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Introduction 
The Blackfin® family of embedded processors 
supports numerous methods of booting 
application code, including serial booting from 
an SPI flash memory device. The Blackfin SPI 
interface is limited to a maximum clock rate of 
one-quarter the system clock (SCLK) rate. If the 
SCLK is maximized to 133 MHz, this translates to 
an SPI performance limitation of ~33 MHz. 
However, there are serial flash devices capable 
of speeds higher than this, and it is possible to 
achieve serial clock speeds of up to ~66 MHz if 
one of the Blackfin serial ports (SPORTs) is used 
instead, as the maximum SPORT clock 
frequency is SCLK/2. 

This EE-Note describes how to use the Blackfin 
SPORT to emulate an SPI interface and how to 
then use that emulated hardware to boot an 
application from an SPI memory device using the 
SPI boot mode of the Blackfin processor. To 
make the process work, one must first understand 
the boot process of Blackfin processors and have 
a fundamental understanding of the boot image 
(.ldr file) expected by the Blackfin boot ROM. 
These concepts are discussed in ADSP-BF533 
Blackfin Booting Process (EE-240)[1]. 

This application was tested using the 
VisualDSP++ 4.5® development tools and the 
ADSP-BF537 EZ-KIT Lite® evaluation system, 
but the concepts discussed apply to all members 
of the Blackfin processor family. 

Emulating the SPI Boot Process 
If the intent is to boot from an SPI device whose 
operating frequency exceeds the maximum 
Blackfin SPI frequency of SCLK/4, the SPORT 
interface may be an attractive alternative, as it 
can run twice as fast as the SPI. However, since 
SPORT booting is not supported by the Blackfin 
processor boot ROM, the SPORT must be 
configured/connected such that it can 
successfully communicate with the SPI device 
and have the ability to execute the boot process 
normally automated by the boot ROM for the 
SPI interface. This requires specific use of 
hardware and configuration software, as well as 
modification to the boot process itself. 

Configuring/Connecting the Hardware 

The master SPI boot mode is used for this 
application. The master mode SPI interface 
requires four signals: data in (MISO), data out 
(MOSI), clock (SCK), and chip-select (/SPISS). 
Three of these four signals have evident 
correlation to SPORT pins: 

 MOSI is the transmit data (DTxPRI) 

 MISO is the receive data (DRxPRI) 

 SCK is the clock (TSCLKx/RSCLKx) 

The Blackfin SPORTs support both primary and 
secondary transmit/receive data channels. The 
primary pins (denoted by the PRI suffix) are 
utilized when no secondary channel is required. 
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The Blackfin SPORTs also support dedicated 
clock sources for both the transmitter and 
receiver. In this application, the SPORT’s 
transmit and receive logic are interfaced to the 
same SPI memory device; therefore, the 
transmitter and receiver clocks are shared, and 
are thus connected together externally. 

The pin in the SPI interface that has no 
equivalent pin on the SPORT is the chip-select 
signal, /SPISS. The /SPISS is the gating factor 
for the SCK. As a slave SPI device, action is only 
taken on SCK edges detected while the /SPISS 
signal is being held active low by the bus master. 
Most master SPI devices supply the SCK signal 
only when they are placing data on the MOSI line, 
but extraneous SCK transitions are ignored if the 
/SPISS signal is transitioned to inactive high 
before the extra SCK pulses are active. This built-
in behavior is helpful because the SPORT 
employs a continuous clock once the hardware 
has been enabled and communications have 
begun. The challenge is to make the SPORT 
hardware handle the appropriate timing and 
control of the /SPISS signal. To address this 
need, the frame sync signals in the SPORT 
interface are used. Figure 1 depicts how the 
SPORT and SPI pins of the Blackfin processor 
should be connected to each other and to the SPI 
memory device.  

 

Figure 1. SPORT/SPI Hardware Connections 

If the SPORT is configured to generate an active 
low, late frame sync (as is required for every 
word transmitted), the behavior of the transmit 
frame sync pin (TFSx) is comparable to the 
/SPISS signal. For internally generated, active 
low, late framing, the TFS signal is asserted low 
in the same SPORT clock cycle as data is placed 
on DTxPRI, and the signal is held low for the 
duration of the word being transmitted. TFSx is 
then de-asserted unless new data is ready to be 
transmitted, in which case it is held in the active 
low state. This is precisely the way the /SPISS 
signal would be managed by an SPI master 
device. The following assembly source code can 
be used to configure the SPORT: 
P1.H  = HI(SPORT1_TCR1); 

P1.L  = LO(SPORT1_TCR1); 

R3.L  = 
TCKFE|LATFS|LTFS|TFSR|ITFS|ITCLK; 

W[P1] = R3; 

The equivalent C code would be: 
*pSPORT1_TCR1 = 
TCKFE|LATFS|LTFS|TFSR|ITFS|ITCLK; 

Booting Via the SPORT Interface 

As stated previously, there is no native support 
built into the boot ROM for booting over the 
SPORT. Achieving this functionality requires the 
boot sequence to begin booting over SPI, as 
configured by the BMODE pins, and then transfer 
control to the SPORT to continue the boot 
process over the faster SPORT interface. 

To do this, there is a need for a secondary piece 
of software, called a second-stage loader (SSL). 
An SSL is simply a kernel that the boot ROM 
loads and executes in place to complete the boot 
process. This causes the boot ROM to load the 
SSL code over SPI, at which point the boot ROM 
is exited and execution starts at the beginning of 
the SSL code section in memory. In the .ldr 
file, the SSL resides between any needed 
initialization code to set up external memory and 
the actual application code, as shown in Figure 2. 
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Figure 2. Loader File (.LDR) Content 

In this particular application, the SSL consists of 
the required initialization code for the SPORT 
interface, as well as the SPORT version of the 
SPI boot code found in the boot ROM, which is 
required to proceed with booting the actual 
application that is still out in the SPI memory at 
the time the SSL is executed. 

Ideally, this can be handled by placing all 
SPORT initialization code into the SSL and 
tagging it as an init block in the boot stream (as 
described in EE-240), such that it boots over SPI, 
executes in place, and then completes the boot 
process via the SPORT while executing the SSL 
on-chip. However, this is a problem because the 
boot process simply moves instructions/data via 
DMA from blocks of SPI memory to blocks of 
Blackfin memory, be it internal instruction/data 
RAM or external SDRAM. 

When the boot stream gets to the input block 
destined for the top of on-chip Blackfin L1 
instruction memory, the SSL that is currently 
executing this boot code will be overwritten. 
This behavior is usually not a factor because the 
on-chip boot ROM is in a protected memory 
region that is not writeable by the DMA 
sequence used to move the application code into 
on-chip memory. However, when executing init 
block code out of unprotected on-chip memory, 
this overwrite will compromise the boot process 
and result in an invalid processor state because 
the code that is booted in via DMA replaces the 
currently executing SSL code, which has not 
completed executing yet. This will cause 
undesired execution of newly booted instructions 
before the boot itself has completed. 

A solution to this problem is to place the SSL in 
external SDRAM and to change the address 
where the boot kernel jumps to after completion 
from the top of L1 memory to the address of the 
SSL code itself. The nature of the boot ROM is 
to set a default reset address in the Event Vector 
Table location for the reset vector, which is 
stored in the EVT1 register. For some processors, 
this address is 0xFFA00000. For the smaller 
memory derivative processors, the reset address 
is 0xFFA08000. If the application wants to set an 
explicit address, an overwrite of the EVT1 
register can be done in the code that is located in 
the init block. The code sequence to overwrite 
the EVT1 register is as follows, and it can be 
found in the SDRAM_InitCode.asm file in the 
associated .ZIP archive[2]: 
p0.h = hi(EVT1); 

p0.l = lo(EVT1); 

r0.h = START_OF_SSL_H;   

r0.l = START_OF_SSL_L;   

[p0] = r0; 

ssync; 

Using this scheme, the init block boots over SPI 
and executes on-chip, setting up the SDRAM 
interface timing appropriate for the application 
and reconfiguring the reset address to be the 
beginning of the SSL code. The SSL code is then 
booted and resolved to SDRAM, which spares 
the application from being forced to reserve 
valuable on-chip memory. After the init block 
and the SSL code are loaded, the boot kernel 
finishes and jumps into SDRAM, where the rest 
of the boot process is completed via the SPORT 
pins, as controlled by the SSL. 

This boot process will not be corrupted 
as long as the actual application does 
not overwrite the section of SDRAM 
that the SSL is resolved to. 

The SSL code is 925 bytes in size, and should 
reside in a portion of SDRAM that is guaranteed 
to be unused by the application being booted. 
An easy way to do this is by making a small 
change to the application’s .ldf file to reserve a 
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small block of SDRAM for the SSL in the 
memory definition section, and then map nothing 

to that segment of memory. Using the default 
ADSP-BF537 .ldf file as an example: 

 
MEMORY 
{ 
   MEM_SDRAM0_BANK0     { START(0x00000004) END(0x00FFFFFF) TYPE(RAM) WIDTH(8) } 
   MEM_SDRAM0_BANK1     { START(0x01000000) END(0x01FFFFFF) TYPE(RAM) WIDTH(8) } 
   MEM_SDRAM0_BANK2     { START(0x02000000) END(0x02FFFFFF) TYPE(RAM) WIDTH(8) } 
// Comment out the original MEM_SDRAM0_BANK3 definition below 
// MEM_SDRAM0_BANK3     { START(0x03000000) END(0x03FFFFFF) TYPE(RAM) WIDTH(8) } 
// Replace it with a newly defined BANK3 with a reserved 925 bytes at the end for the SSL 
   MEM_SDRAM0_BANK3     { START(0x03000000) END(0x03FFFC5F) TYPE(RAM) WIDTH(8) } 
// MEM_RESERVE_SSL      { START(0x03FFFC60) END(0x03FFFFFF) TYPE(RAM) WIDTH(8) } 
} /* MEMORY */ 

Figure 3. Modifications to Default ADSP-BF537 .LDF File to Reserve Space for SSL Code 

As shown in Figure 3, these modifications to the 
.ldf file free the upper 925 bytes of SDRAM for 
the SSL to occupy during the boot sequence. If 
the memory is not defined in the .ldf file, it is 
unusable to the application and will therefore be 
protected memory. To change where the SSL 
code is resolved in SDRAM, the above example 
can be modified appropriately to reserve the 
block of memory, and then the SSL project itself 
would need to be adjusted to resolve the SSL to 
the desired memory range. 

First, select the region of memory that the SSL 
will map to and reserve it in the application’s 
.ldf file (ADSP-BF537.ldf), as shown in 
Figure 3. Next, the SSL's .ldf file 
(SSL_Linker_Description_File.ldf) must be 
modified to resolve the SSL code to the same 
memory region by changing the START and END 
addresses of the SEG_LDR segment to be the 
range defined in ADSP-BF537.ldf as the 
memory region to protect. For example, if the 
application uses a smaller SDRAM, the end of 
SDRAM may reside at 0x01FFFFFF, as shown 
in Figure 4: 

MEMORY 
{  
 JMP_LDR     { TYPE(RAM) START(0xFFA00000)  
                   END(0xFFA0000F) WIDTH(8) }  
 
 SEG_LDR    { TYPE(RAM) START(0x01FFFC60)   
                   END(0x01FFFFFF) WIDTH(8) } 
} 

Figure 4. SSL Linker Description File 

Finally, change the reset address in the EVT1 
register, as shown in SDRAM_InitCode.asm: 
#define START_OF_SSL_L 0xFC60 

#define START_OF_SSL_H 0x03FF 

/*******SSL Execution Setup**********/ 

    p0.h = hi(EVT1); 

    p0.l = lo(EVT1); 

    r0.h = START_OF_SSL_H;   

    r0.l = START_OF_SSL_L;   

    [p0] = r0; 

    ssync; 

Contents of Associated .ZIP File 
In the associated .ZIP file, there are four 
executable files: 

 C_Talkthrough_I2S.dxe 

 SDRAM_InitCode.dxe 

 ssl.dxe 

 SPIDriver.dxe 

C_Talkthrough_I2S.dxe 

The C_Talkthrough_I2S.dxe file is the 
executable file for the actual application code. It 
is the audio talkthrough application that is 
supplied with the ADSP-BF537 EZ-KIT Lite, 
which simply uses SPORT DMA to take in an 
audio stream via the DAC, copies the data to an 
output buffer, and then uses SPORT DMA to 
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send the output buffer through the ADC to the 
audio output on the board. 

SDRAM_InitCode.dxe 

The SDRAM_InitCode.dxe file is the executable 
file for the code required to configure the 
SDRAM that is present on the ADSP-BF537 EZ-
KIT Lite, given the default PLL settings and the 
25-MHz CLKIN used on the EZ-KIT Lite board. 
This code would need to be tailored to the target 
hardware in order to work properly. If this step is 
required, a new .dxe file will need to be 
generated from the modified source code. 

Since the SPI, SPORT, and SDRAM interfaces 
are in the SCLK domain, the speed at which the 
application can boot will depend on how the 
hardware is configured. If the PLL registers that 
govern the CCLK and SCLK frequencies are 
modified as part of the SDRAM init block, faster 
SPI/SPORT/SDRAM speeds can be realized, and 
the boot speed can be optimized. For example, 
the code in Figure 5 can be added to the 
SDRAM_InitCode.asm source file to increase the 
CLKIN multiplier (MSEL) to 18 from the default 
setting of 10: 

/************************************/                                                       
/*Initialize Phase Lock Loop for MAX*/ 
/*SPORT speed                       */ 
/************************************/ 
INIT_PLL: 
 [--SP] = RETS;  
 [--SP] = R3; 
  
 R3 = 0x0001(Z); 
 W[P1 + LO(SIC_IWR)]   = R3; 
 // Change MSEL in PLL_CTL to 
 // increase CCLK 
 R3.L = 0x2400; 
 W[P1 + LO(PLL_CTL)]   = R3; 
  
 IDLE; 
  
 R3   = [SP++]; 
 RETS = [SP++]; 
 RTS; 
INIT_PLL.END: 

Figure 5. SDRAM_InitCode .asm Code Snippet 

Finally, the beginning address of the SSL code is 
also specified in the init code. This address must 
match the SEG_LDR start address of the second-
stage loader. 

ssl.dxe 

The ssl.dxe file is the executable for the 
second-stage loader, which is required to transfer 
control of the boot process from the SPI to the 
SPORT. This code would only be modified if the 
user wished to resolve the SSL to an address 
other than 0x03FFFC60, or if a different SPI 
device other than the STMicroelectronics 
M25P32 is used. If either is desired, this 
executable would need to be regenerated using 
the modified SecondStageLoader.asm source 
code. 

SPIDriver.dxe 

The SPIDriver.dxe file is the flash programmer 
driver developed specifically for this application. 
This driver was developed for the 
STMicroelectronics M25P32 SPI flash memory 
device; however, it can be modified to work with 
any serial memory device. 

Generating the Loader File 
To utilize the contents of the associated .ZIP 
file, first save the contents to a working directory 
(e.g., C:\Project_Name). 

Once the C:\Project_Name directory is 
populated, open the ssl.dpj VisualDSP++ 
project file. On the Project page of the Project 
Options dialog box (Project->Project 
Options), verify that the project target type is 
Loader file. This is the master project that 
will be utilized to generate the single cohesive 
.ldr file necessary for the application to boot as 
intended. 

In the dialog box's tree control (left side), click 
Options (under Load); this opens the 
Project:Load:Options page. In Boot Mode, 
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select SPI; in Boot Format, select Intel hex; 
in Output Width, select 8-bit. These options 
properly configure the loader utility to create an 
image compatible with the SPI flash device 
chosen. 

Populate the Initialization file field with 
the init code executable: 
“C:\Project_Name\SDRAM Init Code 
(ASM)\Debug\SDRAM_InitCode.dxe” 

This instructs the loader utility to tag the 
SDRAM_InitCode.dxe executable as an init 
block in the .ldr file, which will allow it to be 
booted and executed in place prior to continuing 
the boot process. 

In these dialog boxes, double-quotes are 
required around all path names that 
contain the space bar character. 

In the Additional options field, provide the 
application executable itself: 
“C:\Project_Name\Audio Codec 
Talkthrough (C)\Debug\ 
C_Talkthrough_I2S.dxe” 

By placing additional executables in the 
Additional options box, the loader is being 
instructed to append additional .dxe files to the 
.ldr file in the order in which they appear in this 
box. The .dxe file for the project being built is 
placed in the .ldr file first, immediately after 
the init code block, and is then followed by any 
.dxe files specified here. 

Finally, set Output file to: 
“C:\Project_Name\combination.ldr” 

This process is summarized in Figure 6 which 
shows the project options configured for the ssl 
project. 

Click OK and build the project. The output file 
combination.ldr will appear in the 
C:\Project_Name directory. 

 

Figure 6. Loader File Configuration 

Programming the SPI Flash 
Device 
Once the .ldr file has been properly generated, 
the next step is to program it into the SPI 
memory. Use the SPIDriver.dxe flash 
programmer driver in the associated .ZIP file by 
choosing Tools->Flash Programmer in 
VisualDSP++. Then browse for the driver by 
name, as shown in Figure 7. 

 

Figure 7. Driver Page of Flash Programmer Window 

Click the Programming tab. Then select Erase 
affected (under Pre-program erase 
options) and select Intel Hex in File format. 
Select the sectors that need to be erased (these 
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will vary depending on the size of the 
combination.ldr file), and ensure that Data 
file specifies the path and file name of the .ldr 
file: 
C:\Project_Name\combination.ldr 

Click the Programming tab and verify that the 
Message center box indicates success, as 
shown in Figure 8. 

 

Figure 8. Flash Programmer Window 

The application is now programmed into the SPI 
flash memory. If the emulator is disconnected, 
resetting the board will result in a successful 
boot of the application, in which the SPI port is 
utilized for the initialization process and the 
faster SPORT interface is employed for the rest 
of the boot sequence. 

Conclusions 
The SPORT interface of the Blackfin processor 
can be configured to act like a master SPI device. 
Because of this, booting over the SPORT can be 
achieved if proper care is given to the boot 
process and if the necessary precautions are 
taken with respect to hardware. Since the SPORT 
is capable of functioning at double the operating 
frequency of the Blackfin SPI port, the SPORT 
can be used to interface to faster SPI memory 
devices that normally would not be utilized to 
their capacity by the native SPI port, given the 
speed limitation of SCLK/4 that is resident on the 
SPI hardware. 
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