
Engineer-to-Engineer Note EE-301

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Video Templates for Developing Multimedia Applications on Blackfin®
Processors
Contributed by Kaushal Sanghai Rev 1 – September 28, 2006

Copyright 2006, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
Blackfin® processors enable a variety of ways to
efficiently manage data for high-performance
applications. This document describes a set of
“templates” that can be used to efficiently
manage multimedia data on Blackfin processors.

The templates provided with this EE-Note can
help users get started in implementing
customized applications, as they can be modified
to fit specific application needs. The first part of
the EE-Note discusses the types of templates
available, and the second part describes specific
examples for each template.

Background
The size of data buffers involved in multimedia
applications exceeds the processor’s internal
memory space. To take advantage of the low-
latency access of the processor’s on-chip
memory (L1/L2), some example templates have
been created that can be used as a starting point
to move peripheral data directly into L1 or L2
memory. The tradeoff to consider is between the
size of the memory and the processing
granularity of the image block within an
application. The templates also exploit the
predictable data access pattern inherent in
multimedia applications to minimize the
transfers required to move data between different
levels of memory, thus improving resource
utilization.

Video Templates Overview
A video sequence can be regarded as a three-
dimensional (3-D) signal, comprising two
dimensions in the spatial domain (i.e., a single 2-
D frame) and one dimension in the temporal
domain (i.e., a temporal sequence of 2-D
frames). The data flow of the video stream can
thus be partitioned in one of the two dimensions:
1) a temporal dimension, or 2) a spatial
dimension. In the temporal dimension, the data
flow can be managed at the granularity of a
group of pictures (GOP) level or at the frame
level. In the spatial dimension, the data
movement can be managed at the granularity of a
line or a macro-block. These various levels of
granularity in a video signal are called sub-
processing blocks. Note that the granularity of
the sub-processing decreases from GOP level to
line level.

The templates discussed in this document exploit
the temporal and spatial characteristics inherent
in video signals described above. The templates
take advantage of the predictable data access
pattern to hide the memory latencies and reduce
the number of memory transfers between
different levels of memory.

In most image processing algorithms, the data
access pattern of the sub-processing block is
predictable. For example, in JPEG compression,
the macro-blocks of an image are accessed
sequentially across the rows. Table 1 shows

 a

Video Templates for Developing Multimedia Applications on Blackfin® Processors (EE-301) Page 2 of 7

examples in which the access pattern of the sub-
processing block is predictable.

Example Application Comments

Color Conversion (e.g.,
YUV to RGB)

The image is accessed line
by line

Histogram Analysis Image data is accessed line
by line

Edge Detection Macro-blocks are accessed
sequentially row wise

JPEG/Motion JPEG Macro-blocks are accessed
sequentially row wise

Motion Detection Macro-blocks are accessed
sequentially row wise;
dependent on past frame

MPEG2/MPEG4 Motion window
sequentially across macro-
blocks; dependent on past
and future frames

Table 1. Predictable Access Patterns

If the data access pattern of the image is known
in advance, the data can be transferred to L1
memory before it is requested by the core. This
avoids cycles consumed due to the core being
held off for a memory request. Also, to hide the
latency of the memory transfer, DMA can be
effectively used in the background for any data
transfer. Using DMA instead of cache helps to
save core cycles consumed by cache misses.

To further save system resources, the templates
utilize the smaller and faster L1/L2 memory
spaces by storing image data from the peripheral
into on-chip memory, thus eliminating the delays
that would be incurred during accesses to
external SDRAM. This applies to algorithms that
operate on finer sub-processing block
granularities (i.e., a line or a macro-block).

The templates are designed such that once the
application’s sub-processing block is identified
and the real time constrains are met, the image
processing algorithm can be dropped into one of
the templates to obtain an efficient data layout.

This is demonstrated by taking specific examples
for each of the templates.

In certain algorithms, data dependency can exist
between the sub-processing blocks in the
temporal domain (i.e., current frame of reference
and past or future frames). In these cases,
managing data is more complicated. One such
scenario is discussed in the Inter-Frame
Processing template.

The proposed video templates are discussed in
the next few sections, and example applications
are provided to demonstrate the recommended
approach to using the templates.

Proposed Video Templates
In this section, three different templates, based
on the granularity of the sub-processing block,
are broadly described. They include the sub-
processing blocks in the spatial domain (line and
macro-blocks), as well as templates for
applications where data dependencies exist in the
temporal domain.

Line Processing

For line processing, one approach is to collect
one frame at a time in external memory from the
peripheral. After each frame is collected, a line-
by-line memory transfer can then be performed
to L1 data memory, using either cache or DMA.
A more efficient approach involves transferring a
line directly from the peripheral into L1 data
memory and subsequently transferring the
processed line directly from L1 to a peripheral
interface or external memory1. This decreases the
number of memory transfers required and saves
valuable external bus bandwidth.

1 On ADSP-BF56x processors, two PPIs can be used for
I/O video. On ADSP-BF53x processors, one PPI interface
and one other peripheral interface (i.e., SPORT, Ethernet
etc.) can be used for I/O. For sending/reading compressed
images, the USB or LAN interface can be used on ADSP-
BF56x or ADSP-BF53x processors.

 a

Video Templates for Developing Multimedia Applications on Blackfin® Processors (EE-301) Page 3 of 7

Figure 1 shows the data flow implemented
within the line-based template. DMA is used to
transfer the image directly to L1 data memory
from the peripheral. The image is then processed

and sent out to the peripheral from L1 via DMA.
Double-buffering is maintained in L1 memory to
allow concurrent DMA and core accesses, in
addition to avoiding L1 sub-bank contention.

Figure 1. Data Flow Diagram for Line Processing Template

Macro-Block Processing Template

For macro-block processing, the frame is
processed in sections of dimension (n x m),
where n is the height and m is the width of the
macro-block. The L1 data memory would be
insufficient to place the entire n rows of an
image at a time, so either L22 or external
memory must be used. However, to conserve the
external bus bandwidth, using only L2 memory
will help.

Figure 2. Data Flow Diagram for Macro-Block
Processing Template

2 L2 memory is available on ADSP-BF56x processors. On
ADSP-BF53x processors, external memory can be used for
placing buffers.

L2 memory would be insufficient to place an
entire image, so only n rows of an image are
transferred from the Parallel Peripheral Interface
(PPI) to L2 memory at a time. Macro-blocks are
then transferred from L2 to L1 data memory.
Double-buffering is used in L1 and L2
memories, and DMA channels are used for all
memory transfers. The dataflow diagram for this
template is shown in Figure 2. Also, in this
template, external memory can be used for an
input or output frame buffer to ensure more
uniform use of resources. In Figure 2, either the
Tx or Rx buffers can be placed in external
memory.

Inter-Frame Processing Template

This template can be used for applications in
which dependencies exist between sub-
processing blocks in the temporal dimension
(i.e., between past and future frames). The L1
and L2 memory spaces are insufficient to place
the dependent frames in memory. Thus, the
external SDRAM memory is used to map the
dependent frames.

Sub-processing blocks of the dependent frames
are then transferred from external memory to L1
memory. If L1 memory space is insufficient, L2

 a

Video Templates for Developing Multimedia Applications on Blackfin® Processors (EE-301) Page 4 of 7

memory can be used for placing internal buffers.
The data flow diagram in Figure 3 shows an

application in which dependencies exist on a
macro-block basis over a past frame.

Figure 3. Data Flow Diagram for Inter-Frame Processing Template

In Figure 3, the current_frame and
reference_frame pointers are interchanged
every other frame. For applications where
dependencies exist on a line basis, line transfers
can be made between L1 and external memory.

Dependencies can also exist between several
sub-processing blocks. In these cases, a slice of a
frame (set of lines) can be transferred to internal
memory.

Optimizations Specific to Blackfin Processors

To further improve performance and system
bandwidth utilization, several optimizations
within the templates have been adopted. The
following optimizations are included in the
templates:

 16/32-bit transfers: Maximum bus width is
used for all peripheral DMA and memory
DMA transfers. 16-bit transfers are initiated
for ADSP-BF53x processors, and 32-bit
transfers are initiated for ADSP-BF56x
processors.

 Efficient use of DMA channels: No two
simultaneous memory transfers are initiated
on the same DMA channel.

 SDRAM bank partitioning: The SDRAM is
partitioned into four banks to ensure
simultaneous access to multiple frame buffers
and minimal turn-around times. For example,
the ADSP-BF561 EZ-KIT Lite® board has
64 Mbytes of SDRAM, which can be
configured as four 16-Mbyte internal
SDRAM banks. To take advantage of the
bank structure, no two frame buffers that are
accessed simultaneously are mapped to the
same SDRAM bank.

 DMA traffic control: DMA traffic control
registers are used for efficient system
bandwidth utilization.

Refer to Embedded Media Processing[3] and
Video Framework Considerations for Image
Processing on Blackfin Processors (EE-276)[5] to
learn more about developing optimized
multimedia applications on Blackfin processors.

Using the Templates
To use the templates for specific applications,
first identify the following items:

 The granularity of the sub-processing block
in the image processing algorithm. This is

 a

Video Templates for Developing Multimedia Applications on Blackfin® Processors (EE-301) Page 5 of 7

required to choose a specific template for the
application.

 The available L1 and L2 data memory, as
required by the specific templates.

 An estimate for the computation cycles
required per sub-processing block. This will
indicate whether the application meets the
real-time constraints within the template.

 The spatial and temporal dependencies
between the sub-processing blocks. If
dependencies exist, modify the templates to
account for data dependencies.

Table 2 lists the core cycles available per sub-
processing block for each of the templates. The
table lists the cycles for use with Debug and
Release modes of VisualDSP++® builds. Fewer
core cycles are available in macro-block
processing because it requires additional pointer
manipulation. For inter-frame processing,
multiple transfers are required between
dependent frames, reducing the available core
cycles as compared to line or macro-block
processing. Note that the cycles shown for inter-
frame processing are only for a transfer of a slice
of a frame (set of lines) to internal memory.

Table 2. Specification for Each Template

Since most data accesses are managed from L1
memory, the number of cycles lost due to
memory latency is minimized. The cycles shown
can therefore be entirely budgeted for the core
computation cycles required by an algorithm.

The core processing cycles required for an
algorithm should be computed theoretically or
obtained by using the cycle counters available on
Blackfin processors. A simulator or emulator
session in VisualDSP++ can be used to obtain
this information.

Table 2 also shows the required data memory
space for L1 and L2 memories and the buffer
chaining mechanism used within the templates.
For more information on buffer chaining, refer to
the DMA drivers in the VisualDSP++ Device
Drivers and System Services Manual for Blackfin
Processors[6].

Template Approx.
CCLK/Pixel

(Debug)

Approx.
CCLK/Pixel

(Release)

L1 Data Memory
Required

L2 Data Memory
Required

Comments

Line
Processing

36 42 2 * Line Size N/A Buffer chaining with
loopback

Double-buffering in L1

Macro-
Block
Processing

30 36 2 * Macro-Block Size

Macro-Block Size = n * m

Macro-Block Height * 2 *
Line Size

(Size of Frame Slice)

Buffer chaining with
loopback

Double-buffering in L1
and L2

Inter-
Frame
Processing

30 35 Sub-Processing Block
Size * # of Dependent

Blocks

Sub-Processing Block Size
* # of Dependent Blocks

Only L1 or L2 can be used

Buffer chaining with
loopback

Double-buffering in L1 or
L2

 a

Video Templates for Developing Multimedia Applications on Blackfin® Processors (EE-301) Page 6 of 7

Example Applications
Each of the templates is evaluated with an
example application. Table 3 lists the examples
provided for each of the templates.

Template Application

Line Processing Color conversion,
YUV4:2:2 to RGB

Macro-Block
Processing

Edge detection

Inter-Frame Processing Motion detection

Table 3. Example Applications for Each Template

The templates and the examples for each are
included in the associated ZIP file [7] for this EE-
Note. The examples are located in the directory:
<template_name>/BF561/examples

These examples were tested on the ADSP-BF561
EZ-KIT Lite evaluation board with an input
camera source and output video configured for
ITU-R-656 frame format. For details on ITU-R-
656 format, refer to the appropriate Hardware
Reference Manual [1,2]. The example programs
operate on a D1-sized (720x480) image.

Combining Templates
Some applications are likely to have more than
one image-processing algorithm with different
sub-processing block granularities or data
dependencies between the sub-processing blocks.
In that case, multiple templates can be combined
into one project. This section discusses the
combination of templates for such applications.

Multiple Sub-Processing Blocks

Consider an application that may involve some
pre-processing on a line basis, along with macro-
block processing. In this case, the line processing
template and the macro-block processing

template can be combined into one framework.
Line processing should be modified to store the
processed image to L2 or external memory, and
then the macro-block template should be invoked
to process the stored image.

Multiple Access to a Sub-Processing Block

Consider another example, such as histogram
equalization, where the line processing template
is invoked twice. In this case, the image is
accessed twice⎯once to compute the cumulative
grayscale values, and a second time to apply the
equalization. For this application, one line at a
time from L1 can be processed, stored back to
external memory, and then brought back into L1.

Data Dependency in the Spatial Dimension

Data dependencies may exist between several
lines or macro-blocks of an image, and access to
multiple sub-processing blocks at one time may
be required. An example use for this template is
the motion estimation algorithm, which accesses
several macro-blocks.

Dual-Core/Multiprocessor Applications

The templates can be combined to develop
applications for the ADSP-BF561 dual-core
processor in a multiprocessor system. Based on
the dual-core programming model, different
templates can be executed on either core.

Conclusions
Managing data efficiently is critical to increase
performance and improve system bandwidth
utilization on resource-constraining embedded
platforms. To help address this, efficient data
management techniques have been incorporated
within a set of templates for developing
multimedia applications on Blackfin processors.
The templates will help to produce optimized
data layouts and reduce development time.

 a

Video Templates for Developing Multimedia Applications on Blackfin® Processors (EE-301) Page 7 of 7

References
[1] ADSP-BF533 Blackfin Processor Hardware Reference. Rev 3.2, July 2006. Analog Devices, Inc.

[2] ADSP-BF561 Blackfin Processor Hardware Reference. Rev 1.0, July 2005. Analog Devices, Inc.

[3] Embedded Media Processing. David Katz and Rick Gentile. Newnes Publishers., Burlington, MA, USA, 2005.

[4] Digital Video and HDTV. Charles Poynton. Morgan Kaufmann Publishers Inc., San Francisco, CA,USA, 2003.

[5] Video Framework Considerations for Image Processing on Blackfin Processors (EE-276). Rev 1, September 2005.

Analog Devices Inc.

[6] VisualDSP++ 4.5 Device Drivers and System Services Manual for Blackfin Processors. Rev 2.0, March 2006.

Analog Devices, Inc.

[7] Associated ZIP File. Rev 1, September 2006. Analog Devices, Inc.

Readings
[8] ADSP-BF53x/ADSP-BF56x Programming Reference. Rev 1. May 2005. Analog Devices, Inc.

Document History

Revision Description

Rev 1 – September 28, 2006
by Kaushal Sanghai

Initial Release

	Introduction
	Background
	Video Templates Overview
	Proposed Video Templates
	Line Processing
	Macro-Block Processing Template
	Inter-Frame Processing Template
	Optimizations Specific to Blackfin Processors

	Using the Templates
	Example Applications
	Combining Templates
	Multiple Sub-Processing Blocks
	Multiple Access to a Sub-Processing Block
	Data Dependency in the Spatial Dimension
	Dual-Core/Multiprocessor Applications

	Conclusions
	References
	Readings
	Document History

