
Engineer-to-Engineer Note EE-308

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Estimating and Optimizing Booting Time for Blackfin® Processors
Contributed by Jiang Wu Rev 1 – December 4, 2006

Copyright 2006, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
This EE-Note describes how to estimate,
measure, and optimize the booting time of a
Blackfin® processor-based system. A Booting
Time Estimation Tool (BTET) is included to
help with the analysis of booting time. Though
all measurements and testing described in this
EE- Note were performed on an ADSP-BF533
EZ-KIT Lite® board, and all the descriptions are
specific to ADSP-BF533 Blackfin processors,
the methodology can be readily applied to other
target Blackfin systems as well.

Booting Time
The booting time of an ADSP-BF533 Blackfin
processor-based system is defined as the time
between the deassertion of the processor’s
/RESET pin and the execution of the first line of
application code. Its composition depends on the
selected booting mode of the processor. There
are four boot modes supported by the
processor[1]:

 Execution from external memory

 Boot from flash

 Boot from SPI slave mode

 Boot from SPI serial EEPROM master mode

In this EE-Note, the two most common boot
modes will be the focus: boot from flash and
boot from SPI serial EEPROM master mode. In
this note, we will only discuss the case where the

processor boots into L1 memory, though some
applications may boot into SDRAM.

For these two boot modes, the booting time
consists of the time to:

 Run the built-in Boot ROM

 Load data/code from external memory space
(flash memory or SPI serial EEPROM) to the
processor’s L1 memory

 Zero-fill the non-initialized data

 Execute initialization code, if there is any

Initialization code is usually application-specific,
so it is assumed that there is no initialization
code in the application.

Booting Process
Upon the deassertion of /RESET, the processor
starts the boot process by executing the on-chip
boot ROM, which determines the boot mode
(flash or SPI serial EEPROM), sets up the proper
DMA channels (read from external memory to
L1 memory), and then puts the processor in an
idle state awaiting for the completion of a DMA
read transaction. After parsing the block of bytes
read by the DMA, the boot ROM initiates
another DMA transaction to load more bytes
until all the bytes have been read. Note that the
booting routine is executed from the boot ROM,
which is slower than L1 memory.

Figure 1 graphically shows the boot process.

 a

Estimating and Optimizing Booting Time for Blackfin® Processors (EE-308) Page 2 of 10

Figure 1. Booting Process Using On-Chip Boot ROM

The content of the flash/SPI serial EEPROM is
the loader image (.ldr), which is created by the
VisualDSP++® loader utility (elfloader.exe),
based on one or more Blackfin executable
(.dxe) files. It is organized as header/block
pairs, as shown in Figure 2. A header is ten bytes
long and provides the information about the
block that follows. The boot ROM extracts this
block of information by parsing headers and then
determines what to do with the corresponding
blocks.

Figure 2. Structure of Loader File in Flash/EEPROM

A header includes:

 ADDRESS (4 bytes) — the address to which
the block will be loaded to within the internal
memory.

 COUNT (4 bytes) — the number of bytes of the
block.

 FLAG (2 bytes) — block type and control
commands.

Among the 16 bits of the FLAG word, only three
are used for boot time estimation:

Bit 1: ZEROFILL — Indicates that the block is a
data buffer with zeros and no actual block
follows. It simply instructs the on-chip boot
ROM to zero COUNT bytes starting from ADDRESS
in memory. No data transfer from flash/SPI serial
EEPROM is needed for this block.

Bit 3: INIT — Indicates that the block is an
initialization block, which the boot ROM will
call after loading into the internal memory (the
initialization code must have an RTS at the end).

Bit 15: FINAL — Indicates that the following
block is the last one. After processing a FINAL
block, the boot ROM jumps to the reset vector
address stored in the EVT1 register.

The on-chip boot ROM implements zero-filling
using memory DMA transfers. The source is a
single boot ROM memory location set to zero,
and the destination is the data block specified by
the header. For a complete description of the
header format, refer to ADSP-BF533 Blackfin
Booting Process (EE-240) [2].

Measurement of Boot Time
To measure the boot time of a Blackfin
processor-based system, a code snippet, shown in
Listing 1, must be compiled into the loader file
and programmed/burned to the flash/SPI serial
EEPROM of the target system by the Flash
Programmer tool provided with VisualDSP++.
The system must be configured as “boot from
flash” or “boot from SPI serial EEPROM” by

 a

Estimating and Optimizing Booting Time for Blackfin® Processors (EE-308) Page 3 of 10

setting the BMODE[1:0] pins properly. Then,
upon a system reset, the code is brought in by the
boot ROM to the beginning of L1 memory
(0xFFA00000). It first sets up one of the
programmable flags (PF0) as an output, and then
toggles it.

#include <defBF533.h>
#define RESERVE_SIZE /* depending on
the size of data file startup.dat */
#define FILL_SIZE 10 /* in KByte */

.section program;

start:
 p0.h = hi(FIO_DIR);
 p0.l = lo(FIO_DIR);
 r0.l = 0x0001;
 w[p0] = r0.l; /* set the flag */
 p0.l = lo(FIO_FLAG_T);
 w[p0] = r0.l; /* toggle PF0 */

wait_loop:
 jump wait_loop;
start.end: nop;

#ifdef FILL_SIZE
.section data1
.byte fill[FILL_SIZE*1024];
#endif
#ifdef RESERVE_SIZE
.byte reserve[] = "startup.dat";
#endif

Listing 1. Code Snippet for Measuring Booting Time

On the ADSP-BF533 EZ-KIT Lite board, these
two signals (/RESET and PF0) can be accessed
through the extension U-connector on the bottom
of the board. The booting time will be the time
gap between the rising edge of /RESET and the
toggling edge of PF0. The execution time of the
code snippet is negligible in comparison to the
loading time and boot ROM execution time.

The reserve and fill buffers (defined in the
code snippet of Listing 1) are used to change the
size of the flash/SPI serial EEPROM loading and
zero-filling, therefore facilitating the simulation
of the impact of code sizes on booting time.

The /RESET pin pulse and flag pin toggle can be
recorded by an oscilloscope's single trigger mode
— /RESET as trigger source with positive edge, as
shown in Figure 3.

 a

Estimating and Optimizing Booting Time for Blackfin® Processors (EE-308) Page 4 of 10

Figure 3. Oscilloscope Waveforms of /RESET and PF0 for Measuring Booting Time

Estimating Boot Time
It is possible to estimate the boot time of an
ADSP-BF533 Blackfin processor, given the
crystal frequency and the .ldr file. Among the
four components of the boot time, boot ROM
execution time (TROM) is relatively constant.
Although it may vary with regard to loader file
contents, the deviation is usually small enough to
be ignored. The execution time of initialization
code (TInit) entirely depends on the specific
application, and it can be estimated separately.

The data/code loading time can be estimated by
Equation 1, where TSCLK is the period of the
system clock, NLoading is the number of bytes to
be loaded, and PMem is the number of system
clocks needed to read one byte from external
memory, whether flash or SPI serial EEPROM.

MemLoadingSCLKLoading PNTT ××=

Equation 1. Estimation of Loading Time

The zero-filling time can be estimated by
Equation 2, where TCCLK is the period of the core
clock, NFilling is the number of bytes to be zero-
filled, and PFilling is the number of core clocks
needed for zero-filling one byte.

FillingFillingSCLKFilling PNTT ××=

Equation 2. Estimation of Zero-Filling Time

The boot time (TBooting) can be estimated by the
sum of the above four times, as shown in
Equation 3.

FillingLoadingInitROMBooting TTTTT +++=

Equation 3. Estimation of Boot Time

Table 1 summarizes the values of the needed
parameters for ADSP-BF533 processors. The
loading size (NLoading) and zero-filling size
(NFilling) can be extracted by parsing .ldr files. A
detailed description of loader file format can be

 a

Estimating and Optimizing Booting Time for Blackfin® Processors (EE-308) Page 5 of 10

found in ADSP-BF533 Blackfin Booting Process
(EE-240). The core clock (TCCLK) and system
clock (TSCLK) can be obtained easily by the
crystal clock frequency and the processor’s
default PLL settings, which can be found in the
processor's Hardware Reference [3].

 Flash SPI Serial EEPROM

ROMT 3360 core clocks 90000 core clocks

MemP 22 266

FillingP 1 1

InitT Application Specific Application Specific

Table 1. Estimation Parameter Summary

Optimization of Boot Time
From the above section, it can be seen that all the
components of boot time are proportionally
related to the processor’s core/system clock,
given the crystal clock and loader file. However,
the default clock setting of the processor is
designed to accommodate the slowest flash/SPI
serial EEPROM devices. Furthermore, the core
does not run at its maximum frequency by
default. One solution to expedite the booting
process is to add a short piece of initialization
code which changes the processor’s settings to
make it run the boot process at the maximum
speed. The changeable settings include:

 PLL’s multiplier select MSEL in the PLL_CTL
register

 Clock divider selects (CSEL and SSEL) in the
PLL_DIV register

 SPI baud rate setting in the SPI_BAUD register

 Asynchronous memory control settings in the
EBIU_AMBCTLx registers

The booting process with initialization code is
shown in Figure 4. Upon reset, the boot ROM
first loads the initialization code at the default

speed and calls it. The default speed for a
Blackfin processor is 10 * CLKIN for the core
clock and 2 * CLKIN for the SCLK. After the
return from initialization subroutine, the boot
ROM continues the booting process for the
remaining code/data in external memory at a
higher speed with the changed settings.
However, the improved booting time comes with
an added latency — the loading and running time
of the initialization code, which includes a PLL
relock sequence. In addition, the changed
settings must not exceed the maximum ratings of
the processor and the flash/SPI serial EEPROM
devices. The limitations are:

 Maximum core clock and system clock for
Blackfin processors

 Minimum setup/access/hold times of flash
memory

 Maximum baud rate for the SPI serial
EEPROM

As a result, a constrained optimization problem
must be solved in order to achieve the shortest
boot time. The BTET, introduced in the
following section, can be used to find the
solution.

Figure 4. Booting Process with Initialization Code

 a

Estimating and Optimizing Booting Time for Blackfin® Processors (EE-308) Page 6 of 10

Booting Time Estimation Tool
(BTET)
The booting time estimation tool (BTET.exe) is a
console-based software tool developed to parse
loader files to estimate and optimize booting
time. Taking a loader file as input, it can provide
the default booting time and give
recommendations on processor setting changes
needed to achieve the shortest boot time. Both
flash and SPI serial EEPROM boot modes are
supported. The tool is fully controlled by a user-
defined configuration file. The user can apply
this tool to the application’s loader file to
estimate the time for the system to boot up, and
then use the recommended settings to obtain a
faster startup.

BTET Configuration File

As shown in Appendix A – BTET Configuration
File: BTET.cfg, the configuration file
(BTET.cfg) consists of two parts — user-defined
variables, and system-defined variables. Each
group is divided into several sections. Users
should change only the user-defined variables,
according to the specific application, and leave
the system-defined variables untouched. The
variables are explained as follows.

 Mode section

 FLASH — Determines whether to do
optimization for flash

 SPI — Determines whether to do
optimization for SPI serial EEPROM. If
neither is specified, only analyze the
loader file.

 Crystal section

 Tcrystal — Period of crystal clock
(CLKIN) in µs

 SystemLimit section

 MIN_CCLK — Minimum period of core
clock in µs

 MIN_SCLK — Minimum period of
system clock in µs

 FlashLimit section

 FLASH_SETUP — Minimum setup time
of flash in µs

 FLASH_ACCESS — Minimum
read/write access time of flash in µs

 FLASH_HOLD — Minimum hold time
of flash in µs

 SPIBaudLimit section

 SPIBaudLimit — Maximum SPI baud
in MHz

The configuration file (BTET.cfg) must
be in the same directory as BTET.exe.

Running BTET

BTET can be run in Console page of the Output
window in two ways:

 It can take the loader file’s name as its
parameter in the command line, as shown in
Listing 2.

BTET my_loader_file.ldr

Listing 2. BTET Command-Line Example

 If the command line does not provide the
loader file name, the BTET will prompt you
to type it in, as shown in Listing 3.

WARNING: loader file not specified,
type in its name
>>>

Listing 3. BTET Prompt

BTET Output

BTET outputs its analysis and optimization
results to both the console and to the log file
(BTET.log). The explanation of each part of the
output is illustrated in Appendix B – Output of
BTET.

 a

Estimating and Optimizing Booting Time for Blackfin® Processors (EE-308) Page 7 of 10

Adding Initialization Code

Sample initialization code accompanies this
document in the associated .ZIP file[4]. If the
advice given by BTET is taken, the macros in the
sample code can be changed to the recommended
settings or customized initialization code can be
used.

The initialization code must be compiled into a
.dxe file. Then, in VisualDSP++, change the
project’s load options by adding -init
InitCode.dxe in the Additional options field
of the Project Options dialog box (Figure 5),
which you open by choosing Project Options
from the Project menu.

Figure 5. Adding Init Code to Project

 a

Estimating and Optimizing Booting Time for Blackfin® Processors (EE-308) Page 8 of 10

Appendix A – BTET Configuration File: BTET.cfg

Configuration for Booting Time Estimation Tool
Variables needing to be defined in configuration file
if no configuration file is found, the hard-wired values are used
USER DEFINED VARIABLES #
[Mode]
FLASH = 1 # do FLASH optimization
SPI = 1 # do SPI optimization
 # if neither is specified, only analyze the loader file
[Crystal]
Tcrystal = 0.03 # in us, 1.0/33 us for 33MHz

[SystemLimit]
MIN_CCLK = 0.002 # in us, 1/500.0 us
MIN_SCLK = 0.011 # in us, 1/90.0 us

[FlashLimit]
FLASH_SETUP = 0.022 # in us, 22/1000.0 us
FLASH_ACCESS = 0.036 # in us, 36/1000.0 us
FLASH_HOLD = 0.011 # in us, 11/1000.0 us

[SPIBaudLimit]
SPIBaudLimit = 1.5 # in MHz

SYSTEM DEFINED VARIABLES #
! DO NOT CHANGE #
[InitCode]
PLLCount = 512
InitCodeSize = 202
InitCodeRun = 5076

[KernelNature]
FILL_PER_BYTE = 5
BOOT_FLASH_RUN = 3360
BOOT_SPI_RUN = 90000

[DefaultSystemSetting]
MSEL = 10
CSEL = 1
SSEL = 5

[DefaultFlashSetting]
FLASH_SETUP = 3
FLASH_ACCESS = 15
FLASH_HOLD = 4

[DefaultSPIBaudSetting]
SPIBaudSetting = 133;

[Console]
Quiet = 0
LogFileName = "BTET.log"

 a

Estimating and Optimizing Booting Time for Blackfin® Processors (EE-308) Page 9 of 10

Appendix B – Output of BTET

 a

Estimating and Optimizing Booting Time for Blackfin® Processors (EE-308) Page 10 of 10

References
[1] ADSP-BF533 Blackfin Embedded Processor Data Sheet. Rev C, May 2006. Analog Devices, Inc.

[2] ADSP-BF533 Blackfin Booting Process (EE-240). Rev 3, January 2005. Analog Devices, Inc.

[3] ADSP-BF533 Blackfin Processor Hardware Reference. Rev 3.2, July 2006. Analog Devices, Inc.

[4] Associated .ZIP File (EE-308). Rev 1, November, 2006. Analog Devices, Inc.

Document History

Revision Description

Rev 1 – December 4, 2006
by Jiang Wu

Initial release.

	Introduction
	Booting Time
	Booting Process
	Measurement of Boot Time
	Estimating Boot Time
	Optimization of Boot Time
	Booting Time Estimation Tool (BTET)
	BTET Configuration File
	Running BTET
	BTET Output
	Adding Initialization Code

	Appendix A – BTET Configuration File: BTET.cfg
	Appendix B – Output of BTET
	References
	Document History

