
Engineer-to-Engineer Note EE-331

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

UART Enhancements on ADSP-BF54x Blackfin® Processors
Contributed by Benno Kusstatscher Rev 1 – November 6, 2007

Copyright 2007, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
Compared to ADSP-BF52x, ADSP-BF53x, and
ADSP-BF561 Blackfin® processors, the ADSP-
BF54x series of Blackfin processors introduces
new features to the UART module. This EE-Note
summarizes the changes, describes their benefits,
and assists in porting code.

The new features are grouped into the following
categories:

 Automatic RTS/CTS hardware flow control

 Increased receive FIFO

 Finer bit rate granularity

 Programming model fits better into Blackfin
architecture

 Improved interrupt processing

 Up to four UARTs (two with flow control)

This EE-Note briefly covers the topics above.
This document assumes that the reader is
familiar with the ADSP-BF53x UART module.
For a complete description of the ADSP-BF54x
UART, see the ADSP-BF54x Blackfin Processor
Hardware Reference[1].

Programming Model
The UART on ADSP-BF53x processors was
closely aligned to the industry-standard, 16450-
compatible programming model. Besides the
obvious advantage of code compatibility, this
also had a down-side: the aged programming

model did not adequately support the pipelined,
throughput-optimized architecture of Blackfin
processors.

No More Destructive Reads

The particular nature of the UARTx_LSR and
UARTx_IIR registers with their destructive
behavior on read operations required special
attention to speculative read situations.
Furthermore, it was almost impossible to cleanly
separate the receive, transmit, and status handlers
from each other.

The status bits that were read destructively have
now been converted to write-one-to-clear (W1C)
behavior. For example, the following UARTx_LSR
read sequence cleared the frame error (FE) status
bit implicitly:

if (*pUART0_LSR & THRE) { ... }

Now, the FE bit requires an explicit W1C clear
operation:

*pUART0_LSR = FE;

No More UARTx_IIR Register

The UARTx_IIR register is obsolete. Due to its
destructive read nature and its clumsy
prioritization scheme, the UARTx_IIR register has
been depreciated.

Interrupt service routines can determine the
calling interrupt source by interrogating the
UARTx_LSR and/or UARTx_MSR status registers.

 a

UART Enhancements on ADSP-BF54x Blackfin® Processors (EE-331) Page 2 of 8

For example, if a routine polled UARTx_IIR to
determine whether there was a line error,

if (*pUART0_IIR == 0x6) { ... }

now it should poll the UARTx_LSR status register:

if (*pUART0_LSR & (OE|FE|PE|BI))
{
 *pUART0_LSR = OE|FE|PE|BI;
 ...
}

Interrupt prioritization can be done at the global
level using interrupt assignment (SIC_IARx)
registers.

UARTx_IER Set and Clear Register Pair

Often, it is required to temporarily disable UART
receive, transmit, or status interrupts. Doing this
on ADSP-BF53x processors required an
"expensive" read-modify-write operation to the
interrupt enable (UARTx_IER) register.

If the three interrupts were served by different
service routines – especially with interrupt
nesting enabled – special care was required to
ensure that a read-modify-write operation in the
transmit interrupt handler was not interrupted by
the receive service routine. In many cases, there
was no "cheaper" workaround other than
disabling interrupts globally.

On the new UART, the UARTx_IER registers are
replaced by a pair of registers (UARTx_IER_SET
and UARTx_IER_CLEAR). Writing a ‘1’ to the
UARTx_IER_SET register enables an interrupt.
Writing a ‘1’ to UART_IER_CLEAR disables the
respective interrupt. Writing ‘0’ has no effect.
Reading either register returns the enabled bits.

This new design permits separate interrupt
handlers to toggle the associated interrupt enable
bit independently without the risk of impacting
each other.

Since the interrupt enable registers default to
zero after reset, the initial setup instruction might
be changed from

*pUART0_IER = ETBEI|ERBFI;

to simply

*pUART0_IER_SET = ETBEI|ERBFI;

if executed after reset.

When history is not known, instead execute:

*pUART0_IER_CLEAR = ~(ETBEI|ERBFI);
*pUART0_IER_SET = ETBEI|ERBFI;

If, however, any specific bit was required to
toggle at runtime, the former code (when
interrupt nesting is enabled)

short tmp;
/* temporarily enable */
tmp = cli();
*pUART0_IER |= ETBEI;
sti(tmp);
...
/* temporarily disable */
tmp = cli();
*pUART0_IER &= ~ETBEI;
sti(tmp);

can now be simplified to:

/* temporarily enable */
*pUART0_IER_SET = ETBEI;
...
/* temporarily disable */
*pUART0_IER_CLEAR = ETBEI;

No More MMR Address Sharing

On ADSP-BF53x processors, multiple memory-
mapped registers (MMRs) shared the same
address. The DLAB bit in the UARTx_LCR register
functioned as an additional address bit to
distinguish between accesses to the divisor latch
registers (UARTx_DLH and UARTx_DLL) and the
data registers (UARTx_RBR and UARTx_THR).

The DLAB bit is now obsolete. UARTx_DLH and
UARTx_DLL have dedicated MMR addresses.

/* *pUART0_LCR = DLAB; */
*pUART0_DLL = divider & 0xFF;

 a

UART Enhancements on ADSP-BF54x Blackfin® Processors (EE-331) Page 3 of 8

*pUART0_DLH = (divider>>8) & 0xFF;
*pUART0_LCR = <new settings>;

Therefore, the UARTx_DLL and UARTx_DLH
registers are accessible directly, and the first line
of code in the above sequence can be deleted.

Interrupt Enhancements

Status Interrupt

Besides the regular transmit and receive interrupt
request channels, each UART also features a
status interrupt output. On ADSP-BF53x
processors, the status interrupt was used only to
signal UART line errors. On ADSP-BF54x
processors, it is used for the following purposes:

 Line errors

 Alternate RX and TX signaling

 Transmit finished

 Modem status

 FIFO threshold

Alternate RX and TX Signaling

Since transmit and receive interrupts are routed
through the DMA controller, they require that a
DMA channel be assigned, even when DMA is
not used. A disabled DMA channel still forwards
a DMA request as a regular interrupt request to
the System Interrupt Controller (SIC).

ADSP-BF54x processors have more interrupt-
capable peripherals than DMA channels.
Especially, UART2 and UART3 do not have
DMA channels associated with them by default.

To avoid extensive use of a DMA channel for the
express purpose of forwarding interrupts, the
ADSP-BF54x UARTs have an option to redirect
transmit and receive events to the status
interrupt, which goes directly to the SIC
controller. When the EGLSI bit in the global
control register is set, transmit and receive events

are not signaled to the regular transmit and
receive interrupt channels; rather, they are
signaled to the status interrupt channel, being
ORed with regular status request.

This way, a UART module is still fully
functional in non-DMA mode even without an
associated DMA channel. There remains,
however, the restriction that all UART events
must be serviced by one common interrupt
routine.

Transmit Finish Interrupts

On the transmit side, interrupt timing is an
interesting topic. Normally, the UART
transmitter issues an interrupt or DMA request
when a UARTx_THR register is ready for new data,
as signaled by the THRE bit. By this time,
transmit data might be pending in the transmit
shift register TSR.

Consequently, the transmit interrupt service
routine is not yet permitted to disable the UART.
Rather, the processor must still wait until the
transmitter empty (TEMT) bit goes high.

On the ADSP-BF54x UART, the TEMT bit has
been saddled with new interrupt functionality.
There is a new sticky copy of the self-clearing
TEMT bit in the UARTx_LSR register, called the
transmit finished indicator (TFI) bit. If enabled
by the ETFI bit, the TFI bit triggers a request to
the status interrupt channel. The service routine
must W1C the TFI bit. By that time, it is safe to
disable the UART and EIA-485 style line
drivers.

Alternatively, the transmit finish event can also
be signaled through the DMA controller. This is
enabled by the EDTPTI bit. The DMA controller
informs the UART when the last data word of a
work unit has been handed over to the UART.
The next time the TEMT bit goes high, a special
command is sent to the DMA channel. When
DMAEN is also enabled, the DMA channel
translates this command to an interrupt request
and sends it to the SIC controller.

 a

UART Enhancements on ADSP-BF54x Blackfin® Processors (EE-331) Page 4 of 8

If the DMA works in stop mode, the UART’s
EDTPTI bit is set and the DI_EN bit is not set,
then the normal DMA interrupt requested is
delayed until the last data byte has left the
UART. If both, EDTPTI and DI_EN are set, then
two interrupts are requested on the same channel.

Figure 1. Transmit interrupt options

Figure 1 illustrates the resulting four interrupt
options for UART transmit operation.

1. Regular TX DMA interrupt. By this time a
new work unit can be initiated, but the DMA
must not be disabled yet as data is still in the
DMA FIFO.

2. TX DMA interrupt with the SYNC bit set. The
DMA interrupt is delayed until all data has
left the DMA FIFO. By this time, it is safe to
disable and to re-assign the DMA channel.

3. Regular TX UART interrupt. In DMA mode,
this request functions as DMA request and
cannot generate interrupts. In non-DMA
mode, the DMA channels forward this
transmit request to the SIC controller. With
the EGLSI bit set, this request goes to the
status interrupt channel instead.

4. Transmission finished interrupt. At this time,
all data has left the UART and it is safe to
disable the UART module. If ETFI is enabled,
a status interrupt is generated. If DMA is
enabled and EDTPTI is set, the DMA
controller requests an interrupt over the TX
DMA channel. The user may choose to
service the TFI event by the transmit or the
status interrupt routine.

Receive FIFO

The ADSP-BF53x UARTs feature a two-stage
receive buffer that consists of the receive buffer
(UARTx_RBR) register and the serial sampling
(RSR) register. The later is not accessible by
software.

If enabled, a receive interrupt is issued when a
data word has been copied from RSR to
UARTx_RBR. This is performed at the time the
first stop bit has been sampled. If software (or
DMA) does not read the UARTx_RBR register
before the receipt of stop bit of the second data
word, the second word will overwrite the first
word in UARTx_RBR and an overrun condition is
reported. This means that software must respond
within one data frame to avoid overrun errors.

On ADSP-BF54x processors, an additional 4-
deep FIFO has been inserted between the RSR
and UARTx_RBR registers. This is shown in
Figure 2. Compared to the ADSP-BF53x
implementation, the interrupt response time
requirement has been relaxed by a factor of five.
This feature does not require any software
changes.

There is a status bit called RFCS in the newly
introduced UARTx_MSR status register. It signals
the receive FIFO’s count status. The behavior of
the bit depends on the new receive FIFO
threshold (RFIT) bit in the UARTx_MCR register.

If RFIT=0, the RFCS bit indicates whether two or
more data words are available in the receive
FIFO. If RFIT=1, the RFCS bit indicates whether
four or more data words are available in the
receive FIFO. The RFCS bit clears automatically
when the FIFO has drained below the watermark
due to core or DMA reads from the UARTx_RBR
register.

The enable receive FIFO count interrupt (ERFCI)
bit enables interrupt signaling to the UART
Status Interrupt channel based on the RFCS bit. In
non-DMA mode, the interrupt service routine
may rely on the status interrupt instead of the
regular receive interrupt and reduce the interrupt

TX

TSR THR
DAB

PAB

DMA FIFO

1

Memory

2 3 4

 a

UART Enhancements on ADSP-BF54x Blackfin® Processors (EE-331) Page 5 of 8

load to one-half or one-fourth. Two (RFIT=0) or
four (RFIT=1) bytes can be read from the receive

buffer. When the RFCS bit clears, the interrupt
request is also de-asserted.

Figure 2. Receive interrupt options

Figure 2 illustrates the resulting five interrupt
options for UART receive operation.

1. Regular RX DMA interrupt. By this time, all
receive operation has been completed. Unless
further data is in the receive pipe, it is safe to
disable the DMA channel and/or the UART
controller.

2. Normal interrupt in non-DMA mode when the
ERBFI bit is set. All the receive status flags
(DR, PE, FE, and BI) consistently report at this
point of time. Consequently, the ELSI
interrupt is also partly aligned here.

3. FIFO threshold interrupt option 1. When
RFIT=0, the ERFCI interrupt signals that two
bytes are ready in the UART receive buffer.

4. FIFO threshold interrupt option 2. When
RFIT=1, the ERFCI interrupt signals that four
bytes are ready in the UART receive buffer.

5. Overrun error. By the time the stop bit of the
6th word is received before the receive buffer
has drained, an overrun error occurs and is
reported to the ELSI interrupt.

Hardware Flow Control
Hardware flow control is a common handshake
that enables a UART receiver to prevent the
counterpart’s transmitter from sending further
data when the receive buffer may overflow. This
feature is not available on UART0 and UART2.

The receiver generates an output signal, called
RTS (request to send). It de-asserts the signal

when the receive buffer is filled above a certain
threshold. The transmitter senses to an input
signal called CTS (clear to send). It stops
transmission when CTS is de-asserted.
However, it still cleanly finishes transmission of
the currently processed word.

For bi-directional data flow, the hardware
connection would look like Figure 3.

Figure 3. UART hardware flow control connection

RX

RSR RBR
DAB

PAB

DMA FIFO
RX FIFO

RX Buffer

Memory

1 2 3 4 5

 a

UART Enhancements on ADSP-BF54x Blackfin® Processors (EE-331) Page 6 of 8

In industry, the RTS and the CTS signals are
usually active-low signals (send when low).
Setting the FCPOL bit in the UARTx_MCR register
inverts the signal polarity, and RTS and CTS
become active-high signals (send when high).

RTS Generation of the Receiver

The ARTS bit in the UARTx_MCR register enables
automatic generation of the RTS signal. If
ARTS=0, the state of the RTS output signal is
controlled by the MRTS bit manually. If, however,
ARTS=1, the RTS output tells about the status of
the receive buffer.

Similar to the RFIT bit, which controls the
interrupt timing, the receive FIFO RTS threshold
(RFRT) bit controls the assertion of the RTS

signal. Unlike the interrupt, RTS assertion and
de-assertion is subject to hysteresis.

RTS de-asserts if there are two (RFRT=0) or
four (RFTR=1) bytes in the receive buffer and a
third or fifth start bit is detected. RTS asserts
again, when the receive buffer drains below the
watermark of two (RFRT=0) or four (RFRT=1) due
to UARTx_RBR reads again.

Since the RTS signals must be also enabled at
port muxing level, it might be advantageous to
have a pull-down resistor (pulling up if FCPOL=0)
on this signal to prevent it from floating during
the processor’s reset cycling.

Also, a pull-up resistor on the TX output avoids
floating signals while the processor is in reset.

CTS Sensing on the Transmitter

There is a new bit in the UARTx_MCR register
called ACTS. If set, it enables automatic CTS

sensing. Once the transmitter detects de-asserted
level on the CTS input pin, it finishes
transmission of the word currently in the TSR

shift register. However, it prevents the word
currently in the UARTx_THR register from being
transferred to the TSR register until CTS is
asserted again.

In addition, there is a new bit called CTS in the
UARTx_MSR register that indicates assertion of the
CTS input signal. There is also a sticky version

of the CTS bit called SCTS, that can be cleared by
W1C software operation.

If enabled by the EDDSI bit, a so-called modem
status interrupt is signaled to the UART status
interrupt, whenever SCTS =1.

Similar to the CTS input pin, software can also
pause transmission. This is done by setting the
XOFF bit in the UARTx_MCR register temporarily.

In loopback mode (LOOP_ENA=1), the receiver’s
RTS output is internally looped back to the

transmitter’s CTS input.

Bit Rate Generation
The UART module’s base clock is derived from
the system clock (SCLK) by dividing it by the 16-
bit integer as represented by the UARTx_DLL and
UARTx_DLH 8-bit registers.

For safety, the received UART data is
oversampled 16 times. Thus, the effective bit rate
is 16 times slower than the base clock.

If the UART is running at high bit rates, the
granularity of the supported bit rates becomes
very limited. For example, assume an SCLK
frequency of 120 MHz and a nominal bit rate of
1 Mb/s. Then, a divisor value of 7 would result in
a bit rate of 1071 Mb/s, which is off by 7%. A
divisor value of 8 would result in 937500 b/s,
which is not much better.

For this reason, the ADSP-BF54x UART
features the new enable-divide-by-one (EDBO) bit
in the global control register. With this bit set,

 a

UART Enhancements on ADSP-BF54x Blackfin® Processors (EE-331) Page 7 of 8

the divide-by-16 circuit is bypassed.
Consequently, the effective bit rate is:

):(161 DLLDLH
SCLKbitrate EDBO ×

= −

With the EDBO bit set, the receiver still
oversamples and makes one-out-of-three-
samples majority decisions. However, the sample
points in the middle of a bit are no longer
generated by traditional synchronous logic.

In the above example, a divisor value of 120
would nicely generate the desired bit rate, when
the EDBO bit is set.

Autobaud Detection

The principle of autobaud detection has not
changed compared to the ADSP-BF53x UART.
On ADSP-BF54x processors, each of the four
UARTs has a GP timer associated. Its alternate
capture input (TACIx) senses the UART receive
input.

 TACI0 senses UART0 RX

 TACI1 senses UART1 RX

 TACI2 senses UART2 RX

 TACI3 senses UART3 RX

If the recommended autobaud pattern 0x40 is
used and the timer is configured to capture
periods between two falling edges, the
TIMERx_PERIOD register will contain 8 bit times
as shown in Figure 4.

Figure 4. Autobaud detection using a 0x40 pattern

The UART clock divisor value is still calculated
by shifting the resulting value in the
TIMERx_PERIOD register seven bit positions to
the right. If, however, the EDBO bit is set, the

TIMERx_PERIOD value must only be shifted by
three bit positions.

Code Porting Checklist
Porting code from ADSP-BF53x projects to
ADSP-BF54x processors is usually quick.
Nevertheless, a couple of code lines must be
updated.

Required Changes

 Remove the DLAB instruction and access
UARTx_DLL and UART_DLH directly.

 Replace expensive UARTx_IER read-modify-
write sequences with W1S and W1C
operations to the UARTx_IER_SET and
UARTx_IER_CLEAR registers. If a CLI/STI
instructions pair was used to protect against a
read-modify-write, the CLI/STI instructions
can be removed.

 Interrogate UARTx_LSR and/or UARTx_MSR
instead of UARTx_IIR.

Recommended Changes

 Replace expensive TEMT polling loops with
TFI interrupts

 In non-DMA mode, all three UART interrupt
channels are serviced by the same routine.
Set the EGLSI bit and free up DMA
resources.

 In non-DMA mode, configure your receive
interrupt routine to the ERFCI interrupt
instead of the ERBFI interrupt to reduce
interrupt load.

 If software was simulating flow control,
enable automatic hardware flow control
instead.

 If the bit rate provided by the UART clock
divider is off the nominal bit rate, check
whether setting the EDBO bit provides better
transfer quality.

 a

UART Enhancements on ADSP-BF54x Blackfin® Processors (EE-331) Page 8 of 8

References
[1] ADSP-BF54x Blackfin Processor Peripheral Hardware Reference. Rev 0.3. October 2007. Analog Devices, Inc.

Document History

Revision Description

Rev 1 – November 6, 2007
by B. Kusstatscher

Initial Release

	Introduction
	Programming Model
	No More Destructive Reads
	No More UARTx_IIR Register
	UARTx_IER Set and Clear Register Pair
	No More MMR Address Sharing

	Interrupt Enhancements
	Status Interrupt
	Alternate RX and TX Signaling
	Transmit Finish Interrupts
	Receive FIFO

	Hardware Flow Control
	Generation of the Receiver
	Sensing on the Transmitter

	Bit Rate Generation
	Autobaud Detection

	Code Porting Checklist
	Required Changes
	Recommended Changes

	References
	Document History

