word is received, the data is optionally expanded, then
automatically transferred to the SPORT’s SPORTx_RX register, and then
into the RX FIFO where it is available to the processor.

13-6 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 13-1. SPORT Block Diagram

COMPANDING
HARDWARE

COMPANDING
HARDWARE

NOTE 1: ALL WIDE ARROW DATA PATHS ARE 16 OR 32 BITS WIDE, DEPENDING ON SLEN. FOR SLEN = 2 TO 15, A 16-BIT
DATA PATH WITH 8-DEEP FIFO IS USED. FOR SLEN = 16 TO 31, A 32-BIT DATA PATH WITH 4-DEEP FIFO IS USED.
NOTE 2: Tx REGISTER IS THE BOTTOM OF THE Tx FIFO, Rx REGISTER IS THE TOP OF THE Rx FIFO.

TFSx

Rx FIFO
4 x 32 OR 8 x 16

TCLKx RCLKx RFSx

PAB

DAB

Tx FIFO
4 x 32 OR 8 x 16

SERIAL
CONTROL

DTxSECDTxPRI DRxSECDRxPRI

Tx REGISTER Rx REGISTER

Tx PRI
SHIFT REG

Tx SEC
SHIFT REG

Tx PRI
HOLD REG

Tx SEC
HOLD REG

Rx PRI
HOLD REG

Rx SEC
HOLD REG

Rx PRI
SHIFT REG

Rx SEC
SHIFT REG

INTERNAL
CLOCK

GENERATOR

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-7

Serial Port Controllers

Figure 13-2 shows a possible port connection for the SPORTs. Note serial
devices A and B must be synchronous, as they share common frame syncs
and clocks. The same is true for serial devices C and D.

Figure 13-2. SPORT Connections

RCLK0

TCLK0

TFS0

RFS0

SPORT0

SERIAL PORT 0
(CLOCKS AND FRAME SYNCS)

SERIAL PORT 1
(CLOCKS AND FRAME SYNCS)

DT0SEC

DR0SEC

DR0PRI

DT0PRI

RCLK1

TCLK1

TFS1

RFS1

DT1SEC

DR1SEC

DR1PRI

DT1PRI

Blackfin Processor

SPORT1

SERIAL
DEVICE D

(SECONDARY)

SERIAL
DEVICE C

(PRIMARY)

SERIAL
DEVICE B

(SECONDARY)

SERIAL
DEVICE A

(PRIMARY)

SPORT Operation

13-8 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 13-3 shows an example of a stereo serial device with three transmit
and two receive channels connected to the processor.

SPORT Operation
This section describes general SPORT operation, illustrating the most
common use of a SPORT. Since the SPORT functionality is configurable,
this description represents just one of many possible configurations.

Figure 13-3. Stereo Serial Connection

DBCLK
DLRCLK

DSDATA1

ALRCLK

ABCLK

DSDATA3
DSDATA2

ASDATA1

ASDATA2

AD1836
STEREO SERIAL

DEVICE Blackfin Processor

RCLK0

TCLK0

TFS0

RFS0

SPORT0

DT0SEC

DR0SEC

DR0PRI

DT0PRI

RCLK1

TCLK1

TFS1

RFS1

SPORT1

DT1SEC

DR1SEC

DR1PRI

DT1PRI

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-9

Serial Port Controllers

Writing to a SPORT’s SPORTx_TX register readies the SPORT for trans-
mission. The TFSx signal initiates the transmission of serial data. Once
transmission has begun, each value written to the SPORTx_TX register is
transferred through the FIFO to the internal transmit shift register. The
bits are then sent, beginning with either the MSB or the LSB as specified
in the SPORTx_TCR1 register. Each bit is shifted out on the driving edge of
TSCLKx. The driving edge of TSCLKx can be configured to be rising or fall-
ing. The SPORT generates the transmit interrupt or requests a DMA
transfer as long as there is space in the TX FIFO.

As a SPORT receives bits, they accumulate in an internal receive register.
When a complete word has been received, it is written to the SPORT
FIFO register and the receive interrupt for that SPORT is generated or a
DMA transfer is initiated. Interrupts are generated differently if DMA
block transfers are performed. For information about DMA, see
Chapter 9, “Direct Memory Access”.

SPORT Disable
The SPORTs are automatically disabled by a processor hardware or soft-
ware reset. A SPORT can also be disabled directly by clearing the
SPORT’s transmit or receive enable bits (TSPEN in the SPORTx_TCR1 regis-
ter and RSPEN in the SPORTx_RCR1 register, respectively). Each method has
a different effect on the SPORT.

A processor reset disables the SPORTs by clearing the SPORTx_TCR1,
SPORTx_TCR2, SPORTx_RCR1, and SPORTx_RCR2 registers (including the
TSPEN and RSPEN enable bits) and the SPORTx_TCLKDIV, SPORTx_RCLKDIV,
SPORTx_TFSDIV, and SPORTx_RFSDIV clock and frame sync divisor registers.
Any ongoing operations are aborted.

Setting SPORT Modes

13-10 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Clearing the TSPEN and RSPEN enable bits disables the SPORTs and aborts
any ongoing operations. Status bits are also cleared. Configuration bits
remain unaffected and can be read by the software in order to be altered or
overwritten. To disable the SPORT output clock, set the SPORT to be
disabled.

 Note that disabling a SPORT via TSPEN/RSPEN may shorten any
currently active pulses on the TFSx/RFSx and TSCLKx/RSCLKx pins, if
these signals are configured to be generated internally.

When disabling the SPORT from multichannel operation, first disable
TSPEN and then disable RSPEN. Note both TSPEN and RSPEN must be dis-
abled before re-enabling. Disabling only TX or RX is not allowed.

Setting SPORT Modes
SPORT configuration is accomplished by setting bit and field values in
configuration registers. Each SPORT must be configured prior to being
enabled. Once the SPORT is enabled, further writes to the SPORT con-
figuration registers are disabled (except for SPORTx_RCLKDIV,
SPORTx_TCLKDIV, and multichannel mode channel select registers). To
change values in all other SPORT configuration registers, disable the
SPORT by clearing TSPEN in SPORTx_TCR1 and/or RSPEN in SPORTx_RCR1.

Each SPORT has its own set of control registers and data buffers. These
registers are described in detail in the following sections. All control and
status bits in the SPORT registers are active high unless otherwise noted.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-11

Serial Port Controllers

Register Writes and Effective Latency
When the SPORT is disabled (TSPEN and RSPEN cleared), SPORT register
writes are internally completed at the end of the SCLK cycle in which they
occurred, and the register reads back the newly-written value on the next
cycle.

When the SPORT is enabled to transmit (TSPEN set) or receive (RSPEN set),
corresponding SPORT configuration register writes are disabled (except
for SPORTx_RCLKDIV, SPORTx_TCLKDIV, and multichannel mode channel
select registers). The SPORTx_TX register writes are always enabled;
SPORTx_RX, SPORTx_CHNL, and SPORTx_STAT are read-only registers.

After a write to a SPORT register, while the SPORT is disabled, any
changes to the control and mode bits generally take effect when the
SPORT is re-enabled.

 Most configuration registers can only be changed while the
SPORT is disabled (TSPEN/RSPEN = 0). Changes take effect after
the SPORT is re-enabled. The only exceptions to this rule are the
TCLKDIV/RCLKDIV registers and multichannel select registers.

SPORT Transmit Configuration
(SPORTx_TCR1, SPORTx_TCR2) Registers

The main control registers for the transmit portion of each SPORT are
the transmit configuration registers, SPORTx_TCR1 and SPORTx_TCR2.

A SPORT is enabled for transmit if bit 0 (TSPEN) of the transmit configu-
ration 1 register is set to 1. This bit is cleared during either a hard reset or
a soft reset, disabling all SPORT transmission.

SPORT Transmit Configuration (SPORTx_TCR1, SPORTx_TCR2)
Registers

13-12 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

When the SPORT is enabled to transmit (TSPEN set), corresponding
SPORT configuration register writes are not allowed except for
SPORTx_TCLKDIV and multichannel mode channel select registers. Writes to
disallowed registers have no effect. While the SPORT is enabled,
SPORTx_TCR1 is not written except for bit 0 (TSPEN). For example:

write (SPORTx_TCR1, 0x0001) ; /* SPORT TX Enabled */

write (SPORTx_TCR1, 0xFF01) ; /* ignored, no effect */

write (SPORTx_TCR1, 0xFFF0) ; /* SPORT disabled, SPORTx_TCR1

still equal to 0x0000 */

The addresses for these SPORT registers are:

SPORT0_TCR1 – 0xFFC0 0800 SPORT0_TCR2 – 0xFFC0 0804

SPORT1_TCR1 – 0xFFC0 0900 SPORT1_TCR2 – 0xFFC0 0904

SPORT2_TCR1 – 0xFFC0 2500 SPORT2_TCR2 – 0xFFC0 2504

SPORT3_TCR1 – 0xFFC0 2600 SPORT3_TCR2 – 0xFFC0 2604

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-13

Serial Port Controllers

Figure 13-4. SPORTx Transmit Configuration 1 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Transmit Configuration 1 Register (SPORTx_TCR1)

0 - Transmit disabled
1 - Transmit enabled

ITFS (Internal Transmit
Frame Sync Select)

ITCLK (Internal Transmit
Clock Select)

TDTYPE[1:0] (Data Format-
ting Type Select)

TLSBIT (Transmit Bit Order)

TSPEN (Transmit Enable)

LTFS (Low Transmit
Frame Sync Select)

LATFS (Late Transmit
 Frame Sync)
0 - Early frame syncs
1 - Late frame syncs

TCKFE (Clock Falling
Edge Select)

0 -External transmit clock
selected

1 - Internal transmit clock
selected

00 - Normal operation
01 - Reserved
10 - Compand using -law
11 - Compand using A-law

0 - Transmit MSB first
1 - Transmit LSB first

Reset = 0x0000

0 - External TFS used
1 - Internal TFS used

0 - Drive data and internal
frame syncs with rising
edge of TSCLK. Sample
external frame syncs with
falling edge of TSCLK.

1 - Drive data and internal
frame syncs with falling
edge of TSCLK. Sample
external frame syncs
with rising edge of TSCLK.

0 - Active high TFS
1 - Active low TFS

TFSR (Transmit Frame Sync
Required Select)

DITFS (Data-Independent
Transmit Frame Sync Select)
0 - Data-dependent TFS generated
1 - Data-independent TFS generated

0 - Does not require TFS for
every data word

1 - Requires TFS for every
data word

SPORT Transmit Configuration (SPORTx_TCR1, SPORTx_TCR2)
Registers

13-14 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Additional information for the SPORTx_TCR1 and SPORTx_TCR2 transmit
configuration register bits includes:

• Transmit Enable (TSPEN). This bit selects whether the SPORT is
enabled to transmit (if set) or disabled (if cleared).

Setting TSPEN causes an immediate assertion of a SPORT TX inter-
rupt, indicating that the TX data register is empty and needs to be
filled. This is normally desirable because it allows centralization of
the transmit data write code in the TX interrupt service routine
(ISR). For this reason, the code should initialize the ISR and be
ready to service TX interrupts before setting TSPEN.

Similarly, if DMA transfers are used, DMA control should be con-
figured correctly before setting TSPEN. Set all DMA control
registers before setting TSPEN.

Clearing TSPEN causes the SPORT to stop driving data, TSCLK, and
frame sync pins; it also shuts down the internal SPORT circuitry.
In low power applications, battery life can be extended by clearing
TSPEN whenever the SPORT is not in use.

Figure 13-5. SPORTx Transmit Configuration 2 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Transmit Configuration 2 Register (SPORTx_TCR2)

SLEN[4:0] (SPORT Word
Length)

TSFSE (Transmit Stereo
Frame Sync Enable)

TRFST (Left/Right Order)
00000 - Illegal value
00001 - Illegal value
Serial word length is value in
this field plus 1

Reset = 0x0000

0 - Left stereo channel first
1 - Right stereo channel first

0 - Normal mode
1 - Frame sync becomes L/R clock

TXSE (TxSEC Enable)

0 - Secondary side disabled
1 - Secondary side enabled

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-15

Serial Port Controllers

 All SPORT control registers should be programmed before TSPEN is
set. Typical SPORT initialization code first writes all control regis-
ters, including DMA control if applicable. The last step in the code
is to write SPORTx_TCR1 with all of the necessary bits, including
TSPEN.

• Internal Transmit Clock Select. (ITCLK). This bit selects the inter-
nal transmit clock (if set) or the external transmit clock on the
TSCLK pin (if cleared). The TCLKDIV MMR value is not used when
an external clock is selected.

• Data Formatting Type Select. The two TDTYPE bits specify data
formats used for single and multichannel operation.

• Bit Order Select. (TLSBIT). The TLSBIT bit selects the bit order of
the data words transmitted over the SPORT.

• Serial Word Length Select. (SLEN). The serial word length (the
number of bits in each word transmitted over the SPORTs) is cal-
culated by adding 1 to the value of the SLEN field:

 Serial Word Length = SLEN + 1;

The SLEN field can be set to a value of 2 to 31; 0 and 1 are illegal
values for this field. Three common settings for the SLEN field are
15, to transmit a full 16-bit word; 7, to transmit an 8-bit byte; and
23, to transmit a 24-bit word. The processor can load 16- or 32-bit
values into the transmit buffer via DMA or an MMR write instruc-
tion; the SLEN field tells the SPORT how many of those bits to shift
out of the register over the serial link. The serial port transfers bits
[SLEN:0] from the transmit buffer.

SPORT Transmit Configuration (SPORTx_TCR1, SPORTx_TCR2)
Registers

13-16 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

 The frame sync signal is controlled by the SPORTx_TFSDIV and
SPORTx_RFSDIV registers, not by SLEN. To produce a frame sync
pulse on each byte or word transmitted, the proper frame sync
divider must be programmed into the frame sync divider register;
setting SLEN to 7 does not produce a frame sync pulse on each byte
transmitted.

• Internal Transmit Frame Sync Select. (ITFS). This bit selects
whether the SPORT uses an internal TFS (if set) or an external TFS
(if cleared).

• Transmit Frame Sync Required Select. (TFSR). This bit selects
whether the SPORT requires (if set) or does not require (if cleared)
a transmit frame sync for every data word.

 The TFSR bit is normally set during SPORT configuration. A frame
sync pulse is used to mark the beginning of each word or data
packet, and most systems need a frame sync to function properly.

• Data-Independent Transmit Frame Sync Select. (DITFS). This bit
selects whether the SPORT generates a data-independent TFS (sync
at selected interval) or a data-dependent TFS (sync when data is
present in SPORTx_TX) for the case of internal frame sync select
(ITFS = 1). The DITFS bit is ignored when external frame syncs are
selected.

The frame sync pulse marks the beginning of the data word. If
DITFS is set, the frame sync pulse is issued on time, whether the
SPORTx_TX register has been loaded or not; if DITFS is cleared, the
frame sync pulse is only generated if the SPORTx_TX data register has
been loaded. If the receiver demands regular frame sync pulses,
DITFS should be set, and the processor should keep loading the
SPORTx_TX register on time. If the receiver can tolerate occasional

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-17

Serial Port Controllers

late frame sync pulses, DITFS should be cleared to prevent the
SPORT from transmitting old data twice or transmitting garbled
data if the processor is late in loading the SPORTx_TX register.

• Low Transmit Frame Sync Select. (LTFS). This bit selects an active
low TFS (if set) or active high TFS (if cleared).

• Late Transmit Frame Sync. (LATFS). This bit configures late frame
syncs (if set) or early frame syncs (if cleared).

• Clock Drive/Sample Edge Select. (TCKFE). This bit selects which
edge of the TCLKx signal the SPORT uses for driving data, for driv-
ing internally generated frame syncs, and for sampling externally
generated frame syncs. If set, data and internally generated frame
syncs are driven on the falling edge, and externally generated frame
syncs are sampled on the rising edge. If cleared, data and internally
generated frame syncs are driven on the rising edge, and externally
generated frame syncs are sampled on the falling edge.

• TxSec Enable. (TXSE). This bit enables the transmit secondary side
of the serial port (if set).

• Stereo Serial Enable. (TSFSE). This bit enables the stereo serial
operating mode of the serial port (if set). By default this bit is
cleared, enabling normal clocking and frame sync.

• Left/Right Order. (TRFST). If this bit is set, the right channel is
transmitted first in stereo serial operating mode. By default this bit
is cleared, and the left channel is transmitted first.

SPORT Receive Configuration (SPORTx_RCR1, SPORTx_RCR2)
Registers

13-18 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

SPORT Receive Configuration
(SPORTx_RCR1, SPORTx_RCR2) Registers

The main control registers for the receive portion of each SPORT are the
receive configuration registers, SPORTx_RCR1 and SPORTx_RCR2.

A SPORT is enabled for receive if bit 0 (RSPEN) of the receive configura-
tion 1 register is set to 1. This bit is cleared during either a hard reset or a
soft reset, disabling all SPORT reception.

When the SPORT is enabled to receive (RSPEN set), corresponding
SPORT configuration register writes are not allowed except for
SPORTx_RCLKDIV and multichannel mode channel select registers. Writes to
disallowed registers have no effect. While the SPORT is enabled,
SPORTx_RCR1 is not written except for bit 0 (RSPEN). For example:

write (SPORTx_RCR1, 0x0001) ; /* SPORT RX Enabled */

write (SPORTx_RCR1, 0xFF01) ; /* ignored, no effect */

write (SPORTx_RCR1, 0xFFF0) ; /* SPORT disabled, SPORTx_RCR1

 still equal to 0x0000 */

The addresses for these SPORT registers are:

SPORT0_RCR1 – 0xFFC0 0820 SPORT0_RCR2 – 0xFFC0 0824

SPORT1_RCR1 – 0xFFC0 0920 SPORT1_RCR2 – 0xFFC0 0924

SPORT2_RCR1 – 0xFFC0 2520 SPORT2_RCR2 – 0xFFC0 2524

SPORT3_RCR1 – 0xFFC0 2620 SPORT3_RCR2 – 0xFFC0 2624

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-19

Serial Port Controllers

Figure 13-6. SPORTx Receive Configuration 1 Register

Figure 13-7. SPORTx Receive Configuration 2 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Receive Configuration 1 Register (SPORTx_RCR1)

0 - Receive disabled
1 - Receive enabled

IRFS (Internal Receive Frame
Sync Select)

IRCLK (Internal Receive
Clock Select)

RDTYPE[1:0] (Data Format-
ting Type Select)

RLSBIT (Receive Bit Order)

RSPEN (Receive Enable)

LRFS (Low Receive Frame
Sync Select)

LARFS (Late Receive
Frame Sync)
0 - Early frame syncs
1 - Late frame syncs

RCKFE (Clock Falling
Edge Select)

0 -External receive clock
selected

1 - Internal receive clock
selected

00 - Zero-fill
01 - Sign-extend
10 - Compand using -law
11 - Compand using A-law

0 - Receive MSB first
1 - Receive LSB first

Reset = 0x0000

0 - External RFS used
1 - Internal RFS used

0 - Drive internal frame sync
on rising edge of RSCLK.
Sample data and external
frame sync with falling
edge of RSCLK.

1 - Drive internal frame sync
on falling edge of RSCLK.
Sample data and external
frame sync with rising
edge of RSCLK.

0 - Active high RFS
1 - Active low RFS

RFSR (Receive Frame Sync
Required Select)
0 - Does not require RFS for

every data word
1 - Requires RFS for every data

word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Receive Configuration 2 Register (SPORTx_RCR2)

SLEN[4:0] (SPORT Word
Length)

RSFSE (Receive Stereo
Frame Sync Enable)

RRFST (Left/Right Order)

00000 - Illegal value
00001 - Illegal value
Serial word length is value in
this field plus 1

Reset = 0x0000

0 - Left stereo channel first
1 - Right stereo channel first

0 - Normal mode
1 - Frame sync becomes L/R clock RXSE (RxSEC Enable)

0 - Secondary side disabled
1 - Secondary side enabled

SPORT Receive Configuration (SPORTx_RCR1, SPORTx_RCR2)
Registers

13-20 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Additional information for the SPORTx_RCR1 and SPORTx_RCR2 receive con-
figuration register bits:

• Receive Enable. (RSPEN). This bit selects whether the SPORT is
enabled to receive (if set) or disabled (if cleared). Setting the RSPEN
bit turns on the SPORT and causes it to sample data from the data
receive pins as well as the receive bit clock and receive frame sync
pins if so programmed.

Setting RSPEN enables the SPORTx receiver, which can generate a
SPORTx RX interrupt. For this reason, the code should initialize
the ISR and the DMA control registers, and should be ready to ser-
vice RX interrupts before setting RSPEN. Setting RSPEN also
generates DMA requests if DMA is enabled and data is received.
Set all DMA control registers before setting RSPEN. Clearing RSPEN
causes the SPORT to stop receiving data; it also shuts down the
internal SPORT receive circuitry. In low power applications, bat-
tery life can be extended by clearing RSPEN whenever the SPORT is
not in use.

 All SPORT control registers should be programmed before RSPEN is
set. Typical SPORT initialization code first writes all control regis-
ters, including DMA control if applicable. The last step in the code
is to write SPORTx_RCR1 with all of the necessary bits, including
RSPEN.

• Internal Receive Clock Select. (IRCLK). This bit selects the internal
receive clock (if set) or external receive clock (if cleared). The RCLK-
DIV MMR value is not used when an external clock is selected.

• Data Formatting Type Select. (RDTYPE). The two RDTYPE bits spec-
ify one of four data formats used for single and multichannel
operation.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-21

Serial Port Controllers

• Bit Order Select. (RLSBIT). The RLSBIT bit selects the bit order of
the data words received over the SPORTs.

• Serial Word Length Select. (SLEN). The serial word length (the
number of bits in each word received over the SPORTs) is calcu-
lated by adding 1 to the value of the SLEN field. The SLEN field can
be set to a value of 2 to 31; 0 and 1 are illegal values for this field.

 The frame sync signal is controlled by the SPORTx_TFSDIV and
SPORTx_RFSDIV registers, not by SLEN. To produce a frame sync
pulse on each byte or word transmitted, the proper frame sync
divider must be programmed into the frame sync divider register;
setting SLEN to 7 does not produce a frame sync pulse on each byte
transmitted.

• Internal Receive Frame Sync Select. (IRFS). This bit selects
whether the SPORT uses an internal RFS (if set) or an external RFS
(if cleared).

• Receive Frame Sync Required Select. (RFSR). This bit selects
whether the SPORT requires (if set) or does not require (if cleared)
a receive frame sync for every data word.

• Low Receive Frame Sync Select. (LRFS). This bit selects an active
low RFS (if set) or active high RFS (if cleared).

• Late Receive Frame Sync. (LARFS). This bit configures late frame
syncs (if set) or early frame syncs (if cleared).

Data Word Formats

13-22 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• Clock Drive/Sample Edge Select. (RCKFE). This bit selects which
edge of the RSCLK clock signal the SPORT uses for sampling data,
for sampling externally generated frame syncs, and for driving
internally generated frame syncs. If set, internally generated frame
syncs are driven on the falling edge, and data and externally gener-
ated frame syncs are sampled on the rising edge. If cleared,
internally generated frame syncs are driven on the rising edge, and
data and externally generated frame syncs are sampled on the fall-
ing edge.

• RxSec Enable. (RXSE). This bit enables the receive secondary side of
the serial port (if set).

• Stereo Serial Enable. (RSFSE). This bit enables the stereo serial
operating mode of the serial port (if set). By default this bit is
cleared, enabling normal clocking and frame sync.

• Left/Right Order. (RRFST). If this bit is set, the right channel is
received first in stereo serial operating mode. By default this bit is
cleared, and the left channel is received first.

Data Word Formats
The format of the data words transferred over the SPORTs is configured
by the combination of transmit SLEN and receive SLEN; RDTYPE; TDTYPE;
RLSBIT; and TLSBIT bits of the SPORTx_TCR1, SPORTx_TCR2, SPORTx_RCR1,
and SPORTx_RCR2 registers.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-23

Serial Port Controllers

SPORT Transmit Data (SPORTx_TX)
Register

The SPORTx transmit data register (SPORTx_TX) is a write-only register.
Reads produce a peripheral access bus (PAB) error. Writes to this register
cause writes into the transmitter FIFO. The 16-bit wide FIFO is 8 deep
for word length <= 16 and 4 deep for word length > 16. The FIFO is com-
mon to both primary and secondary data and stores data for both. Data
ordering in the FIFO is shown in the Figure 13-8.

It is important to keep the interleaving of primary and secondary data in
the FIFO as shown. This means that PAB/DMA writes to the FIFO must
follow an order of primary first, and then secondary, if secondary is
enabled. DAB/PAB writes must match their size to the data word length.
For word length up to and including 16 bits, use a 16-bit write. Use a
32-bit write for word length greater than 16 bits.

Figure 13-8. SPORT Transmit FIFO Data Ordering

015

015

015

015

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

W7

W6
W5

W4

W3

W2
W1

W0

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

W3 LOW

W3 HIGH
W2 LOW

W2 HIGH

W1 LOW

W1 HIGH
W0 LOW

W0 HIGH

SECONDARY W3

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY
PRIMARY

PRIMARY

PRIMARY

SECONDARY

SECONDARY

SECONDARY

W3
W2

W2

W1

W1
W0

W0

SECONDARY W1 LOW

SECONDARY

SECONDARY

SECONDARY

W1 HIGH
W1 LOW

W1 HIGH

W0 LOW

W0 HIGH
W0 LOW

W0 HIGH

ONLY PRIMARY ENABLED
DATA LENGTH <= 16 BITS

ONLY PRIMARY ENABLED
DATA LENGTH > 16 BITS

8 WORDS OF
PRIMARY DATA

IN FIFO

4 WORDS OF
PRIMARY DATA

IN FIFO

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH <= 16 BITS

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH > 16 BITS

4 WORDS OF
PRIMARY DATA AND

4 WORDS OF
SECONDARY DATA

IN FIFO

2 WORDS OF
PRIMARY DATA AND

2 WORDS OF
SECONDARY DATA

IN FIFO

SPORT Transmit Data (SPORTx_TX) Register

13-24 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

When transmit is enabled, data from the FIFO is assembled in the TX
hold register based on TXSE and SLEN, and then shifted into the primary
and secondary shift registers. From here, the data is shifted out serially on
the DTxPRI and DTxSEC pins. See Figure 13-9.

The SPORT TX interrupt is asserted when TSPEN = 1 and the TX FIFO
has room for additional words. This interrupt does not occur if SPORT
DMA is enabled. For DMA operation, see Chapter 9, “Direct Memory
Access”.

The transmit underflow register bit (TUVF) is set in the SPORT status reg-
ister when a transmit frame sync occurs and no new data has been loaded
into the serial shift register. In multichannel mode (MCM), TUVF is set
whenever the serial shift register is not loaded, and transmission begins on
the current enabled channel. The TUVF status bit is a sticky
write-1-to-clear (W1C) bit and is also cleared by disabling the serial port
(writing TSPEN = 0).

If software causes the core processor to attempt a write to a full TX FIFO
with a SPORTx_TX write, the new data is lost and no overwrites occur to
data in the FIFO. The TOVF status bit is set and a SPORT error interrupt
is asserted. The TOVF bit is a sticky bit; it is only cleared by disabling the
SPORT TX. To find out whether the core processor can access the
SPORTx_TX register without causing this type of error, read the register’s
status first. The TXF bit in the SPORT status register is 0 if space is avail-
able for another word in the FIFO.

The TXF and TOVF status bits in the SPORTx status register are updated
upon writes from the core processor, even when the SPORT is disabled.

The addresses for these SPORT registers are:

SPORT0_TX – 0xFFC0 0810 SPORT2_TX – 0xFFC0 2510

SPORT1_TX – 0xFFC0 0910 SPORT3_TX – 0xFFC0 2610

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-25

Serial Port Controllers

SPORT Receive Data (SPORTx_RX)
Register

The SPORTx receive data register (SPORTx_RX) is a read-only register. See
Figure 13-10. Writes produce a PAB error. The same location is read for
both primary and secondary data. Reading from this register space causes
reading of the receive FIFO. This 16-bit FIFO is 8 deep for receive word
length <= 16 and 4 deep for length > 16 bits. The FIFO is shared by both
primary and secondary receive data. The order for reading using
PAB/DMA reads is important since data is stored in differently depending
on the setting of the SLEN and RXSE configuration bits.

Figure 13-9. SPORTx Transmit Data Register

SPORTx Transmit Data Register (SPORTx_TX)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmit Data[31:16]

Reset = 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmit Data[15:0]

SPORT Receive Data (SPORTx_RX) Register

13-26 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

When reading from the FIFO for both primary and secondary data, read
primary first, followed by secondary. DAB/PAB reads must match their
size to the data word length. For word length up to and including 16 bits,
use a 16-bit read. Use a 32-bit read for word length greater than 16 bits.

When receiving is enabled, data from the DRxPRI pin is loaded into the RX
primary shift register, while data from the DRxSEC pin is loaded into the
RX secondary shift register. At transfer completion of a word, data is
shifted into the RX hold registers for primary and secondary data,
respectively. Data from the hold registers is moved into the FIFO based
on RXSE and SLEN.

The SPORT RX interrupt is generated when RSPEN = 1 and the RX FIFO
has received words in it. When the core processor has read all the words in
the FIFO, the RX interrupt is cleared. The SPORT RX interrupt is set
only if SPORT RX DMA is disabled; otherwise, the FIFO is read by
DMA reads.

If the program causes the core processor to attempt a read from an empty
RX FIFO, old data is read, the RUVF flag is set in the SPORTx_STAT register,
and the SPORT error interrupt is asserted. The RUVF bit is a sticky bit and
is cleared only when the SPORT is disabled. To determine if the core can

Figure 13-10. SPORTx Receive Data Register

SPORTx Receive Data Register (SPORTx_RX)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Receive Data[31:16]

Reset = 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Receive Data[15:0]

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-27

Serial Port Controllers

access the RX registers without causing this error, first read the RX FIFO
status (RXNE in the SPORTx status register). The RUVF status bit is updated
even when the SPORT is disabled.

The ROVF status bit is set in the SPORTx_STAT register when a new word is
assembled in the RX shift register and the RX hold register has not moved
the data to the FIFO. The previously written word in the hold register is
overwritten. The ROVF bit is a sticky bit; it is only cleared by disabling the
SPORT receiver.

The addresses for these SPORT registers are:

SPORT0_RX – 0xFFC0 0818

SPORT1_RX – 0xFFC0 0918

SPORT2_RX – 0xFFC0 2518

SPORT3_RX – 0xFFC0 2618

SPORT Status (SPORTx_STAT) Register

13-28 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Data storage and data ordering in the FIFO is shown in Figure 13-11.

SPORT Status (SPORTx_STAT) Register
The SPORT status register (SPORTx_STAT) is used to determine if the
access to a SPORT RX or TX FIFO can be made by determining their full
or empty status. See Figure 13-12.

The TXF bit in the SPORT status register indicates whether there is room
in the TX FIFO. The RXNE status bit indicates whether there are words in
the RX FIFO. The TXHRE bit indicates if the TX hold register is empty.

Figure 13-11. SPORT Receive FIFO Data Ordering

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

W7

0

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH <= 16 BITS

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH > 16 BITS

15

W6
W5

W4

W3

W2
W1

W0

W3 LOW

015

W3 HIGH
W2 LOW

W2 HIGH

W1 LOW

W1 HIGH
W0 LOW

W0 HIGH

SECONDARY W3

015

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY
PRIMARY

PRIMARY

PRIMARY

SECONDARY

SECONDARY

SECONDARY

W3
W2

W2

W1

W1
W0

W0

SECONDARY W1 LOW

015

SECONDARY

SECONDARY

SECONDARY

W1 HIGH
W1 LOW

W1 HIGH

W0 LOW

W0 HIGH
W0 LOW

W0 HIGH

4 WORDS OF
PRIMARY DATA AND

4 WORDS OF
SECONDARY DATA

IN FIFO

2 WORDS OF
PRIMARY DATA AND

2 WORDS OF
SECONDARY DATA

IN FIFO

FROM Rx HOLD REGISTER

TO
PAB/DAB
BUSES

TO
PAB/DAB
BUSES

TO
PAB/DAB
BUSES

TO
PAB/DAB
BUSES

FROM Rx HOLD REGISTER

FROM Rx HOLD REGISTER

FROM Rx HOLD REGISTER

ONLY PRIMARY ENABLED
DATA LENGTH <= 16 BITS

ONLY PRIMARY ENABLED
DATA LENGTH > 16 BITS

8 WORDS OF
PRIMARY DATA

IN FIFO

4 WORDS OF
PRIMARY DATA

IN FIFO

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-29

Serial Port Controllers

The transmit underflow status bit (TUVF) is set whenever the TFS signal
occurs (from either an external or internal source) while the TX shift regis-
ter is empty. The internally generated TFS may be suppressed whenever
SPORTx_TX is empty by clearing the DITFS control bit in the SPORT con-
figuration register. The TUVF status bit is a sticky write-1-to-clear (W1C)
bit and is also cleared by disabling the serial port (writing TSPEN = 0).

For continuous transmission (TFSR = 0), TUVF is set at the end of a trans-
mitted word if no new word is available in the TX hold register.

The TOVF bit is set when a word is written to the TX FIFO when it is full.
It is a sticky W1C bit and is also cleared by writing TSPEN = 0. Both TXF
and TOVF are updated even when the SPORT is disabled.

When the SPORT RX hold register is full, and a new receive word is
received in the shift register, the receive overflow status bit (ROVF) is set in
the SPORT status register. It is a sticky W1C bit and is also cleared by
disabling the serial port (writing RSPEN = 0).

Figure 13-12. SPORTx Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 1 0 0 0 0 0

SPORTx Status Register (SPORTx_STAT)

0 - Disabled
1 - Enabled

RUVF (Sticky Receive Under-
flow status) - W1C

RXNE (Receive FIFO Not
Empty status)

ROVF (Sticky Receive Over-
flow status) - W1C

TUVF (Sticky Transmit Underflow status) - W1C 0 - Disabled
1 - Enabled

0 - Empty
1 - Data present in FIFO

Reset = 0x0040

0 - Disabled
1 - Enabled

TOVF (Sticky Transmit Overflow status) - W1C
0 - Disabled
1 - Enabled

TXF (Transmit FIFO Full status)
0 - Not full
1 - Full

TXHRE (Transmit Hold register Empty)
0 - Not empty
1 - Empty

SPORT Status (SPORTx_STAT) Register

13-30 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The RUVF bit is set when a read is attempted from the RX FIFO and it is
empty. It is a sticky W1C bit and is also cleared by writing RSPEN = 0.
The RUVF bit is updated even when the SPORT is disabled.

The addresses for these SPORT registers are:

SPORT RX, TX, and Error Interrupts
The SPORT RX interrupt is asserted when RSPEN is enabled and any
words are present in the RX FIFO. If RX DMA is enabled, the SPORT
RX interrupt is turned off and DMA services the RX FIFO.

The SPORT TX interrupt is asserted when TSPEN is enabled and the TX
FIFO has room for words. If TX DMA is enabled, the SPORT TX inter-
rupt is turned off and DMA services the TX FIFO.

The SPORT error interrupt is asserted when any of the sticky status bits
(ROVF, RUVF, TOVF, TUVF) are set. The ROVF and RUVF bits are cleared by
writing 0 to RSPEN. The TOVF and TUVF bits are cleared by writing 0 to
TSPEN.

SPORT0_STAT – 0xFFC0 0830

SPORT1_STAT – 0xFFC0 0930

SPORT2_STAT – 0xFFC0 2530

SPORT3_STAT – 0xFFC0 2630

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-31

Serial Port Controllers

PAB Errors
The SPORT generates a PAB error for illegal register read or write opera-
tions. Examples include:

• Reading a write-only register (for example, SPORTx_TX)

• Writing a read-only register (for example, SPORTx_RX)

• Writing or reading a register with the wrong size (for example,
32-bit read of a 16-bit register)

• Accessing reserved register locations

SPORT Transmit Serial Clock Divider
(SPORTx_TCLKDIV, SPORTx_RCLKDIV)
Registers

The frequency of an internally generated clock is a function of the system
clock frequency (as seen at the SCLK pin) and the value of the 16-bit serial
clock divide modulus registers (the SPORTx transmit serial clock divider
register, SPORTx_TCLKDIV, and the SPORTx receive serial clock divider reg-
ister, SPORTx_RCLKDIV).

Figure 13-13. SPORTx Transmit Serial Clock Divider Register

SPORTx Transmit Serial Clock Divider Register (SPORTx_TCLKDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Serial Clock Divide
Modulus[15:0]

Reset = 0x0000

SPORT Transmit Frame Sync Divider (SPORTx_TFSDIV,
SPORTx_RFSDIV) Register

13-32 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The addresses for these SPORT registers are:

SPORT Transmit Frame Sync Divider
(SPORTx_TFSDIV, SPORTx_RFSDIV)
Register

The 16-bit SPORTx transmit frame sync divider register (SPORTx_TFSDIV)
and the SPORTx receive frame sync divider register (SPORTx_RFSDIV)
specify how many transmit or receive clock cycles are counted before gen-
erating a TFSx or RFSx pulse when the frame sync is internally generated.
In this way, a frame sync can be used to initiate periodic transfers. The
counting of serial clock cycles applies to either internally or externally gen-
erated serial clocks.

Figure 13-14. SPORTx Receive Serial Clock Divider Register

SPORT0_TCLKDIV – 0xFFC0 0808 SPORT0_RCLKDIV – 0xFFC0 0828

SPORT1_TCLKDIV – 0xFFC0 0908 SPORT1_RCLKDIV – 0xFFC0 0928

SPORT2_TCLKDIV – 0xFFC0 2508 SPORT2_RCLKDIV – 0xFFC0 2528

SPORT3_TCLKDIV – 0xFFC0 2608 SPORT3_RCLKDIV – 0xFFC0 2628

SPORTx Receive Serial Clock Divider Register (SPORTx_RCLKDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Serial Clock Divide
Modulus[15:0]

Reset = 0x0000

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-33

Serial Port Controllers

The addresses for these SPORT registers are:

SPORT0_TFSDIV – 0xFFC0 080C SPORT0_RFSDIV – 0xFFC0 082C

SPORT1_TFSDIV – 0xFFC0 090C SPORT1_RFSDIV – 0xFFC0 092C

SPORT2_TFSDIV – 0xFFC0 250C SPORT2_RFSDIV – 0xFFC0 252C

SPORT3_TFSDIV – 0xFFC0 260C SPORT3_RFSDIV – 0xFFC0 262C

Figure 13-15. SPORTx Transmit Frame Sync Divider Register

Figure 13-16. SPORTx Receive Frame Sync Divider Register

SPORTx Transmit Frame Sync Divider Register (SPORTx_TFSDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Frame Sync Divider[15:0]

Reset = 0x0000

Number of transmit clock
cycles counted before gener-
ating TFS pulse

SPORTx Receive Frame Sync Divider Register (SPORTx_RFSDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Frame Sync Divider[15:0]

Reset = 0x0000

Number of receive clock
cycles counted before gener-
ating RFS pulse

Clock and Frame Sync Frequencies

13-34 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Clock and Frame Sync Frequencies
The maximum serial clock frequency (for either an internal source or an
external source) is SCLK/2. The frequency of an internally generated clock
is a function of the system clock frequency (SCLK) and the value of the
16-bit serial clock divide modulus registers, SPORTx_TCLKDIV and
SPORTx_RCLKDIV.

SPORTx_TCLK frequency =

(SCLK frequency)/(2 x (SPORTx_TCLKDIV + 1))

SPORTx_RCLK frequency =

(SCLK frequency)/(2 x (SPORTx_RCLKDIV + 1))

If the value of SPORTx_TCLKDIV or SPORTx_RCLKDIV is changed while the
internal serial clock is enabled, the change in TSCLK or RSCLK frequency
takes effect at the start of the drive edge of TSCLKx or RSCLKx that follows
the next leading edge of TFSx or RFSx.

When an internal frame sync is selected (ITFS = 1 in the SPORTx_TCR1 reg-
ister or IRFS = 1 in the SPORTx_RCR1 register) and frame syncs are not
required, the first frame sync does not update the clock divider if the value
in SPORTx_TCLKDIV or SPORTx_RCLKDIV has changed. The second frame
sync will cause the update.

The SPORTx_TFSDIV and SPORTx_RFSDIV registers specify the number of
transmit or receive clock cycles that are counted before generating a TFSx
or RFSx pulse (when the frame sync is internally generated). This enables a
frame sync to initiate periodic transfers. The counting of serial clock
cycles applies to either internally or externally generated serial clocks.

The formula for the number of cycles between frame sync pulses is:

of transmit serial clocks between frame sync assertions =

TFSDIV + 1

of receive serial clocks between frame sync assertions =

RFSDIV + 1

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-35

Serial Port Controllers

Use the following equations to determine the correct value of TFSDIV or
RFSDIV, given the serial clock frequency and desired frame sync frequency:

SPORTxTFS frequency = (TSCLKx frequency)/(SPORTx_TFSDIV + 1)

SPORTxRFS frequency = (RSCLKx frequency)/(SPORTx_RFSDIV + 1)

The frame sync would thus be continuously active (for transmit if
TFSDIV = 0 or for receive if RFSDIV = 0). However, the value of TFSDIV
(or RFSDIV) should not be less than the serial word length minus 1 (the
value of the SLEN field in SPORTx_TCR2 or SPORTx_RCR2). A smaller value
could cause an external device to abort the current operation or have other
unpredictable results. If a SPORT is not being used, the TFSDIV
(or RFSDIV) divisor can be used as a counter for dividing an external clock
or for generating a periodic pulse or periodic interrupt. The SPORT must
be enabled for this mode of operation to work.

Maximum Clock Rate Restrictions
Externally generated late transmit frame syncs also experience a delay from
arrival to data output, and this can limit the maximum serial clock speed.
See ADSP-BF538/ADSP-BF538F Embedded Processor Data Sheet for exact
timing specifications.

Frame Sync & Clock Example

The following code fragment is a brief example of setting up the clocks
and frame sync.

r0 = 0x00FF;

p0.l = SPORT0_RFSDIV & 0xFFFF;

p0.h = (SPORT0_RFSDIV >> 16) & 0xFFFF;

w[p0] = r0.l; ssync;

p0.l = SPORT0_TFSDIV & 0xFFFF;

w[p0] = r0.l; ssync;

Word Length

13-36 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Word Length
Each SPORT channel (transmit and receive) independently handles word
lengths of 3 to 32 bits. The data is right-justified in the SPORT data reg-
isters if it is fewer than 32 bits long, residing in the LSB positions. The
value of the serial word length (SLEN) field in the SPORTx_TCR2 and
SPORTx_RCR2 registers of each SPORT determines the word length accord-
ing to this formula:
Serial Word Length = SLEN + 1

 The SLEN value should not be set to 0 or 1; values from 2 to 31 are
allowed. Continuous operation (when the last bit of the current
word is immediately followed by the first bit of the next word) is
restricted to word sizes of 4 or longer (so SLEN 3).

Bit Order
Bit order determines whether the serial word is transmitted MSB first or
LSB first. Bit order is selected by the RLSBIT and TLSBIT bits in the
SPORTx_RCR1 and SPORTx_TCR1 registers. When RLSBIT (or TLSBIT) = 0,
serial words are received (or transmitted) MSB first. When RLSBIT (or
TLSBIT) = 1, serial words are received (or transmitted) LSB first.

Data Type
The TDTYPE field of the SPORTx_TCR1 register and the RDTYPE field of the
SPORTx_RCR1 register specify one of four data formats for both single and
multichannel operation. See Table 13-2.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-37

Serial Port Controllers

These formats are applied to serial data words loaded into the SPORTx_RX
and SPORTx_TX buffers. SPORTx_TX data words are not actually zero-filled
or sign-extended, because only the significant bits are transmitted.

Companding
Companding (a contraction of COMpressing and exPANDing) is the pro-
cess of logarithmically encoding and decoding data to minimize the
number of bits that must be sent. The SPORTs support the two most
widely used companding algorithms, µ-law and A-law. The processor
compands data according to the CCITT G.711 specification. The type of
companding can be selected independently for each SPORT.

When companding is enabled, valid data in the SPORTx_RX register is the
right-justified, expanded value of the eight LSBs received and
sign-extended to 16 bits. A write to SPORTx_TX causes the 16-bit value to
be compressed to eight LSBs (sign-extended to the width of the transmit
word) and written to the internal transmit register. Although the
companding standards support only 13-bit (A-law) or 14-bit (-law) max-
imum word lengths, up to 16-bit word lengths can be used. If the
magnitude of the word value is greater than the maximum allowed, the
value is automatically compressed to the maximum positive or negative
value.

Lengths greater than 16 bits are not supported for companding operation.

Table 13-2. TDTYPE, RDTYPE, and Data Formatting

TDTYPE or
RDTYPE

SPORTx_TCR1 Data Formatting SPORTx_RCR1 Data Formatting

00 Normal operation Zero-fill

01 Reserved Sign-extend

10 Compand using µ-law Compand using µ-law

11 Compand using A-law Compand using A-law

Clock Signal Options

13-38 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Clock Signal Options
Each SPORT has a transmit clock signal (TSCLKx) and a receive clock sig-
nal (RSCLKx). The clock signals are configured by the TCKFE and RCKFE bits
of the SPORTx_TCR1 and SPORTx_RCR1 registers. Serial clock frequency is
configured in the SPORTx_TCLKDIV and SPORTx_RCLKDIV registers.

 The receive clock pin may be tied to the transmit clock if a single
clock is desired for both receive and transmit.

Both transmit and receive clocks can be independently generated inter-
nally or input from an external source. The ITCLK bit of the SPORTx_TCR1
configuration register and the IRCLK bit in the SPORTx_RCR1 Configuration
register determines the clock source.

When IRCLK or ITCLK = 1, the clock signal is generated internally by the
core, and the TSCLKx or RSCLKx pin is an output. The clock frequency is
determined by the value of the serial clock divisor in the SPORTx_RCLKDIV
register.

When IRCLK or ITCLK = 0, the clock signal is accepted as an input on the
TSCLKx or RSCLKx pins, and the serial clock divisors in the
SPORTx_TCLKDIV/SPORTx_RCLKDIV registers are ignored. The externally gen-
erated serial clocks do not need to be synchronous with the core system
clock or with each other. The core system clock must have a higher fre-
quency than RSCLKx and TSCLKx.

 When the SPORT uses external clocks, it must be enabled for a
minimal number of stable clock pulses before the first active frame
sync is sampled. Failure to allow for these clocks may result in a
SPORT malfunction. See the processor data sheet for details.

The first internal frame sync will occur one frame sync delay after the
SPORTs are ready. External frame syncs can occur as soon as the SPORT
is ready.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-39

Serial Port Controllers

Frame Sync Options
Framing signals indicate the beginning of each serial word transfer. The
framing signals for each SPORT are TFSx (transmit frame sync) and RFSx
(receive frame sync). A variety of framing options are available; these
options are configured in the SPORT configuration registers
(SPORTx_TCR1, SPORTx_TCR2, SPORTx_RCR1 and SPORTx_RCR2). The TFSx
and RFSx signals of a SPORT are independent and are separately config-
ured in the control registers.

Framed Versus Unframed
The use of multiple frame sync signals is optional in SPORT communica-
tions. The TFSR (transmit frame sync required select) and RFSR (receive
frame sync required select) control bits determine whether frame sync sig-
nals are required. These bits are located in the SPORTx_TCR1 and
SPORTx_RCR1 registers.

When TFSR = 1 or RFSR = 1, a frame sync signal is required for every data
word. To allow continuous transmitting by the SPORT, each new data
word must be loaded into the SPORTx_TX hold register before the previous
word is shifted out and transmitted.

When TFSR = 0 or RFSR = 0, the corresponding frame sync signal is not
required. A single frame sync is needed to initiate communications but is
ignored after the first bit is transferred. Data words are then transferred
continuously, unframed.

 With frame syncs not required, interrupt or DMA requests may
not be serviced frequently enough to guarantee continuous
unframed data flow. Monitor status bits or check for a SPORT
Error interrupt to detect underflow or overflow of data.

Frame Sync Options

13-40 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 13-17 illustrates framed serial transfers, which have these
characteristics:

• TFSR and RFSR bits in the SPORTx_TCR1 and SPORTx_RCR1 registers
determine framed or unframed mode.

• Framed mode requires a framing signal for every word. Unframed
mode ignores a framing signal after the first word.

• Unframed mode is appropriate for continuous reception.

• Active low or active high frame syncs are selected with the LTFS and
LRFS bits of the SPORTx_TCR1 and SPORTx_RCR1 registers.

See “Timing Examples” on page 13-67 for more timing examples.

Internal Versus External Frame Syncs
Both transmit and receive frame syncs can be independently generated
internally or can be input from an external source. The ITFS and IRFS bits
of the SPORTx_TCR1 and SPORTx_RCR1 registers determine the frame sync
source.

Figure 13-17. Framed Versus Unframed Data

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

FRAMED
DATA

UNFRAMED
DATA

TFSx
OR

RFSx

TFSx
OR

RFSx

DATA

TSCLKx
OR

RSCLKx

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-41

Serial Port Controllers

When ITFS = 1 or IRFS = 1, the corresponding frame sync signal is gener-
ated internally by the SPORT, and the TFSx pin or RFSx pin is an output.
The frequency of the frame sync signal is determined by the value of the
frame sync divisor in the SPORTx_TFSDIV or SPORTx_RFSDIV register.

When ITFS = 0 or IRFS = 0, the corresponding frame sync signal is
accepted as an input on the TFSx pin or RFSx pin, and the frame sync divi-
sors in the SPORTx_TFSDIV/SPORTx_RFSDIV registers are ignored.

All of the frame sync options are available whether the signal is generated
internally or externally.

Active Low Versus Active High Frame Syncs
Frame sync signals may be either active high or active low (in other words,
inverted). The LTFS and LRFS bits of the SPORTx_TCR1 and SPORTx_RCR1
registers determine frame sync logic levels:

• When LTFS = 0 or LRFS = 0, the corresponding frame sync signal
is active high.

• When LTFS = 1 or LRFS = 1, the corresponding frame sync signal
is active low.

Active high frame syncs are the default. The LTFS and LRFS bits are initial-
ized to 0 after a processor reset.

Sampling Edge for Data and Frame Syncs
Data and frame syncs can be sampled on either the rising or falling edges
of the SPORT clock signals. The TCKFE and RCKFE bits of the SPORTx_TCR1
and SPORTx_RCR1 registers select the driving and sampling edges of the
serial data and frame syncs.

Frame Sync Options

13-42 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

For the SPORT transmitter, setting TCKFE = 1 in the SPORTx_TCR1 register
selects the falling edge of TSCLKx to drive data and internally generated
frame syncs and selects the rising edge of TSCLKx to sample externally gen-
erated frame syncs. Setting TCKFE = 0 selects the rising edge of TSCLKx to
drive data and internally generated frame syncs and selects the falling edge
of TSCLKx to sample externally generated frame syncs.

For the SPORT receiver, setting RCKFE = 1 in the SPORTx_RCR1 register
selects the falling edge of RSCLKx to drive internally generated frame syncs
and selects the rising edge of RSCLKx to sample data and externally
generated frame syncs. Setting RCKFE = 0 selects the rising edge of RSCLKx
to drive internally generated frame syncs and selects the falling edge of
RSCLKx to sample data and externally generated frame syncs.

 Note externally generated data and frame sync signals should
change state on the opposite edge than that selected for sampling.
For example, for an externally generated frame sync to be sampled
on the rising edge of the clock (TCKFE = 1 in the SPORTx_TCR1 reg-
ister), the frame sync must be driven on the falling edge of the
clock.

The transmit and receive functions of two SPORTs connected together
should always select the same value for TCKFE in the transmitter and RCKFE
in the receiver, so that the transmitter drives the data on one edge and the
receiver samples the data on the opposite edge.

In Figure 13-18, TCKFE = RCKFE = 0 and transmit and receive are con-
nected together to share the same clock and frame syncs.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-43

Serial Port Controllers

In Figure 13-19, TCKFE = RCKFE = 1 and transmit and receive are con-
nected together to share the same clock and frame syncs.

Early Versus Late Frame Syncs
(Normal Versus Alternate Timing)

Frame sync signals can occur during the first bit of each data word (late)
or during the serial clock cycle immediately preceding the first bit (early).
The LATFS and LARFS bits of the SPORTx_TCR1 and SPORTx_RCR1 registers
configure this option.

Figure 13-18. Example of TCKFE = RCKFE = 0, Transmit and Receive
Connected

Figure 13-19. Example of TCKFE = RCKFE = 1, Transmit and Receive
Connected

B1 B2 B3B0

B1 B2 B3B0

TSCLKx = RSCLKx
INTERNAL OR EXTERNAL

TFSx = RFSx
INTERNAL OR EXTERNAL

DTxPRI

DRxPRI

DRIVE
EDGE

SAMPLE
EDGE

B1 B2 B3

TSCLKx = RSCLKx
INTERNAL OR EXTERNAL

TFSx = RFSx
INTERNAL OR EXTERNAL

DTxPRI B0

B1 B2 B3DRxPRI B0

DRIVE
EDGE

SAMPLE
EDGE

Frame Sync Options

13-44 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

When LATFS = 0 or LARFS = 0, early frame syncs are configured; this is
the normal mode of operation. In this mode, the first bit of the transmit
data word is available and the first bit of the receive data word is sampled
in the serial clock cycle after the frame sync is asserted, and the frame sync
is not checked again until the entire word has been transmitted or
received. In multichannel operation, this corresponds to the case when
multichannel frame delay is 1.

If data transmission is continuous in early framing mode (in other words,
the last bit of each word is immediately followed by the first bit of the next
word), then the frame sync signal occurs during the last bit of each word.
Internally generated frame syncs are asserted for one clock cycle in early
framing mode. Continuous operation is restricted to word sizes of 4 or
longer (SLEN 3).

When LATFS = 1 or LARFS = 1, late frame syncs are configured; this is the
alternate mode of operation. In this mode, the first bit of the transmit data
word is available and the first bit of the receive data word is sampled in the
same serial clock cycle that the frame sync is asserted. In multichannel
operation, this is the case when frame delay is 0. Receive data bits are sam-
pled by serial clock edges, but the frame sync signal is only checked during
the first bit of each word. Internally generated frame syncs remain asserted
for the entire length of the data word in late framing mode. Externally
generated frame syncs are only checked during the first bit.

Figure 13-20 illustrates the two modes of frame signal timing. In
summary:

• For the LATFS or LARFS bits of the SPORTx_TCR1 or SPORTx_RCR1 reg-
isters: LATFS = 0 or LARFS = 0 for early frame syncs, LATFS = 1 or
LARFS = 1 for late frame syncs.

• For early framing, the frame sync precedes data by one cycle. For
late framing, the frame sync is checked on the first bit only.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-45

Serial Port Controllers

• Data is transmitted MSB first (TLSBIT = 0 or RLSBIT = 0) or LSB
first (TLSBIT = 1 or RLSBIT = 1).

• Frame sync and clock are generated internally or externally.

See “Timing Examples” on page 13-67 for more examples.

Data Independent Transmit Frame Sync
Normally the internally generated transmit frame sync signal (TFSx) is
output only when the SPORTx_TX buffer has data ready to transmit. The
data-independent transmit frame sync select bit (DITFS) allows the contin-
uous generation of the TFSx signal, with or without new data. The DITFS
bit of the SPORTx_TCR1 register configures this option.

When DITFS = 0, the internally generated TFSx is only output when a new
data word has been loaded into the SPORTx_TX buffer. The next TFSx is
generated once data is loaded into SPORTx_TX. This mode of operation
allows data to be transmitted only when it is available.

When DITFS = 1, the internally generated TFSx is output at its pro-
grammed interval regardless of whether new data is available in the
SPORTx_TX buffer. Whatever data is present in SPORTx_TX is transmitted
again with each assertion of TFSx. The TUVF (transmit underflow status)

Figure 13-20. Normal Versus Alternate Framing

B3 B2 B1 B0 ...

xSCLK

DATA

EARLY
FRAME

SYNC

LATE
FRAME

SYNC

Moving Data Between SPORTs and Memory

13-46 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

bit in the SPORTx_STAT register is set when this occurs and old data is
retransmitted. The TUVF status bit is also set if the SPORTx_TX buffer does
not have new data when an externally generated TFSx occurs. Note that in
this mode of operation, data is transmitted only at specified times.

If the internally generated TFSx is used, a single write to the SPORTx_TX
data register is required to start the transfer.

Moving Data Between SPORTs and
Memory

Transmit and receive data can be transferred between the SPORTs and
on-chip memory in one of two ways: with single word transfers or with
DMA block transfers.

If no SPORT DMA channel is enabled, the SPORT generates an interrupt
every time it has received a data word or needs a data word to transmit.
SPORT DMA provides a mechanism for receiving or transmitting an
entire block or multiple blocks of serial data before the interrupt is gener-
ated. The SPORT’s DMA controller handles the DMA transfer, allowing
the processor core to continue running until the entire block of data is
transmitted or received. Interrupt service routines (ISRs) can then operate
on the block of data rather than on single words, significantly reducing
overhead.

For information about DMA, see Chapter 9, “Direct Memory Access”.

Stereo Serial Operation
Several stereo serial modes can be supported by the SPORT, including the

popular I2S format. To use these modes, set bits in the SPORT_RCR2 or
SPORT_TCR2 registers. Setting RSFSE or TSFSE in SPORT_RCR2 or SPORT_TCR2
changes the operation of the frame sync pin to a left/right clock as

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-47

Serial Port Controllers

required for I2S and left-justified stereo serial data. Setting this bit enables
the SPORT to generate or accept the special LRCLK-style frame sync. All
other SPORT control bits remain in effect and should be set
appropriately. Figure 13-21 and Figure 13-22 show timing diagrams for
stereo serial mode operation.

Figure 13-21. SPORT Stereo Serial Modes, Transmit

TFSx

TSCLKx

DTxPRI

TFSx

TSCLKx

DTxPRI

TFSx

TSCLKx

DTxPRI

LEFT CHANNEL
RIGHT CHANNEL

LEFT CHANNEL
RIGHT CHANNEL

MSB MSB

MSB MSB

MSB MSB

LSB LSB

LSB LSB

LSB LSB

LEFT-JUSTIFIED MODE—3 TO 32 BITS PER CHANNEL

I2S MODE—3 TO 32 BITS PER CHANNEL

DSP MODE—3 TO 32 BITS PER CHANNEL
1/fS

NOTES:
1. DSP MODE DOES NOT IDENTIFY CHANNEL.
2. TFSx NORMALLY OPERATES AT fS EXCEPT FOR DSP MODE WHICH IS 2 x fS.
3. TSCLKx FREQUENCY IS NORMALLY 64 x TFS BUT MAY BE OPERATED IN BURST MODE.

Stereo Serial Operation

13-48 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Table 13-3 shows several modes that can be configured using bits in
SPORTx_TCR1 and SPORTx_RCR1. The table shows bits for the receive side of
the SPORT, but corresponding bits are available for configuring the trans-
mit portion of the SPORT. A control field which may be either set or
cleared depending on the user’s needs, without changing the standard, is
indicated by an “X.”

Figure 13-22. SPORT Stereo Serial Modes, Receive

Table 13-3. Stereo Serial Settings

Bit Field Stereo Audio Serial Scheme

I2S Left-Justified DSP Mode

RSFSE 1 1 0

RRFST 0 0 0

LARFS 0 1 0

LRFS 0 1 0

RFSx

RSCLKx

DRxPRI

RFSx

RSCLKx

DRxPRI

RFSx

RSCLKx

DRxPRI

LEFT CHANNEL
RIGHT CHANNEL

LEFT CHANNEL
RIGHT CHANNEL

MSB MSB

MSB MSB

MSB MSB

LSB LSB

LSB LSB

LSB LSB

LEFT-JUSTIFIED MODE—3 TO 32 BITS PER CHANNEL

I2S MODE—3 TO 32 BITS PER CHANNEL

DSP MODE—3 TO 32 BITS PER CHANNEL
1/fS

NOTES:
1. DSP MODE DOES NOT IDENTIFY CHANNEL.
2. RFSx NORMALLY OPERATES AT fS EXCEPT FOR DSP MODE WHICH IS 2x fS.
3. RSCLKx FREQUENCY IS NORMALLY 64x RFS BUT MAY BE OPERATED IN BURST MODE.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-49

Serial Port Controllers

Note most bits shown as a 0 or 1 may be changed depending on the user’s
preference, creating many other “almost standard” modes of stereo serial
operation. These modes may be of use in interfacing to codecs with
slightly non-standard interfaces. The settings shown in Table 13-3 pro-
vide glueless interfaces to many popular codecs.

Note RFSDIV or TFSDIV must still be greater than or equal to SLEN. For I2S
operation, RFSDIV or TFSDIV is usually 1/64 of the serial clock rate. With
RSFSE set, the formulas to calculate frame sync period and frequency (dis-
cussed in “Clock and Frame Sync Frequencies” on page 13-34) still apply,
but now refer to one half the period and twice the frequency. For instance,
setting RFSDIV or TFSDIV = 31 produces an LRCLK that transitions every 32
serial clock cycles and has a period of 64 serial clock cycles.

The LRFS bit determines the polarity of the RFS or TFS frame sync pin for
the channel that is considered a “right” channel. Therefore, setting
LRFS = 0 (meaning that it is an active high signal) indicates that the frame
sync is high for the “right” channel, therefore implying that it is low for
the “left” channel. This is the default setting.

RFSR 1 1 1

RCKFE 1 0 0

SLEN 2 – 31 2 – 31 2 – 31

RLSBIT 0 0 0

RFSDIV
(If internal FS is selected.)

2 – Max 2 – Max 2 – Max

RXSE
(Secondary Enable is available
for RX and TX.)

X X X

Table 13-3. Stereo Serial Settings (Cont’d)

Bit Field Stereo Audio Serial Scheme

I2S Left-Justified DSP Mode

Multichannel Operation

13-50 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The RRFST and TRFST bits determine whether the first word received or
transmitted is a left or a right channel. If the bit is set, the first word
received or transmitted is a right channel. The default is to receive or
transmit the left channel word first.

The secondary DRxSEC and DTxSEC pins are useful extensions of the serial

port which pair well with stereo serial mode. Multiple I2S streams of data
can be transmitted or received using a single SPORT. Note the primary
and secondary pins are synchronous, as they share clock and LRCLK (frame
sync) pins. The transmit and receive sides of the SPORT need not be syn-
chronous, but may share a single clock in some designs. See Figure 13-3,
which shows multiple stereo serial connections being made between the
processor and an AD1836 codec.

Multichannel Operation
The SPORTs offer a multichannel mode of operation which allows the
SPORT to communicate in a time-division-multiplexed (TDM) serial sys-
tem. In multichannel communications, each data word of the serial bit
stream occupies a separate channel. Each word belongs to the next consec-
utive channel so that, for example, a 24-word block of data contains one
word for each of 24 channels.

The SPORT can automatically select words for particular channels while
ignoring the others. Up to 128 channels are available for transmitting or
receiving; each SPORT can receive and transmit data selectively from any
of the 128 channels. These 128 channels can be any 128 out of the 1024
total channels. RX and TX must use the same 128-channel region to selec-
tively enable channels. The SPORT can do any of the following on each
channel:

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-51

Serial Port Controllers

• Transmit data

• Receive data

• Transmit and receive data

• Do nothing

Data companding and DMA transfers can also be used in multichannel
mode.

The DTxPRI pin is always driven (not three-stated) if the SPORT is
enabled (TSPEN = 1 in the SPORTx_TCR1 register), unless it is in multichan-
nel mode and an inactive time slot occurs. The DTxSEC pin is always driven
(not three-stated) if the SPORT is enabled and the secondary transmit is
enabled (TXSE = 1 in the SPORTx_TCR2 register), unless the SPORT is in
multichannel mode and an inactive time slot occurs.

In multichannel mode, RSCLKx can either be provided externally or gener-
ated internally by the SPORT, and it is used for both transmit and receive
functions. Leave TSCLKx disconnected if the SPORT is used only in multi-
channel mode. If RSCLKx is externally or internally provided, it will be
internally distributed to both the receiver and transmitter circuitry.

 The SPORT multichannel transmit select register and the SPORT
multichannel receive select register must be programmed before
enabling SPORTx_TX or SPORTx_RX operation for multichannel
mode. This is especially important in DMA data unpacked mode,
since SPORT FIFO operation begins immediately after RSPEN and
TSPEN are set, enabling both RX and TX. The MCMEN bit (in
SPORTx_MCMC2) must be enabled prior to enabling SPORTx_TX or
SPORTx_RX operation. When disabling the SPORT from multichan-
nel operation, first disable TSPEN and then disable RSPEN. Note both
TSPEN and RSPEN must be disabled before re-enabling. Disabling
only TX or RX is not allowed.

Multichannel Operation

13-52 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 13-23 shows example timing for a multichannel transfer that has
these characteristics:

• Use TDM method where serial data is sent or received on different
channels sharing the same serial bus

• Can independently select transmit and receive channels

• RFSx signals start of frame

• TFSx is used as transmit data valid for external logic, true only dur-
ing transmit channels

• Receive on channels 0 and 2, transmit on channels 1 and 2

• Multichannel frame delay is set to 1

See “Timing Examples” on page 13-67 for more examples.

Figure 13-23. Multichannel Operation

RSCLKx

B3 B2 B1 B2DRxPRI

RFSx

B0 IGNORED B3

DTxPRI
B2B3 B0 B3 B2B1

CHANNEL 2CHANNEL 1CHANNEL 0

TFSx

MFD = 1

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-53

Serial Port Controllers

SPORT Multichannel Configuration
(SPORTx_MCMCn) Registers

There are two SPORTx multichannel configuration registers
(SPORTx_MCMCn) for each SPORT (see Figure 13-24 and Figure 13-25).
The SPORTx_MCMCn registers are used to configure the multichannel opera-
tion of the SPORT. The two control registers are shown below.

The addresses for these SPORT registers are:

SPORT0_MCMC1 – 0xFFC0 0838 SPORT0_MCMC2 – 0xFFC0 083C

SPORT1_MCMC1 – 0xFFC0 0938 SPORT1_MCMC2 – 0xFFC0 093C

SPORT2_MCMC1 – 0xFFC0 2538 SPORT2_MCMC2 – 0xFFC0 253C

SPORT3_MCMC1 – 0xFFC0 2638 SPORT3_MCMC2 – 0xFFC0 263C

Figure 13-24. SPORTx Multichannel Configuration Register 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Multichannel Configuration Register 1 (SPORTx_MCMC1)

WSIZE[3:0] (Window Size) WOFF[9:0] (Window Offset)

Reset = 0x0000

Places start of window anywhere
in the 0 to 1023 channel rangeValue in field = [(Desired window size)/8 –1]

Multichannel Operation

13-54 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Multichannel Enable
Setting the MCMEN bit in the SPORTx_MCM2 register enables multichannel
mode. When MCMEN = 1, multichannel operation is enabled; when
MCMEN = 0, all multichannel operations are disabled.

 Setting the MCMEN bit enables multichannel operation for both the
receive and transmit sides of the SPORT. Therefore, if a receiving
SPORT is in multichannel mode, the transmitting SPORT must
also be in multichannel mode.

 When in multichannel mode, do not enable the stereo serial frame
sync modes or the late frame sync feature, as these features are
incompatible with multichannel mode.

Figure 13-25. SPORTx Multichannel Configuration Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Multichannel Configuration Register 2 (SPORTx_MCMC2)

0x - Bypass mode
10 - Recover 2 MHz clock

from 4 MHz
11 - Recover 8 MHz clock

from 16 MHz

MCDTXPE (Multichannel
DMA Transmit Packing)

MCCRM[1:0] (2X Clock
Recovery Mode)

FSDR (Frame Sync to Data Relationship)

0 - Disabled
1 - Enabled

Reset = 0x0000

0 - Normal
1 - Reversed, H.100 mode

MCDRXPE (Multichannel
DMA Receive Packing)
0 - Disabled
1 - Enabled

Delay between frame sync pulse and the
first data bit in Multichannel mode

MFD[3:0] (Multichannel
Frame Delay)

0 - Multichannel operations disabled
1 - Multichannel operations enabled

MCMEN (Multichannel Frame Mode Enable)

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-55

Serial Port Controllers

Table 13-4 shows the dependencies of bits in the SPORT configuration
register when the SPORT is in multichannel mode.

Frame Syncs in Multichannel Mode
All receiving and transmitting devices in a multichannel system must have
the same timing reference. The RFSx signal is used for this reference, indi-
cating the start of a block or frame of multichannel data words.

Table 13-4. Multichannel Mode Configuration

SPORTx_RCR1 or
SPORTx_RCR2

SPORTx_TCR1 or
SPORTx_TCR2

Notes

RSPEN TSPEN Set or clear both

IRCLK – Independent

– ITCLK Ignored

RDTYPE TDTYPE Independent

RLSBIT TLSBIT Independent

IRFS – Independent

– ITFS Ignored

RFSR TFSR Ignored

– DITFS Ignored

LRFS LTFS Independent

LARFS LATFS Both must be 0

RCKFE TCKFE Set or clear both to same value

SLEN SLEN Set or clear both to same value

RXSE TXSE Independent

RSFSE TSFSE Both must be 0

RRFST TRFST Ignored

Multichannel Operation

13-56 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

When multichannel mode is enabled on a SPORT, both the transmitter
and the receiver use RFSx as a frame sync. This is true whether RFSx is
generated internally or externally. The RFSx signal is used to synchronize
the channels and restart each multichannel sequence. Assertion of RFSx
indicates the beginning of the channel 0 data word.

Since RFSx is used by both the SPORTx_TX and SPORTx_RX channels of the
SPORT in multichannel mode configuration, the corresponding bit pairs
in SPORTx_RCR1 and SPORTx_TCR1, and in SPORTx_RCR2 and SPORTx_TCR2,
should always be programmed identically, with the possible exception of
the RXSE and TXSE pair and the RDTYPE and TDTYPE pair. This is true even if
SPORTx_RX operation is not enabled.

In multichannel mode, RFSx timing similar to late (alternative) frame
mode is entered automatically; the first bit of the transmit data word is
available and the first bit of the receive data word is sampled in the same
serial clock cycle that the frame sync is asserted, provided that MFD is set to
0.

The TFSx signal is used as a transmit data valid signal which is active dur-
ing transmission of an enabled word. The SPORT’s data transmit pin is
three-stated when the time slot is not active, and the TFSx signal serves as
an output-enabled signal for the data transmit pin. The SPORT drives
TFSx in multichannel mode whether or not ITFS is cleared. The TFSx pin
in multichannel mode still obeys the LTFS bit. If LTFS is set, the transmit
data valid signal will be active low—a low signal on the TFSx pin indicates
an active channel.

Once the initial RFSx is received, and a frame transfer has started, all other
RFSx signals are ignored by the SPORT until the complete frame has been
transferred.

If MFD > 0, the RFSx may occur during the last channels of a previous
frame. This is acceptable, and the frame sync is not ignored as long as the
delayed channel 0 starting point falls outside the complete frame.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-57

Serial Port Controllers

In multichannel mode, the RFSx signal is used for the block or frame start
reference, after which the word transfers are performed continuously with
no further RFS signals required. Therefore, internally generated frame
syncs are always data independent.

The Multichannel Frame
A multichannel frame contains more than one channel, as specified by the
window size and window offset. A complete multichannel frame consists
of 1 – 1024 channels, starting with channel 0. The particular channels of
the multichannel frame that are selected for the SPORT are a combination
of the window offset, the window size, and the multichannel select regis-
ters. See Figure 13-26.

Figure 13-26. Relationships for Multichannel Parameters

FRAME
SYNC

DATA DATA IGNORED

CHANNEL

RSCLKx

DATA IGNORED DATA IGNORED

MULTICHANNEL FRAME

WINDOW OFFSET WINDOW
SPx_MCMC
REG FIELD:

SIZE

UNITS:

MFD

RANGE:

NOTE: FRAME LENGTH IS SET BY FRAME SYNC DIVIDE OR EXTERNAL FRAME SYNC PERIOD.

BITS WORDS MULTIPLES OF 8 WORDS
0–15 0–1015 8–128

Multichannel Operation

13-58 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Multichannel Frame Delay
The 4-bit MFD field in SPORTx_MCMC2 specifies a delay between the frame
sync pulse and the first data bit in multichannel mode. The value of MFD is
the number of serial clock cycles of the delay. Multichannel frame delay
allows the processor to work with different types of interface devices.

A value of 0 for MFD causes the frame sync to be concurrent with the first
data bit. The maximum value allowed for MFD is 15. A new frame sync may
occur before data from the last frame has been received, because blocks of
data occur back-to-back.

Window Size
The window size (WSIZE[3:0]) defines the number of channels that can be
enabled/disabled by the multichannel select registers. This range of words
is called the active window. The number of channels can be any value in
the range of 0 to 15, corresponding to active window size of 8 to 128, in
increments of 8; the default value of 0 corresponds to a minimum active
window size of 8 channels. To calculate the active window size from the
WSIZE register, use this equation:

Number of words in active window = 8 x (WSIZE + 1)

Since the DMA buffer size is always fixed, it is possible to define a smaller
window size (for example, 32 words), resulting in a smaller DMA buffer
size (in this example, 32 words instead of 128 words) to save DMA band-
width. The window size cannot be changed while the SPORT is enabled.

Multichannel select bits that are enabled but fall outside the window
selected are ignored.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-59

Serial Port Controllers

Window Offset
The window offset (WOFF[9:0]) specifies where in the 1024-channel range
to place the start of the active window. A value of 0 specifies no offset and
896 is the largest value that permits using all 128 channels. As an example,
a program could define an active window with a window size of 8
(WSIZE = 0) and an offset of 93 (WOFF = 93). This 8-channel window
would reside in the range from 93 to 100. Neither the window offset nor
the window size can be changed while the SPORT is enabled.

If the combination of the window size and the window offset would place
any portion of the window outside of the range of the channel counter,
none of the out-of-range channels in the frame are enabled.

SPORT Current Channel (SPORTx_CHNL) Register
The 10-bit CHNL field in the SPORTx current channel register
(SPORTx_CHNL) indicates which channel is currently being serviced during
multichannel operation (see Figure 13-27). This field is a read-only status
indicator. The CHNL[9:0] field increments by one as each channel is ser-
viced. The counter stops at the upper end of the defined window. The
channel select register restarts at 0 at each frame sync. As an example, for a
window size of 8 and an offset of 148, the counter displays a value
between 0 and 156.

Once the window size has completed, the channel counter resets to 0 in
preparation for the next frame. Because there are synchronization delays
between RSCLKx and the processor clock, the channel register value is
approximate. It is never ahead of the channel being served, but it may lag
behind.

Multichannel Operation

13-60 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The addresses for these SPORT registers are:

Other Multichannel Fields in SPORTx_MCMC2
The FSDR bit in the SPORTx_MCMC2 register changes the timing relationship
between the frame sync and the clock received. This change enables the
SPORT to comply with the H.100 protocol.

Normally (When FSDR = 0), the data is transmitted on the same edge that
the TFSx is generated. For example, a positive edge on TFSx causes data to
be transmitted on the positive edge of the TSCLKx—either the same edge or
the following one, depending on when LATFS is set.

When the frame sync/data relationship is used (FSDR = 1), the frame sync
is expected to change on the falling edge of the clock and is sampled on
the rising edge of the clock. This is true even though data received is sam-
pled on the negative edge of the receive clock.

SPORT0_CHNL – 0xFFC0 0834

SPORT1_CHNL – 0xFFC0 0934

SPORT2_CHNL – 0xFFC0 2534

SPORT3_CHNL – 0xFFC0 2634

Figure 13-27. SPORTx Current Channel Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Current Channel Register (SPORTx_CHNL)

CHNL (Current Channel
Indicator)

Reset = 0x0000

RO

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-61

Serial Port Controllers

Channel Selection Register
A channel is a multi-bit word from 3 to 32 bits in length that belongs to
one of the TDM channels. Specific channels can be individually enabled
or disabled to select which words are received and transmitted during mul-
tichannel communications. Data words from the enabled channels are
received or transmitted, while disabled channel words are ignored. Up to
128 contiguous channels may be selected out of 1024 available channels.
The SPORTx_MRCSn and SPORTx_MTCSn multichannel select registers are
used to enable and disable individual channels; the SPORTx_MRCSn registers
specify the active receive channels, and the SPORTx_MTCSn registers specify
the active transmit channels.

Four registers make up each multichannel select register (see
Figure 13-28). Each of the four registers has 32 bits, corresponding to 32
channels. Setting a bit enables that channel, so the SPORT selects its word
from the multiple word block of data (for either receive or transmit).

Channel select bit 0 always corresponds to the first word of the active win-
dow. To determine a channel’s absolute position in the frame, add the
window offset words to the channel select position. For example, setting
bit 7 in MCS2 selects word 71 of the active window to be enabled. Setting
bit 2 in MCS1 selects word 34 of the active window, and so on.

Setting a particular bit in the SPORTx_MTCSn register causes the SPORT to
transmit the word in that channel’s position of the data stream. Clearing
the bit in the SPORTx_MTCSn register causes the SPORT’s data transmit pin
to three-state during the time slot of that channel.

Figure 13-28. Multichannel Select Registers

0 31 0 31 0 31 0 31

0 31 32 63 64 95 96 127

MCS1MCS0

Channel Select 0 – 127

MCS2 MCS3

Multichannel Operation

13-62 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Setting a particular bit in the SPORTx_MRCSn register causes the SPORT to
receive the word in that channel’s position of the data stream; the received
word is loaded into the SPORTx_RX buffer. Clearing the bit in the
SPORTx_MRCSn register causes the SPORT to ignore the data.

Companding may be selected for all channels or for no channels. A-law or
-law companding is selected with the TDTYPE field in the SPORTx_TCR1
register and the RDTYPE field in the SPORTx_RCR1 register, and applies to all
active channels. (See “Companding” on page 13-37 for more information
about companding.)

SPORT Multichannel Receive Selection (SPORTx_MRCSn)
Registers

The multichannel selection registers are used to enable and disable indi-
vidual channels. The SPORTx multichannel receive select registers
(SPORTx_MRCSn, see Figure 13-29 and Table 13-5) specify the active receive
channels. There are four registers, each with 32 bits, corresponding to the
128 channels. Setting a bit enables that channel so that the serial port
selects that word for receive from the multiple word block of data. For
example, setting bit 0 selects word 0, setting bit 12 selects word 12, and so
on.

Setting a particular bit in the SPORTx_MRCSn register causes the serial port
to receive the word in that channel’s position of the data stream; the
received word is loaded into the RX buffer. Clearing the bit in the
SPORTx_MRCSn register causes the serial port to ignore the data.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-63

Serial Port Controllers

Figure 13-29. SPORTx Multichannel Receive Select Registers

Table 13-5. SPORTx Multichannel Receive Select Register
Memory-Mapped Addresses

Register Name Memory-Mapped
Address

Register Name Memory-Mapped
Address

SPORT0_MRCS0 0xFFC0 0850 SPORT2_MRCS0 0xFFC0 2550

SPORT0_MRCS1 0xFFC0 0854 SPORT2_MRCS1 0xFFC0 2554

SPORT0_MRCS2 0xFFC0 0858 SPORT2_MRCS2 0xFFC0 2558

SPORT0_MRCS3 0xFFC0 085C SPORT2_MRCS3 0xFFC0 255C

SPORT1_MRCS0 0xFFC0 0950 SPORT3_MRCS0 0xFFC0 2650

SPORT1_MRCS1 0xFFC0 0954 SPORT3_MRCS1 0xFFC0 2654

SPORT1_MRCS2 0xFFC0 0958 SPORT3_MRCS2 0xFFC0 2658

SPORT1_MRCS3 0xFFC0 095C SPORT3_MRCS3 0xFFC0 265C

SPORTx Multichannel Receive Select Registers (SPORTx_MRCSn)
For all bits, 0 - Channel disabled, 1 - Channel enabled, so SPORT selects that word from multiple word
block of data.

For memory-mapped addresses, see Table 13-5.

31

31

0

0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

31

63

0

32

31

95

0

64

31

127

0

96

Reset = 0x0000 0000

Reset = 0x0000 0000

Reset = 0x0000 0000

Reset = 0x0000 0000

MRCS0

MRCS1

MRCS2

MRCS3

Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

Multichannel Operation

13-64 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

SPORT Multichannel Transmit Selection (SPORTx_MTCSn)
Registers

The multichannel selection registers are used to enable and disable indi-
vidual channels. The four SPORTx multichannel transmit select registers
(SPORTx_MTCSn, see Figure 13-30 and Table 13-6) specify the active trans-
mit channels. There are four registers, each with 32 bits, corresponding to
the 128 channels. Setting a bit enables that channel so that the serial port
selects that word for transmit from the multiple word block of data. For
example, setting bit 0 selects word 0, setting bit 12 selects word 12, and so
on.

Setting a particular bit in a SPORTx_MTCSn register causes the serial port to
transmit the word in that channel’s position of the data stream. Clearing
the bit in the SPORTx_MTCSn register causes the serial port’s data transmit
pin to three-state during the time slot of that channel.

Figure 13-30. SPORTx Multichannel Transmit Select Registers

SPORTx Multichannel Transmit Select Registers (SPORTx_MTCSn)
For all bits, 0 - Channel disabled, 1 - Channel enabled, so SPORT selects that word from multiple
word block of data.
For memory-mapped addresses, see Table 13-6.

31

31

0

0

31

63

0

32

31

95

0

64

31

127

0

96

Reset = 0x0000 0000

Reset = 0x0000 0000

Reset = 0x0000 0000

Reset = 0x0000 0000

MTCS0

MTCS1

MTCS2

MTCS3

Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-65

Serial Port Controllers

Multichannel DMA Data Packing
Multichannel DMA data packing and unpacking are specified with the
MCDTXPE and MCDRXPE bits in the SPORTx_MCMC2 multichannel configuration
register.

If the bits are set, indicating that data is packed, the SPORT expects the
data contained by the DMA buffer corresponds only to the enabled
SPORT channels. For example, if an MCM frame contains 10 enabled
channels, the SPORT expects the DMA buffer to contain 10 consecutive
words for each frame. It is not possible to change the total number of
enabled channels without changing the DMA buffer size, and reconfigur-
ing is not allowed while the SPORT is enabled.

If the bits are cleared (the default, indicating that data is not packed), the
SPORT expects the DMA buffer to have a word for each of the channels
in the active window, whether enabled or not, so the DMA buffer size
must be equal to the size of the window. For example, if channels 1 and 10
are enabled, and the window size is 16, the DMA buffer size would have
to be 16 words. The data to be transmitted or received would be placed at

Table 13-6. SPORTx Multichannel Transmit Select Register
Memory-Mapped Addresses

Register Name Memory-Mapped
Address

Register Name Memory-Mapped
Address

SPORT0_MTCS0 0xFFC0 0840 SPORT2_MTCS0 0xFFC0 2540

SPORT0_MTCS1 0xFFC0 0844 SPORT2_MTCS1 0xFFC0 2544

SPORT0_MTCS2 0xFFC0 0848 SPORT2_MTCS2 0xFFC0 2548

SPORT0_MTCS3 0xFFC0 084C SPORT2_MTCS3 0xFFC0 254C

SPORT1_MTCS0 0xFFC0 0940 SPORT3_MTCS0 0xFFC0 2640

SPORT1_MTCS1 0xFFC0 0944 SPORT3_MTCS1 0xFFC0 2644

SPORT1_MTCS2 0xFFC0 0948 SPORT3_MTCS2 0xFFC0 2648

SPORT1_MTCS3 0xFFC0 094C SPORT3_MTCS3 0xFFC0 264C

Support for H.100 Standard Protocol

13-66 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

addresses 1 and 10 of the buffer, and the rest of the words in the DMA
buffer would be ignored. This mode allows changing the number of
enabled channels while the SPORT is enabled, with some caution. First
read the channel register to make sure that the active window is not being
serviced. If the channel count is 0, then the multichannel select registers
can be updated.

Support for H.100 Standard Protocol
The processor supports the H.100 standard protocol. The following
SPORT parameters must be set to support this standard.

• Set for external frame sync. Frame sync generated by external bus
master.

• TFSR/RFSR set (frame syncs required)

• LTFS/LRFS set (active low frame syncs)

• Set for external clock

• MCMEN set (multichannel mode selected)

• MFD = 0 (no frame delay between frame sync and first data bit)

• SLEN = 7 (8-bit words)

• FSDR = 1 (set for H.100 configuration, enabling half-clock-cycle
early frame sync)

2X Clock Recovery Control
The SPORTs can recover the data rate clock from a provided 2X input
clock. This enables the implementation of H.100 compatibility modes for
MVIP-90 (2 Mbps data) and HMVIP (8 Mbps data), by recovering
2 MHz from 4 MHz or 8 MHz from the 16 MHz incoming clock with

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-67

Serial Port Controllers

the proper phase relationship. A 2-bit mode signal (MCCRM[1:0] in the
SPORTx_MCMC2 register) chooses the applicable clock mode, which includes
a non-divide or bypass mode for normal operation. A value of MCCRM = 00
chooses non-divide or bypass mode (H.100-compatible), MCCRM = 10
chooses MVIP-90 clock divide (extract 2 MHz from 4 MHz), and
MCCRM = 11 chooses HMVIP clock divide (extract 8 MHz from 16 MHz).

SPORT Pin/Line Terminations
The processor has very fast drivers on all output pins, including the
SPORTs. If connections on the data, clock, or frame sync lines are longer
than six inches, consider using a series termination for strip lines on
point-to-point connections. This may be necessary even when using low
speed serial clocks, because of the edge rates.

Timing Examples
Several timing examples are included within the text of this chapter (in the
sections “Framed Versus Unframed” on page 13-39, “Early Versus Late
Frame Syncs (Normal Versus Alternate Timing)” on page 13-43, and
“Frame Syncs in Multichannel Mode” on page 13-55). This section con-
tains additional examples to illustrate other possible combinations of the
framing options.

These timing examples show the relationships between the signals but are
not scaled to show the actual timing parameters of the processor. Consult
the ADSP-BF538/ADSP-BF538F Embedded Processor Data Sheet for actual
timing parameters and values.

These examples assume a word length of four bits (SLEN = 3). Framing
signals are active high (LRFS = 0 and LTFS = 0).

Figure 13-31 through Figure 13-36 show framing for receiving data.

Timing Examples

13-68 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

In Figure 13-31 and Figure 13-32, the normal framing mode is shown for
non-continuous data (any number of TSCLKx or RSCLKx cycles between
words) and continuous data (no TSCLKx or RSCLKx cycles between words).

Figure 13-33 and Figure 13-34 show non-continuous and continuous
receiving in the alternate framing mode. These four figures show the input
timing requirement for an externally generated frame sync and also the
output timing characteristic of an internally generated frame sync. Note
the output meets the input timing requirement; therefore, with two
SPORT channels used, one SPORT channel could provide RFSx for the
other SPORT channel.

Figure 13-31. SPORT Receive, Normal Framing

Figure 13-32. SPORT Continuous Receive, Normal Framing

B3B3 B2 B1 B0 B2 B1 B0

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DRx REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

RSCLKx

RFSx OUTPUT

DRx

RFSx INPUT

RSCLKx

RFSx OUTPUT

RFSx INPUT

DRx B3 B2 B1 B0 B3 B2 B1 B0 B3 B2

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DRx REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

:

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-69

Serial Port Controllers

Figure 13-35 and Figure 13-36 show the receive operation with normal
framing and alternate framing, respectively, in the unframed mode. A sin-
gle frame sync signal occurs only at the start of the first word, either one
RSCLKx before the first bit (in normal mode) or at the same time as the first
bit (in alternate mode). This mode is appropriate for multi word bursts
(continuous reception).

Figure 13-33. SPORT Receive, Alternate Framing

Figure 13-34. SPORT Continuous Receive, Alternate Framing

B3B3 B2 B1 B0 B2 B1 B0

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DRx REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

RSCLKx

RFSx OUTPUT

DRx

RFSx INPUT

RSCLKx

RFSx OUTPUT

RFSx INPUT

DRx B3 B2 B1 B0 B3 B2 B1 B0

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DRx REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

Timing Examples

13-70 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 13-37 through Figure 13-42 show framing for transmitting data
and are very similar to Figure 13-31 through Figure 13-36.

In Figure 13-37 and Figure 13-38, the normal framing mode is shown for
non-continuous data (any number of TSCLKx cycles between words) and
continuous data (no TSCLKx cycles between words). Figure 13-39 and
Figure 13-40 show non-continuous and continuous transmission in the
alternate framing mode. As noted previously for the receive timing dia-
grams, the RFSx output meets the RFSx input timing requirement.

Figure 13-35. SPORT Receive, Unframed Mode, Normal Framing

Figure 13-36. SPORT Receive, Unframed Mode, Alternate Framing

RSCLKx

RFSx

DRx B3 B2 B1 B0 B3 B2 B1 B0 B2B3

DRx REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

RSCLKx

RFSx

DRx B3 B2 B1 B0 B3 B2 B1 B0 B2B3

DRx REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 13-71

Serial Port Controllers

Figure 13-37. SPORT Transmit, Normal Framing

Figure 13-38. SPORT Continuous Transmit, Normal Framing

Figure 13-39. SPORT Transmit, Alternate Framing

TSCLKx

TFSx OUTPUT

DTx B2 B1 B0B3 B2 B1 B0B3

TFSx INPUT

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DTx REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

B2 B1 B0B3 B2 B1 B0B3 B3 B2

TSCLKx

TFSx OUTPUT

TFSx INPUT

DTx

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DTx REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

B2 B1 B0B3 B2 B1 B0B3

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DTx REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

TSCLKx

TFSx OUTPUT

DTx

TFSx INPUT

Timing Examples

13-72 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 13-41 and Figure 13-42 show the transmit operation with normal
framing and alternate framing, respectively, in the unframed mode. A sin-
gle frame sync signal occurs only at the start of the first word, either one
TSCLK before the first bit (in normal mode) or at the same time as the first
bit (in alternate mode).

Figure 13-40. SPORT Continuous Transmit, Alternate Framing

Figure 13-41. SPORT Transmit, Unframed Mode, Normal Framing

Figure 13-42. SPORT Transmit, Unframed Mode, Alternate Framing

B2 B1 B0B3 B0B3 B2 B1

TSCLKx

TFSx OUTPUT

TFSx INPUT

DTx

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DTx REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

TSCLKx

TFSx

DTx B3 B3B0B1B2 B1 B0 B3B2 B2

DTx REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

TSCLKx

TFSx

DTx B3 B3B0B1B2 B1 B0 B3B2 B2

DTx REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 14-1

14 GENERAL-PURPOSE
INPUT/OUTPUT PORT F

The processor supports 16 bidirectional general-purpose I/O pins,
PF[15:0] on GPIO port F. Each pin can be individually configured as
either an input or an output by using the GPIO port F direction register
(PORTFIO_DIR). When configured as output, the GPIO port F data register
(PORTFIO) can be directly written to specify the state of all PFx pins. When
configured as an output, the state written to the GPIO port F set
(PORTFIO_SET), GPIO port F clear (PORTFIO_CLEAR), and GPIO port F
toggle (PORTFIO_TOGGLE) registers determines the state driven by the out-
put PFx pin. Regardless of whether the pins are configured, as inputs or
outputs, reading any of these registers (PORTFIO, PORTFIO_SET,
PORTFIO_CLEAR, PORTFIO_TOGGLE) returns the state of each pin.

Each PFx pin can be configured to generate an interrupt. When a PFx pin
is configured as an input, an interrupt can be generated according to the
state of the pin (either high or low), an edge transition (low to high or
high to low), or on both edge transitions (low to high and high to low).
Input sensitivity is defined on a per-bit basis by the polarity register
(PORTFIO_POLAR), the GPIO port F interrupt sensitivity register
(PORTFIO_EDGE) and the GPIO port F set on both edges register
(PORTFIO_BOTH). Input polarity is defined on a per-bit basis by the
PORTFIO_POLAR register. When the PFx inputs are enabled and a PFx pin is
configured as an output, enabling interrupts for the pin allows an inter-
rupt to be generated by setting the PFx pin.

14-2 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The processor provides two independent interrupt channels for the PFx
pins. Identical in functionality, these are called GPIO interrupt A and
GPIO interrupt B. Each interrupt channel has four mask registers associ-
ated with it, a GPIO interrupt mask data register (PORTFIO_MASKx), a
GPIO interrupt mask set register (PORTFIO_MASKx_SET), a GPIO interrupt
mask clear register (PORTFIO_MASKx_CLEAR), and a GPIO interrupt mask
toggle register (PORTFIO_MASKx_TOGGLE).

Each PFx pin is represented by a bit in each of these eight registers. Writ-
ing a 1 to a bit in a PORTFIO_MASKx_SET register enables interrupt
generation for that PFx pin, while writing a 1 to a bit in a
PORTFIO_MASKx_CLEAR register disables interrupt generation for that PFx
pin.

The interrupt masking can be toggled by writing a 1 to a bit in the
PORTFIO_MASKx_TOGGLE register. Additionally, the mask bits can be directly
written by writing to the PORTFIO_MASKx register. This flexible mechanism
allows each bit to generate GPIO interrupt A, GPIO interrupt B, both
GPIO interrupts A and B, or neither.

When a PFx pin is not used in a system, the input buffer can be disabled so
that no external pull-ups or pull-downs are required on the unused pins.
By default, the input buffers are disabled. They can be enabled via bits in
the GPIO port F input enable register (PORTFIO_INEN).

The PFx pins are multiplexed for use by the parallel peripheral interface
(PPI), timers, and serial peripheral interface (SPI0). Table 14-1 shows the
programmable GPIO pins and their multiplexed functionality.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 14-3

General-Purpose Input/Output Port F

Table 14-2 describes how to use the peripheral function that shares the
PFx pins.

Table 14-1. GPIO Port F Pins and Functionality

PFx Pin
Peripheral That Shares the PFx Pin

PPI SPI0 Timers 0, 1, 2

PF0 Slave Select Input (SPI0SS)

PF1 Slave Select Enable 1 (SPI0SEL1) Input clock (TACLK)

PF2 Slave Select Enable 2 (SPI0SEL2)

PF3 Frame Sync 3
(PPI_FS3)

Slave Select Enable 3 (SPI0SEL3)

PF4 I/O #15 (PPI15) Slave Select Enable 4 (SPI0SEL4)

PF5 I/O #14 (PPI14) Slave Select Enable 5 (SPI0SEL5)

PF6 I/O #13 (PPI13) Slave Select Enable 6 (SPI0SEL6)

PF7 I/O #12 (PPI12) Slave Select Enable 7 (SPI0SEL7)

PF8 I/O #11 (PPI11)

PF9 I/O #10 (PPI10)

PF10 I/O #9 (PPI9)

PF11 I/O #8 (PPI8)

PF12 I/O #7 (PPI7)

PF13 I/O #6 (PPI6)

PF14 I/O #5 (PPI5)

PF15 I/O #4 (PPI4)

14-4 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

For more information, see Chapter 11, “Parallel Peripheral Interface”,
Chapter 10, “SPI Compatible Port Controllers” and Chapter 16,
“Timers”.

Table 14-2. Peripheral Function Usage That Shares the PFx Pin

PFx
Pin

To Use the Peripheral Function That Shares the PFx Pin…
(Assumes Peripheral is Enabled)

PPI SPI Timers 0, 1,2

PF0 Set PSSE in SPI0_CTL

PF1 Set FLS1 in SPI0_FLG Write 1 to CLK_SEL in
TIMERx_CONFIG

PF2 Set FLS2 in SPI0_FLG

PF3 In PPI_CTL:
If PORT_DIR = 1, write 01 to
PORT_CFG.
If PORT_DIR = 0, write 10 to
PORT_CFG.

Set FLS3 in SPI0_FLG

PF4 Write b#111 to DLEN in PPI_CTL Set FLS4 in SPI0_FLG

PF5 Write b#110 to DLEN in PPI_CTL Set FLS5 in SPI0_FLG

PF6 Write b#101 to DLEN in PPI_CTL Set FLS6 in SPI0_FLG

PF7 Write b#100 to DLEN in PPI_CTL Set FLS7 in SPI0_FLG

PF8 Write b#011 to DLEN in PPI_CTL

PF9 Write b#010 to DLEN in PPI_CTL

PF10 Write b#001 to DLEN in PPI_CTL

PF11 Write b#001 to DLEN in PPI_CTL

PF12 Always enabled when PPI enabled

PF13 Always enabled when PPI enabled

PF14 Always enabled when PPI enabled

PF15 Always enabled when PPI enabled

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 14-5

General-Purpose Input/Output Port F

GPIO Port F Registers (MMRs)
The GPIO port F registers are part of the system memory-mapped regis-
ters (MMRs). The addresses of the programmable GPIO MMRs appear in
Appendix B, “System MMR Assignments”. Core access to the GPIO con-
figuration registers is through the system bus.

GPIO Port F Direction (PORTFIO_DIR) Register
The GPIO port F direction register (PORTFIO_DIR) is a read-write register.
(See Figure 14-1.) Each bit position corresponds to a PFx pin. A logic 1
configures the PFx pin as an output, driving the state contained in the
PORTFIO register. A logic 0 configures the PFx pin as an input. The reset
value of this register is 0x0000, making all PFx pins inputs upon reset.

 When using the PFx pin as an input, the corresponding bit should
also be set in the input enable (PORTFIO_INEN) register.

Figure 14-1. GPIO Port F Direction Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Port F Direction Register (PORTFIO_DIR)

PF0 Direction

PF12 Direction

PF13 Direction

PF14 Direction

PF15 Direction

PF1 Direction

PF2 Direction

PF3 Direction

PF4 Direction

PF5 Direction

For all bits, 0 - Input, 1 - Output

PF6 Direction

PF7 Direction

PF11 Direction

PF10 Direction

PF9 Direction

PF8 Direction

Reset = 0x00000xFFC0 0730

GPIO Port F Registers (MMRs)

14-6 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

GPIO Port F Value Registers Overview
The processor has four GPIO value registers:

• GPIO data register (PORTFIO)

• GPIO set register (PORTFIO_SET)

• GPIO clear register (PORTFIO_CLEAR)

• GPIO toggle register (PORTFIO_TOGGLE)

These registers are used to:

• Sense the value of the PFx pins defined as inputs

• Specify the state of PFx pins defined as outputs

• Clear interrupts generated by the PFx pins

Each PFx pin is represented by a bit in each of the four registers.

Reading any of the PORTFIO, PORTFIO_SET, PORTFIO_CLEAR, or
PORTFIO_TOGGLE registers returns the value of the PFx pins. The value
returned shows the state of the PFx pins defined as outputs and the sense
of PFx pins defined as inputs, based on the polarity and sensitivity settings
of each pin.

Reading the PORTFIO, PORTFIO_SET, PORTFIO_CLEAR, or PORTFIO_TOGGLE
register after reset results in 0x0000 because although the pins are inputs,
the input buffers are not enabled. See Table 14-3 for guidance on how to
interpret a value read from one of these registers, based on the settings of
the PORTFIO_POLAR, PORTFIO_EDGE, and PORTFIO_BOTH registers.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 14-7

General-Purpose Input/Output Port F

 For pins configured as edge-sensitive, a read back of 1 from one of
these registers is sticky. That is, once the bit is set, it remains set
until cleared by the program. For level-sensitive pins, the pin state
is checked every cycle, so the read back value changes when the
level on the pin changes.

For more information about the GPIO set, GPIO clear, and GPIO toggle
registers, see “GPIO Port F Set (PORTFIO_SET), GPIO Port F Clear
(PORTFIO_CLEAR), and GPIO Port F Toggle (PORTFIO_TOGGLE)
Registers” on page 14-8.

Table 14-3. GPIO Port F Value Register Pin Interpretation

PORTFIO_
POLAR

PORTFIO_
EDGE

PORTFIO_
BOTH

Effect of MMR Settings

0 0 X Pin that is high reads as 1; pin that is low reads as 0

0 1 0 If rising edge occurred, pin reads as 1; otherwise,
pin reads as 0

1 0 X Pin that is low reads as 1; pin that is high reads as 0

1 1 0 If falling edge occurred, pin reads as 1; otherwise,
pin reads as 0

X 1 1 If any edge occurred, pin reads as 1; otherwise, pin
reads as 0

GPIO Port F Registers (MMRs)

14-8 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

GPIO Port F Data (PORTFIO) Register
When written, the GPIO data register (PORTFIO), shown in Figure 14-2,
directly specifies the state of all PFx pins. When read, the register returns
the value of the PFx pins.

GPIO Port F Set (PORTFIO_SET), GPIO Port F Clear
(PORTFIO_CLEAR), and GPIO Port F Toggle
(PORTFIO_TOGGLE) Registers

The GPIO set (PORTFIO_SET), GPIO clear (PORTFIO_CLEAR), and GPIO
toggle (PORTFIO_TOGGLE) registers are used to:

• Set, clear or toggle the output state associated with each output PFx
pin

• Clear the latched interrupt state captured from each input PFx pin

This mechanism is used to avoid the potential issues with more traditional
read-modify-write mechanisms. Reading any of the these registers returns
the GPIO pin state.

Figure 14-2. GPIO Port F Data Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Port F Data Register (PORTFIO)

Program PF0

Program PF12

Program PF13

Program PF14

Program PF15

Program PF1

Program PF2

Program PF3

Program PF4

Program PF5

1 - Set, 0 - Clear

Program PF6

Program PF7

Program PF11

Program PF10

Program PF9

Program PF8

Reset = 0x00000xFFC0 0700

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 14-9

General-Purpose Input/Output Port F

Figure 14-3 and Figure 14-4 represent the PORTFIO_SET and
PORTFIO_CLEAR registers, respectively. Figure 14-5 represents the
PORTFIO_TOGGLE register.

Figure 14-3. GPIO Port F Set Register

Figure 14-4. GPIO Port F Clear Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Port F Set Register (PORTFIO_SET)

Set PF0

Set PF12

Set PF13

Set PF14

Set PF15

Set PF1

Set PF2

Set PF3

Set PF4

Set PF5

Write-1-to-set

Set PF6

Set PF7

Set PF11
Set PF10

Set PF9

Set PF8

Reset = 0x00000xFFC0 0708

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Port F Clear Register (PORTFIO_CLEAR)

Clear PF0

Clear PF12

Clear PF13

Clear PF14

Clear PF15

Clear PF1

Clear PF2

Clear PF3

Clear PF4

Clear PF5

Write-1-to-clear

Clear PF6

Clear PF7

Clear PF11

Clear PF10

Clear PF9

Clear PF8

Reset = 0x00000xFFC0 0704

GPIO Port F Registers (MMRs)

14-10 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

As an example of how these registers work, assume that PF0 is configured
as an output (PORTFIO_DIR = 0x0001). Writing 0x0001 to the
PORTFIO_SET register drives a logic 1 on the PF0 pin without affecting the
state of any other PFx pins. Writing 0x0001 to the PORTFIO_CLEAR register
drives a logic 0 on the PF0 pin without affecting the state of any other PFx
pins. Writing a 0x0001 to the PORTFIO_TOGGLE register changes the pin
state on PF0 from logic 0 to logic 1 or from logic 1 to logic 0, depending
upon the existing pin state.

 Writing a 0 to the PORTFIO_SET, PORTFIO_CLEAR, or
PORTFIO_TOGGLE registers has no effect on the value of the GPIO
pin and is therefore ignored.

Reading the PORTFIO_SET or PORTFIO_CLEAR registers returns:

• 0s for PFx pins defined as outputs and driven low

• 1s for pins (including PF0 in the example above) defined as outputs
and driven high

• The present sense of PFx pins defined as inputs

Figure 14-5. GPIO Port F Toggle Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Port F Toggle Register (PORTFIO_TOGGLE)

Toggle PF0

Toggle PF12

Toggle PF13

Toggle PF14

Toggle PF15

Toggle PF1

Toggle PF2

Toggle PF3

Toggle PF4

Toggle PF5

Write-1-to-toggle

Toggle PF6

Toggle PF7

Toggle PF11

Toggle PF10

Toggle PF9

Toggle PF8

Reset = 0x00000xFFC0 070C

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 14-11

General-Purpose Input/Output Port F

Input sense is based on PORTFIO_POLAR and PORTFIO_EDGE register settings,
as well as the logic level at each pin.

GPIO Port F Mask Interrupt Registers Overview
The processor supports up to two interrupt sources for each of the GPIO
pins—GPIO interrupt A and GPIO interrupt B. These interrupts are con-
figurable in a set of GPIO mask interrupt registers (PORTFIO_MASKA,
PORTFIO_MASKA_CLEAR, PORTFIO_MASKA_SET, PORTFIO_MASKA_TOGGLE,
PORTFIO_MASKB, PORTFIO_MASKB_CLEAR, PORTFIO_MASKB_SET, and
PORTFIO_MASKB_TOGGLE) which are implemented as complementary pairs
of write-1-to-set, write-1-to-clear, and write-1-to-toggle registers.

Both GPIO interrupt A and GPIO interrupt B are supported by a set of
four dedicated registers:

• GPIO mask interrupt data registers (PORTFIO_MASKA and
PORTFIO_MASKB)

• GPIO mask interrupt set registers (PORTFIO_MASKA_SET and
PORTFIO_MASKB_SET)

• GPIO mask interrupt clear registers (PORTFIO_MASKA_CLEAR and
PORTFIO_MASKB_CLEAR)

• GPIO interrupt toggle registers (PORTFIO_MASKA_TOGGLE and
PORTFIO_MASKB_TOGGLE)

This implementation provides the ability to enable or disable a PFx pin to
act as a processor interrupt without requiring read-modify-write
accesses—or to directly specify the mask value with the data register. For
diagrams of the registers that support GPIO interrupt A, see “GPIO Port
F Interrupt A (PORTFIO_MASKA, PORTFIO_MASKA_CLEAR,
PORTFIO_MASKA_SET, PORTFIO_MASKA_TOGGLE) Registers”
on page 14-15.

GPIO Port F Registers (MMRs)

14-12 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

For diagrams of the registers that support GPIO interrupt B, see “GPIO
Port F Interrupt B (PORTFIO_MASKB, PORTFIO_MASKB_CLEAR,
PORTFIO_MASKB_SET, PORTFIO_MASKB_TOGGLE) Registers”
on page 14-17.

Each PFx pin is represented by a bit in each of the eight registers.
Table 14-4 shows the effect of writing 1 to a bit in a PORTFIO_MASKx_SET,
PORTFIO_MASKx_CLEAR, or PORTFIO_MASKx_TOGGLE registers.

Reading any of the PORTFIO_MASKx, PORTFIO_MASKx_SET,
PORTFIO_MASKx_CLEAR, or PORTFIO_MASKx_TOGGLE registers returns the
value of the current PORTFIO_MASKx register.

GPIO interrupt A and GPIO interrupt B operate independently. For
example, writing 1 to a bit in the PORTFIO_MASKA_SET register does not
affect GPIO interrupt B. This facility allows PFx pins to generate GPIO
interrupt A, GPIO interrupt B, both GPIO interrupts A and B, or neither.

 Note a GPIO interrupt is generated by a logical OR of all unmasked
PFx pins for that interrupt. For example, if PF0 and PF1 are both
unmasked for GPIO interrupt A, GPIO interrupt A is generated
when triggered by PF0 or PF1.

Table 14-4. Effect of Writing 1 to a Bit

Register Effect of Writing 1 to a Bit in the Register

PORTFIO_MASKx_SET Enables GPIO x interrupt generation for that PFx pin

PORTFIO_MASKx_CLEAR Disables GPIO x interrupt generation for that PFx pin

PORTFIO_MASKx_TOGGLE Changes the state of GPIO x interrupt generation capabil-
ity

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 14-13

General-Purpose Input/Output Port F

 When using either rising or falling edge-triggered interrupts, the
interrupt condition must be cleared each time a corresponding
interrupt is serviced by writing 1 to the appropriate PORTFIO_CLEAR
register bit.

At reset, all interrupts are masked.

GPIO Port F Interrupt Generation Flow

Figure 14-6 shows the process by which GPIO interrupt A or GPIO inter-
rupt B generates an event. Note the flow is shown for only one
programmable GPIO, “GPIOn.” However, a GPIO interrupt is generated
by a logical OR of all unmasked PFx pins for that interrupt. For example,
if only PF0 and PF1 are unmasked for GPIO interrupt A, this interrupt is
generated when triggered by either PF0 or PF1.

GPIO Port F Registers (MMRs)

14-14 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 14-6. GPIO Port F Interrupt Generation Flow

IS GPIOn ENABLED
FOR INTERRUPT

GENERATION
IN PORTFIO_MASKA_SET AND

PORTFIO_MASKA_CLEAR?

IS GPIOn ENABLED
FOR INTERRUPT

GENERATION
IN PORTFIO_MASKB_SET AND

PORTFIO_MASKB_CLEAR?

NO
(INPUT)

NO
(INPUT)

YES YES

YES

YES YES

YES

YES YES

GPIO INTERRUPT B
OCCURS

GPIO INTERRUPT A
OCCURS

START

IS GPIOn SET AS
AN OUTPUT IN
PORTFIO_DIR?

IS GPIOn SET AS
AN OUTPUT IN
PORTFIO_DIR?

IS GPIOn
ASSERTED

HIGH?

IS GPIOn
ASSERTED

HIGH?

BASED ON
PORTFIO_EDGE,

PORTFIO_POLAR, AND
PORTFIO_BOTH SETTINGS, IS

GPIOn GENERATING
AN INTERRUPT
 CONDITION?

BASED ON
PORTFIO_EDGE,

PORTFIO_POLAR, AND
PORTFIO_BOTH SETTINGS, IS

GPIOn GENERATING
AN INTERRUPT
 CONDITION?

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 14-15

General-Purpose Input/Output Port F

GPIO Port F Interrupt A (PORTFIO_MASKA,
PORTFIO_MASKA_CLEAR, PORTFIO_MASKA_SET,
PORTFIO_MASKA_TOGGLE) Registers

The registers shown in Figure 14-7 through Figure 14-10 support GPIO
interrupt A.

Figure 14-7. GPIO Port F Mask Interrupt A Data Register

Figure 14-8. GPIO Port F Mask Interrupt A Set Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Port F Mask Interrupt A Data Register (PORTFIO_MASKA)

Enable PF0 interrupt mask

Enable PF12 interrupt mask

Enable PF13 interrupt mask

Enable PF14 interrupt
mask

Enable PF15 interrupt
mask

Enable PF1 interrupt mask

Enable PF2 interrupt mask

Enable PF3 interrupt mask

Enable PF4 interrupt mask

Enable PF5 interrupt mask

For all bits, 1 - Enable

Enable PF6 interrupt mask

Enable PF7 interrupt mask

Enable PF11 interrupt mask

Enable PF10 interrupt mask

Enable PF9 interrupt mask

Enable PF8 interrupt mask

Reset = 0x00000xFFC0 0710

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Port F Mask Interrupt A Set Register (PORTFIO_MASKA_SET)

Set PF0 interrupt mask

Set PF12 interrupt mask

Set PF13 interrupt mask

Set PF14 interrupt mask

Set PF15 interrupt mask

Set PF1 interrupt mask

Set PF2 interrupt mask

Set PF3 interrupt mask

Set PF4 interrupt mask

Set PF5 interrupt mask

For all bits, 1 - Set

Set PF6 interrupt mask

Set PF7 interrupt mask

Set PF11 interrupt mask

Set PF10 interrupt mask

Set PF9 interrupt mask

Set PF8 interrupt mask

Reset = 0x00000xFFC0 0718

GPIO Port F Registers (MMRs)

14-16 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 14-9. GPIO Port F Mask Interrupt A Clear Register

Figure 14-10. GPIO Port F Mask Interrupt A Toggle Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Port F Mask Interrupt A Clear Register (PORTFIO_MASKA_CLEAR)

Clear PF0 interrupt mask

Clear PF12 interrupt mask

Clear PF13 interrupt mask

Clear PF14 interrupt mask

Clear PF15 interrupt mask

Clear PF1 interrupt mask

Clear PF2 interrupt mask

Clear PF3 interrupt mask

Clear PF4 interrupt mask

Clear PF5 interrupt mask

For all bits, 1 - Clear

Clear PF6 interrupt mask

Clear PF7 interrupt mask

Clear PF11 interrupt mask

Clear PF10 interrupt mask

Clear PF9 interrupt mask

Clear PF8 interrupt mask

Reset = 0x00000xFFC0 0714

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Port F Mask Interrupt A Toggle Register (PORTFIO_MASKA_TOGGLE)

Toggle PF0 interrupt mask

Toggle PF12 interrupt mask

Toggle PF13 interrupt mask

Toggle PF14
interrupt mask

Toggle PF15
interrupt mask

Toggle PF1 interrupt mask

Toggle PF2 interrupt mask

Toggle PF3 interrupt mask

Toggle PF4 interrupt mask

Toggle PF5 interrupt mask

For all bits, 1 - Toggle

Toggle PF6 interrupt mask

Toggle PF7 interrupt mask

Toggle PF11 interrupt mask

Toggle PF10 interrupt mask

Toggle PF9 interrupt mask

Toggle PF8 interrupt mask

Reset = 0x00000xFFC0 071C

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 14-17

General-Purpose Input/Output Port F

GPIO Port F Interrupt B (PORTFIO_MASKB,
PORTFIO_MASKB_CLEAR, PORTFIO_MASKB_SET,
PORTFIO_MASKB_TOGGLE) Registers

The registers shown in Figure 14-11 through Figure 14-14 support GPIO
interrupt B.

Figure 14-11. GPIO Port F Mask Interrupt B Data Register

Figure 14-12. GPIO Port F Mask Interrupt B Set Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Port F Mask Interrupt B Data Register (PORTFIO_MASKB)

Enable PF0 interrupt mask

Enable PF12 interrupt mask

Enable PF13 interrupt mask

Enable PF14 interrupt
mask

Enable PF15
interrupt mask

Enable PF1 interrupt mask

Enable PF2 interrupt mask

Enable PF3 interrupt mask

Enable PF4 interrupt mask

Enable PF5 interrupt mask

For all bits, 1 - Enable

Enable PF6 interrupt mask

Enable PF7 interrupt mask

Enable PF11 interrupt mask

Enable PF10 interrupt mask

Enable PF9 interrupt mask

Enable PF8 interrupt mask

Reset = 0x00000xFFC0 0720

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Port F Mask Interrupt B Set Register (PORTFIO_MASKB_SET)

Set PF0 interrupt mask

Set PF12 interrupt mask

Set PF13 interrupt mask

Set PF14 interrupt mask

Set PF15 interrupt mask

Set PF1 interrupt mask

Set PF2 interrupt mask

Set PF3 interrupt mask

Set PF4 interrupt mask

Set PF5 interrupt mask

For all bits, 1 - Set

Set PF6 interrupt mask

Set PF7 interrupt mask

Set PF11 interrupt mask

Set PF10 interrupt mask

Set PF9 interrupt mask

Set PF8 interrupt mask

Reset = 0x00000xFFC0 0728

GPIO Port F Registers (MMRs)

14-18 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

GPIO Port F Polarity (PORTFIO_POLAR) Register
The GPIO polarity register (PORTFIO_POLAR) shown in Figure 14-15 is
used to configure the polarity of the GPIO input source. To select active
high or rising edge, set the bits in this register to 0. To select active low or
falling edge, set the bits in this register to 1.

Figure 14-13. GPIO Port F Mask Interrupt B Clear Register

Figure 14-14. GPIO Port F Mask Interrupt B Toggle Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Port F Mask Interrupt B Clear Register (PORTFIO_MASKB_CLEAR)

Clear PF0 interrupt mask

Clear PF12 interrupt mask

Clear PF13 interrupt mask

Clear PF14 interrupt mask

Clear PF15 interrupt mask

Clear PF1 interrupt mask

Clear PF2 interrupt mask

Clear PF3 interrupt mask

Clear PF4 interrupt mask

Clear PF5 interrupt mask

For all bits, 1 - Clear

Clear PF6 interrupt mask

Clear PF7 interrupt mask

Clear PF11 interrupt mask

Clear PF10 interrupt mask

Clear PF9 interrupt mask

Clear PF8 interrupt mask

Reset = 0x00000xFFC0 0724

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Port F Mask Interrupt B Toggle Register (PORTFIO_MASKB_TOGGLE)

Toggle PF0 interrupt mask

Toggle PF12 interrupt mask

Toggle PF13 interrupt mask

Toggle PF14
interrupt mask

Toggle PF15
interrupt mask

Toggle PF1 interrupt mask

Toggle PF2 interrupt mask

Toggle PF3 interrupt mask

Toggle PF4 interrupt mask

Toggle PF5 interrupt mask

For all bits, 1 - Toggle

Toggle PF6 interrupt mask

Toggle PF7 interrupt mask

Toggle PF11 interrupt mask

Toggle PF10 interrupt mask

Toggle PF9 interrupt mask

Toggle PF8 interrupt mask

Reset = 0x00000xFFC0 072C

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 14-19

General-Purpose Input/Output Port F

This register has no effect on PFx pins that are defined as outputs. The
contents of this register are cleared at reset, defaulting to active high
polarity.

GPIO Port F Interrupt Sensitivity (PORTFIO_EDGE)
Register

The GPIO interrupt sensitivity register (PORTFIO_EDGE) shown in
Figure 14-16 is used to configure each of the GPIOs as either a level-sensi-
tive or an edge-sensitive source. When using an edge-sensitive mode, an
edge detection circuit is used to prevent a situation where a short event is
missed because of the system clock rate. This register has no effect on PFx
pins that are defined as outputs.

The contents of this register are cleared at reset, defaulting to level
sensitivity.

Figure 14-15. GPIO Port F Polarity Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Port F Polarity Register (PORTFIO_POLAR)

PF0 Polarity

PF12 Polarity

PF13 Polarity

PF14 Polarity

PF15 Polarity

PF1 Polarity

PF2 Polarity

PF3 Polarity

PF4 Polarity

PF5 Polarity

For all bits, 0 - Active high or rising edge, 1 - Active low or falling edge

PF6 Polarity

PF7 Polarity

PF11 Polarity

PF10 Polarity

PF9 Polarity

PF8 Polarity

Reset = 0x00000xFFC0 0734

GPIO Port F Registers (MMRs)

14-20 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

GPIO Port F Set on Both Edges (PORTFIO_BOTH)
Register

The GPIO set on both edges register (PORTFIO_BOTH) shown in
Figure 14-17 is used to enable interrupt generation on both rising and
falling edges.

When a given PFx pin has been set to edge-sensitive in the GPIO interrupt
sensitivity register, setting the PFx pin’s bit in the GPIO set on both edges
register to both edges results in an interrupt being generated on both the
rising and falling edges. This register has no effect on PFx pins that are
defined as level-sensitive or as outputs.

Figure 14-16. GPIO Port F Interrupt Sensitivity Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Port F Interrupt Sensitivity Register (PORTFIO_EDGE)

PF0 Sensitivity

PF12 Sensitivity

PF13 Sensitivity

PF14 Sensitivity

PF15 Sensitivity

PF1 Sensitivity

PF2 Sensitivity

PF3 Sensitivity

PF4 Sensitivity

PF5 Sensitivity

For all bits, 0 - Level, 1 - Edge

PF6 Sensitivity

PF7 Sensitivity

PF11 Sensitivity

PF10 Sensitivity

PF9 Sensitivity

PF8 Sensitivity

Reset = 0x00000xFFC0 0738

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 14-21

General-Purpose Input/Output Port F

GPIO Port F Input Enable (PORTFIO_INEN) Register
The GPIO input enable register (PORTFIO_INEN) shown in Figure 14-18 is
used to enable the input buffers on any GPIO pin that is being used as an
input. Leaving the input buffer disabled eliminates the need for pull-ups
and pull-downs when a particular PFx pin is not used in the system. By
default, the input buffers are disabled.

 If the PFx pin is being used as an input, the corresponding bit in
the PORTFIO_INEN register must be set. Otherwise, changes at the
GPIO pins will not be recognized by the processor.

Figure 14-17. GPIO Port F Set on Both Edges Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Port F Set on Both Edges Register (PORTFIO_BOTH)

PF0 Both Edges

PF12 Both Edges

PF13 Both Edges

PF14 Both Edges

PF15 Both Edges

PF1 Both Edges

PF2 Both Edges

PF3 Both Edges

PF4 Both Edges

PF5 Both Edges

For all bits when enabled for edge-sensitivity, 0 - Single edge, 1 - Both edges

PF6 Both Edges

PF7 Both Edges

PF11 Both Edges

PF10 Both Edges

PF9 Both Edges

PF8 Both Edges

Reset = 0x00000xFFC0 073C

Performance/Throughput

14-22 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Performance/Throughput
The PFx pins are synchronized to the system clock (SCLK). When config-
ured as outputs, the programmable GPIOs can transition once every
system clock cycle.

When configured as inputs, the overall system design should take into
account the potential latency between the core and system clocks. Changes
in the state of PFx pins have a latency of 3 SCLK cycles before being detect-
able by the processor. When configured for level-sensitive interrupt
generation, there is a minimum latency of 4 SCLK cycles between the time
the GPIO is asserted and the time that program flow is interrupted. When
configured for edge-sensitive interrupt generation, an additional SCLK
cycle of latency is introduced, giving a total latency of 5 SCLK cycles
between the time the edge is asserted and the time that the core program
flow is interrupted.

Figure 14-18. GPIO Port F Input Enable Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Port F Input Enable Register (PORTFIO_INEN)

PF0 Input Enable

PF12 Input Enable

PF13 Input Enable

PF14 Input Enable

PF15 Input Enable

PF1 Input Enable

PF2 Input Enable

PF3 Input Enable

PF4 Input Enable

PF5 Input Enable

For all bits, 0 - Input Buffer Disabled, 1 - Input Buffer Enabled

PF6 Input Enable

PF7 Input Enable

PF11 Input Enable

PF10 Input Enable

PF9 Input Enable

PF8 Input Enable

Reset = 0x00000xFFC0 0740

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 15-1

15 GENERAL-PURPOSE
INPUT/OUTPUT PORTS C, D, E

The ADSP-BF538/ADSP-BF538F processors have an extensive set of
peripherals, all of which may not be used in an application. A GPIO (gen-
eral-purpose input/output) function is multiplexed with many of the
peripheral pins. GPIO functionality may be enabled on a per-pin basis in
lieu of peripheral functionality.

GPIO pins are grouped onto ports C through E. Each pin within a group
is individually programmable. If an application’s peripheral implementa-
tion does not require all of its pins, the remaining pins may be configured
as GPIO. Table 15-1 shows how the peripherals are mapped to the GPIO
ports.

 Register nomenclature for the GPIO ports use a prefix of PORTxIO,
where x can be C, D, or E.

GPIO functionality on ports C, D, and E differs from port F in two ways.

1. Interrupt capabilities are not associated with GPIO pins on ports
C, D, and E.

2. GPIO enable and control on ports C, D, and E are not associated
with reads and writes of any peripheral registers.

Following a system reset, all GPIO capability is disabled and a pin’s func-
tionality matches the peripheral pin’s functionality. Therefore, out of
reset, a peripheral pin with GPIO capability functions as if the pin was
dedicated as a peripheral pin with no GPIO multiplexed functionality.

15-2 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

A pin can be configured to be a GPIO by writing the corresponding bit in
its GPIO configuration register (PORTxIO_FER). Once configured as a
GPIO, the pin’s direction can be set using the GPIO direction registers
(PORTxIO_DIR). It is permissible to pre-set the GPIO output data value
before setting the GPIO direction as an output.

There are a number of methods for controlling a GPIO’s output data
value through register writes. These registers include GPIO data
(PORTxIO), data set (PORTxIO_SET), data clear (PORTxIO_CLEAR), and data
toggle (PORTxIO_TOGGLE). These data output control methods eliminate
any coherency issues normally associated with a read-modify-write
sequence.

Tables Table 15-2, Table 15-3, and Table 15-4 list all of the peripheral
pins which have GPIO capabilities. Each GPIO port has a complete set of
registers associated with its control. The bit identified in these tables
should be used when making accesses to any of the GPIO registers, as this
relative bit position holds true for all the GPIO registers for that port. For
example, if the application doesn't use the CAN controller, the two CAN
pins (CANTX and CANRX) can be freed as GPIO by setting bits 0 and 1 in

Table 15-1. Peripheral Multiplexing

Port Primary Function After Reset Alternative Function GPIO

Port C CAN PC 0:1

GPIO PC 4:9

Port D SPI1 PD 0:4

SPI2 PD 5:9

UART1 PD 10:11

UART2 PD 12:13

Port E SPORT2 PE 0:7

SPORT3 PE 8:15

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 15-3

General-Purpose Input/Output Ports C, D, E

PORTCIO_FER. From that point forward, software can configure the pins
independently and control the values driven on them by making writes to
bits 0 and 1 in the associated port C GPIO registers.

Table 15-2. GPIO Port C Multiplexed Functionality Pin List

GPIO Port C Pin Peripheral Pin
Multiplexed with GPIO Pin

Associated Bit in Port C
GPIO Registers

PC 0 CAN Transmit (CANTX) Bit 0

PC 1 CAN Receive (CANRX) Bit 1

PC 4–9 GPIO Bits 4–9

Table 15-3. GPIO Port D Multiplexed Functionality Pin List

GPIO Port D Pin Peripheral Pin Multiplexed with GPIO Pin Associated Bit in Port D
GPIO Registers

PD 0 SPI1 Master Out Slave In (MOSI1) Bit 0

PD 1 SPI1 Master In Slave Out (MISO1) Bit 1

PD 2 SPI1 Clock (SCK1) Bit 2

PD 3 SPI1 Slave Select Input (SPI1SS) Bit 3

PD 4 SPI1 Slave Select Enable (SPI1SEL1) Bit 4

PD 5 SPI2 Master Out Slave In (MOSI2) Bit 5

PD 6 SPI2 Master In Slave Out (MISO2) Bit 6

PD 7 SPI2 Clock (SCK2) Bit 7

PD 8 SPI2 Slave Select Input (SPI2SS) Bit 8

PD 9 SPI2 Slave Select Enable (SPI2SEL1) Bit 9

PD 10 UART1 Receive (RX1) Bit 10

PD 11 UART1 Transmit (TX1) Bit 11

PD 12 UART2 Receive (RX2) Bit 12

PD 13 UART2 Transmit (TX2) Bit 13

GPIO Memory-Mapped Registers (MMRs)

15-4 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

GPIO Memory-Mapped Registers
(MMRs)

These registers are part of the system memory-mapped registers (MMRs).
The addresses of the GPIO MMRs appear in Appendix B, “System MMR
Assignments”. Core access to the GPIO registers is through the system
bus.

Table 15-4. GPIO Port E Multiplexed Functionality Pin List

GPIO Port E Pin Peripheral Pin Multiplexed with GPIO Pin Associated Bit in Port E
GPIO Registers

PE 0 SPORT2 Receive Serial Clock (RSCLK2) Bit 0

PE 1 SPORT2 Receive Frame Sync (RFS2) Bit 1

PE 2 SPORT2 Receive Data Primary (DR2PRI) Bit 2

PE 3 SPORT2 Receive Data Secondary (DR2SEC) Bit 3

PE 4 SPORT2 Transmit Serial Clock (TSCLK2) Bit 4

PE 5 SPORT2 Transmit Frame Sync (TFS2) Bit 5

PE 6 SPORT2 Transmit Data Primary (DT2PRI) Bit 6

PE 7 SPORT2 Transmit Data Secondary (DT2SEC) Bit 7

PE 8 SPORT3 Receive Serial Clock (RSCLK3) Bit 8

PE 9 SPORT3 Receive Frame Sync (RFS3) Bit 9

PE 10 SPORT3 Receive Data Primary (DR3PRI) Bit 10

PE 11 SPORT3 Receive Data Secondary (DR3SEC) Bit 11

PE 12 SPORT3 Transmit Serial Clock (TSCLK3) Bit 12

PE 13 SPORT3 Transmit Frame Sync (TFS3) Bit 13

PE 14 SPORT3 Transmit Data Primary (DT3PRI) Bit 14

PE 15 SPORT3 Transmit Data Secondary (DT3SEC) Bit 15

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 15-5

General-Purpose Input/Output Ports C, D, E

GPIO Function Enable (PORTxIO_FER) Register
The GPIO function enable register (PORTxIO_FER) is a read-write register.
Each bit position corresponds to a GPIO pin. The reset value of these reg-
isters is 0x0000. In this state, all GPIO capable pins are disabled and
function per their respective peripheral pin definitions. A logic one writ-
ten to a bit position disables the peripheral pin’s definition and enables
the pin as a GPIO. A logic 0 returns the pin’s function to the peripheral
pin’s definition. A read of unused PORTxIO_FER bits always returns a value
of 0, while a write of unused bits has no effect.

Note that in Figure 15-1:

• The PC1 bit (bit 1) can be configured as GPIO, but it is a 5V-tol-
erant input pin that can provide open-drain functionality when
configured as an output.

• The PC4 bit (bit 4) can be configured as GPIO, but it is a 5V-tol-
erant input pin that can provide open-drain functionality when
configured as an output.

• The PC4 through PC9 bits (bits 4 through 9) are always config-
ured as GPIO, regardless of whether these bits are set or cleared.

Figure 15-1. GPIO Port C Function Enable Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Port C Function Enable Register (PORTCIO_FER)

PC0 Configuration

PC1 Configuration

PC4 Configuration

PC5 Configuration

For all bits, 0 - peripheral pin function, 1 - enable GPIO mode

PC6 Configuration

PC7 Configuration

PC9 Configuration

PC8 Configuration

Reset = 0x0000Address = 0xFFC01500

GPIO Memory-Mapped Registers (MMRs)

15-6 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

GPIO Direction (PORTxIO_DIR) Register
The GPIO direction register is a read-write register. Each bit position cor-
responds to a GPIO pin. If a pin is configured as a GPIO (PORTxIO_FER), a
logic 1 enables the GPIO pin as an output, driving the state contained in

Figure 15-2. GPIO Port D Function Enable Register

Figure 15-3. GPIO Port E Function Enable Register

GPIO Port D Function Enable Register (PORTDIO_FER)
For all bits, 0 - peripheral pin function, 1 - enable GPIO mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PD0 Configuration

PD1 Configuration

PD2 Configuration

PD3 Configuration

PD4 Configuration

PD5 Configuration

PD6 Configuration
PD7 Configuration

PD9 Configuration

PD8 Configuration

Reset = 0x0000

PD10 Configuration

PD12 Configuration

PD11 Configuration

PD13 Configuration

Address = 0xFFC01504

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Port E Function Enable Register (PORTEIO_FER)

PE0 Configuration

PE12 Configuration

PE13 Configuration

PE14 Configuration

PE15 Configuration

PE1 Configuration

PE2 Configuration

PE3 Configuration

PE4 Configuration

PE5 Configuration

For all bits, 0 - peripheral pin function, 1 - enable GPIO mode

PE6 Configuration

PE7 Configuration

PE11 Configuration

PE10 Configuration

PE9 Configuration

PE8 Configuration

Reset = 0x0000Address = 0xFFC01508

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 15-7

General-Purpose Input/Output Ports C, D, E

the associated PORTxIO register. A logic 0 configures the GPIO pin as an
input. The reset value is 0x0000, making all GPIO pins inputs by default
when enabled as GPIO. A read of unused PORTxIO_DIR bits always returns
a value of 0, while a write of unused bits has no effect.

Note that in Figure 15-4:

• The PC1 bit (bit 1) can be configured as GPIO, but it is a 5V-tol-
erant input pin that can provide open-drain functionality when
configured as an output. This bit can be driven low by application
code but will three-state when driven high. An external pull-up
resistor should be connected to this bit if full GPIO functionality is
desired.

• The PC4 bit (bit 4) can be configured as GPIO, but it is a 5V-tol-
erant input pin that can provide open-drain functionality when
configured as an output. This bit can be driven low by application
code but will three-state when driven high. An external pull-up
resistor should be connected to this bit if full GPIO functionality is
desired.

Figure 15-4. GPIO Port C Direction Register

GPIO Port C Direction Register (PORTCIO_DIR)
For all bits, 0 - input, 1 - output

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC0 Direction

PC1 Direction

PC4 Direction

PC5 DirectionPC6 Direction

PC7 Direction

PC9 Direction

PC8 Direction

Reset = 0x0000Address = 0xFFC01550

GPIO Memory-Mapped Registers (MMRs)

15-8 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 15-5. GPIO Port D Direction Register

Figure 15-6. GPIO Port E Direction Register

GPIO Port D Direction Register (PORTDIO_DIR)
For all bits, 0 - input, 1 - output

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PD0 Direction

PD1 Direction

PD2 Direction

PD3 Direction

PD4 Direction

PD5 Direction

PD6 Direction
PD7 Direction

PD9 Direction

PD8 Direction

Reset = 0x0000

PD10 Direction

PD12 Direction

PD11 Direction

PD13 Direction

Address = 0xFFC01554

GPIO Port E Direction Register (PORTEIO_DIR)
For all bits, 0 - input, 1 - output

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PE0 Direction

PE12 Direction

PE13 Direction

PE14 Direction

PE15 Direction

PE1 Direction

PE2 Direction

PE3 Direction

PE4 Direction

PE5 Direction

PE6 Direction

PE7 Direction

PE11 Direction

PE10 Direction

PE9 Direction

PE8 Direction

Reset = 0x0000Address = 0xFFC01558

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 15-9

General-Purpose Input/Output Ports C, D, E

GPIO Input Enable (PORTxIO_INEN) Register
The GPIO input enable register is used to enable the input buffers on any
GPIO pin that is being used as an input. Leaving the input buffer disabled
eliminates the need for pullups and pulldowns when a particular GPIO
pin is not used in the system. By default, the input buffers are disabled. A
read of unused PORTxIO_INEN bits always returns a value of 0, while a write
of unused bits has no effect.

 If the GPIO pin is being used as an input, the corresponding bit in
the GPIO input enable register must be set.

Note that in Figure 15-7:

• The PC1 input enable bit (bit 1) can be configured as GPIO. This
bit is 5V-tolerant when configured as an input.

• The PC4 input enable bit (bit 4) can be configured as GPIO. This
bit is 5V-tolerant when configured as an input.

Figure 15-7. GPIO Port C Input Enable Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Input Port C Enable Register (PORTCIO_INEN)

PC0 Input Enable

PC1 Input Enable

PC4 Input Enable

PC5 Input Enable

For all bits, 0 - input buffer disabled, 1 - input buffer enabled

PC6 Input Enable

PC7 Input Enable

PC9 Input Enable

PC8 Input Enable

Reset = 0x0000Address = 0xFFC01560

GPIO Memory-Mapped Registers (MMRs)

15-10 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 15-8. GPIO Port D Input Enable Register

Figure 15-9. GPIO Port E Input Enable Register

GPIO Port D Input Enable Register (PORTDIO_INEN)
For all bits, 0 - input buffer disabled, 1 - input buffer enabled

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PD0 Input Enable

PD1 Input Enable

PD2 Input Enable

PD3 Input Enable

PD4 Input Enable

PD5 Input Enable

PD6 Input Enable
PD7 Input Enable

PD9 Input Enable

PD8 Input Enable

Reset = 0x0000

PD10 Input Enable

PD12 Input Enable

PD11 Input Enable

PD13 Input Enable

Address = 0xFFC01564

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Port E Input Enable Register (PORTEIO_INEN)

PE0 Input Enable

PE12 Input Enable

PE13 Input Enable

PE14 Input Enable

PE15 Input Enable

PE1 Input Enable

PE2 Input Enable

PE3 Input Enable

PE4 Input Enable

PE5 Input Enable

For all bits, 0 - input buffer disabled, 1 - input buffer enabled

PE6 Input Enable

PE7 Input Enable

PE11 Input Enable

PE10 Input Enable

PE9 Input Enable

PE8 Input Enable

Reset = 0x0000Address = 0xFFC01568

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 15-11

General-Purpose Input/Output Ports C, D, E

GPIO Value Registers
The processor has four GPIO value registers:

• GPIO data register (PORTxIO)

• GPIO set register (PORTxIO_SET)

• GPIO clear register (PORTxIO_CLEAR)

• GPIO toggle register (PORTxIO_TOGGLE)

These registers are used to:

• Sense the value of the GPIO pins defined as inputs

• Specify the state of GPIO pins defined as outputs

Each GPIO pin is represented by a bit in each of the four value registers.

Reading any of the GPIO data, GPIO set, GPIO clear, or GPIO toggle
registers returns the value of the GPIO pins. The value returned shows the
state of the GPIO pins defined as outputs and the sense of GPIO pins
defined as inputs.

Reading the GPIO data, GPIO set, GPIO clear, or GPIO toggle register
after reset results in 0x0000 because the pins are not enabled, even though
they are reset as inputs.

For more information about the GPIO set, GPIO clear, and GPIO toggle
registers, see “GPIO Set (PORTxIO_SET), GPIO Clear
(PORTxIO_CLEAR), and GPIO Toggle (PORTxIO_TOGGLE) Regis-
ters” on page 15-13.

GPIO Value Registers

15-12 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

GPIO Data (PORTxIO) Register
When written, the GPIO data register (Figure 15-10) directly specifies a
GPIO pin’s state. When read, the register returns the value of the GPIO
pins. A read of unused GPIO data bits always returns a value of 0. A write
of unused PORTxIO bits has no effect.

Figure 15-10. GPIO Port C Data Register

Figure 15-11. GPIO Port D Data Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Port C Data Register (PORTCIO)

PC0 Data

PC1 Data

PC4 Data

PC5 Data

For all bits, 0 - clear, 1 - set

PC6 Data

PC7 Data

PC9 Data

PC8 Data

Reset = 0x0000Address = 0xFFC01510

GPIO Port D Data Register (PORTDIO)
For all bits, 0 - clear, 1 - set

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PD0 Data

PD1 Data

PD2 Data

PD3 Data

PD4 Data

PD5 Data

PD6 Data
PD7 Data

PD9 Data

PD8 Data

Reset = 0x0000

PD10 Data

PD12 Data

PD11 Data

PD13 Data

Address = 0xFFC01514

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 15-13

General-Purpose Input/Output Ports C, D, E

GPIO Set (PORTxIO_SET), GPIO Clear
(PORTxIO_CLEAR), and GPIO Toggle
(PORTxIO_TOGGLE) Registers

The GPIO set, GPIO clear, and GPIO toggle registers are used to set,
clear, or toggle the output state associated with each output GPIO pin.

This mechanism is used to avoid the potential issues with more traditional
read-modify-write mechanisms. Reading any of these registers returns the
GPIO pin state. A read of unused bits in these registers always returns a
value of 0. A write of unused bits has no effect.

Figure 15-13 through Figure 15-18 represent the GPIO set and GPIO
clear registers.

Figure 15-12. GPIO Port E Data Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Port E Data Register (PORTEIO)

PE0 Data

PE12 Data

PE13 Data

PE14 Data

PE15 Data

PE1 Data

PE2 Data

PE3 Data

PE4 Data

PE5 Data

For all bits, 0 - clear, 1 - set

PE6 Data

PE7 Data

PE11 Data

PE10 Data

PE9 Data

PE8 Data

Reset = 0x0000Address = 0xFFC01518

GPIO Value Registers

15-14 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 15-13. GPIO Port C Set Register

Figure 15-14. GPIO Port D Set Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Port C Set Register (PORTCIO_SET)

PC0 Set

PC1 Set

PC4 Set

PC5 Set

For all bits, write-1-to-set

PC6 Set

PC7 Set

PC9 Set

PC8 Set

Reset = 0x0000Address = 0xFFC01530

The PC1 and PC4 pins function as an open-drain when configured as an output. Software can drive this pin low
by writing a 0 to this bit location. If software writes a 1 to this bit location, then the pins will be three-stated.

GPIO Port D Set Register (PORTDIO_SET)
For all bits, 0 - write-1-to-set

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PD0 Set

PD1 Set

PD2 Set

PD3 Set

PD4 Set

PD5 Set

PD6 Set
PD7 Set

PD9 Set

PD8 Set

Reset = 0x0000

PD10 Set

PD12 Set

PD11 Set

PD13 Set

Address = 0xFFC01534

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 15-15

General-Purpose Input/Output Ports C, D, E

Figure 15-15. GPIO Port E Set Register

Figure 15-16. GPIO Port C Clear Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO E Set Register (PORTEIO_SET)

PE0 Set

PE12 Set

PE13 Set

PE14 Set

PE15 Set

PE1 Set

PE2 Set

PE3 Set

PE4 Set

PE5 Set

For all bits, write-1-to-set

PE6 Set

PE7 Set

PE11 Set

PE10 Set

PE9 Set

PE8 Set

Reset = 0x0000Address = 0xFFC01538

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Port C Clear Register (PORTCIO_CLEAR)

PC0 Clear

PC1 Clear

PC4 Clear

PC5 Clear

For all bits, write-1-to-clear

PC6 Clear

PC7 Clear

PC9 Clear

PC8 Clear

Reset = 0x0000Address = 0xFFC01520

The PC1 and PC4 pins function as an open-drain when configured as an output. Software can drive this pin low
by writing a 0 to this bit location. If software writes a 1 to this bit location, then the pins will be three-stated.

GPIO Value Registers

15-16 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 15-17. GPIO Port D Clear Register

Figure 15-18. GPIO Port E Clear Register

GPIO Port D Clear Register (PORTDIO_CLEAR)
For all bits, write-1-to-clear

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PD0 Clear

PD1 Clear

PD2 Clear

PD3 Clear

PD4 Clear

PD5 Clear

PD6 Clear
PD7 Clear

PD9 Clear

PD8 Clear

Reset = 0x0000

PD10 Clear

PD12 Clear

PD11 Clear

PD13 Clear

Address = 0xFFC01524

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Port E Clear Register (PORTEIO_CLEAR)

PE0 Clear

PE12 Clear

PE13 Clear

PE14 Clear

PE15 Clear

PE1 Clear

PE2 Clear

PE3 Clear

PE4 Clear

PE5 Clear

For all bits, write-1-to-clear

PE6 Clear

PE7 Clear

PE11 Clear

PE10 Clear

PE9 Clear

PE8 Clear

Reset = 0x0000Address = 0xFFC01528

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 15-17

General-Purpose Input/Output Ports C, D, E

Figure 15-19, Figure 15-20, and Figure 15-21 show the GPIO toggle
registers.

Figure 15-19. GPIO Port C Toggle Register

Figure 15-20. GPIO Port D Toggle Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Port C Toggle Register (PORTCIO_TOGGLE)

PC0 Toggle

PC1 Toggle

PC4 Toggle

PC5 Toggle

For all bits, write-1-to-toggle

PC6 Toggle

PC7 Toggle

PC9 Toggle

PC8 Toggle

Reset = 0x0000Address = 0xFFC01540

The PC1 and PC4 pins function as an open-drain when configured as an output. Software can drive this pin low
by writing a 0 to this bit location. If software writes a 1 to this bit location, then the pins will be three-stated.

GPIO Port D Toggle Register (PORTDIO_TOGGLE)
For all bits, write-1-to-toggle

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PD0 Toggle

PD1 Toggle

PD2 Toggle

PD3 Toggle

PD4 Toggle

PD5 Toggle

PD6 Toggle
PD7 Toggle

PD9 Toggle

PD8 Toggle

Reset = 0x0000

PD10 Toggle

PD12 Toggle

PD11 Toggle

PD13 Toggle

Address = 0xFFC01544

GPIO Value Registers

15-18 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

As an example of how these registers work, assume that PD0 is configured
as an output (PORTDIO_FER = 0x0001 and PORTDIO_DIR = 0x0001). Writing
0x0001 to the PORTDIO_SET register drives a logic 1 on the PD0 pin without
affecting the state of any other GPIO pins. Writing 0x0001 to the
PORTDIO_CLEAR register drives a logic 0 on the PD0 pin without affecting
the state of any other GPIO pins. Writing a 0x0001 to the
PORTDIO_TOGGLE register changes the pin state on PD0 from logic zero to
logic one or from logic one to logic zero, depending upon the existing pin
state, without affecting the state of any other GPIO pins.

Writing a 0 to one of these registers has no effect on the value of the PD0
pin, and is therefore ignored.

Reading the GPIO set or GPIO clear register returns:

• 0 for GPIO pins defined as outputs and driven low

• 1 for pins (including PD0 in the example above) defined as outputs
and driven high

• The present sense of GPIO pins defined as inputs

Figure 15-21. GPIO Port E Toggle Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Port E Toggle Register (PORTEIO_TOGGLE)

PE0 Toggle

PE12 Toggle

PE13 Toggle

PE14 Toggle

PE15 Toggle

PE1 Toggle

PE2 Toggle

PE3 Toggle

PE4 Toggle

PE5 Toggle

For all bits, write-1-to-toggle

PE6 Toggle

PE7 Toggle

PE11 Toggle

PE10 Toggle

PE9 Toggle

PE8 Toggle

Reset = 0x0000Address = 0xFFC01548

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 15-19

General-Purpose Input/Output Ports C, D, E

Performance/Throughput
The GPIO pins are synchronized to the system clock (SCLK). When con-
figured as outputs, the GPIOs can transition once every system clock
cycle.

Performance/Throughput

15-20 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 16-1

16 TIMERS

The processor features three identical 32-bit general-purpose timers, a
core timer, and a watchdog timer.

The general-purpose timers can be individually configured in any of three
modes:

• Pulse-width modulation (PWM_OUT) mode

• Pulse width count and capture (WDTH_CAP) mode

• External event (EXT_CLK) mode

The core timer is available to generate periodic interrupts for a variety of
system timing functions.

The watchdog timer can be used to implement a software watchdog func-
tion. A software watchdog can improve system availability by generating
an event to the Blackfin processor core if the timer expires before being
updated by software.

General-Purpose Timers
Each general-purpose timer has one dedicated bidirectional chip pin,
TMRx. This pin functions as an output pin in the PWM_OUT mode and as an
input pin in the WDTH_CAP and EXT_CLK modes. To provide these func-
tions, each timer has four registers. For range and precision, the timer
counter (TIMERx_COUNTER), timer period (TIMERx_PERIOD), and timer pulse
width (TIMERx_WIDTH) registers are 32 bits wide. See Figure 16-1.

General-Purpose Timers

16-2 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The registers for each general-purpose timer are:

• Timer configuration (TIMERx_CONFIG) registers

• Timer counter (TIMERx_COUNTER) registers

• Timer period (TIMERx_PERIOD) registers

• Timer pulse width (TIMERx_WIDTH) registers

When clocked internally, the clock source is the processor’s peripheral
clock (SCLK). Assuming the peripheral clock is running at 133 MHz, the

maximum period for the timer count is ((232-1) / 133 MHz) =
32.2 seconds.

Figure 16-1. Timer Block Diagram

PERIOD BUFFER
(32 BIT)

TIMERx_COUNTER
(32 BIT)

WIDTH BUFFER
(32 BIT)

TIMERx_PERIOD
(32 BIT)

TIMERx_WIDTH
(32 BIT)

32
(READ ONLY)

3232

EXPIRE

PAB BUS

32 32 32

EQUAL?

CONTROL
LOGIC

CONTROL
LOGIC

EQUAL?

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 16-3

Timers

The timer enable (TIMER_ENABLE) register can be used to enable all three
timers simultaneously. The register contains three “write-1-to-set” control
bits, one for each timer. Correspondingly, the timer disable
(TIMER_DISABLE) register contains three “write-1-to-clear” control bits to
allow simultaneous or independent disabling of the three timers. Either
the timer enable or the timer disable register can be read back to check the
enable status of the timers. A 1 indicates that the corresponding timer is
enabled. The timer starts counting three SCLK cycles after the TIMENx bit is
set.

The timer status (TIMER_STATUS) register contains an interrupt latch bit
(TIMILx) and an overflow/error indicator bit (TOVF_ERRx) for each timer.
These sticky bits are set by the timer hardware and may be polled by soft-
ware. They need to be cleared by software explicitly, by writing a 1 to the
bit.

To enable a timer’s interrupts, set the IRQ_ENA bit in the timer’s configura-
tion (TIMERx_CONFIG) register and unmask the timer’s interrupt by setting
the corresponding bits of the IMASK and SIC_IMASKx registers. With the
IRQ_ENA bit cleared, the timer does not set its timer interrupt latch
(TIMILx) bits. To poll the TIMILx bits without permitting a timer inter-
rupt, programs can set the IRQ_ENA bit while leaving the timer’s interrupt
masked.

With interrupts enabled, make sure that the interrupt service routine
(ISR) clears the TIMILx latch before the RTI instruction, to ensure that the
interrupt is not reissued. To make sure that no timer event is missed, the
latch should be reset at the very beginning of the interrupt routine when
in external clock (EXT_CLK) mode. To enable timer interrupts, set the
IRQ_ENA bit in the proper timer configuration (TIMERx_CONFIG) register.

Timer Registers

16-4 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Timer Registers
The timer peripheral module provides general-purpose timer functional-
ity. It consists of three identical timer units.

Each timer provides four registers:

• TIMERx_CONFIG[15:0] – Timer configuration register

• TIMERx_WIDTH[31:0] – Timer pulse width register

• TIMERx_PERIOD[31:0] – Timer period register

• TIMERx_COUNTER[31:0] – Timer counter register

Three registers are shared between the three timers:

• TIMER_ENABLE[15:0] – Timer enable register

• TIMER_DISABLE[15:0] – Timer disable register

• TIMER_STATUS[15:0] – Timer status register

The size of accesses is enforced. A 32-bit access to a timer configuration
register or a 16-bit access to a timer pulse width, timer period, or timer
counter register results in a memory-mapped register (MMR) error. Both
16- and 32-bit accesses are allowed for the timer enable, timer disable, and
timer status registers. On a 32-bit read, the upper word returns all 0s.

TIMER_ENABLE Register
The timer enable register (TIMER_ENABLE) allows all three timers to be
enabled simultaneously in order to make them run completely synchro-
nously. (See Figure 16-2.) For each timer there is a single W1S control
bit. Writing a 1 enables the corresponding timer; writing a 0 has no effect.
The three bits can be set individually or in any combination. A read of the

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 16-5

Timers

timer enable register shows the status of the enable for the corresponding
timer. A 1 indicates that the timer is enabled. All unused bits return 0
when read.

TIMER_DISABLE Register
The timer disable register (TIMER_DISABLE) allows all three timers to be
disabled simultaneously. (See Figure 16-3.) For each timer there is a single
W1C control bit. Writing a 1 disables the corresponding timer; writing a
0 has no effect. The three bits can be cleared individually or in any combi-
nation. A read of the timer disable register returns a value identical to a
read of the timer enable register. A 1 indicates that the timer is enabled.
All unused bits return 0 when read.

In PWM_OUT mode, a write of a 1 to TIMER_DISABLE does not stop the corre-
sponding timer immediately. Rather, the timer continues running and
stops cleanly at the end of the current period (if PERIOD_CNT = 1) or pulse
(if PERIOD_CNT = 0). If necessary, the processor can force a timer in
PWM_OUT mode to stop immediately by first writing a 1 to the
corresponding bit in TIMER_DISABLE, and then writing a 1 to the corre-
sponding TRUNx bit in TIMER_STATUS. See “Stopping the Timer in
PWM_OUT Mode” on page 16-19.

Figure 16-2. Timer Enable Register

000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000

Timer Enable Register (TIMER_ENABLE)

TIMEN0 (Timer0 Enable)

TIMEN1 (Timer1 Enable)

1 - Enable timer
Read as 1 when enabled

1 - Enable timer
Read as 1 when enabled

TIMEN2 (Timer2 Enable)
1 - Enable timer
Read as 1 when enabled

0xFFC0 0640

Timer Registers

16-6 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

In WDTH_CAP and EXT_CLK modes, a write of a 1 to TIMER_DISABLE stops the
corresponding timer immediately.

TIMER_STATUS Register
The timer status register (TIMER_STATUS) indicates the status of all three
timers and is used to check the status of all three timers with a single read.
(See Figure 16-4.) The status bits are sticky and W1C. The TRUNx bits can
clear themselves, which they do when a PWM_OUT mode timer stops at the
end of a period. During a status register read access, all reserved or unused
bits return a 0.

Each timer generates a unique interrupt request signal, which is gated by
the corresponding IRQ_ENA bit in the TIMERx_CONFIG register. The shared
timer status register (TIMER_STATUS) latches these interrupts so the user
can determine the interrupt source without reference to the unique inter-
rupt signal (for example, in the case where all three timers have been
assigned to the same interrupt priority). Interrupt bits are sticky and must
be cleared by the interrupt service routine (ISR) to assure that the inter-
rupt is not reissued.

Figure 16-3. Timer Disable Register

000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000

Timer Disable Register (TIMER_DISABLE)

TIMDIS0 (Timer0 Disable)

TIMDIS1 (Timer1 Disable)

1 - Disable timer
Read as 1 if this timer is enabled

1 - Disable timer
Read as 1 if this timer is enabled

TIMDIS2 (Timer2 Disable)
1 - Disable timer
Read as 1 if this timer is enabled

0xFFC0 0644

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 16-7

Timers

The TIMILx bits work along with the IRQ_ENA bit of the timer configura-
tion register to indicate interrupt requests. If an interrupt condition or
error occurs and IRQ_ENA is set, then the TIMILx bit is set and the interrupt
to the core is asserted. This interrupt may be masked by the system inter-
rupt controllers. If an interrupt condition or error occurs and IRQ_ENA is
cleared, then the TIMILx bit is not set and the interrupt is not asserted. If
TIMILx is already set and IRQ_ENA is written to 0, TIMILx stays set and the
interrupt stays asserted. See Figure 16-24.

The read value of the TRUNx bits reflects the timer slave enable status in all
modes—TRUNx set indicates running and TRUNx cleared indicates stopped.
While reading the TIMENx or TIMDISx bits in the TIMER_ENABLE and
TIMER_DISABLE registers will reflect whether a timer is enabled, the TRUNx

Figure 16-4. Timer Status Register

000 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0

TIMIL0 (Timer0 interrupt)
W1C

Reset = 0x00000

Timer Status Register (TIMER_STATUS)

1 = stop timer immediately in
PWM_OUT mode

Indicates an interrupt
request when IRQ_ENA is
set
TIMIL1 (Timer1 interrupt)-
W1C

TRUN2 (Timer2 Slave
Enable status) W1C

TIMIL2 (Timer2 interrupt)
W1C

Indicates that an error or an
overflow occurred

TOVF_ERR0 (Timer0
Counter Overflow) W1C

1 = stop timer immediately in
PWM_OUT mode

TRUN1 (Timer1 Slave
Enable status) W1C

1 = stop timer immediately in
PWM_OUT mode

TRUN0 (Timer0 Slave Enable
status) W1C

TOVF_ERR1 (Timer1
Counter Overflow) W1C

TOVF_ERR2 (Timer2
Counter Overflow) W1C

Indicates an interrupt
request when IRQ_ENA is
set

Indicates an interrupt
request when IRQ_ENA is
set

Indicates that an error or an
overflow occurred

Indicates that an error or an
overflow occurred

0xFFC0 0648

Timer Registers

16-8 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

bits indicate whether the timer is actually running. In WDTH_CAP and
EXT_CLK modes, reads from TIMENx and TRUNx always return the same
value.

A W1C operation to the TIMER_DISABLE register disables the correspond-
ing timer in all modes. In PWM_OUT mode, a disabled timer continues
running until the ongoing period (PERIOD_CNT = 1) or pulse
(PERIOD_CNT = 0) completes. During this final period the TIMENx bit
returns 0, but the TRUNx bit still reads as a 1. See Figure 16-10 on
page 16-14. In this state only, TRUNx becomes a W1C bit. During this
final period with the timer disabled, writing a 1 to TRUNx clears TRUNx and
stops the timer immediately without waiting for the timer counter to
reach the end of its current cycle.

Writing the TRUNx bits has no effect in other modes or when a timer has
not been enabled. Writing the TRUNx bits to 1 in PWM_OUT mode has no
effect on a timer that has not first been disabled.

TIMERx_CONFIG Registers
The operating mode for each timer is specified by its timer configuration
register (TIMERx_CONFIG), as shown in Figure 16-5. The TIMERx_CONFIG
register may be written only when the timer is not running. After dis-
abling the timer in PWM_OUT mode, make sure the timer has stopped
running by checking its TRUNx bit in TIMER_STATUS before attempting to
reprogram TIMERx_CONFIG. The TIMERx_CONFIG registers may be read at
any time. The ERR_TYP field is read-only. It is cleared at reset and when
the timer is enabled. Each time TOVF_ERRx is set, ERR_TYP[1:0] is loaded
with a code that identifies the type of error that was detected. This value is
held until the next error or timer enable occurs. For an overview of error
conditions, see Table 16-1. The TIMERx_CONFIG register also controls the
behavior of the TMRx pin, which becomes an output in PWM_OUT mode
(TMODE = 01) when the OUT_DIS bit is cleared.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 16-9

Timers

TIMERx_COUNTER Registers
These read-only registers retain their state when disabled. (See
Figure 16-6.) When enabled, the timer counter register (TIMERx_COUNTER)
is reinitialized by hardware based on configuration and mode. The timer
counter register may be read at any time (whether the timer is running or
stopped), and it returns a coherent 32-bit value. Depending on the opera-
tion mode, the incrementing counter can be clocked by four different
sources: SCLK, the TMRx pin, the GPIO port F pin PF1, or the parallel port
clock PPI_CLK.

Figure 16-5. Timer Configuration Registers

0 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0

TMODE[1:0] (Timer Mode)

Reset = 0x00000

Timer Configuration Registers (TIMERx_CONFIG)

0 - Negative action pulse
1 - Positive action pulse

This bit must be set to 1 when operat-
ing the PPI in GP Output modes with
internal frame syncs.
0 - Use system clock SCLK for counter
1 - Use PWM_CLK to clock counter

0 - The effective state of PULSE_HI
is the programmed state

1 - The effective state of PULSE_HI
alternates each period

00 - No error
01 - Counter overflow error
10 - Period register programming error
11 - Pulse width register programming error

00 - Reset state - unused
01 - PWM_OUT mode
10 - WDTH_CAP mode
11 - EXT_CLK mode

PULSE_HI

CLK_SEL (Timer Clock Select)

TOGGLE_HI (PWM_OUT PULSE_HI
Toggle Mode)

ERR_TYP[1:0] (Error
Type) - RO

PERIOD_CNT (Period
Count)

0 - interrupt request disable
1 - interrupt request enable

0 - Count to end of width
1 - Count to end of period

IRQ_ENA (interrupt
Request Enable)

0 - Sample TMRx pin
or PF1 pin

1 - Sample UART RX pin
or PPI_CLK pin

TIN_SEL (Timer Input
Select)

0 - Enable pad in
PWM_OUT mode

1 - Disable pad in
PWM_OUT mode

OUT_DIS (Output Pad
Disable)

0 - Timer counter stops during emulation
1 - Timer counter runs during emulation

EMU_RUN (Emulation Behavior Select)

Timer0:
0xFFC0 0600

Timer1:
0xFFC0 0610

Timer2:
0xFFC0 0620

Timer Registers

16-10 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

While the processor core is being accessed by an external emulator debug-
ger, all code execution stops. By default, the TIMERx_COUNTER also halts its
counting during an emulation access in order to remain synchronized with
the software. While stopped, the count does not advance—in PWM_OUT
mode, the TMRx pin waveform is “stretched”; in WDTH_CAP mode, measured
values are incorrect; in EXT_CLK mode, input events on TMRx may be
missed. All other timer functions such as register reads and writes, inter-
rupts previously asserted (unless cleared), and the loading of
TIMERx_PERIOD and TIMERx_WIDTH in WDTH_CAP mode remain active during
an emulation stop.

Some applications may require the timer to continue counting asynchro-
nously to the emulation-halted processor core. Set the EMU_RUN bit in
TIMERx_CONFIG to enable this behavior.

TIMERx_PERIOD and TIMERx_WIDTH Registers

 When a timer is enabled and running, and the software writes new
values to the TIMERx_PERIOD register and the timer pulse width reg-
ister, the writes are buffered and do not update the registers until
the end of the current period (when the timer counter register
equals the TIMERx_PERIOD register).

Figure 16-6. Timer Counter Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Counter[15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Counter[31:16]

Reset = 0x0000 0001

Timer Counter Registers (TIMERx_COUNTER)

Timer0:
0xFFC0 0604

Timer1:
0xFFC0 0614

Timer2:
0xFFC0 0624

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 16-11

Timers

Usage of the TIMERx_PERIOD register and TIMERx_WIDTH register (see
Figure 16-7 and Figure 16-8) varies depending on the mode of the timer:

• In pulse-width modulation mode (PWM_OUT), both the
TIMERx_PERIOD and TIMERx_WIDTH register values can be updated
“on-the-fly” since the timer period and timer pulse width (duty
cycle) register values change simultaneously.

• In pulse width and period capture mode (WDTH_CAP), the timer
period and timer pulse width buffer values are captured at the
appropriate time. The TIMERx_PERIOD and TIMERx_WIDTH registers
are then updated simultaneously from their respective buffers. Both
registers are read-only in this mode.

• In external event capture mode (EXT_CLK), the TIMERx_PERIOD reg-
ister is writable and can be updated “on-the-fly.” The
TIMERx_WIDTH register is not used.

If new values are not written to the TIMERx_PERIOD register or the
TIMERx_WIDTH register, the value from the previous period is reused.
Writes to the 32-bit TIMERx_PERIOD register and TIMERx_WIDTH register are
atomic; it is not possible for the high word to be written without the low
word also being written.

Values written to the TIMERx_PERIOD registers or TIMERx_WIDTH registers
are always stored in the buffer registers. Reads from the TIMERx_PERIOD or
TIMERx_WIDTH registers always return the current, active value of period or
pulse width. Written values are not read back until they become active.
When the timer is enabled, they do not become active until after the
TIMERx_PERIOD and TIMERx_WIDTH registers are updated from their respec-
tive buffers at the end of the current period. See Figure 16-1 on
page 16-2.

When the timer is disabled, writes to the buffer registers are immediately
copied through to the TIMERx_PERIOD or TIMERx_WIDTH register so that
they will be ready for use in the first timer period. For example, to change

Timer Registers

16-12 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

the values for the TIMERx_PERIOD and/or TIMERx_WIDTH registers in order to
use a different setting for each of the first three timer periods after the
timer is enabled, the procedure to follow is:

1. Program the first set of register values.

2. Enable the timer.

3. Immediately program the second set of register values.

4. Wait for the first timer interrupt.

5. Program the third set of register values.

Each new setting is then programmed when a timer interrupt is received.

 In PWM_OUT mode with very small periods (less than 10 counts),
there may not be enough time between updates from the buffer
registers to write both the TIMERx_PERIOD register and the
TIMERx_WIDTH register. The next period may use one old value and
one new value. In order to prevent pulse width >= period errors,
write the TIMERx_WIDTH register before the TIMERx_PERIOD register
when decreasing the values, and write the TIMERx_PERIOD register
before the TIMERx_WIDTH register when increasing the value.

Figure 16-7. Timer Period Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Period[15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Period[31:16]

Reset = 0x0000 0000

Timer Period Registers (TIMERx_PERIOD)

Timer0:
0xFFC0 0608

Timer1:
0xFFC0 0618

Timer2:
0xFFC0 0628

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 16-13

Timers

Using the Timer
To enable an individual timer, set that timer’s TIMEN bit in the
TIMER_ENABLE register. To disable an individual timer, set that timer’s
TIMDIS bit in the TIMER_DISABLE register. To enable all three timers in par-
allel, set all three TIMEN bits in the TIMER_ENABLE register.

Before enabling a timer, always program the corresponding timer configu-
ration (TIMERx_CONFIG) register. This register defines the timer operating
mode, the polarity of the TMRx pin, and the timer interrupt behavior. Do
not alter the operating mode while the timer is running.

Examples of timer enable and disable timing appear in Figure 16-9,
Figure 16-10, and Figure 16-11.

When timers are disabled, the timer counter registers retain their state;
when a timer is re-enabled, the timer counter is reinitialized based on the
operating mode. The timer counter registers are read-only. Software can-
not overwrite or preset the timer counter value directly.

Figure 16-8. Timer Width Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Width[15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Width[31:16]

Reset = 0x0000 0000

Timer Width Registers (TIMERx_WIDTH)

Timer0:
0xFFC0 060C

Timer1:
0xFFC0 061C

Timer2:
0xFFC0 062C

Using the Timer

16-14 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 16-9. Timer Enable Timing

Figure 16-10. Timer Disable Timing

SCLK

TIMERx_PERIOD 4 4 4

EXAMPLE TIMER ENABLE TIMING (PWM_OUT MODE, PERIOD_CNT = 1)

1 1 1

X 41 2 3 1 2 3

TIMERx_WIDTH

TIMERx_COUNTER

TIMENx

TRUNx

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

W1S TO
TIMER_ENABLE

7

EXAMPLE TIMER DISABLE TIMING (PWM_OUT MODE, PERIOD_CNT = 1)

5

7

5

7

5

7 1 2 3 5 6 74

W1C TO
TIMER_DISABLE

SCLK

TIMERx_PERIOD

TIMERx_WIDTH

TIMERx_COUNTER

TIMENx

TRUNx

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 16-15

Timers

Pulse-Width Modulation (PWM_OUT) Mode
Setting the TMODE field to 01 in the timer configuration (TIMERx_CONFIG)
register enables PWM_OUT mode. In PWM_OUT mode, the timer TMRx pin is an
output. The output can be disabled by setting the OUT_DIS bit in the timer
configuration register.

In PWM_OUT mode, the bits PULSE_HI, PERIOD_CNT, IRQ_ENA, OUT_DIS,
CLK_SEL, EMU_RUN, and TOGGLE_HI enable orthogonal functionality. They
may be set individually or in any combination, although some combina-
tions are not useful (such as TOGGLE_HI = 1 with OUT_DIS = 1 or
PERIOD_CNT = 0). See Figure 16-12.

Once a timer has been enabled, the timer counter register is loaded with a
starting value. If CLK_SEL = 0, the timer counter starts at 0x1. If
CLK_SEL = 1, it is reset to 0x0 as in EXT_CLK mode. The timer counts
upward to the value of the TIMERx_PERIOD register. For either setting of
CLK_SEL, when the timer counter equals the timer period, the timer coun-
ter is reset to 0x1 on the next clock.

Figure 16-11. Timer Enable and Automatic Disable Timing

EXAMPLE TIMER ENABLE AND AUTOMATIC DISABLE TIMING
(PWM_OUT MODE, PERIOD_CNT = 0)

3

21X 3

SCLK

TIMERx_WIDTH

TIMERx_COUNTER

TIMENx

TRUNx

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

W1S TO
TIMER_ENABLE

Using the Timer

16-16 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

In PWM_OUT mode, the PERIOD_CNT bit controls whether the timer generates
one pulse or many pulses. When PERIOD_CNT is cleared (PWM_OUT single
pulse mode), the timer uses the TIMERx_WIDTH register, generates one
asserting and one deasserting edge, then generates an interrupt (if enabled)
and stops. When PERIOD_CNT is set (PWM_OUT continuous pulse mode), the
timer uses both the TIMERx_PERIOD and TIMERx_WIDTH registers and

Figure 16-12. Timer Flow Diagram, PWM_OUT Mode

TIN_SEL

DATA BUS

0

1 PWM_CLK

SCLK

CLK_SEL
EQUAL?

TIMER_ENABLE

EQUAL?

1

1

0

0

YES

CLOCK RESET

ASSERT DEASSERT

INTERRUPT

PERIOD_CNT

TMRx

PWMOUT
LOGIC

PULSE_HI
TOGGLE_HI
OUT_DIS

YES

PF1

PPI_CLK

TIMERx_COUNTER

TIMERx_PERIOD TIMERx_WIDTH

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 16-17

Timers

generates a repeating (and possibly modulated) waveform. It generates an
interrupt (if enabled) at the end of each period and stops only after it is
disabled. A setting of PERIOD_CNT = 0 counts to the end of the width; a set-
ting of PERIOD_CNT = 1 counts to the end of the period.

 The TIMERx_PERIOD and TIMERx_WIDTH registers are read-only in
some operation modes. Be sure to set the TMODE field in the
TIMERx_CONFIG register to b#01 before writing to these registers.

Output Pad Disable

The output pin can be disabled in PWM_OUT mode by setting the OUT_DIS
bit in the timer configuration register. The TMRx pin is then three-stated
regardless of the setting of PULSE_HI and TOGGLE_HI. This can reduce
power consumption when the output signal is not being used.

Single Pulse Generation

If the PERIOD_CNT bit is cleared, the PWM_OUT mode generates a single pulse
on the TMRx pin. This mode can also be used to implement a precise delay.
The pulse width is defined by the TIMERx_WIDTH register, and the
TIMERx_PERIOD register is not used.

At the end of the pulse, the timer interrupt latch bit TIMILx gets set, and
the timer is stopped automatically. If the PULSE_HI bit is set, an active high
pulse is generated on the TMRx pin. If PULSE_HI is not set, the pulse is
active low.

Pulse-Width Modulation Waveform Generation

If the PERIOD_CNT bit is set, the internally clocked timer generates rectan-
gular signals with well-defined period and duty cycle. This mode also
generates periodic interrupts for real-time signal processing.

Using the Timer

16-18 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The 32-bit (TIMERx_PERIOD) and (TIMERx_WIDTH) registers are programmed
with the values of the timer count period and pulse width modulated out-
put pulse width.

When the timer is enabled in this mode, the TMRx pin is pulled to a deas-
serted state each time the timer counter equals the value of the
TIMERx_WIDTH register, and the pin is asserted again when the period
expires (or when the timer gets started).

To control the assertion sense of the TMRx pin, the PULSE_HI bit in the cor-
responding TIMERx_CONFIG register is used. For a low assertion level, clear
this bit. For a high assertion level, set this bit. When the timer is disabled
in PWM_OUT mode, the TMRx pin is driven to the deasserted level.

If enabled, a timer interrupt is generated at the end of each period. An
interrupt service routine (ISR) must clear the interrupt latch bit (TIMILx)
and might alter period and/or width values. In pulse-width modulation
(PWM) applications, the software needs to update period and pulse width
values while the timer is running. When software updates either period or
pulse width registers, the new values are held by special buffer registers
until the period expires. Then the new period and pulse width values
become active simultaneously. New TIMERx_PERIOD and TIMERx_WIDTH reg-
ister values are written while the old values are being used. The new values
are loaded in to be used when the timer counter value equals the current
timer period value. Reads from TIMERx_PERIOD and TIMERx_WIDTH registers
return the old values until the period expires.

The TOVF_ERRx status bit signifies an error condition in PWM_OUT mode.
The TOVF_ERRx bit is set if TIMERx_PERIOD = 0 or TIMERx_PERIOD = 1 at
startup, or when the timer counter register rolls over. It is also set when
the timer counter register rolls over if the TIMERx_WIDTH register is greater
than or equal to the TIMERx_PERIOD register. The ERR_TYP bits are set when
the TOVF_ERRx bit is set.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 16-19

Timers

To generate the maximum frequency on the TMRx output pin, set the
period value to 2 and the pulse width to 1. This makes TMRx toggle each
SCLK clock, producing a duty cycle of 50%. The period may be pro-

grammed to any value from 2 to (232 – 1), inclusive. The pulse width may
be programmed to any value from 1 to (Period – 1), inclusive. When
PERIOD_CNT = 0, the pulse width may be programmed to any value from 1

to (232 – 1), inclusive.

Although the hardware reports an error if the TIMERx_WIDTH value equals
the TIMERx_PERIOD value, this is still a valid operation to implement PWM
patterns with 100% duty cycle. If doing so, software must generally ignore
the TOVL_ERRx flags. Pulse width values greater than the period value are
not recommended. Similarly, TIMERx_WIDTH = 0 is not a valid operation.
Duty cycles of 0% are not supported.

Stopping the Timer in PWM_OUT Mode

In all PWM_OUT mode variants, the timer treats a disable operation (W1C to
TIMER_DISABLE) as a “stop is pending” condition. When disabled, it auto-
matically completes the current waveform and then stops cleanly. This
prevents truncation of the current pulse and unwanted PWM patterns at
the TMRx pin. The processor can determine when the timer stops running
by polling for the corresponding TRUNx bit in the TIMER_STATUS register to
read 0 or by waiting for the last interrupt (if enabled). Note the timer can-
not be reconfigured (TIMERx_CONFIG cannot be written to a new value)
until after the timer stops and TRUNx reads 0.

In PWM_OUT single pulse mode (PERIOD_CNT = 0), it is not necessary to
write TIMER_DISABLE to stop the timer. At the end of the pulse, the timer
stops automatically, the corresponding bit in TIMER_ENABLE (and
TIMER_DISABLE) is cleared, and the corresponding TRUNx bit is cleared. See
Figure 16-11. To generate multiple pulses, write a 1 to TIMER_ENABLE,
wait for the timer to stop, then write another 1 to TIMER_ENABLE.

Using the Timer

16-20 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

If necessary, the processor can force a timer in PWM_OUT mode to stop
immediately. Do this by first writing a 1 to the corresponding bit in
TIMER_DISABLE, and then writing a 1 to the corresponding TRUNx bit in
TIMER_STATUS. This stops the timer whether the pending stop was waiting
for the end of the current period (PERIOD_CNT = 1) or the end of the cur-
rent pulse width (PERIOD_CNT = 0). This feature may be used to regain
immediate control of a timer during an error recovery sequence.

 Use this feature carefully, because it may corrupt the PWM pattern
generated at the TMRx pin.

In PWM_OUT continuous pulse mode (PERIOD_CNT = 1), each timer samples
its TIMENx bit at the end of each period. It stops cleanly at the end of the
first period when TIMENx is low. This implies (barring any W1C to TRUNx)
that a timer that is disabled and then re-enabled all before the end of the
current period will continue to run as if nothing happened. Typically,
software should disable a PWM_OUT timer and then wait for it to stop itself.
The timer will always stop at the end of the first pulse when
PERIOD_CNT = 0.

Externally Clocked PWM_OUT

By default, the timer is clocked internally by SCLK. Alternatively, if the
CLK_SEL bit in the timer configuration (TIMERx_CONFIG) register is set,
then the timer is clocked by PWM_CLK. The PWM_CLK is normally input from
the PF1 pin, but may be taken from the PPI_CLK pin when the timers are
configured to work with the PPI. Different timers may receive different
signals on their PWM_CLK inputs, depending on configuration. As selected
by the PERIOD_CNT bit, the PWM_OUT mode either generates pulse-width
modulation waveforms or generates a single pulse with pulse width
defined by the TIMERx_WIDTH register.

When CLK_SEL is set, the counter resets to 0x0 at startup and increments
on each rising edge of PWM_CLK. The TMRx pin transitions on rising edges
of PWM_CLK. There is no way to select the falling edges of PWM_CLK. In this
mode, the PULSE_HI bit controls only the polarity of the pulses produced.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 16-21

Timers

The timer interrupt may occur slightly before the corresponding edge on
the TMRx pin (the interrupt occurs on an SCLK edge, the pin transitions on
a later PWM_CLK edge). It is still safe to program new period and pulse
width values as soon as the interrupt occurs. After a period expires, the
counter rolls over to a value of 0x1.

The PWM_CLK clock waveform is not required to have a 50% duty cycle, but
the minimum PWM_CLK clock low time is one SCLK period, and the mini-
mum PWM_CLK clock high time is one SCLK period. This implies the
maximum PWM_CLK clock frequency is SCLK/2.

The PF1 pin can only clock the timer when PF1 functions as an input pin.
When any timer is in PWM_OUT mode with CLK_SEL = 1 and TIN_SEL = 0,
then the PF1 bit in the FIO_DIR register is ignored and PF1 is forced to be
an input.

PULSE_HI Toggle Mode

The waveform produced in PWM_OUT mode with PERIOD_CNT = 1 normally
has a fixed assertion time and a programmable deassertion time (via the
TIMERx_WIDTH register). When two timers are running synchronously by
the same period settings, the pulses are aligned to the asserting edge as
shown in Figure 16-13.

The TOGGLE_HI mode enables control of the timing of both the asserting
and deasserting edges of the output waveform produced. The phase
between the asserting edges of two timer outputs is programmable. The
effective state of the PULSE_HI bit alternates every period. The adjacent
active low and active high pulses, taken together, create two halves of a
fully arbitrary rectangular waveform. The effective waveform is still active
high when PULSE_HI is set and active low when PULSE_HI is cleared. The
value of TOGGLE_HI has no effect unless the mode is PWM_OUT and
PERIOD_CNT = 1.

Using the Timer

16-22 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

In TOGGLE_HI mode, when PULSE_HI is set, an active low pulse is generated
in the first, third, and all odd-numbered periods, and an active high pulse
is generated in the second, fourth, and all even-numbered periods. When
PULSE_HI is cleared, an active high pulse is generated in the first, third,
and all odd-numbered periods, and an active low pulse is generated in the
second, fourth, and all even-numbered periods.

The deasserted state at the end of one period matches the asserted state at
the beginning of the next period, so the output waveform only transitions
when Count = Pulse Width. The net result is an output waveform pulse
that repeats every two counter periods and is centered around the end of
the first period (or the start of the second period).

Figure 16-14 shows an example with all three timers running with the
same period settings. When software does not alter the PWM settings at
runtime, the duty cycle is 50%. The values of the TIMERx_WIDTH registers
control the phase between the signals.

Figure 16-13. Timers With Pulses Aligned to Asserting Edge

TMR0

TMR1

PERIOD 1

TMR2

TOGGLE_HI = 0
PULSE_HI = 1

TOGGLE_HI = 0
PULSE_HI = 1

TOGGLE_HI = 0
PULSE_HI = 1

TIMER
ENABLE

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 16-23

Timers

Similarly, two timers can generate non-overlapping clocks, by cen-
ter-aligning the pulses while inverting the signal polarity for one of the
timers (See Figure 16-15).

Figure 16-14. Three Timers With Same Period Settings

Figure 16-15. Two Timers With Non-Overlapping Clocks

TMR0

TMR1

TMR2

TIMER
PERIOD 1

TIMER
PERIOD 2

TIMER
PERIOD 3

TIMER
PERIOD 4

WAVEFORM
PERIOD 1

WAVEFORM
PERIOD 2

TIMER
ENABLE

ACTIVE
LOW

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
LOW

ACTIVE
LOW

ACTIVE
LOW

ACTIVE
LOW

ACTIVE
LOW

TOGGLE_HI = 1
PULSE_HI = 1

TOGGLE_HI = 1
PULSE_HI = 1

TOGGLE_HI = 1
PULSE_HI = 1

TMR0

TMR1

WAVEFORM
PERIOD 1

WAVEFORM
PERIOD 2

TIMER
ENABLE

ACTIVE
LOW

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
LOW

ACTIVE
LOW

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
LOW

TOGGLE_HI = 1
PULSE_HI = 0

TOGGLE_HI = 1
PULSE_HI = 1

TIMER
PERIOD 1

TIMER
PERIOD 2

TIMER
PERIOD 3

TIMER
PERIOD 4

Using the Timer

16-24 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

When TOGGLE_HI = 0, software updates the TIMERx_PERIOD and
TIMERx_WIDTH registers once per waveform period. When TOGGLE_HI = 1,
software updates the TIMERx_PERIOD and TIMERx_WIDTH registers twice per
waveform period with values that are half as large. In odd-numbered peri-
ods, write (Period – Width) instead of Width to the TIMERx_WIDTH register
in order to obtain center-aligned pulses.

For example, if the pseudo-code when TOGGLE_HI = 0 is:

int period, width ;

for (;;) {

period = generate_period(...) ;

width = generate_width(...) ;

waitfor (interrupt) ;

write(TIMERx_PERIOD, period) ;

write(TIMERx_WIDTH, width) ;

}

Then when TOGGLE_HI = 1, the pseudo-code would be:

int period, width ;

int per1, per2, wid1, wid2 ;

for (;;) {

period = generate_period(...) ;

width = generate_width(...) ;

per1 = period/2 ;

wid1 = width/2 ;

per2 = period/2 ;

wid2 = width/2 ;

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 16-25

Timers

waitfor (interrupt) ;

write(TIMERx_PERIOD, per1) ;

write(TIMERx_WIDTH, per1 - wid1) ;

waitfor (interrupt) ;

write(TIMERx_PERIOD, per2) ;

write(TIMERx_WIDTH, wid2) ;

}

As shown in this example, the pulses produced do not need to be symmet-
ric (wid1 does not need to equal wid2). The period can be offset to adjust
the phase of the pulses produced (per1 does not need to equal per2).

The timer slave enable bit (TRUNx bit in the TIMER_STATUS register) is
updated only at the end of even-numbered periods in TOGGLE_HI mode.
When TIMER_DISABLE is written to 1, the current pair of counter periods
(one waveform period) completes before the timer is disabled.

As when TOGGLE_HI = 0, errors are reported if:

TIMERx_WIDTH >= TIMERx_PERIOD, TIMERx_PERIOD = 0, or
TIMERx_PERIOD = 1

Pulse Width Count and Capture (WDTH_CAP) Mode
In WDTH_CAP mode, the TMRx pin is an input pin (see Figure 16-16). The
internally clocked timer is used to determine the period and pulse width
of externally applied rectangular waveforms. Setting the TMODE field to
b#10 in the TIMERx_CONFIG (timer configuration register) enables this
mode.

When enabled in this mode, the timer resets the count in the
TIMERx_COUNTER register to 0x0000 0001 and does not start counting until
it detects a leading edge on the TMRx pin.

Using the Timer

16-26 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

When the timer detects the first leading edge, it starts incrementing.
When it detects a trailing edge of a waveform, the timer captures the cur-
rent 32-bit value of the TIMERx_COUNTER register into the width buffer
register. At the next leading edge, the timer transfers the current 32-bit
value of the TIMERx_COUNTER register into the period buffer register. The
count register is reset to 0x0000 0001 again, and the timer continues
counting and capturing until it is disabled.

In this mode, software can measure both the pulse width and the pulse
period of a waveform. To control the definition of leading edge and trail-
ing edge of the TMRx pin, the PULSE_HI bit in the TIMERx_CONFIG register is

Figure 16-16. Timer Flow Diagram, WDTH_CAP Mode

SCLK

TIMER_ENABLE

RESET

INTERRUPT

PERIOD_CNT

TMRx

INTERRUPT
LOGIC

PULSE_HI

TOVF_ERR

TMRx

PULSE_HI

TRAILING
EDGE

DETECT

DATA BUS

LEADING
EDGE

DETECT

TIMERx_COUNTER

TIMERx_WIDTHTIMERx_PERIOD

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 16-27

Timers

set or cleared. If the PULSE_HI bit is cleared, the measurement is initiated
by a falling edge, the timer counter register is captured to the timer pulse
width buffer register on the rising edge, and the timer period is captured
on the next falling edge. When the PULSE_HI bit is set, the measurement is
initiated by a rising edge, the timer counter register is captured to the
timer pulse width buffer register on the falling edge, and the timer period
is captured on the next rising edge.

In WDTH_CAP mode, these three events always occur at the same time as one
unit:

1. The TIMERx_PERIOD register is updated from the period buffer
register.

2. The TIMERx_WIDTH register is updated from the width buffer
register.

3. The timer interrupt latch bit (TIMILx) gets set (if enabled) but does
not generate an error.

The PERIOD_CNT bit in the TIMERx_CONFIG register controls the point in
time at which this set of transactions is executed. Taken together, these
three events are called a measurement report. The timer counter overflow
error latch bit (TOVF_ERRx) does not get set at a measurement report. A
measurement report occurs at most once per input signal period.

The current timer counter value is always copied to the width buffer and
period buffer registers at the trailing and leading edges of the input signal,
respectively, but these values are not visible to software. A measurement
report event samples the captured values into visible registers and sets the
timer interrupt to signal that TIMERx_PERIOD and TIMERx_WIDTH are ready
to be read. When the PERIOD_CNT bit is set, the measurement report occurs
just after the period buffer register captures its value (at a leading edge).
When the PERIOD_CNT bit is cleared, the measurement report occurs just
after the width buffer register captures its value (at a trailing edge).

Using the Timer

16-28 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

If the PERIOD_CNT bit is set and a leading edge occurred (see Figure 16-17),
then the TIMERx_PERIOD and TIMERx_WIDTH registers report the pulse
period and pulse width measured in the period that just ended. If the
PERIOD_CNT bit is cleared and a trailing edge occurred (see Figure 16-18),
then the TIMERx_WIDTH register reports the pulse width measured in the
pulse that just ended, but the TIMERx_PERIOD register reports the pulse
period measured at the end of the previous period.

If the PERIOD_CNT bit is cleared and the first trailing edge occurred, then
the first period value has not yet been measured at the first measurement
report, so the period value is not valid. Reading the TIMERx_PERIOD value
in this case returns 0, as shown in Figure 16-18. To measure the pulse
width of a waveform that has only one leading edge and one trailing edge,
set PERIOD_CNT = 0. If PERIOD_CNT = 1 for this case, no period value is cap-
tured in the period buffer register. Instead, an error report interrupt is
generated (if enabled) when the counter range is exceeded and the counter
wraps around. In this case, both TIMERx_WIDTH and TIMERx_PERIOD read 0
(because no measurement report occurred to copy the value captured in
the width buffer register to TIMERx_WIDTH). See the first interrupt in
Figure 16-19.

 When using the PERIOD_CNT = 0 mode described above to measure
the width of a single pulse, it is recommended to disable the timer
after taking the interrupt that ends the measurement interval. If
desired, the timer can then be re-enabled as appropriate in prepara-
tion for another measurement. This procedure prevents the timer
from free-running after the width measurement and logging errors
generated by the timer count overflowing.

A timer interrupt (if enabled) is generated if the timer counter register
wraps around from 0xFFFF FFFF to 0 in the absence of a leading edge. At
that point, the TOVF_ERRx bit in the TIMER_STATUS register and the ERR_TYP
bits in the TIMERx_CONFIG register are set, indicating a count overflow due
to a period greater than the counter’s range. This is called an error report.
When a timer generates an interrupt in WDTH_CAP mode, either an error has

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 16-29

Timers

occurred (an error report) or a new measurement is ready to be read (a
measurement report), but never both at the same time. The
TIMERx_PERIOD and TIMERx_WIDTH registers are never updated at the time
an error is signaled. Refer to Figure 16-19 and Figure 16-20 for more
information.

Figure 16-17. Example of Period Capture Measurement Report Timing
(WDTH_CAP mode, PERIOD_CNT = 1)

STARTS
COUNTING

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMRx EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

SCLK

1 3 1 2 3 4 6 7 8

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

2 4 5 1X

TIMERx_COUNTER

4

TIMERx_PERIOD BUFFER

2 3

TIMERx_WIDTH BUFFER

4

TIMERx_PERIOD

2

8

8

3

TIMERx_WIDTH

TIMILx

TOVF_ERRx

TIMENx

X 0

X 0

X 0

X 0

MEASUREMENT
REPORT

MEASUREMENT
REPORT

Using the Timer

16-30 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 16-18. Example of Width Capture Measurement Report Timing
(WDTH_CAP mode, PERIOD_CNT = 0)

SCLK

1

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

2 3 5 6 8 3 4 34 7 1 2 1X

TIMERx_COUNTER

8 4

TIMERx_PERIOD BUFFER

3

TIMERx_WIDTH BUFFER

TIMERx_PERIOD

TIMERx_WIDTH

TIMILx

TOVF_ERRx

TIMENx

2

1 2

0 4

3

8

1 2

X 0

X 0

X 0

X 0

STARTS
COUNTING

MEASUREMENT
REPORT

MEASUREMENT
REPORT

MEASUREMENT
REPORT

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMRx EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 16-31

Timers

Both TIMILx and TOVF_ERRx are sticky bits, and software has to explicitly
clear them. If the timer overflowed and PERIOD_CNT = 1, neither the
TIMERx_PERIOD nor the TIMERx_WIDTH register were updated. If the timer

Figure 16-19. Example Timing for Period Overflow Followed by Period
Capture (WDTH_CAP mode, PERIOD_CNT = 1)

STARTS
COUNTING

SCLK

1

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

2 3 1 2 3 40X

TIMERx_COUNTER

4

TIMERx_PERIOD BUFFER

2

TIMERx_WIDTH BUFFER

TIMERx_PERIOD

TIMERx_WIDTH

TIMILx

TOVF_ERRx

TIMENx

4

5

2

ERROR
REPORT

MEASUREMENT
REPORT

0xFFFF
FFFC

0xFFFF
FFFD

0xFFFF
FFFE

0xFFFF
FFFF

X 0

X 0

X 0

X 0

0

2

0

0

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMRx EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

Using the Timer

16-32 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

overflowed and PERIOD_CNT = 0, the TIMERx_PERIOD and TIMERx_WIDTH
registers were updated only if a trailing edge was detected at a previous
measurement report.

Software can count the number of error report interrupts between mea-
surement report interrupts to measure input signal periods longer than

0xFFFF FFFF. Each error report interrupt adds a full 232 SCLK counts to
the total for the period, but the width is ambiguous. For example, in
Figure 16-19 the period is 0x1 0000 0004 but the pulse width could be
either 0x0 0000 0002 or 0x1 0000 0002.

The waveform applied to the TMRx pin is not required to have a 50% duty
cycle, but the minimum TMRx low time is one SCLK period and the mini-
mum TMRx high time is one SCLK period. This implies the maximum TMRx
input frequency is SCLK/2 with a 50% duty cycle. Under these conditions,
the WDTH_CAP mode timer would measure Period = 2 and
Pulse Width = 1.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 16-33

Timers

Figure 16-20. Example Timing for Width Capture Followed by Period
Overflow (WDTH_CAP mode, PERIOD_CNT = 0)

SCLK

1

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

23 1 2 3 40X

TIMERx_COUNTER

4X

TIMERx_PERIOD BUFFER

3

TIMERx_WIDTH BUFFER

TIMERx_PERIOD

TIMERx_WIDTH

TIMILx

TOVF_ERRx

TIMENx

1 2

0

3

0

X 0

X 0

X 0

0

3

0

3

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMRx EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

STARTS
COUNTING

ERROR
REPORT

MEASUREMENT
REPORT

0xFFFF
FFFC

0xFFFF
FFFD

0xFFFF
FFFE

0xFFFF
FFFF

Using the Timer

16-34 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Autobaud Mode

Any one of the three timers may provide autobaud detection for the uni-
versal asynchronous receiver/transmitter (UART0). The timer input select
(TIN_SEL) bit in the TIMERx_CONFIG register causes the timer to sample the
UART0 port receive data (RX0) pin instead of the TMRx pin when enabled
for WDTH_CAP mode.

 Do not enable the UART0 until after autobaud detection is
complete.

A software routine can detect the pulse widths of serial stream bit cells.
Because the sample base of the timers is synchronous with UART0 opera-
tion—all derived from the phase-locked loop (PLL) clock—the pulse
widths can be used to calculate the baud rate divider for UART0.

DIVISOR = ((TIMERx_WIDTH) / (16 x Number of captured UART0 bits))

In order to increase the number of timer counts and therefore the resolu-
tion of the captured signal, it is recommended not to measure just the
pulse width of a single bit, but to enlarge the pulse of interest over more
bits. Typically a NULL character (ASCII 0x00) is used in autobaud detec-
tion, as shown in Figure 16-21.

Because the example frame in Figure 16-21 encloses 8 data bits and 1 start
bit, apply the formula:

DIVISOR = TIMERx_WIDTH/(16 x 9)

Figure 16-21. Autobaud Detection Character 0x00

FRAME WIDTH

S 1 2 3 4 5 6 7 STOP

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 16-35

Timers

Real UART0 RX signals often have asymmetrical falling and rising edges,
and the sampling logic level is not exactly in the middle of the signal volt-
age range. At higher bit rates, such pulse width-based autobaud detection
might not return adequate results without additional analog signal condi-
tioning. Measuring signal periods works around this issue and is strongly
recommended.

For example, predefine ASCII character “@” (40h) as an autobaud detec-
tion byte and measure the period between two subsequent falling edges.
As shown in Figure 16-22, measure the period between the falling edge of
the start bit and the falling edge after bit 6. Since this period encloses 8
bits, apply the formula:

DIVISOR = TIMERx_PERIOD/(16 x 8)

External Event (EXT_CLK) Mode
In EXT_CLK mode, the TMRx pin is an input (see Figure 16-23). The timer
works as a counter clocked by an external source, which can also be asyn-
chronous to the system clock. The current count in TIMERx_COUNTER
represents the number of leading edge events detected. Setting the TMODE
field to b#11 in the TIMERx_CONFIG register enables this mode. The
TIMERx_PERIOD register is programmed with the value of the maximum
timer external count.

Figure 16-22. Autobaud Detection Character 0x40

PERIOD

STOPS 1 2 3 4 5 6 7

Using the Timer

16-36 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The waveform applied to the TMRx pin is not required to have a 50% duty
cycle, but the minimum TMRx low time is one SCLK period, and the mini-
mum TMRx high time is one SCLK period. This implies the maximum TMRx
input frequency is SCLK/2.

Period may be programmed to any value from 1 to (232 – 1), inclusive.

After the timer has been enabled, it resets the timer counter register to 0x0
and then waits for the first leading edge on the TMRx pin. This edge causes
the timer counter register to increment to the value 0x1. Every subsequent
leading edge increments the count register. After reaching the period
value, the TIMILx bit is set, and an interrupt is generated. The next leading
edge reloads the timer counter register again with 0x1. The timer contin-
ues counting until it is disabled. The PULSE_HI bit determines whether the
leading edge is rising (PULSE_HI set) or falling (PULSE_HI cleared).

Figure 16-23. Timer Flow Diagram, EXT_CLK Mode

CLOCKTRES

LEADING
EDGE

DETECT

TIMERx_COUNTER

TIMERx_PERIOD

TIMER_ENABLE

INTERRUPT

EQUAL?

Y

PULSE_HI TMRx

DATA BUS

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 16-37

Timers

The configuration bits, TIN_SEL and PERIOD_CNT, have no effect in this
mode. The TOVF_ERRx and ERR_TYP bits are set if the timer counter register
wraps around from 0xFFFF FFFF to 0 or if Period = 0 at startup or when
the timer counter register rolls over (from Count = Period to
Count = 0x1). The TIMERx_WIDTH register is unused.

Using the Timers With the PPI
Up to two timers are used to generate frame sync signals for certain PPI
modes. For detailed instructions on how to configure the timers for use
with the PPI, refer to “Frame Synchronization in GP Modes” on
page 11-28 of the PPI chapter.

Interrupts
Each of the three timers can generate a single interrupt. The three result-
ing interrupt signals are routed to the system interrupt controllers block
for prioritization and masking. The timer status (TIMER_STATUS) register
latches the timer interrupts to provide a means for software to determine
the interrupt source. These bits are W1C and must be cleared prior to a
RTI to assure that the interrupt is not reissued.

To enable interrupt generation, set the IRQ_ENA bit and unmask the inter-
rupt source in the system interrupt mask register (SIC_IMASKx). To poll
the TIMILx bit without interrupt generation, set IRQ_ENA but leave the
interrupt masked. If enabled by IRQ_ENA, interrupt requests are also gener-
ated by error conditions. See Figure 16-24.

The system interrupt controllers enable flexible interrupt handling. All
timers may or may not share the same interrupt channel, so that a single
interrupt routine services more than one timer. In PWM mode, more tim-
ers may run with the same period settings and issue their interrupt
requests simultaneously. In this case, the service routine might clear all
TIMILx latch bits at once by writing 0x07 to the TIMER_STATUS register.

Using the Timer

16-38 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

If interrupts are enabled, make sure that the interrupt service routine
(ISR) clears the TIMILx bit in the TIMERx_STATUS register before the RTI
instruction executes. This ensures that the interrupt is not reissued.
Remember that writes to system registers are delayed. If only a few
instructions separate the TIMILx clear command from the RTI instruction,
an extra SSYNC instruction may be inserted. In EXT_CLK mode, reset the
TIMILx bit in the TIMERx_STATUS register at the very beginning of the
interrupt service routine (ISR) to avoid missing any timer events.

Illegal States
For Table 16-1, these definitions are used:

• Startup. The first clock period during which the timer counter is
running after the timer is enabled by writing TIMER_ENABLE.

• Rollover. The time when the current count matches the value in
TIMERx_PERIOD and the counter is reloaded with the value 1.

• Overflow. The timer counter was incremented instead of doing a
rollover when it was holding the maximum possible count value of
0xFFFF FFFF. The counter does not have a large enough range to
express the next greater value and so erroneously loads a new value
of 0x0000 0000.

• Unchanged. No new error.

• When ERR_TYP is unchanged, it displays the previously
reported error code or 00 if there has been no error since
this timer was enabled.

• When TOVF_ERR is unchanged, it reads 0 if there has been no
error since this timer was enabled, or if software has per-
formed a W1C to clear any previous error. If a previous
error has not been acknowledged by software, TOVF_ERR
reads 1.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 16-39

Timers

Figure 16-24. Timers Interrupt Structure

ERROR EVENT

IRQ_ENA

TIMILx

TIMER
IRQx PROCESSOR

CORE

TMODE
PWM_OUT WDTH_CAP EXT_CLK

TOVF_ERRx

RST RST

SET SET

INTERRUPT
EVENT

RESET

TOVF_ERRx WRITE DATA
TIMILx WRITE DATA

MMR WRITE TO
TIMER_STATUS

COUNTER
OVERFLOW

ILLEGAL
TIMERX_PERIOD

ILLEGAL
TIMERX_WIDTH

10 10PERIOD_CNT

LEADING
EDGE

TRAILING
EDGE

COUNT = WIDTH

COUNT = PERIOD

TMODE
PWM_OUT WDTH_CAP EXT_CLK

SYSTEM
INTERRUPT

CONTROLLER

Using the Timer

16-40 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Software should read TOVF_ERR to check for an error. If TOVF_ERR is set,
software can then read ERR_TYP for more information. Once detected,
software should write 1 to clear TOVF_ERR to acknowledge the error.

The following table can be read as: “In mode __ at event __, if
TIMERx_PERIOD is __ and TIMERx_WIDTH is __, then ERR_TYP is __ and
TOVF_ERR is __.”

 Startup error conditions do not prevent the timer from starting.
Similarly, overflow and rollover error conditions do not stop the
timer. Illegal cases may cause unwanted behavior of the TMRx pin.

Table 16-1. Overview of Illegal States

Mode Event TIMERx_
PERIOD

TIMERx_
WIDTH

ERR_TYP TOVF_ERR

PWM_OUT,
PERIOD_
CNT = 1

Startup
(No boundary
condition tests
performed on
TIMERx_
WIDTH)

== 0 Anything b#10 Set

== 1 Anything b#10 Set

>= 2 Anything Unchanged Unchanged

Rollover == 0 Anything b#10 Set

== 1 Anything b#11 Set

>= 2 == 0 b#11 Set

>= 2 < TIMERx_
PERIOD

Unchanged Unchanged

>= 2 >= TIMERx_
PERIOD

b#11 Set

Overflow, not
possible unless
there is also
another error,
such as
TIMERx_
PERIOD == 0.

Anything Anything b#01 Set

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 16-41

Timers

PWM_OUT,
PERIOD_
CNT = 0

Startup Anything == 0 b#01 Set

This case is not detected at startup, but results in an overflow
error once the counter counts through its entire range.

Anything >= 1 Unchanged Unchanged

Rollover Rollover is not possible in this mode.

Overflow, not
possible unless
there is also
another error,
such as
TIMERx_
WIDTH == 0.

Anything Anything b#01 Set

WDTH_CAP Startup TIMERx_PERIOD and TIMERx_WIDTH are read-only in
this mode, no error possible.

Rollover TIMERx_PERIOD and TIMERx_WIDTH are read-only in
this mode, no error possible.

Overflow Anything Anything b#01 Set

EXT_CLK Startup == 0 Anything b#10 Set

>= 1 Anything Unchanged Unchanged

Rollover == 0 Anything b#10 Set

>= 1 Anything Unchanged Unchanged

Overflow, not
possible unless
there is also
another error,
such as
TIMERx_
PERIOD == 0.

Anything Anything b#01 Set

Table 16-1. Overview of Illegal States (Cont’d)

Mode Event TIMERx_
PERIOD

TIMERx_
WIDTH

ERR_TYP TOVF_ERR

Using the Timer

16-42 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Summary
Table 16-2 summarizes control bit and register usage in each timer mode.

Table 16-2. Control Bit and Register Usage Chart

Bit/Register PWM_OUT Mode WDTH_CAP Mode EXT_CLK Mode

TIMER_ENABLE 1 - Enable timer
0 - No effect

1 - Enable timer
0 - No effect

1 - Enable timer
0 - No effect

TIMER_DISABLE 1 - Disable timer at end
of period
0 - No effect

1 - Disable timer
0 - No effect

1 - Disable timer
0 - No effect

TMODE b#01 b#10 b#11

PULSE_HI 1 - Generate high width
0 - Generate low width

1 - Measure high width
0 - Measure low width

1 - Count rising edges
0 - Count falling edges

PERIOD_CNT 1 - Generate PWM
0 - Single width pulse

1 - Interrupt after mea-
suring period
0 - Interrupt after mea-
suring width

Unused

IRQ_ENA 1 - Enable interrupt
0 - Disable interrupt

1 - Enable interrupt
0 - Disable interrupt

1 - Enable interrupt
0 - Disable interrupt

TIN_SEL Depends on CLK_SEL:

If CLK_SEL = 1,
1 - Count PPI_CLKs
0 - Count PF1 clocks

If CLK_SEL = 0,
Unused

1 - Select RX input
0 - Select TMRx input

Unused

OUT_DIS 1 - Disable TMRx pin
0 - Enable TMRx pin

Unused Unused

CLK_SEL 1 - PWM_CLK clocks
timer
0 - SCLK clocks timer

Unused Unused

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 16-43

Timers

TOGGLE_HI 1 - One waveform
period every two coun-
ter periods
0 - One waveform
period every one coun-
ter period

Unused Unused

ERR_TYP Reports b#00, b#01,
b#10, or b#11, as
appropriate

Reports b#00 or b#01,
as appropriate

Reports b#00, b#01, or
b#10, as appropriate

EMU_RUN 0 - Halt during
emulation
1 - Count during
emulation

0 - Halt during
emulation
1 - Count during
emulation

0 - Halt during
emulation
1 - Count during
emulation

TMR Pin Depends on
OUT_DIS:
1 - Three-state
0 - Output

Depends on TIN_SEL:
1 - Unused
0 - Input

Input

Period R/W: Period value RO: Period value R/W: Period value

Width R/W: Width value RO: Width value Unused

Counter RO: Counts up on
SCLK or PWM_CLK

RO: Counts up on
SCLK

RO: Counts up on
event

TRUNx Read: Timer slave
enable status
Write:
1 - Stop timer if dis-
abled
0 - No effect

Read: Timer slave
enable status
Write:
1 - No effect
0 - No effect

Read: Timer slave
enable status
Write:
1 - No effect
0 - No effect

Table 16-2. Control Bit and Register Usage Chart (Cont’d)

Bit/Register PWM_OUT Mode WDTH_CAP Mode EXT_CLK Mode

Core Timer

16-44 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Core Timer
The core timer is a programmable interval timer which can generate peri-
odic interrupts. The core timer runs at the core clock (CCLK) rate. The
timer includes four core memory mapped registers (MMRs), the timer
control register (TCNTL), the timer count register (TCOUNT), the timer
period register (TPERIOD), and the timer scale register (TSCALE).

TOVF_ERR Set at startup or roll-
over if period = 0 or 1
Set at rollover if width
>= Period
Set if counter wraps

Set if counter wraps Set if counter wraps or
set at startup or roll-
over if period = 0

IRQ Depends on
IRQ_ENA:
1 - Set when
TOVF_ERR set or
when counter equals
period and
PERIOD_CNT = 1 or
when counter equals
width and
PERIOD_CNT = 0
0 - Not set

Depends on
IRQ_ENA:
1 - Set when
TOVF_ERR set or
when counter captures
period and
PERIOD_CNT = 1 or
when counter captures
width and
PERIOD_CNT = 0
0 - Not set

Depends on
IRQ_ENA:
1 - Set when counter
equals period or
TOVF_ERR set
0 - Not set

Table 16-2. Control Bit and Register Usage Chart (Cont’d)

Bit/Register PWM_OUT Mode WDTH_CAP Mode EXT_CLK Mode

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 16-45

Timers

Figure 16-25 provides a block diagram of the core timer.

TCNTL Register
When the timer is enabled by setting the TMREN bit in the core timer con-
trol register (TCNTL), the TCOUNT register is decremented once every
TSCALE + 1 number of clock cycles. When the value of the TCOUNT register
reaches 0, an interrupt is generated and the TINT bit is set in the TCNTL
register. If the TAUTORLD bit in the TCNTL register is set, then the TCOUNT
register is reloaded with the contents of the TPERIOD register and the count
begins again. (See Figure 16-26.)

 The TINT bit in the TCNTL register indicates that an interrupt has
been generated. Note that this is not a W1C bit. Write a 0 to clear
it. However, the write is optional. It is not required to clear inter-
rupt requests. The core timer module does not provide any further
interrupt enable bit. When the timer is enabled, interrupts can be
masked in the CEC controller.

Figure 16-25. Core Timer Block Diagram

DEC

TSCALE

CCLK TIMER ENABLE
AND PRESCALE

LOGIC
ZEROTCOUNT

TCNTL TPERIOD

COUNT REGISTER
LOAD LOGIC

TIMER
INTERRUPT

T
IN

T

T
M

R
E

N

CORE MMR BUS

Core Timer

16-46 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The core timer can be put into low power mode by clearing the TMPWR bit
in the TCNTL register. Before using the timer, set the TMPWR bit. This
restores clocks to the timer unit. When TMPWR is set, the core timer may
then be enabled by setting the TMREN bit in the TCNTL register.

 Hardware behavior is undefined if TMREN is set when TMPWR = 0.

TCOUNT Register
The core timer count register (TCOUNT) decrements once every TSCALE + 1
clock cycles. When the value of TCOUNT reaches 0, an interrupt is generated
and the TINT bit of the TCNTL register is set. (See Figure 16-27.)

Figure 16-26. Core Timer Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0X X X X X X X X X X X X 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

TMPWR

Core Timer Control Register (TCNTL)

Reset = Undefined

TMREN

0 - Puts the timer in low
power mode

1 - Active state. Timer can be
enabled using the TMREN
bit

Meaningful only when
TMPWR = 1
0 - Disable timer
1 - Enable timer

TINT

TAUTORLD

Sticky status bit
0 - Timer has not generated an interrupt
1 - Timer has generated an interrupt

0 - Disable auto-reload feature. When TCOUNT
reaches zero, the timer generates an interrupt and halts

1 - Enable auto-reload feature. When TCOUNT reaches zero
and the timer generates an interrupt, TCOUNT is
automatically reloaded with the contents of TPERIOD
and the timer continues to count

0xFFE0 3000

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 16-47

Timers

TPERIOD Register
When auto-reload is enabled, the TCOUNT register (Figure 16-28) is
reloaded with the value of the core timer period register (TPERIOD) when-
ever TCOUNT reaches 0.

 To ensure that there is valid data in the TPERIOD register, the TPE-
RIOD and TCOUNT registers are initialized simultaneously on the first
write to either register. If a different value is desired for the first
count period, write the data to TCOUNT after writing to TPERIOD.

Figure 16-27. Core Timer Count Register

Figure 16-28. Core Timer Period Register

Core Timer Count Register (TCOUNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

Count Value[31:16]

Count Value[15:0]

0xFFE0 300C

Core Timer Period Register (TPERIOD)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

Period Value[31:16]

Period Value[15:0]

0xFFE0 3004

Watchdog Timer

16-48 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

TSCALE Register
The core timer scale register (TSCALE), shown in Figure 16-29, stores the
scaling value that is one less than the number of cycles between decre-
ments of TCOUNT. For example, if the value in the TSCALE register is 0, the
counter register decrements once every clock cycle. If TSCALE is 1, the
counter decrements once every two cycles.

Watchdog Timer
The processor includes a 32-bit timer that can be used to implement a
software watchdog function. A software watchdog can improve system
reliability by generating an event to the processor core if the timer expires
before being updated by software. Depending on how the watchdog timer
is programmed, the event that is generated may be a reset, a non-maskable
interrupt, or a general-purpose interrupt. The watchdog timer is clocked
by the system clock (SCLK).

Figure 16-29. Core Timer Scale Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Core Timer Scale Register (TSCALE)

Reset = Undefined

Scale Value

0xFFE0 3008

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 16-49

Timers

Watchdog Timer Operation
To use the watchdog timer:

1. Set the count value for the watchdog timer by writing the count
value into the watchdog count register (WDOG_CNT). Note that load-
ing the WDOG_CNT register while the watchdog timer is not enabled
will also pre-load the WDOG_STAT register.

2. In the watchdog control register (WDOG_CTL), select the event to be
generated upon time-out.

3. Enable the watchdog timer in WDOG_CTL. The watchdog timer then
begins counting down, decrementing the value in the WDOG_STAT
register. When the WDOG_STAT reaches 0, the programmed event is
generated. To prevent the event from being generated, software
must reload the count value from WDOG_CNT to WDOG_STAT by exe-
cuting a write (of any value) to WDOG_STAT, or must disable the
watchdog timer in WDOG_CTL before the watchdog timer expires.

WDOG_CNT Register
The watchdog count register (WDOG_CNT) holds the 32-bit unsigned count
value. The WDOG_CNT register must be accessed with 32-bit read/writes
only. See Figure 16-30.

The WDOG_CNT register holds the programmable count value. A valid write
to the WDOG_CNT register also pre-loads the watchdog counter. For added
safety, the WDOG_CNT register can be updated only when the watchdog
timer is disabled. A write to the watchdog count register while the timer is
enabled does not modify the contents of this register.

Watchdog Timer

16-50 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

WDOG_STAT Register
The 32-bit watchdog status register (WDOG_STAT) contains the current
count value of the watchdog timer. See Figure 16-31. Reads to WDOG_STAT
return the current count value. When the watchdog timer is enabled,
WDOG_STAT is decremented by 1 on each SCLK cycle. When WDOG_STAT
reaches 0, the watchdog timer stops counting and the event selected in the
watchdog control register (WDOG_CTL) is generated.

Figure 16-30. Watchdog Count Register

Figure 16-31. Watchdog Status Register

Watchdog Count Register (WDOG_CNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000 0000

Watchdog Count[31:16]

Watchdog Count[15:0]

0xFFC0 0204

Watchdog Status Register (WDOG_STAT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset = 0x0000 0000

Watchdog status[31:16]

Watchdog status[15:0]

0xFFC0 0208

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 16-51

Timers

Values cannot be stored directly in WDOG_STAT, but are instead copied from
WDOG_CNT. This can happen in two ways.

• While the watchdog timer is disabled, writing the WDOG_CNT register
pre-loads the WDOG_STAT register.

• While the watchdog timer is enabled, writing the WDOG_STAT regis-
ter loads it with the value in WDOG_CNT.

When the processor executes a write (of an arbitrary value) to WDOG_STAT,
the value in WDOG_CNT is copied into WDOG_STAT. Typically, software sets
the value of WDOG_CNT at initialization, then periodically writes to
WDOG_STAT before the watchdog timer expires. This reloads the watchdog
timer with the value from WDOG_CNT and prevents generation of the
selected event.

The WDOG_STAT register is a 32-bit unsigned system memory-mapped regis-
ter that must be accessed with 32-bit reads and writes.

If the user does not reload the counter before SCLK * Count register cycles,
a watchdog interrupt or reset is generated and the TRO bit in the watchdog
control register is set. When this happens the counter stops decrementing
and remains at zero.

If the counter is enabled with a zero loaded to the counter, the TRO bit of
the watchdog control register is set immediately and the counter remains
at zero and does not decrement.

Watchdog Timer

16-52 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

WDMOG_CTL Register
The watchdog control register (WDOG_CTL) is a 16-bit system mem-
ory-mapped register used to control the watchdog timer (see
Figure 16-32).

The ICTL[1:0] field is used to select the event that is generated when the
watchdog timer expires. Note that if the general-purpose interrupt option
is selected, the system interrupt mask register (SIC_IMASKx) should be
appropriately configured to unmask that interrupt. If the generation of
watchdog events is disabled, the watchdog timer operates as described,
except that no event is generated when the watchdog timer expires.

The TMR_EN[7:0] field is used to enable and disable the watchdog timer.
Writing any value other than the disable value into this field enables the
watchdog timer. This multibit disable key minimizes the chance of inad-
vertently disabling the watchdog timer.

Figure 16-32. Watchdog Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 1 0 1 0 1 1 0 1 0 0 0

Watchdog Control Register (WDOG_CTL)

ICTL[1:0]
00 - Generate reset event
01 - Generate NMI
10 - Generate GP interrupt
11 - Disable event

generation

TMR_EN[7:0]
0xAD - Counter disabled
All other values - Counter
enabled

TRO - W1C
0 - Watchdog timer has not expired
1 - Watchdog timer has expired

Reset = 0x0AD00xFFC0 0200

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 16-53

Timers

Software can determine whether the timer has rolled over by interrogating
the TRO status bit of the watchdog control register. This is a sticky bit that
is set whenever the watchdog timer count reaches 0 and cleared only by
disabling the watchdog timer and then writing a 1 to the bit.

 Note that when the processor is in emulation mode, the watchdog
timer counter will not decrement even if it is enabled.

Watchdog Timer

16-54 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 17-1

17 REAL-TIME CLOCK

The real-time clock (RTC) provides a set of digital watch features to the
processor, including time of day, alarm, and stopwatch countdown. It is
typically used to implement either a real-time watch or a life counter.

The RTC watch features are clocked by a 32.768 kHz crystal external to
the processor. The RTC uses dedicated power supply pins and is indepen-
dent of any reset, which enables it to maintain functionality even when
the rest of the processor is powered down.

The RTC input clock is divided down to a 1 Hz signal by a prescaler,
which can be bypassed. When bypassed, the RTC is clocked at the
32.768 kHz crystal rate. In normal operation, the prescaler is enabled.

The primary function of the RTC is to maintain an accurate day count
and time of day. The RTC accomplishes this by means of four counters:

• 60-second counter

• 60-minute counter

• 24-hour counter

• 32768-day counter

The RTC increments the 60-second counter once per second and incre-
ments the other three counters when appropriate. The 32768-day counter
is incremented each day at midnight (0 hours, 0 minutes, 0 seconds).
Interrupts can be issued periodically, either every second, every minute,
every hour, or every day. Each of these interrupts can be independently
controlled.

Interfaces

17-2 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The RTC provides two alarm features, programmed with the RTC alarm
register (RTC_ALARM). The first is a time of day alarm (hour, minute, and
second). When the alarm interrupt is enabled, the RTC generates an inter-
rupt each day at the time specified. The second alarm feature allows the
application to specify a day as well as a time. When the day alarm inter-
rupt is enabled, the RTC generates an interrupt on the day and time
specified. The alarm interrupt and day alarm interrupt can be enabled or
disabled independently.

The RTC provides a stopwatch function that acts as a countdown timer.
The application can program a second count into the RTC stopwatch
count register (RTC_SWCNT). When the stopwatch interrupt is enabled and
the specified number of seconds have elapsed, the RTC generates an
interrupt.

Interfaces
The RTC external interface consists of two clock pins, which together
with the external components form the reference clock circuit for the
RTC. The RTC interfaces internally to the processor system through the
peripheral access bus (PAB), and through the interrupt interface to the
system interrupt controllers (SICx).

The RTC has dedicated power supply pins that power the clock functions
at all times, including when the core power supply is turned off.

RTC Clock Requirements
The RTC timer, shown in Figure 17-1, is clocked by a 32.768 kHz crystal
external to the processor. The RTC system memory-mapped registers
(MMRs) are clocked by this crystal. When the prescaler is disabled, the
RTC MMRs are clocked at the 32.768 kHz crystal frequency. When the
prescaler is enabled, the RTC MMRs are clocked at the 1 Hz rate.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 17-3

Real-Time Clock

There is no way to disable the RTC counters from software. If a given sys-
tem does not require the RTC functionality, then it may be disabled with
hardware tie-offs. Tie the RTXI pin to EGND, tie the RTCVDD pin to EVDD, and
leave the RTXO pin unconnected.

Figure 17-1. RTC Block Diagram

DAYS
COUNTER

DAY
ALARM
EVENT

24 HOURS
EVENT

1

0

9

RTC_ALARM REGISTER

RTC_PREN

EQUAL?

HOURS
COUNTER

MINUTES
COUNTER

SECONDS
COUNTER

HOURS
EVENT

MINUTES
EVENT

SECONDS
EVENT

PRESCALE
COUNTER

5 6 6

9 5 6 6

ALARM
EVENT

Y Y Y Y

RTXI
32.768 kHz

1 Hz
TICK

SET

RST

STOPWATCH
EVENT

STOPWATCH
ENABLE

Y

16

STOPWATCH
COUNTER

WRITE
RTC_SWCNT

EQUAL?

EQUAL 0?

EQUAL? EQUAL?

RTC Programming Model

17-4 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

RTC Programming Model
The RTC programming model consists of a set of system MMRs. Soft-
ware can configure the RTC and can determine the status of the RTC
through reads and writes to these registers. The RTC interrupt control
register (RTC_ICTL) and the RTC interrupt status register (RTC_ISTAT) pro-
vide RTC interrupt management capability.

Note that software cannot disable the RTC counting function. However,
all RTC interrupts can be disabled, or masked. At reset, all interrupts are
disabled. The RTC state can be read via the system MMR status registers
at any time.

The primary real-time clock functionality, shown in Figure 17-1, consists
of registers and counters that are powered by an independent RTC Vdd
supply. This logic is never reset; it comes up in an unknown state when
RTC Vdd is first powered on.

The RTC also contains logic powered by the same internal Vdd as the pro-
cessor core and other peripherals. This logic contains some control
functionality, holding registers for PAB write data, and prefetched PAB
read data shadow registers for each of the five RTC Vdd-powered registers.
This logic is reset by the same system reset and clocked by the same SCLK
as the other peripherals.

Figure 17-2 shows the connections between the RTC Vdd-powered RTC
MMRs and their corresponding internal Vdd-powered write holding regis-
ters and read shadow registers. In the figure, “REG” means each of the
RTC_STAT, RTC_ALARM, RTC_SWCNT, RTC_ICTL, and RTC_PREN registers. The
RTC_ISTAT register connects only to the PAB.

The rising edge of the 1 Hz RTC clock is the “1 Hz tick”. Software can
synchronize to the 1 Hz tick by waiting for the seconds event flag to set or
by waiting for the seconds interrupt (if enabled).

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 17-5

Real-Time Clock

Register Writes
Writes to all RTC MMRs, except the RTC interrupt status register
(RTC_ISTAT), are saved in write holding registers and then are synchro-
nized to the RTC 1 Hz clock. The write pending status bit in RTC_ISTAT
indicates the progress of the write. The write pending status bit is set when
a write is initiated and is cleared when all writes are complete. The falling
edge of the write pending status bit causes the write complete flag in
RTC_ISTAT to be set. This flag can be configured in RTC_ICTL to cause an
interrupt. Software does not have to wait for writes to one RTC MMR to

Figure 17-2. RTC Register Architecture

FALLING
EDGE DETECT

WRITE
COMPLETE
EVENT

N

1 Hz
TICK

RST

SET
PAB

16/32

REG WRITE
PENDING

REG WRITE
HOLDING

REG READ
SHADOW RTC_ISTAT

REG

161616/32

N

MMR WRITE
TO REG

5

WRITE
PENDING
STATUS

POWERED BY RTC VDD
CLOCKED BY 1 Hz TICK

POWERED BY INTERNAL VDD
CLOCKED BY SCLK

RTC Programming Model

17-6 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

complete before writing to another RTC MMR. The write pending status
bit is set if any writes are in progress, and the write complete flag is set
only when all writes are complete.

 Any writes in progress when peripherals are reset will be aborted.
Do not stop SCLK (enter deep sleep mode) or remove internal Vdd
power until all RTC writes have completed.

 Do not attempt another write to the same register without waiting
for the previous write to complete. Subsequent writes to the same
register are ignored if the previous write is not complete.

 Reading a register that has been written before the write complete
flag is set will return the old value. Always check the write pending
status bit before attempting a read or write.

Write Latency
Writes to the RTC MMRs are synchronized to the 1 Hz RTC clock.
When setting the time of day, do not factor in the delay when writing to
the RTC MMRs. The most accurate method of setting the real-time clock
is to monitor the seconds (1 Hz) event flag or to program an interrupt for
this event and then write the current time to the RTC status register
(RTC_STAT) in the interrupt service routine (ISR). The new value is
inserted ahead of the incrementer. Hardware adds one second to the writ-
ten value (with appropriate carries into minutes, hours and days) and
loads the incremented value at the next 1 Hz tick, when it represents the
then-current time.

Writes posted at any time are properly synchronized to the 1 Hz clock.
Writes complete at the rising edge of the 1 Hz clock. A write posted just
before the 1 Hz tick may not be completed until the 1 Hz tick one second
later. Any write posted in the first 990 ms after a 1 Hz tick will complete
on the next 1 Hz tick, but the simplest, most predictable and

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 17-7

Real-Time Clock

recommended technique is to only post writes to RTC_STAT, RTC_ALARM,
RTC_SWCNT, RTC_ICTL, or RTC_PREN immediately after a seconds interrupt
or event. All five registers may be written in the same second.

W1C bits in the RTC_ISTAT register take effect immediately.

Register Reads
There is no latency when reading RTC MMRs, as the values come from
the read shadow registers. The shadows are updated and ready for reading
by the time any RTC interrupts or event flags for that second are asserted.
Once the internal Vdd logic completes its initialization sequence after SCLK
starts, there is no point in time when it is unsafe to read the RTC MMRs
for synchronization reasons. They always return coherent values, although
the values may be unknown.

Deep Sleep
When the dynamic power management controller (DPMC) state is deep
sleep, all clocks in the system (except RTXI and the RTC 1 Hz tick) are
stopped. In this state, the RTC Vdd counters continue to increment. The
internal Vdd shadow registers are not updated, but neither can they be
read.

During deep sleep state, all bits in RTC_ISTAT are cleared. Events that
occur during deep sleep are not recorded in RTC_ISTAT. The internal Vdd
RTC control logic generates a virtual 1 Hz tick within one RTXI period
(30.52 s) after SCLK restarts. This loads all shadow registers with
up-to-date values and sets the seconds event flag. Other event flags may
also be set. When the system wakes up from deep sleep, whether by an
RTC event or a hardware reset, all of the RTC events that occurred during
that second (and only that second) are reported in RTC_ISTAT.

RTC Programming Model

17-8 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

When the system wakes up from deep sleep state, software does not need
to W1C the bits in RTC_ISTAT. All “write-1-to-clear” bits are already
cleared by hardware. The seconds event flag is set when the RTC internal
Vdd logic has completed its restart sequence. Software should wait until
the seconds event flag is set and then may begin reading or writing any
RTC register.

Prescaler Enable
The single active bit of the RTC prescaler enable register (RTC_PREN) is
written using a synchronization path. Clearing of the bit is synchronized
to the 32.768 kHz clock. This faster synchronization allows the module to
be put into high-speed mode (bypassing the prescaler) without waiting the
full 1 second for the write to complete that would be necessary if the mod-
ule were already running with the prescaler enabled.

When setting the RTC_PREN bit, the first positive edge of the 1 Hz clock
occurs 1 to 2 cycles of the 32.768 kHz clock after the prescaler is enabled.
The write complete status/interrupt works as usual when enabling or dis-
abling the prescale counter. The new RTC clock rate is in effect before the
write complete status is set.

Event Flags

 The unknown values in the registers at powerup can cause event
flags to set before the correct value is written into each of the regis-
ters. By catching the 1 Hz clock edge, the write to RTC_STAT can
occur a full second before the write to RTC_ALARM. This would cause
an extra second of delay between the validity of RTC_STAT and
RTC_ALARM, if the value of the RTC_ALARM out of reset is the same as
the value written to RTC_STAT. Wait for the writes to complete on
these registers before using the flags and interrupts associated with
their values.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 17-9

Real-Time Clock

The following is a list of flags along with the conditions under which they
are valid:

• Seconds (1 Hz) event flag

Always set on the positive edge of the 1 Hz clock and after shadow
registers have updated after waking from deep sleep. This is valid as
long as the RTC 1 Hz clock is running. Use this flag or interrupt to
validate the other flags.

• Write complete

Always valid.

• Write pending status

Always valid.

• Minutes event flag

Valid only after the second field in RTC_STAT is valid. Use the write
complete and write pending status flags or interrupts to validate the
RTC_STAT value before using this flag value or enabling the
interrupt.

• Hours event flag

Valid only after the minute field in RTC_STAT is valid. Use the write
complete and write pending status flags or interrupts to validate the
RTC_STAT value before using this flag value or enabling the
interrupt.

RTC Programming Model

17-10 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• 24 Hours event flag

Valid only after the hour field in RTC_STAT is valid. Use the write
complete and write pending status flags or interrupts to validate the
RTC_STAT value before using this flag value or enabling the
interrupt.

• Stopwatch event flag

Valid only after the RTC_SWCNT register is valid. Use the write com-
plete and write pending status flags or interrupts to validate the
RTC_SWCNT value before using this flag value or enabling the
interrupt.

• Alarm event flag

Valid only after the RTC_STAT and RTC_ALARM registers are valid. Use
the write complete and write pending status flags or interrupts to
validate the RTC_STAT and RTC_ALARM values before using this flag
value or enabling its interrupt.

• Day alarm event flag

Same as Alarm.

Writes posted together at the beginning of the same second take effect
together at the next 1 Hz tick. The following sequence is safe and does not
result in any spurious interrupts from a previous state.

1. Wait for 1 Hz tick.

2. Write 1s to clear the RTC_ISTAT flags for alarm, day alarm, stop-
watch, and/or per-interval.

3. Write new values for RTC_STAT, RTC_ALARM, and/or RTC_SWCNT.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 17-11

Real-Time Clock

4. Write new value for RTC_ICTL with alarm, day alarm, stopwatch,
and/or per-interval interrupts enabled.

5. Wait for 1 Hz tick.

6. New values have now taken effect simultaneously.

Interrupts
The RTC can provide interrupts at several programmable intervals,
including:

• Per second

• Per minute

• Per hour

• Per day

• On countdown from a programmable value

• Daily at a specific time

• On a specific day and time

The RTC can be programmed to provide an interrupt at the completion
of all pending writes to any of the 1 Hz registers (RTC_STAT, RTC_ALARM,
RTC_SWCNT, RTC_ICTL, and RTC_PREN). Interrupts can be individually
enabled or disabled using the RTC interrupt control register (RTC_ICTL).
interrupt status can be determined by reading the RTC interrupt status
register (RTC_ISTAT).

The RTC interrupt is set whenever an event latched into the RTC_ISTAT
register is enabled in the RTC_ICTL register. The pending RTC interrupt is
cleared whenever all enabled and set bits in RTC_ISTAT are cleared, or when
all bits in RTC_ICTL corresponding to pending events are cleared.

RTC Programming Model

17-12 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

As shown in Figure 17-3, the RTC generates an interrupt request (IRQ)
to the processor core for event handling and wake up from a sleep state.
The RTC generates a separate signal for wake up from a deep sleep or
from an internal Vdd power-off state. The deep sleep wake-up signal is
asserted at the 1 Hz tick when any RTC interval event enabled in
RTC_ICTL occurs. The assertion of the deep sleep wake-up signal causes the
processor core clock (CCLK) and the system clock (SCLK) to restart. Any
enabled event that asserts the RTC deep sleep wake-up signal also causes
the RTC IRQ to assert once SCLK restarts.

Figure 17-3. RTC Interrupt Structure

VOLTAGE
REGULATOR

WRITE
COMPLETE
EVENT

1 Hz
TICK

PLL

RTC_ISTAT ICTL READ
SHADOW

RTC_ICTL

7

RTC
IRQ

7

POWERED BY
RTC VDD

7

7

7

DAY,
HOURS,
SECONDS,
STOPWATCH

24 HOURS,
MINUTES,
ALARM,
EVENTS

POWERED BY
INTERNAL VDD

POWERED BY
EXTERNAL VDD

7 SYSTEM
INTERRUPT

CONTROLLER

PROCESSOR
CORE

WRITE
COMPLETE
ENABLE

77

WAKE FROM
DEEP SLEEP

WAKE
FROM
POWER
OFF

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 17-13

Real-Time Clock

RTC Status (RTC_STAT) Register
The RTC status register (RTC_STAT), shown in Figure 17-4, is used to read
or write the current time. Reads return a 32-bit value that always reflects
the current state of the days, hours, minutes, and seconds counters. Reads
and writes must be 32-bit transactions; attempted 16-bit transactions
result in an MMR error. Reads always return a coherent 32-bit value. The
hours, minutes, and seconds fields are usually set to match the real time of
day. The day counter value is incremented every day at midnight to record
how many days have elapsed since it was last modified. Its value does not
correspond to a particular calendar day. The 15-bit day counter provides a
range of 89 years, 260 or 261 days (depending on leap years) before it
overflows.

After the 1 Hz tick, program RTC_STAT with the current time. At the next
1 Hz tick, RTC_STAT takes on the new, incremented value. For example:

1. Wait for 1 Hz tick.

2. Read RTC_STAT, get 10:45:30.

3. Write RTC_STAT to current time, 13:10:59.

4. Read RTC_STAT, still get old time 10:45:30.

5. Wait for 1 Hz tick.

6. Read RTC_STAT, get new current time, 13:11:00.

RTC Interrupt Control (RTC_ICTL) Register

17-14 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

RTC Interrupt Control (RTC_ICTL) Register
The eight RTC interrupt events (see Figure 17-5) can be individually
masked or enabled by the RTC interrupt control register (RTC_ICTL). The
seconds interrupt is generated on each 1 Hz clock tick, if enabled. The
minutes interrupt is generated at the 1 Hz clock tick that advances the sec-
onds counter from 59 to 0. The hour interrupt is generated at the 1 Hz
clock tick that advances the minute counter from 59 to 0. The 24-hour
interrupt occurs once per 24-hour period at the 1 Hz clock tick that
advances the time to midnight (00:00:00). Any of these interrupts can
generate a wake-up request to the processor, if enabled. All implemented
bits are read/write.

 This register is only partially cleared at reset, so some events may
appear to be enabled initially. However, the RTC interrupt and the
RTC wake up to the PLL are handled specially and are masked

Figure 17-4. RTC Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

Hours[4]
(0-23)

Day Counter[14:0]
(0-32767)

Seconds[5:0]
(0-59)

Minutes[5:0]
(0-59)

Hours[3:0]
(0-23)

Reset = Undefined

RTC Status Register (RTC_STAT)

0xFFC0 0300

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 17-15

Real-Time Clock

(forced low) until after the first write to the RTC_ICTL register is
complete. Therefore, all interrupts act as if they were disabled at
system reset (as if all bits of RTC_ICTL were zero), even thought
some bits of RTC_ICTL may read as nonzero. If no RTC interrupts
are needed immediately after reset, it is recommended to write
RTC_ICTL to 0x0000 so that later read-modify-write accesses will
function as intended.

RTC Interrupt Status (RTC_ISTAT) Register
The RTC interrupt status register (RTC_ISTAT) provides the status of all
RTC interrupts (see Figure 17-6). These bits are sticky. Once set by the
corresponding event, each bit remains set until cleared by a software write
to this register. Event flags are always set; they are not masked by the
interrupt enable bits in RTC_ICTL. Values are cleared by writing a 1 to the
respective bit location, except for the write pending status bit, which is
read-only. Writes of 0 to any bit of the register have no effect. This regis-
ter is cleared at reset and during deep sleep.

Figure 17-5. RTC Interrupt Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X0 0 0 0 0 0 0 0 0 X X X X X X

Stopwatch interrupt
Enable

Alarm interrupt Enable
(Hour, Minute, Second)

Seconds (1Hz) interrupt
Enable

Minutes interrupt
Enable

Write Complete
interrupt Enable

Day Alarm interrupt Enable
(Day, Hour, Minute, Second)

24 Hours interrupt Enable

Hours interrupt Enable

0 - interrupt disabled, 1 - interrupt enabled

Reset = 0x00XX

RTC Interrupt Control Register (RTC_ICTL)

0xFFC0 0304

RTC Stopwatch Count (RTC_SWCNT) Register

17-16 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

RTC Stopwatch Count (RTC_SWCNT)
Register

The RTC stopwatch count register (RTC_SWCNT) contains the countdown
value for the stopwatch (see Figure 17-7). The stopwatch counts down
seconds from the programmed value and generates an interrupt (if
enabled) when the count reaches 0. The counter stops counting at this
point and does not resume counting until a new value is written to
RTC_SWCNT. Once running, the counter may be overwritten with a new
value. This allows the stopwatch to be used as a watchdog timer with a
precision of one second. Writing the running stopwatch to 0 forces it to
stop and interrupt early. The stopwatch event flag is set at the 1 Hz tick at
which any of these occur:

Figure 17-6. RTC Interrupt Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Stopwatch Event Flag
0 - No event
1 - Event occurred

Alarm Event Flag
0 - No event
1 - Event occurred

Seconds (1 Hz) Event Flag
0 - No event
1 - Event occurred

Minutes Event Flag
0 - No event
1 - Event occurred

Hours Event Flag
0 - No event
1 - Event occurred

Write Complete
0 - Writes (if any) not yet

complete
1 - All pending writes

complete

Write Pending
status (RO)
0 - No writes pending
1 - At least one write

pending

Day Alarm Event Flag
0 - No event
1 - Event occurred

24 Hours Event Flag
0 - No event
1 - Event occurred

Reset = 0x0000

RTC Interrupt Status Register (RTC_ISTAT)
All bits are write-1-to-clear, except bit 14

0xFFC0 0308

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 17-17

Real-Time Clock

• The stopwatch counter decrements to 0x0000

• A write of 0x0000 to RTC_SWCNT completes and the stopwatch was
running (current stopwatch count was greater than 0)

• A write of 0x0000 to RTC_SWCNT completes and the stopwatch was
stopped (current stopwatch count was equal to 0)

The register can be programmed to any value between 0 and (216 – 1) sec-
onds. This is a range of 18 hours, 12 minutes, and 15 seconds.

Typically, software should wait for a 1 Hz tick, then write RTC_SWCNT. One
second later, RTC_SWCNT changes to the new value and begins decrement-
ing. Because the register write occupies nearly one second, the time from
writing a value of N until the stopwatch interrupt is nearly N + 1 seconds.
To produce an exact delay, software can compensate by writing N – 1 to
get a delay of nearly N seconds. This implies that you cannot achieve a
delay of 1 second with the stopwatch. Writing a value of 1 immediately
after a 1 Hz tick results in a stopwatch interrupt nearly two seconds later.
To wait one second, software should just wait for the next 1 Hz tick.

The RTC stopwatch count register is not reset. After initial powerup, it
may be running. When the stopwatch is not used, writing it to 0 to force
it to stop saves a small amount of power.

Figure 17-7. RTC Stopwatch Count Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Stopwatch Count
(0 to 65,535)

Reset = Undefined

RTC Stopwatch Count Register (RTC_SWCNT)

0xFFC0 030C

RTC Alarm (RTC_ALARM) Register

17-18 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

RTC Alarm (RTC_ALARM) Register
The RTC alarm register (RTC_ALARM) is programmed by software for the
time (in hours, minutes, and seconds) the alarm interrupt occurs (see
Figure 17-8). Reads and writes can occur at any time. The alarm interrupt
occurs whenever the hour, minute, and second fields first match those of
the RTC status register. The day interrupt occurs whenever the day, hour,
minute, and second fields first match those of the RTC status register.

RTC Prescaler Enable (RTC_PREN)
Register

The RTC prescaler enable register (RTC_PREN) has one active bit (see
Figure 17-9). When this bit is set, the prescaler is enabled, and the RTC
runs at a frequency of 1 Hz. When this bit is cleared, the prescaler is dis-
abled, and the RTC runs at the 32.768 kHz crystal frequency.

Figure 17-8. RTC Alarm Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

Hours[4]
(0 to 23)

Day[14:0]
(0 to 32767)

Seconds[5:0]
(0 to 59)

Minutes[5:0]
(0 to 59)

Hours[3:0]
(0 to 23)

Reset = Undefined

RTC Alarm Register (RTC_ALARM)

0xFFC0 0310

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 17-19

Real-Time Clock

In order for the RTC to operate at the proper rate, software must set the
prescaler enable bit after initial powerup. Write RTC_PREN and then wait
for the write complete event before programming the other registers. It is
safe to write RTC_PREN to 1 every time the processor boots. The first time
sets the bit, and subsequent writes will have no effect, as no state is
changed.

 Do not disable the prescaler by clearing the bit in RTC_PREN with-
out making sure that there are no writes to RTC MMRs in
progress. Do not switch between fast and slow mode during normal
operation by setting and clearing this bit, as this disrupts the accu-
rate tracking of real time by the counters. To avoid these potential
errors, initialize the RTC during startup via RTC_PREN and do not
dynamically alter the state of the prescaler during normal
operation.

Running without the prescaler enabled is provided primarily as a test
mode. All functionality works, just 32,768 times as fast. Typical software
should never program RTC_PREN to 0. The only reason to do so is to syn-
chronize the 1 Hz tick to a more precise external event, as the 1 Hz tick
predictably occurs a few RTXI cycles after a 0 1 transition of RTC_PREN.
Use the following sequence to achieve synchronization to within 100 s.

1. Write RTC_PREN to 0.

2. Wait for the write to complete.

3. Wait for the external event.

;

Figure 17-9. Prescaler Enable Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Prescaler Enable (PREN)

Prescaler Enable Register (RTC_PREN)

Reset = Undefined0xFFC0 0314

State Transitions Summary

17-20 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

4. Write RTC_PREN to 1.

5. Wait for the write to complete.

6. Reprogram the time into RTC_STAT.

State Transitions Summary
Table 17-1 shows how each RTC MMR is affected by the system states.
The phase-locked loop (PLL) states (reset, full on, active, sleep, and deep
sleep) are defined in Chapter 8, “Dynamic Power Management”. “No
Power” means none of the processor power supply pins are connected to a
source of energy. “Off” means the processor core, peripherals, and mem-
ory are not powered (Internal Vdd is off), while the RTC is still powered
and running. External Vdd may still be powered. Registers described as
“As written” are holding the last value software wrote to the register. If the
register has not been written since RTC Vdd power was applied, then the
state is unknown (for all bits of RTC_STAT, RTC_ALARM, and RTC_SWCNT, and
for some bits of RTC_ISTAT, RTC_PREN, and RTC_ICTL).

Table 17-1. Effect of States on RTC MMRs

RTC
Vdd

IVdd System
State

RTC_ICTL RTC_ISTAT RTC_STAT
RTC_SWCNT

RTC_ALARM
RTC_PREN

Off Off No
Power

X X X X

On On Reset As written 0 Counting As written

On On Full On As written Events Counting As written

On On Sleep As written Events Counting As written

On On Active As written Events Counting As written

On On Deep
Sleep

As written 0 Counting As written

On Off Off As written X Counting As written

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 17-21

Real-Time Clock

Table 17-2 summarizes software’s responsibilities with respect to the RTC
at various system state transition events.

Table 17-2. RTC System State Transition Events

At This Event: Execute This Sequence:

Power On from No Power Write RTC_PREN = 1.
Wait for Write Complete.
Write RTC_STAT to current time.
Write RTC_ALARM, if needed.
Write RTC_SWCNT.
Write RTC_ISTAT to clear any pending RTC events.
Write RTC_ICTL to enable any desired RTC interrupts
or to disable all RTC interrupts.

Full On after Reset
or
Full On after Power On from Off

Wait for Seconds Event, or write RTC_PREN = 1 and
wait for Write Complete.
Write RTC_ISTAT to clear any pending RTC events.
Write RTC_ICTL to enable any desired RTC interrupts
or to disable all RTC interrupts.
Read RTC MMRs as required.

Wake from Deep Sleep Wait for Seconds Event flag to set.
Write RTC_ISTAT to acknowledge RTC Deep Sleep
wake-up.
Read RTC MMRs as required.
The PLL state is now Active. Transition to Full On as
needed.

Wake from Sleep If wake-up came from RTC, Seconds Event flag will be
set. In this case, write RTC_ISTAT to acknowledge RTC
wake-up IRQ.
Always, read RTC MMRs as required.

Before Going to Sleep If wake-up by RTC is desired:
Write RTC_ALARM and/or RTC_SWCNT as needed to
schedule a wake-up event.
Write RTC_ICTL to enable the desired RTC interrupt
sources for wake-up.
Wait for Write Complete.
Enable RTC for wake-up in the System interrupt
Wake-up Enable register (SIC_IWRx).

State Transitions Summary

17-22 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Before Going to Deep Sleep Write RTC_ALARM and/or RTC_SWCNT as needed to
schedule a wake-up event.
Write RTC_ICTL to enable the desired RTC event
sources for Deep Sleep wake-up.
Wait for Write Complete.

Before Going to Off Write RTC_ALARM and/or RTC_SWCNT as needed to
schedule a wake-up event.
Write RTC_ICTL to enable any desired RTC event
sources for powerup wake-up.
Wait for Write Complete.
Set the Wake bit in the Voltage Regulator control register
(VR_CTL).

Table 17-2. RTC System State Transition Events (Cont’d)

At This Event: Execute This Sequence:

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-1

18 EXTERNAL BUS INTERFACE
UNIT

The external bus interface unit (EBIU) provides glueless interfaces to
external memories. The processor supports synchronous DRAM
(SDRAM) and is compliant with the PC100 and PC133 SDRAM stan-
dards. The EBIU also supports asynchronous interfaces such as SRAM,
ROM, FIFOs, flash memory, and ASIC/FPGA designs.

Overview
The EBIU services requests for external memory from the core or from a
DMA channel. The priority of the requests is determined by the external
bus controller. The address of the request determines whether the request
is serviced by the EBIU SDRAM controller or the EBIU asynchronous
memory controller.

The EBIU is clocked by the system clock (SCLK). All synchronous memo-
ries interfaced to the processor operate at the SCLK frequency. The ratio
between core frequency and SCLK frequency is programmable using a
phase-locked loop (PLL) system memory-mapped register (MMR). For
more information, see “Core Clock/System Clock Ratio Control” on
page 8-4.

The external memory space is shown in Figure 18-1. One memory region
is dedicated to SDRAM support. SDRAM interface timing and the size of
the SDRAM region are programmable. The SDRAM memory space can
range in size from 16 to 512M byte.

Overview

18-2 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

 For information on how to connect to SDRAMs smaller than
16M byte, see “Using SDRAMs Smaller Than 16M Byte” on
page 21-8.

The start address of the SDRAM memory space is 0x0000 0000. The area
from the end of the SDRAM memory space up to address 0x2000 0000 is
reserved.

The next four regions are dedicated to supporting asynchronous memo-
ries. Each asynchronous memory region can be independently
programmed to support different memory device characteristics. Each
region has its own memory select output pin from the EBIU.

The next region is reserved memory space. References to this region do
not generate external bus transactions. Writes have no effect on external
memory values, and reads return undefined values. The EBIU generates
an error response on the internal bus, which will generate a hardware
exception for a core access or will optionally generate an interrupt from a
DMA channel.

Block Diagram
Figure 18-2 is a conceptual block diagram of the EBIU and its interfaces.
Signal names shown with an overbar are active low signals.

Since only one external memory device can be accessed at a time, control,
address, and data pins for each memory type are multiplexed together at
the pins of the device. The asynchronous memory controller (AMC) and
the SDRAM controller (SDC) effectively arbitrate for the shared pin
resources.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-3

External Bus Interface Unit

Figure 18-1. External Memory Map

0x0000 0000

ASYNC MEMORY BANK 0 (1M Byte)

ASYNC MEMORY BANK 1 (1M Byte)

SDRAM MEMORY
(16M Byte – 512M Byte)

0x2000 0000

0x2010 0000

EXTERNAL MEMORY MAP

0x2040 FFFF

ASYNC MEMORY BANK 2 (1M Byte)
0x2020 0000

0x2030 0000

0xEEFF FFFF

NOTE: RESERVED OFF-CHIP MEMORY AREAS ARE LABELED IN THE DIAGRAM
ABOVE. ALL OTHER OFF-CHIP SYSTEM RESOURCES ARE ADDRESSABLE
BOTH THE CORE AND THE SYSTEM.

ASYNC MEMORY BANK 3 (1M Byte)

RESERVED

RESERVED

Overview

18-4 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Internal Memory Interfaces
The EBIU functions as a slave on three buses internal to the processor:

• External access bus (EAB), mastered by the core memory manage-
ment unit on behalf of external bus requests from the core

• DMA external bus (DEB), mastered by the DMA controller on
behalf of external bus requests from any DMA channel

• Peripheral access bus (PAB), mastered by the core on behalf of sys-
tem MMR requests from the core

These are synchronous interfaces, clocked by SCLK, as are the EBIU and
pads registers. The EAB provides access to both asynchronous external
memory and synchronous DRAM external memory. The external access is
controlled by either the asynchronous memory controller (AMC) or the
SDRAM controller (SDC), depending on the internal address used to

Figure 18-2. External Bus Interface Unit (EBIU)

ABE [1:0]/SDQM [1:0]

EBIU

ASYNCHRONOUS
MEMORY

CONTROLLER
(AMC)

SDRAM
CONTROLLER

(SDC)

E
X

T
E

R
N

A
L

 B
U

S
 C

O
N

T
R

O
L

L
E

R
(E

B
C

)

EAB

PAB

D
E

V
IC

E
P

A
D

S

DATA [15:0]
ADDR [19:1]

AMS [3:0]
ARDY

CLKOUT
SCKE
SA10

BGH

DEB

BG
BR

AOE
ARE
AWE
SMS

SWE

SRAS
SCAS

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-5

External Bus Interface Unit

access the EBIU. Since the AMC and SDC share the same interface to the
external pins, access is sequential and must be arbitrated based on requests
from the EAB.

The third bus (PAB) is used only to access the memory-mapped control
and status registers of the EBIU. The PAB connects separately to the
AMC and SDC; it does not need to arbitrate with or take access cycles
from the EAB bus.

The external bus controller (EBC) logic must arbitrate access requests for
external memory coming from the EAB and DEB buses. The EBC logic
routes read and write requests to the appropriate memory controller based
on the bus selects. The AMC and SDC compete for access to the shared
resources in the pads logic. This competition is resolved in a pipelined
fashion, in the order dictated by the EBC arbiter. Transactions from the
core have priority over DMA accesses in most circumstances. However, if
the DMA controller detects an excessive backup of transactions, it can
request its priority to be temporarily raised above the core.

External Memory Interfaces
Both the AMC and the SDC share the external interface address and data
pins, as well as some of the control signals. These pins are shared:

• ADDR[19:1], address bus

• DATA[15:0], data bus

• ABE[1:0]/SDQM[1:0], AMC byte enables/SDC data masks

• BR, BG, BGH, external bus access control signals

No other signals are multiplexed between the two controllers.

Overview

18-6 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Table 18-1 and Table 18-2 describe the signals associated with each
interface.

Table 18-1. Asynchronous Memory Interface Signals

Pad Pin Type 1

1 Pin Types: I = Input, O = Output

Description

DATA[15:0] I/O External data bus

ADDR[19:1] O External address bus

AMS[3:0] O Asynchronous memory selects

AWE O Asynchronous memory write enable

ARE O Asynchronous memory read enable

AOE O Asynchronous memory output enable
In most cases, the AOE pin should be con-
nected to the OE pin of an external mem-
ory-mapped asynchronous device. Refer to
ADSP-BF538/ADSP-BF538F Embedded Pro-
cessor Data Sheet for specific timing informa-
tion between the AOE and ARE signals to
determine which interface signal should be
used in your system.

ARDY I Asynchronous memory ready response
Note this is a synchronous input

ABE[1:0]/SDQM[1:0] O Byte enables

Table 18-2. SDRAM Interface Signals

Pad Pin Type 1 Description

DATA[15:0] I/O External data bus

ADDR[19:18],
ADDR[16:1]

O External address bus
Connect to SDRAM Address pins. bank address is out-
put on ADDR[19:18] and should be connected to
SDRAM BA[1:0] pins.

SRAS O SDRAM row address strobe pin
Connect to the SDRAM RAS pin.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-7

External Bus Interface Unit

EBIU Programming Model
This section describes the programming model of the EBIU. This model is
based on system memory-mapped registers used to program the EBIU.

There are six control registers and one status register in the EBIU. They
are:

• Asynchronous memory global control register (EBIU_AMGCTL)

• Asynchronous memory bank control 0 register (EBIU_AMBCTL0)

• Asynchronous memory bank control 1 register (EBIU_AMBCTL1)

SCAS O SDRAM column address strobe pin
Connect to the SDRAM CAS pin.

SWE O SDRAM write enable pin
Connect to the SDRAM WE pin.

ABE[1:0]/
SDQM[1:0]

O SDRAM data mask pins
Connect to the SDRAM DQM pins.

SMS O Memory select pin of external memory bank config-
ured for SDRAM
Connect to the SDRAM CS (chip select) pin. Active
low.

SA10 O SDRAM A10 pin
SDRAM interface uses this pin to be able to do
refreshes while the AMC is using the bus. Connect to
the SDRAM A[10] pin.

SCKE O SDRAM clock enable pin
Connect to the SDRAM CKE pin.

CLKOUT O SDRAM clock output pin
Switches at system clock frequency. Connect to the
SDRAM CLK pin.

1 Pin Types: I = Input, O = Output

Table 18-2. SDRAM Interface Signals (Cont’d)

Pad Pin Type 1 Description

Overview

18-8 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• SDRAM memory global control register (EBIU_SDGCTL)

• SDRAM memory bank control register (EBIU_SDBCTL)

• SDRAM refresh rate control register (EBIU_SDRRC)

• SDRAM control status register (EBIU_SDSTAT)

Each of these registers is described in detail in the AMC and SDC sections
later in this chapter.

Error Detection
The EBIU responds to any bus operation which addresses the range of
0x0000 0000 – 0xEEFF FFFF, even if that bus operation addresses
reserved or disabled memory or functions. It responds by completing the
bus operation (asserting the appropriate number of acknowledges as speci-
fied by the bus master) and by asserting the bus error signal for these error
conditions:

• Any access to reserved off-chip memory space

• Any access to a disabled external memory bank

• Any access to an unpopulated area of an SDRAM memory bank

If the core requested the faulting bus operation, the bus error response
from the EBIU is gated into the HWE interrupt internal to the core (this
interrupt can be masked off in the core). If a DMA master requested the
faulting bus operation, then the bus error is captured in that controller
and can optionally generate an interrupt to the core.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-9

External Bus Interface Unit

Asynchronous Memory Interface
The asynchronous memory interface allows a glueless interface to a variety
of memory and peripheral types. These include SRAM, ROM, EPROM,
flash memory, and FPGA/ASIC designs. Four asynchronous memory
regions are supported. Each has a unique memory select associated with it,
shown in Table 18-3.

Asynchronous Memory Address Decode
The address range allocated to each asynchronous memory bank is fixed at
1M byte; however, not all of an enabled memory bank need be populated.
Unlike the SDRAM memory, which may need to support very large mem-
ory structures spanning multiple memory banks, it should be relatively
easy to constrain code and data structures to fit within one of the sup-
ported asynchronous memory banks, because of the nature of the types of
code or data that is stored here.

 Note accesses to unpopulated memory of partially populated AMC
banks do not result in a bus error and will alias to valid AMC
addresses.

The asynchronous memory signals are defined in Table 18-1. The timing
of these pins is programmable to allow a flexible interface to devices of dif-
ferent speeds. For example interfaces, see Chapter 21, “System Design”.

Table 18-3. Asynchronous Memory Bank Address Range

Memory Bank Select Address Start Address End

AMS[3] 2030 0000 203F FFFF

AMS[2] 2020 0000 202F FFFF

AMS[1] 2010 0000 201F FFFF

AMS[0] 2000 0000 200F FFFF

Asynchronous Memory Interface

18-10 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

EBIU_AMGCTL Register
The asynchronous memory global control register (EBIU_AMGCTL), shown
in Figure 18-3, configures global aspects of the controller. It contains
bank enables and other information as described in this section. This reg-
ister should not be programmed while the AMC is in use. The
EBIU_AMGCTL register should be the last control register written to when
configuring the processor to access external memory-mapped asynchro-
nous devices.

For external devices that need a clock, CLKOUT can be enabled by setting
the AMCKEN bit in the EBIU_AMGCTL register. In systems that do not use
CLKOUT, set the AMCKEN bit to 0.

Figure 18-3. Asynchronous Memory Global Control Register

00 0

Asynchronous Memory Global Control Register (EBIU_AMGCTL)

AMBEN[2:0]

AMCKEN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 1 1 1 1 0 1

0 - Disable CLKOUT for
asynchronous memory
region accesses

1 - Enable CLKOUT for
asynchronous memory
region accesses

Enable asynchronous memory banks
000 - All banks disabled
001 - Bank0 enabled
010 - Bank0 and Bank1 enabled
011 - Bank0, Bank1, and Bank2 enabled
1xx - All banks (Bank0, Bank1, Bank2, Bank3)
enabled

Reset = 0x00F20xFFC0 0A00

CDPRIO
0 - Core has priority over DMA

for external accesses
1 - DMA has priority over core

for external accesses

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-11

External Bus Interface Unit

EBIU_AMBCTL0 and EBIU_AMBCTL1 Registers
The EBIU asynchronous memory controller has two asynchronous mem-
ory bank control registers (EBIU_AMBCTL0 and EBIU_AMBCTL1). (See
Figure 18-4 through Figure 18-7.) They contain bits for counters for
setup, strobe, and hold time; bits to determine memory type and size; and
bits to configure use of ARDY. These registers should not be programmed
while the AMC is in use.

The timing characteristics of the AMC can be programmed using these
four parameters:

• Setup: the time between the beginning of a memory cycle (AMS[x]
low) and the read-enable assertion (ARE low) or write-enable asser-
tion (AWE low)

• Read access: the time between read-enable assertion (ARE low) and
deassertion (ARE high)

• Write access: the time between write-enable assertion (AWE low) and
deassertion (AWE high)

• Hold: the time between read-enable deassertion (ARE high) or
write-enable deassertion (AWE high) and the end of the memory
cycle (AMS[x] high)

Each of these parameters can be programmed in terms of EBIU clock
cycles. In addition, there are minimum values for these parameters:

• Setup 1 cycle

• Read access 1 cycle

• Write access 1 cycle

• Hold 0 cycles

Asynchronous Memory Interface

18-12 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 18-4. Asynchronous Memory Bank Control 0 Register (Bits 31–16)

Asynchronous Memory Bank Control 0 Register (EBIU_AMBCTL0)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B1RDYPOL

B1TT[1:0]

B1ST[1:0]

B1RDYEN

B1HT[1:0]

B1RAT[3:0]

B1WAT[3:0]
bank 1 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

bank 1 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

bank 1 hold time (number of cycles between AWE or
ARE deasserted, and AOE deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

bank 1 setup time (number of cycles after AOE
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

bank 1 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

bank 1 ARDY polarity
0 - Transaction completes if

ARDY sampled low
1 - Transition completes if ARDY

sampled high

bank 1 ARDY enable
0 - Ignore ARDY for accesses to

this memory bank
1 - After access time countdown,

use state of ARDY to deter-
mine completion of access

Reset = 0xFFC2 FFC20xFFC0 0A04

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-13

External Bus Interface Unit

Figure 18-5. Asynchronous Memory Bank Control 0 Register (Bits 15–0)

Asynchronous Memory Bank Control 0 Register (EBIU_AMBCTL0)

Reset = 0xFFC2 FFC2
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B0RDYPOL

B0TT[1:0]

B0ST[1:0]

B0RDYEN

B0HT[1:0]

B0RAT[3:0]

B0WAT[3:0]

bank 0 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

bank 0 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

bank 0 hold time (number of cycles between AWE or
ARE deasserted, and AOE deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

bank 0 setup time (number of cycles after AOE
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

bank 0 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

bank 0 ARDY polarity
0 - Transaction completes if

ARDY sampled low
1 - Transition completes if ARDY

sampled high

bank 0 ARDY enable
0 - Ignore ARDY for accesses to

this memory bank
1 - After access time countdown,

use state of ARDY to deter-
mine completion of access

0xFFC0 0A04

Asynchronous Memory Interface

18-14 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 18-6. Asynchronous Memory Bank Control 1 Register (Bits 31–16)

Asynchronous Memory Bank Control 1 Register (EBIU_AMBCTL1)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B3RDYPOL

B3TT[1:0]

B3ST[1:0]

B3RDYEN

B3HT[1:0]

B3RAT[3:0]

B3WAT[3:0]

bank 3 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

bank 3 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

bank 3 hold time (number of cycles between AWE or
ARE deasserted, and AOE deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

bank 3 setup time (number of cycles after AOE
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

bank 3 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

bank 3 ARDY polarity
0 - Transaction completes if

ARDY sampled low
1 - Transition completes if ARDY

sampled high

bank 3 ARDY enable
0 - Ignore ARDY for accesses to

this memory bank
1 - After access time countdown,

use state of ARDY to deter-
mine completion of access

Reset = 0xFFC2 FFC20xFFC0 0A08

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-15

External Bus Interface Unit

Avoiding Bus Contention
Because the three-stated data bus is shared by multiple devices in a system,
be careful to avoid contention. Contention causes excessive power dissipa-
tion and can lead to device failure. Contention occurs during the time one
device is getting off the bus and another is getting on. If the first device is
slow to three-state and the second device is quick to drive, the devices
contend.

There are two cases where contention can occur. The first case is a read
followed by a write to the same memory space. In this case, the data bus
drivers can potentially contend with those of the memory device addressed

Figure 18-7. Asynchronous Memory Bank Control 1 Register (Bits 15–0)

Asynchronous Memory Bank Control 1 Register (EBIU_AMBCTL1)

Reset = 0xFFC2 FFC2
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B2RDYPOL

B2TT[1:0]

B2ST[1:0]

B2RDYEN

B2HT[1:0]

B2RAT[3:0]

B2WAT[3:0]

bank 2 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

bank 2 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

bank 2 hold time (number of cycles between AWE or
ARE deasserted, and AOE deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

bank 2 setup time (number of cycles after AOE
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

bank 2 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

bank 2 ARDY polarity
0 - Transaction completes if

ARDY sampled low
1 - Transition completes if ARDY

sampled high

bank 2 ARDY enable
0 - Ignore ARDY for accesses to

this memory bank
1 - After access time countdown,

use state of ARDY to deter-
mine completion of access

0xFFC0 0A08

Asynchronous Memory Interface

18-16 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

by the read. The second case is back-to-back reads from two different
memory spaces. In this case, the two memory devices addressed by the two
reads could potentially contend at the transition between the two read
operations.

To avoid contention, program the turnaround time (bank transition time)
appropriately in the asynchronous memory bank control registers. This
feature allows software to set the number of clock cycles between these
types of accesses on a bank-by-bank basis. Minimally, the EBIU provides
one cycle for the transition to occur.

ARDY Input Control

Each bank can be programmed to sample the ARDY input after the read or
write access timer has counted down or to ignore this input signal. If
enabled and disabled at the sample window, ARDY can be used to extend
the access time as required. Note ARDY is synchronously sampled,
therefore:

• Assertion and deassertion of ARDY to the processor must meet the
data sheet setup and hold times. Failure to meet these synchronous
specifications could result in meta-stable behavior internally. The
processor’s CLKOUT signal should be used to ensure synchronous
transitions of ARDY.

• The ARDY pin must be stable (either asserted or deasserted) at the
external interface on the cycle before the internal bank counter
reaches 0; that is, more than one CLKOUT cycle before the scheduled
rising edge of AWE or ARE. This will determine whether the access is
extended or not.

• Once the transaction has been extended as a result of ARDY being
sampled in the “busy” state, the transaction will then complete in
the cycle after ARDY is subsequently sampled in the “ready” state.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-17

External Bus Interface Unit

The polarity of ARDY is programmable on a per-bank basis. Since ARDY is
not sampled until an access is in progress to a bank in which the ARDY
enable is asserted, ARDY does not need to be driven by default. For more
information, see “Adding Additional Wait States” on page 18-21.

Programmable Timing Characteristics
This section describes the programmable timing characteristics for the
EBIU. Timing relationships depend on the programming of the AMC,
whether initiation is from the core or from memory DMA (MemDMA),
and the sequence of transactions (read followed by read, read followed by
write, and so on).

Asynchronous Accesses by Core Instructions

Some external memory accesses are caused by core instructions of the type:

R0.L = W[P0++] ; /* Read from external memory, where P0 points

to a location in external memory */

or:

W[P0++] = R0.L ; /* Write to external memory */

Asynchronous Reads

Figure 18-8 shows an asynchronous read bus cycle with timing pro-
grammed as setup = 2 cycles, read access = 2 cycles, hold = 1 cycle, and
transition time = 1 cycle.

Asynchronous read bus cycles proceed as follows.

1. At the start of the setup period, AMS[x], the address bus, and
ABE[1:0] become valid, and AOE asserts.

2. At the beginning of the read access period and after the 2 setup
cycles, ARE asserts.

Asynchronous Memory Interface

18-18 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

3. At the beginning of the hold period, read data is sampled on the
rising edge of the EBIU clock. The ARE pin deasserts after this ris-
ing edge.

4. At the end of the hold period, AOE deasserts unless this bus cycle is
followed by another asynchronous read to the same memory space.
Also, AMS[x] deasserts unless the next cycle is to the same memory
bank.

5. Unless another read of the same memory bank is queued internally,
the AMC appends the programmed number of memory transition
time cycles.

Figure 18-8. Asynchronous Read Bus Cycles

READ

BE

ADDRESS

CLKOUT

ADDR[19:1]

DATA[15:0]

DATA LATCHED

SETUP

2 CYCLES

READ ACCESS

2 CYCLES

HOLD
TRANSITION
TIME

1 CYCLE 1 CYCLE

AOE

ARE

AWE

[X]

[1:0]ABE

AMS

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-19

External Bus Interface Unit

Read access is completed with the AMSx and AOE signals getting deasserted.
There are a few idle cycles before the next read operation starts. The num-
ber of idle cycles is a function of the CCLK/SCLK ratio. The number of idle
cycles is 6 for a CCLK/SCLK ratio of 3, 4 for a CCLK/SCLK ratio of 5, and 3
for a CCLK/SCLK ratio of 10.

Asynchronous Writes

Figure 18-9 shows an asynchronous write bus cycle followed by an asyn-
chronous read cycle to the same bank, with timing programmed as setup =
2 cycles, write access = 2 cycles, read access = 3 cycles, hold = 1 cycle, and
transition time = 1 cycle.

Asynchronous write bus cycles proceed as follows.

1. At the start of the setup period, AMS[x], the address bus, data buses,
and ABE[1:0] become valid.

2. At the beginning of the write access period, AWE asserts.

3. At the beginning of the hold period, AWE deasserts.

Asynchronous read bus cycles proceed as follows.

1. At the start of the setup period, AMS[x], the address bus, and
ABE[1:0] become valid, and AOE asserts.

2. At the beginning of the read access period, ARE asserts.

3. At the beginning of the hold period, read data is sampled on the
rising edge of the EBIU clock. The ARE signal deasserts after this
rising edge.

Asynchronous Memory Interface

18-20 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

4. At the end of the hold period, AOE deasserts unless this bus cycle is
followed by another asynchronous read to the same memory space.
Also, AMS[x] deasserts unless the next cycle is to the same memory
bank.

5. Unless another read of the same memory bank is queued internally,
the AMC appends the programmed number of memory transition
time cycles.

Figure 18-9. Asynchronous Write and Read Bus Cycles

SETUP

2 CYCLES

WRITE ACCESS

2 CYCLES

HOLD

1 CYCLE

SETUP

2 CYCLES

READ ACCESS

3 CYCLES

HOLD

CLKOUT

ADDR[19:1]

DATA[15:0]

TRANSITION
TIME

D2

BE1 BE2

A1 A2

D1

DATA LATCHED

1 CYCLE 1 CYCLE

AOE

ARE

AWE

[X]AMS

[1:0]ABE

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-21

External Bus Interface Unit

Adding Additional Wait States

The ARDY pin is used to insert extra wait states. The input is sampled syn-
chronously with the EBIU internal clock. The EBIU starts sampling ARDY
on the clock cycle before the end of the programmed strobe period. If
ARDY is sampled as deasserted, the access period is extended. The ARDY pin
is then sampled on each subsequent clock edge. Read data is latched on
the clock edge after ARDY is sampled as asserted. The read- or write-enable
remains asserted for one clock cycle after ARDY is sampled as asserted. An
example of this behavior is shown in Figure 18-10, where setup = 2 cycles,
read access = 4 cycles, and hold = 1 cycle. Note the read access period
must be programmed to a minimum of two cycles to make use of the ARDY
input.

Byte Enables

The ABE[1:0] pins are both low during all asynchronous reads and 16-bit
asynchronous writes. When an asynchronous write is made to the upper
byte of a 16-bit memory, ABE1 = 0 and ABE0 = 1. When an asynchronous
write is made to the lower byte of a 16-bit memory, ABE1 = 1 and ABE0 = 0.

On-Chip Flash Memory

The ADSP-BF538F4 and ADSP-BF538F8 processors provide on-chip
flash memory options. This flash memory is a separate die inside the pack-
age, and it can be mapped to any of the four asynchronous memory banks
by connecting the FCE pin to the appropriate AMSx pin. If the FCE pin is
connected to AMS0 pin, the processor will boot from the on-chip flash
memory.

SDRAM Controller (SDC)

18-22 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

SDRAM Controller (SDC)
The SDRAM controller (SDC) enables the processor to transfer data to
and from synchronous DRAM (SDRAM) with a maximum frequency
specified in ADSP-BF538/ADSP-BF538F Embedded Processor Data Sheet.

Figure 18-10. Inserting Wait States Using ARDY

PROGRAMMED READ ACCESS ACCESS EXTENDED

READY SAMPLED

ARDY

EAD

CLKOUT

ADDR[19:1]

DATA[15:0]

[X]

[1:0]

READ D

BE

SETUP

2 CYCLES 4 CYCLES 3 CYCLES

HOLD

1 CYCLE

DATA
LATCHED

ADDRESS

AOE

ARE

AWE

ABE

AMS

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-23

External Bus Interface Unit

The processor supports a glueless interface with one external bank of stan-
dard SDRAMs of 64 Mbit to 512 Mbit, with configurations x4, x8, and
x16, up to a maximum total capacity of 512M bytes of SDRAM. This
bank is controlled by the SMS memory select pin. The interface includes
timing options to support additional buffers between the processor and
SDRAM, to handle the capacitive loads of large memory arrays.

All inputs are sampled and all outputs are valid on the rising edge of the
SDRAM clock output CLKOUT.

The EBIU SDC provides a glueless interface with standard SDRAMs. The
SDRAM controller:

• Supports SDRAMs of 64M bit, 128M bit, 256M bit, and 512M
bit with configurations of x4, x8, and x16

• Supports up to 512M bytes of SDRAM in external SDRAM

• Supports SDRAM page sizes of 512 bytes, 1K byte, 2K byte, and
4K byte

• Supports four internal banks within the SDRAM

• Uses a programmable refresh counter to coordinate between vary-
ing clock frequencies and the refresh rate required by the SDRAM.

• Provides multiple timing options to support additional buffers
between the processor and SDRAM

• Uses a separate pin (SA10) that enables the SDC to pre-charge
SDRAM before issuing an auto-refresh or self-refresh command
while the asynchronous memory controller has control of the EBIU
port

• Supports self-refresh for standard SDRAMs and partial array
self-refresh for mobile SDRAMs

SDRAM Controller (SDC)

18-24 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• Provides two SDRAM power-up options

• Supports interleaved SDRAM bank accesses

Definition of Terms
The following are definitions used in the remainder of this chapter.

Bank Activate Command

The bank activate command causes the SDRAM to open an internal bank
(specified by the bank address) in a row (specified by the row address).
When the bank activate command is issued to the SDRAM, the SDRAM
opens a new row address in the dedicated bank. The memory in the open
internal bank and row is referred to as the open page. The bank activate
command must be applied before a read or write command.

Burst Length

The burst length determines the number of words that the SDRAM device
stores or delivers after detecting a single write or read command, respec-
tively. The burst length is selected by writing certain bits to the SDRAM
mode register during the SDRAM power-up sequence.

 Although the SDC supports only burst length = 1 mode, during a
burst to SDRAM, the SDC applies the read or write command
every cycle and keeps accessing the data. Therefore, the effective
burst length is much greater than 1. In other words, setting burst
length = 1 does not reduce the performance throughput.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-25

External Bus Interface Unit

Burst Stop Command

The burst stop command is one of several ways to terminate or interrupt a
burst read or write operation.

 Since the SDRAM burst length is always hard wired to be 1, the
SDC does not support the burst stop command.

Burst Type

The burst type determines the address order in which the SDRAM deliv-
ers burst data after detecting a read command or stores burst data after
detecting a write command. The burst type is programmed in the
SDRAM during the SDRAM power-up sequence.

 Since the SDRAM burst length is always programmed to be 1, the
burst type does not matter. However, the SDC always sets the
burst type to sequential-accesses-only during the SDRAM
power-up sequence.

CAS Latency (CL)

The column address strobe (CAS) latency is the delay in clock cycles
between when the SDRAM detects the read command and when it pro-
vides the data at its output pins. The CAS latency is programmed in the
SDRAM mode register during the power-up sequence.

The speed grade of the SDRAM and the application’s clock frequency
determine the value of the CAS latency. The SDC can support CAS
latency of two or three clock cycles. The selected CAS latency value must
be programmed into the SDRAM memory global control register
(EBIU_SDGCTL) before the SDRAM power-up sequence. See
“EBIU_SDGCTL Register” on page 18-33.

SDRAM Controller (SDC)

18-26 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

CBR (CAS Before RAS) Refresh or Auto-Refresh

When the SDC refresh counter times out, the SDC pre-charges all four
banks of SDRAM and then issues an auto-refresh command to them. This
causes the SDRAMs to generate an internal CBR refresh cycle. When the
internal refresh completes, all four internal SDRAM banks are
pre-charged.

DQM Pin Mask Function

The SDQM[1:0] pins provide a byte-masking capability on 8-bit writes to
SDRAM. The DQM pins are used to block the input buffer of the SDRAM
during partial write operations. The SDQM[1:0] pins are not used to mask
data on partial read cycles. For write cycles, the data masks have a latency
of zero cycles, permitting data writes when the corresponding SDQM[x]]
pin is sampled low and blocking data writes when the SDQM[x] pin is sam-
pled high on a byte-by-byte basis.

Internal Bank

There are several internal memory banks on a given SDRAM. The SDC
supports interleaved accesses among the internal banks. The bank address
can be thought of as part of the row address. The SDC assumes that all
SDRAMs to which it interfaces have four internal banks and allows each
activated bank to have a unique row address.

Mode Register

SDRAM devices contain an internal configuration register which allows
specification of the SDRAM device’s functionality. After power-up and
before executing a read or write to the SDRAM memory space, the
application must trigger the SDC to write to the SDRAM mode register.
The write to the SDRAM mode register is triggered by writing a 1 to the
PSSE bit in the SDRAM memory global control register (EBIU_SDGCTL)
and then issuing a read or write transfer to the SDRAM address space. The

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-27

External Bus Interface Unit

initial read or write triggers the SDRAM power-up sequence to be run,
which programs the SDRAM mode register with the CAS latency from the
EBIU_SDGCTL register. This initial read or write to SDRAM takes many
cycles to complete.

 Note for most applications, the SDRAM power-up sequence and
writing of the mode register needs to be done only once. Once the
power-up sequence has completed, the PSSE bit should not be set
again unless a change to the mode register is desired. In this case,
refer to “Managing SDRAM Refresh During PLL Transitions” on
page 21-8.

Low power SDRAM devices may also contain an extended mode register.
The EBIU enables programming of the extended mode register during
power-up via the EMREN bit in the EBIU_SDGCTL register.

Page Size

Page size is the amount of memory which has the same row address and
can be accessed with successive read or write commands without needing
to activate another row. The page size can be calculated for 16-bit
SDRAM banks with this formula:

• 16-bit SDRAM banks: page size = 2(CAW + 1)

where CAW is the column address width of the SDRAM, plus 1 because the
SDRAM bank is 16 bits wide (1 address bit = 2 bytes).

Pre-Charge Command

The pre-charge command closes a specific internal bank in the active page
or all internal banks in the page.

SDRAM Controller (SDC)

18-28 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

SDRAM Bank

The SDRAM bank is a region of memory that can be configured to 16M
byte, 32M byte, 64M byte, 128M byte, 256M byte, or 512M byte and is
selected by the SMS pin.

 Do not confuse the “SDRAM internal banks” which are internal to
the SDRAM and are selected with the bank address, with the
“SDRAM bank” or “external bank” that is enabled by the SMS pin.

Self-Refresh

When the SDRAM is in self-refresh mode, the SDRAM internal timer ini-
tiates auto-refresh cycles periodically, without external control input. The
SDC must issue a series of commands including the self-refresh command
to put the SDRAM into this low power mode, and it must issue another
series of commands to exit self-refresh mode. Entering self-refresh mode is
programmable in the SDRAM memory global control register
(EBIU_SDGCTL) and any access to the SDRAM address space causes the
SDC to exit the SDRAM from self-refresh mode. See “Entering and Exit-
ing Self-Refresh Mode (SRFS)” on page 18-38.

tRAS

This is the required delay between issuing a bank activate command and
issuing a pre-charge command, and between the self-refresh command and
the exit from self-refresh. The TRAS bit field in the SDRAM memory
global control register (EBIU_SDGCTL) is 4 bits wide and can be pro-
grammed to be 1 to 15 clock cycles long. “Selecting the Bank Activate
Command Delay (TRAS)” on page 18-41.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-29

External Bus Interface Unit

tRC

This is the required delay between issuing successive bank activate com-
mands to the same SDRAM internal bank. This delay is not directly
programmable. The tRC delay must be satisfied by programming the TRAS
and TRP fields to ensure that tRAS + tRP tRC.

tRCD

This is the required delay between a bank activate command and the start
of the first read or write command. The TRCD bit field in the SDRAM
memory global control register (EBIU_SDGCTL) is 3 bits wide and can be
programmed to be from 1 to 7 clock cycles long.

tRFC

This is the required delay between issuing an auto-refresh command and a
bank activate command and between issuing successive auto-refresh com-
mands. This delay is not directly programmable and is assumed to be
equal to tRC. The tRC delay must be satisfied by programming the TRAS
and TRP fields to ensure that tRAS + tRP tRC.

tRP

This is the required delay between issuing a pre-charge command and:

• issuing a bank activate command

• issuing an auto-refresh command

• issuing a self-refresh command

The TRP bit field in the SDRAM memory global control register
(EBIU_SDGCTL) is 3 bits wide and can be programmed to be 1 to 7 clock
cycles long. “Selecting the Pre-Charge Delay (TRP)” on page 18-42.

SDRAM Controller (SDC)

18-30 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

tRRD

This is the required delay between issuing a bank A activate command and
a bank B activate command. This delay is not directly programmable and
is assumed to be tRCD + 1.

tWR

This is the required delay between a write command (driving write data)
and a pre-charge command. The TWR bit field in the SDRAM memory
global control register (EBIU_SDGCTL) is 2 bits wide and can be pro-
grammed to be from 1 to 3 clock cycles long.

tXSR

This is the required delay between exiting self-refresh mode and issuing
the auto-refresh command. This delay is not directly programmable and is
assumed to be equal to tRC. The tRC delay must be satisfied by program-
ming the TRAS and TRP fields to ensure that tRAS + tRP tRC.

SDRAM Configurations Supported
Table 18-4 shows all possible bank sizes, bank widths and SDRAM dis-
crete component configurations that can be gluelessly interfaced to the
SDC.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-31

External Bus Interface Unit

Example SDRAM System Block Diagrams
Figure 18-11 shows a block diagram of the SDRAM interface. In this
example, the SDRAM interface connects to two 64M bit (x8) SDRAM
devices to form one external bank of 16M bytes of memory. The same
address and control bus feeds both SDRAM devices.

The SDC includes a separate address pin (SA10) to enable the execution
of auto-refresh commands in parallel with any asynchronous memory
access. This separate pin allows the SDC to issue a pre-charge command
to the SDRAM before it issues an auto-refresh command.

Table 18-4. SDRAM Discrete Component Configurations
Supported

System Size
(M byte)

System Size
(M bit)

SDRAM
Configuration

Number of
Chips

8 4M x 16 4M x 4 4

8 4M x 16 4M x 16 1

16 8M x 16 8M x 8 2

16 8M x 16 8M x 16 1

32 16M x 16 16M x 4 4

32 16M x 16 16M x 8 2

32 16M x 16 16M x 16 1

64 32M x 16 32M x 4 4

64 32M x 16 32M x 8 2

64 32M x 16 32M x 16 1

128 64M x 16 64M x 4 4

128 64M x 16 64M x 8 2

128 64M x 16 64M x 16 1

SDRAM Controller (SDC)

18-32 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

In addition, the SA10 pin allows the SDC to enter and exit self-refresh
mode in parallel with any asynchronous memory access. The SA10 pin
(instead of the ADDR[11] pin) should be directly connected to the
SDRAM A10 pin. During the pre-charge command, SA10 is used to indi-
cate that a pre-charge all should be done. During a bank activate
command, SA10 outputs the internal row address bit, which should be
multiplexed to the A10 SDRAM input. During read and write commands,
SA10 is used to disable the auto-pre-charge function of SDRAMs.

 SDRAM systems do not use the ADDR[11] pin.

Figure 18-11. 16M Byte SDRAM System Example

SCKE

BLACKFIN
PROCESSOR

ADDR[19]
ADDR[18]

SA10
ADDR[12,10:1]

SDRAM 2

A13[BS1]

A[10]

CLKOUT

SDQM[0]

DATA[15:0]

A12[BS0]

A[11,9:0]
CKE

CLK
DQM

DQ[7:0]

SDRAM 1

A13[BS1]

A[10]
A12[BS0]

A[11,9:0]
CKE

CLK
DQM

DQ[7:0]

DATA[7:0]

DATA[15:8]

SDQM[1]

SWE
SCAS
SRAS

SMS

WE
CAS
RAS

CS

WE
CAS
RAS

CS

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-33

External Bus Interface Unit

Executing a Parallel Refresh Command

The SDC includes a separate address pin (SA10) to enable the execution of
auto-refresh commands in parallel with any asynchronous memory access.
This separate pin allows the SDC to issue a pre-charge command to the
SDRAM before it issues an auto-refresh command. In addition, the SA10
pin allows the SDC to enter and exit self-refresh mode in parallel with any
asynchronous memory access.

The SA10 pin should be directly connected to the A10 pin of the SDRAM
(instead of to the ADDR[10] pin). During the pre-charge command, SA10 is
used to indicate that a pre-charge all should be done. During a bank
activate command, SA10 outputs the internal row address bit, which
should be multiplexed to the A10 SDRAM input. During read and write
commands, SA10 is used to disable the auto-pre-charge function of
SDRAMs.

EBIU_SDGCTL Register
The SDRAM memory global control register (EBIU_SDGCTL) includes all
programmable parameters associated with the SDRAM access timing and
configuration. Figure 18-12 shows the EBIU_SDGCTL register bit
definitions.

The SCTLE bit is used to enable or disable the SDC. If SCTLE is disabled,
any access to SDRAM address space generates an internal bus error, and
the access does not occur externally. For more information, see “Error
Detection” on page 18-8. When SCTLE is disabled, all SDC control pins
are in their inactive states and the SDRAM clock is not running. The
SCTLE bit must be enabled for SDC operation and is enabled by default at
reset.

SDRAM Controller (SDC)

18-34 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 18-12. SDRAM Memory Global Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 1 1 0 0 0 0 0 0 0 0 0 1 0 0

SDRAM Memory Global Control Register (EBIU_SDGCTL)

TWR[1:0]

PSM

PSSE

TRCD[2:1]
CDDBG

EBUFE

SRFS

control disable during bus grant
0 - Continue driving SDRAM

controls during bus grant
1 - Three-state SDRAM controls

during bus grant

SDRAM timing for external buffering
of address and control
0 - External buffering timing disabled
1 - External buffering timing enabled

SDRAM self-refresh enable
0 - Disable self-refresh
1 - Enable self-refresh during inactivity

SDRAM tRCD in SCLK cycles
000 - Reserved
001-111 - 1 to 7 cycles

SDRAM tWR in SCLK cycles
00 - Reserved
01-11 - 1 to 3 cycles

SDRAM power-up sequence
0 - Pre-charge, 8 CBR refresh

cycles, mode register set
1 - Pre-charge, mode register

set, 8 CBR refresh cycles

SDRAM power-up sequence
start enable. Always reads 0
0 - No effect
1 - Enables SDRAM power-up

sequence on next SDRAM
access

Reset = 0xE008 8849

CL[1:0]

PASR[1:0]

SCTLE

TRAS[3:0]

TRP[2:0]

TRCD
SDRAM tRCD in SCLK cycles
000 - Reserved
001-111 - 1 to 7 cycles

Enable CLKOUT, SRAS,
SCAS, SWE, SDQM[1:0]
0 - Disabled
1 - Enabled

SDRAM tRP in SCLK cycles
000 - No effect
001-111 - 1 to 7 cycles

SDRAM tRAS in SCLK cycles
0000 - No effect
0001-1111 - 1 to 15 cycles

SDRAM CAS latency
00–01 - Reserved
10 - 2 cycles
11 - 3 cycles

Partial array self-refresh in
extended mode register
00 - All 4 banks refreshed
01 - Int banks 0, 1 refreshed
10 - Int bank 0 only refreshed
11 - Reserved

FBBRW
Fast back-to-back read to write
0 - Disabled
1 - Enabled

EMREN
Extended mode register enable
0 - Disabled
1 - Enabled

TCSR
Temperature compensated self-refresh
value in extended mode register
0 - 45 degrees C
1 - 85 degrees C

PUPSD
power-up start delay
0 - No extra delay added

before first Pre-charge
command

1 - Fifteen SCLK cycles of
delay before first
Pre-charge command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 0 0 0 1 0 0 0 0 1 0 0 1 0 0

0xFFC0 0A10

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-35

External Bus Interface Unit

The CAS latency (CL), SDRAM tRAS timing (TRAS), SDRAM tRP timing
(TRP), SDRAM tRCD timing (TRCD), and SDRAM tWR timing (TWR) bits
should be programmed based on the system clock frequency and the tim-
ing specifications of the SDRAM used.

 The user must ensure that tRAS + tRP >= max(tRC,tRFC,tXSR).

The PSM and PSSE bits work together to specify and trigger an SDRAM
power-up (initialization) sequence. If the PSM bit is set to 1, the SDC does
a pre-charge all command, followed by a load mode register command,
and then does eight auto-refresh cycles. If the PSM bit is cleared, the SDC
does a pre-charge all command, followed by eight auto-refresh cycles, and
then a load mode register command. Two events must occur before the
SDC does the SDRAM power-up sequence:

• The PSSE bit must be set to 1 to enable the SDRAM power-up
sequence.

• A read or write access must be done to enabled SDRAM address
space in order to have the external bus granted to the SDC so that
the SDRAM power-up sequence may occur.

The SDRAM power-up sequence occurs and is followed immediately by
the read or write transfer to SDRAM that was used to trigger the SDRAM
power-up sequence. Note there is a latency for this first access to SDRAM
because the SDRAM power-up sequence takes many cycles to complete.

 Before executing the SDC power-up sequence, ensure that the
SDRAM receives stable power and is clocked for the proper
amount of time, as specified by the SDRAM specification.

The power-up start delay bit (PUPSD) optionally delays the power-up start
sequence for 15 SCLK cycles. This is useful for multiprocessor systems shar-
ing an external SDRAM. If the bus has been previously granted to the
other processor before power-up and self-refresh mode is used when
switching bus ownership, then the PUPSD bit can be used to guarantee a

SDRAM Controller (SDC)

18-36 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

sufficient period of inactivity from self-refresh to the first pre-charge com-
mand in the power-up sequence in order to meet the exit self-refresh time
(tXSR) of the SDRAM.

When the SRFS bit is set to 1, self-refresh mode is triggered. Once the
SDC completes any active transfers, the SDC executes the sequence of
commands to put the SDRAM into self-refresh mode. The next access to
an enabled SDRAM bank causes the SDC to execute the commands to
exit the SDRAM from self-refresh and execute the access. See “Entering
and Exiting Self-Refresh Mode (SRFS)” on page 18-38 for more informa-
tion about the SRFS bit.

The EBUFE bit is used to enable or disable external buffer timing. When
buffered SDRAM modules or discrete register-buffers are used to drive the
SDRAM control inputs, EBUFE should be set to 1. Using this setting adds a
cycle of data buffering to read and write accesses. See “Setting the
SDRAM Buffering Timing Option (EBUFE)” on page 18-39 for more
information about the EBUFE bit.

The FBBRW bit enables an SDRAM read followed by write to occur on con-
secutive cycles. In many systems, this is not possible because the turn-off
time of the SDRAM data pins is too long, leading to bus contention with
the succeeding write from the processor. When this bit is 0, a clock cycle is
inserted between read accesses followed immediately by write accesses.

The EMREN bit enables programming of the extended mode register during
startup. The extended mode register is used to control SDRAM power
consumption in certain mobile low power SDRAMs. If the EMREN bit is
enabled, then the TCSR and PASR[1:0] bits control the value written to the
extended mode register. The PASR bits determine how many SDRAM
internal banks are refreshed during self-refresh. The TCSR bit signals to the
SDRAM the worst case temperature range for the system, and thus how
often the SDRAM internal banks need to be refreshed during self-refresh.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-37

External Bus Interface Unit

The CDDBG bit is used to enable or disable the SDRAM control signals
when the external memory interface is granted to an external controller. If
this bit is set to a 1, then the control signals are three-stated when bus
grant is active. Otherwise, these signals continue to be driven during
grant. If the bit is set and the external bus is granted, all SDRAM internal
banks are assumed to have been changed by the external controller. This
means a pre-charge is required on each bank prior to use after control of
the external bus is re-established. The control signals affected by this pin
are SRAS, SCAS, SWE, SMS, SA10, SCKE, and CLKOUT.

Note all reserved bits in this register must always be written with 0s.

Setting the SDRAM Clock Enable (SCTLE)

The SCTLE bit allows software to disable all SDRAM control pins. These
pins are SDQM[3:0], SCAS, SRAS, SWE, SCKE, and CLKOUT.

• SCTLE = 0

Disable all SDRAM control pins (control pins negated, CLKOUT
low)

• SCTLE = 1

Enable all SDRAM control pins (CLKOUT toggles)

Note the CLKOUT function is also shared with the AMC. Even if SCTLE is
disabled, CLKOUT can be enabled independently by the CLKOUT enable in the
AMC (AMCKEN in the EBIU_AMGCTL register).

If the system does not use SDRAM, SCTLE should be set to 0.

If an access occurs to the SDRAM address space while SCTLE is 0, the
access generates an internal bus error and the access does not occur exter-
nally. For more information, see “Error Detection” on page 18-8. With
careful software control, the SCTLE bit can be used in conjunction with

SDRAM Controller (SDC)

18-38 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

self-refresh mode to further lower power consumption. However, SCTLE
must remain enabled at all times when the SDC is needed to generate
auto-refresh commands to SDRAM.

Entering and Exiting Self-Refresh Mode (SRFS)

The SDC supports SDRAM self-refresh mode. In self-refresh mode, the
SDRAM performs refresh operations internally—without external con-
trol—reducing the SDRAM power consumption.

The SRFS bit in EBIU_SDGCTL enables the start of self-refresh mode:

• SRFS = 0

Disable self-refresh mode

• SRFS = 1

Enable self-refresh mode

When SRFS is set to 1, once the SDC enters an idle state it issues a
pre-charge command if necessary, and then issues a self-refresh command.
If an internal access is pending, the SDC delays issuing the self-refresh
command until it completes the pending SDRAM access and any subse-
quent pending access requests. Refer to “SDC Commands” on page 18-55
for more information.

Once the SDRAM device enters into self-refresh mode, the SDRAM con-
troller asserts the SDSRA bit in the SDRAM control status register
(EBIU_SDSTAT).

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-39

External Bus Interface Unit

The SDRAM device exits self-refresh mode only when the SDC receives a
core or DMA access request. In conjunction with the SRFS bit, 2 possibili-
ties are given to exit the self-refresh mode:

• If SRFS bit is set before the request, the SDC exits self-refresh and
remains in auto-refresh mode.

• If SRFS bit is cleared before the request, the SDC exits self-refresh
only for a single request and returns back to self-refresh mode until
a new request is coming.

Note once the SRFS bit is set to 1, the SDC enters self-refresh mode when
it finishes pending accesses. There is no way to cancel the entry to
self-refresh mode.

Setting the SDRAM Buffering Timing Option (EBUFE)

To meet overall system timing requirements, systems that employ several
SDRAM devices connected in parallel may require buffering between the
processor and multiple SDRAM devices. This buffering generally consists
of a register and driver.

To meet such timing requirements and to allow intermediary registration,
the SDC supports pipelining of SDRAM address and control signals.

The EBUFE bit in the EBIU_SDGCTL register enables this mode:

• EBUFE = 0

Disable external buffering timing

• EBUFE = 1

Enable external buffering timing

SDRAM Controller (SDC)

18-40 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

When EBUFE = 1, the SDRAM controller delays the data in write accesses
by one cycle, enabling external buffer registers to latch the address and
controls. In read accesses, the SDRAM controller samples data one cycle
later to account for the one-cycle delay added by the external buffer regis-
ters. When external buffering timing is enabled, the latency of all accesses
is increased by one cycle.

Selecting the CAS Latency Value (CL)

The CAS latency value defines the delay, in number of clock cycles,
between the time the SDRAM detects the read command and the time it
provides the data at its output pins.

CAS latency does not apply to write cycles.

The CL bits in the SDRAM memory global control register (EBIU_SDGCTL)
select the CAS latency value:

• CL = 00

Reserved

• CL = 01

Reserved

• CL = 10

2 clock cycles

• CL = 11

3 clock cycles

Generally, the frequency of operation determines the value of the CAS
latency. For specific information about setting this value, consult the
SDRAM device documentation.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-41

External Bus Interface Unit

Selecting the Bank Activate Command Delay (TRAS)

The tRAS value (bank activate command delay) defines the required delay,
in number of clock cycles, between the time the SDC issues a bank acti-
vate command and the time it issues a pre-charge command. The SDRAM
must also remain in self-refresh mode for at least the time period specified
by tRAS. The tRP and tRAS values define the tRFC, tRC, and tXSR values.
See definition on page 18-28 for more information.

The tRAS parameter allows the processor to adapt to the timing require-
ments of the system’s SDRAM devices.

The TRAS bits in the SDRAM memory global control register
(EBIU_SDGCTL) select the tRAS value. Any value between 1 and 15 clock
cycles can be selected. For example:

• TRAS = 0000

No effect

• TRAS = 0001

1 clock cycle

• TRAS = 0010

2 clock cycles

• TRAS = 1111

15 clock cycles

For specific information on setting this value, consult the SDRAM device
documentation.

SDRAM Controller (SDC)

18-42 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Selecting the RAS to CAS Delay (TRCD)

The tRCD value (RAS to CAS delay) defines the delay for the first read or
write command after a row activate command, in number of clock cycles.
The tRCD parameter allows the processor to adapt to the timing require-
ments of the system’s SDRAM devices.

The tRCD bits in the SDRAM memory global control register
(EBIU_SDGCTL) select the tRCD value. Any value between 1 and 7 clock
cycles may be selected. For example:

• TRCD = reserved

No effect

• TRCD = 001

1 clock cycle

• TRCD = 010

2 clock cycles

• TRCD = 111

7 clock cycles

Selecting the Pre-Charge Delay (TRP)

The tRP value (pre-charge delay) defines the required delay, in number of
clock cycles, between the time the SDC issues a pre-charge command and
the time it issues a bank activate command. The tRP also specifies the time
required between pre-charge and auto-refresh, and between pre-charge
and self-refresh. The tRP and tRAS values define the tRFC, tRC, and tXSR
values.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-43

External Bus Interface Unit

This parameter enables the application to accommodate the SDRAM tim-
ing requirements.

The TRP bits in the SDRAM memory global control register
(EBIU_SDGCTL) select the tRP value. Any value between 1 and 7 clock
cycles may be selected. For example:

• TRP = 000

No effect

• TRP = 001

1 clock cycle

• TRP = 010

2 clock cycles

• TRP = 111

7 clock cycles

Selecting the Write to Pre-Charge Delay (TWR)

The tWR value defines the required delay, in number of clock cycles,
between the time the SDC issues a write command (drives write data) and
a pre-charge command.

This parameter enables the application to accommodate the SDRAM tim-
ing requirements.

SDRAM Controller (SDC)

18-44 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The TWR bits in the SDRAM memory global control register
(EBIU_SDGCTL) select the tWR value. Any value between 1 and 3 clock
cycles may be selected. For example:

• TWR = 00

Reserved

• TWR = 01

1 clock cycle

• TWR = 10

2 clock cycles

• TWR = 11

3 clock cycles

EBIU_SDBCTL Register
The SDRAM memory bank control register (EBIU_SDBCTL), shown in
Figure 18-13, includes external bank-specific programmable parameters.
It allows software to control some parameters of the SDRAM. The exter-
nal bank can be configured for a different size of SDRAM. It uses the
access timing parameters defined in the SDRAM memory global control
register (EBIU_SDGCTL). The EBIU_SDBCTL register should be programmed
before power-up and should be changed only when the SDC is idle.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-45

External Bus Interface Unit

The EBIU_SDBCTL register stores the configuration information for the
SDRAM bank interface. The EBIU supports 64M bit, 128M bit, 256M
bit, and 512M bit SDRAM devices with x4, x8, x16 configurations.
Table 18-4 maps SDRAM density and I/O width to the supported EBSZ
encoding. See “SDRAM External Memory Size” on page 18-50 for more
information on bank starting address decodes.

The SDC determines the internal SDRAM page size from the EBCAW
parameters. Page sizes of 512B, 1K byte, 2K byte, and 4K byte are sup-
ported. Table 18-5 shows the page size and breakdown of the internal
address (IA[31:0], as seen from the core or DMA) into the row, bank, col-
umn, and byte address. The column address and the byte address together
make up the address inside the page.

The EBE bit in the EBIU_SDBCTL register is used to enable or disable the
external SDRAM bank. If the SDRAM is disabled, any access to the
SDRAM address space generates an internal bus error, and the access does
not occur externally. For more information, see “Error Detection” on
page 18-8.

Figure 18-13. SDRAM Memory Bank Control Register

SDRAM Memory Bank Control Register (EBIU_SDBCTL)

EBSZ[1:0]

EBCAW[1:0] EBE
SDRAM external bank enable
0 - Disabled
1 - Enabled

SDRAM external bank size
00 - 16M byte
01 - 32M byte
10 - 64M byte
11 - 128M byte

SDRAM external bank column
address width
00 - 8 bits
01 - 9 bits
10 - 10 bits
11 - 11 bits

Reset = 0x0000
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 00xFFC0 0A14

SDRAM Controller (SDC)

18-46 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

 For information on how to connect to SDRAMs smaller than
16M byte, see “Using SDRAMs Smaller Than 16M Byte” on
page 21-8.

Table 18-5. Internal Address Mapping
B

an
k

Si
ze

(M
 b

yt
e)

E
B

SZ
 b

it
s

C
ol

. A
dd

r.
W

id
th

 (
C

AW
)

E
B

C
AW

 b
it

s

Pa
ge

 S
iz

e
(K

 B
yt

e)

B
an

k
A

dd
re

ss

R
ow

A
dd

re
ss

Page

C
ol

um
n

A
dd

re
ss

B
yt

e
A

dd
re

ss

128 11 4 IA[26:25] IA[24:12] IA[11:1] IA[0]

128 10 2 IA[26:25] IA[24:11] IA[10:1] IA[0]

128 9 1 1A[26:25] IA[24:10] IA[9:1] IA[0]

128 8 .5 IA[26:25] IA[24:9] IA[8:1] IA[0]

64 11 4 IA[25:24] IA[23:12] IA[11:1] IA[0]

64 10 2 IA[25:24] IA[23:11] IA[0]IA[10:1]

64 9 1 IA[25:24] IA[23:10] IA[9:1] IA[0]

64 8 .5 IA[25:24] IA[23:9] IA[8:1] IA[0]

32 11 4 IA[24:23] IA[22:12] IA[11:1] IA[0]

32 10 2 IA[24:23] IA[22:11] IA[0]IA[10:1]

32 9 1 IA[24:23] IA[22:10] IA[9:1] IA[0]

32 8 .5 IA[24:23] IA[22:9] IA[8:1] IA[0]

16 11 4 IA[23:22] IA[21:12] IA[11:1] IA[0]

16 10 2 IA[23:22] IA[21:11] IA[10:1] IA[0]

16 9 1 IA[23:22] IA[21:10] IA[9:1] IA[0]

16 8 .5 IA[23:22] IA[21:9] IA[8:1] IA[0]

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-47

External Bus Interface Unit

EBIU_SDSTAT Register
The SDRAM control status register (EBIU_SDSTAT), shown in
Figure 18-14, provides information on the state of the SDC. This infor-
mation can be used to determine when it is safe to alter SDC control
parameters or it can be used as a debug aid. The SDEASE bit of this register
is sticky. Once it has been set, software must explicitly write a 1 to the bit
to clear it. Writes have no effect on the other status bits, which are
updated by the SDC only. This SDC MMR is 16 bits wide.

EBIU_SDRRC Register
The SDRAM refresh rate control register (EBIU_SDRRC), shown in
Figure 18-15, provides a flexible mechanism for specifying the
auto-refresh timing. Since the clock supplied to the SDRAM can vary, the
SDC provides a programmable refresh counter, which has a period based

Figure 18-14. SDRAM Control Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 1 0 0

SDRAM Control Status Register (EBIU_SDSTAT)

SDSRA

SDPUA

SDCI

SDRS

SDEASE - W1C
SDRAM EAB sticky error status. Write 1
to this bit to clear it.
0 - No error detected
1 - EAB access generated an error

0 - Will not power up on next SDRAM
access (SDRAM already powered up)

1 - Will power up on next SDRAM
access if SDRAM enabled

SDRAM controller idle
0 - SDC is busy performing

an access or an Auto-
Refresh

1 - SDC is idle

SDRAM self-refresh active
0 - SDRAMs not in self-

refresh mode
1 - SDRAMs in self-refresh

mode

SDRAM power-up active
0 - SDC not in power-up

sequence
1 - SDC in power-up

sequence

Reset = 0x0008

BGSTAT
Bus grant status
0 - Bus not granted
1 - Bus granted

0xFFC0 0A1C

SDRAM Controller (SDC)

18-48 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

on the value programmed into the RDIV field of this register. This counter
coordinates the supplied clock rate with the SDRAM device’s required
refresh rate.

The desired delay (in number of SDRAM clock cycles) between consecu-
tive refresh counter time-outs must be written to the RDIV field. A refresh
counter time-out triggers an auto-refresh command to all external
SDRAM devices. Write the RDIV value to the EBIU_SDRRC register before
the SDRAM power-up sequence is triggered. Change this value only when
the SDC is idle.

To calculate the value that should be written to the EBIU_SDRRC register,
use the following equation:

RDIV = ((fSCLK tREF) / NRA) – (tRAS + tRP)

Where:

• fSCLK = SDRAM clock frequency (system clock frequency)

• tREF = SDRAM refresh period

• NRA = number of row addresses in SDRAM (refresh cycles to
refresh whole SDRAM)

• tRAS = active to pre-charge time (TRAS in the SDRAM memory
global control register) in number of clock cycles

• tRP = RAS to pre-charge time (TRP in the SDRAM memory global
control register) in number of clock cycles

Figure 18-15. SDRAM Refresh Rate Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 1 0 0 0 0 0 0 1 1 0 1

SDRAM Refresh Rate Control Register (EBIU_SDRRC)

RDIV

Reset = 0x081A0xFFC0 0A18

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-49

External Bus Interface Unit

This equation calculates the number of clock cycles between required
refreshes and subtracts the required delay between bank activate com-
mands to the same internal bank (tRC = tRAS + tRP). The tRC value is
subtracted, so that in the case where a refresh time-out occurs while an
SDRAM cycle is active, the SDRAM refresh rate specification is guaran-
teed to be met. The result from the equation should always be rounded
down to an integer.

Below is an example of the calculation of RDIV for a typical SDRAM in a
system with a 133 MHz clock:

• fSCLK = 133 MHz

• tREF = 64 ms

• NRA = 4096 row addresses

• tRAS = 2

• tRP = 2

The equation for RDIV yields:

• RDIV = ((133 x 106 x 64 x 10-3)/4096) – (2 + 2) = 2074 clock
cycles

This means RDIV is 0x81A (hex) and the SDRAM refresh rate control reg-
ister should be written with 0x081A.

Note that RDIV must be programmed to a nonzero value if the SDRAM
controller is enabled. When RDIV = 0, operation of the SDRAM controller
is not supported and can produce undesirable behavior. Values for RDIV
can range from 0x001 to 0xFFF.

 Refer to “Managing SDRAM Refresh During PLL Transitions” on
page 21-8 for a detailed discussion of the process for changing the
PLL frequency when using SDRAM.

SDRAM Controller (SDC)

18-50 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

SDRAM External Memory Size
The total amount of external SDRAM memory addressed by the processor
is controlled by the EBSZ bits of the EBIU_SDBCTL register (see Table 18-6).
Accesses above the range shown for a specialized EBSZ value results in an
internal bus error and the access does not occur. For more information,
see “Error Detection” on page 18-8.

SDRAM Address Mapping
To access SDRAM, the SDC multiplexes the internal 32-bit non-multi-
plexed address into a row address, a column address, a bank address, and
the byte data masks for the SDRAM device. See Figure 18-16. The lowest
bit is mapped to byte data masks, the next bits are mapped into the col-
umn address, the next bits are mapped into the row address, and the final
two bits are mapped into the bank address. This mapping is based on the
EBSZ and EBCAW parameters programmed into the SDRAM memory bank
control register.

Table 18-6. External Bank Size Encodings

EBSZ Bank Size (M
byte)

Valid SDRAM Addresses

b#00 16 0x0000 0000 – 0x00FF FFFF

b#01 32 0x0000 0000 – 0x01FF FFFF

b#10 64 0x0000 0000 – 0x03FF FFFF

b#11 128 0x0000 0000 – 0x07FF FFFF

Figure 18-16. Multiplexed SDRAM Addressing Scheme

Internal 32-bit Address

31 26 0

Bank
Address

Column
Address

Row
Address

Byte
Mask

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-51

External Bus Interface Unit

16-Bit Wide SDRAM Address Muxing

Table 18-7 shows the connection of the address pins with the SDRAM
device pins.

Table 18-7. SDRAM Address Connections for 16-Bit Banks

External Address Pin SDRAM Address Pin

ADDR[19] BA[1]

ADDR[18] BA[0]

ADDR[16] A[15]

ADDR[15] A[14]

ADDR[14] A[13]

ADDR[13] A[12]

ADDR[12] A[11]

SA[10] A[10]

ADDR[10] A[9]

ADDR[9] A[8]

ADDR[8] A[7]

ADDR[7] A[6]

ADDR[6] A[5]

ADDR[5] A[4]

ADDR[4] A[3]

ADDR[3] A[2]

ADDR[2] A[1]

ADDR[1] A[0]

SDRAM Controller (SDC)

18-52 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Data Mask (SDQM[1:0]) Encoding
During write transfers to SDRAM, the SDQM[1:0] pins are used to mask
writes to bytes that are not accessed. Table 18-8 shows the SDQM[1:0]
encoding for 16-bit wide SDRAM based on the internal transfer address
bit IA[0] and the transfer size.

During read transfers to SDRAM banks, reads are always done of all bytes
in the bank regardless of the transfer size. This means for 16-bit SDRAM
banks, SDQM[1:0] are all 0s.

The only time that the SDQM[1:0] pins are high is when bytes are masked
during write transfers to the SDRAM. At all other times, the SDQM[1:0]
pins are held low.

SDC Operation
The SDC uses a burst length = 1 for read and write operations. Whenever
a page miss occurs, the SDC executes a pre-charge command followed by a
bank activate command before executing the read or write command. If
there is a page hit, the read or write command can be given immediately
without requiring the pre-charge command.

Table 18-8. SDQM[1:0] Encoding During Writes

Internal Address
IA[0]

Internal Transfer Size

byte 2 bytes 4 bytes

0 SDQM[1] = 1
SDQM[0] = 0

SDQM[1] = 0
SDQM[0] = 0

SDQM[1] = 0
SDQM[0] = 0

1 SDQM[1] = 0
SDQM[0] = 1

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-53

External Bus Interface Unit

For SDRAM read commands, there is a latency from the start of the read
command to the availability of data from the SDRAM, equal to the CAS
latency. This latency is always present for any single read transfer. Subse-
quent reads do not have latency.

A programmable refresh counter is provided. It can be programmed to
generate background auto-refresh cycles at the required refresh rate based
on the clock frequency used. The refresh counter period is specified with
the RDIV field in the SDRAM refresh rate control register.

To allow auto-refresh commands to execute in parallel with any AMC
access, a separate A10 pin (SA10) is provided. All the SDRAM internal
banks are pre-charged before issuing an auto-refresh command.

The internal 32-bit non-multiplexed address is multiplexed into a row
address, a column address, a bank select address, and data masks. Bit0 for
16-bit wide SDRAMs is used to generate the data masks. The next lowest
bits are mapped into the column address, next bits are mapped into the
row address, and the final two bits are mapped into the internal bank
address. This mapping is based on the EBCAW and EBSZ values programmed
into the SDRAM memory bank control register.

SDC Configuration
After a processor’s hardware or software reset, the SDC clocks are enabled;
however, the SDC must be configured and initialized. Before program-
ming the SDC and executing the power-up sequence, ensure the clock to
the SDRAM is enabled after the power has stabilized for the proper
amount of time (as specified by the SDRAM). In order to set up the SDC
and start the SDRAM power-up sequence for the SDRAMs, the SDRAM
refresh rate control register (EBIU_SDRRC), the SDRAM memory bank con-
trol register (EBIU_SDBCTL), and SDRAM memory global control register
(EBIU_SDGCTL) must be written, and a transfer must be started to SDRAM

SDRAM Controller (SDC)

18-54 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

address space. The SDRS bit of the SDRAM control status register can be
checked to determine the current state of the SDC. If this bit is set, the
SDRAM power-up sequence has not been initiated.

The RDIV field of the EBIU_SDRRC register should be written to set the
SDRAM refresh rate.

The EBIU_SDBCTL register should be written to describe the sizes and
SDRAM memory configuration used (EBSZ and EBCAW) and to enable the
external bank (EBE). Note until the SDRAM power-up sequence has been
started, any access to SDRAM address space, regardless of the state of the
EBE bit, generates an internal bus error, and the access does not occur
externally. For more information, see “Error Detection” on page 18-8.
After the SDRAM power-up sequence has completed, if the external bank
is disabled, any transfer to it results in a hardware error interrupt, and the
SDRAM transfer does not occur.

The EBIU_SDGCTL register is written to:

• set the SDRAM cycle timing options (CL, TRAS, TRP, TRCD, TWR,
EBUFE)

• enable the SDRAM clock (SCTLE)

• select and enable the start of the SDRAM power-up sequence
(PSM, PSSE)

Note if SCTLE is disabled, any access to SDRAM address space generates an
internal bus error and the access does not occur externally. For more infor-
mation, see “Error Detection” on page 18-8.

Once the PSSE bit in the EBIU_SDGCTL register is set to 1, and a transfer
occurs to enabled SDRAM address space, the SDC initiates the SDRAM
power-up sequence. The exact sequence is determined by the PSM bit in
the EBIU_SDGCTL register. The transfer used to trigger the SDRAM
power-up sequence can be either a read or a write. This transfer occurs

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-55

External Bus Interface Unit

when the SDRAM power-up sequence has completed. This initial transfer
takes many cycles to complete since the SDRAM power-up sequence must
take place.

SDC Commands
This section provides a description of each of the commands that the SDC
uses to manage the SDRAM interface. These commands are initiated
automatically upon a memory read or memory write. A summary of the
various commands used by the on-chip controller for the SDRAM inter-
face is as follows.

• Pre-charge all: pre-charges all banks

• Single pre-charge: pre-charges a single bank

• Bank activate: activates a page in the required SDRAM internal
bank

• Load mode register: initializes the SDRAM operation parameters
during the power-up sequence

• Load extended mode register: initializes mobile SDRAM operation
parameters during the power-up sequence

• Read/write

• Auto-refresh: causes the SDRAM to execute a CAS before RAS
refresh

• Self-refresh: places the SDRAM in self-refresh mode, in which the
SDRAM powers down and controls its refresh operations internally

• NOP/command inhibit: no operation

SDRAM Controller (SDC)

18-56 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Table 18-9 shows the SDRAM pin state during SDC commands.

Pre-Charge Commands

The pre-charge all command is given to pre-charge all internal banks at
the same time before executing an auto-refresh. For a page miss during
reads or writes in a specific internal SDRAM bank, the SDC uses the sin-
gle pre-charge command to that bank.

Table 18-9. Pin State During SDC Commands

Command SMS SCAS SRAS SWE SCKE SA10

Pre-charge All low high low low high high

Single
Pre-charge

low high low low high low

Bank Activate low high low high high

Load Mode
Register

low low low low high

Load Extended
Mode Register

low low low low high low

Read low low high high high low

Write low low high low high low

Auto-Refresh low low low high high

Self-Refresh low low low high low

NOP low high high high high

Command
Inhibit

high high high high high

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-57

External Bus Interface Unit

Bank Activate Command

The bank activate command is required if the next data access is in a dif-
ferent page. The SDC executes the pre-charge command, followed by a
bank activate command, to activate the page in the desired SDRAM inter-
nal bank.

 The SDC supports bank interleaving (opening up to 4 internal
SDRAM banks at a time). This results in an effective size of 4
pages. The address mapping indicates the start address of each
internal bank.

 Bank interleaving is accomplished by switching between 4 internal
SDRAM banks without any stalls between the pages.

Load Mode Register Command

The load mode register command initializes SDRAM operation parame-
ters. This command is a part of the SDRAM power-up sequence. The load
mode register command uses the address bus of the SDRAM as data input.
The power-up sequence is initiated by writing 1 to the PSSE bit in the
SDRAM memory global control register (EBIU_SDGCTL) and then writing
or reading from any enabled address within the SDRAM address space to
trigger the power-up sequence. The exact order of the power-up sequence
is determined by the PSM bit of the EBIU_SDGCTL register.

The load mode register command initializes these parameters:

• Burst length = 1, bits 2–0, always 0

• Wrap type = sequential, bit 3, always 0

• Ltmode = latency mode (CAS latency), bits 6–4, programmable in
the EBIU_SDGCTL register

• Bits 14–7, always 0

SDRAM Controller (SDC)

18-58 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

While executing the load mode register command, the unused address
pins are set to 0. During the two clock cycles following the load mode reg-
ister command, the SDC issues only NOP commands.

For low power mobile SDRAMs that include an extended mode register,
this register is programmed during power-up sequence if the EMREN bit is
set in the EBIU_SDGCTL register.

The extended mode register is initialized with these parameters:

• Partial array self-refresh, bits 2–0, bit 2 always 0, bits 1–0 program-
mable in EBIU_SDGCTL

• Temperature compensated self-refresh, bits 4–3, bit 3 always 1, bit
4 programmable in EBIU_SDGCTL

• Bits 12–5, always 0, and bit 13 always 1

Read/Write Command

A read/write command is executed if the next read/write access is in the
present active page. During the read command, the SDRAM latches the
column address. The delay between activate and read commands is deter-
mined by the tRCD parameter. Data is available from the SDRAM after
the CAS latency has been met.

In the write command, the SDRAM latches the column address. The
write data is also valid in the same cycle. The delay between activate and
write commands is determined by the tRCD parameter.

The SDC does not use the auto-pre-charge function of SDRAMs, which is
enabled by asserting SA10 high during a read or write command.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-59

External Bus Interface Unit

Auto-Refresh Command

The SDRAM internally increments the refresh address counter and causes
a CAS before RAS (CBR) refresh to occur internally for that address when
the auto-refresh command is given. The SDC generates an auto-refresh
command after the SDC refresh counter times out. The RDIV value in the
SDRAM refresh rate control register must be set so that all addresses are
refreshed within the tREF period specified in the SDRAM timing specifi-
cations. This command is issued to the external bank whether or not it is
enabled (EBE in the SDRAM memory global control register). Before exe-
cuting the auto-refresh command, the SDC executes a pre-charge all
command to the external bank. The next activate command is not given
until the tRFC specification (tRFC = tRAS + tRP) is met.

Auto-refresh commands are also issued by the SDC as part of the
power-up sequence and also after exiting self-refresh mode.

Self-Refresh Command

The self-refresh command causes refresh operations to be performed inter-
nally by the SDRAM, without any external control. This means that the
SDC does not generate any auto-refresh cycles while the SDRAM is in
self-refresh mode. Before executing the self-refresh command, all internal
banks are pre-charged. Self-refresh mode is enabled by writing a 1 to the
SRFS bit of the SDRAM memory global control register (EBIU_SDGCTL).
After issuing the self-refresh command, the SDC drives SCKE low. This
puts the SDRAM into a power down mode (SCKE = 0,
SRAS/SMS/SCAS/SWE = 1) Before exiting self-refresh mode, the SDC asserts
SCKE. The SDRAM remains in self-refresh mode for at least tRAS and until
an internal access to SDRAM space occurs. When an internal access
occurs causing the SDC to exit the SDRAM from self-refresh mode, the
SDC waits to meet the tXSR specification (tXSR = tRAS + tRP) and then
issues an auto-refresh command. After the auto-refresh command, the
SDC waits for the tRFC specification (tRFC = tRAS + tRP) to be met before
executing the activate command for the transfer that caused the SDRAM

SDRAM Controller (SDC)

18-60 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

to exit self-refresh mode. Therefore, the latency from when a transfer is
received by the SDC while in self-refresh mode, until the activate com-
mand occurs for that transfer, is 2 x (tRAS + tRP).

Note CLKOUT is not disabled by the SDC during self-refresh mode. How-
ever, software may disable the clock by clearing the SCTLE bit in the
EBIU_SDGCTL register. The application software should ensure that all
applicable clock timing specifications are met before the transfer to
SDRAM address space which causes the controller to exit self-refresh
mode. If a transfer occurs to SDRAM address space when the SCTLE bit is
cleared, an internal bus error is generated, and the access does not occur
externally, leaving the SDRAM in self-refresh mode. For more informa-
tion, see “Error Detection” on page 18-8.

No Operation/Command Inhibit Commands

The no operation (NOP) command to the SDRAM has no effect on oper-
ations currently in progress. The command inhibit command is the same
as a NOP command; however, the SDRAM is not chip-selected. When
the SDC is actively accessing the SDRAM but needs to insert additional
commands with no effect, the NOP command is given. When the SDC is
not accessing the SDRAM, the command inhibit command is given.

SDRAM Timing Specifications
To support key timing requirements and power-up sequences for different
SDRAM vendors, the SDC provides programmability for tRAS, tRP, tRCD,
tWR, and the power-up sequence mode. (For more information, see
“EBIU_SDGCTL Register” on page 18-33.) CAS latency should be pro-
grammed in the EBIU_SDGCTL register based on the frequency of operation.
(Refer to the SDRAM vendor’s data sheet for more information.)

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 18-61

External Bus Interface Unit

For other parameters, the SDC assumes:

• Bank cycle time: tRC = tRAS + tRP

• Refresh cycle time: tRFC = tRAS + tRP

• Exit self-refresh time: tXSR = tRAS + tRP

• Load mode register to activate time: tMRD or tRSC = 3 clock cycles

• Page-miss penalty = tRP + tRCD

• Row (bank A) to row (bank B) active time: tRRD= tRCD +1

SDRAM Performance
Table 7-3 lists the data throughput rates for the core or DMA read/write
accesses to 16-bit wide SDRAM. For this example, assume all cycles are
SCLK cycles and the following SCLK frequency and SDRAM parameters are
used:

• SCLK frequency = 133 MHz

• CAS latency = 2 cycles (CL = 2)

• No SDRAM buffering (EBUFE = 0)

• RAS pre-charge (tRP) = 2 cycles (TRP = 2)

• RAS to CAS delay (tRCD) = 2 cycles (TRCD = 2)

• Active command time (tRAS) = 5 cycles (TRAS = 5)

When the external buffer timing (EBUFE = 1 in the SDRAM memory
global control register) and/or CAS latency of 3 (CL = 11 in the SDRAM
memory global control register) is used, all accesses take one extra cycle for
each feature selected.

Bus Request and Grant

18-62 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Bus Request and Grant
The processor can relinquish control of the data and address buses to an
external device. The processor three-states its memory interface to allow
an external controller to access either external asynchronous or synchro-
nous memory parts.

Operation
When the external device requires access to the bus, it asserts the bus
request (BR) signal. The BR signal is arbitrated with EAB requests. If no
internal request is pending, the external bus request will be granted. The
processor initiates a bus grant by:

• Three-stating the data and address buses and the asynchronous
memory control signals. The synchronous memory control signals
can optionally be three-stated.

• Asserting the bus grant (BG) signal.

The processor may halt program execution if the bus is granted to an
external device and an instruction fetch or data read/write request is made
to external memory. When the external device releases BR, the processor
deasserts BG and continues execution from the point at which it stopped.

The processor asserts the BGH pin when it is ready to start another external
port access, but is held off because the bus was previously granted.

When the bus has been granted, the BGSTAT bit in the SDSTAT register is
set. This bit can be used by the processor to check the bus status to avoid
initiating a transaction that would be delayed by the external bus grant.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-1

19 CONTROLLER AREA
NETWORK (CAN) MODULE

This chapter describes the controller area network (CAN) module which
is available on the ADSP-BF538/BF538F4/BF538F8 processors. Familiar-
ity with the CAN standard is assumed. Refer to Version 2.0 of CAN
Specification from Robert Bosch GmbH. The CAN pins, CANTX and
CANRX, can be freed as GPIO if the CAN interface is not used. Refer to
Chapter 15, “General-Purpose Input/Output Ports C, D, E” for details.

Overview
Key features of the CAN module are:

• Conforms to the CAN 2.0B (active) standard.

• Supports both standard (11-bit) and extended (29-bit) identifiers

• Supports data rates of up to 1M bit/s

• 32 mailboxes (8 transmit, 8 receive, 16 configurable)

• Dedicated acceptance mask for each mailbox

• Data filtering (first 2 bytes) can be used for acceptance filtering
(DeviceNet™ mode)

• Error status and warning registers

• Universal counter module

• Readable receive and transmit pin values

Overview

19-2 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The CAN module is a low bit rate serial interface intended for use in
applications where bit rates are typically up to 1M bit/s. The CAN proto-
col incorporates a data CRC check, message error tracking and fault node
confinement as means to improve network reliability to the level required
for control applications.

The interface to the CAN bus is a simple two-wire line. See Figure 19-1
for a symbolic representation of the CAN transceiver interconnection.
The Blackfin processor’s CANTX output and CANRX input pins are connected
to an external CAN transceiver’s TX and RX pins (respectively). The
CANTX and CANRX pins operate with TTL levels and are appropriate for
operation with CAN bus transceivers according to ISO/DIS 11898 or
with a modified RS-485 interface. See Table 19-1.

The Blackfin processor’s CAN module can interface to either 3V or 5V
CAN transceivers. The CANRX pin is 5V tolerant. See the product data
sheet for information on using 5V transceivers.

The default state of the CANTX output is recessive (logic 1). Note that
CANTX is multiplexed with a SPORT transmit signal pin. The output state
may be low if the SPORT is selected instead of the CAN, as is the default
case after reset. The input value on the CANRX pin is ignored.

The CAN module architecture is based around a 32-entry mailbox RAM.
The mailbox is accessed sequentially by the CAN serial interface or the
host CPU. Each mailbox consists of eight 16-bit registers. The data is

Figure 19-1. Representation of CAN Transceiver Interconnection

BLACKFIN

CANRX

CAN
TRANSCEIVER

RX

CANTX TX

CANL

CANH
FIELD BUS

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-3

Controller Area Network (CAN) Module

divided into fields, which includes a message identifier, a time stamp, a
byte count, up to 8 bytes of data, and several control bits. Each node mon-
itors the messages being passed on the network. If the identifier in the
transmitted message matches an identifier in one of its mailboxes, then the
module knows that the message was meant for it, passes the data into its
appropriate mailbox, and signals the host of its arrival with an interrupt.

The CAN network itself is a single, differential pair line. All nodes contin-
uously monitor this line. The asynchronous interface does not require a
separate clock wire. Messages are passed in one of 4 standard message
types or frames. Synchronization is achieved by an elaborate sync scheme
performed in each CAN receiver. Message arbitration is accomplished 1
bit at a time. A dominant polarity is established for the network. All nodes
are allowed to start transmitting at the same time following a frame sync
pulse.

As each node transmits a bit, it checks to see if the bus is the same state
that it transmitted. If it is, it continues to transmit. If not, then another
node has transmitted a dominant bit so the first node knows it has lost the
arbitration and it stops transmitting. The arbitration continues, bit by bit
until only 1 node is left transmitting.

The electrical characteristics of each network connection are very stringent
so the CAN interface is typically divided into 2 parts: a controller and a
transceiver. This allows a single controller to support different drivers and

Table 19-1. Input and Output Values for RX and TX

Pin Value at Pin Value on CAN
Bus Line

RX Low (GND) Dominant

High (VCC) Recessive

TX

Low (GND) Dominant

High (VCC) Recessive

Overview

19-4 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

CAN networks. The CAN module represents only the controller part of
the interface. This module's network I/O is a single transmit line and a
single receive line, which communicate to a line transceiver.

The CAN protocol, standards and recommendations are not repeated in
this chapter. This chapter covers only those sections which are of immedi-
ate need to understand the implementation.

Low Power Features
The Blackfin processor provides a low power hibernate state, and the
CAN module includes a built-in sleep mode. The behavior of the CAN
module in these two modes is described in the following sections.

CAN Wake-Up From Hibernate State

The Blackfin processor provides a hibernate state, where the internal volt-
age regulator shuts off the internal power supply to the chip, turning off
the core and system clocks in the process. In this mode, the only power
drawn (roughly 50A) is that used by the regulator circuitry awaiting any
of the possible hibernate wake-up events. One such event is a wake-up due
to CAN bus activity. After hibernation, the CAN module must be
re-initialized.

For low power designs, the external CAN bus transceiver is typically put
into standby mode via one of the Blackfin processor’s general-purpose I/O
pins. While in standby mode, the CAN transceiver continually drives the
recessive logic 1 level onto the CANRX pin. If the transceiver then senses
CAN bus activity it drives the CANRX pin to the dominant logic 0 level.
This signals to the Blackfin processor that CAN bus activity has been
detected. If the internal voltage regulator is programmed to recognize
CAN bus activity as an event to exit hibernate state, the part responds
appropriately. Otherwise, the activity on the CANRX pin has no effect on
the processor state.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-5

Controller Area Network (CAN) Module

To enable this functionality, the voltage control register (VR_CTL) must be
programmed with the CAN wake-up enable bit set. The typical sequence
of events to use the CAN wake-up feature is:

1. Use a general-purpose I/O pin to put the external transceiver into
standby mode.

2. Program VR_CTL with the CAN wake-up enable CANWE bit set and
the FREQ field set to 00.

CAN Built-In Sleep Mode

The CAN module has a built-in sleep mode. This mode is entered by set-
ting the SMR bit in the CAN_CONTROL register. Once this mode is entered,
many of the internal CAN module clocks are shut off, reducing power
consumption. When the CAN module is in sleep mode, all register reads
return the contents of CAN_INTR instead of the usual contents. All register
writes, except to CAN_INTR, are ignored in sleep mode.

A small part of the module is clocked continuously to allow for wake-up
out of sleep mode. A write to the CAN_INTR register ends sleep mode. If the
WBA bit in the CAN_CONTROL register is set before entering sleep mode, a
dominant bit on the CANRX pin ends sleep mode.

CAN Module Control and Configuration Registers

19-6 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

CAN Module Control and Configuration
Registers

Some global command bits are implemented in the master control register
(CAN_CONTROL). The global status register (CAN_STATUS) represents a set of
internal status signals. The CAN bit timing parameter and the special
modes of the CAN module are defined in the CAN_CLOCK and CAN_TIMING
registers.

All bit timing values can only be changed when the CAN core module is
in its configuration mode. The software reset does not change the values
of CAN_CLOCK and CAN_TIMING. Thus, an ongoing transfer via the CAN bus
cannot be corrupted by changing the bit timing parameter or initiating
the software reset (SRS = 1 in CAN_CONTROL). The registers CAN_CLOCK and
CAN_TIMING are locked if CCA = 0 in the CAN_STATUS register.

Additionally, the CAN module contains test mode features that aid in the
debugging of the CAN software and system, available via the CAN debug
register (CAN_DEBUG).

CAN Control (CAN_CONTROL) Register
Some global command bits are implemented in the master control register
(CAN_CONTROL), shown in Figure 19-2. After a power-up reset or software
reset, the CCR bit is set and all other bits are cleared. During write access,
all reserved bits must be 0.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-7

Controller Area Network (CAN) Module

Additional information for the CAN_CONTROL register bits includes:

• CAN Configuration Mode Request (CCR).

If the TSEG1 field of the CAN_TIMING register is programmed to ‘0,’
the module does not leave configuration mode.

If the CAN module’s transmit error count is greater than or equal
to 256, the module enters the “bus-off” state. For more informa-
tion, see “CAN Error Counter (CAN_CEC) Register” on
page 19-85. In this state, the unit is not allowed to have any influ-
ence on the bus, that is, its output drivers are switched off.

During the bus-off recovery sequence, the configuration mode
request bit is set by the internal logic (CCR = 1), thus the CAN core
module does not automatically go bus on. The CCR bit cannot be
reset until the bus-off recovery sequence is finished.

Figure 19-2. Master Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Master Control Register (CAN_CONTROL)

SRS (Software Reset)
0 - No effect
1 - Reset

Reset = 0x00800xFFC0 2AA0

DNM (DeviceNet Mode)
0 - Disable
1 - Enable
ABO (Auto Bus On)
0 - Configuration mode
1 - Enable

CCR (CAN Configuration
Mode Request)
0 - Cancelled
1 - Requested
CSR (CAN Suspend Mode
Request)
0 - Cancelled
1 - Requested
SMR (Sleep Mode Request)
0 - Not requested
1 - Enters Sleep mode

WBA (Wake Up on CAN Bus
Activity)
0 - Stays in Sleep mode
1 - CAN leave Sleep mode

CAN Module Control and Configuration Registers

19-8 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The CCR bit works in an interlock with the configuration mode
acknowledge bit (CCA in the CAN_STATUS register). The CCR bit can-
not be cleared if it is set and CCA is clear, and the CCR bit cannot be
set if it is clear and CCA is set.

[1] The configuration mode is requested. After power-up, this
mode is active (CCR = 1 and CCA = 1). The bit timing parameters
must be defined before this mode is exited. The write access to the
bit timing parameter is locked in normal operating mode (CCA is
inactive low). If the CAN core module is currently processing a
message on the CAN bus line, this operation is finished before the
configuration mode is acknowledged (CCA is active high). Thus, the
user must wait until CCA is set before the access to the bit timing
parameters (CAN_CLOCK and CAN_TIMING) is allowed. During config-
uration mode, the module is not active on the CAN bus line. The
CANTX output pin remains recessive and the module does not
receive/transmit messages or error frames. After leaving the config-
uration mode, all CAN core internal registers and the CAN error
counters are set to their initial values.

[0] The configuration mode request is cancelled.

• CAN Suspend Mode Request (CSR).

The CSR bit works in an interlock with the suspend mode acknowl-
edge bit (CSA in the CAN_STATUS register). The CSR bit cannot be
cleared if it is set and CSA is clear, and the CSR bit cannot be set if it
is clear and CSA is set.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-9

Controller Area Network (CAN) Module

1—The suspend mode is requested. If the CAN core module is
currently processing a message on the CAN bus line, this operation
is finished before the suspend mode is acknowledged (CSA is active
high). Thus, the user must wait until CSA is set. During suspend
mode, the module is not active on the CAN bus line. The CANTX
output pin remains recessive and the module does not
receive/transmit messages or error frames. The content of the CAN
error counters remains unchanged.

0—The suspend mode request is cancelled.

• Sleep Mode Request (SMR).

A sleep mode, which gates off the clock to most of the CAN regis-
ters and results in lower power use, is provided. The module can
wake up on CAN bus activity or on writing to the CAN_INTR regis-
ter. The SMACK bit in the CAN_INTR register indicates when sleep
mode is active.

 For greatest power savings, use the hibernate state and set the volt-
age regulator to wake up on CAN bus activity. For more
information, see “CAN Wake-Up From Hibernate State” on
page 19-4.

1—The module enters the sleep mode after the current operation
of the CAN bus is finished.

0—No sleep mode requested.

• Wake-Up on CAN Bus Activity (WBA).

1—The sleep mode is left automatically if there is any activity on
the CAN bus line detected.

0—The module stays in sleep mode independent of the CAN bus
line status until SMR is reset.

CAN Module Control and Configuration Registers

19-10 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• Auto Bus On (ABO).

1—After completing the bus-off recovery procedure, the bus active
state is automatically entered.

0—After completing the bus-off recovery procedure, the configura-
tion mode is entered.

• DeviceNet Mode (DNM).

If enabled, the acceptance filtering run starts after reception of the
first CRC bit, else after the first received DLC bit.

1—DeviceNet mode (filtering on data bytes) is enabled. The FDF
and FMD bits in the CAN_AMxxH register determine the DeviceNet
mode functionality. See “CAN Acceptance Mask (CAN_AMxx)
Registers” on page 19-40.

0—Standard acceptance filtering is only used on the identifier.

• Software Reset (SRS).

This register bit is always read as 0.

1—Initiates a software reset. All relevant register bits are set to
their initial values unless otherwise noted in the corresponding reg-
ister description.

0—Has no effect.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-11

Controller Area Network (CAN) Module

CAN Status (CAN_STATUS) Register
The global status register (CAN_STATUS), shown in Figure 19-3, represents
a set of internal status signals. This register is read only. A write access to
the CAN_STATUS register has no effect.

Additional information for the CAN_STATUS register bits includes:

• Receive Mode (REC).

1—CAN protocol kernel is in receive mode.

0—CAN protocol kernel is not in receive mode.

Figure 19-3. Global Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Global Status Register (CAN_STATUS)
RO

WT (CAN Transmit Warning
Flag)
0 - TXECNT below limit
1 - TXECNT at limit

Reset = 0x00000xFFC0 2A8C

WR (CAN Receive Warning
Flag)
0 - RXECNT below limit
1 - RXECNT at limit
EP (CAN Error Passive
Mode)
0 - Both TXECNT and
RXECNT < 128
1 - TXECNT or RXECNT >
error passive level

EBO (CAN Error Bus-Off
Mode)
0 - TXECNT < 256
1 - TXECNT > bus-off limit

REC (Receive Mode)
0 - Not in receive mode
1 - In receive mode
TRM (Transmit Mode)
0 - Not in transmit mode
1 - In transmit mode
MBPTR (Mailbox Pointer)
See description below
CCA (CAN Configuration
Mode Acknowledge)
0 - Not in Configuration mode
1 - In Configuration mode
CSA (CAN Suspend Mode
Acknowledge)
0 - Not in Suspend mode
1 - In Suspend mode
SMA (Sleep Mode
Acknowledge)
0 - Not in Sleep mode
1 - In Sleep mode

CAN Module Control and Configuration Registers

19-12 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• Transmit Mode (TRM).

1—CAN protocol kernel is in transmit mode.

0—CAN protocol kernel is not in transmit mode.

• Mail Box Pointer (MBPTR).

Represents the mailbox number of the current transmit message.
After a successful transmission, these bits remain unchanged.

11111—The message of mailbox 31 is currently being processed.

…

…

…

00000—The message of mailbox 0 is currently being processed.

• CAN Configuration Mode Acknowledge (CCA).

1—CAN protocol kernel is in configuration mode.

0—CAN protocol kernel is not in configuration mode.

• CAN Suspend Mode Acknowledge (CSA).

1—CAN protocol kernel is in suspend mode.

0—CAN protocol kernel is not in suspend mode.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-13

Controller Area Network (CAN) Module

• Sleep Mode Acknowledge (SMA).

The SMA bit is always read as 0. If the CAN module is in sleep
mode, reading the CAN_STATUS register returns the contents of the
CAN_INTR register.

1—Module is in sleep mode. All clocks are switched off.

0—Module is not in sleep mode.

• CAN Error Bus-Off Mode (EBO).

1—Transmit error counter has reached the bus-off limit of 256.

0—Value of the transmit error counter TXECNT is below 256.

• CAN Error Passive Mode (EP).

1—At least one error counter reached the error passive level of 128.

0—Values of both error counters (RXECNT and TXECNT) are below
128.

• CAN Receive Warning Flag (WR).

1—Value of the receive error counter reached the warning limit.

0—Value of the receive counter RXECNT is below the warning limit.

• CAN Transmit Warning Flag (WT).

1—Value of the transmit error counter reached the warning limit.

0—Value of the transmit counter TXECNT is below the warning
limit.

CAN Clock (CAN_CLOCK) Register

19-14 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

CAN Clock (CAN_CLOCK) Register
The CAN_CLOCK register (Figure 19-4) does not generate the effective CAN
bit clock. It derives the time quantum (TQ) from the system clock (SCLK).
Multiple time quanta make up a CAN bit as controlled by the CAN_TIMING
register.

The time quantum is derived from this formula: TQ = (BRP + 1)/SCLK

Although the BRP field can be set to any value, it is recommended that the
value be greater than or equal to 4. Restrictions apply to the bit timing
configuration when BRP is less than 4.

All nodes on a CAN bus should use the same nominal bit rate.

Do not modify this register during normal operation. Always enter config-
uration mode. Writes to this register have no effect if not in configuration
mode.

A software reset has no effect on this register (all values are unchanged).

Figure 19-4. CAN Clock Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAN Clock Register (CAN_CLOCK)

Reset = 0x00000xFFC0 2A80

BRP (Bit Rate Prescaler register) W/R

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-15

Controller Area Network (CAN) Module

CAN Timing (CAN_TIMING) Register
Based on the time quantum (TQ) generated by the BRP prescaler in the
CAN_CLOCK register, CAN_TIMING (see Figure 19-5) controls the nominal bit
time and the sample point of the individual bits in a CAN protocol.

Figure 19-6 shows the three phases of a CAN bit: the synchronization seg-
ment, the segment before the sample point, and the segment after the
sample point.

The synchronization segment is fixed to one TQ. It is required to syn-
chronize the nodes on the bus. All signal edges are expected to occur
within this segment.

Figure 19-5. CAN Timing Register

Figure 19-6. Three Phases of a CAN Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAN Timing Register (CAN_TIMING)
RO

TSEG1 (Time Segment 1)

Reset = 0x00000xFFC0 2A84

TSEG2 (Time Segment 2)
SJW (Synchronization Jump Width)
SAM (Sampling)

TQTQ

NOMINAL BIT TIME

TQ x (TSEG2 + 1)

TQ TQTQ TQ TQTQ TQTQ
t

TQTQTQ

SYNC
TQ x (TSEG1 + 1)

SAMPLE POINTTRANSMIT POINT

TQ TQ

CAN Clock (CAN_CLOCK) Register

19-16 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The TSEG1 and TSEG2 fields control how many TQs the CAN bits consist
of, resulting in the CAN bit rate. The nominal bit time is given by this
formula: tBIT = TQ (1 + (1 + TSEG1) + (1 + TSEG2))

For safe receive operation on given physical networks, the sample point is
programmable by the TSEG1 field. The TSEG2 field holds the number of
TQs needed to complete the bit time. Often, best sample reliability is
achieved with sample points in the high 80% range of the bit time. Never
use sample points lower than 50%. Thus, TSEG1 should always be greater
than or equal to TSEG2.

The Blackfin CAN module does not distinguish between the propagation
segment and the phase segment 1 as defined by the standard. The TSEG1
value is intended to cover both of them. The TSEG2 value represents the
phase segment 2.

If the CAN module detects a recessive-to-dominant edge outside the syn-
chronization segment, it can automatically move the sampling point such
that the CAN bit is still handled properly. The synchronization jump
width (SJW) field specifies the maximum number of TQs allowed for such
a re synchronization attempt. The SJW value should not exceed TSEG2 or
TSEG1.

SJW <= TSEG2 <= TSEG1

In addition to this fundamental rule, TSEG2 must also be greater than or
equal to the information processing time (IPT). This is the time required
by the logic to sample CANRX. On the Blackfin CAN module, this is 3 SCLK
cycles. Because of this, TSEG2 must not be 0. If the clock prescaler is set to
0, TSEG2 must be greater than or equal to 3. If the prescaler is set to 1, the
minimum TSEG2 is 2.

With the SAM bit cleared, CANRX is sampled once after TSEG1 expires. If the
SAM bit is set, the input signal is over sampled three times at SCLK rate. The
resulting value is generated by a majority decision of the three sample val-
ues. Always keep the SAM bit cleared if the BRP value is less than 4.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-17

Controller Area Network (CAN) Module

Do not modify this register during normal operation. Always enter config-
uration mode. Writes to this register have no effect if not in configuration
mode.

A software reset has no effect to this register (all values are unchanged).

CAN Debug (CAN_DEBUG) Register
The CAN module contains test mode features that aid in the debugging of
the CAN software and system. Listing 19-1 provides an example of
enabling CAN debug features.

 When these features are used, the CAN module may not be com-
pliant to the CAN specification. All test modes should be enabled
or disabled only when the module is in configuration mode (CCA =
1 in the CAN_STATUS register) or in suspend mode (CSA = 1 in
CAN_STATUS).

The CDE bit is used to gain access to all of the debug features. This bit
must be set to enable the test mode, and must be written first before sub-
sequent writes to the CAN_DEBUG register. When the CDE bit is cleared, all
debug features are disabled.

Listing 19-1. Enabling CAN Debug Features in C

#include <cdefBF538.h>

/* Enable debug mode, CDE must be set before other flags can be

changed in register */

*pCAN_DEBUG |= CDE ;

/* Set debug flags */

*pCAN_DEBUG &= ~DTO ;

*pCAN_DEBUG |= MRB | MAA | DIL ;

CAN Clock (CAN_CLOCK) Register

19-18 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

/* Run test code */

/* Disable debug mode */

*pCAN_DEBUG &= ~CDE ;

When the CDE bit is set, it enables writes to the other bits of the CAN_DEBUG
register. It also enables these features, which are not compliant with the
CAN standard:

• Bit timing registers can be changed anytime, not only during con-
figuration mode. This includes the CAN_CLOCK and CAN_TIMING
registers.

• Allows write access to the read-only transmit/receive error counter
register CAN_CEC.

The mode read back bit (MRB) is used to enable the read back mode. In this
mode, a message transmitted on the CAN bus (or via an internal loop
back mode) is received back directly to the internal receive buffer. After a
correct transmission, the internal logic treats this as a normal receive mes-
sage. This feature allows the user to test most of the CAN features without
an external device.

The mode auto acknowledge bit (MAA) allows the CAN module to generate
its own acknowledge during the ACK slot of the CAN frame. No external
devices or connections are necessary to read back a transmit message. In
this mode, the message that is sent is automatically stored in the internal
receive buffer. In auto acknowledge mode, the module itself transmits the
acknowledge. This acknowledge can be programmed to appear on the
CANTX pin if DIL=1 and DTO=0. If the acknowledge is only going to be used
internally, then these test mode bits should be set to DIL=0 and DTO=1.

The disable internal loop bit (DIL) is used to internally enable the transmit
output to be routed back to the receive input.

The disable transmit output bit (DTO) is used to disable the CANTX output
pin. When this bit is set, the CANTX pin continuously drives recessive bits.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-19

Controller Area Network (CAN) Module

The disable receive input bit (DRI) is used to disable the CANRX input.
When set, the internal logic receives recessive bits or receives the internally
generated transmit value in the case of the internal loop enabled (DIL=0).
In either case, the value on the CANRX input pin is ignored.

The disable error counters bit (DEC) is used to disable the transmit and
receive error counters in the CAN_CEC register. When this bit is set, the
CAN_CEC holds its current contents and is not allowed to increment or dec-
rement the error counters. This mode does not conform to the CAN
specification.

 Writes to the error counters should be in debug mode only. Write
access during reception may lead to undefined values. The maxi-
mum value which can be written into the error counters is 255.
Thus, the error counter value of 256 which forces the module into
the bus-off state can not be written into the error counters.

Table 19-2 shows several common combinations of test mode bits.

Table 19-2. CAN Test Modes

MRB MAA DIL DTO DRI CDE Functional Description

X X X X X 0 Normal mode, not debug mode.

0 X X X X X No read back of transmit message.

1 0 1 0 0 1 Normal transmission on CAN bus line.
Read back.
External acknowledge from external device
required.

1 1 1 0 0 1 Normal transmission on CAN bus line.
Read back.
No external acknowledge required.
Transmit message and acknowledge are
transmitted on CAN bus line.
CANRX input is enabled.

CAN Clock (CAN_CLOCK) Register

19-20 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

1 1 0 0 0 1 Normal transmission on CAN bus line.
Read back.
No external acknowledge required.
Transmit message and acknowledge are
transmitted on CAN bus line.
CANRX input and internal loop are
enabled (internal OR of TX and RX).

1 1 0 0 1 1 Normal transmission on CAN bus line.
Read back.
No external acknowledge required.
Transmit message and acknowledge are
transmitted on CAN bus line.
CANRX input is ignored.
Internal loop is enabled

1 1 0 1 1 1 No transmission on CAN bus line.
Read back.
No external acknowledge required.
Neither transmit message nor acknowl-
edge are transmitted on CANTX.
CANRX input is ignored.
Internal loop is enabled.

Table 19-2. CAN Test Modes (Cont’d)

MRB MAA DIL DTO DRI CDE Functional Description

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-21

Controller Area Network (CAN) Module

Data Storage
All CAN-related data is stored in a mailbox RAM. There are 8 words of 16
bits for each of the 32 mailboxes.

The values of the identifier (base part and extended part), the identifier
extension bit (IDE), the remote transmission request bit (RTR), the data
length code (DLC), and the data field of each message can be programmed
in the mailbox area (see Figure 19-7). The substitute remote request (SRR,
always sent as recessive) bit and the reserved bits R0 and R1 (always sent as
dominant) are generated automatically by the internal logic.

Figure 19-7. CAN Message Formats

R
T

R

B
A

S
E

ID
E

N
T

IF
IE

R
11

B
IT

S

ID
E

R
0

D
L

C
4

B
IT

S

D
A

TA
FI

E
LD

0-
8

B
IT

S

C
R

C
F

IE
L

D
15

B
IT

C
R

C
D

E
L

IM
IT

E
R

A
C

K
S

L
O

T
A

C
K

D
E

L
IM

IT
E

R

E
N

D
O

F
F

R
A

M
E

7
B

IT
S

S
O

F

B
U

S
ID

L
E

IN
T

3
B

IT
S

ID
E

R
TR

E
X

T
E

N
D

E
D

ID
E

N
T

IF
IE

R
15

B
IT

S

R
1

R
0

D
LC

4
B

IT
S

D
A

TA
F

IE
L

D
0-

8
B

IT
S

C
R

C
FI

E
LD

15
B

IT

C
R

C
D

E
L

IM
IT

E
R

A
C

K
S

L
O

T
A

C
K

D
E

L
IM

IT
E

R

E
N

D
O

F
F

R
A

M
E

7
B

IT
S

S
O

F

B
U

S
ID

L
E

S
R

R

B
A

S
E

ID
E

N
T

IF
IE

R
11

B
IT

S

IN
T

3
B

IT
S

ARBITRATION FIELD CONTROL
FIELD

DATA
FIELD

CRC
FIELD

ACK
FIELD

END OF
FRAME

INTERFRAME
SPACE

Mailbox Identifier Word Registers

19-22 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Mailbox Identifier Word Registers
Each mailbox consists of 8 words and includes:

• The 29 bit identifier (base part plus extended part)

• The acceptance mask enable bit (AME)

• The remote transmission request bit (RTR)

• The identifier extension bit (IDE)

• The data length code (DLC)

• Up to eight bytes for the data field

• Two bytes for the time stamp value (TSV)

The upper 12 bits of word 4 of each mailbox are marked as reserved.
These 12 bits should always be set to 0.

If the filtering on data field option is enabled (DNM = 1 in CAN_CONTROL reg-
ister and FDF = 1 in corresponding acceptance mask), the bits [15:0] of
word 6 (ExtId) are reused as acceptance code (DFC) for the data field
filtering.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-23

Controller Area Network (CAN) Module

CAN Mailbox Identifier 1 (CAN_MBxx_ID1)
Registers

The mailboxes are implemented as RAM, and have no reset value. Each
mailbox must be reset manually before it is enabled by setting the corre-
sponding CAN_MCx register bit.

Figure 19-8. Mailbox Identifier Word 7

Table 19-3. Mailbox Identifier Word 7 Register Addresses

Register Name Memory-Mapped
Address

Register Name Memory-Mapped
Address

CAN_MB00_ID1 0xFFC0 2C1C CAN_MB16_ID1 0xFFC0 2E1C

CAN_MB01_ID1 0xFFC0 2C3C CAN_MB17_ID1 0xFFC0 2E3C

CAN_MB02_ID1 0xFFC0 2C5C CAN_MB18_ID1 0xFFC0 2E5C

CAN_MB03_ID1 0xFFC0 2C7C CAN_MB19_ID1 0xFFC0 2E7C

CAN_MB04_ID1 0xFFC0 2C9C CAN_MB20_ID1 0xFFC0 2E9C

CAN_MB05_ID1 0xFFC0 2CBC CAN_MB21_ID1 0xFFC0 2EBC

CAN_MB06_ID1 0xFFC0 2CDC CAN_MB22_ID1 0xFFC0 2EDC

CAN_MB07_ID1 0xFFC0 2CFC CAN_MB23_ID1 0xFFC0 2EFC

CAN_MB08_ID1 0xFFC0 2D1C CAN_MB24_ID1 0xFFC0 2F1C

CAN_MB09_ID1 0xFFC0 2D3C CAN_MB25_ID1 0xFFC0 2F3C

CAN_MB10_ID1 0xFFC0 2D5C CAN_MB26_ID1 0xFFC0 2F5C

CAN_MB11_ID1 0xFFC0 2D7C CAN_MB27_ID1 0xFFC0 2F7C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Mailbox Identifier Word 7 (CAN_MBxx_ID1)

EXTID[17:16]

Reset = 0xXXXX
For memory-
mapped
addresses, see
Table 19-3. BASEID[10:0]

IDE
RTR
AME

Mailbox Identifier Word Registers

19-24 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Additional information for the CAN_MBxxID1 register bits includes:

• Acceptance Mask Enable (AME).

1—Enables acceptance mask filtering on incoming messages.

0—Disables acceptance mask filtering.

• Remote Transmission Request (RTR).

1—Enables message as a remote frame.

0—Enables message as a data frame.

• Identifier Extension (IDE).

1—Enables 29-bit identifier.

0—Enables 11-bit identifier.

CAN_MB12_ID1 0xFFC0 2D9C CAN_MB28_ID1 0xFFC0 2F9C

CAN_MB13_ID1 0xFFC0 2DBC CAN_MB29_ID1 0xFFC0 2FBC

CAN_MB14_ID1 0xFFC0 2DDC CAN_MB30_ID1 0xFFC0 2FDC

CAN_MB15_ID1 0xFFC0 2DFC CAN_MB31_ID1 0xFFC0 2FFC

Table 19-3. Mailbox Identifier Word 7 Register Addresses (Cont’d)

Register Name Memory-Mapped
Address

Register Name Memory-Mapped
Address

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-25

Controller Area Network (CAN) Module

CAN Mailbox Identifier 0 (CAN_MBxx_ID0)
Registers

The mailboxes are implemented as RAM, and have no reset value. Each
mailbox must be reset manually before it is enabled by setting the corre-
sponding CAN_MCx register bit.

Figure 19-9. Mailbox Identifier Word 6

Table 19-4. Mailbox Identifier Word 6 Register Addresses

Register Name Memory-Mapped
Address

Register Name Memory-Mapped
Address

CAN_MB00_ID0 0xFFC0 2C18 CAN_MB16_ID0 0xFFC0 2E18

CAN_MB01_ID0 0xFFC0 2C38 CAN_MB17_ID0 0xFFC0 2E38

CAN_MB02_ID0 0xFFC0 2C58 CAN_MB18_ID0 0xFFC0 2E58

CAN_MB03_ID0 0xFFC0 2C78 CAN_MB19_ID0 0xFFC0 2E78

CAN_MB04_ID0 0xFFC0 2C98 CAN_MB20_ID0 0xFFC0 2E98

CAN_MB05_ID0 0xFFC0 2CB8 CAN_MB21_ID0 0xFFC0 2EB8

CAN_MB06_ID0 0xFFC0 2CD8 CAN_MB22_ID0 0xFFC0 2ED8

CAN_MB07_ID0 0xFFC0 2CF8 CAN_MB23_ID0 0xFFC0 2EF8

CAN_MB08_ID0 0xFFC0 2D18 CAN_MB24_ID0 0xFFC0 2F18

CAN_MB09_ID0 0xFFC0 2D38 CAN_MB25_ID0 0xFFC0 2F38

CAN_MB10_ID0 0xFFC0 2D58 CAN_MB26_ID0 0xFFC0 2F58

CAN_MB11_ID0 0xFFC0 2D78 CAN_MB27_ID0 0xFFC0 2F78

CAN_MB12_ID0 0xFFC0 2D98 CAN_MB28_ID0 0xFFC0 2F98

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Mailbox Identifier Word 6 (CAN_MBxx_ID0)

EXTID[15:0]/DFC[15:0]

Reset = 0xXXXX
For memory-
mapped
addresses, see
Table 19-4.

Mailbox Identifier Word Registers

19-26 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

CAN Mailbox Time Stamp (CAN_MBxx_TIMESTAMP)
Registers

The mailboxes are implemented as RAM, and have no reset value. Each
mailbox must be reset manually before it is enabled by setting the corre-
sponding CAN_MCx register bit.

CAN_MB13_ID0 0xFFC0 2DB8 CAN_MB29_ID0 0xFFC0 2FB8

CAN_MB14_ID0 0xFFC0 2DD8 CAN_MB30_ID0 0xFFC0 2FD8

CAN_MB15_ID0 0xFFC0 2DF8 CAN_MB31_ID0 0xFFC0 2FF8

Figure 19-10. Mailbox Identifier Word 5

Table 19-5. Mailbox Identifier Word 5 Register Addresses

Register Name Memory-Mapped
Address

Register Name Memory-Mapped
Address

CAN_MB00_TIMESTAMP 0xFFC0 2C14 CAN_MB16_TIMESTAMP 0xFFC0 2E14

CAN_MB01_TIMESTAMP 0xFFC0 2C34 CAN_MB17_TIMESTAMP 0xFFC0 2E34

CAN_MB02_TIMESTAMP 0xFFC0 2C54 CAN_MB18_TIMESTAMP 0xFFC0 2E54

CAN_MB03_TIMESTAMP 0xFFC0 2C74 CAN_MB19_TIMESTAMP 0xFFC0 2E74

CAN_MB04_TIMESTAMP 0xFFC0 2C94 CAN_MB20_TIMESTAMP 0xFFC0 2E94

CAN_MB05_TIMESTAMP 0xFFC0 2CB4 CAN_MB21_TIMESTAMP 0xFFC0 2EB4

Table 19-4. Mailbox Identifier Word 6 Register Addresses (Cont’d)

Register Name Memory-Mapped
Address

Register Name Memory-Mapped
Address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Mailbox Identifier Word 5 (CAN_MBxx_TIMESTAMP)

TSV

Reset = 0xXXXXFor memory-
mapped
addresses, see
Table 19-5.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-27

Controller Area Network (CAN) Module

CAN Mailbox Length (CAN_MBxx_LENGTH)
Registers

The mailboxes are implemented as RAM, and have no reset value. Each
mailbox must be reset manually before it is enabled by setting the corre-
sponding CAN_MCx register bit.

Any DLC value greater than 8 is treated the same as a value of 8.

CAN_MB06_TIMESTAMP 0xFFC0 2CD4 CAN_MB22_TIMESTAMP 0xFFC0 2ED4

CAN_MB07_TIMESTAMP 0xFFC0 2CF4 CAN_MB23_TIMESTAMP 0xFFC0 2EF4

CAN_MB08_TIMESTAMP 0xFFC0 2D14 CAN_MB24_TIMESTAMP 0xFFC0 2F14

CAN_MB09_TIMESTAMP 0xFFC0 2D34 CAN_MB25_TIMESTAMP 0xFFC0 2F34

CAN_MB10_TIMESTAMP 0xFFC0 2D54 CAN_MB26_TIMESTAMP 0xFFC0 2F54

CAN_MB11_TIMESTAMP 0xFFC0 2D74 CAN_MB27_TIMESTAMP 0xFFC0 2F74

CAN_MB12_TIMESTAMP 0xFFC0 2D94 CAN_MB28_TIMESTAMP 0xFFC0 2F94

CAN_MB13_TIMESTAMP 0xFFC0 2DB4 CAN_MB29_TIMESTAMP 0xFFC0 2FB4

CAN_MB14_TIMESTAMP 0xFFC0 2DD4 CAN_MB30_TIMESTAMP 0xFFC0 2FD4

CAN_MB15_TIMESTAMP 0xFFC0 2DF4 CAN_MB31_TIMESTAMP 0xFFC0 2FF4

Figure 19-11. Mailbox Identifier Word 4

Table 19-5. Mailbox Identifier Word 5 Register Addresses (Cont’d)

Register Name Memory-Mapped
Address

Register Name Memory-Mapped
Address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Mailbox Identifier Word 4 (CAN_MBxx_LENGTH)

DLC

Reset = 0xXXXXFor memory-
mapped
addresses, see
Table 19-6.

Mailbox Identifier Word Registers

19-28 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

CAN Mailbox Data (CAN_MBxx_DATAx) Registers
The CAN peripheral communicates data most significant bit first. Because
of this, the CAN_MBxx_DATAx registers are used as MSB-first. For example, if
only one byte is transmitted or received (DLC = 1), then it was stored in the
most significant byte of the CAN_MBxx_DATA3 register. If two bytes are
transmitted or received, they are stored in the upper half and the lower
half of CAN_MBxx_DATA3. Refer to Figure 19-12, Figure 19-13,
Figure 19-14, and Figure 19-15.

Table 19-6. Mailbox Identifier Word 4 Register Addresses

Register Name Memory-Mapped
Address

Register Name Memory-Mapped
Address

CAN_MB00_LENGTH 0xFFC0 2C10 CAN_MB16_LENGTH 0xFFC0 2E10

CAN_MB01_LENGTH 0xFFC0 2C30 CAN_MB17_LENGTH 0xFFC0 2E30

CAN_MB02_LENGTH 0xFFC0 2C50 CAN_MB18_LENGTH 0xFFC0 2E50

CAN_MB03_LENGTH 0xFFC0 2C70 CAN_MB19_LENGTH 0xFFC0 2E70

CAN_MB04_LENGTH 0xFFC0 2C90 CAN_MB20_LENGTH 0xFFC0 2E90

CAN_MB05_LENGTH 0xFFC0 2CB0 CAN_MB21_LENGTH 0xFFC0 2EB0

CAN_MB06_LENGTH 0xFFC0 2CD0 CAN_MB22_LENGTH 0xFFC0 2ED0

CAN_MB07_LENGTH 0xFFC0 2CF0 CAN_MB23_LENGTH 0xFFC0 2EF0

CAN_MB08_LENGTH 0xFFC0 2D10 CAN_MB24_LENGTH 0xFFC0 2F10

CAN_MB09_LENGTH 0xFFC0 2D30 CAN_MB25_LENGTH 0xFFC0 2F30

CAN_MB10_LENGTH 0xFFC0 2D50 CAN_MB26_LENGTH 0xFFC0 2F50

CAN_MB11_LENGTH 0xFFC0 2D70 CAN_MB27_LENGTH 0xFFC0 2F70

CAN_MB12_LENGTH 0xFFC0 2D90 CAN_MB28_LENGTH 0xFFC0 2F90

CAN_MB13_LENGTH 0xFFC0 2DB0 CAN_MB29_LENGTH 0xFFC0 2FB0

CAN_MB14_LENGTH 0xFFC0 2DD0 CAN_MB30_LENGTH 0xFFC0 2FD0

CAN_MB15_LENGTH 0xFFC0 2DF0 CAN_MB31_LENGTH 0xFFC0 2FF0

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-29

Controller Area Network (CAN) Module

The mailboxes are implemented as RAM, and have no reset value. Each
mailbox must be reset manually before it is enabled by setting the corre-
sponding CAN_MCx register bit.

Figure 19-12. Mailbox Identifier Word 3

Table 19-7. Mailbox Identifier Word 3 Register Addresses

Register Name Memory-Mapped
Address

Register Name Memory-Mapped
Address

CAN_MB00_DATA3 0xFFC0 2C0C CAN_MB16_DATA3 0xFFC0 2E0C

CAN_MB01_DATA3 0xFFC0 2C2C CAN_MB17_DATA3 0xFFC0 2E2C

CAN_MB02_DATA3 0xFFC0 2C4C CAN_MB18_DATA3 0xFFC0 2E4C

CAN_MB03_DATA3 0xFFC0 2C6C CAN_MB19_DATA3 0xFFC0 2E6C

CAN_MB04_DATA3 0xFFC0 2C8C CAN_MB20_DATA3 0xFFC0 2E8C

CAN_MB05_DATA3 0xFFC0 2CAC CAN_MB21_DATA3 0xFFC0 2EAC

CAN_MB06_DATA3 0xFFC0 2CCC CAN_MB22_DATA3 0xFFC0 2ECC

CAN_MB07_DATA3 0xFFC0 2CEC CAN_MB23_DATA3 0xFFC0 2EEC

CAN_MB08_DATA3 0xFFC0 2D0C CAN_MB24_DATA3 0xFFC0 2F0C

CAN_MB09_DATA3 0xFFC0 2D2C CAN_MB25_DATA3 0xFFC0 2F2C

CAN_MB10_DATA3 0xFFC0 2D4C CAN_MB26_DATA3 0xFFC0 2F4C

CAN_MB11_DATA3 0xFFC0 2D6C CAN_MB27_DATA3 0xFFC0 2F6C

CAN_MB12_DATA3 0xFFC0 2D8C CAN_MB28_DATA3 0xFFC0 2F8C

CAN_MB13_DATA3 0xFFC0 2DAC CAN_MB29_DATA3 0xFFC0 2FAC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Mailbox Identifier Word 3 (CAN_MBxx_DATA3)

Data Field Byte 1

Reset = 0xXXXX
For memory-
mapped
addresses, see
Table 19-7.

Data Field Byte 0

Mailbox Identifier Word Registers

19-30 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

CAN_MB14_DATA3 0xFFC0 2DCC CAN_MB30_DATA3 0xFFC0 2FCC

CAN_MB15_DATA3 0xFFC0 2DEC CAN_MB31_DATA3 0xFFC0 2FEC

Figure 19-13. Mailbox Identifier Word 2

Table 19-8. Mailbox Identifier Word 2 Register Addresses

Register Name Memory-Mapped
Address

Register Name Memory-Mapped
Address

CAN_MB00_DATA2 0xFFC0 2C08 CAN_MB16_DATA2 0xFFC0 2E08

CAN_MB01_DATA2 0xFFC0 2C28 CAN_MB17_DATA2 0xFFC0 2E28

CAN_MB02_DATA2 0xFFC0 2C48 CAN_MB18_DATA2 0xFFC0 2E48

CAN_MB03_DATA2 0xFFC0 2C68 CAN_MB19_DATA2 0xFFC0 2E68

CAN_MB04_DATA2 0xFFC0 2C88 CAN_MB20_DATA2 0xFFC0 2E88

CAN_MB05_DATA2 0xFFC0 2CA8 CAN_MB21_DATA2 0xFFC0 2EA8

CAN_MB06_DATA2 0xFFC0 2CC8 CAN_MB22_DATA2 0xFFC0 2EC8

CAN_MB07_DATA2 0xFFC0 2CE8 CAN_MB23_DATA2 0xFFC0 2EE8

CAN_MB08_DATA2 0xFFC0 2D08 CAN_MB24_DATA2 0xFFC0 2F08

CAN_MB09_DATA2 0xFFC0 2D28 CAN_MB25_DATA2 0xFFC0 2F28

CAN_MB10_DATA2 0xFFC0 2D48 CAN_MB26_DATA2 0xFFC0 2F48

CAN_MB11_DATA2 0xFFC0 2D68 CAN_MB27_DATA2 0xFFC0 2F68

Table 19-7. Mailbox Identifier Word 3 Register Addresses (Cont’d)

Register Name Memory-Mapped
Address

Register Name Memory-Mapped
Address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Mailbox Identifier Word 2 (CAN_MBxx_DATA2)

Reset = 0xXXXXFor memory-
mapped
addresses, see
Table 19-8.

Data Field Byte 3Data Field Byte 2

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-31

Controller Area Network (CAN) Module

CAN_MB12_DATA2 0xFFC0 2D88 CAN_MB28_DATA2 0xFFC0 2F88

CAN_MB13_DATA2 0xFFC0 2DA8 CAN_MB29_DATA2 0xFFC0 2FA8

CAN_MB14_DATA2 0xFFC0 2DC8 CAN_MB30_DATA2 0xFFC0 2FC8

CAN_MB15_DATA2 0xFFC0 2DE8 CAN_MB31_DATA2 0xFFC0 2FE8

Figure 19-14. Mailbox Identifier Word 1

Table 19-9. Mailbox Identifier Word 1 Register Addresses

Register Name Memory-Mapped
Address

Register Name Memory-Mapped
Address

CAN_MB00_DATA1 0xFFC0 2C04 CAN_MB16_DATA1 0xFFC0 2E04

CAN_MB01_DATA1 0xFFC0 2C24 CAN_MB17_DATA1 0xFFC0 2E24

CAN_MB02_DATA1 0xFFC0 2C44 CAN_MB18_DATA1 0xFFC0 2E44

CAN_MB03_DATA1 0xFFC0 2C64 CAN_MB19_DATA1 0xFFC0 2E64

CAN_MB04_DATA1 0xFFC0 2C84 CAN_MB20_DATA1 0xFFC0 2E84

CAN_MB05_DATA1 0xFFC0 2CA4 CAN_MB21_DATA1 0xFFC0 2EA4

CAN_MB06_DATA1 0xFFC0 2CC4 CAN_MB22_DATA1 0xFFC0 2EC4

CAN_MB07_DATA1 0xFFC0 2CE4 CAN_MB23_DATA1 0xFFC0 2EE4

CAN_MB08_DATA1 0xFFC0 2D04 CAN_MB24_DATA1 0xFFC0 2F04

CAN_MB09_DATA1 0xFFC0 2D24 CAN_MB25_DATA1 0xFFC0 2F24

Table 19-8. Mailbox Identifier Word 2 Register Addresses (Cont’d)

Register Name Memory-Mapped
Address

Register Name Memory-Mapped
Address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Mailbox Identifier Word 1 (CAN_MBxx_DATA1)

Reset = 0xXXXX
For memory-
mapped
addresses, see
Table 19-9.

Data Field Byte 5Data Field Byte 4

Mailbox Identifier Word Registers

19-32 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

CAN_MB10_DATA1 0xFFC0 2D44 CAN_MB26_DATA1 0xFFC0 2F44

CAN_MB11_DATA1 0xFFC0 2D64 CAN_MB27_DATA1 0xFFC0 2F64

CAN_MB12_DATA1 0xFFC0 2D84 CAN_MB28_DATA1 0xFFC0 2F84

CAN_MB13_DATA1 0xFFC0 2DA4 CAN_MB29_DATA1 0xFFC0 2FA4

CAN_MB14_DATA1 0xFFC0 2DC4 CAN_MB30_DATA1 0xFFC0 2FC4

CAN_MB15_DATA1 0xFFC0 2DE4 CAN_MB31_DATA1 0xFFC0 2FE4

Figure 19-15. Mailbox Identifier Word 0

Table 19-10. Mailbox Identifier Word 0 Register Addresses

Register Name Memory-Mapped
Address

Register Name Memory-Mapped
Address

CAN_MB00_DATA0 0xFFC0 2C00 CAN_MB16_DATA0 0xFFC0 2E00

CAN_MB01_DATA0 0xFFC0 2C20 CAN_MB17_DATA0 0xFFC0 2E20

CAN_MB02_DATA0 0xFFC0 2C40 CAN_MB18_DATA0 0xFFC0 2E40

CAN_MB03_DATA0 0xFFC0 2C60 CAN_MB19_DATA0 0xFFC0 2E60

CAN_MB04_DATA0 0xFFC0 2C80 CAN_MB20_DATA0 0xFFC0 2E80

CAN_MB05_DATA0 0xFFC0 2CA0 CAN_MB21_DATA0 0xFFC0 2EA0

CAN_MB06_DATA0 0xFFC0 2CC0 CAN_MB22_DATA0 0xFFC0 2EC0

CAN_MB07_DATA0 0xFFC0 2CE0 CAN_MB23_DATA0 0xFFC0 2EE0

Table 19-9. Mailbox Identifier Word 1 Register Addresses (Cont’d)

Register Name Memory-Mapped
Address

Register Name Memory-Mapped
Address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Mailbox Identifier Word 0 (CAN_MBxx_DATA0)

Reset = 0xXXXX
For memory-
mapped
addresses, see
Table 19-10.

Data Field Byte 7Data Field Byte 6

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-33

Controller Area Network (CAN) Module

Receive mailboxes use a temporary receive buffer, which is only overwrit-
ten by incoming bytes based on the message’s DLC code. For DLC codes
less than 8, the least significant bytes are not overwritten and are stored to
the receiving mailbox. Only the data bytes defined by the DLC contain
valid data.

 Software should check the DLC code of the received message to
determine which bytes in the CAN_MBxx_DATAx registers to read.

Mailbox Area
Most, but not all, CAN mailboxes can be configured to transmit or
receive. Each mailbox has an acceptance mask. Mailbox 31 is the highest
numbered mailbox.

CAN_MB08_DATA0 0xFFC0 2D00 CAN_MB24_DATA0 0xFFC0 2F00

CAN_MB09_DATA0 0xFFC0 2D20 CAN_MB25_DATA0 0xFFC0 2F20

CAN_MB10_DATA0 0xFFC0 2D40 CAN_MB26_DATA0 0xFFC0 2F40

CAN_MB11_DATA0 0xFFC0 2D60 CAN_MB27_DATA0 0xFFC0 2F60

CAN_MB12_DATA0 0xFFC0 2D80 CAN_MB28_DATA0 0xFFC0 2F80

CAN_MB13_DATA0 0xFFC0 2DA0 CAN_MB29_DATA0 0xFFC0 2FA0

CAN_MB14_DATA0 0xFFC0 2DC0 CAN_MB30_DATA0 0xFFC0 2FC0

CAN_MB15_DATA0 0xFFC0 2DE0 CAN_MB31_DATA0 0xFFC0 2FE0

Table 19-10. Mailbox Identifier Word 0 Register Addresses (Cont’d)

Register Name Memory-Mapped
Address

Register Name Memory-Mapped
Address

Mailbox Types

19-34 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Mailbox Types
Mailboxes are used for receiving and transmitting. Eight mailboxes are for
transmit only, eight are for receive only, and 16 are configurable. Only the
configurable mailboxes support the remote frame-request feature. The
mailbox control register area consists of these registers:

• CAN_MC1 and CAN_MC2 (mailbox enable registers)

• CAN_MD1 and CAN_MD2 (mailbox direction registers)

• CAN_TA1 and CAN_TA2 (transmit acknowledge registers)

• CAN_AA1 and CAN_AA2 (abort acknowledge registers)

• CAN_TRS1 and CAN_TRS2 (transmit request set registers)

• CAN_TRR1 and CAN_TRR2 (transmit request reset registers)

• CAN_RMP1 and CAN_RMP2 (receive message pending registers)

• CAN_RML1 and CAN_RML2 (receive message lost registers)

• CAN_RFH1 and CAN_RFH2 (remote frame handling registers)

• CAN_OPSS1 and CAN_OPSS2 (overwrite protection/single shot trans-
mission registers)

• CAN_MBIM1 and CAN_MBIM2 (mailbox interrupt mask registers)

• CAN_MBTIF1 and CAN_MBTIF2 (mailbox transmit interrupt flag
registers)

• CAN_MBRIF1 and CAN_MBRIF2 (mailbox receive interrupt flag
registers)

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-35

Controller Area Network (CAN) Module

Mailbox Control
The mailbox configuration (CAN_MCx) and mailbox direction (CAN_MDx)
registers configure the CAN mailboxes. Each mailbox can be enabled or
disabled separately.

CAN Mailbox Configuration (CAN_MCx) and
Direction (CAN_MDx) Registers

The mailbox configuration (CAN_MCx) registers are used to enable or dis-
able each mailbox. The mailbox direction (CAN_MDx) registers determine
which mailboxes are used for transmit and which for receive. If the MCn bit
in the CAN_MCx register is zero, the corresponding mailbox (mailbox n) is
disabled. The mailbox must be disabled before writing to any identifier
field. Refer to Figure 19-16 and Figure 19-17.

Do not write to the identifier of a message object while the mailbox is
enabled for the CAN module (the corresponding bit in CAN_MCx is set).
Mailboxes that are disabled may be used as additional memory for the
CPU.

If a mailbox is used for transmission, the corresponding bit in the configu-
ration register (MCn) and in the direction register (MDn) must be set before
the transmission request set (TRSn) bit is set.

To disable a mailbox, the corresponding bits in the transmit request reset
register (CAN_TRRx) and the transmit request set register (CAN_TRSx) must
first be reset by the internal logic. Setting TRRn of the CAN_TRRx register
and TRSn of the CAN_TRSx register in a disabled mailbox can cause unde-
fined behavior of the CAN module.

If a mailbox is used for receiving (MDn = 1 in the CAN_MDx register) and is
disabled, an ongoing receive message for this mailbox is lost even if a sec-
ond mailbox is configured to receive the same identifier. This happens if

Mailbox Control

19-36 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

the mailbox is disabled (MCn = 0 in the CAN_MCx register) after the internal
acceptance filtering run is finished and before the reception of this mes-
sage is completed.

Figure 19-16. Mailbox Configuration Register 1

Figure 19-17. Mailbox Configuration Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mailbox Configuration Register 1 (CAN_MC1)

MC0

MC12

MC13

MC14

MC15

MC1

MC2

MC3

MC4

MC5

For all bits, 0 - Mailbox disabled, 1 - Mailbox enabled

MC6

MC7

MC11

MC10

MC9

MC8

Reset = 0x00000xFFC0 2A00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mailbox Configuration Register 2 (CAN_MC2)

MC16

MC28

MC29

MC30

MC31

MC17

MC18

MC19

MC20

MC21

For all bits, 0 - Mailbox disabled, 1 - Mailbox enabled

MC22

MC23

MC27

MC26

MC25

MC24

Reset = 0x00000xFFC0 2A40

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-37

Controller Area Network (CAN) Module

The CAN_MD1 and CAN_MD2 registers determine the direction of each of the
mailboxes. By default, mailboxes 7–0 are configured as receive mailboxes
and mailboxes 31–8 are configured as transmit mailboxes. Writing a 1 to
the MDn bit for mailboxes 23–8 configures the corresponding mailbox to be
a receive mailbox. Mailboxes 31–24 are always transmit mailboxes. Do
not write to MDn if the mailbox is enabled, that is, if the corresponding bit
in the configuration register MCn is set. Thus, the mailbox must be disabled
before MDn is changed.

After software reset, the bits in CAN_MD1 and CAN_MD2 are cleared, except
bits 7–0 in the CAN_MD1 register.

Bits 7–0 in CAN_MD1 and bits 15–8 in CAN_MD2 are read-only.

 Changing a bit in the mailbox direction register (MDn) may lead to
erroneous behavior if the corresponding mailbox is enabled
(MCn = 1).

Figure 19-18. Mailbox Direction Register 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 1 1 1 1 1 1 1

Mailbox Direction Register 1 (CAN_MD1)

MD0 - RO

MD12

MD13

MD14

MD15

MD1 - RO

MD2 - RO

MD3 - RO

MD4 - RO

MD5 - RO

For all bits, 0 - Mailbox configured as transmit mode, 1 - Mailbox configured as receive mode

MD6 - RO

MD7 - RO

MD11

MD10

MD9

MD8

Reset = 0x00FF0xFFC0 2A04

Receive Logic

19-38 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Receive Logic
If a message is received from the CAN bus and a matching mailbox is
detected by the internal compare logic, the content of the received mes-
sage is stored in the matching message center. The complete received
identifier, the RTR bit, and the corresponding identifier extension bit (IDE)
are stored in the first two words of the destination mailbox. The accep-
tance mask enable configuration bit (AME) of this mailbox is unchanged. If
a base message is received, the extended part of the identifier in the mail-
box is also unchanged. The DLC and the value of the time stamp counter
are stored in the next two words and the received data field is stored in
words 3 to 0 of this mailbox. The complete content of the temporary
receive buffer is stored in the mailbox regardless of the DLC value of the
received message. Only the data bytes defined by the DLC contain valid
data, the rest of the mailbox data field is undefined. Refer to Figure 19-18
and Figure 19-19.

Figure 19-19. Mailbox Direction Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mailbox Direction Register 2 (CAN_MD2)

MD16

MD28 - RO

MD29 - RO

MD30 - RO

MD31 - RO

MD17

MD18

MD19

MD20

MD21

For all bits, 0 - Mailbox configured as transmit mode, 1 - Mailbox configured as receive mode

MD22

MD23

MD27 - RO

MD26 - RO

MD25 - RO

MD24 - RO

Reset = 0x00000xFFC0 2A44

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-39

Controller Area Network (CAN) Module

After a message is stored in a mailbox, the corresponding receive message
pending bit (RMPn in the CAN_RMPx register) is set and a mailbox receive
interrupt is generated (if enabled).

Acceptance Filter/Data Acceptance Filter
Each incoming data frame is compared to all identifiers stored in active
receive mailboxes (MDn = 1 and MCn = 1) and to all active transmit mail-
boxes with the remote frame handling feature enabled. If the acceptance
filter finds a matching identifier, the content of the received data frame is
stored in this mailbox and the corresponding bit in the receive message
pending register (CAN_RMPx) is set. A received message is stored only once,
even if multiple receive mailboxes match its identifier. If the current iden-
tifier does not match any mailbox, the message is not stored. The RMPn bit
must be reset to 0.

If a second message was received for this mailbox and the RMPn bit is
already set and the overwrite protection bit (OPSSn) is not set, the corre-
sponding message lost bit (RMLn) is set. If the OPSSn bit is set, the next
mailboxes are checked.

If an acceptance mask is enabled, each bit of the received identifier is
ignored by the compare logic if the corresponding bit in the acceptance
mask is set to one.

Receive Logic

19-40 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The use of the acceptance mask can be enabled/disabled for each mailbox
separately.

CAN Acceptance Mask (CAN_AMxx) Registers
The acceptance mask registers CAN_AMxxH and CAN_AMxxL are used for
acceptance filtering.

The acceptance masks are implemented as RAM, and have no reset value.
Each acceptance mask must be reset manually before it is enabled by set-
ting the AME bit in the corresponding mailbox.

Table 19-11. Mailbox Used for Acceptance Mask Filtering

Mailbox used for Acceptance Filtering

MCn MDn RFHn Mailbox n Comment

0 x x Ignored Mailbox n disabled

1 0 0 Ignored Mailbox n enabled
Mailbox n configured for transmit
Remote frame handling disabled

1 0 1 Used Mailbox n enabled
Mailbox n configured for transmit
Remote frame handling enabled

1 1 x Used Mailbox n enabled
Mailbox n configured for receive

Figure 19-20. Acceptance Mask Register (H)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Acceptance Mask Register (CAN_AMxxH)

EXTID[17:16]

Reset = 0xXXXX

BASEID[10:0]
AMIDE
FMD
FDF

For memory-
mapped
addresses, see
Table 19-12.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-41

Controller Area Network (CAN) Module

If DeviceNet mode is enabled (the DNM bit of the CAN_CONTROL register is 1)
and the mailbox is set up for filtering on data field, the filtering is done on
the standard ID of the message and data fields. The data field filtering can
be programmed for either the first byte only or the first two bytes, as
shown in Table 19-13.

Table 19-12. Acceptance Mask Register (H) Addresses

Register Name Memory-Mapped
Address

Register Name Memory-Mapped
Address

CAN_AM00H 0xFFC0 2B04 CAN_AM16H 0xFFC0 2B84

CAN_AM01H 0xFFC0 2B0C CAN_AM17H 0xFFC0 2B8C

CAN_AM02H 0xFFC0 2B14 CAN_AM18H 0xFFC0 2B94

CAN_AM03H 0xFFC0 2B1C CAN_AM19H 0xFFC0 2B9C

CAN_AM04H 0xFFC0 2B24 CAN_AM20H 0xFFC0 2BA4

CAN_AM05H 0xFFC0 2B2C CAN_AM21H 0xFFC0 2BAC

CAN_AM06H 0xFFC0 2B34 CAN_AM22H 0xFFC0 2BB4

CAN_AM07H 0xFFC0 2B3C CAN_AM23H 0xFFC0 2BBC

CAN_AM08H 0xFFC0 2B44 CAN_AM24H 0xFFC0 2BC4

CAN_AM09H 0xFFC0 2B4C CAN_AM25H 0xFFC0 2BCC

CAN_AM10H 0xFFC0 2B54 CAN_AM26H 0xFFC0 2BD4

CAN_AM11H 0xFFC0 2B5C CAN_AM27H 0xFFC0 2BDC

CAN_AM12H 0xFFC0 2B64 CAN_AM28H 0xFFC0 2BE4

CAN_AM13H 0xFFC0 2B6C CAN_AM29H 0xFFC0 2BEC

CAN_AM14H 0xFFC0 2B74 CAN_AM30H 0xFFC0 2BF4

CAN_AM15H 0xFFC0 2B7C CAN_AM31H 0xFFC0 2BFC

Receive Logic

19-42 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

If the FDF field of the corresponding CAN_AMxxH register is 1, the CAN_AMxxL
register holds the data field mask (DFM[15:0]). If the FDF field of the corre-
sponding CAN_AMxxH register is 0, the CAN_AMxxL register holds the
extended identifier mask (EXTID[15:0]).

Table 19-13. Data Field Filtering

FDF
Filter On Data Field

FMD
Full Mask Data Field

Description

0 0 Do not allow filtering on the data field

0 1 Not allowed. FMD must be 0 if FDF is 0.

1 0 Filter on first data byte only

1 1 Filter on first two data bytes

Figure 19-21. Acceptance Mask Register (L)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Acceptance Mask Register (CAN_AMxxL)

EXTID[15:0]/DFM[15:0]

Reset = 0xXXXX
For memory-
mapped
addresses, see
Table 19-14.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-43

Controller Area Network (CAN) Module

Receive Logic

19-44 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 19-20 and Figure 19-21 show the layout for every implemented
acceptance mask register (CAN_AMxxH and CAN_AMxxL).

The acceptance filtering is done to allow groups of messages to be stored
in a message center.

An incoming message is stored in the highest numbered mailbox with a
matching identifier. If this mailbox already contains data (RMPn = 1 in the
CAN_RMPx register), the further behavior depends on the content of the cor-
responding overwrite protection bit (OPSSn). The incoming identifier is
compared to those stored in the RAM and the bits that should not be

Table 19-14. Acceptance Mask Register (L) Addresses

Register Name Memory-Mapped
Address

Register Name Memory-Mapped
Address

CAN_AM00L 0xFFC0 2B00 CAN_AM16L 0xFFC0 2B80

CAN_AM01L 0xFFC0 2B08 CAN_AM17L 0xFFC0 2B88

CAN_AM02L 0xFFC0 2B10 CAN_AM18L 0xFFC0 2B90

CAN_AM03L 0xFFC0 2B18 CAN_AM19L 0xFFC0 2B98

CAN_AM04L 0xFFC0 2B20 CAN_AM20L 0xFFC0 2BA0

CAN_AM05L 0xFFC0 2B28 CAN_AM21L 0xFFC0 2BA8

CAN_AM06L 0xFFC0 2B30 CAN_AM22L 0xFFC0 2BB0

CAN_AM07L 0xFFC0 2B38 CAN_AM23L 0xFFC0 2BB8

CAN_AM08L 0xFFC0 2B40 CAN_AM24L 0xFFC0 2BC0

CAN_AM09L 0xFFC0 2B48 CAN_AM25L 0xFFC0 2BC8

CAN_AM10L 0xFFC0 2B50 CAN_AM26L 0xFFC0 2BD0

CAN_AM11L 0xFFC0 2B58 CAN_AM27L 0xFFC0 2BD8

CAN_AM12L 0xFFC0 2B60 CAN_AM28L 0xFFC0 2BE0

CAN_AM13L 0xFFC0 2B68 CAN_AM29L 0xFFC0 2BE8

CAN_AM14L 0xFFC0 2B70 CAN_AM30L 0xFFC0 2BF0

CAN_AM15L 0xFFC0 2B78 CAN_AM31L 0xFFC0 2BF8

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-45

Controller Area Network (CAN) Module

compared are masked out. A 1 in the acceptance mask means don’t care
and a 0 demands an identical match of the bit. The mask bits for the base
identifier are stored in bits 12–2 of the acceptance mask registers
(CAN_AMxxH) and bits for the extended identifier in 1–0 of CAN_AMxxH and
15–0 of CAN_AMxxL. Bit 13 of the CAN_AMxxH register is the mask bit for the
identifier extension bit (AMIDE).

After power-up reset, the user must initialize all acceptance mask bits.

The acceptance mask area is implemented as a separate acceptance mask
for every mailbox, so the reset value for software reset and power-up reset
are unchanged. If the acceptance mask is enabled (AME of corresponding
mailbox is set), it has to be initialized.

The content of the acceptance mask register may be changed only if the
corresponding mailboxes are disabled.

Receive Control Registers
The following sections describe the receive control registers of the CAN
module.

CAN Receive Message Pending (CAN_RMPx)
Register

The bits in the receive message pending register (CAN_RMPx) can only be set
by the internal logic. The RMPn bit indicates a message pending in mailbox
n. The RMPn bits are write-1-to-clear (W1C). Clearing a RMPn bit also clears
the corresponding receive message lost bit (RMLn) in the CAN_RMLx register.
The RMPn bit may set the mailbox interrupt flag (MBRIFn) bit in the mail-
box interrupt flag register (CAN_MBRIFx) if the corresponding interrupt
mask bit in the MBIMn mailbox interrupt mask register (CAN_MBIMx) is set.
The MBRIFn flag initiates a mailbox interrupt.

Receive Control Registers

19-46 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

CAN Receive Message Lost (CAN_RMLx) Register
The bits in the receive message lost register (CAN_RMLx) can only be reset
by the device and can be set by the internal logic. The bits can be cleared
by writing a 1 to RMPn in the CAN_RMPx register. A write access to the
CAN_RMLx register has no effect.

Figure 19-22. Receive Message Pending Register 1

Figure 19-23. Receive Message Pending Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Receive Message Pending Register 1 (CAN_RMP1)

RMP0

RMP12

RMP13

RMP14

RMP15

RMP1

RMP2

RMP3

RMP4

RMP5

All bits are write-1-to-clear

RMP6

RMP7

RMP11

RMP10

RMP9

RMP8

Reset = 0x00000xFFC0 2A18

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Receive Message Pending Register 2 (CAN_RMP2)

RMP16

RMP28 - RO

RMP29 - RO

RMP30 - RO

RMP31 - RO

RMP17

RMP18

RMP19

RMP20

RMP21

All bits are write-1-to-clear

RMP22

RMP23

RMP27 - RO

RMP26 - RO

RMP25 - RO

RMP24 - RO

Reset = 0x00000xFFC0 2A58

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-47

Controller Area Network (CAN) Module

If one or more bits in the CAN_RMLx register is set, the receive message lost
interrupt status bit in the global interrupt status register (CAN_GIS) is also
set. If the corresponding interrupt enable bit in CAN_GIM is set, the receive
message lost flag (RMLIF) in the global interrupt flag register (CAN_GIF) is
also set.

Figure 19-24. Receive Message Lost Register 1

Figure 19-25. Receive Message Lost Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Receive Message Lost Register 1 (CAN_RML1)

RML0

RML12

RML13

RML14

RML15

RML1

RML2

RML3

RML4

RML5

RML6

RML7

RML11

RML10

RML9

RML8

Reset = 0x00000xFFC0 2A1C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Receive Message Lost Register 2 (CAN_RML2)

RML16

RML28 - RO

RML29 - RO

RML30 - RO

RML31 - RO

RML17

RML18

RML19

RML20

RML21

RML22

RML23

RML27 - RO

RML26 - RO

RML25 - RO

RML24 - RO

Reset = 0x00000xFFC0 2A5C

Receive Control Registers

19-48 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

CAN Overwrite Protection/Single Shot Transmission
(CAN_OPSSx) Register

If a message is received for a mailbox and this mailbox still contains
unread data (RMPn = 1), the user has to decide whether this old message
should be overwritten or not. If the corresponding overwrite protection
bit is reset (OPSSn = 0), the receive message lost bit (RMLn) is set and the
stored message is overwritten.

If a message is received for a mailbox and this mailbox still contains
unread data (RMPn = 1, OPSSn = 1), the next mailboxes are checked for
another matching identifier.

The meaning of the bits in the overwrite protection/single shot transmis-
sion mode register (CAN_OPSSx) depends on the corresponding mailbox
configuration. If a mailbox is configured as a receive mailbox, the content
of OPSSn is interpreted as overwrite protection bit (OPSSn). If a mailbox is
configured as a transmit mailbox, OPSSn is interpreted as single shot trans-
mission mode bit (OPSSn). These bits can only be set/reset by the device.
After power-up reset or software reset, all bits are cleared.

Figure 19-26. Overwrite Protection/Single Shot Transmission Register 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Overwrite Protection/Single Shot Transmission Register 1 (CAN_OPSS1)

OPSS0

OPSS12

OPSS13

OPSS14

OPSS15

OPSS1

OPSS2

OPSS3

OPSS4

OPSS5

OPSS6

OPSS7

OPSS11

OPSS10

OPSS9

OPSS8

Reset = 0x00000xFFC0 2A30

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-49

Controller Area Network (CAN) Module

If the mailbox configuration is changed (receive mode <-> transmit
mode), the content of the CAN_OPSSx register must be adapted by the user.

The content of a CAN_OPSSx bit must not be changed if the corresponding
mailbox is enabled.

The overwrite protection cannot be used if automatic remote frame han-
dling is enabled. In this case, the content of a mailbox is always
overwritten by an incoming message.

Transmit Logic
The transmit data is stored in a mailbox configured as a transmit mailbox.
After writing the data and the identifier into the RAM, the message is sent
if the corresponding transmit request bit is set and the mailbox is enabled.
The transmit control register is divided into two registers. The transmit
request set register (CAN_TRSx) and the transmit request reset register
(CAN_TRRx).

Figure 19-27. Overwrite Protection/Single Shot Transmission Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Overwrite Protection/Single Shot Transmission Register 2 (CAN_OPSS2)

OPSS16

OPSS28

OPSS29

OPSS30

OPSS31

OPSS17

OPSS18

OPSS19

OPSS20

OPSS21

OPSS22

OPSS23

OPSS27

OPSS26

OPSS25

OPSS24

Reset = 0x00000xFFC0 2A70

Transmit Logic

19-50 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

If there is more than one pending transmit request, the message objects are
sent as defined in the transmit priority logic.

When transmission is successful, the corresponding bits in the CAN_TRSx
register and in the CAN_TRRx register are cleared and the corresponding bit
in the transmit acknowledge register is set.

The control bits to set or reset a transmission request (TRS and TRR, respec-
tively) can be written independently.

Retransmission
Normally, the current message object is resent in case of a lost arbitration
or an error frame on the CAN bus line. If there is more than one transmit
message object pending, the message object with the highest priority is
sent first. The priority is defined by the transmit priority logic. The cur-
rently aborted transmission is restarted after the message with the higher
priority is sent.

A message which is currently under preparation is not replaced by another
message which is written into the mailbox. The message under preparation
is one that is copied into the temporary transmit buffer when the internal
transmit request for the CAN core module is set. The message is not
replaced until it is sent successfully, the arbitration on the CAN bus line is
lost, or there is an error frame on the CAN bus line.

Single Shot Transmission
If the single shot transmission feature is used (OPSSn = 1), the transmission
request set bit (TRSn) in the CAN_TRSx register is cleared after the message is
successfully sent. The TRSn bit is also cleared if the transmission is aborted
due to a lost arbitration or an error frame on the CAN bus line. Thus, the
transmission of this message is not repeated in case of a lost arbitration or
an error on the CAN bus line.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-51

Controller Area Network (CAN) Module

After a successful transmission, the corresponding TAn bit in the CAN_TAx
register is set, and after an aborted transmission, the corresponding AAn bit
is set.

Transmit Priority Defined by Mailbox Number
If there is more than one pending transmit request, the sequence is started
with the highest enabled mailbox down to the lowest enabled mailbox.
The pointer to the next pending transmit message is generated from the
content of the CAN_TRSx, CAN_TRRx, CAN_MDx, and CAN_MCx registers. This
pointer is available one cycle after a change to one of the registers. Thus,
the new pointer is generated shortly before the content of the message to
be sent is copied into the temporary transmit buffer. This normally hap-
pens during the intermission field of a CAN message. After this pointer is
generated, all further changes in the mailbox area are ignored until the
next pointer generation event.

Transmit Control Registers
If a message is to be sent, the corresponding mailbox must first be config-
ured as a transmit mailbox. After the data is stored in the mailbox, the
transmission can be initiated by setting the corresponding bit in the trans-
mit request set register. A requested transmission can be aborted by setting
the corresponding bit in CAN_TRRx.

CAN Transmission Request Set
(CAN_TRSx) Registers

The bits in the CAN_TRSx register can be set by the device and reset/set by
the internal logic. The CAN_TRSx bits are set by writing a 1. Writing a 0 has
no effect. They are set by the CAN module in case of a remote frame
request (or in auto-transmit mode). This is only possible for the
receive/transmit mailboxes if the automatic remote frame handling feature

Transmit Control Registers

19-52 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

is enabled (RFHn = 1). If TRSn = 1, the write access to the corresponding
mailbox is denied (but not locked) and message n is transmitted. Several
CAN_TRSx bits can be set simultaneously and are reset after either a success-
ful or an aborted transmission.

After power-up reset or software reset, all bits in CAN_TRSx are cleared. The
CAN_TRSx bits are only implemented for transmit mailboxes and standard
mailboxes. The value of TRSn for a receive mailbox is always read as 0.

Write access to a mailbox is possible, even if the corresponding TRSn bit is
set. However, changing data in such a mailbox may lead to unexpected
data during transmission.

Setting TRSn when the corresponding mailbox is disabled (MCn = 0) may
lead to erroneous behavior.

Unexpected behavior may also occur if a mailbox is disabled before the
corresponding TRSn bit is reset by the internal logic.

Before TRSn is set, the corresponding mailbox must contain valid transmit
data.

Figure 19-28. Transmission Request Set Register 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmission Request Set Register 1 (CAN_TRS1)

TRS0 - RO

TRS12

TRS13

TRS14

TRS15

TRS1 - RO

TRS2 - RO

TRS3 - RO

TRS4 - RO

TRS5 - RO

TRS6 - RO

TRS7 - RO

TRS11

TRS10

TRS9

TRS8

Reset = 0x00000xFFC0 2A08

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-53

Controller Area Network (CAN) Module

CAN Transmission Request Reset
(CAN_TRRx) Registers

The bits in the CAN_TRRx registers can only be set by the device and reset
by the internal logic. The CAN_TRR bits are set by writing a 1. Writing a 0
has no effect. After power-up reset or software reset, all bits are cleared.

If TRRn is set, the write access to the corresponding mailbox is denied but
not locked. If TRRn is set and the transmission which was initiated by TRSn
is not currently processed, the corresponding transmission request is can-
celled immediately. If the corresponding message is currently being
processed, the bits in CAN_TRSx and CAN_TRRx remain set until the trans-
mission is aborted or successfully finished. The abort acknowledge bit
(AAn) or the transmit acknowledge bit (TAn) is not set until:

• Successful transmission

• Abortion due to a lost arbitration

• Error condition detected on the CAN bus line

Figure 19-29. Transmission Request Set Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmission Request Set Register 2 (CAN_TRS2)

TRS16

TRS28

TRS29

TRS30

TRS31

TRS17

TRS18

TRS19

TRS20

TRS21

TRS22

TRS23

TRS27

TRS26

TRS25

TRS24

Reset = 0x00000xFFC0 2A48

Transmit Control Registers

19-54 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

If the transmission was successful, the transmit acknowledge bit (TAn) is
set. If the transmission was aborted, the corresponding abort acknowledge
bit (AAn) is set. In both cases, TRSn and TRRn are reset.

The status of the TRR bits can be read from the CAN_TRSx bits. If CAN_TRSx
is set and a transmission is taking place, CAN_TRRx can only be reset by the
actions described above. If the CAN_TRSx bit is reset and the CAN_TRRx bit is
set, there is no effect since the CAN_TRRx bit is immediately reset by inter-
nal logic.

After power-up reset or software reset, all bits in CAN_TRRx are cleared. The
CAN_TRRx bits are only implemented for transmit mailboxes and standard
mailboxes. The value of TRRn for a receive mailbox is always read as 0.

The TRRn bit must not be set if the corresponding mailbox is disabled
(MCn = 0).

The TRRn bit must not be set if the corresponding TRSn bit is not set.

A currently processed message continues to transmit if the corresponding
bits TRSn and TRRn are set because of an abort requested by the user. The
current transmit operation is finished if TAn of the CAN_TAx register or AAn
of the CAN_AAx register is set.

The transmission of a message is immediately aborted if the corresponding
mailbox is temporary disabled and the TRRn bit for this message is set
(TRSn and TRRn are reset, AAn is set).

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-55

Controller Area Network (CAN) Module

Figure 19-30. Transmission Request Reset Register 1

Figure 19-31. Transmission Request Reset Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmission Request Reset Register 1 (CAN_TRR1)

TRR0 - RO

TRR12

TRR13

TRR14

TRR15

TRR1 - RO

TRR2 - RO

TRR3 - RO

TRR4 - RO

TRR5 - RO

TRR6 - RO

TRR7 - RO

TRR11

TRR10

TRR9

TRR8

Reset = 0x00000xFFC0 2A0C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmission Request Reset Register 2 (CAN_TRR2)

TRR16

TRR28

TRR29

TRR30

TRR31

TRR17

TRR18

TRR19

TRR20

TRR21

TRR22

TRR23

TRR27

TRR26

TRR25

TRR24

Reset = 0x00000xFFC0 2A4C

Transmit Control Registers

19-56 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

CAN Abort Acknowledge (CAN_AAx) Register
The abort acknowledge register (CAN_AAx) indicates whether a transmis-
sion was aborted. If the transmission of the message in mailbox n was
aborted, bit AAn is set. The AAn bits are write-1-to-clear bits. Writing a 0
has no effect. The abort acknowledge bit AAn is reset if TRSn is set again. If
a mailbox is disabled (MCn is reset) and the corresponding AAn bit in the
transmit abort register is set, this bit remains set. The AAn bit can only be
cleared by writing a 1 to it.

Setting a bit in CAN_AAx sets a flag (AAIS) in the global interrupt status reg-
ister (CAN_GIS). If the interrupt mask bit AAIM is set (AAIM = 1 => interrupt
is enabled), the corresponding AAIF bit in the global interrupt flag register
(CAN_GIF) is also set and a global interrupt is asserted.

After power-up reset or software reset, all bits in CAN_AAx are cleared.

Figure 19-32. Abort Acknowledge Register 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Abort Acknowledge Register 1 (CAN_AA1)

AA0 - RO

AA12

AA13

AA14

AA15

AA1 - RO

AA2 - RO

AA3 - RO

AA4 - RO

AA5 - RO

Write-1-to-clear

AA6 - RO

AA7 - RO

AA11

AA10

AA9

AA8

Reset = 0x00000xFFC0 2A14

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-57

Controller Area Network (CAN) Module

The AAn bit is not reset if the corresponding TRSn bit is set by internal
logic. The AAn bit is only reset if TRSn is set.

CAN Transmission Acknowledge
(CAN_TAx) Register

The transmission acknowledge register (CAN_TAx) indicates whether a
transmission was sent successfully. If the message in mailbox n was sent
successfully, the transmit acknowledge bit (TAn) is set. The TAn bits are
write-1-to-clear. Writing a 0 has no effect. The TAn bit is also reset if TRSn
is set again. If a mailbox is disabled (MCn is reset) and the corresponding bit
in the CAN_TAx register is set, this bit remains set. The TAn bit can only be
cleared by writing a 1 to it.

Setting a bit in CAN_TA sets a mailbox transmit interrupt flag (MBTIFn) if
the corresponding interrupt mask bit (MBIMn in the CAN_MBIMx register) is
set (MBIMn = 1 => interrupt is enabled).

After power-up reset or software reset, all bits in CAN_TAx are cleared.

Figure 19-33. Abort Acknowledge Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Abort Acknowledge Register 2 (CAN_AA2)

AA16

AA28

AA29

AA30

AA31

AA17

AA18

AA19

AA20

AA21

Write-1-to-clear

AA22

AA23

AA27

AA26

AA25

AA24

Reset = 0x00000xFFC0 2A54

Transmit Control Registers

19-58 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The TAn bit is not reset if the corresponding TRSn bit is set by internal
logic. The TAn bit is only reset if TRSn is set or by writing a 1 to the corre-
sponding bit location.

Figure 19-34. Transmission Acknowledge Register 1

Figure 19-35. Transmission Acknowledge Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmission Acknowledge Register 1 (CAN_TA1)

TA0 - RO

TA12

TA13

TA14

TA15

TA1 - RO

TA2 - RO

TA3 - RO

TA4 - RO

TA5 - RO

Write-1-to-clear

TA6 - RO

TA7 - RO

TA11

TA10

TA9

TA8

Reset = 0x00000xFFC0 2A10

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmission Acknowledge Register 2 (CAN_TA2)

TA16

TA28

TA29

TA30

TA31

TA17

TA18

TA19

TA20

TA21

Write-1-to-clear

TA22

TA23

TA27

TA26

TA25

TA24

Reset = 0x00000xFFC0 2A50

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-59

Controller Area Network (CAN) Module

CAN Mailbox Temporary Disable (CAN_MBTD)
Register

The mailbox temporary disable feature can be used by programming the
mailbox temporary disable register (CAN_MBTD). If a mailbox is enabled and
configured to transmit, write accesses to the data field are denied. If this
mailbox is used for automatic remote frame handling, the data field must
be updated without losing an incoming remote request frame and without
sending inconsistent data.

The pointer to the requested mailbox must be written to bits 4 to 0 of the
CAN_MBTD register and the mailbox TDR bit must be set. The correspondIng
mailbox TDA flag is set by the internal logic.

If a mailbox is configured to transmit (MDn = 0) and the TDA flag is set by
the FSM, the content of the data field of that mailbox can be updated. If
there is an incoming remote request frame while the mailbox is temporary
disabled, the corresponding TRSn bit is set by the FSM and the DLC of the
incoming message is written to the corresponding mailbox. However, the
message is not sent until the temporary disable request is reset.

If a mailbox is configured to receive (MDn = 1), the TDA flag is set by the
FSM and the mailbox is not currently processed. If there is an incoming
message for the requested mailbox n (the number of mailbox n is identical
to the number of the temporary disabled mailbox), the internal logic waits
until the reception is complete or there is an error on the CAN bus or
until the TDA flag is set. If the TDA flag is set, the mailbox can be com-
pletely disabled (MCn = 0) without the risk of losing an incoming frame.
The temporary disable request (TDR) must be reset as soon as possible.

If the TDA flag for a mailbox is set by the internal logic, only the data
field of this mailbox can be updated (last 8 bytes of the mailbox). Accesses
to the control bits and the Identifier are denied.

The temporary disabled mailbox is ignored for transmission as long as the
corresponding request bit is set.

Transmit Control Registers

19-60 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

 The reserved bits of the CAN_MBTD register always read 0. When
writing this register, always write these bits as 0.

CAN Remote Frame Handling
(CAN_RFHx) Registers

Automatic handling of remote frames can be enabled/disabled by set-
ting/resetting the corresponding bit in the remote frame handling registers
(CAN_RFHx).

Remote frames are data frames without a data field with the RTR bit set.
The data length code of the data frame is equal to the DLC of the corre-
sponding remote frame. A DLC can be programmed with values in the
range of 0 to 15. The DLC value greater than 8 is considered as 8. A
remote frame contains:

• the identifier bits

• the control bits, (that is, the data length code)

• the remote transmission request (RTR) bit

Only mailboxes that can both transmit and receive (mailboxes 8–23) can
process remote frames.

Figure 19-36. Temporary Mailbox Disable Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Temporary Mailbox Disable Feature Register (CAN_MBTD)

TDPTR

Reset = 0x00000xFFC0 2AAC

TDA
TDR

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-61

Controller Area Network (CAN) Module

All message centers can receive and transmit remote frame requests. They
are capable of automatically sending a remote frame request to another
node and answering incoming remote frame requests.

Note that a mailbox is only enabled for transmission or reception if its MCn
bit in the mailbox configuration register is set. A disabled mailbox does
not transmit or receive any messages.

Figure 19-37. Remote Frame Handling Register 1

Figure 19-38. Remote Frame Handling Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Remote Frame Handling Register 1 (CAN_RFH1)

RFH0 - RO

RFH12

RFH13

RFH14

RFH15

RFH1 - RO

RFH2 - RO

RFH3 - RO

RFH4 - RO

RFH5 - RO

RFH6 - RO

RFH7 - RO

RFH11

RFH10

RFH9

RFH8

Reset = 0x00000xFFC0 2A2C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Remote Frame Handling Register 2 (CAN_RFH2)

RFH16

RFH28 - RO

RFH29 - RO

RFH30 - RO

RFH31 - RO

RFH17

RFH18

RFH19

RFH20

RFH21

RFH22

RFH23

RFH27 - RO

RFH26 - RO

RFH25 - RO

RFH24 - RO

Reset = 0x00000xFFC0 2A6C

CAN Interrupts

19-62 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Write access to an RFHn bit is denied (but not locked) if the corresponding
mailbox n is enabled. The CAN_RFHx register can only be read and written
by the device. If bit RFHn is set, the automatic remote frame handling fea-
ture for the corresponding mailbox is enabled.

After power-up reset or software reset, all bits are cleared.

Erroneous behavior may result when the RFHn bit is changed and the cor-
responding mailbox is currently processed.

The length of a data frame is defined by the DLC of the corresponding
remote frame. If a remote frame is received, the DLC of the corresponding
mailbox is overwritten with the received value.

CAN Interrupts
The CAN module provides three independent interrupts: two mailbox
interrupts (mailbox receive interrupt MBRIRQ and mailbox transmit inter-
rupt MBTIRQ) and the global interrupt GIRQ. The values of these three
interrupts can also be read back in the interrupt status registers.

CAN Interrupt (CAN_INTR) Register
The CAN interrupt register (CAN_INTR) holds information about the CAN
interrupts.

The interrupt status bit is set as long as the interrupt output line is active.
All bits in CAN_INTR are read only. Write access to this register has no
effect. (Exception: wake up, if sleep mode is entered). After power-up reset
or software reset, all interrupts are cleared.

 The reserved bits of the CAN_INTR register always read 0. When
writing this register, always write these bits as 0.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-63

Controller Area Network (CAN) Module

For test or debugging purposes, the values of the CAN serial-in (CANRX)
and the CAN serial-out (CANTX) bits can also be read. These two bits show
the state of the CANRX and CANTX pins, respectively, at the time the register
was read.

Additional information for the CAN_INTR register bits includes:

• Serial Input From CAN Bus Line From Transceiver (CANRX).
This bit is read-only.

1—The current value of the CAN bus is recessive.

0—The current value of the CAN bus is dominant.

• Serial Output to CAN Bus Line to Transceiver (CANTX).
This bit is read-only.

1—The output to the CAN bus line is recessive.

0—The output to the CAN bus line is dominant.

Figure 19-39. CAN Interrupt Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 X X 0 0 0 0 0

CAN Interrupt Register (CAN_INTR)

MBRIRQ (Mailbox Receive
interrupt Output)
0 - No receive flags set
1 - One or more receive flags
set

Reset = dependent on
pin values

0xFFC0 2AA4

MBTIRQ (Mailbox Transmit
interrupt Output)
0 - No transmit flags set
1 - One or more transmit flags
set
GIRQ (global interrupt
Output)
0 - No global flags set
1 - One or more global flags set

CANRX (Serial Input From Transceiver) - RO

Serial input from CAN bus line from
transceiver
0 - Value is dominant
1 - Value is recessive

CANTX (Serial Input To Transceiver) - RO

Serial input from CAN bus line
to transceiver
0 - Value is dominant
1 - Value is recessive

SMACK (Sleep Mode Acknowledge)
0 - Not in Sleep mode
1 - Full-CAN module in Sleep mode

Mailbox Interrupts

19-64 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• Global Interrupt Output (GIRQ).

1—At least one global interrupt flag in the global interrupt flag
register CAN_GIF is set.

0—None of the global interrupt flags is set.

• Sleep Mode Acknowledge (SMACK).

1—The full-CAN module is in sleep mode.

0—Sleep mode is not active.

• Mailbox Transmit Interrupt Output (MBTIRQ).

1—At least one transmit interrupt flag in the transmit interrupt
flag register CAN_MBTIFx is set.

0—No transmit interrupt flag bit in CAN_MBTIFx is set.

• Mailbox Receive Interrupt Output (MBRIRQ).

1—At least one receive interrupt flag in the receive interrupt flag
register CAN_MBRIFx is set.

0—No transmit interrupt flag bit in CAN_MBRIFx is set.

Mailbox Interrupts
Each of the 32 mailboxes in the CAN module may generate an interrupt
as a result of one of the two mailbox interrupts. These interrupts can be
receive or transmit interrupts, depending on the mailbox configuration.

A transmit (MBTIFn) or receive (MBRIFn) mailbox interrupt flag can only be
set if the corresponding MBIMn bit in the mailbox interrupt mask register
(CAN_MBIMx) is set.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-65

Controller Area Network (CAN) Module

If a mailbox is configured as a receive mailbox, the corresponding receive
interrupt flag (MBRIFn) is set after a received message is stored in mailbox
n. If the automatic remote frame handling feature is used, the receive
interrupt flag is set after the requested data frame is stored in the mailbox.
The mailbox receive interrupt (MBRIFn) is always asserted if a new receive
message is written to mailbox n and if MBIMn is set.

If a mailbox is configured as a transmit mailbox, the corresponding trans-
mit interrupt flag (MBTIFn) is set after the message in mailbox n is sent
correctly. If the automatic remote frame handling feature is used, the
transmit interrupt flag is set after the requested data frame is sent from the
mailbox.

CAN Mailbox Interrupt Mask (CAN_MBIMx)
Registers

The mailbox interrupt mask registers (CAN_MBIMx) control whether or not
mailbox interrupt flags are set. There is one interrupt flag available for
each mailbox. This may be a receive or a transmit interrupt depending on
the configuration register. If the MBIMn bit is 1, an interrupt is generated if
a message has been transmitted successfully (for a transmit mailbox) or a
message has been received without any errors (for a receive mailbox). After
power-up or software reset, all interrupt mask bits are cleared and the
interrupts are disabled.

Mailbox Interrupts

19-66 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 19-40. Mailbox Interrupt Mask Register 1

Figure 19-41. Mailbox Interrupt Mask Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mailbox Interrupt Mask Register 1 (CAN_MBIM1)

MBIM0

MBIM12

MBIM13

MBIM14

MBIM15

MBIM1

MBIM2

MBIM3

MBIM4

MBIM5

MBIM6

MBIM7

MBIM11

MBIM10

MBIM9

MBIM8

Reset = 0x00000xFFC0 2A28

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mailbox Interrupt Mask Register 2 (CAN_MBIM2)

MBIM16

MBIM28

MBIM29

MBIM30

MBIM31

MBIM17

MBIM18

MBIM19

MBIM20

MBIM21

MBIM22

MBIM23

MBIM27

MBIM26

MBIM25

MBIM24

Reset = 0x00000xFFC0 2A68

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-67

Controller Area Network (CAN) Module

CAN Mailbox Interrupt Mask Flag
(CAN_MBTIFx) Registers

A transmit interrupt flag (MBTIFn) in the mailbox transmit interrupt flag
register (CAN_MBTIFx) is set if a message is sent correctly from a mailbox,
the corresponding bit MBIMn is set, and the mailbox is configured as a
transmit mailbox. If the mailbox is configured as a receive mailbox
(MDn = 1) or the mailbox is disabled (MCn = 0), the corresponding bit in the
transmit mailbox interrupt flag register (MBTIFn) remains set.

A MBTIFn can be reset by writing a 1 to the corresponding bit location.
Writing a 0 has no effect. The MBTIFn bit is also reset if the mailbox con-
figuration register bit (MCn) is reset or the corresponding bit in the mailbox
interrupt mask register (CAN_MBIMx) is reset.

The mailbox transmit interrupt output (MBTIRQ) is active as long as at least
one bit in the CAN_MBTIFx register is set.

If the mailbox direction (MDn) for a mailbox is changed after the MBTIFn bit
has been set, the value of the MBTIFn bit is reset and the corresponding
MBRIFn bit in the CAN_MBRIFx register is set.

Figure 19-42. Mailbox Transmit Interrupt Flag Register 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mailbox Transmit Interrupt Flag Register 1 (CAN_MBTIF1)

MBTIF0 - RO

MBTIF12

MBTIF13

MBTIF14

MBTIF15

MBTIF1 - RO

MBTIF2 - RO

MBTIF3 - RO

MBTIF4 - RO

MBTIF5 - RO

MBTIF6 - RO

MBTIF7 - RO

MBTIF11

MBTIF10

MBTIF9

MBTIF8

Reset = 0x00000xFFC0 2A20

Mailbox Interrupts

19-68 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

CAN Mailbox Receive Interrupt Flag
(CAN_MBRIFx) Registers

A receive interrupt flag bit (MBRIFn) in the mailbox receive interrupt flag
register (CAN_MBRIFx) is set if a message is received and stored correctly in
mailbox n, the corresponding bit MBIMn is set, and the mailbox is config-
ured as a receive mailbox. If the mailbox is configured as a transmit
mailbox (MDn = 0) or the mailbox is disabled (MCn = 0), the MBRIFn bit in
the mailbox receive interrupt flag register remains set.

A receive interrupt flag bit (MBRIFn) can be reset by writing a 1 to the cor-
responding bit location. Writing a 0 has no effect. The MBRIFn bit is also
reset if the MCn bit in the mailbox configuration register is reset, or the cor-
responding MBIMn bit in the mailbox interrupt mask register is reset.

The mailbox receive interrupt output (MBRIRQ) is active as long as at least
one bit in the CAN_MBRIFx register is set.

If the mailbox direction (MDn) is changed after the MBRIFn bit has been set,
the value of MBRIFn is reset and the corresponding MBTIFn bit is set.

Figure 19-43. Mailbox Transmit Interrupt Flag Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mailbox Transmit Interrupt Flag Register 2 (CAN_MBTIF2)

MBTIF16

MBTIF28

MBTIF29

MBTIF30

MBTIF31

MBTIF17

MBTIF18

MBTIF19

MBTIF20

MBTIF21

MBTIF22

MBTIF23

MBTIF27

MBTIF26

MBTIF25

MBTIF24

Reset = 0x00000xFFC0 2A60

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-69

Controller Area Network (CAN) Module

Figure 19-44. Mailbox Receive Interrupt Flag Register 1

Figure 19-45. Mailbox Receive Interrupt Flag Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mailbox Receive Interrupt Flag Register 1 (CAN_MBRIF1)

MBRIF0

MBRIF12

MBRIF13

MBRIF14

MBRIF15

MBRIF1

MBRIF2

MBRIF3

MBRIF4

MBRIF5

MBRIF6

MBRIF7

MBRIF11

MBRIF10

MBRIF9

MBRIF8

Reset = 0x00000xFFC0 2A24

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mailbox Receive Interrupt Flag Register 2 (CAN_MBRIF2)

MBRIF16

MBRIF28 - RO

MBRIF29 - RO

MBRIF30 - RO

MBRIF31 - RO

MBRIF17

MBRIF18

MBRIF19

MBRIF20

MBRIF21

MBRIF22

MBRIF23

MBRIF27 - RO

MBRIF26 - RO

MBRIF25 - RO

MBRIF24 - RO

Reset = 0x00000xFFC0 2A64

Global Interrupt

19-70 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Global Interrupt
In addition to the mailbox interrupts, the CAN module provides a global
interrupt. There are several interrupt events to activate this interrupt.
Global interrupts are generated if there is a change to some status bits in
the CAN controller module. Each interrupt can be masked separately. All
bits in the interrupt status and in the interrupt flag registers remain set
until cleared by software or a software reset has occurred.

 In the ISR, the interrupt latch should be cleared by a W1C opera-
tion to the corresponding bit of the CAN_GIS register. This clears
the related bits of both the CAN_GIS and CAN_GIF registers.

The interrupt sources are:

• Access Denied Interrupt (ADIM, ADIS, ADIF).

1—At least one access to the mailbox RAM occurred during a data
update by internal logic.

0—All accesses to the mailbox RAM are valid.

• External Trigger Output Interrupt (EXTIM, EXTIS, EXTIF).

1—The external trigger event occurred.

0—There was no external trigger event.

• Universal Counter Exceeded Interrupt (UCEIM, UCEIS, UCEIF).

There was an overflow of the universal counter (in time stamp
mode or event counter mode) or the counter has reached the value
0x0000 (in watchdog mode).

1—The universal counter was exceeded.

0—The universal counter was not exceeded.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-71

Controller Area Network (CAN) Module

• Receive Message Lost Interrupt (RMLIM, RMLIS, RMLIF).

A message has been received for a mailbox that currently contains
unread data. At least one bit in the receive message lost register
(CAN_RMLx) is set. If the bit in CAN_GIS (and CAN_GIF) is reset and
there is at least one bit in CAN_RML still set, the bit in CAN_GIS (and
CAN_GIF) is not set again. The internal interrupt source signal is
only active if a new bit in CAN_RML is set.

1—At least one message has been lost.

0—No message lost event detected.

• Abort Acknowledge Interrupt (AAIM, AAIS, AAIF).

A requested transmission abort of a message was successful. At least
one bit in the abort acknowledge registers CAN_AAx is set. If the bit
in CAN_GIS (and CAN_GIF) is reset and there is at least one bit in
CAN_AAx still set, the bit in CAN_GIS (and CAN_GIF) is not set again.
The internal interrupt source signal is only active if a new bit in
CAN_AAx is set.

1—At least one transmit request was successfully aborted.

0—No transmission aborted.

• Access to Unimplemented Address Interrupt (UIAIM, UIAIS,
UIAIF).

There was a CPU access to an address which is not implemented in
the controller module.

1—Access to unimplemented address detected.

0—No access to unimplemented address detected.

Global Interrupt

19-72 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• Wake-up Interrupt (WUIM, WUIS, WUIF).

1—The CAN module has left the sleep mode because of detected
activity on the CAN bus line.

0—The wake-up event is not active.

• Bus-Off Interrupt (BOIM, BOIS, BOIF).

The CAN module has entered the bus-off state. This interrupt
source is active if the status of the CAN core changes from normal
operation mode to the bus-off mode. If the bit in CAN_GIS (and
CAN_GIF) is reset and the bus-off mode is still active, this bit is not
set again. If the module leaves the bus-off mode, the bit in CAN_GIS
(and CAN_GIF) remains set.

1—The CAN module has entered its bus-off mode.

0—The CAN module has not entered the bus-off mode.

• Error-Passive Interrupt (EPIM, EPIS, EPIF).

The CAN module has entered the error-passive state. This inter-
rupt source is active if the status of the CAN module changes from
the error-active mode to the error-passive mode. If the bit in
CAN_GIS (and CAN_GIF) is reset and the error-passive mode is still
active, this bit is not set again. If the module leaves the error-pas-
sive mode, the bit in CAN_GIS (and CAN_GIF) remains set.

1—The CAN module is in error-passive mode.

0—The CAN module has not entered error-passive mode.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-73

Controller Area Network (CAN) Module

• Error Warning Receive Interrupt (EWRIM, EWRIS, EWRIF).

The CAN receive error counter (RXECNT) has reached the warning
limit. If the bit in CAN_GIS (and CAN_GIF) is reset and the error
warning mode is still active, this bit is not set again. If the module
leaves the error warning mode, the bit in CAN_GIS (and CAN_GIF)
remains set.

1—The warning level for the CAN receive error counter was
exceeded.

0—The warning level for the CAN receive error counter was not
exceeded.

• Error Warning Transmit Interrupt (EWTIM, EWTIS, EWTIF).

The CAN transmit error counter (TXECNT) has reached the warning
limit. If the bit in CAN_GIS (and CAN_GIF) is reset and the error
warning mode is still active, this bit is not set again. If the module
leaves the error warning mode, the bit in CAN_GIS (and CAN_GIF)
remains set.

After a software reset, all bits in CAN_GIF, CAN_GIS, and CAN_GIM are
cleared.

1—The warning level for the CAN transmit error counter was
exceeded.

0—The warning level for the CAN receive error counter was not
exceeded.

Global Interrupt

19-74 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Global Interrupt Logic
The global interrupt logic is implemented with three registers: the global
interrupt mask register (CAN_GIM), where each interrupt source can be
enabled or disabled separately; the global interrupt status register
(CAN_GIS); and the global interrupt flag register (CAN_GIF). The interrupt
mask bits only affect the content of the global interrupt flag register
(CAN_GIF). The interrupt status bits in the global interrupt status register
are always set if the corresponding interrupt event occurs, independent of
the mask bits. Thus, the interrupt status bits can be used for polling of
interrupt events. An interrupt in the global interrupt status register is only
asserted if a bit in the CAN_GIF register is set. The global interrupt remains
active as long as at least one bit in the interrupt flag register CAN_GIF is set.

CAN Global Interrupt Mask (CAN_GIM) Register
Each source for the global status interrupt (GIRQ) can be enabled or dis-
abled separately with the global interrupt mask register (CAN_GIM). If a bit
in the CAN_GIM register is set, the corresponding interrupt source for GIRQ
is enabled. The upper bits (15 to 11) are not implemented and always read
as 0. After power-up reset or software reset, all bits are cleared, therefore
all global status interrupts are disabled.

Figure 19-46. Global Interrupt Mask Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Global Interrupt Mask Register (CAN_GIM)

EWTIM

Reset = 0x00800xFFC0 2A98

EWRIM
EPIM
BOIM

ADIM

UCEIM
RMLIM
AAIM

WUIM
UIAIM

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-75

Controller Area Network (CAN) Module

CAN Global Interrupt Status (CAN_GIS) Register
If a global interrupt event occurs, the corresponding bit in the global
interrupt status register (CAN_GIS) is set, independent of the content of the
global interrupt mask register (CAN_GIM). If a bit in the CAN_GIS register is
cleared and the corresponding interrupt event is still active, this bit is not
set again. If a bit in CAN_GIS is cleared, the corresponding bit in CAN_GIF is
also cleared (if it was set before).

A bit in the CAN_GIS register can be cleared by writing a 1 to the corre-
sponding bit location. Writing a 0 has no effect. The upper bits (15 to 11)
are not implemented and always read as 0. After power-up reset or soft-
ware reset, all bits are cleared.

CAN Global Interrupt Flag (CAN_GIF) Register
If a global interrupt event occurs, the corresponding bit in the global
interrupt flag register (CAN_GIF) is set only if the corresponding bit in the
global interrupt mask register (CAN_GIM) is set. If a bit in the CAN_GIF regis-
ter is cleared and the corresponding interrupt event is still active, this bit is
not set again.

If at least one bit is set in the global interrupt flag register, the interrupt is
active. The interrupt remains active until all bits in CAN_GIF are cleared.

Figure 19-47. Global Interrupt Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Global Interrupt Status Register (CAN_GIS)
Write-1-to-clear

EWTIS

Reset = 0x00000xFFC0 2A94

EWRIS
EPIS
BOIS

ADIS
UCEIS
RMLIS
AAIS

WUIS
UIAIS

Global Interrupt

19-76 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The interrupt flag bits in CAN_GIF can be cleared separately by writing a 1
to the corresponding bit location in the global interrupt status register
(CAN_GIS). A write access to CAN_GIF has no effect. The upper bits (15 to
11) are not implemented and always read as 0. After power-up reset or
software reset, all bits are cleared.

If an interrupt source is active and the corresponding bit in the CAN_GIF
register is still set, this bit remains unchanged. If a bit in the CAN_GIF reg-
ister is set and then a different bit in the CAN_GIF register is set, the
interrupt remains active (only the new bit in CAN_GIF is set). If a bit in the
CAN_GIF register is reset and then a different bit in the CAN_GIF register is
still set, the interrupt remains active.

If an interrupt status bit in the CAN_GIF register is set and the correspond-
ing interrupt mask bit in the CAN_GIM register is set/reset after the
interrupt status bit has been set, the interrupt flag bit in the CAN_GIF regis-
ter is also set/reset. If no further bit in the CAN_GIF register is set, the
interrupt output line (GIRQ) behaves according to the programming of the
CAN_GIM register.

Figure 19-48. Global Interrupt Flag Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Global Interrupt Flag Register (CAN_GIF)

EWTIF

Reset = 0x00000xFFC0 2A9C

EWRIF
EPIF
BOIF

ADIF
UCEIF
RMLIF
AAIF

WUIF
UIAIF

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-77

Controller Area Network (CAN) Module

Universal Counter Module
The universal 16-bit counter is operated at the same frequency as the bit
clock of the CAN core module. It is clocked using the same parameters
used for the bit rate prescaler (BRP, TSEG1 and TSEG2).

The universal counter can be used in several modes, defined by the values
in the CAN_UCCNF register. The modes are time stamp mode, watchdog
mode, auto transmit mode, and event counter mode.

Time Stamp Mode
To get an indication of the time of reception or the time of transmission
for each message, the value of the 16-bit free-running counter (CAN_UCCNT)
is written into the CAN_MBxx_TIMESTAMP register of the corresponding mail-
box when a received message has been stored or a message has been
transmitted.

The time stamp value is captured at the sample point of the start of frame
(SOF) bit of each incoming or outgoing message. Afterwards, this time
stamp value is copied to the CAN_MBxx_TIMESTAMP register of the corre-
sponding mailbox.

If the mailbox is configured for automatic remote frame handling, the
time stamp value is written for transmission of a data frame (mailbox con-
figured as transmit) or the reception of the requested data frame (mailbox
configured as receive).

The counter can be cleared or disabled by writing to the CAN_UCCNF regis-
ter. The counter can also be loaded with a value by writing to the counter
register itself (CAN_UCCNT).

It is also possible to clear the counter (CAN_UCCNT) by reception of a mes-
sage in mailbox number 4 (synchronization of all time stamp counters in
the system). This is accomplished by setting the UCCT bit in the CAN_UCCNT
register.

Universal Counter Module

19-78 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

An overflow of the counter sets a bit in the global interrupt status register
(UCEIS in the CAN_GIS register). A global interrupt can optionally occur by
unmasking the bit in the global interrupt mask register (UCEIM in the
CAN_GIM register). If the interrupt source is unmasked, a bit in the global
interrupt flag register is also set (UCEIF in the CAN_GIF register).

Watchdog Mode
Watchdog mode is used to make sure messages are received periodically.
Upon entering watchdog mode, the counter in the CAN_UCCNT register is
loaded with a predefined value contained in the CAN universal counter
reload/capture register (CAN_UCRC). This counter then decrements at the
CAN bit rate. If the UCCT bit in the CAN_UCCNT register is set and a message
is received in mailbox 4 before the counter counts down to 0, the counter
is reloaded with the CAN_UCRC contents. If the counter has counted down
to 0 without receiving a message in mailbox 4, the UCEIS bit in the global
interrupt status (CAN_GIS) register is set, and the counter is automatically
reloaded with the contents of the CAN_UCRC register. If an interrupt is
desired, the UCEIM bit in the CAN_GIM register should be set. With the mask
bit set, when a watchdog interrupt occurs, the UCEIF bit in the CAN_GIF
register is also set.

The counter can be reloaded with the contents of CAN_UCRC or disabled by
writing to the CAN_UCCNF register.

The time period it takes for the watchdog interrupt to occur is controlled
by the value written into the CAN_UCRC register by the user.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-79

Controller Area Network (CAN) Module

Auto Transmit Mode
In auto transmit mode, the universal counter initiates a cyclic transmis-
sion of a CAN message. The counter (CAN_UCCNT) is loaded with the value
stored in the CAN_UCRC register. The counter is decremented to 0 and
reloaded automatically. When the counter reaches a value of 0, the TRS
bit of mailbox 11 is automatically set by internal logic. The corresponding
message is sent automatically.

Mailbox 11 must be configured as a transmit mailbox and must contain
valid data (identifier, control bits, and data).

Since the TRSn bit for a mailbox is set by internal logic, the corresponding
TAn and AAn bits remain unchanged. These bits must be reset by the CPU.

Event Counter Mode
For diagnostic functions, it is possible to use the universal counter as an
event counter. The counter can be programmed to increment on one of
these conditions:

• CAN error frame counter is incremented if there is an error frame
on the CAN bus line.

• CAN overload frame counter is incremented if there is an overload
frame on the CAN bus line.

• Arbitration on CAN line lost during transmission.

• Transmission is aborted (AAn is set).

• Successful transmission of message without detected errors (TAn is
set).

• Receive message rejected (a message is received without detected
errors but not stored in a mailbox because there is no matching
identifier found).

Universal Counter Module

19-80 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• Successful reception of a message without detected errors. The
counter is incremented if the received message is rejected or stored
in a mailbox.

• Receive message lost (a message is received without detected errors
but not stored in a mailbox because this mailbox contains unread
data (RMLn is set)).

• Successful reception and matching identifier. A message for one of
the configured mailboxes is received. The counter is incremented if
the message is stored in the corresponding mailbox (RMPn is set).

• A valid message on the CAN bus line is detected. This may be a
reception or a transmission.

CAN Universal Counter Configuration
(CAN_UCCNF) Register

Figure 19-49. Universal Counter Configuration Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Universal Counter Mode Register (CAN_UCCNF)

UCCNF

Reset = 0x00000xFFC0 2ACC

UCRC
UCCT

UCE

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-81

Controller Area Network (CAN) Module

Additional information for the CAN_UCCNF register bits includes:

• Universal Counter Enable (UCE).

1—The counter is enabled and incremented/decremented with the
programmed clock (bit clock of CAN module).

0—The counter is disabled.

• Universal Counter CAN Trigger (UCCT).

1—In watchdog mode, the counter is reloaded if a message for the
mailbox 4 is received. In time stamp mode, the counter is cleared if
a message for the mailbox 4 is received (synchronization of all time
stamp counters in the system). This bit has no effect in any other
mode.

0—No effect on CAN message reception.

• Universal Counter Reload/Clear (UCRC).

1—In watchdog mode, writing a 1 to this bit reloads the counter
with the value of the reload/capture register. In time stamp mode,
writing a 1 to this bit resets the counter to zero. In all other modes,
writing a 1 to this bit resets the counter. Note that this register bit
is always read as 0.

0—Writing a 0 has no effect.

• Universal Counter Mode (UCCNF).

0—Reserved.

1—Time stamp mode.

The content of the capture register is written to the current mail-
box if there was a reception for this mailbox or a successful
transmission from this mailbox.

Universal Counter Module

19-82 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

2—Watchdog mode.

The universal counter is reloaded with the value of the reload regis-
ter CAN_UCRC if there was a valid reception of a message for mailbox
number 4 (default).

3—Auto transmit mode.

The universal counter is always reloaded with the value of the
reload register if the counter (down counter) has reached the value
of 0x0000. On a reload, the transmit request set bit TRS11 (default)
is set automatically by the internal logic and the corresponding
message in mailbox number 11 is sent.

4—Reserved.

5—Reserved.

6—Event counter mode, increment: counter is incremented if
there is an error frame on the CAN bus line.

7—Event counter mode, increment: counter is incremented if
there is an overload frame on the CAN bus line.

8—Event counter mode, increment: arbitration on CAN line lost
during transmission.

9—Event counter mode, increment: transmission is aborted (AAn is
set).

A—Event counter mode, increment: successful transmission of
message without detected errors (TAn is set)

B—Event counter mode, increment: receive message rejected (a
message is received without detected errors but not stored in a
mailbox because there is no matching identifier found).

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-83

Controller Area Network (CAN) Module

C—Event counter mode, increment: receive message lost (a mes-
sage is received without detected errors but not stored in a mailbox
because this mailbox contains unread data (RMLn is set)).

D—Event counter mode, increment: successful reception of a mes-
sage without detected errors. The counter is incremented if the
received message is rejected or stored in a mailbox.

E—Event counter mode, increment: successful reception and
matching identifier. A message for one of the configured mailboxes
is received. The counter is incremented if the message is stored in
the corresponding mailbox (RMPn is set).

F—Event counter mode, increment: a valid message on the CAN
bus line is detected. This may be a reception or a transmission.

CAN Universal Counter (CAN_UCCNT) Register
The CAN universal counter (CAN_UCCNT) register holds the counter value.
In time stamp counter mode, this counter is cleared by writing a 1 to the
UCRC bit of the CAN_UCCNF register. In watchdog mode, this counter is
cleared by writing 0x0000 to this register.

Figure 19-50. Universal Counter Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Universal Counter Register (CAN_UCCNT)

UCCNT

Reset = 0x00000xFFC0 2AC8

Programmable Warning Limit for RXECNT and TXECNT

19-84 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

CAN Universal Counter Reload/Capture
(CAN_UCRC) Register

The CAN universal counter reload/capture (CAN_UCRC) register holds a
counter value that can be used to reload the CAN_UCCNT register. In time
stamp counter mode, a read of this register gives the value of CAN_UCCNT at
the time of the last successful reception or transmission. In watchdog
mode, a read of this register gives the reload value.

Programmable Warning Limit for RXECNT
and TXECNT

It is possible to program the warning level for EWTIS (error warning trans-
mit interrupt status) and EWRIS (error warning receive interrupt status)
separately.

After power-up reset, the register is set to the default warning level of 96
for both error counters. After software reset, the content of this register
remains unchanged.

Figure 19-51. Universal Counter Reload/Capture Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Universal Counter Reload/Capture Register (CAN_UCRC)

UCVAL

Reset = 0x00000xFFC0 2AC8

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-85

Controller Area Network (CAN) Module

CAN Errors and Warnings
CAN errors and warnings are controlled using the CAN_CEC register, the
CAN_ESR register, and the CAN_EWR register.

CAN Error Counter (CAN_CEC) Register
The CAN error counter register (CAN_CEC) holds the receive error counter
and the transmit error counter. The values of these counters cannot be
changed in normal operation mode. The value of CAN_CEC is held during
read access. After power-up reset, all bits are cleared. The software reset
(SRS bit in CAN_CONTROL) has no effect on this register.

The value of CAN_CEC is undefined if the CAN module is in its bus-off
mode.

After exiting the bus-off or configuration modes, the CAN error counters
are reset. However, the software reset sets the CAN configuration mode
request bit (CCR = 1 in the CAN_CONTROL register) and the module changes
to the requested mode after all currently performed activities (transmis-
sion/reception of a CAN message) are finished.

Figure 19-52. CAN Error Counter Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAN Error Counter Register (CAN_CEC)

RXECNT (Receive Error
Counter)

Reset = 0x00000xFFC0 2A90

TXECNT (Transmit Error
Counter)

CAN Errors and Warnings

19-86 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

CAN Error Status (CAN_ESR) Register
The error status register (CAN_ESR) is used to display errors that were gen-
erated during operation. Only the first error is stored, any subsequent
errors do not change the status of the register. These registers are cleared
by writing a 1 to them, except for the SA0 flag, which is cleared by any
recessive bit on the bus.

Additional information for the CAN_ESR register bits includes:

• Form Error Flag (FER).

1—A form error occurred on the bus. This means that one or more
of the fixed-form bit fields had the wrong level on the bus.

0—The CAN module was able to send and receive correctly.

• Bit Error Flag (BEF).

1—The received bit does not match the transmitted bit outside of
the arbitration field; or, during transmission of the arbitration
field, a dominant bit was sent but a recessive bit was received.

0—The CAN module was able to send and receive correctly.

Figure 19-53. Error Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Error Status Register (CAN_ESR)

ACKE

Reset = 0x00200xFFC0 2AB4

SER
CRCE

FER
BEF
SA0

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 19-87

Controller Area Network (CAN) Module

• Stuck at Dominant Error (SA0).

1—The SA0 bit is set if the CAN module is in configuration mode
or the module enters bus-off mode. The bit is reset if the module
samples a recessive bit on the RX input line.

0—The CAN module detected a recessive bit.

• CRC Error (CRCE).

1—The CAN module received an incorrect CRC.

0—The CAN module never received an incorrect CRC.

• Stuff Error (SER).

1—The stuff bit rule was violated.

0—No stuff bit error occurred.

• Acknowledge Error (ACKE).

1—The CAN module received no acknowledge.

0—The CAN module received a correct acknowledge.

CAN Errors and Warnings

19-88 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

CAN Error Counter Warning Level
(CAN_EWR) Register

The error warning interrupt bits EWRIS and EWTIS in the CAN_GIS register
are set if one of the CAN error counters reaches the default warning level
of 96 errors. The error counter warning level register (CAN_EWR) allows the
warning level that triggers the EWTIS and EWRIS events to be programmed
separately. After power-up reset, the register is set to the default warning
level of 96 for both error counters. After software reset, the content of this
register remains unchanged.

Additional information for the CAN_EWR register fields includes:

• Error Warning Level for Receive Error Count (EWLREC).

Number of receive errors required before the error warning receive
interrupt (EWRIS) is generated.

• Error Warning Level for Transmit Error Count (EWLTEC).

Number of transmit errors required before the error warning trans-
mit interrupt (EWTIS) is generated.

Figure 19-54. CAN Error Counter Warning Level Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 1 0 0 0 0 0 0 1 1 0 0 0 0

CAN Error Counter Warning Level Register (CAN_EWR)

EWLREC

Reset = 0x60600xFFC0 2AB0

EWLTEC

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 20-1

20 TWO-WIRE INTERFACE
CONTROLLERS

The two, two-wire interface (TWI) controllers allow a device to interface
to an Inter IC bus as specified by the Philips I2C Bus Specification version
2.1 dated January 2000.

Overview
Each TWI is fully compatible with the widely used I2C bus standard.
They are designed with a high level of functionality and are compatible
with multimaster, multislave bus configurations. To preserve processor
bandwidth the TWI controllers can be set up and a transfer initiated with
interrupts only to service FIFO buffer data reads and writes. Protocol
related interrupts are optional.

Each TWI externally moves 8-bit data while maintaining compliance with

the I2C bus protocol. The Philips I2C Bus Specification version 2.1 covers

many variants of I2C. The TWI controllers include these features:

• Simultaneous master and slave operation on multiple device
systems

• Support for multimaster data arbitration

• 7 bit addressing

• 100K bytes/second and 400K bytes/second data rates

• General call address support

Architecture

20-2 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• Master clock synchronization and support for clock low extension

• Separate multiple-byte receive and transmit FIFOs

• Low interrupt rate

• Individual override control of data and clock lines in the event of
bus lock-up

• Input filter for spike suppression

• Serial camera control bus support as specified in OmniVision Serial
Camera Control Bus (SCCB) Functional Specification version 2.1.

Table 20-1 shows the pins for the TWIs. Two bidirectional pins externally

interface each TWI controller to the I2C bus. The interface is simple and
no other external connections or logic are required.

Architecture
Figure 20-1 illustrates the overall architecture of the TWI controllers.

The peripheral interface supports the transfer of 16-bit wide data and is
used by the processor in the support of register and FIFO buffer reads and
writes.

The register block contains all control and status bits and reflects what can
be written or read as outlined by the programmer’s model. Status bits can
be updated by their respective functional blocks.

Table 20-1. TWI Pins

Pin Description

SDAx In/Out TWI serial data, high impedance reset value

SCLx In/Out TWI serial clock, high impedance reset value

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 20-3

Two-Wire Interface Controllers

The FIFO buffer is configured as a1-byte-wide 2-deep transmit FIFO buf-
fer and a 1-byte-wide 2-deep receive FIFO buffer.

The transmit shift register serially shifts its data out externally off chip.
The output can be controlled for generation of acknowledgements or it
can be manually overwritten.

The receive shift register receives its data serially from off chip. The
receive shift register is 1 byte wide and data received can either be trans-
ferred to the FIFO buffer or used in an address comparison.

The address compare block supports address comparison in the event a
TWI controller module is accessed as a slave.

Figure 20-1. TWI Block Diagram

IRQ

SDA

REGISTERS

PERIPHERAL
IF

CLOCK GENERATION

PRESCALER

ADDRESS COMPARE

RECEIVE SR

ARBITRATION

SCL

TRANSMIT SR

FIFO

Register Descriptions

20-4 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The prescaler block must be programmed to generate a 10 MHz time ref-
erence relative to the system clock. This time base is used for filtering of
data and timing events specified by the electrical data sheet (See the Phil-
ips Specification), as well as for SCL clock generation.

The clock generation module is used to generate an external SCL clock
when in master mode. It includes the logic necessary for synchronization
in a multimaster clock configuration and clock stretching when config-
ured in slave mode.

Register Descriptions
Each TWI controller has 16 registers described in the following sections.

TWI Control (TWIx_CONTROL) Registers
The TWI control register (TWIx_CONTROL), shown in Figure 20-2, is used
to enable the TWI module as well as to establish a relationship between
the system clock (SCLK) and the TWI controller’s internally timed
events. The internal time reference is derived from SCLK using a pres-
caled value.

Figure 20-2. TWI Control Register

TWI Control Registers (TWIx_CONTROL)

Reset = 0x00000xFFC0 1404

Prescale[6:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SCCB
TWIx_ENA

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 20-5

Two-Wire Interface Controllers

Additional information for the TWIx_CONTROL register bits are:

• SCCB Compatibility (SCCB).

SCCB compatibility is an optional feature and should not be used
in an I2C bus system. This feature is valid only during transfers
where the TWI is mastering an SCCB bus. Slave mode transfers
should be avoided when this feature is enabled because the TWI
controller always generates an acknowledge in slave mode.

[1] Master transfers are SCCB compatible. All slave asserted
acknowledgement bits are ignored by this master.

[0] Master transfers are not SCCB compatible.

• TWI Enable (TWIx_ENA).

This bit must be set for slave mode or master mode operation. It is
recommended that this bit be set at the time PRESCALE is initialized
and remain set. This guarantees accurate operation of bus busy
detection logic.

[1] Internal time reference is enabled. Slave mode and master mode
operation is reliable.

[0] Internal time reference is disabled.

• Prescale (PRESCALE).

The number of system clock (SCLK) periods used in the genera-
tion of one internal time reference. The value of PRESCALE must be
set to create an internal time reference with a period of 10 MHz.
Represented as a 7-bit binary value.

Register Descriptions

20-6 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

 It is not always possible to achieve 10 MHz accuracy. In such cases,
it is safe to round up the PRESCALE value to the next highest integer.
For example, if SCLK is 133 MHz, the PRESCALE value is calculated
as 133 MHz/10 MHz = 13.3. In this case, a PRESCALE value of 14
ensures that all timing requirements are met.

TWI Clock Divider (TWIx_CLKDIV) Registers
During master mode operation, the SCL clock divider register
(TWIx_CLKDIV) values are used to create the high and low durations of the
serial clock (SCL). (See Figure 20-3.) Serial clock frequencies can vary from
400 KHz to less than 20 KHz. The resolution of the clock generated is
1/10 MHz or 100 ns.

CLKDIV = TWIx SCL period/10 MHz time reference

For example, for an SCL of 400 KHz (period = 1/400 KHz = 2500 ns) and
an internal time reference of 10 MHz (period = 100 ns):

CLKDIV = 2500 ns / 100 ns = 25

For an SCL with a 30% duty cycle, then CLKLOW = 17 and CLKHI = 8.

Note that CLKLOW and CLKHI add up to CLKDIV.

Figure 20-3. SCL Clock Divider Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SCL Clock Divider Register (TWIx_CLKDIV)

CLKLOW[7:0]

Reset = 0x00000xFFC0 1400

CLKHI[7:0]

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 20-7

Two-Wire Interface Controllers

Additional information for the TWIx_CLKDIV register bits includes:

• Clock High (CLKHI).

Number of 10 MHz time reference periods the serial clock (SCL)
waits before a new clock low period begins, assuming a single mas-
ter. Represented as an 8-bit binary value.

• Clock Low (CLKLO).

Number of internal time reference periods the serial clock (SCL) is
held low. Represented as an 8-bit binary value.

TWI Slave Mode Control (TWIx_SLAVE_CTRL)
Registers

The TWI slave mode control registers (TWIx_SLAVE_CTRL), as shown in
Figure 20-4, control the logic associated with slave mode operation. Set-
tings in these registers do not affect master mode operation and should
not be modified to control master mode functionality.

Figure 20-4. TWI Slave Mode Control Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Slave Mode Control Registers (TWIx_SLAVE_CTRL)

Reset = 0x00000xFFC0 1408

SEN (Slave Enable)
STDVAL (Slave Transmit
Data Valid)

NAK
GEN (General Call Enable) - RO

Register Descriptions

20-8 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Additional information for the TWIx_SLAVE_CTRL register bits includes:

• General Call Enable (GEN).

General call address detection is available only when slave mode is
enabled.

[1] General call address matching is enabled. A general call slave
receive transfer is accepted. All status and interrupt source bits
associated with transfers are updated.

[0] General call address matching is not enabled.

• NAK (NAK).

[1] Slave receive transfers generate a data NAK (not acknowledge)
at the conclusion of a data transfer. The slave is still considered to
be addressed.

[0] Slave receive transfers generate an ACK at the conclusion of a
data transfer.

• Slave Transmit Data Valid (STDVAL).

[1] Data in the transmit FIFO is available for a slave transmission.

[0] Data in the transmit FIFO is for master mode transmits and is
not allowed to be used during a slave transmit, and the transmit
FIFO is treated as if it is empty.

• Slave Enable (SEN).

[1] The slave is enabled. Enabling slave and master modes of oper-
ation concurrently is allowed.

[0] The slave is not enabled. No attempt is made to identify a valid
address. If cleared during a valid transfer, clock stretching ceases,
the serial data line is released, and the current byte is not
acknowledged.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 20-9

Two-Wire Interface Controllers

TWI Slave Mode Address (TWIx_SLAVE_ADDR)
Registers

The TWI slave mode address registers (TWIx_SLAVE_ADDR), shown in
Figure 20-5, hold the slave mode address, which is the valid address that
the slave-enabled TWI controller responds to. The TWI controller com-
pares this value with the received address during the addressing phase of a
transfer.

TWI Slave Mode Status (TWIx_SLAVE_STAT)
Registers

During and at the conclusion of slave mode transfers, the TWI slave mode
status registers (TWIx_SLAVE_STAT) hold information on the current trans-
fer. (See Figure 20-6.) Generally slave mode status bits are not associated
with the generation of interrupts. Master mode operation does not affect
slave mode status bits.

Figure 20-5. TWI Slave Mode Address Registers

Figure 20-6. TWI Slave Mode Status Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Slave Mode Address Registers (TWIx_SLAVE_ADDR)

SADDR[6:0] (Slave Mode
Address)

Reset = 0x00000xFFC0 1410

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Slave Mode Status Registers (TWIx_SLAVE_STAT)

Reset = 0x00000xFFC0 140C

SDIR (Slave Transfer
Direction) - RO

GCALL (General Call) - RO

Register Descriptions

20-10 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Additional information for the TWIx_SLAVE_STAT register bits includes:

• General Call (GCALL).

This bit self clears if slave mode is disabled (SEN = 0).

[1] At the time of addressing, the address was determined to be a
general call.

[0] At the time of addressing, the address was not determined to be
a general call.

• Slave Transfer Direction (SDIR).

This bit self clears if slave mode is disabled (SEN = 0).

[1] At the time of addressing, the transfer direction was determined
to be slave transmit.

[0] At the time of addressing, the transfer direction was determined
to be slave receive.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 20-11

Two-Wire Interface Controllers

TWI Master Mode Control (TWIx_MASTER_CTRL)
Registers

The TWI master mode control registers (TWIx_MASTER_CTRL) control the
logic associated with master mode operation. (See Figure 20-7.) Bits in
these registers do not affect slave mode operation and should not be mod-
ified to control slave mode functionality.

Additional information for the TWIx_MASTER_CTRL register bits includes:

• Serial Clock Override (SCLOVR).

This bit can be used when direct control of the serial clock line is
required. Normal master and slave mode operation should not
require override operation.

[1] Serial clock output is driven to an active 0 level overriding all
other logic. This state is held until this bit is cleared.

[0] Normal serial clock operation under the control of master
mode clock generation and slave mode clock stretching logic.

Figure 20-7. TWI Master Mode Control Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Master Mode Control Registers (TWIx_MASTER_CTRL)

Reset = 0x00000xFFC0 1414

MEN (Master Mode Enable)
MDIR (Master Transfer
Direction)SDAOVR (Serial

Data Override)

SCLOVR (Serial
Clock Override)

DCNT[7:0] (Data
Transfer Count)

FAST (Fast Mode)
STOP (Issue Stop
Condition)
RSTART (Repeat Start)

Register Descriptions

20-12 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• Serial Data (SDA) Override (SDAOVR).

This bit can be used when direct control of the serial data line is
required. Normal master and slave mode operation should not
require override operation.

[1] Serial data output is driven to an active 0 level overriding all
other logic. This state is held until this bit is cleared.

[0] Normal serial data operation under the control of the transmit
shift register and acknowledge logic.

• Data Transfer Count (DCNT).

Indicates the number of data bytes to transfer. As each data word is
transferred, DCNT is decremented. When DCNT is 0, a stop condition
is generated. Setting DCNT to 0xFF disables the counter. In this
transfer mode, data continues to be transferred until it is concluded
by setting the STOP bit.

• Repeat Start (RSTART).

[1] Issue a repeat start condition at the conclusion of the current
transfer (DCNT = 0) and begin the next transfer. The current transfer
concludes with updates to the appropriate status and interrupt bits.
If errors occurred during the previous transfer, a repeat start does
not occur. In the absence of any errors, master enable (MEN) does
not self clear on a repeat start.

[0] Transfer concludes with a stop condition.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 20-13

Two-Wire Interface Controllers

• Issue Stop Condition (STOP).

[1] The transfer concludes as soon as possible avoiding any error
conditions (as if data transfer count had been reached) and at that
time the TWI interrupt status registers (TWIx_INT_STAT) are
updated.

[0] Normal transfer operation.

• Fast Mode (FAST).

[1] Fast mode (up to 400 Kbits/s) timing specifications in use.

[0] Standard mode (up to 100K bits/s) timing specifications in use.

• Master Transfer Direction (MDIR).

[1] The initiated transfer is master receive.

[0] The initiated transfer is master transmit.

• Master Mode Enable (MEN).

This bit self clears at the completion of a transfer (after the DCNT bit
decrements to zero), including transfers terminated due to errors.

[1] Master mode functionality is enabled. A start condition is gen-
erated if the bus is idle.

[0] Master mode functionality is disabled. If this bit is cleared dur-
ing operation, the transfer is aborted and all logic associated with
master mode transfers are reset. Serial data and serial clock (SDA,
SCL) are no longer driven. Write-1-to-clear status bits are not
affected.

Register Descriptions

20-14 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

TWI Master Mode Address (TWIx_MASTER_ADDR)
Registers

During the addressing phase of a transfer, the TWI controller, with its
master enabled, transmits the contents of the TWI master mode address
registers (TWIx_MASTER_ADDR), shown in Figure 20-8. When programming
these registers, omit the read/write bit. That is, only the upper 7 bits that
make up the slave address should be written to these registers. For exam-
ple, if the slave address is b#1010000X, where X is the read/write bit, then
TWIx_MASTER_ADDR is programmed with b#1010000, which corresponds to
0x50. When sending out the address on the bus, the TWI controller
appends the read/write bit as appropriate based on the state of the MDIR bit
in the master mode control register.

TWI Master Mode Status (TWIx_MASTER_STAT)
Registers

The TWI master mode status registers (TWIx_MASTER_STAT), shown in
Figure 20-9, hold information during master mode transfers and at their
conclusion. Generally, master mode status bits are not directly associated
with the generation of interrupts but offer information on the current
transfer. Slave mode operation does not affect master mode status bits.

Figure 20-8. TWI Master Mode Address Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Master Mode Address Registers (TWIx_MASTER_ADDR)

Reset = 0x00000xFFC0 141C

MADDR[6:0] (Master
Mode Address)

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 20-15

Two-Wire Interface Controllers

Additional information for the TWIx_MASTER_STAT registers bits includes:

• Bus Busy (BUSBUSY).

Indicates whether the bus is currently busy or free. This indication
is for all devices not this device alone. Upon a start condition, the
setting of the register value is delayed due to the input filtering.
Upon a stop condition the clearing of the register value occurs after
tBUF.

[1] The bus is busy. Clock or data activity has been detected.

[0] The bus is free. The clock and data bus signals have been inac-
tive for the appropriate bus free time.

Figure 20-9. TWI Master Mode Status Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Master Mode Status Registers (TWIx_MASTER_STAT)

Reset = 0x00000xFFC0 1418

MPROG (Master Transfer
in Progress) - RO
LOSTARB (Lost Arbitration) -
"write 1 to clear"

SCLSEN (Serial Clock Sense) - RO
BUSBUSY (Bus Busy) - RO

SDASEN (Serial Data Sense) - RO

ANAK (Address Not
Acknowledged) - "write 1
to clear"
DNAK (Data Not
Acknowledged) -
"write 1 to clear"

BUFWRERR (Buffer Write Error) - "write 1
to clear"
BUFRDERR (Buffer Read Error) - "write 1
to clear"

Register Descriptions

20-16 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• Serial Clock Sense (SCLSEN).

This status bit can be used when direct sensing of the serial clock
line is required. The register value is delayed due to the input filter
(nominally 50 ns). Normal master and slave mode operation
should not require this feature.

[1] An active “zero” is currently being sensed on the serial clock.
The source of the active driver is not known and can be internal or
external.

[0] An inactive “one” is currently being sensed on the serial clock.

• Serial Data Sense (SDASEN).

This status bit can be used when direct sensing of the serial data
line is required. The register value is delayed due to the input filter
(nominally 50 ns). Normal master and slave mode operation
should not require this feature.

[1] An active “zero” is currently being sensed on the serial data line.
The source of the active driver is not known and can be internal or
external.

[0] An inactive “one” is currently being sensed on the serial data
line.

• Buffer Write Error (BUFWRERR).

[1] The current master transfer was aborted due to a receive buffer
write error. The receive buffer and receive shift register were both
full at the same time. This bit is "write-1-to-clear".

[0] The current master receive has not detected a receive buffer
write error.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 20-17

Two-Wire Interface Controllers

• Buffer Read Error (BUFRDERR).

[1] The current master transfer was aborted due to a transmit buf-
fer read error. At the time data was required by the transmit shift
register the buffer was empty. This bit is "write-1-to-clear".

[0] The current master transmit has not detected a buffer read
error.

• Data Not Acknowledged (DNAK).

[1] The current master transfer was aborted due to the detection of
a NAK during data transmission. This bit is "write-1-to-clear".

[0] The current master receive has not detected a NAK during data
transmission.

• Address Not Acknowledged (ANAK).

[1] The current master transfer was aborted due to the detection of
a NAK during the address phase of the transfer. This bit is
"write-1-to-clear".

[0] The current master transmit has not detected NAK during
addressing.

• Lost Arbitration (LOSTARB).

[1] The current transfer was aborted due to the loss of arbitration
with another master. This bit is "write-1-to-clear".

[0] The current transfer has not lost arbitration with another
master.

Register Descriptions

20-18 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• Master Transfer in Progress (MPROG).

[1] A master transfer is in progress.

[0] Currently no transfer is taking place. This can occur once a
transfer is complete or while an enabled master is waiting for an
idle bus.

TWI FIFO Control (TWIx_FIFO_CTRL) Registers
The TWI FIFO control register (TWIx_FIFO_CTRL) control bits affect only
the FIFO and are not tied in any way with master or slave mode opera-
tion. See Figure 20-10.

Figure 20-10. TWI FIFO Control Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Control Registers (TWIx_FIFO_CTRL)

XMTFLUSH (Transmit Buffer
Flush)

Reset = 0x0000

RCVFLUSH (Receive Buffer
Flush)

RCVINTLEN (Receive Buffer
interrupt Length)
XMTINTLEN (Transmit Buffer
interrupt Length)

0xFFC0 1428

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 20-19

Two-Wire Interface Controllers

Additional information for the TWIx_FIFO_CTRL register bits includes:

• Receive Buffer Interrupt Length (RCVINTLEN).

This bit determines the rate at which receive buffer interrupts are
to be generated. Interrupts may be generated with each byte
received or after two bytes are received.

[1] An interrupt (RCVSERV) is set when the RCVSTAT field in the
TWIx_FIFO_STAT registers indicates two bytes in the FIFO are full
(11).

[0] An interrupt (RCVSERV) is set when RCVSTAT indicates one or
two bytes in the FIFO are full (01 or 11).

• Transmit Buffer Interrupt Length (XMTINTLEN).

This bit determines the rate at which transmit buffer interrupts are
to be generated. Interrupts may be generated with each byte trans-
mitted or after two bytes are transmitted.

[1] An interrupt (XMTSERV) is set when the XMTSTAT field in the
TWIx_FIFO_STAT registers indicates two bytes in the FIFO are
empty (00).

[0] An interrupt (XMTSERV) is set when XMTSTAT indicates one or
two bytes in the FIFO are empty (01 or 00).

• Receive Buffer Flush (RCVFLUSH).

[1] Flush the contents of the receive buffer and update the RCVSTAT
status bit to indicate the buffer is empty. This state is held until
this bit is cleared. During an active receive the receive buffer in this
state responds to the receive logic as if it is full.

[0] Normal operation of the receive buffer and its status bits.

Register Descriptions

20-20 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• Transmit Buffer Flush (XMTFLUSH).

[1] Flush the contents of the transmit buffer and update the
XMTSTAT status bit to indicate the buffer is empty. This state is held
until this bit is cleared. During an active transmit the transmit buf-
fer in this state responds to the as if the transmit buffer is empty.

[0] Normal operation of the transmit buffer and its status bits.

TWI FIFO Status (TWIx_FIFO_STAT) Registers
The fields in the TWI FIFO status registers (TWIx_FIFO_STAT), shown in
Figure 20-11, indicate the state of the FIFO buffers’ receive and transmit
contents. The FIFO buffers do not discriminate between master data and
slave data. By using the status and control bits provided, the FIFO can be
managed to allow simultaneous master and slave operation.

Figure 20-11. TWI FIFO Status Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Status Registers (TWIx_FIFO_STAT)
All bits are RO.

XMTSTAT[1:0] (Transmit
FIFO status)

Reset = 0x0000

RCVSTAT[1:0] (Receive FIFO status)

0xFFC0 142C

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 20-21

Two-Wire Interface Controllers

Additional information for the TWIx_FIFO_STAT register bits includes:

• Receive FIFO Status (RCVSTAT).

The RCVSTAT field is read only. It indicates the number of valid data
bytes in the receive FIFO buffer. The status is updated with each
FIFO buffer read using the peripheral data bus or write access by
the receive shift register. Simultaneous accesses are allowed.

[11] The FIFO is full and contains two bytes of data. Either a sin-
gle or double byte peripheral read of the FIFO is allowed.

[10] Reserved.

[01] The FIFO contains one byte of data. A single byte peripheral
read of the FIFO is allowed.

[00] The FIFO is empty.

• Transmit FIFO Status (XMTSTAT).

The XMTSTAT field is read only. It indicates the number of valid data
bytes in the FIFO buffer. The status is updated with each FIFO
buffer write using the peripheral data bus or read access by the
transmit shift register. Simultaneous accesses are allowed.

[11] The FIFO is full and contains two bytes of data.

[10] Reserved.

[01] The FIFO contains one byte of data. A single byte peripheral
write of the FIFO is allowed.

[00] The FIFO is empty. Either a single or double byte peripheral
write of the FIFO is allowed.

Register Descriptions

20-22 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

TWI Interrupt Mask (TWIx_INT_ENABLE) Registers
The TWI interrupt mask registers (TWIx_INT_ENABLE), shown in
Figure 20-12, enable interrupt sources to assert the interrupt output. Each
mask bit corresponds with one interrupt source bit in the TWI interrupt
status (TWIx_INT_STAT) registers. Reading and writing the TWI interrupt
mask registers does not affect the contents of the TWI interrupt status
registers.

Additional information for the TWIx_INT_ENABLE register bits includes:

• Receive FIFO Service (RCVSERV).

If RCVINTLEN in the TWIx_FIFO_CTRL registers is 0, this bit is set
each time the RCVSTAT field in the TWIx_FIFO_STAT registers is
updated to either 01 or 11. If RCVINTLEN is 1, this bit is set each
time RCVSTAT is updated to either 10 or 11.

[0] The corresponding interrupt source is prevented from asserting
the interrupt output.

[1] Contents of “one” in the corresponding interrupt source will
result in asserting the interrupt output.

Figure 20-12. TWI Interrupt Mask Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Interrupt Enable Registers (TWIx_INT_ENABLE)
For all bits, 0 = interrupt generation disabled, 1 = interrupt generation enabled.

SINITM (Slave Transfer
Initiated interrupt Mask)

Reset = 0x0000

SCOMPM (Slave Transfer
Complete interrupt Mask)
SERRM (Slave Transfer Error
interrupt Mask)

SOVFM (Slave Overflow
interrupt Mask)

RCVSERVM (Receive FIFO
Service interrupt Mask)
XMTSERVM (Transmit FIFO
Service interrupt Mask)

0xFFC0 1424
0xFFC0 2224

MERRM (Master Transfer Error
interrupt Mask)
MCOMPM (Master Transfer
Complete interrupt Mask)

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 20-23

Two-Wire Interface Controllers

• Transmit FIFO Service (XMTSERV).

If XMTINTLEN in the TWIx_FIFO_CTRL registers is 0, this bit is set
each time the XMTSTAT field in the TWIx_FIFO_STAT registers is
updated to either 01 or 00. If XMTINTLEN is 1, this bit is set each
time XMTSTAT is updated to 00.

• Master Transfer Error (MERR).

[0] The corresponding interrupt source is prevented from asserting
the interrupt output.

[1] Contents of “one” in the corresponding interrupt source will
result in asserting the interrupt output.

• Master Transfer Complete (MCOMP).

[0] The corresponding interrupt source is prevented from asserting
the interrupt output.

[1] Contents of “one” in the corresponding interrupt source will
result in asserting the interrupt output.

• Slave Overflow (SOVF).

[0] The corresponding interrupt source is prevented from asserting
the interrupt output.

[1] Contents of “one” in the corresponding interrupt source will
result in asserting the interrupt output.

• Slave Transfer Error (SERR).

[0] The corresponding interrupt source is prevented from asserting
the interrupt output.

[1] Contents of “one” in the corresponding interrupt source will
result in asserting the interrupt output.

Register Descriptions

20-24 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• Slave Transfer Complete (SCOMP).

[0] The corresponding interrupt source is prevented from asserting
the interrupt output.

[1] Contents of “one” in the corresponding interrupt source will
result in asserting the interrupt output.

• Slave Transfer Initiated (SINIT).

[0] The corresponding interrupt source is prevented from asserting
the interrupt output.

[1] Contents of “one” in the corresponding interrupt source will
result in asserting the interrupt output.

TWI Interrupt Status (TWIx_INT_STAT) Registers
The TWI interrupt status registers (TWIx_INT_STAT), shown in
Figure 20-13, contain information about functional areas requiring servic-
ing. Many of the bits serve as an indicator to further read and service
various status registers. After servicing the interrupt source associated with
a bit, the user must clear that interrupt source bit.

Figure 20-13. TWI Interrupt Status Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Interrupt Status Registers (TWIx_INT_STAT)
All bits are sticky and "write 1 to clear".

SINIT (Slave Transfer
Initiated)

Reset = 0x0000

SCOMP (Slave Transfer
Complete)
SERR (Slave Transfer Error)
SOVF (Slave Overflow)

RCVSERV (Receive FIFO Service)
XMTSERV (Transmit FIFO Service)

0xFFC0 1420
0xFFC0 2220

MERR (Master Transfer Error)
MCOMP (Master Transfer Complete)

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 20-25

Two-Wire Interface Controllers

Additional information for the TWIx_INT_STAT register bits includes:

• Receive FIFO Service (RCVSERV).

If RCVINTLEN in the TWIx_FIFO_CTRL registers is 0, this bit is set
each time the RCVSTAT field in the TWIx_FIFO_STAT registers is
updated to either 01 or 11. If RCVINTLEN is 1, this bit is set each
time RCVSTAT is updated to either 10 or 11.

[1] The receive FIFO buffer has one or two 8-bit locations contain-
ing data to be read.

[0] FIFO does not require servicing or RCVSTAT field has not
changed since this bit was last cleared.

• Transmit FIFO Service (XMTSERV).

If XMTINTLEN in the TWIx_FIFO_CTRL registers is 0, this bit is set
each time the XMTSTAT field in the TWIx_FIFO_STAT registers is
updated to either 01 or 00. If XMTINTLEN is 1, this bit is set each
time XMTSTAT is updated to 00.

[1] The transmit FIFO buffer has one or two 8-bit locations avail-
able to be written.

[0] FIFO does not require servicing or XMTSTAT field has not
changed since this bit was last cleared.

• Master Transfer Error (MERR).

[1] A master error has occurred. The conditions surrounding the
error are indicated by the master status registers
(TWIx_MASTER_STAT).

[0] No errors have been detected.

Register Descriptions

20-26 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• Master Transfer Complete (MCOMP).

[1] The initiated master transfer has completed. In the absence of a
repeat start, the bus has been released.

[0] The completion of a transfer has not been detected.

• Slave Overflow (SOVF).

[1] The slave transfer complete (SCOMP) bit was set at the time a
subsequent transfer has acknowledged an address phase. The trans-
fer continues, however, it may be difficult to delineate data of one
transfer from another.

[0] No overflow has been detected.

• Slave Transfer Error (SERR).

[1] A slave error has occurred. A restart or stop condition has
occurred during the data receive phase of a transfer.

[0] No errors have been detected.

• Slave Transfer Complete (SCOMP).

[1] The transfer is complete and either a stop, or a restart was
detected.

[0] The completion of a transfer has not been detected.

• Slave Transfer Initiated (SINIT).

[1] The slave has detected an address match and a transfer has been
initiated.

[0] A transfer is not in progress. An address match has not occurred
since the last time this bit was cleared.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 20-27

Two-Wire Interface Controllers

TWI FIFO Transmit Data Single Byte
(TWIx_XMT_DATA8) Registers

The TWI FIFO transmit data single byte registers (TWIx_XMT_DATA8),
shown in Figure 20-14, hold an 8-bit data value written into the FIFO
buffer.

Transmit data is entered into the corresponding transmit buffer in a
first-in first-out order. Although peripheral bus writes are 16 bits, a write
access to TWIx_XMT_DATA8 adds only one transmit data byte to the FIFO
buffer. With each access, the transmit status (XMTSTAT) field in the
TWIx_FIFO_STAT registers is updated. If an access is performed while the
FIFO buffer is full, the write is ignored and the existing FIFO buffer data
and its status remains unchanged.

TWI FIFO Transmit Data Double Byte
(TWIx_XMT_DATA16) Registers

The TWI FIFO transmit data double byte registers (TWIx_XMT_DATA16),
shown in Figure 20-15, hold a 16-bit data value written into the FIFO
buffer.

To reduce interrupt output rates and peripheral bus access times, a double
byte transfer data access can be performed. Two data bytes can be written,
effectively filling the transmit FIFO buffer with a single access.

Figure 20-14. TWI FIFO Transmit Data Single Byte Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Transmit Data Single Byte Registers (TWIx_XMT_DATA8)
All bits are WO. This register always reads as 0x0000.

XMTDATA8[7:0] (Transmit
FIFO 8-Bit Data)

Reset = 0x00000xFFC0 1480
0xFFC0 2280

Register Descriptions

20-28 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The data is written in little endian byte order as shown in Figure 20-16
where byte 0 is the first byte to be transferred and byte 1 is the second byte
to be transferred. With each access, the transmit status (XMTSTAT) field in
the TWIx_FIFO_STAT registers is updated. If an access is performed while
the FIFO buffer is not empty, the write is ignored and the existing FIFO
buffer data and its status remains unchanged.

TWI FIFO Receive Data Single Byte
(TWIx_RCV_DATA8) Registers

The TWI FIFO receive data single byte registers (TWIx_RCV_DATA8), shown
in Figure 20-17, hold an 8-bit data value read from the FIFO buffer.
Receive data is read from the corresponding receive buffer in a first-in
first-out order. Although peripheral bus reads are 16 bits, a read access to
TWIx_RCV_DATA8 will access only one transmit data byte from the FIFO
buffer. With each access, the receive status (RCVSTAT) field in the
TWIx_FIFO_STAT registers is updated. If an access is performed while the
FIFO buffer is empty, the data is unknown and the FIFO buffer status
remains indicating it is empty.

Figure 20-15. TWI FIFO Transmit Data Double Byte Registers

Figure 20-16. Little Endian Byte Order

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Transmit Data Double Byte Registers (TWIx_XMT_DATA16)
All bits are WO. This register always reads as 0x0000.

XMTDATA16[15:0] (Transmit
FIFO 16-Bit Data)

Reset = 0x00000xFFC0 1484
0xFFC0 2284

Data In Register

B0B1

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 20-29

Two-Wire Interface Controllers

TWI FIFO Receive Data Double Byte
(TWIx_RCV_DATA16) Registers

The TWI FIFO receive data double byte registers (TWIx_RCV_DATA16),
shown in Figure 20-18, hold a 16-bit data value read from the FIFO buf-
fer. To reduce interrupt output rates and peripheral bus access times, a
double byte receive data access can be performed. Two data bytes can be
read, effectively emptying the receive FIFO buffer with a single access.
The data is read in little endian byte order as shown in Figure 20-19
where byte 0 is the first byte received and byte 1 is the second byte
received. With each access, the receive status (RCVSTAT) field in the
TWIx_FIFO_STAT registers is updated to indicate it is empty. If an access is
performed while the FIFO buffer is not full, the read data is unknown and
the existing FIFO buffer data and its status remains unchanged.

Figure 20-17. TWI FIFO Receive Data Single Byte Registers

Figure 20-18. TWI FIFO Receive Data Double Byte Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Receive Data Single Byte Registers (TWIx_RCV_DATA8)
All bits are RO.

RCVDATA8[7:0] (Receive
FIFO 8-Bit Data)

Reset = 0x00000xFFC0 1488
0xFFC0 2288

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Receive Data Double Byte Registers (TWIx_RCV_DATA16)
All bits are WO.

RCVDATA16[15:0] (Receive
FIFO 16-Bit Data)

Reset = 0x00000xFFC0 148C
0xFFC0 228C

Data Transfer Mechanics

20-30 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Data Transfer Mechanics
The TWI controllers follow the transfer protocol of the Philips I2C Bus
Specification version 2.1 dated January 2000. A simple complete transfer is
shown in Figure 20-20.

To better understand the mapping of the TWI controller register contents
to a basic transfer, Figure 20-21 details the same transfer as above noting
the corresponding TWI controller bit names. In this illustration, the TWI
controller successfully transmits one byte of data. The slave has acknowl-
edged both address and data.

Figure 20-19. Little Endian Byte Order

Figure 20-20. Basic Data Transfer

Figure 20-21. Data Transfer With Bit Illustration

Data In Register

B0B1

ACKR/W

ACK = ACKNOWLEDGE

S P8-BIT DATA ACK7-BIT ADDRESS

P = STOP
S = START

ACKMDIR

ACK = ACKNOWLEDGE

S PXMITDATA8[7:0] ACKMADDR[6:0]

P = STOP
S = START

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 20-31

Two-Wire Interface Controllers

Clock Generation and Synchronization
The TWI controller implementation only issues a clock during master
mode operation and only at the time a transfer has been initiated. If arbi-
tration for the bus is lost, the serial clock output immediately three-states.
If multiple clocks attempt to drive the serial clock line, the TWI controller
synchronizes its clock with the other remaining clocks. This is shown in
Figure 20-22.

The TWI controller’s serial clock (SCL) output follows these rules:

• Once the clock high (CLKHI) count is complete, the serial clock out-
put is driven low and the clock low (CLKLOW) count begins.

• Once the clock low count is complete, the serial clock line is
three-stated and the clock synchronization logic enters into a delay
mode (shaded area) until the SCL line is detected at a logic 1 level.
At this time the clock high count begins.

Figure 20-22. TWI Clock Synchronization

HIGH
COUNT

LOW
COUNT

TWI CONTROLLER
CLOCK

SECOND MASTER
CLOCK

SCL
RESULT

Data Transfer Mechanics

20-32 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Bus Arbitration
The TWI controllers initiate a master mode transmission (MEN) only when
the bus is idle. If the bus is idle and two masters initiate a transfer, arbitra-
tion for the bus begins. This is shown in Figure 20-23.

The TWI controllers monitor the serial data bus (SDA) while SCL is high
and if SDA is determined to be an active logic 0 level while the TWI con-
troller’s data is a logic 1 level, the TWI controller has lost arbitration and
ends generation of clock and data. Note arbitration is not performed only
at serial clock edges, but also during the entire time SCL is high.

Start and Stop Conditions
Start and stop conditions involve serial data transitions while the serial
clock is a logic 1 level. The TWI controllers generate and recognize these
transitions. Typically start and stop conditions occur at the beginning and
at the conclusion of a transmission with the exception repeated start
“combined” transfers, as shown in Figure 20-24.

Figure 20-23. TWI Bus Arbitration

START

SCL (BUS)

TWI CONTROLLER
DATA

SECOND MASTER
DATA

SDA (BUS)
ARBITRATION
LOST

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 20-33

Two-Wire Interface Controllers

The TWI controller’s special case start and stop conditions include:

• TWI controller addressed as a slave-receiver

If the master asserts a stop condition during the data phase of a
transfer, the TWI controller concludes the transfer (SCOMP).

• TWI controller addressed as a slave-transmitter

If the master asserts a stop condition during the data phase of a
transfer, the TWI controller concludes the transfer (SCOMP) and
indicates a slave transfer error (SERR).

• TWI controller as a master-transmitter or master-receiver

If the stop bit is set during an active master transfer, the TWI con-
troller issues a stop condition as soon as possible avoiding any error
conditions (as if data transfer count had been reached).

General Call Support
The TWI controllers always decode and acknowledge a general call
address if it is enabled as a slave (SEN) and if general call is enabled (GEN).
General call addressing (0x00) is indicated by the GCALL bit being set and
by nature of the transfer the TWI controller is a slave-receiver. If the data
associated with the transfer is to be NAK’ed, the NAK bit can be set.

Figure 20-24. TWI Start and Stop Conditions

START

SCL (BUS)

SDA (BUS)

STOP

Programming Examples

20-34 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

If the TWI controller is to issue a general call as a master-transmitter the
appropriate address and transfer direction can be set along with loading
transmit FIFO data.

 The byte following the general call address usually defines what
action needs to be taken by the slaves in response to the call. The
command in the second byte is interpreted based on the value of its
LSB. For a TWI slave device, this is not applicable, and the bytes
received after the general call address are considered data.

Fast Mode
Fast mode essentially uses the same mechanics as standard mode of opera-
tion. It is the electrical specifications and timing that are most effected.
When fast mode is enabled (FAST) the following timings are modified to
meet the electrical requirements.

• Serial data rise times before arbitration evaluation (tr)

• Stop condition set-up time from serial clock to serial data
(tSU;STO)

• Bus free time between a stop and start condition (tBUF)

Programming Examples
The following sections include programming examples for general setup,
slave mode, and master mode, as well as guidance for repeated start
conditions.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 20-35

Two-Wire Interface Controllers

General Setup
General setup refers to register writes that are required for both slave
mode operation and master mode operation. General setup should be per-
formed before either the master or slave enable bits are set.

Program the TWIx_CONTROL registers to enable the TWI controller and set
the prescale value. Program the prescale value to the binary representation
of fSCLK / 10 MHz

All values should be rounded up to the next whole number. The TWIx_ENA
bit enable must be set. Note once the TWI controller is enabled a bus
busy condition may be detected. This condition should clear after tBUF
has expired assuming additional bus activity has not been detected.

Slave Mode
When enabled, slave mode operation supports both receive and transmit
data transfers. It is not possible to enable only one data transfer direction
and not acknowledge (NAK) the other. This is reflected in the following
setup.

1. Program TWIx_SLAVE_ADDR. The appropriate 7 bits are used in
determining a match during the address phase of the transfer.

2. Program TWIx_XMT_DATA8 or TWIx_XMT_DATA16. These are the initial
data values to be transmitted in the event the slave is addressed and
a transmit is required. This is an optional step. If no data is written
and the slave is addressed and a transmit is required, the serial
clock (SCL) is stretched and an interrupt is generated until data is
written to the transmit FIFO.

Programming Examples

20-36 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

3. Program TWIx_INT_ENABLE. Enable bits are associated with the
desired interrupt sources. As an example, programming the value
0x000F results in an interrupt output to the processor in the event
that a valid address match is detected, a valid slave transfer com-
pletes, a slave transfer has an error, a subsequent transfer has begun
yet the previous transfer has not been serviced.

4. Program TWIx_SLAVE_CTRL. Ultimately this prepares and enables
slave mode operation. As an example, programming the value
0x0005 enables slave mode operation, requires 7-bit addressing,
and indicates that data in the transmit FIFO buffer is intended for
slave mode transmission.

Table 20-2 shows what the interaction between a TWI controller and the
processor might look like using this example.

Master Mode Clock Setup
Master mode operation is set up and executed on a per-transfer basis. An
example of programming steps for a receive and for a transmit are given
separately in following sections. The clock setup programming step listed
here is common to both transfer types.

Program TWIx_CLKDIV. This defines the clock high duration and clock low
duration.

Table 20-2. Slave Mode Setup Interaction

TWI Controller Master Processor

interrupt: SINIT – Slave transfer in progress. Acknowledge: Clear interrupt source bits.

interrupt: RCVFULL – Receive buffer is full. Read receive FIFO buffer.
Acknowledge: Clear interrupt source bits.

... ...

interrupt: SCOMP – Slave transfer complete. Read receive FIFO buffer.
Acknowledge: Clear interrupt source bits.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 20-37

Two-Wire Interface Controllers

Master Mode Transmit
Follow these programming steps for a single master mode transmit:

1. Program TWIx_MASTER_ADDR. This defines the address transmitted
during the address phase of the transfer.

2. Program TWIx_XMT_DATA8 or TWIx_XMT_DATA16. This is the initial
data transmitted. It is considered an error to complete the address
phase of the transfer and not have data available in the transmit
FIFO buffer.

3. Program TWIx_FIFO_CTRL. Indicate if transmit FIFO buffer inter-
rupts should occur with each byte transmitted (8 bits) or with each
2 bytes transmitted (16 bits).

4. Program TWIx_INT_ENABLE. Enable bits associated with the desired
interrupt sources. As an example, programming the value 0x0030
results in an interrupt output to the processor in the event that the
master transfer completes, and the master transfer has an error.

5. Program TWIx_MASTER_CTRL. Ultimately this prepares and enables
master mode operation. As an example, programming the value
0x0201 enables master mode operation, generates a 7-bit address,
sets the direction to master-transmit, uses standard mode timing,
and transmits 8 data bytes before generating a stop condition.

Table 20-3 shows what the interaction between a TWI controller and the
processor might look like using this example.

Programming Examples

20-38 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Master Mode Receive
Follow these programming steps for a single master mode transmit:

1. Program TWIx_MASTER_ADDR. This defines the address transmitted
during the address phase of the transfer.

2. Program TWIx_FIFO_CTRL. Indicate if receive FIFO buffer inter-
rupts should occur with each byte received (8 bits) or with each 2
bytes received (16 bits).

3. Program TWIx_INT_ENABLE. Enable bits associated with the desired
interrupt sources. For example, programming the value 0x0030
results in an interrupt output to the processor in the event that the
master transfer completes, and the master transfer has an error.

4. Program TWIx_MASTER_CTRL. Ultimately this prepares and enables
master mode operation. As an example, programming the value
0x0205 enables master mode operation, generates a 7-bit address,
sets the direction to master-receive, uses standard mode timing,
and receives 8 data bytes before generating a stop condition.

 After the TWI_DCNT bit is decremented to zero, the TWI master
device sends a NAK to indicate to the slave transmitter that the bus
should be released. This allows the master to send the STOP signal
to terminate the transfer.

Table 20-3. Master Mode Transmit Setup Interaction

TWI Controller Master Processor

interrupt: XMTEMPTY – Transmit buffer is
empty.

Write transmit FIFO buffer.
Acknowledge: Clear interrupt source bits.

... ...

interrupt: MCOMP – Master transfer com-
plete.

Acknowledge: Clear interrupt source bits.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 20-39

Two-Wire Interface Controllers

Table 20-4 shows what the interaction between a TWI controller and the
processor might look like using this example.

Repeated Start Condition
In general, a repeated start condition is the absence of a stop condition
between two transfers. The two transfers can be of any direction type.
Examples include a transmit followed by a receive, or a receive followed by
a transmit. The following sections contain information intended to be a
guide to assist the programmer in their service routine development.

Transmit/Receive Repeated Start Sequence

Figure 20-25 illustrates a repeated start data transmit followed by a data
receive sequence.

Table 20-4. Master Mode Receive Setup Interaction

TWI Controller Master Processor

interrupt: RCVFULL – Receive buffer is full. Read receive FIFO buffer.
Acknowledge: Clear interrupt source bits.

... ...

interrupt: MCOMP – Master transfer com-
plete.

Read receive FIFO buffer.
Acknowledge: Clear interrupt source bits.

Figure 20-25. Transmit/Receive Data Repeated Start

ACKACKS S8-BIT DATA

SHADING INDICATES SLAVE HAS THE BUS

7-BIT ADDRESS ACK P8-BIT DATA ACK7-BIT ADDRESS

MCOMP INTERRUPT

XMTSERV INTERRUPT RCVSERV INTERRUPT

MCOMP INTERRUPT

Programming Examples

20-40 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The tasks performed at each interrupt are:

• XMTSERV interrupt

This interrupt was generated due to a FIFO access. Since this is the
last byte of this transfer, FIFO_STATUS would indicate the transmit
FIFO is empty. When read, DCNT would be zero. Set the RSTART bit
to indicate a repeated start and set the MDIR bit should a subsequent
transfer be a data receive.

• MCOMP interrupt

This interrupt was generated since all data has been transferred
(DCNT = 0). If no errors were generated, a start condition is initi-
ated. Clear the RSTART bit and program the DCNT with the desired
number of bytes to receive.

• RCVSERV interrupt

This interrupt is generated due to the arrival of a byte into the
receive FIFO. Simple data handling is all that is required.

• MCOMP interrupt

The transfer is complete.

Receive/Transmit Repeated Start Sequence

Figure 20-26 illustrates a repeated start data receive followed by a data
transmit sequence.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 20-41

Two-Wire Interface Controllers

The tasks performed at each interrupt are:

• RCVSERV interrupt

This interrupt in generated due to the arrival of a data byte into the
receive FIFO. Set the RSTART bit to indicate a repeated start and
clear the MDIR bit should a subsequent transfer be a data transmit.

• MCOMP interrupt

This interrupt has occurred due to the completion of the data
receive transfer. If no errors were generated, a start condition is ini-
tiated. Clear the RSTART bit and program the DCNT with the desired
number of bytes to transmit.

• XMTSERV interrupt

This interrupt is generated due to a FIFO access. Simple data han-
dling is all that is required.

• MCOMP interrupt

The transfer is complete.

 There is no timing constraint to meet the above conditions; the
user can program the bits as required. Refer to “Clock Stretching
During Repeated Start Condition” on page 20-45 for more on how
the controller stretches the clock during repeated start transfers.

Figure 20-26. Receive/Transmit Data Repeated Start

NACKACKS S8-BIT DATA

SHADING INDICATES SLAVE HAS THE BUS

7-BIT ADDRESS ACK P8-BIT DATA ACK7-BIT ADDRESS

MCOMP INTERRUPT

RCVSERV INTERRUPT XMTSERV INTERRUPT

MCOMP INTERRUPT

Programming Examples

20-42 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Clock Stretching

Clock stretching is an added functionality of the TWI controller in master
mode operation. This new behavior utilizes self-induced stretching of the

I2C clock while waiting on servicing interrupts. Stretching is done auto-
matically by the hardware and no programming is required for this. The
TWI Controller as master supports three modes of clock stretching:

• “Clock Stretching During FIFO Underflow” on page 20-42

• “Clock Stretching During FIFO Overflow” on page 20-44

• “Clock Stretching During Repeated Start Condition” on
page 20-45

Clock Stretching During FIFO Underflow

During a master mode transmit, an interrupt is generated at the instant
the transmit FIFO becomes empty. At this time, the most recent byte
begins transmission. If the XMTSERV interrupt is not serviced, the con-
cluding acknowledge phase of the transfer is stretched. Stretching of the
clock continues until new data bytes are written to the transmit FIFO
(TWI_XMT_DATA8 or TWI_XMT_DATA16). No other action is required to release
the clock and continue the transmission. This behavior continues until the
transmission is complete (DCNT = 0) at which time the transmission is con-
cluded (MCOMP) as shown in Figure 20-27 and described in Table 20-5.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 20-43

Two-Wire Interface Controllers

Figure 20-27. Clock Stretching During FIFO Underflow

Table 20-5. FIFO Underflow Case

TWI Controller Processor

Interrupt: XMTSERV – Transmit FIFO buffer
is empty.

Acknowledge: Clear interrupt source bits.
Write transmit FIFO buffer.

... ...

Interrupt: MCOMP – Master transmit com-
plete (DCNT= 0x00).

Acknowledge: Clear interrupt source bits.

Programming Examples

20-44 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Clock Stretching During FIFO Overflow

During a master mode receive, an interrupt is generated at the instant the
receive FIFO becomes full. It is during the acknowledge phase of this
received byte that clock stretching begins. No attempt is made to initiate
the reception of an additional byte. Stretching of the clock continues until
the data bytes previously received are read from the receive FIFO buffer
(TWI_RCV_DATA8, TWI_RCV_DATA16). No other action is required to release
the clock and continue the reception of data. This behavior continues
until the reception is complete (DCNT = 0x00) at which time the reception
is concluded (MCOMP) as shown in Figure 20-28 and described in
Table 20-6.

Figure 20-28. Clock Stretching During FIFO Overflow

S ADDRESS DATA
ACK WITH
STRETCH

ACKR/W DATA ACK DATA

00 01 11

RCVSTAT[1:0]

TWI_RCV_DATA IS READ AT THIS TIME AND
CLOCK STRETCHING IS RELEASED.

ACKNOWLEDGE WITH STRETCH

00

SCL

ACKNOWLEDGE "STRETCH" BEGINS SOON AFTER SCL FALL.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 20-45

Two-Wire Interface Controllers

Clock Stretching During Repeated Start Condition

The repeated start feature in I2C protocol requires transitioning between
two subsequent transfers. With the use of clock stretching, the task of
managing transitions becomes simpler, and common to all transfer types.

Once an initial TWI master transfer has completed (transmit or receive)
the clock initiates a stretch during the repeated start phase between trans-
fers. Concurrent with this event the initial transfer will generate a transfer
complete interrupt (MCOMP) to signify the initial transfer has completed
(DCNT = 0). This initial transfer is handled without any special bit setting
sequences or timings. The clock stretching logic described above applies
here. With no system related timing constraints the subsequent transfer
(receive or transmit) is setup and activated. This sequence can be repeated
as many times as required to string a series of repeated start transfers
together. This is shown in Figure 20-29 and described in Table 20-7.

Table 20-6. FIFO Overflow Case

TWI Controller Processor

Interrupt: RCVSERV – Receive FIFO buffer is
full.

Acknowledge: Clear interrupt source bits.
Read receive FIFO buffer.

... ...

Interrupt: MCOMP – Master receive complete. Acknowledge: Clear interrupt source bits.

Programming Examples

20-46 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 20-29. Clock Stretching During Repeated Start Condition

Table 20-7. Repeated Start Case

TWI Controller Processor

Interrupt: MCOMP – Initial transmit has com-
pleted and DCNT = 0x00.

Note: transfer in progress, RSTART previously
set.

Acknowledge: Clear interrupt source bits.

Write TWI_MASTER_CTL, setting MDIR
(receive), clearing RSTART, and setting new
DCNT value (nonzero).

Interrupt: RCVSERV – Receive FIFO is full. Acknowledge: Clear interrupt source bits.
Read receive FIFO buffer.

... ...

Interrupt: MCOMP – Master receive complete. Acknowledge: Clear interrupt source bits.

S ADDRESS RSTART/
STRETCH

ADDRESSACKR/W DATA ACK DATA

0x01 0x00 0x80

DCNT[7:0]

MDIR (DIRECTION) AND DCNT ARE
WRITTEN AT THIS TIME.
CLOCK STRETCHING

IS RELEASED.

REPEATED START WITH STRETCH

0x7F

SCL

REPEATED START "STRETCH" BEGINS SOON AFTER SCL FALL
DUE TO DCNT=0X00 AND RSTART.

MCOMP IS SET AT THIS TIME INDICATING
INITIAL TRANSFER HAS COMPLETED.

ACK ACK

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 20-47

Two-Wire Interface Controllers

Electrical Specifications
All logic complies with the Electrical Specification outlined in the Philips
I2C Bus Specification version 2.1 dated January 2000.

Electrical Specifications

20-48 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 21-1

21 SYSTEM DESIGN

This chapter provides hardware, software and system design information
to aid users in developing systems based on the Blackfin processor. The
design options implemented in a system are influenced by cost, perfor-
mance, and system requirements. In many cases, design issues cited here
are discussed in detail in other sections of this manual. In such cases, a ref-
erence appears to the corresponding section of the text, instead of
repeating the discussion in this chapter.

Pin Descriptions
Refer to ADSP-BF538/ADSP-BF538F Embedded Processor Data Sheet for
pin information, including pin numbers for the 160-lead PBGA package.

Recommendations for Unused Pins
Refer to ADSP-BF538/ADSP-BF538F Embedded Processor Data Sheet for
detailed pin descriptions.

Resetting the Processor
In addition to the hardware reset mode provided via the RESET pin, the
processor supports several software reset modes. For detailed information
on the various modes, see “System Reset and Power-up” on page 3-12.

The processor state after reset is described in “Reset State” on page 3-11.

Booting the Processor

21-2 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Booting the Processor
The processor can be booted via a variety of methods. These include exe-
cuting from external 16-bit memory, booting from a ROM configured to
load code from 8-bit flash memory, or booting from a serial ROM (8-bit,
16-bit, or 24-bit address range). For more information on boot modes, see
“Booting Methods” on page 3-19.

Figure 21-1 and Figure 21-2 show the connections necessary for 8-bit and
16-bit booting, respectively. Notice that the address connections are made
in the same manner for both 8- and 16-bit peripherals. Only the lower
byte of each 16-bit word is accessed if byte-wide memory is used.

For example, on core reads of the form:

R0 = W[P0] (Z) ; //P0 points to a 16-bit aligned ASYNC

 memory location

only the lower 8 bits of R0 contain the actual value read from the 8-bit
device.

For core writes of the form:

W[P0] = R0.L ; //P0 points to a 16-bit aligned ASYNC

 memory location

The 8-bit value to be written to the 8-bit device should be first loaded into
the lower byte of R0.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 21-3

System Design

Figure 21-1. Interface to 8-Bit SRAM or Flash

Figure 21-2. Interface to 16-Bit SRAM or Flash

BLACKFIN
PROCESSOR

8-BIT SRAM
OR FLASH

DATA[7:0]

ARDY

D[7:0]

ADDR[N+1:1] A[N:0]

ARE

ABE[1:0]

AWE

AOE

AMS[X] AMS[X]

R/W OR WR

OE

DATA[15:0]

ARDY

R/W OR WR

16-BIT SRAM
OR FLASH

BE[1:0]

D[15:0]

ADDR[N+1:1] A[N:0]

ARE

AWE

AOE OE

AMS[X] AMS[X]

ABE[1:0]

BLACKFIN
PROCESSOR

Managing Clocks

21-4 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Managing Clocks
Systems can drive the clock inputs with a crystal oscillator or a buffered,
shaped clock derived from an external clock oscillator. The external clock
connects to the processor’s CLKIN pin. It is not possible to halt, change, or
operate CLKIN below the specified frequency during normal operation. The
processor uses the clock input (CLKIN) to generate on-chip clocks. These
include the core clock (CCLK) and the peripheral clock (SCLK).

Managing Core and System Clocks
The processor produces a multiplication of the clock input provided on
the CLKIN pin to generate the PLL VCO clock. This VCO clock is divided to
produce the core clock (CCLK) and the system clock (SCLK). The core clock
is based on a divider ratio that is programmed via the CSEL bit settings in
the PLL_DIV register. The system clock is based on a divider ratio that is
programmed via the SSEL bit settings in the PLL_DIV register. For detailed
information about how to set and change CCLK and SCLK frequencies, see
Chapter 8, “Dynamic Power Management”.

Configuring and Servicing Interrupts
A variety of interrupts are available. They include both core and periph-
eral interrupts. The processor assigns default core priorities to system-level
interrupts. However, these system interrupts can be remapped via the Sys-
tem interrupt Assignment registers (SIC_IARx). For more information, see
“System Interrupt Assignment (SIC_IARx) Registers” on page 4-34.

The processor core supports nested and non-nested interrupts, as well as
self-nested interrupts. For explanations of the various modes of servicing
events, see “Nesting of Interrupts” on page 4-55.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 21-5

System Design

Semaphores
Semaphores provide a mechanism for communication between multiple
processors or processes/threads running in the same system. They are used
to coordinate resource sharing. For instance, if a process is using a particu-
lar resource and another process requires that same resource, it must wait
until the first process signals that it is no longer using the resource. This
signalling is accomplished via semaphores.

Semaphore coherency is guaranteed by using the test and set byte (atomic)
instruction (TESTSET). The TESTSET instruction performs these functions.

• Loads the half word at memory location pointed to by a P-register.
The P-register must be aligned on a half-word boundary.

• Sets CC if the value is equal to zero.

• Stores the value back in its original location (but with the most sig-
nificant bit (MSB) of the low byte set to 1).

The events triggered by TESTSET are atomic operations. The bus for the
memory where the address is located is acquired and not relinquished
until the store operation completes. In multithreaded systems, the
TESTSET instruction is required to maintain semaphore consistency.

To ensure that the store operation is flushed through any store or write
buffers, issue an SSYNC instruction immediately after semaphore release.

The TESTSET instruction can be used to implement binary semaphores or
any other type of mutual exclusion method. The TESTSET instruction sup-
ports a system-level requirement for a multicycle bus lock mechanism.

The processor restricts use of the TESTSET instruction to the external mem-
ory region only. Use of the TESTSET instruction to address any other area
of the memory map may result in unreliable behavior.

Data Delays, Latencies and Throughput

21-6 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Example Code for Query Semaphore
Listing 21-1 provides an example of a query semaphore that checks the
availability of a shared resource.

Listing 21-1. Query Semaphore

/* Query semaphore. Denotes "Busy" if its value is nonzero. Wait

until free (or reschedule thread-- see note below). P0 holds

address of semaphore. */

QUERY:

TESTSET (P0) ;

IF !CC JUMP QUERY ;

/* At this point, semaphore has been granted to current thread,

and all other contending threads are postponed because semaphore

value at [P0] is nonzero. Current thread could write thread_id to

semaphore location to indicate current owner of resource. */

R0.L = THREAD_ID ;

B[P0] = R0 ;

/* When done using shared resource, write a zero byte to [P0] */

R0 = 0 ;

B[P0] = R0 ;

SSYNC ;

/* NOTE: Instead of busy idling in the QUERY loop, one can use an

operating system call to reschedule the current thread. */

Data Delays, Latencies and Throughput
For detailed information on latencies and performance estimates on the
DMA and external memory buses, refer to Chapter 7, “Chip Bus
Hierarchy”.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 21-7

System Design

Bus Priorities
For an explanation of prioritization between the various internal buses,
refer to Chapter 7, “Chip Bus Hierarchy”.

External Memory Design Issues
This section describes design issues related to external memory.

Example Asynchronous Memory Interfaces
This section shows glueless connections to 16-bit wide SRAM. Note this
interface does not require external assertion of ARDY, since the internal wait
state counter is sufficient for deterministic access times of memories.

Figure 21-3 shows the system interconnect required to support 16-bit
memories. The programming model must ensure that data is only accessed
on 16-bit boundaries.

Figure 21-3. Interface to 16-Bit SRAM

ADDR[N+1:2]

DATA[15:0]

ARDY

CE

OE

R/W

SRAM

BE[1:0]

A[N:1]

D[15:0]

ADDR[1] A[0]

AWE

AOE

AMS[X]

ABE[1:0]

ARE

BLACKFIN
PROCESSOR

External Memory Design Issues

21-8 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Using SDRAMs Smaller Than 16M Byte
It is possible to use SDRAMs smaller than 16M byte on the ADSP-BF538
processor, as long as it is understood how the resulting memory map is
altered. Figure 21-4 shows an example where a 2M byte SDRAM
(512K x 16 bits x 2 banks) is mapped to the external memory interface. In
this example, there are 11 row addresses and 8 column addresses per bank.
Referring to Table 18-5, the lowest available bank size (16M byte) for a
device with 8 column addresses has 2 bank address lines (IA[23:22]) and
13 row address lines (IA[21:9]). Therefore, 1 processor bank address line
and 2 row address lines are unused when hooking up to the SDRAM in
the example. This causes aliasing in the processor’s external memory map,
which results in the SDRAM being mapped into non-contiguous regions
of the processor’s memory space.

Referring to the table in Figure 21-4, note that each line in the table cor-

responds to 219 bytes, or 512K byte. Thus, the mapping of the 2M byte
SDRAM is non-contiguous in Blackfin memory, as shown by the memory
mapping in the left side of the figure.

Managing SDRAM Refresh During PLL Transitions
Since the processor’s SDRAM refresh rate is based on the SCLK frequency,
lowering SCLK after configuring SDRAM can result in an improper refresh
rate, which could compromise the data stored in SDRAM. Raising SCLK
after configuring SDRAM, however, would merely result in a less efficient
use of SDRAM, since the processor would just refresh the memory at an
unnecessarily fast rate.

In systems where SDRAM is used, the recommended procedure for chang-
ing the PLL VCO frequency is:

1. Issue an SSYNC instruction to ensure all pending memory opera-
tions have completed.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 21-9

System Design

2. Set the SDRAM to self-refresh mode by writing a 1 to the SRFS bit
of EBIU_SDGCTL.

3. Execute the desired PLL programming sequence (refer to
Chapter 8, “Dynamic Power Management” for details).

4. After the wake-up occurs that signifies the PLL has settled to the
new VCO frequency, reprogram the SDRAM refresh rate control
register (EBIU_SDRRC) with a value appropriate to the new SCLK
frequency.

5. Bring the SDRAM out of self-refresh mode by clearing the SRFS bit
of EBIU_SDGCTL. If it is desired to change the SDRAM Mode regis-
ter, write these changes to EBIU_SDGCTL as well, making sure the
PSSE bit is set.

Figure 21-4. Using Small SDRAMs

BANK
ADDRESS

ROW ADDRESS

IA22IA23 IA21 IA20 IA19

0

1

1

UNAVAILABLE COMBINATIONS ARE SHADED

1

X XX

1

X

1

IA
23

 =
 0

0 111 0

0 011 1

0 011 0

0 101 1

0 101 0

0

0

01

1 01

0

0

1

0 010 0

0 100 1

0 100 0

0 000 1

0 000 0

0 001 1

0 001 0

0 110 1

1M BYTE

1M BYTE

BLACKFIN MEMORY MAP

0x0000 0000

IA
23

 =
 1

EXAMPLE: 2M BYTE SDRAM WITH
512K x 16 x 2 BANKS,
11 ROW ADDRESSES AND
8 COLUMN ADDRESSES PER BANK

External Memory Design Issues

21-10 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Changing the SCLK frequency using the SSEL bits in PLL_DIV, as opposed
to actually changing the VCO frequency, should be done using these steps:

1. Issue an SSYNC instruction to ensure all pending memory opera-
tions have completed.

2. Set the SDRAM to self-refresh mode by writing a 1 to the SRFS bit
of EBIU_SDGCTL.

3. Execute the desired write to the SSEL bits.

4. Reprogram the SDRAM refresh rate control register (EBIU_SDRRC)
with a value appropriate to the new SCLK frequency.

5. Bring the SDRAM out of self-refresh mode by clearing the SRFS bit
of EBIU_SDGCTL. If it is desired to change the SDRAM mode regis-
ter, write these changes to EBIU_SDGCTL as well, making sure the
PSSE bit is set.

Note that steps 2 and 4 are not strictly necessary if changing SCLK to a
higher value, but they should always be performed when decreasing SCLK.

For more information on SDRAM refresh, refer to “SDRAM Controller
(SDC)” on page 18-22.

Avoiding Bus Contention
Because the three-stated data bus is shared by multiple devices in a system,
be careful to avoid contention. Contention causes excessive power dissipa-
tion and can lead to device failure. Contention occurs during the time one
device is getting off the bus and another is getting on. If the first device is
slow to three-state and the second device is quick to drive, the devices
contend.

There are two cases where contention can occur. The first case is a read
followed by a write to the same memory space. In this case, the data bus
drivers can potentially contend with those of the memory device addressed

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 21-11

System Design

by the read. The second case is back-to-back reads from two different
memory spaces. In this case, the two memory devices addressed by the two
reads can potentially contend at the transition between the two read
operations.

To avoid contention, program the turnaround time (bank transition time)
appropriately in the asynchronous memory bank control registers. This
feature allows software to set the number of clock cycles between these
types of accesses on a bank-by-bank basis. Minimally, the external bus
interface unit (EBIU) provides one cycle for the transition to occur.

High Frequency Design Considerations
Because the processor can operate at very fast clock frequencies, signal
integrity and noise problems must be considered for circuit board design
and layout. The following sections discuss these topics and suggest various
techniques to use when designing and debugging signal processing
systems.

Point-to-Point Connections on Serial Ports
Although the serial ports may be operated at a slow rate, the output drivers
still have fast edge rates and for longer distances the drivers may require
source termination.

You can add a series termination resistor near the pin for point-to-point
connections. Typically, serial port applications use this termination
method when distances are greater than 6 inches. For details, see the refer-
ence source in “Recommended Reading” on page 21-14 for suggestions on
transmission line termination. Also, see ADSP-BF538/ADSP-BF538F
Embedded Processor Data Sheet for rise and fall time data for the output
drivers.

High Frequency Design Considerations

21-12 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Signal Integrity
The capacitive loading on high-speed signals should be reduced as much
as possible. Loading of buses can be reduced by using a buffer for devices
that operate with wait states (for example, DRAMs). This reduces the
capacitance on signals tied to the zero-wait-state devices, allowing these
signals to switch faster and reducing noise-producing current spikes.

Signal run length (inductance) should also be minimized to reduce ring-
ing. Extra care should be taken with certain signals such as external
memory, read, write, and acknowledge strobes.

Other recommendations and suggestions to promote signal integrity:

• Use more than one ground plane on the printed circuit board
(PCB) to reduce crosstalk. Be sure to use lots of vias between the
ground planes. These planes should be in the center of the PCB.

• Keep critical signals such as clocks, strobes, and bus requests on a
signal layer next to a ground plane and away from or laid out per-
pendicular to other non-critical signals to reduce crosstalk.

• Design for lower transmission line impedances to reduce crosstalk
and to allow better control of impedance and delay.

• Experiment with the board and isolate crosstalk and noise issues
from reflection issues. This can be done by driving a signal wire
from a pulse generator and studying the reflections while other
components and signals are passive.

Decoupling Capacitors and Ground Planes
Ground planes must be used for the ground and power supplies. The
capacitors should be placed very close to the VDDEXT and VDDINT pins of the
package as shown in Figure 21-5. Use. Use short and fat traces for this.
The ground end of the capacitors should be tied directly to the ground

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 21-13

System Design

plane inside the package footprint of the processor (underneath it, on the
bottom of the board), not outside the footprint. A surface-mount capaci-
tor is recommended because of its lower series inductance.

Connect the power plane to the power supply pins directly with minimum
trace length. The ground planes must not be densely perforated with vias
or traces as their effectiveness is reduced. In addition, there should be sev-
eral large tantalum capacitors on the board.

 Designs can use either bypass placement case or combinations of
the two. Designs should try to minimize signal feedthroughs that
perforate the ground plane.

Figure 21-5. Bypass Capacitor Placement

CASE 1:
BYPASS CAPACITORS ON NON-
COMPONENT (BOTTOM) SIDE OF
BOARD, BENEATH PACKAGE

a

B
ADSP -BF538

CASE 2:
BYPASS CAPACITORS ON
COMPONENT (TOP) SIDE OF
BOARD, AROUND PACKAGE

High Frequency Design Considerations

21-14 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Oscilloscope Probes
When making high-speed measurements, be sure to use a “bayonet” type
or similarly short (< 0.5 inch) ground clip, attached to the tip of the oscil-
loscope probe. The probe should be a low-capacitance active probe
with 3 pF or less of loading. The use of a standard ground clip with
4 inches of ground lead causes ringing to be seen on the displayed trace
and makes the signal appear to have excessive overshoot and undershoot.
To see the signals accurately, a 1 GHz or better sampling oscilloscope is
needed.

Recommended Reading
 For more information, refer to High-Speed Digital Design: A Handbook of
Black Magic, Johnson & Graham, Prentice Hall, Inc., ISBN
0-13-395724-1.

This book is a technical reference that covers the problems encountered in
state of the art, high-frequency digital circuit design. It is an excellent
source of information and practical ideas. Topics covered in the book
include:

• High-speed Properties of Logic Gates

• Measurement Techniques

• Transmission Lines

• Ground Planes and Layer Stacking

• Terminations

• Vias

• Power Systems

• Connectors

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 21-15

System Design

• Ribbon Cables

• Clock Distribution

• Clock Oscillators

High Frequency Design Considerations

21-16 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 22-1

22 BLACKFIN PROCESSOR
DEBUG

The Blackfin processor’s debug functionality is used for software debug-
ging. It also complements some services often found in an operating
system (OS) kernel. The functionality is implemented in the processor
hardware and is grouped into multiple levels.

A summary of available debug features is shown in Table 22-1.

Watchpoint Unit
By monitoring the addresses on both the instruction bus and the data bus,
the watchpoint unit provides several mechanisms for examining program
behavior. After counting the number of times a particular address is
matched, the unit schedules an event based on this count.

Table 22-1. Blackfin Debug Features

Debug Feature Description

Watchpoints Specify address ranges and conditions that halt the processor
when satisfied.

Trace History Stores the last 16 discontinuous values of the program counter in
an on-chip trace buffer.

Cycle Count Provides functionality for all code profiling functions.

Performance
Monitoring

Allows internal resources to be monitored and measured
non-intrusively.

Watchpoint Unit

22-2 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

In addition, information that the watchpoint unit provides helps in the
optimization of code. The unit also makes it easier to maintain executables
through code patching.

The watchpoint unit contains these memory-mapped registers (MMRs),
which are accessible in supervisor and emulator modes:

• The watchpoint status register (WPSTAT)

• Six instruction watchpoint address registers (WPIA[5:0])

• Six instruction watchpoint address count registers (WPIACNT[5:0])

• The instruction watchpoint address control register (WPIACTL)

• Two data watchpoint address registers (WPDA[1:0])

• Two data watchpoint address count registers (WPDACNT[1:0])

• The data watchpoint address control register (WPDACTL)

Two operations implement instruction watchpoints:

• The values in the six instruction watchpoint address registers,
WPIA[5:0], are compared to the address on the instruction bus.

• Corresponding count values in the instruction watchpoint address
count registers, WPIACNT[5:0], are decremented on each match.

The six instruction watchpoint address registers may be further grouped
into three ranges of instruction-address-range watchpoints. The ranges are
identified by the addresses in WPIA0 to WPIA1, WPIA2 to WPIA3, and WPIA4
to WPIA5.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 22-3

Blackfin Processor Debug

 The address ranges stored in WPIA0, WPIA1, WPIA2, WPIA3, WPIA4,
and WPIA5 must satisfy these conditions:

• WPIA0 <= WPIA1

• WPIA2 <= WPIA3

• WPIA4 <= WPIA5

Two operations implement data watchpoints:

• The values in the two data watchpoint address registers, WPDA[1:0],
are compared to the address on the data buses.

• Corresponding count values in the data watchpoint address count
registers, WPDACNT[1:0], are decremented on each match.

The two data watchpoint address registers may be further grouped
together into one data-address-range watchpoint, WPDA[1:0].

The instruction and data count value registers must be loaded with the
number of times the watchpoint must match minus one. After the count
value reaches zero, the subsequent watchpoint match results in an excep-
tion or emulation event.

 Note count values must be reinitialized after the event has
occurred.

An event can also be triggered on a combination of the instruction and
data watchpoints. If the WPAND bit in the WPIACTL register is set, then an
event is triggered only when both an instruction address watchpoint
matches and a data address watchpoint matches. If the WPAND bit is 0, then
an event is triggered when any of the enabled watchpoints or watchpoint
ranges match.

Watchpoint Unit

22-4 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

To enable the watchpoint unit, the WPPWR bit in the WPIACTL register must
be set. If WPPWR = 1, then the individual watchpoints and watchpoint
ranges may be enabled using the specific enable bits in the WPIACTL and
WPDACTL MMRs. If WPPWR = 0, then all watchpoint activity is disabled.

Instruction Watchpoints
Each instruction watchpoint is controlled by three bits in the WPIACTL reg-
ister, as shown in Table 22-2.

When two watchpoints are associated to form a range, two additional bits
are used, as shown in Table 22-3.

Table 22-2. WPIACTL Control Bits

Bit Name Description

EMUSWx Determines whether an instruction-address match causes either an
emulation event or an exception event.

WPICNTENx Enables the 16-bit counter that counts the number of address
matches. If the counter is disabled, then every match causes an
event.

WPIAENx Enables the address watchpoint activity.

Table 22-3. WPIACTL Watchpoint Range Control Bits

Bit Name Description

WPIRENxy Indicates the two watchpoints that are to be associated to form a
range.

WPIRINVxy Determines whether an event is caused by an address within the
range identified or outside of the range identified.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 22-5

Blackfin Processor Debug

Code patching allows software to replace sections of existing code with
new code. The watchpoint registers are used to trigger an exception at the
start addresses of the earlier code. The exception routine then vectors to
the location in memory that contains the new code.

On the processor, code patching can be achieved by writing the start
address of the earlier code to one of the WPIAn registers and setting the cor-
responding EMUSWx bit to trigger an exception. In the exception service
routine, the WPSTAT register is read to determine which watchpoint trig-
gered the exception. Next, the code writes the start address of the new
code in the RETX register, and then returns from the exception to the new
code. Because the exception mechanism is used for code patching, event
service routines of the same or higher priority (exception, NMI, and reset
routines) cannot be patched.

A write to the WPSTAT MMR clears all the sticky status bits. The data value
written is ignored.

Instruction Watchpoint Address (WPIAn) Registers
When the watchpoint unit is enabled, the values in the instruction watch-
point address registers (WPIAn) are compared to the address on the
instruction bus. Corresponding count values in the instruction watch-
point address count registers (WPIACNTn) are decremented on each match.

Figure 22-1 shows the instruction watchpoint address registers,
WPIA[5:0].

Watchpoint Unit

22-6 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Instruction Watchpoint Address Count (WPIACNTn)
Registers

When the watchpoint unit is enabled, the count values in the instruction
watchpoint address count registers (WPIACNT[5:0]) are decremented each
time the address or the address bus matches a value in the WPIAn registers.
Load the WPIACNTn register with a value that is one less than the number of
times the watchpoint must match before triggering an event (see
Figure 22-2). The WPIACNTn register decrements to 0x0000 when the pro-
grammed count expires.

Figure 22-1. Instruction Watchpoint Address Registers

Table 22-4. Instruction Watchpoint Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

WPIA0 0xFFE0 7040

WPIA1 0xFFE0 7044

WPIA2 0xFFE0 7048

WPIA3 0xFFE0 704C

WPIA4 0xFFE0 7050

WPIA5 0xFFE0 7054

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

Instruction Watchpoint Address Registers (WPIAn)

Reset = Undefined

WPIA (Instruction Address)[30:15]

WPIA (Instruction Address)[14:0]

For memory-mapped
addresses, see
Table 22-4.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 22-7

Blackfin Processor Debug

Instruction Watchpoint Address Control (WPIACTL)
Register

Three bits in the instruction watchpoint address control register (WPIACTL)
control each instruction watchpoint. Figure 22-3 describes the upper half
of the register. Figure 22-4 describes the lower half of the register. For
more information about the bits in this register, see “Instruction Watch-
points” on page 22-4.

 The bits in the WPIACTL register have no effect unless the WPPWR bit
is set.

Figure 22-2. Instruction Watchpoint Address Count Registers

Table 22-5. Instruction Watchpoint Address Count Register
Memory-Mapped Addresses

Register Name Memory-Mapped Address

WPIACNT0 0xFFE0 7080

WPIACNT1 0xFFE0 7084

WPIACNT2 0xFFE0 7088

WPIACNT3 0xFFE0 708C

WPIACNT4 0xFFE0 7090

WPIACNT5 0xFFE0 7094

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X X

Instruction Watchpoint Address Count Registers (WPIACNTn)

Reset = Undefined

WPIACNT (Count Value)[15:0]

For memory-mapped
addresses, see
Table 22-5.

Watchpoint Unit

22-8 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 22-3. Instruction Watchpoint Address Control Register
(WPIACTL)[31:16]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X 0 0 X 0

Instruction Watchpoint Address Control Register (WPIACTL)

Reset = Undefined

EMUSW3
0 - Match on WPIA3 causes an

exception event
1 - Match on WPIA3 causes an

emulation event
WPIREN45
0 - Disable range comparison
1 - Enable range comparison:

(Start address = WPIA4,
End address = WPIA5)

WPIRINV45
Valid when WPIREN45 = 1
0 - Inclusive range comparison:

WPIA4 <IA <= WPIA5
1 - Exclusive range comparison:

IA <= WPIA4 || IA > WPIA5
WPIAEN4
Valid when WPIREN45 = 0
0 - Disable instruction address

watchpoint, WPIA4
1 - Enable instruction address

watchpoints, WPIA4
WPIAEN5
Valid when WPIREN45 = 0
0 - Disable instruction address

watchpoints, WPIA5
1 - Enable instruction address

watchpoints, WPIA5

WPAND
0 - Any enabled watchpoints triggers

an exception or emulation event
1 - Any enabled instruction address

watchpoints AND any enabled
data address watchpoints trigger
an exception or emulation event

EMUSW5

WPICNTEN4
If range comparison is enabled, this bit enables the
counter for range 45
0 - Disable watchpoints instruction address counter 4
1 - Enable watchpoints instruction address counter 4

WPICNTEN5
0 - Disable watchpoints instruction address counter 5
1 - Enable watchpoints instruction address counter 5

EMUSW4
0 - Match on WPIA4 (or range 45)

causes an exception event
1 - Match on WPIA4 (or range 45)

causes an emulation event

0 - Match on WPIA5 causes an
exception event

1 - Match on WPIA5 causes an
emulation event

In range comparisons, IA = instruction address

0xFFE0 7000

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 22-9

Blackfin Processor Debug

Figure 22-4. Instruction Watchpoint Address Control Register [15:0]

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X 0 0 X 0 X X X X 0 0 X 0

Instruction Watchpoint Address Control Register (WPIACTL)

WPPWR
0 - Watchpoints Unit disabled
1 - Watchpoints Unit enabled
WPIREN01
0 - Disable range comparison
1 - Enable range comparison:

(Start address = WPIA0,
End address = WPIA1)

WPIRINV01

WPIAEN0
Valid whenWPIREN01 = 0
0 - Disable instruction address

watchpoints, WPIA0
1 - Enable instruction address

watchpoints, WPIA0

WPIAEN1
Valid when WPIREN01 = 0
0 - Disable instruction address

watchpoints, WPIA1
1 - Enable instruction address

watchpoints, WPIA1
WPICNTEN0
If range comparison is enabled,
this bit enables counter for
range 01
0 - Disable watchpoints

instruction address counter 0
1 - Enable watchpoints

instruction address counter 0

WPICNTEN1
0 - Disable watchpoints

instruction address counter 1
1 - Enable watchpoints

instruction address counter 1
EMUSW0

EMUSW1
0 - Match on WPIA1 causes an

exception event
1 - Match on WPIA1 causes an

emulation event

WPIREN23
0 - Disable range comparison
1 - Enable range comparison

(Start address = WPIA2,
End address = WPIA3)

WPIRINV23

WPIAEN2
Valid when WPIREN23 = 0
0 - Disable instruction address

watchpoints, WPIA2
1 - Enable instruction address

watchpoints, WPIA2

WPIAEN3
Valid when WPIREN23 = 0
0 - Disable instruction address

watchpoints, WPIA3
1 - Enable instruction address

watchpoints, WPIA3

WPICNTEN2
If range comparison is enabled,
this bit enables counter for range 23
0 - Disable watchpoints

instruction address counter 2
1 - Enable watchpoints

instruction address counter 2

WPICNTEN3
0 - Disable watchpoints

instruction address counter 3
1 - Enable watchpoints

instruction address counter 3

EMUSW2
0 - Match on WPIA2 (or

range 23) causes
an exception event

1 - Match on WPIA2 (or
range 23) causes
an emulation event

0 - Match on WPIA0 (or range 01)
causes an

exception event
1 - Match on WPIA0 (or range 01)
causes an emulation event

Valid when WPIREN01 = 1
0 - Inclusive range comparison:

WPIA0 < IA <= WPIA1
1 - Exclusive range comparison:

IA <= WPIA0 || IA > WPIA1

In range comparisons, IA = instruction address

Valid when WPIREN23 = 1
0 - Inclusive range comparison:

WPIA2 < IA <= WPIA3
1 - Exclusive range comparison:

IA <= WPIA2 || IA > WPIA3

Reset = Undefined0xFFE0 7000

Watchpoint Unit

22-10 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Data Address Watchpoints
Each data watchpoint is controlled by four bits in the WPDACTL register, as
shown in Table 22-6.

Alternatively, the watchpoint unit can be configured to monitor a range of
data addresses. To enable this function, the WPDAEN0 and WPDAEN1 bits are
not used and must be set to 0. Instead, the WPDREN01 and WPDRINV01 bits
are used to configure the watchpoint unit, as described in Table 22-7.

 Note data address watchpoints always trigger emulation events.

Table 22-6. Data Address Watchpoints

Bit Name Description

WPDACCn Determines whether the match should be on a read or write access.

WPDSRCn Determines which DAG the unit should monitor.

WPDCNTENn Enables the counter that counts the number of address matches. If the coun-
ter is disabled, then every match causes an event.

WPDAENn Enables the data watchpoint activity.

Table 22-7. WPDACTL Watchpoint Control Bits

Bit Name Description

WPDREN01 Indicates the two watchpoints associated to form a range.

WPDRINV01 Determines whether an event is caused by an address within the range identi-
fied or outside the range.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 22-11

Blackfin Processor Debug

Data Watchpoint Address (WPDAn) Registers
When the watchpoint unit is enabled, the values in the data watchpoint
address registers (WPDAn) are compared to the address on the data buses.
Corresponding count values in the data watchpoint address count registers
(WPDACNTn) are decremented on each match.

Figure 22-5 shows the data watchpoint address registers, WPDA[1:0].

Data Watchpoint Address Count Value
(WPDACNTn) Registers

When the watchpoint unit is enabled, the count values in the data watch-
point address count value registers (WPDACNTn) are decremented each time
the address or the address bus matches a value in the WPDAn registers. Load
this WPDACNTn register with a value that is one less than the number of
times the watchpoint must match before triggering an event. The
WPDACNTn register will decrement to 0x0000 when the programmed count
expires. Figure 22-6 shows the WPDACNT[1:0] registers.

Figure 22-5. Data Watchpoint Address Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

Data Watchpoint Address Registers (WPDAn)

Reset = Undefined

WPDA (Data Address)[31:16]

WPDA (Data Address)[15:0]

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X X

WPDA0: 0xFFE0 7140
WPDA1: 0xFFE0 7144

Watchpoint Unit

22-12 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Data Watchpoint Address Control (WPDACTL)
Register

For more information about the bits in the data watchpoint address con-
trol register (WPDACTL), see “Data Address Watchpoints” on page 22-10.

Watchpoint Status (WPSTAT) Register
The watchpoint status register (WPSTAT) monitors the status of the watch-
points. It may be read and written in supervisor or emulator modes only.
When a watchpoint or watchpoint range matches, this register reflects the
source of the watchpoint. The status bits in the WPSTAT register are sticky,
and all of them are cleared when any write, regardless of the value, is per-
formed to the register.

Figure 22-8 shows the watchpoint status register.

Figure 22-6. Data Watchpoint Address Count Value Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X X

Data Watchpoint Address Count Value Registers (WPDACNTn)

Reset = Undefined

WPDACNT (Count Value)[15:0]

WPDACNT0:
0xFFE0 7180

WPDACNT1:
0xFFE0 7184

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 22-13

Blackfin Processor Debug

Figure 22-7. Data Watchpoint Address Control Register

WPDACC1[1:0]

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X 0 0 X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

Data Watchpoint Address Control Register (WPDACTL)

Reset = Undefined

00 - Reserved
01 - Match on write access only

on WPDA1
10 - Match on read access only

on WPDA1
11 - Match on either read or

write accesses on WPDA1

00 - Reserved
01 - Watch addresses on DAG0

on WPDA1
10 - Watch addresses on DAG1

on WPDA1
11 - Watch addresses on either

DAG0 or DAG1 on WPDA1

WPDSRC1[1:0]

00 - Reserved
01 - Match on write access only on WPDA0

or on the WPDA0 to WPDA1 range
10 - Match on read access only on WPDA0

or on the WPDA0 to WPDA1 range
11 - Match on either read or write accesses

on WPDA0 or on the WPDA0 to WPDA1 range

WPDACC0[1:0]

WPDREN01

0 - Disable range comparison
1 - Enable range comparison:

(Start address = WPDA0,
End address = WPDA1)

WPDRINV01
0 - Inclusive range comparison:

inside the WPDA0 to
WPDA1 range

1 - Exclusive range
comparison: outside the
WPDA0 to WPDA1 range

WPDAEN0
Valid when WPDREN01 = 0
0 - Disable data address

watchpoint, WPDA0
1 - Enable data address

watchpoint, WPDA0
WPDAEN1
Valid when WPDREN01 = 0
0 - Disable data address

watchpoint, WPDA1
1 - Enable data address

watchpoint, WPDA1
WPDCNTEN0
If range comparison is enabled,
this bit enables the counter for
range 01
0 - Disable watchpoint

data address counter 0
1 - Enable watchpoint

data address counter 0
WPDCNTEN1
0 - Disable watchpoint

data address counter 1
1 - Enable watchpoint

data address counter 1

WPDSRC0[1:0]
00 - Reserved
01 - Watch addresses on DAG0 on WPDA0

or on the WPDA0 to WPDA1 range
10 - Watch addresses on DAG1 on WPDA0

or on the WPDA0 to WPDA1 range
11 - Watch addresses on either DAG0 or DAG1

on WPDA0 or on the WPDA0 to WPDA1 range

0xFFE0 7100

Trace Unit

22-14 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Trace Unit
The trace unit stores a history of the last 16 changes in program flow
taken by the program sequencer. The history allows the user to recreate
the program sequencer’s recent path.

The trace buffer can be enabled to cause an exception when full. The
exception service routine associated with the exception saves trace buffer
entries to memory. Thus, the complete path of the program sequencer
since the trace buffer was enabled can be recreated.

Figure 22-8. Watchpoint Status Register

XX 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

Watchpoint Status Register (WPSTAT)

STATIA0

0 - Neither WPIA0 nor the
WPIA0 to WPIA1 range
matched

1 - WPIA0 matched or the
WPIA0 to WPIA1 range
matched

STATIA1
0 - WPIA1 not matched
1 - WPIA1 matched
STATIA2

STATIA3
0 - WPIA3 not matched
1 - WPIA3 matched

STATIA4

STATIA5
0 - WPIA5 not matched
1 - WPIA5 matched

STATDA1
0 - WPDA1 not matched
1 - WPDA1 matched

0 - Neither WPIA2 nor the
WPIA2 to WPIA3 range
matched

1 - WPIA2 matched or the
WPIA2 to WPIA3 range
matched

0 - Neither WPIA4 nor the
WPIA4 to WPIA5 range
matched

1 - WPIA4 matched or the
WPIA4 to WPIA5 range
matched

0 - Neither WPDA0 nor the
WPDA0 to WPDA1 range
matched

1 - WPDA0 matched or the
WPDA0 to WPDA1 range
matched

STATDA0

Reset = Undefined0xFFE0 7200

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 22-15

Blackfin Processor Debug

Changes in program flow because of zero-overhead loops are not stored in
the trace buffer. For debugging code that is halted within a zero-overhead
loop, the iteration count is available in the loop count registers, LC0 and
LC1.

The trace buffer can be configured to omit the recording of changes in
program flow that match either the last entry or one of the last two
entries. Omitting one of these entries from the record prevents the trace
buffer from overflowing because of loops in the program. Because
zero-overhead loops are not recorded in the trace buffer, this feature can
be used to prevent trace overflow from loops that are nested four deep.

When read, the trace buffer register (TBUF) returns the top value from the
trace unit stack, which contains as many as 16 entries. Each entry contains
a pair of branch source and branch target addresses. A read of TBUF returns
the newest entry first, starting with the branch destination. The next read
provides the branch source address.

The number of valid entries in TBUF is held in the TBUFCNT field of the
TBUFSTAT register. On every second read, TBUFCNT is decremented. Because
each entry corresponds to two pieces of data, a total of 2 x TBUFCNT reads
empties the TBUF register.

 Discontinuities that are the same as either of the last two entries in
the trace buffer are not recorded.

Because reading the trace buffer is a destructive operation, it is rec-
ommended that TBUF be read in a non-interruptible section of
code.

Note, if single-level compression has occurred, the least significant bit
(LSB) of the branch target address is set. If two-level compression has
occurred, the LSB of the branch source address is set.

Trace Unit

22-16 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Trace Buffer Control (TBUFCTL) Register
The trace unit is enabled by two control bits in the trace buffer control
register (TBUFCTL) register. First, the trace unit must be activated by set-
ting the TBUFPWR bit. If TBUFPWR = 1, then setting TBUFEN to 1 enables the
trace unit.

Figure 22-9 describes the TBUFCTL register. If TBUFOVF = 1, then the trace
unit does not record discontinuities in the exception, NMI, and reset
routines.

Figure 22-9. Trace Buffer Control Register

X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

X

Reset = Undefined

X 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X 0 0 0 0

Trace Buffer Control Register (TBUFCTL)

TBUFPWR
0 - Trace buffer is off
1 - Trace buffer is active
TBUFEN
0 - Trace buffer disabled
1 - Trace buffer enabled
TBUFOVF
0 - Overflows are ignored
1 - Trace buffer overflow

causes an exception
event

CMPLP[1:0]

X

00 - Compression disabled,
Record all discontinuities

01 - Compress single-level
loops

10 - Compress two-level loops

0xFFE0 6000

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 22-17

Blackfin Processor Debug

Trace Buffer Status (TBUFSTAT) Register
Figure 22-10 shows the trace buffer status register (TBUFSTAT). Two reads
from TBUF decrements TBUFCNT by one.

Trace Buffer (TBUF) Register
Figure 22-11 shows the trace buffer register (TBUF). The first read returns
the latest branch target address. The second read returns the latest branch
source address.

Figure 22-10. Trace Buffer Status Register

Figure 22-11. Trace Buffer Register

X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

XX

Reset = Undefined

X 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X 0 0 0 0

Trace Buffer Status Register (TBUFSTAT)

TBUFCNT[4:0]
Number of valid discontinuities
stored in the trace buffer

0xFFE0 6004

X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X

Trace Buffer Register (TBUF)

TBUF[15:0]

X

TBUF[31:16]

Alias to all trace buffer entries

0xFFE0 6100

Trace Unit

22-18 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The trace unit does not record changes in program flow in:

• Emulator mode

• The exception or higher priority service routines (if TBUFOVF = 1)

In the exception service routine, the program flow discontinuities
may be read from TBUF and stored in memory by the code shown in
Listing 22-1.

 While TBUF is being read, be sure to disable the trace buffer from
recording new discontinuities.

Code to Recreate the Execution Trace in Memory

Listing 22-1 provides code that recreates the entire execution trace in
memory.

Listing 22-1. Recreating the Execution Trace in Memory

[--sp] = (r7:7, p5:2); /* save registers used in this routine */

p5 = 32; /* 32 reads are needed to empty TBUF */

p2.l = buf; /* pointer to the header (first location) of the

software trace buffer */

p2.h = buf; /* the header stores the first available empty buf

location for subsequent trace dumps */

p4 = [p2++]; /* get the first available empty buf location from

the buf header */

p3.l = TBUF & 0xffff; /* low 16 bits of TBUF */

p3.h = TBUF >> 16; /* high 16 bits of TBUF */

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 22-19

Blackfin Processor Debug

lsetup(loop1_start, loop1_end) lc0 = p5;

loop1_start: r7 = [p3]; /* read from TBUF */

loop1_end: [p4++] = r7; /* write to memory and increment */

[p2] = p4; /* pointer to the next available buf location is

saved in the header of buf */

(r7:7, p5:3) = [sp++]; /* restore saved registers */

Performance Monitoring Unit
Two 32-bit counters, the performance monitor counter registers
(PFCNTR[1:0]) and the performance control register (PFCTL), count the
number of occurrences of an event from within a processor core unit dur-
ing a performance monitoring period. These registers provide feedback
indicating the measure of load balancing between the various resources on
the chip so that expected and actual usage can be compared and analyzed.
In addition, events such as mispredictions and hold cycles can also be
monitored.

Performance Monitor Counter (PFCNTRn) Registers
Figure 22-12 shows the performance monitor counter registers,
PFCNTR[1:0]. The PFCNTR0 register contains the count value of perfor-
mance counter 0. The PFCNTR1 register contains the count value of
performance counter 1.

Performance Monitoring Unit

22-20 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Performance Monitor Control (PFCTL) Register
To enable the performance monitoring unit, set the PFPWR bit in the per-
formance monitor control register (PFCTL), shown in Figure 22-13. Once
the unit is enabled, individual count-enable bits (PFCENn) take effect. Use
the PFCENx bits to enable or disable the performance monitors in user
mode, supervisor mode, or both. Use the PEMUSWx bits to select the type of
event triggered.

Figure 22-12. Performance Monitor Counter Registers

X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X

Performance Monitor Counter Registers (PFCNTRn)

X

PFCNTRx[31:16]

PFCNTRx[15:0]

PRCNTR0:
0xFFE0 8100

PRCNTR1:
0xFFE0 8104

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 22-21

Blackfin Processor Debug

Figure 22-13. Performance Monitor Control Register

0

XX X X

XXX

15 14 13 12 11 10 9 8 7 6

X X X X X X X X

X XX X X X X X X X X X

Performance Monitor Control Register (PFCTL)

Reset = Undefined

PFMON1[7:0]
Refer to Event Monitor table
on page 22-22.

0

5 4 3 2 1 0

0 0 0

PFPWR
0 - Performance Monitor

disabled
1 - Performance Monitor

enabled
PEMUSW0
0 - Count down of performance

counter PFCNTR0 causes
exception event

1 - Count down of performance
counter PFCNTR0 causes
emulation event

PFCEN0[1:0]
00 - Disable Performance

Monitor 0
01 - Enable Performance

Monitor 0 in User mode
only

10 - Enable Performance
Monitor 0 in Supervisor
mode only

11 - Enable Performance
Monitor 0 in both User and
Supervisor modes

PFCEN1[1:0]

Refer to Event Monitor table
on page 22-22.

PFMON0[7:0]

00 - Disable Performance
Monitor 1

01 - Enable Performance
Monitor 1 in User
mode only

10 - Enable Performance
Monitor 1 in Super-
visor mode only

11 - Enable Performance
Monitor 1 in both User
and Supervisor modes

PEMUSW1
0 - Count down of performance

counter PFCNTR1 causes
exception event

1 - Count down of performance
counter PFCNTR1 causes
emulation event

PFCNT1
0 - Count number of cycles asserted
1 - Count positive edges only
PFCNT0
0 - Count number of cycles asserted
1 - Count positive edges only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xFFE0 8000

Performance Monitoring Unit

22-22 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Event Monitor Table
Table 22-8 identifies events that cause the performance monitor counter
registers (PFMON0 or PFMON1) to increment.

Table 22-8. Event Monitor Table

PFMONx
Fields

Events That Cause the Count Value to Increment

0x00 Loop 0 iterations

0x01 Loop 1 iterations

0x02 Loop buffer 0 not optimized

0x03 Loop buffer 1 not optimized

0x04 PC invariant branches (requires trace buffer to be enabled. See “Trace Buffer Con-
trol (TBUFCTL) Register” on page 22-16).

0x06 Conditional branches

0x09 Total branches including calls, returns, branches, but not interrupts (requires trace
buffer to be enabled. See “Trace Buffer Control (TBUFCTL) Register” on
page 22-16).

0x0A Stalls due to CSYNC, SSYNC

0x0B EXCPT instructions

0x0C CSYNC, SSYNC instructions

0x0D Committed instructions

0x0E Interrupts taken

0x0F Misaligned address violation exceptions

0x10 Stall cycles due to read after write hazards on DAG registers

0x13 Stall cycles due to RAW data hazards in computes

0x80 Code memory fetches postponed due to DMA collisions (minimum count of two
per event)

0x81 Code memory TAG stalls (cache misses, or FlushI operations, count of 3 per FlushI).
Note code memory stall results in a processor stall only if instruction assembly unit
FIFO empties.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 22-23

Blackfin Processor Debug

Cycle Counter
The cycle counter counts CCLK cycles while the program is executing. All
cycles, including execution, wait state, interrupts, and events, are counted
while the processor is in user or supervisor mode, but the cycle counter
stops counting in emulator mode.

0x82 Code memory fill stalls (cacheable or non-cacheable). Note code memory stall results
in a processor stall only if instruction assembly unit FIFO empties.

0x83 Code memory 64-bit words delivered to processor instruction assembly unit

0x90 Processor stalls to memory

0x91 Data memory stalls to processor not hidden by processor stall

0x92 Data memory store buffer full stalls

0x93 Data memory write buffer full stalls due to high-to-low priority code transition

0x94 Data memory store buffer forward stalls due to lack of committed data from
the processor

0x95 Data memory fill buffer stalls

0x96 Data memory array or TAG collision stalls (DAG to DAG, or DMA to DAG)

0x97 Data memory array collision stalls (DAG to DAG or DMA to DAG)

0x98 Data memory stalls

0x99 Data memory stalls sent to processor

0x9A Data memory cache fills completed to bank A

0x9B Data memory cache fills completed to bank B

0x9C Data memory cache victims delivered from bank A

0x9D Data memory cache victims delivered from bank B

0x9E Data memory cache high priority fills requested

0x9F Data memory cache low priority fills requested

Table 22-8. Event Monitor Table (Cont’d)

PFMONx
Fields

Events That Cause the Count Value to Increment

Cycle Counter

22-24 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The cycle counter is 64 bits and increments every cycle. The count value is
stored in two 32-bit registers, CYCLES and CYCLES2. The least significant 32
bits (LSBs) are stored in CYCLES. The most significant 32 bits (MSBs) are
stored in CYCLES2.

 To ensure read coherency, a read of CYCLES stores the current
CYCLES2 value in a shadow register, and a subsequent read of
CYCLES2 comes from the shadow register.

To enable the cycle counters, set the CCEN bit in the SYSCFG register. The
following example shows how to use the cycle counter to benchmark a
piece of code:

R2 = 0;

CYCLES = R2;

CYCLES2 = R2;

R2 = SYSCFG;

BITSET(R2,1);

SYSCFG = R2;

/* Insert code to be benchmarked here. */

R2 = SYSCFG;

BITCLR(R2,1);

SYSCFG = R2;

CYCLES and CYCLES2 Registers
The execution cycle count registers (CYCLES and CYCLES2) are shown in
Figure 22-14. This 64-bit counter increments every CCLK cycle. The
CYCLES register contains the least significant 32 bits of the cycle counter’s
64-bit count value. The most significant 32 bits are contained by CYCLES2.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference 22-25

Blackfin Processor Debug

 The CYCLES and CYCLES2 registers are not system MMRs, but are
instead system registers. See “Register File Instruction Summary”
on page 2-8 for a full listing of system registers.

Product Identification Register
The 32-bit DSP device ID register (DSPID) is a core MMR that contains
core identification and revision fields for the core.

DSP Device ID (DSPID) Register
The DSP device ID register (DSPID), shown in Figure 22-15, is a read-only
register and is part of the core.

Figure 22-14. Execution Cycle Count Registers

X X XX X X X X X X X X X X XX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

Execution Cycle Count Registers (CYCLES and CYCLES2)

CYCLES / CYCLES2[15:0]

CYCLES / CYCLES2[31:16]

RW

Product Identification Register

22-26 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Figure 22-15. DSP Device ID Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 1 1 0 0 1 0 1 0 0 0 0 0 1 0

0

DSP Device ID Register (DSPID)

Reset = E504 0000

RO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0

Major Architectural
Change[7:0]

Implementation[15:0]

Analog Devices, Inc.[7:0]

0xFFE0 5000

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference A-1

A BLACKFIN PROCESSOR
CORE MMR ASSIGNMENTS

The Blackfin processor’s memory-mapped registers (MMRs) are in the
address range 0xFFE0 0000 – 0xFFFF FFFF.

 All core MMRs must be accessed with a 32-bit read or write access.

This appendix lists core MMR addresses and register names. To find more
information about an MMR, refer to the page shown in the “See Section”
column. When viewing the PDF version of this document, click a refer-
ence in the “See Section” column to jump to additional information about
the MMR.

L1 Data Memory Controller Registers
L1 data memory controller registers (0xFFE0 0000 – 0xFFE0 0404)

Table A-1. L1 Data Memory Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFE0 0004 DMEM_CONTROL “Data Memory Control (DMEM_CONTROL)
Register” on page 6-24

0xFFE0 0008 DCPLB_STATUS “Instruction and Data CPLB Status
(ICPLB_STATUS, DCPLB_STATUS) Regis-
ters” on page 6-59

0xFFE0 000C DCPLB_FAULT_ADDR “Instruction and Data CPLB Fault Address
(ICPLB_FAULT_ADDR,
DCPLB_FAULT_ADDR) Registers” on
page 6-60

L1 Data Memory Controller Registers

A-2 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

0xFFE0 0100 DCPLB_ADDR0 “Data CPLB Address (DCPLB_ADDRx) Regis-
ters” on page 6-56

0xFFE0 0104 DCPLB_ADDR1 “Data CPLB Address (DCPLB_ADDRx) Regis-
ters” on page 6-56

0xFFE0 0108 DCPLB_ADDR2 “Data CPLB Address (DCPLB_ADDRx) Regis-
ters” on page 6-56

0xFFE0 010C DCPLB_ADDR3 “Data CPLB Address (DCPLB_ADDRx) Regis-
ters” on page 6-56

0xFFE0 0110 DCPLB_ADDR4 “Data CPLB Address (DCPLB_ADDRx) Regis-
ters” on page 6-56

0xFFE0 0114 DCPLB_ADDR5 “Data CPLB Address (DCPLB_ADDRx) Regis-
ters” on page 6-56

0xFFE0 0118 DCPLB_ADDR6 “Data CPLB Address (DCPLB_ADDRx) Regis-
ters” on page 6-56

0xFFE0 011C DCPLB_ADDR7 “Data CPLB Address (DCPLB_ADDRx) Regis-
ters” on page 6-56

0xFFE0 0120 DCPLB_ADDR8 “Data CPLB Address (DCPLB_ADDRx) Regis-
ters” on page 6-56

0xFFE0 0124 DCPLB_ADDR9 “Data CPLB Address (DCPLB_ADDRx) Regis-
ters” on page 6-56

0xFFE0 0128 DCPLB_ADDR10 “Data Watchpoint Address Count Value
(WPDACNTn) Registers” on page 22-11

0xFFE0 012C DCPLB_ADDR11 “Data CPLB Address (DCPLB_ADDRx) Regis-
ters” on page 6-56

0xFFE0 0130 DCPLB_ADDR12 “Data CPLB Address (DCPLB_ADDRx) Regis-
ters” on page 6-56

0xFFE0 0134 DCPLB_ADDR13 “Data CPLB Address (DCPLB_ADDRx) Regis-
ters” on page 6-56

0xFFE0 0138 DCPLB_ADDR14 “Data CPLB Address (DCPLB_ADDRx) Regis-
ters” on page 6-56

Table A-1. L1 Data Memory Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference A-3

Blackfin Processor Core MMR Assignments

0xFFE0 013C DCPLB_ADDR15 “Data CPLB Address (DCPLB_ADDRx) Regis-
ters” on page 6-56

0xFFE0 0200 DCPLB_DATA0 “Data CPLB Data (DCPLB_DATAx) Registers”
on page 6-53

0xFFE0 0204 DCPLB_DATA1 “Data CPLB Data (DCPLB_DATAx) Registers”
on page 6-53

0 xFFE0 0208 DCPLB_DATA2 “Data CPLB Data (DCPLB_DATAx) Registers”
on page 6-53

0xFFE0 020C DCPLB_DATA3 “Data CPLB Data (DCPLB_DATAx) Registers”
on page 6-53

0xFFE0 0210 DCPLB_DATA4 “Data CPLB Data (DCPLB_DATAx) Registers”
on page 6-53

0xFFE0 0214 DCPLB_DATA5 “Data CPLB Data (DCPLB_DATAx) Registers”
on page 6-53

0xFFE0 0218 DCPLB_DATA6 “Data CPLB Data (DCPLB_DATAx) Registers”
on page 6-53

0xFFE0 021C DCPLB_DATA7 “Data CPLB Data (DCPLB_DATAx) Registers”
on page 6-53

0xFFE0 0220 DCPLB_DATA8 “Data CPLB Data (DCPLB_DATAx) Registers”
on page 6-53

0xFFE0 0224 DCPLB_DATA9 “Data CPLB Data (DCPLB_DATAx) Registers”
on page 6-53

0xFFE0 0228 DCPLB_DATA10 “Data CPLB Data (DCPLB_DATAx) Registers”
on page 6-53

0xFFE0 022C DCPLB_DATA11 “Data CPLB Data (DCPLB_DATAx) Registers”
on page 6-53

0xFFE0 0230 DCPLB_DATA12 “Data CPLB Data (DCPLB_DATAx) Registers”
on page 6-53

0xFFE0 0234 DCPLB_DATA13 “Data CPLB Data (DCPLB_DATAx) Registers”
on page 6-53

Table A-1. L1 Data Memory Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

L1 Instruction Memory Controller Registers

A-4 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

L1 Instruction Memory Controller
Registers

L1 instruction memory controller registers (0xFFE0 1004 –
0xFFE0 1404)

0xFFE0 0238 DCPLB_DATA14 “Data CPLB Data (DCPLB_DATAx) Registers”
on page 6-53

0xFFE0 023C DCPLB_DATA15 “Data CPLB Data (DCPLB_DATAx) Registers”
on page 6-53

0xFFE0 0300 DTEST_COMMAND “Data Test Command (DTEST_COMMAND)
Register” on page 6-40

0xFFE0 0400 DTEST_DATA0 “Data Test Data (DTEST_DATA0) Register” on
page 6-42

0xFFE0 0404 DTEST_DATA1 “Data Test Data (DTEST_DATA1) Register” on
page 6-41

Table A-2. L1 Instruction Memory Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFE0 1004 IMEM_CONTROL “Instruction Memory Control
(IMEM_CONTROL) Register” on page 6-6

0xFFE0 1008 ICPLB_STATUS “Instruction and Data CPLB Status
(ICPLB_STATUS, DCPLB_STATUS) Reg-
isters” on page 6-59

0xFFE0 100C ICPLB_FAULT_ADDR “Instruction and Data CPLB Fault Address
(ICPLB_FAULT_ADDR,
DCPLB_FAULT_ADDR) Registers” on
page 6-60

Table A-1. L1 Data Memory Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference A-5

Blackfin Processor Core MMR Assignments

0xFFE0 1100 ICPLB_ADDR0 “Instruction CPLB Address
(ICPLB_ADDRx) Registers” on page 6-57

0xFFE0 1104 ICPLB_ADDR1 “Instruction CPLB Address
(ICPLB_ADDRx) Registers” on page 6-57

0xFFE0 1108 ICPLB_ADDR2 “Instruction CPLB Address
(ICPLB_ADDRx) Registers” on page 6-57

0xFFE0 110C ICPLB_ADDR3 “Instruction CPLB Address
(ICPLB_ADDRx) Registers” on page 6-57

0xFFE0 1110 ICPLB_ADDR4 “Instruction CPLB Address
(ICPLB_ADDRx) Registers” on page 6-57

0xFFE0 1114 ICPLB_ADDR5 “Instruction CPLB Address
(ICPLB_ADDRx) Registers” on page 6-57

0xFFE0 1118 ICPLB_ADDR6 “Instruction CPLB Address
(ICPLB_ADDRx) Registers” on page 6-57

0xFFE0 111C ICPLB_ADDR7 “Instruction CPLB Address
(ICPLB_ADDRx) Registers” on page 6-57

0xFFE0 1120 ICPLB_ADDR8 “Instruction CPLB Address
(ICPLB_ADDRx) Registers” on page 6-57

0xFFE0 1124 ICPLB_ADDR9 “Instruction CPLB Address
(ICPLB_ADDRx) Registers” on page 6-57

0xFFE0 1128 ICPLB_ADDR10 “Instruction CPLB Address
(ICPLB_ADDRx) Registers” on page 6-57

0xFFE0 112C ICPLB_ADDR11 “Instruction CPLB Address
(ICPLB_ADDRx) Registers” on page 6-57

0xFFE0 1130 ICPLB_ADDR12 “Instruction CPLB Address
(ICPLB_ADDRx) Registers” on page 6-57

0xFFE0 1134 ICPLB_ADDR13 “Instruction CPLB Address
(ICPLB_ADDRx) Registers” on page 6-57

0xFFE0 1138 ICPLB_ADDR14 “Instruction CPLB Address
(ICPLB_ADDRx) Registers” on page 6-57

Table A-2. L1 Instruction Memory Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

L1 Instruction Memory Controller Registers

A-6 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

0xFFE0 113C ICPLB_ADDR15 “Instruction CPLB Address
(ICPLB_ADDRx) Registers” on page 6-57

0xFFE0 1200 ICPLB_DATA0 “Instruction CPLB Data (ICPLB_DATAx)
Registers” on page 6-52

0xFFE0 1204 ICPLB_DATA1 “Instruction CPLB Data (ICPLB_DATAx)
Registers” on page 6-52

0xFFE0 1208 ICPLB_DATA2 “Instruction CPLB Data (ICPLB_DATAx)
Registers” on page 6-52

0xFFE0 120C ICPLB_DATA3 “Instruction CPLB Data (ICPLB_DATAx)
Registers” on page 6-52

0xFFE0 1210 ICPLB_DATA4 “Instruction CPLB Data (ICPLB_DATAx)
Registers” on page 6-52

0xFFE0 1214 ICPLB_DATA5 “Instruction CPLB Data (ICPLB_DATAx)
Registers” on page 6-52

0xFFE0 1218 ICPLB_DATA6 “Instruction CPLB Data (ICPLB_DATAx)
Registers” on page 6-52

0xFFE0 121C ICPLB_DATA7 “Instruction CPLB Data (ICPLB_DATAx)
Registers” on page 6-52

0xFFE0 1220 ICPLB_DATA8 “Instruction CPLB Data (ICPLB_DATAx)
Registers” on page 6-52

0xFFE0 1224 ICPLB_DATA9 “Instruction CPLB Data (ICPLB_DATAx)
Registers” on page 6-52

0xFFE0 1228 ICPLB_DATA10 “Instruction CPLB Data (ICPLB_DATAx)
Registers” on page 6-52

0xFFE0 122C ICPLB_DATA11 “Instruction CPLB Data (ICPLB_DATAx)
Registers” on page 6-52

0xFFE0 1230 ICPLB_DATA12 “Instruction CPLB Data (ICPLB_DATAx)
Registers” on page 6-52

0xFFE0 1234 ICPLB_DATA13 “Instruction CPLB Data (ICPLB_DATAx)
Registers” on page 6-52

Table A-2. L1 Instruction Memory Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference A-7

Blackfin Processor Core MMR Assignments

Interrupt Controller Registers
Interrupt controller registers (0xFFE0 2000 – 0xFFE0 2110)

0xFFE0 1238 ICPLB_DATA14 “Instruction CPLB Data (ICPLB_DATAx)
Registers” on page 6-52

0xFFE0 123C ICPLB_DATA15 “Instruction CPLB Data (ICPLB_DATAx)
Registers” on page 6-52

0xFFE0 1300 ITEST_COMMAND “Instruction Test Command
(ITEST_COMMAND) Register” on
page 6-21

0XFFE0 1400 ITEST_DATA0 “Instruction Test Data 0 (ITEST_DATA0)
Register” on page 6-23

0XFFE0 1404 ITEST_DATA1 “Instruction Test Data (ITEST_DATA1)
Register” on page 6-22

Table A-3. Interrupt Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFE0 2000 EVT0
(EMU)

“Core Event Vector Table” on page 4-43

0xFFE0 2004 EVT1
(RST)

“Core Event Vector Table” on page 4-43

0xFFE0 2008 EVT2
(NMI)

“Core Event Vector Table” on page 4-43

0xFFE0 200C EVT3
(EVX)

“Core Event Vector Table” on page 4-43

0xFFE0 2010 EVT4 “Core Event Vector Table” on page 4-43

0xFFE0 2014 EVT5
(IVHW)

“Core Event Vector Table” on page 4-43

Table A-2. L1 Instruction Memory Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

Interrupt Controller Registers

A-8 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

0xFFE0 2018 EVT6
(TMR)

“Core Event Vector Table” on page 4-43

0xFFE0 201C EVT7
(IVG7)

“Core Event Vector Table” on page 4-43

0xFFE0 2020 EVT8
(IVG8)

“Core Event Vector Table” on page 4-43

0xFFE0 2024 EVT9
(IVG9)

“Core Event Vector Table” on page 4-43

0xFFE0 2028 EVT10
(IVG10)

“Core Event Vector Table” on page 4-43

0xFFE0 202C EVT11
(IVG11)

“Core Event Vector Table” on page 4-43

0xFFE0 2030 EVT12
(IVG12)

“Core Event Vector Table” on page 4-43

0xFFE0 2034 EVT13
(IVG13)

“Core Event Vector Table” on page 4-43

0xFFE0 2038 EVT14
(IVG14)

“Core Event Vector Table” on page 4-43

0xFFE0 203C EVT15
(IVG15)

“Core Event Vector Table” on page 4-43

0xFFE0 2104 IMASK “System Interrupt Mask (SIC_IMASKx) Reg-
isters” on page 4-32

0xFFE0 2108 IPEND “Core Interrupts Pending (IPEND) Register”
on page 4-41

0xFFE0 2110 IPRIO “Interrupt Priority Register and Write Buffer
Depth” on page 6-36

0xFFE0 210C ILAT “Core Interrupt Latch (ILAT) Register” on
page 4-40

Table A-3. Interrupt Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference A-9

Blackfin Processor Core MMR Assignments

Core Timer Registers
Core timer registers (0xFFE0 3000 – 0xFFE0 300C)

Debug, MP, and Emulation Unit Registers
Debug, MP, and emulation unit registers (0xFFE0 5000 – 0xFFE0 5008)

Table A-4. Core Timer Registers

Memory-Mapped
Address

Register Name See Section

0xFFE0 3000 TCNTL “TCNTL Register” on page 16-45

0xFFE0 3004 TPERIOD “TPERIOD Register” on page 16-47

0xFFE0 3008 TSCALE “TSCALE Register” on page 16-48

0xFFE0 300C TCOUNT “TCOUNT Register” on page 16-46

Table A-5. Debug and Emulation Unit Registers

Memory-Mapped
Address

Register Name See Section

0xFFE0 5000 DSPID “DSP Device ID (DSPID) Register” on
page 22-25

Trace Unit Registers

A-10 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Trace Unit Registers
Trace unit registers (0xFFE0 6000 – 0xFFE0 6100)

Watchpoint and Patch Registers
Watchpoint and patch registers (0xFFE0 7000 – 0xFFE0 7200)

Table A-6. Trace Unit Registers

Memory-Mapped
Address

Register Name See Section

0xFFE0 6000 TBUFCTL “Trace Buffer Control (TBUFCTL) Register”
on page 22-16

0xFFE0 6004 TBUFSTAT “Trace Buffer Status (TBUFSTAT) Register”
on page 22-17

0xFFE0 6100 TBUF “Trace Buffer (TBUF) Register” on
page 22-17

Table A-7. Watchpoint and Patch Registers

Memory-Mapped
Address

Register Name See Section

0xFFE0 7000 WPIACTL “Instruction Watchpoint Address Control
(WPIACTL) Register” on page 22-7

0xFFE0 7040 WPIA0 “Instruction Watchpoint Address (WPIAn)
Registers” on page 22-5

0xFFE0 7044 WPIA1 “Instruction Watchpoint Address (WPIAn)
Registers” on page 22-5

0xFFE0 7048 WPIA2 “Instruction Watchpoint Address (WPIAn)
Registers” on page 22-5

0xFFE0 704C WPIA3 “Instruction Watchpoint Address (WPIAn)
Registers” on page 22-5

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference A-11

Blackfin Processor Core MMR Assignments

0xFFE0 7050 WPIA4 “Instruction Watchpoint Address (WPIAn)
Registers” on page 22-5

0xFFE0 7054 WPIA5 “Instruction Watchpoint Address (WPIAn)
Registers” on page 22-5

0xFFE0 7080 WPIACNT0 “Instruction Watchpoint Address Count
(WPIACNTn) Registers” on page 22-6

0xFFE0 7084 WPIACNT1 “Instruction Watchpoint Address Count
(WPIACNTn) Registers” on page 22-6

0xFFE0 7088 WPIACNT2 “Instruction Watchpoint Address Count
(WPIACNTn) Registers” on page 22-6

0xFFE0 708C WPIACNT3 “Instruction Watchpoint Address Count
(WPIACNTn) Registers” on page 22-6

0xFFE0 7090 WPIACNT4 “Instruction Watchpoint Address Count
(WPIACNTn) Registers” on page 22-6

0xFFE0 7094 WPIACNT5 “Instruction Watchpoint Address Count
(WPIACNTn) Registers” on page 22-6

0xFFE0 7100 WPDACTL “Data Watchpoint Address Control
(WPDACTL) Register” on page 22-12

0xFFE0 7140 WPDA0 “Data Watchpoint Address (WPDAn) Regis-
ters” on page 22-11

0xFFE0 7144 WPDA1 “Data Watchpoint Address (WPDAn) Regis-
ters” on page 22-11

0xFFE0 7180 WPDACNT0 “Data Watchpoint Address Count Value
(WPDACNTn) Registers” on page 22-11

0xFFE0 7184 WPDACNT1 “Data Watchpoint Address Count Value
(WPDACNTn) Registers” on page 22-11

0xFFE0 7200 WPSTAT “Watchpoint Status (WPSTAT) Register” on
page 22-12

Table A-7. Watchpoint and Patch Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

Performance Monitor Registers

A-12 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Performance Monitor Registers
Performance monitor registers (0xFFE0 8000 – 0xFFE0 8104)

Table A-8. Performance Monitor Registers

Memory-Mapped
Address

Register Name See Section

0xFFE0 8000 PFCTL “Performance Monitor Control (PFCTL)
Register” on page 22-20

0xFFE0 8100 PFCNTR0 “Performance Monitor Counter (PFCNTRn)
Registers” on page 22-19

0xFFE0 8104 PFCNTR1 “Performance Monitor Counter (PFCNTRn)
Registers” on page 22-19

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference B-1

B SYSTEM MMR ASSIGNMENTS

These notes provide general information about the system
memory-mapped registers (MMRs):

• The system MMR address range is 0xFFC0 0000 – 0xFFDF FFFF.

• All system MMRs are either 16 bits or 32 bits wide. MMRs that are
16 bits wide must be accessed with 16-bit read or write operations.
MMRs that are 32 bits wide must be accessed with 32-bit read or
write operations. Check the description of the MMR to determine
whether a 16-bit or a 32-bit access is required.

• All system MMR space that is not defined in this appendix is
reserved for internal use only.

This appendix lists MMR addresses and register names. To find more
information about an MMR, refer to the page shown in the “See Section”
column. When viewing the PDF version of this document, click a refer-
ence in the “See Section” column to jump to additional information about
the MMR.

Dynamic Power Management Registers

B-2 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Dynamic Power Management Registers
Dynamic power management registers (0xFFC0 0000 – 0xFFC0 00FF)

System Reset and Interrupt Control
Registers

System reset and interrupt controller registers (0xFFC0 0100 –
0xFFC0 01FF)

Table B-1. Dynamic Power Management Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 0000 PLL_CTL “PLL Control (PLL_CTL) Register” on
page 8-7

0xFFC0 0004 PLL_DIV “PLL Divide (PLL_DIV) Register” on page 8-6

0xFFC0 0008 VR_CTL “Voltage Regulator Control (VR_CTL) Regis-
ter” on page 8-25

0xFFC0 000C PLL_STAT “PLL Status (PLL_STAT) Register” on
page 8-9

0xFFC0 0010 PLL_LOCKCNT “PLL Lock Count (PLL_LOCKCNT) Register”
on page 8-10

0xFFC0 0014 CHIPID NA

Table B-2. System Interrupt Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 0100 SWRST “SWRST Register” on page 3-16

0xFFC0 0104 SYSCR “SYSCR Register” on page 3-14

0xFFC0 010C
0xFFC0 0128

SIC_IMASK0
SIC_IMASK1

“System Interrupt Mask (SIC_IMASKx) Regis-
ters” on page 4-32

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference B-3

System MMR Assignments

Watchdog Timer Registers
Watchdog timer registers (0xFFC0 0200 – 0xFFC0 02FF)

0xFFC0 0110
0xFFC0 0114
0xFFC0 0118
0xFFC0 011C
0xFFC0 0134
0xFFC0 0138
0xFFC0 013C
0xFFC0 0140

SIC_IAR0
SIC_IAR1
SIC_IAR2
SIC_IAR3
SIC_IAR4
SIC_IAR5
SIC_IAR6
SIC_IAR7

“System Interrupt Assignment (SIC_IARx)
Registers” on page 4-34

0xFFC0 0120
0xFFC0 012C

SIC_ISR0
SIC_ISR1

“System Interrupt Status (SIC_ISRx) Registers”
on page 4-29

0xFFC0 0124
0xFFC0 0130

SIC_IWR0
SIC_IWR1

“System Interrupt Wake-Up Enable
(SIC_IWRx) Registers” on page 4-27

Table B-3. Watchdog Timer Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 0200 WDOG_CTL “WDMOG_CTL Register” on page 16-52

0xFFC0 0204 WDOG_CNT “WDOG_CNT Register” on page 16-49

0xFFC0 0208 WDOG_STAT “WDOG_STAT Register” on page 16-50

Table B-2. System Interrupt Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

Real-Time Clock Registers

B-4 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Real-Time Clock Registers
Real-time clock registers (0xFFC0 0300 – 0xFFC0 03FF)

Parallel Peripheral Interface (PPI)
Registers

Parallel peripheral interface (PPI) registers (0xFFC0 1000 –
0xFFC0 10FF)

Table B-4. Real-Time Clock Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 0300 RTC_STAT “RTC Status (RTC_STAT) Register” on
page 17-13

0xFFC0 0304 RTC_ICTL “RTC Interrupt Control (RTC_ICTL) Regis-
ter” on page 17-14

0xFFC0 0308 RTC_ISTAT “RTC Interrupt Status (RTC_ISTAT) Regis-
ter” on page 17-15

0xFFC0 030C RTC_SWCNT “RTC Stopwatch Count (RTC_SWCNT) Reg-
ister” on page 17-16

0xFFC0 0310 RTC_ALARM “RTC Alarm (RTC_ALARM) Register” on
page 17-18

0xFFC0 0314 RTC_PREN “RTC Prescaler Enable (RTC_PREN) Register”
on page 17-18

Table B-5. Parallel Peripheral Interface (PPI) Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 1000 PPI_CONTROL “PPI_CONTROL Register” on page 11-3

0xFFC0 1004 PPI_STATUS “PPI_STATUS Register” on page 11-8

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference B-5

System MMR Assignments

UART Controller Registers
UART0 controller registers (0xFFC0 0400 – 0xFFC0 04FF)
UART1 controller registers (0xFFC0 2000 – 0xFFC0 20FF)
UART2 controller registers (0xFFC0 2100 – 0xFFC0 21FF)

0xFFC0 1008 PPI_COUNT “PPI_COUNT Register” on page 11-11

0xFFC0 100C PPI_DELAY “PPI_DELAY Register” on page 11-9

0xFFC0 1010 PPI_FRAME “PPI_FRAME Register” on page 11-12

Table B-6. UART0 Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 0400 UART0_THR “UART Transmit Holding (UARTx_THR)
Register” on page 12-6

0xFFC0 0400 UART0_RBR “UART Receive Buffer (UARTx_RBR) Regis-
ter” on page 12-7

0xFFC0 0400 UART0_DLL “UARTx_DLL and UARTx_DLH Registers”
on page 12-12

0xFFC0 0404 UART0_DLH “UARTx_DLL and UARTx_DLH Registers”
on page 12-12

0xFFC0 0404 UART0_IER “UART Interrupt Enable (UARTx_IER) Regis-
ter” on page 12-8

0xFFC0 0408 UART0_IIR “UART Interrupt Identification (UARTx_IIR)
Register” on page 12-10

0xFFC0 040C UART0_LCR “UART Line Control (UARTx_LCR) Register”
on page 12-3

0xFFC0 0410 UART0_MCR “UART Modem Control (UARTx_MCR) Reg-
ister” on page 12-4

Table B-5. Parallel Peripheral Interface (PPI) Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

UART Controller Registers

B-6 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

0xFFC0 0414 UART0_LSR “UART Line Status (UARTx_LSR) Register”
on page 12-5

0xFFC0 041C UART0_SCR “UART Scratch (UARTx_SCR) Register” on
page 12-14

0xFFC0 0424 UART0_GCTL “UART Global Control (UARTx_GCTL) Reg-
ister” on page 12-14

Table B-7. UART1 Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFC 02000 UART1_THR “UART Transmit Holding (UARTx_THR)
Register” on page 12-6

0xFFC 02000 UART1_RBR “UART Receive Buffer (UARTx_RBR) Regis-
ter” on page 12-7

0xFFC 02000 UART1_DLL “UARTx_DLL and UARTx_DLH Registers”
on page 12-12

0xFFC0 2004 UART1_DLH “UARTx_DLL and UARTx_DLH Registers”
on page 12-12

0xFFC0 2004 UART1_IER “UART Interrupt Enable (UARTx_IER) Regis-
ter” on page 12-8

0xFFC0 2008 UART1_IIR “UART Interrupt Identification (UARTx_IIR)
Register” on page 12-10

0xFFC0 200C UART1_LCR “UART Line Control (UARTx_LCR) Register”
on page 12-3

0xFFC0 2010 UART1_MCR “UART Modem Control (UARTx_MCR) Reg-
ister” on page 12-4

0xFFC0 2014 UART1_LSR “UART Line Status (UARTx_LSR) Register”
on page 12-5

Table B-6. UART0 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference B-7

System MMR Assignments

0xFFC0 201C UART1_SCR “UART Scratch (UARTx_SCR) Register” on
page 12-14

0xFFC0 2024 UART1_GCTL “UART Global Control (UARTx_GCTL) Reg-
ister” on page 12-14

Table B-8. UART2 Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 2100 UART2_THR “UART Transmit Holding (UARTx_THR)
Register” on page 12-6

0xFFC0 2100 UART2_RBR “UART Receive Buffer (UARTx_RBR) Regis-
ter” on page 12-7

0xFFC0 2100 UART2_DLL “UARTx_DLL and UARTx_DLH Registers”
on page 12-12

0xFFC0 2104 UART2_DLH “UARTx_DLL and UARTx_DLH Registers”
on page 12-12

0xFFC0 2104 UART2_IER “UART Interrupt Enable (UARTx_IER) Regis-
ter” on page 12-8

0xFFC0 2108 UART2_IIR “UART Interrupt Identification (UARTx_IIR)
Register” on page 12-10

0xFFC0 210C UART2_LCR “UART Line Control (UARTx_LCR) Register”
on page 12-3

0xFFC0 2110 UART2_MCR “UART Modem Control (UARTx_MCR) Reg-
ister” on page 12-4

0xFFC0 2114 UART2_LSR “UART Line Status (UARTx_LSR) Register”
on page 12-5

0xFFC0 211C UART2_SCR “UART Scratch (UARTx_SCR) Register” on
page 12-14

0xFFC0 2124 UART2_GCTL “UART Global Control (UARTx_GCTL) Reg-
ister” on page 12-14

Table B-7. UART1 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

SPI Controller Registers

B-8 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

SPI Controller Registers
SPI0 controller registers (0xFFC0 0500 – 0xFFC0 05FF)
SPI1 controller registers (0xFFC0 2300 – 0xFFC0 23FF)
SPI2 controller registers (0xFFC0 2400 – 0xFFC0 024FF)

Table B-9. SPI0 Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 0500 SPI0_CTL “SPI Control (SPIx_CTL) Register” on
page 10-9

0xFFC0 0504 SPI0_FLG “SPI Flag (SPIx_FLG) Register” on page 10-11

0xFFC0 0508 SPI0_STAT “SPI Status (SPIx_STAT) Register” on
page 10-15

0xFFC0 050C SPI0_TDBR “SPI Transmit Data Buffer (SPIx_TDBR) Reg-
ister” on page 10-17

0xFFC0 0510 SPI0_RDBR “SPI Receive Data Buffer (SPIx_RDBR) Regis-
ter” on page 10-18

0xFFC0 0514 SPI0_BAUD “SPI BAUD Rate (SPIx_BAUD) Register” on
page 10-8

0xFFC0 0518 SPI0_SHADOW “SPI Receive Data Buffer Shadow
(SPIx_SHADOW) Register” on page 10-19

Table B-10. SPI1 Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFC02300 SPI1_CTL “SPI Control (SPIx_CTL) Register” on
page 10-9

0xFFC0 2304 SPI1_FLG “SPI Flag (SPIx_FLG) Register” on page 10-11

0xFFC0 2308 SPI1_STAT “SPI Status (SPIx_STAT) Register” on
page 10-15

0xFFC0 230C SPI1_TDBR “SPI Transmit Data Buffer (SPIx_TDBR) Reg-
ister” on page 10-17

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference B-9

System MMR Assignments

0xFFC0 2310 SPI1_RDBR “SPI Receive Data Buffer (SPIx_RDBR) Regis-
ter” on page 10-18

0xFFC0 2314 SPI1_BAUD “SPI BAUD Rate (SPIx_BAUD) Register” on
page 10-8

0xFFC0 2318 SPI1_SHADOW “SPI Receive Data Buffer Shadow
(SPIx_SHADOW) Register” on page 10-19

Table B-11. SPI2 Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 2400 SPI2_CTL “SPI Control (SPIx_CTL) Register” on
page 10-9

0xFFC0 2404 SPI2_FLG “SPI Flag (SPIx_FLG) Register” on page 10-11

0xFFC0 2408 SPI2_STAT “SPI Status (SPIx_STAT) Register” on
page 10-15

0xFFC0 240C SPI2_TDBR “SPI Transmit Data Buffer (SPIx_TDBR) Reg-
ister” on page 10-17

0xFFC0 2410 SPI2_RDBR “SPI Receive Data Buffer (SPIx_RDBR) Regis-
ter” on page 10-18

0xFFC0 2414 SPI2_BAUD “SPI BAUD Rate (SPIx_BAUD) Register” on
page 10-8

0xFFC0 2418 SPI2_SHADOW “SPI Receive Data Buffer Shadow
(SPIx_SHADOW) Register” on page 10-19

Table B-10. SPI1 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

Timer Registers

B-10 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Timer Registers
Timer registers (0xFFC0 0600 – 0xFFC0 06FF)

Table B-12. Timer Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 0600 TIMER0_CONFIG “TIMERx_CONFIG Registers” on page 16-8

0xFFC0 0604 TIMER0_COUNTER “TIMERx_COUNTER Registers” on
page 16-9

0xFFC0 0608 TIMER0_PERIOD “TIMERx_PERIOD and TIMERx_WIDTH
Registers” on page 16-10

0xFFC0 060C TIMER0_WIDTH “TIMERx_PERIOD and TIMERx_WIDTH
Registers” on page 16-10

0xFFC0 0610 TIMER1_CONFIG “TIMERx_CONFIG Registers” on page 16-8

0xFFC0 0614 TIMER1_COUNTER “TIMERx_COUNTER Registers” on
page 16-9

0xFFC0 0618 TIMER1_PERIOD “TIMERx_PERIOD and TIMERx_WIDTH
Registers” on page 16-10

0xFFC0 061C TIMER1_WIDTH “TIMERx_PERIOD and TIMERx_WIDTH
Registers” on page 16-10

0xFFC0 0620 TIMER2_CONFIG “TIMERx_CONFIG Registers” on page 16-8

0xFFC0 0624 TIMER2_COUNTER “TIMERx_COUNTER Registers” on
page 16-9

0xFFC0 0628 TIMER2_PERIOD “TIMERx_PERIOD and TIMERx_WIDTH
Registers” on page 16-10

0xFFC0 062C TIMER2_WIDTH “TIMERx_PERIOD and TIMERx_WIDTH
Registers” on page 16-10

0xFFC0 0640 TIMER_ENABLE “TIMER_ENABLE Register” on page 16-4

0xFFC0 0644 TIMER_DISABLE “TIMER_DISABLE Register” on page 16-5

0xFFC0 0648 TIMER_STATUS “TIMER_STATUS Register” on page 16-6

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference B-11

System MMR Assignments

GPIO Port C, D, and E Registers
GPIO port C, D, E registers (0xFFC0 1500 – 0xFFC0 15FF)

Table B-13. GPIO Port C Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 1500 PORTCIO_FER “GPIO Function Enable (PORTxIO_FER)
Register” on page 15-5

0xFFC0 1550 PORTCIO_DIR “GPIO Direction (PORTxIO_DIR) Register”
on page 15-6

0xFFC0 1560 PORTCIO_INEN “GPIO Input Enable (PORTxIO_INEN)
Register” on page 15-9

0xFFC0 1510 PORTCIO “GPIO Data (PORTxIO) Register” on
page 15-12

0xFFC0 1520
0xFFC0 1530
0xFFC0 1540

PORTCIO_CLEAR,
PORTCIO_SET,
PORTCIO_TOGGLE

“GPIO Set (PORTxIO_SET), GPIO Clear
(PORTxIO_CLEAR), and GPIO Toggle
(PORTxIO_TOGGLE) Registers” on
page 15-13

Table B-14. GPIO Port D Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 1504 PORTDIO_FER “GPIO Function Enable (PORTxIO_FER)
Register” on page 15-5

0xFFC0 1554 PORTDIO_DIR “GPIO Direction (PORTxIO_DIR) Regis-
ter” on page 15-6

0xFFC0 1564 PORTDIO_INEN “GPIO Input Enable (PORTxIO_INEN)
Register” on page 15-9

GPIO Port C, D, and E Registers

B-12 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

0xFFC0 1514 PORTDIO “GPIO Data (PORTxIO) Register” on
page 15-12

0xFFC0 1524
0xFFC0 1534
0xFFC0 1544

PORTDIO_CLEAR,
PORTDIO_SET,
PORTDIO_TOGGLE

“GPIO Set (PORTxIO_SET), GPIO Clear
(PORTxIO_CLEAR), and GPIO Toggle
(PORTxIO_TOGGLE) Registers” on
page 15-13

Table B-15. GPIO Port E Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 1508 PORTEIO_FER “GPIO Function Enable (PORTxIO_FER)
Register” on page 15-5

0xFFC0 1558 PORTEIO_DIR “GPIO Direction (PORTxIO_DIR) Regis-
ter” on page 15-6

0xFFC0 1568 PORTEIO_INEN “GPIO Input Enable (PORTxIO_INEN)
Register” on page 15-9

0xFFC0 1518 PORTEIO “GPIO Data (PORTxIO) Register” on
page 15-12

0xFFC0 1528
0xFFC0 1538
0xFFC0 1548

PORTEIO_CLEAR,
PORTEIO_SET,
PORTEIO_TOGGLE

“GPIO Set (PORTxIO_SET), GPIO Clear
(PORTxIO_CLEAR), and GPIO Toggle
(PORTxIO_TOGGLE) Registers” on
page 15-13

Table B-14. GPIO Port D Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference B-13

System MMR Assignments

GPIO Port F Registers
GPIO port F registers (0xFFC0 0700 – 0xFFC0 07FF)

Table B-16. GPIO Port F Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 0700 PORTFIO_FLAG_D “GPIO Port F Data (PORTFIO) Regis-
ter” on page 14-8

0xFFC0 0704 PORTFIO_FLAG_CLEAR “GPIO Port F Set (PORTFIO_SET),
GPIO Port F Clear
(PORTFIO_CLEAR), and GPIO Port F
Toggle (PORTFIO_TOGGLE) Regis-
ters” on page 14-8

0xFFC0 0708 PORTFIO_FLAG_SET “GPIO Port F Set (PORTFIO_SET),
GPIO Port F Clear
(PORTFIO_CLEAR), and GPIO Port F
Toggle (PORTFIO_TOGGLE) Regis-
ters” on page 14-8

0xFFC0 070C PORTFIO_FLAG_TOGGLE “GPIO Port F Set (PORTFIO_SET),
GPIO Port F Clear
(PORTFIO_CLEAR), and GPIO Port F
Toggle (PORTFIO_TOGGLE) Regis-
ters” on page 14-8

0xFFC0 0710 PORTFIO_MASKA_D “GPIO Port F Mask Interrupt Registers
Overview” on page 14-11

0xFFC0 0714 PORTFIO_MASKA_CLEAR “GPIO Port F Mask Interrupt Registers
Overview” on page 14-11

0xFFC0 0718 PORTFIO_MASKA_SET “GPIO Port F Mask Interrupt Registers
Overview” on page 14-11

0xFFC0 071C PORTFIO_MASKA_TOGGLE “GPIO Port F Mask Interrupt Registers
Overview” on page 14-11

0xFFC0 0720 PORTFIO_MASKB_D “GPIO Port F Mask Interrupt Registers
Overview” on page 14-11

0xFFC0 0724 PORTFIO_MASKB_CLEAR “GPIO Port F Mask Interrupt Registers
Overview” on page 14-11

SPORT Controller Registers

B-14 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

SPORT Controller Registers
SPORT0 registers (0xFFC0 0800 – 0xFFC0 08FF)
SPORT1 registers (0xFFC0 0900 – 0xFFC0 09FF)
SPORT2 registers (0xFFC0 2500 – 0xFFC0 25FF)
SPORT3 registers (0xFFC0 2600 – 0xFFC0 26FF)

0xFFC0 0728 PORTFIO_MASKB_SET “GPIO Port F Mask Interrupt Registers
Overview” on page 14-11

0xFFC0 072C PORTFIO_MASKB_TOGGLE “GPIO Port F Mask Interrupt Registers
Overview” on page 14-11

0xFFC0 0730 PORTFIO_DIR “GPIO Port F Direction
(PORTFIO_DIR) Register” on page 14-5

0xFFC0 0734 PORTFIO_POLAR “GPIO Port F Polarity
(PORTFIO_POLAR) Register” on
page 14-18

0xFFC0 0738 PORTFIO_EDGE “GPIO Port F Interrupt Sensitivity
(PORTFIO_EDGE) Register” on
page 14-19

0xFFC0 073C PORTFIO_BOTH “GPIO Port F Set on Both Edges
(PORTFIO_BOTH) Register” on
page 14-20

0xFFC0 0740 PORTFIO_INEN “GPIO Port F Input Enable
(PORTFIO_INEN) Register” on
page 14-21

Table B-16. GPIO Port F Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference B-15

System MMR Assignments

Table B-17. SPORT0 Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 0800 SPORT0_TCR1 “SPORT Transmit Configuration
(SPORTx_TCR1, SPORTx_TCR2) Registers”
on page 13-11

0xFFC0 0804 SPORT0_TCR2 “SPORT Transmit Configuration
(SPORTx_TCR1, SPORTx_TCR2) Registers”
on page 13-11

0xFFC0 0808 SPORT0_TCLKDIV “SPORT Transmit Serial Clock Divider
(SPORTx_TCLKDIV, SPORTx_RCLKDIV)
Registers” on page 13-31

0xFFC0 080C SPORT0_TFSDIV “SPORT Transmit Frame Sync Divider
(SPORTx_TFSDIV, SPORTx_RFSDIV) Reg-
ister” on page 13-32

0xFFC0 0810 SPORT0_TX “SPORT Transmit Data (SPORTx_TX) Regis-
ter” on page 13-23

0xFFC0 0818 SPORT0_RX “SPORT Receive Data (SPORTx_RX) Regis-
ter” on page 13-25

0xFFC0 0820 SPORT0_RCR1 “SPORT Receive Configuration
(SPORTx_RCR1, SPORTx_RCR2) Registers”
on page 13-18

0xFFC0 0824 SPORT0_RCR2 “SPORT Receive Configuration
(SPORTx_RCR1, SPORTx_RCR2) Registers”
on page 13-18

0xFFC0 0828 SPORT0_RCLKDIV “SPORT Transmit Serial Clock Divider
(SPORTx_TCLKDIV, SPORTx_RCLKDIV)
Registers” on page 13-31

0xFFC0 082C SPORT0_RFSDIV “SPORT Transmit Frame Sync Divider
(SPORTx_TFSDIV, SPORTx_RFSDIV) Reg-
ister” on page 13-32

0xFFC0 0830 SPORT0_STAT “SPORT Status (SPORTx_STAT) Register” on
page 13-28

0xFFC0 0834 SPORT0_CHNL “SPORT Current Channel (SPORTx_CHNL)
Register” on page 13-59

SPORT Controller Registers

B-16 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

0xFFC0 0838 SPORT0_MCMC1 “SPORT Multichannel Configuration
(SPORTx_MCMCn) Registers” on page 13-53

0xFFC0 083C SPORT0_MCMC2 “SPORT Multichannel Configuration
(SPORTx_MCMCn) Registers” on page 13-53

0xFFC0 0840 SPORT0_MTCS0 “SPORT Multichannel Transmit Selection
(SPORTx_MTCSn) Registers” on page 13-64

0xFFC0 0844 SPORT0_MTCS1 “SPORT Multichannel Transmit Selection
(SPORTx_MTCSn) Registers” on page 13-64

0xFFC0 0848 SPORT0_MTCS2 “SPORT Multichannel Transmit Selection
(SPORTx_MTCSn) Registers” on page 13-64

0xFFC0 084C SPORT0_MTCS3 “SPORT Multichannel Transmit Selection
(SPORTx_MTCSn) Registers” on page 13-64

0xFFC0 0850 SPORT0_MRCS0 “SPORT Multichannel Receive Selection
(SPORTx_MRCSn) Registers” on page 13-62

0xFFC0 0854 SPORT0_MRCS1 “SPORT Multichannel Receive Selection
(SPORTx_MRCSn) Registers” on page 13-62

0xFFC0 0858 SPORT0_MRCS2 “SPORT Multichannel Receive Selection
(SPORTx_MRCSn) Registers” on page 13-62

0xFFC0 085C SPORT0_MRCS3 “SPORT Multichannel Receive Selection
(SPORTx_MRCSn) Registers” on page 13-62

Table B-18. SPORT1 Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 0900 SPORT1_TCR1 “SPORT Transmit Configuration
(SPORTx_TCR1, SPORTx_TCR2) Registers”
on page 13-11

0xFFC0 0904 SPORT1_TCR2 “SPORT Transmit Configuration
(SPORTx_TCR1, SPORTx_TCR2) Registers”
on page 13-11

Table B-17. SPORT0 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference B-17

System MMR Assignments

0xFFC0 0908 SPORT1_TCLKDIV “SPORT Transmit Serial Clock Divider
(SPORTx_TCLKDIV, SPORTx_RCLKDIV)
Registers” on page 13-31

0xFFC0 090C SPORT1_TFSDIV “SPORT Transmit Frame Sync Divider
(SPORTx_TFSDIV, SPORTx_RFSDIV) Reg-
ister” on page 13-32

0xFFC0 0910 SPORT1_TX “SPORT Transmit Data (SPORTx_TX) Regis-
ter” on page 13-23

0xFFC0 0918 SPORT1_RX “SPORT Receive Data (SPORTx_RX) Regis-
ter” on page 13-25

0xFFC0 0920 SPORT1_RCR1 “SPORT Receive Configuration
(SPORTx_RCR1, SPORTx_RCR2) Registers”
on page 13-18

0xFFC0 0924 SPORT1_RCR2 “SPORT Receive Configuration
(SPORTx_RCR1, SPORTx_RCR2) Registers”
on page 13-18

0xFFC0 0928 SPORT1_RCLKDIV “SPORT Transmit Serial Clock Divider
(SPORTx_TCLKDIV, SPORTx_RCLKDIV)
Registers” on page 13-31

0xFFC0 092C SPORT1_RFSDIV “SPORT Transmit Frame Sync Divider
(SPORTx_TFSDIV, SPORTx_RFSDIV) Reg-
ister” on page 13-32

0xFFC0 0930 SPORT1_STAT “SPORT Status (SPORTx_STAT) Register” on
page 13-28

0xFFC0 0934 SPORT1_CHNL “SPORT Current Channel (SPORTx_CHNL)
Register” on page 13-59

0xFFC0 0938 SPORT1_MCMC1 “SPORT Multichannel Configuration
(SPORTx_MCMCn) Registers” on page 13-53

0xFFC0 093C SPORT1_MCMC2 “SPORT Multichannel Configuration
(SPORTx_MCMCn) Registers” on page 13-53

0xFFC0 0940 SPORT1_MTCS0 “SPORT Multichannel Transmit Selection
(SPORTx_MTCSn) Registers” on page 13-64

Table B-18. SPORT1 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

SPORT Controller Registers

B-18 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

0xFFC0 0944 SPORT1_MTCS1 “SPORT Multichannel Transmit Selection
(SPORTx_MTCSn) Registers” on page 13-64

0xFFC0 0948 SPORT1_MTCS2 “SPORT Multichannel Transmit Selection
(SPORTx_MTCSn) Registers” on page 13-64

0xFFC0 094C SPORT1_MTCS3 “SPORT Multichannel Transmit Selection
(SPORTx_MTCSn) Registers” on page 13-64

0xFFC0 0950 SPORT1_MRCS0 “SPORT Multichannel Receive Selection
(SPORTx_MRCSn) Registers” on page 13-62

0xFFC0 0954 SPORT1_MRCS1 “SPORT Multichannel Receive Selection
(SPORTx_MRCSn) Registers” on page 13-62

0xFFC0 0958 SPORT1_MRCS2 “SPORT Multichannel Receive Selection
(SPORTx_MRCSn) Registers” on page 13-62

0xFFC0 095C SPORT1_MRCS3 “SPORT Multichannel Receive Selection
(SPORTx_MRCSn) Registers” on page 13-62

Table B-19. SPORT2 Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 2500 SPORT2_TCR1 “SPORT Transmit Configuration
(SPORTx_TCR1, SPORTx_TCR2) Registers”
on page 13-11

0xFFC0 2504 SPORT2_TCR2 “SPORT Transmit Configuration
(SPORTx_TCR1, SPORTx_TCR2) Registers”
on page 13-11

0xFFC0 2508 SPORT2_TCLKDIV “SPORT Transmit Serial Clock Divider
(SPORTx_TCLKDIV, SPORTx_RCLKDIV)
Registers” on page 13-31

0xFFC0 250C SPORT2_TFSDIV “SPORT Transmit Frame Sync Divider
(SPORTx_TFSDIV, SPORTx_RFSDIV) Reg-
ister” on page 13-32

Table B-18. SPORT1 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference B-19

System MMR Assignments

0xFFC0 2510 SPORT2_TX “SPORT Transmit Data (SPORTx_TX) Regis-
ter” on page 13-23

0xFFC0 2518 SPORT2_RX “SPORT Receive Data (SPORTx_RX) Regis-
ter” on page 13-25

0xFFC0 2520 SPORT2_RCR1 “SPORT Receive Configuration
(SPORTx_RCR1, SPORTx_RCR2) Registers”
on page 13-18

0xFFC0 2524 SPORT2_RCR2 “SPORT Receive Configuration
(SPORTx_RCR1, SPORTx_RCR2) Registers”
on page 13-18

0xFFC0 2528 SPORT2_RCLKDIV “SPORT Transmit Serial Clock Divider
(SPORTx_TCLKDIV, SPORTx_RCLKDIV)
Registers” on page 13-31

0xFFC0 252C SPORT2_RFSDIV “SPORT Transmit Frame Sync Divider
(SPORTx_TFSDIV, SPORTx_RFSDIV) Reg-
ister” on page 13-32

0xFFC0 2530 SPORT2_STAT “SPORT Status (SPORTx_STAT) Register” on
page 13-28

0xFFC0 2534 SPORT2_CHNL “SPORT Current Channel (SPORTx_CHNL)
Register” on page 13-59

0xFFC0 2538 SPORT2_MCMC1 “SPORT Multichannel Configuration
(SPORTx_MCMCn) Registers” on page 13-53

0xFFC0 253C SPORT2_MCMC2 “SPORT Multichannel Configuration
(SPORTx_MCMCn) Registers” on page 13-53

0xFFC0 2540 SPORT2_MTCS0 “SPORT Multichannel Transmit Selection
(SPORTx_MTCSn) Registers” on page 13-64

0xFFC0 2544 SPORT2_MTCS1 “SPORT Multichannel Transmit Selection
(SPORTx_MTCSn) Registers” on page 13-64

0xFFC0 2548 SPORT2_MTCS2 “SPORT Multichannel Transmit Selection
(SPORTx_MTCSn) Registers” on page 13-64

0xFFC0 254C SPORT2_MTCS3 “SPORT Multichannel Transmit Selection
(SPORTx_MTCSn) Registers” on page 13-64

Table B-19. SPORT2 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

SPORT Controller Registers

B-20 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

0xFFC0 2550 SPORT2_MRCS0 “SPORT Multichannel Receive Selection
(SPORTx_MRCSn) Registers” on page 13-62

0xFFC0 2554 SPORT2_MRCS1 “SPORT Multichannel Receive Selection
(SPORTx_MRCSn) Registers” on page 13-62

0xFFC0 2558 SPORT2_MRCS2 “SPORT Multichannel Receive Selection
(SPORTx_MRCSn) Registers” on page 13-62

0xFFC0 255C SPORT2_MRCS3 “SPORT Multichannel Receive Selection
(SPORTx_MRCSn) Registers” on page 13-62

Table B-20. SPORT3 Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 2600 SPORT3_TCR1 “SPORT Transmit Configuration
(SPORTx_TCR1, SPORTx_TCR2) Registers”
on page 13-11

0xFFC0 2604 SPORT3_TCR2 “SPORT Transmit Configuration
(SPORTx_TCR1, SPORTx_TCR2) Registers”
on page 13-11

0xFFC0 2608 SPORT3_TCLKDIV “SPORT Transmit Serial Clock Divider
(SPORTx_TCLKDIV, SPORTx_RCLKDIV)
Registers” on page 13-31

0xFFC0 260C SPORT3_TFSDIV “SPORT Transmit Frame Sync Divider
(SPORTx_TFSDIV, SPORTx_RFSDIV) Reg-
ister” on page 13-32

0xFFC0 2610 SPORT3_TX “SPORT Transmit Data (SPORTx_TX) Regis-
ter” on page 13-23

0xFFC0 2618 SPORT3_RX “SPORT Receive Data (SPORTx_RX) Regis-
ter” on page 13-25

0xFFC0 2620 SPORT3_RCR1 “SPORT Receive Configuration
(SPORTx_RCR1, SPORTx_RCR2) Registers”
on page 13-18

Table B-19. SPORT2 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference B-21

System MMR Assignments

0xFFC0 2624 SPORT3_RCR2 “SPORT Receive Configuration
(SPORTx_RCR1, SPORTx_RCR2) Registers”
on page 13-18

0xFFC0 2628 SPORT3_RCLKDIV “SPORT Transmit Serial Clock Divider
(SPORTx_TCLKDIV, SPORTx_RCLKDIV)
Registers” on page 13-31

0xFFC0 262C SPORT3_RFSDIV “SPORT Transmit Frame Sync Divider
(SPORTx_TFSDIV, SPORTx_RFSDIV) Reg-
ister” on page 13-32

0xFFC0 2630 SPORT3_STAT “SPORT Status (SPORTx_STAT) Register” on
page 13-28

0xFFC0 2634 SPORT3_CHNL “SPORT Current Channel (SPORTx_CHNL)
Register” on page 13-59

0xFFC0 2638 SPORT3_MCMC1 “SPORT Multichannel Configuration
(SPORTx_MCMCn) Registers” on page 13-53

0xFFC0 263C SPORT3_MCMC2 “SPORT Multichannel Configuration
(SPORTx_MCMCn) Registers” on page 13-53

0xFFC0 2640 SPORT3_MTCS0 “SPORT Multichannel Transmit Selection
(SPORTx_MTCSn) Registers” on page 13-64

0xFFC0 2644 SPORT3_MTCS1 “SPORT Multichannel Transmit Selection
(SPORTx_MTCSn) Registers” on page 13-64

0xFFC0 2648 SPORT3_MTCS2 “SPORT Multichannel Transmit Selection
(SPORTx_MTCSn) Registers” on page 13-64

0xFFC0 264C SPORT3_MTCS3 “SPORT Multichannel Transmit Selection
(SPORTx_MTCSn) Registers” on page 13-64

0xFFC0 2650 SPORT3_MRCS0 “SPORT Multichannel Receive Selection
(SPORTx_MRCSn) Registers” on page 13-62

0xFFC0 2654 SPORT3_MRCS1 “SPORT Multichannel Receive Selection
(SPORTx_MRCSn) Registers” on page 13-62

Table B-20. SPORT3 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

DMA/Memory DMA Control Registers

B-22 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

DMA/Memory DMA Control Registers
DMA controller 0 registers (0xFFC0 0C00 – 0xFFC0 0FFF)
DMA controller 1 registers (0xFFC0 1C00 – 0xFFC0 1FFF)

Since each DMA channel has an identical MMR set, with fixed offsets
from the base address associated with that DMA channel, it is convenient
to view the MMR information as provided in Table B-22 and Table B-23.
Table B-22 identifies the base address of each DMA channel, as well as the
register prefix that identifies the channel. Table B-24 then lists the register
suffix and provides its offset from the Base Address.

As an example, the DMA channel 0 Y modify register is called
DMA0_Y_MODIFY, and its address is 0xFFC0 0C1C. Likewise, the memory

0xFFC0 2658 SPORT3_MRCS2 “SPORT Multichannel Receive Selection
(SPORTx_MRCSn) Registers” on page 13-62

0xFFC0 265C SPORT3_MRCS3 “SPORT Multichannel Receive Selection
(SPORTx_MRCSn) Registers” on page 13-62

Table B-21. DMA Traffic Control Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 0B0C
0xFFC0 1B0C

DMAC0_TC_PER
DMAC1_TC_PER

“DMA Traffic Control Counter Period
(DMACx_TC_PER) and Counter
(DMACx_TC_CNT) Registers” on page 9-61

0xFFC0 0B10
0xFFC0 1B10

DMAC0_TC_CNT
DMAC1_TC_CNT

“DMA Traffic Control Counter Period
(DMACx_TC_PER) and Counter
(DMACx_TC_CNT) Registers” on page 9-61

Table B-20. SPORT3 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference B-23

System MMR Assignments

DMA stream 0 source current address register is called
MDMA_S0_CURR_ADDR, and its address is 0xFFC0 0E64.

Table B-22. DMA Channel Base Addresses for DMA
Controller 0

DMA Channel Identifier MMR Base Address Register Prefix

DMA0 0xFFC0 0C00 DMA0_

DMA1 0xFFC0 0C40 DMA1_

DMA2 0xFFC0 0C80 DMA2_

DMA3 0xFFC0 0CC0 DMA3_

DMA4 0xFFC0 0D00 DMA4_

DMA5 0xFFC0 0D40 DMA5_

DMA6 0xFFC0 0D80 DMA6_

DMA7 0xFFC0 0DC0 DMA7_

Mem DMA 0 Stream 0 Destination 0xFFC0 0E00 MDMA0_D0_

Mem DMA 0 Stream 0 Source 0xFFC0 0E40 MDMA0_S0_

Mem DMA 0 Stream 1 Destination 0xFFC0 0E80 MDMA0_D1_

Mem DMA 0 Stream 1 Source 0xFFC0 0EC0 MDMA0_S1_

Table B-23. DMA Channel Base Addresses for DMA
Controller 1

DMA Channel Identifier MMR Base Address Register Prefix

DMA8 0xFFC0 1C00 DMA8_

DMA9 0xFFC0 1C40 DMA9_

DMA10 0xFFC0 1C80 DMA10_

DMA11 0xFFC0 1CC0 DMA11_

DMA12 0xFFC0 1D00 DMA12_

DMA13 0xFFC0 1D40 DMA13_

DMA14 0xFFC0 1D80 DMA14_

DMA/Memory DMA Control Registers

B-24 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

DMA15 0xFFC0 1DC0 DMA15_

DMA16 0xFFC0 1E00 DMA16_

DMA17 0xFFC0 1E40 DMA17_

DMA18 0xFFC0 1E80 DMA18_

DMA19 0xFFC0 1EC0 DMA19_

Mem DMA 1 Stream 0 Destination 0xFFC0 1F00 MDMA1_D0_

Mem DMA 1 Stream 0 Source 0xFFC0 1F40 MDMA1_S0_

Mem DMA 1 Stream 1 Destination 0xFFC0 1F80 MDMA1_D1_

Mem DMA 1 Stream 1 Source 0xFFC0 1FC0 MDMA1_S1_

Table B-24. DMA Register Suffix and Offset

Register Suffix Offset From
Base

See Section

NEXT_DESC_PTR 0x00 “Next Descriptor Pointer (DMAx_NEXT_DESC_PTR,
MDMAx_yy_NEXT_DESC_PTR) Registers” on
page 9-8

START_ADDR 0x04 “Start Address (DMAx_START_ADDR,
MDMAx_yy_START_ADDR) Registers” on page 9-10

CONFIG 0x08 “DMA Configuration (DMAx_CONFIG,
MDMAx_yy_CONFIG) Registers” on page -11

X_COUNT 0x10 “Inner Loop Count (DMAx_X_COUNT,
MDMAx_yy_X_COUNT) Registers” on page 9-14

X_MODIFY 0x14 “Inner Loop Address Increment (DMAx_X_MODIFY,
MDMAx_yy_X_MODIFY) Registers” on page 9-15

Y_COUNT 0x18 “Outer Loop Count (DMAx_Y_COUNT,
MDMAx_yy_Y_COUNT) Registers” on page 9-16

Y_MODIFY 0x1C “Outer Loop Address Increment (DMAx_Y_MODIFY,
MDMAx_yy_Y_MODIFY) Registers” on page 9-17

Table B-23. DMA Channel Base Addresses for DMA
Controller 1 (Cont’d)

DMA Channel Identifier MMR Base Address Register Prefix

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference B-25

System MMR Assignments

External Bus Interface Unit Registers
External bus interface unit registers (0xFFC0 0A00 – 0xFFC0 0AFF)

CURR_DESC_PTR 0x20 “Current Descriptor Pointer
(DMAx_CURR_DESC_PTR,
MDMAx_yy_CURR_DESC_PTR) Registers” on
page 9-17

CURR_ADDR 0x24 “Current Address (DMAx_CURR_ADDR,
MDMAx_yy_CURR_ADDR) Registers” on page 9-18

IRQ_STATUS 0x28 “Interrupt Status (DMAx_IRQ_STATUS,
MDMAx_yy_IRQ_STATUS) Registers” on page 9-26

PERIPHERAL_MAP 0x2C “Peripheral Map (DMAx_PERIPHERAL_MAP,
MDMAx_yy_PERIPHERAL_MAP) Registers” on
page 9-21

CURR_X_COUNT 0x30 “Current Inner Loop Count
(DMAx_CURR_X_COUNT,
MDMAx_yy_CURR_X_COUNT) Registers” on
page 9-19

CURR_Y_COUNT 0x38 “Current Outer Loop Count
(DMAx_CURR_Y_COUNT,
MDMAx_yy_CURR_Y_COUNT) Registers” on
page 9-20

Table B-25. External Bus Interface Unit Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 0A00 EBIU_AMGCTL “EBIU_AMGCTL Register” on page 18-10

0xFFC0 0A04 EBIU_AMBCTL0 “EBIU_AMBCTL0 and EBIU_AMBCTL1
Registers” on page 18-11

Table B-24. DMA Register Suffix and Offset (Cont’d)

Register Suffix Offset From
Base

See Section

CAN Registers

B-26 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

CAN Registers
CAN registers (0xFFC0 2A00 – 0xFFC0 2FFF) are listed in Table B-26
through Table B-29.

0xFFC0 0A08 EBIU_AMBCTL1 “EBIU_AMBCTL0 and EBIU_AMBCTL1
Registers” on page 18-11

0xFFC0 0A10 EBIU_SDGCTL “EBIU_SDGCTL Register” on page 18-33

0xFFC0 0A14 EBIU_SDBCTL “EBIU_SDBCTL Register” on page 18-44

0xFFC0 0A18 EBIU_SDRRC “EBIU_SDRRC Register” on page 18-47

0xFFC0 0A1C EBIU_SDSTAT “EBIU_SDSTAT Register” on page 18-47

Table B-26. CAN Control and Configuration Registers

Memory-Mapped
Address

Register Name See Page

0xFFC0 2A00 CAN_MC1 “CAN Mailbox Configuration (CAN_MCx) and
Direction (CAN_MDx) Registers” on page 19-35

0xFFC0 2A04 CAN_MD1 “CAN Mailbox Configuration (CAN_MCx) and
Direction (CAN_MDx) Registers” on page 19-35

0xFFC0 2A08 CAN_TRS1 “CAN Transmission Request Set (CAN_TRSx) Regis-
ters” on page 19-51

0xFFC0 2A0C CAN_TRR1 “CAN Transmission Request Reset (CAN_TRRx)
Registers” on page 19-53

0xFFC0 2A10 CAN_TA1 “CAN Transmission Acknowledge (CAN_TAx) Regis-
ter” on page 19-57

0xFFC0 2A14 CAN_AA1 “CAN Abort Acknowledge (CAN_AAx) Register” on
page 19-56

0xFFC0 2A18 CAN_RMP1 “CAN Receive Message Pending (CAN_RMPx) Regis-
ter” on page 19-45

Table B-25. External Bus Interface Unit Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference B-27

System MMR Assignments

0xFFC0 2A1C CAN_RML1 “CAN Receive Message Lost (CAN_RMLx) Register”
on page 19-46

0xFFC0 2A20 CAN_MBTIF1 “CAN Mailbox Interrupt Mask Flag (CAN_MBTIFx)
Registers” on page 19-67

0xFFC0 2A24 CAN_MBRIF1 “CAN Mailbox Receive Interrupt Flag
(CAN_MBRIFx) Registers” on page 19-68

0xFFC0 2A28 CAN_MBIM1 “CAN Mailbox Interrupt Mask (CAN_MBIMx) Reg-
isters” on page 19-65

0xFFC0 2A2C CAN_RFH1 “CAN Remote Frame Handling (CAN_RFHx) Regis-
ters” on page 19-60

0xFFC0 2A30 CAN_OPSS1 “CAN Overwrite Protection/Single Shot Transmission
(CAN_OPSSx) Register” on page 19-48

0xFFC0 2A40 CAN_MC2 “CAN Mailbox Configuration (CAN_MCx) and
Direction (CAN_MDx) Registers” on page 19-35

0xFFC0 2A44 CAN_MD2 “CAN Mailbox Configuration (CAN_MCx) and
Direction (CAN_MDx) Registers” on page 19-35

0xFFC0 2A48 CAN_TRS2 “CAN Transmission Request Set (CAN_TRSx) Regis-
ters” on page 19-51

0xFFC0 2A4C CAN_TRR2 “CAN Transmission Request Reset (CAN_TRRx)
Registers” on page 19-53

0xFFC0 2A50 CAN_TA2 “CAN Transmission Acknowledge (CAN_TAx) Regis-
ter” on page 19-57

0xFFC0 2A54 CAN_AA2 “CAN Abort Acknowledge (CAN_AAx) Register” on
page 19-56

0xFFC0 2A58 CAN_RMP2 “CAN Receive Message Pending (CAN_RMPx) Regis-
ter” on page 19-45

0xFFC0 2A5C CAN_RML2 “CAN Receive Message Lost (CAN_RMLx) Register”
on page 19-46

0xFFC0 2A60 CAN_MBTIF2 “CAN Mailbox Interrupt Mask Flag (CAN_MBTIFx)
Registers” on page 19-67

Table B-26. CAN Control and Configuration Registers (Cont’d)

Memory-Mapped
Address

Register Name See Page

CAN Registers

B-28 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

0xFFC0 2A64 CAN_MBRIF2 “CAN Mailbox Receive Interrupt Flag
(CAN_MBRIFx) Registers” on page 19-68

0xFFC0 2A68 CAN_MBIM2 “CAN Mailbox Interrupt Mask (CAN_MBIMx) Reg-
isters” on page 19-65

0xFFC0 2A6C CAN_RFH2 “CAN Remote Frame Handling (CAN_RFHx) Regis-
ters” on page 19-60

0xFFC0 2A70 CAN_OPSS2 “CAN Overwrite Protection/Single Shot Transmission
(CAN_OPSSx) Register” on page 19-48

0xFFC0 2A80 CAN_CLOCK “CAN Clock (CAN_CLOCK) Register” on
page 19-14

0xFFC0 2A84 CAN_TIMING “CAN Timing (CAN_TIMING) Register” on
page 19-15

0xFFC0 2A88 CAN_DEBUG “CAN Debug (CAN_DEBUG) Register” on
page 19-17

0xFFC0 2A8C CAN_STATUS “CAN Status (CAN_STATUS) Register” on
page 19-11

0xFFC0 2A90 CAN_CEC “CAN Error Status (CAN_ESR) Register” on
page 19-86

0xFFC0 2A94 CAN_GIS “CAN Global Interrupt Status (CAN_GIS) Register”
on page 19-75

0xFFC0 2A98 CAN_GIM “CAN Global Interrupt Mask (CAN_GIM) Register”
on page 19-74

0xFFC0 2A9C CAN_GIF “CAN Global Interrupt Flag (CAN_GIF) Register” on
page 19-75

0xFFC0 2AA0 CAN_CONTROL “CAN Error Status (CAN_ESR) Register” on
page 19-86

0xFFC0 2AA4 CAN_INTR “CAN Interrupt (CAN_INTR) Register” on
page 19-62

0xFFC0 2AAC CAN_MBTD “CAN Mailbox Temporary Disable (CAN_MBTD)
Register” on page 19-59

Table B-26. CAN Control and Configuration Registers (Cont’d)

Memory-Mapped
Address

Register Name See Page

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference B-29

System MMR Assignments

0xFFC0 2AB0 CAN_EWR “CAN Error Counter Warning Level (CAN_EWR)
Register” on page 19-88

0xFFC0 2AB4 CAN_ESR “CAN Error Status (CAN_ESR) Register” on
page 19-86

0xFFC0 2AC4 CAN_UCCNT “CAN Universal Counter (CAN_UCCNT) Register”
on page 19-83

0xFFC0 2AC8 CAN_UCRC “CAN Universal Counter Reload/Capture
(CAN_UCRC) Register” on page 19-84

0xFFC0 2ACC CAN_UCCNF “CAN Universal Counter Configuration
(CAN_UCCNF) Register” on page 19-80

Table B-27. CAN Mailbox Acceptance Mask Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 2B00 CAN_AM00L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B04 CAN_AM00H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B08 CAN_AM01L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B0C CAN_AM01H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B10 CAN_AM02L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B14 CAN_AM02H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B18 CAN_AM03L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B1C CAN_AM03H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

Table B-26. CAN Control and Configuration Registers (Cont’d)

Memory-Mapped
Address

Register Name See Page

CAN Registers

B-30 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

0xFFC0 2B20 CAN_AM04L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B24 CAN_AM04H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B28 CAN_AM05L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B2C CAN_AM05H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B30 CAN_AM06L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B34 CAN_AM06H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B38 CAN_AM07L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B3C CAN_AM07H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B40 CAN_AM08L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B44 CAN_AM08H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B48 CAN_AM09L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B4C CAN_AM09H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B50 CAN_AM10L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B54 CAN_AM10H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B58 CAN_AM11L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

Table B-27. CAN Mailbox Acceptance Mask Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference B-31

System MMR Assignments

0xFFC0 2B5C CAN_AM11H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B60 CAN_AM12L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B64 CAN_AM12H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B68 CAN_AM13L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B6C CAN_AM13H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B70 CAN_AM14L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B74 CAN_AM14H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B78 CAN_AM15L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B7C CAN_AM15H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B80 CAN_AM16L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B84 CAN_AM16H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B88 CAN_AM17L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B8C CAN_AM17H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B90 CAN_AM18L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B94 CAN_AM18H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

Table B-27. CAN Mailbox Acceptance Mask Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

CAN Registers

B-32 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

0xFFC0 2B98 CAN_AM19L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2B9C CAN_AM19H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2BA0 CAN_AM20L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2BA4 CAN_AM20H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2BA8 CAN_AM21L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2BAC CAN_AM21H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2BB0 CAN_AM22L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2BB4 CAN_AM22H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2BB8 CAN_AM23L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2BBC CAN_AM23H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2BC0 CAN_AM24L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2BC4 CAN_AM24H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2BC8 CAN_AM25L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2BCC CAN_AM25H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2BD0 CAN_AM26L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

Table B-27. CAN Mailbox Acceptance Mask Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference B-33

System MMR Assignments

Since each CAN mailbox has an identical MMR set, with fixed offsets
from the base address associated with that mailbox, it is convenient to
view the MMR information as provided in Table B-28 and Table B-29 on
page B-35. Table B-28 identifies the base address of each CAN mailbox,
as well as the register prefix that identifies mailbox. Table B-29 then lists
the register suffix and provides its offset from the base address.

0xFFC0 2BD4 CAN_AM26H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2BD8 CAN_AM27L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2BDC CAN_AM27H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2BE0 CAN_AM28L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2BE4 CAN_AM28H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2BE8 CAN_AM29L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2BEC CAN_AM29H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2BF0 CAN_AM30L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2BF4 CAN_AM30H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2BF8 CAN_AM31L “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

0xFFC0 2BFC CAN_AM31H “CAN Acceptance Mask (CAN_AMxx) Regis-
ters” on page 19-40

Table B-27. CAN Mailbox Acceptance Mask Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

CAN Registers

B-34 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

As an example, the CAN mailbox 2 length register is called
CAN_MB02_LENGTH, and its address is 0xFFC0 2C50. Likewise, the CAN
mailbox 17 time stamp register is called CAN_MB17_TIMESTAMP, and its
address is 0xFFC0 2E34.

Table B-28. CAN Mailbox Base Addresses

Mailbox Identifier MMR Base Address Register Prefix

0 0xFFC0 2C00 CAN_MB00_

1 0xFFC0 2C20 CAN_MB01_

2 0xFFC0 2C40 CAN_MB02_

3 0xFFC0 2C60 CAN_MB03_

4 0xFFC0 2C80 CAN_MB04_

5 0xFFC0 2CA0 CAN_MB05_

6 0xFFC0 2CC0 CAN_MB06_

7 0xFFC0 2CE0 CAN_MB07_

8 0xFFC0 2D00 CAN_MB08_

9 0xFFC0 2D20 CAN_MB09_

10 0xFFC0 2D40 CAN_MB10_

11 0xFFC0 2D60 CAN_MB11_

12 0xFFC0 2D80 CAN_MB12_

13 0xFFC0 2DA0 CAN_MB13_

14 0xFFC0 2DC0 CAN_MB14_

15 0xFFC0 2DE0 CAN_MB15_

16 0xFFC0 2E00 CAN_MB16_

17 0xFFC0 2E20 CAN_MB17_

18 0xFFC0 2E40 CAN_MB18_

19 0xFFC0 2E60 CAN_MB19_

20 0xFFC0 2E80 CAN_MB20_

21 0xFFC0 2EA0 CAN_MB21_

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference B-35

System MMR Assignments

22 0xFFC0 2EC0 CAN_MB22_

23 0xFFC0 2EE0 CAN_MB23_

24 0xFFC0 2F00 CAN_MB24_

25 0xFFC0 2F20 CAN_MB25_

26 0xFFC0 2F40 CAN_MB26_

27 0xFFC0 2F60 CAN_MB27_

28 0xFFC0 2F80 CAN_MB28_

29 0xFFC0 2FA0 CAN_MB29_

30 0xFFC0 2FC0 CAN_MB30_

31 0xFFC0 2FE0 CAN_MB31_

Table B-29. CAN Mailbox Register Suffix and Offset

Register Suffix Offset From
Base

See Page

DATA0 0x00 Figure 19-15 on page 19-32 and Table 19-10 on
page 19-32

DATA1 0x04 Figure 19-14 on page 19-31 and Table 19-9 on
page 19-31

DATA2 0x08 Figure 19-13 on page 19-30 and Table 19-8 on
page 19-30

DATA3 0x0C Figure 19-12 on page 19-29 and Table 19-7 on
page 19-29

LENGTH 0x10 Figure 19-11 on page 19-27 and Table 19-6 on
page 19-28

TIMESTAMP 0x14 Figure 19-10 on page 19-26 and Table 19-5 on
page 19-26

Table B-28. CAN Mailbox Base Addresses (Cont’d)

Mailbox Identifier MMR Base Address Register Prefix

Two-Wire Interface Registers

B-36 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Two-Wire Interface Registers
TWI0 registers (0xFFC0 1400 – 0xFFC0 14FF)
TWI1 registers (0xFFC0 2200 – 0xFFC0 22FF)

ID0 0x18 Figure 19-9 on page 19-25 and Table 19-4 on
page 19-25

ID1 0x1C Figure 19-3 on page 19-23 and Table 19-3 on
page 19-23

Table B-30. TWI 0 Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 1400 TWI0_CLKDIV “TWI Clock Divider (TWIx_CLKDIV)
Registers” on page 20-6

0xFFC0 1404 TWI0_CONTROL “TWI Control (TWIx_CONTROL) Regis-
ters” on page 20-4

0xFFC0 1408 TWI0_SLAVE_CTRL “TWI Slave Mode Control
(TWIx_SLAVE_CTRL) Registers” on
page 20-7

0xFFC0 140C TWI0_SLAVE_STAT “TWI Slave Mode Status
(TWIx_SLAVE_STAT) Registers” on
page 20-9

0xFFC0 1410 TWI0_SLAVE_ADDR “TWI Slave Mode Address
(TWIx_SLAVE_ADDR) Registers” on
page 20-9

0xFFC0 1414 TWI0_MASTER_CTRL “TWI Master Mode Control
(TWIx_MASTER_CTRL) Registers” on
page 20-11

Table B-29. CAN Mailbox Register Suffix and Offset (Cont’d)

Register Suffix Offset From
Base

See Page

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference B-37

System MMR Assignments

0xFFC0 1418 TWI0_MASTER_STAT “TWI Master Mode Status
(TWIx_MASTER_STAT) Registers” on
page 20-14

0xFFC0 141C TWI0_MASTER_ADDR “TWI Master Mode Address
(TWIx_MASTER_ADDR) Registers” on
page 20-14

0xFFC0 1420 TWI0_INT_STAT “TWI Interrupt Status
(TWIx_INT_STAT) Registers” on
page 20-24

0xFFC0 1428 TWI0_FIFO_CTRL “TWI FIFO Control (TWIx_FIFO_CTRL)
Registers” on page 20-18

0xFFC0 142C TWI0_FIFO_STAT “TWI FIFO Status (TWIx_FIFO_STAT)
Registers” on page 20-20

0xFFC0 1480 TWI0_XMT_DATA8 “TWI FIFO Transmit Data Single Byte
(TWIx_XMT_DATA8) Registers” on
page 20-27

0xFFC0 1484 TWI0_XMT_DATA16 “TWI FIFO Transmit Data Double Byte
(TWIx_XMT_DATA16) Registers” on
page 20-27

0xFFC0 1488 TWI0_RCV_DATA8 “TWI FIFO Receive Data Single Byte
(TWIx_RCV_DATA8) Registers” on
page 20-28

0xFFC0 148C TWI0_RCV_DATA16 “TWI FIFO Receive Data Double Byte
(TWIx_RCV_DATA16) Registers” on
page 20-29

Table B-30. TWI 0 Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

Two-Wire Interface Registers

B-38 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Table B-31. TWI 1 Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 2200 TWI1_CLKDIV “TWI Clock Divider (TWIx_CLKDIV) Regis-
ters” on page 20-6

0xFFC0 2204 TWI1_CONTROL “TWI Control (TWIx_CONTROL) Regis-
ters” on page 20-4

0xFFC0 2208 TWI1_SLAVE_CTRL “TWI Slave Mode Control
(TWIx_SLAVE_CTRL) Registers” on
page 20-7

0xFFC0 220C TWI1_SLAVE_STAT “TWI Slave Mode Status
(TWIx_SLAVE_STAT) Registers” on
page 20-9

0xFFC0 2210 TWI1_SLAVE_ADDR “TWI Slave Mode Address
(TWIx_SLAVE_ADDR) Registers” on
page 20-9

0xFFC0 2214 TWI1_MASTER_CTRL “TWI Master Mode Control
(TWIx_MASTER_CTRL) Registers” on
page 20-11

0xFFC0 2218 TWI1_MASTER_STAT “TWI Master Mode Status
(TWIx_MASTER_STAT) Registers” on
page 20-14

0xFFC0 221C TWI1_MASTER_ADDR “TWI Master Mode Address
(TWIx_MASTER_ADDR) Registers” on
page 20-14

0xFFC0 2220 TWI1_INT_STAT “TWI Interrupt Status (TWIx_INT_STAT)
Registers” on page 20-24

0xFFC0 2228 TWI1_FIFO_CTRL “TWI FIFO Control (TWIx_FIFO_CTRL)
Registers” on page 20-18

0xFFC0 222C TWI1_FIFO_STAT “TWI FIFO Status (TWIx_FIFO_STAT) Reg-
isters” on page 20-20

0xFFC0 2280 TWI1_XMT_DATA8 “TWI FIFO Transmit Data Single Byte
(TWIx_XMT_DATA8) Registers” on
page 20-27

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference B-39

System MMR Assignments

0xFFC0 2284 TWI1_XMT_DATA16 “TWI FIFO Transmit Data Double Byte
(TWIx_XMT_DATA16) Registers” on
page 20-27

0xFFC0 2288 TWI1_RCV_DATA8 “TWI FIFO Receive Data Single Byte
(TWIx_RCV_DATA8) Registers” on
page 20-28

0xFFC0 228C TWI1_RCV_DATA16 “TWI FIFO Receive Data Double Byte
(TWIx_RCV_DATA16) Registers” on
page 20-29

Table B-31. TWI 1 Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

Two-Wire Interface Registers

B-40 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference C-1

C TEST FEATURES

This chapter discusses the test features of the processor.

JTAG Standard
The processor is fully compatible with the IEEE 1149.1 standard, also
known as the Joint Test Action Group (JTAG) standard.

The JTAG standard defines circuitry that may be built to assist in the test,
maintenance, and support of assembled printed circuit boards.The cir-
cuitry includes a standard interface through which instructions and test
data are communicated. A set of test features is defined, including a
boundary-scan register, such that the component can respond to a mini-
mum set of instructions designed to help test printed circuit boards.

The standard defines test logic that can be included in an integrated cir-
cuit to provide standardized approaches to:

• Testing the interconnections between integrated circuits once they
have been assembled onto a printed circuit board

• Testing the integrated circuit itself

• Observing or modifying circuit activity during normal component
operation

The test logic consists of a boundary-scan register and other building
blocks. The test logic is accessed through a test access port (TAP).

Boundary-Scan Architecture

C-2 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Full details of the JTAG standard can be found in the document IEEE
Standard Test Access Port and Boundary-Scan Architecture, ISBN
1-55937-350-4.

Boundary-Scan Architecture
The boundary-scan test logic consists of:

• A TAP comprised of five pins (see Table C-1)

• A TAP controller that controls all sequencing of events through the
test registers

• An instruction register (IR) that interprets 5-bit instruction codes
to select the test mode that performs the desired test operation

• Several data registers defined by the JTAG standard

The TAP controller is a synchronous, 16-state, finite-state machine con-
trolled by the TCK and TMS pins. Transitions to the various states in the
diagram occur on the rising edge of TCK and are defined by the state of the
TMS pin, here denoted by either a logic 1 or logic 0 state. For full details of
the operation, see the JTAG standard.

Table C-1. Test Access Port Pins

Pin Name Input/Output Description

TDI Input Test data input

TMS Input Test mode select

TCK Input Test clock

TRST Input Test reset

TDO Output Test data out

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference C-3

Test Features

Figure C-1 shows the state diagram for the TAP controller.

Note:

• The TAP controller enters the test-logic-reset state when TMS is
held high after five TCK cycles.

• The TAP controller enters the test-logic-reset state when TRST is
asynchronously asserted.

Figure C-1. TAP Controller State Diagram

Test-Logic_Reset

Run-Test/Idle Select-DR-Scan

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR-Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

1

1 1 1

1

1

1

1

1

1 1

1

1

1

1

1

0

0
0 0

0 0
0 0

0 0

0

0 0

0
0

0

Boundary-Scan Architecture

C-4 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

• An external system reset does not affect the state of the TAP con-
troller, nor does the state of the TAP controller affect an external
system reset.

Instruction Register
The instruction register is five bits wide and accommodates up to 32
boundary-scan instructions.

The instruction register holds both public and private instructions. The
JTAG standard requires some of the public instructions; other public
instructions are optional. Private instructions are reserved for the manu-
facturer’s use.

The binary decode column of Table C-2 lists the decode for the public
instructions. The register column lists the serial scan paths.

Table C-2. Decode for Public JTAG-Scan Instructions

Instruction Name Binary Decode
01234

Register

EXTEST 00000 Boundary-scan

SAMPLE/PRELOAD 10000 Boundary-scan

BYPASS 11111 Bypass

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference C-5

Test Features

Figure C-2 shows the instruction bit scan ordering for the paths shown in
Table C-2.

Figure C-2. Serial Scan Paths

TDOTDI

N

N-1

N-2 2

1

0

0
130

31

4

3

2

1

0

1

Bypass Register

Boundary-Scan Register

JTAG Instruction Register

Boundary-Scan Architecture

C-6 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Public Instructions
The following sections describe the public JTAG scan instructions.

EXTEST – Binary Code 00000

The EXTEST instruction selects the boundary-scan register to be connected
between the TDI and TDO pins. This instruction allows testing of on-board
circuitry external to the device.

The EXTEST instruction allows internal data to be driven to the boundary
outputs and external data to be captured on the boundary inputs.

 To protect the internal logic when the boundary outputs are over-
driven or signals are received on the boundary inputs, make sure
that nothing else drives data on the processor’s output pins.

SAMPLE/PRELOAD – Binary Code 10000

The SAMPLE/PRELOAD instruction performs two functions and selects the
boundary-scan register to be connected between TDI and TDO. The instruc-
tion has no effect on internal logic.

The SAMPLE part of the instruction allows a snapshot of the inputs and
outputs captured on the boundary-scan cells. Data is sampled on the ris-
ing edge of TCK.

The PRELOAD part of the instruction allows data to be loaded on the device
pins and driven out on the board with the EXTEST instruction. Data is pre-
loaded on the pins on the falling edge of TCK.

BYPASS – Binary Code 11111

The BYPASS instruction selects the BYPASS register to be connected to TDI
and TDO. The instruction has no effect on the internal logic. No data
inversion should occur between TDI and TDO.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference C-7

Test Features

Boundary-Scan Register
The boundary-scan register is selected by the EXTEST and SAMPLE/PRELOAD
instructions. These instructions allow the pins of the processor to be con-
trolled and sampled for board-level testing.

Boundary-Scan Architecture

C-8 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference D-1

D NUMERIC FORMATS

Blackfin family processors support 8-, 16-, 32-, and 40-bit fixed-point
data in hardware. Special features in the computation units allow support
of other formats in software. This appendix describes various aspects of
these data formats. It also describes how to implement a block float-
ing-point format in software.

Unsigned or Signed: Two’s-Complement
Format

Unsigned integer numbers are positive, and no sign information is con-
tained in the bits. Therefore, the value of an unsigned integer is
interpreted in the usual binary sense. The least significant words of multi-
ple-precision numbers are treated as unsigned numbers.

Signed numbers supported by the Blackfin family are in two’s-comple-
ment format. Signed-magnitude, one’s-complement, binary-coded
decimal (BCD) or excess-n formats are not supported.

Integer or Fractional
The Blackfin family supports both fractional and integer data formats. In
an integer, the radix point is assumed to lie to the right of the least signif-
icant bit (LSB), so that all magnitude bits have a weight of 1 or greater.
This format is shown in Figure D-1. Note in two’s-complement format,
the sign bit has a negative weight.

Integer or Fractional

D-2 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

In a fractional format, the assumed radix point lies within the number, so
that some or all of the magnitude bits have a weight of less than 1. In the
format shown in Figure D-2, the assumed radix point lies to the left of the
three LSBs, and the bits have the weights indicated.

The native formats for the Blackfin processor family are a signed fractional
1.M format and an unsigned fractional 0.N format, where N is the num-
ber of bits in the data word and M = N – 1.

The notation used to describe a format consists of two numbers separated
by a period (.); the first number is the number of bits to the left of the
radix point, the second is the number of bits to the right of the radix
point. For example, 16.0 format is an integer format; all bits lie to the left
of the radix point. The format in Figure D-2 is 13.3.

Figure D-1. Integer Format

Signed Integer

Unsigned Integer

Bit

Weight

Sign Bit

Radix Point

01215 14 13

. . . 202122213214- (215)

Bit

Weight

Sign Bit

Radix Point

01215 14 13

. . . 202122213214215

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference D-3

Numeric Formats

Table D-1 shows the ranges of signed numbers representable in the frac-
tional formats that are possible with 16 bits.

Figure D-2. Example of Fractional Format

Signed Fractional (13.3)

Bit

Weight

Sign Bit

Radix Point

01215 14 13

. . . 2-32-22-1210211- (212)

34

2021

Unsigned Fractional (13.3)

Bit

Weight

Sign Bit

Radix Point

01215 14 13

. . . 2-32-22-1210211212

34

2021

Binary Multiplication

D-4 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

Binary Multiplication
In addition and subtraction, both operands must be in the same format
(signed or unsigned, radix point in the same location), and the result for-
mat is the same as the input format. Addition and subtraction are
performed the same way whether the inputs are signed or unsigned.

Table D-1. Fractional Formats and Their Ranges

Format # of
Integer
Bits

of
Fractional
Bits

Max Positive Value
(0x7FFF) In Decimal

Max Negative
Value (0x8000)
In Decimal

Value of 1 LSB
(0x0001) In Decimal

1.15 1 15 0.999969482421875 –1.0 0.000030517578125

2.14 2 14 1.999938964843750 –2.0 0.000061035156250

3.13 3 13 3.999877929687500 –4.0 0.000122070312500

4.12 4 12 7.999755859375000 –8.0 0.000244140625000

5.11 5 11 15.999511718750000 –16.0 0.000488281250000

6.10 6 10 31.999023437500000 –32.0 0.000976562500000

7.9 7 9 63.998046875000000 –64.0 0.001953125000000

8.8 8 8 127.996093750000000 –128.0 0.003906250000000

9.7 9 7 255.992187500000000 –256.0 0.007812500000000

10.6 10 6 511.984375000000000 –512.0 0.015625000000000

11.5 11 5 1023.968750000000000 –1024.0 0.031250000000000

12.4 12 4 2047.937500000000000 –2048.0 0.062500000000000

13.3 13 3 4095.875000000000000 –4096.0 0.125000000000000

14.2 14 2 8191.750000000000000 –8192.0 0.250000000000000

15.1 15 1 16383.500000000000000 –16384.0 0.500000000000000

16.0 16 0 32767.000000000000000 –32768.0 1.000000000000000

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference D-5

Numeric Formats

In multiplication, however, the inputs can have different formats, and the
result depends on their formats. The Blackfin family assembly language
allows you to specify whether the inputs are both signed, both unsigned,
or one of each (mixed-mode). The location of the radix point in the result
can be derived from its location in each of the inputs. This is shown in
Figure D-3. The product of two 16-bit numbers is a 32-bit number. If the
inputs’ formats are M.N and P.Q, the product has the format
(M + P).(N + Q). For example, the product of two 13.3 numbers is a 26.6
number. The product of two 1.15 numbers is a 2.30 number.

Fractional Mode and Integer Mode
A product of 2 two’s-complement numbers has two sign bits. Since one of
these bits is redundant, you can shift the entire result left one bit. Addi-
tionally, if one of the inputs was a 1.15 number, the left shift causes the
result to have the same format as the other input (with 16 bits of addi-
tional precision). For example, multiplying a 1.15 number by a 5.11
number yields a 6.26 number. When shifted left one bit, the result is a
5.27 number, or a 5.11 number plus 16 LSBs.

Figure D-3. Format of Multiplier Result

General Rule 4-bit Example 16-bit Examples

M.N
x P.Q

(M + P).(N + Q)

1.111 (1.3 Format)
x 11.11 (2.2 Format)

1111
1111

1111
1111

111.00001 (3.5 Format = (1 + 2).(2 + 3))

5.3
x 5.3

10.6

1.15
x 1.15

2.30

Binary Multiplication

D-6 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

The Blackfin family provides a means (a signed fractional mode) by which
the multiplier result is always shifted left one bit before being written to
the result register. This left shift eliminates the extra sign bit when both
operands are signed, yielding a result that is correctly formatted.

When both operands are in 1.15 format, the result is 2.30 (30 fractional
bits). A left shift causes the multiplier result to be 1.31 which can be
rounded to 1.15. Thus, if you use a signed fractional data format, it is
most convenient to use the 1.15 format.

For more information about data formats, see the data formats listed in
Table 2-2 on page 2-12.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference D-7

Numeric Formats

Block Floating-Point Format
A block floating-point format enables a fixed-point processor to gain some
of the increased dynamic range of a floating-point format without the
overhead needed to do floating-point arithmetic. However, some addi-
tional programming is required to maintain a block floating-point format.

A floating-point number has an exponent that indicates the position of the
radix point in the actual value. In block floating-point format, a set
(block) of data values share a common exponent. A block of fixed-point
values can be converted to block floating-point format by shifting each
value left by the same amount and storing the shift value as the block
exponent.

Typically, block floating-point format allows you to shift out non-signifi-
cant MSBs (most significant bits), increasing the precision available in
each value. Block floating-point format can also be used to eliminate the
possibility of a data value overflowing. See Figure D-4. Each of the three
data samples shown has at least two non-significant, redundant sign bits.
Each data value can grow by these two bits (two orders of magnitude)
before overflowing. These bits are called guard bits.

Figure D-4. Data With Guard Bits

Sign Bit

2 Guard Bits

0x0FFF = 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

0x1FFF = 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0x07FF = 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

To detect bit growth into two guard bits, set SB = –2

Block Floating-Point Format

D-8 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

If it is known that a process will not cause any value to grow by more than
the two guard bits, then the process can be run without loss of data. Later,
however, the block must be adjusted to replace the guard bits before the
next process.

Figure D-5 shows the data after processing but before adjustment. The
block floating-point adjustment is performed as follows.

• Assume the output of the SIGNBITS instruction is SB and SB is used
as an argument in the EXPADJ instruction (see Blackfin Processor
Programming Reference for the usage and syntax of these instruc-
tions). Initially, the value of SB is +2, corresponding to the two
guard bits. During processing, each resulting data value is
inspected by the EXPADJ instruction, which counts the number of
redundant sign bits and adjusts SB if the number of redundant sign
bits is less than two. In this example, SB = +1 after processing,
indicating the block of data must be shifted right one bit to main-
tain the two guard bits.

• If SB were 0 after processing, the block would have to be shifted
two bits right. In either case, the block exponent is updated to
reflect the shift.

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference D-9

Numeric Formats

Figure D-5. Block Floating-Point Adjustment

Sign Bit

One Guard Bit

0x1FFF = 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0x3FFF = 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0x07FF = 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

2. Shift right to restore guard bits

Sign Bit

Two Guard Bits

0x0FFF = 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

0x1FFF = 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0x03FF = 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

1. Check for bit growth

Exponent = +2, SB = +2

Exponent = +1, SB = +1

Exponent = +4, SB = +1

EXPADJ instruction checks
exponent, adjusts SB

Block Floating-Point Format

D-10 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference I-1

I INDEX

Numerics
16-bit operations, 2-26, 2-35
16-bit SDRAM Bank, 18-51
32-bit operations, 2-28

A
A10 pin of SDRAM, 18-33
Abort Acknowledge Register (CANAA),

19-56
AC (Address Calculation), 4-7
Acceptance Filter / Data Acceptance Filter,

19-39
Acceptance Mask Register, 19-40
accumulator result registers A[1: 0], 2-6,

2-38, 2-45
active low/high frame syncs, serial port,

13-41
Active mode, 1-26, 8-13
ACTIVE_PLLDISABLED bit, 8-9
ACTIVE_PLLENABLED bit, 8-9
Active Video Only mode, PPI, 11-19
address bus, 18-62
Address Calculation (AC), 4-7
address compare block, 20-3
addressing

modes, 5-16
transfers supported (table), 5-14

addressing (continued)
See also auto-decrement; auto-increment;

bit-reversed; circular-buffer; indexed;
indirect; modified; post-increment;
post-modify; pre-modify; data address
generators

address mapping, SDRAM, 18-50
Address Not Acknowledged bit, 20-17
address pointer registers. See pointer

registers
address-tag compare operation, 6-14
alarm clock, RTC, 17-2
A-law companding, 13-2, 13-37, 13-62
alignment exceptions, 6-69
alignment of memory operations, 6-68
allocating system stack, 4-66
alternate frame sync mode, 13-44
alternate timing, serial port, 13-43
ALU, 2-1, 2-25 to 2-37

arithmetic, 2-13
arithmetic formats, 2-15
data flow, 2-33
data types, 2-13
functions, 2-25
inputs and outputs, 2-25
instructions, 2-25, 2-29, 2-37
operations, 2-25 to 2-28
status, 2-23
status signals, 2-36

AMC
EBIU block diagram, 18-2
timing parameters, 18-11

Index

I-2 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

AMCKEN bit, 18-10
AMS, 18-9
ANAK, 20-17
AND, logical, 2-25
arbitration

DAB, 7-7
EAB, 7-11
latency, 7-10

architecture, processor core, 2-2
ARDY pin, 18-16, 18-21
arithmetic formats summary, 2-15 to 2-16
Arithmetic Logic Unit (ALU), 1-5
arithmetic logic unit (ALU)

instructions, 2-29
Arithmetic Logic Unit. See ALU
arithmetic operations, 2-25
arithmetic shift (ASHIFT) instruction,

2-50
arithmetic shifts, 2-1, 2-15
Arithmetic Status register (ASTAT), 2-23
ASIC/FPGA designs, 18-1
assembly language, 2-1
ASTAT (Arithmetic Status register), 2-23
asynchronous accesses, by core, 18-17
asynchronous controller, 1-15
asynchronous interfaces supported, 18-1
asynchronous memory, 18-2, 18-9
Asynchronous Memory Bank Address

Range (table), 18-9
Asynchronous Memory Bank Control

registers (EBIU_AMBCTLx), 18-11
asynchronous memory controller. See AMC
Asynchronous Memory Global Control

register (EBIU_AMGCTL), 18-10
asynchronous read, 18-17
asynchronous serial communications, 12-2
asynchronous write, 18-19
ASYNC memory banks, 18-3
atomic operations, 6-69

autobaud, and general-purpose timers,
16-34

autobaud detection, 12-2, 16-34
auto-decrement addressing, 5-11
auto-increment addressing, 5-11
Auto-Refresh

command, 18-59
timing, 18-47

avoiding bus contention, 18-15

B
bank

address, 18-46
size, 18-46
size encodings (table), 18-50

Bank Activate command, 18-24, 18-57
selecting delay for, 18-41

bank size, 18-30
bank width, 18-30
barrel-shifter. See shifter
Base registers (B[3:0]), 2-8, 5-2, 5-7
baud rate, UART, 12-6, 12-7, 12-13
baud rate values, SPI, 10-8
B (Base) registers, 5-7
biased rounding, 2-18
BI bit, 12-6
binary decode, C-4
binary multiplication, D-5
binary numbers, 2-3
Bit Configuration Register 0 (CANBCR0),

19-14
Bit Configuration Register 1 (CANBCR1),

19-15
bit manipulation

bit clear, 2-53
bit set, 2-53
bit test, 2-53
bit toggle, 2-53

bit order, selecting, 13-36
bit-reversed addressing, 5-9

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference I-3

Index

bit-reversed carry addressing, 5-1
Blackfin processor family

core architecture, 1-1
dynamic power management, 1-1
memory architecture, 1-9
native formats, D-2

block diagrams
bus hierarchy, 7-1
core, 7-3
core timer, 16-44, 16-45
EBIU, 18-2
interrupt processing, 4-22
PLL, 8-3
processor, 1-5
RTC, 17-2
SDRAM, 18-31
SPI, 10-2
SPORT, 13-5

block floating point format, D-7
BMODE

bits, 3-14
state, 3-14

BMODE pins, 4-45
booting, 21-2
boot kernel, 3-19
boot modes, 1-28
boot ROM

loading user code, 3-19
reading in user code, 3-19

boundary-scan architecture, C-2
Boundary-Scan register, C-7
branch, 4-9
branch, conditional, 4-13
branch latency, 4-10

conditional branches, 4-14
unconditional branches, 4-15

branch prediction, 4-14
branch target, 4-12

branch target address
unconditional branches, 4-15

B-registers (Base), 2-8, 5-2, 5-7
broadcast mode, 10-2, 10-14
Buffer Read Error bit, 20-17
buffers

Cacheability Protection Lookaside
Buffers (CPLBs), 6-11, 6-43, 6-44

timing, external, 18-61
Buffer Write Error bit, 20-16
BUFRDERR, 20-17
BUFWRERR, 20-16
burst length, 18-24, 18-52
burst stop command, 18-25
burst type, 18-25
bus agents

DAB, 7-10
PAB, 7-6

BUSBUSY, 20-15
Bus Busy bit, 20-15
bus contention, avoiding, 18-15, 21-10
bus error, EBIU, 18-8
buses

hierarchy, 7-1
loading, 21-12
on-chip, 7-1
peripheral, 7-5
See also DAB, EAB, EMB, PAB

bus request and grant, 18-62
BYPASS field, 8-8
BYPASS instruction, C-6
Bypass mode, 3-19
Bypass register, C-6
byte

address, 18-46
byte enables, 18-21
byte order, 2-13

Index

I-4 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

C
cache

coherency support, 6-69
mapping into data banks, 6-31
validity of cache lines, 6-12

Cacheability Protection Lookaside Buffers
(CPLBs), 6-11, 6-43, 6-44

cache block (definition), 6-71
cache hit

address-tag compare, 6-14
data cache access, 6-34
definition, 6-14, 6-71

cache inhibited accesses, 6-69
cache line

components, 6-11
definition, 6-71
states, 6-34

cache miss
definition, 6-34, 6-71
replacement policy, 6-15

CALL instruction, 4-9, 4-11
range, 4-11

CAN
debug and test modes, 19-17
test modes, 19-19

CAN_CEC (CAN error counter) register,
19-19

CAN_DEBUG (CAN debug) register,
19-17, 19-18

CAN Error Counter Register (CANCEC),
19-85

CAN Module Registers, 19-6
capacitive loads, 18-23, 21-12
capacitors, 21-12, 21-13
carry status, 2-36
CAS before RAS, 18-26
CAS latency, 18-25

selecting, 18-40
CAW, 18-46
CBR refresh, 18-26

CCA CAN Configuration Mode
Acknowledge, 19-12

CC flag bit, 4-12
CCIR-656. See ITU-R 656
CCITT G.711 specification, 13-37
CCLK (core clock), 8-4

disabling, 8-29
status by operating mode, 8-12

CC status bit, 4-10
CDDBG bit, 18-37
CDE bit, 19-17
channels

defined, serial, 13-61
serial port TDM, 13-61
serial select offset, 13-61

CHNL bit, 13-59
circuit board testing, C-1, C-6
circular buffer addressing, 5-6

registers, 5-6
wraparound, 5-9

CKELOW bit, 8-25
clean (definition), 6-72
CL field, 18-35, 18-40
CLKHI, 20-7
CLKIN (input clock), 8-1, 8-2
CLKIN to VCO, changing the multiplier,

8-19
CLKLO, 20-7
CLK_SEL bit, 16-15
clock

EBIU, 18-1
frequency for SPORT, 13-31
managing, 21-4
RTC, 17-2
setting up, 13-35
source for general-purpose timers, 16-2
types, 21-4

clock divide modulus register, 13-31
clock generation module, 20-4
Clock High bit, 20-7

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference I-5

Index

clocking, 8-1 to 8-10
clock input (CLKIN) pin, 21-4
Clock Low bit, 20-7
clock phase, SPI, 10-20, 10-22
clock polarity, SPI, 10-20
clock rate

core timer, 16-44
SPORT, 13-2

clock signal, SPI, 10-4
code examples

Active mode to Full On mode, 8-22
Epilog code for nested ISR, 4-59
Execution Trace recreation, 22-18
Full On mode to Active mode, 8-22
interrupt enabling and disabling, 6-71
load base of MMRs, 6-71
loop, 4-16
modification of PLL, 8-19
Prolog code for nested ISR, 4-59
restoration of the control register, 6-71

code patching, 22-5
column address, 18-46

strobe latency, 18-25
Command Inhibit command, 18-60
commands

Auto-Refresh, 18-48, 18-59
Bank Activate, 18-24, 18-41, 18-57
Burst Stop, 18-25
Command Inhibit, 18-60
Load Mode Register, 18-57
No Operation, 18-60
parallel refresh, 18-33
Precharge, 18-27, 18-42, 18-56
Read/Write, 18-58
SDC, 18-55
Self-Refresh, 18-28, 18-59
Transfer Initiate, 10-25

companding, 13-51, 13-62
defined, 13-37
lengths supported, 13-37
multichannel operations, 13-62

computational instructions, 2-1
computational status, 2-23
computational units, 2-1 to 2-57
conditional

branches, 4-13
branch latency, 4-14
instructions, 4-3
JUMP instruction, 4-10

conditional branches, 6-66, 6-67
conditional instructions, 2-23
condition code (CC) flag bit, 4-12
configuration

L1 Instruction Memory, 6-11
L1 SRAM, 6-1
SDC, 18-53
SDRAM, 18-23
SPORT, 13-10

Content-Addressable Memory (CAM),
6-43

contention, bus, avoiding, 18-15
control bit summary, general-purpose

timers, 16-42
control register

data memory, 6-24
EBIU, 18-7
instruction memory, 6-6
restoration, 6-71

convergent rounding, 2-19
core

access to flag configuration, 14-5, 15-4
architecture, 2-2
core clock/system clock ratio control, 8-4
double-fault condition, 4-44
double-fault reset, 3-13
powering down, 8-29

core and system reset, code example, 3-17

Index

I-6 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

core architecture, 1-5 to 1-8
core clock (CCLK), 8-4
core event

in EVT, 4-43
MMR location, 4-43

Core Event Controller (CEC), 4-18
Core Event Vector Table (table), 4-43
core instructions, asynchronous accesses,

18-17
Core Interrupt Latch register (ILAT), 4-40
Core Interrupt Mask register (IMASK),

4-39
Core Interrupts Pending register (IPEND),

3-1, 4-41
core-only software reset, 3-13, 3-17, 3-19
core timer, 16-44 to 16-48

block diagram, 16-45
clock rate, 16-44
scaling, 16-48

Core Timer Control register (TCNTL),
16-45

Core Timer Count register (TCOUNT),
16-46

Core Timer Period register (TPERIOD),
16-47

Core Timer Scale register (TSCALE),
16-48

counter
cycle, 4-4, 22-23
RTC, 17-1

CROSSCORE software, 1-31
cross options, 2-35
crosstalk, 21-12
CSYNC, 6-66
Current Address registers

(DMAx_CURR_ADDR), 9-18
Current Address registers

(MDMA_yy_CURR_ADDR), 9-18

Current Descriptor Pointer registers
(DMAx_CURR_DESC_PTR), 9-17

Current Descriptor Pointer registers
(MDMA_yy_CURR_DESC_PTR),
9-17

Current Inner Loop Count registers
(DMAx_CURR_X_COUNT), 9-19

Current Inner Loop Count registers
(MDMA_yy_CURR_X_COUNT),
9-19

Current Outer Loop Count registers
(DMAx_CURR_Y_COUNT), 9-20

Current Outer Loop Count registers
(MDMA_yy_CURR_Y_COUNT),
9-20

cycle counters, 4-4, 22-23, 22-24
CYCLES and CYCLES2 (Execution Cycle

Count registers), 22-24

D
DAB (DMA Access bus)

arbitration, 7-7
arbitration priority (table), 7-8
bus agents (masters), 7-10
latencies (table), 7-10
performance, 7-9

DAG0 CPLB Miss, 4-50
DAG0 Misaligned Access, 4-50
DAG0 Multiple CPLB Hits, 4-50
DAG0 Protection Violation, 4-50
DAG1 CPLB Miss, 4-50
DAG1 Misaligned Access, 4-50
DAG1 Multiple CPLB Hits, 4-50
DAG1 Protection Violation, 4-50
DAG. See data address generators (DAGs)
Data Address Generators (DAGs)

support for branches, 4-3

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference I-7

Index

data address generators (DAGs), 5-1 to
5-21

addressing modes, 5-16
instructions, 5-17
register modification, 5-13
registers, 2-5, 2-7

data bursts, DMA, 7-9
data bus, 18-62
data cache control instructions, 6-37
data corruption, avoiding with SPI, 10-23
data-driven interrupts, 9-26
data flow, 2-1
data formats, 2-3 to 2-4, 2-11, 2-12

binary multiplication, D-5
SPORT, 13-36

data input modes for PPI, 11-22 to 11-25
data mask encodings, 18-52
data memory, L1, 6-24 to 6-38
Data Memory Control register

(DMEM_CONTROL), 6-24, 6-44
data move, serial port operations, 13-46
Data Not Acknowledged bit, 20-17
data operations, CPLB, 6-44
data output modes for PPI, 11-25 to 11-27
data overflow, 13-39
data register file, 2-5, 2-6
data registers, 2-5, 3-4
data sampling, serial, 13-41
Data SRAM

L1, 6-27
Data Storage, 19-21
data store format, 6-72
Data Test Command register

(DTEST_COMMAND), 6-40
Data Test Data registers

(DTEST_DATAx), 6-41
Data Test registers, 6-39 to 6-42
Data Transfer Count bit, 20-12

data transfers
data register file, 2-6
SPI, 10-2

data types, 2-11 to 2-22
data underflow, 13-39
Data Watch Point Address Control register

(WPDACTL), 22-12
Data Watch Point Address Count Value

registers (WPDACNTn), 22-11
Data Watch Point Address registers

(WPDAn), 22-11
data word

serial data formats, 13-22
UART, 12-6

DBGCTL (Debug Control register), 3-17
DCBS bit, 6-25
DCBS (L1 Data Cache Bank Select) bit,

6-32
DCNT, 20-12
DCPLB Address registers

(DCPLB_ADDRx), 6-56
DCPLB_ADDRx (DCPLB Address

registers), 6-56
DCPLB Data registers (DCPLB_DATAx),

6-53
DCPLB_DATAx (DCPLB Data registers),

6-53
DCPLB_FAULT_ADDR (DCPLB Fault

Address register), 6-60
DCPLB Fault Address register

(DCPLB_FAULT_ADDR), 6-60
DCPLB_STATUS (DCPLB Status

register), 6-59
DCPLB Status register

(DCPLB_STATUS), 6-59
Debug Control register (DBGCTL), 3-17
debug features, 22-1
DEC bit, 19-19
DEC (Instruction Decode), 4-7
Deep Sleep mode, 1-27, 8-14

Index

I-8 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

deferring exception processing, 4-61
Delay Count register (PPI_DELAY), 11-9
development tools, 1-31
DF bit, 8-3, 8-9
DF (Divide Frequency), 8-3
DI_EN bit, 9-13
DIL bit, 19-18
direct-mapped (definition), 6-71
direct memory access (DMA), 1-13, 9-1 to

9-50
dirty (definition), 6-72
Disable Interrupts (CLI) instruction, 6-71
disabling

general-purpose timers, 16-5, 16-13
interrupts, global, 4-42
PLL, 8-15
RTC prescaler, 17-19

DISALGNEXPT instruction, 5-14, 5-15
DI_SEL bit, 9-13
DITFS bit, 13-16, 13-29, 13-45
divide primitives (DIVS, DIVQ), 2-13,

2-36
divisor, UART, 12-12
divisor reset, UART, 12-13
DIVQ instruction, 2-36
DIVS instruction, 2-36
DLAB bit, 12-8, 12-9
DLAN field, 11-3
DMA, 9-1 to 9-50

and SPI, 10-32 to 10-38
and SPORT, 13-3
and synchronization with PPI, 11-22
and UART, 12-9, 12-16
autobuffer mode, 9-28, 9-38
buffer size, multichannel SPORT, 13-65
channel registers, 9-28
channels, 9-39
continuous transfers using autobuffering,

9-42
descriptor array, 9-37

DMA (continued)
descriptor elements, 9-6
descriptor lists, 9-37
descriptor queue management, 9-45
descriptor structures, 9-44
direction, 9-14
DMA-capable peripherals, 9-2
DMA Error interrupt, 9-26
flex descriptor structure, 9-28
flow chart, 9-32
for SPI transmit, 10-17
memory DMA, 9-50
operation flow, 9-32
polling registers, 9-40
refresh, 9-37
register naming conventions, 9-5
serial port block transfers, 13-46
single-buffer transfers, 9-42
software management, 9-39
SPI data transmission, 10-17, 10-18
SPI master, 10-33
SPI slave, 10-36
startup, 9-35
stopping, 9-38
synchronization, 9-39, 9-40
two-dimensional (2D), 9-49
with PPI, 11-31

DMA2D bit, 9-13
DMA Bus. See DAB
DMA Configuration registers

(DMAx_CONFIG), 9-11
DMA Configuration registers

(MDMA_yy_CONFIG), 9-11
DMA_EN bit, 9-14
DMAx_CONFIG (DMA Configuration

registers), 9-11
DMAx_CURR_ADDR (Current Address

registers), 9-18
DMAx_CURR_DESC_PTR (Current

Descriptor Pointer registers), 9-17

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference I-9

Index

DMAx_CURR_X_COUNT (Current
Inner Loop Count registers), 9-19

DMAx_CURR_Y_COUNT (Current
Outer Loop Count registers), 9-20

DMAx_IRQ_STATUS (Interrupt Status
registers), 9-26

DMAx_NEXT_DESC_PTR (Next
Descriptor Pointer registers), 9-8

DMAx_PERIPHERAL_MAP (Peripheral
Map registers), 9-21

DMAx_START_ADDR (Start Address
registers), 9-10

DMAx_X_COUNT (Inner Loop Count
registers), 9-14

DMAx_X_MODIFY (Inner Loop Address
Increment registers), 9-15

DMAx_Y_COUNT (Outer Loop Count
registers), 9-16

DMAx_Y_MODIFY (Outer Loop Address
Increment registers), 9-17

DMC field, 6-26
DMEM_CONTROL (Data Memory

Control register), 6-24, 6-44
DNAK, 20-17
double-fault condition, 4-44
DPMC (Dynamic Power Management

Controller), 8-2, 8-11 to 8-31
DQM Data I/O Mask function, 18-26
DQM pins, 18-26
DR bit, 12-6
DR flag, 12-16
DRI bit, 19-19
DRxPRI SPORT input, 13-4
DRxSEC SPORT input, 13-4
DSP Device ID register (DSPID), 22-25
DSPID (DSP Device ID register), 22-25
DTEST_COMMAND (Data Test

Command register), 6-40
DTEST_DATAx (Data Test Data

registers), 6-41

DTO bit, 19-18
DTxPRI SPORT output, 13-4
DTxSEC SPORT output, 13-4
dual 16-bit operations, 2-26
dynamic power management, 1-26, 8-1 to

8-31
Dynamic Power Management Controller

(DPMC), 8-2, 8-11 to 8-31

E
EAB (External Access bus), 7-10

and EBIU, 18-4
arbitration, 7-11
frequency, 7-11
performance, 7-11

early frame sync, 13-43
EBCAW field, 18-45
EBE bit, 18-45, 18-54
EBIU, 18-1 to 18-62

as slave, 18-4
asynchronous interfaces supported, 18-1
block diagram, 18-2
bus error, 18-8
byte enables, 18-21
clock, 18-1
clocking, 8-1
control registers, 18-7
overview, 18-1
programmable timing characteristics,

18-17
request priority, 18-1
SDRAM devices supported, 18-45
status register, 18-7

EBIU_AMBCTL0 (Asynchronous
Memory Bank Control 0 register),
18-11

EBIU_AMBCTL1 (Asynchronous
Memory Bank Control 1 register),
18-11

Index

I-10 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

EBIU_AMGCTL (Asynchronous Memory
Global Control register), 18-10

EBIU_SDBCTL (SDRAM Memory Bank
Control register), 18-44

EBIU_SDGCTL (SDRAM Memory
Global Control register), 18-33

EBIU_SDRRC (SDRAM Refresh Rate
Control register), 18-47

EBIU_SDSTAT (SDRAM Control Status
register), 18-47

EBSZ field, 18-50
EBUFE bit, 18-36

setting, 18-39
ELSI bit, 12-10
EMISO bit, 10-9
EMREN bit, 18-36
EMU core event, 4-19
emulation, and timer counter, 16-10
emulation event, 4-44
Emulation mode, 3-9, 4-44
Enable Interrupts (STI) instruction, 6-71,

8-21
enabling

general-purpose timers, 16-4, 16-13
enabling interrupts, global, 4-42
ENDCPLB bit, 6-26
endianess, 2-13
endian format

data and instruction storage, 6-62
entire field mode, PPI, 11-18
EPROM, 1-10
ERBFI bit, 12-8
ERR_DET bit, 11-8
ERR_NCOR bit, 11-8
errors

bus parity, 4-52
bus timeout, 4-52
hardware, 4-52
hardware conditions causing, 4-52
internal core, 4-52

errors (continued)
misalignment of data, 6-68
multiple hardware, 4-52
peripheral, 4-52

error signals, SPI, 10-28 to 10-30
ERR_TYP field, 16-8
ETBEI bit, 12-8
evaluation of loop conditions, 4-5
event

definition, 4-18
exception, 4-46
latency in servicing, 4-66
nested, 4-41

event controller, 3-1, 4-18
MMRs, 4-39
sequencer, 4-3

event handling, 1-11, 4-18
event monitor, 22-22
event processing, 4-3
events by priority (table), 4-19
Event Vector Table (EVT), 4-43
EVT (Event Vector Table), 4-43
EVX core event, 4-19
EX1 (Execute 1), 4-7
EX2 (Execute 2), 4-7
EX3 (Execute 3), 4-7
EX4 (Execute 4), 4-7
exception, 4-1

deferring, 4-61
events, 4-46
events causing, 4-47
handler, executing, 4-51
handling instructions in pipeline, 4-61
multiple, 4-50
while exception handler executing, 4-51

exception events, 3-4
exception routine, example code, 4-64
Exceptions by Descending Priority (table),

4-50
exclusive (definition), 6-72

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference I-11

Index

EXCPT instruction, 4-50
Execute 1 (EX1), 4-7
Execute 2 (EX2), 4-7
Execute 3 (EX3), 4-7
Execute 4 (EX4), 4-7
Execution Cycle Count registers (CYCLES

and CYCLES2), 22-24
Execution Unit, components, 4-9
EXT_CLK mode, 16-35 to 16-37
external, 1-10
External Access Bus. See EAB
external buffer timing, 18-61
External Bus Interface Unit, 1-14
External Bus Interface Unit. See EBIU
External Event mode. See EXT_CLK mode
external memory, 1-10, 6-43

design issues, 21-7
interfaces, 18-5

external memory interfaces, 18-5
External Memory Map (figure), 18-3
external SDRAM memory, 18-50
EXTEST instruction, C-6

F
FAST, 20-13
Fast Fourier Transform, 2-35, 5-9
Fast Mode bit, 20-13
FBBRW bit, 18-36
FE bit, 12-6
fetch address, 4-8

incrementation, 4-8
fetched address, 4-3
FFE bit, 12-14
FIFO, 18-1
Flag Clear register (PORTCIO_CLEAR),

15-13
Flag Clear register (PORTFIO_CLEAR),

14-8
Flag Configuration register, core access to,

14-5, 15-4

Flag Data register (PORTFIO), 14-8
Flag Data register (PORTxIO), 15-12
Flag Direction register (PORTFIO_DIR),

14-5, 15-5, 15-6
Flag Input Enable register

(PORTFIO_INEN), 14-21, 15-9
Flag Interrupt Sensitivity register

(PORTFIO_EDGE), 14-19
Flag Mask Interrupt A Clear register

(PORTFIO_MASKA_CLEAR),
14-11

Flag Mask Interrupt A Data register
(PORTFIO_MASKA), 14-15

Flag Mask Interrupt A Set register
(PORTFIO_MASKA_SET), 14-11

Flag Mask Interrupt A Toggle register
(PORTFIO_MASKA_TOGGLE),
14-15

Flag Mask Interrupt B Clear register
(PORTFIO_MASKB_CLEAR),
14-11

Flag Mask Interrupt B Data register
(PORTFIO_MASKB), 14-17

Flag Mask Interrupt B Set register
(PORTFIO_MASKB_SET), 14-11

Flag Mask Interrupt B Toggle register
(PORTFIO_MASKB_TOGGLE),
14-17

Flag Mask Interrupt registers, 14-11
Flag Polarity register

(PORTFIO_POLAR), 14-18
flags, interrupt generation, 14-1, 14-13
flags, overflow, 2-13
Flag Set on Both Edges register

(PORTFIO_BOTH), 14-20
Flag Set register (PORTFIO_SET), 14-8,

15-13
Flag Toggle register

(PORTFIO_TOGGLE), 14-9, 15-17
Flag Value registers, 14-6

Index

I-12 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

flash memory, 1-10, 18-1
FLD bit, 11-9
FLD_SEL bit, 11-6
flex descriptor structure, 9-28
FLOW[2:0] field, 9-12
FLSx bits, 10-12
FLUSH instruction, 6-38
FLUSHINV instruction, 6-38
Force Interrupt / Reset (RAISE)

instruction, 3-11
FPE bit, 12-14
fractional data format, D-1
fractional mode, 2-14, D-6
fractional multiplier results format, 2-17
fractional representation, 2-4
fractions, multiplication, 2-47
framed serial transfers, characteristics,

13-40
framed/unframed data, 13-39
Frame Pointer (FP), 4-4
Frame Pointer (FP) registers, 5-5
frame start detect, PPI, 11-12
frame sync, 13-1

active high/low, 13-41
early, 13-43
early/late, 13-43
external/internal, 13-40
internal, 13-34
internally generated, 13-32
late, 13-43
multichannel mode, 13-55
sampling edge, 13-41
setting up, 13-35
SPORT options, 13-39

frame synchronization
and SPORT, 13-3
PPI in GP modes, 11-28

frame sync polarity, PPI and Timer, 11-29

frame sync pulse
use of, 13-16
when issued, 13-16

frame sync signal, control of, 13-16, 13-21
Frame Track Error, 11-9
FREQ field, 8-26, 8-27
frequencies, clock and frame sync, 13-34
frequency

EAB, 7-11
FSDR bit, 13-60
F signal, 11-9
FT_ERR bit, 11-9, 11-12
full duplex, 13-1, 13-4
full-duplex

SPI, 10-1
FULL_ON bit, 8-9
Full On mode, 1-26, 8-12

G
GAIN field, 8-26, 8-28
GCALL, 20-10
GEN, 20-8
General Call bit, 20-10
General Call Enable bit, 20-8
general-purpose interrupt, 4-18, 4-54

with multiple peripheral interrupts, 4-34
general-purpose I/O (GPIO)

pins, 14-1
general-purpose timers, 16-1 to 16-42

and PPI, 16-37
autobaud mode, 16-34
clock source, 16-2
control bit summary, 16-42
disabling, 16-5, 16-13
enabling, 16-4, 16-13
enabling simultaneously, 16-3
interrupts, 16-3, 16-6, 16-18, 16-37
modes, 16-1
output pad disable, 16-17
PULSE_HI toggle mode, 16-21

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference I-13

Index

general-purpose timers (continued)
registers, 16-2
single pulse generation, 16-17
size of register accesses, 16-4
stopping in PWM_OUT mode, 16-19
waveform generation, 16-17

glitch filtering, UART, 12-20
global enabling and disabling interrupts,

4-42
Global Interrupt, 19-70
Global Interrupt Flag Register (CANGIF),

19-75
Global Interrupt Logic, 19-74
Global Status Register (CANGSR), 19-11
glueless connection, 21-7
GM bit, 10-27
ground plane, 21-12
GSM speech-compression routines, 2-22
GSM speech vocoder algorithms, 2-43

H
H.100, 13-2, 13-60, 13-66
hardware conditions and error interrupts,

4-53
Hardware Conditions Causing Hardware

Error Interrupts (table), 4-53
hardware-error interrupt (HWE), 4-52

causes, 4-52
hardware error interrupts, 4-53
hardware errors, multiple, 4-52
hardware reset, 3-13
Harvard architecture, 6-4
Hibernate state, 1-28, 8-14, 8-29
high frequency design considerations,

21-11
HMVIP, 13-66
hold, for EBIU asynchronous memory

controller, 18-11
HWE (hardware-error interrupt), 4-52

I
I2C bus standard, 20-1
I2S serial devices, 13-2
ICPLB Address registers

(ICPLB_ADDRx), 6-57
ICPLB_ADDRx (ICPLB Address

registers), 6-57
ICPLB Data registers (ICPLB_DATAx),

6-52
ICPLB_DATAx (ICPLB Data registers),

6-52
ICPLB Fault Address register

(ICPLB_FAULT_ADDR), 6-60
ICPLB_FAULT_ADDR (ICPLB Fault

Address register), 6-60
ICPLB_STATUS (ICPLB Status register),

6-60
ICPLB Status register (ICPLB_STATUS),

6-60
ICTL field, 16-52
Idle state, 3-10, 4-1
IEEE 1149.1 standard. See JTAG standard
IF1 (Instruction Fetch 1), 4-7
IF2 (Instruction Fetch 2), 4-7
IF3 (Instruction Fetch 3), 4-7
I-Fetch Access Exception, 4-50
I-Fetch CPLB Miss, 4-50
I-Fetch Misaligned Access, 4-50
I-Fetch Multiple CPLB Hits, 4-50
I-Fetch Protection Violation, 4-50
ILAT (Core Interrupt Latch register), 4-40
illegal combination, 4-50
illegal use protected resource, 4-50
IMASK (Core Interrupt Mask register),

4-39
IMEM_CONTROL (Instruction Memory

Control register), 6-6, 6-44
immediate overflow status, 2-36
index (definition), 6-72

Index

I-14 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

indexed addressing, 5-10
with immediate offset, 5-12

Index registers (I[3:0]), 2-8, 5-2, 5-6
inductance (run length), 21-12
Inner Loop Address Increment registers

(DMAx_X_MODIFY), 9-15
Inner Loop Address Increment registers

(MDMA_yy_X_MODIFY), 9-15
Inner Loop Count registers

(DMAx_X_COUNT), 9-14
Inner Loop Count registers

(MDMA_yy_X_COUNT), 9-14
input clock (CLKIN), 8-1
inputs and outputs, 2-25
instruction address, 4-3
Instruction Alignment Unit, 4-8
instruction-bit scan ordering, C-5
instruction cache

coherency, 6-17
invalidation, 6-18
management, 6-16 to 6-19

Instruction Decode (DEC), 4-7
Instruction Fetch 1 (IF1), 4-7
Instruction Fetch 2 (IF2), 4-7
Instruction Fetch 3 (IF3), 4-7
instruction fetches, 6-44
instruction fetch time loop, 4-17
instruction in pipeline when interrupt

occurs, 4-61
instruction loop buffer, 4-17
Instruction Memory Control register

(IMEM_CONTROL), 6-6, 6-44
Instruction Memory Unit, 4-8
instruction pipeline, 4-3, 4-7
Instruction register, C-2, C-4
instructions

ALU, 2-29, 2-31
conditional, 2-23, 4-3
DAG, 5-17
instruction set, 1-30

instruction (continued)
interlocked pipeline, 6-64
load •store, 6-63
multiplier, 2-40
protected, 3-4
register file, 2-8
shifter, 2-54
stored in memory, 6-62
synchronizing, 6-66

instruction set, 1-30
Instruction Test Command register

(ITEST_COMMAND), 6-21
Instruction Test Data registers

(ITEST_DATAx), 6-22
Instruction Test registers, 6-20 to 6-23
Instruction Watch Point Address Control

register (WPIACTL), 22-7
Instruction Watch Point Address Count

registers (WPIACNTn), 22-5, 22-6
Instruction Watch Point Address registers

(WPIAn), 22-5
instruction watch points, 22-4
instruction width, 4-8
integer data format, D-1
integer mode, 2-14, D-6
integer multiplier results format, 2-17
integers, multiplication, 2-47
interfaces, 7-5

external memory, 18-5
internal, 7-1
internal memory, 18-4
RTC, 17-2

Inter IC bus, 20-1
interleaving

of data in SPORT FIFO, 13-23
SPORT data, 13-5

Internal Address Mapping (table), 18-45
internal bank, 18-26
internal/external frame syncs. See frame

sync

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference I-15

Index

internal memory, 1-10, 6-2
interfaces, 18-4

internal supply regulator, shutting off, 8-29
interrupt, 4-1

assigning priority for UART, 12-11
buffer completion, 9-27
control of system, 4-18
definition, 4-18
DMA error, 9-26
enabling and disabling, 6-71
general-purpose, 4-18, 4-54
general-purpose timers, 16-3
generated by peripheral, 4-21
global enabling and disabling, 4-42
hardware-error, 4-52
multiple sources, 4-22
nested, 4-41
non-nested, 4-55
peripheral, 4-18, 9-27
PF pins, 14-1
priority watermark, 6-36
processing, 4-3, 4-21
row completion, 9-27
RTC, 17-12
servicing, 4-54
shared, 4-34
sources, peripheral, 4-29
SPI Error, 10-7
SPORT Error, 13-30
SPORT RX, 13-26, 13-30
SPORT TX, 13-24, 13-30

interrupt channels, UART, 12-8
interrupt conditions, UART, 12-10
interrupt handling, instructions in pipeline,

4-61
interrupt output, SPI, 10-6
Interrupt Priority register (IPRIO), 6-36
Interrupt Register (CANINTR), 19-62

interrupts
configuring and servicing, 21-4
general-purpose timers, 16-18, 16-37
hardware conditions (table), 4-53
timers, 16-6

interrupt service routine
determining source of interrupt, 4-29

Interrupt Status registers
(DMAx_IRQ_STATUS), 9-26

Interrupt Status registers
(MDMA_yy_IRQ_STATUS), 9-26

invalidating instructions, 4-8
invalidation

of instruction cache, 6-18
invalid cache line (definition), 6-72
I/O interface to peripheral serial device,

13-1
I/O memory space, 1-11
I/O pins, general-purpose, 14-1
IPEND (Core Interrupts Pending register),

3-1, 4-41
IPRIO (Interrupt Priority register), 6-36
IRCLK bit, 13-20
IrDA, 12-14

receiver, 12-19
SIR protocol, 12-1
transmitter, 12-18

I-registers (Index), 2-8
IREN bit, 12-18
IRFS bit, 13-21, 13-40
IRPOL bit, 12-20
ISR and multiple interrupt sources, 4-22
Issue Stop Condition bit, 20-13
ITCLK bit, 13-15
ITEST_COMMAND (Instruction Test

Command register), 6-21
ITEST_DATAx (Instruction Test Data

registers), 6-22
ITEST registers, 6-20
ITFS bit, 13-16, 13-40, 13-56

Index

I-16 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

ITU-R 656 modes, 11-6, 11-8, 11-13
and DLEN field, 11-3
frame start detect, 11-12
frame synchronization, 11-20
output, 11-20

IVG core events, 4-19
IVHW core event, 4-19
IVHW interrupt, 4-52
IVTMR core event, 4-19

J
JPEG compression, PPI, 11-32
JTAG

port, 3-17
standard, C-1, C-2, C-4

JUMP instruction, 4-9
conditional, 4-10
range, 4-10

jumps, 4-1

L
L1 Data SRAM, 6-27
L1 memory. See Level 1 (L1) memory;

Level 1 (L1) Data Memory; Level 1
(L1) Instruction Memory

LARFS bit, 13-21
latched interrupt request, 4-40
late frame sync, 13-43, 13-54
latency

DAB (table), 7-10
programmable flags, 14-22
SDRAM, 18-35
SDRAM Read command, 18-53
servicing events, 4-66
setting CAS value, 18-40
when servicing interrupts, 4-54

LATFS bit, 13-17, 13-43
LB (Loop Bottom registers), 4-5
LC (Loop Counter registers), 4-5

least recently used algorithm (LRU)
(definition), 6-72

Length registers (L[3:0]), 2-8, 5-2, 5-7
Level 1 (L1) Data Memory, 6-24 to 6-38

subbanks, 6-27
traffic, 6-24

Level 1 (L1) Instruction Memory, 6-5 to
6-19

configuration, 6-11
DAG reference exception, 6-7
instruction cache, 6-11
organization, 6-11
subbank organization, 6-5
subbanks, 6-8

Level 1 (L1) memory, 6-4
address alignment, 6-7
definition, 6-72
scratchpad data SRAM, 6-5
See also Level 1 (L1) Data Memory; Level

1 (L1) Instruction Memory
Level 2 (L2) memory, 6-43
Lines Per Frame register (PPI_FRAME),

11-12
line terminations, SPORT, 13-67
little endian (definition), 6-72
load, speculative execution, 6-67
Load Mode Register command, 18-57
load operation, 6-63
load ordering, 6-64
load/store instructions, 5-5
locked transfers, DMA, 7-9
logging nested interrupt, 4-60
logical operations, 2-25
logical shift (LSHIFT) instruction, 2-50
logical shifts, 2-1, 2-15
long jump (JUMP.L) instruction, 4-11
loop, 4-1

buffer, 4-17
conditions, evaluation, 4-5
disabling, 4-17

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference I-17

Index

loop (continued)
instruction fetch time, 4-17
registers, 4-4, 4-6
termination, 4-3
top and bottom addresses, 4-16

Loop Bottom registers (LB), 4-5
Loop Counter registers (LC), 4-5
Loop Top registers (LT), 4-5
LOSTARB, 20-17
Lost Arbitration bit, 20-17
L-registers (Length), 2-8
LRFS bit, 13-21, 13-40, 13-41
LTFS bit, 13-17, 13-40, 13-41
LT (Loop Top registers), 4-5

M
MACs (multiplier-accumulators), 2-37 to

2-50
dual operations, 2-49
multicycle 32-bit instruction, 2-48
See also multiply without accumulate

Mailbox Area, 19-33
Mailbox Configuration (CANMC /

CANMD), 19-35
Mailbox Control Logic, 19-35
Mailbox Interrupts, 19-62, 19-64
Mailbox Layout, 19-22
Mailbox Receive Interrupt Flag Register

(CANMBRIF), 19-68
Mailbox Types, 19-34
Master Control Register (CANMCR),

19-6
Master Mode Enable bit, 20-13
master mode transmission (MEN), 20-32
masters

DAB, 7-10
PAB, 7-6

Master Transfer Complete bit, 20-23,
20-26

Master Transfer Direction bit, 20-13

Master Transfer Error bit, 20-23, 20-25
Master Transfer in Progress bit, 20-18
MBptr Mail Box Pointer, 19-12
MCMEN bit, 13-54
MCOMP, 20-23, 20-26
MDIR, 20-13
MDMA_yy_CONFIG (DMA

Configuration registers), 9-11
MDMA_yy_CURR_ADDR (Current

Address registers), 9-18
MDMA_yy_CURR_DESC_PTR

(Current Descriptor Pointer registers),
9-17

MDMA_yy_CURR_X_COUNT
(Current Inner Loop Count registers),
9-19

MDMA_yy_CURR_Y_COUNT
(Current Outer Loop Count
registers), 9-20

MDMA_yy_IRQ_STATUS (Interrupt
Status registers), 9-26

MDMA_yy_NEXT_DESC_PTR (Next
Descriptor Pointer registers), 9-8

MDMA_yy_PERIPHERAL_MAP
(Peripheral Map registers), 9-21

MDMA_yy_START_ADDR (Start
Address registers), 9-10

MDMA_yy_X_COUNT (Inner Loop
Count registers), 9-14

MDMA_yy_X_MODIFY (Inner Loop
Address Increment registers), 9-15

MDMA_yy_Y_COUNT (Outer Loop
Count registers), 9-16

MDMA_yy_Y_MODIFY (Outer Loop
Address Increment registers), 9-17

memory, 1-10
address alignment, 5-14
architecture, 1-9, 6-1 to 6-5
asynchronous interface, 21-7
asynchronous region, 18-2

Index

I-18 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

memory (continued)
external, 1-10, 6-43
external memory, 18-5
external SDRAM, 18-50
how instructions are stored, 6-62
internal, 1-10
internal bank, 18-26
L1 data, 6-24 to 6-38
L1 Data SRAM, 6-27
management, 6-43
map, 6-2
moving data between SPORT and,

13-46
nonaligned operations, 6-68
off-chip, 1-10
Page Descriptor Table, 6-47
protected, 3-5
protection and properties, 6-43 to 6-60
start locations of L1 Instruction Memory

subbanks, 6-8
terminology, 6-71 to 6-73
transaction model, 6-62
unpopulated, 18-9
See also cache; Level 1 (L1) memory;

Level 1 (L1) Data Memory; Level 1
(L1) Instruction Memory; Level 2
(L2) memory

Memory DMA, 9-50
channels, 9-50
register naming conventions, 9-7

Memory Management Unit (MMU), 6-43
memory map

external (figure), 18-3
memory-mapped registers (MMRs), 6-70

to 6-71
memory page, 6-45

attributes, 6-45
MEN, 20-13
MERR, 20-23, 20-25
MFD field, 13-58

MISO pin, 10-3, 10-4, 10-5, 10-20, 10-23,
10-24, 10-27

-law companding, 13-2, 13-62
MMR location of core events, 4-43
mode

boot, 1-28
Emulation, 4-44

mode fault error, 10-7, 10-28
mode register, 18-26
modes

boot, 3-19
broadcast, 10-2, 10-14
Bypass, 3-19
multichannel, 13-50
of general-purpose timers, 16-1
serial port, 13-10
SPI master, 10-2, 10-24
SPI slave, 10-2, 10-26
UART DMA, 12-16
UART non-DMA, 12-15

MODF bit, 10-28
modified addressing, 5-4
modified (definition), 6-72
modify address, 5-1
Modify registers (M[3:0]), 2-8, 5-2, 5-6
MOSI pin, 10-3, 10-4, 10-5, 10-20, 10-23,

10-24, 10-27
moving data, serial port, 13-46
MPEG compression, PPI, 11-33
MPROG, 20-18
M-registers (Modify), 2-8
MSEL (Multiplication Select) field, 8-8
MSTR bit, 10-9
multichannel frame, 13-57
Multichannel Frame Delay field, 13-58
multichannel mode, 13-50

enable/disable, 13-54
frame syncs, 13-55
SPORT, 13-55

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference I-19

Index

multichannel operation, SPORT, 13-50 to
13-66

multimaster environment
SPI, 10-2

multiple exception, for an instruction, 4-50
multiple interrupt sources, 4-22, 4-60
multiple slave SPI systems, 10-14
Multiplexed SDRAM Addressing Scheme

(figure), 18-50
multiplier, 2-1

accumulator result registers A[1: 0],
2-38, 2-39

arithmetic integer modes formats, 2-16
data types, 2-14
fractional modes format, 2-16
instruction options, 2-42
instructions, 2-40
operands for input, 2-38
operations, 2-38
results, 2-39, 2-40, 2-44
rounding, 2-39
saturation, 2-39
status, 2-23
status bits, 2-40

Multiplier Select (MSEL) field, 8-3
multiply without accumulate, 2-46
MVIP-90, 13-66

N
NAK, 20-8
NAK bit, 20-8
NDSIZE[3:0] field, 9-13
negative status, 2-36
nested interrupt, 4-41

logging, 4-60
Nested Interrupt Handling (figure), 4-57
nested ISR

example Prolog code, 4-59
Next Descriptor Pointer registers

(DMAx_NEXT_DESC_PTR), 9-8

Next Descriptor Pointer registers
(MDMA_yy_NEXT_DESC_PTR),
9-8

NINT bit, 12-10
NMI, 4-45

core event, 4-19
nonaligned memory operations, 6-68
non-maskable interrupt, 4-45
non-nested interrupt, 4-55
Non-Nested Interrupt Handling (figure),

4-56
non-OS environments, 3-7
nonsequential program operation, 4-9
nonsequential program structures, 4-1
No Operation command, 18-60
NOP command, 18-60
normal frame sync mode, 13-44
normal timing, serial port, 13-43
NOT, logical, 2-25
numbers

binary, 2-3
data formats, 2-12
fractional representation, 2-4
two’s complement, 2-4
unsigned, 2-4

numeric formats, D-1 to D-8
binary multiplication, D-5
block floating point, D-7
integer mode, D-6
two’s complement, D-1

O
OE bit, 12-6
off-chip memory, 1-10
OmniVision Serial Camera Control Bus

(SCCB), 20-2
open drain drivers, 10-1
open drain outputs, 10-23
open page, 18-24

Index

I-20 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

operating modes, 3-1 to 3-20, 8-11
Active, 1-26, 8-13
Deep Sleep, 1-27, 8-14
Full On, 1-26, 8-12
Hibernate state, 1-28, 8-14
PPI, 11-6
Sleep, 1-27, 8-13
transition, 8-15

operating mode transitions, 8-18
OR, logical, 2-25
ordering

loads and stores, 6-64
weak and strong, 6-65

oscilloscope probes, 21-14
OUT_DIS bit, 16-8
Outer Loop Address Increment registers

(DMAx_Y_MODIFY), 9-17
Outer Loop Address Increment registers

(MDMA_yy_Y_MODIFY), 9-17
Outer Loop Count registers

(DMAx_Y_COUNT), 9-16
Outer Loop Count registers

(MDMA_yy_Y_COUNT), 9-16
output, PF pin configured as, 14-1
output, PPI, 1 sync mode, 11-25
output pad disable, timer, 16-17
overflow, data, 13-39
overflow, saturation of multiplier results,

2-40
overflow flags, 2-13
Overview, 19-1
Overwrite Protection / Single Shot

Transmission Register (CANOPSS),
19-48

OVR bit, 11-9

P
PAB (Peripheral Access bus), 7-5

and EBIU, 18-4
arbitration, 7-5
bus agents (masters, slaves), 7-6
clocking, 8-1
errors generated by SPORT, 13-31
performance, 7-5

PACK_EN bit, 11-5
packing, serial port, 13-65
page size, 18-27, 18-46
Parallel Peripheral Interface (PPI). See PPI
parallel refresh command, 18-33
PC100 SDRAM standard, 18-1
PC133 SDRAM controller, 1-14
PC133 SDRAM standard, 18-1
PDWN bit, 8-8
PE bit, 12-6
PEMUSWx bits, 22-20
performance

DAB, 7-9
EAB, 7-11
PAB, 7-5
programmable flags, 14-22, 15-19
SDRAM, 18-61

Performance Monitor Control register
(PFCTL), 22-20

Performance Monitor Counter registers
(PFCNTRn), 22-19

Performance Monitoring Unit, 22-19
PERIOD_CNT bit, 16-16
peripheral

configuring for an IVG priority, 4-38
interrupt generated by, 4-21
interrupt sources, 4-29

Peripheral Bus. See PAB
peripheral DMA Start Address registers,

9-10

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference I-21

Index

peripheral interrupts, 4-18
relative priority, 4-34
source masking, 4-32

Peripheral Map registers
(DMAx_PERIPHERAL_MAP), 9-21

Peripheral Map registers
(MDMA_yy_PERIPHERAL_MAP),
9-21

peripherals, 1-4 to 1-5
compatible with SPI, 10-1

peripherals, timing, 7-2
PFCNTRn (Performance Monitor

Counter registers), 22-19
PFCTL (Performance Monitor Control

register), 22-20
PF pins, shared with PPI, 11-1
PFx pins, 10-12
Philips I2C, 20-1
pins, 21-1

SPORT, 13-4
Pin State during SDC Commands (table),

18-56
pin terminations, SPORT, 13-67
pipeline

instruction, 4-3, 4-7
instructions when interrupt occurs, 4-61
interlocked, 6-64

pipeline (figure), 4-8
pipelining, SDC supported, 18-39
PLL

Active mode, 8-13
Active mode, effect of programming for,

8-20
applying power to the PLL, 8-17
block diagram, 8-3
BYPASS bit, 8-13, 8-20
CCLK derivation, 8-3
changing CLKIN-to-VCO multiplier,

8-17
clock counter, 8-10

PLL (continued)
clock dividers, 8-3
clock frequencies, changing, 8-10
clocking to SDRAM, 8-14
clock multiplier ratios, 8-3
code example, Active mode to Full On

mode, 8-22
code example, changing clock multiplier,

8-23
code example, Full On mode to Active

mode, 8-22
configuration, 8-3
control bits, 8-15
Deep Sleep mode, effect of programming

for, 8-21
disabled, 8-15
Divide Frequency (DF) bit, 8-3
DMA access, 8-12, 8-13, 8-21
Dynamic Power Management Controller

(DPMC), 8-11
enabled, 8-15
enabled but bypassed, 8-13
Full On mode, effect of programming

for, 8-20
lock counter, 8-10
maximum performance mode, 8-12
modification, activating changes to DF

or MSEL, 8-19
modification in Active mode, 8-15
Multiplier Select (MSEL) field, 8-3
new multiplier ratio, 8-17
operating modes, operational

characteristics, 8-11
operating mode transitions, 8-18
operating mode transitions (figure), 8-17
PDWN bit, 8-15
PLL_LOCKED bit, 8-19
PLL_OFF bit, 8-15
PLL status (table), 8-11
power domains, 8-23

Index

I-22 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

PLL (continued)
powering down core, 8-29
power savings by operating mode (table),

8-12
processing during PLL programming

sequence, 8-20
programming sequence, 8-19
relocking after changes, 8-19
removing power to the PLL, 8-15
RTC interrupt, 8-14, 8-21
SCLK derivation, 8-1, 8-3
Sleep mode, 8-13, 8-20
STOPCK bit, 8-15
transitions, 21-8
voltage control, 8-11, 8-28
wakeup signal, 8-20

PLL Control register (PLL_CTL), 8-7
PLL_CTL (PLL Control register), 8-7
PLL Divide register (PLL_DIV), 8-6
PLL_DIV (PLL Divide register), 8-6
PLL_LOCKCNT (PLL Lock Count

register), 8-10
PLL_LOCKED bit, 8-9
PLL_OFF bit, 8-9
PLL_STAT (PLL Status register), 8-9
PLL_STAT (PLL status) register, 8-9
PLL Status register (PLL_STAT), 8-9
pointer register file, 2-5
pointer register modification, 5-13
pointer registers, 2-7, 3-4
point-to-point connections, 21-11
polarity, programmable flags, 14-18
POLC bit, 11-3
polling DMA registers, 9-40
POLS bit, 11-3
popping, manual, 4-4
PORT_CFG field, 11-6
PORTCIO_CLEAR (Flag Clear register),

15-13

port connection
SPORT, 13-7

PORT_DIR bit, 11-6
PORT_EN bit, 11-8
PORTFIO_BOTH (Flag Set on Both

Edges register), 14-20
PORTFIO_CLEAR (Flag Clear register),

14-8
PORTFIO_DIR (Flag Direction register),

14-5
PORTFIO_EDGE (Flag Interrupt

Sensitivity register), 14-19
PORTFIO (Flag Data register), 14-8
PORTFIO_INEN (Flag Input Enable

register), 14-21, 15-9
PORTFIO_MASKA_CLEAR (Flag Mask

Interrupt A Clear register), 14-11,
14-15, 14-17

PORTFIO_MASKA (Flag Mask Interrupt
A Data register), 14-15

PORTFIO_MASKA_SET (Flag Mask
Interrupt A Set register), 14-11,
14-15, 14-17

PORTFIO_MASKA_TOGGLE (Flag
Mask Interrupt A Toggle register),
14-15

PORTFIO_MASKB_CLEAR (Flag Mask
Interrupt B Clear register), 14-11

PORTFIO_MASKB (Flag Mask Interrupt
B Data register), 14-17

PORTFIO_MASKB_SET (Flag Mask
Interrupt B Set register), 14-11

PORTFIO_MASKB_TOGGLE (Flag
Mask Interrupt B Toggle register),
14-17

PORTFIO_POLAR (Flag Polarity
register), 14-18

PORTFIO_SET (Flag Set register), 14-8,
15-13

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference I-23

Index

PORTFIO_TOGGLE (Flag Toggle
register), 14-9, 15-17

PORT_PREF0 bit, 6-24
PORT_PREF1 bit, 6-24
port width, PPI, 11-5
PORTxIO_DIR (Flag Direction register),

15-5, 15-6
PORTxIO (Flag Data register), 15-12
post-modify addressing, 5-1, 5-4, 5-7, 5-12
post-modify buffer access, 5-8
power dissipation, 8-23
power domains, 8-23
power-down warning, as NMI, 4-45
powering down core, 8-29
power management, 1-26, 8-1 to 8-31
power-up, 18-26

sequence, 18-57, 18-60
power-up sequence, SDRAM, 18-35
PPI, 11-1 to 11-33

Active Video Only mode, 11-19
and general-purpose timers, 16-37
and synchronization with DMA, 11-22
clock input, 11-1
control signal polarities, 11-3
data input modes, 11-22 to 11-25
data output modes, 11-25 to 11-27
data width, 11-3
delay before starting, 11-10
DMA operation, 11-31
edge-sensitive inputs, 11-30
enabling, 11-8
entire field mode, 11-18
FIFO, 11-9
frame start detect, 11-12
frame synchronization with ITU-R 656,

11-20
frame sync polarity with Timer

peripherals, 11-29
Frame Track Error, 11-9
GP modes, frame synchronization, 11-28

PPI (continued)
ITU-R 656 modes, 11-13, 11-20
MMRs, 11-2
number of samples, 11-11
operating modes, 11-3, 11-6
output, 1 sync mode, 11-25
pins, 11-1
port width, 11-5
timer pins, 11-30
vertical blanking interval only mode,

11-19
video data transfer, 11-32
video processing, 11-13
when data transfer begins, 11-8

PPI_CLK signal, 11-3
PPI_CONTROL (PPI Control register),

11-3
PPI Control register (PPI_CONTROL),

11-3
PPI_COUNT (Transfer Count register),

11-11
PPI_DELAY (Delay Count register), 11-9
PPI_FRAME (Lines Per Frame register),

11-12
PPI_FS1 signal, 11-3
PPI_FS2 signal, 11-3
PPI_FS3 signal, 11-9
PPI_STATUS (PPI Status register), 11-8
PPI Status register (PPI_STATUS), 11-8
PRCENx bits, 22-20
Precharge command, 18-27, 18-56
Precharge delay, selecting, 18-42
PREFETCH instruction, 6-37
pre-modify instruction, 5-11
pre-modify stack pointer addressing, 5-11
prescaler, RTC, 17-1

disabling, 17-19
prescaler block, 20-4
private instructions, C-4
probes, oscilloscope, 21-14

Index

I-24 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

processor block diagram, 1-5
processor core architecture, 2-2
processor mode

determination, 3-1
Emulation, 3-9
figure, 3-2
identification, 3-2
IPEND interrogation, 3-1
Supervisor, 3-7
User, 3-3

processor state
Idle, 3-10
Reset, 3-11

product identification registers, 22-25
Program Counter register (PC), 4-3

PC-relative indirect JUMP and CALL,
4-12

PC-relative offset, 4-10, 4-11
program flow, 4-1
programmable flags, 14-1 to 14-22

edge sensitive, 14-19
latency, 14-22
level sensitive, 14-19
pins, interrupt, 14-1
polarity, 14-18
system MMRs, 14-5
throughput, 14-22, 15-19

programmable timing characteristics,
EBIU, 18-17

Programmable Warning Limit for REC
and TEC, 19-84

Programming examples
Master Mode Clock Setup, 20-36
Master Mode Receive, 20-38
Master Mode Transmit, 20-37
Receive/Transmit Repeated Start

Sequence, 20-40
Repeated Start Condition, 20-39
Slave Mode, 20-35

programming model
cache memory, 6-2
EBIU, 18-7

program sequencer, 4-1
program structures, nonsequential, 4-1
protected instructions, 3-4
protected resources, 3-4
PSM bit, 18-35, 18-54
PSSE bit, 10-9, 18-35
public instructions, C-4, C-6
PULSE_HI bit, 16-18
PULSE_HI toggle mode, 16-21
Pulse Width Count and Capture mode. See

WDTH_CAP mode
Pulse Width Modulation mode. See

PWM_OUT mode
PUPSD bit, 18-35
pushing, manual, 4-4
PWM_OUT mode, 16-15 to 16-25

externally clocked, 16-20
PULSE_HI toggle mode, 16-21
stopping the timer, 16-19

Q
quad 16-bit operations, 2-27
query semaphore, 21-6
quotient status, 2-36

R
radix point, D-1, D-2
range

CALL instruction, 4-11
conditional branches, 4-13
JUMP instruction, 4-10
of signed numbers, D-3

RBSY flag, 10-30
RCKFE bit, 13-22
RCVFLUSH, 20-19
RCVINTLEN, 20-19, 20-25

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference I-25

Index

RCVSERV, 20-19, 20-22, 20-25
RCVSTAT, 20-21
RCVSTAT field, 20-19
RDIV

field, 18-48, 18-53, 18-54
field, equation for value, 18-48

RDTYPE field, 13-20
read, asynchronous, 18-17
read access, for EBIU asynchronous

memory controller, 18-11
read transfers to SDRAM banks, 18-52
Read/Write command, 18-58
Real-Time Clock. See RTC
Receive Buffer Flush bit, 20-19
Receive Buffer Interrupt Length bit, 20-19
Receive Configuration registers

(SPORTx_RCR1, SPORTx_RCR2),
13-18

Receive Control Registers, 19-45
receive FIFO, SPORT, 13-25
Receive FIFO Service bit, 20-22, 20-25
Receive FIFO Status bit, 20-21
Receive Logic, 19-38
Receive Message Pending Register

(CANRMP), 19-45, 19-46, 19-48
receive shift register, 20-3
Receive Status (RCVSTAT) field, 20-28,

20-29
reception error, SPI, 10-30
Rec Receive Mode, 19-11, 19-24
refresh, parallel, 18-33
refresh rate, SDRAM, 21-8
register block, 20-2
register file instructions, 2-8
register files, 2-5 to 2-10
register instructions, conditional branch,

4-10
register move, 4-14

registers
accessible in User mode, 3-4
core, A-1 to A-12
memory-mapped, core, A-1 to A-12
product identification, 22-25
system, B-1 to B-25

Remote Frame Handling Register
(CANRFH), 19-60

Repeat Start bit, 20-12
replacement policy, 6-34

definition, 6-72
reserved SDRAM, 18-2
reset

core double-fault, 3-13
core-only software, 3-13, 3-17, 3-19
effect on memory configuration, 6-26
effect on SPI, 10-3
hardware, 3-13, 8-14
initialization sequence

programming for interrupts, 4-32
system software, 3-13, 3-15
watchdog timer, 3-13, 3-15

reset interrupt (RST), 4-44
reset modes, 21-1
resets

core and system, 3-17
RESET signal, 3-11
Reset state, 3-11
reset vector, 4-45
Reset Vector Addresses (table), 4-45
resources, protected, 3-4
resource sharing, with semaphores, 21-5
Retransmission, 19-50
RETS register, 4-11
return address, 4-3
return address for CALL instruction, 4-9
Return Address registers, 4-4
return from emulation (RTE) instruction,

4-10

Index

I-26 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

return from exception (RTX) instruction,
4-10

return from interrupt (RTI) instruction,
4-10

return from nonmaskable interrupt (RTN)
instruction, 4-10

return from subroutine (RTS) instruction,
4-10

return instruction, 4-10
RETx register, 3-6
RFS pins, 13-39, 13-55, 13-56
RFSR bit, 13-21, 13-39
RND_MOD bit, 2-18, 2-20
ROM, 1-10, 18-1
rounding

biased, 2-18, 2-20
convergent, 2-19
instructions, 2-18, 2-22
unbiased, 2-18

round-to-nearest, 2-20
ROVF bit, 13-27, 13-29
row address, 18-46
RPOLC bit, 12-14
RRFST bit, 13-22
RSCLKx pins, 13-38
RSFSE bit, 13-22
RSPEN bit, 13-9, 13-18, 13-20
RSTART, 20-12
RST core event, 4-19
RST (reset interrupt), 4-44
RTC, 1-23, 17-1 to 17-21

alarm clock features, 17-2
clock requirements, 17-2
counters, 17-1
digital watch features, 17-1
interfaces, 17-2
interrupt structure, 17-12
prescaler, 17-1
programming model, 17-4

RTC (continued)
state transitions, 17-20
stopwatch function, 17-2

RTC Alarm register (RTC_ALARM),
17-18

RTC_ALARM (RTC Alarm register),
17-18

RTC_ICTL (RTC Interrupt Control
register), 17-14

RTC Interrupt Control register
(RTC_ICTL), 17-14

RTC Interrupt Status register
(RTC_ISTAT), 17-15

RTC_ISTAT (RTC Interrupt Status
register), 17-15

RTC_PREN (RTC Prescaler Enable
register), 17-18

RTC Prescaler Enable register
(RTC_PREN), 17-18

RTC_STAT (RTC Status register), 17-13
RTC Status register (RTC_STAT), 17-13
RTC Stopwatch Count register

(RTC_SWCNT), 17-16
RTC_SWCNT (RTC Stopwatch Count

register), 17-16
RTE (return from emulation) instruction,

4-10
RTI instruction, use, 4-65
RTI (return from interrupt) instruction,

4-10
RTN (return from nonmaskable interrupt)

instruction, 4-10
RTS (return from subroutine) instruction,

4-10
RTX (return from exception) instruction,

4-10
RUVF bit, 13-26, 13-30
RX Hold register, 13-26
RXS bit, 10-31
RXSE bit, 13-22

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference I-27

Index

RZI modulation, 12-18

S
SA10 pin, 18-33
SAMPLE/PRELOAD instruction, C-6
sampling clock period, UART, 12-7
sampling edge, SPORT, 13-41
sampling point, UART, 12-7
SB bit, 12-3
scaling, of core timer, 16-48
scan paths, C-5
SCK signal, 10-4, 10-20, 10-23, 10-24
SCL Clock Divider register, 20-6
SCLK, 8-4

changing frequency, 21-10
derivation, 8-1
disabling, 8-29
EBIU, 18-1
frequency, 8-12
status by operating mode (table), 8-12

SCLOVR, 20-11
SCLSEN, 20-16
SCOMP, 20-24, 20-26
scratchpad SRAM, 6-5
SCTLE bit, 18-33, 18-37
SDAOVR, 20-12
SDASEN, 20-16
SDC, 18-2, 18-22 to 18-61

commands, 18-55
component configurations, 18-30
configuration, 18-53
glueless interface features, 18-23
operation, 18-52
set up, 18-53

SDEASE bit, 18-47
SDIR, 20-10
SDQM[1:0] Encodings During Writes

(table), 18-52
SDQM pins, 18-52

SDRAM
A10 pin, 18-33
address mapping, 18-50
auto-refresh, 18-59
banks, 6-43, 18-28
bank size, 18-1
block diagram, 18-31
Buffering Timing Option (EBUFE),

setting, 18-39
configuration, 18-23
external memory, 6-1, 18-50
interface commands, 18-55
latency, 18-35
memory banks, 18-3
no operation command, 18-60
operation parameters, initializing, 18-57
performance, 18-61
power-up sequence, 18-35
read command latency, 18-53
read transfers, 18-52
read/write, 18-58
refresh during PLL transitions, 21-8
refresh rate, 21-8
reserved, 18-2
sharing external, 18-35
size configuration, 18-44
sizes supported, 6-43, 18-23
smaller than 16M byte, 21-8
start addresses, 18-1
timing specifications, 18-60

SDRAM clock enables, setting, 18-37
SDRAM Controller. See SDC
SDRAM Control Status register

(EBIU_SDSTAT), 18-47
SDRAM devices supported, 18-45
SDRAM Interface Signals (table), 18-6
SDRAM Memory Bank Control register

(EBIU_SDBCTL), 18-44
SDRAM Memory Global Control register

(EBIU_SDGCTL), 18-33

Index

I-28 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

SDRAM Refresh Rate Control register
(EBIU_SDRRC), 18-47

SDRS bit, 18-54
Self-Refresh command, 18-59
Self-Refresh mode, 18-28

entering, 18-38
exiting, 18-38

semaphores, 21-5
example code, 21-6
query, 21-6

SEN, 20-8
sensitivity, programmable flags, 14-19
SEQSTAT (Sequencer Status register), 4-4
sequencer, 4-8
sequencer registers, 3-4
Sequencer Status register (SEQSTAT), 4-4
Serial Camera Control Bus, 20-2
serial clock frequency, 10-8
Serial Clock Override bit, 20-11
Serial Clock Sense bit, 20-16
serial communications, 12-2
Serial Data (SDA) Override bit, 20-12
Serial Data Sense bit, 20-16
serial data transfer, 13-1
Serial Peripheral Interface (SPI). See SPI
serial port, 1-18
serial ports. See SPORT
serial scan paths, C-4, C-5
SERR, 20-23, 20-26
servicing interrupt, 4-54
set associative (definition), 6-73
set (definition), 6-72
set up

for EBIU asynchronous memory
controller, 18-11

SDC, 18-53
SDRAM clock enables, 18-37

shared interrupt, 4-34, 4-60

shifter, 2-1, 2-50 to 2-57
arithmetic formats, 2-16
data types, 2-15
immediate shifts, 2-51, 2-52
instructions, 2-54
operations, 2-50
register shifts, 2-52, 2-53
status flags, 2-54
three-operand shifts, 2-52
two-operand shifts, 2-51

shifts, 2-1
short jump (JUMP.S) instruction, 4-11
SIC, 4-29
SIC_IAR0 (System Interrupt Assignment

register 0), 4-34
SIC_IARx (System Interrupt Assignment

registers), 4-34
SIC_IMASK (System Interrupt Mask

register), 4-32
SIC_IWR (System Interrupt Wakeup

Enable register), 4-27
signal integrity, 21-12
signed numbers, 2-3, D-1

ranges, D-3
sign extending data, 2-11
SIMD video ALU operations, 2-37
single 16-bit operations, 2-26
single pulse generation, timer, 16-17
Single Shot Transmission, 19-50
Single Step exception, 4-50
SINIT, 20-24, 20-26
SIZE bit, 10-9
size of accesses, timer registers, 16-4
SKIP_EN bit, 11-3
SKIP_EO bit, 11-3
Slave Enable bit, 20-8
Slave Overflow bit, 20-23, 20-26
slaves

EBIU, 18-4
PAB, 7-6

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference I-29

Index

slave SPI device, 10-6
Slave Transfer Complete bit, 20-24, 20-26
Slave Transfer Complete (SCOMP) bit,

20-26
Slave Transfer Direction bit, 20-10
Slave Transfer Error bit, 20-23, 20-26
Slave Transfer Initiated bit, 20-24, 20-26
Slave Transmit Data Valid bit, 20-8
Sleep mode, 1-27, 8-13
SLEN field, 13-15, 13-21

restrictions, 13-36
word length formula, 13-36

software interrupt handlers, 4-19
software management of DMA, 9-39
Software Reset register (SWRST), 3-16
software watchdog timer, 1-24, 16-48
SOVF, 20-23, 20-26
SPE bit, 10-9
speculative load execution, 6-67
speech compression routines, 2-22
SPI, 10-1 to 10-39

and DMA, 10-32 to 10-38
beginning and ending transfers, 10-30
block diagram, 10-2
clock phase, 10-20, 10-22, 10-24
clock polarity, 10-20, 10-24
clock signal, 10-2, 10-24
compatible peripherals, 10-1
data corruption, avoiding, 10-23
data interrupt, 10-6
data transfer, 10-2
detecting transfer complete, 10-15
effect of reset, 10-3
error interrupt, 10-6
error signals, 10-28 to 10-30
general operation, 10-23 to 10-28
interface signals, 10-4 to 10-7
interrupt outputs, 10-6
master mode, 10-2, 10-24

SPI (continued)
master mode booting, 3-20
master mode DMA operation, 10-33
mode fault error, 10-28
multimaster environment, 10-2
multiple slave systems, 10-14
ports, 1-20
reception error, 10-30
registers, table, 10-19
SCK signal, 10-4
slave device, 10-6
slave mode, 10-2, 10-26
slave mode booting, 3-19, 3-20
slave mode DMA operation, 10-36
slave-select function, 10-12
slave transfer preparation, 10-28
SPI_FLG mapping to PFx pins, 10-12
switching between transmit and receive,

10-32
timing, 10-39
transfer formats, 10-20 to 10-22
Transfer Initiate command, 10-25
transfer modes, 10-25
transmission error, 10-30
transmission/reception errors, 10-15
transmit collision error, 10-30
using DMA, 10-17
word length, 10-9

SPI Baud Rate registers (SPI_BAUD),
10-8, 10-20

SPI_BAUD (SPI Baud Rate registers),
10-8, 10-20

SPI_BAUD values, 10-8
SPI Control registers (SPI_CTL), 10-9,

10-19
SPI_CTL (SPI Control registers), 10-9,

10-19
SPIF bit, 10-31
SPI Flag registers (SPI_FLG), 10-11, 10-19
SPI_FLG (SPI Flag registers), 10-11, 10-19

Index

I-30 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

SPI RDBR Shadow registers
(SPI_SHADOW), 10-19, 10-20

SPI_RDBR (SPI Receive Data Buffer
registers), 10-18, 10-20

SPI Receive Data Buffer registers
(SPI_RDBR), 10-18, 10-20

SPI_SHADOW (SPI RDBR Shadow
registers), 10-19, 10-20

SPISS signal, 10-4, 10-13, 10-14, 10-20
SPI_STAT (SPI Status registers), 10-15,

10-20
SPI Status registers (SPI_STAT), 10-15,

10-20
SPI_TDBR (SPI Transmit Data Buffer

registers), 10-17, 10-20
SPI Transmit Data Buffer registers

(SPI_TDBR), 10-17, 10-20
SPORT, 13-1 to 13-72

active low vs. active high frame syncs,
13-41

and DMA block transfers, 13-2
channels, 13-50
clock, 13-38
clock frequency, 13-31, 13-34
clock rate, 13-2
clock rate restrictions, 13-35
clock recovery control, 13-66
companding, 13-37
configuration, 13-10
data formats, 13-36
data word formats, 13-22
disabling, 13-10, 13-38
DMA data packing, 13-65
enable/disable, 13-9
enabling multichannel mode, 13-54
framed serial transfers, 13-40
framed vs. unframed, 13-39
frame sync, 13-40, 13-43
frame sync frequencies, 13-34

SPORT (continued)
frame sync pulses, 13-1
framing signals, 13-39
general operation, 13-8
H.100 standard protocol, 13-66
initialization code, 13-20
internal memory access, 13-46
internal vs. external frame syncs, 13-40
late frame sync, 13-54
modes, 13-10
moving data to memory, 13-46
multichannel frame, 13-57
multichannel operation, 13-50 to 13-66
PAB error, 13-31
packing data, multichannel DMA, 13-65
pins, 13-1, 13-4
point-to-point connections, 21-11
port connection, 13-7
receive and transmit functions, 13-1
receive clock signal, 13-38
receive FIFO, 13-25
receive word length, 13-26
register writes, 13-11
RX Hold register, 13-26
sampling, 13-41
selecting bit order, 13-36
shortened active pulses, 13-10, 13-38
single clock for both receive and

transmit, 13-38
single word transfers, 13-46
stereo serial connection, 13-8
stereo serial frame sync modes, 13-54
support for standard protocols, 13-66
termination, 13-67
timing, 13-67
transmit clock signal, 13-38
transmitter FIFO, 13-23
transmit word length, 13-23
TX Hold register, 13-24
TX interrupt, 13-24

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference I-31

Index

SPORT (continued)
unpacking data, multichannel DMA,

13-65
window offset, 13-59
word length, 13-36

SPORT Error interrupt, 13-30
SPORT Multichannel Transmit Select

registers (SPORTx_MTCSn), 13-61
SPORT RX interrupt, 13-26, 13-30
SPORTs (serial ports), 1-18
SPORT TX interrupt, 13-30
SPORTx_CHNL (SPORTx Current

Channel register), 13-59
SPORTx Current Channel register

(SPORTx_CHNL), 13-59
SPORTx_MCMCn (SPORTx

Multichannel Configuration
registers), 13-53

SPORTx_MRCSn (SPORTx
Multichannel Receive Select registers),
13-62

SPORTx_MTCSn (SPORTx
Multichannel Transmit Select
registers), 13-64

SPORTx Multichannel Configuration
registers (SPORTx_MCMCn), 13-53

SPORTx Multichannel Receive Select
registers (SPORTx_MRCSn), 13-61,
13-62

SPORTx Multichannel Transmit Select
registers (SPORTx_MTCSn), 13-61,
13-64

SPORTx_RCLKDIV (SPORTx Receive
Serial Clock Divider registers), 13-31

SPORTx_RCR1 (Receive Configuration
registers), 13-18

SPORTx_RCR2 (Receive Configuration
registers), 13-18

SPORTx_RCR2 (SPORTx Receive
Configuration register), 13-20

SPORTx Receive Configuration 2 registers
(SPORTx_RCR2), 13-20

SPORTx Receive Data registers
(SPORTx_RX), 13-25

SPORTx Receive Frame Sync Divider
registers (SPORTx_RFSDIV), 13-32

SPORTx Receive registers (SPORTx_RX),
13-56

SPORTx Receive Serial Clock Divider
registers (SPORTx_RCLKDIV),
13-31

SPORTx_RFSDIV (SPORTx Receive
Frame Sync Divider registers), 13-32

SPORTx_RX (SPORTx Receive Data
registers), 13-25

SPORTx_STAT (SPORTx Status
registers), 13-28

SPORTx Status registers
(SPORTx_STAT), 13-28

SPORTx_TCLKDIV (SPORTx Transmit
Serial Clock Divider registers), 13-31

SPORTx_TCR1 (Transmit Configuration
registers), 13-11

SPORTx_TCR2 (Transmit Configuration
registers), 13-11

SPORTx_TFSDIV (SPORTx Transmit
Frame Sync Divider registers), 13-32

SPORTx Transmit Data registers
(SPORTx_TX), 13-23

SPORTx Transmit Frame Sync Divider
registers (SPORTx_TFSDIV), 13-32

SPORTx Transmit registers
(SPORTx_TX), 13-45, 13-56

SPORTx Transmit Serial Clock Divider
registers (SPORTx_TCLKDIV),
13-31

SPORTx_TX (SPORTx Transmit Data
registers), 13-23

Index

I-32 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

SRAM, 18-1
interface, 21-7
L1 data, 6-27
L1 instruction access, 6-8
scratchpad, 6-5

SRFS bit, 18-36, 18-38
SSEL bit, 7-1
stack, 4-4
Stack Pointer (SP), 4-4
Stack Pointer (SP) registers, 5-5
Stages of Instruction Pipeline (table), 4-7
stalling instructions, 4-8
stalls

pipeline, 6-64
Start Address registers

(DMAx_START_ADDR), 9-10
Start Address registers

(MDMA_yy_START_ADDR), 9-10
Start and Stop conditions, 20-32
state transitions, RTC, 17-20
STATUS field, 12-10
status signals, 2-36
STDVAL, 20-8
stereo serial data, 13-2
stereo serial device, SPORT connection,

13-8
stereo serial frame sync modes, 13-54
STI, 6-70, 6-71, 8-21
sticky overflow status, 2-36
STOP, 20-13
STOPCK field, 8-8
stopwatch function, RTC, 17-2
store operation, 6-63
store ordering, 6-64
strong ordering requirement, 6-70
subroutines, 4-1
Supervisor mode, 3-7
Supervisor Stack Pointer register, 5-5
supply addressing, 5-1

supply addressing with offset, 5-1
SWRST (Software Reset register), 3-16
SYNC, 6-66
synchronization of DMA, 9-39
synchronous serial data transfer, 13-1
SYSCFG (System Configuration register),

4-6
SYSCR (System Reset Configuration

register), 3-14
System and Core Event Mapping (table),

4-19
system clock (SCLK), 8-1
System Configuration register (SYSCFG),

4-6
system design, 21-1 to 21-15

high frequency considerations, 21-11
point-to-point connections, 21-11
recommendations and suggestions,

21-12
recommended reading, 21-14

system interfaces, 7-4
system internal interfaces, 7-1
System Interrupt Assignment register 0

(SIC_IAR0), 4-34
System Interrupt Assignment registers

(SIC_IARx), 4-34
System Interrupt Controller (SIC), 4-18
System Interrupt Mask register

(SIC_IMASK), 4-32
system interrupt processing, 4-21
system interrupts, 4-18
System Interrupt Wakeup Enable register

(SIC_IWR), 4-27
System Reset Configuration register

(SYSCR), 3-14
system software reset, 3-13, 3-15
system stack, recommendation for

allocating, 4-66
SZ bit, 10-27

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference I-33

Index

T
tag (definition), 6-73
TAP registers

Boundary-Scan, C-7
Bypass, C-6
Instruction, C-2, C-4

TAP (Test Access port), C-1, C-2
controller, C-2

TAUTORLD bit, 16-45
TBUFCTL (Trace Buffer Control register),

22-16
TBUFSTAT (Trace Buffer Status register),

22-17
TBUF (Trace Buffer register), 22-17
TCKFE bit, 13-17
TCKRE bit, 13-41
TCNTL (Core Timer Control register),

16-45
TCOUNT (Core Timer Count register),

16-46
TDM interfaces, 13-3
TDM Multichannel mode, 13-2
TDTYPE bits, 13-15
technical support, xlix
Temporary Mailbox Disable Feature

(CANMBTD), 19-59
TEMT bit, 12-6
terminations, SPORT pin/line, 13-67
Test Access port (TAP), C-1, C-2

controller, C-2
Test Clock (TCK), C-6
test features, C-1 to C-7
testing circuit boards, C-1, C-6
Test-Logic-Reset state, C-3
TESTSET instruction, 6-69, 7-9, 21-5
TFS pins, 13-45
TFSR bit, 13-16, 13-39
TFS signal, 13-56
THRE bit, 12-6
THRE flag, 12-6, 12-15

throughput
achieved by interlocked pipeline, 6-64
achieved by SRAM, 6-2
DAB, 7-10
programmable flags, 14-22, 15-19
SPORT, 13-5

TIMDISx bits, 16-5
Time-Division-Multiplexed (TDM) mode,

13-50
See also SPORT, multichannel operation

TIMENx bits, 16-4
timer

core, 16-44 to 16-48
EXT_CLK mode, 16-35 to 16-37
PWM_OUT mode, 16-15 to 16-25
watchdog, 16-48 to 16-53
WDTH_CAP mode, 16-25 to 16-35

Timer Configuration register
(TIMERx_CONFIG), 16-8

Timer Counter register
(TIMERx_COUNTER), 16-9

Timer Disable register
(TIMER_DISABLE), 16-5

TIMER_DISABLE (Timer Disable
register), 16-5

Timer Enable register
(TIMER_ENABLE), 16-4

TIMER_ENABLE (Timer Enable
register), 16-4

Timer Period register
(TIMERx_PERIOD), 16-11

Timer Pulse Width register
(TIMERx_WIDTH), 16-11

timers, 1-21, 16-1 to 16-53
general-purpose, 16-1 to 16-42
UART, 12-2
watchdog, 1-24

Timer Status register (TIMER_STATUS),
16-6

Index

I-34 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

TIMER_STATUS (Timer Status register),
16-6

TIMERx_CONFIG (Timer Configuration
register), 16-8

TIMERx_COUNTER (Timer Counter
register), 16-9

TIMERx_PERIOD (Timer Period
register), 16-11

TIMERx_WIDTH (Timer Pulse Width
register), 16-11

Time Stamp Counter Mode, 19-77
TIMILx bits, 16-7
timing

Auto-Refresh, 18-47
external buffer, 18-61
peripherals, 7-2
SDRAM specifications, 18-60
SPI, 10-39

timing examples, for SPORTs, 13-67
TIMOD field, 10-7, 10-9, 10-25
TIN_SEL bit, 16-34
TINT bit, 16-45
TLSBIT bit, 13-15
TMODE field, 16-15
TMPWR bit, 16-46
TMREN bit, 16-45
TMR_EN field, 16-52
TMRx pin, 16-1
tools, development, 1-31
TOVF bit, 13-24, 13-29
TOVF_ERRx bits, 16-8
TPERIOD (Core Timer Period register),

16-47
TPOLC bit, 12-14
trace buffer

reading, 22-15
Trace Buffer Control register (TBUFCTL),

22-16
Trace Buffer exception, 4-50
Trace Buffer register (TBUF), 22-17

Trace Buffer Status register (TBUFSTAT),
22-17

Trace Unit, 22-14 to 22-18
Transfer Count register (PPI_COUNT),

11-11
Transfer Initiate command, 10-25
transfer initiation from SPI master, 10-25
transitions

operating mode, 8-15, 8-18
transmission error, SPI, 10-30
transmission format

SPORT, 13-2
Transmission Request Set Register

(CANTRS), 19-51
Transmit Buffer Flush bit, 20-20
Transmit Buffer Interrupt Length bit,

20-19
Transmit Clock, serial (TSCLKx) pins,

13-38
transmit collision error, SPI, 10-30
Transmit Configuration registers

(SPORTx_TCR1 and
SPORTx_TCR2), 13-11

Transmit Control Registers, 19-51
Transmit FIFO Service bit, 20-23, 20-25
Transmit FIFO Status bit, 20-21
Transmit Frame Sync (TFS) pins, 13-39
Transmit Logic, 19-49
Transmit Priority defined by Mailbox

Number, 19-51
transmit shift register, 20-3
Transmit Status (XMTSTAT) field, 20-28
tRAS, 18-28
TRAS field, 18-28, 18-29, 18-30, 18-35,

18-41
tRC, 18-29
tRCD, 18-29
TRCD field, 18-29, 18-35
tRFC, 18-29
TRFST bit, 13-17

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference I-35

Index

Trm Transmit Mode, 19-12
tRP, 18-29
TRP field, 18-29, 18-30, 18-35, 18-43
tRRD, 18-30
truncation, 2-22
TRUNx bits, 16-6, 16-7
TSCALE (Core Timer Scale register),

16-48
TSFSE bit, 13-17
TSPEN bit, 13-9, 13-11, 13-14, 19-7,

19-8, 19-9
TUVF bit, 13-24, 13-29, 13-46
TWI Bus Arbitration, 20-32
TWI_CLKDIV, 20-6
TWI Clock Generation and

Synchronization, 20-31
TWI controller’s serial clock (SCL) output,

20-31
TWI Fast mode, 20-34
TWI FIFO Control register, 20-18
TWI_FIFO_CTL, 20-18
TWI FIFO Receive Data Double Byte

register, 20-29
TWI FIFO Receive Data Single Byte

register, 20-28
TWI_FIFO_STAT, 20-20, 20-28
TWI FIFO Status register, 20-20
TWI FIFO Transmit Data Double Byte

register, 20-27
TWI FIFO Transmit Data Single Byte

register, 20-27
TWI General Call Support, 20-33
TWI Interrupt Mask register, 20-22
TWI Interrupt Status register, 20-24
TWI Interrupt Status (TWI_INT_STAT)

register, 20-22
TWI_INT_MASK, 20-22
TWI_INT_STAT, 20-24
TWI_MASTER_ADDR, 20-14
TWI_MASTER_CTL, 20-11

TWI Master Mode Address register, 20-14
TWI Master Mode Control register, 20-11
TWI Master Mode Status register, 20-14
TWI_MASTER_STAT, 20-14, 20-25
TWI_RCV_DATA16, 20-29
TWI_RCV_DATA8, 20-28
TWI_SLAVE_ADDR, 20-9
TWI_SLAVE_CTL, 20-7
TWI Slave Mode Address register, 20-9
TWI Slave Mode Control register, 20-7
TWI Slave Mode Status register, 20-9
TWI_SLAVE_STAT, 20-9
TWI transfer protocol, 20-30
TWI_XMT_DATA16, 20-27
TWI_XMT_DATA8, 20-27
two’s complement format, D-1
Two-Wire Interface (TWI) controller, 20-1
tWR, 18-30
TWR field, 18-30, 18-35, 18-44
TXCOL flag, 10-30
TXE bit, 10-30
TXF bit, 13-24, 13-28
TX Hold register, 13-24
TXS bit, 10-31
TXSE bit, 13-17
tXSR, 18-30

U
UART, 1-21, 12-1 to 12-20

and system DMA, 12-9
assigning interrupt priority, 12-11
autobaud detection, 16-34
baud rate, 12-6, 12-7
baud rate examples, 12-13
clearing interrupt latches, 12-11
clock rate, 7-2
data word, 12-6
divisor, 12-12
divisor reset, 12-13

Index

I-36 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

UART (continued)
DMA channel latency requirement,

12-17
DMA channels, 12-16
DMA mode, 12-16
glitch filtering, 12-20
interrupt channels, 12-8
interrupt conditions, 12-10
IrDA receiver, 12-19
IrDA support, 12-18
IrDA transmit pulse, 12-19
IrDA transmitter, 12-18
mixing modes, 12-17
non-DMA mode, 12-15
receive sampling window, 12-20
sampling clock period, 12-7
sampling point, 12-7
standard, 12-1
switching from DMA to non-DMA,

12-17, 12-18
timers, 12-2
Universal Asynchronous Receiver

Transmitter ports, 1-21
UART Divisor Latch register

(UART_DLH), 12-12
(UART_DLL), 12-12

UART_DLH (UART Divisor Latch
register), 12-12

UART_DLL (UART Divisor Latch
register), 12-12

UART_GCTL (UART Global Control
register), 12-14

UART Global Control register
(UART_GCTL), 12-14

UART_IER (UART Interrupt Enable
register), 12-8

UART_IIR (UART Interrupt
Identification register), 12-10

UART Interrupt Enable register
(UART_IER), 12-8

UART Interrupt Identification register
(UART_IIR), 12-10

UART_LCR (UART Line Control
register), 12-3

UART Line Control register
(UART_LCR), 12-3

UART Line Status register (UART_LSR),
12-5

UART_LSR (UART Line Status register),
12-5

UART_RBR (UART Receive Buffer
register), 12-7

UART Receive Buffer register
(UART_RBR), 12-7

UART Scratch register (UART_SCR),
12-14

UART_SCR (UART Scratch register),
12-14

UART_THR (UART Transmit Holding
register), 12-6

UART Transmit Holding register
(UART_THR), 12-6

UART Transmit Shift register
(UART_TSR), 12-6

UART_TSR (UART Transmit Shift
register), 12-6

UCEN bit, 12-13, 12-14
unbiased rounding, 2-18
unconditional branches

branch latency, 4-15
branch target address, 4-15

undefined instruction, 4-50
underflow, data, 13-39
UNDR bit, 11-9
unframed/framed, serial data, 13-39
Universal Asynchronous Receiver

Transmitter (UART) ports, 1-21
Universal Counter Module, 19-77
unpopulated memory, 18-9
Unrecoverable Event, 4-50

ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference I-37

Index

unsigned integer, D-1
unsigned numbers, 2-4

data formats, 2-12
use of RTI instruction, 4-65
User mode

accessible registers, 3-3
entering, 3-5
leaving, 3-6
protected instructions, 3-4

User Stack Pointer (USP), 3-7, 5-5
User Stack Pointer (USP) register, 5-5

V
Valid bit

clearing, 6-38
figure, 6-23
function, 6-12
in cache line replacement, 6-15
in instruction cache invalidation, 6-19

valid (definition), 6-73
VCO frequency, changing, 21-8
vertical blanking interval only mode, PPI,

11-19
victim (definition), 6-73
video ALU

instructions, 5-14
operations, 2-37

video data transfers
using PPI, 11-32

VisualDSP++
development environment, 1-31

VLEV field, 8-27
voltage, 8-23

changing, 8-28
control, 8-11
dynamic control, 8-23

Voltage Controlled Oscillator (VCO), 8-3
Voltage Regulator Control register

(VR_CTL), 8-25

VR_CTL (Voltage Regulator Control
register), 8-25

W
wait states, additional, 18-21
WAKE bit, 8-26
WAKEUP signal, 3-10, 8-20
Watchdog Control register

(WDOG_CTL), 16-52
Watchdog Count register

(WDOG_CNT), 16-49
Watchdog Status register

(WDOG_STAT), 16-50
watchdog timer, 16-48 to 16-53

functionality, 1-24
operation, 16-49

watchdog timer reset, 3-13, 3-15
Watchpoint Match, 4-50
Watchpoint Status register (WPSTAT),

22-12
Watchpoint Unit, 22-1 to 22-12

combination of instruction and data
watchpoints, 22-3

data address watchpoints, 22-10
instruction watchpoints, 22-4
memory-mapped registers, 22-2
WPIACTL watchpoint ranges, 22-4

waveform generation, pulse width
modulation, 16-17

Way
1-Way associative (direct-mapped), 6-71
definition, 6-73
priority in cache line replacement, 6-16

WB (Write Back), 4-7
WDOG_CNT (Watchdog Count

register), 16-49
WDOG_CTL (Watchdog Control

register), 16-52
WDOG_STAT (Watchdog Status

register), 16-50

Index

I-38 ADSP-BF538/ADSP-BF538F Blackfin Processor Hardware Reference

WDSIZE[1:0] field, 9-14
WDTH_CAP mode, 16-25 to 16-35
WNR bit, 9-14
WOFF field, 13-59
WOM bit, 10-23
word (definition), 2-6
word length

SPI, 10-9
SPORT, 13-36
SPORT receive data, 13-26
SPORT transmission, 13-2
SPORT transmit data, 13-23

WPDACNTn (Data Watchpoint Address
Count Value registers), 22-11

WPDACTL (Data Watchpoint Address
Control register), 22-12

WPDAn (Data Watchpoint Address
registers), 22-11

WPIACNTn (Instruction Watchpoint
Address Count registers), 22-6

WPIACTL (Instruction Watchpoint
Address Control register), 22-7

WPIAn (Instruction Watchpoint Address
registers), 22-5

WPPWR bit, 22-7
WPSTAT (Watchpoint Status register),

22-12
wraparound buffer, 5-9
write, asynchronous, 18-19

write access for EBIU asynchronous
memory controller, 18-11

write back (definition), 6-73
Write Back (WB), 4-7
write buffer depth, 6-36
write through (definition), 6-73
write to precharge delay, selecting, 18-43
WSIZE field, 13-58

X
XFR_TYPE field, 11-6
XMTFLUSH, 20-20
XMTINTLEN, 20-19, 20-25
XMTSERV, 20-19, 20-23, 20-25
XMTSTAT, 20-21
XMTSTAT field, 20-19
XOR, logical, 2-25

Y
YCbCr format, 11-3

Z
zero extending data, 2-11
zero-overhead loop registers, 4-5
zero status, 2-36
µ-law companding, 13-2, 13-62

	ADSP-BF538 Blackfin Processor Hardware Reference, Revision 1.2
	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical Support
	Supported Processors
	Product Information
	Analog Devices Web Site
	EngineerZone

	Notation Conventions
	Register Diagram Conventions

	1 Introduction
	Purpose of this Manual
	Peripherals
	Core Architecture
	Memory Architecture
	Internal Memory
	External Memory
	I/O Memory Space

	Event Handling
	Core Event Controller (CEC)
	System Interrupt Controllers (SICx)

	DMA Support
	External Bus Interface Unit
	PC133 SDRAM Controller
	Asynchronous Controller

	Parallel Peripheral Interface
	General-Purpose Mode Descriptions
	Input Mode
	Frame Capture Mode
	Output Mode
	ITU-R 656 Mode Descriptions
	Active Video Only Mode
	Vertical Blanking Interval Mode
	Entire Field Mode

	Serial Ports (SPORTs)
	Serial Peripheral Interface (SPI) Ports
	Timers
	UART Ports
	Controller Area Network Port
	Two-Wire Interface Port
	Real-Time Clock
	Watchdog Timer
	General-Purpose I/O
	Clock Signals
	Dynamic Power Management
	Full On Operating Mode (Maximum Performance)
	Active Operating Mode (Moderate Power Savings)
	Sleep Operating Mode (High Power Savings)
	Deep Sleep Operating Mode (Maximum Power Savings)
	Hibernate State

	Voltage Regulation
	Boot Modes
	Instruction Set Description
	Development Tools

	2 Computational Units
	Using Data Formats
	Binary String
	Unsigned
	Signed Numbers: Two’s-Complement
	Fractional Representation: 1.15

	Register Files
	Data Register File
	Accumulator Registers
	Pointer Register File
	DAG Register Set
	Register File Instruction Summary

	Data Types
	Endian Byte Order
	ALU Data Types
	Multiplier Data Types
	Shifter Data Types
	Arithmetic Formats Summary
	Using Multiplier Integer and Fractional Formats
	Rounding Multiplier Results
	Unbiased Rounding
	Biased Rounding
	Truncation

	Special Rounding Instructions

	Using Computational Status
	ASTAT Register
	Arithmetic Logic Unit (ALU)
	ALU Operations
	Single 16-Bit Operations
	Dual 16-Bit Operations
	Quad 16-Bit Operations
	Single 32-Bit Operations
	Dual 32-Bit Operations

	ALU Instruction Summary
	ALU Data Flow Details
	Dual 16-Bit Cross Options
	ALU Status Signals

	ALU Division Support Features
	Special SIMD Video ALU Operations

	Multiply Accumulators (Multipliers)
	Multiplier Operation
	Placing Multiplier Results in Multiplier Accumulator Registers
	Rounding or Saturating Multiplier Results

	Saturating Multiplier Results on Overflow
	Multiplier Instruction Summary
	Multiplier Instruction Options

	Multiplier Data Flow Details
	Multiply Without Accumulate
	Special 32-Bit Integer MAC Instruction
	Dual MAC Operations

	Barrel Shifter (Shifter)
	Shifter Operations
	Two-Operand Shifts
	Immediate Shifts
	Register Shifts

	Three-Operand Shifts
	Immediate Shifts
	Register Shifts

	Bit Test, Set, Clear, Toggle
	Field Extract and Field Deposit

	Shifter Instruction Summary

	3 Operating Modes and States
	User Mode
	Protected Resources and Instructions
	Protected Memory
	Entering User Mode
	Example Code to Enter User Mode Upon Reset
	Return Instructions That Invoke User Mode

	Supervisor Mode
	Non-OS Environments
	Example Code for Supervisor Mode Coming Out of Reset

	Emulation Mode
	Idle State
	Example Code for Transition to Idle State

	Reset State
	System Reset and Power-up
	Hardware Reset
	SYSCR Register
	Software Resets and Watchdog Timer
	SWRST Register
	Core-Only Software Reset
	Core and System Reset

	Booting Methods

	4 Program Sequencer
	Sequencer Related Registers
	Sequencer Status (SEQSTAT) Register
	Zero-Overhead Loop (LCx, LTx, LBx) Registers
	System Configuration (SYSCFG) Register

	Instruction Pipeline
	Branches and Sequencing
	Direct Short and Long Jumps
	Direct Call
	Indirect Branch and Call
	PC-Relative Indirect Branch and Call
	Condition Code Flag
	Conditional Branches
	Conditional Register Move

	Branch Prediction

	Loops and Sequencing
	Events and Sequencing
	System Interrupt Processing
	System Peripheral Interrupts
	System Interrupt Wake-Up Enable (SIC_IWRx) Registers
	System Interrupt Status (SIC_ISRx) Registers
	System Interrupt Mask (SIC_IMASKx) Registers
	System Interrupt Assignment (SIC_IARx) Registers

	Core Event Controller Registers
	Core Interrupt Mask (IMASK) Register
	Core Interrupt Latch (ILAT) Register
	Core Interrupts Pending (IPEND) Register

	Global Enabling/Disabling of Interrupts
	Event Vector Table
	Emulation
	Reset
	NMI (Non-Maskable Interrupt)
	Exceptions
	Exceptions While Executing an Exception Handler

	Hardware Error Interrupt
	Core Timer
	General-Purpose Interrupts (IVG7-IVG15)

	Servicing Interrupts
	Nesting of Interrupts
	Non-Nested Interrupts
	Nested Interrupts
	Example Prolog Code for Nested Interrupt Service Routine
	Example Epilog Code for Nested Interrupt Service Routine

	Logging of Nested Interrupt Requests

	Exception Handling
	Deferring Exception Processing
	Example Code for an Exception Handler
	Example Code for an Exception Routine
	Example Code for Using Hardware Loops in an ISR

	Other Usability Issues
	Executing RTX, RTN, or RTE in a Lower Priority Event
	Recommendation for Allocating the System Stack
	Latency in Servicing Events

	5 Data Address Generators
	Addressing With DAGs
	Frame and Stack Pointers
	Addressing Circular Buffers
	Addressing With Bit-Reversed Addresses
	Indexed Addressing With Index and Pointer Registers
	Auto-Increment and Auto-Decrement Addressing
	Pre-Modify Stack Pointer Addressing
	Indexed Addressing With Immediate Offset
	Post-Modify Addressing

	Modifying DAG and Pointer Registers
	Memory Address Alignment
	DAG Instruction Summary

	6 Memory
	Memory Architecture
	Overview of Internal Memory
	Overview of Scratchpad Data SRAM

	L1 Instruction Memory
	Instruction Memory Control (IMEM_CONTROL) Register
	L1 Instruction SRAM
	L1 Instruction Cache
	Cache Lines
	Cache Hits and Misses
	Cache Line Fills
	Line Fill Buffer
	Cache Line Replacement

	Instruction Cache Management
	Instruction Cache Locking by Line
	Instruction Cache Locking by Way
	Instruction Cache Invalidation

	Instruction Test Registers
	Instruction Test Command (ITEST_COMMAND) Register
	Instruction Test Data (ITEST_DATA1) Register
	Instruction Test Data 0 (ITEST_DATA0) Register

	L1 Data Memory
	Data Memory Control (DMEM_CONTROL) Register
	L1 Data SRAM
	L1 Data Cache
	Example of Mapping Cacheable Address Space
	Data Cache Access
	Cache Write Method
	Interrupt Priority Register and Write Buffer Depth
	Data Cache Control Instructions
	Data Cache Invalidation

	Data Test Registers
	Data Test Command (DTEST_COMMAND) Register
	Data Test Data (DTEST_DATA1) Register
	Data Test Data (DTEST_DATA0) Register

	External Memory
	Memory Protection and Properties
	Memory Management Unit
	Memory Pages
	Memory Page Attributes

	Page Descriptor Table
	CPLB Management
	MMU Application
	Examples of Protected Memory Regions
	Instruction CPLB Data (ICPLB_DATAx) Registers
	Data CPLB Data (DCPLB_DATAx) Registers
	Data CPLB Address (DCPLB_ADDRx) Registers
	Instruction CPLB Address (ICPLB_ADDRx) Registers
	Instruction and Data CPLB Status (ICPLB_STATUS, DCPLB_STATUS) Registers
	Instruction and Data CPLB Fault Address (ICPLB_FAULT_ADDR, DCPLB_FAULT_ADDR) Registers

	Memory Transaction Model
	Load/Store Operation
	Interlocked Pipeline
	Ordering of Loads and Stores
	Synchronizing Instructions
	Speculative Load Execution
	Conditional Load Behavior

	Working With Memory
	Alignment
	Cache Coherency
	Atomic Operations
	Memory-Mapped Registers
	Core MMR Programming Code Example

	Terminology

	7 Chip Bus Hierarchy
	Internal Interfaces
	Internal Clocks
	Core Overview
	System Overview
	System Interfaces
	Peripheral Access Bus (PAB)
	PAB Arbitration
	PAB Performance
	PAB Agents (Masters, Slaves)

	DMA Access (DAB0/DAB1), Core (DCB0/DCB1), and External Buses (DEB0/DEB1)
	DABx, DCBx, and DEBx Arbitration
	DAB, DCB, and DEB Performance
	DAB Bus Agents (Masters)

	External Access Bus (EAB)
	EAB Arbitration
	EAB Performance

	8 Dynamic Power Management
	Clocking
	Phase-Locked Loop and Clock Control
	PLL Overview

	PLL Clock Multiplier Ratios
	Core Clock/System Clock Ratio Control

	PLL Registers
	PLL Divide (PLL_DIV) Register
	PLL Control (PLL_CTL) Register
	PLL Status (PLL_STAT) Register
	PLL Lock Count (PLL_LOCKCNT) Register

	Dynamic Power Management Controller
	Operating Modes
	Dynamic Power Management Controller States
	Full On Mode
	Active Mode
	Sleep Mode
	Deep Sleep Mode
	Hibernate State

	Operating Mode Transitions
	Programming Operating Mode Transitions
	PLL Programming Sequence
	PLL Programming Sequence Continues
	Examples
	Active Mode to Full On Mode
	Full On Mode to Active Mode
	In the Full On Mode, Change CLKIN to VCO Multiplier From 31x to 2x

	Dynamic Supply Voltage Control
	Power Supply Management
	Voltage Regulator Control (VR_CTL) Register
	Changing Voltage
	Powering Down the Core (Hibernate State)

	9 Direct Memory Access
	DMA and Memory DMA MMRs
	Naming Conventions for DMA MMRs

	Naming Conventions for Memory DMA Registers
	Next Descriptor Pointer (DMAx_NEXT_DESC_PTR, MDMAx_yy_NEXT_DESC_PTR) Registers
	Start Address (DMAx_START_ADDR, MDMAx_yy_START_ADDR) Registers
	DMA Configuration (DMAx_CONFIG, MDMAx_yy_CONFIG) Registers
	Inner Loop Count (DMAx_X_COUNT, MDMAx_yy_X_COUNT) Registers
	Inner Loop Address Increment (DMAx_X_MODIFY, MDMAx_yy_X_MODIFY) Registers
	Outer Loop Count (DMAx_Y_COUNT, MDMAx_yy_Y_COUNT) Registers
	Outer Loop Address Increment (DMAx_Y_MODIFY, MDMAx_yy_Y_MODIFY) Registers
	Current Descriptor Pointer (DMAx_CURR_DESC_PTR, MDMAx_yy_CURR_DESC_PTR) Registers
	Current Address (DMAx_CURR_ADDR, MDMAx_yy_CURR_ADDR) Registers
	Current Inner Loop Count (DMAx_CURR_X_COUNT, MDMAx_yy_CURR_X_COUNT) Registers
	Current Outer Loop Count (DMAx_CURR_Y_COUNT, MDMAx_yy_CURR_Y_COUNT) Registers
	Peripheral Map (DMAx_PERIPHERAL_MAP, MDMAx_yy_PERIPHERAL_MAP) Registers
	Interrupt Status (DMAx_IRQ_STATUS, MDMAx_yy_IRQ_STATUS) Registers

	Flex Descriptor Structure
	Two-Dimensional DMA
	DMA Operation Flow
	DMA Startup
	DMA Refresh
	To Stop DMA Transfers
	Software Management of DMA
	Synchronization of Software and DMA
	Single-Buffer DMA Transfers
	Continuous Transfers Using Auto Buffering
	Descriptor Structures
	Descriptor Queue Management
	Descriptor Queue Using Interrupts on Every Descriptor
	Descriptor Queue Using Minimal Interrupts

	More 2D DMA Examples

	Memory DMA
	MDMA Bandwidth
	MDMA Priority and Scheduling

	DMA Controller Errors (Aborts)
	DMA Performance: Prioritization and Optimization
	Prioritization and Traffic Control
	DMA Traffic Control Counter Period (DMACx_TC_PER) and Counter (DMACx_TC_CNT) Registers

	Urgent DMA Transfers

	10 SPI Compatible Port Controllers
	Interface Signals
	Serial Peripheral Interface Clock Signals (SCKx)
	Serial Peripheral Interface Slave Select Input Signals (SPIxSS)
	Master Out Slave In (MOSIx)
	Master In Slave Out (MISOx)
	Interrupt Output

	SPI Registers
	SPI BAUD Rate (SPIx_BAUD) Register
	SPI Control (SPIx_CTL) Register
	SPI Flag (SPIx_FLG) Register
	Slave Select Inputs
	Use of FLS Bits in SPI0_FLG for Multiple Slave SPI Systems
	Special Considerations for SPI1 and SPI2 Slave Control

	SPI Status (SPIx_STAT) Register
	SPI Transmit Data Buffer (SPIx_TDBR) Register
	SPI Receive Data Buffer (SPIx_RDBR) Register
	SPI Receive Data Buffer Shadow (SPIx_SHADOW) Register
	Register Functions

	SPI Transfer Formats
	SPI General Operation
	Clock Signals
	Master Mode Operation
	Transfer Initiation From Master (Transfer Modes)
	Slave Mode Operation
	Slave Ready for a Transfer

	Error Signals and Flags
	Mode Fault Error (MODF)
	Transmission Error (TXE)
	Reception Error (RBSY)
	Transmit Collision Error (TXCOL)

	Beginning and Ending an SPI Transfer
	DMA
	DMA Functionality
	Master Mode DMA Operation
	Slave Mode DMA Operation

	Timing

	11 Parallel Peripheral Interface
	PPI Registers
	PPI_CONTROL Register
	PPI_STATUS Register
	PPI_DELAY Register
	PPI_COUNT Register
	PPI_FRAME Register

	ITU-R 656 Modes
	ITU-R 656 Background
	ITU-R 656 Input Modes
	Entire Field
	Active Video Only
	Vertical Blanking Interval (VBI) Only

	ITU-R 656 Output Mode
	Frame Synchronization in ITU-R 656 Modes

	General-Purpose PPI Modes
	Data Input (RX) Modes
	No Frame Syncs
	1, 2, or 3 External Frame Syncs
	2 or 3 Internal Frame Syncs

	Data Output (TX) Modes
	No Frame Syncs
	1 or 2 External Frame Syncs
	1, 2, or 3 Internal Frame Syncs

	Frame Synchronization in GP Modes
	Modes with Internal Frame Syncs
	Modes With External Frame Syncs

	DMA Operation
	Data Transfer Scenarios

	12 UART Port Controllers
	Serial Communications
	UART Control and Status Registers
	UART Line Control (UARTx_LCR) Register
	UART Modem Control (UARTx_MCR) Register
	UART Line Status (UARTx_LSR) Register
	UART Transmit Holding (UARTx_THR) Register
	UART Receive Buffer (UARTx_RBR) Register
	UART Interrupt Enable (UARTx_IER) Register
	UART Interrupt Identification (UARTx_IIR) Register
	UARTx_DLL and UARTx_DLH Registers
	UART Scratch (UARTx_SCR) Register
	UART Global Control (UARTx_GCTL) Register

	Non-DMA Mode
	DMA Mode
	Mixing Modes
	IrDA Support
	IrDA Transmitter Description
	IrDA Receiver Description

	13 Serial Port Controllers
	SPORT Operation
	SPORT Disable
	Setting SPORT Modes
	Register Writes and Effective Latency
	SPORT Transmit Configuration (SPORTx_TCR1, SPORTx_TCR2) Registers
	SPORT Receive Configuration (SPORTx_RCR1, SPORTx_RCR2) Registers
	Data Word Formats
	SPORT Transmit Data (SPORTx_TX) Register
	SPORT Receive Data (SPORTx_RX) Register
	SPORT Status (SPORTx_STAT) Register
	SPORT RX, TX, and Error Interrupts
	PAB Errors

	SPORT Transmit Serial Clock Divider (SPORTx_TCLKDIV, SPORTx_RCLKDIV) Registers
	SPORT Transmit Frame Sync Divider (SPORTx_TFSDIV, SPORTx_RFSDIV) Register
	Clock and Frame Sync Frequencies
	Maximum Clock Rate Restrictions
	Frame Sync & Clock Example

	Word Length
	Bit Order
	Data Type
	Companding
	Clock Signal Options
	Frame Sync Options
	Framed Versus Unframed
	Internal Versus External Frame Syncs
	Active Low Versus Active High Frame Syncs
	Sampling Edge for Data and Frame Syncs
	Early Versus Late Frame Syncs (Normal Versus Alternate Timing)
	Data Independent Transmit Frame Sync

	Moving Data Between SPORTs and Memory
	Stereo Serial Operation
	Multichannel Operation
	SPORT Multichannel Configuration (SPORTx_MCMCn) Registers
	Multichannel Enable
	Frame Syncs in Multichannel Mode
	The Multichannel Frame
	Multichannel Frame Delay
	Window Size
	Window Offset
	SPORT Current Channel (SPORTx_CHNL) Register
	Other Multichannel Fields in SPORTx_MCMC2
	Channel Selection Register
	SPORT Multichannel Receive Selection (SPORTx_MRCSn) Registers
	SPORT Multichannel Transmit Selection (SPORTx_MTCSn) Registers

	Multichannel DMA Data Packing

	Support for H.100 Standard Protocol
	2X Clock Recovery Control

	SPORT Pin/Line Terminations
	Timing Examples

	14 General-Purpose Input/Output Port F
	GPIO Port F Registers (MMRs)
	GPIO Port F Direction (PORTFIO_DIR) Register
	GPIO Port F Value Registers Overview
	GPIO Port F Data (PORTFIO) Register
	GPIO Port F Set (PORTFIO_SET), GPIO Port F Clear (PORTFIO_CLEAR), and GPIO Port F Toggle (PORTFIO_TOGGLE) Registers
	GPIO Port F Mask Interrupt Registers Overview
	GPIO Port F Interrupt Generation Flow
	GPIO Port F Interrupt A (PORTFIO_MASKA, PORTFIO_MASKA_CLEAR, PORTFIO_MASKA_SET, PORTFIO_MASKA_TOGGLE) Registers
	GPIO Port F Interrupt B (PORTFIO_MASKB, PORTFIO_MASKB_CLEAR, PORTFIO_MASKB_SET, PORTFIO_MASKB_TOGGLE) Registers

	GPIO Port F Polarity (PORTFIO_POLAR) Register
	GPIO Port F Interrupt Sensitivity (PORTFIO_EDGE) Register
	GPIO Port F Set on Both Edges (PORTFIO_BOTH) Register
	GPIO Port F Input Enable (PORTFIO_INEN) Register

	Performance/Throughput

	15 General-Purpose Input/Output Ports C, D, E
	GPIO Memory-Mapped Registers (MMRs)
	GPIO Function Enable (PORTxIO_FER) Register
	GPIO Direction (PORTxIO_DIR) Register
	GPIO Input Enable (PORTxIO_INEN) Register

	GPIO Value Registers
	GPIO Data (PORTxIO) Register
	GPIO Set (PORTxIO_SET), GPIO Clear (PORTxIO_CLEAR), and GPIO Toggle (PORTxIO_TOGGLE) Registers

	Performance/Throughput

	16 Timers
	General-Purpose Timers
	Timer Registers
	TIMER_ENABLE Register
	TIMER_DISABLE Register
	TIMER_STATUS Register
	TIMERx_CONFIG Registers
	TIMERx_COUNTER Registers
	TIMERx_PERIOD and TIMERx_WIDTH Registers

	Using the Timer
	Pulse-Width Modulation (PWM_OUT) Mode
	Output Pad Disable
	Single Pulse Generation
	Pulse-Width Modulation Waveform Generation
	Stopping the Timer in PWM_OUT Mode
	Externally Clocked PWM_OUT
	PULSE_HI Toggle Mode

	Pulse Width Count and Capture (WDTH_CAP) Mode
	Autobaud Mode

	External Event (EXT_CLK) Mode
	Using the Timers With the PPI
	Interrupts
	Illegal States
	Summary

	Core Timer
	TCNTL Register
	TCOUNT Register
	TPERIOD Register
	TSCALE Register

	Watchdog Timer
	Watchdog Timer Operation
	WDOG_CNT Register
	WDOG_STAT Register
	WDMOG_CTL Register

	17 Real-Time Clock
	Interfaces
	RTC Clock Requirements
	RTC Programming Model
	Register Writes
	Write Latency
	Register Reads
	Deep Sleep
	Prescaler Enable
	Event Flags
	Interrupts

	RTC Status (RTC_STAT) Register
	RTC Interrupt Control (RTC_ICTL) Register
	RTC Interrupt Status (RTC_ISTAT) Register
	RTC Stopwatch Count (RTC_SWCNT) Register
	RTC Alarm (RTC_ALARM) Register
	RTC Prescaler Enable (RTC_PREN) Register
	State Transitions Summary

	18 External Bus Interface Unit
	Overview
	Block Diagram
	Internal Memory Interfaces
	External Memory Interfaces
	EBIU Programming Model
	Error Detection

	Asynchronous Memory Interface
	Asynchronous Memory Address Decode
	EBIU_AMGCTL Register
	EBIU_AMBCTL0 and EBIU_AMBCTL1 Registers
	Avoiding Bus Contention
	ARDY Input Control

	Programmable Timing Characteristics
	Asynchronous Accesses by Core Instructions
	Asynchronous Reads
	Asynchronous Writes

	Adding Additional Wait States
	Byte Enables
	On-Chip Flash Memory

	SDRAM Controller (SDC)
	Definition of Terms
	Bank Activate Command
	Burst Length
	Burst Stop Command
	Burst Type
	CAS Latency (CL)
	CBR (CAS Before RAS) Refresh or Auto-Refresh
	DQM Pin Mask Function
	Internal Bank
	Mode Register
	Page Size
	Pre-Charge Command
	SDRAM Bank
	Self-Refresh
	tRAS
	tRC
	tRCD
	tRFC
	tRP
	tRRD
	tWR
	tXSR

	SDRAM Configurations Supported
	Example SDRAM System Block Diagrams
	Executing a Parallel Refresh Command

	EBIU_SDGCTL Register
	Setting the SDRAM Clock Enable (SCTLE)
	Entering and Exiting Self-Refresh Mode (SRFS)
	Setting the SDRAM Buffering Timing Option (EBUFE)
	Selecting the CAS Latency Value (CL)
	Selecting the Bank Activate Command Delay (TRAS)
	Selecting the RAS to CAS Delay (TRCD)
	Selecting the Pre-Charge Delay (TRP)
	Selecting the Write to Pre-Charge Delay (TWR)

	EBIU_SDBCTL Register
	EBIU_SDSTAT Register
	EBIU_SDRRC Register
	SDRAM External Memory Size
	SDRAM Address Mapping
	16-Bit Wide SDRAM Address Muxing

	Data Mask (SDQM[1:0]) Encoding
	SDC Operation
	SDC Configuration
	SDC Commands
	Pre-Charge Commands
	Bank Activate Command
	Load Mode Register Command
	Read/Write Command
	Auto-Refresh Command
	Self-Refresh Command
	No Operation/Command Inhibit Commands

	SDRAM Timing Specifications
	SDRAM Performance

	Bus Request and Grant
	Operation

	19 Controller Area Network (CAN) Module
	Overview
	Low Power Features
	CAN Wake-Up From Hibernate State
	CAN Built-In Sleep Mode

	CAN Module Control and Configuration Registers
	CAN Control (CAN_CONTROL) Register
	CAN Status (CAN_STATUS) Register

	CAN Clock (CAN_CLOCK) Register
	CAN Timing (CAN_TIMING) Register
	CAN Debug (CAN_DEBUG) Register

	Data Storage
	Mailbox Identifier Word Registers
	CAN Mailbox Identifier 1 (CAN_MBxx_ID1) Registers
	CAN Mailbox Identifier 0 (CAN_MBxx_ID0) Registers
	CAN Mailbox Time Stamp (CAN_MBxx_TIMESTAMP) Registers
	CAN Mailbox Length (CAN_MBxx_LENGTH) Registers
	CAN Mailbox Data (CAN_MBxx_DATAx) Registers

	Mailbox Area
	Mailbox Types
	Mailbox Control
	CAN Mailbox Configuration (CAN_MCx) and Direction (CAN_MDx) Registers

	Receive Logic
	Acceptance Filter/Data Acceptance Filter
	CAN Acceptance Mask (CAN_AMxx) Registers

	Receive Control Registers
	CAN Receive Message Pending (CAN_RMPx) Register
	CAN Receive Message Lost (CAN_RMLx) Register
	CAN Overwrite Protection/Single Shot Transmission (CAN_OPSSx) Register

	Transmit Logic
	Retransmission
	Single Shot Transmission
	Transmit Priority Defined by Mailbox Number

	Transmit Control Registers
	CAN Transmission Request Set (CAN_TRSx) Registers
	CAN Transmission Request Reset (CAN_TRRx) Registers
	CAN Abort Acknowledge (CAN_AAx) Register
	CAN Transmission Acknowledge (CAN_TAx) Register
	CAN Mailbox Temporary Disable (CAN_MBTD) Register
	CAN Remote Frame Handling (CAN_RFHx) Registers

	CAN Interrupts
	CAN Interrupt (CAN_INTR) Register

	Mailbox Interrupts
	CAN Mailbox Interrupt Mask (CAN_MBIMx) Registers
	CAN Mailbox Interrupt Mask Flag (CAN_MBTIFx) Registers
	CAN Mailbox Receive Interrupt Flag (CAN_MBRIFx) Registers

	Global Interrupt
	Global Interrupt Logic
	CAN Global Interrupt Mask (CAN_GIM) Register
	CAN Global Interrupt Status (CAN_GIS) Register
	CAN Global Interrupt Flag (CAN_GIF) Register

	Universal Counter Module
	Time Stamp Mode
	Watchdog Mode
	Auto Transmit Mode
	Event Counter Mode
	CAN Universal Counter Configuration (CAN_UCCNF) Register
	CAN Universal Counter (CAN_UCCNT) Register
	CAN Universal Counter Reload/Capture (CAN_UCRC) Register

	Programmable Warning Limit for RXECNT and TXECNT
	CAN Errors and Warnings
	CAN Error Counter (CAN_CEC) Register
	CAN Error Status (CAN_ESR) Register
	CAN Error Counter Warning Level (CAN_EWR) Register

	20 Two-Wire Interface Controllers
	Overview
	Architecture
	Register Descriptions
	TWI Control (TWIx_CONTROL) Registers
	TWI Clock Divider (TWIx_CLKDIV) Registers
	TWI Slave Mode Control (TWIx_SLAVE_CTRL) Registers
	TWI Slave Mode Address (TWIx_SLAVE_ADDR) Registers
	TWI Slave Mode Status (TWIx_SLAVE_STAT) Registers
	TWI Master Mode Control (TWIx_MASTER_CTRL) Registers
	TWI Master Mode Address (TWIx_MASTER_ADDR) Registers
	TWI Master Mode Status (TWIx_MASTER_STAT) Registers
	TWI FIFO Control (TWIx_FIFO_CTRL) Registers
	TWI FIFO Status (TWIx_FIFO_STAT) Registers
	TWI Interrupt Mask (TWIx_INT_ENABLE) Registers
	TWI Interrupt Status (TWIx_INT_STAT) Registers
	TWI FIFO Transmit Data Single Byte (TWIx_XMT_DATA8) Registers
	TWI FIFO Transmit Data Double Byte (TWIx_XMT_DATA16) Registers
	TWI FIFO Receive Data Single Byte (TWIx_RCV_DATA8) Registers
	TWI FIFO Receive Data Double Byte (TWIx_RCV_DATA16) Registers

	Data Transfer Mechanics
	Clock Generation and Synchronization
	Bus Arbitration
	Start and Stop Conditions
	General Call Support
	Fast Mode

	Programming Examples
	General Setup
	Slave Mode
	Master Mode Clock Setup
	Master Mode Transmit
	Master Mode Receive
	Repeated Start Condition
	Transmit/Receive Repeated Start Sequence
	Receive/Transmit Repeated Start Sequence
	Clock Stretching
	Clock Stretching During FIFO Underflow
	Clock Stretching During FIFO Overflow
	Clock Stretching During Repeated Start Condition

	Electrical Specifications

	21 System Design
	Pin Descriptions
	Recommendations for Unused Pins

	Resetting the Processor
	Booting the Processor
	Managing Clocks
	Managing Core and System Clocks

	Configuring and Servicing Interrupts
	Semaphores
	Example Code for Query Semaphore

	Data Delays, Latencies and Throughput
	Bus Priorities
	External Memory Design Issues
	Example Asynchronous Memory Interfaces
	Using SDRAMs Smaller Than 16M Byte
	Managing SDRAM Refresh During PLL Transitions
	Avoiding Bus Contention

	High Frequency Design Considerations
	Point-to-Point Connections on Serial Ports
	Signal Integrity
	Decoupling Capacitors and Ground Planes
	Oscilloscope Probes
	Recommended Reading

	22 Blackfin Processor Debug
	Watchpoint Unit
	Instruction Watchpoints
	Instruction Watchpoint Address (WPIAn) Registers
	Instruction Watchpoint Address Count (WPIACNTn) Registers
	Instruction Watchpoint Address Control (WPIACTL) Register
	Data Address Watchpoints
	Data Watchpoint Address (WPDAn) Registers
	Data Watchpoint Address Count Value (WPDACNTn) Registers
	Data Watchpoint Address Control (WPDACTL) Register
	Watchpoint Status (WPSTAT) Register

	Trace Unit
	Trace Buffer Control (TBUFCTL) Register
	Trace Buffer Status (TBUFSTAT) Register
	Trace Buffer (TBUF) Register
	Code to Recreate the Execution Trace in Memory

	Performance Monitoring Unit
	Performance Monitor Counter (PFCNTRn) Registers
	Performance Monitor Control (PFCTL) Register
	Event Monitor Table

	Cycle Counter
	CYCLES and CYCLES2 Registers

	Product Identification Register
	DSP Device ID (DSPID) Register

	A Blackfin Processor Core MMR Assignments
	L1 Data Memory Controller Registers
	L1 Instruction Memory Controller Registers
	Interrupt Controller Registers
	Core Timer Registers
	Debug, MP, and Emulation Unit Registers
	Trace Unit Registers
	Watchpoint and Patch Registers
	Performance Monitor Registers

	B System MMR Assignments
	Dynamic Power Management Registers
	System Reset and Interrupt Control Registers
	Watchdog Timer Registers
	Real-Time Clock Registers
	Parallel Peripheral Interface (PPI) Registers
	UART Controller Registers
	SPI Controller Registers
	Timer Registers
	GPIO Port C, D, and E Registers
	GPIO Port F Registers
	SPORT Controller Registers
	DMA/Memory DMA Control Registers
	External Bus Interface Unit Registers
	CAN Registers
	Two-Wire Interface Registers

	C Test Features
	JTAG Standard
	Boundary-Scan Architecture
	Instruction Register
	Public Instructions
	EXTEST – Binary Code 00000
	SAMPLE/PRELOAD – Binary Code 10000
	BYPASS – Binary Code 11111

	Boundary-Scan Register

	D Numeric Formats
	Unsigned or Signed: Two’s-Complement Format
	Integer or Fractional
	Binary Multiplication
	Fractional Mode and Integer Mode

	Block Floating-Point Format

	I Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

