

Engineer-to-Engineer Note EE-341

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Expert Pin Multiplexing Plug-in for Blackfin® Processors
Contributed by Jagadeesh R, Anand K and Prashant G Rev 3 – July 22, 2011

Copyright 2008-2011, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of
their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
This EE-Note explains how to use the Expert Pin Multiplexing plug-in for VisualDSP++® development
tools (release 5.0 or higher) to configure the Port registers in ADSP-BF50x, ADSP-BF51x, ADSP-BF52x,
ADSP-BF534/BF536/BF537 (hereafter referred to as ADSP-BF537 processors), ADSP-BF54x and
ADSP-BF592 Blackfin® processors. The Expert Pin Multiplexing plug-in simplifies the task of generating
the C and/or assembly code that is used to program the Port registers.

Pin Multiplexing
Blackfin processors feature a rich set of peripherals, which through a powerful pin multiplexing scheme,
provides great flexibility to the external application space. Most of the associated pins are shared by
multiple signals. The ports function as multiplexer controls.

The ADSP-BF50x and ADSP-BF51x processors group the many peripheral signals into three ports – Port-
F, Port-G and Port-H. For ADSP-BF52x and ADSP-BF537 processors, peripheral signals are grouped into
four ports – Port-F, Port-G, Port-H, and Port-J. For ADSP-BF54x processors, these are grouped into ten
ports – referred to as Port A through Port J. While in ADSP-BF592 processor, these are grouped into two
ports – Port-F and Port-G.

Almost all pins (except Port J pins of BF52x and BF537 processors) can also function as a General Putpose
Input/Output (GPIO) pin.

Every port has its own set of memory-mapped registers to control port multiplexing and GPIO
functionality. Peripheral functionality must be explicitly enabled by the function enable registers
(PORTx_FER, where x = F, G, or H for ADSP-BF50x, ADSP-BF51x, ADSP-BF52x, and ADSP-BF537
processors; x = A to J for ADSP-BF54x processor; or x = F, G for ADSP-BF592 processor).

The competing peripherals on Ports are controlled by the respective multiplexer control register
(PORTx_MUX for ADSP-BF50x, ADSP-BF51x, ADSP-BF52x, ADSP-BF54x, and ADSP-BF592
processors; and PORT_MUX for ADSP-BF537 processors).

Any GPIO can be enabled individually and overrides the peripheral function if the respective bit in the
PORTx_FER is cleared. To drive the pin in GPIO output mode, the respective direction bit must be set in
the PORTxIO_DIR register (PORTx_DIR_SET for ADSP-BF54x processors).

To make a pin a digital GP input pin, the input driver must be enabled in the PORTxIO_INEN register
(PORTx_INEN for ADSP-BF54x processors).

http://www.analog.com/processors�

Expert Pin Multiplexing Plug-in for Blackfin® Processors (EE-341) Page 2 of 12

The input signals in the “Additional Use” column are enabled by their module only, regardless of
the state of the PORTx_MUX and PORTx_FER registers. E.g. Rotary Counter pins in ADSP-
BF50x processors are featured under the ‘Additional Use’ column.

By default, all pins are in GPIO mode and are configured as inputs after reset. Neither GPIO output nor
input drivers are active by default. However, GPIO input drivers are disabled to minimize power
consumption and any need for external pull-up/pull-down resistors on unused.

For more details on pin multiplexing please refer ‘General Purpose PORTs’ chapter of the
Hardware Reference Manual of the respective processor [1] [2] [3] [4] [5] [6].

Peripheral and GPIO configuration requires an in-depth understanding of the Port registers, bit field
positions corresponding to different signals in all the registers, number of bits allocated for each bit field in
all the registers, and the values that correspond to different signals in all the registers.

The Expert Pin Multiplexing plug-in provides an easy method of generating the code necessary to
configure the Port registers. The Expert Pin Multiplexing tool allows you to generate the code without
requiring much information about internal details.

The signal names used in the plug-in may differ from the actual pin names of the processor. Please
refer to the Datasheet of the respective processor [7] [8] [9] [10] [11] [12].

Installing the Expert Pin Multiplexing Plug-In
To install the Expert Pin Multiplexing plug-in in the VisualDSP++ 5.0 environment:

1. Extract the file ExpertPinMux.dll from the associated .ZIP file (EE341v01.zip) and place it in the
VisualDSP++ System directory. If VisualDSP++ is installed on the C drive (default installation path),
copy the attached file into the following directory:
C:\Program Files\Analog Devices\VisualDSP 5.0\System

2. Register the ExpertPinMux.dll file by typing the following command line:
C:\Windows\system32\regsvr32.exe ExpertPinMux.dll

Note: Run regsvr32.exe from the <install_path>\System directory, not from the root directory.

Windows Vista and Windows 7 users should run the command prompt as Administrator in order to
register the plug-in. The Expert Pin Multiplexing tool now appears on the Plugins page of the
Preferences dialog box (Settings -> Preferences). The Expert Pin Multiplexing utility can be
accessed from the Tools menu.

This plug-in is enabled only for ADSP-BF50x, ADSP-BF51x, ADSP-BF52x, ADSP-BF537,
ADSP-BF54x, and ADSP-BF592 sessions in VisualDSP++ release 5.0 or higher.

Expert Pin Multiplexing Plug-in for Blackfin® Processors (EE-341) Page 3 of 12

Figure 1. Installing the Expert Pin Multiplexing plug-in

Figure 2 shows the default state of the Expert Pin Multiplexing window. By default, the ADSP-BF504
processor is selected and all the list boxes are populated accordingly.

Figure 2.Expert Pin Multiplexing window

Expert Pin Multiplexing Plug-in for Blackfin® Processors (EE-341) Page 4 of 12

Using the Expert Pin Multiplexing Plug-in
To generate code:

1. In Processor Selection, select the processor for which code is to be generated.

2. Under Peripheral Selection, select the peripheral module of interest.

When a peripheral module is selected, the signals that appear in the Signal Selection list box are
updated with all the relevant signals that correspond to the selected peripheral module.

3. To add a peripheral signal, select that particular signal in the Signal Selection list box and double-
click on it.

Figure 3. Adding peripheral signals

4. As peripheral signals are added, the Peripheral Configuration list box will be updated
appropriately. Whenever a peripheral signal is added, all signals (peripheral/GPIO) that are multiplexed
with the configured signal (including the configured signal) will be restricted from being configured
later by the tool. The tool provides a visual indication of this restriction by appending all such signal
names with ‘*’.

Expert Pin Multiplexing Plug-in for Blackfin® Processors (EE-341) Page 5 of 12

For example, consider the above example where PPI_D0 is configured for an ADSP-BF506 processor.
Since PPI_D0 is multiplexed with PWM0_AL and SPI0_SSEL3:PF15 and PF15, these three signal names
alongwith PPI_D0 signal name will be appended with ‘*’.

Note that the PWM0_AH and SPI0_SSEL2 signal names will also be appended with ‘*’ even though
PPI_D1 or PF14 is not configured. This is because PPI_D0 and PPI_D1 signals belong to the same
multiplexing group. (Obviously, in this case PF14 can be configured as GPIO).

The Message center box will display an appropriate error message when a restricted signal is being
configured. Figure 2 shows the error message displayed in the Message center box when trying to
configure PWM0_AH* after PPI_D0 has already been configured.

Figure 4. Message center displaying details about the error in configuring a restricted peripheral signal

5. The GPIO pin can be selected from the GPIO Direction Selection list box. Click the Configure
as Input button or Configure as Output button to set the GPIO pin as input or output,
respectively.

Expert Pin Multiplexing Plug-in for Blackfin® Processors (EE-341) Page 6 of 12

Figure 5. Configuring pins as GPIOs

As GPIO signals are added, the GPIO Configuration list box will be updated appropriately. As in
case of peripheral signals, whenever a GPIO signal is added, the tool restricts all signals
(peripheral/GPIO) that are multiplexed with the configured GPIO pin (including the GPIO pin) from
being configured later. The tool also restricts the GPIO pin from being configured as an output if the
GPIO pin is already configured as an input, and vice versa.

For example, in the above example, PF0 is configured as GP input while PF5 is configured as GP
output. Since PF0 is multiplexed with TSCLK0, UART0_RX:PF0 and TMR6 peripheral signals, all these
signal names will be appended with ‘*’. Similarly only signal multiplexed with PF5 i.e. DR0PRI,
PWM0_CL and PPI_D11 will be appended with ‘*’. After this these signals will be restricted.

6. Repeat steps 2 to 5 to add all relevant peripheral signals/GPIOs for your application/system design.
Note that there is no restriction in the order in which peripheral/GPIO signals need to be configured.

7. To remove a configured peripheral signal or GPIO input/output pin, click the appropriate Delete
button after selecting the signal to be deleted. All the list boxes will be updated accordingly.

8. Select the appropriate check boxes to generate the C and/or assembly code and click the Generate
Code button. This opens a dialog box requesting you to select the path and file names to save the
generated C and/or assembly codes. By default, the generated code is named pin.c and pin.asm.

Expert Pin Multiplexing Plug-in for Blackfin® Processors (EE-341) Page 7 of 12

If the processor type is changed later, data in Peripheral Configuration and GPIO Configuration is
cleared automatically. At the same time, the signals that appear in the Peripheral Selection, Signal
Selection, and GPIO Direction Selection boxes are refreshed and updated for the selected processor.

The Expert Pin Multiplexing plug-in also provides these features:

 Saving a configuration. Clicking the Save Configuration button saves the information about the
currently selected processor/peripheral/signal/GPIO, the configured peripheral signals/GPIOs, the
content of the Message center box, and the state of each list box and check box. The information is
saved in an output file with a .cfg extension (pin.cfg is the default name used).

 Loading a configuration. Clicking the Load Configuration button loads a saved configuration (.cfg
file). You are prompted to select a .cfg file. After selecting the .cfg file, the Expert Pin
Multiplexing window refreshes, presenting the contents in the .cfg file. At this point,
peripheral/GPIO signals can be added/deleted per the new design, and code can be regenerated.

Code Generation
This section uses an example to describe the code generation process. Consider an ADSP-BF522 based
application where the following peripheral signals and GPIO configuration is desired:

 Peripherals

 SPORT1 (TSCLK1, TFS1, DT1PRI, RSCLK1, RFS1 and DR1PRI)

 UART0 (UART0_RX and UART0_TX)

 HOST (HOST_ACK, HOST_ADDR, HOST_CE, HOST_RD, HOST_WR, and HOST_Dx : x = 0 to 15)

 SPI in slave mode (SPI_MISO, SPI_MOSI, SPI_SCK, and SPI_SS)

 GPIOs:

 Inputs (PF3 and PF5)

 Outputs (PF1 and PG10)

Figure 6 demonstrates the generation of C and assembly code to program the Port registers per the above
configuration. Assembly and C code generated for this configuration are shown in Listing 1 and Listing 2
of the Appendix, respectively. Generated C/assembly code can be added later to a VisualDSP++ project.
For a C project, the main function must call the InitPorts()function. For an assembly project, the main
program must call the _InitPorts subroutine.

Expert Pin Multiplexing Plug-in for Blackfin® Processors (EE-341) Page 8 of 12

Figure 6.Generating C and assembly codes

Expert Pin Multiplexing Plug-in for Blackfin® Processors (EE-341) Page 9 of 12

Appendix

pin.asm

/* Assembly code generated to configure PORTs and GPIOs.

 Peripheral pins selected: DR1PRI, DT1PRI, HOST_ACK, HOST_ADDR, HOST_CE, HOST_D0,
HOST_D1, HOST_D10, HOST_D11, HOST_D12, HOST_D13, HOST_D14, HOST_D15, HOST_D2,
HOST_D3, HOST_D4, HOST_D5, HOST_D6, HOST_D7, HOST_D8, HOST_D9, HOST_RD, HOST_WR,
RFS1, RSCLK1, SPI_MISO, SPI_MOSI, SPI_SCK, SPI_SS, TFS1, TSCLK1, UART0_RX, UART0_TX

 GPIOs configured as Inputs: PF3, PF5

 GPIOs configured as Outputs: PF1, PG10
*/

#include <defBF52x_base.h>

// This function will setup the Port Control Registers
.section program ;
.global _InitPorts ;

_InitPorts :
 // First save registers
 [--SP] = RETS;
 [--SP] = P0;
 [--SP] = R0;

 // point P0 to system MMR space
 P0.H = 0xFC00;
 P0.L = 0x0000;
 R0 = 0x0000;

 // PORTx_FER registers
 R0.L = 0x3f00;
 w[P0 + LO(PORTF_FER)] = R0;

 R0.L = 0xf99e;
 w[P0 + LO(PORTG_FER)] = R0;

 R0.L = 0xffff;
 w[P0 + LO(PORTH_FER)] = R0;

 //-------------------------

 // PORTx_MUX registers
 R0.L = 0x154;
 w[P0 + LO(PORTF_MUX)] = R0;

 R0.L = 0x2820;
 w[P0 + LO(PORTG_MUX)] = R0;

 R0.L = 0x2a;
 w[P0 + LO(PORTH_MUX)] = R0;

Expert Pin Multiplexing Plug-in for Blackfin® Processors (EE-341) Page 10 of 12

 //-------------------------

 // PORTxIO_DIR registers
 R0.L = 0x2;
 w[P0 + LO(PORTFIO_DIR)] = R0;

 R0.L = 0x400;
 w[P0 + LO(PORTGIO_DIR)] = R0;

 R0.L = 0x0;
 w[P0 + LO(PORTHIO_DIR)] = R0;

 //-------------------------

 // PORTxIO_INEN registers
 R0.L = 0x28;
 w[P0 + LO(PORTFIO_INEN)] = R0;

 R0.L = 0x0;
 w[P0 + LO(PORTGIO_INEN)] = R0;

 R0.L = 0x0;
 w[P0 + LO(PORTHIO_INEN)] = R0;

 //-------------------------

 // Restore the registers
 R0 = [SP++];
 P0= [SP++];
 RETS = [SP++];

 // Return back from the subroutine
_InitPorts.END: RTS;

Listing 1. pin.asm

Expert Pin Multiplexing Plug-in for Blackfin® Processors (EE-341) Page 11 of 12

pin.c

/*
 C code generated to configure PORTs and GPIOs.

 Peripheral pins selected: DR1PRI, DT1PRI, HOST_ACK, HOST_ADDR, HOST_CE, HOST_D0,
HOST_D1, HOST_D10, HOST_D11, HOST_D12, HOST_D13, HOST_D14, HOST_D15, HOST_D2,
HOST_D3, HOST_D4, HOST_D5, HOST_D6, HOST_D7, HOST_D8, HOST_D9, HOST_RD, HOST_WR,
RFS1, RSCLK1, SPI_MISO, SPI_MOSI, SPI_SCK, SPI_SS, TFS1, TSCLK1, UART0_RX, UART0_TX

 GPIOs configured as Inputs: PF3, PF5

 GPIOs configured as Outputs: PF1, PG10
*/

#include <cdefBF52x_base.h>

void InitPorts();

// This function will setup the Port Control Registers
void InitPorts()
{
 // First Set PORTx_MUX registers
 *pPORTF_MUX = 0x154;
 *pPORTG_MUX = 0x2820;
 *pPORTH_MUX = 0x2a;

 // Set PORTx_FER registers
 *pPORTF_FER = 0x3f00;
 *pPORTG_FER = 0xf99e;
 *pPORTH_FER = 0xffff;

 // Set PORTxIO_DIR registers
 *pPORTFIO_DIR = 0x2;
 *pPORTGIO_DIR = 0x400;
 *pPORTHIO_DIR = 0x0;

 // Set PORTxIO_INEN registers
 *pPORTFIO_INEN = 0x28;
 *pPORTGIO_INEN = 0x0;
 *pPORTHIO_INEN = 0x0;
}

Listing 2. pin.c

Expert Pin Multiplexing Plug-in for Blackfin® Processors (EE-341) Page 12 of 12

References
[1] ADSP-BF50x Blackfin Processor Hardware Reference, Rev 1.0, December 2010, Analog Devices, Inc.

[2] ADSP-BF51x Blackfin Processor Hardware Reference, Revision 1.0, September 2010, Analog Devices, Inc.

[3] ADSP-BF52x Blackfin Processor Hardware Reference, Rev 1.0, March, 2010, Analog Devices, Inc.

[4] ADSP-BF537 Blackfin Processor Hardware Reference, Rev 3.2, March 2009, Analog Devices, Inc.

[5] ADSP-BF54x Blackfin Processor Hardware Reference, Rev 1.0, August 2010, Analog Devices, Inc.

[6] ADSP-BF59x Blackfin Processor Hardware Reference, Rev 1.0, May 2011, Analog Devices, Inc.

[7] ADSP-BF504/ADSP-BF504F/ADSPBF506F: Blackfin Embedded Processor Data Sheet, Rev 0, December2010,
Analog Devices, Inc.

[8] ADSP-BF512/ADSP-BF514/ADSP-BF516/ADSP-BF518(F) Blackfin Embedded Processor Data Sheet, Rev. B,
February 2011, Analog Devices, Inc.

[9] ADSP-BF522/ADSP-BF523/ADSP-BF524/ADSP-BF525/ADSP-BF526/ADSP-BF527: Blackfin Embedded Processor
Data Sheet, Rev B, May 2010, Analog Devices, Inc.

[10] ADSP-BF534/ADSP-BF536/ADSP-BF537: Blackfin Embedded Processor Data Sheet, Rev I, July 2010,
Analog Devices, Inc.

[11] ADSP-BF542/ADSP-BF544/ADSP-BF547/ADSP-BF548/ADSP-BF549 Blackfin Embedded Processor Data Sheet,
Rev D, June 2011, Analog Devices, Inc.

[12] ADSP-BF592 Blackfin Embedded Processor Preliminary Data Sheet, Rev 0, May 2011, Analog Devices, Inc.

Document History

Revision Description

Rev 3 – July 22, 2011
by Prashant G.

Updated the document and the plug-in to include support for ADSP-BF50x and
ADSP-BF592 Blackfin Processors.

Rev 2 – January 7, 2010
by R. Jagadeesh and K. Anand

Updated the document and the plug-in to include support for ADSP-BF51x and
ADSP-BF534/6/7 Blackfin Processors.

Rev 1 – May 15, 2008
by R. Jagadeesh

Initial release.

	Introduction
	Pin Multiplexing
	Installing the Expert Pin Multiplexing Plug-In
	Using the Expert Pin Multiplexing Plug-in
	Code Generation
	Appendix
	pin.asm
	pin.c

	References
	Document History

