
Engineer-to-Engineer Note EE-306

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

PGO Linker - A Code Layout Tool for Blackfin Processors
Contributed by Kaushal Sanghai Rev 1 – December 4, 2006

Copyright 2006, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
Blackfin® processors provide on-chip Level 1
(L1) memory that can be configured to take
advantage of application-specific workload
characteristics. L1 memory can be configured as
SRAM, or it can be split into a mix of SRAM
and cache memory. L1 SRAM memory improves
performance by statically mapping the most
frequently executed code sections and critical
real-time code.

To achieve the best system performance, an
application developer can utilize the execution
profile of an application and domain knowledge
to hand-tune the code memory layout. However,
this can be extremely time-consuming for large
applications.

To assist in automating this tedious process and
decrease development time, a link-time profile-
guided optimization (PGO) tool, PGO Linker,
has been developed to produce an efficient code
map for L1 SRAM instruction memory. It uses
the execution profile of the application and
program optimization techniques to yield the
most efficient code layout.

This document describes the functional behavior
of the PGO Linker tool, as well as its usage,
performance benefits, features, and limitations.

Motivation
Figure 1 shows the Blackfin processor memory
hierarchy. L1 memory can be used entirely as

SRAM memory, or it can be split between
SRAM and cache memory.

Figure 1. Blackfin Memory Hierarchy

Internal L2 memory shown in Figure 1
is available only on ADSP-BF561 dual-
core Blackfin processors. It can be
configured as SRAM only.

All addresses that do not resolve to L1 SRAM
are accessed directly by the core in external
memory via the External Bus Interface Unit
(EBIU), resulting in costly system clock (SCLK)
domain accesses. However, when L1 cache
memory is used, external memory is accessed
only after a cache miss, which improves average
memory access time. Performance can be further
improved by utilizing L1 SRAM. Code mapped
to L1 SRAM is not subject to cache misses,
thereby completely eliminating any external
memory accesses and providing guaranteed fast
access to all requests by the core. Unfortunately,
all code cannot be mapped to L1 SRAM, due to
the limited amount of internal memory available.

SRAM

SRAM/Cache

Core Multiple System Clock Cycles

One Core Cycle

L1
Instruction

SDRAM

(External)

4x

(16 – 128
MB)

and/or

L2 SRAM

 a

PGO Linker - A Code Layout Tool for Blackfin Processors (EE-306) Page 2 of 7

For better performance, only critical real-time
code and the most frequently executed code are
mapped to L1 SRAM space. This ensures
minimum memory access latency for most of the
program’s execution. The less frequently
accessed code can be mapped to external
memory, which is accessed directly by the core
or through L1 cache (if cache is enabled).

The PGO Linker automates the process of
mapping the most frequently executed code to
L1 SRAM memory by using program
optimization techniques to produce an efficient
code layout. This eliminates the need to hand-
tune the code layout and saves the developer
from having to make tedious changes to source
code.

How Does the PGO Linker Work?
This section describes the functional behavior of
the PGO Linker utility. Figure 2 shows the steps
performed by the tool.

Figure 2. Functional Flow of PGO Linker

First, the PGO Linker gathers the functional
symbol information and the profile data output
from the VisualDSP++® IDDE. To obtain the

profile data, the tool uses a profiling mechanism
based on the type of session being run.

Emulator sessions use the statistical profiler, and
simulator sessions use the linear profiler. The
PGO Linker's optimization command line
switches (O1 and O2) specify the optimization
technique to be employed during the build to
produce an output .asm file.

The output .asm file contains an ordered priority
list for all functions in the application. Once this
file is included in the project, the linker uses the
priority list of functions specified in the output
file (.asm) and the linker description file (.ldf)
to produce the optimal code layout.

How Do I Use the PGO Linker?
The PGO Linker is a command-line utility
installed under the VisualDSP++ directory. This
tool requires a Blackfin processor executable
(.dxe) file and input profile data to produce the
code layout.

The output of the PGO Linker is only as
good as the profile data set it gathers
from the VisualDSP++ IDDE.

The input profile data should be independent of
the initial memory placement of the code by the
linker. By default, the linker places functions in
the order in which they appear in the source files
listed in the project folder. Functions are first
mapped to L1 SRAM memory, and the
remaining functions (if any) are mapped to the
higher levels of the memory hierarchy.

The statistical profiler accounts for memory
access latencies to the different levels of
memory. This implies that functions placed in
external memory will have a higher execution
percentage (in terms of real time) than if the
same functions were to be placed in on-chip L1
SRAM. Thus, to avoid any bias to functions
placed in external memory, place all code in one
level of memory hierarchy (preferably in external
memory) with cache enabled. This minimizes the

Read Function Symbol Module
Application

Gather Profile Information Module

Code Layout Module

Generate Output File (ASM) Module

Re-Link and Test

 a

PGO Linker - A Code Layout Tool for Blackfin Processors (EE-306) Page 3 of 7

memory access latencies to the different levels of
memory in the execution profile.

To completely exclude memory latencies in the
execution profile, run the PGO Linker tool in a
compiled simulation session. In a compiled
simulation session, the linear profiler profiles
only the instruction count; therefore, it does not
account for any access latencies due to memory
hierarchy.

The sample input data set should be
representative and small for better and
faster results.

To run the PGO Linker:

1. Load the program in VisualDSP++.

2. Choose Tools->Profiler to open the
Profiler window.

3. Run the program with a sample input data
set.

4. Wait until the program halts or is halted
manually.

5. Open a Windows Command Prompt window.

6. Execute the PGO Linker utility with the
appropriate command-line arguments
(Listing 1). The tool produces an .asm file.

7. Include the generated .asm file in the project.

8. Rebuild the project.

PGOLinker <dxefile(.dxe)> <Output file (.asm)> -L1Min -L1Max -L1Step –algorithm

<dxefile(.dxe)> - Blackfin executable
<Output file(.asm)> - The file would contain all the linker directives for the
function symbols

Options

-help: To display all options
-L1Min: Minimum size of L1 Instruction SRAM, default: 4KB
-L1Max: Maximum size of L1 Instruction SRAM, default: 80KB
-L1Step: Steps of increase in L1 SRAM, default: 4KB
-algorithm: O1 | O2

Listing 1. PGO Linker Command Line Example

The .asm file produced by the PGO Linker is
added to the project. Upon rebuilding the project,
the linker places functions based on the priorities
assigned in the generated .asm file. The
performance can be evaluated with test inputs.

Output File Format and .priority Directive

The output has an .asm extension and the
following format:
.extern function_symbol;

.priority function_symbol,
src_file_path, assigned_priority #;

 a

PGO Linker - A Code Layout Tool for Blackfin Processors (EE-306) Page 4 of 7

where:

.extern notifies the linker that
function_symbol is an externally defined
symbol.

function_symbol is the mangled function name.
The linker uses mangled function names for
mapping object code.

.priority is the linker directive used for
mapping functions based on the assigned priority
level.

src_file_path is used to resolve static
symbols.

assigned_priority # is a positive integer
whose value specifies the order of mapping for
the functions ¬ the higher the number, the higher
the priority.

An example of an output file is:
.extern _foo;

.priority _foo,"..\..\src\", 900;

.extern _bar;

.priority _bar,"..\..\src\", 897;

In this case, the foo() function has higher
priority than the bar() function.

Because of the .priority directives associated
with function symbols in the example above, the
linker will place the foo() function before
mapping the bar() function in L1 memory
since 900 is greater than 897.

In the generated file, function priorities are
assigned with an interval of "3", providing the
user with the flexibility to add functions based on
application knowledge. Also, any number of
functions can be given higher priority above the
highest priority function. In the same way, any
number of functions can be assigned lower
priority below the lowest priority function.

Note that the .priority directive can also be
used without the PGO Linker.

Besides the output file, the PGO Linker also
provides information pertaining to L1 size versus

execution percentage in order to help evaluate L1
memory configurations and size.

The dark blue text in Figure 3 indicates when the
PGO Linker tool should be used in a typical
embedded system design cycle. Note that for any
changes to source code, the layout should be
regenerated.

Figure 3. When To Use PGO Linker

Benefits, Features, Limitations,
and Usage
Performance improvements are largely
dependent on application characteristics in terms
of code size and the number of functions.
Experiments over a set of benchmark programs
showed a 3% to 32% improvement in core cycles
as compared to the default linker mapping. In
most cases, the O2 algorithm provided an
additional 1% to 5% improvement compared to
the O1 algorithm. The tests were conducted with
cache enabled for a 16K L1 SRAM.

As a general rule of thumb, the PGO Linker is
most useful for applications with code size
exceeding 150 Kbytes and with over 200
functions.

Code Development
Debug Successful

Program Optimization

System design

Compiler Optimization and/or Profile-Guided
Compiler Optimizations

Evaluate L1 Memory Configurations and Size
Within PGO Linker Framework

 a

PGO Linker - A Code Layout Tool for Blackfin Processors (EE-306) Page 5 of 7

Benefits

In addition to performance benefits, the PGO
Linker also:

 Reduces development time

 Performs code layout on a per-function basis
without the need to modify source code

 Provides greater control over code ordering
and reduces code development effort, as
there is no need to modify the .ldf file

 Incorporates two optimization techniques to
produce an efficient code layout

Features

 Completely automated ¬ user intervention is
not required

 Used in all VisualDSP++ sessions (simulator,
compiled simulator, and emulator)

 Efficient in runtime

 Output is transparent to the user

Limitations

 Profile dependent ¬ if the sample input data
set is not representative, the results may vary

for different test inputs. This phenomenon is
less sensitive in the case of code execution
profiles.

 It is restricted only to code layout. Data
layout should still be managed by the
developer.

Typical Usage Scenarios

 Applications with large code size and large
number of functions

 Performance evaluations of out-of-the-box
benchmark programs

 Porting of legacy code, when user knowledge
of application behavior is minimal

To Get Started
Download the PGO Linker utility from the
associated .zip file. Copy PGOLinker.exe into
the VisualDSP++ installation folder (default):

Program Files\Analog Devices\VisualDSP++

The PGO Linker utility works for
VisualDSP++ releases starting with
version 4.0 (updated July, 2006).

 a

PGO Linker - A Code Layout Tool for Blackfin Processors (EE-306) Page 6 of 7

Appendix A

Sample Command-Line Output
C:\ProgramFiles\visualdsp>PGOLinker.exe "C:\mpeg\ mpeg2dec\BF533\mp2decoddata2.dxe"
"mp2.asm"

The command line options are configured as follows:-

DSPExecutable-->C:\mpeg\mpeg2dec\BF533\mp2 decoddata2.dxe

Linker directive Map File --> mp2.asm

Minimum L1 size selected --> 4

Maximum L1 size selected --> 80

L1 memory incremented in steps of --> 4

Optimization switch --> -O2

Connecting to the IDDE and loading Program

Connection to the IDDE established

Obtaining function symbol information

Function symbol information obtained

Getting profile Information

Analyzing the profile information

Analysis Done

Total sample count collected is --> 12513

The total execution from L1 for 4KB of L1 is 97.9142%

Total functions in L1 17

The total execution from L1 for 8KB of L1 is 100%

Total functions in L1 30

Ready to generate the asm file

Linker directive .asm file generated

 a

PGO Linker - A Code Layout Tool for Blackfin Processors (EE-306) Page 7 of 7

References
[1] ADSP-BF533 Blackfin Processor Hardware Reference. Rev 3.2, July 2006. Analog Devices Inc.

[2] VisualDSP++ 4.5 Linker and Utilities Manual, Rev 2.0, April 2006. Analog Devices Inc.

[3] Guide to Blackfin Processor LDF Files (EE-237), Rev 1, May 2004. Analog Devices Inc.

Document History

Revision Description

Rev 1 – December 4, 2006
by Kaushal Sanghai

Initial Release

	Introduction
	Motivation
	How Does the PGO Linker Work?
	How Do I Use the PGO Linker?
	Benefits, Features, Limitations, and Usage
	Benefits
	Features
	Limitations
	Typical Usage Scenarios

	To Get Started
	Appendix A
	Sample Command-Line Output

	References
	Document History

