
a

ADSP-BF54x Blackfin® Processor
 Hardware Reference

 (includes ADSP-BF542, ADSP-BF544,
ADSP-BF547, ADSP-BF548, ADSP-BF549)

Revision 1.2, February 2013

Part Number
82-100108-01

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2013 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, Blackfin, CrossCore, EngineerZone, EZ-KIT
Lite, and VisualDSP++ are registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

ADSP-BF54x Blackfin Processor Hardware Reference iii

CONTENTS

CONTENTS

PREFACE

Purpose of This Manual .. lxxxi

Intended Audience .. lxxxi

What’s New in This Manual ... lxxxii

Technical Support ... lxxxiii

Supported Processors ... lxxxiv

Product Information .. lxxxv

Analog Devices Web Site .. lxxxv

EngineerZone .. lxxxvi

Notation Conventions .. lxxxvii

Register Diagram Conventions .. lxxxviii

INTRODUCTION

Peripherals .. 1-2

Memory Architecture .. 1-5

Internal Memory ... 1-6

Contents

iv ADSP-BF54x Blackfin Processor Hardware Reference

External Memory .. 1-7

NAND Flash Controller (NFC) .. 1-8

I/O Memory Space .. 1-9

One-Time-Programmable (OTP) Memory 1-9

DMA Support .. 1-10

Host DMA Interface ... 1-12

External Bus Interface Unit ... 1-13

DDR SDRAM Controller ... 1-13

Asynchronous Controller .. 1-14

Ports .. 1-14

General-Purpose I/O (GPIO) .. 1-14

Two-Wire Interface ... 1-15

Controller Area Network .. 1-16

Enhanced Parallel Peripheral Interface (EPPI) 1-17

SPORT Controllers .. 1-19

Serial Peripheral Interface (SPI) Port ... 1-20

Timers ... 1-21

UART Ports ... 1-22

USB On-The-Go, Dual-Role Device Controller 1-23

ATA/ATAPI–6 Interface .. 1-24

Keypad Interface ... 1-24

Secure Digital (SD)/SDIO Controller ... 1-25

Rotary Counter Interface .. 1-26

Security .. 1-26

ADSP-BF54x Blackfin Processor Hardware Reference v

Contents

Media Transceiver Mac Layer (MXVR) .. 1-27

Real-Time Clock ... 1-29

Watchdog Timer ... 1-30

Clock Signals .. 1-30

Dynamic Power Management .. 1-31

Full On Mode (Maximum Performance) 1-31

Active Mode (Moderate Dynamic Power Savings) 1-31

Sleep Mode (High Dynamic Power Savings) 1-32

Deep Sleep Mode (Maximum Dynamic Power Savings) 1-32

Hibernate State (Maximum Power Savings) 1-33

Voltage Regulation .. 1-33

Boot Modes .. 1-33

Instruction Set Description ... 1-34

Development Tools ... 1-36

CHIP BUS HIERARCHY

Overview .. 2-1

Internal Interfaces ... 2-1

Internal Clocks .. 2-5

Core Bus Overview .. 2-6

System Overview ... 2-8

P Port Interface ... 2-8

D Port Interface .. 2-9

On-Chip L2 Interface .. 2-11

Contents

vi ADSP-BF54x Blackfin Processor Hardware Reference

Peripheral Access Bus (PAB) .. 2-15

PAB Performance .. 2-15

PAB Agents (Masters, Slaves) ... 2-15

DMA-Related Buses ... 2-17

Peripheral DMA .. 2-18

DAB Bus Agents (Masters) .. 2-18

DAB Arbitration ... 2-18

DCB Arbitration ... 2-20

DEB Arbitration ... 2-22

DAB, DCB, and DEB Performance 2-22

External Access Bus (EAB) .. 2-24

EAB/DEB Arbitration ... 2-25

EAB/DEB Performance ... 2-25

MEMORY

Memory Architecture .. 3-2

Internal Memory ... 3-5

Overview of L1 Instruction SRAM 3-6

Overview of L1 Instruction ROM 3-6

Overview of L1 Data SRAM ... 3-7

Overview of Scratchpad Data SRAM 3-7

Overview of On-Chip L2 .. 3-8

ADSP-BF54x Blackfin Processor Hardware Reference vii

Contents

L1 Instruction Memory ... 3-8

Instruction Memory Control Register
(IMEM_CONTROL) .. 3-9

L1 Instruction SRAM ... 3-11

L1 Instruction Cache ... 3-13

Cache Lines .. 3-13

Cache Hits and Misses .. 3-17

 Cache-Line Fills ... 3-17

Line-Fill Buffer ... 3-18

Cache-Line Replacement ... 3-18

Instruction Cache Management ... 3-20

Instruction Cache Locking by Line 3-20

Instruction Cache Locking by Way 3-21

Instruction Cache Invalidation .. 3-22

Instruction Test Registers .. 3-23

ITEST_COMMAND Register ... 3-24

ITEST_DATA1 Register .. 3-25

ITEST_DATA0 Register .. 3-26

L1 Data Memory .. 3-27

Data Memory Control Register (DMEM_CONTROL) 3-27

L1 Data SRAM ... 3-30

L1 Data Cache .. 3-33

Example of Mapping Cacheable Address
Space into Data Banks .. 3-34

Data Cache Access .. 3-37

Contents

viii ADSP-BF54x Blackfin Processor Hardware Reference

Cache Write Method .. 3-39

Write Buffers .. 3-39

Interrupt Priority Register (IPRIO) and Write Buffer
Depth .. 3-40

Data Cache Control Instructions 3-41

Data Cache Invalidation ... 3-42

Data Test Registers ... 3-42

Data Test Command Register (DTEST_COMMAND) 3-44

Data Test Data 1 Register (DTEST_DATA1) 3-45

Data Test Data 0 Register (DTEST_DATA0) 3-46

On-Chip Level 2 (L2) Memory ... 3-47

On-Chip L2 Bank Access .. 3-47

Latency ... 3-48

One Time Programmable Memory .. 3-49

External Memory .. 3-50

Memory Protection and Properties .. 3-51

Memory Management Unit ... 3-51

Memory Pages ... 3-53

Memory Page Attributes ... 3-53

Page Descriptor Table .. 3-54

CPLB Management ... 3-55

MMU Application .. 3-56

Examples of Protected Memory Regions 3-58

ICPLB Data Registers (ICPLB_DATAx) 3-59

DCPLB Data Registers (DCPLB_DATAx) 3-61

ADSP-BF54x Blackfin Processor Hardware Reference ix

Contents

DCPLB Address Registers (DCPLB_ADDRx) 3-63

ICPLB Address Registers (ICPLB_ADDRx) 3-64

CPLB Status Registers ... 3-65

DCPLB Status Register (DCPLB_STATUS) 3-66

ICPLB Status Register (ICPLB_STATUS) 3-66

CPLB Fault Address Registers .. 3-67

DCPLB Fault Address Register
(DCPLB_FAULT_ADDR) ... 3-68

ICPLB Fault Address Register
(ICPLB_FAULT_ADDR) ... 3-69

Memory Transaction Model .. 3-69

Load/Store Operation ... 3-70

Interlocked Pipeline ... 3-71

Ordering of Loads and Stores ... 3-72

Synchronizing Instructions .. 3-73

Speculative Load Execution ... 3-74

Conditional Load Behavior .. 3-75

Working With Memory ... 3-76

Alignment ... 3-76

Cache Coherency .. 3-76

Atomic Operations .. 3-77

Memory-Mapped Registers .. 3-78

Core MMR Programming Code Example 3-78

Terminology ... 3-79

Contents

x ADSP-BF54x Blackfin Processor Hardware Reference

ONE-TIME PROGRAMMABLE MEMORY

OTP Memory Overview ... 4-1

OTP Memory Map ... 4-2

Error Correction ... 4-6

Error Correction Policy ... 4-6

OTP Access .. 4-8

OTP Timing Parameters ... 4-10

OTP Timing Calculations for SCLK = 100 MHz 4-11

OTP Timing Calculations for SCLK = 50 MHz 4-12

OTP Timing Calculations for SCLK = 40 MHz 4-12

OTP_TIMING Register ... 4-13

Callable ROM Functions for OTP ACCESS 4-14

Initializing OTP ... 4-14

bfrom_OtpCommand ... 4-14

Programming and Reading OTP .. 4-16

bfrom_OtpRead ... 4-17

bfrom_OtpWrite .. 4-18

Error Codes .. 4-21

Write Protecting OTP Memory ... 4-24

Accessing Private OTP Memory .. 4-26

OTP Programming Examples .. 4-26

Enable Access to Private OTP .. 4-27

Enable Access to Private OTP and
Enable JTAG Emulation in Secure Mode 4-27

ADSP-BF54x Blackfin Processor Hardware Reference xi

Contents

Read Public OTP Memory and Print to Console 4-27

OTP Write to Single Page Using Two Half Page Accesses 4-29

Lock Page Without Writing Any Data 4-30

EXTERNAL BUS
INTERFACE UNIT

General Overview ... 5-2

Block Diagram .. 5-4

On-Chip System Interfaces .. 5-7

Error Detection ... 5-8

System Arbitration .. 5-8

Address Resolution .. 5-9

Reorder Unit ... 5-9

DDR Queue Manager ... 5-11

DDR Arbitration .. 5-11

DDR SDRAM Controller ... 5-15

Features ... 5-15

DDR SDRAM Controller ... 5-15

Mobile DDR SDRAM Controller 5-16

Partial Array Self-refresh ... 5-16

Memory Driver Strength ... 5-17

Temperature Compensated self-refresh 5-17

Contents

xii ADSP-BF54x Blackfin Processor Hardware Reference

Unsupported Mobile DDR SDRAM Controller Features ... 5-17

Deep Power Down .. 5-17

Clock Stop Mode .. 5-17

Clock Frequency During Operation 5-18

DDR SDRAM Memory Interface ... 5-18

DDR SDRAM Programming Model 5-19

Recommended Programming Sequence 5-21

DDR Registers .. 5-23

Memory Control Register 0 (EBIU_DDRCTL0) 5-24

Memory Control Register 1 (EBIU_DDRCTL1) 5-25

Memory Control Register 2 (EBIU_DDRCTL2) 5-26

Memory Control Register 3 (EBIU_DDRCTL3),
Regular DDR Devices .. 5-27

Memory Control Register 3 (EBIU_DDRCTL3),
Mobile DDR Devices ... 5-28

Queue Configuration Register (EBIU_DDRQUE) 5-29

Reset Control Register (EBIU_RSTCTL) 5-30

Error Master Register (EBIU_ERRMST) 5-31

Error Address Register (EBIU_ERRADD) 5-32

Mode of Operation - DDR .. 5-32

Data Flow for 16-bit DDR SDRAMs 5-33

Definition of Standard DDR Terms 5-34

DDR SDRAM System Organization 5-40

DDR SDRAM Configurations Supported 5-41

DDR Timing Parameter Definitions 5-43

ADSP-BF54x Blackfin Processor Hardware Reference xiii

Contents

DDR Metrics Control Registers ... 5-44

DDR Metrics Counter Enable (EBIU_DDRMCEN)
Register .. 5-44

DDR Metrics Counter Clear (EBIU_DDRMCCL)
Register .. 5-47

DDR READ Access Count (EBIU_DDRBRCx)
Registers .. 5-49

DDR WRITE Access Count (EBIU_DDRBWCx)
Registers .. 5-50

DDR Page ACTIVATE Count (EBIU_DDRACCT)
Register .. 5-51

DDR TURN AROUND Count (EBIU_DDRTACT)
Register .. 5-51

DDR AUTO-REFRESH Count (EBIU_DDRARCT)
Register .. 5-51

DDR Grant Count (EBIU_DDRGCx) Registers 5-51

More Grant Counter Options .. 5-52

DDR Grant Count Control ... 5-53

Asynchronous Memory Interface ... 5-53

Asynchronous Memory Address Decode 5-54

Asynchronous Memory Arbitration .. 5-55

Asynchronous Memory Interface Control Registers 5-57

Asynchronous Memory Global
Control Register (EBIU_AMGCTL) 5-57

Contents

xiv ADSP-BF54x Blackfin Processor Hardware Reference

Asynchronous Memory Bank Control
Registers (EBIU_AMBCTL0, EBIU_AMBCTL1) 5-59

Avoiding Bus Contention .. 5-62

ARDY Input Control .. 5-63

Memory Bank Select Control Register (EBIU_MBSCTL) .. 5-63

Flash Memory Bank Control Registers (EBIU_FCTL,
EBIU_MODE) .. 5-64

Booting From Page Mode or Synchronous Flash 5-65

Access Mode Selection .. 5-65

Memory Mode Control (EBIU_MODE) Register 5-66

Asynchronous Flash Mode .. 5-66

Flash Memory Bank Control (EBIU_FCTL) Register 5-67

Asynchronous Page Mode ... 5-67

Synchronous Burst Mode .. 5-67

EBIU Arbitration Status Register (EBIU_ARBSTAT) 5-69

Programmable Timing Characteristics 5-70

Asynchronous Accesses by Core Instructions 5-70

Asynchronous Reads ... 5-70

Asynchronous Writes .. 5-72

Asynchronous Writes Followed by Reads 5-75

Adding Additional Wait States .. 5-77

Asynchronous Flash Mode Writes and Reads 5-78

Asynchronous Page Mode Reads 5-79

Synchronous Burst Mode Read ... 5-80

Bus Request and Grant .. 5-81

ADSP-BF54x Blackfin Processor Hardware Reference xv

Contents

SYSTEM INTERRUPTS

Overview .. 6-1

Features ... 6-2

Interfaces .. 6-2

Description of Operation .. 6-6

Events and Sequencing .. 6-6

System Peripheral Interrupts .. 6-10

Programming Model ... 6-22

System Interrupt Initialization ... 6-22

System Interrupt Processing Summary 6-22

System Interrupt Controller Registers .. 6-24

System Interrupt Assignment (SIC_IARx) Registers 6-25

System Interrupt Mask (SIC_IMASKx) Registers 6-32

System Interrupt Status (SIC_ISRx) Registers 6-35

System Interrupt Wakeup (SIC_IWRx) Registers 6-37

Programming Examples ... 6-40

Clearing Interrupt Requests ... 6-41

DIRECT MEMORY ACCESS

Overview and Features .. 7-2

DMA Controller Overview .. 7-6

External Interfaces ... 7-8

Internal Interfaces ... 7-8

Contents

xvi ADSP-BF54x Blackfin Processor Hardware Reference

Peripheral DMA .. 7-10

Memory DMA .. 7-13

Handshaked Memory DMA Mode 7-16

Modes of Operation ... 7-16

Register-Based DMA Operation .. 7-17

Stop Mode ... 7-18

Autobuffer Mode .. 7-18

Two-Dimensional DMA Operation 7-19

Examples of Two-Dimensional DMA 7-20

Descriptor-Based DMA Operation .. 7-21

Descriptor List Mode .. 7-22

Descriptor Array Mode ... 7-22

Variable Descriptor Size .. 7-23

Mixing Flow Modes .. 7-24

Functional Description ... 7-25

DMA Operation Flow ... 7-25

DMA Startup ... 7-25

DMA Refresh ... 7-30

Work Unit Transitions .. 7-32

DMA Transmit and MDMA Source 7-33

DMA Receive ... 7-35

Stopping DMA Transfers .. 7-36

DMA Errors (Aborts) .. 7-37

DMA Control Commands .. 7-39

ADSP-BF54x Blackfin Processor Hardware Reference xvii

Contents

Restrictions ... 7-43

Transmit Restart or Finish ... 7-44

Receive Restart or Finish ... 7-44

Handshaked Memory DMA Operation 7-45

Pipelining DMA Requests ... 7-47

HMDMA Interrupts ... 7-49

DMA Performance .. 7-50

DMA Throughput .. 7-51

Memory DMA Timing Details .. 7-54

Static Channel Prioritization ... 7-54

Temporary DMA Urgency ... 7-54

Memory DMA Priority and Scheduling 7-56

Traffic Control .. 7-58

Programming Model ... 7-60

Synchronization of Software and DMA 7-61

Single-Buffer DMA Transfers .. 7-63

Continuous Transfers Using Autobuffering 7-64

Descriptor Structures .. 7-65

Descriptor Queue Management ... 7-67

Descriptor Queue Using Interrupts on Every
Descriptor .. 7-67

Descriptor Queue Using Minimal Interrupts 7-69

Software-Triggered Descriptor Fetches 7-71

Contents

xviii ADSP-BF54x Blackfin Processor Hardware Reference

DMA Registers ... 7-73

DMA Channel Registers .. 7-73

Peripheral Map (DMAx_PERIPHERAL_MAP and
MDMA_yy_PERIPHERAL_MAP) Registers 7-77

DMA Configuration (DMAx_CONFIG
and MDMA_yy_CONFIG) Registers 7-79

Interrupt Status (DMAx_IRQ_STATUS and
MDMA_yy_IRQ_STATUS) Registers 7-84

Start Address (DMAx_START_ADDR and
MDMA_yy_START_ADDR) Registers 7-88

Current Address (DMAx_CURR_ADDR and
MDMA_yy_CURR_ADDR) Registers 7-90

Inner Loop Count (DMAx_X_COUNT and
MDMA_yy_X_COUNT) Registers 7-92

Current Inner Loop Count (DMAx_CURR_X_COUNT
and MDMA_yy_CURR_X_COUNT) Registers 7-94

Inner Loop Address Increment (DMAx_X_MODIFY
and MDMA_yy_X_MODIFY) Registers 7-97

Outer Loop Count (DMAx_Y_COUNT and
MDMA_yy_Y_COUNT) Registers 7-99

Current Outer Loop Count (DMAx_CURR_Y_COUNT
and MDMA_yy_CURR_Y_COUNT) Registers 7-101

Outer Loop Address Increment (DMAx_Y_MODIFY
and MDMA_yy_Y_MODIFY) Registers 7-103

Next Descriptor Pointer (DMAx_NEXT_DESC_PTR
and MDMA_yy_NEXT_DESC_PTR) Registers 7-106

Current Descriptor Pointer (DMAx_CURR_DESC_PTR
and MDMA_yy_CURR_DESC_PTR) Registers 7-108

ADSP-BF54x Blackfin Processor Hardware Reference xix

Contents

Handshake MDMA (HMDMA) Registers 7-111

Handshake MDMA Control
(HMDMAx_CONTROL) Registers 7-111

Handshake MDMA Initial Block Count
(HMDMAx_BCINIT) Registers 7-114

Handshake MDMA Current Block Count
(HMDMAx_BCOUNT) Registers 7-115

Handshake MDMA Current Edge Count
(HMDMAx_ECOUNT) Registers 7-116

Handshake MDMA Initial Edge Count
(HMDMAx_ECINIT) Registers 7-117

Handshake MDMA Edge Count Urgent
(HMDMAx_ECURGENT) Registers 7-117

Handshake MDMA Edge Count Overflow
Interrupt (HMDMAx_ECOVERFLOW) Registers 7-118

DMA Traffic Control Registers .. 7-118

DMA Traffic Control Counter Period
(DMACx_TCPER) Registers .. 7-119

DMA Traffic Control Counter
(DMACx_TCCNT) Registers 7-119

DMA Controller 1 Peripheral Multiplexer
(DMAC1_PERIMUX) Register 7-121

Programming Examples ... 7-122

Register-Based 2D Memory DMA 7-122

Initializing Descriptors in Memory 7-126

Software-Triggered Descriptor Fetch Example 7-129

Handshake Memory DMA Example 7-132

Contents

xx ADSP-BF54x Blackfin Processor Hardware Reference

HOST DMA PORT

Overview .. 8-1

Features .. 8-2

Interface Overview ... 8-3

Description of Operation .. 8-3

Architecture .. 8-4

Functional Description ... 8-5

HOSTDP Configuration .. 8-5

HOSTDP Transactions ... 8-7

Host Read Status .. 8-8

Host Read Data and Host Write Data Operations 8-8

HOSTDP Modes of Operation ... 8-10

Acknowledge Mode .. 8-10

Interrupt Mode ... 8-14

DMA STOP Mode and AUTOBUFFER Mode 8-15

Bus Widths and Endian Order .. 8-16

Access Control .. 8-17

Improving HOSTDP DMA Bus Bandwidth 8-18

Control Commands Between the
External Host and HOSTDP ... 8-20

Programming Model ... 8-21

ADSP-BF54x processor Slave .. 8-21

Host Processor .. 8-22

ADSP-BF54x Blackfin Processor Hardware Reference xxi

Contents

Host DMA Port Registers .. 8-24

Host DMA Port Control (HOST_CONTROL) Register 8-25

Host DMA Port Status (HOST_STATUS) Register 8-27

HOSTDP Timeout (HOST_TIMEOUT) Register 8-29

Programming Examples ... 8-30

GENERAL-PURPOSE PORTS

Overview .. 9-1

Features ... 9-2

Module Overview ... 9-3

External Interfaces ... 9-4

Internal Interfaces ... 9-4

Pin Multiplexing Scheme .. 9-4

Port A ... 9-9

Port B ... 9-10

Port C ... 9-12

Port D ... 9-13

Port E ... 9-14

Port F ... 9-15

Port G ... 9-17

Port H .. 9-18

Port I .. 9-20

Port J .. 9-21

Port Multiplexing Control ... 9-22

Contents

xxii ADSP-BF54x Blackfin Processor Hardware Reference

GPIO Functionality .. 9-24

Input Mode .. 9-24

Output Mode ... 9-25

Open-Drain Mode .. 9-25

Pin Interrupts ... 9-26

Programming Model ... 9-29

Port Registers ... 9-33

Port Multiplexing Registers ... 9-45

Port x Function Enable (PORTx_FER) Registers 9-45

Port Multiplexer Control (PORTx_MUX) Registers 9-46

GPIO Registers ... 9-48

Port x GPIO Direction Set
(PORTx_DIR_SET/CLEAR) Registers 9-48

Port x GPIO Input Enable (PORTx_INEN) Registers 9-50

Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR) Registers 9-51

Pin Interrupt Registers .. 9-53

Pin Interrupt Mask (PINTx_MASK_SET/
PINTx_MASK_CLEAR) Register Pairs 9-54

Interrupt Request and Latch (PINTx_REQUEST/
PINTx_LATCH) Registers ... 9-55

Interrupt Edge (PINTx_EDGE_SET/
PINTx_EDGE_CLEAR) Register Pairs 9-58

Pin Interrupt Pin State (PINTx_PINSTATE) Register 9-60

ADSP-BF54x Blackfin Processor Hardware Reference xxiii

Contents

Pin Interrupt Invert Set (PINTx_INVERT_SET/
PINTx_INVERT_CLEAR) Registers 9-61

Pin Interrupt Assignment (PINTx_ASSIGN) Registers 9-63

Programming Examples ... 9-66

GENERAL-PURPOSE TIMERS

Overview and Features .. 10-1

Features ... 10-2

Interface Overview .. 10-3

External Interface .. 10-4

Internal Interface ... 10-5

Description of Operation .. 10-6

Interrupt Processing .. 10-7

Illegal States .. 10-10

Modes of Operation .. 10-13

Pulse Width Modulation (PWM_OUT) Mode 10-13

Output Pad Disable .. 10-15

Single Pulse Generation ... 10-15

Pulse-Width Modulation Waveform Generation 10-16

PULSE_HI Toggle Mode .. 10-18

Externally-Clocked PWM_OUT 10-22

Stopping the Timer in PWM_OUT Mode 10-23

Pulse-Width Count and Capture (WDTH_CAP) Mode 10-25

Autobaud Mode .. 10-33

Capturing Timings from the GP Counter Module 10-34

Contents

xxiv ADSP-BF54x Blackfin Processor Hardware Reference

External Event (EXT_CLK) Mode 10-34

Programming Model ... 10-35

Timer Registers .. 10-37

Timer Enable (TIMER_ENABLEx) Registers 10-38

Timer Disable (TIMER_DISABLEx) Registers 10-39

Timer Status (TIMER_STATUSx) Registers 10-40

Timer Configuration (TIMERx_CONFIG) Registers 10-42

Timer Counter (TIMERx_COUNTER) Registers 10-44

TIMERx_PERIOD and TIMERx_WIDTH Registers 10-47

Summary .. 10-51

Programming Examples .. 10-53

CORE TIMER

Overview and Features .. 11-1

Timer Overview ... 11-2

External Interfaces .. 11-2

Internal Interfaces ... 11-2

Description of Operation .. 11-3

Interrupt Processing .. 11-3

Core Timer Registers .. 11-4

Core Timer Control (TCNTL) Register 11-5

Core Timer Count (TCOUNT) Register 11-5

Core Timer Period (TPERIOD) Register 11-6

Core Timer Scale (TSCALE) Register 11-7

Programming Examples .. 11-7

ADSP-BF54x Blackfin Processor Hardware Reference xxv

Contents

WATCHDOG TIMER

Overview and Features .. 12-1

Interface Overview .. 12-3

External Interface .. 12-3

Internal Interface ... 12-3

Description of Operation .. 12-4

Watchdog Timer Registers ... 12-6

Watchdog Count (WDOG_CNT) Register 12-6

Watchdog Status (WDOG_STAT) Register 12-7

Watchdog Control (WDOG_CTL) Register 12-8

Programming Examples ... 12-9

ROTARY COUNTER

Overview .. 13-1

Features ... 13-2

Interface Overview .. 13-3

Description of Operation .. 13-4

Quadrature Encoder Mode .. 13-4

Binary Encoder Mode .. 13-5

Rotary Counter Mode ... 13-6

Direction Counter Mode ... 13-7

Timed Direction Mode .. 13-7

Contents

xxvi ADSP-BF54x Blackfin Processor Hardware Reference

Functional Description ... 13-8

Input Noise Filtering (Debouncing) 13-8

Zero Marker (Pushbutton) Operation 13-12

Boundary Comparison Modes ... 13-13

Rotary Encoder Events: Control and Signaling 13-15

Illegal Gray/Binary Code Events (Two-Step Detection) 13-16

Up/Down Count Events ... 13-16

Zero Count Events ... 13-17

Overflow Events ... 13-17

Boundary Match Events .. 13-17

Zero Marker Events .. 13-18

Capturing Timing Information (Using the General-Purpose
Timer) ... 13-18

Capturing Time Interval Between Successive Counter
Events ... 13-19

Capturing Counter Interval and
CNT_COUNTER Read Timing 13-20

Counter Commands .. 13-23

Programming Mode .. 13-24

Rotary Counter Registers .. 13-24

Configuration (CNT_CONFIG) Register 13-26

Boundary Register Mode .. 13-26

Interrupt Mask (CNT_IMASK) Register 13-28

Status (CNT_STATUS) Register ... 13-28

Command (CNT_COMMAND) Register 13-29

ADSP-BF54x Blackfin Processor Hardware Reference xxvii

Contents

Debounce Prescale (CNT_DEBOUNCE) Register 13-30

Counter (CNT_COUNTER) Register 13-31

Boundary (CNT_MIN and CNT_MAX) Registers 13-32

Programming Examples ... 13-33

REAL-TIME CLOCK

Overview .. 14-1

Interface Overview .. 14-3

Description of Operation .. 14-3

RTC Clock Requirements .. 14-3

Prescaler Enable ... 14-4

RTC Programming Model ... 14-6

Register Writes .. 14-8

Write Latency .. 14-9

Register Reads ... 14-10

Deep Sleep .. 14-10

Event Flags .. 14-11

Setting Time of Day .. 14-13

Using the Stopwatch .. 14-14

Interrupts .. 14-15

State Transitions Summary ... 14-17

RTC Registers ... 14-20

RTC Status (RTC_STAT) Register 14-21

RTC Interrupt Control (RTC_ICTL) Register 14-21

RTC Interrupt Status (RTC_ISTAT) Register 14-22

Contents

xxviii ADSP-BF54x Blackfin Processor Hardware Reference

RTC Stopwatch Count (RTC_SWCNT) Register 14-22

RTC Alarm (RTC_ALARM) Register 14-23

RTC Prescaler Enable (RTC_PREN) Register 14-23

Programming Examples .. 14-24

Enable RTC Prescaler .. 14-24

RTC Stopwatch For Exiting Deep Sleep Mode 14-25

RTC Alarm to Come Out of Hibernate State 14-27

ENHANCED PARALLEL PERIPHERAL INTERFACE

Overview .. 15-1

Interface Overview ... 15-4

Description of Operation .. 15-6

EPPI Reset .. 15-7

Clock Gating .. 15-8

Frame Sync Polarity & Sampling Edge 15-8

Interrupts ... 15-9

Functional Description ... 15-10

ITU-R 656 Modes .. 15-10

ITU-R 656 Background .. 15-10

ITU-R 656 Input Modes ... 15-15

Entire Field .. 15-16

Active Video ... 15-16

Vertical Blanking Interval (VBI) only 15-17

ITU-R 656 Output in GP Transmit Modes 15-18

Frame Synchronization in ITU-R 656 Modes 15-21

ADSP-BF54x Blackfin Processor Hardware Reference xxix

Contents

General-Purpose EPPI Modes .. 15-22

GP 0 FS Mode .. 15-22

Frame Synchronization in GP 0 FS External Trigger
Mode ... 15-23

Frame Synchronization in GP 0 FS Internal Trigger
Mode ... 15-23

GP 1 FS Mode .. 15-24

GP 2 FS Mode .. 15-24

DEN functionality in GP 2 FS Transmit Mode 15-26

GP 3 FS Mode .. 15-27

EPPI Data Path Options ... 15-27

EPPI Data Lengths .. 15-27

EPPI DMA Channels .. 15-28

Data Packing For Receive Modes ... 15-28

Data Unpacking For Transmit Modes 15-29

Sign-Extension and Zero-Filling .. 15-30

Split Receive Modes ... 15-31

Split Transmit Modes .. 15-31

RGB Data Formats .. 15-32

Programmed Clipping and Thresholding of Data Values 15-32

Data Transfer Examples ... 15-33

8-Bit Receive Mode ... 15-33

10/12/14-Bit Receive Modes ... 15-35

16-Bit Receive Mode ... 15-38

18-Bit Receive Mode ... 15-40

Contents

xxx ADSP-BF54x Blackfin Processor Hardware Reference

24-Bit Receive Mode .. 15-42

8-Bit Split Receive Mode .. 15-43

10/12/14/16-Bit Split Receive Mode with SPLT_16 = 0 .. 15-47

16-Bit Split Receive Mode with SPLT_16 = 1 15-49

8-Bit Transmit Mode .. 15-50

10/12/14-Bit Transmit Modes ... 15-51

16-Bit Transmit Mode .. 15-52

18-Bit Transmit Mode .. 15-53

24-Bit Transmit Mode .. 15-54

8-Bit Split Transmit Mode .. 15-55

10/12/14/16-Bit Split Transmit Mode with
SPLT_16 = 0 ... 15-59

16-Bit Split Transmit Mode with SPLT_16 = 1 15-63

Programming Model ... 15-64

DMA Operation ... 15-64

Elevating EPPI Urgent Requests at DDR Controller
Interface .. 15-71

System Configuration ... 15-73

EPPI Registers .. 15-73

EPPI Status (EPPIx_STATUS) Register 15-77

EPPIx Control (EPPIx_CONTROL) Register 15-80

Windowing Registers .. 15-88

EPPI Lines per Frame Register (EPPIx_FRAME) 15-90

EPPI Samples per Line Register (EPPIx_LINE) 15-90

EPPI Vertical Delay Register (EPPIx_VDELAY) 15-91

ADSP-BF54x Blackfin Processor Hardware Reference xxxi

Contents

EPPI Vertical Transfer Count Register
(EPPIx_VCOUNT) ... 15-91

EPPI Horizontal Delay Register (EPPIx_HDELAY) 15-92

EPPI Horizontal Transfer Count
Register (EPPIx_HCOUNT) .. 15-93

EPPI Clock Divide Register (EPPIx_CLKDIV) 15-93

Frame Sync/ Blanking Generation Registers 15-94

EPPI FS1 Width Register/EPPI Horizontal Blanking
Samples per Line Register (EPPIx_FS1W_HBL) 15-94

EPPI FS2 Width Register/EPPI Lines of Vertical
Blanking Register (EPPIx_FS2W_LVB) 15-95

EPPI FS1 Period Register/EPPI Active Video
Samples per Line Register (EPPIx_FS1P_AVPL) 15-96

EPPI FS2 Period Register/EPPI Lines of Active
Video per Frame Register (EPPIx_FS2P_LAVF) 15-97

EPPI Clipping Register (EPPIx_CLIP) 15-98

SECURITY

Overview .. 16-1

Features .. 16-4

Description of Operation .. 16-6

Secure State Machine ... 16-7

Open Mode .. 16-8

Secure Entry Mode ... 16-8

Secure Mode ... 16-9

SecureMode Control ... 16-10

Contents

xxxii ADSP-BF54x Blackfin Processor Hardware Reference

Security Features ... 16-12

Digital Signature Authentication 16-13

Digital Signature Authentication
Performance Measurement ... 16-16

Protection Features .. 16-17

Operating in Secure Mode ... 16-20

Entering Secure Mode .. 16-20

Exiting Secure Mode ... 16-20

Reset Handling in Secure Mode ... 16-21

Hardware Reset .. 16-21

Clearing Private Data .. 16-22

Public Key Requirements .. 16-23

Storing Public Cipher Key in Public OTP 16-25

Cryptographic Ciphers .. 16-26

Keys ... 16-26

Debug Functionality ... 16-27

Programming Examples .. 16-31

Programming Model ... 16-32

Secure Entry Service Routine (SESR) API 16-32

Starting Authentication ... 16-32

Memory Configuration ... 16-35

Message Placement ... 16-35

Digital Signature .. 16-36

Message Size Constraints .. 16-36

ADSP-BF54x Blackfin Processor Hardware Reference xxxiii

Contents

Memory Usage .. 16-37

Memory Protection ... 16-37

Secure Function and Secure Entry Service Routine
Arguments .. 16-38

Secure Function Arguments ... 16-38

Secure Entry Service Routine Arguments 16-39

usFlags .. 16-39

uslRQMask ... 16-40

ulMessageSize ... 16-41

ulSFEntryPoint ... 16-41

ulMessagePtr ... 16-41

Secure Message Execution ... 16-41

Return Codes .. 16-42

Advanced Encryption Standard (AES) API 16-44

ADI_AES_DATA Data Type 16-44

ADI_AES_KEYEXPANSION Data Type 16-46

ADI_AES_CIPHER Data Type 16-47

bfrom_AesInit() ROM Routine 16-48

bfrom_AesKeyexp() ROM Routine 16-49

bfrom_AesInvKeyexp() ROM Routine 16-50

bfrom_AesCipher() ROM Routine 16-50

bfrom_AesInvCipher() ROM Routine 16-51

SECURE HASH ALGORITHM (SHA-1) API 16-52

ADI_SHA1 Data Type .. 16-52

Contents

xxxiv ADSP-BF54x Blackfin Processor Hardware Reference

bfrom_Sha1Init ROM Routine 16-53

bfrom_Sha1Hash ROM Routine 16-53

ARC4 API .. 16-53

ADI_ARC4_KEY Data Type 16-54

ADI_ARC4_DATA Data Type 16-54

bfrom_Arc4Init ROM Routine 16-55

bfrom_Arc4Cipher ROM Routine 16-55

Security Registers .. 16-56

Secured System Switches (SECURE_SYSSWT) Register 16-57

Secure Control (SECURE_CONTROL) Register 16-64

Secure Status (SECURE_STATUS) Register 16-67

SYSTEM RESET AND BOOTING

Overview .. 17-1

Reset and Power-up .. 17-4

Hardware Reset ... 17-6

Software Resets ... 17-7

Reset Vector .. 17-8

Servicing Reset Interrupts .. 17-10

Preboot .. 17-11

Factory Page Settings (FPS) ... 17-14

Preboot Page Settings (PBS) .. 17-14

Alternative PBS Pages ... 17-16

Programming PBS Pages ... 17-16

Recovering From Misprogrammed PBS Pages 17-17

ADSP-BF54x Blackfin Processor Hardware Reference xxxv

Contents

Customizing Power Management 17-17

Customizing Booting Options ... 17-18

Customizing the Asynchronous Port 17-20

Customizing the Synchronous Port 17-21

Basic Booting Process .. 17-23

Block Headers ... 17-25

Block Code ... 17-27

DMA Code Field .. 17-27

Block Flags Field ... 17-29

Header Checksum Field .. 17-30

Header Sign Field .. 17-31

Target Address .. 17-31

Byte Count ... 17-32

Argument ... 17-33

Boot Host Wait (HWAIT) Feedback Strobe 17-33

Using HWAIT as Reset Indicator 17-35

Boot Termination .. 17-35

Single Block Boot Streams ... 17-36

Direct Code Execution .. 17-37

Advanced Boot Techniques .. 17-39

Initialization Code ... 17-39

Quick Boot ... 17-43

Indirect Booting .. 17-44

Callback Routines ... 17-45

Contents

xxxvi ADSP-BF54x Blackfin Processor Hardware Reference

Error Handler ... 17-48

CRC Checksum Calculation .. 17-48

Load Functions ... 17-49

Calling the Boot Kernel at Runtime 17-50

Debugging the Boot Process .. 17-51

Boot Management .. 17-54

Booting a Different Application .. 17-54

Multi-DXE Boot Streams .. 17-56

Determining Boot Stream Start Addresses 17-60

Initialization Hook Routine .. 17-60

Specific Boot Modes ... 17-61

No Boot Mode .. 17-62

Flash Boot Modes ... 17-62

SDRAM Boot Mode ... 17-66

FIFO Boot Mode .. 17-67

SPI Master Boot Modes ... 17-69

SPI Device Detection Routine .. 17-71

SPI Slave Boot Mode ... 17-73

TWI Master Boot Mode .. 17-77

TWI Slave Boot Mode .. 17-79

UART Slave Mode Boot .. 17-82

OTP Boot Mode ... 17-85

Host DMA Boot Modes .. 17-86

ADSP-BF54x Blackfin Processor Hardware Reference xxxvii

Contents

NAND Flash Boot Mode ... 17-88

Supported Devices .. 17-91

NAND Flash Page Structure .. 17-94

Auto Detection ... 17-95

Boot Stream Processing ... 17-96

Software Configurable NAND Flash Boot Modes 17-98

Sequential Block Mode .. 17-98

Block Skip Mode ... 17-99

Multiple Image Mode .. 17-101

Reset and Booting Registers ... 17-103

Software Reset (SWRST) Register 17-103

System Reset Configuration (SYSCR) Register 17-105

Boot Code Revision Control (BK_REVISION) 17-107

Boot Code Date Code (BK_DATECODE) 17-108

Zero Word (BK_ZEROS) .. 17-109

Ones Word (BK_ONES) ... 17-110

OTP Memory Pages for Booting .. 17-110

Lower PBS00 Half Page ... 17-110

Upper PBS00 Half Page ... 17-114

Lower PBS01 Half Page ... 17-115

Upper PBS01 Half Page ... 17-116

Lower PBS02 Half Page ... 17-118

Upper PBS02 Half Page ... 17-119

Reserved Half Pages ... 17-120

Contents

xxxviii ADSP-BF54x Blackfin Processor Hardware Reference

Data Structures ... 17-120

ADI_BOOT_HEADER .. 17-120

ADI_BOOT_BUFFER ... 17-121

ADI_BOOT_DATA ... 17-121

dFlags Word ... 17-125

ADI_BOOT_NAND .. 17-126

ADI_BOOT_NAND_DEVICE .. 17-128

ADI_BOOT_NAND_BUFFER .. 17-130

ADI_BOOT_NAND_ACCESS .. 17-131

ADI_BOOT_NAND_ADDRESS 17-132

ADI_BOOT_NAND_ECC .. 17-134

Callable ROM Functions for Booting 17-136

BFROM_FINALINIT .. 17-136

BFROM_PDMA .. 17-136

BFROM_MDMA ... 17-136

BFROM_MEMBOOT ... 17-137

BFROM_TWIBOOT ... 17-138

BFROM_SPIBOOT ... 17-139

BFROM_OTPBOOT ... 17-140

BFROM_NANDBOOT ... 17-141

BFROM_BOOTKERNEL .. 17-142

BFROM_CRC32 .. 17-142

BFROM_CRC32POLY ... 17-143

ADSP-BF54x Blackfin Processor Hardware Reference xxxix

Contents

BFROM_CRC32CALLBACK ... 17-144

BFROM_CRC32INITCODE ... 17-144

Programming Examples ... 17-145

System Reset ... 17-145

Exiting Reset to User Mode ... 17-146

Exiting Reset to Supervisor Mode 17-146

Initcode (SDRAM Controller Setup) 17-147

Initcode (Power Management Control) 17-149

Initcode (NAND Flash Boot Mode Configuration) 17-150

Quickboot With Restore From SDRAM 17-151

XOR Checksum .. 17-152

Direct Code Execution .. 17-154

Managing PBS Pages in OTP Memory 17-155

DYNAMIC POWER MANAGEMENT

Phase-Locked Loop and Clock Control .. 18-1

PLL Overview ... 18-2

PLL Clock Multiplier Ratios .. 18-3

Core Clock/System Clock Ratio Control 18-4

Dynamic Power Management Controller 18-7

Operating Modes ... 18-7

Dynamic Power Management Controller States 18-8

Full On Mode ... 18-8

Active Mode ... 18-9

Sleep Mode ... 18-9

Contents

xl ADSP-BF54x Blackfin Processor Hardware Reference

Deep Sleep Mode ... 18-10

Hibernate State ... 18-11

Operating Mode Transitions .. 18-11

Programming Operating Mode Transitions 18-14

Dynamic Supply Voltage Control .. 18-16

Power Supply Management ... 18-16

Controlling the Voltage Regulator 18-17

Changing Voltage ... 18-19

Powering Down the Core (Hibernate State) 18-20

Recovery From Hibernate State 18-23

PLL and VR Registers ... 18-25

PLL Divide (PLL_DIV) Register ... 18-26

PLL Control (PLL_CTL) Register 18-26

PLL Status (PLL_STAT) Register .. 18-27

PLL Lock Count (PLL_LOCKCNT) Register 18-27

Voltage Regulator Control (VR_CTL) Register 18-28

System Control ROM Function .. 18-29

Programming Model ... 18-31

Access System Control ROM Function in C/C++ 18-31

Access System Control ROM Function in Assembly 18-32

Programming Examples .. 18-35

Full On Mode to Active Mode and Back 18-36

Transition to Sleep Mode or Deep Sleep Mode 18-38

Setting Wakeups and Entering Hibernate State 18-40

ADSP-BF54x Blackfin Processor Hardware Reference xli

Contents

Perform a System Reset or Soft-Reset 18-43

Change VCO, Core Clock, and
System Clock Frequency ... 18-44

Changing Voltage Levels .. 18-46

SYSTEM DESIGN

Pin Descriptions ... 19-1

Managing Clocks .. 19-2

Managing Core and System Clocks .. 19-2

Configuring and Servicing Interrupts ... 19-2

Semaphores ... 19-3

Example Code for Query Semaphore 19-4

Data Delays, Latencies, and Throughput 19-4

Bus Priorities .. 19-5

System-Level Hardware Design .. 19-5

External Memory Design Issues ... 19-5

DDR Memory .. 19-5

Memory Bus Pin Muxing and Flow Control 19-7

Example Asynchronous Memory Interfaces 19-8

Avoiding Bus Contention .. 19-9

BURST FLASH .. 19-10

NAND FLASH ... 19-11

USB Controller ... 19-11

ATAPI Bus .. 19-13

Voltage Regulator .. 19-13

Contents

xlii ADSP-BF54x Blackfin Processor Hardware Reference

Signal Integrity ... 19-14

Decoupling Capacitors and Ground Planes 19-15

5 Volt Tolerance .. 19-17

Resetting the Processor .. 19-17

Recommendations for Unused Pins 19-17

Programmable Outputs and Pin Multiplexing 19-17

Test Point Access ... 19-18

Oscilloscope Probes ... 19-18

Recommended Reading .. 19-19

NAND FLASH CONTROLLER

Overview .. 20-2

Interface Overview ... 20-4

Description of Operation .. 20-5

Internal Bus Interfaces .. 20-5

Bus Access Types ... 20-6

Access Timing ... 20-6

Pin Sharing ... 20-7

Functional Description ... 20-8

Page Write .. 20-8

Page Read ... 20-9

Additional Operations ... 20-10

Write Protection ... 20-11

Chip Enable Don’t Care .. 20-11

ADSP-BF54x Blackfin Processor Hardware Reference xliii

Contents

NFC Error Detection .. 20-11

Error Analysis ... 20-13

Large Page Size Support .. 20-15

NFC SmartMedia Support ... 20-15

Programming Model ... 20-15

NFC Registers .. 20-17

NFC Control Register (NFC_CTL) 20-19

NFC Status Register (NFC_STAT) 20-20

NFC Interrupt Status Register (NFC_IRQSTAT) 20-21

NFC Interrupt Mask Register (NFC_IRQMASK) 20-22

NFC ECC Registers (NFC_ECCx) 20-22

NFC Count Register (NFC_COUNT) 20-24

NFC Reset Register (NFC_RST) ... 20-24

NFC Page Control Register (NFC_PGCTL) 20-25

NFC Read Data Register (NFC_READ) 20-25

NFC Address Register (NFC_ADDR) 20-26

NFC Command Register (NFC_CMD) 20-27

NFC Data Write Register (NFC_DATA_WR) 20-28

NFC Data Read Register (NFC_DATA_RD) 20-28

NFC Programming Examples .. 20-29

ATAPI INTERFACE

Interface Overview .. 21-1

Contents

xliv ADSP-BF54x Blackfin Processor Hardware Reference

Description of Operation .. 21-4

Host PIO/Register Transfers .. 21-4

PIO Data-Out Transfers (Device Write) 21-5

PIO Data-In Transfers (Device Read) 21-8

Host Multiword DMA Transfers .. 21-10

Host Pausing the Multi-DMA Transfer 21-13

Host Terminating the Multi DMA Transfer 21-13

Device Pausing the Multi-DMA Transfer 21-13

Device Terminating the Multi-DMA Transfer 21-14

Host Ultra DMA Command Protocol Transfers 21-15

Host Pausing the Ultra DMA Data-In Transfer 21-16

Host Terminating the Ultra DMA Data-In Transfer 21-16

Device Pausing the Ultra DMA Data-In Transfer 21-16

Device Terminating the Ultra DMA Data-In Transfer 21-17

Host Pausing Ultra DMA Data-Out Transfer 21-17

Host Terminating Ultra DMA Data-Out Transfer 21-17

Device Pausing the Ultra DMA Data-Out Transfer 21-17

Device Terminating the Ultra DMA Data-Out Transfer ... 21-18

Functional Description ... 21-18

Power-on and Hardware Reset Protocol 21-18

Device Selection Protocol .. 21-19

Programmed I/O (PIO) ... 21-21

Host Multi DMA Block Implementation 21-22

ADSP-BF54x Blackfin Processor Hardware Reference xlv

Contents

Host Ultra DMA Block Implementation 21-27

Initiating an Ultra DMA Data-In Burst 21-27

Data-In Transfer ... 21-30

Device pausing an Ultra DMA Data-In Burst 21-31

Host pausing an Ultra DMA Data-In Burst 21-31

Ultra DMA Timing ... 21-32

Ultra DMA-Out Timing ... 21-37

Programming Model ... 21-40

ATAPI Device Configuration and Setup 21-40

PIO Data-out Transfers Pseudo-code 21-43

Host Multiword DMA Transfers Pseudo-code 21-44

Host Ultra DMA Command Protocol Transfers
Pseudo-code ... 21-45

ATAPI Registers .. 21-46

ATAPI Control and Status Registers 21-49

ATAPI Control (ATAPI_CONTROL) Register 21-49

ATAPI Status (ATAPI_STATUS) Register 21-51

ATAPI Device Address (ATAPI_DEV_ADDR) Register ... 21-52

ATAPI Device Transmit Buffer
(ATAPI_DEV_TXBUF) Register 21-53

ATAPI Device Receive Buffer
(ATAPI_DEV_RXBUF) Register 21-54

ATAPI Interrupt Mask (ATAPI_INT_MASK) Register 21-54

ATAPI Interrupt Status (ATAPI_INT_STATUS)
Register .. 21-56

Contents

xlvi ADSP-BF54x Blackfin Processor Hardware Reference

ATAPI Transfer Length (ATAPI_XFER_LEN) Register 21-58

ATAPI Line Status (ATAPI_LINE_STATUS) Register 21-59

ATAPI State Machine Status (ATAPI_SM_STATE)
Register ... 21-59

ATAPI Host Terminate (ATAPI_TERMINATE)
Register ... 21-60

ATAPI PIO Transfer Count (ATAPI_PIO_TFRCNT)
Register ... 21-61

ATAPI Multiword DMA Transfer Count
(ATAPI_MULTI_TFRCNT) Register 21-61

ATAPI Ultra DMA Transfer Count
(ATAPI_ULTRA_IN_TFRCNT) Register 21-62

ATAPI Ultra DMA OUT Transfer Count
(ATAPI_ULTRA_OUT_TFRCNT) Register 21-63

ATAPI Register Transfer Timing 0
(ATAPI_REG_TIM_0) Register 21-63

ATAPI Programmed I/O Timing 0
(ATAPI_PIO_TIM_0) Register 21-64

ATAPI Programmed I/O Timing 1
(ATAPI_PIO_TIM_1) Register 21-64

ATAPI Multi DMA Timing 0
(ATAPI_MULTI_TIM_0) Register 21-65

ATAPI Multi DMA Timing 1
(ATAPI_MULTI_TIM_1) Register 21-65

ATAPI Multi DMA Timing 2
(ATAPI_MULTI_TIM_2) Register 21-66

ATAPI Ultra DMA Timing 0
(ATAPI_ULTRA_TIM_0) Register 21-66

ADSP-BF54x Blackfin Processor Hardware Reference xlvii

Contents

ATAPI Ultra DMA Timing 1
(ATAPI_ULTRA_TIM_1) Register 21-67

ATAPI Ultra DMA Timing 2
(ATAPI_ULTRA_TIM_2) Register 21-67

ATAPI Ultra DMA Timing 3
(ATAPI_ULTRA_TIM_3) Register 21-68

ATAPI Device I/O Registers .. 21-68

Command Register (R/W) .. 21-70

Device Control Register (WO) .. 21-71

Features Register (WO) ... 21-71

Sector Count Register (R/W) .. 21-71

Status Register (RO) ... 21-72

Alternate Status Register (RO) ... 21-73

Error Register (RO) ... 21-73

ATAPI Standards Reference ... 21-73

Summary of IDE/ATA Standards ... 21-77

ATAPI Timing Summary ... 21-78

IDE/ATA Transfer Modes and Protocols 21-78

Programmed (I/O) PIO Modes .. 21-78

Direct Memory Access (DMA) Modes 21-79

Ultra Direct Memory Access (DMA) Modes 21-79

ATAPI Device Selection ... 21-80

SPI-COMPATIBLE PORT CONTROLLERS

Overview .. 22-1

Contents

xlviii ADSP-BF54x Blackfin Processor Hardware Reference

Interface Overview ... 22-3

External Interface .. 22-4

Serial Peripheral Interface Clock Signal (SPIxSCK) 22-5

Master Out Slave In (MOSI) .. 22-6

Master In Slave Out (MISO) .. 22-6

Serial Peripheral Interface Slave Select
Input Signal ... 22-7

Serial Peripheral Interface Slave Select Enable
Output Signals .. 22-8

Slave Select Inputs .. 22-12

Use of FLS Bits in SPI_FLG for Multiple Slave SPI
Systems ... 22-12

Internal Interfaces ... 22-14

DMA Functionality .. 22-14

SPI Transmit Data Buffer .. 22-15

SPI Receive Data Buffer .. 22-16

Description of Operation .. 22-16

SPI Transfer Protocols ... 22-17

SPI General Operation .. 22-19

SPI Control .. 22-21

Clock Signals .. 22-22

SPI Baud Rate ... 22-22

Error Signals and Flags .. 22-23

Mode Fault Error (MODF) ... 22-24

Transmission Error (TXE) .. 22-25

ADSP-BF54x Blackfin Processor Hardware Reference xlix

Contents

Reception Error (RBSY) .. 22-25

Transmit Collision Error (TXCOL) 22-25

Interrupt Output ... 22-25

Functional Description ... 22-26

Master Mode Operation .. 22-26

Transfer Initiation From Master (Transfer Modes) 22-28

Slave Mode Operation ... 22-29

Slave Ready for a Transfer .. 22-30

Programming Model ... 22-30

Beginning and Ending an SPI Transfer 22-31

Master Mode DMA Operation ... 22-33

Slave Mode DMA Operation ... 22-35

SPI Registers ... 22-43

SPI Baud Rate (SPIx_BAUD) Register 22-44

SPI Control (SPIx_CTL) Register .. 22-45

SPI Flag (SPIx_FLG) Register .. 22-46

SPI Status (SPIx_STAT) Register ... 22-48

SPI Transmit Data Buffer (SPIx_TDBR) Register 22-48

SPI Receive Data Buffer (SPIx_RDBR) Register 22-49

SPI RDBR Shadow (SPIx_SHADOW) Register 22-49

Programming Examples ... 22-49

Core Generated Transfer .. 22-50

Initialization Sequence .. 22-50

Starting a Transfer ... 22-51

Contents

l ADSP-BF54x Blackfin Processor Hardware Reference

Post Transfer and Next Transfer 22-52

Stopping .. 22-53

DMA Transfer .. 22-53

DMA Initialization Sequence .. 22-53

SPI Initialization Sequence ... 22-54

Starting a Transfer .. 22-56

Stopping a Transfer ... 22-56

TWO-WIRE INTERFACE CONTROLLERS

Overview .. 23-2

Interface Overview ... 23-3

External Interface .. 23-4

Serial Clock signal (SCL1–0) .. 23-4

Serial data signal (SDA1–0) .. 23-4

TWI Pins ... 23-5

Internal Interfaces ... 23-5

Description of Operation .. 23-6

TWI Transfer Protocols ... 23-6

Clock Generation and Synchronization 23-7

Bus Arbitration ... 23-8

Start and Stop Conditions ... 23-9

General Call Support .. 23-10

Fast Mode .. 23-10

ADSP-BF54x Blackfin Processor Hardware Reference li

Contents

TWI General Operation .. 23-11

TWI Control .. 23-11

Clock Signal .. 23-12

Functional Description ... 23-13

General Setup .. 23-13

Slave Mode .. 23-13

Master Mode Clock Setup ... 23-14

Master Mode Transmit .. 23-15

Master Mode Receive ... 23-16

Clock Stretching .. 23-17

Clock Stretching During FIFO Underflow 23-18

Clock Stretching during FIFO Overflow 23-19

Clock Stretching During Repeated Start Condition 23-21

Programming Model ... 23-23

TWI Registers ... 23-25

SCLx Clock Divider (TWIx_CLKDIV) Register 23-26

TWI Control (TWIx_CONTROL) Register 23-27

TWI Slave Mode Control (TWIx_SLAVE_CTL) Register 23-27

TWI Slave Mode Address (TWIx_SLAVE_ADDR)
Register .. 23-30

TWI Slave Mode Status (TWIx_SLAVE_STAT) Register 23-30

TWI Master Mode Control (TWIx_MASTER_CTL)
Register .. 23-32

TWI Master Mode Address (TWIx_MASTER_ADDR)
Register .. 23-35

Contents

lii ADSP-BF54x Blackfin Processor Hardware Reference

TWI Master Mode Status (TWIx_MASTER_STAT)
Register .. 23-35

TWI FIFO Control (TWIx_FIFO_CTL) Register 23-39

TWI FIFO Status (TWIx_FIFO_STAT) Register 23-41

TWI FIFO Status ... 23-41

TWI Interrupt Mask (TWIx_INT_MASK) Register 23-43

TWI Interrupt Status (TWIx_INT_STAT) Register 23-44

TWI FIFO Transmit Data Single Byte
(TWIx_XMT_DATA8) Register 23-48

TWI FIFO Transmit Data Double Byte
(TWIx_XMT_DATA16) Register 23-49

TWI FIFO Receive Data Single Byte
(TWIx_RCV_DATA8) Register .. 23-50

TWI FIFO Receive Data Double Byte
(TWIx_RCV_DATA16) Register 23-51

Programming Examples .. 23-52

Master Mode Setup ... 23-52

Slave Mode Setup .. 23-57

Electrical Specifications .. 23-63

SPORT CONTROLLERS

Overview .. 24-1

Features .. 24-2

Interface Overview ... 24-4

SPORT Pin/Line Terminations .. 24-10

ADSP-BF54x Blackfin Processor Hardware Reference liii

Contents

Description of Operation .. 24-11

SPORT Operation ... 24-11

SPORT Disable ... 24-11

Setting SPORT Modes .. 24-12

Stereo Serial Operation .. 24-13

Multichannel Operation .. 24-17

Multichannel Enable ... 24-19

Frame Syncs in Multichannel Mode 24-20

Multichannel Frame .. 24-22

Multichannel Frame Delay .. 24-23

Window Size ... 24-23

Window Offset ... 24-24

Other Multichannel Fields in SPORTx_MCMC2 24-24

Channel Selection Register .. 24-25

Multichannel DMA Data Packing 24-26

Support for H.100 Standard Protocol 24-27

2X Clock Recovery Control ... 24-27

Functional Description ... 24-28

Clock and Frame Sync Frequencies 24-28

Maximum Clock Rate Restrictions 24-29

Word Length ... 24-30

Bit Order .. 24-30

Data Type ... 24-30

Companding ... 24-31

Contents

liv ADSP-BF54x Blackfin Processor Hardware Reference

Clock Signal Options .. 24-32

Frame Sync Options .. 24-33

Framed Versus Unframed .. 24-33

Internal Versus External Frame Syncs 24-34

Active Low Versus Active High Frame Syncs 24-35

Sampling Edge for Data and Frame Syncs 24-35

Early Versus Late Frame Syncs (Normal Versus
Alternate Timing) .. 24-38

Data Independent Transmit Frame Sync 24-40

Moving Data Between SPORTs and Memory 24-40

SPORT RX, TX, and Error Interrupts 24-41

PAB Errors .. 24-41

Timing Examples .. 24-42

SPORT Registers .. 24-48

Register Writes and Effective Latency 24-50

Transmit Configuration (SPORTx_TCR1 and
SPORTx_TCR2) Registers ... 24-51

SPORTx_RCR1 and SPORTx_RCR2 Registers 24-56

Data Word Formats ... 24-61

Transmit Data (SPORTx_TX) Register 24-61

Receive Data (SPORTx_RX) Register 24-64

SPORT Status (SPORTx_STAT) Register 24-66

Serial Clock Divider (SPORTx_TCLKDIV
and SPORTx_RCLKDIV) Registers 24-68

ADSP-BF54x Blackfin Processor Hardware Reference lv

Contents

Frame Sync Divider (SPORTx_TFSDIV
and SPORTx_RFSDIV) Registers 24-69

Multichannel Configuration
(SPORTx_MCMCn) Registers .. 24-70

Current Channel (SPORTx_CHNL) Register 24-71

Multichannel Selection Receive
(SPORTx_MRCSn) Registers .. 24-72

Multichannel Selection Transmit
(SPORTx_MTCSn) Registers ... 24-74

Programming Examples ... 24-76

SPORT Initialization Sequence .. 24-77

DMA Initialization Sequence ... 24-79

Interrupt Servicing .. 24-81

Starting a Transfer ... 24-82

UART PORT CONTROLLERS

Overview .. 25-1

Features ... 25-2

Interface Overview .. 25-3

External Interface .. 25-3

Internal Interface ... 25-5

Description of Operation .. 25-6

UART Transfer Protocol .. 25-6

UART Transmit Operation .. 25-7

UART Receive Operation .. 25-8

Hardware Flow Control ... 25-10

Contents

lvi ADSP-BF54x Blackfin Processor Hardware Reference

IrDA Transmit Operation .. 25-13

IrDA Receive Operation .. 25-14

Interrupt Processing .. 25-15

Bit Rate Generation .. 25-18

Autobaud Detection .. 25-20

Programming Model ... 25-22

Non-DMA Mode .. 25-22

DMA Mode .. 25-24

Mixing Modes ... 25-26

UART Registers .. 25-26

Line Control (UARTx_LCR) Registers 25-29

Modem Control (UARTx_MCR) Registers 25-32

Line Status (UARTx_LSR) Registers 25-34

Modem Status (UARTx_MSR) Registers 25-37

Transmit Hold (UARTx_THR) Registers 25-39

Receive Buffer (UARTx_RBR) Registers 25-40

Interrupt Enable (UARTx_IER_SET
and UARTx_IER_CLEAR) Registers 25-40

Clock Divisor Latch (UARTx_DLL
and UARTx_DLH) Registers .. 25-46

UART Scratch (UARTx_SCR) Registers 25-49

Global Control (UARTx_GCTL) Registers 25-50

Programming Examples .. 25-51

ADSP-BF54x Blackfin Processor Hardware Reference lvii

Contents

USB OTG CONTROLLER

Overview .. 26-1

Features ... 26-2

Interface Overview .. 26-3

FIFO Configuration .. 26-7

Interrupts .. 26-8

Resets ... 26-11

Description of Operation .. 26-12

Peripheral Mode Operation ... 26-13

Endpoint Setup ... 26-13

IN Transactions as a Peripheral 26-14

OUT Transactions as a Peripheral 26-15

Peripheral Transfer Workflows ... 26-17

Control Transactions as a Peripheral 26-18

Write Requests .. 26-19

Read Requests ... 26-20

Zero Data Requests ... 26-21

ENDPOINT 0 States .. 26-22

Endpoint 0 Service Routine as Peripheral 26-24

Peripheral Mode, Bulk IN, Transfer Size Known 26-31

Peripheral Mode, Bulk IN, Transfer Size Unknown 26-31

Peripheral Mode, ISO IN, Small MaxPktSize 26-32

Peripheral Mode, ISO IN, Large MaxPktSize 26-33

Peripheral Mode, Bulk OUT, Transfer Size Known 26-34

Contents

lviii ADSP-BF54x Blackfin Processor Hardware Reference

Peripheral Mode, Bulk OUT, Transfer Size Unknown .. 26-34

Peripheral Mode, ISO OUT, Small MaxPktSize 26-35

Peripheral Mode, ISO OUT, Large MaxPktSize 26-36

Peripheral Mode Suspend ... 26-36

Start-of-frame (SOF) Packets .. 26-37

Soft Connect/Soft Disconnect ... 26-37

Error Handling As a Peripheral 26-38

Stalls Issued to Control Transfers 26-39

Zero Length OUT Data Packets in Control Transfers 26-40

Host Mode Operation ... 26-40

Endpoint Setup and Data Transfer 26-40

Control Transaction as a Host ... 26-41

Setup Phase as a Host ... 26-42

IN Data Phase as a Host ... 26-43

OUT Data as a Host (Control) 26-44

IN Status Phase as a Host
(Following SETUP Phase or OUT Data Phase) 26-45

OUT Status Phase as a Host (following IN Data Phase) ... 26-46

Host IN Transactions .. 26-47

Host OUT Transactions ... 26-48

Transaction Scheduling ... 26-49

Babble .. 26-50

VBUS Events .. 26-51

Actions as an “A” Device ... 26-51

Actions as a “B” Device ... 26-52

ADSP-BF54x Blackfin Processor Hardware Reference lix

Contents

Host Mode Reset .. 26-53

Host Mode Suspend .. 26-53

Functional Description ... 26-54

On-Chip Bus Interfaces ... 26-54

Interface Pins .. 26-55

Power and Clocking .. 26-55

UTMI Interface .. 26-56

Programming Model ... 26-56

Peripheral Mode Flow Charts ... 26-57

Host Mode Flow Charts .. 26-66

DMA Mode Flow Charts ... 26-75

OTG Session Request .. 26-80

Starting a Session .. 26-80

Detecting Activity ... 26-81

Host Negotiation/Configuration .. 26-82

Software Clock Control ... 26-83

Wakeup from Hibernate State .. 26-84

Wakeup Without Re-Enumeration 26-85

Data Transfer .. 26-88

Loading/Unloading Packets from Endpoints 26-88

DMA Master Channels .. 26-90

DMA Bus Cycles ... 26-92

Contents

lx ADSP-BF54x Blackfin Processor Hardware Reference

Transferring Packets Using DMA ... 26-92

Individual Packet: RX Endpoint 26-93

Individual Packet: TX Endpoint 26-94

Multiple Packets: RX Endpoint 26-94

Multiple Packets: TX Endpoints 26-96

USB OTG Registers ... 26-97

USB Global Control (USB_GLOBAL_CTL) Register 26-97

USB Power Management (USB_POWER) Register 26-99

USB Function Address (USB_FADDR) Register 26-102

USB Test Mode (USB_TESTMODE) Register 26-103

USB Global Interrupt (USB_GLOBINTR) Register 26-104

USB Transmit Interrupt (USB_INTRTX) Register 26-105

USB Receive Interrupt (USB_INTRRX) Register 26-106

USB Transmit Interrupt Enable (USB_INTRTXE)
Register .. 26-107

USB Receive Interrupt Enable (USB_INTRRXE)
Register .. 26-108

USB Common Interrupts (USB_INTRUSB) Register 26-109

USB Common Interrupt Enable (USB_INTRUSBE)
Register .. 26-110

USB Frame Number (USB_FRAME) Register 26-111

USB Index (USB_INDEX) Register 26-111

USB TX Max Packet (USB_TX_MAX_PACKET)
Register .. 26-112

USB Control/Status EP0 (USB_CSR0) Register 26-113

ADSP-BF54x Blackfin Processor Hardware Reference lxi

Contents

USB TX Control/Status EPx (USB_TXCSR) Register 26-117

USB RX Max Packet (USB_RX_MAX_PACKET)
Register .. 26-122

USB RX Control/Status (USB_RXCSR) Register 26-123

USB Count 0 (USB_COUNT0) Register 26-128

USB RX Byte Count EPx (USB_RXCOUNT) Register 26-128

USB TX Type (USB_TXTYPE) Register 26-129

USB NAK Limit 0 (USB_NAKLIMIT0) Register 26-130

USB TX Interval (USB_TXINTERVAL) Register 26-130

USB RX Type (USB_RXTYPE) Register 26-131

USB RX Interval (USB_RXINTERVAL) Register 26-132

USB TX Byte Count EPx (USB_TXCOUNT) Register 26-133

USB Endpoint FIFO (USB_EPx_FIFO) Registers 26-134

USB OTG Device Control (USB_OTG_DEV_CTL)
Register .. 26-134

USB OTG VBUS Interrupt (USB_OTG_VBUS_IRQ)
Register .. 26-136

USB OTG VBUS Mask (USB_OTG_VBUS_MASK)
Register .. 26-137

USB Link Info (USB_LINKINFO) Register 26-138

USB VBUS Pulse Length (USB_VPLEN) Register 26-139

USB High-Speed EOF 1 (USB_HS_EOF1) Register 26-139

USB Full-Speed EOF 1 (USB_FS_EOF1) Register 26-140

USB Low-Speed EOF 1 (USB_LS_EOF1) Register 26-140

USB APHY Control 2 (USB_APHY_CNTRL2)
Register .. 26-141

Contents

lxii ADSP-BF54x Blackfin Processor Hardware Reference

USB PLL OSC Control (USB_PLLOSC_CTRL)
Register .. 26-142

USB SRP Clock Divider (USB_SRP_CLKDIV)
Register .. 26-143

USB DMA Interrupt (USB_DMA_INTERRUPT)
Register .. 26-144

USB DMAx Control (USB_DMA_CONTROL)
Registers .. 26-144

USB DMAx Address Low (USB_DMAxADDRLOW)
Registers .. 26-146

USB DMAx Address High
(USB_DMAxADDRHIGH) Registers 26-147

USB DMAx Count Low
(USB_DMAxCOUNTLOW) Registers 26-147

USB DMAx Count High
(USB_DMAxCOUNTHIGH) Registers 26-148

References .. 26-148

Glossary of USB Terms .. 26-148

SECURE DIGITAL HOST

Overview .. 27-1

Interface Overview ... 27-2

Description of Operation .. 27-5

Functional Description ... 27-8

SDH Clock Configuration .. 27-8

SDH Interface Configuration .. 27-9

Card Detection ... 27-10

ADSP-BF54x Blackfin Processor Hardware Reference lxiii

Contents

SDH Power Saving Configuration .. 27-12

SDH Commands and Responses .. 27-14

IDLE State ... 27-19

PEND State .. 27-20

SEND State .. 27-20

WAIT State .. 27-21

RECEIVE State .. 27-21

SDH Command Path CRC ... 27-22

SDH Data ... 27-22

SDH Data Transmit Path .. 27-25

SDH Data Receive Path .. 27-27

SDH Data Path CRC .. 27-29

SDH Data FIFO ... 27-29

SDIO Interrupt and Read Wait Support 27-30

Programming Model ... 27-31

Card Identification .. 27-32

SD Card Identification Procedure 27-32

MMC Identification Procedure 27-34

Single Block Write Operations ... 27-35

 Using Core .. 27-35

Using DMA .. 27-37

Single Block Read Operations .. 27-39

Using Core ... 27-40

Using DMA .. 27-41

Contents

lxiv ADSP-BF54x Blackfin Processor Hardware Reference

Multiple Block Write Operations ... 27-43

 Using Core .. 27-43

Using DMA ... 27-46

Multiple Block Read Operations .. 27-48

Using Core ... 27-48

Using DMA ... 27-50

SDH Registers .. 27-52

SDH Power Control Register (SDH_PWR_CTL) 27-55

SDH Clock Control Register (SDH_CLK_CTL) 27-55

SDH Argument Register (SDH_ARGUMENT) 27-57

SDH Command Register (SDH_COMMAND) 27-57

SDH Response Command Register (SDH_RESP_CMD) 27-58

SDH Response Registers (SDH_RESPONSEx) 27-59

SDH Data Timer Register (SDH_DATA_TIMER) 27-60

SDH Data Length Register (SDH_DATA_LGTH) 27-61

SDH Data Control Register (SDH_DATA_CTL) 27-61

SDH Data Counter Register (SDH_DATA_CNT) 27-62

SDH Status Register (SDH_STATUS) 27-63

SDH Status Clear Register (SDH_STATUS_CLR) 27-65

SDH Interrupt Mask Registers (SDH_MASKx) 27-66

SDH FIFO Counter Register (SDH_FIFO_CNT) 27-68

SDH Data FIFO Register (SDH_FIFO) 27-69

SDH Exception Status Register (SDH_E_STATUS) 27-69

SDH Exception Mask Register (SDH_E_MASK) 27-70

ADSP-BF54x Blackfin Processor Hardware Reference lxv

Contents

SDH Configuration Register (SDH_CFG) 27-71

SDH Read Wait Enable Register (SDH_RD_WAIT_EN) 27-72

SDH Identification Registers (SDH_PIDx) 27-73

Programming Examples ... 27-74

PIXEL COMPOSITOR

Overview .. 28-1

Features ... 28-2

Interface Overview .. 28-2

Description of Operation .. 28-4

General Description .. 28-4

Data Buffer Formats .. 28-6

Operation in YUV 4:2:2 Format .. 28-6

Operation in RGB888 Format ... 28-8

DMA Channels ... 28-9

Functional Description ... 28-9

Data Overlay ... 28-10

Transparency Control .. 28-17

Transparent Color ... 28-19

Color Space Conversion .. 28-20

Case 1 - Image and Overlay in the Same Format 28-21

Case 2 - Image and Overlay in Different Formats 28-22

Case 3 - Color Space Conversion Only 28-23

Color Space Conversion Matrix Equations 28-24

Color Space Converter Output Thresholds 28-25

Contents

lxvi ADSP-BF54x Blackfin Processor Hardware Reference

YUV Conversion Modes ... 28-26

Upsampling .. 28-26

Downsampling ... 28-27

PIXC Actions ... 28-28

Recommendations .. 28-29

Special Usage Cases .. 28-29

Example 1 - Currently Defined Mode 28-29

Example 1 - Special Usage of This Mode 28-30

Example 2 - Currently Defined Mode 28-30

Example 2 - Special Usage of This Mode 28-31

Example 3 - Currently Defined Mode 28-32

Example 3 - Special Usage of This Mode 28-32

Example 4 - Currently Defined Mode 28-33

Example 4 - Special Usage of This Mode 28-33

Programming Model ... 28-34

PIXC Registers ... 28-35

PIXC Control (PIXC_CTL) Register 28-37

PIXC Pixels Per Line (PIXC_PPL) Register 28-38

PIXC Lines Per Frame (PIXC_LPF) Register 28-38

PIXC Horizontal Start (PIXC_xHSTART) Registers 28-39

PIXC Horizontal End (PIXC_xHEND) Registers 28-39

PIXC Vertical Start (PIXC_xVSTART) Registers 28-40

PIXC Vertical End (PIXC_xVEND) Registers 28-40

PIXC Transparency Value (PIXC_xTRANSP) Registers 28-41

ADSP-BF54x Blackfin Processor Hardware Reference lxvii

Contents

PIXC Interrupt Status (PIXC_INTRSTAT) Register 28-41

PIXC R/Y Conversion Coefficient (PIXC_RYCON)
Register .. 28-42

PIXC G/U Conversion Coefficient (PIXC_GUCON)
Register .. 28-43

PIXC B/V Conversion Coefficient (PIXC_BVCON)
Register .. 28-44

PIXC Color Conversion Bias (PIXC_CCBIAS)
Register .. 28-45

PIXC Transparency Color Value (PIXC_TC)
Register .. 28-46

MEDIA TRANSCEIVER MODULE (MXVR)

Overview .. 29-1

Interface Signals .. 29-2

MXVR Memory Map .. 29-4

MXVR Registers ... 29-4

MXVR Configuration (MXVR_CONFIG) Register 29-13

MXVR State (MXVR_STATE_0, MXVR_STATE_1)
Registers ... 29-19

MXVR Interrupt Status Register 0
(MXVR_INT_STAT_0) ... 29-29

MXVR Interrupt Status_1 (MXVR_INT_STAT_1)
Register .. 29-40

MXVR Interrupt Enable 0 (MXVR_INT_EN_0) Register 29-43

MXVR Interrupt Enable 1 (MXVR_INT_EN_1)
Register .. 29-46

Contents

lxviii ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Node Position (MXVR_POSITION) Register 29-48

MXVR Maximum Node Position
(MXVR_MAX_POSITION) Register 29-49

MXVR Node Frame Delay (MXVR_DELAY) Register 29-50

MXVR Maximum Node Frame Delay
(MXVR_MAX_DELAY) Register 29-52

MXVR Logical Address (MXVR_LADDR) Register 29-53

MXVR Group Address (MXVR_GADDR) Register 29-54

MXVR Alternate Address (MXVR_AADDR) Register 29-55

MXVR Allocation Table (MXVR_ALLOC_0
– MXVR_ALLOC_14) Registers 29-55

MXVR Synchronous Logical Channel Assignment
(MXVR_SYNC_LCHAN_0 –
MXVR_SYNC_LCHAN_7) Registers 29-57

MXVR DMAx Configuration (MXVR_DMA0_CONFIG
– MXVR_DMA7_CONFIG) Registers 29-59

MXVR DMA Channel x Start Address
(MXVR_DMA0_START_ADDR –
MXVR_DMA7_START_ADDR) Registers 29-69

MXVR DMA Channel x Current Address
(MXVR_DMA0_CURR_ADDR –
MXVR_DMA7_CURR_ADDR) Registers 29-71

MXVR DMA Channel x Transfer Count
(MXVR_DMA0_COUNT – MXVR_DMA7_COUNT)
Registers .. 29-72

MXVR DMA Channel x Current Transfer Count
(MXVR_DMA0_CURR_COUNT
– MXVR_DMA7_CURR_COUNT) Registers 29-74

ADSP-BF54x Blackfin Processor Hardware Reference lxix

Contents

MXVR Asynchronous Packet Control
(MXVR_AP_CTL) Register .. 29-75

MXVR Asynchronous Packet Receive Buffer Start
Address (MXVR_APRB_START_ADDR) Register 29-77

MXVR Asynchronous Packet Receive Buffer
Current Address (MXVR_APRB_CURR_ADDR)
Register .. 29-78

MXVR Asynchronous Packet Transmit Buffer Start
Address (MXVR_APTB_START_ADDR) Register 29-79

MXVR Asynchronous Packet Transmit Buffer
Current Address (MXVR_APTB_CURR_ADDR)
Register .. 29-79

MXVR Control Message Control
(MXVR_CM_CTL) Register .. 29-80

MXVR Control Message Receive Buffer Start
Address (MXVR_CMRB_START_ADDR) Register 29-82

MXVR Control Message Receive Buffer Current
Address (MXVR_CMRB_CURR_ADDR) Register 29-83

MXVR Control Message Transmit Buffer Start
Address (MXVR_CMTB_START_ADDR) Register 29-84

MXVR Control Message Transmit Buffer Current
Address (MXVR_CMTB_CURR_ADDR) Register 29-85

MXVR Remote Read Buffer Start Address
(MXVR_RRDB_START_ADDR) Register 29-86

MXVR Remote Read Buffer Current Address
(MXVR_RRDB_CURR_ADDR) Register 29-86

MXVR Pattern Registers .. 29-87

MXVR Pattern Data (MXVR_PAT_DATA_0,
MXVR_PAT_DATA_1) Registers 29-87

Contents

lxx ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Pattern Enable (MXVR_PAT_EN_0,
MXVR_PAT_EN_1) Registers .. 29-88

MXVR Frame Counter (MXVR_FRAME_CNT_0,
MXVR_FRAME_CNT_1) Registers 29-90

MXVR Routing (MXVR_ROUTING_0
– MXVR_ROUTING_14) Registers 29-91

MXVR Block Counter (MXVR_BLOCK_CNT) Register 29-94

MXVR Clock Control (MXVR_CLK_CTL) Register 29-95

MXVR Clock/Data Recovery PLL
Control (MXVR_CDRPLL_CTL) Register 29-101

MXVR Frequency Multiply PLL Control
(MXVR_FMPLL_CTL) Register 29-104

MXVR Pin Control (MXVR_PIN_CTL) Register 29-106

MXVR System Clock Counter
(MXVR_SCLK_CNT) Register 29-107

General Operation .. 29-108

Network Services Software .. 29-109

Network Activity Detection ... 29-109

Node Initialization .. 29-111

Initialization of Processor Pin Multiplexing 29-111

Master Mode Initialization of MXVR_CONFIG
Register ... 29-112

Slave Mode Initialization of MXVR_CONFIG
Register ... 29-112

Initialization of the MXVR_CLK_CTL Register 29-112

Initialization of the MXVR_ROUTING_x Registers 29-113

Initialization of the Buffer Start Address Registers 29-113

ADSP-BF54x Blackfin Processor Hardware Reference lxxi

Contents

Start Up of the MXVR PLLs .. 29-114

Master Mode Initialization and
Start Up of MXVR FMPLL and CDRPLL 29-114

Slave Mode Initialization and
Start Up of MXVR CDRPLL 29-115

Enabling MXVR Output Clocks .. 29-116

Network Lock ... 29-117

Network Lock for a Master Node 29-117

Network Lock For a Slave Node 29-118

Network Initialization ... 29-120

Synchronous Data Routing and Muting 29-121

Synchronous Data Transmission ... 29-123

Synchronous Data Reception ... 29-125

Asynchronous Packet Transmission 29-134

Asynchronous Packet Reception ... 29-136

Control Message Transmission ... 29-138

Normal Control Message Transmission 29-142

Remote Read Control Message Transmission 29-144

Remote Write Control Message Transmission 29-146

Resource Allocate Control Message Transmission 29-148

Resource De-Allocate Control Message Transmission 29-152

Remote GetSource Control Message Transmission 29-155

Control Message Reception .. 29-157

Normal Control Message Reception 29-158

Remote Read and Remote Write Reception 29-159

Contents

lxxii ADSP-BF54x Blackfin Processor Hardware Reference

Resource Allocate Reception ... 29-161

Resource De-Allocate Reception 29-162

Remote GetSource Reception .. 29-162

MXVR Low Power Operation ... 29-163

Full On Mode .. 29-164

Active Mode ... 29-166

Sleep Mode .. 29-167

Deep Sleep Mode ... 29-169

Hibernate State ... 29-170

Power Gating the ADSP-BF54x processor 29-171

KEYPAD INTERFACE

Interface Overview ... 30-1

Description of Operation .. 30-2

Keypad Operation ... 30-2

Keypad Enable/Disable ... 30-4

Input Keypad Matrix Programmability 30-4

Waking Up on Keypad Press .. 30-4

Sensitivity of Keypad Interface .. 30-5

Limited Multiple Key Resolution ... 30-5

Keypad Interrupt Modes ... 30-6

Implementing Press-Hold Feature .. 30-6

Functional Description ... 30-7

State Diagram ... 30-7

Programming Model ... 30-9

ADSP-BF54x Blackfin Processor Hardware Reference lxxiii

Contents

Keypad Registers ... 30-10

Keypad Control (KPAD_CTL) Register 30-10

Keypad Prescale (KPAD_PRESCALE) Register 30-13

Keypad Multiplier Select (KPAD_MSEL) Register 30-15

Keypad Row-Column (KPAD_ROWCOL) Register 30-15

Keypad Status (KPAD_STAT) Register 30-18

Keypad Software Evaluate (KPAD_SOFTEVAL) Register 30-20

Programming Examples ... 30-20

CAN MODULE

Overview .. 31-1

Interface Overview .. 31-2

CAN Mailbox Area .. 31-5

CAN Mailbox Control ... 31-7

CAN Protocol Basics ... 31-8

CAN Operation .. 31-10

Bit Timing .. 31-10

Transmit Operation ... 31-13

Retransmission .. 31-14

Single Shot Transmission ... 31-15

Auto-Transmission .. 31-16

Receive Operation ... 31-16

Data Acceptance Filter .. 31-19

Watchdog Mode ... 31-20

Time Stamps ... 31-21

Contents

lxxiv ADSP-BF54x Blackfin Processor Hardware Reference

Remote Frame Handling ... 31-22

Temporarily Disabling Mailboxes .. 31-23

Functional Operation ... 31-24

CAN Interrupts .. 31-24

Mailbox Interrupts ... 31-24

Global CAN Interrupt .. 31-25

Event Counter .. 31-28

CAN Warnings and Errors .. 31-29

Programmable Warning Limits .. 31-29

CAN Error Handling .. 31-30

Error Frames .. 31-31

Error Levels .. 31-33

Debug and Test Modes .. 31-35

Low Power Features ... 31-38

CAN Built-In Suspend Mode .. 31-39

CAN Built-In Sleep Mode .. 31-39

CAN Wakeup From Hibernate State 31-40

Soft Reset ... 31-41

CAN Registers .. 31-41

Global CAN Registers ... 31-45

Master Control (CANx_CONTROL) Registers 31-45

Global CAN Status (CANx_STATUS) Registers 31-46

CAN Debug (CANx_DEBUG) Registers 31-47

CAN Clock (CANx_CLOCK) Registers 31-47

ADSP-BF54x Blackfin Processor Hardware Reference lxxv

Contents

CAN Timing (CANx_TIMING) Registers 31-48

CAN Interrupt (CANx_INTR) Registers 31-48

Global CAN Interrupt Mask (CANx_GIM) Registers 31-49

Global CAN Interrupt Status (CANx_GIS) Registers 31-49

Global CAN Interrupt Flag (CANx_GIF) Registers 31-50

Mailbox/Mask Registers ... 31-50

Acceptance Mask (CANx_AMxx) Registers 31-50

Mailbox Word 7 (CANx_MBxx_ID1) Registers 31-54

Mailbox Word 6 (CANx_MBxx_ID0) Registers 31-56

Mailbox Word 5 (CANx_MBxx_TIMESTAMP)
Registers .. 31-58

Mailbox Word 4 (CANx_MBxx_LENGTH)
Registers .. 31-59

Mailbox Word 3–0 (CANx_MBxx_DATA3–0)
Registers .. 31-61

Mailbox Control Registers ... 31-69

Mailbox Configuration (CANx_MCx) Registers 31-69

Mailbox Direction (CANx_MDx) Registers 31-70

Receive Message Pending (CANx_RMPx) Registers 31-71

Receive Message Lost (CANx_RMLx) Registers 31-72

Overwrite Protection/Single Shot
Transmission (CANx_OPSSx) Register 31-73

Transmission Request Set (CANx_TRSx) Registers 31-74

Transmission Request Reset (CANx_TRRx) Registers 31-75

Abort Acknowledge (CANx_AAx) Registers 31-76

Contents

lxxvi ADSP-BF54x Blackfin Processor Hardware Reference

Transmission Acknowledge (CANx_TAx) Registers 31-77

Temporary Mailbox Disable (CANx_MBTD) Register 31-78

Remote Frame Handling (CANx_RFHx) Registers 31-78

Mailbox Interrupt Mask (CANx_MBIMx) Registers 31-79

Mailbox Transmit Interrupt Flag (CANx_MBTIFx)
Registers .. 31-80

Mailbox Receive Interrupt Flag (CANx_MBRIFx)
Registers .. 31-81

Universal Counter Registers .. 31-83

Universal Counter Configuration Mode
(CANx_UCCNF) Register ... 31-83

Universal Counter (CANx_UCCNT) Register 31-84

Universal Counter Reload/Capture (CANx_UCRC)
Register ... 31-84

Error Registers .. 31-84

Error Counter (CANx_CEC) Register 31-84

Error Status (CANx_ESR) Register 31-85

Error Counter Warning Level (CANx_EWR)
Register ... 31-85

Programming Examples .. 31-85

CAN Setup Code .. 31-86

Initializing and Enabling CAN Mailboxes 31-87

Initiating CAN Transfers and Processing Interrupts 31-89

ADSP-BF54x Blackfin Processor Hardware Reference lxxvii

Contents

SYSTEM MMR ASSIGNMENTS

Dynamic Power Management Registers ... A-4

System Reset and Interrupt Control
Registers ... A-4

Watchdog Timer Registers .. A-6

Real-Time Clock Registers ... A-6

UART0 Controller Registers .. A-7

UART1 Controller Registers .. A-8

UART2 Controller Registers .. A-9

UART3 Controller Registers .. A-10

SPI0 Controller Registers ... A-11

SPI1 Controller Registers ... A-11

SPI2 Controller Registers ... A-12

TWI0 Registers .. A-13

TWI1 Registers .. A-14

SPORT0 Controller Registers ... A-16

SPORT1 Controller Registers ... A-18

SPORT2 Controller Registers ... A-20

SPORT3 Controller Registers ... A-22

MXVR Registers .. A-24

Keypad Registers .. A-36

SDH Registers ... A-37

ATAPI Registers ... A-39

USB OTG Registers ... A-41

Contents

lxxviii ADSP-BF54x Blackfin Processor Hardware Reference

External Bus Interface Unit Registers .. A-58

DMA/Memory DMA Control Registers A-59

EPPI0 Registers .. A-62

EPPI1 Registers .. A-63

EPPI2 Registers .. A-64

Host DMA Registers ... A-65

PIXC Registers ... A-66

Ports Registers .. A-68

Timer Registers .. A-76

CANx Registers .. A-79

Handshake MDMA Control Registers ... A-88

NAND Flash Controller Registers ... A-90

Core Timer Registers .. A-91

Rotary Counter Registers .. A-91

Security Registers .. A-92

Processor-Specific Memory Registers ... A-93

TEST FEATURES

JTAG Standard ... B-1

Boundary-Scan Architecture ... B-2

Instruction Register ... B-4

Public Instructions .. B-6

EXTEST – Binary Code 00000 ... B-6

SAMPLE/PRELOAD – Binary Code 10000 B-7

ADSP-BF54x Blackfin Processor Hardware Reference lxxix

Contents

BYPASS – Binary Code 11111 ... B-7

IDCODE – Binary Code 00010 ... B-7

Boundary-Scan Register .. B-8

GLOSSARY

INDEX

Contents

lxxx ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference lxxxi

PREFACE

Thank you for purchasing and developing systems using an enhanced

Blackfin® processor from Analog Devices.

Purpose of This Manual
ADSP-BF54x Blackfin Processor Hardware Reference provides architectural
information about the ADSP-BF542, ADSP-BF544, ADSP-BF547,
ADSP-BF548, and ADSP-BF549 processors. This hardware reference pro-
vides architectural information about these processors and the peripherals
contained within the ADSP-BF54x Blackfin packages. The architectural
descriptions cover functional blocks, buses, and ports, including all fea-
tures and processes that they support. For programming information, see
Blackfin Processor Programming Reference. For timing, electrical, and pack-
age specifications, see ADSP-BF542/544/547/548/549 Embedded Processor
Data Sheet.

Intended Audience
The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. The manual assumes the audience has a
working knowledge of the appropriate processor architecture and instruc-
tion set. Programmers who are unfamiliar with Analog Devices processors
can use this manual, but should supplement it with other texts, such as
hardware and programming reference manuals that describe their target
architecture.

What’s New in This Manual

lxxxii ADSP-BF54x Blackfin Processor Hardware Reference

What’s New in This Manual
This is Revision 1.1 of the ADSP-BF54x Blackfin Processor Hardware Ref-
erence. This revision corrects minor typographical errors and the following
issues:

• UART not half-duplex in Chapter 1, “Introduction”

• Core priority over DMA when accessing L1 SRAM in Chapter 2,
“Chip Bus Hierarchy”

• Range for UNSECURED ECC SPACE in the Public OTP Mem-
ory Map in Chapter 4, “One-Time Programmable Memory”

• Internal timing requirement for DDR operation, functionality of
the MDDRENABLE bit, sampling the ARDY pin when it is asserted, and
the sampling edge of the ARE pin in Chapter 5, “External Bus Inter-
face Unit”

• Bit settings for the internal and external triggers, EPPIx_FS2W_LVB
register name and note, and description of ITU_TYPE in Chapter 15,
“Enhanced Parallel Peripheral Interface”

• SESR location, software implementation of the Advanced Encryp-
tion Standard (AES), and buffer size pointed to by pRoundKeys in
Chapter 16, “Security”

• Target address setting by elfloader utility, MOSI pin latching infor-
mation, note on protecting the NAND boot stream, and system
reset code example in Chapter 17, “System Reset and Booting”

• Arithmetic operators in PLL block diagram, note on programming
the STOPCK bit, CLKBUF behavior during hibernate, and active polar-
ity of the EXT_WAKE signal in Chapter 18, “Dynamic Power
Management”

ADSP-BF54x Blackfin Processor Hardware Reference lxxxiii

Preface

• Description of ATAPI_PIO_TIM_0 register in Chapter 21, “ATAPI
Interface”

• Port for enabling /SPISEL3, termination of SPI TX DMA opera-
tions and comments on SPI_CTL register functionality in
Chapter 22, “SPI-Compatible Port Controllers”

• TWI0_SLAVE_STAT, TWI0_SLAVE_ADDR, TWI0_MASTER_STAT0, and
TWI0_MASTER_ADDR register addresses in Chapter 23, “Two-Wire
Interface Controllers”

• Description of multichannel mode operation, behavior on startup
when using an external clock and receiver and transmitter enable
bit names standardized on RSPEN and TSPEN in Chapter 24,
“SPORT Controllers”

• Notes on CAN configuration mode and CAN_GIS and CAN_GIF pro-
gramming, and CANx_GIF registers marked as W1C in Chapter 31,
“CAN Module”

• USB_EP_N17_RXINTERVAL and USB_EP_N17_TXCOUNT register
addresses in Appendix A, “System MMR Assignments”

Technical Support
You can reach Analog Devices processors and DSP technical support in
the following ways:

• Post your questions in the processors and DSP support community
at EngineerZone®:
http://ez.analog.com/community/dsp

• Submit your questions to technical support directly at:
http://www.analog.com/support

http://ez.analog.com/community/dsp
http://www.analog.com/support

Supported Processors

lxxxiv ADSP-BF54x Blackfin Processor Hardware Reference

• E-mail your questions about processors, DSPs, and tools develop-
ment software from CrossCore® Embedded Studio or
VisualDSP++®:

Choose Help > Email Support. This creates an e-mail to
processor.tools.support@analog.com and automatically attaches
your CrossCore Embedded Studio or VisualDSP++ version infor-
mation and license.dat file.

• E-mail your questions about processors and processor applications
to:
processor.support@analog.com or
processor.china@analog.com (Greater China support)

• In the USA only, call 1-800-ANALOGD (1-800-262-5643)

• Contact your Analog Devices sales office or authorized distributor.
Locate one at:
www.analog.com/adi-sales

• Send questions by mail to:
Processors and DSP Technical Support
Analog Devices, Inc.
Three Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

Supported Processors
The name “Blackfin” refers to a family of 16-bit, embedded processors.
Refer to the CCES or VisualDSP++ online help for a complete list of sup-
ported processors.

mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.china@analog.com
http://www.analog.com/adi-sales

ADSP-BF54x Blackfin Processor Hardware Reference lxxxv

Preface

Product Information
Product information can be obtained from the Analog Devices Web site
and the CCES or VisualDSP++ online help.

Analog Devices Web Site
The Analog Devices Web site, www.analog.com, provides information
about a broad range of products—analog integrated circuits, amplifiers,
converters, and digital signal processors.

To access a complete technical library for each processor family, go to
http://www.analog.com/processors/technical_library. The manuals
selection opens a list of current manuals related to the product as well as a
link to the previous revisions of the manuals. When locating your manual
title, note a possible errata check mark next to the title that leads to the
current correction report against the manual.

Also note, myAnalog is a free feature of the Analog Devices Web site that
allows customization of a Web page to display only the latest information
about products you are interested in. You can choose to receive weekly
e-mail notifications containing updates to the Web pages that meet your
interests, including documentation errata against all manuals. myAnalog
provides access to books, application notes, data sheets, code examples,
and more.

Visit myAnalog to sign up. If you are a registered user, just log on. Your
user name is your e-mail address.

http://www.analog.com
http://www.analog.com/processors/technical_library/
http://www.analog.com/MyAnalog
http://www.analog.com/MyAnalog
http://www.analog.com/MyAnalog

Product Information

lxxxvi ADSP-BF54x Blackfin Processor Hardware Reference

EngineerZone
EngineerZone is a technical support forum from Analog Devices, Inc. It
allows you direct access to ADI technical support engineers. You can
search FAQs and technical information to get quick answers to your
embedded processing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar
design challenges. You can also use this open forum to share knowledge
and collaborate with the ADI support team and your peers. Visit
http://ez.analog.com to sign up.

http://ez.analog.com

ADSP-BF54x Blackfin Processor Hardware Reference lxxxvii

Preface

Notation Conventions
Text conventions in this manual are identified and described as follows.

Example Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
IDE environment’s menu system (for example, the Close command
appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets delim-
ited by commas and terminated with an ellipsis; read the example as an
optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this

symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

Register Diagram Conventions

lxxxviii ADSP-BF54x Blackfin Processor Hardware Reference

Register Diagram Conventions
Register diagrams use the following conventions:

• The descriptive name of the register appears at the top, followed by
the short form of the name in parentheses.

• If the register is read-only (RO), write-1-to-set (W1S), or
write-1-to-clear (W1C), this information appears under the name.
Read/write is the default and is not noted. Additional descriptive
text may follow.

• If any bits in the register do not follow the overall read/write con-
vention, this is noted in the bit description after the bit name.

• If a bit has a short name, the short name appears first in the bit
description, followed by the long name in parentheses.

• The reset value appears in binary in the individual bits and in hexa-
decimal to the right of the register.

• Bits marked x have an unknown reset value. Consequently, the
reset value of registers that contain such bits is undefined or depen-
dent on pin values at reset.

• Shaded bits are reserved.

 To ensure upward compatibility with future implementations,
write back the value that is read for reserved bits in a register,
unless otherwise specified.

ADSP-BF54x Blackfin Processor Hardware Reference lxxxix

Preface

The following figure shows an example of these conventions.

Figure 1. Register Diagram Example

00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0

TMODE[1:0] (Timer Mode)

Reset = 0x00000

Timer Configuration Registers (TIMERx_CONFIG)

0 - Negative action pulse.
1 - Positive action pulse.

This bit must be set to 1, when operat-
ing the PPI in GP Output modes.
0 - Use system clock SCLK for counter.
1 - Use PWM_CLK to clock counter.

0 - The effective state of PULSE_HI
is the programmed state.
1 - The effective state of PULSE_HI
alternates each period.

00 - No error.
01 - Counter overflow error.
10 - Period register programming error.
11 - Pulse width register programming error.

00 - Reset state - unused.
01 - PWM_OUT mode.
10 - WDTH_CAP mode.
11 - EXT_CLK mode.

PULSE_HI

CLK_SEL (Timer Clock Select)

TOGGLE_HI (PWM_OUT PULSE_HI Toggle Mode)

ERR_TYP[1:0] (Error Type) - RO

PERIOD_CNT (Period
Count)

0 - Interrupt request
disable.
1 - Interrupt request enable

0 - Count to end of width.
1 - Count to end of period.

IRQ_ENA (Interrupt
Request Enable)

0 - Sample TMRx pin or
PF1 pin.
1 - Sample UART RX pin
or PPI_CLK pin.

TIN_SEL (Timer Input
Select)

0 - Enable pad in PWM_OUT mode.
1 - Disable pad in PWM_OUT mode.

OUT_DIS (Output Pad Disable)

0 - Timer counter stops during emulation.
1 - Timer counter runs during emulation.

EMU_RUN (Emulation Behavior Select)

Register Diagram Conventions

xc ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 1-1

1 INTRODUCTION

The ADSP-BF54x processor processors are new members of the Blackfin
processor family that offer significant high performance and low power
while retaining their ease-of-use benefits. The ADSP-BF54x processor
processors are completely pin compatible, differing only in their perfor-
mance and on-chip memory, mitigating many risks associated with new
product development but allowing the possibility to scale up or down
based on specific application demands.

The chapter includes the following sections:

• “Peripherals” on page 1-2

• “Memory Architecture” on page 1-5

• “DMA Support” on page 1-10

• “External Bus Interface Unit” on page 1-13

• “Ports” on page 1-14

• “Two-Wire Interface” on page 1-15

• “Controller Area Network” on page 1-16

• “Enhanced Parallel Peripheral Interface (EPPI)” on page 1-17

• “SPORT Controllers” on page 1-19

• “Serial Peripheral Interface (SPI) Port” on page 1-20

• “Timers” on page 1-21

Peripherals

1-2 ADSP-BF54x Blackfin Processor Hardware Reference

• “UART Ports” on page 1-22

• “USB On-The-Go, Dual-Role Device Controller” on page 1-23

• “ATA/ATAPI–6 Interface” on page 1-24

• “Keypad Interface” on page 1-24

• “Secure Digital (SD)/SDIO Controller” on page 1-25

• “Rotary Counter Interface” on page 1-26

• “Security” on page 1-26

• “Media Transceiver Mac Layer (MXVR)” on page 1-27

• “Real-Time Clock” on page 1-29

• “Watchdog Timer” on page 1-30

• “Clock Signals” on page 1-30

Peripherals
The processor system peripherals include combinations of:

• High-speed USB on-the-go (OTG) with integrated PHY

• SD/SDIO controller

• ATA/ATAPI-6 controller

• Up to four synchronous serial ports (SPORTs)

• Up to three serial peripheral interfaces (SPI-compatible)

• Up to four UARTs, two with automatic hardware flow control

• Up to two CAN (controller area network) 2.0B interfaces

ADSP-BF54x Blackfin Processor Hardware Reference 1-3

Introduction

• Up to two TWI (2-Wire interface) controllers

• 8- or 16-bit asynchronous Host DMA interface

• Multiple enhanced parallel peripheral interfaces (EPPI), supporting
ITU-R BT.656 video formats and 18/24-bit LCD connections

• Video data compositor/blender

• Up to eleven 32-bit timers/counters with PWM support

• Real-time clock (RTC) and watchdog timer

• Rotary counter with support for rotary encoder

• Up to 152 general-purpose I/O (GPIOs)

• On-chip PLL capable of 1x to 63x frequency multiplication

• Debug/JTAG interface

These peripherals are connected to the core through several high band-
width buses, as shown in Figure 1-1.

All of the peripherals, except for general-purpose I/O, CAN, TWI, RTC,
and timers, are supported by a flexible DMA structure. There are also two
separate memory DMA channels dedicated to data transfers between the
processor’s memory spaces, which include external DDR1 SDRAM and
asynchronous memory. Multiple on-chip buses provide enough band-
width to keep the processor core running even when there is also activity
on all of the on-chip and external peripherals.

Peripherals

1-4 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 1-1. ADSP-BF54x processor Processor Block Diagram

RTC

HOSTDP

JTAG TEST AND
EMULATION

UART (2-3)

Blackfin

EXTERNAL PORT
NOR, DDR1 CONTROL

SPI (2)

SPORT (0-1)

SD / SDIO

WATCHDOG
TIMER

BOOT
ROM

32

16

PIXEL
COMPOSITOR

VOLTAGE
REGULATOR

EPPI (0-2)

SPORT (2-3)

SPI (0-1)

UART (0-1)

P
O

R
T

S

PAB

USB

DMAC0
(16-BIT)

DMAC1
(32-BIT)

INTERRUPTS

L2
SRAM

L1
INSTR ROM

L1
INSTR SRAM

L1
DATA SRAM

DAB1

DAB0

OTP

16 16

DDR1 ASYNC

16

NAND FLASH
CONTRLOLLER

ATAPI

DCB 32 EAB 64 DEB 32

P
O

R
T

S

CAN (0-1)

TWI (0-1)

TIMERS
(0-10)

KEYPAD

COUNTER

MXVR

CCLK
DOMAIN

SCLK DOMAIN
(ALL OUTSIDE CCLK)

0

1

2
0

1

2

3

MAB

DCB2

DEB2

DCB3

DEB1

DCB1

DCB0

DEB0

ADSP-BF54x Blackfin Processor Hardware Reference 1-5

Introduction

Memory Architecture
The Blackfin processor architecture structures memory as a single, unified
4G byte address space using 32-bit addresses. All resources, including
internal memory, external memory, and I/O control registers, occupy sep-
arate sections of this common address space. The memory portions of this
address space are arranged in a hierarchical structure to provide a good
cost/performance balance of some very fast, low latency on-chip memory
as cache or SRAM, and larger, lower cost and lower performance off-chip
memory systems. Table 1-1 shows the memory comparison for the
ADSP-BF54x processor processors.

Table 1-1. Memory Configurations

Memory Configurations
(K Bytes)

ADSP-BF54
9

ADSP-BF54
8

ADSP-BF54
7

ADSP-BF54
4

ADSP-BF54
2

L1 Instruction
SRAM/Cache

16 16 16 16 16

L1 Instruction SRAM 48 48 48 48 48

L1 Data SRAM/Cache 32 32 32 32 32

L1 Data SRAM 32 32 32 32 32

L1 Scratchpad SRAM 4 4 4 4 4

L1 ROM1

1 This ROM is not customer configurable.

64 64 64 64 64

L2 128 128 128 64 –

L3 Boot ROM1 4 4 4 4 4

OTP Memory 8 8 8 8 8

Memory Architecture

1-6 ADSP-BF54x Blackfin Processor Hardware Reference

The L1 memory system is the primary highest performance memory avail-
able to the core. The off-chip memory system, accessed through the
external bus interface unit (EBIU), provides expansion with double-data
SDRAM (DDR1), flash memory, and SRAM, optionally accessing up to
516M bytes of physical memory.

The memory DMA controller provides high bandwidth data movement
capability. It can perform block transfers of code or data between the
internal memory and the external memory spaces.

Certain models of the ADSP-BF54x processor processor also include an
L2 SRAM memory array which provides up to 128K bytes of high speed
SRAM operating at one half the frequency of the core, and slightly longer
latency than the L1 memory banks. The memory other than L1 is a uni-
fied instruction and data memory and can hold any mixture of code and
data required by the system design.

Internal Memory
The processor has several blocks of on-chip memory that provide high
bandwidth access to the core:

• L1 instruction memory, consisting of SRAM and a 4-way set-asso-
ciative cache. This memory is accessed at full processor speed.

• L1 data memory, consisting of SRAM and/or a 2-way set-associa-
tive cache. This memory block is accessed at full processor speed.

• L1 scratchpad RAM, which runs at the same speed as the L1 mem-
ories but is only accessible as data SRAM and cannot be configured
as cache memory.

• L1 instruction ROM, operating at full processor speed. This ROM
is not customer configurable.

ADSP-BF54x Blackfin Processor Hardware Reference 1-7

Introduction

• L2 SRAM, providing up to 128K bytes of unified instruction and
data memory, operating at one half the frequency of the core.

• 4K boot ROM that can be seen as L3 memory. It operates at full
SCLK rate.

External Memory
Through the external bus interface unit (EBIU) the ADSP-BF54x proces-
sor processors provide glueless connectivity to external 16-bit wide
memories, such as DDR SDRAM, mobile DDR, SRAM, NOR flash,
NAND flash, and FIFO devices. To provide the best performance, the bus
system of the DDR interface is completely separate from the other parallel
interfaces.

The DDR memory controller can gluelessly manage up to two banks of
double-rate synchronous dynamic memory (DDR1 SDRAM). The 16-bit
wide interface operates at SCLK frequency, enabling maximum throughput
of 532 Mbyte/s. The DDR or mobile DDR controller is augmented with a
queuing mechanism that performs efficient bursts onto the DDR. The
controller is an industry standard DDR SDRAM controller with each
bank supporting from 64 Mbit to 512 Mbit device sizes and 4-, 8-, or
16-bit widths. The controller supports up to 512 Mbytes in one bank, but
the total in two banks is limited to 512 Mbytes. Each bank is indepen-
dently programmable and is contiguous with adjacent banks regardless of
the sizes of the different banks or their placement.

Traditional 16-bit asynchronous memories, such as SRAM, EPROM, and
flash devices, can be connected to one of the four 64 Mbyte asynchronous
memory banks, represented by four memory select strobes. Alternatively,
these strobes can function as bank-specific read or write strobes preventing
further glue logic when connecting to asynchronous FIFO devices.

Memory Architecture

1-8 ADSP-BF54x Blackfin Processor Hardware Reference

In addition, the external bus can connect to advanced flash device tech-
nologies, such as:

• Page-mode NOR flash devices

• Synchronous burst-mode NOR flash devices

• NAND flash devices

NAND Flash Controller (NFC)

The ADSP-BF54x processor provides a NAND flash controller (NFC) as
part of the external bus interface. NAND flash devices provide high-den-
sity, low-cost memory. However, NAND flash devices also have long
random access times, invalid blocks, and lower reliability over device life-
times. Because of this, NAND flash is often used for read-only code
storage. In this case, all DSP code can be stored in NAND flash and then
transferred to a faster memory (such as DDR or SRAM) before execution.
Another common use of NAND flash is for storage of multimedia files or
other large data segments. In this case, a software file system may be used
to manage reading and writing of the NAND flash device. The file system
selects memory segments for storage with the goal of avoiding bad blocks
and equally distributing memory accesses across all address locations.
Hardware features of the NFC include:

• Support for page program, page read, and block erase of NAND
flash devices, with accesses aligned to page boundaries

• Error checking and correction (ECC) hardware that facilitates error
detection and correction

• A single 8-bit or 16-bit external bus interface for commands,
addresses and data

• Support for SLC (single-level cell) NAND flash devices unlimited
in size, with page sizes of 256 and 512 bytes. Larger page sizes can
be supported in software

ADSP-BF54x Blackfin Processor Hardware Reference 1-9

Introduction

• Capability of releasing external bus interface pins during long
accesses

• Support for internal bus requests of 16- or 32-bits

• DMA engine to transfer data between internal memory and
NAND flash device

I/O Memory Space
Blackfin processors do not define a separate I/O space. All resources are
mapped through the flat 32-bit address space. Control registers for
on-chip I/O devices are mapped into memory-mapped registers (MMRs)
at addresses near the top of the 4G byte address space. These are separated
into two smaller blocks: one contains the control MMRs for all core func-
tions and the other contains the registers needed for setup and control of
the on-chip peripherals outside of the core. The MMRs are accessible only
in supervisor mode. They appear as reserved space to on-chip peripherals.

One-Time-Programmable (OTP) Memory
The ADSP-BF54x processor processor also includes an on-chip OTP
memory array which provides 64K bits of non-volatile memory that can
be programmed by the developer only one time. It includes the array and
logic to support read access and programming. A mechanism for error cor-
rection is provided. Additionally, its pages can be write protected.

The OTP is not part of the Blackfin linear memory map. OTP memory is
not accessed directly using the Blackfin memory map, rather, it is accessed
through four 32-bit wide registers (OTP_DATA3–0) which act as the OTP
memory read/write buffer.

This memory is organized into 512 pages each comprised of 128 bits and
equally separated into two distinct areas with privileged access dependant
upon modes of operation when security features are utilized. Approxi-
mately 400 pages are available for developer use. The remaining 100 pages

DMA Support

1-10 ADSP-BF54x Blackfin Processor Hardware Reference

are utilized for page protection bits, error correction, and ADI factory
reserved areas. One area is read/write accessible at all time (public OTP
memory). The second area maintains privileged access and can only be
accessed (read/write) upon entry to secure mode when security features are
utilized (private OTP memory).

All together, OTP memory provides a means to store public keys in public
OTP memory or secrets such as private keys or symmetric keys in private
OTP memory. One page of the public OTP memory is initialized in the
Analog Devices factory with a unique chip ID.

This OTP memory provides a means to store public and private cipher
keys as well as chip, customer, and factory identification data.

DMA Support
ADSP-BF54x processor processors have multiple, independent DMA
channels that support automated data transfers with minimal overhead for
the processor core. DMA transfers can occur between the ADSP-BF54x
processor processor’s internal memories and any of its DMA-capable
peripherals. Additionally, DMA transfers can be accomplished between
any of the DMA-capable peripherals and external devices connected to the
external memory interfaces, including DDR and asynchronous memory
controllers.

While the USB controller and MXVR have their own dedicated DMA
controllers, the other on-chip peripherals are managed by two centralized
DMA controllers, called DMAC1 (32-bit) and DMAC0 (16-bit). Both
operate in the SCLK domain. Each DMA controller manages twelve inde-
pendent DMA channels. The DMAC1 controller masters high bandwidth
peripherals over a dedicated 32-bit DMA access bus (DAB32). Similarly,
the DMAC0 controller masters most of serial interfaces over the 16-bit
DAB16 bus. Individual DMA channels have fixed access priority on the
DAB buses. DMA priority of peripherals is managed by flexible periph-
eral-to-DMA channel assignment.

ADSP-BF54x Blackfin Processor Hardware Reference 1-11

Introduction

All four DMA controllers use the same 32-bit DCB bus to exchange data
with L1 memory. This includes L1 ROM, but excludes scratchpad mem-
ory. Fine granulation of L1 memory and special DMA buffers minimize
potential memory conflicts, if the L1 memory is accessed by the core con-
temporaneously. Similarly, there are dedicated DMA buses between the
DMAC1, DMAC0, and USB DMA controllers and the external bus inter-
face unit (EBIU) that arbitrates DMA accesses to external memories and
boot ROM.

The ADSP-BF54x processor processor DMA controllers support both
one-dimensional (1D) and two-dimensional (2D) DMA transfers. DMA
transfer initialization can be implemented from registers or from sets of
parameters called descriptor blocks.

The 2D DMA capability supports arbitrary row and column sizes up to
64K elements by 64K elements, and arbitrary row and column step sizes
up to ±32K elements. Furthermore, the column step size can be less than
the row step size, allowing implementation of interleaved data streams.
This feature is especially useful in video applications where data can be
de-interleaved on-the-fly.

Examples of DMA types supported by the ADSP-BF54x processor proces-
sor DMA controller include:

• A single, linear buffer that stops upon completion

• A circular, auto-refreshing buffer that interrupts on each full or
fractionally full buffer

• 1D or 2D DMA using a linked list of descriptors

• 2D DMA using an array of descriptors, specifying only the base
DMA address within a common page

In addition to the dedicated peripheral DMA channels, both the DMAC1
and the DMAC0 controllers feature two memory DMA channel pairs for
transfers between the various memories of the ADSP-BF54x processor

DMA Support

1-12 ADSP-BF54x Blackfin Processor Hardware Reference

processor system. This enables transfers of blocks of data between any of
the memories—including external DDR, ROM, SRAM, and flash mem-
ory—with minimal processor intervention. Like peripheral DMAs,
memory DMA transfers can be controlled by a very flexible descrip-
tor-based methodology or by a standard register-based autobuffer
mechanism.

The memory DMA channels of the DMAC1 controller (MDMA2 and
MDMA3) can be optionally controlled by the external DMA request
input pins. When used in conjunction with the external bus interface unit
(EBIU) this so-called handshaked memory DMA (HMDMA) scheme can
be used to efficiently exchange data with block-buffered or FIFO-style
devices connected externally. Users can select whether the DMA request
pins control the source or the destination side of the memory DMA. It
allows control of the number of data transfers for memory DMA. The
number of transfers per edge is programmable. This feature can be pro-
grammed to allow memory DMA to have an increased priority on the
external bus relative to the core.

Host DMA Interface
The Host DMA port (HOSTDP) facilitates a host device external to the
ADSP-BF54x processor to be a DMA master and transfer data back and
forth. The host device always masters the transactions and the processor is
always a DMA slave device.

The HOSTDP port is enabled through the peripheral access bus. Once
enabled, the DMA is controlled by the external host. The external host
can then program the DMA to send/receive data to any valid internal or
external memory location. The HOSTDP port controller includes the fol-
lowing features:

• Allows an external master to configure DMA read/write data trans-
fers and read port status

• Uses an asynchronous memory protocol for its external interface

ADSP-BF54x Blackfin Processor Hardware Reference 1-13

Introduction

• Allows 8- or 16-bit external data interface to the host device

• Supports half-duplex operation

• Supports little/big endian data transfers

• Acknowledge mode allows flow control on host transactions

• Interrupt mode guarantees a burst of FIFO depth host transactions

External Bus Interface Unit
Through the external bus interface unit (EBIU) the ADSP-BF54x proces-
sor processors provide glueless connectivity to external 16-bit wide
memories, such as DDR SDRAM, SRAM, NOR flash, NAND flash, and
FIFO devices. To provide the best performance, the bus system of the
DDR interface is completely separate from the other parallel interfaces.

DDR SDRAM Controller
The DDR memory controller can gluelessly manage up to two banks of
double-rate synchronous dynamic memory (DDR1 SDRAM). The 16-bit
wide interface operates at SCLK frequency enabling maximum throughput
of 532M byte/s. The DDR controller is augmented with a queuing mech-
anism that performs efficient bursts onto the DDR. The controller is an
industry-standard DDR SDRAM controller.

The maximum size of supported DDR SDRAM is 512M bit (64M byte).
Most of these memory devices can be configured as x4, x8 and x16. With
x16, one memory chip is configured per “external” bank; with x8 config-
ure two chips; and four chips with x4 configuration. Thus with x4
configuration, 64M byte x 4 = 256M byte per external bank can be sup-
ported. ADSP-BF54x processor two external banks provide support for a
maximum of 2 x 256M byte = 512M byte.

Ports

1-14 ADSP-BF54x Blackfin Processor Hardware Reference

Each bank is independently programmable and is contiguous with adja-
cent banks regardless of the sizes of the different banks or their placement.

Asynchronous Controller
The asynchronous memory controller provides a configurable interface for
up to four separate banks of memory or I/O devices. Each bank can be
independently programmed with different timing parameters. This allows
connection to a wide variety of memory devices, including SRAM, ROM,
and flash EPROM, as well as I/O devices that interface with standard
memory control lines. Each bank occupies a 64M byte window in the pro-
cessor address space, but if not fully populated, these are not made
contiguous by the memory controller. The banks are 16 bits wide, for
interfacing to a range of memories and I/O devices.

Ports
Because of their rich set of peripherals, the ADSP-BF54x processor proces-
sors group the many peripheral signals to ten ports—referred to as Port A
to Port J. Most ports contain 16 pins, a few have less. Many of the associ-
ated pins are shared by multiple signals. The ports function as multiplexer
controls. Every port has its own set of memory-mapped registers to con-
trol port multiplexing and GPIO functionality.

General-Purpose I/O (GPIO)
Every pin in Port A to Port J can function as a GPIO pin resulting in a
GPIO pin count of 154. While it is unlikely that all GPIOs will be used in
an application as all pins have multiple functions, the richness of GPIO
functionality guarantees nonrestrictive pin usage. Every pin that is not
used by any function can be configured in GPIO mode on an individual
basis.

ADSP-BF54x Blackfin Processor Hardware Reference 1-15

Introduction

After reset, all pins are in GPIO mode by default. Neither GPIO output
nor input drivers are active by default. Unused pins can be left uncon-
nected. GPIO data and direction control registers provide flexible
write-1-to-set and write-1-to-clear mechanisms so that independent soft-
ware threads do not need to protect against each other because of
expensive read-modify-write operations when accessing the same port.

Two-Wire Interface
The ADSP-BF54x processor processor offers up to two TWI (two-wire

interface) interfaces and is fully compatible with the widely used I2C bus
standard. It is designed with a high level of functionality and is compatible
with multimaster, multislave bus configurations. To preserve processor
bandwidth, the TWI controller can be set up and a transfer initiated with
interrupts only to service FIFO buffer data reads and writes. Proto-
col-related interrupts are optional.

The TWI externally moves 8-bit data while maintaining compliance with

the I2C bus protocol. The Philips I2C Bus Specification version 2.1 covers

many variants of I2C. The TWI controller includes these features:

• Simultaneous master and slave operation on multiple device
systems

• Support for multimaster data arbitration

• 7-bit addressing

• 100K bits/second and 400K bits/second data rates

• General call address support

• Master clock synchronization and support for clock low extension

• Separate multiple-byte receive and transmit FIFOs

Controller Area Network

1-16 ADSP-BF54x Blackfin Processor Hardware Reference

• Low interrupt rate

• Individual override control of data and clock lines in the event of
bus lockup

• Input filter for spike suppression

• Serial camera control bus support as specified in OmniVision Serial
Camera Control Bus (SCCB) Functional Specification version 2.1

Controller Area Network
The ADSP-BF54x processor processor offers up to two CAN controllers
that are communication controllers that implement the controller area
network (CAN) 2.0B (active) protocol. This protocol is an asynchronous
communications protocol used in both industrial and automotive control
systems. The CAN protocol is well suited for control applications due to
its capability to communicate reliably over a network since the protocol
incorporates CRC checking message error tracking, and fault node
confinement.

The ADSP-BF54x processor CAN controllers offer:

• 32 mailboxes (8 receive only, 8 transmit only, 16 configurable for
receive or transmit)

• Dedicated acceptance masks for each mailbox

• Additional data filtering on first two bytes

• Support for both the standard (11-bit) and extended (29-bit) iden-
tifier (ID) message formats

• Support for remote frames

• Active or passive network support

ADSP-BF54x Blackfin Processor Hardware Reference 1-17

Introduction

• CAN wakeup from hibernation mode (lowest static power con-
sumption mode)

• Interrupts, including: TX complete, RX complete, error, global

The electrical characteristics of each network connection are very demand-
ing so the CAN interface is typically divided into two parts: a controller
and a transceiver. This allows a single controller to support different driv-
ers and CAN networks. The ADSP-BF54x processor CAN module
represents only the controller part of the interface. The controller inter-
face supports connection to 3.3V high speed, fault-tolerant, single-wire
transceivers.

Enhanced Parallel Peripheral Interface
(EPPI)

The ADSP-BF54x processor processor provides multiple enhanced parallel
peripheral interfaces (EPPIs), one 16 bits wide and one 18 bits wide. The
EPPI supports the direct connection to active TFT LCD, parallel A/D and
D/A converters, video encoders and decoders, image sensor module and
other general-purpose peripherals.

The following features are supported in the EPPI module.

• Programmable data length: 8, 10, 12, 14, 16, 18, and 24 bits per
clock

• Bidirectional and half-duplex port

• PPI_CLK can be provided externally or can be generated internally

• Various framed and nonframed operating modes. Frame syncs can
be generated internally or can be supplied by an external device

Enhanced Parallel Peripheral Interface (EPPI)

1-18 ADSP-BF54x Blackfin Processor Hardware Reference

• Various general-purpose modes with one frame syncs, two frame
syncs, three frame syncs and zero frame sync modes for both
receive and transmit

• ITU-656 status word error detection and correction for ITU-656
receive modes

• ITU-656 preamble and status word decode

• Three different modes for ITU-656 receive modes: active video
only, vertical blanking only, and entire field mode

• Horizontal and vertical windowing for GP 2 and 3 FS modes

• Optional packing and unpacking of data to/from 32 bits from/to 8,
16 and 24 bits. If packing/unpacking is enabled, endianness can be
altered to change the order of packing/unpacking of bytes/words

• Optional sign extension or zero fill for receive modes

• During receive modes, alternate even or odd data sample can be fil-
tered out

• Programmable clipping of data values for 8-bit and 16-bit transmit
modes

• RGB888 can be converted to RGB666 or RGB565 for transmit
modes

• Various de-interleaving/interleaving modes for receiving/transmit-
ting 4:2:2 YCrCb data

• FIFO watermarks and urgent DMA features

• Clock gating by an external device asserting the clock gating
control

ADSP-BF54x Blackfin Processor Hardware Reference 1-19

Introduction

SPORT Controllers
The ADSP-BF54x processor processor incorporates up to four dual-chan-
nel synchronous serial ports (SPORT0, SPORT1, SPORT2, SPORT3)
for serial and multiprocessor communications. The SPORTs support
these features:

• I2S capable operation

Bidirectional operation. Each SPORT has two sets of independent
transmit and receive pins, which enable eight channels of I2S stereo
audio.

• Buffered (eight-deep) transmit and receive ports

Each port has a data register for transferring data words to and
from other processor components and shift registers for shifting
data in and out of the data registers.

• Clocking

Each transmit and receive port can either use an external serial
clock or can generate its own in a wide range of frequencies.

• Word length

Each SPORT supports serial data words from 3 to 32 bits in
length, transferred in most significant bit first or least significant
bit first format.

• Framing

Each transmit and receive port can run with or without frame sync

Serial Peripheral Interface (SPI) Port

1-20 ADSP-BF54x Blackfin Processor Hardware Reference

signals for each data word. Frame sync signals can be generated
internally or externally, active high or low, and with either of two
pulse widths and early or late frame sync.

• Companding in hardware

Each SPORT can perform A-law or µ-law companding according
to ITU recommendation G.711. Companding can be selected on
the transmit and/or receive channel of the SPORT without addi-
tional latencies.

• DMA operations with single-cycle overhead

Each SPORT can automatically receive and transmit multiple buf-
fers of memory data. The processor can link or chain sequences of
DMA transfers between a SPORT and memory.

• Interrupts

Each transmit and receive port generates an interrupt upon com-
pleting the transfer of a data word or after transferring an entire
data buffer or buffers through DMA.

• Multichannel capability

Each SPORT supports 128 channels out of a 1024-channel win-
dow and is compatible with the H.100, H.110, MVIP-90, and
HMVIP standards.

Serial Peripheral Interface (SPI) Port
The ADSP-BF54x processor processor has up to three SPI-compatible
ports that enable the processor to communicate with multiple SPI-com-
patible devices.

ADSP-BF54x Blackfin Processor Hardware Reference 1-21

Introduction

Each SPI port uses three pins for transferring data: two data pins and a
clock pin. An SPI chip select input pin lets other SPI devices select the
processor, and seven SPI chip select output pins let the processor select
other SPI devices. The SPI select pins are reconfigured, general-purpose
I/O pins. Using these pins, the SPI port provides a full-duplex, synchro-
nous serial interface, which supports both master and slave modes and
multimaster environments.

The SPI port’s baud rate and clock phase/polarities are programmable. It
has an integrated DMA controller, configurable to support either transmit
or receive data streams. The SPI’s DMA controller can only service unidi-
rectional accesses at any given time.

During transfers, the SPI port simultaneously transmits and receives by
serially shifting data in and out of its two serial data lines. The serial clock
line synchronizes the shifting and sampling of data on the two serial data
lines.

Timers
There are up to two timer units in the ADSP-BF54x processor processors.
Depending on the processor, one unit provides eight general-purpose pro-
grammable timers, and the other unit provides three of them. Each timer
has an external pin that can be configured either as a pulse width modula-
tor (PWM) or timer output, as an input to clock the timer, or as a
mechanism for measuring pulse widths and periods of external events.
These timers can be synchronized to an external clock input (to the several
other associated GPIO pins) to an external clock input to the PPI_CLK
input pin, or to the internal SCLK.

The timer units can be used in conjunction with the two UARTs and the
CAN controllers to measure the width of the pulses in the data stream to
provide a software auto-baud detect function for the respective serial
channels.

UART Ports

1-22 ADSP-BF54x Blackfin Processor Hardware Reference

The timers can generate interrupts to the processor core providing peri-
odic events for synchronization, either to the system clock or to a count of
external signals.

In addition to the general-purpose programmable timers, another timer is
also provided by the processor core. This extra timer is clocked by the
internal processor clock and is typically used as a system tick clock for gen-
eration of operating system periodic interrupts.

UART Ports
The ADSP-BF54x processor processor provides four full-duplex universal
asynchronous receiver/transmitter (UART) ports. Each UART port pro-
vides a simplified UART interface to other peripherals or hosts, providing
DMA-supported, asynchronous transfers of serial data. The UART ports
include support for five to eight data bits; one or two stop bits; and none,
even, or odd parity. The UART ports support two modes of operation:

• Programmed I/O

The processor sends or receives data by writing or reading
I/O-mapped UART registers. The data is double-buffered on both
transmit and receive.

• Direct Memory Access (DMA)

The DMA controller transfers both transmit and receive data. This
reduces the number and frequency of interrupts required to trans-
fer data to and from memory. Each of the two UARTs have two
dedicated DMA channels, one for transmit and one for receive.
These DMA channels have lower priority than most DMA chan-
nels because of their relatively low service rates.

ADSP-BF54x Blackfin Processor Hardware Reference 1-23

Introduction

The baud rate, serial data format, error code generation and status, and
interrupts of the UARTs can be programmed to support:

• Wide range of bit rates

• Data formats from 7 to 12 bits per frame

• Generation of maskable interrupts to the processor by both trans-
mit and receive operations

In conjunction with the general-purpose timer functions, autobaud detec-
tion is supported.

UART1 and UART3 feature a pair of UARTxRTS (request to send) and
UARTxCTS (clear to send) signals for hardware flow purposes. The transmit-
ter hardware is automatically prevented from sending further data when
the UARTxCTS input is deasserted. The receiver can automatically deassert
its UARTxTS output when the enhanced receive FIFO exceeds a certain high
water level.

The capabilities of the UART ports are further extended with support for

the Infrared Data Association (IrDA®) Serial Infrared Physical Layer Link
Specification (SIR) protocol.

USB On-The-Go, Dual-Role Device
Controller

The USB OTG controller provides a low-cost connectivity solution for
consumer mobile devices such as cell phones, digital still cameras and
MP3 players, allowing these devices to transfer data using a point-to-point
USB connection without the need for a PC host. The USBDRC module
can operate in a traditional USB peripheral-only mode as well as the host
mode presented in the on-the-go (OTG) supplement to the USB 2.0 spec-

ATA/ATAPI–6 Interface

1-24 ADSP-BF54x Blackfin Processor Hardware Reference

ification. In host mode, the USB module supports transfers at high-speed
(480 Mbps), full speed (12 Mbps), and low speed (1.5 Mbps) rates.
Peripheral-only mode supports the high and full speed transfer rates.

ATA/ATAPI–6 Interface
The ATA/ATAPI interface connects to CD/DVD and HDD drives and is
ATAPI-6 compliant. The controller implements the peripheral I/O mode,
the multi-DMA mode, and the Ultra DMA mode. The DMA modes
enable faster data transfer and reduced host management. The ATAPI
Controller supports PIO, multi-DMA, and Ultra DMA ATAPI accesses.
Key features include:

• Supports PIO modes 0, 1, 2, 3, 4

• Supports multiword DMA modes 0, 1, 2

• Supports Ultra DMA modes 0, 1, 2, 3, 4, 5 (up to UDMA 100)

• Programmable timing for ATA interface unit

• Supports CompactFlash card using True IDE mode

Keypad Interface
The keypad interface is a 16-pin interface module that is used to detect
the key pressed in a 8-by-8 (maximum) keypad matrix. The size of the
input keypad matrix is programmable. The interface is capable of filtering
the bounce on the input pins, which is common in keypad applications.
The width of the filtered bounce is programmable. The interface module
is capable of generating an interrupt request to the core once it identifies
that any key is pressed.

ADSP-BF54x Blackfin Processor Hardware Reference 1-25

Introduction

The interface supports a press-release-press mode and infrastructure for a
press-hold mode. The former mode identifies a press, a release and
another press of a key as two consecutive presses of the same key. The later
mode checks the input key’s state in periodic intervals to determine the
number of times the same key is meant to be pressed. Key features include:

• Supports a maximum of 8-by-8 keypad matrix

• Programmable input keypad matrix size

• Debounce filter on input signals

• Programmable debounce filter width

• Press-release/press mode supported

• Infrastructure for press-hold mode present

• Interrupt on any key pressed capability

• Multiple key pressed detection and limited multiple key resolution
capability

Secure Digital (SD)/SDIO Controller
The SD/SDIO controller is a serial interface that stores data at a rate of up
to 10M bytes per second using a 4-bit data line. The interface runs at 25
MHz.

The SD/SDIO controller supports the SD memory mode only. The inter-
face supports all the power modes and performs error checking by CRC.

Rotary Counter Interface

1-26 ADSP-BF54x Blackfin Processor Hardware Reference

Rotary Counter Interface
A 32-bit rotary counter is provided that can sense 2-bit quadrature or
binary codes as typically emitted by industrial drives or manual thumb-
wheels. The counter can also operate in general-purpose up/down count
modes. Then, count direction is either controlled by a level-sensitive input
pin or by two edge detectors.

A third input can provide flexible zero marker support and can alterna-
tively be used to input the push-button signal of thumb wheels. All three
pins have a programmable debouncing circuit.

An internal signal forwarded to the timer unit enables one timer to mea-
sure the intervals between count events. Boundary registers enable
auto-zero operation or simple system warning by interrupts when pro-
grammable count values are exceeded.

Security
The ADSP-BF54x processor Blackfin processor provides security features
(Blackfin Lockbox™ Secure Technology) that enable customer applica-
tions to use secure protocols consisting of code authentication and
execution of code within a secure environment. Implementing secure pro-
tocols on Blackfin processors involve a combination of hardware and
software components. Together these components protect secure memory
spaces and restrict control of security features to authenticated developer
code.

• Blackfin Lockbox Secure Technology incorporates a secure hard-
ware platform for confidentiality and integrity protection of secure
code and data with authenticity maintained by secure software.

• This secure platform provides:

• A secure execution mode

ADSP-BF54x Blackfin Processor Hardware Reference 1-27

Introduction

• Secure storage for on-chip keys

• On-chip secure ROM

• Secure RAM

• Access to code and data in the secure domain is monitored by the
hardware and any unauthorized access to the secure domain is
prevented.

• The secure ROM code establishes the root of trust for the secure
software in the system.

• The secure RAM provides integrity protection and confidentiality
for authenticated code and data.

• User-defined cipher key(s) and ID(s) and can be securely stored in
the on-chip OTP memory.

• Every processor ships from the ADI factory with a unique chip ID
value stored in publicly accessible OTP memory area.

Media Transceiver Mac Layer (MXVR)
The ADSP-BF54x processor processor provides a media transceiver
(MXVR) MAC layer, allowing the processor to be connected directly to a

MOST®1 network through just an FOT or electrical PHY.

The MXVR is fully compatible with the industry-standard standalone
MOST controller devices, supporting 22.579 Mbps or 24.576 Mbps data
transfer. It offers faster lock times, greater jitter immunity, a sophisticated
DMA scheme for data transfers. The high-speed internal interface to the

1 MOST is a registered trademark of Standard Microsystems, Corp.

Media Transceiver Mac Layer (MXVR)

1-28 ADSP-BF54x Blackfin Processor Hardware Reference

core and L1 memory allows the full bandwidth of the network to be uti-
lized. The MXVR can operate as either the network master or as a network
slave.

The MXVR supports synchronous data, asynchronous packets, and con-
trol messages using dedicated DMA channels which operate
autonomously from the processor core moving data to and from L1 mem-
ory. Synchronous data is transferred to or from the synchronous data
physical channels on the MOST bus through eight programmable DMA
channels. The synchronous data DMA channels can operate in various
modes including modes which trigger DMA operation when data patterns
are detected in the receive data stream. Furthermore two DMA channels
support asynchronous traffic and another two support control message
traffic.

Interrupts are generated when a user-defined amount of synchronous data
is sent or received by the processor or when asynchronous packets or con-
trol messages have been sent or received.

The MXVR peripheral can wake up the ADSP-BF54x processor processor
from sleep mode when a wakeup preamble is received over the network or
based on any other MXVR interrupt event. Additionally, detection of net-
work activity by the MXVR can be used to wake up the ADSP-BF54x
processor processor from sleep mode or the hibernate state, and wake up
the on-chip internal voltage regulator from a powered-down state. These
features allow the ADSP-BF54x processor to operate in a low-power state
when there is no network activity or when data is not currently being
received or transmitted by the MXVR.

The MXVR clock is provided through a dedicated external crystal or crys-
tal oscillator. The frequency of the external crystal or the crystal oscillator
can be 256Fs, 384Fs, 512Fs, or 1024Fs for Fs = 38 kHz, 44.1 kHz, or
48 kHz. If using a crystal to provide the MXVR clock, use a parallel-reso-
nant, fundamental mode, microprocessor-grade crystal.

ADSP-BF54x Blackfin Processor Hardware Reference 1-29

Introduction

Real-Time Clock
The processor’s real-time clock (RTC) provides a robust set of digital
watch features, including current time, stopwatch, and alarm. The RTC is
clocked by a 32.768 kHz crystal external to the processor. The RTC
peripheral has dedicated power supply pins, so that it can remain powered
up and clocked even when the rest of the processor is in a low-power state.
The RTC provides several programmable interrupt options, including
interrupt per second, minute, hour, or day clock ticks, interrupt on pro-
grammable stopwatch countdown, or interrupt at a programmed alarm
time.

The 32.768 kHz input clock frequency is divided down to a 1 Hz signal
by a prescaler. The counter function of the timer consists of four counters:
a 60 second counter, a 60 minute counter, a 24 hours counter, and a
32768 day counter.

When enabled, the alarm function generates an interrupt when the output
of the timer matches the programmed value in the alarm control register.
There are two alarms. The first alarm is for a time of day. The second
alarm is for a day and time of that day.

The stopwatch function counts down from a programmed value, with one
second resolution. When the stopwatch is enabled and the counter under-
flows, an interrupt is generated.

Like the other peripherals, the RTC can wake up the processor from sleep
mode or deep sleep mode upon generation of any RTC wakeup event. An
RTC wakeup event can also wake up the on-chip internal voltage regula-
tor from a powered-down state.

Watchdog Timer

1-30 ADSP-BF54x Blackfin Processor Hardware Reference

Watchdog Timer
The processor includes a 32-bit timer that can be used to implement a
software watchdog function. A software watchdog can improve system
availability by forcing the processor to a known state through generation
of a hardware reset, nonmaskable interrupt (NMI), or general-purpose
interrupt, if the timer expires before being reset by software. The pro-
grammer initializes the count value of the timer, enables the appropriate
interrupt, then enables the timer. Thereafter, the software must reload the
counter before it counts to zero from the programmed value. This protects
the system from remaining in an unknown state where software that
would normally reset the timer has stopped running due to an external
noise condition or software error.

If configured to generate a hardware reset, the watchdog timer resets both
the core and the ADSP-BF54x processor processor peripherals. After a
reset, software can determine if the watchdog was the source of the hard-
ware reset by interrogating a status bit in the watchdog control register.

The timer is clocked by the system clock (SCLK), at a maximum frequency
of fSCLK.

Clock Signals
The processor can be clocked by an external crystal, a sine wave input, or a
buffered, shaped clock derived from an external clock oscillator.

This external clock connects to the processor’s CLKIN pin. The CLKIN input
cannot be halted, changed, or operated below the specified frequency dur-
ing normal operation. This clock signal should be a TTL-compatible
signal.

ADSP-BF54x Blackfin Processor Hardware Reference 1-31

Introduction

The core clock (CCLK) and system peripheral clock (SCLK) are derived from
the input clock (CLKIN) signal. An on-chip phase-locked loop (PLL) is
capable of multiplying the CLKIN signal by a user-programmable (0.5x to
64x) multiplication factor (bounded by specified minimum and maximum
VCO frequencies). The default multiplier is 8x, but it can be modified by
a software instruction sequence. On-the-fly frequency changes can be
made by simply writing to the PLL_DIV register.

All on-chip peripherals are clocked by the system clock (SCLK). The system
clock frequency is programmable by means of the SSEL[3:0] bits of the
PLL_DIV register.

Dynamic Power Management
The processor provides four operating modes, each with a different perfor-
mance/power profile. In addition, dynamic power management provides
the control functions to dynamically alter the processor core supply volt-
age to further reduce power dissipation. Control of clocking to each of the
peripherals also reduces power consumption.

Full On Mode (Maximum Performance)
In the full on mode, the PLL is enabled, not bypassed, providing the max-
imum operational frequency. This is the normal execution state in which
maximum performance can be achieved. The processor core and all
enabled peripherals run at full speed.

Active Mode (Moderate Dynamic Power Savings)
In the active mode, the PLL is enabled, but bypassed. Because the PLL is
bypassed, the processor’s core clock (CCLK) and system clock (SCLK) run at
the input clock (CLKIN) frequency. DMA access is available to appropri-
ately configured L1 and L2 memories.

Dynamic Power Management

1-32 ADSP-BF54x Blackfin Processor Hardware Reference

In the active mode, it is possible to disable the PLL through the PLL con-
trol register (PLL_CTL). If disabled, the PLL must be re-enabled before
transitioning to the full on or sleep modes.

Sleep Mode (High Dynamic Power Savings)
The sleep mode reduces dynamic power dissipation by disabling the clock
to the processor core (CCLK). The PLL and system clock (SCLK), however,
continue to operate in this mode. Typically an external event or RTC
activity wakes up the processor. When in the sleep mode, assertion of any
interrupt enabled in the SIC_IWRx registers causes the processor to sense
the value of the bypass bit (BYPASS) in the PLL control register (PLL_CTL).
If bypass is disabled, the processor transitions to the full on mode. If
bypass is enabled, the processor transitions to the active mode.

When in the sleep mode, system DMA access to L1 and memory other
than L1 is not supported.

Deep Sleep Mode (Maximum Dynamic Power
Savings)

The deep sleep mode maximizes dynamic power savings by disabling the
processor core and synchronous system clocks (CCLK and SCLK). Asynchro-
nous systems, such as the RTC, may still be running, but cannot access
internal resources or external memory. This powered-down mode can only
be exited by assertion of the reset interrupt or by an asynchronous inter-
rupt generated by the RTC. When in deep sleep mode, an RTC
asynchronous interrupt causes the processor to transition to the active
mode. Assertion of RESET while in deep sleep mode causes the processor to
transition to the full on mode.

ADSP-BF54x Blackfin Processor Hardware Reference 1-33

Introduction

Hibernate State (Maximum Power Savings)
For lowest possible power dissipation, this state allows the internal supply
(VDDINT) to be powered down, while keeping the I/O supply (VDDEXT)
running. Although not strictly an operating mode like the four modes
detailed above, it is illustrative to view it as such.

Voltage Regulation
The processor provides an on-chip voltage regulator that can generate
internal voltage levels. The voltage regulation circuit figure in the
ADSP-BF542/544/547/548/549 Embedded Processor Data Sheet shows the
typical external components required to complete the power management
system. The regulator controls the internal logic voltage levels and is pro-
grammable with the voltage regulator control register (VR_CTL) in
increments of 50 mV. To reduce standby power consumption, the inter-
nal voltage regulator can be programmed to remove power to the
processor core while keeping I/O power supplied. While in this state,
VDDEXT can still be applied, eliminating the need for external buffers.
The regulator can also be disabled and bypassed at the user’s discretion.
For more information, see the Voltage Regulator Circuit diagram in
ADSP-BF542/544/547/548/549 Embedded Processor Data Sheet.

Boot Modes
The ADSP-BF54x processor processor has many mechanisms (listed in
Table 1-2) for automatically loading internal and external memory after a
reset. The boot mode is defined by four BMODE input pins dedicated to this
purpose. There are two categories of boot modes, master and slave. In

Instruction Set Description

1-34 ADSP-BF54x Blackfin Processor Hardware Reference

master boot mode, the processor actively loads data from parallel or serial
memories. In slave boot mode, the processor receives data from an exter-
nal host device.

Instruction Set Description
The ADSP-BF54x processor processor family assembly language instruc-
tion set employs an algebraic syntax designed for ease of coding and
readability. Refer to Blackfin Processor Programming Reference for detailed
information. The instructions have been specifically tuned to provide a

Table 1-2. Booting Modes

BMODE [3: 0] Description

b#0000 Idle–no boot

b#0001 Boot from 8- or 16-bit external flash memory

b#0010 Boot from 16-bit asynchronous FIFO

b#0011 Boot from serial SPI memory (EEPROM or flash)

b#0100 Boot from SPI host device

b#0101 Boot from serial TWI memory (EEPROM/flash)

b#0110 Boot from TWI host

b#0111 Boot from UART host

b#1000 Reserved

b#1001 Reserved

b#1010 Boot from (DDR) SDRAM

b#1011 Boot from OTP memory

b#1100 Reserved

b#1101 Boot from 8- or 16-bit NAND flash memory via NFC

b#1110 Boot from 16-Bit Host DMA

b#1111 Boot from 8-Bit Host DMA

ADSP-BF54x Blackfin Processor Hardware Reference 1-35

Introduction

flexible, densely encoded instruction set that compiles to a very small final
memory size. The instruction set also provides fully featured multifunc-
tion instructions that allow the programmer to use many of the processor
core resources in a single instruction. Coupled with many features more
often seen on micro controllers, this instruction set is very efficient when
compiling C and C++ source code. In addition, the architecture supports
both user (algorithm/application code) and supervisor (O/S kernel, device
drivers, debuggers, ISRs) modes of operation, allowing multiple levels of
access to core resources.

The assembly language, which takes advantage of the processor’s unique
architecture, offers these advantages:

• Embedded 16/32-bit microcontroller features, such as arbitrary bit
and bit field manipulation, insertion, and extraction; integer opera-
tions on 8-, 16-, and 32-bit data types; and separate user and
supervisor stack pointers

• Seamlessly integrated DSP/CPU features optimized for both 8-bit
and 16-bit operations

• A multi-issue load/store modified Harvard architecture, which sup-
ports two 16-bit MAC or four 8-bit ALU + two load/store + two
pointer updates per cycle

• All registers, I/O, and memory-mapped into a unified 4G byte
memory space, providing a simplified programming model

Code density enhancements include intermixing of 16- and 32-bit
instructions with no mode switching or code segregation. Frequently used
instructions are encoded in 16 bits.

Development Tools

1-36 ADSP-BF54x Blackfin Processor Hardware Reference

Development Tools
The processor is supported by a complete set of software and hardware
development tools, including Analog Devices’ emulators and the Cross-
Core Embedded Studio or VisualDSP++ development environment. (The
emulator hardware that supports other Analog Devices processors also
emulates the processor.)

• Create, compile, assemble, and link application programs written
in C++, C, and assembly

• Load, run, step, halt, and set breakpoints in application programs

• Read and write data and program memory

• Read and write core and peripheral registers

• Plot memory

The development environments support advanced application code devel-
opment and debug with features such as:

Analog Devices DSP emulators use the IEEE 1149.1 JTAG test access
port to monitor and control the target board processor during emulation.
The emulator provides full speed emulation, allowing inspection and
modification of memory, registers, and processor stacks. Nonintrusive
in-circuit emulation is assured by the use of the processor JTAG inter-
face—the emulator does not affect target system loading or timing.

Software tools also include Board Support Packages (BSPs). Hardware
tools also include standalone evaluation systems (boards and extenders). In
addition to the software and hardware development tools available from
Analog Devices, third parties provide a wide range of tools supporting the
Blackfin processors. Third party software tools include DSP libraries,
real-time operating systems, and block diagram design tools.

ADSP-BF54x Blackfin Processor Hardware Reference 2-1

2 CHIP BUS HIERARCHY

This chapter discusses on-chip buses, how data moves through the system,
and factors that determine the system organization. The chapter describes
the system internal chip interfaces and discusses the system interconnects,
including the interfaces between core buses and system buses.

The chapter includes the following sections:

• “Overview” on page 2-1

• “System Overview” on page 2-8

• “Peripheral Access Bus (PAB)” on page 2-15

• “DMA-Related Buses” on page 2-17

• “External Access Bus (EAB)” on page 2-24

Overview
This section provides an overview of the on-chip buses.

Internal Interfaces
Figure 2-1 shows the processor core, on-chip peripherals, and the bus
interfaces between them.

Overview

2-2 ADSP-BF54x Blackfin Processor Hardware Reference

The processor core has several blocks of on-chip memory. The L1 instruc-
tion memory is 48K bytes SRAM plus 16K bytes that can be configured as
a four-way set-associative cache or SRAM. The L1 data memory is
32K bytes SRAM plus 32K bytes that can be configured as a two-way set
associative cache or SRAM. The scratchpad SRAM memory (not shown in
Figure 2-1) consists of 4K bytes, which is only accessible as data SRAM
(cannot be configured as cache memory). The L1 instruction ROM memory
is factory programmed; this ROM is not customer-configurable. The L2
SRAM memory provides 128K bytes of unified instruction and data mem-
ory. Unlike L1 memory - which operates at the full core clock (CCLK) rate -
the memory other than L1 operates at one half the frequency of the core.
The 4K boot ROM is seen as part of L3 memory. Because the boot ROM is
outside the CCLK domain, this ROM operates at the system clock (SCLK)
rate.

External memories, such as DDR and flash, can be accessed through the
external bus interface unit (EBIU).

ADSP-BF54x Blackfin Processor Hardware Reference 2-3

Chip Bus Hierarchy

Figure 2-1. Bus Hierarchy

RTC

HOSTDP

JTAG TEST AND
EMULATION

UART (2-3)

Blackfin

EXTERNAL PORT
NOR, DDR1 CONTROL

SPI (2)

SPORT (0-1)

SD / SDIO

WATCHDOG
TIMER

BOOT
ROM

32

16

PIXEL
COMPOSITOR

VOLTAGE
REGULATOR

EPPI (0-2)

SPORT (2-3)

SPI (0-1)

UART (0-1)

P
O

R
T

S

PAB

USB

DMAC0
(16-BIT)

DMAC1
(32-BIT)

INTERRUPTS

L2
SRAM

L1
INSTR ROM

L1
INSTR SRAM

L1
DATA SRAM

DAB1

DAB0

OTP

16 16

DDR1 ASYNC

16

NAND FLASH
CONTRLOLLER

ATAPI

DCB 32 EAB 64 DEB 32

P
O

R
T

S

CAN (0-1)

TWI (0-1)

TIMERS
(0-10)

KEYPAD

COUNTER

MXVR

CCLK
DOMAIN

SCLK DOMAIN
(ALL OUTSIDE CCLK)

0

1

2
0

1

2

3

MAB

DCB2

DEB2

DCB3

DEB1

DCB1

DCB0

DEB0

Overview

2-4 ADSP-BF54x Blackfin Processor Hardware Reference

The ADSP-BF54x processor processor has many on-chip peripherals. The
peripherals access memory in the processor core using a set of buses and
DMA controllers. Two buses (DAB32 and DAB16) connect the peripher-
als and DMA controllers to support the data transfers between peripherals
and memories.

The processor core has three ports connected to system and memory other
than L1:

• 16-bit core port

This is the system memory-mapped register (MMR) access port.
Through this port, the 16-bit peripheral access bus (PAB) connects
all off-core system MMR registers. For more information, see
“Peripheral Access Bus (PAB)” on page 2-15.

• 64-bit core P port

This is the processor core L1 memory access port. The P port pro-
vides the interface to the external bus interface unit (EBIU) and to
the memory other than L1 through the 32-bit external access bus
(EAB) and the 64-bit processor core L2 bus separately. The
memory access request commands from the core are pipelined; no
arbitration logic is needed in this interface. For more information,
see “P Port Interface” on page 2-8.

• 32-bit core D port

DMA controllers (DMAC0, DMAC1, USB, and MXVR) transfer
data to or from core L1 memory through this port. Because there
are multiple DMA controllers that can simultaneously request
access to L1 memory through the 32-bit D port, interface arbitra-
tion logic is provided and described in “D Port Interface” on
page 2-9.

ADSP-BF54x Blackfin Processor Hardware Reference 2-5

Chip Bus Hierarchy

Memory other than L1 also has two ports connected to the following two
buses, which run at core clock frequency (CCLK domain):

• 64-bit core L2 bus

This bus supports memory other than L1 data/instruction accesses
requested by the processor core.

• 32-bit system L2 bus (system L2 bus)

This bus supports DMAC0 and DMAC1 data transfers to or from
L2; could be to or from L1, L2, or external memory.

Overall system functions of the ADSP-BF54x processor processor are sup-
ported by the following system buses, which run at the system clock
frequency (SCLK domain):

• 16-bit peripheral access bus (PAB)

• 32-bit external access bus (EAB)

• 32-bit DMA core bus (DCB0, DCB1, DCB2, and DCB3)

• 32- and 16-bit DMA access buses (DAB0 and DAB1)

• 32-bit DMA external buses (DEB0, DEB1, and DEB2)

The DDR and ASYNC buses connect between the external bus interface
unit (EBIU) and external memory. These buses run at the system clock
frequency (SCLK domain).

Internal Clocks
The core processor clock (CCLK) rate is highly programmable with respect
to the CLKIN input pin. The CCLK rate is divided down from the PLL out-
put rate (VCO). This divider ratio is set using the CSEL parameter of the
PLL_DIV register. For more information, see For more information, see
“Phase-Locked Loop and Clock Control” on page 18-1.

Overview

2-6 ADSP-BF54x Blackfin Processor Hardware Reference

The peripheral access bus (PAB), the DMA access buses (DAB32 and
DAB16), the external access bus (EAB), the DMA core buses (DCB0,
DCB1, DCB2, and DCB3), the DMA external buses (DEB0, DEB1, and
DEB2), the external port bus (EPB), and the external bus interface unit
(EBIU) run at the system clock frequency (SCLK domain). This divider
ratio is set using the CSEL parameter of the PLL_DIV register. Note that this
divider must be set such that these buses run as specified in
ADSP-BF542/544/547/548/549 Embedded Processor Data Sheet, running
at a speed slower than or equal to the core clock frequency.

These buses can also be cycled at a programmable frequency to reduce
power consumption, or to allow the core processor to run at an optimal
frequency. A subset of the peripherals derive their timing from the SCLK.
For example, the UART baud rate is determined by further dividing this
clock frequency.

Core Bus Overview
Figure 2-2 shows a processor core block diagram that includes a processor
core and L1 memory connected by internal core buses. The core bus struc-
ture between the processor core and L1 memory runs at the full core
frequency (CCLK domain). Data loads are performed using the LD0 and

ADSP-BF54x Blackfin Processor Hardware Reference 2-7

Chip Bus Hierarchy

LD1 buses. The SD bus is used to perform writes. There are two address
buses (DA0 and DA1) used for data fetches. The instruction address and
data buses (IAB and IDB) are used to fetch instructions.

These buses allow the processor core to perform the following L1 memory
accesses per core clock cycle (CCLK):

• One 64-bit instruction fetch through the IDB bus

• One 32-bit data reference through the DA0 bus

• One 32-bit data reference through the DA1 bus

• Two 32-bit data loads through the LD0 and LD1 buses

• One 32-bit data store through the SD bus

Figure 2-2. Processor Core and L1 Memory Block Diagram

32 32 32 32 32 32 64

16 64 32

CORE CLOCK
(CCLK)

DOMAIN
PROCESSOR CORE

MMR PORT P PORT D PORT

L1 DATA MEMORY
(4KB SRAM + CACHE/SRAM)

MEMORY
MANAGEMENT

UNIT

L1 INSTRUCTION MEMORY
(CACHE/SRAM)

LD0 LD1 SD DA0 DA1 IAB IDB

System Overview

2-8 ADSP-BF54x Blackfin Processor Hardware Reference

The processor core has three ports and can generate up to the following
simultaneous off-core accesses per core clock cycle (CCLK):

• One DMA data transfer through the D port

• One L2 or external memory access through the P port

• One MMR register access through the MMR port

The L2 or external memory access through the P port includes normal
data or instruction access and cache read or write operation.

System Overview
The ADSP-BF54x processor processor system includes a Blackfin proces-
sor core, a 128K byte level 2 (L2) memory, the peripheral set (see
Figure 2-1 on page 2-3), the external memory controller (EBIU, AMC
and DDR), the DMA controllers, and bus interfaces.

The external bus interface unit (EBIU) is the primary interface to the chip
pins. Detailed information about the EBIU is discussed in “External Bus
Interface Unit” on page 5-1.

P Port Interface
Figure 2-3 shows the interface between the processor core P port and
memory other than L1 through the 64-bit core L2 bus and shows the
interface between processor core P port and the EBIU through the 32-bit
EAB bus.

ADSP-BF54x Blackfin Processor Hardware Reference 2-9

Chip Bus Hierarchy

At each CCLK cycle, the processor core can:

• Transfer one 64-bit instruction word from memory other than L1

• Or transfer one 32/16/8-bit data word to or from the same (or dif-
ferent) memory other than L1 data bank

• Or transfer one 32/16/8-bit data word to or from external memory

Data transfers requested from the processor core to L2 or the EBIU are
fully pipelined.

D Port Interface
Figure 2-4 shows the interface between the DMA controllers core access
buses (32-bit DCB buses) and the processor core’s D port. This 32-bit D
port provides DMA access to L1 memory.

Figure 2-3. Core Interface to Memory other than L1 and the EBIU

64 32

PROCESSOR CORE

P PORT

L2 / EXTERNAL
MEMORY PIPELINE

L2 EAB

EBIUL2 MEMORY

System Overview

2-10 ADSP-BF54x Blackfin Processor Hardware Reference

The DCB buses provide the following DMA data transfers:

• The DCB0 bus supports up to 16-bit DMA data transfers between
the processor core internal memory and peripheral on the DAB0
bus; or transfers between external memory and internal memory.
Where internal memory is L1, a DCB bus can also support internal
memory to internal memory transfers. The DCB0 bus is in the
SCLK domain.

• The DCB1 bus supports up to 32-bit DMA data transfer between
the processor core internal memory and peripherals on the DAB1
bus; or between external memory and internal memory. The DCB1
bus is in the SCLK domain.

• The DCB2 bus supports up to 32-bit DMA data transfer between
the processor core internal memory and MXVR. The DCB2 bus is
in the SCLK domain.

Figure 2-4. Core (A or B) Interface to DMA Controllers

PROCESSOR CORE

D PORT

DMA BUS ARBITER

DCB0

16

DMAC0

16

DCB2

MXVR

DCB1

32

DMAC1

DCB3

32

USB

ADSP-BF54x Blackfin Processor Hardware Reference 2-11

Chip Bus Hierarchy

• The DCB3 bus supports up to 32-bit DMA data transfer between
the processor core internal memory and USB. The DCB3 bus is in
the SCLK domain.

Because D port access requests can come from multiple independent
DMA controllers, DMA bus arbitration is necessary to resolve possible D
port access conflicts. The D port interface performs DMA bus (DCB0,
DCB1, DCB2, and DCB3) arbitration, converts transactions on these
buses to the core DMA bus protocol, and conducts transactions over the
core DMA buses to L1 memory or over a separate bus to the memory
other than L1. For more information on DMA priority arbitration, see
“DCB Arbitration” on page 2-20.

On-Chip L2 Interface
The L2 SRAM memory block is organized into eight banks that can be
accessed by either two independent buses: the 64-bit processor core L2
bus or the 32-bit sys L2 bus. Figure 2-5 shows this interface diagram. L2 is
organized as a multi-bank architecture of single-ported SRAMs, such that
multiple accesses can occur in parallel, as long as they are to different
banks. L2 has two ports: the processor core L2 port is connected to the
64-bit processor core L2 bus and dedicated to processor core access
requests.

The sys L2 port is connected to the 32-bit sys L2 bus and dedicated to sys-
tem DMA access requests. Two different banks can be accessed
simultaneously by the 64-bit processor core L2 bus and the 32-bit system
L2 bus. When both buses attempt to access the same bank at the same
time, the L2 arbitration logic resolves the conflict.

An L2 access requires two CCLK cycles for the access itself, plus any latency
involved in the operation (see Table 2-2 on page 2-14). L2 interface con-
trol logic is clocked at the core frequency (CCLK clock domain). The system
DMA access request comes from the DCB0, DCB1, DCB2, and the

System Overview

2-12 ADSP-BF54x Blackfin Processor Hardware Reference

DCB3 busses, which run at system clock frequency (SCLK domain). The
interface circuit synchronizes the DCB buses to the core clock domain and
converts them to system L2 bus protocol.

As shown in Figure 2-5 on page 2-12, there are several arbitration stages
in the interface:

• Arbitration for core L2 port access requests is based on a fixed pri-
ority scheme. There is no arbitration while the current Core L2 bus
requestor is performing locked or cache line fill transactions.

After the processor core is granted the core L2 bus, no other user
can access this bus until the data transaction is accepted by L2.

• Arbitration for system L2 port access request is based on a pro-
grammable priority scheme. After reset, the following fixed priority
is maintained: DCB2 (MXVR) > DCB0 (DMAC0) >DCB1
(DMAC1) > DCB3 (USB) for L2 accesses through the system L2

Figure 2-5. L2 Bus Interfaces

L2 MEMORY

CORE/SYSTEM
L2 ARBITER

L2 SYSTEM
BUS ARBITER

DCB0

16

DMAC0

DCB1

32

DMAC1

CORE
L2

BUS

64

CORE

DCB2

16

MXVR

DCB3

32

USB

ADSP-BF54x Blackfin Processor Hardware Reference 2-13

Chip Bus Hierarchy

bus. The priorities between the DCB0 bus and DCB1 bus is pro-
grammable. This can be using the L2DMAPRO bit in the SYSCR
register.

• When both the processor core L2 bus and the system L2 bus
attempt to access the same bank at the same time, bank arbitration
is required. Table 2-1 shows the L2 access bus arbitration.

Table 2-2 on page 2-14 shows the target latency and throughput for vari-
ous types of accesses. Since the DMA bus has a dedicated port to the L1
and L2 memories, as long as the processor core access and DMA access are
not to the same memory bank, no stalls occur. DMA access to L1 or mem-
ory other than L1 can only be stalled by:

• An access already in progress from another DMA
controller/channel

• A core access already in progress, which locks the bank to be
addressed

For more details about DMA data transfer latency and DMA traffic con-
trol/optimization, see “DMA Performance” on page 7-50.

Table 2-1. L2 Interface Bus Arbitration

Requestor Priority (L2DMAPRIO = 0)
(Default)

Priority (L2DMAPRIO = 1)

Currently locked core access 1 1

Complete current core cache
access

2 2

DCB2 (MXVR) 3 3

DCB0 (DMAC0) 4 5

DCB1 (DMAC1) 5 4

DCB3 (USB) 6 6

Core L2 7 7

System Overview

2-14 ADSP-BF54x Blackfin Processor Hardware Reference

When executing code from memory other than L1, a core can fetch a
64-bit word. In the best case, the 64-bit word contains four 16-bit instruc-
tions. For consecutive fetches of single-cycle, 16-bit instructions, the
maximum execution rate is four instructions every nine CCLKs—due to
pre-fetching by the core.

When the processor core writes to memory other than L1, a write buffer
within the interface of each core improves performance. Up to five writes
can be made to memory other than L1 without stalling a core. The sixth
write, and subsequent writes when the buffer is full, take four CCLKs for
each write. Specifically, a loop of eight writes to memory other than L1
would take five CCLKs for the first five writes plus four CCLKs for each
of the three subsequent writes.

Table 2-2. L2 Interface Data and Instruction Fetch Transaction Latency

Transaction Type Number of Cycles to Complete

Core L2 Read 9 CCLKs for each read

Dual DAG Read (same instruction) 9 CCLKs (first 32-bit fetch)
2 CCLKs (second 32-bit fetch)

Cache Line Fill (data and instruction) 9 CCLKs (first 64-bit fetch)
2-2-2 CCLKs (for next three 64-bit fetches)

Dual DAG Cache Line Miss (same instruction) 9-2-2-2 CCLKs (first miss, four 64-bit fetches)
2-2-2-2 CCLKs (second miss, four 64-bit
fetches)

64-bit Instruction Fetch 9 CCLKs

Sys DMA Read 1 SCLK plus 2 CCLKs

Sys DMA Write 1 SCLK

ADSP-BF54x Blackfin Processor Hardware Reference 2-15

Chip Bus Hierarchy

Peripheral Access Bus (PAB)
The ADSP-BF54x processor has a dedicated peripheral access bus (PAB)
that connects all off-core peripherals to system MMR registers. The
low-latency peripheral access bus keeps core stalls to a minimum and
allows for manageable interrupt latencies to time-critical peripherals. All
peripheral resources accessed through the PAB bus are mapped into the
system MMR space of the ADSP-BF54x processor memory map.

 The processor core is the only master on the PAB bus. No arbitra-
tion is necessary.

PAB Performance
For the PAB, the primary performance criteria is latency, not throughput.
Transfer latencies for write transfers on the PAB are two SCLK cycles, and
transfer latencies for read transfers on the PAB are three SCLK cycles.

For example, the core can transfer up to 32 bits per access to the PAB
slaves. With the core clock running at two times the frequency of the sys-
tem clock, the first and subsequent system MMR write accesses take four
core clocks (CCLK) of latency.

The PAB has a maximum frequency of SCLK.

PAB Agents (Masters, Slaves)
The processor core can master bus operations on the PAB. All peripherals
have a peripheral bus slave interface which allows the core to access con-
trol and status state. These registers are mapped into the system MMR
space of the memory map. System MMR addresses are listed in “System
MMR Assignments” on page A-1.

Peripheral Access Bus (PAB)

2-16 ADSP-BF54x Blackfin Processor Hardware Reference

The slaves on the PAB bus are:

• Event Controller

• Clock and Power Management Controller

• Watchdog Timer

• Real Time Clock

• Timer 0–10

• SPORT 0–3

• SPI 0–2

• General-Purpose Input/Output (GPIOs)

• UART 0–3

• ATAPI

• EPPI0-2

• Pixel Compositor

• Secure Digital Host (SDH)

• USB

• MXVR

• TWI 0–1

• CAN 0–1

• Asynchronous Memory Controller (AMC)

• DDR SDRAM Controller (DDC)

• DMA Controller 0–1 (DMAC0 and DMAC1)

ADSP-BF54x Blackfin Processor Hardware Reference 2-17

Chip Bus Hierarchy

DMA-Related Buses
Figure 2-6 shows the DMA bus connections. These buses run at the sys-
tem clock frequency (SCLK domain).

The 32/16-bit DAB bus provides DMA between the peripherals and
L1/L2 internal memory through the DCB bus, or between peripherals and
external memories through the DEB bus. A central DMA controller keeps
track of DMA addresses and mediates the transfers. DMA is handled iden-
tically for 8-, 16- and 32-bit data sizes. The maximum bandwidth for any
individual 16-bit peripheral is one 16-bit word transferred for every two
SCLK cycles. Peripherals that are capable of 32-bit DMA (and also config-
ured for 32-bit mode) can transfer up to one 32-bit word every two SCLK
cycles.

Figure 2-6. DMA Bus Connection and Arbitration Block Diagram

DMAC0
CONTROLLER

(16-BIT)

PERIPHERAL
GROUP 0 ARBITER

D
C

B
0

D
A

B
0

CORE
L1/L2

EBIU D
E

B
0

DMAC1
CONTROLLER

(32-BIT)

PERIPHERAL
GROUP 1 ARBITER

D
C

B
1

D
A

B
1

CORE
L1/L2

EBIU D
E

B
1

DMA-Related Buses

2-18 ADSP-BF54x Blackfin Processor Hardware Reference

Peripheral DMA
The DMA-capable peripherals in the ADSP-BF54x processor system are
managed by DMA controllers. Each DMA controller also has memory
DMA channels for DMA data transfer between external memory and L1
or memory other than L1. The peripheral DMA controllers can transfer
data between peripherals and internal or external memory.

The DCB bus arbitration for L2 configured as SRAM is shown in
Table 2-1 on page 2-13. The ADSP-BF54x processor has programmable
priority for peripherals on the DAB bus. For details about programmable
DMA peripheral and DMA channel mapping, see “Direct Memory
Access” on page -1.

DAB Bus Agents (Masters)
All peripherals capable of sourcing a DMA access through one of the cen-
tralized DMA controllers are masters on these buses, as shown in
Table 2-3 on page 2-19 and Table 2-4 on page 2-20. A single arbiter sup-
ports a programmable priority arbitration policy for access to each DAB.

When two or more DMA master channels are actively requesting a DAB,
bus utilization is considerably higher due to the DAB’s pipelined design.
Bus arbitration cycles are concurrent with the previous DMA access data
cycles. The MXVR and USB peripherals have their own DMA channels
and are not part of the DAB.

DAB Arbitration
There are two centralized DMA controllers in the system which together
support 14 peripherals and four memory DMA channels. 32 DMA chan-
nels and bus masters support these devices, with eight channels being
assigned to memory DMA, and the remaining 24 channels being assigned
to peripheral DMA. The memory DMA channels can transfer data

ADSP-BF54x Blackfin Processor Hardware Reference 2-19

Chip Bus Hierarchy

between L1, L2, and external memory. The peripheral DMA controllers
can transfer data between peripherals and internal (L1/L2) or external
memory.

The DAB buses are implemented as two separate bus systems each inter-
facing to a DMA controller and a fixed set of peripheral DMA bus
masters. DAB0 offers 16 bits of data transfer per SCLK cycle and DAB1
offers 32 bits of data transfer per SCLK cycle. Arbitration of channels on
the DAB bus is programmable within each centralized DMA controller.
Table 2-3 and Table 2-4 show the default arbitration priority of each
DMA controller.

Table 2-3. Controller 0 (DAB0) Arbitration Priority

DAB, DCB, DEB Master Default Arbitration Priority

SPORT0 Rx DMA Controller 0 - highest

SPORT1 Rx DMA Controller 1

SPORT0 Tx DMA Controller 3

SPORT1 Tx DMA Controller 2

SPI0 DMA Controller 4

SPI1 DMA Controller 5

UART0 Rx DMA Controller 6

UART0 Tx DMA Controller 7

UART1 Rx DMA Controller 8

UART1 Tx DMA Controller 9

ATAPI Rx DMA Controller 10

ATAPI Tx DMA Controller 11

Memory DMA0 (dest) Controller 12

Memory DMA0 (source) Controller 13

Memory DMA1 (dest) Controller 14

Memory DMA1 (source) Controller 15 - lowest

DMA-Related Buses

2-20 ADSP-BF54x Blackfin Processor Hardware Reference

DCB Arbitration
Each of the two centralized DMA controllers as well as the MXVR trans-
ceiver and the USB controller, access L1 memory through the DCB buses
(DCB0/DCB1/DCB2/DCB3). In the event of simultaneous requests to
L1 memory, access is granted based on a programmable arbitration
scheme.

Table 2-4. Controller 1 (DAB1) Arbitration Priority

DAB, DCB, DEB Master Default Arbitration Priority

EPPI0 DMA Controller 0 - highest

EPPI1 DMA Controller 1

EPPI2 DMA Controller/Host DMA Port 2

Pixel Compositor DMA Controller 0 (input data) 3

Pixel Compositor DMA Controller 1 (overlay data) 4

Pixel Compositor DMA Controller 2 (output data) 5

SPORT2/UART2 Rx DMA Controller 6

SPORT2/UART2 Tx DMA Controller 7

SPORT3/UART3 Rx DMA Controller 8

SPORT3/UART3 Tx DMA Controller 9

SDH/NAND Flash DMA Controller 10

SPI2 DMA Controller 11

Memory DMA 2 (dest) Controller 12

Memory DMA 2 (source) Controller 13

Memory DMA 3 (dest) Controller 14

Memory DMA 3 (source) Controller 15 - lowest

ADSP-BF54x Blackfin Processor Hardware Reference 2-21

Chip Bus Hierarchy

The DCB has priority over the core processor on arbitration into L1 con-
figured as data SRAM, whereas the core processor has priority over the
DCB on arbitration into L1 instruction SRAM. These same buses are used
to access memory other than L1, which has a similar arbitration scheme.
L1 and L2 accesses from the DMA controllers may happen in parallel.

Into L1 and memory other than L1, an access by the system bus always
wins over an access by the core. On the system bus, by default, the order
of priority is:

1. MXVR

2. DMAC0

3. DMAC1

4. USB

The priority order for DMAC0 and DMAC1 may be swapped. Table 2-5
describes the priority configuration for L1 accesses, which is defined by
the CDMAPRIO bit of the SYSCR register. For L2 accesses, the L2DMAPRIO bit
in SYSCR is used in the same way. For more information, see “System Reset
Configuration (SYSCR) Register” on page 17-105.

If any of the DMA channels is urgent, it is elevated above the others in
terms of priority. For example, an urgent USB DMA channel is higher
priority than a non-urgent DMAC0 channel.

Table 2-5. D Port DCB0 (DMAC0) and DCB1 (DMAC1) Arbitration

DMA Controllers Priority (CDMAPRIO = 0, default) Priority (CDMAPRIO = 1)

DMAC0 1 2

DMAC1 2 1

DMA-Related Buses

2-22 ADSP-BF54x Blackfin Processor Hardware Reference

DEB Arbitration
Each of the two DMA controllers, as well as the USB controller, access
external memory through the DEB buses (DEB0/DEB1/DEB2).

 The MXVR does not have DMA access to external memory.

In the event of simultaneous requests to external memory, access is
granted based on a programmable arbitration scheme. This priority can be
changed by using the DEB_ARB_PRIORITY bits in the EBIU_DDRQUE register.
For off-chip memory, the core has priority over the DEB buses by default.
However, the priorities of the specific DMA bus with respect to the core
can be changed for both synchronous and asynchronous accesses. The
complete arbitration at the EBIU is described in “External Bus Interface
Unit” on page 5-1.

DAB, DCB, and DEB Performance
The ADSP-BF54x processor DAB buses support 8-bit, 16-bit, and 32-bit
data transfers. DAB1 is a 32-bit data bus. DAB0 is a 16-bit bus. Both
operate at the system clock rate, at a maximum frequency of 133 MHz,
although a single peripheral DMA channel on a DAB bus operates at a
maximum of SCLK/2. The DCB buses have a dedicated D port into L1
memory and another dedicated sys L2 port into memory other than L1.
No stalls occur as long as the core access and the DMA access are not to
the same memory bank. If there is a conflict when accessing data memory,
DMA is the highest priority requester, followed by the core. If the conflict
occurs when accessing instruction memory, the core is the highest priority
requester, followed by DMA.

ADSP-BF54x Blackfin Processor Hardware Reference 2-23

Chip Bus Hierarchy

Note that a locked transfer by the core processor (for example, execution
of a TESTSET instruction) effectively disables arbitration for the addressed
memory bank or resource until the memory lock is deasserted. DMA con-
trollers cannot perform locked transfers. DMA access to L1 memory can
only be stalled by an access already in progress from another DMA
channel.

Memory DMA transfers can result in repeated accesses to the same mem-
ory location. Because the memory DMA controller has the potential of
simultaneously accessing on-chip and off-chip memory, considerable
throughput can be achieved. The throughput rate for an on-chip/off-chip
memory access is limited by the slower of the two accesses.

In the case where the transfer is from on-chip to on-chip memory or from
off-chip to off-chip memory, the burst accesses cannot occur
simultaneously. The transfer rate is then determined by adding each trans-
fer plus an additional cycle between each transfer.

Table 2-6 shows many types of 32-bit memory DMA transfers (on
DMAC1). In the table, it is assumed that no other DMA activity is con-
flicting with ongoing operations. The numbers in the table are theoretical
values. These values may be higher when they are measured on actual
hardware due to a variety of reasons relating to the device that is con-
nected to the EBIU.

For non-DMA accesses (for example, a core access through the EAB), a
32-bit access to DDR SDRAM (of the form R0 = [P0]; where P0 points
to an address in DDR SDRAM) always more efficient than executing two
16-bit accesses (of the form R0 = W[P0++]; where P0 points to an address
in DDR SDRAM). In this example, a 32-bit DDR SDRAM read takes ten
SCLK cycles while two 16-bit reads take nine SCLK cycles each.

External Access Bus (EAB)

2-24 ADSP-BF54x Blackfin Processor Hardware Reference

The EAB and the DEB buses must arbitrate for access to external memory
through the EBIU. Figure 2-6 on page 2-17 shows the bus connection to
the EBIU and the bus arbiters. Users must manage specific memory access
traffic patterns to ensure that isochronous peripherals have enough allo-
cated bandwidth and appropriate maximum data latency for both internal
and external memory accesses.

External Access Bus (EAB)
The external access bus (EAB) provides a way for the processor core and
the Memory DMA controller to directly access off-chip memory and high
throughput memory-to-memory DMA transfers. The EAB supports sin-
gle-word accesses of either 8-bit, 16-bit, or 32-bit data types. The EAB
operates at the system clock rate.

Table 2-6. Performance of DMA Access (on DMAC1) to External
Memory

Source Destination Approximate SCLKs for n Words
(Max word size 32-bits) (From Start
of DMA to Interrupt at End)

16-bit DDR SDRAM L1 Data memory n + 14

L1 Data memory 16-bit DDR SDRAM n + 11

16-bit Async memory L1 Data memory xn + 12, where x is the number of
wait states + setup/hold SCLK cycles
(minimum x = 2)

L1 Data memory 16-bit Async memory xn + 9, where x is the number of wait
states + setup/hold SCLK cycles (min-
imum x = 2)

16-bit DDR SDRAM 16-bit DDR SDRAM 10 + (17n/7)

16-bit Async memory 16-bit Async memory 10 + 2xn, where x is the number of
wait states + setup/hold SCLK cycles
(minimum x = 2)

L1 Data memory L1 Data memory 2n + 12

ADSP-BF54x Blackfin Processor Hardware Reference 2-25

Chip Bus Hierarchy

EAB/DEB Arbitration
Arbitration for use of external memory interface resources (DDR or
ASYNC) is required because of possible contention between the potential
masters of these resources. A fixed-priority arbitration scheme is used to
arbitrate between EAB accesses and DEB accesses, with core accesses win-
ning by default. For more details on arbitration, see “External Bus
Interface Unit” on page 5-1. For information on external memory inter-
face resources, see “DDR SDRAM Memory Interface” on page 5-18 or
“Asynchronous Memory Interface” on page 5-53.

EAB/DEB Performance
The EAB supports single-word accesses of 8-bit, 16-bit, 32-bit, or 64-bit
data types. The EAB operates at the same frequency as the PAB and the
DAB, up to the maximum SCLK frequency specified in
ADSP-BF542/544/547/548/549 Embedded Processor Data Sheet.

Table 2-7 shows many types of 16-bit and 32-bit memory DMA transfers.
In the table, it is assumed that no other DMA activity is conflicting with
ongoing operations.

Table 2-7. Performance of DMA Access (on DMAC0) to External
Memory

Source Destination Approximate SCLKs For n
16-bit Words (From Start
of DMA to Interrupt at
Rnd)

Approximate SCLKs For n
32-bit Words (From Start
of DMA to Interrupt at

end)1

16-bit DDR
SDRAM

L1 Data memory n + 14 2n + 14

L1 Data memory 16-bit DDR
SDRAM

n + 14 2n + 14

External Access Bus (EAB)

2-26 ADSP-BF54x Blackfin Processor Hardware Reference

The corresponding access time for EAB accesses (assuming rows are open
and pre-charged) are:

• 16-bit processor core read from DDR – 8 SCLK cycles

• 32-bit processor core read from DDR – 8 SCLK cycles

• 32 byte cache line fill (8, 4 byte accesses) - 8 + (7*1) SCLK cycles

16-bit Async
memory

L1 Data memory xn +12, where x is the num-
ber of wait states +
setup/hold SCLK cycles
(minimum x = 2)

2xn +12, where x is the
number of wait states +
setup/hold SCLK cycles
(minimum x = 2)

L1 Data memory 16-bit Async
memory

xn +12, where x is the num-
ber of wait states +
setup/hold SCLK cycles
(minimum x = 2)

2xn +12, where x is the
number of wait states +
setup/hold SCLK cycles
(minimum x = 2)

16-bit DDR
SDRAM

16-bit DDR
SDRAM

10 + (17n/7) 10 + 2*((17n/7)

16 bit Async
memory

16-bit Async
memory

10 +2xn, where x is the
number of wait states +
setup/hold SCLK cycles
(minimum x = 2)

10 + 2*(2xn), where x is the
number of wait states +
setup/hold SCLK cycles
(minimum x = 2)

L1 Data memory L1 Data memory 2n + 12 2*2n + 12

1 Note that DMAC0 is only a 16-bit controller although it can be programmed for 32-bit word
accesses. For 32-bit accesses it will take twice as much SCLK cycles as compared to transactions
on DMAC1.

Table 2-7. Performance of DMA Access (on DMAC0) to External
Memory

Source Destination Approximate SCLKs For n
16-bit Words (From Start
of DMA to Interrupt at
Rnd)

Approximate SCLKs For n
32-bit Words (From Start
of DMA to Interrupt at

end)1

ADSP-BF54x Blackfin Processor Hardware Reference 3-1

3 MEMORY

This chapter includes the following sections:

• “Memory Architecture” on page 3-2

• “Instruction Test Registers” on page 3-23

• “L1 Data Memory” on page 3-27

• “Data Test Registers” on page 3-42

• “On-Chip Level 2 (L2) Memory” on page 3-47

• “One Time Programmable Memory” on page 3-49

• “External Memory” on page 3-50

• “Memory Protection and Properties” on page 3-51

• “Memory Transaction Model” on page 3-69

• “Load/Store Operation” on page 3-70

• “Working With Memory” on page 3-76

• “Terminology” on page 3-79

Memory Architecture

3-2 ADSP-BF54x Blackfin Processor Hardware Reference

Memory Architecture
The ADSP-BF54x processor processor supports a hierarchical memory
model with different performance and size parameters, depending on the
memory location within the hierarchy. Level 1 (L1) memories are located
on the chip and provide faster access. Level 2 (L2) memories are on-chip
memory systems (which are farther from the core) and typically have lon-
ger access latencies. The faster L1 memories, which include instruction
SRAM and instruction ROM, data, and scratchpad memory as part of the
Blackfin core are accessed in a single cycle. The L2 memories, which
include an on-chip SRAM and off-chip synchronous and asynchronous
devices, provide much higher memory space with higher latency.

The ADSP-BF54x processor processor has a unified 4G byte address range
that spans a combination of on-chip and off-chip memory and mem-
ory-mapped I/O resources. Of this range, 272M byte of address space is
dedicated to internal, on-chip resources. The ADSP-BF54x processor pro-
cessor populates portions of this internal memory space with:

• L1 and L2 static random access memories (SRAM)

• L1 instruction ROM (IROM)

• A set of memory-mapped registers (MMRs)

• A boot read-only memory (ROM)

A portion of the internal L1 SRAM can also be configured to run as cache.
The ADSP-BF54x processor processor also provides support for an exter-
nal memory space that includes asynchronous memory space and DDR
space. See Chapter 5, External Bus Interface Unit for a detailed discussion
of each of these memory regions and the controllers that support them.

The diagram in Figure 3-1 on page 3-4 provides an overview of the
ADSP-BF54x processor system memory map. Note that the architecture
does not define a separate I/O space. All resources are mapped through the
flat 32-bit address space. The memory is byte-addressable.

ADSP-BF54x Blackfin Processor Hardware Reference 3-3

Memory

As shown in Figure 3-1 on page 3-4, total on-chip memory for the DSP
core occupies 100 Kbytes, as follows:

• 64K byte of instruction SRAM memory:

• 48K byte of instruction SRAM

• 16K byte of instruction cache/SRAM, lockable by way or
line

• 64K byte of instruction ROM

• 64K byte of data memory:

• 32K byte of data cache/SRAM

• 32K byte of SRAM

• 4K byte of data scratch pad SRAM

• 4K byte of boot ROM

An on-chip SRAM provides 128K byte of L2 space. For systems using
some or all ADSP-BF54x processor processor L1 memory as cache, the
on-chip L2 SRAM memory can help provide deterministic,
bounded-memory access times.

The upper portion of internal memory processor space is allocated to the
core and system MMRs of the ADSP-BF54x processor processor. Accesses
to this area are allowed only when the processor is in supervisor mode or
emulation mode. (For information about these modes, see Blackfin Proces-
sor Programming Reference.)

The lowest 4K byte of internal memory space is occupied by the boot
ROM of the ADSP-BF54x processor processor. Depending on the boot-
ing option selected, the appropriate boot program is executed from this
memory space when the ADSP-BF54x processor processor is reset. See
“System Reset and Booting” on page 17-1.

Memory Architecture

3-4 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 3-1. Memory Map

IN
T

E
R

N
A

L
 M

E
M

O
R

Y
E

X
T

E
R

N
A

L
 M

E
M

O
R

Y

0XFFE0 0000
0XFFFF FFFF

0XFFC0 0000
0XFFB0 1000
0XFFB0 0000
0XFFA2 4000
0XFFA2 0000
0XFFA1 C000
0XFFA1 8000
0XFFA1 4000
0XFFA1 0000
0XFFA0 C000
0XFFA0 8000
0XFFA0 4000
0XFFA0 0000
0XFF90 8000
0XFF90 4000
0XFF90 0000
0XFF80 8000
0XFF80 4000
0XFF80 0000
0XFF70 1000
0XFF70 0000
0XFF61 4000
0XFF61 0000
0XFF60 C000
0XFF60 8000
0XFF60 4000
0XFF60 0000
0XFF50 8000
0XFF50 4000
0XFF50 0000
0XFF40 8000
0XFF40 4000
0XFF40 0000
0XFEB2 0000
0XFEB0 0000
0XEF00 1000
0XEF00 0000
0X3000 0000
0X2C00 0000
0X2800 0000
0X2400 0000
0X2000 0000

TOP OF LAST
DDR PAGE

(16MB-512MB)

0X0000 0000

CORE MEMORY MAP

ADSP-BF54x MEMORY MAP

RESERVED

RESERVED

RESERVED

CORE MMR REGISTERS
SYSTEM MMR REGISTERS

L1 SCRATCHPAD SRAM (4K BYTE)

RESERVED

L1 INSTRUCTION BANKB ROM (64K BYTE)

L1 INSTRUCTION SRAM/CACHE (16K BYTE)
RESERVED
L1 INSTRUCTION BANKB LOWER SRAM (16K BYTE)
L1 INSTRUCTION BANKA UPPER SRAM (16K BYTE)
L1 INSTRUCTION BANKA LOWER SRAM (16K BYTE)

L1 DATA BANKB SRAM/CACHE (16K BYTE)
L1 DATA BANKB SRAM (16K BYTE)

L1 DATA BANKA SRAM/CACHE (16K BYTE)
L1 DATA BANKA SRAM (16K BYTE)

RESERVED

RESERVED

DDR1 BANK0

DDR1 BANK1

ASYNC MEMORY BANK0 (64M BYTE)
ASYNC MEMORY BANK1 (64M BYTE)
ASYNC MEMORY BANK2 (64M BYTE)
ASYNC MEMORY BANK3 (64M BYTE)
RESERVED

RESERVED
L2 SRAM (128K BYTE)

BOOT ROM (4K BYTE)

ADSP-BF54x Blackfin Processor Hardware Reference 3-5

Memory

Within the external memory map, four banks of asynchronous memory
space and two banks of DDR memory are available. Each of the asynchro-
nous banks is 64M byte and each of the synchronous banks can be
configured 8-256 M byte.

Internal Memory
The ADSP-BF54x processor L1 memory system performance provides
high bandwidth and low latency. Because SRAMs provide deterministic
access time and very high throughput, DSP systems have traditionally
achieved performance improvements by providing fast SRAM on chip.
The ADSP-BF54x processor processor supports this memory architecture
for applications that require direct control over access time.

The addition of instruction and data caches (SRAMs with cache control
hardware) provides both high performance and a simple programming
model. Caches eliminate the need to explicitly manage data movement
into and out of the L1 memories. Code can be ported to or developed for
the ADSP-BF54x processor processor quickly without requiring perfor-
mance optimization for the memory organization.

Each core’s L1 memory provides:

• A modified Harvard architecture, allowing up to four core memory
accesses per clock cycle (one 64-bit instruction fetch, two 32-bit
data loads, and one pipelined 32-bit data store)

• Simultaneous system DMA, cache maintenance, and core accesses

• SRAM access at processor clock rate (CCLK) for critical DSP algo-
rithms and fast context switching

Memory Architecture

3-6 ADSP-BF54x Blackfin Processor Hardware Reference

• Instruction and data cache options for microcontroller code, excel-
lent high-level language (HLL) support, and ease of programming
cache control instructions, such as PREFETCH and FLUSH

• Memory protection

 The L1 memories operate at the core clock frequency (CCLK).

Overview of L1 Instruction SRAM

The 64K byte L1 instruction SRAM consists of a dedicated 48K byte
SRAM plus an additional 16K byte bank which can be configured as
either SRAM or cache. The upper 16K byte, L1 instruction memory can
be configured as a 4-way set-associative cache (see Figure 3-4 on
page 3-15). Consequently, instructions can be brought into four different
ways of cache, decreasing the frequency of cache-line replacements and
increasing overall performance. When the upper 16K byte of L1 memory
is configured as a cache, individual ways or lines of L1 instruction cache
can be locked down, allowing further control over the location of
time-critical code. The cache-locking concept is explained further in
“Instruction Cache Locking by Way” on page 3-21. When configured as
SRAM, each of the four 16K byte banks of memory is broken into 4K byte
sub-banks which can be independently accessed by the processor and
DMA. For more information about L1 instruction SRAM, see “L1
Instruction SRAM” on page 3-11.

Overview of L1 Instruction ROM

The 64K byte L1 instruction ROM consists of a single 64K byte bank of
read-only memory. The instruction ROM does not have 4K byte
sub-banks which can be independently accessed by the processor and
DMA. At every processor cycle either the processor or the DMA is able to
access the instruction ROM. The instruction ROM is completely con-
tained within instruction bank B without sub-bank divisions.

ADSP-BF54x Blackfin Processor Hardware Reference 3-7

Memory

Write accesses to the instruction ROM region do not generate errors nor
do they modify the data in the ROM. They take the same number of
cycles to execute as if the write was actually occurring.

Multiple read accesses to the instruction ROM region behave as if they
were reads to a single instruction bank B sub-bank.

Overview of L1 Data SRAM

Each core on the ADSP-BF54x processor processor provides two 32K
byte, L1 data SRAM banks (data bank A and data bank B). Each data
bank has a dedicated lower 16K byte SRAM bank plus an additional upper
16K byte bank which can be configured as SRAM or cache.

When configured as cache, the upper 16K byte bank in each L1 data bank
is a 2-way, set-associative structure. This provides two separate locations
that can hold cached data, decreasing the rate of cache-line replacements
and increasing overall performance.

If configured as SRAM, each of the two upper 16K byte banks of memory
is broken into four 4K byte sub-banks which can be independently
accessed by the processor and DMA. For more information about L1 data
SRAM, see “L1 Data SRAM” on page 3-30.

Overview of Scratchpad Data SRAM
The processor provides a dedicated 4K byte bank of scratchpad data
SRAM. The scratchpad is independent of the configuration of the other
L1 memory banks and cannot be configured as cache or targeted by DMA.

Memory Architecture

3-8 ADSP-BF54x Blackfin Processor Hardware Reference

Typical applications use the scratchpad data memory where speed is criti-
cal. For example, the user and supervisor stacks should be mapped to the
scratchpad memory for the fastest context switching during interrupt
handling.

 The L1 memories operate at the core clock frequency (CCLK).
Scratchpad data SRAM cannot be accessed by the DMA controller.

Overview of On-Chip L2
The on-chip level 2 (L2) memory provides 128K byte of low latency,
high-bandwidth capacity. This memory system is referred to as on-chip L2
because it forms an on-chip memory hierarchy with L1 memory. On-chip
L2 provides more capacity than L1 memory, but the latency is higher. The
on-chip L2 is SRAM and cannot be configured as cache. It is capable of
storing both instructions and data. The L1 caches can be configured to
cache instructions and data located in the on-chip L2.

 L1 Instruction Memory
L1 instruction memory consists of a combination of dedicated SRAM and
banks which can be configured as SRAM or cache. For the 16K byte bank
that can be either cache or SRAM, control bits in the IMEM_CONTROL regis-
ter can be used to organize all four sub-banks of the L1 instruction
memory as any of the following:

• A simple SRAM

• A 4-way, set-associative instruction cache

• A cache with as many as four locked ways

 L1 instruction memory can be used only to store instructions.

ADSP-BF54x Blackfin Processor Hardware Reference 3-9

Memory

Instruction Memory Control Register
(IMEM_CONTROL)

The instruction memory control (IMEM_CONTROL) register contains control
bits for the L1 instruction memory. By default after reset, cache and
cacheability protection lookaside buffer (CPLB) address checking is dis-
abled (see “L1 Instruction Cache” on page 3-13).

When the LRUPRIORST bit is set to 1, the cached states of all CPLB_LRUPRIO
bits (see “ICPLB Data Registers (ICPLB_DATAx)” on page 3-59) are
cleared. This simultaneously forces all cached lines to be of equal (low)
importance. Cache replacement policy is based first on line importance
indicated by the cached states of the CPLB_LRUPRIO bits, and then on LRU
(least recently used). See “Instruction Cache Locking by Line” on
page 3-20 for complete details. This bit must be 0 to allow the state of the
CPLB_LRUPRIO bits to be stored when new lines are cached.

Figure 3-2. L1 Instruction Memory Control Register

L1 Instruction Memory Control Register (IMEM_CONTROL)

Reset = 0x0000 0001

ENICPLB (Instruction CPLB
Enable)LRUPRIORST (LRU

Priority Reset)
0 - LRU priority functionality is enabled
1 - All cached LRU priority bits (LRUPRIO)

are cleared

0 - CPLBs disabled, minimal
address checking only

1 - CPLBs enabled

ILOC[3:0] (Cache way Lock)
0000 - All Ways not locked
0001 - Way0 locked, Way1, Way2, and
 Way3 not locked
1111 - All Ways locked

IMC (L1 instruction memory
Configuration)
0 - Upper 16K byte of LI

instruction memory
configured as SRAM,
also invalidates all cache
lines if previously
configured as cache

1 - Upper 16K byte of L1
instruction memory
configured as cache

0xFFE0 1004
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Memory Architecture

3-10 ADSP-BF54x Blackfin Processor Hardware Reference

The ILOC[3:0] bits provide a useful feature only after code is manually
loaded into cache. See “Instruction Cache Locking by Way” on page 3-21.
These bits specify which ways to remove from the cache replacement pol-
icy. This has the effect of locking code present in non-participating ways.
Code in non-participating ways can still be removed from the cache using
an IFLUSH instruction. If an ILOC[3:0] bit is 0, the corresponding way is
not locked and that way participates in cache replacement policy. If an
ILOC[3:0] bit is 1, the corresponding way is locked and does not partici-
pate in cache replacement policy.

The IMC bit reserves a portion of L1 instruction SRAM to serve as cache.
Note: Reserving memory to serve as cache does not alone enable memory
other than L1 accesses to be cached. CPLBs must also be enabled using the
EN_ICPLB bit and the CPLB descriptors (ICPLB_DATAx and ICPLB_ADDRx
registers) must specify desired memory pages as cache-enabled.

 Reserving memory to serve as cache does not alone enable memory
other than L1 accesses to be cached. CPLBs must also be enabled
using the EN_ICPLB bit and the CPLB descriptors (ICPLB_DATAx and
ICPLB_ADDRx registers) must specify desired memory pages as
cache-enabled.

Instruction CPLBs are disabled by default after reset. When disabled, only
minimal address checking is performed by the L1 memory interface. This
minimal checking generates an exception to the processor whenever it
attempts to fetch an instruction from:

• Reserved (non populated) L1 instruction memory space

• L1 data memory space

• MMR space

ADSP-BF54x Blackfin Processor Hardware Reference 3-11

Memory

CPLBs must be disabled using this bit prior to updating their descriptors
(DCPLB_DATAx and DCPLB_ADDRx registers). Note since load store ordering is
weak (see “Ordering of Loads and Stores” on page 3-72), disabling of
CPLBs should be proceeded by a CSYNC.

 When enabling or disabling cache or CPLBs, immediately follow
the write to IMEM_CONTROL with a SSYNC to ensure proper behavior.

To ensure proper behavior and future compatibility, all reserved
bits in this register must be set to 0 whenever this register is
written.

L1 Instruction SRAM

The ADSP-BF54x processor processor core reads the instruction memory
through the 64-bit-wide instruction-fetch bus. All addresses from this bus
are 64-bit aligned. Each instruction fetch can return any combination of
16-, 32- or 64-bit instructions (for example, four 16-bit instructions, two
16-bit instructions and one 32-bit instruction, or one 64-bit instruction).

The DAGs cannot access L1 instruction memory directly. A DAG refer-
ence to instruction memory SRAM space generates an exception. (For
information about DAG addressing, see Blackfin Processor Programming
Reference.)

Write access to the L1 instruction SRAM memory must be made through
the 64-bit system DMA port. Because the SRAM is implemented as a col-
lection of single-ported sub-banks, the instruction memory is effectively
dual-ported. Provided that system and core accesses do not access the same
32-bit polarity (address bits 2 match) of the same sub-bank, effective
dual-porting of the instruction memory is achieved. If both system and
core attempt to access the same 32-bit polarity (address bits 2 match) of
the same bank, the core instruction fetch has priority over the system
DMA controller.

Table 3-1 lists the instruction memory sub-banks.

Memory Architecture

3-12 ADSP-BF54x Blackfin Processor Hardware Reference

 Before changing the configuration state, be sure to flush the cache
or move all modified data from the SRAM, if so configured.

Table 3-1. L1 Instruction Memory Sub-banks

Memory Sub-bank Memory Start Location

0 0xFFA0 0000

1 0xFFA0 1000

2 0xFFA0 2000

3 0xFFA0 3000

4 0xFFA0 4000

5 0xFFA0 5000

6 0xFFA0 6000

7 0xFFA0 7000

8 0xFFA0 8000

9 0xFFA0 9000

10 0xFFA0 A000

11 0xFFA0 B000

12 0xFFA1 0000

13 0xFFA1 1000

14 0xFFA1 2000

15 0xFFA1 3000

ADSP-BF54x Blackfin Processor Hardware Reference 3-13

Memory

Figure 3-3 on page 3-14 describes the bank architecture of the L1 instruc-
tion memory. As the figure shows, each 16K byte bank is made up of four
4K byte sub-banks.

L1 Instruction Cache
The L1 instruction memory may also be configured as a flexible, 4-way
set-associative instruction 16K byte cache. To improve the average access
latency for critical code sections, each way of the cache can be locked inde-
pendently. When the memory is configured as cache, it cannot be accessed
directly.

When cache is enabled, only memory pages specified as cacheable by
cacheability protection lookaside buffers (CPLBs) are cached. When
CPLBs are enabled, any memory location that is accessed must have an
associated page definition available, or a CPLB exception is generated.
CPLBs are described in “Memory Protection and Properties” on
page 3-51.

Figure 3-4 on page 3-15 shows the overall Blackfin processor instruction
cache organization.

Cache Lines

As shown in Figure 3-4, the cache consists of a collection of cache lines.
Each cache line is made up of a tag component and a data component:

• The tag component incorporates a 20-bit address tag, least recently
used (LRU) bits, a valid bit, and a line lock bit.

• The data component is made up of four 64-bit words of instruction
data.

• The tag and data components of cache lines are stored in the tag
and data memory arrays, respectively.

Memory Architecture

3-14 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 3-3. L1 Instruction Memory Bank Architecture

TO EBIU (AND L2)

CACHE
TAG

CACHE
TAG

CACHE
TAG

CACHE
TAG

4 KB

HIGH PRIORITY
LINE FILL
BUFFER

8 X 32 BIT

DMA
BUFFER

DMA
BUFFER

DMA
BUFFER

EXTERNAL ACCESS BUS (EAB) 64

ON LARGER MEMORY
DERIVATIVES

ONLY

4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

DMA CORE BUS (DCB) 32

INSTRUCTION DATA BUS (IDB)

REGISTER ACCESS BUS (RAB)

TO
PROCESSOR
CORE

IN
S

T
R

U
C

T
IO

N
 B

A
N

K
 A

IN
S

T
R

U
C

T
IO

N
 B

A
N

K
 C

U
P

 T
O

 3
2

K
B

 S
R

A
M

 (
S

E
E

P
R

O
C

E
S

S
O

R
 H

R
M

 T
O

 S
E

E
IF

 T
H

IS
 B

A
N

K
 IS

 P
R

E
S

E
N

T
)

IN
S

T
R

U
C

T
IO

N
 B

A
N

K
 B

U
P

 T
O

 1
6

K
B

 S
R

A
M

A

N
D

 6
4K

B
 IR

O
M

16
 K

B
 C

A
C

H
E

 O
R

 S
R

A
M

INSTRUCTION
 ROM
 64KB

64

64

64

64

TO DMA CONTROLLER

64

32

LOW PRIORITY
LINE FILL
BUFFER

8 X 32 BIT

CACHE CONTROL &
MEMORY MANAGEMENT

ADSP-BF54x Blackfin Processor Hardware Reference 3-15

Memory

Figure 3-4. Instruction Cache Organization by Subbank

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3

LINE 127

.
32 BYTE LINE 1

32 BYTE LINE 0

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3
32 BYTE LINE 2

LINE 127

. . .

WAY 3

. . .

VALID

<1> <20>

TAG

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3

LINE 127

.
32 BYTE LINE 1

32 BYTE LINE 0

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3
32 BYTE LINE 2

LINE 127

. . .

WAY 2

. . .

VALID

<1> <20>

TAG

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3

LINE 127

.
32 BYTE LINE 1

32 BYTE LINE 0

32 BYTE LINE 2

WAY 1VALID

<1> <20>

TAG

LINE ADDRESS TAG
LINE

ADDRESS
INDEX

LINE OFFSET 000

<20> <7> <2> <3>

4:1 MUX

DATA

<64>

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3

LINE 127

.
32 BYTE LINE 1

32 BYTE LINE 0

32 BYTE LINE 5

32 BYTE LINE 4

32 BYTE LINE 3
32 BYTE LINE 2

LINE 31

. . .

WAY 0

. . .

VALID

<1> <20>

TAG

SHADED BOXES ACROSS EACH WAY CONSTITUTE A SET.

Memory Architecture

3-16 ADSP-BF54x Blackfin Processor Hardware Reference

The address tag consists of the upper 18 bits plus bits 11 and 10 of the
physical address. Bits 12 and 13 of the physical address are not part of the
address tag. Instead, these bits are used to identify the 4K byte memory
sub-bank targeted for the access.

The LRU bits are part of an LRU algorithm used to determine which
cache line should be replaced if a cache miss occurs.

The valid bit indicates the state of a cache line. A cache line is always valid
or invalid:

• Invalid cache lines have their valid bit cleared, indicating the line is
ignored during an address-tag compare operation.

• Valid cache lines have their valid bit set, indicating the line con-
tains valid instruction/data that is consistent with the source
memory.

 The tag and data components of a cache line are illustrated in Figure 3-5.

Figure 3-5. Cache Line – Tag and Data Portions

TAG

LRUPRIO

LRU V

WD 3 WD 2 WD 1 WD 0

WD - 64-BIT DATA WORD

TAG - 20-BIT ADDRESS TAG
LRUPRIO - LRU PRIORITY BIT FOR LINE LOCKING
LRU - LRU STATE
V - VALID BIT

ADSP-BF54x Blackfin Processor Hardware Reference 3-17

Memory

Cache Hits and Misses

A cache hit occurs when the address for an instruction-fetch request from
the core matches a valid entry in the cache. Specifically, a cache hit is
determined by comparing the upper 18 bits and bits 11 and 10 of the
instruction-fetch address to the address tags of valid lines currently stored
in a cache set. The cache set is selected, using bits 9 through 5 of the
instruction-fetch address. If the address-tag compare operation results in a
match, a cache hit occurs. If the address-tag compare operation does not
result in a match, a cache miss occurs.

When a cache hit occurs, the target 64-bit instruction word is first sent to
the instruction alignment unit (IAU) where it is stored in one of two
64-bit instruction buffers.

When a cache miss occurs, the instruction memory unit generates a cache
line-fill access to retrieve the missing cache line from memory that is exter-
nal to the core. The address for the on-chip L2 or external memory access
is the address of the target instruction word. When a cache miss occurs,
the core halts until the target instruction word is returned from on-chip
L2 or external memory.

 Cache-Line Fills

A cache-line fill consists of fetching 32 bytes of data from memory. The
operation starts when the instruction memory unit requests a line-read
data transfer (a burst of four 64-bit words of data) on its on-chip L2 or
external read-data port. The address for the read transfer is the address of
the target instruction word. When responding to a line-read request from
the instruction memory unit, the on-chip L2 or external memory returns
the target instruction word first. After it has returned the target instruc-
tion word, the next three words are fetched in sequential address order.
This fetch wraps around if necessary, as shown in Table 3-2.

Memory Architecture

3-18 ADSP-BF54x Blackfin Processor Hardware Reference

Line-Fill Buffer

As the new cache line is retrieved from on-chip L2 or external memory,
each 64-bit word is buffered into one of two four-entry line-fill buffer
before it is written to a 4K byte memory bank within L1 memory. The
line-fill buffer allows the core to access the data from the new cache line as
the line is being retrieved from on-chip L2 or external memory, rather
than having to wait until the line is written into the cache.

Two separate line-fill buffers are provided to allow a load from slow exter-
nal memory to continue without causing jumps to higher speed on-chip
memory other than L1 to stall. The CPLB_MEMLEV bit in the memory
pages CPLBs determines which line buffer is used. See “Memory Protec-
tion and Properties” on page 3-51.

Cache-Line Replacement

When the instruction memory unit is configured as cache, bits 9 through
5 of the instruction fetch address are used as the index to select the cache
set for the tag-address compare operation. If the tag-address compare
operation results in a cache miss, the valid bits for the selected set are
examined by a cache-line replacement unit to determine the entry to use
for the new cache line, that is, whether to use Way0, Way1, Way2, or
Way3 (see Figure 3-4 on page 3-15).

Table 3-2. Cache-Line Word-Fetching Order

Target Word Fetching Order for Next Three Words

WD0 WD0, WD1, WD2, WD3

WD1 WD1, WD2, WD3, WD0

WD2 WD2, WD3, WD0, WD1

WD3 WD3, WD0, WD1, WD2

ADSP-BF54x Blackfin Processor Hardware Reference 3-19

Memory

The cache-line replacement unit first checks for invalid entries (that is,
entries having its valid bit cleared). If only a single invalid entry is found,
that entry is selected for the new cache line. If multiple invalid entries are
found, the replacement entry for the new cache line is selected based on
the following priority:

• Way0 first

• Way1 next

• Way2 next

• Way3 last

For example:

• If Way3 is invalid and Ways0, 1, 2 are valid, Way3 is selected for
the new cache line.

• If Ways0 and 1 are invalid and Ways2 and 3 are valid, Way0 is
selected for the new cache line.

• If Ways2 and 3 are invalid and Ways0 and 1 are valid, Way2 is
selected for the new cache line.

When no invalid entries are found, the cache replacement logic uses an
LRU algorithm.

Memory Architecture

3-20 ADSP-BF54x Blackfin Processor Hardware Reference

Instruction Cache Management
The system DMA controller and the core DAGs cannot access the instruc-
tion cache directly. By a combination of instructions and the use of core
MMRs, it is possible to initialize the instruction tag and data arrays indi-
rectly and provide a mechanism for instruction cache test, initialization,
and debug.

 The coherency of instruction cache must be explicitly managed. To
accomplish this and ensure that the instruction cache fetches the
latest version of any modified instruction space, invalidate instruc-
tion cache line entries, as required.

For more information, see “Instruction Cache Invalidation” on page 3-22.

Instruction Cache Locking by Line

The CPLB_LRUPRIO bits in the ICPLB_DATAx registers (see “Memory Protec-
tion and Properties” on page 3-51) are used to enhance control over which
code remains resident in the instruction cache. When a cache line is filled,
the state of this bit is stored along with the line’s tag. It is then used in
conjunction with the LRU (least recently used) policy to determine which
way is victimized when all cache ways are occupied when a new cacheable
line is fetched. This bit indicates that a line is of either “low” or “high”
importance. In a modified LRU policy, a high can replace a low, but a low
cannot replace a high. If all ways are occupied by highs, an otherwise
cacheable low will still be fetched for the core, but will not be cached.
Fetched highs seek to replace unoccupied ways first, then least recently
used lows next, and finally other highs using the LRU policy. Lows can
only replace unoccupied ways or other lows, and do so using the LRU pol-
icy. If all previously cached highs ever become less important, they may be
simultaneously transformed into lows by writing to the LRUPRIRST bit in
the IMEM_CONTROL register (see “Instruction Memory Control Register
(IMEM_CONTROL)” on page 3-9).

ADSP-BF54x Blackfin Processor Hardware Reference 3-21

Memory

Instruction Cache Locking by Way

The instruction cache has four independent lock bits (ILOC[3:0]) that
control each of the four ways of the instruction cache. When the cache is
enabled, L1 instruction memory has four ways available. Setting the lock
bit for a specific way prevents that way from participating in the LRU
replacement policy. Thus, a cached instruction, with its way locked, can
only be removed using an IFLUSH instruction, or “backdoor” MMR
assisted manipulation of the tag array.

An example sequence is provided to demonstrate how to lock down Way0:

• If the code of interest may already reside in the instruction cache,
invalidate the entire cache first (for an example, see “Instruction
Cache Invalidation” on page 3-22).

• Disable interrupts, if required, to prevent Interrupt Service Rou-
tines (ISRs) from potentially corrupting the locked cache.

• Set the locks for the other ways of the cache by setting ILOC[3:1].
Only Way0 of the instruction cache can now be replaced by new
code.

• Execute the code of interest. Any cacheable exceptions, such as exit
code, traversed by this code execution are also locked into the
instruction cache.

• Upon exit of the critical code, clear ILOC[3:1], and set ILOC[0].
The critical code (and the instructions which set ILOC[0]), are now
locked into Way0.

• Re-enable interrupts, if required.

If all four ways of the cache are locked, then further allocation into the
cache is prevented.

Memory Architecture

3-22 ADSP-BF54x Blackfin Processor Hardware Reference

Instruction Cache Invalidation

The instruction cache can be invalidated by an address, cache line, or a
complete cache. The IFLUSH instruction can explicitly invalidate cache
lines based on their line addresses. The target address of the instruction is
generated from the P registers. Because the instruction cache should not
contain modified (dirty) data, the cache line is simply invalidated.

In the following example, the P2 register contains the address of a valid
memory location. If this address is brought into cache, the corresponding
cache line is invalidated after the execution of this instruction.

Example of ICACHE instruction:
iflush [p2] ; /* Invalidate cache line containing address

that P2 points to */

Because the IFLUSH instruction is used to invalidate a specific address in
the ADSP-BF54x processor processor memory map, it is impractical to
use this instruction to invalidate an entire bank of cache. A second, faster
technique can be used to invalidate an entire cache bank directly. This sec-
ond technique directly invalidates valid bits by setting the invalid bit of
each cache line to the invalid state. To implement this technique, addi-
tional MMRs (ITEST_COMMAND and ITEST_DATA[1:0]) are available to allow
arbitrary read/write of all cache entries directly.

For invalidating the complete instruction cache, a third method is avail-
able. By clearing the IMC bit in the IMEM_CONTROL register (see Figure 3-2
on page 3-9), all valid bits in the instruction cache are set to the invalid
state. A second write to the IMEM_CONTROL register to set the IMC bit then
configures the instruction memory as cache again. An SSYNC should be run
before invalidating the cache and a CSYNC should be inserted after each of
these operations.

ADSP-BF54x Blackfin Processor Hardware Reference 3-23

Memory

Instruction Test Registers
The Instruction test registers allow arbitrary read/write of all L1 cache
entries directly. They make it possible to initialize the instruction tag and
data arrays and to provide a mechanism for instruction cache test, initial-
ization, and debug.

When the instruction test command register (ITEST_COMMAND) is used, the
L1 cache data or tag arrays are accessed, and data is transferred through
the instruction test data registers (ITEST_DATA[1:0]). The ITEST_DATAx
registers contain either the 64-bit data that the access is to write to or the
64-bit data that was read during the access. The lower 32 bits are stored in
the ITEST_DATA[0] register, and the upper 32 bits are stored in the
ITEST_DATA[1] register. When the tag arrays are accessed, ITEST_DATA[0]
is used. Graphical representations of the ITEST registers begin with
Figure 3-6 on page 3-24.

The ITEST registers are described in Table 3-3.

Access to these registers is possible only in supervisor or emulation mode.
When writing to ITEST registers, always write to the ITEST_DATAx registers
first, then the ITEST_COMMAND register. When reading from ITEST registers,
reverse the sequence—read the ITEST_COMMAND register first, then the
ITEST_DATAx registers.

Table 3-3. ITEST Registers

Name Description/ Refer to

ITEST_COMMAND Instruction test command register
For more information, see “ITEST_COMMAND Register” on
page 3-24.

ITEST_DATA1 Instruction test data 1 register
For more information, see “ITEST_DATA1 Register” on page 3-25.

ITEST_DATA0 Instruction test data 0 register
For more information, see “ITEST_DATA0 Register” on page 3-26.

Instruction Test Registers

3-24 ADSP-BF54x Blackfin Processor Hardware Reference

ITEST_COMMAND Register
When the instruction test command register (ITEST_COMMAND) is written
to, the L1 cache data or tag arrays are accessed, and the data is transferred
through the instruction test data registers (ITEST_DATA[1:0]).

Figure 3-6. Instruction Test Command Register

Instruction Test Command Register (ITEST_COMMAND)

00 - Access sub-bank 0
01 - Access sub-bank 1
10 - Access sub-bank 2
11 - Access sub-bank 3
(Address bits [13:12] in
SRAM)

SBNK[1:0] (Sub-bank
Access)

Reset = 0x0000 0000

RW (Read/Write Access)

WAYSEL[1:0] (Access way)
00 - Access Way0
01 - Access Way1
10 - Access Way2
11 - Access Way3
(Address bits [11:10] in SRAM)

0 - Read access
1 - Write access

TAGSELB (Array Access)
0 - Access tag array
1 - Access data array
DW[1:0] (Double Word
Index)
Selects one of four 64-bit
double words in a 256-bit
line (Address bits [4:3] in
SRAM)

SET[4:0] (Set Index)
Selects one of 32 sets
(Address bits [9:5] in SRAM)

0xFFE0 1300
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADSP-BF54x Blackfin Processor Hardware Reference 3-25

Memory

ITEST_DATA1 Register
Instruction test data registers (ITEST_DATA[1:0]) are used to access L1
cache data arrays. They contain either the 64-bit data that the access is to
write to or the 64-bit data that the access is to read from. The instruction
test data 1 register (ITEST_DATA1) stores the upper 32 bits.

Figure 3-7. Instruction Test Data 1 Register

Instruction Test Data 1 Register (ITEST_DATA1)

Reset = Undefined

Reset = Undefined

Data[63:48]

Data[47:32]

When accessing tag arrays, all bits are reserved.

Used to access L1 cache data arrays and tag arrays. When accessing a data array, stores
the upper 32 bits of 64-bit words of instruction data to be written to or read from by the
access. See “Cache Lines” on page 3-13.

0xFFE0 1404
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Instruction Test Registers

3-26 ADSP-BF54x Blackfin Processor Hardware Reference

ITEST_DATA0 Register
The instruction test data 0 register (ITEST_DATA0) stores the lower 32 bits
of the 64-bit data to be written to or read from by the access. The
ITEST_DATA0 register is also used to access tag arrays. This register also
contains the valid and dirty bits, which indicate the state of the cache line.

Figure 3-8. Instruction Test Data 0 Register

Instruction Test Data 0 Register (ITEST_DATA0)

Reset = Undefined

Tag[19:4]

Tag[3:2]

Tag[1:0]

Data[31:16]

Data[15:0]

Used to access L1 cache data arrays and tag arrays. When accessing a data array, stores the lower 32 bits of
64-bit words of instruction data to be written to or read from by the access. See “Cache Lines” on page 3-13.

Used to access the L1 cache tag arrays. The address tag consists of the upper 18 bits and bits 11 and 10 of the
physical address. See “Cache Lines” on page 3-13.

Physical address

Physical address

Physical address

Reset = Undefined

Valid
0 - Cache line is not valid
1 - Cache line contains valid
 data
LRUPRIO
0 - LRUPRIO is cleared for this
 entry
1 - LRUPRIO is set for this entry.
See “ICPLB Data Registers
(ICPLB_DATAx)” on page 3-59
and “Instruction Memory Control
Register (IMEM_CONTROL)” on
page 3-9.

0xFFE0 1400

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

ADSP-BF54x Blackfin Processor Hardware Reference 3-27

Memory

L1 Data Memory
The L1 data SRAM/cache is constructed from single-ported subsections,
but organized to reduce the likelihood of access collisions. This organiza-
tion results in apparent multiported behavior. When there are no
collisions, this L1 data traffic could occur in a single core clock cycle:

• Two 32-bit DAG loads

• One pipelined 32-bit DAG store

• One 64-bit DMA I/O

• One 64-bit cache fill/victim access

 Although L1 data memory can be used to store instructions,
instructions cannot execute directly from L1 data memory.

Data Memory Control Register (DMEM_CONTROL)
The data memory control register (DMEM_CONTROL) contains control bits for
the L1 data memory. See Figure 3-9 on page 3-28.

The PORT_PREF1 bit selects the data port used to process DAG1
non-cacheable L2 fetches. Cacheable fetches are always processed by the
data port physically associated with the targeted cache memory. Steering
DAG0, DAG1, and cache traffic to different ports optimizes performance
by keeping the queue to memory other than L1 full.

The PORT_PREF0 bit selects the data port used to process DAG0
non-cacheable L2 fetches. Cacheable fetches are always processed by the
data port physically associated with the targeted cache memory. Steering
DAG0, DAG1, and cache traffic to different ports optimizes performance
by keeping the queue to memory other than L1 full.

L1 Data Memory

3-28 ADSP-BF54x Blackfin Processor Hardware Reference

For optimal performance with dual DAG reads, DAG0 and DAG1 should
be configured for different ports. For example, if PORT_PREF0 is configured
as 1, then PORT_PREF1 should be programmed to 0.

Figure 3-9. L1 Data Memory Control Register

Data Memory Control Register (DMEM_CONTROL)

Reset = 0x0000 1001

ENDCPLB (Data Cacheability
Protection Lookaside Buffer
Enable)
0 - CPLBs disabled. Minimal

 address checking only
1 - CPLBs enabled
DMC[1:0] (L1 data memory
Configure)

DCBS (L1 Data Cache Bank Select)

PORT_PREF1 (DAG1 Port
Preference)
0 - DAG1 non-cacheable fetches

use port A
1 - DAG1 non-cacheable fetches

use port B

PORT_PREF0 (DAG0 Port
Preference)
0 - DAG0 non-cacheable fetches

use port A
1 - DAG0 non-cacheable fetches

use port B

Valid only when DMC[1:0] = 11 for ADSP-BF54x
processor. Determines whether Address bit A[14]
or A[23] is used to select the L1 data cache bank.
0 - Address bit 14 is used to select Bank A or B

for cache access. If bit 14 of address is 1,
select L1 data memory data bank A; if bit 14
of address is 0, select L1 data memory Data
Bank B.

1 - Address bit 23 is used to select Bank A or B for
cache access. If bit 23 of address is 1, select
L1 data memory data bank A; if bit 23 of
address is 0, select L1 data memory Data
Bank B.

See “Example of Mapping Cacheable Address
Space into Data Banks” on page 3-34.

00 - Both data banks are
 SRAM, also invalidates all

 cache lines if previously
 configured as cache

01 - Reserved
10 - data bank A is lower

 16K byte SRAM, upper
 16K byte cache
 data bank B is SRAM

11 - Both data banks are
 lower 16K byte SRAM,
 upper 16K byte cache

0xFFE0 0004
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 1 0 0 0 0 0 0 0 0 0 0 0

ADSP-BF54x Blackfin Processor Hardware Reference 3-29

Memory

The DCBS bit provides some control over which addresses alias into the
same set. This bit can be used to affect which addresses tend to remain res-
ident in cache by avoiding victimization of repetitively used sets. It has no
affect unless both data bank A and data bank B are serving as cache (bits
DMC[1:0] in this register are set to 11).

The ENDCPLB bit is used to enable/disable the 16 cacheability protection
lookaside buffers (CPLBs) used for data (see “L1 Data Cache” on
page 3-33). Data CPLBs are disabled by default after reset. When dis-
abled, only minimal address checking is performed by the L1 memory
interface. This minimal checking generates an exception when the
processor:

• Addresses nonexistent (reserved) L1 memory space

• Attempts to perform a nonaligned memory access

• Attempts to access MMR space either using DAG1 or when in user
mode

• Attempts to write the on-chip boot ROM

CPLBs must be disabled using this bit prior to updating their descriptors
(registers DCPLB_DATAx and DCPLB_ADDRx). Note that since load store order-
ing is weak (see “Ordering of Loads and Stores” on page 3-72), disabling
CPLBs should be preceded by a CSYNC instruction, and enabling CPLBs
should be followed by a CSYNC instruction in order to ensure predictable
behavior.

 When enabling or disabling cache or CPLBs, immediately follow
the write to DMEM_CONTROL with a SSYNC to ensure proper behavior.

L1 Data Memory

3-30 ADSP-BF54x Blackfin Processor Hardware Reference

By default after reset, all L1 data memory serves as SRAM. The DMC[1:0]
bits can be used to reserve portions of this memory to serve as cache
instead. Reserving memory to serve as cache does not enable memory
other than L1 accesses to be cached. To do this, CPLBs must also be
enabled (using the ENDCPLB bit) and CPLB descriptors (registers
DCPLB_DATAx and DCPLB_ADDRx) must specify chosen memory pages as
cache-enabled.

By default after reset, cache and CPLB address checking is disabled.

 To ensure proper behavior and future compatibility, all reserved
bits in this register must be set to 0 whenever this register is
written.

L1 Data SRAM
Accesses to SRAM do not collide unless they are to the same 32-bit word
polarity (address bits 2 match), the same 4K byte sub-bank (address bits
13 and 12 match), the same 16K byte half-bank (address bits 16 match),
and the same bank (address bits 21 and 20 match). When an address colli-
sion is detected, access is nominally granted first to the DAGs, then to the
store buffer, and finally to the DMA and cache fill/victim traffic. To
ensure adequate DMA bandwidth, DMA is given highest priority if it is
blocked for more than 16 sequential core clock cycles, or if a second DMA
I/O is queued before the first DMA I/O is processed.

Table 3-4 shows how the subbank organization is mapped into memory.

ADSP-BF54x Blackfin Processor Hardware Reference 3-31

Memory

Figure 3-10 on page 3-32 shows the L1 data memory architecture.

Table 3-4. L1 Data Memory SRAM Sub-bank Start Addresses

Memory Bank and Sub-bank Start Address

Data Bank A, Sub-bank 0 0xFF80 0000

Data Bank A, Sub-bank 1 0xFF80 1000

Data Bank A, Sub-bank 2 0xFF80 2000

Data Bank A, Sub-bank 3 0xFF80 3000

Data Bank A, Sub-bank 4 0xFF80 4000

Data Bank A, Sub-bank 5 0xFF80 5000

Data Bank A, Sub-bank 6 0xFF80 6000

Data Bank A, Sub-bank 7 0xFF80 7000

Data Bank B, Sub-bank 0 0xFF90 0000

Data Bank B, Sub-bank 1 0xFF90 1000

Data Bank B, Sub-bank 2 0xFF90 2000

Data Bank B, Sub-bank 3 0xFF90 3000

Data Bank B, Sub-bank 4 0xFF90 4000

Data Bank B, Sub-bank 5 0xFF90 5000

Data Bank B, Sub-bank 6 0xFF90 6000

Data Bank B, Sub-bank 7 0xFF90 7000

L1 Data Memory

3-32 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 3-10. L1 Data Memory Architecture

READ

VICTIM BUFFER
8 X 32 BIT

LOW PRIORITY
WRITE BUFFER

4 X 32 BIT

DMA
BUFFER

DMA

WRITE

L2 MEMORY

DMA
EXTERNAL MEMORY

32 BIT

32 BIT

32 BIT

64 BIT

READ

VICTIM BUFFER
8 X 32 BIT

HIGH PRIORITY
WRITE BUFFER
2 TO 8 X 32 BIT

DMA
BUFFER

DMA

WRITE

32 BIT

32 BIT

32 BIT

64 BIT

STORE BUFFER
6 X 32 BIT

DAG0 LOAD

DAG1 LOAD

DAG1/0 STORE

TO PROCESSOR
CORE

SRAM SRAM OR CACHE IO BUFFERS

S
C

R
A

T
C

H
P

A
D

D
A

T
A

B
A

N
K

A

P
O

R
T

A
P

O
R

T
B

D
A

TA
B

A
N

K
B

4 KB 4 KB

4 KB 4 KB

4 KB

4 KB 4 KB

4 KB 4 KB

CACHE
TAG

4 KB

CACHE
TAG

4 KB

CACHE
TAG

4 KB

CACHE
TAG

4 KB

CACHE
TAG

4 KB

CACHE
TAG

4 KB

CACHE
TAG

4 KB

CACHE
TAG

4 KB

32
B

IT
32

B
IT

32
B

IT

HIGH PRIORITY
LINE FILL
BUFFER

8 X 32 BIT

LOW PRIORITY
LINE FILL
BUFFER

8 X 32 BIT

HIGH PRIORITY
LINE FILL
BUFFER

8 X 32 BIT

LOW PRIORITY
LINE FILL
BUFFER

8 X 32 BIT

HIGH PRIORITY

LOW PRIORITY

ADSP-BF54x Blackfin Processor Hardware Reference 3-33

Memory

L1 Data Cache
For definitions of cache terminology, see “Terminology” on page 3-79.

When data cache is enabled (controlled by bits DMC[1:0] in the
DMEM_CONTROL register), either 16K byte of data bank A or 16K byte of
both data bank A and data bank B can be set to serve as cache.

For the ADSP-BF54x processor processor, the upper 16K byte is used.
Unlike instruction cache, which is 4-way set associative, data cache is
2-way set-associative. When two banks are available and enabled as cache,
additional sets rather than ways are created. When both data bank A and
data bank B have memory serving as cache, the DCBS bit in the
DMEM_CONTROL register may be used to control which half of all address
space is handled by which bank of cache memory. The DCBS bit selects
either address bit 14 or 23 to steer traffic between the cache banks. This
provides some control over which addresses alias into the same set. It may
therefore be used to affect which addresses tend to remain resident in
cache by avoiding victimization of repetitively used sets.

Accesses to cache do not collide unless they are to the same 4K byte sub-
bank (address bits 13 and 12 match), the same half bank (address bits 16
match), and to the same bank (address bits 21 and 20 match). Cache has
less apparent multiported behavior due to the overhead in maintaining
tags. When cache addresses collide, access is granted first to the DTEST reg-
ister accesses, then to the store buffer, and finally to cache fill/victim
traffic.

Three different cache modes are available:

• Write-through with cache line allocation only on reads

• Write-through with cache line allocation on both reads and writes

• Write-back which allocates cache lines on both reads and writes

L1 Data Memory

3-34 ADSP-BF54x Blackfin Processor Hardware Reference

Cache mode is selected by the DCPLB descriptors (see “Memory Protection
and Properties” on page 3-51). Any combination of these cache modes can
be used simultaneously since cache mode is selectable for each memory
page independently.

If cache is enabled (controlled by bits DMC[1:0] in the DMEM_CONTROL regis-
ter), data CPLBs should also be enabled (controlled by ENDCPLB bit in the
DMEM_CONTROL register). Only memory pages specified as cacheable by data
CPLBs are cached. The default behavior is no caching when data CPLBs
are disabled.

 Erroneous behavior can result when MMR space is configured as
cacheable by data CPLBs, or when data banks serving as L1 SRAM
are configured as cacheable by data CPLBs.

Example of Mapping Cacheable Address
Space into Data Banks

An example of how the cacheable address space maps into two data banks
follows.

When both banks are configured as cache on the ADSP-BF54x processor
processor, they operate as two independent, 16K byte, 2-way set associa-
tive caches that can be independently mapped into the Blackfin processor
address space.

If both data banks are configured as cache, the DCBS bit in the
DMEM_CONTROL register designates address bit A[14] or A[23] as the cache
selector. Address bit A[14] or A[23] selects the cache implemented by data
bank A or the cache implemented by data bank B.

ADSP-BF54x Blackfin Processor Hardware Reference 3-35

Memory

• If DCBS = 0, then A[14] is part of the address index, and all
addresses in which A[14] = 0 use data bank A. All addresses in
which A[14] = 1 use data bank B.

• In this case, A[23] is treated as merely another bit in the address
that is stored with the tag in the cache and compared for hit/miss
processing by the cache.

• If DCBS = 1, then A[23] is part of the address index, and all
addresses where A[23] = 0 use data bank A. All addresses where
A[23] = 1 use data bank B.

• In this case, A[14] is treated as merely another bit in the address
that is stored with the tag in the cache and compared for hit/miss
processing by the cache.

The result of choosing DCBS = 0 or DCBS = 1 is:

• If DCBS = 0, A[14] selects data bank A instead of data bank B.

• Alternating 16K byte pages of memory map into each of the two
16K byte caches implemented by the two data banks.
Consequently:

• Any data in the first 16K byte of memory could be stored
only in data bank A.

• Any data in the next address range (16K byte through 32K
byte) – 1 could be stored only in data bank B.

• Any data in the next range (32K byte through 48K byte) – 1
would be stored in data bank A.

• Alternate mapping would continue.

L1 Data Memory

3-36 ADSP-BF54x Blackfin Processor Hardware Reference

• As a result, the cache operates as if it were a single, contiguous,
2-way set associative 32K byte cache. Each way is 16K byte long,
and all data elements with the same first 14 bits of address index to
a unique set in which up to two elements can be stored (one in each
way).

• If DCBS = 1, A[23] selects data bank A instead of data bank B.

• With DCBS = 1, the system functions more like two independent
caches, each a 2-way set associative 16K byte cache. Each Bank
serves an alternating set of 8M byte blocks of memory. For exam-
ple, data bank A caches all data accesses for the first 8M byte of
memory address range. That is, every 8M byte of range vies for the
two line entries (rather than every 16K byte repeat). Likewise, data
bank B caches data located above 8M byte and below 16M byte.

• For example, if the application is working from a data set that is 1
Mbyte long and located entirely in the first 8M byte of memory, it
is effectively served by only half the cache, that is, by data bank A
(a 2-way set associative 16K byte cache). In this instance, the appli-
cation never derives any benefit from data bank B.

 For most applications, it is best to operate with DCBS = 0.

However, if the application is working from two data sets, located in two
memory spaces at least 8 Mbyte apart, closer control over how the cache
maps to the data is possible. For example, if the program is doing a series
of dual MAC operations in which both DAGs are accessing data on every
cycle, by placing DAG0’s data set in one block of memory and DAG1’s
data set in the other, the system can ensure that:

• DAG0 gets its data from data bank A for all of its accesses,

• DAG1 gets its data from data bank B.

ADSP-BF54x Blackfin Processor Hardware Reference 3-37

Memory

This arrangement causes the core to use both data buses for cache line
transfer and achieves the maximum data bandwidth between the cache
and the core.

Figure 3-11 shows an example of how mapping is performed when
DCBS = 1.

 The DCBS selection can be changed dynamically; however, to ensure
that no data is lost, first flush and invalidate the entire cache.

Data Cache Access

The cache controller tests the address from the DAGs against the tag bits.
If the logical address is present in L1 cache, a cache hit occurs, and the
data is accessed in L1. If the logical address is not present, a cache miss
occurs, and the memory transaction is passed to the next level of memory
through the system interface. The line index and replacement policy for
the cache controller determines the cache tag and data space that are allo-
cated for the data coming back from memory other than L1.

Figure 3-11. Data Cache Mapping When DCBS = 1

WAY0 WAY1

WAY0 WAY1

8MB

8MB

8MB

8MB

DATA BANK B

DATA BANK A

L1 Data Memory

3-38 ADSP-BF54x Blackfin Processor Hardware Reference

A data cache line is in one of three states: invalid, exclusive (valid and
clean), and modified (valid and dirty). If valid data already occupies the
allocated line and the cache is configured for write-back storage, the con-
troller checks the state of the cache line and treats it accordingly:

• If the state of the line is exclusive (clean), the new tag and data
write over the old line.

• If the state of the line is modified (dirty), then the cache contains
the only valid copy of the data.

• If the line is dirty, the current contents of the cache are copied back
to memory other than L1 before new data is written to the cache.

The processor provides victim buffers and line fill buffers. These buffers
are used if a cache load miss generates a victim cache line that should be
replaced. The line fill operation goes to memory other than L1. The data
cache performs the line fill request to the system as critical (or requested)
word first, and forwards that data to the waiting DAG as it updates the
cache line. In other words, the cache performs critical word forwarding.

The data cache supports hit-under-a-store miss, and hit-under-a-prefetch
miss. In other words, on a write-miss or execution of a PREFETCH instruc-
tion that misses the cache (and is to a cacheable region), the instruction
pipeline incurs a minimum of a four-cycle stall. Furthermore, a subse-
quent load or store instruction can hit in the L1 cache while the line fill
completes.

Interrupts of sufficient priority (relative to the current context) cancel a
stalled load instruction. Consequently, if the load operation misses the L1
data memory cache and generates a high-latency line fill operation on the
system interface, it is possible to interrupt the core, causing it to begin
processing a different context. The system access to fill the cache line is
not cancelled, and the data cache is updated with the new data before any
further cache miss operations to the respective data bank are serviced. For
more information see “System Interrupts” on page 6-1.

ADSP-BF54x Blackfin Processor Hardware Reference 3-39

Memory

Cache Write Method

Cache write memory operations can be implemented by using either a
write-through method or a write-back method:

• For each store operation, write-through caches initiate a write to
memory other than L1 immediately upon the write to cache.

• If the cache line is replaced or explicitly flushed by software, the
contents of the cache line are invalidated rather than written back
to memory other than L1.

• A write-back cache does not write to memory other than L1 until
the line is replaced by a load operation that needs the line.

The L1 data memory employs a full-cache, line-width copyback
buffer on each data bank.

Write Buffers

Two separate write buffers are provided. These buffers allow stores to slow
external memory to continue without causing stores to higher-speed
on-chip memory other than L1 to stall. Which buffer is used is deter-
mined by the CPLB_MEMLEV bit in the data memory page’s CPLBs. See
“Memory Protection and Properties” on page 3-51.

These two write buffers in the L1 data memory accept all stores with each
cache inhibited or store-through protection.

 An SSYNC instruction flushes the write buffers.

L1 Data Memory

3-40 ADSP-BF54x Blackfin Processor Hardware Reference

Interrupt Priority Register (IPRIO) and Write Buffer Depth

The interrupt priority register (IPRIO) can be used to control the size of
the high priority write buffer on port A (see Figure 3-10 on page 3-32).

The IPRIO[3:0] bits can be programmed to reflect the low priority inter-
rupt watermark. When an interrupt occurs, causing the processor to
vector from a low priority interrupt service routine to a high priority inter-
rupt service routine, the size of the low priority write buffer increases from
two to eight 32-bit words deep. This allows the interrupt service routine
to run and post writes without an initial stall, in the case where the low
priority write buffer was already filled in the low priority interrupt rou-
tine. This is most useful when posted writes are to a slow external memory

Figure 3-12. Interrupt Priority Register

Interrupt Priority Register (IPRIO)

Reset = 0x0000 0000

IPRIO_MARK (Priority
Watermark)
0000 - Default, all interrupts

are low priority
0001 - Interrupts 15 through 1

are low priority, interrupt
0 is considered high
priority

0010 - Interrupts 15 through 2
are low priority,
interrupts 1 and 0 are
considered high priority

...
1110 - Interrupts 15 and 14

are low priority,
interrupts 13 through 0
are considered high
priority

1111 - Interrupt 15 is low
priority, all others are
considered high priority

0xFFE0 2110
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADSP-BF54x Blackfin Processor Hardware Reference 3-41

Memory

device. When returning from a high priority interrupt service routine to a
low priority interrupt service routine or user mode, the core stalls until the
write buffer has completed the necessary writes to return to a two-deep
state. By default, the low priority write buffer is a fixed two-deep FIFO.

Data Cache Control Instructions

The processor defines three data cache control instructions that are acces-
sible in user and supervisor modes. The instructions are PREFETCH, FLUSH,
and FLUSHINV.

• PREFETCH (data cache prefetch) attempts to allocate a line into the
L1 cache. If the prefetch hits in the cache, generates an exception,
or addresses a cache inhibited region, PREFETCH functions like a
NOP.

• FLUSH (data cache flush) causes the data cache to synchronize the
specified cache line with memory other than L1. If the cached data
line is dirty, the instruction writes the line out and marks the line
clean in the data cache. If the specified data cache line is already
clean or does not exist, FLUSH functions like a NOP.

• FLUSHINV (data cache line flush and invalidate) causes the data
cache to perform the same function as the FLUSH instruction and
then invalidate the specified line in the cache. If the line is in the
cache and dirty, the cache line is written out to memory other than
L1. The valid bit in the cache line is then cleared. If the line is not
in the cache, FLUSHINV functions like a NOP.

If software requires synchronization with system hardware, place an SSYNC
instruction after the FLUSH instruction to ensure that the flush operation
has completed. If ordering is desired to ensure that previous stores have
been pushed through all the queues, place an SSYNC instruction before the
FLUSH.

Data Test Registers

3-42 ADSP-BF54x Blackfin Processor Hardware Reference

Data Cache Invalidation

Besides the FLUSHINV instruction, two additional methods are available to
invalidate the data cache when flushing is not required. The first tech-
nique directly invalidates valid bits by setting the Invalid bit of each cache
line to the invalid state. To implement this technique, additional MMRs
(DTEST_COMMAND and DTEST_DATA[1:0]) are available to allow arbitrary
reads/writes of all the cache entries directly.

For invalidating the complete data cache, a second method is available. By
clearing the DMC[1:0] bits in the DMEM_CONTROL register (see Figure 3-9 on
page 3-28), all valid bits in the data cache are set to the invalid state. A
second write to the DMEM_CONTROL register sets the DMC[1:0] bits to their
previous state then configures the data memory back to its previous
cache/SRAM configuration. An SSYNC instruction should be run before
invalidating the cache and a CSYNC instruction should be inserted after
each of these operations.

Data Test Registers
Like L1 instruction memory, L1 data memory contains additional MMRs
to allow arbitrary reads/writes of all cache entries directly. The registers
provide a mechanism for data cache test, initialization, and debug.

When the data test command register (DTEST_COMMAND) is written to, the
L1 cache data or tag arrays are accessed and data is transferred through the
data test data registers (DTEST_DATA[1:0]). The DTEST_DATA[1:0] registers
contain the 64-bit data to be written, or they contain the destination for
the 64-bit data read. The lower 32 bits are stored in the DTEST_DATA[0]
register and the upper 32 bits are stored in the DTEST_DATA[1] register.
When the tag arrays are accessed, the DTEST_DATA[0] register is used.

 A CSYNC instruction is required after writing the DTEST_COMMAND
MMR.

ADSP-BF54x Blackfin Processor Hardware Reference 3-43

Memory

The DTEST registers are described in the following subsections.

Access to these registers is possible only in supervisor or emulation mode.
When writing to DTEST registers, always write to the DTEST_DATA registers
first, then the DTEST_COMMAND register.

Table 3-5. DTEST Registers

Name Description/ Refer to

DTEST_COMMAND Data test command register
For more information, see “Data Test Command Register
(DTEST_COMMAND)” on page 3-44.

DTEST_DATA1 Data test data 1 register
For more information, see “Data Test Data 1 Register
(DTEST_DATA1)” on page 3-45.

DTEST_DATA0 Data test data 0 register
For more information, see “Data Test Data 0 Register
(DTEST_DATA0)” on page 3-46.

Data Test Registers

3-44 ADSP-BF54x Blackfin Processor Hardware Reference

Data Test Command Register (DTEST_COMMAND)
When the data test command register (DTEST_COMMAND) is written to, the
L1 cache data or tag arrays are accessed, and the data is transferred
through the data test data registers (DTEST DATA[1:0]).

 The data/instruction access bit allows direct access by way of the
DTEST_COMMAND MMR to L1 instruction SRAM. Note that L1
instruction ROM is not directly accessible. Instruction ROM is
accessible only through instruction fetches or DMA accesses.

Figure 3-13. Data Test Command Register

Data Test Command Register (DTEST_COMMAND)

00 - Access sub-bank 0
01 - Access sub-bank 1
10 - Access sub-bank 2
11 - Access sub-bank 3

Sub-bank Access[1:0]
(SRAM ADDR[13:12])

Reset = Undefined

Read/Write Access

Access way/Instruction
Address Bit 11
0 - Access Way0/Instruction bit 11 = 0
1 - Access Way1/Instruction bit 11 = 1

Data/Instruction Access
0 - Access Data
1 - Access Instruction

0 - Read access
1 - Write access
Array Access
0 - Access tag array
1 - Access data array

Double Word Index[1:0]
Selects one of four 64-bit
double words in a 256-bit line

Set Index[5:0]
Selects one of 64 sets

Data Bank Access
0 - Access Data Bank A / instruction memory 0xFFA0 0000
1 - Access Data Bank B/ instruction memory 0xFFA0 8000

Data Cache Select/
Address Bit 14

0xFFE0 0300

0 - Reserved for data memory Access /
 Instruction bit 14= 0
1 - Selects Data Cache Bank /
 Instruction bit 14 = 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

ADSP-BF54x Blackfin Processor Hardware Reference 3-45

Memory

Data Test Data 1 Register (DTEST_DATA1)
Data test data registers (DTEST_DATA[1:0]) contain the 64-bit data to be
written, or they contain the destination for the 64-bit data read. The data
test data 1 register (DTEST_DATA1) stores the upper 32 bits.

Figure 3-14. Data Test Data 1 Register

Data Test Data 1 Register (DTEST_DATA1)

Reset = Undefined

Reset = Undefined

Data[63:48]

Data[47:32]

When accessing tag arrays, all bits are reserved.

0xFFE0 0404
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Data Test Registers

3-46 ADSP-BF54x Blackfin Processor Hardware Reference

Data Test Data 0 Register (DTEST_DATA0)
The data test data 0 register (DTEST_DATA0) stores the lower 32 bits of the
64-bit data to be written, or it contains the lower 32 bits of the destina-
tion for the 64-bit data read.

The DTEST_DATA0 register is also used to access the tag arrays and contains
the valid and dirty bits, which indicate the state of the cache line.

Figure 3-15. Data Test Data 0 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Data Test Data 0 Register (DTEST_DATA0)

Reset = Undefined

Valid
0 - Cache line invalid
1 - Cache line valid

Tag[18:3]

Tag[2:1]

Tag[0]

Dirty
0 - Cache line unmodified

since it was copied from
source memory

1 - Cache line modified
after it was copied
from source memory

Data[31:16]

Data[15:0]

Used to access the L1 cache tag arrays. The address tag consists of the upper 18 bits
and bit 11 of the physical address. See “Cache Lines” on page 3-13.

Physical address

Physical address

Physical address
LRU
0 - Way0 is the least
recently used
1 - Way1 is the least
recently used

Reset = Undefined0xFFE0 0400
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

ADSP-BF54x Blackfin Processor Hardware Reference 3-47

Memory

On-Chip Level 2 (L2) Memory
Configured as SRAM, the on-chip Level 2 (L2) memory of the
ADSP-BF54x processor processor provides 128K byte of low latency, high
bandwidth storage capacity. For systems that use some ADSP-BF54x pro-
cessor processor L1 memory as cache, the on-chip L2 SRAM memory
system can help provide deterministic, bounded memory access times.

Simultaneous access to the multi-banked, on-chip memory other than L1
architecture from the cores and system DMA can occur in parallel, pro-
vided they access different banks. A fixed-priority arbitration scheme
resolves conflicts. The on-chip system DMA controllers share a dedicated
32-bit data path into the memory other than L1 system. This interface
operates at SCLK frequency. Dedicated L2 access from the processor core is
also supported.

The processor core has a dedicated, low latency, 64-bit data path into the
L2 SRAM memory. At a core clock frequency of 600 MHz, the peak data
transfer rate across this interface is 4.8G byte/second.

On-Chip L2 Bank Access
The L2 is divided into eight separate 16K sub-banks. Two L2 access ports,
a processor core port and a system port, are provided to allow concurrent
access to the L2, provided the two ports access different memory
sub-banks. If simultaneous access to the same memory sub-bank is
attempted, collision detection logic in the L2 provides arbitration. This is
a fixed priority arbiter; the DMA port always has the highest priority,
unless the core is granted access to the sub-bank for a burst transfer. In
this case, the L2 finishes the burst transfer before the system bus is granted
access.

On-Chip Level 2 (L2) Memory

3-48 ADSP-BF54x Blackfin Processor Hardware Reference

Latency
When cache is enabled, the bus between the core and L2 is fully pipelined
for contiguous burst transfers. The cache line fill from on-chip memory
behaves the same for instruction and data fetches. Operations that miss
the cache trigger a cache line replacement. This replacement fills one
256-bit (32-byte) line with four 64-bit reads. Under this condition, the L1
cache line fills from the L2 SRAM in 9+2+2+2=15 cycles. In other words,
after nine core cycles, the first 64-bit (8-byte) fill is available for the pro-
cessor. Figure 3-16 shows an example of L2 latency with cache on.

Figure 3-16. L2 Latency With Cache On

E F G H

I J K L

M N O P

A B C DA B C D

E F G H A B C D

E F G H I J K L

T+9 ABCD READY
TO EXECUTE

T+11 EFGH READY
TO EXECUTE

T+13 IJKL READY
TO EXECUTE

T+14 E EXECUTES

T+15 F EXECUTES

T+10 A EXECUTES

T+11 B EXECUTES

T+12 C EXECUTES

T+13 D EXECUTES

T+15 MNOP READY
TO EXECUTE

NOTE: AFTER F EXECUTES, GHIJKLMNOP EXECUTE
ON CONSECUTIVE CYCLES.

AFTER P IS IN PIPELINE, NEW CACHE
LINE FILL IS INITIATED.

EACH INSTRUCTION FETCH IS 32 BYTES

64 BITS 64 BITS 64 BITS 64 BITS

L2 MEMORY

CYCLES T+9 T+11 T+13 T+15INSTRUCTION ALIGNMENT UNIT

INSTRUCTION ALIGNMENT UNIT

INSTRUCTION ALIGNMENT UNIT

ADSP-BF54x Blackfin Processor Hardware Reference 3-49

Memory

In this example, at the end of 15 core cycles, 32 bytes of instructions or
data have been brought into cache and are available to the sequencer. If all
the instructions contain 16 bits, sixteen instructions are brought into
cache at the end of 15 cycles. In addition, the first instruction that is part
of the cache line fill executes on the tenth cycle; the second instruction
executes on the eleventh cycle, and the third instruction executes on the
twelfth cycle—all of them in parallel with the cache line fill.

Each cache line fill is aligned on a 32-byte boundary. When the requested
instruction or data is not 32-byte aligned, the requested item is always
loaded in the first read; each read is forwarded to the core as the line is
filled. Sequential memory accesses miss the cache only when they reach
the end of a cache line.

When on-chip L2 is configured as non-cacheable, instruction fetches and
data fetches occur in 64-bit fills. In this case, each fill takes seven core
cycles to complete. As shown in Figure 3-17 on page 3-50, on-chip L2 is
configured as non-cacheable. To illustrate the concept of L2 latency with
cache off, simple instructions are used that do not require additional
external data fetches. In this case, consecutive instructions are issued on
consecutive cycles if multiple instructions are brought into the core in a
given fetch.

One Time Programmable Memory
The ADSP-BF54x processor processor also includes an on-chip OTP
memory array which provides 64K bits of non-volatile memory that can
be programmed by the customer only one time. It includes the array and
logic to support read access and programming. A mechanism for error cor-
rection is provided. Additionally, its pages can be write protected. The
OTP is not part of the Blackfin processor linear memory map. OTP mem-
ory is not accessed directly using the Blackfin processor memory map,
rather, it is accessed through four 32-bit wide registers (OTP_DATA0-3)
which act as the OTP memory read/write buffer.

External Memory

3-50 ADSP-BF54x Blackfin Processor Hardware Reference

Because OTP memory usage is required for usage of the security features
of the ADSP-BF54x processor processor, OTP memory is described in
Chapter 4, One-Time Programmable Memory. Note that OTP memory
has many other uses besides support for security.

External Memory
The external memory space is shown in Figure 3-1 on page 3-4. One of
the memory regions is dedicated to two banks of SDRAM support. The
size of each SDRAM bank is programmable and can range in size from
16M byte to 256M byte. The start address of the bank is 0x0000 0000.

Figure 3-17. L2 Latency With Cache Off

64 BITS

E F G H
A B C D

I J K L

A B C D

INSTRUCTION ALIGNMENT UNIT

E F G H A B C D

INSTRUCTION ALIGNMENT UNIT

T+9 ABCD READY
TO EXECUTE

T+10 A EXECUTES

T+11 B EXECUTES

T+12 C EXECUTES

T+13 D EXECUTES

L2 MEMORY

T+18 E EXECUTES

E F G H I J K L

INSTRUCTION ALIGNMENT UNIT
CYCLES T+9

EACH INSTRUCTION FETCH IS 64 BITS

T

ADSP-BF54x Blackfin Processor Hardware Reference 3-51

Memory

Each of the next four banks contains 64M byte and is dedicated to sup-
port asynchronous memories. The start address of the asynchronous
memory bank is 0x2000 0000.

Memory Protection and Properties
This section describes the memory management unit (MMU), memory
pages, CPLB management, MMU management, and CPLB registers.

Memory Management Unit
The Blackfin processor contains a page-based memory management unit
(MMU). This mechanism provides control over cacheability of memory
ranges, as well as management of protection attributes at page level. The
MMU provides great flexibility in allocating memory and I/O resources
between tasks, with complete control over access rights and cache
behavior.

The MMU is implemented as two 16-entry content addressable memory
(CAM) blocks. Each entry is referred to as a cacheability protection looka-
side buffer (CPLB) descriptor. When enabled, every valid entry in the
MMU is examined on any fetch, load, or store operation to determine
whether there is a match between the address being requested and the page
described by the CPLB entry. If a match occurs, the cacheability and pro-
tection attributes contained in the descriptor are used for the memory
transaction with no additional cycles added to the execution of the
instruction.

Because L1 memories are separated into instruction and data memories,
the CPLB entries are also divided between instruction and data CPLBs.
Sixteen CPLB entries are used for instruction fetch requests; these are
called ICPLBs. Another sixteen CPLB entries are used for data transac-
tions; these are called DCPLBs. The ICPLBs and DCPLBs are enabled by
setting the appropriate bits in the L1 instruction memory Control

Memory Protection and Properties

3-52 ADSP-BF54x Blackfin Processor Hardware Reference

(IMEM_CONTROL) and L1 data memory control (DMEM_CONTROL) registers,
respectively. These registers are shown in Figure 3-2 on page 3-9 and
Figure 3-9 on page 3-28.

Each CPLB entry consists of a pair of 32-bit values. For instruction
fetches:

• ICPLB_ADDR[n] defines the start address of the page described by
the CPLB descriptor.

• ICPLB_DATA[n] defines the properties of the page described by the
CPLB descriptor.

For data operations:

• DCPLB_ADDR[m] defines the start address of the page described by
the CPLB descriptor.

• DCPLB_DATA[m] defines the properties of the page described by the
CPLB descriptor.

There are two default CPLB descriptors for data accesses to the scratchpad
data memory and to the system and core MMR space. These default
descriptors define the above space as non-cacheable, so that additional
CPLBs do not need to be set up for these regions of memory.

 If valid CPLBs are set up for this space, the default CPLBs are
ignored.

ADSP-BF54x Blackfin Processor Hardware Reference 3-53

Memory

Memory Pages
The 4G byte address space of the processor can be divided into smaller
ranges of memory or I/O referred to as memory pages. Every address
within a page shares the attributes defined for that page. The architecture
supports four different page sizes:

• 1K byte

• 4K byte

• 1M byte

• 4M byte

Different page sizes provide a flexible mechanism for matching the map-
ping of attributes to different kinds of memory and I/O.

Memory Page Attributes

Each page is defined by a two-word descriptor, consisting of an address
descriptor word xCPLB_ADDR[n] and a properties descriptor word
xCPLB_DATA[n]. The address descriptor word provides the base address of
the page in memory. Pages must be aligned on page boundaries that are an
integer multiple of their size. For example, a 4M byte page must start on
an address divisible by 4M byte; whereas a 1K byte page can start on any
1K byte boundary. The second word in the descriptor specifies the other
properties or attributes of the page. These properties include:

• Page size

• 1K byte, 4K byte, 1M byte, 4M byte

• Cacheable/non-cacheable
Accesses to this page use the L1 cache or bypass the cache.
If cacheable: write-through/write-back data writes propagate
directly to memory or are deferred until the cache line is reallo-
cated. If write-through, allocate on read-only, or read and write.

Memory Protection and Properties

3-54 ADSP-BF54x Blackfin Processor Hardware Reference

• Dirty/modified
The data memory in this page has changed since the CPLB was last
loaded.

• Supervisor write access permission
Enables or disables writes to this page when in supervisor mode.
Data pages only.

• User write access permission
Enables or disables writes to this page when in user mode.
Data pages only

• User read access permission
Enables or disables reads from this page when in user mode

• Valid
Check this bit to determine whether this is valid CPLB data

• Lock
Keep this entry in MMR; do not participate in CPLB replacement
policy.

Page Descriptor Table
For memory accesses to utilize the cache when CPLBs are enabled for
instruction access, data access, or both, a valid CPLB entry must be avail-
able in an MMR pair. The MMR storage locations for CPLB entries are
limited to 16 descriptors for instruction fetches and 16 descriptors for
data load and store operations.

For small and/or simple memory models, it may be possible to define a set
of CPLB descriptors that fit into these 32 entries, cover the entire address-
able space, and never need to be replaced. This type of definition is
referred to as a static memory management model.

ADSP-BF54x Blackfin Processor Hardware Reference 3-55

Memory

However, operating environments commonly define more CPLB descrip-
tors to cover the addressable memory and I/O spaces than can fit into the
available on-chip CPLB MMRs. When this happens, a memory-based
data structure, called a page descriptor table, is used; in it can be stored all
the potentially required CPLB descriptors. The specific format for the
page descriptor table is not defined as part of the Blackfin processor archi-
tecture. Different operating systems, which have different memory
management models, can implement page descriptor table structures that
are consistent with the OS requirements. This allows adjustments to be
made between the level of protection afforded versus the performance
attributes of the memory-management support routines.

CPLB Management
When the Blackfin processor issues a memory operation for which no
valid CPLB (cacheability protection look aside buffer) descriptor exists in
an MMR pair, an exception occurs that places the processor into supervi-
sor mode and vectors to the MMU exception handler (see “System
Interrupts” on page 6-1 for more information). The handler is typically
part of the operating system (OS) kernel that implements the CPLB
replacement policy.

 Before CPLBs are enabled, valid CPLB descriptors must be in place
for both the page descriptor table and the MMU exception han-
dler. The LOCK bits of these CPLB descriptors are commonly set so
they are not inadvertently replaced in software.

The handler uses the faulting address to index into the page descriptor
table structure to find the correct CPLB descriptor data to load into one of
the on-chip CPLB register pairs. If all on-chip registers contain valid
CPLB entries, the handler selects one of the descriptors to be replaced,
and the new descriptor information is loaded. Before loading new descrip-
tor data into any CPLBs, the corresponding group of 16 CPLBs must be
disabled using:

Memory Protection and Properties

3-56 ADSP-BF54x Blackfin Processor Hardware Reference

• The enable DCPLB (ENDCPLB) bit in the DMEM_CONTROL register for
data descriptors, or

• The enable ICPLB (ENICPLB) bit in the IMEM_CONTROL register for
instruction descriptors

The CPLB replacement policy and algorithm used are the responsibility of
the system MMU exception handler. This policy, which is dictated by the
characteristics of the operating system, usually implements a modified
LRU (least recently used) policy, a round-robin scheduling method, or
pseudo random replacement.

After the new CPLB descriptor is loaded, the exception handler returns,
and the faulting memory operation is restarted. This operation should
now find a valid CPLB descriptor for the requested address, and it should
proceed normally.

A single instruction may generate an instruction fetch as well as one or
two data accesses. It is possible that more than one of these memory oper-
ations references data for which there is no valid CPLB descriptor in an
MMR pair. In this case, the exceptions are prioritized and serviced in this
order:

• Instruction page miss

• A page miss on DAG0

• A page miss on DAG1

MMU Application
Memory management is an optional feature in the Blackfin processor
architecture. Its use is predicated on the system requirements of a given
application. Upon reset, all CPLBs are disabled, and the memory manage-
ment unit (MMU) is not used.

ADSP-BF54x Blackfin Processor Hardware Reference 3-57

Memory

If all L1 memory is configured as SRAM, then the data and instruction
MMU functions are optional, depending on the application’s need for
protection of memory spaces either between tasks or between user and
supervisor modes. To protect memory between tasks, the operating system
can maintain separate tables of instruction and/or data memory pages
available for each task and make those pages visible only when the relevant
task is running. When a task switch occurs, the operating system can
ensure the invalidation of any CPLB descriptors on chip that should not
be available to the new task. It can also preload descriptors appropriate to
the new task.

For many operating systems, the application program is run in user mode
while the operating system and its services run in supervisor mode. It is
desirable to protect code and data structures used by the operating system
from inadvertent modification by a running user mode application. This
protection can be achieved by defining CPLB descriptors for protected
memory ranges that allow write access only when in supervisor mode. If a
write to a protected memory region is attempted while in user mode, an
exception is generated before the memory is modified. Optionally, the
user mode application may be granted read access for data structures that
are useful to the application. Even supervisor mode functions can be
blocked from writing some memory pages that contain code that is not
expected to be modified. Because CPLB entries are MMRs that can be
written only while in supervisor mode, user programs cannot gain access
to resources protected in this way.

If either the L1 instruction memory or the L1 data memory is configured
partially or entirely as cache, the corresponding CPLBs must be enabled.
When an instruction generates a memory request and the cache is enabled,
the processor first checks the ICPLBs to determine whether the address
requested is in a cacheable address range. If no valid ICPLB entry in an
MMR pair corresponds to the requested address, an MMU exception is
generated to obtain a valid ICPLB descriptor to determine whether the
memory is cacheable or not. As a result, if the L1 instruction memory is
enabled as cache, then any memory region that contains instructions must

Memory Protection and Properties

3-58 ADSP-BF54x Blackfin Processor Hardware Reference

have a valid ICPLB descriptor defined for it. These descriptors must either
reside in MMRs at all times or be resident in a memory-based page
descriptor table that is managed by the MMU exception handler. Like-
wise, if either or both L1 data banks are configured as cache, all potential
data memory ranges must be supported by DCPLB descriptors.

 Before caches are enabled, the MMU and its supporting data struc-
tures must be set up and enabled.

Examples of Protected Memory Regions
In Figure 3-18, a starting point is provided for basic CPLB allocation for
instruction and data CPLBs. Note some ICPLBs and DCPLBs have com-
mon descriptors for the same address space.

Figure 3-18. Examples of Protected Memory Regions

L1 INSTRUCTION: NON-CACHEABLE
1 MB PAGE

INSTRUCTION CPLB SETUP

DATA CPLB SETUP

SDRAM: CACHEABLE
EIGHT 4 MB PAGES

ASYNC: NON-CACHEABLE
ONE 4 MB PAGE

ASYNC: CACHEABLE
TWO 4 MB PAGES

L1 DATA: NON-CACHEABLE
ONE 4 MB PAGE

SDRAM: CACHEABLE
EIGHT 4 MB PAGES

ASYNC: NON-CACHEABLE
ONE 4 MB PAGE

ASYNC: CACHEABLE
ONE 4 MB PAGE

L2 MEMORY: CACHEABLE
1 MB PAGE

L2 MEMORY: CACHEABLE
1 MB PAGE

ADSP-BF54x Blackfin Processor Hardware Reference 3-59

Memory

ICPLB Data Registers (ICPLB_DATAx)
Figure 3-19 describes the ICPLB data registers. Table 3-6 lists the ICPLB
data register memory-mapped addresses.

 To ensure proper behavior and future compatibility, all reserved
bits in this register must be se t to 0 whenever this register is
written.

Figure 3-19. ICPLB Data Registers

ICPLB Data Registers (ICPLB_DATAx)

00 - 1K byte page size
01 - 4K byte page size
10 - 1 M byte page size
11 - 4 M byte page size

PAGE_SIZE[1:0]

Reset = 0x0000 0000

CPLB_LOCK

CPLB_VALID

CPLB_L1_CHBL

Clear this bit whenever L1 memory
is configured as SRAM
0 - Non-cacheable in L1
1 - Cacheable in L1

0 - Invalid (disabled) CPLB
 entry
1 - Valid (enabled) CPLB
 entry

Can be used by software in
CPLB replacement algorithms
0 - Unlocked, CPLB entry can

be replaced
1 - Locked, CPLB entry

should not be replaced

0 - User mode read access
generates protection
violation exception

1 - User mode read access
permitted

CPLB_USER_RD

CPLB_LRUPRIO
See “Instruction Cache Locking by Line” on page 3-20
0 - Low importance
1 - High importance

For memory-
mapped
addresses, see
Table 3-6.

CPLB_MEM_LEV

Determines line buffer. See “Line-Fill Buffer”
on page 3-18 and Figure 3-3 on page 3-14.
This bit has no effect on L1 memory pages.
0 - High priority (usually best for on-chip L2
pages.
1 - Low priority (usually best for off-chip L2
pages.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Memory Protection and Properties

3-60 ADSP-BF54x Blackfin Processor Hardware Reference

Table 3-6. ICPLB Data Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

ICPLB_DATA0 0xFFE0 1200

ICPLB_DATA1 0xFFE0 1204

ICPLB_DATA2 0xFFE0 1208

ICPLB_DATA3 0xFFE0 120C

ICPLB_DATA4 0xFFE0 1210

ICPLB_DATA5 0xFFE0 1214

ICPLB_DATA6 0xFFE0 1218

ICPLB_DATA7 0xFFE0 121C

ICPLB_DATA8 0xFFE0 1220

ICPLB_DATA9 0xFFE0 1224

ICPLB_DATA10 0xFFE0 1228

ICPLB_DATA11 0xFFE0 122C

ICPLB_DATA12 0xFFE0 1230

ICPLB_DATA13 0xFFE0 1234

ICPLB_DATA14 0xFFE0 1238

ICPLB_DATA15 0xFFE0 123C

ADSP-BF54x Blackfin Processor Hardware Reference 3-61

Memory

DCPLB Data Registers (DCPLB_DATAx)
Figure 3-20 shows the DCPLB data registers. Table 3-7 lists the DCPLB
data register memory-mapped addresses.

Figure 3-20. DCPLB Data Registers

DCPLB Data Registers (DCPLB_DATAx)

00 - 1K byte page size
01 - 4K byte page size
10 - 1M byte page size
11 - 4M byte page size

PAGE_SIZE[1:0]

Reset = 0x0000 0000

CPLB_DIRTY

CPLB_WT
Operates only in cache mode
0 - Write back
1 - Write through
CPLB_L1_CHBL
Clear this bit when L1 memory is configured
as SRAM
0 - Non-cacheable in L1
1 - Cacheable in L1

CPLB_L1_AOW
Valid only if write
through cacheable
(CPLB_VALID = 1,
CPLB_WT = 1)
0 - Allocate cache lines

on reads only
1 - Allocate cache lines

on reads and writes

Valid only if write back cacheable (CPLB_VALID = 1, CPLB_WT = 0, and
CPLB_L1_CHBL = 1)
0 - Clean
1 - Dirty
A protection violation exception is generated on store accesses to this page
when this bit is 0. The state of this bit is modified only by writes to this register.
The exception service routine must set this bit.

CPLB_LOCK

CPLB_USER_WR

CPLB_VALID
0 - Invalid (disabled) CPLB entry
1 - Valid (enabled) CPLB entry

Can be used by software in
CPLB replacement algorithms
0 - Unlocked, CPLB entry can

be replaced
1 - Locked, CPLB entry should

not be replaced

0 - User mode read access
generates protection
violation exception

1 - User mode read access
permitted

CPLB_USER_RD

0 - User mode write access
generates protection
violation exception

1 - User mode write access
permitted

CPLB_SUPV_WR
0 - Supervisor mode write

access generates protection
violation exception

1 - Supervisor mode write
access permitted

For memory-
mapped
addresses, see
Table 3-7.

CPLB_MEM_LEV
Determines line fill and write buffers. See “Line-Fill
Buffer” on page 3-18 and Figure 3-10 on page 3-32.
This bit has no effect on L1 memory pages.
0 - High priority (usually best for on-chip L2
 pages.
1 - Low priority (usually best for off-chip L2
 pages.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Memory Protection and Properties

3-62 ADSP-BF54x Blackfin Processor Hardware Reference

 To ensure proper behavior and future compatibility, all reserved
bits in this register must be set to 0 whenever this register is
written.

Table 3-7. DCPLB Data Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DCPLB_DATA0 0xFFE0 0200

DCPLB_DATA1 0xFFE0 0204

DCPLB_DATA2 0xFFE0 0208

DCPLB_DATA3 0xFFE0 020C

DCPLB_DATA4 0xFFE0 0210

DCPLB_DATA5 0xFFE0 0214

DCPLB_DATA6 0xFFE0 0218

DCPLB_DATA7 0xFFE0 021C

DCPLB_DATA8 0xFFE0 0220

DCPLB_DATA9 0xFFE0 0224

DCPLB_DATA10 0xFFE0 0228

DCPLB_DATA11 0xFFE0 022C

DCPLB_DATA12 0xFFE0 0230

DCPLB_DATA13 0xFFE0 0234

DCPLB_DATA14 0xFFE0 0238

DCPLB_DATA15 0xFFE0 023C

ADSP-BF54x Blackfin Processor Hardware Reference 3-63

Memory

DCPLB Address Registers (DCPLB_ADDRx)
Figure 3-21 shows the DCPLB address registers. Table 3-8 lists the
DCPLB address register memory-mapped addresses.

Figure 3-21. DCPLB Address Registers

Table 3-8. DCPLB Address Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DCPLB_ADDR0 0xFFE0 0100

DCPLB_ADDR1 0xFFE0 0104

DCPLB_ADDR2 0xFFE0 0108

DCPLB_ADDR3 0xFFE0 010C

DCPLB_ADDR4 0xFFE0 0110

DCPLB_ADDR5 0xFFE0 0114

DCPLB_ADDR6 0xFFE0 0118

DCPLB_ADDR7 0xFFE0 011C

DCPLB_ADDR8 0xFFE0 0120

DCPLB_ADDR9 0xFFE0 0124

DCPLB Address Registers (DCPLB_ADDRx)

Upper Bits of Address for
Match[21:6]

Reset = 0x0000 0000

Upper Bits of Address for
Match[5:0]

For memory-
mapped
addresses, see
Table 3-8.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Memory Protection and Properties

3-64 ADSP-BF54x Blackfin Processor Hardware Reference

ICPLB Address Registers (ICPLB_ADDRx)
Figure 3-22 shows the ICPLB address registers. Table 3-9 lists the ICPLB
address register memory-mapped addresses.

DCPLB_ADDR10 0xFFE0 0128

DCPLB_ADDR11 0xFFE0 012C

DCPLB_ADDR12 0xFFE0 0130

DCPLB_ADDR13 0xFFE0 0134

DCPLB_ADDR14 0xFFE0 0138

DCPLB_ADDR15 0xFFE0 013C

Figure 3-22. ICPLB Address Registers

Table 3-8. DCPLB Address Register Memory-Mapped Addresses (Cont’d)

Register Name Memory-Mapped Address

ICPLB Address Registers (ICPLB_ADDRx)

Upper Bits of Address for
Match[21:6]

Reset = 0x0000 0000

Upper Bits of Address for
Match[5:0]

For memory-
mapped
addresses, see
Table 3-9.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADSP-BF54x Blackfin Processor Hardware Reference 3-65

Memory

CPLB Status Registers
Bits in the DCPLB status register (DCPLB_STATUS) and ICPLB status
register (ICPLB_STATUS) identify the CPLB entry that triggered
CPLB-related exceptions. The exception service routine can infer the
cause of the fault by examining the CPLB entries.

 The DCPLB_STATUS and ICPLB_STATUS registers are valid only while
in the faulting exception service routine.

Table 3-9. ICPLB Address Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

ICPLB_ADDR0 0xFFE0 1100

ICPLB_ADDR1 0xFFE0 1104

ICPLB_ADDR2 0xFFE0 1108

ICPLB_ADDR3 0xFFE0 110C

ICPLB_ADDR4 0xFFE0 1110

ICPLB_ADDR5 0xFFE0 1114

ICPLB_ADDR6 0xFFE0 1118

ICPLB_ADDR7 0xFFE0 111C

ICPLB_ADDR8 0xFFE0 1120

ICPLB_ADDR9 0xFFE0 1124

ICPLB_ADDR10 0xFFE0 1128

ICPLB_ADDR11 0xFFE0 112C

ICPLB_ADDR12 0xFFE0 1130

ICPLB_ADDR13 0xFFE0 1134

ICPLB_ADDR14 0xFFE0 1138

ICPLB_ADDR15 0xFFE0 113C

Memory Protection and Properties

3-66 ADSP-BF54x Blackfin Processor Hardware Reference

DCPLB Status Register (DCPLB_STATUS)

The FAULT_DAG, FAULT_USERSUPV, and FAULT_RW bits in the DCPLB status
register (DCPLB_STATUS) identify the CPLB entry that triggered the
CPLB-related exception (see Figure 3-23).

ICPLB Status Register (ICPLB_STATUS)

The FAULT_USERSUPV bit in the ICPLB status register (ICPLB_STATUS) is
used to identify the CPLB entry that triggered the CPLB-related exception
(see Figure 3-24).

Figure 3-23. DCPLB Status Register

DCPLB Status Register (DCPLB_STATUS)

0 - Access was read
1 - Access was write

FAULT_RW

Reset = Undefined

FAULT[15:0]

FAULT_ILLADDR

0 - No fault
1 - Attempted access to nonexistent memory

FAULT_DAG

0 - Access was made by DAG0
1 - Access was made by DAG1

Each bit indicates the hit/miss
status of the associated
CPLB entry

0 - Access was made in user
mode

1 - Access was made in
supervisor mode

FAULT_USERSUPV

0xFFE0 0008

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X 0 X X

ADSP-BF54x Blackfin Processor Hardware Reference 3-67

Memory

CPLB Fault Address Registers
The DCPLB fault address register (DCPLB_FAULT_ADDR) and ICPLB fault
address register (ICPLB_FAULT_ADDR) hold the address that caused a fault in
the L1 data memory or L1 instruction memory, respectively.

 The DCPLB_FAULT_ADDR and ICPLB_FAULT_ADDR registers are valid
only while in the faulting exception service routine.

Figure 3-24. ICPLB Status Register

ICPLB Status Register (ICPLB_STATUS)

Reset = Undefined

FAULT[15:0]

FAULT_ILLADDR

0 - No fault
1 - Attempted access to nonexistent memory

Each bit indicates hit/miss
status of associated CPLB
entry

0 - Access was made in
user

mode
1 - Access was made in

supervisor mode

FAULT_USERSUPV

0xFFE0 1008

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X 0 X X

Memory Protection and Properties

3-68 ADSP-BF54x Blackfin Processor Hardware Reference

DCPLB Fault Address Register (DCPLB_FAULT_ADDR)

Figure 3-25 lists the DCPLB fault address register.

Figure 3-25. DCPLB Fault Address Register

DCPLB Address Register (DCPLB_FAULT_ADDR)

Reset = Undefined

FAULT_ADDR[15:0]
Data address that has caused
a fault in the L1 data memory

FAULT_ADDR[31:16]
Data address that has caused
a fault in L1 data memory

0xFFE0 000C
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

ADSP-BF54x Blackfin Processor Hardware Reference 3-69

Memory

ICPLB Fault Address Register (ICPLB_FAULT_ADDR)

Figure 3-26 lists the ICPLB fault address register.

Memory Transaction Model
Both internal and external memory locations are accessed in little endian
byte order. Figure 3-27 shows a data word stored in register R0 and in
memory at address location addr. B0 refers to the least significant byte of
the 32-bit word.

Figure 3-26. ICPLB Fault Address Register

Figure 3-27. Data Stored in Little Endian Order

ICPLB Fault Address Register (ICPLB_FAULT_ADDR)

Reset = Undefined

FAULT_ADDR[15:0]

FAULT_ADDR[31:16]
Instruction address that has
caused a fault in the L1
instruction memory

Instruction address that has
caused a fault in the L1
instruction memory

0xFFE0 100C
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

R0

DATA IN REGISTER DATA IN MEMORY

B3 B2 B1 B0 B3 B2 B1 B0

addr+3 addr+2 addr+1 addr

Load/Store Operation

3-70 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 3-28 shows 16- and 32-bit instructions stored in memory. The dia-
gram on the left shows 16-bit instructions stored in memory with the
most significant byte of the instruction stored in the high address (byte B1
in addr+1) and the least significant byte in the low address (byte B0 in
addr).

The diagram on the right shows 32-bit instructions stored in memory.
Note the most significant 16-bit half word of the instruction (bytes B3
and B2) is stored in the low addresses (addr+1 and addr), and the least sig-
nificant half word (bytes B1 and B0) is stored in the high addresses
(addr+3 and addr+2).

Load/Store Operation
The Blackfin processor architecture supports the RISC concept of a
load/store machine. This machine is the characteristic in RISC architec-
tures whereby memory operations (loads and stores) are intentionally
separated from the arithmetic functions that use the targets of the memory
operations. The separation is made because memory operations, particu-

Figure 3-28. Instructions Stored in Little Endian Order

16-BIT INSTRUCTIONS IN MEMORY 32-BIT INSTRUCTIONS IN MEMORY

B1 B0 B1 B0 B1 B0 B3 B2

addr+3 addr+2 addr+1 addraddr+3 addr+2 addr+1 addr

16-BIT INSTRUCTIONS 32-BIT INSTRUCTIONS

B1 B0 B3 B2 B1 B0

INST 0 INST 0

ADSP-BF54x Blackfin Processor Hardware Reference 3-71

Memory

larly instructions that access off-chip memory or I/O devices, often take
multiple cycles to complete and would normally halt the processor, pre-
venting an instruction execution rate of one instruction per cycle.

Separating load operations from their associated arithmetic functions
allows compilers or assembly language programmers to place unrelated
instructions between the load and its dependent instructions. The unre-
lated instructions execute in parallel while the processor waits for the
memory system to return the data. If the value is returned before the
dependent operation reaches the execution stage of the pipeline, the oper-
ation completes in one cycle.

In write operations, the store instruction is considered complete as soon as
it executes, even though many cycles may execute before the data is actu-
ally written to an external memory or I/O location. This arrangement
allows the processor to execute one instruction per clock cycle, and it
implies that the synchronization between when writes complete and when
subsequent instructions execute is not guaranteed. Moreover, this syn-
chronization is considered unimportant in the context of most memory
operations.

Interlocked Pipeline
In the execution of instructions, the Blackfin processor architecture imple-
ments an interlocked pipeline. When a load instruction executes, the
target register of the read operation is marked as busy until the value is
returned from the memory system. If a subsequent instruction tries to
access this register before the new value is present, the pipeline will stall
until the memory operation completes. This stall guarantees that instruc-
tions that require the use of data resulting from the load do not use the
previous or invalid data in the register, even though instructions are
allowed to start execution before the memory read completes.

Load/Store Operation

3-72 ADSP-BF54x Blackfin Processor Hardware Reference

This mechanism allows the execution of independent instructions between
the load and the instructions that use the read target without requiring the
programmer or compiler to know how many cycles are actually needed for
the memory-read operation to complete. If the instruction immediately
following the load uses the same register, it simply stalls until the value is
returned. Consequently, it operates as the programmer expects. However,
if four other instructions are placed after the load but before the instruc-
tion that uses the same register, all of them execute, and the overall
throughput of the processor is improved.

Ordering of Loads and Stores
The relaxation of synchronization between memory access instructions
and their surrounding instructions is referred to as weak ordering of loads
and stores. Weak ordering implies that the timing of the actual comple-
tion of the memory operations—even the order in which these events
occur—may not align with how they appear in the sequence of the pro-
gram source code. All that is guaranteed is:

• Load operations will complete before the returned data is used by a
subsequent instruction.

• Load operations using data previously written will use the updated
values.

• Store operations will eventually propagate to their ultimate
destination.

Because of weak ordering, the memory system is allowed to prioritize
reads over writes. In this case, a write that is queued anywhere in the pipe-
line, but not completed, may be deferred by a subsequent read operation,
and the read is allowed to be completed before the write. Reads are priori-
tized over writes because the read operation has a dependent operation
waiting on its completion, whereas the processor considers the write oper-
ation complete, and the write does not stall the pipeline if it takes more
cycles to propagate the value out to memory. This behavior could cause a

ADSP-BF54x Blackfin Processor Hardware Reference 3-73

Memory

read that occurs in the program source code after a write in the program
flow to actually return its value before the write is completed. This order-
ing provides significant performance advantages in the operation of most
memory instructions. However, it can cause side effects that the program-
mer must be aware of to avoid improper system operation.

When writing to or reading from non memory locations such as I/O
device registers, the order of how read and write operations complete is
often significant. For example, a read of a status register may depend on a
write to a control register. If the address is the same, the read would return
a value from the write buffer rather than from the actual I/O device regis-
ter, and the order of the read and write at the register may be reversed.
Both these effects could cause undesirable side effects in the intended
operation of the program and peripheral. To ensure that these effects do
not occur in code that requires precise (strong) ordering of load and store
operations, synchronization instructions (CSYNC or SSYNC) should be used.

Synchronizing Instructions
When strong ordering of loads and stores is required, as may be the case
for sequential writes to an I/O device for setup and control, use the core or
system synchronization instructions, CSYNC or SSYNC, respectively.

The CSYNC instruction ensures all pending core operations have completed
and the core buffer (between the processor core and the L1 memories) is
flushed before proceeding to the next instruction. Pending core operations
may include any pending interrupts, speculative states (such as branch
predictions), or exceptions.

Consider the following example code sequence:

IF CC JUMP away_from_here

csync;

r0 = [p0];

away_from_here:

Load/Store Operation

3-74 ADSP-BF54x Blackfin Processor Hardware Reference

In the example code, the CSYNC instruction ensures:

• The conditional branch (IF CC JUMP away_from_here) is resolved,
forcing stalls into the execution pipeline until the condition is
resolved and any entries in the processor store buffer have been
flushed.

• All pending interrupts or exceptions have been processed before
CSYNC completes.

• The load is not fetched from memory speculatively.

The SSYNC instruction ensures that all side effects of previous operations
are propagated out through the interface between the L1 memories and
the rest of the chip. In addition to performing the core synchronization
functions of CSYNC, the SSYNC instruction flushes any write buffers
between the L1 memory and the system domain and generates a sync
request to the system that requires acknowledgement before SSYNC
completes.

Speculative Load Execution
Load operations from memory do not change the state of the memory
value. Consequently, issuing a speculative memory-read operation for a
subsequent load instruction usually has no undesirable side effect. In some
code sequences, such as a conditional branch instruction followed by a
load, performance may be improved by speculatively issuing the read
request to the memory system before the conditional branch is resolved.
For example,

IF CC JUMP away_from_here

RO = [P2];

…

away_from_here:

ADSP-BF54x Blackfin Processor Hardware Reference 3-75

Memory

If the branch is taken, then the load is flushed from the pipeline, and any
results that are in the process of being returned can be ignored. Con-
versely, if the branch is not taken, the memory returns the correct value
earlier than if the operation were stalled until the branch condition was
resolved.

However, in the case of an I/O device, this could cause an undesirable side
effect for a peripheral that returns sequential data from a FIFO or from a
register that changes value based on the number of reads that are
requested. To avoid this effect, use synchronizing instructions (CSYNC or
SSYNC) to guarantee the correct behavior between read operations.

Store operations never access memory speculatively, because this could
cause modification of a memory value before it is determined whether the
instruction should have executed.

Conditional Load Behavior
The synchronization instructions force all speculative states to be resolved
before a load instruction initiates a memory reference. However, the load
instruction itself may generate more than one memory-read operation,
because it is interruptible. If an interrupt of sufficient priority occurs
between the completion of the synchronization instruction and the com-
pletion of the load instruction, the sequencer cancels the load instruction.
After execution of the interrupt, the interrupted load is executed again.
This approach minimizes interrupt latency. However, it is possible that a
memory-read cycle was initiated before the load was canceled, and this
would be followed by a second read operation after the load is executed
again. For most memory accesses, multiple reads of the same memory
address have no side effects. However, for some memory-mapped devices,
such as peripheral data FIFOs, reads are destructive. Each time the device
is read, the FIFO advances, and the data cannot be recovered and re-read.

Working With Memory

3-76 ADSP-BF54x Blackfin Processor Hardware Reference

 When accessing memory-mapped devices that have state dependen-
cies on the number of read or write operations on a given address
location, disable interrupts before performing the load or store
operation.

Working With Memory
This section contains information about alignment of data in memory and
memory operations that support semaphores between tasks. It also con-
tains a brief discussion of MMR registers and a core MMR programming
example.

Alignment
Nonaligned memory operations are not directly supported. A nonaligned
memory reference generates a misaligned access exception event (see “Sys-
tem Interrupts” on page 6-1). However, because some data streams (such
as 8-bit video data) can properly be nonaligned in memory, alignment
exceptions may be disabled by using the DISALGNEXCPT instruction. More-
over, some instructions in the quad 8-bit group automatically disable
alignment exceptions.

Cache Coherency
For shared data, software must provide cache coherency support as
required. To accomplish this, use the FLUSH instruction (see “Data Cache
Control Instructions” on page 3-41), and/or explicit line invalidation
through the core MMRs (see “Data Test Registers” on page 3-42).

ADSP-BF54x Blackfin Processor Hardware Reference 3-77

Memory

Atomic Operations
The processor provides a single atomic operation: TESTSET. Atomic opera-
tions are used to provide non interruptible memory operations in support
of semaphores between tasks. The TESTSET instruction loads an indirectly
addressed memory half word, tests whether the low byte is zero, and then
sets the most significant bit (MSB) of the low memory byte without
affecting any other bits. If the byte is originally zero, the instruction sets
the CC bit. If the byte is originally nonzero, the instruction clears the CC
bit. The sequence of this memory transaction is atomic—hardware bus
locking ensures that no other memory operation can occur between the
test and set portions of this instruction. The TESTSET instruction can be
interrupted by the core. If this happens, the TESTSET instruction is exe-
cuted again upon return from the interrupt.

The TESTSET instruction can address the entire 4 Gbyte memory space,
but should not target on-core memory (L1 or MMR space) since atomic
access to this memory is not supported.

The memory architecture always treats atomic operations as cache inhib-
ited accesses even if the CPLB descriptor for the address indicates cache
enabled access. However, executing TESTSET operations on cacheable
regions of memory is not recommended since the architecture cannot
guarantee a cacheable location of memory is coherent when the TESTSET
instruction is executed.

Working With Memory

3-78 ADSP-BF54x Blackfin Processor Hardware Reference

Memory-Mapped Registers
The MMR reserved space is located at the top of the memory space
(0xFFC0 0000). This region is defined as non-cacheable and is divided
between the system MMRs (0xFFC0 0000–0xFFE0 0000) and core
MMRs (0xFFE0 0000–0xFFFF FFFF).

 If strong ordering is required, place a synchronization instruction
after stores to MMRs. For more information, see “Load/Store
Operation” on page 3-70.

All MMRs are accessible only in supervisor mode. Access to MMRs in user
mode generates a protection violation exception. Attempts to access MMR
space using DAG1 will generate a protection violation exception.

All core MMRs are read and written using 32-bit aligned accesses. How-
ever, some MMRs have fewer than 32 bits defined. In this case, the
unused bits are reserved. System MMRs may be 16 bits.

Accesses to nonexistent MMRs generate an illegal access exception. The
system ignores writes to read-only MMRs.

Appendix A provides a summary of all core MMRs. Appendix B provides a
summary of all system MMRs.

Core MMR Programming Code Example
Core MMRs may be accessed only as aligned 32-bit words. Nonaligned
access to MMRs generates an exception event. Listing 3-1 shows the
instructions required to manipulate a generic core MMR.

ADSP-BF54x Blackfin Processor Hardware Reference 3-79

Memory

Listing 3-1. Core MMR Programming

CLI R0; /* stop interrupts and save IMASK */

P0 = MMR_BASE; /* 32-bit instruction to load base of MMRs */

R1 = [P0 + TIMER_CONTROL_REG]; /* get value of control reg */

BITSET R1, #N; /* set bit N */

[P0 + TIMER_CONTROL_REG] = R1; /* restore control reg */

CSYNC; /* assures that the control reg is written */

STI R0; /* enable interrupts */

 The CLI instruction saves the contents of the IMASK register and
disables interrupts by clearing IMASK. The STI instruction restores
the contents of the IMASK register, thus enabling interrupts. The
instructions between CLI and STI are not interruptable.

Terminology
The following terminology is used to describe memory.

cache block The smallest unit of memory that is transferred to/from the
next level of memory from/to a cache as a result of a cache miss.

cache hit A memory access that is satisfied by a valid, present entry in the
cache.

cache line Same as cache block. In this chapter, cache line is used for
cache block.

cache miss A memory access that does not match any valid entry in the
cache.

direct-mapped Cache architecture in which each line has only one place in
which it can appear in the cache. Also described as 1-way associative.

Terminology

3-80 ADSP-BF54x Blackfin Processor Hardware Reference

dirty or modified A state bit, stored along with the tag, indicating whether
the data in the data cache line is changed since it was copied from the
source memory and, therefore, needs to be updated in that source
memory.

exclusive, clean The state of a data cache line indicating the line is valid
and the data contained in the line matches that in source memory. The
data in a clean cache line does not need to be written to source memory
before it is replaced.

fully associative Cache architecture in which each line can be placed any-
where in the cache.

index Address portion that is used to select an array element (for example,
a line index).

invalid Describes the state of a cache line. When a cache line is invalid, a
cache line match cannot occur.

least recently used (LRU) algorithm Replacement algorithm, used by
cache, that first replaces lines that have been unused for the longest time.

level 1 (L1) memory Memory that is directly accessed by the core with no
intervening memory subsystems between it and the core.

little endian The native data store format of the Blackfin processor.
Words and half words are stored in memory (and registers) with the least
significant byte at the lowest byte address and the most significant byte in
the highest byte address of the data storage location.

replacement policy The function used by the processor to determine
which line to replace on a cache miss. Often, an LRU algorithm is
employed.

set A group of N-line storage locations in the ways of an N-way cache,
selected by the INDEX field of the address (see Figure 3-4 on page 3-15).

ADSP-BF54x Blackfin Processor Hardware Reference 3-81

Memory

set associative Cache architecture that limits line placement to a number
of sets (or ways).

tag Upper address bits, stored along with the cached data line, to identify
the specific address source in memory that the cached line represents.

valid A state bit, stored with the tag, indicating the corresponding tag and
data are current and correct and can be used to satisfy memory access
requests.

victim A dirty cache line that must be written to memory before it can be
replaced to free space for a cache line allocation.

Way An array of line storage elements in an N-way cache (see Figure 3-4
on page 3-15).

write-back A cache write policy, also known as copyback. The write data
is written only to the cache line. The modified cache line is written to
source memory only when it is replaced. Cache lines are allocated on both
reads and writes.

write-through A cache write policy, also known as store through. The
write data is written to both the cache line and to the source memory. The
modified cache line is not written to the source memory when it is
replaced. Cache lines must be allocated on reads, and may be allocated on
writes (depending on mode).

Terminology

3-82 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 4-1

4 ONE-TIME PROGRAMMABLE
MEMORY

This chapter describes one-time-programmable (OTP) memory features
of the ADSP-BF54x processor Blackfin processor.

This chapter includes the following sections:

• “OTP Memory Overview” on page 4-1

• “Error Correction” on page 4-6

• “OTP Access” on page 4-8

• “OTP Timing Parameters” on page 4-10

• “Callable ROM Functions for OTP ACCESS” on page 4-14

• “Programming and Reading OTP” on page 4-16

• “Write Protecting OTP Memory” on page 4-24

• “Accessing Private OTP Memory” on page 4-26

• “OTP Programming Examples” on page 4-26

OTP Memory Overview
The ADSP-BF54x processor processors include an on-chip, one-time-pro-
grammable memory array which provides 64K bits of non-volatile
memory. This includes the array and logic to support read access and pro-
gramming. A mechanism for error correction is also provided.
Additionally, pages can be write protected.

OTP Memory Map

4-2 ADSP-BF54x Blackfin Processor Hardware Reference

OTP memory can be programmed through various methods, including
software running on the Blackfin processor. The ADSP-BF54x processor
processors provide C and assembly callable functions in the on-chip ROM
to help the developer access the OTP memory.

The one -time-programmable memory is divided into two main regions. A
32K bit “public” unsecured region, which has no access restrictions; and a
32K bit “private” secured region with access restricted to authenticated
code when operating in Secure Mode. For information about these modes,
see “Secure State Machine” on page 16-7.

OTP allows developers to store both public and private data on-chip. A
64K by 1 bit array is available as shown in Figure 4-1. In addition to stor-
ing public and private data, it allows developers to store completely
user-definable data, such as customer ID, product ID, and MAC address.

 The public portion of OTP memory contains many “factory set
only” values. Users are urged to exercise caution when writing to
OTP memory and to consult the OTP memory map for details of
Customer Programmable Settings (CPS) and factory reserved areas
of this memory. See also “Factory Page Settings (FPS)” on
page 17-14 and “Preboot Page Settings (PBS)” on page 17-14.

OTP Memory Map
The OTP is not part of the Blackfin linear memory map. It has a separate
memory map as shown in Figure 4-1 on page 4-3 and Figure 4-2 on
page 4-4. OTP memory is not accessed directly using the Blackfin mem-
ory map; rather, it is accessed through four 32-bit wide registers
(OTP_DATA3-0) which act as the OTP memory read/write buffer.

ADSP-BF54x Blackfin Processor Hardware Reference 4-3

One-Time Programmable Memory

Figure 4-1. One-Time-Programmable (OTP) Public Memory Map

PROTECTION BITS FOR PAGES 0x000 (LSB) THROUGH 0x07F (MSB)

P
U

B
L

IC
 O

T
P

 (
25

6
PA

G
E

S
)

FACTORY RESERVED

PROTECTION BITS FOR PAGES 0x100 (LSB) THROUGH 0x17F (MSB)

PROTECTION BITS FOR PAGES 0x180 (LSB) THROUGH 0x1FF (MSB)

UNIQUE CHIP ID [127:0]

FACTORY RESERVED

Bytes 15:14, Part Number Integer

FACTORY RESERVED

FACTORY RESERVED

FACTORY RESERVED

FACTORY RESERVED

FACTORY RESERVED

FACTORY RESERVED

FACTORY RESERVED

FACTORY RESERVED

CUSTOMER KEY [127:0]

CUSTOMER KEY [255:128]

CUSTOMER KEY [383:256]

RESERVED

RESERVED

UNSECURED GENERAL PURPOSE SPACE

RESERVED

RESERVED

Bytes[15:8], PBS00H

Bytes[15:8], PBS01H

Bytes[15:8], RESERVED PBS003H

RESERVED

UNSECURED ERROR CORRECTION CODE (ECC) SPACE2

PAGE
NAME1

PAGE
ADDRESS BIT 127

128 BIT PAGE

64 BIT UPPER HALF PAGE

BIT 0

PROTECTION BITS FOR PAGES 0x080 (LSB) THROUGH 0x0FF (MSB)

BYTE

Bytes[15:8], PBS002H

0x000

0x001

0x002

0x003

0x004 FPS00

0x005 FPS01

0x006 FPS02

0x007 FPS03

0x008 FPS04

0x009 FPS05

0x00A FPS06

0x00B FPS07

0x00C FPS08

0x00D FPS09

0x00E FPS10

0x00F FPS11

0x10 CPS00

0x11 CPS01

0x12 CPS02

0x13 CPS03

0x14 CPS04

0x15 CPS05

0x16 CPS06

0x17 CPS07

0x18 PBS00

0x19 PSS01

0x1A PBS02

0x1B PBS03

0x0E0 to 0x0FF

0x1C to 0x0DF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

64 BIT LOWER HALF PAGE

Bytes[7:0], PBS00L

Bytes[7:0], RESERVED PBS001U

Bytes[7:0], PBS002L

Bytes[7:0], RESERVED PBS003L

Bytes 12:0, Part Number String3

OTP Memory Map

4-4 ADSP-BF54x Blackfin Processor Hardware Reference

For an OTP memory read, the OTP_DATAx registers contain the 16-byte
result of the OTP memory access. For an OTP memory write, the
OTP_DATAx registers contain 16 bytes of data to be written to the OTP
memory.

The OTP_DATA3-0 registers are organized into a 128 bit page as shown in
Figure 4-3.

Figure 4-2. One-Time-Programmable (OTP) Private Memory Map

Figure 4-3. OTP_DATAx Registers

P
R

IV
A

T
E

 O
T

P
 (

25
6

PA
G

E
S

)

SECURED GENERAL PURPOSE SPACE

SECURED FACTORY RESERVED SPACE

SECURED ERROR CORRECTION CODE (ECC) SPACE1

PAGE
ADDRESS BIT 127

128 BIT PAGE

64 BIT UPPER HALF PAGE

BIT 0

BYTE

0x1E0 to 0x1FF

0x110 to 0x1DF

0x100 to 0x10F

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

64 BIT LOWER HALF PAGE

Footnotes
1. This space should NOT be written by the customer. 8-bit error
correction codes are automatically generated by firmware and
stored in this region.

127 96 95 64 63 32 31 0

BIT 31 BIT 0 BIT 31 BIT 0 BIT 31 BIT 0 BIT 31 BIT 0

OTP_DATA3 OTP_DATA2 OTP_DATA1 OTP_DATA0

ADSP-BF54x Blackfin Processor Hardware Reference 4-5

One-Time Programmable Memory

OTP memory ranges marked as “factory reserved” and “error correction
code space” (see Figure 4-1 on page 4-3 and Figure 4-2 on page 4-4) must
not be programmed by the developer. Customer programmable settings
may be programmed by the developer.

Page-protection bits provide protection for each 128-bit page within the
OTP. By default the OTP array bits are not set, and will read back as zero
values if left unprogrammed. Programmed data values consist of zeroes
and ones; therefore, after programming OTP memory, some bits will
intentionally remain as zero values. The write-protect bits provide protec-
tion for the zero value bits to remain as zeroes and prevent future
programming (inadvertent or malicious) from changing bit values from
zero to one.

Pages 0x10, 0x11 and 0x12 hold the customer public key, which is used
for Lockbox digital signature authentication. Refer to Chapter 16, “Secu-
rity” for more information on Lockbox and how the public key is used.

OTP memory is logically arranged in a sequential set of 128-bit pages.
Each OTP memory address refers to a 128-bit page. The ADSP-BF54x
processor thus provides 512 pages of OTP memory.

To read or program the OTP memory, a set of functions are provided in
the on-chip ROM. These functions include bfrom_OtpRead(),
bfrom_OtpWrite() and bfrom_OtpCommand().

Error Correction

4-6 ADSP-BF54x Blackfin Processor Hardware Reference

Error Correction
Error correction, provided in the on-chip ROM, can be used to ensure
data integrity.

Error correction, when programmed into the OTP, calculates an 8-bit
error correction code (ECC) for each 64-bit data word (half page). When
this word is later read from OTP, its corresponding ECC is also read, and
a data integrity check is performed. If the check fails, the ECC can be used
to attempt error correction on the data word. The error correction algo-
rithm depends on the type of error, as shown in Table 4-1.

Error Correction Policy
1. Error correction requires that the OTP space be written and read in

64-bit widths. Firmware will only support writing or reading half
of an OTP page.

2. Error correction is used to correct data in all pages of OTP space
except the protection pages (0x0 to 0x3) and the ECC pages them-
selves. See “OTP Access” on page 4-8 for more information.

3. Firmware will generate and program the 8-bit ECC fields as
mapped in Table 4-2 and Table 4-3.

Table 4-1. Hamming Code Single Error Corrections, Double Error
Detection

No. of bad bits in
data word

Error(s) Detected? Error(s) Corrected?

0 N/A N/A

1 Yes Yes

2 Yes No

3 or more No No

ADSP-BF54x Blackfin Processor Hardware Reference 4-7

One-Time Programmable Memory

4. The developer is responsible for locking both the data page(s) and
the ECC page(s) after all programming is complete.

5. Pages 0x04 to 0x0F are reserved for factory use. Therefore, pages
0x004 to 0x00F, 0x0E0, and 0x0E1 are locked when devices leave
the Analog Devices Inc. factory.

Table 4-2. Mapping for Storage of Error Correction Codes for Unsecured
OTP Space

Page Byte

15 14 13 12 11 10 9 8

0x0E0 0x007U 0x007L 0x006U 0x006L 0x005U 0x005L 0x004U 0x004L

0x0E1 0x00FU 0x00FL 0x00EU 0x00EL 0x00DU 0x00DL 0x00CU 0x00CL

0x0E2 0x017U 0x017L 0x016U 0x016L 0x015U 0x015L 0x014U 0x014L

....

0x0FB 0x0DFU 0x0DFL 0x0DEU 0x0DEL 0x0DDU 0x0DDL 0x0DCU 0x0DCL

Page 7 6 5 4 3 2 1 0

0x0E0 Unused Unused Unused Unused Unused Unused Unused Unused

0x0E1 0x00BU 0x00BL 0x00AU 0x00AL 0x009U 0x009L 0x008U 0x008L

0x0E2 0x013U 0x013L 0x012U 0x012L 0x011U 0x011L 0x010U 0x010L

....

0x0FB 0x0DBU 0x0DBL 0x0DAU 0x0DAL 0x0D9U 0x0D9L 0x0D8U 0x0D8L

OTP Access

4-8 ADSP-BF54x Blackfin Processor Hardware Reference

OTP Access
The ADSP-BF54x processor on-chip ROM contains the functions for ini-
tializing OTP timing parameters, reading the OTP memory, and
programming the OTP memory. These functions include
bfrom_OtpRead(), bfrom_OtpWrite() and bfrom_OtpCommand().

 These functions are callable from C or assembly application code.
Use only these functions for accessing OTP memory. Directly
accessing memory locations within OTP memory by other means is
not supported.

Table 4-3. Mapping for Storage of Error Correction Codes for Secured
OTP Space

Page
Byte

15 14 13 12 11 10 9 8

0x1E0 0x107U 0x107L 0x106U 0x106L 0x105U 0x105L 0x104U 0x104L

0x1E1 0x10FU 0x10FL 0x10EU 0x10EL 0x10DU 0x10DL 0x10CU 0x10CL

0x1E2 0x117U 0x117L 0x116U 0x116L 0x115U 0x115L 0x114U 0x114L

....

0x1FB 0x1DFU 0x1DFL 0x1DEU 0x1DEL 0x1DDU 0x1DDL 0x1DCU 0x1DCL

Page 7 6 5 4 3 2 1 0

0x1E0 0x103U 0x103L 0x102U 0x102L 0x101U 0x101L 0x100U 0x100L

0x1E1 0x10BU 0x10BL 0x10AU 0x10AL 0x109U 0x109L 0x108U 0x108L

0x1E2 0x113U 0x113L 0x112U 0x112L 0x111U 0x111L 0x110U 0x110L

....

0x1FB 0x1DBU 0x1DBL 0x1DAU 0x1DAL 0x1D9U 0x1D9L 0x1D8U 0x1D8L

ADSP-BF54x Blackfin Processor Hardware Reference 4-9

One-Time Programmable Memory

The existing ECC in ROM is known as “Hamming [72,64]”. This is a
64-bit data and an 8-bit ECC field—for a 1-bit correction and 2-bit error
detection scheme.

 The ROM-based OTP read/write API must be used for all OTP
data accesses (see limited exceptions below). The ROM code incor-
porates the only ECC method supported by Analog Devices Inc.
Direct access of OTP data without using error correction is not
supported.

Exceptions: The only bits that do not use ECC are page lock bits (first
four pages) and the preboot invalidate bits. See “Preboot Page Settings
(PBS)” on page 17-14.

Analog Devices Inc. does not support any ECC other than the ECC pro-
vided by Analog Devices Inc. in the ROM API. All attempts to implement
other schemes are not guaranteed or supported by Analog Devices Inc.

OTP memory programming is done serially under software control. Since
the unprogrammed OTP memory value defaults to zero, only those bits
whose value is intended to be “1” have to be programmed. Write-protect
bits (see Figure 4-1 on page 4-3) can be set for each 128-bit page within
OTP memory to protect areas of OTP memory that have been pro-
grammed, or areas left unprogrammed that developers wish to remain
unchanged. Each write-protect bit on a per page basis, when set, will pre-
vent further programming attempts to OTP memory.

The ADSP-BF54x processor Blackfin processor can program OTP
through software code executing directly on the Blackfin processor. A
charge pump residing on-chip is used to apply the voltage levels appropri-
ate for programming OTP memory. OTP programming code can be
loaded into the processor during JTAG emulation, through the DMA, and
through all supported boot methods.

OTP Access

4-10 ADSP-BF54x Blackfin Processor Hardware Reference

OTP memory can only be written once (changing a bit from 0 to 1). Once
a bit has been changed from a 0 to a 1, it cannot be changed back to 0.
The write-protect bits prevent OTP memory that has already been pro-
grammed from having any bits that are meant to remain as 0 value later
programmed to a value of 1.

To ensure reliable OTP programming, before accessing OTP memory, see
ADSP-BF542/544/547/548/549 Embedded Processor Data Sheet for specifi-
cations on VDDINT and VDDEXT voltage levels. OTP timing parameters must
be set before attempting any write accesses to OTP.

OTP Timing Parameters
To read and program the OTP memory reliably, the OTP timing parame-
ters must be set correctly before accessing OTP memory. All of the timing
parameters are bit fields in the OTP_TIMING register, as shown in Figure 4-4
on page 4-13. The function, bfrom_OtpCommand(), provided in the
on-chip ROM, is used to program the timing parameters.

 OTP timing parameters must be set by using the
bfrom_OtpCommand() as described in “bfrom_OtpCommand” on
page 4-14. OTP read accesses may use the OTP timing default
reset value (OTP_TIMING = 0x0000 1485 for reset). Using the OTP
timing default reset value for writes results in write errors, since
this timing value is not appropriate for write accesses.

 Insufficient voltage/current provided to OTP during write access
or incorrect OTP timing parameters may return an 0x11 error code
(multiple bad bits in 64 bit data) during OTP writes. Subsequent
reads from this page return 0.

The OTP timing parameters consist of several fields which are combined
together to form one value which is then passed as an argument to the
bfrom_OtpCommand() function. The developer must calculate a value for
two fields based upon the SCLK frequency at which the OTP access will be

ADSP-BF54x Blackfin Processor Hardware Reference 4-11

One-Time Programmable Memory

performed. These calculated values are then combined with a third field
whose value is provided by Analog Devices Inc. to arrive at the setting
appropriate for the access.

The OTP timing parameters are comprised of three values as follows:

OTP_TIMING[7:0] = OTP_TP1 = 1000/sclk_period

OTP_TIMING[14:8] = OTP_TP2 = 400/(2*sclk_period)

OTP_TIMING[31:15] = OTP_TP3 = 0x0A008

The OTP_TP3 field is specified by Analog Devices Inc. and must be used to
ensure reliable OTP write accesses. The user calculated fields must be
combined with the OTP_TP3 value as shown in the following examples.

Example calculations are shown in the following sections based upon volt-
ages specified in ADSP-BF542/544/547/548/549 Embedded Processor Data
Sheet. The calculations depend upon user-defined SCLK frequency of oper-
ation. (Refer to ADSP-BF542/544/547/548/549 Embedded Processor Data
Sheet for actual specifications. Do not rely on the specifications quoted in
the examples.)

OTP Timing Calculations for SCLK = 100 MHz

For SCLK = 10ns (100 MHz), the following field calculations are needed to
determine the OTP timing argument for the bfrom_OtpCommand() call.

OTP_TP1 = 1000/SCLK = 1000/10 = 0x64 0x0000 0064

OTP_TP2 = 400/(2*SCLK) = 400/(2*10) = 0x14 0x0000 1400

OTP_TP3 = (constant) 0x0A00 8xxx

Calculated OTP timing parameter value 0x0A00 9464

OTP Access

4-12 ADSP-BF54x Blackfin Processor Hardware Reference

Example code for the API call (in C) is:

/* Initialize OTP access settings */
/* Proper access settings for VDDINT = 1V, SCLK = 100 MHz */

const u32 OTP_init_value = 0x0A009464;

return_code = bfrom_OtpCommand (OTP_INIT, OTP_init_value);

OTP Timing Calculations for SCLK = 50 MHz

For SCLK = 20.0ns (50 MHz), the following field calculations are needed
to determine the OTP timing argument for the bfrom_OtpCommand() call.

Example code for the API call (in C) is:

/* Initialize OTP access settings */
/* Proper access settings for VDDINT = 1V, SCLK = 50 MHz */

const u32 OTP_init value = 0x0A008A32;

return_code = bfrom_OtpCommand(OTP_INIT, OTP_init_value);

OTP Timing Calculations for SCLK = 40 MHz

For SCLK = 25.0ns (40 MHz), the following field calculations are needed
to determine the OTP timing argument for the bfrom_OtpCommand() call.

OTP_TP1 = 1000/SCLK = 1000/20.0 = 0x32 0x0000 0032

OTP_TP2 = 400/(2*SCLK) = 400/(2 * 20.0) = 0xA 0x0000 0A00

OTP_TP3 = (constant) 0x0A00 8xxx

Calculated OTP timing parameter value 0x0A00 8A32

OTP_TP1 = 1000/SCLK = 1000/25.0 = 0x28 0x0000 0028

OTP_TP2 = 400/(2*SCLK) = 400/(2*25.0) = 0x8 0x0000 0800

OTP_TP3 = (constant) 0x0A00 8xxx

Calculated OTP timing parameter value 0x0A00 8828

ADSP-BF54x Blackfin Processor Hardware Reference 4-13

One-Time Programmable Memory

Example code for the API call (in C) is:

/* Initialize OTP access settings */

/* Proper access settings for VDDINT = 1V, SCLK = 40 MHz */
const u32 OTP_init_value = 0x0A008828

return_code = bfrom_OtpCommand(OTP_INIT, OTP_init_value);

OTP_TIMING Register

Figure 4-4. OTP_TIMING Register

OTP_TIMING Register

Reset = 0x0000 1485

OTP_TP3 [31:15]

OTP_TP3 = 0x0A008 for write accesses

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 1 0 1 0 0 1 0 0 0 0 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OTP_TP1 [7:0]
OTP_TP1 = 1000/SCLK Period

OTP_TP2 [14:8]
OTP_TP2 = 400/(2* SCLK Period)

Valid for OTP Read
Access

OTP Access

4-14 ADSP-BF54x Blackfin Processor Hardware Reference

Callable ROM Functions for OTP ACCESS
The following functions are provided in the ADSP-BF54x processor pro-
cessor on-chip ROM to support OTP access.

Initializing OTP

This section describes the bfrom_OtpCommand() function for OTP memory
controller setup. The prototype and macros that decode the function's
returns are supplied by the bfrom.h header file which is located in the
CCES or VisualDSP++ installation directory. The meaning of the error
code is described in section “Error Codes” on page 4-21.

bfrom_OtpCommand

This function sets up the OTP controller.

Entry address: 0xEF00 0018

Arguments:

R0: command (dCommand)
OTP_INIT

OTP_CLOSE

R1: timing value to be programmed (dValue),
not used for OTP_CLOSE

C Prototype:
u32 bfrom_OtpCommand(u32 dCommand, u32 dValue);

Return code:
bfrom_OtpCommand()

currently always returns with “0”.

ADSP-BF54x Blackfin Processor Hardware Reference 4-15

One-Time Programmable Memory

The first input parameter is a mnemonic label specifying the command.
The second parameter is a generic value that is passed as the argument for
the requested command. The second parameter is optional and may be an
integer value or (through opportune casting) a pointer or a pointer to an
extension structure.

There are two commands:

• OTP_INIT
Sets the required timing value (register OTP_TIMING) to “value”

• OTP_CLOSE

Reinitializes the OTP controller. If desired, this can be called by
the user before exiting Secure Mode. The value parameter may be
specified as “0” or “NULL” with OTP_CLOSE.

In the example above (“OTP Timing Calculations for SCLK = 100 MHz”
on page 4-11), the OTP timing parameter was calculated to be
0x0A00 9464. Listing 4-1 on page 4-15 shows a sample of C code that
uses the bfrom_OtpCommand() function to program this parameter.

Listing 4-1. Programming the bfrom_OtpCommand() Function

#include <bfrom.h>

#define OTP_TIMING_PARAM (0x0A009464)

u32 Otp_Timing_Param_Init()

{

u32 otp_timing_parameter;

u32 = RetVal;

otp_timing_parameter = OTP_TIMING_PARAM;

RetVal = bfrom_OtpCommand(OTP_INIT, otp_timing_parameter);

/* (equivalently, with a variable): */

RetVal = bfrom_OtpCommand(OTP_INIT, OTP_TIMING_PARAM);

return RetVal;

}

OTP Access

4-16 ADSP-BF54x Blackfin Processor Hardware Reference

Listing 4-2 on page 4-16 shows another example.

Listing 4-2. Programming the bfrom_OtpCommand() Function

/* timing parameter */

const u32 init_value = 0x0A009464;

/* call sets OTP_TIMING register */

RetVal = bfrom_OtpCommand(OTP_INIT, init_value);

/* call sets OTP_TIMING register */

RetVal = bfrom_OtpCommand(OTP_INIT, 0x0A009464);

/* call clears OTP controller and data registers */

RetVal = bfrom_OtpCommand(OTP_CLOSE, NULL);

The prototype of bfrom_OtpCommand() is included in the bfrom.h header
file installed with the VisualDSP++ 5.0 or CrossCore Embedded Studio
IDE. The macro OTP_INIT is defined in bfrom.h as well.

Programming and Reading OTP
This section describes the bfrom_OtpRead() and bfrom_OtpWrite() read
and write functions. The prototypes and macros that decode the func-
tion’s returns are supplied by the bfrom.h header file which is located in
the CCES or VisualDSP++ installation directory. The meaning of the
error code is described in section “Error Codes” on page 4-21.

ADSP-BF54x Blackfin Processor Hardware Reference 4-17

One-Time Programmable Memory

bfrom_OtpRead

This function is used to read 64-bit OTP half-pages using error
correction.

Entry address: 0xEF00 001A

Arguments:

R0: OTP page address (dPage)

R1: Flags (dFlags)
OTP_LOWER_HALF

OTP_UPPER_HALF

OTP_NO_ECC

R2: Pointer (*pPageContent) to 64-bit memory struct (long long) where
the data that is read will be placed

C prototype:
u32 bfrom_OtpRead (u32 dPage, u32 dFlags, u64 *pPageContent);

Return code:
R0: error or warning code (see Table 4-4)

This function reads a half-page and stores the content in the 64-bit vari-
able pointed to by the page parameter R2. The *pPageContent pointer
defines the address. The flags parameter R1 defines whether the upper or
the lower half page is to be read.

The default reset value for OTP_TIMING (0x0000 1485) may be used for all
read accesses without requiring a new value be programmed before per-
forming read accesses. Programming a value valid for write accesses will
also allow read accesses.

The use of flag parameter OTP_NO_ECC is not recommended for any OTP
read access because it bypasses error correction code support. It is available
only for diagnostic purposes.

OTP Access

4-18 ADSP-BF54x Blackfin Processor Hardware Reference

bfrom_OtpWrite

This function writes to (programs) a half-page with the content in the
64-bit variable pointed to by the R2 parameter.

Entry address: 0xEF00 001C

Arguments:

R0: OTP page address (dPage)

R1: Flags (dFlags)
OTP_LOWER_HALF

OTP_UPPER_HALF

OTP_NO_ECC

OTP_LOCK

OTP_CHECK_FOR_PREV_WRITE

R2: Pointer (*pPageContent) to 64-bit memory struct (long long) that con-
tains the data to be written to OTP memory

C Prototype:
u32 bfrom_OtpWrite (u32 dPage, u32 dFlags, u64 *pPageContent);

Return code:
R0: error or warning code, see Table 4-4.

The dFlags parameter defines whether the upper or the lower half page is
to be written to and if the target half page should be checked for a previ-
ously written value before a write attempted. Additionally, a page can be
locked (permanently protected against further writes).

When performing pure lock operations, the half-page parameter is not
required and it makes no difference which half-page is specified if this
parameter is included in the function call.

ADSP-BF54x Blackfin Processor Hardware Reference 4-19

One-Time Programmable Memory

To reduce the probability of inadvertent writes to OTP pages, this func-
tion checks for a valid OTP write timing setting in the OTP_TIMING
register. Specifically, bits [31:15] must not be equal to zero. Calls to the
write routine when this field is equal to zero cause an access violation error
and the requested action is not performed. The developer can use this
mechanism to protect against inadvertent writes by calling the
bfrom_OtpCommand (OTP_INIT, …) function with appropriate values for
reads only and for read/write accesses. The developer is also free to ignore
this mechanism by calling bfrom_OtpCommand (OTP_INIT, …) only once
for read/write access.

When the flag OTP_CHECK_FOR_PREV_WRITE is not specified, a previously
written value will be overwritten, both in the ECC and data fields for any
unlocked page where a write access is performed. Once a bit was set to “1”
it cannot be reset to “0” by the new write operation. This means that if the
new value is different from the previous one, there will be multiple bit
errors, in either or both the ECC and data fields.

 Since the ECC field is written first by the ROM function, a multi-
ple bit error will abort the operation without writing the new data
value to the OTP data page.

Note also that multiple bit errors have a statistical chance of not
being detected as such. Therefore this mode of operation should
not be used, or used with caution.

The flag OTP_CHECK_FOR_PREV_WRITE should always be used when
performing write accesses to OTP with the bfrom_OtpWrite()
function.

If the flag OTP_CHECK_FOR_PREV_WRITE is specified in the call, a write to a
previously programmed page causes dedicated error messages and will not
be performed.

OTP Access

4-20 ADSP-BF54x Blackfin Processor Hardware Reference

Specifically, errors are generated as follows.

• The 64-bit data and the 8-bit ECC field are read and the total
number of “1”s is counted.

• If this number is equal to or greater than 2, the error flag
OTP_PREV_WR_ERROR is returned and the write operation is not
performed.

• If the number is 0, the page is certainly blank and the write is
performed.

• If the number is 1, a more thorough check is performed.

If the “1” is in the ECC field, an error flag OTP_SB_DEFECT_ERROR is
returned and the write is not performed.

If the “1” is in the data field, it is determined whether the value to
be written contains a “1” in the same position.

If so, the write is performed.

If not, the error flag OTP_SB_DEFECT_ERROR is returned and the
write is not performed. This error code warns the user that it could
be a single-bit defect in the page. The user can then decide whether
to use this page regardless (by repeating the call without the
OTP_CHECK_FOR_PREV_WRITE flag) or skip this page.

The OTP_CHECK_FOR_PREV_WRITE flag is ignored when a pure lock opera-
tion is requested (for example, a OTP_LOCK flag is set and
*pPageContent = null). It would then be unnecessary and harmless to
specify this flag.

The OTP_CHECK_FOR_PREV_WRITE flag is not ignored when doing a lock
operation after a write (for example, OTP_LOCK plus write in the same call
and *pPageContent = null).

ADSP-BF54x Blackfin Processor Hardware Reference 4-21

One-Time Programmable Memory

If the flag parameter for the write operation is OR’ed with the OTP_LOCK
flag—the write operation, if successful, will be immediately followed by
setting the protection bit for the requested full 128-bit page.

A special case for OTP_LOCK is the following. If the third parameter is null,
this call will lock a page without writing any data value to it (pure lock
function). Note that in this case, “page” can span all pages from 0x000 to
0x1FF. This is the only way to lock the ECC pages themselves.

 The use of flag parameter OTP_NO_ECC is only supported in write
operations for write-protection/page-locking, or to set the preboot
invalidate bits (see “Preboot” on page 17-11). The preferred
method for locking pages is to use the OTP_LOCK parameter in the
bfrom_Otp_Write function (see “Write Protecting OTP Memory”
on page 4-24). Bypassing error correction for OTP writes may
cause loss of OTP data integrity and is not supported.

ECC must be used for all OTP accesses other than the limited
exceptions described previously.

Error Codes

This section describes the error codes that may be returned by the API
functions. These are shown in Figure 4-5 and listed in Table 4-4.

OTP Access

4-22 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 4-5. Returned Error Codes from API Functions

Returned Error Codes from API Functions

OTP_SUCCESS = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OTP_MASTER_ERROR
Master Error Bit = OP [OR (bits
1,2,3,4,5,6,7), AND (bits 8,9)]
OTP_WRITE_ERROR
(E) OTP Write Error
OTP_READ_ERROR
E OTP Read Error
OTP_ACC_VIO_ERROR
(E) Attempt to access invalid
OTP space
OTP_DATA_MULT_ERROR
(E) Multiple bad bits on write of
64-bit data

OTP_ECC_SB_WARN
(W) Single bad bit on write of ECC

(W) Single bad bit on write of 64-bit data
OTP_SB_DEFECT_ERROR
(E) Single bit defect in the page
OTP_PREV_WR_ERROR
(E) Attempt to write previously written space
OTP_ECC_MULT_ERROR
(E) Multiple bad bits on write of ECC

OTP_DATA_SB_WARN

ADSP-BF54x Blackfin Processor Hardware Reference 4-23

One-Time Programmable Memory

bfrom_OtpCommand() always returns with “0”.

bfrom_OtpRead() returns with an error when any of the bits6–2 are set or
both bits[9:8] are set. The OTP_MASTER_ERROR bit is also set. It returns with
a warning, if only one of the bits [9:8] is set.

bfrom_OtpWrite() returns with an error when any of the bits7–1 are set or
both bits[9:8] are set. The OTP_MASTER_ERROR bit is also set. It returns with
a warning, if only one of the bits [9:8] is set.

Table 4-4. Returned Error Codes from API Functions

Bit Name Example
Return
Value

Definition

N/A OTP_SUCCESS 0x0 No error

0 OTP_MASTER_ERROR 0x1 Master error bit = OR
[OR (bits 1,2,3,4,5,6,7), AND (bits 8,9)]

1 OTP_WRITE_ERROR 0x3 OTP write error

2 OTP_READ_ERROR 0x5 OTP read error

3 OTP_ACC_VIO_ERROR 0x9 Error on attempt to access invalid OTP space

4 OTP_DATA_MULT_ERROR 0x11 Error for multiple bad bits when writing 64 bit data

5 OTP_ECC_MULT_ERROR 0x21 Error for multiple bad bits when writing ECC

6 OTP_PREV_WR_ERROR 0x41 Error on attempt to write previously written space

7 OTP_SB_DEFECT_ERROR 0x81 Error for single bit defect in the page

8 OTP_DATA_SB_WARN 0x100 Warning about single bad bit when writing 64 bit data

9 OTP_ECC_SB_WARN 0x200 Warning about single bad bit when writing ECC

OTP Access

4-24 ADSP-BF54x Blackfin Processor Hardware Reference

Write Protecting OTP Memory
As shown in Figure 4-1, a small portion of OTP memory is reserved for
write-protect bits (“write-protect” is synonymous with “page-protect” in
this context). After programming OTP memory, the programmer can use
these protection bits to “lock” the page that was just programmed by set-
ting the write-protect bit corresponding to the OTP data page. Once the
write-protect bit is set and the lock is in place, further attempts to write to
that page are not allowed, which results in an error. Page protect bits can
also be set to prevent programming of unwritten OTP pages. Once an
OTP page is page-protected, the write protection cannot be reversed and
no further write accesses can be made to the protected page(s).

There are four pages reserved for the write-protection bits. Pages 0x0
through 0x3 contain the 512 write-protect bits—one bit for each of the
512 data pages within OTP memory. The first two write-protect bit pages
(pages 0x0 and 0x1) correspond to the public (non-secure) regions of the
OTP map. The other two write-protect bit pages (0x2 and 0x3) corre-
spond to protection of the private (secure) regions of the OTP map. The
processor does not need to be operating in Secure Mode in order to pro-
gram the protection pages associated with the secure OTP regions. All
protection bits can be written in any security state including Open Mode.

 While reads and writes access a half-page at a time, setting a protec-
tion bit for a page effectively locks an entire page from future write
accesses (both lower and upper half page). The programmer must
make sure that a full 128-bit OTP page is programmed, or that no
future programming will be needed before setting the write-protect
bit for that page.

To lock a page (P), set the write-protect bit (WPB) and the page (WPP)
where it resides as follows.

WPP = P >> 7;

WPB = P & 0x7f;

ADSP-BF54x Blackfin Processor Hardware Reference 4-25

One-Time Programmable Memory

However, manual calculation is generally not needed because the
bfrom_OtpWrite() function can be used to lock pages (see “OTP Program-
ming Examples” on page 4-26).

Listing 4-3. Lock a Page

/* lock page (note third parameter equals NULL) */

return_code = bfrom_OtpWrite(0x01C, OTP_LOCK, NULL);

Locking a single ECC (error correction code) page locks the correction
codes for eight OTP data pages (16 half pages). Since a 64-bit half-page
access must be performed to write protect the ECC page and every 8-bits
within an ECC page is a parity correction code corresponding to a 64-bit
half-page of data in OTP—a full 128-bit ECC page holds the correction
codes for eight full 128-bit pages of data in OTP, or 16 half-pages. Pages
can only be locked as full 128-bit pages even though read/write accesses
may occur at 64-bit half-page granularity. Locking a single ECC page pre-
vents further write access to the corresponding eight OTP data pages.

ECC (error correction code) space cannot be written-to directly.

For example, locking ECC page 0xFB will result in locking the error cor-
rection parity data associated with the 16 data pages in the range of
0x0D8 – 0x0DF.

Listing 4-4. Lock ECC Page Only

/* Only Lock ECC code page */

return_code = bfrom_OtpWrite(0xFB, OTP_LOCK, NULL);

OTP Programming Examples

4-26 ADSP-BF54x Blackfin Processor Hardware Reference

No further write accesses to the ECC page 0xFB or corresponding data
pages 0x0D8 – 0x0DF will be allowed following write protection of the
ECC page in this example.

 Bits [3:0] of OTP page 0 are the write-protect bits for the first four
OTP pages, which contain the write-protect bits. Setting these bits
prevents the other write-protect bits from being set, which disables
the write protection mechanism of the remaining user-programma-
ble OTP pages.

Accessing Private OTP Memory
To read or write to the private area of OTP memory, the processor must
be operating in Secure Mode and the OTPSEN bit in the SECURE_SYSSWT reg-
ister must be set to 1 to enable secured OTP access. For more information
about Security, Secure Mode and the Secure State Machine, see “Secure
State Machine” on page 16-7).

OTP Programming Examples
The following sequence is recommended for accessing OTP memory.

1. Initialize the OTP array by calling bfrom_OtpCommand().

2. Perform a OTP read or write access by calling the bfrom_OtpRead()
or bfrom_OtpWrite() function.

3. When OTP read/write access is complete —call the
bfrom_OtpCommand() function with the OTP_CLOSE parameter to
re-initialize the OTP controller.

4. Initialize the OTP array by calling bfrom_OtpCommand() again for
the next OTP access.

5. Repeat steps 1–3 for subsequent OTP accesses.

ADSP-BF54x Blackfin Processor Hardware Reference 4-27

One-Time Programmable Memory

Enable Access to Private OTP
To enable access to private OTP memory space while operating in Secure
Mode, use the following code.

Listing 4-5. Enable Access to Private OTP

/* Enable private OTP access */

*pSECURE_SYSSWT = *pSECURE_SYSSWT | OTPSEN;

SSYNC();

...

Enable Access to Private OTP and
Enable JTAG Emulation in Secure Mode

To enable access to private OTP memory space by using OTPSEN while
operating in Secure Mode, use the following code.

Listing 4-6. Enable Access to Private OTP and
Enable JTAG Emulation in Secure Mode

/* Enable JTAG and private OTP access */

*pSECURE_SYSSWT = *pSECURE_SYSSWT & (~EMUABL) | OTPSEN;

SSYNC(0);

...

Read Public OTP Memory and Print to Console
To read pages 0x4 through 0xDF in public OTP memory space and print
results to VisualDSP++ console, use the following code.

OTP Programming Examples

4-28 ADSP-BF54x Blackfin Processor Hardware Reference

Listing 4-7. Read Public OTP Memory and Print to Console

#include <blackfin.h>

#include <bfrom.h>

u32 return_code, i;

u64 value;

/* Initialize OTP timing parameter */
/* Proper timing for VDDINT = 1v, CCLK, SCLK = 100MHz */
const u32 OTP_init_value = 0x0A009464;

return_code = bfrom_OtpCommand(OTP_INIT, OTP_init_value);

...

for (i= 0x004; i,0x0xE0; i++)

{

return_code = bfrom_OtpRead(i, OTP_LOWER_HALF, &value);

printf(“page: 0x%03xL, Content ECC: 0x%01611x,

returncode: 0x%03x \n”, i, value, return_code);

return_code = bfrom_OtpRead(i, OTP_UPPER_HALF, &value);

printf(“page: 0x%03xH, Content ECC: 0x%01611x,

returncode: 0x%03x \n”, i, value, return_code);

}

ADSP-BF54x Blackfin Processor Hardware Reference 4-29

One-Time Programmable Memory

OTP Write to Single Page Using Two Half Page
Accesses

To write and lock a single OTP page and return the results to the IDE
console using printf, use the following code.

Listing 4-8. Perform OTP write to a single page via two 64-bit (half-page)
accesses

#include <blackfin.h> #include <bfrom.h>

u64 value;

u32 return_code;

return_code = bfrom_OtpWrite(0x01C, OTP_LOWER_HALF |

OTP_CHECK_FOR_PREV_WRITE, &testdata);

printf(“WRITE page: 0x%03xL, Content ECC: 0x%01611x,

returncode: 0x%03x \n”, 0x1C, testdata, return_code);

return_code = bfrom_OtpWrite(0x01C, OTP_UPPER_HALF |

OTP_CHECK_FOR_PREV_WRITE | OTP_LOCK, &testdata);

printf(“WRITE page: 0x%03xH, Content ECC: 0x%01611x,

returncode: 0x%03x \n”, 0x1C, testdata, return_code);

Locking a page will lock the full 128-bit page, even though the examples
above access OTP with 64-bit half-page granularity. This is the finest level
of granularity that is allowed due to the OTP error correction. The page
should be locked, only after both the lower and upper portion of the page
have been written. Note that in Listing 4-8 the page lock operation is per-
formed on the second and final access to the page.

OTP Programming Examples

4-30 ADSP-BF54x Blackfin Processor Hardware Reference

Lock Page Without Writing Any Data
To lock specific OTP pages in a separate access, after data values have
been separately written, using the following code. OTP pages are typically
locked in order to protect them from being overwritten or to prevent inad-
vertent or malicious tampering.

Listing 4-9. Lock a Page Without Writing Any Data

#include <blackfin.h>

#include <bfrom.h> u64 value;

u32 return_code;

// Initialize OTP timing parameter

// Proper timing for VDDINT = 1V, CCLK, SCLK = 100MHz

const u32 OTP_init_value = 0x0A009464;

return_code = bfrom_OtpCommand(OTP_INIT, OTP_init_value);

return_code = bfrom_OtpWrite(0x01C, OTP_LOCK, NULL);

ADSP-BF54x Blackfin Processor Hardware Reference 5-1

5 EXTERNAL BUS
INTERFACE UNIT

The external bus interface unit (EBIU) provides a glueless interface to a
variety of external memories. The EBIU supports both synchronous and
asynchronous memories. The synchronous interface supports dual data
rate (DDR) SDRAM memories. The asynchronous interface supports
memories such as SRAM and flash memories including synchronous NOR
flash.

The synchronous interface is controlled by a DDR controller. The asyn-
chronous interface is controlled by the asynchronous memory controller
(ASYNC). The asynchronous interface is further shared by an on-chip
NAND flash controller and an ATAPI controller. The ATAPI and the
NAND flash controllers are not part of EBIU; they just share the asyn-
chronous interface pins. An asynchronous pin control module (APCM)
controls and arbitrates the asynchronous interface between the ASYNC,
NAND, and ATAPI controllers.

The chapter includes the following sections:

• “General Overview” on page 5-2

• “DDR Arbitration” on page 5-11

• “DDR SDRAM Controller” on page 5-15

• “DDR SDRAM Memory Interface” on page 5-18

• “DDR Registers” on page 5-23

• “DDR Metrics Control Registers” on page 5-44

General Overview

5-2 ADSP-BF54x Blackfin Processor Hardware Reference

• “Asynchronous Memory Interface” on page 5-53

• “Asynchronous Memory Interface Control Registers” on page 5-57

General Overview
The EBIU services requests for external memory from the Blackfin core
and from three on-chip DMA controllers (DMAC0, DMAC1, and USB
DMA). An address decoder inside EBIU determines whether the request is
serviced by the DDR memory controller or the asynchronous memory
controller and routes the requests to the appropriate controller. Requests
from different sources are prioritized based on a programmable priority
scheme.

The EBIU is clocked by the system clock (SCLK), which runs at a maxi-
mum frequency that is specified in ADSP-BF542/544/547/548/549
Embedded Processor Data Sheet. All DDR SDRAM memories interfaced to
the device operate at SCLK frequency.

The external memory space is shown in Figure 5-1. Two of the memory
regions are dedicated to DDR SDRAM. The DDR SDRAM interface tim-
ing and the size of each DDR SDRAM region are programmable. Each
external DDR SDRAM bank can be populated up to 256M bytes. The
start address of bank 0 is 0x0000 0000 and the start address of bank 1 fol-
lows contiguously from the previous bank. Depending upon the memory
configuration, the area from the end of bank 1 to address 0x2000 0000 is
reserved.

The next four regions are dedicated to support asynchronous memories.
Each asynchronous memory region can be independently programmed to
support different memory device characteristics. Each region has its own
memory select output pin from the EBIU. Also, each of the asynchronous
memory regions can be independently programmed to support burst
mode or page mode flash memories.

ADSP-BF54x Blackfin Processor Hardware Reference 5-3

External Bus Interface Unit

The next region is reserved memory space. References to this region do
not generate external bus transactions. Writes have no effect on external
memory values, and reads return undefined values. When either of the
DMAC0, DMAC1, or the USB DMA controllers address this region, the
EBIU sends an error response on the internal buses to the controllers. The
EBIU generates the hardware error (HWE) interrupt to the core when it is
requested to access this reserved off-chip memory space.

Figure 5-1. External Memory Map

0x0000 0000

TOP OF LAST
DDR SDRAM PAGE

0x2000 0000

0x2C00 0000

0x2400 0000

0x2800 0000

0xEEFF FFFF

ASYNC MEMORY BANK 3
(64 MBYTES)

RESERVED

ASYNC MEMORY BANK 2
(64 MBYTES)

ASYNC MEMORY BANK 1
(64 MBYTES)

ASYNC MEMORY BANK 0
(64 MBYTES)

RESERVED

EXT DDR BANK 1
(256 MBYTES MAX)

EXT DDR BANK 0
(256 MBYTES MAX)

General Overview

5-4 ADSP-BF54x Blackfin Processor Hardware Reference

Block Diagram
Figure 5-2 shows a conceptual block diagram of the EBIU. Note that the
pins for the synchronous DDR memory interface are dedicated, whereas
pins for the asynchronous memories are shared.

Figure 5-2. External Bus Interface Unit (EBIU) Diagram

A
S

Y
N

C
 (

M
U

X
E

D
)

PA
D

S

ND_CE
ND_RB

ATAPI_CS1–0
ATAPI_DMACK
ATAPI_DMARQ
ATAPI_INTRQ
ATAPI_IORDY

ADDR24–1

D15–0

ARDY / WAIT

AMS3–0 / NR_CE3–0

ABE1 / ND_ALE

AOE / NR_ADV

ARE

AWE

BR, BG, BGH

D
D

R
 P

A
D

S

DCLK2–1
DCKE
DCS1–0
DBA1–0
DCAS
DRAS
DWE
DQS1–0
DQ15–0
DQM1–0
DA12–0

ASYNC
 PIN
 CTL

A
S

Y
N

C
 P

IN
 M

U
X

A
D

D
R

E
S

S
 D

E
C

O
D

E
R

D
D

R
 C

O
N

T
R

O
L

L
E

R

D
D

R
 A

R
B

IT
E

R

DEB2 QUEUE

DEB1 QUEUE

DEB0 QUEUE

 ASYNC
ARBITER SRAM

 CTL

 NOR
FLASH
 CTLHWE

PAB

DEB2

DEB1

DEB0

EAB

ATA_REQ

NAND_REQ

ATA_BUS

NAND_BUS

16

32

32

32

32

ABE0 / ND_CLE

ADDR25 / NR_CLK

DCLK2–1

DDR1

32

32

ASYNC

CLKOUT

ADSP-BF54x Blackfin Processor Hardware Reference 5-5

External Bus Interface Unit

The EBIU allows the on-chip NAND flash controller and ATAPI control-
ler to share its asynchronous interface pins. An asynchronous pin control
module (APCM) in the EBIU automatically controls the accesses to the
asynchronous memory interface pins, based on requests from the ASYNC,
NAND, and ATAPI with a set priority. No extra configuration is needed.
The multiplexing scheme of the shared pins is summarized in Table 5-1.
When reading Table 5-1, note that an “x” indicates that the pin is used by
the interface, a “–” indicates that the pin is not used by the interface, and
an alternate pin name indicates that the pin is used for an alternate func-
tion by the interface.

Table 5-1. EBIU Pin List (With Multiplexing)

Pins ASYNC FLASH NAND
FLASH

ATAPI DDR

ADDR24–1 x x – x1 –

ADDR25 x NR_CLK – - –

D15–0 x x x x –

AMS3–0 x NR_CE3–0 – – –

ABE0 x – ND_CLE – –

ABE1 x – ND_ALE – –

AOE x NR_ADV – – –

ARE x x x - –

AWE x x x - –

ARDY x WAIT – – –

CLKOUT x – – – –

ND_CE – – x – –

ND_RB – – x – –

ATAPI_CS1–0 – – – x –

ATAPI_DMACK – – – x –

ATAPI_INTR – – – x –

General Overview

5-6 ADSP-BF54x Blackfin Processor Hardware Reference

ATAPI_DMARQ – – – x –

ATAPI_IORDY – – – x –

BR x – – – –

BG x – – – –

BGH x – – – –

DCLK2–1 – – – – x

DCKE – – – – x

DCS1–0 – – – – x

DBA1–0 – – – – x

DCAS – – – – x

DRAS – – – – x

DWE – – – – x

DQS1–0 – – – – x

DQ15–0 – – – – x

DQM1–0 – – – – x

DA12–0 – – – – x

1 Note that some of the pins listed in Table 6-1 are multiplexed with GPIO, especially the address
lines ADDR4–ADDR25. Set the general purpose port multiplexing before using them as asyn-
chronous memory interface, NAND flash interface, or ATAPI interface. For more information
see Chapter 9, “General-Purpose Ports”.

Table 5-1. EBIU Pin List (With Multiplexing) (Cont’d)

Pins ASYNC FLASH NAND
FLASH

ATAPI DDR

ADSP-BF54x Blackfin Processor Hardware Reference 5-7

External Bus Interface Unit

On-Chip System Interfaces
The EBIU functions as a slave on five buses internal to the ADSP-BF54x
processor processor, as follows:

• A 32-bit external access bus (EAB), mastered by the core, for exter-
nal memory access

• A 16-bit DMA external bus (DEB0), mastered by DMA
controller1, in response to external memory access requests from
any DMAC0 (16-bit) channel

• A 32-bit DMA external bus (DEB1), mastered by DMA
controller2, in response to external memory access request from
any DMAC1 (32-bit) channel

• A 32-bit DMA external bus (DEB2), mastered by the DMA con-
troller in the USB module

• A 16-bit PAB bus, mastered by the core, to access the system mem-
ory-mapped registers (SMMR) in the EBIU

These are synchronous interfaces, clocked by SCLK. The EAB, DEB0,
DEB1, and DEB2 (USB) provide access to both synchronous DDR
SDRAM and asynchronous external memories, including page mode and
burst mode NOR flash memories.

General Overview

5-8 ADSP-BF54x Blackfin Processor Hardware Reference

Error Detection
The EBIU responds to any bus operation that addresses the range of
0x0000 0000 – 0xEEFF FFFF, even if that bus operation addresses
reserved or disabled memory. It responds by completing the bus operation
(asserting the appropriate number of acknowledges as specified by the bus
master) and by asserting the bus error signal for the following error
conditions:

• Any access to the reserved off-chip memory space

• Any access to disabled external memory bank

• Any access to an unpopulated area of a DDR SDRAM memory
bank

If the core requested the faulting bus operation, the bus error response
from the EBIU is routed to the HWE interrupt internal to the core. If the
DMA master issues the request for the faulting bus operation, then the
bus error is captured in that controller and can optionally generate an
interrupt to the core. In both cases, the error address is latched in the cor-
responding EBIU error address register. The EBIU continues to assert the
error response until explicitly cleared. The interrupt handler must write
a 1 to the corresponding bit(s) in the EBIU_ERRMST register to clear the
error condition (HWE). If the nested interrupt feature is enabled in the
SYSCFG register (by setting the SNEN bit), then bit(s) in the EBIU_ERRMST
register must be cleared at the beginning of the interrupt handler routine.
Note that this behavior is specific to the ADSP-BF54x processor product.

System Arbitration
As mentioned earlier, the EBIU implements two different memory inter-
faces that provide simultaneous accesses to DDR SDRAM and
asynchronous memory in response to requests on any of the four internal
data access buses. For example, while the DDR controller services a core
request to DDR SDRAM memory, the ASYNC could service a DMA

ADSP-BF54x Blackfin Processor Hardware Reference 5-9

External Bus Interface Unit

request to asynchronous or flash memory. Although the synchronous and
asynchronous memories run at different speeds, the EBIU ensures that
data is returned to the requestor in the correct order.

To take advantage of the high performance DDR interface and the inde-
pendent asynchronous memory interface, and to maintain correct order of
data transfers on the internal buses, the EBIU implements some arbitra-
tion modules that augment the DDR controller and the ASYNC memory.

Address Resolution
The EBIU address decoder block accepts the commands (read/writes)
from the EAB and DMA buses (DEB0, DEB1, and DEB2). It then pro-
cesses them and transfers them to the DDR queue manager (QM) block or
the asynchronous memory controller block based on the address being
accessed.

If the address happens to be in the reserved region (based on the memory
configuration), it generates accordingly the required number of acknowl-
edgements along with the error signal.

Reorder Unit
Because of simultaneous support of varying speed interfaces, there is a
reorder engine in the EBIU for each of the system buses (DEB0, DEB1,
DEB2, and EAB). The reorder engine handles out-of-order responses and
makes sure that all responses from the interfaces (DDR SDRAM, asyn-
chronous SRAM/flash) are still in the same order in which they were
accepted and issued. For all read accesses, it keeps track of the states of all
the requests that went to the EBIU controllers and makes sure that the
responses are sent back to the original requestors in order. For write
requests, each queue maintains the order in which the responses were
transferred with the bus.

General Overview

5-10 ADSP-BF54x Blackfin Processor Hardware Reference

The following example shows out-of-order execution between the DDR
interface and the ASYNC interface.

The order in which the requests are accepted and issued to the controllers
is as follows:

• Cycle 1: ASYNC Read Request-1

• Cycle 2: DDR Read Request-1

• Cycle 3: DDR Read Request-2

• Cycle 4: DDR Read Request-3

• Cycle 5: DDR Read Request-4

Since the DDR interface is much faster than the ASYNC interface, the
DDR read data will be available from the DDR QM block much earlier
than the ASYNC interface. So the reorder engine instructs the DDR QM
to stop giving the read data and hold it until the ASYNC read data is
available.

• Cycle 4: DDR Read Data-1 is available but is blocked and stored in
DDR QM block

• Cycle 5: DDR Read Data-2 is available but is blocked and stored in
DDR QM block

• Cycle 6: ASYNC Read Data-1 is available and DDR Read Data-3
is available

• Only ASYNC Read Data-1 is now passed on to the system bus

• Cycle 7: DDR Read Data-1 is passed on to the system bus

• Cycle 8: DDR Read Data-2 is passed on to the system bus

• Cycle 9: DDR Read Data-3 is passed on to the system bus

ADSP-BF54x Blackfin Processor Hardware Reference 5-11

External Bus Interface Unit

The first access request from the system bus to the ASYNC is issued
immediately (same cycle). Subsequent requests are issued only when the
first access request is completed. Two consecutive requests to the ASYNC
block the next access (any, including DDR access from that bus that initi-
ated the accesses). However, accesses to DDR from other buses are not
blocked.

DDR Queue Manager
To optimize for the high throughput of the DDR interface, the EBIU
implements three identical queue modules for each of the DEB buses. The
queue managers perform the following functions:

• Enable peripherals to utilize higher throughput provided by DDR
SDRAM

• Optimize requests to the DDR controller to achieve maximum
utilization of the DDR memory bus

• Handle data coherency between the DEB and core buses

DDR Arbitration
The DDR arbiter handles requests from all four system interface buses
(DEB0, DEB1, DEB2, and EAB) and prefetches requests from all the
DEB queue blocks. The arbiter has a fixed priority as shown in the
following:

1. Core TESTSET instruction (highest)

2. Forced write access (by DEB queue manager)

3. Urgent DMA access

4. Core access

DDR Arbitration

5-12 ADSP-BF54x Blackfin Processor Hardware Reference

5. Normal DMA read access through DEB queue manager

6. Normal DMA write access through DEB queue manager

7. Prefetch buffer access (lowest)

Note, there is a further programmable priority scheme for the three DEB
buses when DMA wins arbitration (urgent or normal access). The arbitra-
tion priority between the DEB buses are determined by bits [10:8] of the
DDR queue configuration register (EBIU_DDRQUE) as follows:

• 000:DEB0>DEB1>DEB2 (default)

• 001:DEB1>DEB0>DEB2

• 010:DEB2>DEB0>DEB1

Table 5-2 summarizes the arbitration scheme, in DDR SDRAM memory
interface.

Table 5-2. DDR Arbiter Priority Scheme

DEB_ARB_PRIORITY:
000 (0>1>2)

DEB_ARB_PRIORITY:
001 (1>0>2)

DEB_ARB_PRIORITY:
010 (2>0>1)

Core TESTSET Core TESTSET Core TESTSET

Forced DEB Writes
 DEB0 WRITE
 DEB1 WRITE
 DEB2 WRITE

Forced DEB Writes
 DEB1 WRITE
 DEB0 WRITE
 DEB2 WRITE

Forced DEB Writes
 DEB2 WRITE
 DEB0 WRITE
 DEB1 WRITE

Urgent DMA
 DEB0 READ
 DEB1 READ
 DEB2 READ
 DEB0 WRITE
 DEB1 WRITE
 DEB2 WRITE

Urgent DMA
 DEB1 READ
 DEB0 READ
 DEB2 READ
 DEB1 WRITE
 DEB0 WRITE
 DEB2 WRITE

Urgent DMA
 DEB2 READ
 DEB0 READ
 DEB1 READ
 DEB2 WRITE
 DEB0 WRITE
 DEB1 WRITE

Core READ/WRITE Core READ/WRITE Core READ/WRITE

ADSP-BF54x Blackfin Processor Hardware Reference 5-13

External Bus Interface Unit

The EBIU adds further control to the DDR arbitration by allowing a nor-
mal DMA access to be elevated to urgent DMA access by setting bits
[14:12] in the DDR queue configuration register (EBIU_DDRQUE) as
follows:

Bit[12] = 1 : DEB0 Normal DMA treated as Urgent

0 : DEB0 Normal DMA treated as Normal (Default)

Bit[13] = 1 : DEB1 Normal DMA treated as Urgent

0 : DEB1 Normal DMA treated as Normal (Default)

Bit[14] = 1 : DEB2 Normal DMA treated as Urgent

0 : DEB2 Normal DMA treated as Normal (Default)

Normal DMA READ
 DEB0 READ
 DEB1 READ
 DEB2 READ

Normal DMA READ
 DEB1 READ
 DEB0 READ
 DEB2 READ

Normal DMA READ
 DEB2 READ
 DEB0 READ
 DEB1 READ

Normal DMA WRITE
 DEB0 READ
 DEB1 READ
 DEB2 READ

Normal DMA WRITE
 DEB1 READ
 DEB0 READ
 DEB2 READ

Normal DMA WRITE
 DEB2 READ
 DEB0 READ
 DEB1 READ

Prefetch Access
 DEB0 READ
 DEB1 READ
 DEB2 READ

Prefetch Access
 DEB1 READ
 DEB0 READ
 DEB2 READ

Prefetch Access
 DEB2 READ
 DEB0 READ
 DEB1 READ

Table 5-2. DDR Arbiter Priority Scheme (Cont’d)

DEB_ARB_PRIORITY:
000 (0>1>2)

DEB_ARB_PRIORITY:
001 (1>0>2)

DEB_ARB_PRIORITY:
010 (2>0>1)

DDR Arbitration

5-14 ADSP-BF54x Blackfin Processor Hardware Reference

Table 5-3 summarizes the arbitration scheme for asynchronous memory
interface.

 The priority schemes described in Table 5-2 (for DDR) and
Table 5-3 (for ASYNC) are from the arbiters’ perspective. The pri-
ority schemes are followed by the arbiters only when they are ready
to arbitrate, not when the EBIU receives requests on the DEB or
processor buses. For example, a DEB bus may indicate urgent dur-
ing a request, but if the urgent signal goes away before the arbiter
arbitrates, the DEB request is treated as a regular request. Also
note, that the DEB queue logic blocks optimize the DEB bus
requests (for example, line hit, prefetch during reads, packing dur-
ing writes, and others). Because of these optimizations, the DEB
bus requests may not show up at the arbiters immediately and they
may be in a different order.

Table 5-3. ASYNC Arbiter Priority Scheme

DEB_ARB_PRIORITY:
000 (0>1>2)

DEB_ARB_PRIORITY:
001 (1>0>2)

DEB_ARB_PRIORITY:
010 (2>0>1)

Core TESTSET Core TESTSET Core TESTSET

Urgent DMA
 DEB0 READ/WRITE
 DEB1 READ/WRITE
 DEB2 READ/WRITE

Urgent DMA
 DEB1 READ/WRITE
 DEB0 READ/WRITE
 DEB2 READ/WRITE

Urgent DMA
 DEB2 READ/WRITE
 DEB0 READ/WRITE
 DEB1 READ/WRITE

Core READ/WRITE Core READ/WRITE Core READ/WRITE

Normal DMA
 DEB0 READ/WRITE
 DEB1 READ/WRITE
 DEB2 READ/WRITE

Normal DMA
 DEB1 READ/WRITE
 DEB0 READ/WRITE
 DEB2 READ/WRITE

Normal DMA
 DEB2 READ/WRITE
 DEB0 READ/WRITE
 DEB1 READ/WRITE

ADSP-BF54x Blackfin Processor Hardware Reference 5-15

External Bus Interface Unit

DDR SDRAM Controller
The ADSP-BF54x processor processor is available with either a DDR
SDRAM or a Mobile DDR SDRAM controller module on chip. Each of
these has different specifications. Consult the
ADSP-BF542/544/547/548/549 Embedded Processor Data Sheet for the
proper nominal voltage and working voltage range for the various prod-
ucts in the ordering guide. See Chapter 19, “System Design” for more
information. Unless specifically noted, all references to "DDR SDRAM
controller" apply to both standard DDR and mobile DDR controllers.

The DDR SDRAM controller (SDC) enables a transfer of data to and
from synchronous DDR SDRAM with a maximum data rate of 532M
bytes per second at a clock frequency of 133 MHz using both the edges of
the clock. It supports a glueless interface with two external banks, con-
trolled by the memory chip select pins (DCS1–0), of standard DDR
SDRAMs of 64M bit to 512M bit with configurations x4, x8, x16 as
shown in the following tables, up to a maximum total capacity of 256M
bytes of SDRAM per chip select. The interface includes timing options to
support additional buffers between DDR SDRAM and the EBIU to han-
dle capacitive loads of large memory arrays.

Features
The following sections describe features of DDR SDRAM controllers.

DDR SDRAM Controller

The features of the DDR SDRAM controller (SDC) are:

• Supports industry-standard, double-data rate (DDR SDRAM)
from 64M bit to 512M bit device sizes with a configuration of x4,
x8, or x16

• Provides 16-bit data interface to DDR SDRAM

DDR SDRAM Controller

5-16 ADSP-BF54x Blackfin Processor Hardware Reference

• Supports up to 256M bytes of DDR SDRAM with one external
bank

• Supports up to two external banks

• Provides page hit detection to support multiple column accesses
within the same row

• Provides eight internal row address registers to keep track of eight
open rows (two chip select with four internal banks each)

• Supports fixed SDRAM burst length of two

• Provides programmable SDRAM access timing parameters

• Provides automatic refresh generation with programmable refresh
intervals

• Supports self-refresh mode to reduce system power consumption

Mobile DDR SDRAM Controller

Mobile DDR is referred to in the industry as Low-Power DDR. The fol-
lowing mobile (Low-Power) DDR features are supported on the
ADSP-BF54x processor processor mobile DDR SDRAM interface.

Partial Array Self-refresh

PASR is a new feature introduced to mobile DDR memories. PASR is a
memory power-saving feature which limits the amount of memory to be
refreshed. The ADSP-BF54x processor processor mobile DDR interface
supports this feature (PASR bits of the MODE register).

ADSP-BF54x Blackfin Processor Hardware Reference 5-17

External Bus Interface Unit

Memory Driver Strength

Mobile DDR memories may support setting their drive strength (1/8, 1/4,
1/2 full). The ADSP-BF54x processor processor mobile DDR SDRAM
interface supports configuring mobile DDR memory drive strength (DS
bits of MODE register). Note, this configures the memory's drivers not
the ADSP-BF54x processor processor's drivers.

Temperature Compensated self-refresh

TCSR is a new feature introduced to mobile DDR memories, that adjusts
the refresh rate to match the die temperature. The ADSP-BF54x proces-
sorM mobile DDR SDRAM interface supports programming TCSR (if
the memory supports it), using the TCSR bits of the MODE register.

Unsupported Mobile DDR SDRAM Controller Features

The ADSP-BF54x processorM processor mobile SDRAM controller does
not support the following features which are referenced in the JEDEC
specification and may be supported by the memory vendor.

Deep Power Down

Deep power down is a memory feature where the memory is placed in a
low power state (the array is powered down) while the system power
remains applied. The contents of the memory would be lost in this state.
The ADSP-BF54x processor processor mobile DDR SDRAM controller
does not support placing a memory in this state.

Clock Stop Mode

Clock stop mode is a memory feature where the memory can have some
power savings in logic associated with its clock logic while not being
accessed. The ADSP-BF54x processor processor mobile DDR SDRAM
controller does not support Clock Stop Mode.

DDR SDRAM Memory Interface

5-18 ADSP-BF54x Blackfin Processor Hardware Reference

Clock Frequency During Operation

This is not a recommended procedure. However, if the application
requires changing the clock frequency (SCLK) during operation, it can be
done but only under the following conditions.

1. No memory accesses are in progress.

2. In the event SCLK frequency is being reduced, new control settings
have been made before the frequency change is initiated.

DDR SDRAM Memory Interface
This is a DDR SDRAM compliant interface. None of the signals in this
interface is multiplexed with any other signals on the chip. ADSP-BF54x
processor products equipped with a standard DDR SDRAM controller
support the standard DDR specification only. Similarly, ADSP-BF54x
processor products equipped with a Mobile DDR SDRAM controller sup-
port only low power mobile DDR devices. Refer to the product data sheet
for actual specifications.

Table 5-4. DDR SDRAM Memory Interface

Name Type Description

DCLK1 / DCLK1 O Output clock signals to DDR SDRAM chips.
Use as differential clock signals to DDR SDRAM.

DCLK2 / DCLK2 O Output clock signals to DDR SDRAM chips.
Use as differential clock signals to DDR SDRAM. Same as DDR_CLK1.

DCKE O Clock enable

DCS1–0 O Chip select: One chip select for each of the two external banks

DBA1–0 O Chip select: One chip select for each of the two external banks

DCAS O Column address select

DRAS O Row address select

DWE O Write enable

ADSP-BF54x Blackfin Processor Hardware Reference 5-19

External Bus Interface Unit

DDR SDRAM Programming Model
This section describes the programming model of the EBIU. This model is
based on system memory-mapped registers (SMMRs), used to program
the EBIU. This set of control registers is accessed across the peripheral
access bus (PAB) of the extended core.

The control and status registers in the DDR controller include:

• Memory control register 0 (EBIU_DDRCTL0)
address 0xFFC0 0A20

• Memory control register 1 (EBIU_DDRCTL1)
address 0xFFC0 0A24

• Memory control register 2 (EBIU_DDRCTL2)
address 0xFFC0 0A28

• Memory control register 3 (EBIU_DDRCTL3)
address 0xFFC0 0A2C

DQS1–0 IO Data Strobe: output with write data, input with read data. DQS is edge
aligned with read data, but centered with write data. It is generated by the
DDR controller during write access.

DQ15–0 IO DDR data input and output. DDR SDRAM has twice the data rate.

DQM1–0 IO Data mask for writes. DM turns the out buffers off for writes. For Write,
DM specifies the bytes to be written. It is also used to mask a single Write
during an access cycle of burst length = 2.

DA12–0 O Memory address bits: Indicates row and column address and signals
auto-precharge. When 64M bit and 128M bit SDRAM are used, only
DDR_ADDR[11:0] are used as addresses and BA [1:0] are used as bank
select. When 256M bit and 512M bit DDR SDRAM are used,
DDR_ADDR [12:0] are used as address and BA [1:0] are used as bank
select.

Table 5-4. DDR SDRAM Memory Interface (Cont’d)

Name Type Description

DDR SDRAM Memory Interface

5-20 ADSP-BF54x Blackfin Processor Hardware Reference

• DDR queue manager configuration register (EBIU_DDRQUE)
address 0xFFC0 0A30

• Error address register (EBIU_ERRADD)
address 0xFFC0 0A34

• Error master register (EBIU_ERRMST)
address 0xFFC0 0A38

• Reset control register (EBIU_RSTCTL)
address 0xFFC0 0A3C

 Access to the DDR controller registers (EBIU_DDRCTLx) can be made
only after releasing the DDR controller soft reset bit in the reset
control register (EBIU_RSTCTL) by writing a 1 to bit[0] of the regis-
ter.

The EBIU_DDRCTL0, EBIU_DDRCTL1, EBIU_DDRCTL2 and
EBIU_DDRCTL3 can not be written when the DDR controller is in
self-refresh mode. Such an attempt causes the processor to hang.

Programs may write to the DDR control registers as long as the
controller is not accessing memory devices. The controller
responds to any writes to its registers after it finishes ongoing mem-
ory accesses.

The DDR control registers contain sensitive timing parameters and
settings for the DDR SDRAM. Carefully program these registers
with values that are in the operating range of the DDR being used.
In addition to meeting the timing specifications defined in the
DDR memory datasheet, the user must ensure that the DDR con-
troller is configured such that tRC <=RP + tRAS.

ADSP-BF54x Blackfin Processor Hardware Reference 5-21

External Bus Interface Unit

Values in the reserved fields in these registers must be maintained
according to the specification. Writing to reserved fields or writing
reserved values to register bits causes incorrect function.

 The programmer must not change the prefetch length fields of the
EBIU_DDRQUE register during an ongoing transfer on DEB buses;
otherwise unpredictable behavior may occur.

Recommended Programming Sequence

In general the following order is recommended for programming the
EBIU registers.

1. EBIU_DDRQUE using a read-modify-write operation

2. EBIU_RSTCTL using a read-modify-write operation. Always set bit 0
and bit 5 as appropriate for the type of DDR memory actually con-
nected to the ADSP-BF54x processor.

3. EBIU_DDRCTLx in any order

Out of reset/boot, by default, the ADSP-BF54x processor processor will
have a VLEV setting of "F". This is programmed at the factory in OTP
factory page settings page FPS04 and loaded into the VR_CTL register dur-
ing preboot. See Chapter 17, “System Reset and Booting” for more details
of preboot. Since only values of "D" and "E" allowed, the “F” value is offi-
cially out-of-specification. The programmer should call the on-chip ROM
function bfrom_SysControl() to program a value of either "D" or "E" in
the four bit voltage level field (VLEV) within the VR_CTL register.

The Mobile DDR enable bit is cleared on reset (bit 5 of EBIU_RSTCTL) and
must be re-enabled along with the EBIU_RSTCTL bit 0 enable bit. The boot
kernel code in on-chip ROM normally sets this bit during preboot. How-
ever the programmer should set this bit within the application code since
it will be cleared, for example, if a software system reset is issued.

DDR SDRAM Memory Interface

5-22 ADSP-BF54x Blackfin Processor Hardware Reference

 The general recommendation is that the programmer should
always set this bit in the application code when using Mobile DDR
and should not rely on preboot since booting may not occur when
events such as a software system reset are invoked.

Listing 5-1. Example Assembly Code to Set EBIU_RSTCTL Bit 0 and 5

p0.l = lo(EBIU_RSTCTL);

p0.h = hi(EBIU_RSTCTL);

r1 = w[p0];

bitset (r1,0);

bitset (r1,5);

w[p0] = r1;

sync;

Listing 5-2. Example C Code for Call to bfrom_SysControl()

Only the SYSCTRL_VRCTL flag is required to set VLEV (see information
above); but this function demonstrates setting the PLL as well.

#include <bfrom.h>
#include <cdefBF548.h>
 // Set new values for PLL_CTL, PLL_DIV and VR_CTL
 mystruct.uwPllCtl = 0x1000;
 mystruct.uwPllDiv = 0x0002;
 mystruct.uwVrCtl = 0x409B;
return_code = bfrom_SysControl(SYSCTRL_WRITE|SYSCTRL_PLLCTL|
SYSCTRL_PLLDIV|SYSCTRL_VRCTL|SYSCTRL_INTVOLTAGE,&mystruct,NULL);
if (return_code)
return FAIL;

Details of preboot, callable ROM functions, and the registers cited above
can be found in Chapter 18, “Dynamic Power Management” and
Chapter 17, “System Reset and Booting”.

ADSP-BF54x Blackfin Processor Hardware Reference 5-23

External Bus Interface Unit

DDR Registers
This section provides descriptions of the EBIU’s memory-mapped regis-
ters (MMRs) for DDR programming.

This section describes the following registers:
“Memory Control Register 0 (EBIU_DDRCTL0)” on page 5-24
“Memory Control Register 1 (EBIU_DDRCTL1)” on page 5-25
“Memory Control Register 2 (EBIU_DDRCTL2)” on page 5-26
“Memory Control Register 3 (EBIU_DDRCTL3), Regular DDR
Devices” on page 5-27
“Memory Control Register 3 (EBIU_DDRCTL3), Mobile DDR Devices”
on page 5-28
“Error Master Register (EBIU_ERRMST)” on page 5-31
“Error Address Register (EBIU_ERRADD)” on page 5-32
“Reset Control Register (EBIU_RSTCTL)” on page 5-30

DDR SDRAM Memory Interface

5-24 ADSP-BF54x Blackfin Processor Hardware Reference

Memory Control Register 0 (EBIU_DDRCTL0)

 Access to this register can be made only after releasing bit[0] of the
EBIU_RSTCTL register. This register can not be written during
self-refresh mode.

In addition to meeting the timing specifications defined in the
DDR memory datasheet, the user must ensure that the DDR con-
troller is configured such that tRC <=RP + tRAS.

Figure 5-3. Memory Control Register 0

Memory Control Register 0 (EBIU_DDRCTL0)

Number of clock cycles needed for DDR
to recover from a precharge command
and ready to accept next ACTIVE com-
mand (Default: 0x3)

tRP (Precharge-to-Active Command
Period)[3:0] R/W

Reset = 0x098E 8411

tREFI (Refresh Interval)[13:0] R/WtRFC
(AUTO-REFRESH Command Period) [3:0] R/W

Number of clock cycles needed for DDR to recover
from a refresh to be ready for next ACTIVE com-
mand (tRFC/Clock Period) (Default: 0xA)

Number of clock cycles from one refresh
cycle to next refresh cycle. To obtain this
value, divide the DDR refresh period (tREF)
by total number of rows to be refreshed.
Then divide the result by total time.
(Default: 0x0411)

0xFFC00A20

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 0 0 0 0 1 0 0 0 0 0 1 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 1 0 0 1 1 0 0 0 1 1 1

Number of clock cycles from an ACTIVE com-
mand until a PRECHARGE command is
issued. To obtain this value, one should divide
the minimum RAS to pre-charge delay of
SDRAM by clock cycle time (Default: 0x6).

tRAS (Minimum Active-to-Precharge
time)[3:0] R/W

Number of clock cycles from an
ACTIVE command to next
ACTIVE command (Default: 0x2)

tRC (Active-to-Active)[3:0] R/W

ADSP-BF54x Blackfin Processor Hardware Reference 5-25

External Bus Interface Unit

Memory Control Register 1 (EBIU_DDRCTL1)

 Access to this register can be made only after releasing bit[0] of the
EBIU_RSTCTL register. This register can not be written during
self-refresh mode.

Figure 5-4. Memory Control Register 1

Memory Control Register 1 (EBIU_DDRCTL1)

00: Individual DDR, 4-bit wide
01: Individual DDR, 8-bit wide
10: Individual DDR, 16-bit
(Default)
11: Reserved

DDR_DEVWIDTH (DDR Device
Width) [1:0] R/W

Reset = 0x1002 6223

tRCD (Active-to-Read/Write)[3:0] R/WEXTBANKS (External
Banks) [1:0] R/W

00: 1 external bank (DBA0)
01: 2 external bank (DBA0,
DBA1) (Default)
10: Reserved
11: Reserved

Number of clock cycles from an active
command to a read/write assertion. To
obtain this value, divide the RAS# delay to
CAS# delay time (tRCD) by the clock cycle
time. (Default: 0x11)

0xFFC00A24

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 1 1 0 0 0 1 0 0 0 1 0 0 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 1 0 0 0 0 0 0 0 0 0 0 1

The Write-to-read delay (last write data to
the next read command as specified by
the DDR data sheet (Default: 0x1)

tWTR (Write-to-Read
Delay)[3:0] R/W

tMRD (Mode register set to active)[3:0]
R/W

Number of clock cycles after the setting of
the mode register in DDR and before the
issue of next command. (Default: 0x10)

tWR (Write Recovery time) [1:0] R/W

DDR_DATAWIDTH [1:0] R/W

Total DDR Data Width (16-bit
only)
10: Only this value is allowed

00: Individual DDR, 512 Mbit
(Default)
01: Individual DDR, 64 Mbit
10: Individual DDR, 128 Mbit
11: Individual DDR, 256 Mbit

DDR_DEVSIZE (DDR Device
Size) [1:0] R/W

Number of clock cycles needed for DDR to
recover from a write and be able to accept a
precharge command. (Default: 0x10)

DDR SDRAM Memory Interface

5-26 ADSP-BF54x Blackfin Processor Hardware Reference

Memory Control Register 2 (EBIU_DDRCTL2)

 Access to this register can be made only after releasing bit[0] of the
EBIU_RSTCTL register. This register can not be written during
self-refresh mode.

Figure 5-5. Memory Control Register 2

Memory Control Register 2 (EBIU_DDRCTL2)

Reset = 0x0000 0021

BURSTLENGTH (Burst Length) [2:0] ROREGE
(Register Mode Enable) R/W

This bit should be high when external
registers are inserted in the control and
address signals between DDR SDRAM.
An example is when the register mode
DDR SDRAM is used. (Default: 0)

001: Read only value is set to a burst length of 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 1 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00

CASLATENCY (CAS Latency) [2:0] R/W
The number of clock cycles from assertion of
read/write signal to SDRAM until first valid data
on output from SDRAM.
101: 1.5
010: 2 (Default)
110: 2.5
011: 3

DLLRESET R/W

0: Normal operation (Default)
1: Normal operation with DLL reset

00xFFC00A28

ADSP-BF54x Blackfin Processor Hardware Reference 5-27

External Bus Interface Unit

Memory Control Register 3 (EBIU_DDRCTL3),
Regular DDR Devices

 Access to this register can be made only after releasing bit[0] of the
EBIU_RSTCTL register. This register can not be written during
self-refresh mode.

This register is used to control (update) the content of the Extended Mode
Register of a DDR memory device. The fields and bits of this register cor-
respond directly to those of the Extended Mode Register of a DDR
memory device. The programmer can update the values of the Extended
Mode Register by writing to this register according to the memory vendor
specification. Only values supported by the memory device should be
written.

Figure 5-6. Memory Control Register 3 (Regular DDR Devices)

Memory Control Register 3 (EBIU_DDRCTL3)

Reset = 0x0000 0003

DLL R/W

0xFFC00A2C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 1 0 0 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00

Memory chip output drive strength.
0: Normal strength
1: Reduced strength (Default).

0

0: Enable
1: Disable (Default)
Valid ONLY in regular DDR mode
DS R/W

DDR SDRAM Memory Interface

5-28 ADSP-BF54x Blackfin Processor Hardware Reference

Memory Control Register 3 (EBIU_DDRCTL3),
Mobile DDR Devices

This register is used to control (update) the content of the Extended Mode
Register of a Mobile DDR memory device. The fields and bits of this reg-
ister correspond directly to those of the Extended Mode Register of a
Mobile DDR memory device. The programmer can update the values of
the Extended Mode Register by writing to this register according to the
memory vendor specification. Only valid values supported by the memory
device should be written.

Figure 5-7. Memory Control Register 3 (Mobile DDR Devices)

Memory Control Register 3 (EBIU_DDRCTL3)
Mobile DDR Devices

Reset = 0x0000 0020

PASR [2:0] R/W[31:7] R/W

Reserved. Only 0s are allowed to write.
Valid ONLY in mobile DDR.

Partial Array Self-Refresh (PASR)
000: Full array (all banks) (Default)
001: Half array (BA1=0)
010: Quarter Array (BA1=BA0=0)
011: Reserved
100: Reserved
101: 1/8 array (BA1=BA0=Row Addr MSB=0)
110: 1/16 array (BA1=BA0=Row Addr MSBs=0)
111: Reserved
Valid ONLY in mobile DDR mode.

0xFFC00A2C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 1 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

TCSR [1:0] RO

Reserved. Reads 0s.
Valid ONLY in mobile DDR mode.

DS [1:0] R/W

Drive Strength of the memory device
00: Full Strength Drive
01: Half Strength Drive (Default)
10: Quarter Strength Drive
11: One-eighth Strength Drive
Valid ONLY in mobile DDR mode.

ADSP-BF54x Blackfin Processor Hardware Reference 5-29

External Bus Interface Unit

Queue Configuration Register (EBIU_DDRQUE)

Figure 5-8. Queue Configuration Register

Queue Configuration Register (EBIU_DDRQUE)

Reset = 0x0000 1115

DEB2_URGENT R/W
0 - Treat any DEB2 (USB)
request as urgent
1 - Treat DEB2 (USB)
request as normal
(default)

0xFFC00A30

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 1 0 0 0 1 0 0 0 1 0 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DEB0_PFLEN [1:0] R/W

Prefetch Length for DEB0 accesses. Based
on these bits, DQM instructs DDR Control-
ler to perform 2-beat, 4-beat or 8-beat
bursts for prefetch read data.
01: 4 half-words (default)
10: 8 half-words
11: 16-half words
 00: Single access performs. 16-bit read to
DDR controller. Second edge is not used.

DEB_ARB_PRIORITY [2:0] R/W
Arbitration Priority between all DEB buses for External
DDR memory:
000: DEB0>DEB1>DEB2
001: DEB1>DEB0>DEB2 (default)
010: DEB2>DEB0>DEB1
011: Reserved
In addition, the following fixed order of arbitration is
maintained:
1. Core lock access
2.Urgent DMA access
3.Core access
4.Normal DMA access
5.Prefetch reads

DEB1_URGENT R/W

0 - Treat any DEB1 (USB)
request as urgent
1 - Treat DEB1 (USB)
request as normal (default)

DEB0_URGENT R/W

0 - Treat any DEB0 (USB) request as urgent
1 - Treat DEB0 (USB) request as normal
(default)

DEB1_PFLEN [1:0] R/W

Prefetch Length for DEB1 accesses. Based on
these bits, DQM instructs DDR Controller to per-
form 2-beat, 4-beat or 8-beat bursts for prefetch
read data.
01: 4 half-words (default)
10: 8 half-words
11: 16-half words
 00: Single access performs. 16-bit read to DDR
controller. Second edge is not used.

DEB2_PFLEN [1:0] R/W

Prefetch Length for DEB2 accesses. Based on
these bits, DQM instructs DDR Controller to per-
form 2-beat, 4-beat or 8-beat bursts for prefetch
read data.
01: 4 half-words (default)
10: 8 half-words
11: 16-half words
 00: Single access performs. 16-bit read to DDR
controller. Second edge is not used.

[31:16], [15], [11], [7:6] Reserved. Do not modify.

DDR SDRAM Memory Interface

5-30 ADSP-BF54x Blackfin Processor Hardware Reference

Reset Control Register (EBIU_RSTCTL)

Figure 5-9. Reset Control Register 0

Reset Control Register (EBIU_RSTCTL)

Controls reset of DDR controller
0: Reset the DDR controller
1: Release the reset of DDR con-
troller.
This bit is directly connected to
the DDR Controller. The only way
that the DDR controller can come
out of the reset state is by setting
this bit to 1. After this bit is set, the
DDR controller initiates the
power-up sequence on DDR
memory. This takes about 2 us.

DDR_SRESET R/W
(DDR Controller Soft Reset)

Reset = 0x00020xFFC00A3C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x x x x x x x x x x 0 0 0 0 1

0 - Standard DDR initialization and features enabled
1- Mobile DDR initialization and features enabled

MDDRENABLE RW

SRREQ (self-refresh Request) R/W

This bit must be set to 1 for cor-
rect operation (Default = 1)

0 - DDR exits self-refresh mode
when this bit is cleared to 0.
1 - Sets the DDR memory to be in
self-refresh mode. The controller
starts a self-refresh sequence of
the DDR memory. This bit should
be set until the DDR has entered
self-refresh state (monitored by
checking the SRACK bit) and
should remain set to 1 as long as
the DDR is in the self-refresh
state.

Reserved. Do not modify

self-refresh Ack
Acknowledgement from DDR Controller that
the DDR memory is in self-refresh Mode
1: self-refresh Mode
0: Not in self-refresh Mod.

SRACK (self-refresh ACK) RO

Note: The programmer should set bit 5 when using mobile
DDR. Do not assume this bit will be programmed following a
hard/soft reset or by the boot kernel residing in the on-chip
boot ROM.

Bit 1 RW

ADSP-BF54x Blackfin Processor Hardware Reference 5-31

External Bus Interface Unit

Error Master Register (EBIU_ERRMST)

Figure 5-10. Error Master Register

Error Master Register (EBIU_ERRMST)

Set whenever an access from the DEB0
happens on to External Memory which is
reserved. Cleared by the Core by Writing
1. Write 0 has no effect.

DEB0_ERROR R/W

Reset = 0x00000xFFC00A38
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Set whenever Core accesses any reserved
External Memory space and CORE_ERROR
bit still set. Cleared by the Core by Writing 1.
Write 0 has no effect.

CORE_MERROR R/W

Set whenever an access from the DEB1
happens on to External Memory which is
reserved. Cleared by the Core by Writing
1. Write 0 has no effect.

DEB1_ERROR R/W

Set whenever an access from the DEB2
(USB) happens on to External Memory
which is reserved. Cleared by the Core
by Writing 1. Write 0 has no effect.

DEB2_ERROR R/W

Set whenever the Core accesses any
reserved External Memory space.
Cleared by the Core by Writing 1. Write 0
has no effect.

CORE_ERROR R/W

Set whenever DEB2 (USB) accesses any
reserved External Memory space and
DEB2_ERROR bit still set. Cleared by the
Core by Writing 1. Write 0 has no effect.

DEB2_MERROR R/W

Set whenever DEB1 accesses any reserved
External Memory space and DEB1_ERROR bit
still set. Cleared by the Core by Writing 1. Write
0 has no effect.

DEB1_MERROR R/W

Set whenever DEB0 accesses any reserved
External Memory space and DEB0_ERROR bit
still set. Cleared by the Core by Writing 1. Write
0 has no effect.

DEB0_MERROR R/W

DDR SDRAM Memory Interface

5-32 ADSP-BF54x Blackfin Processor Hardware Reference

Error Address Register (EBIU_ERRADD)

Mode of Operation - DDR
The DDR SDRAM controller performs the DDR SDRAM read and write
accesses based on external SDRAM memory requests by the processor core
EAB, DEB0, DEB1, and DEB2 buses.

The DDR SDRAM timing, such as row and column latency, precharge
timing, and row access time are programmed to default values at system
reset. They also can be programmed during runtime if the application
wishes to optimize the system performance. The internal counters in the
DDR controller handle all the timing parameters.

Data between the DDR SDRAM controller and the DDR SDRAM device
transfers at both the rising edge and falling edge of clock. The DDR
SDRAM controller has the built-in data path to handle all data generation
and sampling tasks.

Figure 5-11. Error Address Register

Error Address Register (EBIU_ERRADD)

Reset = 0x0000 0000

ERROR_ADDRESS (Error Address) [31:0] RO
The error address to which any Bus Master (DEB0, DEB1, DEB2, Core) had accessed.
This register captures the first error address by an individual bus. If two errors
accesses happen by two buses, the address with the later bus will be captured.

0xFFC00A34

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 0 0 0 0 1 0 0 0 0 0 1 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADSP-BF54x Blackfin Processor Hardware Reference 5-33

External Bus Interface Unit

Data Flow for 16-bit DDR SDRAMs

For read access, the DDR SDRAM drives 16 bits of data at both edges of
the SDRAM clock. The DQS strobe is sampled by the DDR controller
data path (synchronized with internal clock) and transferred to the DDR
arbiter as a single 32-bit data. The DDR arbiter transfers the 32-bit data
to the corresponding queues for which the read request command is
accepted. The queue in turn transfers the same on to DMA buses or
unpacks the 32-bit data word into two single half-words (16-bit) or 4 sin-
gle bytes (8-bit), depending upon the DMA data width, before
transferring them on to DMA buses. In the case of 32-bit wide DMA
transfers, no unpacking is done.

For a core read request, the DDR arbiter transfers the 32-bit data to the
core.

For write accesses, each DEB queue accepts byte/half-word/word requests
from the corresponding DMA bus and packs into a 32-bit DDR SDRAM
data word. A write request to the DDR arbiter is then made. The DDR
arbiter then accepts a 32-bit write requests from DEB queues and the core
bus, arbitrates based on arbitration priority and transfers one of the write
request on to DDR controller. The DDR controller in turn writes as two
16-bit half-words on both edges of the clock (DQS strobe).

For write requests from the core, write commands are sent directly to the
DDR arbiter without any packing.

The DDR SDRAM controller supports SDRAM devices of sizes of 64,
128, 256, 512 Mbits. For all device sizes it supports configurations of x4,
x8 and x16 data width per SDRAM. The programmer can use multiple
SDRAM devices to build a SDRAM data width of 16-bits. Both the device
size and SDRAM data word size is programmable by the programmer.

The DDR SDRAM controller supports an open page policy. Open page
policy takes advantage of the fact that once a row is activated, multiple
accesses can be made to the same row (page) without precharging the
bank.

DDR SDRAM Memory Interface

5-34 ADSP-BF54x Blackfin Processor Hardware Reference

The pipeline feature of the DDR controller and the queuing feature of the
queue manager block consecutive page hit write or consecutive page hit
read to/from DDR without any idle cycles between accesses.

Definition of Standard DDR Terms
The following are definitions used in the rest of this chapter.

Active command The active command is used to open (or activate) a row
in a particular bank for subsequent access. The value on the DBA1–0 pins
selects the DDR’s internal bank, and the address on the DA12–0 pins
selects the row. The open row is also referred to as the open page. This
row (page) remains open for accesses until a precharge command is issued
to that bank. In a particular bank, only one row can be open at any time.
A precharge command must be issued before opening a different row in
the same bank.

Precharge command The precharge command is used to close (or deacti-
vate) the open row in a particular bank or the open row in all internal
banks. Once a bank is precharged, it is in an idle state and must be acti-
vated prior to any read or write commands being issued to the same bank.

Read command Precharge not supported

Write command Precharge not supported

Figure 5-12. DDR Terms

ROW ACTIVE COMMAND PRECHARGE ROW ACTIVE

tRCD

tRAS

tRC

tRP

ADSP-BF54x Blackfin Processor Hardware Reference 5-35

External Bus Interface Unit

Auto refresh command DDR data must be refreshed within a certain
interval to prevent loss of data. The DDR controller automatically issues
an auto refresh command to the DDR SDRAM device to refresh its mem-
ory. The DDR controller refreshes one row each time.

The refresh interval is programmable by the programmer in the control
register. All control registers can be programmed during runtime. The
refresh interval field in the control register measures the interval for
auto-refresh in terms of clock cycles. If the cycle time of the system clock
is 10ns, the refresh interval value should be 780 to indicate a 7.8 µs refresh
interval.

The DDR SDRAM controller has an internal counter to count the refresh
period. When the counter expires, the controller precharges all the banks
and then issues an auto-refresh command to the SDRAM—if the SDRAM
is in idle state. If the SDRAM is being accessed for read, write or other
commands, the precharge and auto refresh commands are delayed until
the current command is completed.

A request for an access to DDR SDRAM while auto refresh is in progress
will be delayed till auto refresh is completed.

Enter Self-Refresh Mode To minimize power consumption, the DDR
SDRAM controller enters the self-refresh mode under programmer con-
trol. When the SRREQ bit is set (in the EBIU_RSTCTL register), it starts the
self-refresh sequence. This enables the SDRAM to continue to refresh its
memory array while minimizing power consumption, resulting in no data
loss. Once the SRREQ bit is set, it should not be cleared until the DDR
SDRAM enters a self-refresh state, indicated by SRACK = 1 in the reset con-
trol register. The processor or DMA should not issue any further
commands until the SRACK bit is set.

The DDR controller brings the DDR SDRAM to self-refresh mode by
issuing self-refresh and de-asserts the DCKE signal. The DCKE signal is kept
low until the DDR exits self-refresh mode.

DDR SDRAM Memory Interface

5-36 ADSP-BF54x Blackfin Processor Hardware Reference

Once in self-refresh mode, the programmer must not attempt to access the
DDR memory. The programmer must also not attempt to write
EBIU_DDRCTL0, EBIU_DDRCTL1, EBIU_DDRCTL2 and EBIU_DDRCTL3 registers
while in self-refresh mode. Such actions will cause the processor to hang.

Exit from Self-Refresh Mode To exit from self-refresh mode, the SRREQ
bit must be de-asserted by the programmer. The controller asserts the DCKE
signal and then issues an auto-refresh after waiting for 16 clock cycles.
However, DDR SDRAM devices are required to wait for 200 clock cycles
before processing any read/write request. The DDR SDRAM controller
keeps the SRACK bit asserted high for 200 cycles after the DCKE is asserted.
After the SRACK is cleared, SDRAM is operational again and the program-
mer can issue normal SDRAM requests. The processor should check for
SRACK being cleared and then issue any commands.

The programmer must follow the procedures described above for entering
and exiting the self-refresh mode. After exiting self-refresh mode, the pro-
grammer must set the EBIU_DDRCTL0, EBIU_DDRCTL1, EBIU_DDRCTL2 and
EBIU_DDRCTL3 registers appropriately for the frequency of operation and
DDR memory specification.

Returning from Hibernate After putting the DDR memory in self-refresh
mode, it is common for the Blackfin processor to go to the Hibernate
state, with no power applied to itself. Later, when the Blackfin processor
powers up and returns from the Hibernate state, the DDR will enter the
self-refresh mode. Enabling the DDR controller will cause the DDR
memory to exit self-refresh mode.

Once the DDR controller is enabled, it goes through the normal initializa-
tion sequence and wakes up the DDR memory from self-refresh mode to
its normal mode of operation. When the DDR controller is enabled (after
returning from hibernate), the programmer must, as always, set the
EBIU_DDRCTL0, EBIU_DDRCTL1, EBIU_DDRCTL2 and EBIU_DDRCTL3 registers
appropriately for the frequency of operation and DDR memory
specification.

ADSP-BF54x Blackfin Processor Hardware Reference 5-37

External Bus Interface Unit

Mode Register Set The mode register is the DDR internal configuration
register containing programmer defined parameters. The mode register set
command is issued by the DDR controller automatically during power on
initialization and when the programmer writes to EBIU_DDRCTL2.

Extended Mode Register Set The extended mode register set command is
issued by the DDR controller automatically during power on initialization
and when the programmer writes to EBIU_DDRCTL3. Extended mode regis-
ter set and mode register set differ by the encoding of the DBA1–0 signals.

Burst Length The burst length determines the number of words the DDR
stores or delivers after detecting a single write or read command, respec-
tively. The burst length is programmed in the SDRAM mode register
during the power-up sequence. The DDR controller, for the
ADSP-BF54x processor processor, only supports burst length = 2 mode.

Table 5-5. DDR SDRAM Commands

CS# RAS# CAS# WE# BA[1:0] Commands

L L L L 00 Mode register set

L L L L 01 Extended mode register set

H X X X X Command inhibit (NOP)

L L H H X Active

L H L H X Read

L H L L X Write

L L H L X Precharge

L L L H X Refresh

L L L L X Mode register set/extended mode register set

L H H L X Burst terminate

- - - - L Write enable/output enable

- - - - H Write inhibit/output high -Z

DDR SDRAM Memory Interface

5-38 ADSP-BF54x Blackfin Processor Hardware Reference

Burst Stop Command The burst stop command is one of several ways to
terminate a burst read or write operation. Since the SDRAM burst length
is always programmed to be 2, the DDR controller does not need any
burst stop command.

Burst Type The burst type determines the access order in which the DDR
delivers burst data after detecting a read command or stores burst data
after detecting a write command. The burst type is programmed in the
DDR mode register during the power-up sequence. Burst type can be
sequential or interleaved. Since the DDR controller only supports a burst
length of 2, the burst type does not matter. The ADSP-BF54x processor
processor ‘s DDR controller always sets the burst type to sequen-
tial-accesses-only during the SDRAM power-up sequence.

CAS Latency (also tAA, tCAC, tCL). The column address strobe (DCAS)
latency is the delay, in clock cycles, between when the SDRAM detects the
read command and when it provides the data at its output pins. The DCAS
latency is programmed in the SDRAM mode register during the power-up
sequence. The speed grade of the device and the application’s clock fre-
quency determine the value of the DCAS latency. The DDR controller
supports DCAS latencies of 1.5, 2, 2.5, and 3 clocks.

CBR (CAS before RAS) Auto-Refresh When the DDR controller refresh
counter times out, it precharges all four banks of SDRAM and then issues
an auto-refresh command to them. This causes the SDRAMs to generate
an internal CBR refresh cycle. When the internal refresh completes, all
four DDR internal banks are precharged.

DQM Data I/O Mask Function The DQM1–0 pins provide a byte masking
capability on 8-bit writes to DDR. The DQM1–0 pins are not used to mask
data on read cycles.

Internal Bank In a DDR, there are several internal memory banks. These
banks are selected by the bank address (DBA1–0) pins.

ADSP-BF54x Blackfin Processor Hardware Reference 5-39

External Bus Interface Unit

Page Hit Detection The DDR controller stores the row address in the row
address register each time it activates a bank. Internally the DDR control-
ler has four row address registers, one for each bank. Once a bank is
activated for read or write, the bank remains active. When a new access
request arrives to the DDR SDRAM controller, it automatically checks
the internal row address register. If the new access is for the same row
(page hit), the DDR SDRAM controller skips the active command and
directly issues the read/write command to access the DDR.

Maximum Bank Active Time Each DDR bank can remain in an active
state up to hundreds of microseconds, but it must be precharged again
before the maximum active–to–precharge time is exceeded. The DDR
SDRAM controller assures that each bank does not exceed the maximum
active-to-precharge time by use of a refresh interval. Since the refresh
period is smaller than the maximum active–to–precharge time in
SDRAMs and all banks must be idle before a refresh can be issued, no
bank will remain in the active state for more than the active-to-pre-charge
time. For each refresh issued, the DDR SDRAM controller checks that all
banks are idle. If any bank is active, the controller issues an all bank pre-
charge command to DDR before the refresh command.

The programmer must make sure that the refresh cycle that is pro-
grammed in EBIU_DDRCTL0 is smaller than the active–to–precharge time.

Page Miss Access When a DDR SDRAM access generates a page miss that
the bank is precharged (deactivated), the DDR controller starts the access
with the ACTIVE command. If the bank is active but the row address is a
mismatch, the DDR controller first issues a precharge command. After the
precharge-to-active delay, the DDR controller issues the active command
and then a read or write command to access the memory. If the bank is
already precharged, the precharge command is skipped.

DDR SDRAM Memory Interface

5-40 ADSP-BF54x Blackfin Processor Hardware Reference

Register Mode DDR Support The DDR SDRAM controller supports
DDR SDRAM systems with and without external registers for address and
control signals. The buffered mode is functionally identical to using single
discrete SDRAM devices. The control and address signals are buffered on
the board to reduce loading to the SDRAM controller. The REGE bit must
be set to 0 to support discrete and buffered mode.

Register mode is designed for systems that have external registers for each
control and address signal between the DDR controller and the DDR
SDRAM. The REGE bit is set to 1 to enable the register mode. When regis-
ter mode is enabled, the latency of all accesses is increased by one system
clock cycle.

DDR SDRAM System Organization
DDR devices are available with 4-, 8-, and16-bit data width. To build a
memory system with 16-bit data, multiple x4 or x8 DDR SDRAM devices
can be connected in parallel to provide the total data bits. Different data
word sizes do not affect the address bit used to access the SDRAM. The
word size on the interface between the DDR SDRAM controller and the
DDR queue block is always double the width of the data path to the DDR
because the DDR transfers two bits of data per pin per clock cycle.

All the address and control signals, with the exception of DQM1–0, are com-
mon to all SDRAM chips. The DQM1–0 signal must match with the data
bits with which they are associated.

Figure 5-13 shows a DDR system of 16-bit data word made by using
512M bit (64M bytes) SDRAM devices with x8 configuration, producing
128M bytes per external memory bank.

ADSP-BF54x Blackfin Processor Hardware Reference 5-41

External Bus Interface Unit

DDR SDRAM Configurations Supported
The ADSP-BF54x processor DDR SDRAM controller supports different
sizes of SDRAM chips from 64 Mbit to 512 Mbit. The following tables
list the supported sizes.

Figure 5-13. 16-bit Data Bus DDR System

Table 5-6. Using 64 Mbit (8M bytes) SDRAM Chips

SDRAM
Data
Width

Individual
SDRAM
Width

Total
SDRAM
Needed

Total Size
per
External
Bank

Row
Address
Bits

Column
Address
Bits

Bank
Address
Bits

External
Chip
Selects

16 x4 4 32M bytes 22:11 10:1 24:23 26:25

16 x8 2 16M bytes 21:10 9:1 23:22 25:24

16 x16 1 8M bytes 20:9 8:1 22:21 24:23

DCLK2/DCLK2

DRAS

DBA1–0

DCLKE

DCAS
DWE

DQS1–0

DQ15–0

DQM1–0

DA12–0

DCS1

DCS0

8

8

1

1 1

1

2

2

16

DDR3 DDR2

DDR0DDR1

ADSP-BF54x

64 Mbyte 64 Mbyte

64 Mbyte64 Mbyte

1 1 8

1 1 8

DCLK1/DCLK1

DDR SDRAM Memory Interface

5-42 ADSP-BF54x Blackfin Processor Hardware Reference

Table 5-7. Using 128 Mbit (16M bytes) SDRAM Chips

SDRAM
Data
Width

Individual
SDRAM
Width

Total
SDRAM
 Needed

Total Size
per
External
Bank

Row
Address
Bits

Column
Address
Bits

Bank
Address
Bits

External
Chip
Selects

16 x4 4 64M bytes 23:12 11 :1 25:24 27:26

16 x8 2 32M bytes 22:11 10:1 24:23 26:25

16 x16 1 16M bytes 21:10 9:1 23:22 25:24

Table 5-8. Using 256 Mbit (32M bytes) SDRAM Chips

SDRAM
Data
Width

Individual
SDRAM
Width

Total
SDRAM
Needed

Total Size
per Exter-
nal bank

Row
Address
Bits

Column
Address
Bits

Bank
Address
Bits

External
Chip
Selects

16 x4 4 128M
bytes

24:12 11:1 26:25 28:27

16 x8 2 64 M
bytes

23:11 10:1 25:24 27:26

16 x16 1 32 M
bytes

22:10 9:1 24:23 26:25

Table 5-9. Using 512 Mbit (64 M bytes) SDRAM Chips

SDRAM
Data
Width

Individual
SDRAM
Width

Total
SDRAM
Needed

Total Size
per Exter-
nal bank

Row
Address
Bits

Column
Address
Bits

Bank
Address
Bits

External
Chip
Selects

16 x4 4 256 M
bytes

25:13 12:1 27:26 29:28

16 x8 2 128 M
bytes

24:12 11:1 26:25 28:27

16 x16 1 64 M
bytes

23:11 10:1 25:24 27:26

ADSP-BF54x Blackfin Processor Hardware Reference 5-43

External Bus Interface Unit

DDR Timing Parameter Definitions
ACTIVE-to-PRECHARGE Command Delay (tRAS)–The required delay
between issuing an active command and issuing a precharge command and
between the self-refresh command and the exit from self-refresh.

PRECHARGE Command Period (tRP)–The required delay between issu-
ing a precharge command and issuing an activate command, between a
precharge command and issuing an auto-refresh command, and between a
precharge command and issuing a self-refresh command.

ACTIVE_A-to-ACTIVE_A Delay tRC)–The required delay between issu-
ing successive activate commands to the same SDRAM internal bank. The
programmer must ensure that tRAS + tRP tRC.

ACTIVE-to-READ/WRITE Delay (tRCD)–The required delay between
an active command and the start of the first read or write command

AUTO-REFRESH Command Period (tRFC)–The required delay between
issuing an auto-refresh command and an active command.

Average Refresh Interval (tREFI)–The number of cycles from one refresh
command to next refresh command.

WRITE-to-READ Delay (tWTR)–The number of cycles between last
write data and next read command.

Write Recovery Time (tWR)–The clock cycles needed for the SDRAM to
recover from a write command and be able to accept a precharge
command.

LOAD MODE REGISTER Command Cycle Time (tMRD)–The number
of clock cycles after setting of the mode register in the DDR and before
issue of next command.

DDR SDRAM Memory Interface

5-44 ADSP-BF54x Blackfin Processor Hardware Reference

DDR Metrics Control Registers
The EBIU provides a set of registers and counters to monitor performance
and activities on the DDR SDRAM interface and in the DDR arbiter for
accesses to DDR SDRAM memory. There are 23 counters and two con-
trol registers, each 32-bits wide, for this purpose.

The following sections describe the DDR metrics control registers:
“DDR Metrics Counter Enable (EBIU_DDRMCEN) Register” on
page 5-44
“DDR Metrics Counter Clear (EBIU_DDRMCCL) Register” on
page 5-47
“DDR READ Access Count (EBIU_DDRBRCx) Registers” on page 5-49
“DDR WRITE Access Count (EBIU_DDRBWCx) Registers” on
page 5-50
“DDR Page ACTIVATE Count (EBIU_DDRACCT) Register” on
page 5-51
“DDR TURN AROUND Count (EBIU_DDRTACT) Register” on
page 5-51
“DDR AUTO-REFRESH Count (EBIU_DDRARCT) Register” on
page 5-51
“DDR Grant Count (EBIU_DDRGCx) Registers” on page 5-51

DDR Metrics Counter Enable (EBIU_DDRMCEN) Register

This 32-bit system MMR independently controls different DDR metrics
counters. Each bit in this register (except bits[25:24]) enables and disables
the corresponding counter. When a bit is set to 1, the corresponding
counter starts. When a bit is 0, the corresponding counter stops counting
but is not cleared. The corresponding bit in the DDR metrics counter
clear (EBIU_DDRMCCL) register must be set to clear the counter (see
Table 5-10 and Table 5-11).

ADSP-BF54x Blackfin Processor Hardware Reference 5-45

External Bus Interface Unit

Table 5-10. DDR Metrics Counter Enable Register

Address Register Name Size Reset Value

0xFFC0 0AC0 DDR Metrics Counter Enable Register 32 0x0000 0000

Table 5-11. DDR Metrics Counter Enable Register Bits

Name Offset Access Description

Reserved 31:30 RO Reads 0

GCCONTROL
DDR Grant Count Control

25:24 R/W Specifies 4 different schemes for DDR Grants
Count (see Table 5-14 on page 5-52):
00: Core, DEB0, DEB1, DEB2,(Default)
01: Core, DEB0WR, DEB0RD, DEB0PF
10: Core, DEB1WR, DEB1RD, DEB1PF
11: Core, DEB2WR, DEB2RD, DEB2PF

GC3ENABLE
DDR Grant Count
Register 3 Enable

23 R/W 1: Enable Grant Count Register 3
0: Disable Grant Count Register 3(Default)

GC2ENABLE
DDR Grant Count
Register 2 Enable

22 R/W 1: Enable Grant Count Register 2
0: Disable Grant Count Register2(Default)

GC1ENABLE
DDR Grant Count
Register 1 Enable

21 R/W 1: Enable Grant Count Register 1
0: Disable Grant Count Register1(Default)

GC0ENABLE
DDR Grant Count
Register 0 Enable

20 R/W 1: Enable Grant Count Register 0
0: Disable Grant Count Register01(Default)

Reserved 19 RO Reads 0

ARCENABLE
Total DDR Auto-Refresh
Count Enable

18 R/W 1: Enable Auto-Refresh Count
0: Disable Auto-Refresh Count (Default)

RWTCENABLE
Total DDR R/W Turn Around
Count Enable

17 R/W 1: Enable Turn Around Count
0: Disable Turn Around Count (Default)

DDR SDRAM Memory Interface

5-46 ADSP-BF54x Blackfin Processor Hardware Reference

ROWACTCENABLE
Total DDR Row
ACTIVATE Count Enable

16 R/W 1: Enable Row Activate Count
0: Disable Row Activate Count (Default)

B7RCENABLE
Bank7 Read Count Enable

15 R/W 1: Enable Read Count to Bank7
0: Disable Read Count to Bank7(Default)

B6RCENABLE
Bank6 Read Count Enable

14 R/W 1: Enable Read Count to Bank6
0: Disable Read Count to Bank6(Default)

B5RCENABLE
Bank5 Read Count Enable

13 R/W 1: Enable Read Count to Bank5
0: Disable Read Count to Bank5(Default)

B4RCENABLE
Bank4 Read Count Enable

12 R/W 1: Enable Read Count to Bank4
0: Disable Read Count to Bank4(Default)

B3RCENABLE
Bank3 Read Count Enable

11 R/W 1: Enable Read Count to Bank3
0: Disable Read Count to Bank3(Default)

B2RCENABLE
Bank2 Read Count Enable

10 R/W 1: Enable Read Count to Bank2
0: Disable Read Count to Bank2(Default)

B1RCENABLE
Bank1 Read Count Enable

9 R/W 1: Enable Read Count to Bank1
0: Disable Read Count to Bank1(Default)

B0RCENABLE
Bank0 Read Count Enable

8 R/W 1: Enable Read Count to Bank0
0: Disable Read Count to Bank0(Default)

B7WCENABLE
Bank7 WRite Count Enable

7 R/W 1: Enable Write Count to Bank7
0: Disable Write Count to Bank7(Default)

B6WCENABLE
Bank6 WRite Count Enable

6 R/W 1: Enable Write Count to Bank6
0: Disable Write Count to Bank6(Default)

B5WCENABLE
Bank5 WRite Count Enable

5 R/W 1: Enable Write Count to Bank5
0: Disable Write Count to Bank5(Default)

B4WCENABLE
Bank4 WRite Count Enable

4 R/W 1: Enable Write Count to Bank4
0: Disable Write Count to Bank4(Default)

B3WCENABLE
Bank3 WRite Count Enable

3 R/W 1: Enable Write Count to Bank3
0: Disable Write Count to Bank3(Default)

B2WCENABLE
Bank2 WRite Count Enable

2 R/W 1: Enable Write Count to Bank2
0: Disable Write Count to Bank2(Default)

Table 5-11. DDR Metrics Counter Enable Register Bits (Cont’d)

Name Offset Access Description

ADSP-BF54x Blackfin Processor Hardware Reference 5-47

External Bus Interface Unit

DDR Metrics Counter Clear (EBIU_DDRMCCL) Register

This 32-bit SMMR controls independent clearing of DDR metrics coun-
ters. Each bit in this register, when set to 1, clears the corresponding
counter. Writing 0 in a bit position has no affect on the corresponding
counter. This register is used to clear the corresponding counter(s) before
starting them (see Table 5-12 and Table 5-13).

B1WCENABLE
Bank1 WRite Count Enable

1 R/W 1: Enable Write Count to Bank1
0: Disable Write Count to Bank1(Default)

B0WCENABLE
Bank0 WRite Count Enable

0 R/W 1: Enable Write Count to Bank0
0: Disable Write Count to Bank0(Default)

Table 5-12. DDR Metrics Counter Clear Register

Address Register Name Size Reset Value

0xFFC0 0AC4 DDR Metrics Counter Clear Register 32 0x0000 0000

Table 5-13. DDR Metrics Counter Clear Register Bits

Name Offset Access Description

Reserved 31:24 RO Reads 0s

CG3COUNT
Clear DDR Grant Count Register 3

23 R/W 1: Clear Grant Count Register 3
0: Do not Clear (Default)

CG2COUNT
Clear DDR Grant Count Register 2

22 R/W 1: Clear Grant Count Register 2
0: Do not Clear (Default)

CG1COUNT
Clear DDR Grant Count Register 1

21 R/W 1: Clear Grant Count Register 1
0: Do not Clear (Default)

CG0COUNT
Clear DDR Grant Count Register 0

20 R/W 1: Clear Grant Count Register 0
0: Do not Clear (Default)

Reserved 19 RO Reads 0

Table 5-11. DDR Metrics Counter Enable Register Bits (Cont’d)

Name Offset Access Description

DDR SDRAM Memory Interface

5-48 ADSP-BF54x Blackfin Processor Hardware Reference

CARCOUNT
Clear Total DDR Auto-Refresh Count

18 R/W 1: Clear Auto-Refresh Count
0: Do not Clear (Default)

CRWTACOUNT
Clear Total DDR R/W Turn Around Count

17 R/W 1: Clear Turn Around Count
0: (Default)

CRACOUNT
Clear Total DDR Row ACTIVATE Count

16 R/W 1: Clear Row Activate Count
0: Do not Clear (Default)

CB7RCOUNT
Clear Bank7 Read Count

15 R/W 1: Clear Read Count to Bank7
0: Do not Clear (Default)

CB6RCOUNT
Clear Bank6 Read Count

14 R/W 1: Clear Read Count to Bank6
0: Do not Clear (Default)

CB5RCOUNT
Clear Bank5 Read Count

13 R/W 1: Clear Read Count to Bank5
0: Do not Clear (Default)

CB4RCOUNT
Clear Bank4 Read Count

12 R/W 1: Clear Read Count to Bank4
0: Do not Clear (Default)

CB3RCOUNT
Clear Bank3 Read Count

11 R/W 1: Clear Read Count to Bank3
0: Do not Clear (Default)

CB2RCOUNT
Clear Bank2 Read Count

10 R/W 1: Clear Read Count to Bank2
0: Do not Clear (Default)

CB1RCOUNT
Clear Bank1 Read Count

9 R/W 1: Clear Read Count to Bank1
0: Do not Clear (Default)

CB0RCOUNT
Clear Bank0 Read Count

8 R/W 1: Clear Read Count to Bank0
0: Do not Clear (Default)

CB7WCOUNT
Clear Bank7 Write Count

7 R/W 1: Clear Write Count to Bank7
0: Do not Clear (Default)

CB6WCOUNT
Clear Bank6 Write Count

6 R/W 1: Clear Write Count to Bank6
0: Do not Clear (Default)

CB5WCOUNT
Clear Bank5 Write Count

5 R/W 1: Clear Write Count to Bank5
0: Do not Clear (Default)

CB4WCOUNT
Clear Bank4 Write Count

4 R/W 1: Clear Write Count to Bank4
0: Do not Clear (Default)

CB3WCOUNT
Clear Bank3 Write Count

3 R/W 1: Clear Write Count to Bank3
0: Do not Clear (Default)

Table 5-13. DDR Metrics Counter Clear Register Bits (Cont’d)

Name Offset Access Description

ADSP-BF54x Blackfin Processor Hardware Reference 5-49

External Bus Interface Unit

DDR READ Access Count (EBIU_DDRBRCx) Registers

Each of the following registers counts read accesses to the corresponding
DDR SDRAM bank, when enabled. Bank4 through Bank7 imply banks
in the second external memory bank.

• DDR Bank0 Read Count (EBIU_DDRBRC0) Register
(Address: 0xFFC0 0A60)

• DDR Bank1 Read Count (EBIU_DDRBRC1) Register
(Address: 0xFFC0 0A64)

• DDR Bank2 Read Count (EBIU_DDRBRC2) Register
(Address: 0xFFC0 0A68)

• DDR Bank3 Read Count (EBIU_DDRBRC3) Register
(Address: 0xFFC0 0A6C)

• DDR Bank4 Read Count (EBIU_DDRBRC4) Register
(Address: 0xFFC0 0A70)

• DDR Bank5 Read Count (EBIU_DDRBRC5) Register
(Address: 0xFFC0 0A74)

CB2WCOUNT
Clear Bank2 Write Count

2 R/W 1: Clear Write Count to Bank2
0: (Default)

CB1WCOUNT
Clear Bank1 Write Count

1 R/W 1: Clear Write Count to Bank1
0: Do not Clear (Default)

CB0WCOUNT
Clear Bank0 Write Count

0 R/W 1: Clear Write Count to Bank0
0: Do not Clear (Default)

Table 5-13. DDR Metrics Counter Clear Register Bits (Cont’d)

Name Offset Access Description

DDR SDRAM Memory Interface

5-50 ADSP-BF54x Blackfin Processor Hardware Reference

• DDR Bank6 Read Count (EBIU_DDRBRC6) Register
(Address: 0xFFC0 0A78)

• DDR Bank7 Read Count (EBIU_DDRBRC7) Register
(Address: 0xFFC0 0A7C)

DDR WRITE Access Count (EBIU_DDRBWCx) Registers

Each of the following registers counts write accesses to the corresponding
DDR SDRAM bank, when enabled. Bank4 through Bank7 imply banks
in the second external memory bank.

• DDR Bank0 Write Count Register (EBIU_DDRBWC0)
(Address: 0xFFC0 0A80)

• DDR Bank1 Write Count Register (EBIU_DDRBWC1)
(Address: 0xFFC0 0A84)

• DDR Bank2 Write Count Register (EBIU_DDRBWC2)
(Address: 0xFFC0 0A88)

• DDR Bank3 Write Count Register (EBIU_DDRBWC3)
(Address: 0xFFC0 0A8C)

• DDR Bank4 Write Count Register (EBIU_DDRBWC4)
(Address: 0xFFC0 0A90)

• DDR Bank5 Write Count Register (EBIU_DDRBWC5)
(Address: 0xFFC0 0A94)

• DDR Bank6 Write Count Register (EBIU_DDRBWC6)
(Address: 0xFFC0 0A98)

• DDR Bank7 Write Count Register (EBIU_DDRBWC7)
(Address: 0xFFC0 0A9C)

ADSP-BF54x Blackfin Processor Hardware Reference 5-51

External Bus Interface Unit

DDR Page ACTIVATE Count (EBIU_DDRACCT) Register

This register counts the total number of times the page activate command
was issued to the DDR SDRAM, for all banks. (Address: 0xFFC0 0AA0)

DDR TURN AROUND Count (EBIU_DDRTACT) Register

This register counts the total number of times there was a turn around
between read and write or between write and read commands, for all
banks. (Address: 0xFFC0 0AA8)

DDR AUTO-REFRESH Count (EBIU_DDRARCT) Register

This register counts the total number of times the auto-refresh command
was issued, for all banks. (Address: 0xFFC0 0AAC)

DDR Grant Count (EBIU_DDRGCx) Registers

There are four DDR grant count registers. These counters may be used to
monitor how the four requesters (for example, EAB, DEB0, DEB1,
DEB2) are granted access to the DDR memory.

• DDR Grant Count Register 0 (EBIU_DDRGC0)
(Address: 0xFFC0 0AB0) If the DDR grant control field of the
DDR metrics counter enable register (bit[25:24]) is set to 0 – this
register counts the total number of times the EAB was granted
access to DDR SDRAM.

• DDR Grant Count Register 1 (EBIU_DDRGC1)
(Address: 0xFFC0 0AB4) If the DDR grant control field of the
DDR metrics counter enable register (bit[25:24]) is set to 0 – this
register counts the total number of times the DEB0 was granted
access to DDR SDRAM.

DDR SDRAM Memory Interface

5-52 ADSP-BF54x Blackfin Processor Hardware Reference

• DDR Grant Count Register 2 (EBIU_DDRGC2)
(Address: 0xFFC0 0AB8) If the DDR grant control field of the
DDR metrics counter enable register (bit[25:24]) is set to 0 – this
register counts the total number of times the DEB1 was granted
access to DDR SDRAM.

• DDR Grant Count Register 3 (EBIU_DDRGC3)
(Address: 0xFFC0 0ABC) If the DDR grant control field of the
DDR metrics counter enable register (bit[25:24]) is set to 0 – this
register counts the total number of times the DEB2 was granted
access to DDR SDRAM.

More Grant Counter Options

The grant count registers can be configured to record grants in different
ways, depending upon the DDR grant control field of the DDR metrics
counter enable register (bit[25:24]). Table 5-14 enumerates different ways
the programmer can configure these counters.

Table 5-14. DDR Grant Control Scheme

Grant Control
Field[1:0]

Grant Count
Register 1

Grant Count
Register 2

Grant Count
Register 3

Grant Count
Register 4

00 Total EAB Grants Total DEB0 Grants Total DEB1 Grants Total DEB2 Grants

01 Total EAB Grants DEB0 WR Grants DEB0 RD Grants DEB0 Prefetch Grants

10 Total EAB Grants DEB1 WR Grants DEB1 RD Grants DEB1 Prefetch Grants

11 Total EAB Grants DEB2 WR Grants DEB2 RD Grants DEB2 Prefetch Grants

ADSP-BF54x Blackfin Processor Hardware Reference 5-53

External Bus Interface Unit

DDR Grant Count Control

The DDR grant count control field (bits[25:24]) in the EBIU_DDRMCEN reg-
ister helps monitor arbitration activities inside the EBIU arbiter.

• When this field is set to 00, the DDR grant count registers 0, 1, 2,
and 3 count the number of grants given to EAB, DEB0, DEB1,
and DEB2 buses respectively for access requests to DDR SDRAM.

• When this field is set to 01, DDR grant count registers 1, 2, and 3
count the total number of grants given to DEB0, the number of
grants given to DEB0 write requests, the number of grants given to
DEB0 read requests and the number of grants given to DEB0
prefetch read requests, respectively. Grant count register 0 counts
the number of grants given to EAB.

• When this field is set to 10, DDR grant count registers 1, 2, and 3
count the total number of grants given to DEB1, the number of
grants given to DEB1 write requests, the number of grants given to
DEB0 read requests and the number of grants given to DEB1
prefetch read requests, respectively. Grant count register 0 counts
the number of grants given to EAB.

• When this field is set to 11, DDR grant count registers 1, 2, and 3
count the total number of grants given to DEB2, the number of
grants given to DEB2 write requests, the number of grants given to
DEB2 read requests and the number of grants given to DEB2
prefetch read requests, respectively. Grant count register 0 counts
the number of grants given to EAB.

Asynchronous Memory Interface

5-54 ADSP-BF54x Blackfin Processor Hardware Reference

Asynchronous Memory Interface
The EBIU interface allows a view into a variety of memory and peripheral
devices, including SRAM, ROM, EPROM, NOR flash memory, and
FPGA/ASIC devices. Four asynchronous memory regions (banks) are sup-
ported. Each has a unique memory select associated with it, as shown in
Table 5-15.

Although it is called asynchronous memory interface, each bank in the
asynchronous memory region supports synchronous memory devices such
as NOR flash memory. Each bank may be individually configured for one
of three operating modes:

• Asynchronous read/write

• Asynchronous page mode read

• Synchronous burst read

Asynchronous Memory Address Decode
The address range allocated to each asynchronous memory bank is fixed at
64M bytes. Many code and data structures may fit within the confines of a
single memory bank and not all of an enabled memory bank needs be
populated.

Table 5-15. Asynchronous Memory Bank Address Range

Memory Bank Select Address Start Address End

AMS[3] 2C00 0000 2FFF FFFF

AMS[2] 2800 0000 2BFF FFFF

AMS[1] 2400 0000 27FF FFFF

AMS[0] 2000 0000 23FF FFFF

ADSP-BF54x Blackfin Processor Hardware Reference 5-55

External Bus Interface Unit

Accesses to unpopulated memory of partially populated ASYNC banks do
not result in a bus error and will alias to valid ASYNC addresses.

The asynchronous memory signals are defined in Table 5-16. The timing
of these pins is programmable to allow a flexible interface to devices of dif-
ferent speeds. Certain pins switch between asynchronous and flash
functions depending on the access mode selected for the memory bank
being accessed. For example interfaces, see Chapter 19, “System Design”.

Asynchronous Memory Arbitration
The asynchronous memory arbiter accepts requests from the address reso-
lution block for each of the DEB0, DEB1, DEB2, and the external access
bus. The arbiter in the ASYNC follows an arbitration scheme similar to
DDR, but simplified. The DMA reads and writes have the same priority,
which eliminates the need for “forced write”. Also, there is no prefetch
access in the asynchronous memory interface.

Table 5-16. Asynchronous Memory Interface Pins

Pin Name Type Asynchronous Function FLASH Function Changes with Mode?

ADDR25 O Address Bus Clock Output (CLK) Yes

ADDR24–1 O Address Bus Address Bus No

DATA15–0 I/O Data Bus Data Bus No

AMSx O Memory Select Chip Enable (CE#) No

ABE0 O Lower Byte Enable -- Yes

ABE1 O Upper Byte Enable -- Yes

AOE O Output Enable Address Valid (ADV#) Yes

ARE O Read Enable Output Enable (OE#) No

AWE O Write Enable Write Enable (WE#) No

ARDY O Ready Wait (WAIT#) No

Asynchronous Memory Interface

5-56 ADSP-BF54x Blackfin Processor Hardware Reference

Table 5-17 summarizes the arbitration scheme for the asynchronous mem-
ory interface. The DEB_ARB_PRIORITY bits of the EBIU_DDRQUE register
control the arbitration.

The priority schemes described above are from the arbiter perspective.
The priority schemes are followed by the arbiter only when they are ready
to arbitrate, not when EBIU receives requests on the DEB or EAB buses.
For example, a DEB bus may indicate Urgent during a request, but if the
urgent signal goes away before the arbiter arbitrates, the DEB request is
treated as regular request. Burst requests, from core, are arbitrated only in
the first beat of a burst; for example, once processor core access is granted,
it is granted for the whole burst.

Table 5-17. Asynchronous Memory Interface Arbiter Priority Scheme

DEB_ARB_PRIORITY:
000 (0>1>2)

DEB_ARB_PRIORITY:
001 (1>0>2)

DEB_ARB_PRIORITY:
010 (2>0>1)

Core TESTSET Core TESTSET Core TESTSET

Urgent DMA
DEB0READ/WRITE
DEB1 READ/WRITE
DEB2 READ/WRITE

Urgent DMA
DEB1 READ/WRITE
DEB0 READ/WRITE
DEB2 READ/WRITE

Urgent DMA
DEB2 READ/WRITE
DEB0 READ/WRITE
DEB1 READ/WRITE

Core READ/WRITE Core READ/WRITE Core READ/WRITE

Normal DMA
DEB0 READ/WRITE
DEB1 READ/WRITE
DEB2 READ/WRITE

Normal DMA
DEB1 READ/WRITE
DEB0 READ/WRITE
DEB2 (USB) READ/WRITE

Normal DMA
DEB2 (USB) READ/WRITE
DEB0 READ/WRITE
DEB1 READ/WRITE

ADSP-BF54x Blackfin Processor Hardware Reference 5-57

External Bus Interface Unit

Asynchronous Memory Interface Control Registers
The EBIU contains memory-mapped registers that control the access
characteristics for each asynchronous memory bank. In addition, a status
register is provided to reflect the arbiter status.

Asynchronous Memory Global
Control Register (EBIU_AMGCTL)

The EBIU_AMGCTL register configures global aspects of the controller. It
contains bank enables and other information as described in this section.
Do not program this register while the ASYNC is in use (for example,
when code is being executed from this memory space).

Table 5-18. EBIU Memory-Mapped Registers

Address Register Name Description

0xFFC0 0A00 EBIU_AMGCTL “Asynchronous Memory Global Control Register
(EBIU_AMGCTL)” on page 5-57

0xFFC0 0A04 EBIU_AMBCTL
0

“Asynchronous Memory Bank Control Registers
(EBIU_AMBCTL0, EBIU_AMBCTL1)” on page 5-59

0xFFC0 0A08 EBIU_AMBCTL
1

“Asynchronous Memory Bank Control Registers
(EBIU_AMBCTL0, EBIU_AMBCTL1)” on page 5-59

0xFFC0
0A0C

EBIU_AMBSCT
L

“Memory Bank Select Control Register (EBIU_MBSCTL)” on
page 5-63

0xFFC0 0A10 EBIU_ARBSTAT “EBIU Arbitration Status Register (EBIU_ARBSTAT)” on
page 5-69

0xFFC0 0A14 EBIU_MODE “Memory Mode Control (EBIU_MODE) Register” on
page 5-66

0xFFC0 0A18 EBIU_FCTL “Flash Memory Bank Control (EBIU_FCTL) Register” on
page 5-67

0xFFC0
0A1C

Reserved Reserved

Asynchronous Memory Interface

5-58 ADSP-BF54x Blackfin Processor Hardware Reference

The EBIU_AMGCTL register should be the last control register written-to
when configuring the processor to access asynchronous memory-mapped
devices.

If a bus operation accesses a disabled asynchronous memory bank, the
EBIU responds by acknowledging the transfer and asserting the error sig-
nal on the requesting bus. The error signal propagates back to the
requesting bus master. This generates a hardware exception to the core, if
it is the requester. For DMA-mastered requests, the error is captured in
the respective status register.

If a bank is not fully populated with memory, then the memory likely
aliases into multiple address regions within the bank. This aliasing condi-
tion is not detected by the EBIU, and no error response is asserted.

For external devices that need a clock, CLKOUT can be enabled by setting
the AMCKEN bit in the EBIU_AMGCTL register. In systems that do not use CLK-
OUT, set the AMCKEN bit to 0.

Figure 5-14. Asynchronous Memory Global Control Register

0 0

Asynchronous Memory Global Control Register (EBIU_AMGCTL)

AMBEN[2:0] AMCKEN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 1

0 - Disable CLKOUT for asynchronous
memory region accesses
1 - Enable CLKOUT for asynchronous
memory region accesses

Enable asynchronous memory banks
000 - All banks disabled
001 - Bank0 enabled
010 - Bank0 and Bank1 enabled
011 - Bank0, Bank1, and Bank2 enabled
1xx - All banks (Bank0, Bank1, Bank2,
Bank3) enabled

Reset = 0x0002

Address = 0xFFC00A00

ADSP-BF54x Blackfin Processor Hardware Reference 5-59

External Bus Interface Unit

Asynchronous Memory Bank Control
Registers (EBIU_AMBCTL0, EBIU_AMBCTL1)

The EBIU asynchronous memory controller has two memory bank con-
trol registers (EBIU_AMBCTL0 and EBIU_AMBCTL1). They contain bits for
counters for setup, strobe, and hold time, bits to determine memory type
and size, and bits to configure use of ARDY. The configuration in these
registers applies in all three operating modes. These registers should not be
programmed while the ASYNC is in use.

The timing characteristics of the asynchronous memory interface can be
programmed using these four parameters.

• Setup – The time between the beginning of a memory cycle (AMSx
low) and the read-enable assertion (ARE low) or write-enable asser-
tion (AWE low).

• Read Access – The time between read-enable assertion (ARE low)
and deassertion (ARE high).

• Write Access – The time between write-enable assertion (AWE low)
and deassertion (AWE high).

• Hold – The time between read-enable deassertion (ARE high) or
write-enable deassertion (AWE high) and the end of the memory
cycle (AMSx high).

Each of these parameters can be programmed in terms of EBIU clock
cycles. In addition, there are minimum values for these parameters:

Setup 1 cycle

Read Access 1 cycle

Write Access 1 cycle

Hold 0 cycle

Asynchronous Memory Interface

5-60 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 5-15. Asynchronous Memory Bank Control 0 Register

Asynchronous Memory Bank Control 0 Register (EBIU_AMBCTL0)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B1RDYPOL

B1TT[1:0]

B1ST[1:0]

B1RDYEN

B1HT[1:0]

B1RAT[3:0]

B1WAT[3:0]
Bank1 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank1 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank1 hold time (number of cycles between AWE or
ARE deasserted, and AMS1 deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank1 setup time (number of cycles after AMS1
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank1 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank1 ARDY polarity
0 - Transaction completes if
ARDY sampled low
1 - Transition completes if ARDY
sampled high

Bank1 ARDY enable
0 - Ignore ARDY for accesses to
this memory bank
1 - After access time countdown,
use state of ARDY to determine
completion of access

Reset = 0xFFC2 FFC2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B0RDYPOL

B0TT[1:0]

B0ST[1:0]

B0RDYEN

B0HT[1:0]

B0RAT[3:0]

B0WAT[3:0]
Bank0 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank0 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank0 hold time (number of cycles between AWE or
ARE deasserted, and AMS0 deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank0 setup time (number of cycles after AMS0
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank0 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank0 ARDY polarity
0 - Transaction completes if
ARDY sampled low
1 - Transition completes if ARDY
sampled high

Bank0 ARDY enable
0 - Ignore ARDY for accesses to
this memory bank
1 - After access time countdown,
use state of ARDY to determine
completion of access

Address = 0xFFC00A04

ADSP-BF54x Blackfin Processor Hardware Reference 5-61

External Bus Interface Unit

Figure 5-16. Asynchronous Memory Bank Control 1 Register

Asynchronous Memory Bank Control 1 Register (EBIU_AMBCTL1)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B3RDYPOL

B3TT[1:0]

B3ST[1:0]

B3RDYEN

B3HT[1:0]

B3RAT[3:0]

B3WAT[3:0]
Bank3 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank3 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank3 hold time (number of cycles between AWE or
ARE deasserted, and AMS3 deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank3 setup time (number of cycles after AMS3
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank3 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank3 ARDY polarity
0 - Transaction completes if
ARDY sampled low
1 - Transition completes if ARDY
sampled high

Bank3 ARDY enable
0 - Ignore ARDY for accesses to
this memory bank
1 - After access time countdown,
use state of ARDY to determine
completion of access

Reset = 0xFFC2 FFC2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B2RDYPOL

B2TT[1:0]

B2ST[1:0]

B2RDYEN

B2HT[1:0]

B2RAT[3:0]

B2WAT[3:0]
Bank2 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank2 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank2 hold time (number of cycles between AWE or
ARE deasserted, and AMS2 deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank2 setup time (number of cycles after AMS2
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank2 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank2 ARDY polarity
0 - Transaction completes if
ARDY sampled low
1 - Transition completes if ARDY
sampled high

Bank2 ARDY enable
0 - Ignore ARDY for accesses to
this memory bank
1 - After access time countdown,
use state of ARDY to determine
completion of access

Address = 0xFFC00A08

Asynchronous Memory Interface

5-62 ADSP-BF54x Blackfin Processor Hardware Reference

Avoiding Bus Contention

Because the three-stateable data bus is shared by multiple devices in a sys-
tem, be careful to avoid contention. Contention causes excessive power
dissipation and can lead to device failure. Contention occurs during the
time one device is getting off the bus and another is getting on. If the first
device is slow to three-state and the second device is quick to drive, the
devices contend.

There are two cases where contention can occur. The first case is a read
followed by a write to the same memory space. In this case, the data bus
drivers can potentially contend with those of the memory device addressed
by the read. The second case is back-to-back reads from two different
memory spaces. In this case, the two memory devices addressed by the two
reads could potentially contend at the transition between the two read
operations.

To avoid contention, program the turnaround time (bank transition time)
appropriately in the asynchronous memory bank control registers. This
feature allows software to set the number of clock cycles between these
types of accesses on a bank-by-bank basis. Minimally, the EBIU provides
one cycle for the transition to occur.

ADSP-BF54x Blackfin Processor Hardware Reference 5-63

External Bus Interface Unit

ARDY Input Control

Each bank can be programmed to sample the ARDY input after the read or
write access timer has counted down or to ignore this input signal. If
enabled and disabled at the sample window, ARDY can be used to extend
the access time as required.

The ARDY input is treated as an asynchronous input, however it must reach
the desired value (either asserted or deasserted) more than one SCLK cycle
before the scheduled rising edge of AWE or ARE. This determines whether
the access is extended or not. Once the transaction has been extended as a
result of ARDY being sampled in the “busy” state, the transaction will then
complete in the cycle after ARDY is subsequently sampled in the “ready”
state.

The polarity of ARDY is programmable on a per-bank basis. Since ARDY is
not sampled until an access is in progress to a bank in which the ARDY
enable is asserted, ARDY does not need to be driven by default. For more
information, see “Adding Additional Wait States” on page 5-77.

When using flash memory, the WAIT input should be connected to ARDY.

Memory Bank Select Control Register (EBIU_MBSCTL)

External FIFO devices often do not have a separate chip select pin. As a
result, for a read, the FIFO’s output enable (OE) pin must be connected
the OR (negative AND) of the AMS and the ARE. Similarly, the write case
requires an OR between AMS and AWE. The Blackfin processor provides this
function in the EBIU so that an external OR gate is not required. The
appropriate AMS function can be selected for each memory bank region in
the EBIU_MBSCTL register.

Asynchronous Memory Interface

5-64 ADSP-BF54x Blackfin Processor Hardware Reference

Flash Memory Bank Control Registers (EBIU_FCTL, EBIU_MODE)

The asynchronous memory controller (ASYNC) also has two flash mem-
ory bank control registers.

• “Flash Memory Bank Control (EBIU_FCTL) Register” on
page 5-67

• “Memory Mode Control (EBIU_MODE) Register” on page 5-66

They contain bits for mode selection, page access configuration, and syn-
chronous access configuration. These registers should not be programmed
while the ASYNC is in use.

Figure 5-17. Memory Bank Select Control Register

Memory Bank Select Control Register (EBIU_MBSCTL)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AMSB1CTL[1:0]

AMSB0CTL[1:0]

00 - AMS_B[1]
01 - AMS_B[1] or’ed with ARE_B
10 - AMS_B[1] or’ed with AOE_B
11 - AMS_B[1] or’ed with AWE_B

Address 0xFFC0 0A0C

00 - AMS_B[0]
01 - AMS_B[0] or’ed with ARE_B
10 - AMS_B[0] or’ed with AOE_B
11 - AMS_B[0] or’ed with AWE_B

AMSB3CTL[1:0]

00 - AMS_B[3]
01 - AMS_B[3] or’ed with ARE_B
10 - AMS_B[3] or’ed with AOE_B
11 - AMS_B[3] or’ed with AWE_B

AMSB2CTL[1:0]

00 - AMS_B[2]
01 - AMS_B[2] or’ed with ARE_B
10 - AMS_B[2] or’ed with AOE_B
11 - AMS_B[2] or’ed with AWE_B

ADSP-BF54x Blackfin Processor Hardware Reference 5-65

External Bus Interface Unit

Booting From Page Mode or Synchronous Flash

The EBIU resets to asynchronous mode access. This allows slow asynchro-
nous access to any device during booting without configuration of the
EBIU control registers. Synchronous burst mode and asynchronous page
mode flash devices power up in asynchronous access mode and thus sup-
port an initial access of this type. Once configuration information is read
from the external device, the boot code may select a higher performance
operating mode.

Access Mode Selection

The EBIU may be configured for standard asynchronous mode access,
asynchronous flash mode, asynchronous page mode access, or synchro-
nous burst access. Asynchronous mode access should be used for most
devices other than flash. Burst mode and page mode should only be used
for read accesses. Flash mode (MODE = 01) must be used for all writes to
flash devices. The burst mode and page mode controls have no effect
unless the corresponding access mode is selected.

Pin functionality and supported device width change with mode, as
described in Table 5-19.

Table 5-19. EBIU Pin Configuration by Mode

Mode AOE ADDR[25] Device Width

Asynchronous AOE ADDR[25] 8 or 16 bit

Asynchronous flash ADV ADDR[25] 16 bit

Asynchronous page ADV ADDR[25] 16 bit

Synchronous burst ADV CLK 16 bit

Asynchronous Memory Interface

5-66 ADSP-BF54x Blackfin Processor Hardware Reference

Memory Mode Control (EBIU_MODE) Register

Asynchronous Flash Mode

When the access selected mode is asynchronous flash (MODE = 01),
external bank accesses operate exactly the same as in standard asynchro-
nous mode, except for the pin configuration. This mode should be used
when accessing burst devices in non-read array modes.

Figure 5-18. Memory Mode Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Memory Mode Control Register (EBIU_MODE)

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B0MODE[1:0]
Bank0 Access Mode
00 - Asynchronous Mode
01 - Asynchronous Flash Mode
10 - Asynchronous Page Mode
11 - Synchronous (Burst) Mode

Address = 0xFFC00A14

B1MODE[1:0]
Bank1 Access Mode
00 - Asynchronous Mode
01 - Asynchronous Flash Mode
10 - Asynchronous Page Mode
11 - Synchronous (Burst) Mode

B3MODE[1:0]
Bank3 Access Mode
00 - Asynchronous Mode
01 - Asynchronous Flash Mode
10 - Asynchronous Page Mode
11 - Synchronous (Burst) Mode

B2MODE[1:0]
Bank2 Access Mode
00 - Asynchronous Mode
01 - Asynchronous Flash Mode
10 - Asynchronous Page Mode
11 - Synchronous (Burst) Mode

ADSP-BF54x Blackfin Processor Hardware Reference 5-67

External Bus Interface Unit

Flash Memory Bank Control (EBIU_FCTL) Register

Asynchronous Page Mode

When asynchronous page mode access is selected (MODE = 10), asyn-
chronous page reads are enabled. Page sizes of 4 or 8 words are supported.
When performing a page mode read, the first access in the page proceeds
according to the read access time configured in EBIU_AMBCTLx. This opens
the page. Subsequent reads in that page extend the strobe time by one
SCLK plus the number of page wait states. Page mode access is only sup-
ported for back-to-back accesses, such as cache line fills (16 words), 64-bit
instruction reads (4 words) and 32-bit DMA reads (2 words).

Synchronous Burst Mode

When synchronous mode access is selected (MODE = 11), synchronous
reads are enabled. The burst clock frequency can be configured for SCLK/2,
SCLK/3 or SCLK/4.

Figure 5-19. Flash Memory Bank Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Flash Memory Bank Control Register (EBIU_FCTL)

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000 0006

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 1 1

BCLK[1:0]PGWS[2:0]
Page Wait States
000 to 100 - 0 to 4 cycles

Burst Clock Frequency
00 - Reserved
01 - SCLK/2
10 - SCLK/3
11 - SCLK/4

Address = 0xFFC00A18

TESTSETLOCK
0 - Normal Operation
1 - Only the core can

access Asynchronous
Memory through ASYNC

PGSZ
Page Size; set to match size of memory device
0 - 4 words
1 - 8 words

Asynchronous Memory Interface

5-68 ADSP-BF54x Blackfin Processor Hardware Reference

This is the frequency of the clock output and determines the frequency of
latching data for subsequent beats of a burst. It does not affect any of the
other timing parameters (which are still determined by EBIU_AMBCTLx).

During the setup time of an access, ADV is asserted and the burst clock
begins running. The flash device must be configured to latch the address
on the rising edge of the clock. ADV is asserted for the entire setup time.
The first rising edge of CLK occurs one SCLK cycle before setup ends.

 The setup time must be configured appropriately with respect to
the SCLK to CLK (burst clock) ratio, as follows.

• if SCLK to CLK ratio is 4:1 then setup time = 3 SCLK cycles

• if SCLK to CLK ratio is 3:1 then setup time = 2 SCLK cycles

• A minimum of 2 SCLK cycles must be programmed regardless of
SCLK to CLK ratio.

Once the address is latched, the initial burst access occurs based on the
read access timing for that bank. The strobe time is then extended by a
burst clock duration for each subsequent beat of the burst. Any access in
the burst may be extended by connecting the flash WAIT to ARDY. The flash
device must be configured to deassert ARDY at the same time that data is
valid. Depending on the flash behavior, it may be necessary to disable the
ARDY input before asynchronous read or write accesses.

The synchronous read may be burst or single mode, depending on the
type of transfer requested. Burst access is only supported for back-to-back
reads, such as cache line fills (16 words), 64-bit instruction reads (4
words), and 32-bit DMA reads (2 words). Burst access is not supported
for 8-bit accesses. To support any of these burst types, the flash device
must be configured for 16-word wrapping burst mode.

ADSP-BF54x Blackfin Processor Hardware Reference 5-69

External Bus Interface Unit

When programming the ASYNC, before setting the ASYNC to synchro-
nous burst mode (MODE = 11), it is necessary to do SSYNC instruction and
then wait for (BxST + BxWAT + BxHT) SCLK cycles, where x is the bank
being accessed and the terms are the configuration values from
EBIU_AMBCTL0 or EBIU_AMBCTL1. This is to prevent the potential conten-
tion of previous FLASH device operation and the upcoming mode change.

EBIU Arbitration Status Register (EBIU_ARBSTAT)

When the external flash device is put in non-read array mode for program-
ming, erasing, or checking status, accesses to memory locations in the
flash do not return the stored data. As a result, an arbitration locking
mechanism is provided to allow the core to prevent DMA access during
these operations.

Specifically, the EBIU may be configured to only allow DSP core accesses
to the asynchronous memory banks, by setting the TESTSETLOCK bit in
EBIU_FCTL. Once this bit is set, only the core can win arbitration for future
accesses. Depending on the speed of any outstanding accesses, it may take
many cycles before the arbitration lock takes effect. The EBIU_ARBSTAT
register contains a status bit to indicate when the arbiter is locked. Once
the arbiter is locked, any DMA access to the asynchronous memory banks
is stalled until the TESTSETLOCK bit is cleared.

It is recommended that software manage flash memory programming and
DMA activities to prevent stalling of the DMA with arbiter locked status.

Asynchronous Memory Interface

5-70 ADSP-BF54x Blackfin Processor Hardware Reference

Programmable Timing Characteristics
This section describes the programmable timing characteristics for the
EBIU. Timing relationships depend on the programming of the ASYNC,
whether initiation is from the core or from DMA, and the sequence of
transactions (read followed by read, read followed by write, and others).

Asynchronous Accesses by Core Instructions

Some asynchronous memory accesses are caused by core instructions of
the type:
R0.L = W[P0++] ; /* Read from Asynchronous Memory, where P0

points to a location in Asynchronous Memory */

or:
W[P0++] = R0.L ; /* Write to Asynchronous Memory */

Asynchronous Reads

Figure 5-21 shows two core-initiated asynchronous read bus cycles to the
same bank, with timing programmed with setup = 1 cycle, read access = 3
cycles, hold = 2 cycles, and transition time = 1 cycle.

Figure 5-20. Arbiter Status Register

Arbiter Status Register (EBIU_ARBSTAT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ARBSTAT

Address 0xFFC0 0A10

0 - Arbiter not locked
1 - Arbiter locked
BGSTAT
0 - External bus not granted
1 - External bus granted

ADSP-BF54x Blackfin Processor Hardware Reference 5-71

External Bus Interface Unit

Asynchronous read bus cycles proceed as:

• At the start of the setup period, AMSx, the address bus, and ABE1–0
become valid, and AOE asserts.

• At the beginning of the read access period and after the setup cycle,
ARE asserts.

• At the beginning of the hold period, read data is sampled on the
falling edge of CLKOUT. The ARE pin deasserts after the falling edge.

• At the end of the hold period, AOE and AMSx deassert.

Figure 5-21. Core-Initiated Asynchronous Read Bus Cycles

Setup
3 cycles

Read Access
2 cycles

TimeHold
1 cycle

 Transition

1 cycle
Setup

3 cycles
Read Access

2 cycles
TimeHold

1 cycle

 Transition

1 cycle

AOE

DATA [15:0]

ADDR[19:1]

ABE[1:0]

AMS [x]

CLKOUT

ARE

Asynchronous Memory Interface

5-72 ADSP-BF54x Blackfin Processor Hardware Reference

Unless another read of the same memory bank is queued internally, the
ASYNC appends the programmed number of memory transition time
cycles.

Asynchronous Writes

Figure 5-22 shows two core-initiated asynchronous write bus cycles to the
same bank, with timing programmed with setup = 1 cycle, write access = 2
cycles, hold = 2 cycles, and transition time = 1 cycle.

Figure 5-22. Core-Initiated Asynchronous Write Bus Cycles

Setup
2 cycles

Write
Access

2 cycles
Hold

1 cycle
Setup

2 cycles

Write
Access

2 cycles
Hold

1 cycle

AWE

AOE

DATA [15:0]

ADDR[19:1]

ABE[1:0]

AMS [x]

CLKOUT

ADSP-BF54x Blackfin Processor Hardware Reference 5-73

External Bus Interface Unit

The first asynchronous write bus cycle proceeds as:

• At the start of the setup period, AMSx, the address bus, data buses,
and ABE1–0 become valid.

• At the beginning of the write access period, AWE asserts.

• At the beginning of the hold period, AWE deasserts.

• After the hold period, AMSx remains low for the next setup period
of the next access.

The second asynchronous write bus cycle proceeds as:

• At the start of the setup period, AMSx is still asserted. The address
and data buses and ABE1–0 become valid.

• At the beginning of the write access period, AWE asserts.

• At the beginning of the hold period, AWE deasserts.

• After the hold period, AMSx deasserts.

Figure 5-23 shows two higher-speed asynchronous write bus cycles to the
same bank, with timing programmed with setup = 1 cycle, write access = 2
cycles, hold = 0 cycles, and transition time = 1 cycle.

The first asynchronous write bus cycle proceeds as:

• At the start of the setup period, AMSx, the address bus, data buses,
and ABE1–0 become valid.

• At the beginning of the write access period, AWE asserts.

• At the beginning of the hold period, AWE deasserts.

• After the hold period, AMSx deasserts.

Asynchronous Memory Interface

5-74 ADSP-BF54x Blackfin Processor Hardware Reference

The second asynchronous write bus cycle proceeds as:

• At the start of the setup period, AMSx, the address bus, data buses,
and ABE1–0 become valid.

• At the beginning of the write access period, AWE asserts.

• At the beginning of the hold period, AWE deasserts.

• After the hold period, AMSx deasserts.

Figure 5-23. High Speed Core-Initiated Asynchronous Write Bus Cycles

Setup
2 cycles

Write
Access

1 cycle
Setup

2 cycles

Write
Access

1 cycle

AWE

AOE

DATA [15:0]

ADDR [19:1]

ABE[1:0]

AMS [x]

CLKOUT

ADSP-BF54x Blackfin Processor Hardware Reference 5-75

External Bus Interface Unit

Asynchronous Writes Followed by Reads

Figure 5-24 shows an asynchronous write bus cycle followed by two asyn-
chronous read cycles to the same bank, with timing programmed with
setup = 1 cycle, write access = 2 cycles, read access = 2 cycles, hold = 2
cycles, and transition time = 1 cycle.

Figure 5-24. Core-Initiated Write and Read Bus Cycles

Setup
2 cycles

Write Access
2 cycles
Hold

1 cycle 1 cycle
Setup

2 cycles
Read Access

2 cycles
Hold

1 cycle
Setup

2 cycles
Read Access

2 cycles
Hold

AWE

AOE

DATA [15:0]

ADDR [19:1]

ABE[1:0]

AMS[x]

CLKOUT

ARE

Asynchronous Memory Interface

5-76 ADSP-BF54x Blackfin Processor Hardware Reference

The asynchronous write bus cycles proceed as:

• At the start of the setup period, AMSx, the address bus, data buses,
and ABE1–0 become valid.

• At the beginning of the write access period, AWE asserts.

• At the beginning of the hold period, AWE deasserts and AMSx
remains low for the setup period of the next access.

The first asynchronous read bus cycle proceeds as:

• At the start of the setup period, AMSx is still asserted. The address
bus, and ABE[1:0] become valid, and AOE asserts.

• At the beginning of the read access period, ARE asserts.

• At the beginning of the hold period, read data is sampled on the
rising edge of the EBIU clock. The ARE pin deasserts after this ris-
ing edge.

• At the end of the hold period, AOE and AMSx deassert.

The second asynchronous read bus cycle proceeds as:

• At the start of the setup period, AMSx, the address bus, and ABE1–0
become valid, and AOE asserts.

• At the beginning of the read access period, ARE asserts again.

• At the beginning of the hold period, read data is sampled on the
rising edge of the EBIU clock. The ARE pin deasserts after this ris-
ing edge.

• At the end of the hold period, AOE and AMSx deassert.

Unless another read of the same memory bank is queued internally, the
ASYNC appends the programmed number of memory transition time
cycles.

ADSP-BF54x Blackfin Processor Hardware Reference 5-77

External Bus Interface Unit

Adding Additional Wait States

The ARDY pin is used to insert extra wait states. An example of this behav-
ior is shown in Figure 5-25 on page 5-77, where setup = 2 cycles, read
access = 4 cycles, and hold = 1 cycle. Note the read access period must be
programmed to a minimum of two cycles to make use of the ARDY input.

Figure 5-25. Inserting Wait States Using ARDY

SETUP

2

PROGRAMMED READ ACCESS

4

ACCESS EXTENDED

3

HOLD

1

CLKOUT

AMSx

ABE[1:0]

ADDR[19:1]

DATA[15:0}

AOE

ARE

AWE

BE

DATA
LATCHEDREADY SAMPLED

ARDY

ADDRESS

READ D

Asynchronous Memory Interface

5-78 ADSP-BF54x Blackfin Processor Hardware Reference

Asynchronous Flash Mode Writes and Reads

Figure 5-26 shows an asynchronous flash write bus cycle followed by a
read bus cycle to the same bank. Timing is programmed with setup = 1
cycle, write access = 2 cycles, read access = 2 cycles, hold =2 cycles, and
transition = 1 cycle. The bus cycles are identical to the asynchronous
mode case, except for the behavior of AOE. In this case, AOE is used to indi-
cate a valid address (ADV).

Figure 5-26. Asynchronous Flash Write and Read Bus Cycle

CLKOUT

AMS[x}

AWE

ARE

ADV

ADDR[25:1]

DATA[15:0]

SETUP
1 CYCLE

WRITE ACCESS HOLD HOLDREAD ACCESSSETUP
2 CYCLES 2 CYCLES 1 CYCLE 2 CYCLES 2 CYCLES

TRANS.
1 CYCLE

ADSP-BF54x Blackfin Processor Hardware Reference 5-79

External Bus Interface Unit

Asynchronous Page Mode Reads

Figure 5-27 shows an asynchronous page read bus cycle. Timing is pro-
grammed with setup = 1 cycle, read access = 3 cycles, hold =1 cycle, and
transition = 1 cycle. One wait state (as specified in the PGWS field of the
EBIU_FCTL register) is added to each access in the open page. AOE is used to
indicate a valid address (ADV).

Note: Asynchronous Page Mode is only valid for read operations.

Figure 5-27. Asynchronous Page Mode Read Bus Cycle

CLKOUT

AMS[X}

AWE

ARE

ADV

ADDR[25:1]

DATA[15:0]

SETUP

1 CYCLE
READ ACCESS PAGE TRANS.HOLDPAGE

3 CYCLES 2 CYCLES 2 CYCLES 1 CYCLE 1 CYCLE

DATA
LATCHED

DATA
LATCHED

DATA
LATCHED

Asynchronous Memory Interface

5-80 ADSP-BF54x Blackfin Processor Hardware Reference

Synchronous Burst Mode Read

Figure 5-28 shows a synchronous burst read bus cycle. Timing is pro-
grammed with setup = 3 cycles, read access = 2 cycles, hold = 1 cycle, and
transition = 1 cycle. The burst clock frequency is SCLK/2. The initial burst
access is extended using ARDY and the subsequent beats of the burst are
latched on every rising CLK edge. AOE is used to indicate a valid address
(ADV) and ADDR25 (pin ADDR25) is used as the burst clock (CLK).

Figure 5-28. Synchronous Burst Mode Read Bus Cycle

CLKOUT

AMS[x}

AWE

ARE

ADV

ADDR[24:1]

DATA[15:0]

SETUP

2 CYCLES

READ ACCESS TRANS.HOLDACCESS EXTENDED

3 CYCLES 7 CYCLES 1 CYCLE 1 CYCLE

DATA
LATCHED

DATA
LATCHED

DATA
LATCHED

CLK

ARDY

ADSP-BF54x Blackfin Processor Hardware Reference 5-81

External Bus Interface Unit

Note: Synchronous mode is only valid for read operations, but does sup-
port both burst and non-burst operations.

Bus Request and Grant
The processor can relinquish control of the data and address buses to an
external device. The processor three-states its memory interface to allow
an external controller to access either external asynchronous or synchro-
nous memory parts.

When the external device requires access to the bus, it asserts the bus
request (BR) signal. The BR signal is arbitrated with NFC, ATAPI, and
ASYNC requests. If no internal request is pending, the external bus
request is granted. The processor initiates a bus grant by:

• Three-stating the data and address buses and the asynchronous
memory control signals. The synchronous memory control signals
can optionally be three-stated.

• Asserting the bus grant (BG) signal.

The processor may halt program execution if the bus is granted to an
external device and an instruction fetch or data read/write request is made
to external memory. When the external device releases BR, the processor
deasserts BG and continues execution from the point at which it stopped.

The processor asserts the BGH pin when it is ready to start another external
port access, but is held off because the bus was previously granted. When
the bus is granted, the BGSTAT bit in the EBIU_ARBSTAT register is set. This
bit can be used by the processor to check the bus status to avoid initiating
a transaction that would be delayed by the external bus grant.

Asynchronous Memory Interface

5-82 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 6-1

6 SYSTEM INTERRUPTS

This chapter discusses the system interrupt controller (SIC), which is spe-
cific to the ADSP-BF54x processor processor derivatives. While this
chapter does refer to features of the core event controller (CEC), it does
not cover all aspects of it. Refer to Blackfin Processor Programming Refer-
ence for more information on the CEC.

The chapter includes the following sections:

• “Overview” on page 6-1

• “Interfaces” on page 6-2

• “Description of Operation” on page 6-6

• “Programming Model” on page 6-22

• “System Interrupt Controller Registers” on page 6-24

• “Programming Examples” on page 6-40

Overview
This chapter describes the system peripheral interrupts, including setup
and clearing of interrupt requests.

Interfaces

6-2 ADSP-BF54x Blackfin Processor Hardware Reference

Features
The Blackfin processor architecture provides a two-level interrupt process-
ing scheme:

• The core event controller (CEC) runs in the CCLK clock domain. It
interacts closely with the program sequencer and manages the event
vector table (EVT). The CEC processes not only core-related inter-
rupts such as exceptions, core errors, and emulation events, it also
supports software interrupts.

• The system interrupt controller (SIC) runs in the SCLK clock
domain. It masks, groups, and prioritizes interrupt requests sig-
nalled by on-chip or off-chip peripherals and forwards them to the
CEC.

Interfaces
Figure 6-1, Figure 6-2, and Figure 6-3 provide an overview of how the
individual peripheral interrupt request lines connect to the SIC. They also
show how the 12 interrupt assignment registers (SIC_IARx) control the
assignment to the 9 available peripheral request inputs of the CEC.

 The memory-mapped ILAT, IMASK, and IPEND registers are part of
the CEC controller.

ADSP-BF54x Blackfin Processor Hardware Reference 6-3

System Interrupts

Figure 6-1. Interrupt Routing Overview Part 1 of 3

SPI0 Status
UART0 Status

RTC

DMA12 (EPPI0)

DMA1 (SPORT0 TX)
DMA2 (SPORT1 RX)
DMA3 (SPORT1 TX)

DMA4 (SPI0)
DMA6 (UART0 RX)

PLL Wakeup

SPORT0 Error
SPORT1 Error

W
ak

eu
p

C
O

R
E

TI
M

ER
H

A
R

D
W

A
R

E
ER

R
O

R
EX

C
EP

TI
O

N
S

N
M

I

SI
C

_I
A

R
3

SI
C

_I
A

R
2

SI
C

_I
A

R
1

SI
C

_I
A

R
0

3

0
1
2

4
5
6
7

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

SI
C

_I
SR

0

SI
C

_I
W

R
0

SI
C

_I
M

A
SK

0

R
ES

ET
EM

U
LA

TI
O

N

IMASK

IPEND

ILAT

IV
G

15
IV

G
14

IV
G

13

IV
G

12

IV
G

11
IV

G
10

IV
G

9
IV

G
8

IV
G

7

IV
G

6
IV

G
5

IV
G

3
IV

G
2

IV
G

1
IV

G
0

DMA0 (SPORT0 RX)

DMA7 (UART0 TX)

TIMER 8
TIMER 9

TIMER 10
PINT0

MDMA Stream 0
MDMA Stream 1

DMAC1 Status

Watchdog

SPORT2 Error
SPORT3 Error

MXVR Data
SPI1 Status
SPI2 Status

UART1 Status
UART2 Status

DMAC0 Status
EPPI0 Error

PINT1

IRQ
Channels

IRQ3

IRQ0
IRQ1
IRQ2

IRQ4
IRQ5
IRQ6
IRQ7

IRQ8
IRQ9

IRQ10
IRQ11
IRQ12
IRQ13
IRQ14
IRQ15

IRQ16
IRQ17
IRQ18
IRQ19
IRQ20
IRQ21
IRQ22
IRQ23

IRQ24
IRQ25
IRQ26
IRQ27
IRQ28
IRQ29
IRQ30
IRQ31

Interfaces

6-4 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 6-2. Interrupt Routing Overview Part 2 of 3

W
ak

eu
p

SI
C

_I
A

R
7

SI
C

_I
A

R
6

SI
C

_I
A

R
5

SI
C

_I
A

R
4

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

SI
C

_I
SR

1

SI
C

_I
W

R
1

SI
C

_I
SR

1

SI
C

_I
M

A
SK

1

IV
G

15
IV

G
14

IV
G

13

IV
G

12

IV
G

11
IV

G
10

IV
G

9
IV

G
8

IV
G

7

DMA10 (ATAPI RX)

TWI0

CAN0 STATUS

DMA20 (SPORT3 RX)

DMA13 (EPPI1)

CAN0 RX

CAN0 TX

MXVR Status

UART3 Status
HOSTDP Status

Reserved

NFC Error
ATAPI Error

CAN1 Status

DMA18 (SPORT2 RX)
DMA19 (SPORT2 TX)

DMA14 (EPPI2, HOSTDP)
DMA5 (SPI1)

DMA23 (SPI2)

DMA21 (SPORT3 TX)

DMA8 (UART1 RX)
DMA9 (UART1 TX)

DMA11 (ATAPI TX)

TWI1

MDMA Stream 2
MDMA Stream 3

MXVR Message
MXVR Packet

EPPI1 Error
EPPI2 Error

PIXC Status

DMAR0 Block Done
DMAR1 Block Done

DMAR0 Overflow
DMAR1 Overflow

IRQ
Channels

IRQ35

IRQ32
IRQ33
IRQ34

IRQ36
IRQ37
IRQ38
IRQ39

IRQ40
IRQ41
IRQ42
IRQ43
IRQ44
IRQ45
IRQ46
IRQ47

IRQ48
IRQ49
IRQ50
IRQ51
IRQ52
IRQ53
IRQ54
IRQ55

IRQ56
IRQ57
IRQ58
IRQ59
IRQ60
IRQ61
IRQ62
IRQ63

Handshake
DMA

Status

ADSP-BF54x Blackfin Processor Hardware Reference 6-5

System Interrupts

Figure 6-3. Interrupt Routing Overview Part 3 of 3

W
ak

eu
p

SI
C

_I
A

R
11

SI
C

_I
A

R
10

SI
C

_I
A

R
9

SI
C

_I
A

R
8

SI
C

_I
SR

2

SI
C

_I
W

R
2

SI
C

_I
M

A
SK

2

IV
G

15
IV

G
14

IV
G

13

IV
G

12

IV
G

11
IV

G
10

IV
G

9
IV

G
8

IV
G

7

USB INT0

USB INT2

DMA15 (PIXC IN0)

DMA22 (SDH/NFC)

KEY

OTPSEC

Reserved

Reserved

TIMER2
TIMER3
TIMER4

TIMER6
TIMER7

PINT2

DMA16 (PIXC IN1)
DMA17 (PIXC OUT)

CAN1 RX
CAN1 TX

SDH Mask 0

Rotary counter (CNT)

SDH Mask 1
Reserved

USB INT1

USB DMA

Reserved
Reserved

Reserved
Reserved

TIMER0
TIMER1

TIMER5

PINT3

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

IRQ
Channels

IRQ67

IRQ64
IRQ65
IRQ66

IRQ68
IRQ69
IRQ70
IRQ71

IRQ72
IRQ73
IRQ74
IRQ75
IRQ76
IRQ77
IRQ78
IRQ79

IRQ80
IRQ81
IRQ82
IRQ83
IRQ84
IRQ85
IRQ86
IRQ87

IRQ88
IRQ89
IRQ90
IRQ91
IRQ92
IRQ93
IRQ94
IRQ95

Description of Operation

6-6 ADSP-BF54x Blackfin Processor Hardware Reference

Description of Operation
The following sections describe the operation of the system interrupts.

Events and Sequencing
The processor employs a two-level event control mechanism. The proces-
sor SIC works with the CEC to prioritize and control all system
interrupts. The SIC provides mapping between the many peripheral inter-
rupt sources and the prioritized general-purpose interrupt inputs of the
core. This mapping is programmable, and individual interrupt sources can
be masked in the SIC.

The CEC of the processor manages five types of activities or events:

• Emulation

• Reset

• Nonmaskable interrupts (NMI)

• Exceptions

• Interrupts

Note the word event describes all five types of activities. The CEC man-
ages fifteen different events in all: emulation, reset, NMI, exception, and
eleven interrupts.

An interrupt is an event that changes the normal processor instruction
flow and is asynchronous to program flow. In contrast, an exception is a
software-initiated event whose effects are synchronous to program flow.

The event system is nested and prioritized. Consequently, several service
routines may be active at any time, and a low priority event may be pre-
empted by one of higher priority.

ADSP-BF54x Blackfin Processor Hardware Reference 6-7

System Interrupts

The CEC supports nine general-purpose interrupts (IVG7 – IVG15) in
addition to the dedicated interrupt and exception events that are described
in Table 6-1.

Table 6-1. System and Core Event Mapping

Peripheral Interrupt Source Event Source Core Event Name

Core events Emulation (highest priority) EMU

Reset RST

NMI NMI

Exception EVX

Reserved –

Hardware error IVHW

Core timer IVTMR

Description of Operation

6-8 ADSP-BF54x Blackfin Processor Hardware Reference

System Interrupts PLL Wakeup Interrupt
DMAC0 Status (generic)
DMAC1 Status (generic)
EPPI0 Error Interrupt
EPPI1 Error Interrupt
EPPI2 Error Interrupt
SPORT0 Error Interrupt
SPORT1 Error Interrupt
SPORT2 Error Interrupt
SPORT3 Error Interrupt
MXVR Synchronous Data Interrupt
SPI0 Status Interrupt
SPI1 Status Interrupt
SPI2 Status Interrupt
UART0 Status Interrupt
UART1 Status Interrupt
UART2 Status Interrupt
UART3 Status Interrupt
HOSTDP Status Interrupt
PIXC Status Interrupt
NFC Status Interrupt
ATAPI Status Interrupt
CAN0 Status Interrupt
CAN1 Status Interrupt
DMAR0 Block Done
DMAR1 Block Done
DMAR0 Overflow
DMAR1 Overflow

IVG7

Real-Time Clock Interrupt
DMA12 Interrupt (EPPI0)
DMA15 Interrupt (PIXC IN0)
DMA16 Interrupt (PIXC IN1)
DMA17 Interrupt (PIXC OUT)
DMA22 Interrupt (SDH/NFC)
Rotary Counter Interrupt
Keypad Interrupt

IVG8

Table 6-1. System and Core Event Mapping (Cont’d)

Peripheral Interrupt Source Event Source Core Event Name

ADSP-BF54x Blackfin Processor Hardware Reference 6-9

System Interrupts

System Interrupts, continued DMA0 Interrupt (SPORT0 RX)
DMA1 Interrupt (SPORT0 TX)
DMA2 Interrupt (SPORT1 RX)
DMA3 Interrupt (SPORT1 TX)
DMA18 Interrupt (SPORT2 RX)
DMA19 Interrupt (SPORT2 TX)
DMA20 Interrupt (SPORT3 RX)
DMA21 Interrupt (SPORT3 TX)
DMA13 Interrupt (EPPI1)
DMA14 Interrupt (EPPI2,HOSTDP)

IVG9

DMA4 Interrupt (SPI0)
DMA6 Interrupt (UART0 RX)
DMA7 Interrupt (UART0 TX)
DMA5 Interrupt (SPI1)
DMA23 Interrupt (SPI2)
DMA8 Interrupt (UART1 RX)
DMA9 Interrupt (UART1 TX)
DMA10 Interrupt (ATAPI RX)
DMA11 Interrupt (ATAPI TX)

IVG10

Timer 8 Interrupt
Timer 9 Interrupt
Timer 10 Interrupt
TWI0 Interrupt
TWI1 Interrupt
CAN0 RX Interrupt
CAN0 TX Interrupt
CAN1 RX Interrupt
CAN1 TX Interrupt
SDH Interrupt 0
SDH Interrupt 1
USB Interrupt 0 (USB_INT0)
USB Interrupt 1 (USB_INT1)
USB Interrupt 2 (USB_INT2)
USB DMA Interrupt (USB_DMAINT)
OTPSEC Interrupt

IVG11

Table 6-1. System and Core Event Mapping (Cont’d)

Peripheral Interrupt Source Event Source Core Event Name

Description of Operation

6-10 ADSP-BF54x Blackfin Processor Hardware Reference

It is common for applications to reserve the lowest or the two lowest pri-
ority interrupts (IVG14 and IVG15) for software interrupts, leaving eight or
seven prioritized interrupt inputs (IVG7 – IVG13) for peripheral purposes.
Refer to Table 6-1.

 The system interrupt to core event mappings shown in Table 6-1
are the default values at reset and can be changed by software.

System Peripheral Interrupts
To service the rich set of peripherals, the SIC has 96 interrupt request
inputs and 9 interrupt request outputs which go to the CEC. The primary
function of the SIC is to mask, group, and prioritize interrupt requests
and to forward them to the nine general-purpose interrupt inputs of the

System Interrupts, continued MXVR Asynchronous Packet Interrupt
MXVR Control Message Interrupt
MXVR Status Interrupt
Timer 0 Interrupt
Timer 1 Interrupt
Timer 2 Interrupt
Timer 3 Interrupt
Timer 4 Interrupt
Timer 5 Interrupt
Timer 6 Interrupt
Timer 7 Interrupt

Pin Interrupt 0 (PINT0)
Pin Interrupt 1 (PINT1)
Pin Interrupt 2 (PINT2)
Pin Interrupt 3 (PINT3)

IVG12

MDMA Stream 0
MDMA Stream 1
MDMA Stream 2
MDMA Stream 3
Software Watchdog Timer Interrupt

IVG13

Table 6-1. System and Core Event Mapping (Cont’d)

Peripheral Interrupt Source Event Source Core Event Name

ADSP-BF54x Blackfin Processor Hardware Reference 6-11

System Interrupts

CEC (IVG7–IVG15). Additionally, the SIC controller can enable individual
peripheral interrupts to wake up the processor from idle or power-down
state.

The nine general-purpose interrupt inputs (IVG7–IVG15) of the core event
controller have fixed priority. The IVG0 channel has the highest priority
and IVG15 has the lowest priority. Therefore, the interrupt assignment in
the SIC_IARx registers not only groups peripheral interrupts, but it also
programs their priority by assigning them to individual IVG channels.
However, the relative priority of peripheral interrupts can be set by map-
ping the peripheral interrupt to the appropriate general-purpose interrupt
level in the core. The mapping is controlled by the system interrupt
assignment register (SIC_IARx) settings, as detailed in Figure 6-7 on
page 6-26 through Figure 6-18 on page 6-31. If more than one interrupt
source is mapped to the same interrupt, they are logically OR’ed, with no
hardware prioritization. Software can prioritize the interrupt processing as
required for a particular system application.

 For general-purpose interrupts with multiple peripheral interrupts
assigned to them, take special care to ensure that software correctly
processes all pending interrupts sharing that input. Software is
responsible for prioritizing the shared interrupts.

The core timer has a dedicated input to the CEC controller. Its interrupts
are not routed through the SIC controller and always have higher priority
than requests from all other peripherals.

The system interrupt mask register (SIC_IMASKx, shown in Figure 6-19 on
page 6-32 through Figure 6-21 on page 6-34) allows software to mask any
peripheral interrupt source at the SIC level. This functionality is indepen-
dent of whether the particular interrupt is enabled at the peripheral itself.
At reset, the contents of SIC_IMASKx are all 0s to mask off all peripheral
interrupts. Turning off a system interrupt mask and enabling the particu-
lar interrupt is performed by writing a 1 to a bit location in the
SIC_IMASKx register.

Description of Operation

6-12 ADSP-BF54x Blackfin Processor Hardware Reference

The SIC includes a read-only system interrupt status register (SIC_ISRx)
with individual bits which correspond to one of the peripheral interrupt
sources. See Figure 6-24 on page 6-37. When the SIC detects the inter-
rupt, the bit is asserted. When the SIC detects that the peripheral
interrupt input is deasserted, the respective bit in the system interrupt sta-
tus register is cleared. Note for some peripherals, such as programmable
flag asynchronous input interrupts, many cycles of latency may pass from
the time an interrupt service routine initiates the clearing of the interrupt
(usually by writing a system MMR) to the time the SIC senses that the
interrupt is deasserted.

Depending on how interrupt sources map to the general-purpose interrupt
inputs of the core, the interrupt service routine may have to interrogate
multiple interrupt status bits to determine the source of the interrupt.
One of the first instructions executed in an interrupt service routine
should read the SIC_ISRx register to determine whether more than one of
the peripherals sharing the input has asserted its interrupt output. The ser-
vice routine should fully process all pending, shared interrupts before
executing the RTI, which enables further interrupt generation on that
interrupt input.

 When an interrupt’s service routine is finished, the RTI instruction
clears the appropriate bit in the IPEND register. However, the rele-
vant SIC_ISRx bit is not cleared unless the service routine clears the
mechanism that generated the interrupt.

Many systems need relatively few interrupt-enabled peripherals, allowing
each peripheral to map to a unique core priority level. In these designs,
SIC_ISRx seldom, if ever, needs to be interrogated.

The SIC_ISRx register is not affected by the state of the system interrupt
mask register (SIC_IMASKx) and can be read at any time. Writes to the
SIC_ISRx register have no effect on its contents.

ADSP-BF54x Blackfin Processor Hardware Reference 6-13

System Interrupts

Peripheral DMA channels are mapped in a fixed manner to the peripheral
interrupt IDs. However, the assignment between peripherals and DMA
channels is freely programmable with the DMAx_PERIPHERAL_MAP registers.
Table 6-2 on page 6-16, Figure 6-4 on page 6-14, and Figure 6-5 on
page 6-15 show the default DMA assignment. For more information on
DMA, see Chapter 7, “Direct Memory Access”. Once a peripheral is
assigned to a DMA channel it uses the new DMA channel’s interrupt ID
regardless of whether DMA is enabled or not. Therefore, clean
DMAx_PERIPHERAL_MAP management is required even if the DMA is not
used. The default setup should be the best choice for all non-DMA
applications.

For dynamic power management, any of the peripherals can be configured
to wake up the core from its idled state or from sleep mode to optionally
process the interrupt, simply by enabling the appropriate bit in the system
interrupt wakeup-enable register (SIC_IWRx, refer to Figure 6-25 on
page 6-38). If a peripheral interrupt source is enabled in the SIC_IWRx reg-
ister and the core is idled or in sleep mode, the interrupt causes the
DPMC to initiate the core wakeup sequence in order to optionally process
the interrupt. Note this mode of operation may add latency to interrupt
processing, depending on the power control state. For further discussion
of power modes and the idled state of the core, see Chapter 18, “Dynamic
Power Management”.

The SIC_IWRx register has no effect unless the core is idled or in sleep
mode. By default, all interrupts generate a wakeup request to the core.
However, for some applications it may be desirable to disable this func-
tion for some peripherals, such as for a SPORTx transmit interrupt. The
SIC_IWRx register can be read from or written to at any time. To prevent
spurious or lost interrupt activity, this register should be written to only
when all peripheral interrupts are disabled.

Description of Operation

6-14 ADSP-BF54x Blackfin Processor Hardware Reference

 The wakeup function is independent of the interrupt mask func-
tion. If an interrupt source is enabled in the SIC_IWRx register but
masked-off in the SIC_IMASKx register, the core wakes up if it is
idled or in sleep mode, but it does not generate an interrupt.

Figure 6-4. Default Peripheral-to-DMA Mapping (DMAC0 Controller)

DMA0 IRQDMA0_PERIPHERAL_MAP

DMA1 IRQ

DMA2 IRQ

DMA3 IRQ

DMA4 IRQ

DMA5 IRQ

DMA6 IRQ

DMA7 IRQ

DMA8 IRQ

DMA9 IRQ

DMA10 IRQ

DMA11 IRQ

DMA1_PERIPHERAL_MAP

DMA2_PERIPHERAL_MAP

DMA3_PERIPHERAL_MAP

DMA4_PERIPHERAL_MAP

DMA5_PERIPHERAL_MAP

DMA6_PERIPHERAL_MAP

DMA7_PERIPHERAL_MAP

DMA8_PERIPHERAL_MAP

DMA9_PERIPHERAL_MAP

DMA10_PERIPHERAL_MAP

DMA11_PERIPHERAL_MAP

U
A

R
T

0
T

X

U
A

R
T

1
R

X

S
P

I1
 R

X
/T

X

S
P

O
R

T
0

T
X

S
P

O
R

T
0

R
X

S
P

O
R

T
1

R
X

S
P

I0
 R

X
/T

X

U
A

R
T

0
R

X

U
A

R
T

1
T

X

A
TA

P
I R

X

A
TA

P
I T

X

S
P

O
R

T
1

T
X

ADSP-BF54x Blackfin Processor Hardware Reference 6-15

System Interrupts

Table 6-2 shows the peripheral interrupt events, the default mapping of
each event, the peripheral interrupt ID used in the system interrupt
assignment registers (SIC_IARx), and the core interrupt ID. See “System
Interrupt Assignment (SIC_IARx) Registers” on page 6-25.

Figure 6-5. Default Peripheral-to-DMA Mapping (DMAC1 Controller)

DMA12 IRQDMA12_PERIPHERAL_MAP

DMA13 IRQ

DMA14 IRQ

DMA15 IRQ

DMA16 IRQ

DMA17 IRQ

DMA18 IRQ

DMA19 IRQ

DMA20 IRQ

DMA21 IRQ

DMA22 IRQ

DMA23 IRQ

DMA13_PERIPHERAL_MAP

DMA14_PERIPHERAL_MAP

DMA15_PERIPHERAL_MAP

DMA16_PERIPHERAL_MAP

DMA17_PERIPHERAL_MAP

DMA18_PERIPHERAL_MAP

DMA19_PERIPHERAL_MAP

DMA20_PERIPHERAL_MAP

DMA21_PERIPHERAL_MAP

DMA22_PERIPHERAL_MAP

DMA23_PERIPHERAL_MAP

S
P

O
R

T
2

T
X

S
P

O
R

T
3

R
X

P
IX

C
 O

U
T

E
P

P
I1

 R
X

/T
X

E
P

P
I0

 R
X

/T
X

E
P

P
I2

/H
O

S
T

D
P

 R
X

/T
X

P
IX

C
 IN

1

S
P

O
R

T
2

R
X

S
P

O
R

T
3

T
X

S
D

H
/N

F
C

 R
X

/T
X

S
P

I2
 R

X
/T

X

P
IX

C
 IN

0

Description of Operation

6-16 ADSP-BF54x Blackfin Processor Hardware Reference

Table 6-2. System Interrupt Controller (SIC)

Peripheral Interrupt Event Peripheral
Interrupt
ID

Default
Mapping

Default
Core
Interrupt
ID

SIC
Registers

PLL Wakeup Interrupt 0 IVG7 0

SI
C

_I
A

R
0

SI
C

_I
W

R
0,

 S
IC

_I
SR

0
&

 S
IC

_I
M

A
SK

0

DMAC0 Status (generic) 1 IVG7 0

EPPI0 Error Interrupt 2 IVG7 0

SPORT0 Error Interrupt 3 IVG7 0

SPORT1 Error Interrupt 4 IVG7 0

SPI0 Status Interrupt 5 IVG7 0

UART0 Status Interrupt 6 IVG7 0

Real-Time Clock Interrupt 7 IVG8 1

DMA12 Interrupt (EPPI0) 8 IVG8 1

SI
C

_I
A

R
1

DMA0 Interrupt (SPORT0 RX) 9 IVG9 2

DMA1 Interrupt (SPORT0 TX) 10 IVG9 2

DMA2 Interrupt (SPORT1 RX) 11 IVG9 2

DMA3 Interrupt (SPORT1 TX) 12 IVG9 2

DMA4 Interrupt (SPI0) 13 IVG10 3

DMA6 Interrupt (UART0 RX) 14 IVG10 3

DMA7 Interrupt (UART0 TX) 15 IVG10 3

ADSP-BF54x Blackfin Processor Hardware Reference 6-17

System Interrupts

Timer 8 Interrupt 16 IVG11 4

SI
C

_I
A

R
2

SI
C

_I
W

R
0,

 S
IC

_I
SR

0
&

 S
IC

_I
M

A
SK

0

Timer 9 Interrupt 17 IVG11 4

Timer 10 Interrupt 18 IVG11 4

Pin Interrupt 0 (PINT0) 19 IVG12 5

Pin Interrupt 1 (PINT1) 20 IVG12 5

MDMA Stream 0 Interrupt 21 IVG13 6

MDMA Stream 1 Interrupt 22 IVG13 6

Software Watchdog Timer Interrupt 23 IVG13 6

DMAC1 Status (generic) 24 IVG7 0

SI
C

_I
A

R
3

SPORT2 Error Interrupt 25 IVG7 0

SPORT3 Error Interrupt 26 IVG7 0

MXVR Synchronous Data Interrupt 27 IVG7 0

SPI1 Status Interrupt 28 IVG7 0

SPI2 Status Interrupt 29 IVG7 0

UART1 Status Interrupt 30 IVG7 0

UART2 Status Interrupt 31 IVG7 0

Table 6-2. System Interrupt Controller (SIC) (Cont’d)

Peripheral Interrupt Event Peripheral
Interrupt
ID

Default
Mapping

Default
Core
Interrupt
ID

SIC
Registers

Description of Operation

6-18 ADSP-BF54x Blackfin Processor Hardware Reference

CAN0 Status Interrupt 32 IVG7 0

SI
C

_I
A

R
4

SI
C

_I
W

R
1,

 S
IC

_I
SR

1
&

 S
IC

_I
M

A
SK

1

DMA18 Interrupt (SPORT2 RX) 33 IVG9 2

DMA19 Interrupt (SPORT2 TX) 34 IVG9 2

DMA20 Interrupt (SPORT3 RX) 35 IVG9 2

DMA21 Interrupt (SPORT3 TX) 36 IVG9 2

DMA13 Interrupt (EPPI1) 37 IVG9 2

DMA14 Interrupt (EPPI2, HOSTDP) 38 IVG9 2

DMA5 Interrupt (SPI1) 39 IVG10 3

DMA23 Interrupt (SPI2) 40 IVG10 3

SI
C

_I
A

R
5

DMA8 Interrupt (UART1 RX) 41 IVG10 3

DMA9 Interrupt (UART1 TX) 42 IVG10 3

DMA10 Interrupt (ATAPI RX) 43 IVG10 3

DMA11 Interrupt (ATAPI TX) 44 IVG10 3

TWI0 Interrupt 45 IVG11 4

TWI1 Interrupt 46 IVG11 4

CAN0 Receive Interrupt 47 IVG11 4

Table 6-2. System Interrupt Controller (SIC) (Cont’d)

Peripheral Interrupt Event Peripheral
Interrupt
ID

Default
Mapping

Default
Core
Interrupt
ID

SIC
Registers

ADSP-BF54x Blackfin Processor Hardware Reference 6-19

System Interrupts

CAN0 Transmit Interrupt 48 IVG11 4

SI
C

_I
A

R
6

SI
C

_I
W

R
1,

 S
IC

_I
SR

1
&

 S
IC

_I
M

A
SK

1

MDMA Stream 2 Interrupt 49 IVG13 6

MDMA Stream 3 Interrupt 50 IVG13 6

MXVR Status Interrupt 51 IVG11 4

MXVR Control Message Interrupt 52 IVG11 4

MXVR Asynchronous Packet Interrupt 53 IVG11 4

EPPI1 Error Interrupt 54 IVG7 0

EPPI2 Error Interrupt 55 IVG7 0

UART3 Status Interrupt 56 IVG7 0

SI
C

_I
A

R
7

HOSTDP Status Interrupt 57 IVG7 0

Reserved 58 IVG7 0

Pixel Compositor (PIXC) Status Interrupt 59 IVG7 0

NFC Status Interrupt 60 IVG7 0

ATAPI Status Interrupt 61 IVG7 0

CAN1 Status Interrupt 62 IVG7 0

Handshake DMA Status (logical OR of
DMAR0 Block Interrupt, DMAR1 Block
Interrupt, DMAR0 Overflow Error Inter-
rupt, and DMAR1 Overflow Error Inter-
rupt)

63 IVG7 0

Table 6-2. System Interrupt Controller (SIC) (Cont’d)

Peripheral Interrupt Event Peripheral
Interrupt
ID

Default
Mapping

Default
Core
Interrupt
ID

SIC
Registers

Description of Operation

6-20 ADSP-BF54x Blackfin Processor Hardware Reference

DMA15 Interrupt (PIXC IN0) 64 IVG8 1

SI
C

_I
A

R
8

SI
C

_I
W

R
2,

 S
IC

_I
SR

2
&

 S
IC

_I
M

A
SK

2

DMA16 Interrupt (PIXC IN1) 65 IVG8 1

DMA17 Interrupt (PIXC OUT) 66 IVG8 1

DMA22 Interrupt (SDH/NFC) 67 IVG8 1

Rotary Counter (CNT) Interrupt 68 IVG8 1

Keypad (KEY) Interrupt 69 IVG8 1

CAN1 RX Interrupt 70 IVG11 4

CAN1 TX Interrupt 71 IVG11 4

SDH Mask 0 Interrupt 72 IVG11 4

SI
C

_I
A

R
9

SDH Mask 1 Interrupt 73 IVG11 4

Reserved 74 IVG11 4

USB_INT0 Interrupt 75 IVG11 4

USB_INT1 Interrupt 76 IVG11 4

USB_INT2 Interrupt 77 IVG11 4

USB_DMAINT Interrupt 78 IVG11 4

OTPSEC Interrupt 79 IVG11 4

Table 6-2. System Interrupt Controller (SIC) (Cont’d)

Peripheral Interrupt Event Peripheral
Interrupt
ID

Default
Mapping

Default
Core
Interrupt
ID

SIC
Registers

ADSP-BF54x Blackfin Processor Hardware Reference 6-21

System Interrupts

The peripheral interrupt structure of the processor is flexible. Upon reset,
multiple peripheral interrupts share a single, general-purpose interrupt in
the core by default, as shown in Table 6-2.

 UART2 and UART3 are not assigned to peripheral channels by
default. To assign one of these peripherals to a DMA channel, refer
to Table 7-1 on page 7-10.

Reserved 80 IVG11 4

SI
C

_I
A

R
10

SI
C

_I
W

R
2,

 S
IC

_I
SR

2
&

 S
IC

_I
M

A
SK

2

Reserved 81 IVG11 4

Reserved 82 IVG11 4

Reserved 83 IVG11 4

Reserved 84 IVG11 4

Reserved 85 IVG11 4

Timer 0 Interrupt 86 IVG11 4

Timer 1 Interrupt 87 IVG11 4

Timer 2 Interrupt 88 IVG11 4

SI
C

_I
A

R
11

Timer 3 Interrupt 89 IVG11 4

Timer 4 Interrupt 90 IVG11 4

Timer 5 Interrupt 91 IVG11 4

Timer 6 Interrupt 92 IVG11 4

Timer 7 Interrupt 93 IVG11 4

Pin Interrupt 2 (PINT2) 94 IVG12 5

Pin Interrupt 3 (PINT3) 95 IVG12 5

Table 6-2. System Interrupt Controller (SIC) (Cont’d)

Peripheral Interrupt Event Peripheral
Interrupt
ID

Default
Mapping

Default
Core
Interrupt
ID

SIC
Registers

Programming Model

6-22 ADSP-BF54x Blackfin Processor Hardware Reference

An interrupt service routine that supports multiple interrupt sources must
interrogate the appropriate system memory-mapped registers (MMRs) to
determine which peripheral generated the interrupt.

Programming Model
The programming model for the system interrupts is described in the fol-
lowing sections.

System Interrupt Initialization
If the default assignments shown in Table 6-2 on page 6-16 are accept-
able, then interrupt initialization involves only:

• Initialization of the core event vector table (EVT) vector address
entries

• Initialization of the IMASK register

• Unmasking the specific peripheral interrupts in the SIC_IMASKx
register that the system requires

System Interrupt Processing Summary
Referring to Figure 6-6 on page 6-24, note when an interrupt
(interrupt A) is generated by an interrupt-enabled peripheral:

1. The SIC_ISRx register logs the request and keeps track of system
interrupts that are asserted but not yet serviced (that is, an inter-
rupt service routine that has not yet cleared the interrupt).

2. The SIC_IWRx register checks to see if it should wake up the core
from an idled or sleep mode state based on this interrupt request.

ADSP-BF54x Blackfin Processor Hardware Reference 6-23

System Interrupts

3. The SIC_IMASKx register masks-off or enables interrupts from
peripherals at the system level. If interrupt A is not masked, the
request proceeds to Step 4.

4. The SIC_IARx register, which maps the peripheral interrupts to a
smaller set of general-purpose core interrupts (IVG7–IVG15), deter-
mines the core priority of interrupt A.

5. The ILAT bit adds interrupt A to its log of interrupts latched by the
core but not yet actively being serviced.

6. the IMASK bit masks-off or enables events of different core priori-
ties. If the IVGx event corresponding to interrupt A is not masked,
the process proceeds to Step 7.

7. The event vector table (EVT) is accessed to look up the appropriate
vector for interrupt A’s ISR.

8. When the event vector for interrupt A has entered the core pipe-
line, the appropriate IPEND bit is set, which clears the respective
ILAT bit. Thus, the IPEND bit tracks all pending interrupts, as well
as those being presently serviced.

9. When the interrupt service routine for interrupt A is executed, the
RTI instruction clears the appropriate IPEND bit. However, the rele-
vant SIC_ISRx bit is not cleared unless the interrupt service routine
clears the mechanism that generated interrupt A, or if the process
of servicing the interrupt clears this bit.

It should be noted that emulation, reset, NMI, and exception events, as
well as hardware error (IVHW) and core timer (IVTMR) interrupt requests,
enter the interrupt processing chain at the ILAT level and are not affected
by the system-level interrupt registers (SIC_IWRx, SIC_ISRx, SIC_IMASKx,
SIC_IARx).

System Interrupt Controller Registers

6-24 ADSP-BF54x Blackfin Processor Hardware Reference

If multiple interrupt sources share a single core interrupt, then the inter-
rupt service routine (ISR) must identify the peripheral that generated the
interrupt. The ISR may then need to interrogate the peripheral to deter-
mine the appropriate action to take.

System Interrupt Controller Registers
System interrupt controller (SIC) registers can be read from or written to
at any time in supervisor mode. It is advisable, however, to configure them
in the reset interrupt service routine before enabling interrupts. To pre-
vent spurious or lost interrupt activity, these registers should be written to
only when all peripheral interrupts are disabled.

The SIC registers are described in Table 6-3.

Figure 6-6. Interrupt Processing Block Diagram

"INTERRUPT
A"

SYSTEM
INTERRUPT

MASK
 (SIC_IMASKx)

ASSIGN
SYSTEM

PRIORITY
(SIC_IARx)

CORE EVENT CONTROLLERSYSTEM INTERRUPT CONTROLLER

NOTE: NAMES IN PARENTHESES ARE MEMORY-MAPPED REGISTERS.

EMU
RESET
NMI
EVX
IVTMR
IVHW

PERIPHERAL
INTERRUPT
REQUESTS

CORE
EVENT

VECTOR
TABLE

(EVT[15:0])

CORE
PENDING
(IPEND)

CORE
STATUS
(ILAT)

CORE
INTERRUPT

MASK
(IMASK)

SYSTEM
WAKEUP

(SIC_IWRx)

SYSTEM
STATUS

(SIC_ISRx)

TO DYNAMIC POWER
MANAGEMENT
CONTROLLER

ADSP-BF54x Blackfin Processor Hardware Reference 6-25

System Interrupts

System Interrupt Assignment (SIC_IARx) Registers
Table 6-4 defines the value to write in the SIC_IARx registers to configure
a peripheral for a particular IVG priority.

Table 6-3. System Interrupt Controller Registers

Register
Name

Description

SIC_IARx “System Interrupt Assignment (SIC_IARx) Registers” on page 6-25

SIC_IMASKx “System Interrupt Mask (SIC_IMASKx) Registers” on page 6-32

SIC_ISRx “System Interrupt Status (SIC_ISRx) Registers” on page 6-35

SIC_IWRx “System Interrupt Wakeup (SIC_IWRx) Registers” on page 6-37

Table 6-4. IVG Select Definitions

General-Purpose
Interrupt

Value in SIC_IAR

IVG7 0

IVG8 1

IVG9 2

IVG10 3

IVG11 4

IVG12 5

IVG13 6

IVG14 7

IVG15 8

System Interrupt Controller Registers

6-26 ADSP-BF54x Blackfin Processor Hardware Reference

The system interrupt assignment registers (SIC_IARx) are shown in
Figure 6-7 through Figure 6-18.

Figure 6-7. System Interrupt Assignment Register 0

Figure 6-8. System Interrupt Assignment Register 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

System Interrupt Assignment Register 0 (SIC_IAR0)

PLL Wakeup InterruptSPORT0 Error Interrupt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 1 0 0 0 0 0 0 0 0 0 0 0

Real-Time Clock
Interrupt

Reset = 0x1000 0000

SPORT1 Error Interrupt

DMAC0 Status (generic)

0xFFC0 0130 0

EPPI0 Error Interrupt

SPI0 Status InterruptUART0 Status Interrupt

DMA12 Interrupt
(EPPI0)

DMA7 Interrupt
(UART0 TX)

DMA2 Interrupt
(SPORT1 RX)

System Interrupt Assignment Register 1 (SIC_IAR1)

Reset = 0x3332 22210xFFC0 0134

DMA6 Interrupt
(UART0 RX)

DMA1 Interrupt
(SPORT0 TX)

DMA0 Interrupt
(SPORT0 RX)

DMA3 Interrupt
(SPORT1 TX)

DMA4 Interrupt (SPI0)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 1 0 0 0 1 0 0 0 1 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 1 1 0 0 1 1 0 0 1 1 0 0 10

ADSP-BF54x Blackfin Processor Hardware Reference 6-27

System Interrupts

Figure 6-9. System Interrupt Assignment Register 2

Figure 6-10. System Interrupt Assignment Register 3

Reset = 0x6665 54440xFFC0 0138

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 0 1 0 1 0 0 0 1 0 0 0 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

11 1 0 0 1 1 0 0 1 1 0 0 1 00

Pin Interrupt 1

MDMA Stream 0 Interrupt

Software Watchdog
Timer Interrupt

Timer 9 Interrupt

Timer 8 InterruptPin Interrupt 0

Timer 10 Interrupt

MDMA Stream 1 Interrupt

System Interrupt Assignment Register 2 (SIC_IAR2)

System Interrupt Assignment Register 3 (SIC_IAR3)

Reset = 0x0000 00000xFFC0 013C

DMAC1 Status (generic)

SPORT2 Error InterruptSPORT3 Error Interrupt

SPI1 Status Interrupt

SPI2 Status Interrupt

UART2 Status Interrupt

UART1 Status Interrupt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 00

MXVR Synchronous
Data Interrupt

System Interrupt Controller Registers

6-28 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 6-11. System Interrupt Assignment Register 4

Figure 6-12. System Interrupt Assignment Register 5

System Interrupt Assignment Register 4 (SIC_IAR4)

Reset = 0x3222 22200xFFC0 0140

CAN0 Status Interrupt

DMA18 Interrupt
(SPORT2 RX)

DMA19 Interrupt
(SPORT2 TX)

DMA21 Interrupt
(SPORT3 TX)

DMA13 Interrupt (EPPI1)

DMA5 Interrupt (SPI1)

DMA14 (EPPI2, HOSTDP)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 1 0 0 0 1 0 0 0 1 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 1 1 0 0 1 0 0 0 1 0 0 0 10

DMA20 Interrupt
(SPORT3 RX)

System Interrupt Assignment Register 5 (SIC_IAR5)

Reset = 0x4443 33330xFFC0 0144

DMA23 Interrupt
(SPI2)

DMA8 Interrupt
(UART1 RX)

DMA9 Interrupt
(UART1 TX)

DMA11 Interrupt
(ATAPI TX)

TWI0 Interrupt

CAN0 Receive
Interrupt

TWI1 Interrupt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 1 1 0 0 1 1 0 0 1 1 0 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

11 0 0 0 1 0 0 0 1 0 0 0 0 10

DMA10 Interrupt
(ATAPI RX)

ADSP-BF54x Blackfin Processor Hardware Reference 6-29

System Interrupts

Figure 6-13. System Interrupt Assignment Register 6

Figure 6-14. System Interrupt Assignment Register 7

System Interrupt Assignment Register 6 (SIC_IAR6)

Reset = 0x0044 46640xFFC0 0148

CAN0 Transmit Interrupt

MDMA Stream 2 InterruptMDMA Stream 3 Interrupt

EPPI2 Error Interrupt

EPPI1 Error Interrupt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 0 0 0 1 1 0 0 1 1 0 0 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 1 0 0 0 1 00

MXVR Status Interrupt

MXVR Control Message
Interrupt

MXVR Asynchronous
Packet Interrupt

System Interrupt Assignment Register 7 (SIC_IAR7)

Reset = 0x0000 00000xFFC0 014C

UART3 Status Interrupt

HOSTDP Status Interrupt

NFC Status Interrupt

CAN1 Status Interrupt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 00

PIXC Status Interrupt

ATAPI Status Interrupt

DMAR0 Block,
DMAR1 Block,
DMAR0 Overflow Error,
DMAR1 Overflow Error Interrupt

System Interrupt Controller Registers

6-30 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 6-15. System Interrupt Assignment Register 8

Figure 6-16. System Interrupt Assignment Register 9

System Interrupt Assignment Register 8 (SIC_IAR8)

Reset = 0x4411 11110xFFC0 0150

DMA15 Interrupt
(PIXC Input 0)

DMA16 Interrupt
(PIXC Input 1)

DMA17 Interrupt
(PIXC Output)

Rotary Counter (CNT)
Interrupt

CAN1 RX Interrupt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 1 0 0 0 1 0 0 0 1 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

11 0 0 0 1 0 0 0 0 0 1 0 0 00

DMA22 Interrupt
(SDH/NFC)

Keypad (KEY) Interrupt

CAN1 TX Interrupt

System Interrupt Assignment Register 9 (SIC_IAR9)

Reset = 0x4444 44440xFFC0 0154

SDH Interrupt 0

SDH Interrupt 1

USB Interrupt 1 (USB_INT1)

USB DMA Interrupt (USB_DMAINT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 0 0 0 1 0 0 0 1 0 0 0 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 0 0 0 1 0 0 0 1 0 0 0 1 00

USB Interrupt 0
(USB_INT0)

USB Interrupt 2 (USB_INT2)

OTPSEC Interrupt

ADSP-BF54x Blackfin Processor Hardware Reference 6-31

System Interrupts

Figure 6-17. System Interrupt Assignment Register 10

Figure 6-18. System Interrupt Assignment Register 11

System Interrupt Assignment Register 10 (SIC_IAR10)

Reset = 0x4444 44440xFFC0 0158

Timer 0 Interrupt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 0 0 0 1 0 0 0 1 0 0 0 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 0 0 0 1 0 0 0 1 0 0 0 1 00

Timer 1 Interrupt

System Interrupt Assignment Register 11 (SIC_IAR11)

Reset = 0x5544 44440xFFC0 015C

Timer 2 Interrupt

Timer 3 InterruptTimer 4 Interrupt

Timer 6 Interrupt

Pin Interrupt 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 0 0 0 1 0 0 0 1 0 0 0 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 0 1 0 1 0 1 0 1 0 0 0 1 00

Timer 5 Interrupt

Timer 7 Interrupt

Pin Interrupt 3

System Interrupt Controller Registers

6-32 ADSP-BF54x Blackfin Processor Hardware Reference

System Interrupt Mask (SIC_IMASKx) Registers
The system interrupt mask registers (SIC_IMASKx) are shown in
Figure 6-19 through Figure 6-21.

Figure 6-19. System Interrupt Mask Register 0

System Interrupt Mask Register 0 (SIC_IMASK0)

Reset = 0x0000 00000xFFC0 010C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 00

PLL Wakeup Interrupt

DMAC0 Status (generic)

EPPI0 Error Interrupt

SPORT0 Error Interrupt

SPORT1 Error Interrupt

SPI0 Status Interrupt

UART0 Status Interrupt

DMA7 Interrupt
(UART0 TX)

DMA6 Interrupt
(UART0 RX)

DMA4 Interrupt (SPI0)

DMA3 Interrupt
(SPORT1 TX)

DMA2 Interrupt
(SPORT0 RX)

DMA1 Interrupt
(SPORT0 TX) DMA12 Interrupt

(EPPI0)

Real-Time Clock Interrupt

DMA0 Interrupt
(SPORT0 RX)

Timer 8 Interrupt

Timer 9 Interrupt

Timer 10 Interrupt

Pin Interrupt 0

Pin Interrupt 1

MDMA Stream 0
Interrupt

UART1 Status Interrupt

SPI2 Status Interrupt

SPI1 Status Interrupt

MXVR Synchronous
Data Interrupt

SPORT3 Error Interrupt

SPORT2 Error Interrupt

Software Watchdog
Timer Interrupt

DMAC1 Status (generic)

MDMA Stream 1
Interrupt

UART2 Status Interrupt

For all bits, 0 - Interrupt masked, 1 - Interrupt enabled

ADSP-BF54x Blackfin Processor Hardware Reference 6-33

System Interrupts

Figure 6-20. System Interrupt Mask Register 1

Reset = 0x0000 00000xFFC0 0110
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 00

CAN0 Status Interrupt

DMA18 Interrupt
(SPORT2 RX)

DMA19 Interrupt
(SPORT2 TX)

DMA20 Interrupt
(SPORT3 RX)

DMA21 Interrupt
(SPORT3 TX)

DMA13 Interrupt
(EPPI1)
DMA14 Interrupt
(EPPI2, HOSTDP)

CAN0 Receive
Interrupt

TWI1 Interrupt

TWI0 Interrupt

DMA11 Interrupt (ATAPI TX)

DMA10 Interrupt (ATAPI RX)

DMA9 Interrupt (UART1 TX)

DMA5 Interrupt (SPI1)

DMA8 Interrupt (UART1 RX)

CAN0 Transmit Interrupt

MDMA Stream 2
Interrupt

MXVR Status Interrupt
CAN1 Status Interrupt

ATAPI Status Interrupt

NFC Status Interrupt

PIXC Status Interrupt

HOSTDP Status Interrupt

EPPI2 Error InterruptUART3 Status Interrupt

System Interrupt Mask Register 1 (SIC_IMASK1)

MDMA Stream 3
Interrupt

MXVR Asynchronous
Packet Interrupt

EPPI1 Error Interrupt

MXVR Control Message
Interrupt

DMA23 Interrupt (SPI2)

15 14 13 12 11 10

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 4 3 2 1 09 8 7 6

For all bits, 0 - Interrupt masked, 1 - Interrupt enabled

DMAR0 Block,
DMAR1 Block,
DMAR0 Overflow Error,
DMAR1 Overflow Error
Interrupt

System Interrupt Controller Registers

6-34 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 6-21. System Interrupt Mask Register 2

Reset = 0x0000 00000xFFC0 0114

15 14 13 12 11 10

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 00

DMA16 Interrupt
(PIXC Input 1)

Rotary Counter (CNT)
Interrupt
Keypad (KEY) Interrupt

OTPSEC Interrupt

USB DMA Interrupt
(USB_DMAINT)

USB Interrupt 2 (USB_INT2)

USB Interrupt 1 (USB_INT1)

USB Interrupt 0 (USB_INT0)

CAN1 RX Interrupt

SDH Interrupt 1

Pin Interrupt 3

Pin Interrupt 2

Timer 7 Interrupt

Timer 6 Interrupt

Timer 5 Interrupt

Timer 0 Interrupt

System Interrupt Mask Register 2 (SIC_IMASK2)

5 4 3 2 1 09 8 7 6

SDH Interrupt 0

DMA17 Interrupt
(PIXC Output)

DMA22 Interrupt
(SDH/NFC)

CAN1 TX Interrupt

Timer 1 Interrupt

Timer 2 Interrupt

Timer 3 Interrupt

Timer 4 Interrupt

For all bits, 0 - Interrupt masked, 1 - Interrupt enabled

DMA15 Interrupt
(PIXC Input 0)

ADSP-BF54x Blackfin Processor Hardware Reference 6-35

System Interrupts

System Interrupt Status (SIC_ISRx) Registers
The system interrupt status registers (SIC_ISRx) are shown in Figure 6-22,
Figure 6-23, and Figure 6-24.

Figure 6-22. System Interrupt Status Register 0

System Interrupt Status Register 0 (SIC_ISR0)

Reset = 0x0000 00000xFFC0 0118

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 00

PLL Wakeup Interrupt

DMAC0 Status (generic)

EPPI0 Error Interrupt

SPORT0 Error Interrupt

SPORT1 Error Interrupt

SPI0 Status Interrupt

UART0 Status Interrupt

DMA7 Interrupt
(UART0 TX)

DMA6 Interrupt
(UART0 RX)

DMA4 Interrupt (SPI0)

DMA3 Interrupt (SPORT1 TX)

DMA2 Interrupt (SPORT0 RX)

DMA1 Interrupt (SPORT0 TX)

DMA12 Interrupt (EPPI0)

Real-Time Clock Interrupt
DMA0 Interrupt (SPORT0 RX)

Timer 8 Interrupt

Timer 9 Interrupt

Timer 10 Interrupt

Pin Interrupt 0

Pin Interrupt 1

MDMA Stream 0
Interrupt

UART1 Status Interrupt

SPI2 Status Interrupt

SPI1 Status Interrupt

MXVR Synchronous Data
Interrupt

SPORT3 Error Interrupt

SPORT2 Error Interrupt

Software Watchdog
Timer Interrupt

DMAC1 Status (generic)

MDMA Stream 1
Interrupt

UART2 Status Interrupt

For all bits, 0 - Deasserted, 1 - Asserted

System Interrupt Controller Registers

6-36 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 6-23. System Interrupt Status Register 1

Reset = 0x0000 00000xFFC0 011C
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 00

CAN0 Status Interrupt

DMA18 Interrupt
(SPORT2 RX)

DMA19 Interrupt
(SPORT2 TX)

DMA20 Interrupt
(SPORT3 RX)

DMA21 Interrupt
(SPORT3 TX)

DMA13 Interrupt
(EPPI1)
DMA14 Interrupt
(EPPI2, HOSTDP)

CAN0 Receive
Interrupt

TWI1 Interrupt

TWI0 Interrupt

DMA11 Interrupt (ATAPI TX)

DMA10 Interrupt (ATAPI RX)

DMA9 Interrupt (UART1 TX)

DMA5 Interrupt (SPI1)

DMA8 Interrupt (UART1 RX)

CAN0 Transmit Interrupt

MDMA Stream 2
Interrupt

MXVR Status Interrupt

CAN1 Status Interrupt

ATAPI Status Interrupt

NFC Status Interrupt

PIXC Status Interrupt

HOSTDP Status Interrupt

EPPI2 Error InterruptUART3 Status Interrupt

System Interrupt Status Register 1 (SIC_ISR1)

MDMA Stream 3
Interrupt

MXVR Asynchronous
Packet Interrupt

EPPI1 Error Interrupt

MXVR Control Message
Interrupt

DMA23 Interrupt (SPI2)

15 14 13 12 11 10

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 4 3 2 1 09 8 7 6

For all bits, 0 - Deasserted, 1 - Asserted

DMAR0 Block,
DMAR1 Block,
DMAR0 Overflow Error,
DMAR1 Overflow Error
Interrupt

ADSP-BF54x Blackfin Processor Hardware Reference 6-37

System Interrupts

System Interrupt Wakeup (SIC_IWRx) Registers
The system interrupt wakeup registers (SIC_IWRx) are shown in
Figure 6-25, Figure 6-26, and Figure 6-27.

Figure 6-24. System Interrupt Status Register 2

Reset = 0x0000 00000xFFC0 0120

15 14 13 12 11 10

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 00

DMA15 Interrupt
(PIXC Input 0)

Rotary Counter (CNT)
Interrupt

Keypad (KEY) Interrupt

OTPSEC Interrupt

USB DMA Interrupt
(USB_DMAINT)

CAN1 RX Interrupt
SDH Interrupt 1

Pin Interrupt 3

Pin Interrupt 2

Timer 7 Interrupt

Timer 6 Interrupt

Timer 5 Interrupt

Timer 0 Interrupt

System Interrupt Status Register 2 (SIC_ISR2)

5 4 3 2 1 09 8 7 6

SDH Interrupt 0

DMA16 Interrupt
(PIXC Input 1)

DMA17 Interrupt
(PIXC Output)

DMA22 Interrupt
(SDH/NFC)

CAN1 TX Interrupt

Timer 1 Interrupt

Timer 2 Interrupt

Timer 3 Interrupt

Timer 4 Interrupt

For all bits, 0 - Deasserted, 1 - Asserted

USB Interrupt 0
(USB_INT0)

USB Interrupt 1
(USB_INT1)

USB Interrupt 2
(USB_INT2)

System Interrupt Controller Registers

6-38 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 6-25. System Interrupt Wakeup Register 0

System Interrupt Wakeup Register 0 (SIC_IWR0)

Reset = 0xFFFF FFFF0xFFC0 0124

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

11 1 1 1 1 1 1 1 1 1 1 1 1 11

PLL Wakeup Interrupt

DMAC0 Status (generic)

EPPI0 Error Interrupt

SPORT0 Error Interrupt

SPORT1 Error Interrupt

SPI0 Status Interrupt

UART0 Status Interrupt

DMA7 Interrupt
(UART0 TX)

DMA6 Interrupt
(UART0 RX)

DMA4 Interrupt (SPI0)

DMA3 Interrupt (SPORT1 TX)

DMA2 Interrupt (SPORT0 RX)

DMA1 Interrupt (SPORT0 TX)

DMA12 Interrupt (EPPI0)

Real-Time Clock Interrupt
DMA0 Interrupt (SPORT0 RX)

Timer 8 Interrupt

Timer 9 Interrupt

Timer 10 Interrupt

Pin Interrupt 0

Pin Interrupt 1

MDMA Stream 0
Interrupt

UART1 Status Interrupt

SPI2 Status Interrupt

SPI1 Status Interrupt

MXVR Synchronous Data
Interrupt

SPORT3 Error Interrupt

SPORT2 Error Interrupt

Software Watchdog
Timer Interrupt

DMAC1 Status (generic)

MDMA Stream 1
Interrupt

UART2 Status Interrupt

For all bits, 0 - Wakeup function not enabled, 1 - Wakeup function enabled

ADSP-BF54x Blackfin Processor Hardware Reference 6-39

System Interrupts

Figure 6-26. System Interrupt Wakeup Register 1

Reset = 0xFFFF FFFF0xFFC0 0128
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

11 1 1 1 1 1 1 1 1 1 1 1 1 11

CAN0 Status Interrupt

DMA18 Interrupt
(SPORT2 RX)

DMA19 Interrupt
(SPORT2 TX)

DMA20 Interrupt
(SPORT3 RX)

DMA21 Interrupt
(SPORT3 TX)

DMA13 Interrupt
(EPPI1)
DMA14 Interrupt
(EPPI2, HOSTDP)

CAN0 Receive
Interrupt

TWI1 Interrupt

TWI0 Interrupt

DMA11 Interrupt (ATAPI TX)

DMA10 Interrupt (ATAPI RX)

DMA9 Interrupt (UART1 TX)

DMA5 Interrupt (SPI1)

DMA8 Interrupt (UART1 RX)

CAN0 Transmit Interrupt

MDMA Stream 2
Interrupt

MXVR Status Interrupt

CAN1 Status Interrupt

ATAPI Status Interrupt

NFC Status Interrupt

PIXC Status Interrupt

HOSTDP Status Interrupt

EPPI2 Error InterruptUART3 Status Interrupt

System Interrupt Wakeup Register 1 (SIC_IWR1)

MDMA Stream 3
Interrupt

MXVR Asynchronous
Packet Interrupt

EPPI1 Error Interrupt

MXVR Control Message
Interrupt

DMA23 Interrupt (SPI2)

15 14 13 12 11 10

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 4 3 2 1 09 8 7 6

For all bits, 0 - Wakeup function not enabled, 1 - Wakeup function enabled

DMAR0 Block,
DMAR1 Block,
DMAR0 Overflow Error,
DMAR1 Overflow Error
Interrupt

Programming Examples

6-40 ADSP-BF54x Blackfin Processor Hardware Reference

Programming Examples
The following sections provide examples for programming system
interrupts.

Figure 6-27. System Interrupt Wakeup Register 2

Reset = 0xFFFF FFFF0xFFC0 012C

15 14 13 12 11 10

11 1 1 1 1 1 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

11 1 1 1 1 1 1 1 1 1 1 1 1 11

DMA15 Interrupt
(PIXC Input 0)

Rotary Counter (CNT)
Interrupt
Keypad (KEY) Interrupt

OTPSEC Interrupt

USB DMA Interrupt
(USB_DMAINT)

USB Interrupt 2
(USB_INT2)

USB Interrupt 1
(USB_INT1)

USB Interrupt 0
(USB_INT0)

CAN1 RX Interrupt
SDH Interrupt 1

Pin Interrupt 3

Pin Interrupt 2

Timer 7 Interrupt

Timer 6 Interrupt

Timer 5 Interrupt

Timer 0 Interrupt

System Interrupt Wakeup Register 2 (SIC_IWR2)

5 4 3 2 1 09 8 7 6

SDH Interrupt 0

DMA16 Interrupt
(PIXC Input 1)

DMA17 Interrupt
(PIXC Output)

DMA22 Interrupt
(SDH/NFC)

CAN1 TX Interrupt

Timer 1 Interrupt

Timer 2 Interrupt

Timer 3 Interrupt

Timer 4 Interrupt

For all bits, 0 - Wakeup function not enabled, 1 - Wakeup function enabled

1 1

ADSP-BF54x Blackfin Processor Hardware Reference 6-41

System Interrupts

Clearing Interrupt Requests
When the processor services a core event it automatically clears the
requesting bit in the ILAT register and no further action is required by the
interrupt service routine. It is important to understand that the SIC con-
troller does not provide any interrupt acknowledgment feedback
mechanism from the CEC controller back to the peripherals. Although
the ILAT bits clear in the same way when a peripheral interrupt is serviced,
the signalling peripheral does not release its level-sensitive request until it
is explicitly instructed by software. If however, the peripheral keeps
requesting, the respective ILAT bit is set again immediately and the service
routine is invoked again as soon as its first run terminates by an RTI
instruction.

Every software routine that services peripheral interrupts must clear the
signalling interrupt request in the respective peripheral. The individual
peripherals provide customized mechanisms for how to clear interrupt
requests. Receive interrupts, for example, are cleared when received data is
read from the respective buffers. Transmit requests typically clear when
software (or DMA) writes new data into the transmit buffers. These
implicit acknowledge mechanisms avoid the need for cycle-consuming
software handshakes in streaming interfaces. Other peripherals such as
timers, GPIOs, and error requests require explicit acknowledge instruc-
tions, which are typically performed by efficient W1C (write-1-to-clear)
operations.

Listing 6-1 shows a representative example of how a GPIO interrupt
request might be serviced.

Listing 6-1. Servicing GPIO Interrupt Request

#include <defBF549.h>

.section program;

_portg_a_isr:

/* push used registers */

Programming Examples

6-42 ADSP-BF54x Blackfin Processor Hardware Reference

[--sp] = (r7:7, p5:5);

/* clear interrupt request on GPIO pin PG2 */

/* no matter whether used A or B channel */

p5.l = lo(PORTGIO_CLEAR);

p5.h = hi(PORTGIO_CLEAR);

r7 = PG2;

w[p5] = r7;

/* place user code here */

/* sync system, pop registers and exit */

ssync;

(r7:7, p5:5) = [sp++];

rti;

_portg_a_isr.end:

The W1C instruction shown in this example may require several SCLK
cycles to complete, depending on system load and instruction history. The
program sequencer does not wait until the instruction completes and con-
tinues program execution immediately. The SSYNC instruction ensures that
the W1C command indeed cleared the request in the GPIO peripheral
before the RTI instruction executes. However, the SSYNC instruction does
not guarantee that the release of interrupt request has also been recognized
by the CEC controller, which may require a few more CCLK cycles depend-
ing on the CCLK-to-SCLK ratio. In service routines consisting of a few
instructions only, two SSYNC instructions are recommended between the
clear command and the RTI instruction. However, one SSYNC instruction
is typically sufficient if the clear command performs in the very beginning
of the service routine, or the SSYNC instruction is followed by another set
of instructions before the service routine returns. Commonly, a pop-mul-
tiple instruction is used for this purpose as shown in Listing 6-1.

The level-sensitive nature of peripheral interrupts enables more than one
of them to share the same IVG channel and therefore the same interrupt
priority. This is programmable using the assignment registers. Then a

ADSP-BF54x Blackfin Processor Hardware Reference 6-43

System Interrupts

common service routine typically interrogates the SIC_ISRx register to
determine the signalling interrupt source. If multiple peripherals are
requesting interrupts at the same time, it is up to the service routine to
either service all requests in a single pass or to service them one by one. If
only one request is serviced and the respective request is cleared by soft-
ware before the RTI instruction executes, the same service routine is
invoked another time because the second request is still pending. While
the first approach may require fewer cycles to service both requests, the
second approach enables higher priority requests to be serviced more
quickly in a non-nested interrupt system setup.

Programming Examples

6-44 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 7-1

7 DIRECT MEMORY ACCESS

This chapter describes the direct memory access (DMA) controllers. The
features common to all the DMA channels, as well as how DMA opera-
tions are set up are also described. For specific peripheral features, see the
appropriate peripheral chapter for additional information. Performance
and bus arbitration for DMA operations can be found in “DAB, DCB,
and DEB Performance” on page 2-22.

This chapter does not cover the DMA controllers associated with the USB
and MXVR peripherals. For this information, refer to the appropriate
peripheral chapter.

The chapter includes the following sections:

• “Overview and Features” on page 7-2

• “DMA Controller Overview” on page 7-6

• “Modes of Operation” on page 7-16

• “Functional Description” on page 7-25

• “Programming Model” on page 7-60

• “DMA Registers” on page 7-73

• “Programming Examples” on page 7-122

Overview and Features

7-2 ADSP-BF54x Blackfin Processor Hardware Reference

Overview and Features
The processor uses DMA to transfer data between memory spaces or
between a memory space and a peripheral. The processor can specify data
transfer operations and return to normal processing while the fully inte-
grated DMA controller carries out the data transfers independent of
processor activity.

The processor has two DMA controllers: DMAC0 has a 16-bit data bus,
while DMAC1 has a 32-bit data bus.

The DMA controllers can perform several types of data transfers:

• Peripheral DMA transfers data between memory and on-chip
peripherals. The processor has 24 peripheral DMA channels that
support 21 peripherals.

• SPORT0, SPORT1, SPORT2, and SPORT3 (dedicated
DMA channels for each transmit and receive function)

• UART0, UART1, UART2 and UART3 (dedicated DMA
channels for each transmit and receive function)

• EPPI0, EPPI1, and EPPI2/HOSTDP (each transmit and
receive pair shares one DMA channel)

• Pixel compositor (PIXC) (two dedicated DMA channels for
inputs, one for output)

• NFC/SDH (transmit and receive channels share one DMA
channel)

• ATAPI (dedicated DMA channels for transmit and receive)

• SPI0, SPI1, and SPI2 (each transmit and receive pair shares
one DMA channel)

ADSP-BF54x Blackfin Processor Hardware Reference 7-3

Direct Memory Access

• Memory DMA (MDMA) transfers data between memory and
memory. The processor has four MDMA modules, each consisting
of independent memory read and memory write channels.

• Handshaking memory DMA (HMDMA) transfers data between
off-chip peripherals and memory. This enhancement of the
MDMA channels enables external hardware to control the timing
of individual data transfers or block transfers.

All DMAs can transport data to and from on-chip and off-chip memories,
including L1, L2, boot ROM, and DDR SDRAM. The L1 scratchpad
memory cannot be accessed by DMA.

DMA transfers on the processor can be descriptor-based or register-based.
Register-based DMA allows the processor to directly program DMA con-
trol registers to initiate a DMA transfer. On completion, the control
registers may be automatically updated with their original setup values for
continuous transfer, if needed. Descriptor-based DMA transfers require a
set of parameters stored within memory to initiate a DMA sequence. This
sort of transfer allows the chaining together of multiple DMA sequences.
In descriptor-based DMA operations, a DMA channel can be pro-
grammed to automatically set up and start another DMA transfer after the
current sequence completes.

Examples of DMA styles supported by flex descriptors include:

• A single linear buffer that stops on completion (FLOW = stop mode)

• A linear buffer with strides equal 1 or greater, zero or negative
(DMAx_X_MODIFY register)

• A circular, auto-refreshing buffer that interrupts on each full buffer

• A similar buffer that interrupts on fractional buffers (for example,
1/2, 1/4) (2D DMA)

Overview and Features

7-4 ADSP-BF54x Blackfin Processor Hardware Reference

• 1D DMA, using a set of identical ping-pong buffers defined by a
linked ring of 3-word descriptors, each containing a link pointer
and a 32-bit address}

• 1D DMA, using a linked list of 5-word descriptors containing a
link pointer, a 32-bit address, the length of the buffer, and the
DMA configuration.

• 2D DMA, using an array of 1-word descriptors, specifying only the
base DMA address within a common data page

• 2D DMA, using a linked list of 9-word descriptors, specifying
everything

The following functions can be served by DMA channels:

• EPPI2–0 receive

• EPPI2–0 transmit

• Host DMA receive/transmit

• PIXC image data (read from memory)

• PIXC overlay data (read from memory)

• PIXC results (write to memory)

• SPORT3–0 receive

• SPORT3–0 transmit

• UART3–0 receive

• UART3–0 transmit

• SPI2–0 receive

• SPI2–0 transmit

ADSP-BF54x Blackfin Processor Hardware Reference 7-5

Direct Memory Access

• NFC receive/transmit

• SDH receive/transmit

• ATAPI receive

• ATAPI transmit

• MDMA3–0 destination

• MDMA3–0 source

DMA Controller Overview

7-6 ADSP-BF54x Blackfin Processor Hardware Reference

DMA Controller Overview
Figure 7-1 and Figure 7-2 provide block diagrams of the DMA
controllers.

Figure 7-1. DMAC0 Controller Block Diagram

DMA 0 CONTROLPMAPFIFO

DMA 1 CONTROLPMAPFIFO

DMA 2 CONTROLPMAPFIFO

DMA 3 CONTROLPMAPFIFO

DMA 4 CONTROLPMAPFIFO

DMA 5 CONTROLPMAPFIFO

DMA 6 CONTROLPMAPFIFO

DMA 7 CONTROLPMAPFIFO

DMA 8 CONTROLPMAPFIFO

DMA 9 CONTROLPMAPFIFO

DMA 10 CONTROLPMAPFIFO

DMA 11 CONTROLPMAPFIFO

MDMA 1 DESTINATION CONTROL
FIFO

MDMA 1 SOURCE CONTROL

MDMA 0 DESTINATION CONTROL
FIFO

MDMA 0 SOURCE CONTROL

DMA TRAFFIC CONTROL

IRQ 9

IRQ 10

IRQ 11

IRQ 12

IRQ 13

IRQ 39

IRQ 14

IRQ 15

IRQ 41

IRQ 42

IRQ 43

IRQ 44

IRQ 22

IRQ 21

IRQ 1
(DMAC0 STATUS)

CCLK SCLK

DCB0 DEB0 DAB0 DGT DRQ PAB

16 16 16 12 163x12

ADSP-BF54x Blackfin Processor Hardware Reference 7-7

Direct Memory Access

In the figures, DRQ = DMA request (see Table 7-21 on page 7-112) and
DGT = DMA grant.

Figure 7-2. DMAC1 Controller Block Diagram

PMAPFIFO

PMAPFIFO

PMAPFIFO

PMAPFIFO

PMAPFIFO

PMAPFIFO

PMAPFIFO

PMAPFIFO

PMAPFIFO

DMA 21 CONTROLPMAPFIFO

DMA 22 CONTROLPMAPFIFO

DMA 23 CONTROLPMAPFIFO

MDMA 3 DESTINATION CONTROL
FIFO

MDMA 3 SOURCE CONTROL

MDMA 2 DESTINATION CONTROL
HMDMA0FIFO

MDMA 2 SOURCE CONTROL

DMA TRAFFIC CONTROL

DMAR0 DMAR1

IRQ 8

IRQ 37

IRQ 38

IRQ 64

IRQ 65

IRQ 66

IRQ 33

IRQ 34

IRQ 35

IRQ 36

IRQ 67

IRQ 40

IRQ 50

IRQ 49

IRQ 24
(DMAC1 STATUS)

CCLK SCLK

DCB1 DEB1 DAB1 DGT DRQ PAB

32 32 32 16 3 x 16 16

IRQ 63

HMDMA1

DMA 20 CONTROL

DMA 19 CONTROL

DMA 18 CONTROL

DMA 17 CONTROL

DMA 16 CONTROL

DMA 15 CONTROL

DMA 14 CONTROL

DMA 13 CONTROL

DMA 12 CONTROL

DMA Controller Overview

7-8 ADSP-BF54x Blackfin Processor Hardware Reference

External Interfaces
The DMA does not connect external memories and devices directly.
Rather, data is passed through the EBIU port. Any kind of device that is
supported by the EBIU can also be accessed by peripheral DMA or mem-
ory DMA operation. This is typically flash memory, SRAM, DDR
SDRAM, FIFOs, or memory-mapped peripheral devices.

Handshaking MDMA operation is supported by two MDMA request
input pins, DMAR0 and DMAR1. The DMAR0 pin controls transfer timing on
the MDMA2 source or destination channel. The DMAR1 pin controls the
source or destination channel of MDMA3. With these pins, external
FIFO devices, ADC or DAC converters, or other streaming or block-pro-
cessing devices can use the MDMA channels to exchange their data or
data buffers with the Blackfin processor memory.

Both DMARx pins reside on port H and are multiplexed with MXVR sig-
nals. To enable their function, PH5 and/or PH6 must be set in the
PORTH_FER registers and the related bit fields in the PORTH_MUX register
must be set to “b#01”. The REP bit in the respective HMDMAx_CONTROL regis-
ter controls whether the DMARx inputs trigger on falling or rising edges of
the connect strobe.

Internal Interfaces
Figure 2-1 on page 2-3 of the “Chip Bus Hierarchy” chapter shows the
dedicated DMA buses used by the DMA controllers to interconnect L1
and L2 memories, the on-chip peripherals, and the EBIU port.

The 16-bit DMA core bus (DCB0) allows DMAC0 to access either a ded-
icated port of L1 memory or the on-chip memory other than L1. A 32-bit
DMA core bus (DCB1) allows DMAC1 to access either a dedicated port
of L1 memory or the on-chip memory other than L1. These buses, along
with DCB2 from MXVR and DCB3 from USB, operate at the system

ADSP-BF54x Blackfin Processor Hardware Reference 7-9

Direct Memory Access

clock (SCLK) frequency. Internal arbitration is performed between accesses
on these four buses and translates the requests into the core clock (CCLK)
domain for either memory other than L1 or L1 memory.

The 16-bit DMA access bus (DAB0) connects DMAC0 to the following
on-chip peripherals: SPORT0, SPORT1, SPI0, SPI1, UART0, UART1,
ATAPI.

The 32-bit DMA access bus (DAB1) connects DMAC1 to the following
on-chip peripherals: EPPI0, EPPI1, EPPI2, HOSTDP, PIXC, SPORT2,
SPORT3, UART2, UART3, SDH, NFC, and SPI2. Both DAB buses
operate at SCLK frequency.

The 16-bit DMA external bus (DEB0) connects the DMAC0 to the EBIU
port. The 32-bit DMA external bus (DEB1) connects DMAC1 to the
EBIU port.

Transferred data can be 8, 16, or 32 bits wide. DMAC0, however, con-
nects only to 16-bit buses. MDMA0 and MDMA1 reside on DMAC0,
while MDMA2 and MDMA3 reside on DMAC1.

In terms of DCB bus performance, L2 memory resembles L1 memory for
the purposes of performance on the DCB buses.

Memory DMA can pass data every SCLK cycle between L1 or memory
other than L1 and the EBIU. Transfers originating from L1 or memory
other than L1 and targeting L1 or memory other than L1 require two
cycles, as the DCB bus is used for both source and destination transfer.
Similarly, transfers between two off-chip devices require EBIU and DEB
resources twice. Peripheral DMA transfers can be performed every other
SCLK cycle.

For more details on DMA performance see “DMA Performance” on
page 7-50.

DMA Controller Overview

7-10 ADSP-BF54x Blackfin Processor Hardware Reference

Peripheral DMA
As can be seen in Figure 7-1 on page 7-6 and Figure 7-2 on page 7-7, the
DMA controllers each feature 12 channels that perform transfers between
peripherals and on-chip or off-chip memories. The user has full control
over the mapping of DMA channels and peripherals. The default configu-
ration, shown in Table 7-1, can be changed by altering the 4-bit PMAP
field in the DMAx_PERIPHERAL_MAP registers for the peripheral DMA
channels.

Table 7-1. Default Mapping of Peripheral to DMA

DMA Channel DMA Controller PMAP Default1, 2 Peripheral Mapped by Default

DMA0 DMAC0 0x0 SPORT0 receive

DMA1 DMAC0 0x1 SPORT0 transmit

DMA2 DMAC0 0x2 SPORT1 receive

DMA3 DMAC0 0x3 SPORT1 transmit

DMA4 DMAC0 0x4 SPI0 receive/transmit

DMA5 DMAC0 0x5 SPI1 receive/transmit

DMA6 DMAC0 0x6 UART0 receive

DMA7 DMAC0 0x7 UART0 transmit

DMA8 DMAC0 0x8 UART1 receive

DMA9 DMAC0 0x9 UART1 transmit

DMA10 DMAC0 0xA ATAPI receive

DMA11 DMAC0 0xB ATAPI transmit

DMA12 DMAC1 0x0 EPPI0 receive/transmit

DMA13 DMAC1 0x1 EPPI1 receive/transmit

DMA14 DMAC1 0x2 EPPI2/Host DMA receive/transmit

DMA15 DMAC1 0x3 PIXC image data (read from memory)

DMA16 DMAC1 0x4 PIXC overlay data (read from memory)

DMA17 DMAC1 0x5 PIXC output data (write to memory)

ADSP-BF54x Blackfin Processor Hardware Reference 7-11

Direct Memory Access

The default configuration works in most cases, but there are some cases
where remapping the assignment can be helpful, because of the DMA
channel priorities. In the default configuration, when competing for any
of the system buses, DMA0 has higher priority than DMA1, and so on.
DMA11 has the lowest priority of the peripheral DMA channels on
DMAC0. Similarly, DMA12 is the highest priority peripheral DMA chan-
nel on DMAC1, and DMA23 is the lowest.

DMA18 DMAC1 0x6 SPORT2 receive

DMA19 DMAC1 0x7 SPORT2 transmit

DMA20 DMAC1 0x8 SPORT3 receive

DMA21 DMAC1 0x9 SPORT3 transmit

DMA22 DMAC1 0xA SDH/NFC receive/transmit

DMA23 DMAC1 0xB SPI2 receive/transmit

– DMAC1 0xC Note3

– DMAC1 0xD Note3

– DMAC1 0xE Note3

– DMAC1 0xF Note3

1 Host DMA and EPPI2 share a PMAP assignment on DMAC1. Host DMA is given the channel when
it is enabled. Otherwise EPPI2 is given the channel.

2 NFC (NAND flash controller) and SDH (secure digital host) share a PMAP assignment on
DMAC1. For more information on enabling the NFC, see “DMA Controller 1 Peripheral Multi-
plexer (DMAC1_PERIMUX) Register” on page 7-121.

3 UART2 and UART3 are not assigned to peripheral channels by default. To assign one of these pe-
ripherals to a DMA channel, program the selected DMA channel with the following PMAP value:
0xC for UART2 RX, 0xD for UART2 TX, 0xE for UART3 RX, or 0xF for UART3 TX

Table 7-1. Default Mapping of Peripheral to DMA (Cont’d)

DMA Channel DMA Controller PMAP Default1, 2 Peripheral Mapped by Default

DMA Controller Overview

7-12 ADSP-BF54x Blackfin Processor Hardware Reference

 Memory DMA channels are present on both DMA controllers. On
a per DMA controller basis, memory DMA is treated as the lowest
priority. However, memory DMA channels on the higher priority
DMA controller will have higher priority than the peripheral DMA
channels on the lower priority DMA controller.

There are control bits in the SYSCR register which can change the priorities
of DMAC0 and DMAC1 for L1 and for L2. For more information, see
Table 2-1 on page 2-13 and Table 2-5 on page 2-21.

 A 1:1 mapping should exist between DMA channels and peripher-
als. The user is responsible for ensuring that multiple DMA
channels are not mapped to the same peripheral and that multiple
peripherals are not mapped to the same DMA port. If multiple
channels are mapped to the same peripheral, only one channel is
connected (the lowest priority channel). If a nonexistent peripheral
(for example, 0xF in the PMAP field on DMAC0) is mapped to a
channel, that channel is disabled—DMA requests are ignored, and
no DMA grants are issued. The DMA requests are also not for-
warded from the peripheral to the interrupt controller.

The twelve peripheral DMA channels in each controller work completely
independently from each other. The transfer timing is controlled by the
mapped peripheral.

Every DMA channel features its own 4-deep FIFO that decouples DAB
activity from DCB and DEB availability. DMA interrupt and descriptor
fetch timing is aligned with the memory-side (DCB/DEB side) of the
FIFO. The user does, however, have an option to align interrupts with the
peripheral side (DAB side) of the FIFO for transmit operations.

Refer to the SYNC bit in the DMAx_CONFIG register for details (see “DMA
Configuration (DMAx_CONFIG and MDMA_yy_CONFIG) Registers”
on page 7-79).

ADSP-BF54x Blackfin Processor Hardware Reference 7-13

Direct Memory Access

 On DMAC1, 32-bit DMA mode (WDSIZE1–0 = “b#10” in
DMAx_CONFIG) is not supported for SPORT2, SPORT3, UART2,
UART3, and SPI2. However, SPORT2 and SPORT3 data word
lengths can still be set to up to 32 bits.

Memory DMA
This section describes the four MDMA controllers, which provide mem-
ory-to-memory DMA transfers among the various memory spaces. These
include L1 and L2 memories, as well as external synchronous/asynchro-
nous memories.

Each MDMA controller contains a DMA FIFO used to transfer data to
and from either L1, L2, or the DCB and DEB buses. MDMA0 and
MDMA1 have an 8-word by 16-bit FIFO, whereas MDMA2 and
MDMA3 have an 8-word by 32-bit FIFO. Typically, memory DMA is
used to transfer data between external memory and internal memory. It
also supports DMA from boot ROM on the DEB bus. The FIFO can also
be used to hold DMA data transferred between two L1 or memory other
than L1 locations or between two external memory locations.

Each MDMA controller provides two DMA channels:

• A source channel (for reading from memory)

• A destination channel (for writing to memory)

A memory-to-memory transfer always requires the source and the destina-
tion channel to be enabled. Each source/destination channel pair forms a
“stream,” and these two streams are hardwired for DMA priorities 12
through 15:

• Priority 12: MDMA0 destination (DMAC0) or MDMA2 destina-
tion (DMAC1)

• Priority 13: MDMA0 source (DMAC0) or MDMA2 source
(DMAC1)

DMA Controller Overview

7-14 ADSP-BF54x Blackfin Processor Hardware Reference

• Priority 14: MDMA1 destination (DMAC0) or MDMA3 destina-
tion (DMAC1)

• Priority 15: MDMA1 source (DMAC0) or MDMA3 source
(DMAC1)

MDMA0 takes precedence over MDMA1, and MDMA2 takes precedence
over MDMA3, unless round-robin scheduling is used or priorities become
urgent as programmed by the DRQ bit field in the HMDMA_CONTROL register.

 It is illegal to program a source channel for memory write or a des-
tination channel for memory read.

The channels support 8-, 16-, and 32-bit memory DMA transfers, but
both ends of MDMA0 and MDMA1 connect to 16-bit buses. Source and
destination channel must be programmed to the same word size. In other
words, the MDMA transfer does not perform packing or unpacking of
data; each read results in one write. Both ends of the MDMA FIFO for a
given stream are granted priority at the same time. The source DMA
engine fills the FIFO, while the destination DMA engine empties it. The
FIFO depth allows the burst transfers of the external access bus (EAB) and
DMA access bus (DAB) to overlap, significantly improving throughput on
block transfers between internal and external memory. Two separate
descriptor blocks are required to supply the operating parameters for each
MDMA pair, one for the source channel and one for the destination
channel.

Because the source and destination DMA engines share a single FIFO buf-
fer, the descriptor blocks must be configured to have the same data size. It
is possible to have a different mix of descriptors on both ends as long as
the total transfer count is the same.

To start an MDMA transfer operation, the MMRs for the source and des-
tination channels are written, each in a manner similar to peripheral
DMA.

ADSP-BF54x Blackfin Processor Hardware Reference 7-15

Direct Memory Access

 Note the DMAx_CONFIG register for the source channel must be writ-
ten before the DMAx_CONFIG register for the destination channel.
Also note that an interrupt (if enabled) is generated only upon the
completion of the destination work unit, not the source work unit.

There are default sets of arbitration priorities between the different DMA
controllers. These arbitration priorities are described in “DMA-Related
Buses” on page 2-17.

The priorities between DMAC0 and DMAC1 with respect to each other
are also programmable at each of the bus interfaces (DEB to external
memory, DCB to the core memory and SysBus to memory other than L1).

A peripheral DMA on either DMA controller uses a subset of its DMA
controller bandwidth for a variety of reasons, including data pack-
ing/unpacking. Additionally, the fact that a peripheral runs at some
fraction of the SCLK rate allows other peripherals to access the various
DMA buses as well.

In contrast, a memory DMA channel pair on a given controller can trans-
fer data on every SCLK cycle if no other DMA activity occurs on the same
DMA controller. This throughput difference can cause bandwidth issues
with respect to other DMA controllers. For example, memory DMAs on
the higher priority DMA controller will hold off transfers from peripherals
on the lower priority DMA controller. This transfer holdoff is most appar-
ent at the external memory interface.

To help with this scenario, refer to the arbitration options in
“DMA-Related Buses” on page 2-17. Also refer to the descriptions of the
DEB_ARB_PRIORITY, DEB0_URGENT, DEB1_URGENT, and DEB2_URGENT bits in
the DDR_QUEUE register (see Table 5-4 on page 5-18) for additional control
information.

Modes of Operation

7-16 ADSP-BF54x Blackfin Processor Hardware Reference

Handshaked Memory DMA Mode

Handshaked operation applies only to memory DMA channels on
DMAC1.

Normally, memory DMA transfers are performed at maximum speed.
Once started, data is transferred in a continuous manner until either the
data count expires or the MDMA is stopped. In handshake mode, the
MDMA does not transfer data automatically when enabled; it waits for an
external trigger on the MDMA request input signals. The DMAR0 input is
associated with MDMA2 and the DMAR1 input with MDMA3. Once a trig-
ger event is detected, a programmable portion of data is transferred and
then the MDMA stalls again and waits for the next trigger.

Handshake operation is not only useful to control the timing of mem-
ory-to-memory transfers, it also enables the MDMA to operate with
asynchronous FIFO-style devices connected to the EBIU port. The Black-
fin processor acknowledges a DMA request by a proper number of read or
write operations. It is up to the device connected to any of the AMSx
strobes to deassert or pulse the request signal and to decrement the num-
ber of pending requests accordingly.

Depending on HMDMA operating mode, an external DMA request may
trigger individual data word transfers or block transfers. A block can con-
sist of up to 65535 data words. For best throughput, DMA requests can
be pipelined. The HMDMA controllers feature a request counter to
decouple request timing from the data transfers.

See “Handshaked Memory DMA Operation” on page 7-45 for a func-
tional description.

Modes of Operation
The following sections describe the DMA operations - register-based,
two-dimensional, and descriptor-based.

ADSP-BF54x Blackfin Processor Hardware Reference 7-17

Direct Memory Access

Register-Based DMA Operation
Register-based DMA is the traditional kind of DMA operation. Software
writes source or destination address and length of the data to be trans-
ferred into memory-mapped registers and then starts DMA operation.

For basic operation the software performs these steps:

• Write the source or destination address to the 32-bit
DMAx_START_ADDR register.

• Write the number of data words to be transferred to the 16-bit
DMAx_X_COUNT register.

• Write the address modifier to the 16-bit DMAx_X_MODIFY register.
This is the two’s-complement value added to the address pointer
after every transfer. Typically, this register is set to 0x0004 for
32-bit DMA transfers, to 0x0002 for 16-bit transfers, and to
0x0001 for byte transfers.

• Write the operation mode to the DMAx_CONFIG register. These bits
in particular need to be changed as needed:

• The DMAEN bit enables the DMA channel.

• The WNR bit controls the DMA direction. DMAs that read
from memory keep this bit cleared, for example, transmit-
ting peripheral DMAs and the source channel of memory
DMAs. Receiving DMAs and the destination for memory
DMAs set this bit, because they write to memory.

• The WDSIZE bit controls the data word width for the trans-
fer. It can be 8, 16, or 32 bits wide.

Modes of Operation

7-18 ADSP-BF54x Blackfin Processor Hardware Reference

• The DI_EN bit enables an interrupt when the DMA opera-
tion has finished.

• Set the FLOW field to 0x0 for stop mode or 0x1 for autobuffer
mode.

Once the DMAEN bit is set, the DMA channel starts its operation. While
running, the DMAx_CURR_ADDR and the DMAx_CURR_X_COUNT registers can be
monitored to determine the current progress of the DMA operation.

The DMAx_IRQ_STATUS register signals whether the DMA has finished
(DMA_DONE bit), whether a DMA error has occurred (DMA_ERR bit), and
whether the DMA is currently running (DMA_RUN bit). The DMA_DONE and
the DMA_ERR bits also function as interrupt latch bits. They must be cleared
by write-1-to-clear (W1C) operations by the interrupt service routine.

Stop Mode

In stop mode, the DMA operation is executed only once. If started, the
DMA channel transfers the desired number of data words and stops itself
again when finished. If the DMA channel is no longer used, software
clears the DMAEN enable bit to disable a paused channel. Stop mode is
entered if the FLOW bit field in the DMA channel’s DMAx_CONFIG register is
0. The NDSIZE field must always be 0 in this mode.

For receive (memory write) operation, the DMA_RUN bit functions almost
the same as the inverted DMA_DONE bit. For transmit (memory read) opera-
tion, however, the two bits have different timing. Refer to the description
of the SYNC bit for details.

Autobuffer Mode

In autobuffer mode, the DMA operates repeatedly in a circular manner. If
all data words have been transferred, the address pointer DMAx_CURR_ADDR
is reloaded automatically by the DMAx_START_ADDR value. An interrupt may
also be generated.

ADSP-BF54x Blackfin Processor Hardware Reference 7-19

Direct Memory Access

Autobuffer mode is entered if the FLOW field in the DMAx_CONFIG register
is 1. The NDSIZE bit must be 0 in autobuffer mode.

Two-Dimensional DMA Operation
Register-based and descriptor-based DMA can operate in one-dimensional
mode or two-dimensional mode.

In two-dimensional (2D) mode the DMAx_X_COUNT register is accompanied
by the DMAx_Y_COUNT register, supporting arbitrary row and column sizes
up to 64K bytes x 64K bytes elements, as well as arbitrary DMAx_X_MODIFY
and DMAx_Y_MODIFY values up to ±32K bytes. Furthermore,
DMAx_Y_MODIFY values can be negative, allowing implementation of
interleaved data streams. The DMAx_X_COUNT and DMAx_Y_COUNT values
specify the row and column sizes, where a DMAx_X_COUNT value must be
2 or greater.

The start address and modify values are in bytes, and they must be aligned
to a multiple of the DMA transfer word size (WDSIZE[1:0] in
DMAx_CONFIG). Misalignment causes a DMA error.

The DMAx_X_MODIFY value is the byte-address increment that is applied
after each transfer that decrements the DMAx_CURR_X_COUNT register. The
DMAx_X_MODIFY value is not applied when the inner loop count is ended by
decrementing the DMAx_CURR_X_COUNT value from 1 to 0, except that it is
applied on the final transfer when the DMAx_CURR_Y_COUNT value is 1 and
DMAx_CURR_X_COUNT decrements from 1 to 0.

The DMAx_Y_MODIFY value is the byte-address increment that is applied
after each decrement of the DMAx_CURR_Y_COUNT register. However, the
DMAx_Y_MODIFY value is not applied to the last item in the array on which
the outer loop count (DMAx_CURR_Y_COUNT) also expires by decrementing
from 1 to 0.

Modes of Operation

7-20 ADSP-BF54x Blackfin Processor Hardware Reference

After the last transfer completes, registers DMAx_CURR_Y_COUNT = 1,
DMAx_CURR_X_COUNT = 0, and DMAx_CURR_ADDR are equal to the last item’s
address plus DMAx_X_MODIFY. Note if the DMA channel is programmed to
refresh automatically (autobuffer mode), then these registers is loaded
from DMAx_X_COUNT, DMAx_Y_COUNT, and DMAx_START_ADDR upon the first
data transfer.

The DI_SEL configuration bit enables DMA interrupt requests every time
the inner loop rolls over. If DI_SEL is cleared, but DI_EN is still set, only
one interrupt is generated after the outer loop completes.

Examples of Two-Dimensional DMA

Example 1: Retrieve a 16 8 block of bytes from a video frame buffer of
size (N M) pixels:

DMAx_X_MODIFY = 1

DMAx_X_COUNT = 16

DMAx_Y_MODIFY = N–15 (offset from the end of one row to the start

of another)

DMAx_Y_COUNT = 8

This produces the following code offset from the start address:

0,1,2,...15,

N,N + 1, ... N + 15,

2N, 2N + 1,... 2N + 15, ...

7N, 7N + 1,... 7N + 15,

Example 2: Receive a video datastream of bytes,
(R,G,B pixels) (N M image size):

DMAx_X_MODIFY = (N * M)

DMAx_X_COUNT = 3

DMAx_Y_MODIFY = 1 – 2(N * M) (negative)

DMAx_Y_COUNT = (N * M)

ADSP-BF54x Blackfin Processor Hardware Reference 7-21

Direct Memory Access

This produces the following code offset from the start address:

0, (N * M), 2(N * M),

1, (N * M) + 1, 2(N * M) + 1,

2, (N * M) + 2, 2(N * M) + 2,

...

(N * M) – 1, 2(N * M) – 1, 3(N * M) – 1,

Descriptor-Based DMA Operation
In descriptor-based DMA operation, software does not set up DMA
sequences by writing directly into DMA controller registers. Rather, soft-
ware keeps DMA configurations, called descriptors, in memory. On
demand, the DMA controller loads the descriptor from memory and over-
writes the affected DMA registers by its own control. Descriptors can be
fetched from L1 memory using the DCB bus, from memory other than
L1, or from external memory using the DEB bus.

A descriptor describes what kind of operation should be performed next
by the DMA channel. This includes the DMA configuration word as well
as data source/destination address, transfer count, and address modify val-
ues. A DMA sequence controlled by one descriptor is called a work unit.

Optionally, an interrupt can be requested at the end of any work unit by
setting the DI_EN bit in the configuration word of the respective
descriptor.

A DMA channel is started in descriptor-based mode by first writing the
32-bit address of the first descriptor into the DMAx_NEXT_DESC_PTR register
(or the DMAx_CURR_DESC_PTR register in case of descriptor array mode) and
then performing a write to the configuration register DMAx_CONFIG that sets
the FLOW field to either 0x04, 0x6, or 0x7 and enables the DMAEN bit. This
causes the DMA controller to immediately fetch the descriptor from the
address pointed to by the DMAx_NEXT_DESC_PTR register. The fetch over-
writes the DMAx_CONFIG register again. If the DMAEN bit is still set, the
channel starts DMA processing.

Modes of Operation

7-22 ADSP-BF54x Blackfin Processor Hardware Reference

The DFETCH bit in the DMAx_IRQ_STATUS register tells whether a descriptor
fetch is ongoing on the respective DMA channel, whereas the
DMAx_CURR_DESC_PTR register points to the descriptor value that is to be
fetched next.

Descriptor List Mode

Descriptor list mode is selected by setting the FLOW bit field in the DMA
channel’s DMAx_CONFIG register to either 0x6 (small descriptor mode) or
0x7 (large descriptor mode). In this mode multiple descriptors form a
chained list. Every descriptor contains a pointer to the next descriptor.
When the descriptor is fetched, this pointer value is loaded into the
DMAx_NEXT_DESC_PTR register of the DMA channel. In large descriptor
mode this pointer is 32 bits wide. Therefore, the next descriptor may
reside in any address space accessible through the DCB and DEB buses. In
small descriptor mode this pointer is just 16 bits wide. For this reason, the
next descriptor must reside in the same 64K byte address space as the first
one, because the upper 16 bits of the DMAx_NEXT_DESC_PTR register are not
updated.

Descriptor list modes are started by writing first to the
DMAx_NEXT_DESC_PTR register and then to the DMAx_CONFIG register.

Descriptor Array Mode

Descriptor array mode is selected by setting the FLOW bit field in the DMA
channel’s DMAx_CONFIG register to 0x4. In this mode, the descriptors do
not contain further descriptor pointers. The initial DMAx_CURR_DESC_PTR
value is written by software. It points to an array of descriptors. The indi-
vidual descriptors are assumed to reside next to each other and, therefore,
their address is known.

ADSP-BF54x Blackfin Processor Hardware Reference 7-23

Direct Memory Access

Variable Descriptor Size

In any descriptor-based mode, the NDSIZE field in the configuration word
specifies how many 16-bit words of the next descriptor need to be loaded
on the next fetch. In descriptor-based operation, NDSIZE field must be
nonzero. The descriptor size can be any value from one entry (the lower
16 bits of DMAx_START_ADDR register only) to nine entries (all the DMA
parameters). Table 7-2 illustrates how a descriptor must be structured in
memory. The values have the same order as the corresponding MMR
addresses.

If, for example, a descriptor is fetched in array mode with NDSIZE = 0x5,
the DMA controller fetches the 32-bit start address, the DMA configura-
tion word and the XCNT and XMOD values. However, it does not load the
YCNT and YMOD values. This might be the case if the DMA operates in
one-dimensional mode or if the DMA is in two-dimensional mode, but
the YCNT and YMOD values do not need to change.

All the other registers not loaded from the descriptor retain their prior val-
ues, although the DMAx_CURR_ADDR, DMAx_CURR_X_COUNT, and
DMAx_CURR_Y_COUNT registers are reloaded between the descriptor fetch and
the start of DMA operation.

Table 7-2 shows the offsets for descriptor elements in the three modes
described above. Note the names in the table describe the descriptor ele-
ments in memory, not the actual MMRs into which they are eventually
loaded. For more information regarding descriptor element acronyms,
refer to Table 7-5 on page 7-74.

Modes of Operation

7-24 ADSP-BF54x Blackfin Processor Hardware Reference

 Every descriptor fetch consumes bandwidth on either the DCB bus
or DEB bus and the external memory interface, so it is best to keep
the size of descriptors as small as possible.

Mixing Flow Modes

The FLOW mode of a DMA is not a global setting. If the DMA configura-
tion word is reloaded with a descriptor fetch, the FLOW and NDSIZE bit
fields can also be altered. A small descriptor might be used to loop back to
the first descriptor if a descriptor array is used in an endless manner.

If the descriptor chain is not endless and the DMA is required to stop after
a certain descriptor is processed, the last descriptor is typically processed
in stop mode, that is, its FLOW and NDSIZE fields are 0, but its DMAEN bit is
still set.

Table 7-2. Parameter Registers and Descriptor Offsets

Descriptor
Offset

Descriptor Array
Mode

Small Descriptor List
Mode

Large Descriptor List
Mode

0x0 SAL NDPL NDPL

0x2 SAH SAL NDPH

0x4 DMACFG SAH SAL

0x6 XCNT DMACFG SAH

0x8 XMOD XCNT DMACFG

0xA YCNT XMOD XCNT

0xC YMOD YCNT XMOD

0xE YMOD YCNT

0x10 YMOD

ADSP-BF54x Blackfin Processor Hardware Reference 7-25

Direct Memory Access

Functional Description
The following sections provide a functional description of DMA - opera-
tion flow, errors, control commands, handshaked memory and
performance.

DMA Operation Flow
Figure 7-3 and Figure 7-4 describe the DMA flow.

DMA Startup

This section discusses starting DMA “from scratch.” This is similar to
starting it after it is paused by FLOW = 0 mode.

 Before initiating DMA for the first time on a given channel, be
sure to initialize all parameter registers. Be especially careful to ini-
tialize the upper 16 bits of the DMAx_NEXT_DESC_PTR and
DMAx_START_ADDR registers, because they might not otherwise be
accessed, depending on the chosen FLOW mode of operation. Also
note that the DMAx_X_MODIFY and DMAx_Y_MODIFY are not preset to a
default value at reset.

To start DMA operation on a given channel, some or all of the DMA
parameter registers must first be written directly. At a minimum, the
DMAx_NEXT_DESC_PTR register (or DMAx_CURR_DESC_PTR register in FLOW = 4
mode) must be written at this stage, but the user may wish to write other
DMA registers that might be static throughout the course of DMA activ-
ity (for example, DMAx_X_MODIFY and DMAx_Y_MODIFY). The contents of
NDSIZE and FLOW in the DMAx_CONFIG register indicate which registers (if
any) are fetched from descriptor elements in memory. After the descriptor
fetch, if any, is completed, DMA operation begins, initiated by writing
DMAx_CONFIG with DMAEN = 1.

Functional Description

7-26 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 7-3. DMA Flow, From DMA Controller’s Point of View (1 of 2)

COPY FLOW, NDSIZE FROM DMA_CONFIG
INTO TEMPORARY DESCRIPTOR FETCH COUNTERS

B

COPY NEXT DESCRIPTOR POINTER
TO CURRENT DESCRIPTOR POINTER

USER WRITES SOME OR ALL DMA PARAMETER
REGISTERS, AND THEN WRITES DMA_CONFIG

SET DFETCH IN IRQ_STATUS

SET DMA_RUN IN IRQ_STATUS

BAD DMA_CONFIG?

TEST DMAEN

TEST FLOW

TEST FLOW

Y

N

DMA ERROR

DMAEN = 1

DMAEN = 0

FLOW = 4, 6, OR 7

DMA STOPPED.
CLEAR DMA_RUN IN

IRQ_STATUS

FLOW = 0 OR 1
A

C

DI_EN = 0 OR
(DI_EN = 1 AND
DMA_DONE_IRQ = 1)

FLOW = 4

FLOW = 6 OR 7

D

ADSP-BF54x Blackfin Processor Hardware Reference 7-27

Direct Memory Access

Figure 7-4. DMA Flow, From DMA Controller’s Point of View (2 of 2)

B

A

C

TEST NDSIZE
DMA

ABORT
OCCURS

READ NDSIZE ELEMENTS
OF DESCRIPTOR INTO

PARAMETER REGISTERS
VIA CURRENT

DESCRIPTOR POINTER
FLOW = 0 OR 1

FLOW = 1

CLEAR DFETCH IN
IRQ_STATUS

DMA TRANSFER
BEGINS AND

CONTINUES UNTIL
COUNTS EXPIRE

TEST DI_EN

TEST FLOW

TEST SYNC, WNR

DMA STOPPED.
CLEAR DMA_RUN IN

IRQ_STATUS

MEMORY WRITE (DESTINATION)

SYNC = 0 AND
MEMORY READ

FLOW = 0

DI_EN = 0

DI_EN = 1 SIGNAL AN
INTERRUPT

TO THE CORE

SET DMA_DONE
IN IRQ_STATUS

TRANSFER
DATA FROM

FIFO TO
PERIPHERAL
UNTIL EMPTY

*MAX SIZE DEPENDS ON FLOW
 IF FLOW = 4, MAX_SIZE = 7
 IF FLOW = 6, MAX_SIZE = 8
 IF FLOW = 7, MAX_SIZE = 9

NDSIZE = 0 OR
NDSIZE > MAX_SIZE*

NDSIZE > 0 AND
NDSIZE <= MAX_SIZE*

TEST SYNC, WNR

TRANSFER
DATA FROM

FIFO TO
PERIPHERAL
UNTIL EMPTY

SYNC = 1 AND
MEMORY READ

SYNC = 0 OR
MEMORY WRITE

D
FLOW = 4, 6, OR 7

SYNC = 1 OR
MEMORY WRITE

Functional Description

7-28 ADSP-BF54x Blackfin Processor Hardware Reference

When the DMAx_CONFIG register is written directly by software, the DMA
controller recognizes this as the special startup condition that occurs when
starting DMA for the first time on this channel or after the engine is
stopped (FLOW = 0).

When the descriptor fetch is complete and DMAEN = 1, the DMACFG descrip-
tor element that was read into the DMAx_CONFIG register assumes control.
Before this point, the direct write to DMAx_CONFIG register had control. In
other words, the WDSIZE, DI_EN, DI_SEL, SYNC, and DMA2D fields are taken
from the DMACFG value in the descriptor read from memory, while these
field values initially written to the DMAx_CONFIG register are ignored.

As Figure 7-3 on page 7-26 and Figure 7-4 on page 7-27 show, at startup,
the FLOW and NDSIZE bits in DMAx_CONFIG determine the course of the
DMA setup process. The FLOW value determines whether to load more cur-
rent registers from descriptor elements in memory, while the NDSIZE bits
detail how many descriptor elements to fetch before starting DMA. DMA
registers not included in the descriptor are not modified from their prior
values.

If the FLOW value specifies small or large descriptor list modes, the
DMAx_NEXT_DESC_PTR register is copied into DMAx_CURR_DESC_PTR register.
Then, fetches of new descriptor elements from memory are performed,
indexed by DMAx_CURR_DESC_PTR register, which is incremented after each
fetch. If NDPL and/or NDPH is part of the descriptor, then these values are
loaded into DMAx_NEXT_DESC_PTR register, but the fetch of the current
descriptor continues using DMAx_CURR_DESC_PTR register. After comple-
tion of the descriptor fetch, DMAx_CURR_DESC_PTR register points to the
next 16-bit word in memory past the end of the descriptor.

If neither NDPH nor NDPL are part of the descriptor (that is, in descriptor
array mode, FLOW = 4), then the transfer from NDPH/NDPL into
DMAx_CURR_DESC_PTR register does not occur. Instead, descriptor fetch
indexing begins with the value in DMAx_CURR_DESC_PTR register.

ADSP-BF54x Blackfin Processor Hardware Reference 7-29

Direct Memory Access

If DMACFG is not part of the descriptor, the previous DMAx_CONFIG settings
(as written by MMR access at startup) control the work unit operation. If
DMACFG register is part of the descriptor, then the DMAx_CONFIG value pro-
grammed by the MMR access controls only the loading of the first
descriptor from memory. The subsequent DMA work operation is con-
trolled by the low byte of the descriptor’s DMACFG and by the parameter
registers loaded from the descriptor. The bits DI_EN, DI_SEL, DMA2D,
WDSIZE, and WNR in the value programmed by the MMR access are
disregarded.

The DMA_RUN and DFETCH status bits in the DMAx_IRQ_STATUS register indi-
cate the state of the DMA channel. After a write to DMAx_CONFIG, the
DMA_RUN and DFETCH bits can be automatically set to 1. No data interrupts
are signaled as a result of loading the first descriptor from memory.

After the above steps, DMA data transfer operation begins. The DMA
channel immediately attempts to fill its FIFO, subject to channel prior-
ity—a memory write (RX) DMA channel begins accepting data from its
peripheral, and a memory read (TX) DMA channel begins memory reads,
provided the channel wins the grant for bus access.

When the DMA channel performs its first data memory access, its address
and count computations take their input operands from the start registers
(DMAx_START_ADDR, DMAx_X_COUNT, DMAx_Y_COUNT), and write results back
to the current registers (DMAx_CURR_ADDR, DMAx_CURR_X_COUNT,
DMAx_CURR_Y_COUNT). Note also that the current registers are not valid
until the first memory access is performed, which may be some time after
the channel is started by the write to the DMA_CONFIG register. The current
registers are loaded automatically from the appropriate descriptor ele-
ments, overwriting their previous contents, as follows:

• DMAx_START_ADDR is copied to DMAx_CURR_ADDR

• DMAx_X_COUNT is copied to DMAx_CURR_X_COUNT

• DMAx_Y_COUNT is copied to DMAx_CURR_Y_COUNT

Functional Description

7-30 ADSP-BF54x Blackfin Processor Hardware Reference

Then DMA data transfer operation begins, as shown in Figure 7-4 on
page 7-27.

DMA Refresh

On completion of a work unit, the DMA controller:

• Completes the transfer of all data between memory and the DMA
unit.

• If SYNC = 1 and WNR = 0 (memory read). Selects a synchronized
transition. Transfers all data to the peripheral before continuing.

• If enabled by DI_EN, signals an interrupt to the core and sets the
DMA_DONE bit in the channel’s DMAx_IRQ_STATUS register.

• If FLOW = 0 (stop) only. Stops operation by clearing the DMA_RUN bit
in DMAx_IRQ_STATUS after any data in the channel’s DMA FIFO is
transferred to the peripheral.

• During the fetch in FLOW modes 4, 6, and 7, the DMA controller
sets the DFETCH bit in DMAx_IRQ_STATUS to 1. At this point, the
DMA operation depends on whether FLOW = 4, 6, or 7, as follows:

If FLOW = 4 (descriptor array), then loads a new descriptor from
memory into DMA registers by way of the contents of
DMAx_CURR_DESC_PTR, while incrementing DMAx_CURR_DESC_PTR.
The descriptor size comes from the NDSIZE field of the DMAx_CONFIG
value prior to the beginning of the fetch.

If FLOW = 6 (descriptor list small), then copies the 32-bit
DMAx_NEXT_DESC_PTR into DMAx_CURR_DESC_PTR. Next, fetches a
descriptor from memory into DMA registers through the new con-
tents of DMAx_CURR_DESC_PTR, while incrementing
DMAx_CURR_DESC_PTR. The first descriptor element loaded is a new
16-bit value for the lower 16 bits of DMAx_NEXT_DESC_PTR, followed

ADSP-BF54x Blackfin Processor Hardware Reference 7-31

Direct Memory Access

by the rest of the descriptor elements. The high 16 bits of
DMAx_NEXT_DESC_PTR will retain their former value. This supports a
shorter, more efficient descriptor than the descriptor list large
model, suitable whenever the application can place the channel’s
descriptors in the same 64K byte range of memory.

if FLOW = 7 (descriptor list large), then copies the 32-bit
DMAx_NEXT_DESC_PTR into DMAx_CURR_DESC_PTR. Next, fetches a
descriptor from memory into DMA registers through the new con-
tents of DMAx_CURR_DESC_PTR, while incrementing
DMAx_CURR_DESC_PTR. The first descriptor element loaded is a new
32-bit value for the full DMAx_NEXT_DESC_PTR, followed by the rest
of the descriptor elements. The high 16 bits of
DMAx_NEXT_DESC_PTR may differ from their former value. This sup-
ports a fully flexible descriptor list which can be located anywhere
in internal or external memory.

Note if it is necessary to link from a descriptor chain whose
descriptors are in one 64K byte area to another chain whose
descriptors are outside that area, only one descriptor needs to use
FLOW = 7—just the descriptor which contains the link leaving the
64K byte range. All the other descriptors located together in the
same 64K byte areas may use FLOW = 6.

• If FLOW = 4, 6, or 7 (descriptor array, descriptor list small, or
descriptor list large, respectively), then the DMA controller clears
the DFETCH bit in the DMAx_IRQ_STATUS register.

Functional Description

7-32 ADSP-BF54x Blackfin Processor Hardware Reference

• If FLOW = any value but 0 (Stop), then the DMA controller begins
the next work unit, contending with other channels for priority on
the memory buses. On the first memory transfer of the new work
unit, the DMA controller updates the current registers from the
start registers:

DMAx_CURR_ADDR loaded from DMAx_START_ADDR
DMAx_CURR_X_COUNT loaded from DMAx_X_COUNT
DMAx_CURR_Y_COUNT loaded from DMAx_Y_COUNT

The DFETCH bit in DMAx_IRQ_STATUS is then cleared, after which the
DMA transfer begins again, as shown in Figure 7-4 on page 7-27.

Work Unit Transitions

Transitions from one work unit to the next are controlled by the SYNC bit
in the DMAx_CONFIG register of the work units. In general, continuous tran-
sitions have lower latency at the cost of restrictions on changes of data
format or addressed memory space in the two work units. These latency
gains and data restrictions arise from the way the DMA FIFO pipeline is
handled while the next descriptor is fetched. In continuous transitions
(SYNC = 0), the DMA FIFO pipeline continues to transfer data to and
from the peripheral or destination memory during the descriptor fetch
and/or when the DMA channel is paused between descriptor chains.

Synchronized transitions (SYNC = 1), on the other hand, provide better
real-time synchronization of interrupts with peripheral state and greater
flexibility in the data formats and memory spaces of the two work units, at
the cost of higher latency in the transition. In synchronized transitions,
the DMA FIFO pipeline is drained to the destination or flushed (RX data
discarded) between work units.

ADSP-BF54x Blackfin Processor Hardware Reference 7-33

Direct Memory Access

 Work unit transitions for MDMA streams are controlled by the
SYNC bit of the MDMA source channel’s DMAx_CONFIG register. The
SYNC bit of the MDMA destination channel is reserved and must be
0. In transmit (memory read) channels, the SYNC bit of the last
descriptor prior to the transition controls the transition behavior.
In contrast, in receive channels, the SYNC bit of the first descriptor
of the next descriptor chain controls the transition.

DMA Transmit and MDMA Source

In DMA transmit (memory read) and MDMA source channels, the SYNC
bit controls the interrupt timing at the end of the work unit and the han-
dling of the DMA FIFO between the current and next work unit.

If SYNC = 0, a continuous transition is selected. In a continuous transition,
just after the last data item is read from memory, these four operations all
start in parallel:

• The interrupt (if any) is signalled.

• The DMA_DONE bit in the DMAx_IRQ_STATUS register is set.

• The next descriptor begins to be fetched.

• The final data items are delivered from the DMA FIFO to the des-
tination memory or peripheral.

This allows the DMA to provide data from the FIFO to the peripheral
“continuously” during the descriptor fetch latency period.

When SYNC = 0, the final interrupt (if enabled) occurs when the last data is
read from memory. This interrupt is at the earliest time that the output
memory buffer may safely be modified without affecting the previous data
transmission. Up to four data items may still be in the DMA FIFO,
however, and not yet at the peripheral, so the DMA interrupt should not
be used as the sole means of synchronizing the shutdown or reconfigura-
tion of the peripheral following a transmission.

Functional Description

7-34 ADSP-BF54x Blackfin Processor Hardware Reference

 If SYNC = 0 (continuous transition) on a transmit (memory read)
descriptor, the next descriptor is required to have the same data
word size, read/write direction, and source memory (internal versus
external) as the current descriptor.

If SYNC = 0 selects continuous transition on a work unit in FLOW = STOP
mode with interrupt enabled, the interrupt service routine may already
run while the final data is still draining from the FIFO to the peripheral.
This is indicated by the DMA_RUN bit in the DMAx_IRQ_STATUS register; if it
is 1, the FIFO is not empty yet. Do not start a new work unit with differ-
ent word size or direction while DMA_RUN = 1. Further, if the channel is
disabled (by writing DMAEN = 0), the data in the FIFO is lost.

If SYNC = 1, a synchronized transition is selected, in which the DMA FIFO
is first drained to the destination memory or peripheral before any inter-
rupt is signalled and before any subsequent descriptor or data is fetched.
This incurs greater latency, but provides direct synchronization between
the DMA interrupt and the state of the data at the peripheral.

For example, if SYNC = 1 and DI_EN = 1 on the last descriptor in a work
unit, the interrupt occurs when the final data is transferred to the periph-
eral, allowing the service routine to properly switch to non-DMA transmit
operation. When the interrupt service routine is invoked, the DMA_DONE bit
is set and the DMA_RUN bit is cleared.

A synchronized transition also allows greater flexibility in the format of
the DMA descriptor chain. If SYNC = 1, the next descriptor may have any
word size or read/write direction supported by the peripheral and may
come from either memory space (internal as opposed to external). This
can be useful in managing MDMA work unit queues, since it is no longer
necessary to interrupt the queue between dissimilar work units.

ADSP-BF54x Blackfin Processor Hardware Reference 7-35

Direct Memory Access

DMA Receive

In DMA receive (memory write) channels, the SYNC bit controls the han-
dling of the DMA FIFO between descriptor chains (not individual
descriptors), when the DMA channel is paused. The DMA channel pauses
after descriptors with FLOW = STOP mode, and may be restarted (for exam-
ple, after an interrupt) by writing the channel’s DMAx_CONFIG register with
DMAEN = 1.

If the SYNC bit is 0 in the new work unit’s DMAx_CONFIG value, a continuous
transition is selected. In this mode, any data items received into the DMA
FIFO while the channel was paused are retained, and they are the first
items written to memory in the new work unit. This mode of operation
provides lower latency at work unit transitions and ensures that no data
items are dropped during a DMA pause, at the cost of certain restrictions
on the DMA descriptors.

 If the SYNC bit is 0 on the first descriptor of a descriptor chain after
a DMA pause, the DMA word size of the new chain must not
change from the word size of the previous descriptor chain active
before the pause, unless the DMA channel is reset between chains
by writing the DMAEN bit to 0 and then to 1.

If the SYNC bit is 1 in the new work unit’s DMAx_CONFIG value, a synchro-
nized transition is selected. In this mode, only the data received from the
peripheral by the DMA channel after the write to the DMAx_CONFIG register
is delivered to memory. Any prior data items transferred from the periph-
eral to the DMA FIFO before this register write are discarded. This
provides direct synchronization between the data stream received from the
peripheral and the timing of the channel restart (when the DMAx_CONFIG
register is written).

For receive DMAs, the SYNC bit has no effect in transitions between work
units in the same descriptor chain (that is, when the previous descriptor’s
FLOW mode was not STOP, so that DMA channel did not pause).

Functional Description

7-36 ADSP-BF54x Blackfin Processor Hardware Reference

If a descriptor chain begins with a SYNC bit of 1, there is no restriction on
DMA word size of the new chain in comparison to the previous chain.

 DMA word size must not change between one descriptor and the
next in any DMA receive (memory write) channel within a single
descriptor chain, regardless of the SYNC bit setting. In other words,
if a descriptor has WNR = 1 and FLOW = 4, 6, or 7, then the next
descriptor must have the same word size. For any DMA receive
(memory write) channel, there is no restriction on changes of
memory space (internal versus external) between descriptors or
descriptor chains. DMA transmit (memory read) channels may
have such restrictions (see “DMA Transmit and MDMA Source”
on page 7-33).

Stopping DMA Transfers

In FLOW = 0 mode, DMA stops automatically after the work unit is com-
plete. If a list or array of descriptors is used to control DMA, and if every
descriptor contains a DMACFG element, then the final DMACFG element
should have a FLOW = 0 setting to gracefully stop the channel.

In autobuffer (FLOW = 1) mode, or if a list or array of descriptors without
DMACFG elements is used, then the DMA transfer process must be termi-
nated by an MMR write to the DMAx_CONFIG register with a value whose
DMAEN bit is 0. A write of 0 to the entire register always terminates DMA
gracefully (without DMA abort).

 If a channel is stopped abruptly by writing DMAx_CONFIG to 0 (or
any value with DMAEN = 0), the user must ensure memory read or
write accesses in the pipelines are complete before reenabling the
channel. If the channel is reenabled before an “orphan” access from
a previous work unit completes, the state of the DMA interrupt
and FIFO is unspecified. This can generally be handled by ensur-
ing that the core allocates several idle cycles in a row in its usage of

ADSP-BF54x Blackfin Processor Hardware Reference 7-37

Direct Memory Access

the relevant memory space to allow up to three pending DMA
accesses to issue, plus allowing enough memory access time for the
accesses themselves to complete.

DMA Errors (Aborts)
The DMA controllers flag conditions that cause DMA processes to end
abnormally (that is, abort). This functionality is provided as a tool for sys-
tem development and debug, as a way to detect DMA-related
programming errors. DMA errors (aborts) are detected by the DMA chan-
nel module in the cases listed below. When a DMA error occurs, the
channel is immediately stopped (DMA_RUN goes to 0) and any prefetched
data is discarded. In addition, a DMA_ERROR interrupt is asserted.

There is only one DMA_ERROR interrupt for a DMA controller, which is
asserted whenever any of the channels has detected an error condition.

The DMA_ERROR interrupt handler must do these things for each channel:

• Read each channel’s DMAx_IRQ_STATUS register to look for a channel
with the DMA_ERR bit set (bit 1).

• Clear the problem with that channel (for example, fix register
values).

• Clear the DMA_ERR bit (write DMAx_IRQ_STATUS with bit 1 = 1).

The following error conditions are detected by the DMA hardware and
result in a DMA abort interrupt.

• The configuration register contains invalid values:

- Incorrect WDSIZE value (WDSIZE = b#11)

- Bit 15 not set to 0

- Incorrect FLOW value (FLOW = 2, 3, or 5)

Functional Description

7-38 ADSP-BF54x Blackfin Processor Hardware Reference

- NDSIZE value does not agree with FLOW.
 See Table 7-3 on page 7-39.

• A disallowed register write occurred while the channel was run-
ning. Only the DMAx_CONFIG and DMAx_IRQ_STATUS registers can be
written when DMA_RUN = 1.

• An address alignment error occurred during any memory access.
For example, DMAx_CONFIG register WDSIZE = 1 (16 bit) but the least
significant bit (LSB) of the address is not equal to 0, or WDSIZE = 2
(32 bit) but the two LSBs of the address are not equal to b#00.

• A memory space transition was attempted (internal-to-external or
vice versa).

• A memory access error occurred. Either an access attempt was
made to an internal address not populated or defined as cache, or
an external access caused an error (signaled by the external memory
interface).

Some prohibited situations are not detected by the DMA hardware. No
DMA abort is signaled for these situations:

• DMAx_CONFIG direction bit (WNR) does not agree with the direction
of the mapped peripheral.

• DMAx_CONFIG direction bit does not agree with the direction of the
MDMA channel.

• DMAx_CONFIG word size (WDSIZE) is not supported by the mapped
peripheral.

• DMAx_CONFIG word size in source and destination of the MDMA
stream are not equal.

ADSP-BF54x Blackfin Processor Hardware Reference 7-39

Direct Memory Access

• Descriptor chain indicates data buffers that are not in the same
internal/external memory space.

• In 2D DMA, X_COUNT = 1.

DMA Control Commands
Advanced peripherals on the processor, such as the Host DMA port are
capable of managing some of their own DMA operations, thus dramati-
cally improving real-time performance and relieving control and interrupt
demands on the Blackfin processor core. These peripherals may communi-
cate to the DMA controllers using DMA control commands, which are
transmitted from the peripheral to the associated DMA channel over
internal DMA request buses. These request buses consist of three wires per
DMA-management-capable peripheral. The DMA control commands
extend the set of operations available to the peripheral beyond the simple
“request data” command used by peripherals in general. Refer to the
appropriate peripheral chapter for a description on how that peripheral
uses DMA control commands.

Note that while these DMA control commands are not visible to or con-
trolled by the user, their use by a peripheral has implications for the
structure of the DMA transfers which that peripheral can support. It is
important that application software be written to comply with certain

Table 7-3. Legal NDSIZE Values

FLOW NDSIZE Note

0 0

1 0

4 0 < NDSIZE <= 7 Descriptor array, no descriptor pointer fetched

6 0 < NDSIZE <= 8 Descriptor list, small descriptor pointer fetched

7 0 < NDSIZE <= 9 Descriptor list, large descriptor pointer fetched

Functional Description

7-40 ADSP-BF54x Blackfin Processor Hardware Reference

restrictions regarding work units and descriptor chains (described later in
this section) so that the peripheral operates properly whenever it issues
DMA control commands.

MDMA channels do not service peripherals and therefore do not support
DMA control commands.

The DMA control commands are shown in Table 7-4.

Additional information for the control commands includes:

• Restart

The restart control command causes the current work unit to inter-
rupt processing and start over, using the addresses and counts from
DMAx_START_ADDR, DMAx_X_COUNT, and DMAx_Y_COUNT. No interrupt
is signalled.

Table 7-4. DMA Control Commands

Code Name Description

b#000 NOP No operation

b#001 Restart Restarts the current work unit
from the beginning

b#010 Finish Finishes the current work unit
and starts the next

b#011 Interrupt Immediately sets the DMA
completion interrupt in the
associated DMA peripheral
channel

b#100 Request Data Typical DMA data request

b#101 Request Data Urgent Urgent DMA data request

b#110 Request Register Load Request/continue transfer of
DMA channel control register
values by way of DAB.

b#111 - Reserved

ADSP-BF54x Blackfin Processor Hardware Reference 7-41

Direct Memory Access

If a channel programmed for transmit (memory read) receives a
restart control command, the channel momentarily pauses while
any pending memory reads initiated prior to the restart command
are completed.

During this period of time, the channel does not grant DMA
requests. Once all pending reads have been flushed from the chan-
nel’s pipelines, the channel resets its counters and FIFO, and starts
prefetch reads from memory. DMA data requests from the periph-
eral are granted as soon as new prefetched data is available in the
DMA FIFO. The peripheral can then use the restart command to
reattempt a failed transmission of a work unit.

If a channel programmed for receive (memory write) receives a
restart control command, the channel stops writing to memory,
discards any data held in its DMA FIFO, and resets its counters
and FIFO. As soon as this initialization is complete, the channel
again grants DMA write requests from the peripheral. The periph-
eral can thus use the restart command to abort transfer of received
data into a work unit, and reuse the memory buffer for a later data
transfer.

• Finish

The finish control command causes the current work unit to termi-
nate processing and move on to the next. An interrupt is signalled
as usual, if selected by the DI_EN bit. The peripheral can thus use
the finish command to partition the DMA stream into work units
on its own, perhaps as a result of parsing the data currently passing
though its supported communication channel, without direct
real-time control by the processor.

If a channel programmed for transmit (memory read) receives a
finish control command, the channel momentarily pauses while
any pending memory reads initiated prior to the finish command
are completed. During this period of time, the channel does not

Functional Description

7-42 ADSP-BF54x Blackfin Processor Hardware Reference

grant DMA requests. Once all pending reads are flushed from the
channel’s pipelines, the channel signals an interrupt (if enabled),
and begins fetching the next descriptor (if any). DMA data requests
from the peripheral are granted as soon as new prefetched data is
available in the DMA FIFO.

If a channel programmed for receive (memory write) receives a fin-
ish control command, the channel stops granting new DMA
requests while it drains its FIFO. Any DMA data received by the
DMA controller prior to the finish command is written to mem-
ory. When the FIFO reaches an empty state, the channel signals an
interrupt (if enabled) and begins fetching the next descriptor (if
any). Once the next descriptor is fetched, the channel initializes its
FIFO, and then resumes granting DMA requests from the
peripheral.

• Interrupt

This command immediately sets the DMA completion interrupt in
the DMAx_IRQ_STATUS register of the associated DMA peripheral
channel.

• Request Data

The request data control command is identical to the DMA request
operation of peripherals which are not DMA-management-capable.

• Request Data Urgent

The request data urgent control command behaves identically to
the DMA request control command, except that while it is asserted
the DMA channel performs its memory accesses with urgent prior-
ity. This includes both data and descriptor-fetch memory accesses.

ADSP-BF54x Blackfin Processor Hardware Reference 7-43

Direct Memory Access

A DMA-management-capable peripheral might use this control
command if an internal FIFO is approaching a critical condition,
for example.

• Request Register Load

This command pertains exclusively to the HOSTDP on DMA14
peripheral on the ADSP-BF54x processor Blackfin processor. The
command allows a “DAB-mastering” peripheral to load values
directly into its DMA channel control registers by way of the DAB
bus. Refer to Chapter 8, “Host DMA Port” for more information
on how this command is used in conjunction with Host DMA port
operation.

The DMA channel must be enabled (DMAx_CONFIG register’s DMAEN
bit =1) to use the request register load command to be used. This
command cannot be used to enable a disabled channel, nor may it
be used to write the channel’s next descriptor pointer.

On the first (non-granted) cycle when the peripheral does not
assert request register load, the DMA channel will cease loading
register values and initiates processing the work unit they specify.

The DMA channel FIFO is not reinitialized when processing
begins. Therefore, any transmit or receive data present in the FIFO
remains in place, unless otherwise configured by the DMAx_CONFIG
register’s SYNC bit (bit 5).

Restrictions

The proper operation of the 4-location DMA channel FIFO leads to cer-
tain restrictions in the sequence of DMA control commands.

Functional Description

7-44 ADSP-BF54x Blackfin Processor Hardware Reference

Transmit Restart or Finish

No restart or finish control command may be issued by a peripheral to a
channel configured for memory read unless both (a) the peripheral has
already performed at least one DMA transfer in the current work unit, and
(b) the current work unit has more than four items remaining in
DMAx_CURR_X_COUNT/ DMAx_CURR_Y_COUNT (thus not yet read from mem-
ory.) Otherwise, the current work unit may already have completed
memory operations and can no longer be restarted or finished properly.

If the DMAx_CURR_X_COUNT/ DMAx_CURR_Y_COUNT of the current work unit is
sufficiently large that it is always at least five more than the maximum data
count prior to any restart or finish command, the above restriction is satis-
fied. This implies that any work unit which might be managed by restart
or finish commands must have DMAx_CURR_X_COUNT/ DMAx_CURR_Y_COUNT
values representing at least five data items.

Note in particular that if the DMAx_CURR_X_COUNT/ DMAx_CURR_Y_COUNT reg-
isters are programmed to 0 (representing 65,536 transfers, the maximum
value) the channel operates properly for 1D work units up to 65,531 data
items or 2D work units up to 4,294,967,291 data items.

Receive Restart or Finish

No restart or finish control command may be issued by a peripheral to a
channel configured for memory write unless either (a) the peripheral
already performed at least five DMA transfers in the current work unit, or
(b) the previous work unit terminated by a finish control command and
the peripheral performed at least one DMA transfer in the current work
unit. If five data transfers performed, then at least one data item is written
to memory in the current work unit, which implies that the current work
unit’s descriptor fetch completed before the data grant of the fifth item.
Otherwise, if less than five data items are transferred, it is possible that all
of them are still in the DMA FIFO and that the previous work unit is still
in the process of completion and transition between work units.

ADSP-BF54x Blackfin Processor Hardware Reference 7-45

Direct Memory Access

Similarly, if a finish command ended the previous work unit and at least
one subsequent DMA data transfer occurred, then the fact that the DMA
channel issued the grant guarantees that the previous work unit already
completed the process of draining its data to memory and transitioning to
the new work unit.

Note that if a peripheral terminates all work units with the finish opcode
(effectively assuming responsibility for all work unit boundaries for the
DMA channel), then the peripheral need only ensure that it performs a
single transfer in each work unit before any restart or finish. This requires,
however, that the user programs the descriptors for all work units man-
aged by the channel with DMAx_CURR_X_COUNT/ DMAx_CURR_Y_COUNTs
representing more data items than the maximum work unit size that the
peripheral encounters. For example, DMAx_CURR_X_COUNT/
DMAx_CURR_Y_COUNTs of 0 allow the channel to operate properly on 1D
work units up to 65,535 data items and 2D work units up to
4,294,967,295 data items.

Handshaked Memory DMA Operation
Both DMARx inputs have their own set of control and status registers. hand-
shake operation for MDMA2 is enabled by the HMDMAEN bit in the
HMDMA0_CONTROL register. Similarly, the HMDMAEN bit in the HMDMA1_CONTROL
register enables handshake mode for MDMA3.

It is important to understand that the handshake hardware works com-
pletely independent from the descriptor and autobuffer capabilities of the
MDMA, allowing most flexible combinations of logical data organization
versus data portioning as required by FIFO deeps, for example. If, how-
ever, the connected device requires certain behavior of the address lines,
these must be controlled by traditional DMA setup.

Because source and destination channels of a MDMA stream are decou-
pled by an 8-depth FIFO, they are loosely synchronized to each other.
The DMARx functionality requires strong synchronization. So, the

Functional Description

7-46 ADSP-BF54x Blackfin Processor Hardware Reference

HMDMA optionally can be tied to either the destination channel, as by
default, or to the source channel, when the SND (“source not destination”)
bit in the HMDMA_CONTROLx register is set. When data is transferred from
on-chip memory to off-chip space, one may expect the HMDMAx block
to control the destination channel. When data is transferred from off-chip
space to on-chip space, the HMDMAx block should control the source
channel.

The HMDMAx_BCINIT registers control how many data transfers are per-
formed upon every DMA request. If set to 1, the peripheral can time every
individual data transfer. If greater than 1, the peripheral must feature suf-
ficient buffer size to provide or consume the number of words
programmed. Once the transfer is requested, no further handshake can
hold off the DMA from transferring the entire block, except by stalling
the EBIU accesses by the ARDY signal or a complete bus request and grant
cycle through the BR and BG pins. Nevertheless, the peripheral may request
a block transfer before the entire buffer is available, by simply taking the
minimum transfer time based on wait-state settings into consideration.

 The block count defines how many data transfers are performed by
the MDMA engine. A single DMA transfer can cause two read or
write operations on the EBIU port if the transfer word size is set to
32 bit in the MDMA_yy_CONFIG register (WDSIZE = b#10).

Since the block count registers are 16 bits wide, blocks can group up to
65535 transfers.

Once a block transfer is started, the HMDMAx_BCOUNT registers return the
remaining number of transfers to complete the current block. When the
complete block is processed, the HMDMAx_BCOUNT register returns zero. Soft-
ware can force a reload of the HMDMAx_BCOUNT from the HMDMAx_BCINIT
register even during normal operation by writing a 1 to the RBC bit in the
HMDMAx_CONTROL register. Set RBC only when the HMDMA module is
already active, but the MDMA is not enabled.

ADSP-BF54x Blackfin Processor Hardware Reference 7-47

Direct Memory Access

Pipelining DMA Requests

The device mastering the DMA request lines is allowed to request addi-
tional transfers even before the former transfer has completed. As long as
the device can provide or consume sufficient data, it is permitted to pulse
the DMARx inputs multiple times.

The HMDMAx_ECOUNT registers are incremented every time a significant edge
is detected on the respective DMARx input and are decremented when the
MDMA completes the block transfer. These read-only registers use a
16-bit, two’s-complement data representation: if they return zero, all
requested block transfers have been performed. A positive value signals up
to 32767 requests that have not been served yet and indicates that the
MDMA is currently processing. Negative values indicate the number of
DMA requests ignored by the engine. This feature restrains initial pulses
on the DMARx inputs at startup.

The HMDMAx_ECINIT registers reload the HMDMAx_ECOUNT registers every time
the handshake mode is enabled, that is, when the HMDMAEN bit changes
from 0 to 1. If the initial edge count value is 0, the handshake operation
starts with a settled request budget. If positive, the engine starts immedi-
ately transferring the programmed number (up to 32767) of blocks once
enabled, even without detecting any activity on the DMARx pins. If nega-
tive, the engine disregards the programmed number (up to 32768)
significant edges on the DMARx inputs before starting normal operation.

Figure 7-5 illustrates how an asynchronous FIFO could be connected. In
such a scenario, the REP bit is cleared to let the DMARx request pin listen to
falling edges. The Blackfin processor does not evaluate the full flag such
FIFOs usually provide, because asynchronous polling of that signal
reduces the system throughput drastically. Moreover, the processor first
fills the FIFO by initializing the HMDMAx_ECINIT register by the value 1024
which equals the depth of the FIFO. Once enabled, the MDMA automat-
ically transmits 1024 data words. Afterward it continues to transmit only
if the FIFO is emptied by its read strobe again.

Functional Description

7-48 ADSP-BF54x Blackfin Processor Hardware Reference

Most likely, the HMDMAx_BCINIT register is programmed to be 1 in this
case. In this example, it is recommended to keep the SND bit cleared, so
that the HMDMAx block controls the destination channel of the MDMA.

In the receive example shown in Figure 7-6, the Blackfin processor again
does not use the FIFO’s internal control mechanism. Rather than testing
the empty flag, the processor counts the number of data words available in
the FIFO by its own HMDMAx_ECOUNT register. Theoretically, the MDMA
could immediately process data as soon as it is written into the FIFO by
the write strobe, but the fast MDMA engine would read out the FIFO
quickly and stall soon if the FIFO was not filled with new data promptly.
Streaming applications can balance the FIFO so that the producer is never
held off by a full FIFO and the consumer is never held by an empty FIFO.
This is accomplished by filling the FIFO half way and then letting both
consumer and producer run at the same speed. In this case, the
HMDMAx_ECINIT register can be written with a negative value, which corre-
sponds to half the FIFO depth. Then, the MDMA does not start
consuming data as long as the FIFO is not half filled.

Figure 7-5. Transmit DMA Example Connection

WR
AMSx

1024K x 16 FIFOBLACKFIN

FF

D0 .. D15

DMARx

RD

I0 .. I15 O0 .. O15

AWE

ADSP-BF54x Blackfin Processor Hardware Reference 7-49

Direct Memory Access

In this example, it is recommended to set the SND bit, so that the
HMDMAx block controls the source channel of the MDMA.

On internal system buses, memory DMA channels have lower priority
than other DMAs. In busy systems it might happen that the memory
DMAs tend to starve. As this is not acceptable when transferring data
through high-speed FIFOs, the handshake mode provides a high-water
functionality to increase the MDMA’s priority. With the UTE bit in the
HMDMAx_CONTROL register set, the MDMA gets higher priority as soon as a
(positive) value in the HMDMAx_ECOUNT register becomes higher than the
threshold held by the HMDMAx_ECURGENT register.

HMDMA Interrupts

In addition to the normal MDMA interrupt channels, the handshake
hardware provides two new interrupt sources for each DMARx input. All
interrupt sources (DMAR0 and DMAR1 block done, DMAR0 and
DMAR1 overflow error) are routed to Peripheral Interrupt ID#63. Refer
to Chapter 6, “System Interrupts” for more information. The
HMDMAx_CONTROL registers provide interrupt enable and status bits. The
interrupt status bits require a write-1-to-clear operation to cancel the
interrupt request.

Figure 7-6. Receive DMA Example Connection

RD
AMSx

1024K x 16 FIFOBLACKFIN

EF

D0 .. D15

DMARx

WR

O0 .. O15 I0 .. I15

ARE

Functional Description

7-50 ADSP-BF54x Blackfin Processor Hardware Reference

The interrupt “block done” signals that a complete MDMA block (as
defined by the HMDMAx_BCINIT register) is transferred, that is, when the
HMDMAx_BCOUNT register decrements to zero. While the BDIE bit enables this
interrupt, the MBDI bit can gate it until the edge count also becomes zero,
meaning that all requested MDMA transfers are now complete.

The overflow interrupt is generated when the HMDMA_ECOUNT register over-
flows. Since it can count up to 32767, which is much more than most
peripheral devices can support, the Blackfin processor features another
threshold register called HMDMA_ECOVERFLOW. It resets to 0xFFFF and is
written with any positive value by the user before enabling the function by
the OIE bit. Then, the overflow interrupt is issued when the value of the
HMDMA_ECOUNT register exceeds the threshold in the HMDMA_ECOVERFLOW
register.

DMA Performance
The DMA system is designed to provide maximum throughput per chan-
nel and maximum utilization of the internal buses, while accommodating
the inherent latencies of memory accesses.

The Blackfin architecture features several mechanisms to customize system
behavior for best performance. This includes DMA channel prioritization,
traffic control, and priority treatment of bursted transfers. Nevertheless,
the resulting performance of a DMA transfer often depends on
application-level circumstances. For best performance, consider these
questions when designing the system software:

• What is the required DMA bandwidth?

• Which DMA transfers have real-time requirements and which do
not?

• How heavily is the DMA controller competing with the core for
on-chip and off-chip resources?

ADSP-BF54x Blackfin Processor Hardware Reference 7-51

Direct Memory Access

• How often do competing DMA channels require the bus systems to
alter direction?

• How often do competing DMA or core accesses cause the DDR
SDRAM to open different pages?

• Is there a way to distribute DMA requests smoothly over time?

A key feature of the DMA architecture is the separation of the activity on
the peripheral DMA bus (the DMA access bus, DAB) from the activity on
the buses between the DMA and memory (the DMA core bus, DCB and
the DMA external bus, DEB. Chapter 2, “Chip Bus Hierarchy” explains
the bus architecture.

Each peripheral DMA channel has its own data FIFO which lies between
the DAB bus and the memory buses. These FIFOs automatically prefetch
data from memory for transmission and buffer received data for later
memory writes. This allows the peripheral to be granted a DMA transfer
with very low latency compared to the total latency of a pipelined memory
access, permitting the repeat rate (bandwidth) of each DMA channel to be
as fast as possible.

DMA Throughput

Peripheral DMA channels have a maximum transfer rate of one 16-bit
word (on DMAC0) or one 32-bit word (on DMAC1) per two system
clocks, per channel, in either direction. As the DAB and DEB buses do,
the DMA controllers reside in the SCLK domain. The controllers synchro-
nize accesses to and from the DCB bus which is running at CCLK rate.

Memory DMA channels have a maximum transfer rate of one 16-bit word
(on DMAC0) or one 32-bit word (on DMAC1) per one system clock
(SCLK), per channel.

Functional Description

7-52 ADSP-BF54x Blackfin Processor Hardware Reference

When all DMA channels’ traffic is taken in the aggregate:

• Transfers between the peripherals and the DMA unit have a maxi-
mum rate of one 16-bit transfer per system clock on DMAC0, and
one 32-bit transfer per system clock on DMAC1.

• Transfers between the DMA unit and internal memory (L1 or L2)
have a maximum rate of one 16-bit transfer per system clock on
DMAC0, and one 32-bit transfer per system clock on DMAC1.

• Transfers between the DMA unit and external memory have a
maximum rate of one 16-bit transfer per system clock on DMAC0,
and one 32-bit transfer per system clock on DMAC1.

Some considerations which limit the actual performance include:

• Accesses to internal or external memory which conflict with core
accesses to the same memory. This can cause delays, for example,
for accessing the same L1 bank, for opening/closing DDR SDRAM
pages, or while filling cache lines.

• Direction change from receive to transmit on the DAB bus imposes
a one SCLK cycle delay.

• Direction changes on the DCB bus (for example, write followed by
read) to the same bank of internal memory can impose delays.

• Direction changes (for example, read followed by write) on the
DEB bus to external memory can each impose a several-cycle delay.

• MMR accesses to DMA registers other than DMAx_CONFIG,
DMAx_IRQ_STATUS, or DMAx_PERIPHERAL_MAP stalls all DMA activity
for one cycle per 16-bit word transferred. In contrast, MMR
accesses to the control/status registers do not cause stalls or wait
states.

• Reads from DMA registers other than control/status registers use
one PAB bus wait state, delaying the core for several core clocks.

ADSP-BF54x Blackfin Processor Hardware Reference 7-53

Direct Memory Access

• Descriptor fetches consume one DMA memory cycle per 16-bit
word read from memory, but do not delay transfers on the DAB
bus.

• Initialization of a DMA channel stalls DMA activity for one cycle.
This occurs when DMAEN changes from 0 to 1 or when the SYNC bit
is set to 1 in the DMAx_CONFIG register.

Several of these factors may be minimized by proper design of the applica-
tion software. It is often possible to structure the software to avoid
internal and external memory conflicts by careful allocation of data buffers
within banks and pages, and by planning for low cache activity during
critical DMA operations. Furthermore, unnecessary MMR accesses can be
minimized, especially by using descriptors or autobuffering.

Efficiency loss caused by excessive direction changes (thrashing) can be
minimized by the processor’s traffic control features.

The MDMA controllers are clocked by SCLK. If source and destination are
in different memory spaces (one internal and one external), the internal
and external memory transfers are typically simultaneous and continuous,
maintaining 100% bus utilization of the internal and external memory
interfaces. This performance is affected by core-to-system clock frequency
ratios. At ratios below about 2.5:1, synchronization and pipeline latencies
result in lower bus utilization in the system clock domain. At a clock ratio
of 2:1, for example, DMA typically runs at 2/3 of the system clock rate. At
higher clock ratios, full bandwidth is maintained.

If source and destination are in the same memory space (both internal or
both external), the MDMA stream typically prefetches a burst of source
data into the FIFO, and then automatically turns around and delivers all
available data from the FIFO to the destination buffer. The burst length is
dependent on traffic, and is equal to 3 plus the memory latency at the
DMA in SCLKs (which is typically 7 for internal transfers and 6 for exter-
nal transfers).

Functional Description

7-54 ADSP-BF54x Blackfin Processor Hardware Reference

Memory DMA Timing Details

When the destination DMAx_CONFIG register is written, MDMA operation
starts, after a latency of three SCLK cycles.

First, if either MDMA channel is selected to use descriptors, the descrip-
tors are fetched from memory. The destination channel descriptors are
fetched first. Then, after a latency of four SCLK cycles after the last descrip-
tor word is returned from memory (or typically eight SCLK cycles after the
fetch of the last descriptor word, due to memory pipelining), the source
MDMA channel begins fetching data from the source buffer. The result-
ing data is deposited in the MDMA channel’s 8-location FIFO, and then
after a latency of two SCLK cycles, the destination MDMA channel begins
writing data to the destination memory buffer.

Static Channel Prioritization

DMA channels are ordinarily granted service strictly according to their
priority. The priority of a channel is simply its channel number, where
lower priority numbers are granted first. Thus, peripherals with high data
rates or low latency requirements should be assigned to lower numbered
(higher priority) channels using the PMAP field in the
DMAx_PERIPHERAL_MAP registers. The memory DMA streams are always
lower static priority than the peripherals, but as they request service con-
tinuously, they ensure that any time slots unused by peripheral DMA are
applied to MDMA transfers. Refer to Table 7-1 for detailed information
on priority and mapping of peripherals to DMA.

Temporary DMA Urgency

Typically, DMA transfers for a given peripheral occur at regular intervals.
Generally, the shorter the interval, the higher the priority that should be
assigned to the peripheral. If the average bandwidth of all the peripherals
is not too large a fraction of the total, then all peripherals’ requests should
be granted as required.

ADSP-BF54x Blackfin Processor Hardware Reference 7-55

Direct Memory Access

Occasionally, instantaneous DMA traffic might exceed the available band-
width, causing congestion. For example, this may occur if L1 or external
memory is temporarily stalled, perhaps for a DDR SDRAM page swap or
a cache line fill. Congestion might also occur if one or more DMA chan-
nels initiates a flurry of requests, perhaps for descriptor fetches or to fill a
FIFO in the DMA or in the peripheral.

If congestion persists, lower priority DMA peripherals may become
starved for data. Even though the peripheral’s priority is low, if the neces-
sary data transfer does not take place before the end of the peripheral’s
regular interval, system failure may result. To minimize this possibility,
the DMA unit detects peripherals whose need for data has become urgent,
and preferentially grants them service at the highest priority.

A DMA channel’s request for memory service is defined as “urgent” if
both:

• The channel’s FIFO is not ready for a DAB bus transfer (that is, a
transmit FIFO is empty or a receive FIFO is full), and

• The peripheral is asserting its DMA request line.

For DEB bus transfers, all DMA requests to the DDR controller can be
marked “urgent” under software control by setting the corresponding
DEBx_URGENT bit in the DDR_QUEUE register. Refer to “DDR Arbitration” on
page 5-11 for more details.

Descriptor fetches may be urgent, if they are necessary to initiate or con-
tinue a DMA work unit chain for a starving peripheral.

DMA requests from an MDMA channel become urgent when handshaked
operation is enabled and the DMARx edge count exceeds the value stored in
the HMDMAx_ECURGENT register. If handshaked operation is disabled, soft-
ware can control urgency of requests directly by altering the DRQ bit field
in the HMDMAx_CONTROL register.

Functional Description

7-56 ADSP-BF54x Blackfin Processor Hardware Reference

When one or more DMA channels express an urgent memory request, two
events occur:

• All non-urgent memory requests are decreased in priority by 32,
guaranteeing that only urgent request are granted. The urgent
requests compete with each other, if there is more than one, and
directional preference among urgent requests is observed.

• The resulting memory transfer is marked for expedited processing
in the targeted memory system (L1, L2, or external), and so are all
prior incomplete memory transfers ahead of it in that memory sys-
tem. This may cause a series of external memory core accesses to be
delayed for a few cycles so that a peripheral’s urgent request may be
accommodated.

The preferential handling of urgent DMA transfers is completely auto-
matic. No user controls are required for this function to operate.

Memory DMA Priority and Scheduling

All MDMA operations within a DMA controller (DMAC0 or DMAC1)
have lower precedence than any peripheral DMA operation within that
controller. MDMA thus makes effective use of any memory bandwidth
unused by peripheral DMA traffic.

 MDMA0 and MDMA1 are always the lowest priority channels in
DMAC0, but they have higher priority than all DMAC1 channels
by default. Therefore, it is preferable to use MDMA2 and
MDMA3 to avoid starving memory bandwidth to DMAC1 periph-
erals. Refer to “DCB Arbitration” on page 2-20 for a discussion of
switching the relative priorities of DMAC0 and DMAC1.

The following discussion about MDMA stream priority and scheduling
refers to MDMA streams within a DMA controller, not between DMAC0
and DMAC1.

ADSP-BF54x Blackfin Processor Hardware Reference 7-57

Direct Memory Access

By default, when more than one MDMA stream is enabled and ready,
only the highest priority MDMA stream is granted. If it is desirable for the
MDMA streams to share the available bandwidth, however, the
MDMA_ROUND_ROBIN_PERIOD register may be programmed to select each
stream in turn for a fixed number of transfers.

If two MDMA streams are used (S0-D0 and S1-D1), the user may choose
to allocate bandwidth either by fixed stream priority or by a round-robin
scheme. This is selected by programming the MDMA_ROUND_ROBIN_PERIOD
field in the DMACx_TCPER register (see “Static Channel Prioritization” on
page 7-54).

If this field is set to 0, then MDMA is scheduled by fixed priority.
MDMA stream 0 takes precedence over MDMA stream 1 whenever
stream 0 is ready to perform transfers. Since an MDMA stream is typically
capable of transferring data on every available cycle, this could cause
MDMA stream 1 traffic to be delayed for an indefinite time until any and
all MDMA stream 0 operations are complete. This scheme could be
appropriate in systems where low duration but latency sensitive data buf-
fers need to be moved immediately, interrupting long duration, low
priority background transfers.

If the MDMA_ROUND_ROBIN_PERIOD field is set to some nonzero value in the
range 1 <= P <= 31, then a round-robin scheduling method is used. The
two MDMA streams are granted bus access in alternation in bursts of up
to P data transfers. This could be used in systems where two transfer pro-
cesses need to coexist, each with a guaranteed fraction of the available
bandwidth. For example, one stream might be programmed for inter-
nal-to-external moves while the other is programmed for
external-to-internal moves, and each would be allocated approximately
equal data bandwidth.

In round-robin operation, the MDMA stream selection at any time is
either “free” or “locked.” Initially, the selection is free. On any free cycle
available to MDMA (when no peripheral DMA accesses take precedence),
if either or both MDMA streams request access, the higher precedence

Functional Description

7-58 ADSP-BF54x Blackfin Processor Hardware Reference

stream is granted (stream 0 in case of conflict), and that stream’s selection
is then “locked.” The MDMA_ROUND_ROBIN_COUNT counter field in the
DMACx_TCCNT register is loaded with the period P from
MDMA_ROUND_ROBIN_PERIOD, and MDMA transfers begin. The counter is
decremented on every data transfer (as each data word is written to mem-
ory). After the transfer corresponding to a count of 1, the MDMA stream
selection is passed automatically to the other stream with zero overhead,
and the MDMA_ROUND_ROBIN_COUNT counter is reloaded with the period
value P from MDMA_ROUND_ROBIN_PERIOD. In this cycle, if the other MDMA
stream is ready to perform a transfer, the stream selection is locked on the
new MDMA stream. If the other MDMA stream is not ready to perform a
transfer, then no transfer is performed, and on the next cycle the stream
selection unlocks and becomes free again.

If round-robin operation is used when only one MDMA stream is active,
one idle cycle occurs for each P MDMA data cycles, slightly lowering
bandwidth by a factor of 1/(P+1). If both MDMA streams are used, how-
ever, memory DMA can operate continuously with zero additional
overhead for alternation of streams (other than overhead cycles normally
associated with reversal of read/write direction to memory, for example).
By selection of various round-robin period values P which limit how often
the MDMA streams alternate, maximal transfer efficiency can be
maintained.

Traffic Control

In the Blackfin DMA architecture, there are two completely separate but
simultaneous prioritization processes—the DAB bus prioritization and the
memory bus (DCB and DEB) prioritization. Peripherals that are request-
ing DMA through the DAB bus, and whose data FIFOs are ready to
handle the transfer, compete with each other for DAB bus cycles. Simi-
larly but separately, channels whose FIFOs need memory service (prefetch
or post-write) compete together for access to the memory buses. MDMA
streams compete for memory access as a unit, and source and destination
may be granted together if their memory transfers do not conflict. In this

ADSP-BF54x Blackfin Processor Hardware Reference 7-59

Direct Memory Access

way, internal-to-external or external-to-internal memory transfers may
occur at the full system clock rate (SCLK). Examples of memory conflict
include simultaneous access to the same memory space and simultaneous
attempts to fetch descriptors. Special processing may occur if a peripheral
is requesting DMA but its FIFO is not ready (for example, an empty
transmit FIFO or full receive FIFO). For more information, see “Tempo-
rary DMA Urgency” on page 7-54.

Traffic control is an important consideration in optimizing use of DMA
resources. Traffic control is a way to influence how often the transfer
direction on the data buses may change, by automatically grouping same
direction transfers together. The DMA block provides a traffic control
mechanism controlled by the DMACx_TCPER and DMACx_TCCNT registers.
This mechanism performs the optimization without real-time processor
intervention, and without the need to program transfer bursts into the
DMA work unit streams. Traffic can be independently controlled for each
of the three buses (DAB, DCB, and DEB) with simple counters. In addi-
tion, alternation of transfers among MDMA streams can be controlled
with the MDMA_ROUND_ROBIN_COUNT field of the DMACx_TCCNT register.
See “Memory DMA Priority and Scheduling” on page 7-56.

Using the traffic control features, the DMA system preferentially grants
data transfers on the DAB or memory buses which are going in the same
read/write direction as the previous transfer, until either the traffic control
counter times out, or until traffic stops or changes direction on its own.
When the traffic counter reaches zero, the preference is changed to the
opposite flow direction. These directional preferences work as if the prior-
ity of the opposite direction channels were decreased by 16.

For example, if channels 3 and 5 were requesting DAB access, but lower
priority channel 5 is going “with traffic” and higher priority channel 3 is
going “against traffic,” then channel 3’s effective priority becomes 19, and
channel 5 would be granted instead. If, on the next cycle, only channels 3
and 6 were requesting DAB transfers, and these transfer requests were
both “against traffic,” then their effective priorities would become 19 and

Programming Model

7-60 ADSP-BF54x Blackfin Processor Hardware Reference

22, respectively. One of the channels (channel 3) is granted, even though
its direction is opposite to the current flow. No bus cycles are wasted,
other than any necessary delay required by the bus turnaround.

This type of traffic control represents a trade-off of latency to improve uti-
lization (efficiency). Higher traffic timeouts might increase the length of
time each request waits for its grant, but it often dramatically improves the
maximum attainable bandwidth in congested systems, often to above
90%.

To disable preferential DMA prioritization, program the DMACx_TCPER reg-
ister to 0x0000.

Programming Model
Several synchronization and control methods are available for use in devel-
opment of software tasks which manage peripheral DMA and memory
DMA (see also “Memory DMA” on page 7-13). Such software needs to be
able to accept requests for new DMA transfers from other software tasks,
integrate these transfers into existing transfer queues, and reliably notify
other tasks when the transfers are complete.

In the processor, it is possible for each peripheral DMA and memory
DMA stream to be managed by a separate task or to be managed together
with any other stream. Each DMA channel has independent, orthogonal
control registers, resources, and interrupts, so that the selection of the
control scheme for one channel does not affect the choice of control
scheme on other channels. For example, one peripheral can use a
linked-descriptor-list, interrupt-driven scheme while another peripheral
can simultaneously use a demand-driven, buffer-at-a-time scheme syn-
chronized by polling of the DMAx_IRQ_STATUS register.

ADSP-BF54x Blackfin Processor Hardware Reference 7-61

Direct Memory Access

Synchronization of Software and DMA
A critical element of software DMA management is synchronization of
DMA buffer completion with the software. This can best be done using
interrupts, polling of DMAx_IRQ_STATUS, or a combination of both. Polling
for address or count can only provide synchronization within loose toler-
ances comparable to pipeline lengths.

Interrupt-based synchronization methods must avoid interrupt overrun,
or the failure to invoke a DMA channel’s interrupt handler for every inter-
rupt event due to excessive latency in processing of interrupts. Generally,
the system design must either ensure that only one interrupt per channel is
scheduled (for example, at the end of a descriptor list), or that interrupts
are spaced sufficiently far apart in time that system processing budgets can
guarantee every interrupt is serviced. Note, since every interrupt channel
has its own distinct interrupt, interaction among the interrupts of differ-
ent peripherals is much simpler to manage.

Polling of the DMAx_CURR_ADDR, DMAx_CURR_DESC_PTR, or
DMAx_CURR_X_COUNT/DMAx_CURR_Y_COUNT registers is not recommended as a
method of precisely synchronizing DMA with data processing, due to
DMA FIFOs and DMA/memory pipelining. The current address, pointer,
and count registers change several cycles in advance of the completion of
the corresponding memory operation, as measured by the time at which
the results of the operation are first visible to the core by memory read or
write instructions. For example, in a DMA memory write operation to
external memory, assume a DMA write by channel A is initiated that
causes the DDR SDRAM to perform a page open operation which takes
many system clock cycles. The DMA engine may then move on to another
DMA operation by channel B which does not in itself incur latency, but is
stalled behind the slow operation by channel A. Software monitoring
channel B could not safely conclude whether the memory location pointed
to by channel B’s DMAx_CURR_ADDR has or has not been written, based on
examination of the DMAx_CURR_ADDR register contents.

Programming Model

7-62 ADSP-BF54x Blackfin Processor Hardware Reference

Polling of the current address, pointer, and count registers can permit
loose synchronization of DMA with software, however, if allowances are
made for the lengths of the DMA/memory pipeline. The length of the
DMA FIFO for a peripheral DMA channel is four locations (either four 8-
or 16-bit data elements, or two 32-bit data elements) and the length for an
MDMA FIFO is eight locations (four 32-bit data elements). The DMA
does not advance current address/pointer/count registers if these FIFOs
are filled with incomplete work (including reads that have been started but
not yet finished).

Additionally, the length of the combined DMA and L1 pipelines to inter-
nal memory is approximately six 8- or 16-bit data elements. The length of
the DMA and external bus interface unit (EBIU) pipelines is approxi-
mately three data elements, when measured from the point where a DMA
register update is visible to an MMR read to the point where DMA and
core accesses to memory become strictly ordered. If the DMA FIFO
length and the DMA/memory pipeline length are added, an estimate can
be made of the maximum number of incomplete memory operations in
progress at one time. (Note this is a maximum, as the DMA/memory
pipeline may include traffic from other DMA channels.)

For example, assume a peripheral DMA channel is transferring a work
unit of 100 data elements into internal memory and its
DMAx_CURR_X_COUNT register reads a value of 60 remaining elements, so
that processing of the first 40 elements has at least been started. The total
pipeline length is no greater than the sum of 4 (for the peripheral DMA
FIFO) plus 6 (for the DMA/memory pipeline), or 10 data elements, so it
is safe to conclude that the DMA transfer of the first 40-10 = 30 data ele-
ments is complete.

For precise synchronization, software should either wait for an interrupt
or consult the channel’s DMAx_IRQ_STATUS register to confirm completion
of DMA, rather than polling current address/pointer/count registers.
When the DMA system issues an interrupt or changes an
DMAx_IRQ_STATUS bit, it guarantees that the last memory operation of the

ADSP-BF54x Blackfin Processor Hardware Reference 7-63

Direct Memory Access

work unit is complete and is visible to DSP code. For memory read DMA,
the final memory read data will have been safely received in the DMA’s
FIFO; for memory write DMA, the DMA unit will have received an
acknowledge from L1 or memory other than L1 or the EBIU that the data
is written.

The following examples show methods of synchronizing software with
several different styles of DMA.

Single-Buffer DMA Transfers

Synchronization is simple if a peripheral’s DMA activity consists of iso-
lated transfers of single buffers. DMA activity is initiated by software
writes to the channel’s control registers. The user may choose to use a sin-
gle descriptor in memory, in which case the software only needs to write
the DMAx_CONFIG and the DMAx_NEXT_DESC_PTR registers. Alternatively, the
user may choose to write all the MMR registers directly from software,
ending with the write to the DMAx_CONFIG register.

The simplest way to signal completion of DMA is by an interrupt. This is
selected by the DI_EN bit in the DMAx_CONFIG register, and by the necessary
setup of the system interrupt controller. If it is desirable not to use an
interrupt, the software can poll for completion by reading the
DMAx_IRQ_STATUS register and testing the DMA_RUN bit. If this bit is zero,
the buffer transfer has completed.

Programming Model

7-64 ADSP-BF54x Blackfin Processor Hardware Reference

Continuous Transfers Using Autobuffering

If a peripheral’s DMA data consists of a steady, periodic stream of signal
data, DMA autobuffering (FLOW = 1) may be an effective option. Here,
DMA is transferred from or to a memory buffer with a circular addressing
scheme, using either one- or two-dimensional indexing with zero proces-
sor and DMA overhead for looping. Synchronization options include:

• 1D, interrupt-driven—software is interrupted at the conclusion of
each buffer. The critical design consideration is that the software
must deal with the first items in the buffer before the next DMA
transfer, which might overwrite or re-read the first buffer location
before it is processed by software. This scheme may be workable if
the system design guarantees that the data repeat period is longer
than the interrupt latency under all circumstances.

• 2D, interrupt-driven (double buffering)—the DMA buffer is parti-
tioned into two or more sub-buffers, and interrupts are selected
(set DI_SEL = 1 in DMAx_CONFIG) to signal at the completion of each
DMA inner loop. In this way, a traditional double buffer or
“ping-pong” scheme could be implemented.

For example, two 512-word sub-buffers inside a 1K word buffer
could be used to receive 16-bit peripheral data with these settings:

DMAx_START_ADDR = buffer base address
DMAx_CONFIG = 0x10D7 (FLOW = 1, DI_EN = 1, DI_SEL = 1,
DMA2D = 1, WDSIZE = 01, WNR = 1, DMAEN = 1)
DMAx_X_COUNT = 512
DMAx_X_MODIFY = 2 for 16-bit data
DMAx_Y_COUNT = 2 for two sub-buffers
DMAx_Y_MODIFY = 2, same as DMAx_X_MODIFY for contiguous
sub-buffers

• 2D, polled—if interrupt overhead is unacceptable but the loose
synchronization of address/count register polling is acceptable, a
2D multibuffer synchronization scheme may be used. For example,

ADSP-BF54x Blackfin Processor Hardware Reference 7-65

Direct Memory Access

assume receive data needs to be processed in packets of sixteen
32-bit elements. A four-part 2D DMA buffer can be allocated
where each of the four sub-buffers can hold one packet with these
settings:

DMAx_START_ADDR = buffer base address
DMAx_CONFIG = 0x101B (FLOW = 1, DI_EN = 0, DMA2D = 1,
WDSIZE = 10, WNR = 1, DMAEN = 1)
DMAx_X_COUNT = 16
DMAx_X_MODIFY = 4 for 32-bit data
DMAx_Y_COUNT = 4 for four sub-buffers
DMAx_Y_MODIFY = 4, same as DMAx_X_MODIFY for contiguous
sub-buffers

• The synchronization core might read DMAx_Y_COUNT to determine
which sub-buffer is currently being transferred, and then allow one
full sub-buffer to account for pipelining. For example, if a read of
DMAx_Y_COUNT shows a value of 3, then the software should assume
that sub-buffer 3 is being transferred, but some portion of sub-buf-
fer 2 may not yet be received. The software could, however, safely
proceed with processing sub-buffers 1 or 0.

• 1D unsynchronized FIFO—if a system’s design guarantees that
the processing of a peripheral’s data and the DMA rate of the data
will remain correlated in the steady state, but that short-term
latency variations must be tolerated, it may be appropriate to build
a simple FIFO. Here, the DMA channel may be programmed using
1D autobuffer mode addressing without any interrupts or polling.

Descriptor Structures

DMA descriptors may be used to transfer data to or from memory data
structures that are not simple 1D or 2D arrays. For example, if a packet
of data is to be transmitted from several different locations in memory (a
header from one location, a payload from a list of several blocks of mem-
ory managed by a memory pool allocator, and a small trailer containing a

Programming Model

7-66 ADSP-BF54x Blackfin Processor Hardware Reference

checksum), a separate DMA descriptor can be prepared for each memory
area, and the descriptors can be grouped in either an array or list as desired
by selecting the appropriate FLOW setting in DMAx_CONFIG.

The software can synchronize with the progress of the structure’s transfer
by selecting interrupt notification for one or more of the descriptors. For
example, the software might select interrupt notification for the header’s
descriptor and for the trailer’s descriptor, but not for the payload blocks’
descriptors.

It is important to remember the meaning of the various fields in the
DMAx_CONFIG descriptor elements when building a list or array of DMA
descriptors. In particular:

• The lower byte of DMAx_CONFIG specifies the DMA transfer to be
performed by the current descriptor (for example, interrupt-enable,
2D mode).

• The upper byte of DMAx_CONFIG specifies the format of the next
descriptor in the chain. The NDSIZE and FLOW fields in a given
descriptor do not correspond to the format of the descriptor itself;
they specify the link to the next descriptor, if any.

On the other hand, when the DMA unit is restarted, both bytes of the
DMAx_CONFIG value written to the DMA channel’s DMAx_CONFIG register
should correspond to the current descriptor.

At a minimum, the FLOW, NDSIZE, WNR, and DMAEN fields must all agree with
the current descriptor; the WDSIZE, DI_EN, DI_SEL, SYNC, and DMA2D fields
are taken from the DMAx_CONFIG value in the descriptor read from memory
(and the field values initially written to the register are ignored). See “Ini-
tializing Descriptors in Memory” on page 7-126 in the “Programming
Examples” section for information on how descriptors can be set up.

ADSP-BF54x Blackfin Processor Hardware Reference 7-67

Direct Memory Access

Descriptor Queue Management

A system designer might want to write a DMA manager facility which
accepts DMA requests from other software. The DMA manager software
does not know in advance when new work requests are received or what
these requests might contain. The software could manage these transfers
using a circular linked list of DMA descriptors, where each descriptor’s
NDPH and NDPL members point to the next descriptor, and the last descrip-
tor points to the first.

The code that writes into this descriptor list could use the processor’s cir-
cular addressing modes (Ix, Lx, Mx, and Bx registers), so that it does not
need to use comparison and conditional instructions to manage the circu-
lar structure. In this case, the NDPH and NDPL members of each descriptor
could even be written once at startup, and skipped over as each descrip-
tor’s new contents are written.

The recommended method for synchronization of a descriptor queue is
through the use of an interrupt. The descriptor queue is structured so that
at least the final valid descriptor is always programmed to generate an
interrupt.

There are two general methods for managing a descriptor queue using
interrupts:

• Interrupt on every descriptor

• Interrupt minimally only on the last descriptor

Descriptor Queue Using Interrupts on Every Descriptor

In this system, the DMA manager software synchronizes with the DMA
unit by enabling an interrupt on every descriptor. This method should
only be used if system design can guarantee that each interrupt event is
serviced separately (no interrupt overrun).

Programming Model

7-68 ADSP-BF54x Blackfin Processor Hardware Reference

To maintain synchronization of the descriptor queue, the non-interrupt
software maintains a count of descriptors added to the queue, while the
interrupt handler maintains a count of completed descriptors removed
from the queue. The counts are equal only when the DMA channel is
paused after having processed all the descriptors.

When each new work request is received, the DMA manager software ini-
tializes a new descriptor, taking care to write a DMAx_CONFIG value with a
FLOW value of 0. Next, the software compares the descriptor counts to
determine if the DMA channel is running or not. If the DMA channel is
paused (counts equal), the software increments its count and then starts
the DMA unit by writing the new descriptor’s DMAx_CONFIG value to the
DMA channel’s DMAx_CONFIG register.

If the counts are unequal, the software instead modifies the next-to-last
descriptor’s DMAx_CONFIG value so that its upper half (FLOW and NDSIZE)
now describes the newly-queued descriptor. This operation does not dis-
rupt the DMA channel, provided the rest of the descriptor data structure
is initialized in advance. It is necessary, however, to synchronize the soft-
ware to the DMA to correctly determine whether the new or the old
DMAx_CONFIG value was read by the DMA channel.

This synchronization operation should be performed in the interrupt
handler. First, upon interrupt, the handler should read the channel’s
DMAx_IRQ_STATUS register. If the DMA_RUN status bit is set, then the channel
has moved on to processing another descriptor, and the interrupt handler
may increment its count and exit. If the DMA_RUN status bit is not set, how-
ever, then the channel has paused, either because there are no more
descriptors to process, or because the last descriptor was queued too late
(that is, the modification of the next-to-last descriptor’s DMAx_CONFIG ele-
ment occurred after that element was read into the DMA unit.) In this
case, the interrupt handler writes the DMAx_CONFIG value appropriate for
the last descriptor to the DMA channel’s DMAx_CONFIG register, increment
the completed descriptor count, and exit.

ADSP-BF54x Blackfin Processor Hardware Reference 7-69

Direct Memory Access

Again, this system can fail if the system’s interrupt latencies are large
enough to cause any of the channel’s DMA interrupts to be dropped. An
interrupt handler capable of safely synchronizing multiple descriptors’
interrupts needs to be complex, performing several MMR accesses to
ensure robust operation. In such a system environment, a minimal inter-
rupt synchronization method is preferred.

Descriptor Queue Using Minimal Interrupts

In this system, only one DMA interrupt event is possible in the queue at
any time. The DMA interrupt handler for this system can also be
extremely short. Here, the descriptor queue is organized into an “active”
and a “waiting” portion, where interrupts are enabled only on the last
descriptor in each portion.

When each new DMA request is processed, the software’s non-interrupt
code fills in a new descriptor’s contents and adds it to the waiting portion
of the queue. The descriptor’s DMAx_CONFIG word should have a FLOW value
of zero. If more than one request is received before the DMA queue com-
pletion interrupt occurs, the non-interrupt code queues later descriptors,
forming a waiting portion of the queue that is disconnected from the
active portion of the queue being processed by the DMA unit. In other
words, all but the last active descriptors contain FLOW values >= 4 and have
no interrupt enable set, while the last active descriptor contains a FLOW of 0
and an interrupt enable bit DI_EN set to 1. Also, all but the last waiting
descriptors contain FLOW values >= 4 and no interrupt enables set, while
the last waiting descriptor contains a FLOW of 0 and an interrupt enable bit
DI_EN set to 1. This ensures that the DMA unit can automatically process
the whole active queue and then issue one interrupt. Also, this arrange-
ment makes it easy to start the waiting queue within the interrupt handler
by a single DMAx_CONFIG register write.

Programming Model

7-70 ADSP-BF54x Blackfin Processor Hardware Reference

After queuing a new waiting descriptor, the non-interrupt software leaves
a message for its interrupt handler in a memory mailbox location contain-
ing the desired DMAx_CONFIG value to use to start the first waiting
descriptor in the waiting queue (or 0 to indicate no descriptors are
waiting).

It is critical that the software not modify the contents of the active
descriptor queue directly, once processing by the DMA unit is started,
unless careful synchronization measures are taken. In the most straightfor-
ward implementation of a descriptor queue, the DMA manager software
never modifies descriptors on the active queue; instead, the DMA manager
waits until the DMA queue completion interrupt indicates the processing
of the entire active queue is complete.

When a DMA queue completion interrupt is received, the interrupt han-
dler reads the mailbox from the non-interrupt software and writes the
value in it to the DMA channel’s DMAx_CONFIG register. This single register
write restarts the queue, effectively transforming the waiting queue to an
active queue. The interrupt handler then passes a message back to the
non-interrupt software indicating the location of the last descriptor
accepted into the active queue. If, on the other hand, the interrupt han-
dler reads its mailbox and finds a DMAx_CONFIG value of zero, indicating
there is no more work to perform, then it passes an appropriate message
(for example, zero) back to the non-interrupt software indicating that the
queue has stopped. This simple handler can coded in a very small number
of instructions.

The non-interrupt software which accepts new DMA work requests needs
to synchronize the activation of new work with the interrupt handler. If
the queue has stopped (that is, if the mailbox from the interrupt software
is zero), the non-interrupt software is responsible for starting the queue
(writing the first descriptor’s DMAx_CONFIG value to the channel’s
DMAx_CONFIG register).

ADSP-BF54x Blackfin Processor Hardware Reference 7-71

Direct Memory Access

If the queue is not stopped, however, the non-interrupt software must not
write the DMAx_CONFIG register (which would cause a DMA error), but
instead it should queue the descriptor onto the waiting queue and update
its mailbox directed to the interrupt handler.

Software-Triggered Descriptor Fetches

If a DMA is stopped in FLOW = 0 mode, the DMA_RUN bit in the
DMAx_IRQ_STATUS register remains set until the content of the internal
DMA FIFOs is completely processed. Once the DMA_RUN bit clears, it is
safe to restart the DMA by simply writing again to the DMAx_CONFIG regis-
ter. The DMA sequence is repeated with the previous settings.

Similarly, a descriptor-based DMA sequence that is stopped temporarily
with a FLOW = 0 descriptor can be continued with a new write to the con-
figuration register. When the DMA controller detects the FLOW = 0
condition by loading the DMACFG field from memory, it has already
updated the next descriptor pointer, regardless of whether operating in
descriptor array mode or descriptor list mode.

The next descriptor pointer remains valid, if the DMA halts and is
restarted. As soon as the DMA_RUN bit clears, software can restart the DMA
and force the DMA controller to fetch the next descriptor. To accomplish
this, the software writes a value with the DMAEN bit set and with proper val-
ues in the FLOW and NDSIZE fields into the configuration register. The next
descriptor is fetched if FLOW equals 0x4, 0x6, or 0x7. In this mode of oper-
ation, the NDSIZE field should at least span up to the DMACFG field to
overwrite the configuration register immediately.

One possible procedure is:

1. Write to DMAx_NEXT_DESC_PTR register.

2. Write to DMAx_CONFIG register with

Programming Model

7-72 ADSP-BF54x Blackfin Processor Hardware Reference

FLOW = 0x8
NDSIZE >= 0xA
DI_EN = 0
DMAEN = 1.

3. Automatically fetched DMACFG register has
FLOW = 0x0
NDSIZE = 0x0
SYNC = 1 (for transmitting DMAs only)
DI_EN = 1
DMAEN = 1.

4. In the interrupt routine, repeat step 2. The DMAx_NEXT_DESC_PTR
register is updated by the descriptor fetch.

 To avoid polling of the DMA_RUN bit, set the SYNC bit in case of
memory read DMAs (DMA transmit or MDMA source).

If all DMACFG fields in a descriptor chain have the FLOW and NDSIZE fields set
to zero, the individual DMA sequences do not start until triggered by soft-
ware. This is useful when the DMAs need to be synchronized with other
events in the system, and it is typically performed by interrupt service rou-
tines. A single MMR write is required to trigger the next DMA sequence.

Especially when applied to MDMA channels, such scenarios play an
important role. Usually, the timing of MDMAs cannot be controlled (See
“Handshaked Memory DMA Operation” on page 7-45). By halting
descriptor chains or rings this way, the whole DMA transaction can be
broken into pieces that are individually triggered by software.

 Source and destination channels of a MDMA may differ in descrip-
tor structure. However, the total work count must match when the
DMA stops. Whenever a MDMA is stopped, destination and
source channels should both provide the same FLOW = 0 mode after
exactly the same number of words. Accordingly, both channels
need to be started afterward.

ADSP-BF54x Blackfin Processor Hardware Reference 7-73

Direct Memory Access

Software-triggered descriptor fetches are illustrated in Listing 7-7 on
page 7-129. MDMA channels can be paused by software at any time by
writing a 0 to the DRQ bit field in the HMDMAx_CONTROL register. This simply
disables the self-generated DMA requests, regardless whether HMDMA is
enabled or not.

DMA Registers
This section describes three categories of DMA registers:

• “DMA Channel Registers” on page 7-73

• “Handshake MDMA (HMDMA) Registers” on page 7-111

• “DMA Traffic Control Registers” on page 7-118

DMA Channel Registers
The processor features 24 peripheral DMA channels and four channel
pairs for memory DMA. All channels have an identical set of registers
summarized in Table 7-5 on page 7-74.

Table 7-5 on page 7-74 lists the generic names of the DMA registers. For
each register, the table also shows the MMR offset, a brief description of
the register, and the register category.

DMA Registers

7-74 ADSP-BF54x Blackfin Processor Hardware Reference

Table 7-5. Generic Names of the DMA Memory-Mapped
Registers

MM
R
Offse
t

MMR Name MMR Description

0x00 DMAx_NEXT_DESC_PTR
MDMA_yy_NEXT_DESC_PTR

“Next Descriptor Pointer
(DMAx_NEXT_DESC_PTR and
MDMA_yy_NEXT_DESC_PTR) Registers” on
page 7-106

0x04 DMAx_START_ADDR
MDMA_yy_START_ADDR

“Start Address (DMAx_START_ADDR and
MDMA_yy_START_ADDR) Registers” on page 7-88

0x08 DMAx_CONFIG
MDMA_yy_CONFIG

“DMA Configuration (DMAx_CONFIG and
MDMA_yy_CONFIG) Registers” on page 7-79

0x0C Reserved Reserved

0x10 DMAx_X_COUNT
MDMA_yy_X_COUNT

“Inner Loop Count (DMAx_X_COUNT and
MDMA_yy_X_COUNT) Registers” on page 7-92

0x14 DMAx_X_MODIFY
MDMA_yy_X_MODIFY

“Inner Loop Address Increment (DMAx_X_MODIFY
and MDMA_yy_X_MODIFY) Registers” on
page 7-97

0x18 DMAx_Y_COUNT
MDMA_yy_Y_COUNT

“Outer Loop Count (DMAx_Y_COUNT and
MDMA_yy_Y_COUNT) Registers” on page 7-99

0x1C DMAx_Y_MODIFY
MDMA_yy_Y_MODIFY

“Outer Loop Address Increment (DMAx_Y_MODIFY
and MDMA_yy_Y_MODIFY) Registers” on
page 7-103

0x20 DMAx_CURR_DESC_PTR
MDMA_yy_CURR_DESC_PTR

“Current Descriptor Pointer
(DMAx_CURR_DESC_PTR and
MDMA_yy_CURR_DESC_PTR) Registers” on
page 7-108

0x24 DMAx_CURR_ADDR
MDMA_yy_CURR_ADDR

“Current Address (DMAx_CURR_ADDR and
MDMA_yy_CURR_ADDR) Registers” on page 7-90

0x28 DMAx_IRQ_STATUS
MDMA_yy_IRQ_STATUS

“Interrupt Status (DMAx_IRQ_STATUS and
MDMA_yy_IRQ_STATUS) Registers” on page 7-84

0x2C DMAx_PERIPHERAL_MAP
MDMA_yy_PERIPHERAL_MA
P

“Peripheral Map (DMAx_PERIPHERAL_MAP and
MDMA_yy_PERIPHERAL_MAP) Registers” on
page 7-77

ADSP-BF54x Blackfin Processor Hardware Reference 7-75

Direct Memory Access

Channel-specific register names are shown in Table 7-5. For peripheral
DMA channels, the prefix “DMAx_” is used where “x” stands for a channel
number between 0 and 23. For memory DMA channels, the prefix is
“MDMA_yy_”, where “yy” stands for “D0”, “D1”, “D2”, “D3”, “S0”, “S1”,
“S2” or “S3”, and indicates the destination and source channel registers of
MDMA0 through MDMA3. For example, the configuration register of
peripheral DMA channel 6 is called DMA6_CONFIG, and the register for
MDMA1 source channel is called MDMA_S1_CONFIG.

 The generic MMR names shown in Table 7-5 on page 7-74 are not
actually mapped to resources in the processor.

For convenience, discussions in this chapter use generic
(non-peripheral specific) DMA and memory DMA register names.

0x30 DMAx_CURR_X_COUNT
MDMA_yy_CURR_X_COUNT

“Current Inner Loop Count
(DMAx_CURR_X_COUNT and
MDMA_yy_CURR_X_COUNT) Registers” on
page 7-94

0x34 Reserved Reserved

0x38 DMAx_CURR_Y_COUNT
MDMA_yy_CURR_Y_COUNT

“Current Outer Loop Count
(DMAx_CURR_Y_COUNT and
MDMA_yy_CURR_Y_COUNT) Registers” on
page 7-101

0x3C Reserved Reserved

Table 7-5. Generic Names of the DMA Memory-Mapped
Registers (Cont’d)

MM
R
Offse
t

MMR Name MMR Description

DMA Registers

7-76 ADSP-BF54x Blackfin Processor Hardware Reference

DMA channel registers fall into three categories:

• Parameter registers, such as DMAx_CONFIG and DMAx_X_COUNT that
can be loaded directly from descriptor elements; descriptor ele-
ments are listed in Table 7-5 on page 7-74.

• Current registers, such as DMAx_CURR_ADDR and DMAx_CURR_X_COUNT

• Control/status registers, such as DMAx_IRQ_STATUS and
DMAx_PERIPHERAL_MAP

All DMA registers can be accessed as 16-bit entities. The following
registers, however, may also be accessed as 32-bit registers:

DMAx_NEXT_DESC_PTR

DMAx_START_ADDR

DMAx_CURR_DESC_PTR

DMAx_CURR_ADDR

 When these four registers are accessed as 16-bit entities, only the
lower 16 bits can be accessed.

Because confusion might arise between descriptor element names and
generic DMA register names, this chapter uses different naming conven-
tions for physical registers and their corresponding elements in descriptors
that reside in memory. Table 7-5 on page 7-74 shows the relation.

ADSP-BF54x Blackfin Processor Hardware Reference 7-77

Direct Memory Access

Peripheral Map (DMAx_PERIPHERAL_MAP and
MDMA_yy_PERIPHERAL_MAP) Registers

Each DMA channel’s peripheral map registers and addresses
(DMAx_PERIPHERAL_MAP and MDMA_yy_PERIPHERAL_MAP, shown in
Figure 7-7 and Table 7-6) contain bits that:

• Map the channel to a specific peripheral

• Identify whether the channel is a peripheral DMA channel or a
memory DMA channel

Follow these steps to swap the DMA channel priorities of two channels.
Assume that channels 6 and 7 are involved.

1. Ensure that DMA is disabled on channels 6 and 7.

2. Write DMA6_PERIPHERAL_MAP with 0x7000 and
DMA7_PERIPHERAL_MAP with 0x6000.

3. Enable DMA on channels 6 and/or 7.

Figure 7-7. Peripheral Map Registers

see Table 7-1

Peripheral Map Registers (DMAx_PERIPHERAL_MAP/MDMA_yy_PERIPHERAL_MAP)

PMAP[3:0] (Peripheral
Mapped to this
Channel.

CTYPE (DMA Channel Type)
- RO
0 - Peripheral DMA
1 - Memory DMA

R/W prior to enabling channel; RO after enabling channel

For memory-
mapped
addresses, see
Table 7-6.

Reset: See Table 7-6
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

DMA Registers

7-78 ADSP-BF54x Blackfin Processor Hardware Reference

Table 7-6. Peripheral Map Register Addresses and Reset Values

Register Name Memory-Mapped Address Reset Value

DMA0_PERIPHERAL_MAP 0xFFC0 0C2C 0x0000
(SPORT0 Rx)

DMA1_PERIPHERAL_MAP 0xFFC0 0C6C 0x1000

DMA2_PERIPHERAL_MAP 0xFFC0 0CAC 0x2000

DMA3_PERIPHERAL_MAP 0xFFC0 0CEC 0x3000

DMA4_PERIPHERAL_MAP 0xFFC0 0D2C 0x4000

DMA5_PERIPHERAL_MAP 0xFFC0 0D6C 0x5000

DMA6_PERIPHERAL_MAP 0xFFC0 0DAC 0x6000

DMA7_PERIPHERAL_MAP 0xFFC0 0DEC 0x7000

DMA8_PERIPHERAL_MAP 0xFFC0 0E2C 0x8000

DMA9_PERIPHERAL_MAP 0xFFC0 0E6C 0x9000

DMA10_PERIPHERAL_MAP 0xFFC0 0EAC 0xA000

DMA11_PERIPHERAL_MAP 0xFFC0 0EEC 0xB000

DMA12_PERIPHERAL_MAP 0xFFC0 1C2C 0x0000

DMA13_PERIPHERAL_MAP 0xFFC0 1C6C 0x1000

DMA14_PERIPHERAL_MAP 0xFFC0 1CAC 0x2000

DMA15_PERIPHERAL_MAP 0xFFC0 1CEC 0x3000

DMA16_PERIPHERAL_MAP 0xFFC0 1D2C 0x4000

DMA17_PERIPHERAL_MAP 0xFFC0 1D6C 0x5000

DMA18_PERIPHERAL_MAP 0xFFC0 1DAC 0x6000

DMA19_PERIPHERAL_MAP 0xFFC0 1DEC 0x7000

DMA20_PERIPHERAL_MAP 0xFFC0 1E2C 0x8000

DMA21_PERIPHERAL_MAP 0xFFC0 1E6C 0x9000

DMA22_PERIPHERAL_MAP 0xFFC0 1EAC 0xA000

DMA23_PERIPHERAL_MAP 0xFFC0 1EEC 0xB000

MDMA_D0_PERIPHERAL_MAP 0xFFC0 0F2C 0x0040

ADSP-BF54x Blackfin Processor Hardware Reference 7-79

Direct Memory Access

Table 7-1 on page 7-10 lists the peripheral map settings for each
DMA-capable peripheral.

DMA Configuration (DMAx_CONFIG
and MDMA_yy_CONFIG) Registers

The DMA configuration registers and addresses (DMAx_CONFIG and
MDMA_yy_CONFIG), shown in Figure 7-8 and Table 7-7, set up DMA
parameters and operating modes. Note that writing the DMAx_CONFIG regis-
ter while DMA is already running causes a DMA error unless writing with
the DMAEN bit set to 0.

MDMA_S0_PERIPHERAL_MAP 0xFFC0 0F6C 0x0040

MDMA_D1_PERIPHERAL_MAP 0xFFC0 0FAC 0x0040

MDMA_S1_PERIPHERAL_MAP 0xFFC0 0FEC 0x0040

MDMA_D2_PERIPHERAL_MAP 0xFFC0 1F2C 0x0040

MDMA_S2_PERIPHERAL_MAP 0xFFC0 1F6C 0x0040

MDMA_D3_PERIPHERAL_MAP 0xFFC0 1FAC 0x0040

MDMA_S3_PERIPHERAL_MAP 0xFFC0 1FEC 0x0040

Table 7-6. Peripheral Map Register Addresses and Reset Values (Cont’d)

Register Name Memory-Mapped Address Reset Value

DMA Registers

7-80 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 7-8. DMA Configuration Registers

Table 7-7. DMA Configuration Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DMA0_CONFIG 0xFFC0 0C08

DMA1_CONFIG 0xFFC0 0C48

DMA2_CONFIG 0xFFC0 0C88

DMA3_CONFIG 0xFFC0 0CC8

DMA4_CONFIG 0xFFC0 0D08

DMA5_CONFIG 0xFFC0 0D48

DMA6_CONFIG 0xFFC0 0D88

DI_EN (Data Interrupt Enable)
0 - Do not allow completion of

work unit to generate an
interrupt

1 - Allow completion of work unit
to generate a data interrupt

0x0 - Stop
0x1 - Autobuffer mode
0x4 - Descriptor array
0x6 - Descriptor list (small model)
0x7 - Descriptor list (large model)

Configuration Registers (DMAx_CONFIG/MDMA_yy_CONFIG)

NDSIZE[3:0] (Flex Descriptor Size)
Size of next descriptor
0000 - Required if in stop or autobuffer mode
0001 - 1001 - Descriptor size
1010 - 1111 - Reserved

FLOW[2:0] (Next
Operation)

DMAEN (DMA
Channel Enable)
0 - Disable DMA channel
1 - Enable DMA channel
WNR (DMA Direction)
0 - DMA is a memory read

(source) operation
1 - DMA is a memory write

(destination) operation

WDSIZE[1:0] (Transfer
Word Size)
00 - 8-bit transfers
01 - 16-bit transfers
10 - 32-bit transfers
11 - Reserved
DMA2D (DMA Mode)
0 - Linear (one-dimensional)
1 - Two-dimensional (2D)

Reset = 0x0000

DI_SEL (Data Interrupt Timing Select)
Applies only when DMA2D = 1
0 - Interrupt after completing

whole buffer (outer loop)
1 - Interrupt after completing

each row (inner loop)

R/W prior to enabling channel; RO after enabling channel

SYNC (Work Unit
Transitions)

0 - Continuous transition
1 - Synchronized transition

For memory-
mapped
addresses,
see Table 7-7.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADSP-BF54x Blackfin Processor Hardware Reference 7-81

Direct Memory Access

DMA7_CONFIG 0xFFC0 0DC8

DMA8_CONFIG 0xFFC0 0E08

DMA9_CONFIG 0xFFC0 0E48

DMA10_CONFIG 0xFFC0 0E88

DMA11_CONFIG 0xFFC0 0EC8

DMA12_CONFIG 0xFFC0 1C08

DMA13_CONFIG 0xFFC0 1C48

DMA14_CONFIG 0xFFC0 1C88

DMA15_CONFIG 0xFFC0 1CC8

DMA16_CONFIG 0xFFC0 1D08

DMA17_CONFIG 0xFFC0 1D48

DMA18_CONFIG 0xFFC0 1D88

DMA19_CONFIG 0xFFC0 1DC8

DMA20_CONFIG 0xFFC0 1E08

DMA21_CONFIG 0xFFC0 1E48

DMA22_CONFIG 0xFFC0 1E88

DMA23_CONFIG 0xFFC0 1EC8

MDMA_D0_CONFIG 0xFFC0 0F08

MDMA_S0_CONFIG 0xFFC0 0F48

MDMA_D1_CONFIG 0xFFC0 0F88

MDMA_S1_CONFIG 0xFFC0 0FC8

MDMA_D2_CONFIG 0xFFC0 1F08

MDMA_S2_CONFIG 0xFFC0 1F48

MDMA_D3_CONFIG 0xFFC0 1F88

MDMA_S3_CONFIG 0xFFC0 1FC8

Table 7-7. DMA Configuration Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DMA Registers

7-82 ADSP-BF54x Blackfin Processor Hardware Reference

The fields of the DMAx_CONFIG register are used to set up DMA parameters
and operating modes.

• FLOW[2:0] (next operation). This field specifies the type of DMA
transfer to follow the present one. The flow options are:

• 0x0 - stop. When the current work unit completes, the DMA chan-
nel stops automatically, after signaling an interrupt (if selected).
The DMA_RUN status bit in the DMAx_IRQ_STATUS register changes
from 1 to 0, while the DMAEN bit in the DMAx_CONFIG register is
unchanged. In this state, the channel is paused. Peripheral
interrupts are still filtered out by the DMA unit. The channel may
be restarted simply by another write to the DMAx_CONFIG register
specifying the next work unit, in which the DMAEN bit is set to 1.

0x1 - autobuffer mode. In this mode, no descriptors in memory are
used. Instead, DMA is performed in a continuous circular buffer
fashion based on user-programmed DMAx MMR settings. Upon
completion of the work unit, the parameter registers are reloaded
into the current registers, and DMA resumes immediately with
zero overhead. Autobuffer mode is stopped by a user write of 0 to
the DMAEN bit in the DMAx_CONFIG register.

0x4 - descriptor array mode. This mode fetches a descriptor from
memory that does not include the NDPH or NDPL elements. Because
the descriptor does not contain a next descriptor pointer entry, the
DMA engine defaults to using the DMAx_CURR_DESC_PTR register to
step through descriptors, thus allowing a group of descriptors to
follow one another in memory like an array.

0x6 - descriptor list (small model) mode. This mode fetches a
descriptor from memory that includes NDPL, but not NDPH. There-
fore, the high 16 bits of the next descriptor pointer field are taken
from the upper 16 bits of the DMAx_NEXT_DESC_PTR register, thus
confining all descriptors to a specific 64K page in memory.

ADSP-BF54x Blackfin Processor Hardware Reference 7-83

Direct Memory Access

0x7 - descriptor list (large model) mode. This mode fetches a
descriptor from memory that includes NDPH and NDPL, thus allowing
maximum flexibility in locating descriptors in memory.

• NDSIZE[3:0] (flex descriptor size). This field specifies the number
of descriptor elements in memory to load. This field must be 0 if in
stop or autobuffer mode. If NDSIZE and FLOW specify a descriptor
that extends beyond YMOD, a DMA error results.

• DI_EN (data interrupt enable). This bit specifies whether to allow
completion of a work unit to generate a data interrupt.

• DI_SEL (data interrupt timing select). This bit specifies the timing
of a data interrupt—after completing the whole buffer or after
completing each row of the inner loop. This bit is used only in 2D
DMA operation.

• SYNC (work unit transitions). This bit specifies whether the DMA
channel performs a continuous transition (SYNC = 0) or a synchro-
nized transition (SYNC = 1) between work units. For more
information, see “Work Unit Transitions” on page 7-32.

In DMA transmit (memory read) and MDMA source channels, the
SYNC bit controls the interrupt timing at the end of the work unit
and the handling of the DMA FIFO between the current and next
work unit.

 Work unit transitions for MDMA streams are controlled by SYNC
bit of the MDMA source channel’s DMAx_CONFIG register. The SYNC
bit of the MDMA destination channel is reserved and must be 0.

• DMA2D (DMA mode). This bit specifies whether DMA mode
involves only DMAx_X_COUNT and DMAx_X_MODIFY (one-dimen-
sional DMA) or also involves DMAx_Y_COUNT and
DMAx_Y_MODIFY (two-dimensional DMA).

DMA Registers

7-84 ADSP-BF54x Blackfin Processor Hardware Reference

• WDSIZE[1:0] (transfer word size). The DMA engine supports trans-
fers of 8-, 16-, or 32-bit items. Each request/grant results in a
single memory access (although two cycles are required to transfer
32-bit data through a 16-bit memory port or through the 16-bit
DMA access bus). The DMA address pointer registers’ increment
sizes (strides) must be a multiple of the transfer unit size—1 for
8-bit, 2 for 16-bit, 4 for 32-bit.

• WNR (DMA direction). This bit specifies DMA direction—memory
read (0) or memory write (1).

• DMAEN (DMA channel enable). This bit specifies whether to enable
a given DMA channel.

 When a peripheral DMA channel is enabled, interrupts from the
peripheral denote DMA requests. When a channel is disabled, the
DMA unit ignores the peripheral interrupt and passes it directly to
the interrupt controller. To avoid unexpected results, take care to
enable the DMA channel before enabling the peripheral, and to
disable the peripheral before disabling the DMA channel.

Interrupt Status (DMAx_IRQ_STATUS and
MDMA_yy_IRQ_STATUS) Registers

The interrupt status registers and addresses (and MDMA_yy_IRQ_STATUS),
shown in Figure 7-9 and Table 7-8, contain bits that record whether the
DMA channel:

• Is enabled and operating, enabled but stopped, or disabled

• Is fetching data or a DMA descriptor

• Has detected that a global DMA interrupt or a channel interrupt is
being asserted

• Has logged occurrence of a DMA error

ADSP-BF54x Blackfin Processor Hardware Reference 7-85

Direct Memory Access

Note the DMA_DONE interrupt is asserted when the last memory access (read
or write) has completed.

 For a memory transfer to a peripheral, there may be up to four data
words in the channel’s DMA FIFO when the interrupt occurs. At
this point, it is normal to immediately start the next work unit. If,
however, the application needs to know when the final data item is
actually transferred to the peripheral, the application can test or
poll the DMA_RUN bit. As long as there is undelivered transmit data
in the FIFO, the DMA_RUN bit is 1.

For a memory write DMA channel, the state of the DMA_RUN bit has
no meaning after the last DMA_DONE event is signaled. It does not
indicate the status of the DMA FIFO.

Figure 7-9. Interrupt Status Registers

This bit is set to 1 automatically when
the DMAx_CONFIG register is written.
0 - This DMA channel is disabled, or it

is enabled but paused (FLOW
mode 0)

1 - This DMA channel is enabled and
operating, either transferring data
or fetching a DMA descriptor

Interrupt Status Registers (DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS)

DFETCH (DMA Descriptor
 Fetch) - RO

DMA_RUN (DMA Channel
Running) - RO

DMA_DONE (DMA Comple-
tion Interrupt Status) - W1C
0 - No interrupt is being

asserted for this channel
1 - DMA work unit has

completed, and this DMA
channel’s interrupt is being
asserted

DMA_ERR (DMA Error Inter-
rupt Status) - W1C
0 - No DMA error has

occurred
1 - A DMA error has occurred,

and the global DMA Error
interrupt is being asserted.
After this error occurs,
the contents of the DMA
current registers are
unspecified. Control/
status and parameter
registers are unchanged.

Reset = 0x0000

This bit is set to 1 automatically when
the DMAx_CONFIG register is written
with FLOW modes 4–7.
0 - This DMA channel is disabled, or it

is enabled but stopped (FLOW
mode 0)

1 - This DMA channel is enabled and
presently fetching a DMA descriptor

For memory-
mapped
addresses, see
Table 7-8.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DMA Registers

7-86 ADSP-BF54x Blackfin Processor Hardware Reference

For MDMA transfers where it is not desired to use an interrupt to
notify when the DMA operation has ended, software should poll
the DMA_DONE bit, and not the DMA_RUN bit, to determine when the
transaction has completed.

Table 7-8. Interrupt Status Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

DMA0_IRQ_STATUS 0xFFC0 0C28

DMA1_IRQ_STATUS 0xFFC0 0C68

DMA2_IRQ_STATUS 0xFFC0 0CA8

DMA3_IRQ_STATUS 0xFFC0 0CE8

DMA4_IRQ_STATUS 0xFFC0 0D28

DMA5_IRQ_STATUS 0xFFC0 0D68

DMA6_IRQ_STATUS 0xFFC0 0DA8

DMA7_IRQ_STATUS 0xFFC0 0DE8

DMA8_IRQ_STATUS 0xFFC0 0E28

DMA9_IRQ_STATUS 0xFFC0 0E68

DMA10_IRQ_STATUS 0xFFC0 0EA8

DMA11_IRQ_STATUS 0xFFC0 0EE8

DMA12_IRQ_STATUS 0xFFC0 1C28

DMA13_IRQ_STATUS 0xFFC0 1C68

DMA14_IRQ_STATUS 0xFFC0 1CA8

DMA15_IRQ_STATUS 0xFFC0 1CE8

DMA16_IRQ_STATUS 0xFFC0 1D28

DMA17_IRQ_STATUS 0xFFC0 1D68

DMA18_IRQ_STATUS 0xFFC0 1DA8

DMA19_IRQ_STATUS 0xFFC0 1DE8

DMA20_IRQ_STATUS 0xFFC0 1E28

ADSP-BF54x Blackfin Processor Hardware Reference 7-87

Direct Memory Access

The processor supports a flexible interrupt control structure with three
interrupt sources:

• Data driven interrupts (see Table 7-9)

• Peripheral error interrupts

• DMA error interrupts (for example, bad descriptor or bus error)

Separate interrupt request (IRQ) levels are allocated for data and periph-
eral error interrupts, and DMA error interrupts.

DMA21_IRQ_STATUS 0xFFC0 1E68

DMA22_IRQ_STATUS 0xFFC0 1EA8

DMA23_IRQ_STATUS 0xFFC0 1EE8

MDMA_D0_IRQ_STATUS 0xFFC0 0F28

MDMA_S0_IRQ_STATUS 0xFFC0 0F68

MDMA_D1_IRQ_STATUS 0xFFC0 0FA8

MDMA_S1_IRQ_STATUS 0xFFC0 0FE8

MDMA_D2_IRQ_STATUS 0xFFC0 1F28

MDMA_S2_IRQ_STATUS 0xFFC0 1F68

MDMA_D3_IRQ_STATUS 0xFFC0 1FA8

MDMA_S3_IRQ_STATUS 0xFFC0 1FE8

Table 7-9. Data Driven Interrupts

Interrupt Name Description

No interrupt Interrupts can be disabled for a given work unit.

Peripheral interrupt These are peripheral (non-DMA) interrupts.

Table 7-8. Interrupt Status Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

DMA Registers

7-88 ADSP-BF54x Blackfin Processor Hardware Reference

The DMA error conditions for all DMA channels are OR’ed together into
one system-level DMA error interrupt. The individual IRQ_STATUS words
of each channel can be read to identify the channel that caused the DMA
error interrupt.

 The DMA_DONE and DMA_ERR interrupt indicators are write-1-to-clear
(W1C).

 When switching a peripheral from DMA to non-DMA mode, the
peripheral’s interrupts should be disabled during the mode switch
(through the appropriate peripheral registers or SIC_IMASKx) so
that no unintended interrupt is generated on the shared
DMA/interrupt request line.

Start Address (DMAx_START_ADDR and
MDMA_yy_START_ADDR) Registers

The start address registers and addresses (DMAx_START_ADDR and
MDMA_yy_START_ADDR), shown in Figure 7-10 and Table 7-10, contain the
start address of the data buffer currently targeted for DMA.

Row completion DMA Interrupts can occur on the completion of a row
(CURR_X_COUNT expiration).

Buffer completion DMA Interrupts can occur on the completion of an entire buf-
fer (when CURR_X_COUNT and CURR_Y_COUNT expire).

Table 7-9. Data Driven Interrupts (Cont’d)

Interrupt Name Description

ADSP-BF54x Blackfin Processor Hardware Reference 7-89

Direct Memory Access

Figure 7-10. Start Address Registers

Table 7-10. Start Address Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DMA0_START_ADDR 0xFFC0 0C04

DMA1_START_ADDR 0xFFC0 0C44

DMA2_START_ADDR 0xFFC0 0C84

DMA3_START_ADDR 0xFFC0 0CC4

DMA4_START_ADDR 0xFFC0 0D04

DMA5_START_ADDR 0xFFC0 0D44

DMA6_START_ADDR 0xFFC0 0D84

DMA7_START_ADDR 0xFFC0 0DC4

DMA8_START_ADDR 0xFFC0 0E04

DMA9_START_ADDR 0xFFC0 0E44

DMA10_START_ADDR 0xFFC0 0E84

DMA11_START_ADDR 0xFFC0 0EC4

DMA12_START_ADDR 0xFFC0 1C04

DMA13_START_ADDR 0xFFC0 1C44

DMA14_START_ADDR 0xFFC0 1C84

DMA Start
Address[31:16]

Start Address Registers (DMAx_START_ADDR/ MDMA_yy_START_ADDR)

DMA Start
Address[15:0]

Reset = Undefined

R/W prior to enabling channel; RO after enabling channel

For memory-
mapped
addresses, see
Table 7-10.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X XX

DMA Registers

7-90 ADSP-BF54x Blackfin Processor Hardware Reference

Current Address (DMAx_CURR_ADDR and
MDMA_yy_CURR_ADDR) Registers

The current address registers and addresses (DMAx_CURR_ADDR and
MDMA_yy_CURR_ADDR), shown in Figure 7-11 and Table 7-11, contain the
present DMA transfer address for a given DMA session. On the first mem-
ory transfer of a DMA work unit, the DMAx_CURR_ADDR register is loaded
from the DMAx_START_ADDR register, and it is incremented as each transfer
occurs. The current address register contains 32 bits.

DMA15_START_ADDR 0xFFC0 1CC4

DMA16_START_ADDR 0xFFC0 1D04

DMA17_START_ADDR 0xFFC0 1D44

DMA18_START_ADDR 0xFFC0 1D84

DMA19_START_ADDR 0xFFC0 1DC4

DMA20_START_ADDR 0xFFC0 1E04

DMA21_START_ADDR 0xFFC0 1E44

DMA22_START_ADDR 0xFFC0 1E84

DMA23_START_ADDR 0xFFC0 1EC4

MDMA_D0_START_ADDR 0xFFC0 0F04

MDMA_S0_START_ADDR 0xFFC0 0F44

MDMA_D1_START_ADDR 0xFFC0 0F84

MDMA_S1_START_ADDR 0xFFC0 0FC4

MDMA_D2_START_ADDR 0xFFC0 1F04

MDMA_S2_START_ADDR 0xFFC0 1F44

MDMA_D3_START_ADDR 0xFFC0 1F84

MDMA_S3_START_ADDR 0xFFC0 1FC4

Table 7-10. Start Address Register Memory-Mapped Addresses (Cont’d)

Register Name Memory-Mapped Address

ADSP-BF54x Blackfin Processor Hardware Reference 7-91

Direct Memory Access

Figure 7-11. Current Address Registers

Table 7-11. Current Address Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DMA0_CURR_ADDR 0xFFC0 0C24

DMA1_CURR_ADDR 0xFFC0 0C64

DMA2_CURR_ADDR 0xFFC0 0CA4

DMA3_CURR_ADDR 0xFFC0 0CE4

DMA4_CURR_ADDR 0xFFC0 0D24

DMA5_CURR_ADDR 0xFFC0 0D64

DMA6_CURR_ADDR 0xFFC0 0DA4

DMA7_CURR_ADDR 0xFFC0 0DE4

DMA8_CURR_ADDR 0xFFC0 0E24

DMA9_CURR_ADDR 0xFFC0 0E64

DMA10_CURR_ADDR 0xFFC0 0EA4

DMA11_CURR_ADDR 0xFFC0 0EE4

DMA12_CURR_ADDR 0xFFC0 1C24

DMA13_CURR_ADDR 0xFFC0 1C64

Current Address[31:16]

Current Address Registers (DMAx_CURR_ADDR/MDMA_yy_CURR_ADDR)
R/W prior to enabling channel; RO after enabling channel

Current Address[15:0]

Reset = Undefined

Upper 16 bits of present
DMA transfer address for
a given DMA session

Lower 16 bits of present
DMA transfer address for
a given DMA session

For memory-
mapped
addresses, see
Table 7-11.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X XX

DMA Registers

7-92 ADSP-BF54x Blackfin Processor Hardware Reference

Inner Loop Count (DMAx_X_COUNT and
MDMA_yy_X_COUNT) Registers

For 2D DMA, the inner loop count registers and addresses (DMAx_X_COUNT
and MDMA_yy_X_COUNT), shown in Figure 7-12 and Table 7-12, contain the
inner loop count. For 1D DMA, it specifies the number of elements to
read in. For details, see “Two-Dimensional DMA Operation” on
page 7-19. A value of 0 in DMAx_X_COUNT corresponds to 65,536 elements.

DMA14_CURR_ADDR 0xFFC0 1CA4

DMA15_CURR_ADDR 0xFFC0 1CE4

DMA16_CURR_ADDR 0xFFC0 1D24

DMA17_CURR_ADDR 0xFFC0 1D64

DMA18_CURR_ADDR 0xFFC0 1DA4

DMA19_CURR_ADDR 0xFFC0 1DE4

DMA20_CURR_ADDR 0xFFC0 1E24

DMA21_CURR_ADDR 0xFFC0 1E64

DMA22_CURR_ADDR 0xFFC0 1EA4

DMA23_CURR_ADDR 0xFFC0 1EE4

MDMA_D0_CURR_ADDR 0xFFC0 0F24

MDMA_S0_CURR_ADDR 0xFFC0 0F64

MDMA_D1_CURR_ADDR 0xFFC0 0FA4

MDMA_S1_CURR_ADDR 0xFFC0 0FE4

MDMA_D2_CURR_ADDR 0xFFC0 1F24

MDMA_S2_CURR_ADDR 0xFFC0 1F64

MDMA_D3_CURR_ADDR 0xFFC0 1FA4

MDMA_S3_CURR_ADDR 0xFFC0 1FE4

Table 7-11. Current Address Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

ADSP-BF54x Blackfin Processor Hardware Reference 7-93

Direct Memory Access

Figure 7-12. Inner Loop Count Registers

Table 7-12. Inner Loop Count Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DMA0_X_COUNT 0xFFC0 0C10

DMA1_X_COUNT 0xFFC0 0C50

DMA2_X_COUNT 0xFFC0 0C90

DMA3_X_COUNT 0xFFC0 0CD0

DMA4_X_COUNT 0xFFC0 0D10

DMA5_X_COUNT 0xFFC0 0D50

DMA6_X_COUNT 0xFFC0 0D90

DMA7_X_COUNT 0xFFC0 0DD0

DMA8_X_COUNT 0xFFC0 0E10

DMA9_X_COUNT 0xFFC0 0E50

DMA10_X_COUNT 0xFFC0 0E90

DMA11_X_COUNT 0xFFC0 0ED0

DMA12_X_COUNT 0xFFC0 1C10

DMA13_X_COUNT 0xFFC0 1C50

DMA14_X_COUNT 0xFFC0 1C90

DMA15_X_COUNT 0xFFC0 1CD0

DMA16_X_COUNT 0xFFC0 1D10

X_COUNT[15:0] (Inner
Loop Count)

Inner Loop Count Registers (DMAx_X_COUNT/MDMA_yy_X_COUNT)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

The number of elements to
read in (1D); the number of
rows in the inner loop (2D)

For memory-
mapped
addresses, see
Table 7-12.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

DMA Registers

7-94 ADSP-BF54x Blackfin Processor Hardware Reference

Current Inner Loop Count (DMAx_CURR_X_COUNT
and MDMA_yy_CURR_X_COUNT) Registers

The current inner loop count registers and addresses (DMAx_CURR_X_COUNT
and MDMA_yy_CURR_X_COUNT), shown in Figure 7-13 and Table 7-13, hold
the number of transfers remaining in the current DMA row (inner loop).

On the first memory transfer of each DMA work unit, it is loaded with
the value in the DMAx_X_COUNT register and then decremented. For 2D
DMA, on the last memory transfer in each row except the last row, it is
reloaded with the value in the DMAx_X_COUNT register; this occurs at the
same time that the value in the DMAx_CURR_Y_COUNT register is

DMA17_X_COUNT 0xFFC0 1D50

DMA18_X_COUNT 0xFFC0 1D90

DMA19_X_COUNT 0xFFC0 1DD0

DMA20_X_COUNT 0xFFC0 1E10

DMA21_X_COUNT 0xFFC0 1E50

DMA22_X_COUNT 0xFFC0 1E90

DMA23_X_COUNT 0xFFC0 1ED0

MDMA_D0_X_COUNT 0xFFC0 0F10

MDMA_S0_X_COUNT 0xFFC0 0F50

MDMA_D1_X_COUNT 0xFFC0 0F90

MDMA_S1_X_COUNT 0xFFC0 0FD0

MDMA_D2_X_COUNT 0xFFC0 1F10

MDMA_S2_X_COUNT 0xFFC0 1F50

MDMA_D3_X_COUNT 0xFFC0 1F90

MDMA_S3_X_COUNT 0xFFC0 1FD0

Table 7-12. Inner Loop Count Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

ADSP-BF54x Blackfin Processor Hardware Reference 7-95

Direct Memory Access

decremented. Otherwise it is decremented each time an element is
transferred. Expiration of the count in this register signifies that DMA is
complete.

In 2D DMA, the DMAx_CURR_X_COUNT register value is 0 only when the
entire transfer is complete. Between rows it is equal to the value of the
DMAx_X_COUNT register.

Figure 7-13. Current Inner Loop Count Registers

Table 7-13. Current Inner Loop Count Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

DMA0_CURR_X_COUNT 0xFFC0 0C30

DMA1_CURR_X_COUNT 0xFFC0 0C70

DMA2_CURR_X_COUNT 0xFFC0 0CB0

DMA3_CURR_X_COUNT 0xFFC0 0CF0

DMA4_CURR_X_COUNT 0xFFC0 0D30

DMA5_CURR_X_COUNT 0xFFC0 0D70

DMA6_CURR_X_COUNT 0xFFC0 0DB0

DMA7_CURR_X_COUNT 0xFFC0 0DF0

CURR_X_COUNT[15:0]
(Current Inner Loop
Count)

Current Inner Loop Count Registers (DMAx_CURR_X_COUNT/ MDMA_yy_CURR_X_COUNT)

R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Loaded by X_COUNT
at the beginning of each
DMA session (1D DMA),
or at the beginning of
each row (2D DMA)

For memory-
mapped
addresses, see
Table 7-13.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

DMA Registers

7-96 ADSP-BF54x Blackfin Processor Hardware Reference

DMA8_CURR_X_COUNT 0xFFC0 0E30

DMA9_CURR_X_COUNT 0xFFC0 0E70

DMA10_CURR_X_COUNT 0xFFC0 0EB0

DMA11_CURR_X_COUNT 0xFFC0 0EF0

DMA12_CURR_X_COUNT 0xFFC0 1C30

DMA13_CURR_X_COUNT 0xFFC0 1C70

DMA14_CURR_X_COUNT 0xFFC0 1CB0

DMA15_CURR_X_COUNT 0xFFC0 1CF0

DMA16_CURR_X_COUNT 0xFFC0 1D30

DMA17_CURR_X_COUNT 0xFFC0 1D70

DMA18_CURR_X_COUNT 0xFFC0 1DB0

DMA19_CURR_X_COUNT 0xFFC0 1DF0

DMA20_CURR_X_COUNT 0xFFC0 1E30

DMA21_CURR_X_COUNT 0xFFC0 1E70

DMA22_CURR_X_COUNT 0xFFC0 1EB0

DMA23_CURR_X_COUNT 0xFFC0 1EF0

MDMA_D0_CURR_X_COUNT 0xFFC0 0F30

MDMA_S0_CURR_X_COUNT 0xFFC0 0F70

MDMA_D1_CURR_X_COUNT 0xFFC0 0FB0

MDMA_S1_CURR_X_COUNT 0xFFC0 0FF0

MDMA_D2_CURR_X_COUNT 0xFFC0 1F30

MDMA_S2_CURR_X_COUNT 0xFFC0 1F70

MDMA_D3_CURR_X_COUNT 0xFFC0 1FB0

MDMA_S3_CURR_X_COUNT 0xFFC0 1FF0

Table 7-13. Current Inner Loop Count Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

ADSP-BF54x Blackfin Processor Hardware Reference 7-97

Direct Memory Access

Inner Loop Address Increment (DMAx_X_MODIFY
and MDMA_yy_X_MODIFY) Registers

The inner loop address increment registers and addresses (DMAx_X_MODIFY
and MDMA_yy_X_MODIFY), shown in Figure 7-14 and Table 7-14, contain a
signed, two’s-complement byte-address increment. In 1D DMA, this
increment is the stride that is applied after transferring each element.

 DMAx_X_MODIFY is specified in bytes, regardless of the DMA trans-
fer size.

In 2D DMA, this increment is applied after transferring each element in
the inner loop, up to but not including the last element in each inner
loop. After the last element in each inner loop, the DMAx_Y_MODIFY regis-
ter is applied instead, except on the very last transfer of each work unit.
The DMAx_X_MODIFY register is always applied on the last transfer of a
work unit.

The DMAx_X_MODIFY field may be set to 0. In this case, DMA is performed
repeatedly to or from the same address. This is useful, for example, in
transferring data between a data register and an external memory-mapped
peripheral.

Figure 7-14. Inner Loop Address Increment Registers

X_MODIFY[15:0] (Inner
Loop Address Increment)

Inner Loop Address Increment Registers (DMAx_X_MODIFY/MDMA_yy_X_MODIFY)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Stride (in bytes) to take
after each decrement of
CURR_X_COUNT

For memory-
mapped
addresses, see
Table 7-14.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

DMA Registers

7-98 ADSP-BF54x Blackfin Processor Hardware Reference

Table 7-14. Inner Loop Address Increment Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

DMA0_X_MODIFY 0xFFC0 0C14

DMA1_X_MODIFY 0xFFC0 0C54

DMA2_X_MODIFY 0xFFC0 0C94

DMA3_X_MODIFY 0xFFC0 0CD4

DMA4_X_MODIFY 0xFFC0 0D14

DMA5_X_MODIFY 0xFFC0 0D54

DMA6_X_MODIFY 0xFFC0 0D94

DMA7_X_MODIFY 0xFFC0 0DD4

DMA8_X_MODIFY 0xFFC0 0E14

DMA9_X_MODIFY 0xFFC0 0E54

DMA10_X_MODIFY 0xFFC0 0E94

DMA11_X_MODIFY 0xFFC0 0ED4

DMA12_X_MODIFY 0xFFC0 1C14

DMA13_X_MODIFY 0xFFC0 1C54

DMA14_X_MODIFY 0xFFC0 1C94

DMA15_X_MODIFY 0xFFC0 1CD4

DMA16_X_MODIFY 0xFFC0 1D14

DMA17_X_MODIFY 0xFFC0 1D54

DMA18_X_MODIFY 0xFFC0 1D94

DMA19_X_MODIFY 0xFFC0 1DD4

DMA20_X_MODIFY 0xFFC0 1E14

DMA21_X_MODIFY 0xFFC0 1E54

DMA22_X_MODIFY 0xFFC0 1E94

DMA23_X_MODIFY 0xFFC0 1ED4

MDMA_D0_X_MODIFY 0xFFC0 0F14

ADSP-BF54x Blackfin Processor Hardware Reference 7-99

Direct Memory Access

Outer Loop Count (DMAx_Y_COUNT and
MDMA_yy_Y_COUNT) Registers

For 2D DMA, the outer loop count registers and addresses (DMAx_Y_COUNT
and MDMA_yy_Y_COUNT), shown in Figure 7-15 and Table 7-15, contain the
outer loop count. It is not used in 1D DMA mode. This register contains
the number of rows in the outer loop of a 2D DMA sequence. For details,
see “Two-Dimensional DMA Operation” on page 7-19.

MDMA_S0_X_MODIFY 0xFFC0 0F54

MDMA_D1_X_MODIFY 0xFFC0 0F94

MDMA_S1_X_MODIFY 0xFFC0 0FD4

MDMA_D2_X_MODIFY 0xFFC0 1F14

MDMA_S2_X_MODIFY 0xFFC0 1F54

MDMA_D3_X_MODIFY 0xFFC0 1F94

MDMA_S3_X_MODIFY 0xFFC0 1FD4

Figure 7-15. Outer Loop Count Registers

Table 7-14. Inner Loop Address Increment Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

Y_COUNT[15:0]
(Outer Loop Count)

Outer Loop Count Registers (DMAx_Y_COUNT/MDMA_yy_Y_COUNT)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

The number of rows in
the outer loop of a 2D
DMA sequence

For memory-
mapped
addresses, see
Table 7-15.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

DMA Registers

7-100 ADSP-BF54x Blackfin Processor Hardware Reference

Table 7-15. Outer Loop Count Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DMA0_Y_COUNT 0xFFC0 0C18

DMA1_Y_COUNT 0xFFC0 0C58

DMA2_Y_COUNT 0xFFC0 0C98

DMA3_Y_COUNT 0xFFC0 0CD8

DMA4_Y_COUNT 0xFFC0 0D18

DMA5_Y_COUNT 0xFFC0 0D58

DMA6_Y_COUNT 0xFFC0 0D98

DMA7_Y_COUNT 0xFFC0 0DD8

DMA8_Y_COUNT 0xFFC0 0E18

DMA9_Y_COUNT 0xFFC0 0E58

DMA10_Y_COUNT 0xFFC0 0E98

DMA11_Y_COUNT 0xFFC0 0ED8

DMA12_Y_COUNT 0xFFC0 1C18

DMA13_Y_COUNT 0xFFC0 1C58

DMA14_Y_COUNT 0xFFC0 1C98

DMA15_Y_COUNT 0xFFC0 1CD8

DMA16_Y_COUNT 0xFFC0 1D18

DMA17_Y_COUNT 0xFFC0 1D58

DMA18_Y_COUNT 0xFFC0 1D98

DMA19_Y_COUNT 0xFFC0 1DD8

DMA20_Y_COUNT 0xFFC0 1E18

DMA21_Y_COUNT 0xFFC0 1E58

DMA22_Y_COUNT 0xFFC0 1E98

DMA23_Y_COUNT 0xFFC0 1ED8

MDMA_D0_Y_COUNT 0xFFC0 0F18

MDMA_S0_Y_COUNT 0xFFC0 0F58

ADSP-BF54x Blackfin Processor Hardware Reference 7-101

Direct Memory Access

Current Outer Loop Count (DMAx_CURR_Y_COUNT
and MDMA_yy_CURR_Y_COUNT) Registers

The current outer loop count registers and addresses (DMAx_CURR_Y_COUNT
and MDMA_yy_CURR_Y_COUNT), shown in Figure 7-16 and Table 7-16, used
only in 2D mode, hold the number of full or partial rows (outer loops)
remaining in the current work unit.

On the first memory transfer of each DMA work unit, it is loaded with
the value of the DMAx_Y_COUNT register. The register is decremented each
time the DMAx_CURR_X_COUNT register expires during 2D DMA operation
(1 to DMAx_X_COUNT or 1 to 0 transition), signifying completion of an
entire row transfer. After a 2D DMA session is complete,
DMAx_CURR_Y_COUNT = 1 and DMAx_CURR_X_COUNT = 0.

MDMA_D1_Y_COUNT 0xFFC0 0F98

MDMA_S1_Y_COUNT 0xFFC0 0FD8

MDMA_D2_Y_COUNT 0xFFC0 1F18

MDMA_S2_Y_COUNT 0xFFC0 1F58

MDMA_D3_Y_COUNT 0xFFC0 1F98

MDMA_S3_Y_COUNT 0xFFC0 1FD8

Table 7-15. Outer Loop Count Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DMA Registers

7-102 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 7-16. Current Outer Loop Count Registers

Table 7-16. Current Outer Loop Count Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

DMA0_CURR_Y_COUNT 0xFFC0 0C38

DMA1_CURR_Y_COUNT 0xFFC0 0C78

DMA2_CURR_Y_COUNT 0xFFC0 0CB8

DMA3_CURR_Y_COUNT 0xFFC0 0CF8

DMA4_CURR_Y_COUNT 0xFFC0 0D38

DMA5_CURR_Y_COUNT 0xFFC0 0D78

DMA6_CURR_Y_COUNT 0xFFC0 0DB8

DMA7_CURR_Y_COUNT 0xFFC0 0DF8

DMA8_CURR_Y_COUNT 0xFFC0 0E38

DMA9_CURR_Y_COUNT 0xFFC0 0E78

DMA10_CURR_Y_COUNT 0xFFC0 0EB8

DMA11_CURR_Y_COUNT 0xFFC0 0EF8

DMA12_CURR_Y_COUNT 0xFFC0 1C38

DMA13_CURR_Y_COUNT 0xFFC0 1C78

DMA14_CURR_Y_COUNT 0xFFC0 1CB8

CURR_Y_COUNT[15:0]
(Current Outer Loop
Count)

Current Outer Loop Count Registers (DMAx_CURR_Y_COUNT/MDMA_yy_CURR_Y_COUNT)

R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Loaded by Y_COUNT
at the beginning of each
2D DMA session; not
used for 1D DMA

For memory-
mapped
addresses, see
Table 7-16.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

ADSP-BF54x Blackfin Processor Hardware Reference 7-103

Direct Memory Access

Outer Loop Address Increment (DMAx_Y_MODIFY
and MDMA_yy_Y_MODIFY) Registers

The outer loop address increment registers and addresses (DMAx_Y_MODIFY
and MDMA_yy_Y_MODIFY), shown in Figure 7-17 and Table 7-17, contain a
signed, two’s-complement value. This byte-address increment is applied
after each decrement of the DMAx_CURR_Y_COUNT register except for the last
item in the 2D array where the DMAx_CURR_Y_COUNT also expires. The value

DMA15_CURR_Y_COUNT 0xFFC0 1CF8

DMA16_CURR_Y_COUNT 0xFFC0 1D38

DMA17_CURR_Y_COUNT 0xFFC0 1D78

DMA18_CURR_Y_COUNT 0xFFC0 1DB8

DMA19_CURR_Y_COUNT 0xFFC0 1DF8

DMA20_CURR_Y_COUNT 0xFFC0 1E38

DMA21_CURR_Y_COUNT 0xFFC0 1E78

DMA22_CURR_Y_COUNT 0xFFC0 1EB8

DMA23_CURR_Y_COUNT 0xFFC0 1EF8

MDMA_D0_CURR_Y_COUNT 0xFFC0 0F38

MDMA_S0_CURR_Y_COUNT 0xFFC0 0F78

MDMA_D1_CURR_Y_COUNT 0xFFC0 0FB8

MDMA_S1_CURR_Y_COUNT 0xFFC0 0FF8

MDMA_D2_CURR_Y_COUNT 0xFFC0 1F38

MDMA_S2_CURR_Y_COUNT 0xFFC0 1F78

MDMA_D3_CURR_Y_COUNT 0xFFC0 1FB8

MDMA_S3_CURR_Y_COUNT 0xFFC0 1FF8

Table 7-16. Current Outer Loop Count Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

DMA Registers

7-104 ADSP-BF54x Blackfin Processor Hardware Reference

is the offset between the last word of one “row” and the first word of the
next “row.” For details, see “Two-Dimensional DMA Operation” on
page 7-19.

 DMAx_Y_MODIFY is specified in bytes, regardless of the DMA
transfer size.

Figure 7-17. Outer Loop Address Increment Registers

Table 7-17. Outer Loop Address Increment Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

DMA0_Y_MODIFY 0xFFC0 0C1C

DMA1_Y_MODIFY 0xFFC0 0C5C

DMA2_Y_MODIFY 0xFFC0 0C9C

DMA3_Y_MODIFY 0xFFC0 0CDC

DMA4_Y_MODIFY 0xFFC0 0D1C

DMA5_Y_MODIFY 0xFFC0 0D5C

DMA6_Y_MODIFY 0xFFC0 0D9C

DMA7_Y_MODIFY 0xFFC0 0DDC

DMA8_Y_MODIFY 0xFFC0 0E1C

DMA9_Y_MODIFY 0xFFC0 0E5C

Y_MODIFY[15:0]
(Outer Loop Address
Increment)

Outer Loop Address Increment Registers (DMAx_Y_MODIFY/ MDMA_yy_Y_MODIFY)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Stride to take after each
decrement of
CURR_Y_COUNT

For memory-
mapped
addresses, see
Table 7-17.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

ADSP-BF54x Blackfin Processor Hardware Reference 7-105

Direct Memory Access

DMA10_Y_MODIFY 0xFFC0 0E9C

DMA11_Y_MODIFY 0xFFC0 0EDC

DMA12_Y_MODIFY 0xFFC0 1C1C

DMA13_Y_MODIFY 0xFFC0 1C5C

DMA14_Y_MODIFY 0xFFC0 1C9C

DMA15_Y_MODIFY 0xFFC0 1CDC

DMA16_Y_MODIFY 0xFFC0 1D1C

DMA17_Y_MODIFY 0xFFC0 1D5C

DMA18_Y_MODIFY 0xFFC0 1D9C

DMA19_Y_MODIFY 0xFFC0 1DDC

DMA20_Y_MODIFY 0xFFC0 1E1C

DMA21_Y_MODIFY 0xFFC0 1E5C

DMA22_Y_MODIFY 0xFFC0 1E9C

DMA23_Y_MODIFY 0xFFC0 1EDC

MDMA_D0_Y_MODIFY 0xFFC0 0F1C

MDMA_S0_Y_MODIFY 0xFFC0 0F5C

MDMA_D1_Y_MODIFY 0xFFC0 0F9C

MDMA_S1_Y_MODIFY 0xFFC0 0FDC

MDMA_D2_Y_MODIFY 0xFFC0 1F1C

MDMA_S2_Y_MODIFY 0xFFC0 1F5C

MDMA_D3_Y_MODIFY 0xFFC0 1F9C

MDMA_S3_Y_MODIFY 0xFFC0 1FDC

Table 7-17. Outer Loop Address Increment Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

DMA Registers

7-106 ADSP-BF54x Blackfin Processor Hardware Reference

Next Descriptor Pointer (DMAx_NEXT_DESC_PTR
and MDMA_yy_NEXT_DESC_PTR) Registers

The next descriptor pointer registers and addresses (DMAx_NEXT_DESC_PTR
and MDMA_yy_NEXT_DESC_PTR), shown in Figure 7-18 and Table 7-18,
specify where to look for the start of the next descriptor block when the
DMA activity specified by the current descriptor block finishes. This reg-
ister is used in small and large descriptor list modes. At the start of a
descriptor fetch in either of these modes, the 32-bit
DMAx_NEXT_DESC_PTR register is copied into the DMAx_CURR_DESC_PTR
register. Then, during the descriptor fetch, the DMAx_CURR_DESC_PTR regis-
ter increments after each element of the descriptor is read in.

 In small and large descriptor list modes, the DMAx_NEXT_DESC_PTR
register, and not the DMAx_CURR_DESC_PTR register, must be pro-
grammed directly through MMR access before starting DMA
operation.

In descriptor array mode, the next descriptor pointer register is disre-
garded, and fetching is controlled only by the DMAx_CURR_DESC_PTR
register.

Figure 7-18. Next Descriptor Pointer Registers

Next Descriptor
Pointer[31:16]

Next Descriptor Pointer Registers (DMAx_NEXT_DESC_PTR/MDMA_yy_NEXT_DESC_PTR)
R/W prior to enabling channel; RO after enabling channel

Next Descriptor
Pointer[15:0]

For memory-
mapped
addresses, see
Table 7-18.

Reset = Undefined

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X XX

ADSP-BF54x Blackfin Processor Hardware Reference 7-107

Direct Memory Access

Table 7-18. Next Descriptor Pointer Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DMA0_NEXT_DESC_PTR 0xFFC0 0C00

DMA1_NEXT_DESC_PTR 0xFFC0 0C40

DMA2_NEXT_DESC_PTR 0xFFC0 0C80

DMA3_NEXT_DESC_PTR 0xFFC0 0CC0

DMA4_NEXT_DESC_PTR 0xFFC0 0D00

DMA5_NEXT_DESC_PTR 0xFFC0 0D40

DMA6_NEXT_DESC_PTR 0xFFC0 0D80

DMA7_NEXT_DESC_PTR 0xFFC0 0DC0

DMA8_NEXT_DESC_PTR 0xFFC0 0E00

DMA9_NEXT_DESC_PTR 0xFFC0 0E40

DMA10_NEXT_DESC_PTR 0xFFC0 0E80

DMA11_NEXT_DESC_PTR 0xFFC0 0EC0

DMA12_NEXT_DESC_PTR 0xFFC0 1C00

DMA13_NEXT_DESC_PTR 0xFFC0 1C40

DMA14_NEXT_DESC_PTR 0xFFC0 1C80

DMA15_NEXT_DESC_PTR 0xFFC0 1CC0

DMA16_NEXT_DESC_PTR 0xFFC0 1D00

DMA17_NEXT_DESC_PTR 0xFFC0 1D40

DMA18_NEXT_DESC_PTR 0xFFC0 1D80

DMA19_NEXT_DESC_PTR 0xFFC0 1DC0

DMA20_NEXT_DESC_PTR 0xFFC0 1E00

DMA21_NEXT_DESC_PTR 0xFFC0 1E40

DMA22_NEXT_DESC_PTR 0xFFC0 1E80

DMA23_NEXT_DESC_PTR 0xFFC0 1EC0

MDMA_D0_NEXT_DESC_PTR 0xFFC0 0F00

DMA Registers

7-108 ADSP-BF54x Blackfin Processor Hardware Reference

Current Descriptor Pointer (DMAx_CURR_DESC_PTR
and MDMA_yy_CURR_DESC_PTR) Registers

The current descriptor pointer registers and addresses
(DMAx_CURR_DESC_PTR and MDMA_yy_CURR_DESC_PTR), shown in Figure 7-19
and Table 7-19, contain the memory address for the next descriptor ele-
ment to be loaded. For FLOW mode settings that involve descriptors
(FLOW = 4, 6, or 7), this register is used to read descriptor elements into
appropriate MMRs before a DMA work block begins. For descriptor list
modes (FLOW = 6 or 7), this register is initialized from the
DMAx_NEXT_DESC_PTR register before loading each descriptor. Then, the
address in the DMAx_CURR_DESC_PTR register increments as each descriptor
element is read in.

When the entire descriptor is read, the DMAx_CURR_DESC_PTR register con-
tains this value:

Descriptor Start Address + (2 x Descriptor Size) (# of elements)

 For descriptor array mode (FLOW = 4), this register, and not the
DMAx_NEXT_DESC_PTR register, must be programmed by MMR
access before starting DMA operation.

MDMA_S0_NEXT_DESC_PTR 0xFFC0 0F40

MDMA_D1_NEXT_DESC_PTR 0xFFC0 0F80

MDMA_S1_NEXT_DESC_PTR 0xFFC0 0FC0

MDMA_D2_NEXT_DESC_PTR 0xFFC0 1F00

MDMA_S2_NEXT_DESC_PTR 0xFFC0 1F40

MDMA_D3_NEXT_DESC_PTR 0xFFC0 1F80

MDMA_S3_NEXT_DESC_PTR 0xFFC0 1FC0

Table 7-18. Next Descriptor Pointer Register Memory-Mapped Addresses
(Cont’d)

Register Name Memory-Mapped Address

ADSP-BF54x Blackfin Processor Hardware Reference 7-109

Direct Memory Access

Figure 7-19. Current Descriptor Pointer Registers

Table 7-19. Current Descriptor Pointer Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

DMA0_CURR_DESC_PTR 0xFFC0 0C20

DMA1_CURR_DESC_PTR 0xFFC0 0C60

DMA2_CURR_DESC_PTR 0xFFC0 0CA0

DMA3_CURR_DESC_PTR 0xFFC0 0CE0

DMA4_CURR_DESC_PTR 0xFFC0 0D20

DMA5_CURR_DESC_PTR 0xFFC0 0D60

DMA6_CURR_DESC_PTR 0xFFC0 0DA0

DMA7_CURR_DESC_PTR 0xFFC0 0DE0

DMA8_CURR_DESC_PTR 0xFFC0 0E20

DMA9_CURR_DESC_PTR 0xFFC0 0E60

DMA10_CURR_DESC_PTR 0xFFC0 0EA0

DMA11_CURR_DESC_PTR 0xFFC0 0EE0

Current Descriptor
Pointer[31:16]

Current Descriptor Pointer Registers (DMAx_CURR_DESC_PTR/
MDMA_yy_CURR_DESC_PTR)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Upper 16 bits of memory
address of the next
descriptor element

Current Descriptor
Pointer[15:0]
Lower 16 bits of memory
address of the next descriptor
element

For memory-
mapped
addresses, see
Table 7-19.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X XX

DMA Registers

7-110 ADSP-BF54x Blackfin Processor Hardware Reference

DMA12_CURR_DESC_PTR 0xFFC0 1C20

DMA13_CURR_DESC_PTR 0xFFC0 1C60

DMA14_CURR_DESC_PTR 0xFFC0 1CA0

DMA15_CURR_DESC_PTR 0xFFC0 1CE0

DMA16_CURR_DESC_PTR 0xFFC0 1D20

DMA17_CURR_DESC_PTR 0xFFC0 1D60

DMA18_CURR_DESC_PTR 0xFFC0 1DA0

DMA19_CURR_DESC_PTR 0xFFC0 1DE0

DMA20_CURR_DESC_PTR 0xFFC0 1E20

DMA21_CURR_DESC_PTR 0xFFC0 1E60

DMA22_CURR_DESC_PTR 0xFFC0 1EA0

DMA23_CURR_DESC_PTR 0xFFC0 1EE0

MDMA_D0_CURR_DESC_PTR 0xFFC0 0F20

MDMA_S0_CURR_DESC_PTR 0xFFC0 0F60

MDMA_D1_CURR_DESC_PTR 0xFFC0 0FA0

MDMA_S1_CURR_DESC_PTR 0xFFC0 0FE0

MDMA_D2_CURR_DESC_PTR 0xFFC0 1F20

MDMA_S2_CURR_DESC_PTR 0xFFC0 1F60

MDMA_D3_CURR_DESC_PTR 0xFFC0 1FA0

MDMA_S3_CURR_DESC_PTR 0xFFC0 1FE0

Table 7-19. Current Descriptor Pointer Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

ADSP-BF54x Blackfin Processor Hardware Reference 7-111

Direct Memory Access

Handshake MDMA (HMDMA) Registers
The Blackfin processor features two HMDMA blocks. HMDMA0 is asso-
ciated with MDMA2, and HMDMA1 is associated with MDMA3.
Table 7-20 lists the naming conventions for these registers.

Handshake MDMA Control
(HMDMAx_CONTROL) Registers

The handshake MDMA control registers (HMDMAx_CONTROL), shown in
Figure 7-20, set up HMDMA parameters and operating modes.

Table 7-20. Naming Conventions for Handshake MDMA Registers

Handshake MDMA MMR Name (x = 0 or 1) Memory-Mapped Address

HMDMA0_CONTROL (on page 7-111) 0xFFC0 4500

HMDMA0_ECINIT (on page 7-117) 0xFFC0 4504

HMDMA0_BCINIT (on page 7-114) 0xFFC0 4508

HMDMA0_ECURGENT (on page 7-117) 0xFFC0 450C

HMDMA0_ECOVERFLOW (on page 7-118) 0xFFC0 4510

HMDMA0_ECOUNT (on page 7-116) 0xFFC0 4514

HMDMA0_BCOUNT (on page 7-115) 0xFFC0 4518

HMDMA1_CONTROL (on page 7-111) 0xFFC0 4540

HMDMA1_ECINIT (on page 7-117) 0xFFC0 4544

HMDMA1_BCINIT (on page 7-114) 0xFFC0 4548

HMDMA1_ECURGENT (on page 7-117) 0xFFC0 454C

HMDMA1_ECOVERFLOW (on page 7-118) 0xFFC0 4550

HMDMA1_ECOUNT (on page 7-116) 0xFFC0 4554

HMDMA1_BCOUNT (on page 7-115) 0xFFC0 4558

DMA Registers

7-112 ADSP-BF54x Blackfin Processor Hardware Reference

The DRQ[1:0] field is used to control the priority of the MDMA channel
when the HMDMA is disabled, that is, when handshake control is not
being used (see Table 7-21).

The RBC bit forces the BCOUNT register to be reloaded with the BCINIT value
while the module is already active. Do not set this bit in the same write
that sets the HMDMAEN bit to active.

The HMDMA0_CONTROL[10:11] bits are used to control the gating of Core,
DMAC0, PIXC and MDMA during EPPI urgency conditions. For more
information see “Elevating EPPI Urgent Requests at DDR Controller
Interface” on page 15-71.

Table 7-21. DRQ[1:0] Values

DRQ[1:0] Priority Description

b#00 Disabled The MDMA request is disabled.

b#01 Enabled/S Normal MDMA channel priority. The channel in this
mode is limited to single memory transfers separated by
one idle system clock. Request single transfer from
MDMA channel.

b#10 Enabled/M Normal MDMA channel functionality and priority.
Request multiple transfers from MDMA channel
(default).

b#11 Urgent The MDMA channel priority is elevated to urgent. In this
state, it has higher priority for memory access than
non-urgent channels. If two channels are both urgent, the
lower-numbered channel has priority.

ADSP-BF54x Blackfin Processor Hardware Reference 7-113

Direct Memory Access

Figure 7-20. Handshake MDMA Control Registers

PS (Pin Status) - RO
0 - Request pin is 0
1 - Request pin is 1

0 - Block done interrupt
not generated

1 - Block done interrupt
generated

Handshake MDMA Control Registers (HMDMAx_CONTROL)

DRQ[1:0] (Default MDMA Request
When Handshake DMA is
Disabled EN=0)
00 - No request
01 - Request single transfer from
MDMA channel
10 - Request multiple transfers from
MDMA channel (default)
11 - Request urgent multiple transfers
from MDMA channel

BDI (Block Done
Interrupt Generated)
- W1C

HMDMAEN (Handshake MDMA
Enable)
0 - Disable handshake operation
1 - Enable handshake operation

REP (HMDMA Request Polarity)
0 - Increment ECOUNT on

falling edges of DMARx input
1 - Increment ECOUNT on rising
edges of DMARx input
UTE (Urgency Threshold Enable)
0 - Disable urgency threshold
1 - Enable urgency threshold
OIE (Overflow Interrupt Enable)

0 - Disable overflow interrupt
1 - Enable overflow interrupt

Reset = 0x0200

BDIE (Block Done Interrupt Enable)
0 - Disable block done interrupt
1 - Enable block done interrupt

HMDMA0:
0xFFC0 4500

HMDMA1:
0xFFC0 4540

 MBDI (Mask Block Done Interrupt)
BDIE must = 1
0 - Interrupt generated when

BCOUNT decrements to 0
1 - Interrupt generated when

BCOUNT decrements to 0
and ECOUNT = 0

0 - Overflow interrupt
not generated

1 - Overflow interrupt
generated

OI (Overflow Interrupt
Generated) - W1C

RBC (Force Reload of
BCOUNT) - WO
0 - Reload not active
1 - Force reload of BCOUNT
with BCINIT.
Write 1 to activate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 1 0 0 0 0 0 0 0 0

SND (Source/Not Destination)
0 - HMDMA controls
 destination side of MDMA
1 - HMDMA controls source
 side of MDMA

SYS_EPPI_PRIO

0 - DMAC0, USB, PIXC, and MDMA2/3
accesses to DDR are not blocked under
EPPI urgent conditions.
1 - DMAC0, USB, PIXC, and MDMA2/3
accesses to DDR are not blocked under
EPPI urgent conditions.

CORE_EPPI_PRIO
0 - Core accesses to DDR are
not blocked during EPPI urgent
conditions.
1 - Core accesses to DDR are
blocked during EPPI urgent
conditions.

DMA Registers

7-114 ADSP-BF54x Blackfin Processor Hardware Reference

Handshake MDMA Initial Block Count
(HMDMAx_BCINIT) Registers

The handshake MDMA initial block count registers (HMDMAx_BCINIT),
shown in Figure 7-21, hold the number of transfers to complete per edge
of the DMARx control signal.

Table 7-22. EPPI_DMA_URGENT_ACCESS

HMDMA0[11] HMDMA0[10] Action

0 0 Do not gate-off core, PIXC or DMAC0 on EPPI(0,1 2)
urgent conditions

0 1 Gate-off core only

1 0 Gate-off PIXC, DMAC0 and USB

1 1 Gate-off ALL - core, PIXC, DMAC0 and USB

Figure 7-21. Handshake MDMA Initial Block Count Registers

Handshake MDMA Initial Block Count Registers (HMDMAx_BCINIT)

BCINIT[15:0] (Initial Block
Count)

Reset = 0x0000HMDMA0:
0xFFC0 4508

HMDMA1:
0xFFC0 4548

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADSP-BF54x Blackfin Processor Hardware Reference 7-115

Direct Memory Access

Handshake MDMA Current Block Count (HMDMAx_BCOUNT)
Registers

The handshake MDMA current block count registers (HMDMAx_BCOUNT),
shown in Figure 7-22, hold the number of transfers remaining for the cur-
rent edge. MDMA requests are generated if this count is greater than 0.

Examples:

• 0x0000 = 0 transfers remaining

• 0xFFFF = 65535 transfers remaining

The BCOUNT field is loaded with BCINIT when ECOUNT is greater than 0 and
BCOUNT is expired (0). Also, if the RBC bit in the HMDMAx_CONTROL register is
written to a 1, BCOUNT is loaded with BCINIT. The BCOUNT field is decre-
mented with each MDMA grant. It is cleared when HMDMA is disabled.

A block done interrupt is generated when BCOUNT decrements to 0. If the
MBDI bit in the HMDMAx_CONTROL register is set, the interrupt is suppressed
until ECOUNT is 0. Note if BCINIT is 0, no block done interrupt is gener-
ated, since no DMA requests were generated or grants received.

Figure 7-22. Handshake MDMA Current Block Count Registers

Handshake MDMA Current Block Count Register (HMDMAx_BCOUNT)

BCOUNT[15:0] (Transfers
Remaining for Current
Edge)

Reset = 0x0000HMDMA0:
0xFFC0 4518

HMDMA1:
0xFFC0 4558

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DMA Registers

7-116 ADSP-BF54x Blackfin Processor Hardware Reference

Handshake MDMA Current Edge Count
(HMDMAx_ECOUNT) Registers

The handshake MDMA current edge count registers (HMDMAx_ECOUNT),
shown in Figure 7-23, hold a signed number of edges remaining to be ser-
viced. This number is in a signed, two’s-complement representation. An
edge is detected on the respective DMARx input. Requests occur if this count
is greater than or equal to 0, and BCOUNT is greater than 0.

When the handshake mode is enabled, ECOUNT is loaded and the resulting
number of requests is:

Number of edges + N,

where N is the number loaded from ECINIT. The number N is a positive or
negative signed number.

Examples:

• 0x7FFF = 32767 edges remaining

• 0x0000 = 0 edges remaining

• 0x8000 = –32768: ignore the next 32768 edges

Each time that BCOUNT expires, ECOUNT is decremented and BCOUNT is
reloaded from BCINIT. When a handshake request edge is detected, ECOUNT
is incremented. The ECOUNT field is cleared when HMDMA is disabled.

Figure 7-23. Handshake MDMA Current Edge Count Registers

Handshake MDMA Current Edge Count Register (HMDMAx_ECOUNT)

ECOUNT[15:0] (Edges
Remaining to be Serviced)

Reset = 0x0000HMDMA0:
0xFFC0 4514

HMDMA1:
0xFFC0 4554

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADSP-BF54x Blackfin Processor Hardware Reference 7-117

Direct Memory Access

Handshake MDMA Initial Edge Count
(HMDMAx_ECINIT) Registers

The handshake MDMA initial edge count registers (HMDMAx_ECINIT),
shown in Figure 7-24, hold a signed number that is loaded into current
edge count (HMDMAx_ECOUNT) when the handshake DMA is enabled. This
number is in a signed, two’s-complement representation.

Handshake MDMA Edge Count Urgent
(HMDMAx_ECURGENT) Registers

The handshake MDMA edge count urgent registers s (HMDMAx_ECURGENT),
shown in Figure 7-25 and, hold the urgent threshold. If the ECOUNT field
in the handshake MDMA edge count register is greater than this thresh-
old, the MDMA request is urgent and might get higher priority.

Figure 7-24. Handshake MDMA Initial Edge Count Registers

Figure 7-25. Handshake MDMA Edge Count Urgent Registers

Handshake MDMA Initial Edge Count Registers (HMDMAx_ECINIT)

ECINIT[15:0] (Initial Edge
Count)

Reset = 0x0000HMDMA0:
0xFFC0 4504

HMDMA1:
0xFFC0 4544

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Handshake MDMA Edge Count Urgent Registers (HMDMAx_ECURGENT)

UTHE[15:0] (Urgent
Threshold)

Reset = 0xFFFFHMDMA0:
0xFFC0 450C

HMDMA1:
0xFFC0 454C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

DMA Registers

7-118 ADSP-BF54x Blackfin Processor Hardware Reference

Handshake MDMA Edge Count Overflow
Interrupt (HMDMAx_ECOVERFLOW) Registers

The handshake MDMA edge count overflow interrupt registers,
(HMDMAx_ECOVERFLOW), shown in Figure 7-26, hold the interrupt threshold.
If the ECOUNT field in the handshake MDMA edge count register is greater
than this threshold, an overflow interrupt is generated.

DMA Traffic Control Registers
The DMACx_TCPER registers and the DMACx_TCCNT registers work with other
DMA registers to define traffic control.

 Traffic control works within one DMA controller (DMAC0 or
DMAC1), not between DMA controllers.

Figure 7-26. Handshake MDMA Edge Count Overflow Interrupt
Registers

Table 7-23. DMA Traffic Control Registers

Register Name Refer to Memory-Mapped Address

DMAC0_TCPER Listing on page 7-119 0xFFC0 0B0C

DMAC0_TCCNT Listing on page 7-119 0xFFC0 0B10

DMAC1_TCPER Listing on page 7-119 0xFFC0 1B0C

DMAC1_TCCNT Listing on page 7-119 0xFFC0 1B10

Handshake MDMA Edge Count Overflow Interrupt Registers (HMDMAx_ECOVERFLOW)

ITHR[15:0] (Interrupt
Threshold)

Reset = 0xFFFFHMDMA0:
0xFFC0 4510

HMDMA1:
0xFFC0 4550

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADSP-BF54x Blackfin Processor Hardware Reference 7-119

Direct Memory Access

This section also describes the DMAC1_PERIMUX register on page 7-121.

DMA Traffic Control Counter Period
(DMACx_TCPER) Registers

The DMA traffic control counter period registers (DMACx_TCPER) are
shown in Figure 7-27.

DMA Traffic Control Counter
(DMACx_TCCNT) Registers

The DMA traffic control counter registers (DMACx_TCCNT) are shown in
Figure 7-28.

Figure 7-27. DMA Traffic Control Counter Period Registers

Maximum length of MDMA round-
robin bursts. If not zero, any MDMA
stream which receives a grant is
allowed up to that number of DMA
transfers, to the exclusion of the other
MDMA streams.

DMA Traffic Control Counter Period Register (DMACx_TCPER)

DAB_TRAFFIC_PERIOD[2:0]

000 - No DAB bus transfer grouping performed
Other - Preferred length of unidirectional bursts
on the DAB bus between the DMA and the
peripherals

MDMA_ROUND_ROBIN_
PERIOD[4:0]

DCB_TRAFFIC_PERIOD[3:0]

DEB_TRAFFIC_PERIOD[3:0]

Reset = 0x0000

000 - No DCB bus transfer
grouping performed
Other - Preferred length of uni-
directional bursts on the DCB
bus between the DMA and
internal L1 memory

000 - No DEB bus transfer
grouping performed
Other - Preferred length of uni-
directional bursts on the DEB
bus between the DMA and
external memory

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0For memory-
mapped
addresses, see
Table 7-23.

DMA Registers

7-120 ADSP-BF54x Blackfin Processor Hardware Reference

The MDMA_ROUND_ROBIN_COUNT field shows the current transfer count
remaining in the MDMA round-robin period. It initializes to
MDMA_ROUND_ROBIN_PERIOD whenever DMACx_TCPER is written, whenever a
different MDMA stream is granted, or whenever every MDMA stream is
idle. It then counts down to 0 with each MDMA transfer. When this
count decrements from 1 to 0, the next available MDMA stream is
selected.

The DAB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DAB traffic period. It initializes to DAB_TRAFFIC_PERIOD whenever
DMACx_TCPER is written, or whenever the DAB bus changes direction or
becomes idle. It then counts down from DAB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DAB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DAB access is treated
preferentially, which may result in a direction change. When this count is
0 and a DAB bus access occurs, the count is reloaded from
DAB_TRAFFIC_PERIOD to begin a new burst.

Figure 7-28. DMA Traffic Control Counter Registers

RO

Current transfer count remaining in
the MDMA round-robin period

DMA Traffic Control Counter Register (DMACx_TCCNT)

DAB_TRAFFIC_COUNT[2:0]

Current cycle count remaining in the
DAB traffic period

MDMA_ROUND_ROBIN_
COUNT[4:0]

DCB_TRAFFIC_COUNT[3:0]

DEB_TRAFFIC_COUNT[3:0]

Reset = 0x0000

Current cycle count remaining
in the DCB traffic period

Current cycle count remaining
in the DEB traffic period

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0For memory-
mapped
addresses, see
Table 7-23.

ADSP-BF54x Blackfin Processor Hardware Reference 7-121

Direct Memory Access

The DEB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DEB traffic period. It initializes to DEB_TRAFFIC_PERIOD whenever
DMACx_TCPER is written, or whenever the DEB bus changes direction or
becomes idle. It then counts down from DEB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DEB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DEB access is treated
preferentially, which may result in a direction change. When this count is
0 and a DEB bus access occurs, the count is reloaded from
DEB_TRAFFIC_PERIOD to begin a new burst.

The DCB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DCB traffic period. It initializes to DCB_TRAFFIC_PERIOD whenever
DMACx_TCPER is written, or whenever the DCB bus changes direction or
becomes idle. It then counts down from DCB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DCB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DCB access is treated
preferentially, which may result in a direction change. When this count is
0 and a DCB bus access occurs, the count is reloaded from
DCB_TRAFFIC_PERIOD to begin a new burst.

DMA Controller 1 Peripheral Multiplexer
(DMAC1_PERIMUX) Register

The DMAC1_PERIMUX register is shown in Figure 7-29.

Programming Examples

7-122 ADSP-BF54x Blackfin Processor Hardware Reference

The DMAC1_PERIMUX register controls the common sharing of a single
DMA channel between the NAND flash controller (NFC) and the secure
digital host (SDH) module. The sharing of this resource prevents the
simultaneous use of the NFC and the SDH with DMA access to internal
and external memory. DMAC1_PERIMUX controls the peripheral that gains
access to DMA resources. DMAC1_PERIMUX is a 16-bit wide register and
requires 16-bit access.

Programming Examples
The following examples illustrate memory DMA and handshaked memory
DMA basics. Examples for peripheral DMAs can be found in the respec-
tive peripheral chapters.

Register-Based 2D Memory DMA
Listing 7-1 shows a register-based, two-dimensional MDMA. While the
source channel processes linearly, the destination channel re-sorts ele-
ments of the two-dimensional data array. See Figure 7-30.

Figure 7-29. DMA Controller 1 Peripheral Multiplexer Register

R/W
DMA Controller 1 Peripheral Multiplexer Register (DMAC1_PERIMUX)

0xFFC0 4340

PMUXSDH (Peripheral Multiplex SDH/NFC)
0 – NAND flash controller has control of DMA22 channel resources
1 – Secure Digital Host has control of DMA22 channel resources

Reset = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADSP-BF54x Blackfin Processor Hardware Reference 7-123

Direct Memory Access

The two arrays reside in two different L1 data memory blocks. However,
the arrays could reside in any internal or external memory, including L1
instruction memory, memory other than L1, and DDR SDRAM. For the
case where the destination array resides in DDR SDRAM, it is a good idea
to let the source channel re-sort elements and to let the destination buffer
store linearly.

Listing 7-1. Register-Based 2-D Memory DMA

#include <defBF54x.h>

#define X 5

#define Y 6

.section L1_data_a;

.byte2 aSource[X*Y] =

1, 7, 13, 19, 25,

2, 8, 14, 20, 26,

3, 9, 15, 21, 27,

4, 10, 16, 22, 28,

5, 11, 17, 23, 29,

6, 12, 18, 24, 30;

.section L1_data_b;

.byte2 aDestination[X*Y];

Figure 7-30. DMA Example, 2D Array

1

2

3

4

5

6

8

7

9

10

11

12

19

18

17

16

15

14

13

20

21

22

23

24

26

27

28

29

25

30

1 2 3 4 5 6

87 9 10 11 12

19

181716151413

20 21 22 23 24

26 27 28 2925 30

Programming Examples

7-124 ADSP-BF54x Blackfin Processor Hardware Reference

.section L1_code;

.global _main;

_main:

 p0.l = lo(MDMA_S0_CONFIG);

 p0.h = hi(MDMA_S0_CONFIG);

 call memdma_setup;

 call memdma_wait;

_main.forever:

 jump _main.forever;

_main.end:

The setup routine shown in Listing 7-2 initializes either MDMA0 or
MDMA1 depending on whether the MMR address of MDMA_S0_CONFIG or
MDMA_S1_CONFIG is passed in the P0 register. Note that the source channel
is enabled before the destination channel. Also, it is common to synchro-
nize interrupts with the destination channel, because only those interrupts
indicate completion of both DMA read and write operations.

Listing 7-2. 2-D Memory DMA Setup Example

memdma_setup:

 [--sp] = r7;

/* setup 1D source DMA for 16-bit transfers */

 r7.l = lo(aSource);

 r7.h = hi(aSource);

 [p0 + MDMA_S0_START_ADDR - MDMA_S0_CONFIG] = r7;

 r7.l = 2;

 w[p0 + MDMA_S0_X_MODIFY - MDMA_S0_CONFIG] = r7;

 r7.l = X * Y;

 w[p0 + MDMA_S0_X_COUNT - MDMA_S0_CONFIG] = r7;

 r7.l = WDSIZE_16 | DMAEN;

 w[p0] = r7;

/* setup 2D destination DMA for 16-bit transfers */

 r7.l = lo(aDestination);

 r7.h = hi(aDestination);

ADSP-BF54x Blackfin Processor Hardware Reference 7-125

Direct Memory Access

 [p0 + MDMA_D0_START_ADDR - MDMA_S0_CONFIG] = r7;

 r7.l = 2*Y;

 w[p0 + MDMA_D0_X_MODIFY - MDMA_S0_CONFIG] = r7;

 r7.l = Y;

 w[p0 + MDMA_D0_Y_COUNT - MDMA_S0_CONFIG] = r7;

 r7.l = X;

 w[p0 + MDMA_D0_X_COUNT - MDMA_S0_CONFIG] = r7;

 r7.l = -2 * (Y * (X-1) - 1);

 w[p0 + MDMA_D0_Y_MODIFY - MDMA_S0_CONFIG] = r7;

 r7.l = DMA2D | DI_EN | WDSIZE_16 | WNR | DMAEN;

 w[p0 + MDMA_D0_CONFIG - MDMA_S0_CONFIG] = r7;

 r7 = [sp++];

 rts;

memdma_setup.end:

For simplicity, the example shown in Listing 7-3 polls the DMA status
rather than using interrupts, which is the normal case in a real application.

Listing 7-3. Polling DMA Status

memdma_wait:

 [--sp] = r7;

memdma_wait.test:

 r7 = w[p0 + MDMA_D0_IRQ_STATUS - MDMA_S0_CONFIG] (z);

 CC = bittst (r7, bitpos(DMA_DONE));

 if !CC jump memdma_wait.test;

 r7 = DMA_DONE (z);

 w[p0 + MDMA_D0_IRQ_STATUS - MDMA_S0_CONFIG] = r7;

 r7 = [sp++];

 rts;

memdma_wait.end:

Programming Examples

7-126 ADSP-BF54x Blackfin Processor Hardware Reference

Initializing Descriptors in Memory
Descriptor-based DMAs expect the descriptor data to be available in
memory by the time the DMA is enabled. Often, the descriptors are pro-
grammed by software at run time. Many times, however, the descriptors—
or at least large portions of them—can be static and therefore initialized at
boot time. How to set up descriptors in global memory depends heavily
on the programming language and the toolset used. The following exam-
ples show how this is best performed in the CCES or VisualDSP++ tools’
assembly language.

Listing 7-4 uses multiple variables of either 16-bit or 32-bit size to
describe DMA descriptors. This example has two descriptors in small list
flow mode that point to each other mutually. At the end of the second
work unit an interrupt is generated without discontinuing the DMA pro-
cessing. The trailing “.end” label is required to let the linker know that a
descriptor forms a logical unit. It prevents the linker from removing vari-
ables when optimizing.

Listing 7-4. Two Descriptors in Small List Flow Mode

.section sdram;

.byte2 arrBlock1[0x400];

.byte2 arrBlock2[0x800];

.section L1_data_a;

.byte2 descBlock1 = lo(descBlock2);

.var descBlock1.addr = arrBlock1;

.byte2 descBlock1.cfg = FLOW_SMALL|NDSIZE_5|WDSIZE_16|DMAEN;

.byte2 descBlock1.len = length(arrBlock1);

 descBlock1.end:

ADSP-BF54x Blackfin Processor Hardware Reference 7-127

Direct Memory Access

.byte2 descBlock2 = lo(descBlock1);

.var descBlock2.addr = arrBlock2;

.byte2 descBlock2.cfg =

FLOW_SMALL|NDSIZE_5|DI_EN|WDSIZE_16|DMAEN;

.byte2 descBlock2.len = length(arrBlock2);

 descBlock2.end:

Another method featured by the CCES or VisualDSP++ tools takes advan-
tage of C-style structures in global header files. The header file
descriptor.h could look like Listing 7-5.

Listing 7-5. Header File to Define Descriptor Structures

#ifndef __INCLUDE_DESCRIPTORS__

#define __INCLUDE_DESCRIPTORS__

#ifdef _LANGUAGE_C

typedef struct {

void *pStart;

short dConfig;

short dXCount;

short dXModify;

short dYCount;

short dYModify;

} dma_desc_arr;

typedef struct {

void *pNext;

void *pStart;

short dConfig;

short dXCount;

short dXModify;

short dYCount;

short dYModify;

} dma_desc_list;

Programming Examples

7-128 ADSP-BF54x Blackfin Processor Hardware Reference

#endif // _LANGUAGE_C

#endif // __INCLUDE_DESCRIPTORS__

Note that near pointers are not natively supported by the C language,
pointers are always 32 bits wide. Therefore, the scheme above cannot be
used directly for small list mode without giving up pointer syntax. The
variable definition file is required to import the C-style header file and can
finally take advantage of the structures. See Listing 7-6.

Listing 7-6. Using Descriptor Structures

#include "descriptors.h"

.import "descriptors.h";

.section L1_data_a;

.align 4;

.var arrBlock3[N];

.var arrBlock4[N];

.struct dma_desc_list descBlock3 = {

 descBlock4, arrBlock3,

 FLOW_LARGE | NDSIZE_7 | WDSIZE_32 | DMAEN,

 length(arrBlock3), 4,

 0, 0 /* unused values */

};

.struct dma_desc_list descBlock4 = {

 descBlock3, arrBlock4,

 FLOW_LARGE | NDSIZE_7 | DI_EN | WDSIZE_32 | DMAEN,

 length(arrBlock4), 4,

 0, 0 /* unused values */

};

ADSP-BF54x Blackfin Processor Hardware Reference 7-129

Direct Memory Access

Software-Triggered Descriptor Fetch Example
Listing 7-7 demonstrates a large list of descriptors that provide flow stop
mode configuration. Consequently, the DMA stops by itself as soon as the
work unit has finished. Software triggers the next work unit by simply
writing the proper value into the DMA configuration registers. Since these
values instruct the DMA controller to fetch descriptors in large list mode,
after being started, the DMA immediately fetches the descriptor and then
overwrites the configuration value again with the new settings.

Note the requirement that source and destination channels stop after the
same number of transfers. In between stops the two channels can have
completely individual structure.

Listing 7-7. Software-Triggered Descriptor Fetch

#define N 4

.import "descriptor.h";

.section L1_data_a;

.byte2 arrSource1[N] = { 0x1001, 0x1002, 0x1003, 0x1004 };

.byte2 arrSource2[N] = { 0x2001, 0x2002, 0x2003, 0x2004 };

.byte2 arrSource3[N] = { 0x3001, 0x3002, 0x3003, 0x3004 };

.byte2 arrDest1[N];

.byte2 arrDest2[2*N];

.struct dma_desc_list descSource1 = {

 descSource2, arrSource1,

 WDSIZE_16 | DMAEN,

 length(arrSource1), 2,

 0, 0 /* unused values */

};

Programming Examples

7-130 ADSP-BF54x Blackfin Processor Hardware Reference

.struct dma_desc_list descSource2 = {

 descSource3, arrSource2,

 FLOW_LARGE | NDSIZE_7 | WDSIZE_16 | DMAEN,

 length(arrSource2), 2,

 0, 0 /* unused values */

};

.struct dma_desc_list descSource3 = {

 descSource1, arrSource3,

 WDSIZE_16 | DMAEN,

 length(arrSource3), 2,

 0, 0 /* unused values */

};

.struct dma_desc_list descDest1 = {

 descDest2, arrDest1,

 DI_EN | WDSIZE_16 | WNR | DMAEN,

 length(arrDest1), 2,

 0, 0 /* unused values */

};

.struct dma_desc_list descDest2 = {

 descDest1, arrDest2,

 DI_EN | WDSIZE_16 | WNR | DMAEN,

 length(arrDest2), 2,

 0, 0 /* unused values */

};

ADSP-BF54x Blackfin Processor Hardware Reference 7-131

Direct Memory Access

.section L1_code;

_main:

/* write descriptor address to next descriptor pointer */

 p0.h = hi(MDMA_S0_CONFIG);

 p0.l = lo(MDMA_S0_CONFIG);

 r0.h = hi(descDest1);

 r0.l = lo(descDest1);

 [p0 + MDMA_D0_NEXT_DESC_PTR - MDMA_S0_CONFIG] = r0;

 r0.h = hi(descSource1);

 r0.l = lo(descSource1);

 [p0 + MDMA_S0_NEXT_DESC_PTR - MDMA_S0_CONFIG] = r0;

/* start first work unit */

 r6.l = FLOW_LARGE|NDSIZE_7|WDSIZE_16|DMAEN;

 w[p0 + MDMA_S0_CONFIG - MDMA_S0_CONFIG] = r6;

 r7.l = FLOW_LARGE|NDSIZE_7|WDSIZE_16|WNR|DMAEN;

 w[p0 + MDMA_D0_CONFIG - MDMA_S0_CONFIG] = r7;

/* wait until destination channel has finished and W1C latch */

_main.wait:

 r0 = w[p0 + MDMA_D0_IRQ_STATUS - MDMA_S0_CONFIG] (z);

 CC = bittst (r0, bitpos(DMA_DONE));

 if !CC jump _main.wait;

 r0.l = DMA_DONE;

 w[p0 + MDMA_D0_IRQ_STATUS - MDMA_S0_CONFIG] = r0;

/* wait for any software or hardware event here */

/* start next work unit */

 w[p0 + MDMA_S0_CONFIG - MDMA_S0_CONFIG] = r6;

 w[p0 + MDMA_D0_CONFIG - MDMA_S0_CONFIG] = r7;

 jump _main.wait;

_main.end:

Programming Examples

7-132 ADSP-BF54x Blackfin Processor Hardware Reference

Handshake Memory DMA Example
The functional block for the handshake MDMA operation can be seen
completely separately from the MDMA channels themselves. Therefore
the following HMDMA setup routine can be combined with any of the
MDMA examples discussed above. Be sure that the HMDMA module is
enabled before the MDMA channels.

Listing 7-8 enables the HMDMA1 block which is controlled by the DMAR1
pin and is associated with the MDMA1 channel pair.

Listing 7-8. HMDMA1 Block Enable

/* optionally, enable all four bank select strobes */

 p1.l = lo(EBIU_AMGCTL);

 p1.h = hi(EBIU_AMGCTL);

 r0.l = 0x0009;

 w[p1] = r0;

/* function enable for DMAR1 */

 p1.l = lo(PORTH_FER);

 r0.l = PH6;

 w[p1] = r0;

 p1.l = lo(PORTH_MUX);

r0.l = lo(MUX6_1);

r0.h = hi(MUX6_1);

 [p1] = r0;

/* every single transfer requires one DMAR1 event */

 p1.l = lo(HMDMA1_BCINIT);

 r0.l = 1;

 w[p1] = r0;

ADSP-BF54x Blackfin Processor Hardware Reference 7-133

Direct Memory Access

/* start with balanced request counter */

 p1.l = lo(HMDMA1_ECINIT);

 r0.l = 0;

 w[p1] = r0;

/* enable for rising edges */

 p1.l = lo(HMDMA1_CONTROL);

 r2.l = REP | HMDMAEN;

 w[p1] = r2;

If the HMDMA intent is to copy from internal memory to external
devices, the above setup is appropriate. It controls the Memory DMA’s
destination channel. If the intent is to read data from external memory, set
the SND bit in the HMDMAx_CONTROL register to control the source channel
instead.

Programming Examples

7-134 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 8-1

8 HOST DMA PORT

This chapter describes the Host DMA port (HOSTDP) and includes the
following sections:

• “Overview” on page 8-1

• “Interface Overview” on page 8-3

• “Description of Operation” on page 8-3

• “Programming Model” on page 8-21

• “Host DMA Port Registers” on page 8-24

• “Programming Examples” on page 8-30

Overview
The Host DMA port (HOSTDP) facilitates a host device external to the
ADSP-BF54x processor Blackfin processor to be a direct memory access
(DMA) master and transfer data back and forth. The host device always
masters the transactions and the Blackfin processor is always a DMA slave
device.

 Pay particular attention to nomenclature for the Host DMA port
(HOSTDP). All register and pin names have a HOST_ prefix. The
HOSTDP is a peripheral on the ADSP-BF54x processor processor,
which is referred to as the slave processor or Blackfin slave. The
host processor is also referred to as the host, master, external host,
or external master.

Overview

8-2 ADSP-BF54x Blackfin Processor Hardware Reference

When using one of the HOSTDP boot modes, the boot kernel
does not disable the HOSTDP module or the associated DMA
channels when the boot completes.

The HOSTDP is enabled through the peripheral access bus (PAB) inter-
face. Once enabled, the DMA is controlled by an external host. The
external host can then program the DMA to send/receive data to any valid
internal or external memory location.

Features
The HOSTDP controller includes the following features:

• External master to configure DMA READ/WRITE data transfers
and read port status

• Flexible asynchronous memory protocol for external interface

• 8/16-bit external data interface to host device

• Half-duplex operation

• Little/big endian data transfer

• Internal FIFO which holds sixteen 32-bit words

• Acknowledge mode allows flow control on host transactions

• Interrupt mode guarantees a burst of FIFO depth host transactions

• Ability to enable and disable data reads/writes

• DMA bandwidth control

ADSP-BF54x Blackfin Processor Hardware Reference 8-3

Host DMA Port

Interface Overview
Table 8-1 defines the pins for the HOSTDP interface. The interface uses a
flexible asynchronous memory interface, which can be gluelessly con-
nected to a variety of host processors.

 Due to the Blackfin processor’s use of multiplexed pins, utilizing
the Host DMA port can preclude the use of other peripherals.
EPP2 is unavailable when using the HOSTDP, and EPP1 can be
used in 8-bit mode if the HOSTDP is also in 8-bit mode. Refer to
“General-Purpose Ports” on page 9-1 for a complete description of
the pin multiplexing scheme.

Description of Operation
The following sections describe the operation of the HOSTDP interface.

Table 8-1. HOSTDP External Pins

Pin Description

Port D - HOST_DATA <15:0> 16-bit data port

PG5- HOST_CE Chip enable for the HOSTDP

PG7 - HOST_WR Write strobe

PG6- HOST_RD Read strobe

PH3 - HOST_ADDR Address pin 0: data port access 1: configuration port access

PH4 - HOST_ACK (HRDY/FRDY) Flow control pin: HRDY-acknowledge mode and
FRDY- interrupt mode

Description of Operation

8-4 ADSP-BF54x Blackfin Processor Hardware Reference

Architecture
The HOSTDP block diagram, shown in Figure 8-1, illustrates the overall
architecture of the HOSTDP.

The HOSTDP is enabled/disabled through PAB writes to the
HOST_CONTROL register. Once enabled, the HOSTDP interfaces to the
external world using asynchronous memory protocol and handshakes with
the DMA controller internally using the DMA access bus (DAB). The
HOSTDP allows the external host to program the DMA to transfer data
in either direction. The HOSTDP can be broken into five functional
blocks, identified as follows:

• Host External Interface (HEI) This block interfaces to the external
host and based on inputs from the host device initiates data or con-
trol message transfers.

Figure 8-1. HOSTDP Block Diagram

DMA

I
N
T
E
R
F
A
C
E

DAB1
(32-BIT)

PAB

FIFO

CONTROL

P
A
B

CONTROL

REGS

HOSTDP

 EXTERNAL
 INTERFACE
 (HEI)

INTERFACE

INTERRUPT

ASYNCHRONOUS

HOST_DATA15–0

HOST_CE

HOST_RD

HOST_WR

HOST_ADDR

HOST_ACK

MEMORY
INTERFACE

ADSP-BF54x Blackfin Processor Hardware Reference 8-5

Host DMA Port

• PAB Interface The HOSTDP is programmed/queried for status by
reads or writes to appropriate registers in this block through the
PAB.

• FIFO A dual-port FIFO is used for data transfers and can store up
to sixteen 32-bit words.

• Control The control block handles the HOSTDP’s different states
as well as the handshakes between the external host device and
DMA interfaces.

• DMA Interface This block is connected to the DAB and interacts
with the DMA to transfer control messages and data between
DMA and external host device.

Functional Description
The following sections describe the functional operation of the Host
DMA port (HOSTDP).

HOSTDP Configuration

Before any data transfer can occur, the DMA engine must be configured
by the host processor. Because the host is unaware of the internal state of
the Host DMA port peripheral and its associated DMA activity, the host
processor is required to check the ALLOW_CNFG bit in HOST_STATUS register
before attempting configuration writes. Additionally, this status read sets
some internal states inside the Host DMA port. Configuration requires
seven 16-bit words to be written in the following order to the configura-
tion port before host read data or host write data operations can occur:

• HOST_CONFIG

• START_ADDR.L

• START_ADDR.H

Description of Operation

8-6 ADSP-BF54x Blackfin Processor Hardware Reference

• XCOUNT

• XMODIFY

• YCOUNT

• YMODIFY

The only word different from the standard DMA described in Chapter 7,
“Direct Memory Access” is the HOST_CONFIG word. Each bit is described
there. Refer to Figure 8-2 for a description.

Additional information for the HOST_CONFIG bits includes the following:

• Host DMA Direction (WNR)
If this bit is written high, DMA writes to memory (host write). If
this bit is written low, DMA reads from memory (host read).

• Host DMA Mode (DMA2D)
If written low, it is linear one dimensional (1D) DMA. If written
high, it is two-dimensional mode (2D).

• FLOW (FLOW)
When this bit is cleared, the DMA runs in STOP mode. When this
bit is set, the DMA runs in AUTOBUFFER mode.

Figure 8-2. HOSTDP Configuration Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 1 0 1 0 1 0 0

HOSTDP Config Word (HOST_CONFIG)

WNR (DMA Direction)
0 - DMA is a host read operation
1 - DMA is a host write operation

FLOW (Next Operation)
0 - Stop mode
1 - Autobuffer mode

DMA2D (DMA Mode)
0 - Linear (1D)
1 - Two-dimensional (2D)

ADSP-BF54x Blackfin Processor Hardware Reference 8-7

Host DMA Port

For information on how these words are used to configure the DMA, refer
to “Direct Memory Access” on page 7-1.

Before accessing the data port, the host processor must write all seven
descriptor words. The HOSTDP module does not forward descriptors to
the DMA channel until it has received all seven words. Similarly, the host
processor is not permitted to provide new descriptor data before all data
words of the former work unit are transferred. However, the host can
truncate an initiated transfer using the DMA_FINISH control command. As
always, ALLOW_CNFG in the HOST_STATUS register must be polled before
writing a new configuration to the Host DMA port. See “Control Com-
mands Between the External Host and HOSTDP” on page 8-20 for
additional information.

Additional latency is incurred when a host read data operation follows a
host write data operation. Even though the configuration for the host read
is complete, the DMA engine must first empty the FIFO for the host write
operation and then change directions and start filling the FIFO for the
host read data operation.

HOSTDP Transactions

The HOSTDP is enabled by writing to the HOSTDP_EN bit of the
HOST_CONTROL register. In order to disable the HOSTDP, the HOSTDP_RST
bit must be asserted before clearing HOSTDP_EN. There are four types of
host port transactions. Each type of access is controlled by the HOST_ADDR
and whether the HOST_RD or HOST_WR signal is asserted.

When chip enable (HOST_CE) is inactive, the HOSTDP stays idle. Modes
listed in Table 8-2 are only possible when HOST_CE is active.

Description of Operation

8-8 ADSP-BF54x Blackfin Processor Hardware Reference

Host Read Status

The Host DMA port is robust against on-the-fly changes of data direc-
tion. However, in acknowledge mode, it is encouraged not to initiate a
new work unit with different data direction before the FIFOEMPTY bit in
the HOST_STATUS register is cleared. This is to avoid excessive wait states
inserted by HRDY.

The external host can read the HOST_STATUS register at any time. By per-
forming this operation, the external host can query the status of the
HOSTDP. Note that in 8-bit configurations, the host can only read the
lower byte of the HOST_STATUS register. HOST_STATUS can also be read
through a PAB access. When accessed through the PAB, all 16 bits of
HOST_STATUS are always read. The contents of HOST_STATUS are detailed in
“Host DMA Port Registers” on page 8-24.

Host Read Data and Host Write Data Operations

After the HOSTDP is configured and enabled by way of PAB accesses and
the DMA channel is configured through host write configuration accesses,
data can be transferred.

 All DMAs between the HOSTDP FIFO and memory are 32-bit
transactions. This is important for setting XMODIFY and YMODIFY.
The amount of data moved between the host processor and the
HOSTDP must be a multiple of the FIFO depth (sixteen 32-bit

Table 8-2. Types of Host Port Transactions

Address HOST_RD HOST_WR HOST_CE Function

0x0 0 1 0 Host read data operation

0x0 1 0 0 Host write data operation

0x1 1 0 0 Host write configuration or control command

0x1 0 1 0 Host read HOST_STATUS register

ADSP-BF54x Blackfin Processor Hardware Reference 8-9

Host DMA Port

words). The user is required to set the XCOUNT/YCOUNT values and to
also ensure that the correct number of host data reads or host data
writes are performed.

A host write data operation is used to transfer data from the host to the
slave processor. The host performs write transactions and the HOSTDP
writes the data from these transactions into its FIFO. The DMA engine
concurrently moves data from the HOSTDP’s FIFO to the location in
memory specified by the DMA configuration words.

A host read data operation is used to transfer data from the slave processor
to the host. The DMA engine moves data from the specified location in
the Blackfin processor slave’s memory into the HOSTDP’s FIFO. The
host performs read accesses to read data out of this FIFO.

In the case of host writes, the host processor must “pad” the end of the
transfer with dummy data to ensure this (for example, if the host wants 31
words it must send an extra dummy word to equal 32). In the case of host
reads, dummy reads must be performed at the end and the host can then
throw away the results. This is true in both interrupt mode and acknowl-
edge mode.

Since all DMAs from the HOSTDP are 32-bits, data is packed into 32-bit
words in the HOSTDP FIFO on host data write operations. Data (32-bit)
in the FIFO is unpacked into 8-bit or 16-bit words (depending on the
HOSTDP_DATA_SIZE setting in HOST_CONTROL) for transmission during host
data read operations. Because all DMAs are 32-bits and the data bus is
either 8-bits or 16-bits, the total of XCOUNT * YCOUNT is 1/4 (8-bit) or 1/2
(16-bit) the number of data reads or writes the host processor performs.

Description of Operation

8-10 ADSP-BF54x Blackfin Processor Hardware Reference

HOSTDP Modes of Operation

There are two modes of flow control in the HOSTDP: acknowledge mode
and interrupt mode. These two modes provide flow control between the
host and the slave processor by way of a single hardware signal pin. This
signal has different names depending upon the mode of operation. The
flow control mode is configured by the slave processor when enabling the
HOSTDP (see HOST_CONTROL register).

In acknowledge mode, the signal is called HRDY and is used to add wait
states to a host transaction when the HOSTDP is not ready to transfer
data. The HRDY signal is level-sensitive.

In interrupt mode, the signal is called FRDY and is used as an edge-trig-
gered signal. This signal is connected to the host as an interrupt input. A
falling edge on it signals the host that the HOSTDP is ready for a guaran-
teed FIFO depth number of back-to-back transactions. For host write
operations, this occurs when the FIFO is empty. For host read operations,
this occurs when the FIFO is full.

Acknowledge Mode

For host data write operations, HRDY negates when the FIFO is full,
thereby inserting wait states. As soon as the DMA engine moves data out
of the FIFO, HRDY asserts, indicating to the host the host data write opera-
tion is complete.

For host data read operations, HRDY will negate when the FIFO is empty,
thereby inserting wait states. As soon as the DMA engine moves data into
the FIFO, HRDY asserts indicating to the host the host data read operation
is complete.

 The HRDY signal must be pulled high by an external pull-up resistor
by default at power-up/reset and when the HOSTDP is not
enabled. HRDY is only driven when HOST_CE is asserted low.

ADSP-BF54x Blackfin Processor Hardware Reference 8-11

Host DMA Port

When the host is performing a host write configuration or HOST_STATUS
reads, HRDY always remains asserted and no wait states are added.

Acknowledge Mode Timing Diagrams

This section gives further details on the HOSTDP timings for acknowl-
edge mode. The host processor must follow these rules on every bus cycle
independent of the nature of the access and the status of slave processor.

(It is assumed that the Blackfin slave processor has booted and the
HOSTDP is functional.)

As discussed in the following section, HRDY has an external pull-up register:

1. If HOST_CE is high, HRDY is three-stated (not driven).

2. HRDY is driven by the slave processor only when HOST_CE is asserted
low by the external host device.

3. If HOST_CE as well as either HOST_RD or HOST_WR are asserted and
HOST_ADDR is high (configuration port access or status read), HRDY
remains driven high (READY).

4. If HOST_CE as well as either HOST_RD or HOST_WR are asserted, and
HOST_ADDR is low (data port access), one of two things happen:

a. If HOST_RD is asserted and the desired FIFO data can be
transferred on the data bus pins within time T, HRDY
remains driven high. If HOST_WR is asserted and if the data
can be stored in the FIFO within time T, HRDY remains
high.

b. If the desired FIFO data cannot be transferred on the data
bus pins or stored in the FIFO within time T, HRDY is driven
low quickly. At some later time after the FIFO data can be
transferred, HRDY is driven high.

Description of Operation

8-12 ADSP-BF54x Blackfin Processor Hardware Reference

The two timing diagrams, shown in Figure 8-3 and Figure 8-4, are neces-
sary to understand the function of HRDY.

Figure 8-3. No Delay in Host Bus Cycle

Figure 8-4. Delay in Host Bus Cycle Caused by HRDY

MINIMUM ACCESS TIME “T”

HOST_RD
 OR
HOST_WR

HOST_CE

HOST_ADDR

HOST_DATA

HRDY

VALID 8
 OR
16 BITS

HOST_ADDR

HOST_DATA

HRDY

VALID 8
 OR
16 BITS

ACCESS TIME > “T” DUE TO
HRDY ASSERTION

HOST_CE

HOST_RD
 OR
HOST_WR

ADSP-BF54x Blackfin Processor Hardware Reference 8-13

Host DMA Port

Host Bus Timeout

In acknowledge mode, an optional host bus timeout feature is imple-
mented as a mechanism to alert the host when a programmed period of
time has expired during a host read/write data transaction and the
HOSTDP is still unable to complete the transaction with HRDY assertion.
This condition can occur when the internal shared DMA bus has a lot of
traffic from other peripherals on it. (This situation should never occur in a
working system, but could occur if a mistake was made in software. An
example is mistakenly disabling the DMA channel while the HOSTDP is
attempting to transfer data.) An internal timer is started when HOST_CE
and either HOST_RD or HOST_WR are asserted. The timer is reset whenever
HRDY is asserted.

The feature can be enabled by the BT_EN bit in the HOST_CONTROL register.
When enabled, the HOSTDP generates an interrupt when a pre pro-
grammed timeout value set in the HOST_TIMEOUT register expires. In a
typical application, the interrupt service routine toggles a GPIO pin which
is connected to the host processor to alert it of this condition. Addition-
ally, the interrupt service routine can perform writes to the HOST_CONTROL
register to perform the following:

• Stop the DMA channel by clearing the DMAEN bit in the
DMAx_CONFIG register

• Write the HRDY_OVR bit in the HOST_CONTROL register to assert the
HRDY pin to allow the host bus cycles to continue while the host is
being signaled of this condition by way of a GPIO pin

• Disable the HOSTDP by clearing the HOSTDP_EN bit in the
HOST_CONTROL register

The actual timeout value can be programmed in the HOSTDP_TOUT register.

Because it is important for the host to be aware that a timeout condition
occurred, it is required that the host processor read the HOST_STATUS regis-
ter and check the HOSTDP_TOUT bit. The ADSP-BF54x processor slave

Description of Operation

8-14 ADSP-BF54x Blackfin Processor Hardware Reference

processor reads the actual bit, allowing it to take the timeout interrupt,
and write-one-to-clear the HOSTDP_TOUT bit. The host processor reads a
special shadow version of this bit which remains set until the host has read
it or a hard reset occurs.

Interrupt Mode

The FRDY signal acts as an edge-sensitive (high-to-low transition) signal to
provide an interrupt to the external host to indicate when data transfer can
proceed. The interrupt provided by the slave processor to the external host
device by way of the FRDY signal is used to indicate the status of the Host
DMA port’s FIFO. Host data read and host data write accesses are
described next. The host device always masters the transactions and the
Blackfin processor is always a DMA slave device.

In interrupt mode, the FRDY signal always is driven by the slave processor
and does not require an external pull-up resistor.

For host write operations, the FRDY signal transitions from high to low
whenever the FIFO is empty, causing an interrupt to the host to tell it to
write to HOSTDP. The host can then perform a buffer depth number of
write cycles to fill the FIFO. During these writes, the FRDY signal transi-
tions high again, but this is ignored by the host. After the FIFO's contents
have been moved to memory by the DMA engine, the FIFO becomes
empty. At this time, FRDY will once again transition from high to low to
interrupt the host to do another buffer depth number of write cycles to fill
the FIFO. This process continues until the configured number of words
have been transferred.

For host read operations, the FRDY signal transitions from high to low
whenever the FIFO is full, causing an interrupt to the host to tell it to read
from the HOSTDP. The host can then perform a buffer depth number of
read cycles to empty the FIFO. During these reads, the FRDY signal transi-
tions high again, but this is ignored by the host. The DMA engine fills the
FIFO from data in memory. Once the FIFO becomes full again, the FRDY

ADSP-BF54x Blackfin Processor Hardware Reference 8-15

Host DMA Port

signal once again transitions from high to low to interrupt the host to do
another buffer depth number of write cycles to fill the FIFO. This process
continues until the configured number of words have been transferred.

In interrupt mode, the FRDY signal always reflects the status of the FIFO.
For host configuration writes or host reads of HOST_STATUS, accesses always
meets the minimum cycle time T and the FRDY signal is not used for flow
control of these accesses.

Figure 8-5 shows the timing of the interrupt mode transactions. The total
number of words in the transfer are divided into blocks that contain a
FIFO depth’s number of words. These blocks are transferred whenever a
high-to-low transition occurs on the FRDY signal.

DMA STOP Mode and AUTOBUFFER Mode

The FLOW bit in HOST_CONFIG word controls whether the DMA channel
runs in stop mode or autobuffer mode.

In stop mode, the DMA performs a block transfer once as programmed by
the HOST_CONFIG, XCOUNT/YCOUNT, XMODIFY/YMODIFY, START_ADDR.L/H reg-
isters. To perform another block transfer requires the host to reconfigure
these parameters. For stop mode, the interrupt service routine is required

Figure 8-5. Interrupt Mode Bus Cycles

. . .

1st BLOCK 2nd BLOCK LAST BLOCK

FRDY

FIFO
DEPTH
OF
TRANSFERS

FIFO
DEPTH
OF
TRANSFERS

FIFO
DEPTH
OF
TRANSFERS

. . .

Description of Operation

8-16 ADSP-BF54x Blackfin Processor Hardware Reference

to set the DMA_CMPLT bit in the HOST_STATUS register. This prepares the
HOSTDP for the next transfer. The host is not required to poll the
DMA_CMPLT bit before starting a new work unit.

In autobuffer mode, the DMA performs continuous block transfers based
on the parameters programmed by the HOST_CONFIG, XCOUNT/YCOUNT,
XMODIFY/YMODIFY, START_ADDR.L/H registers. Once the number of words
specified by XCOUNT/YCOUNT are transferred, the DMA engine sets its
address pointer back to START_ADDR.L/H and performs another block
transfer. For autobuffer mode, the interrupt service routine should only
set the DMA_CMPLT bit in the HOST_STATUS register when it wishes to com-
plete the transfers. After this bit is set, the HOSTDP block expects to be
reprogrammed with a new set of DMA register values.

Bus Widths and Endian Order

The HOSTDP can be programmed to be 16-bits wide or 8-bits wide.
Additionally, the byte order can be programmed as little endian or big
endian. All ensuing data and configuration transactions with the host
occur in the programmed endianess setting.

For 16-bit transfers, shown in Figure 8-6, the upper and lower bytes are
based on the big/little endian setting. When set to little endian, the order
of the bytes on the HOST_DATA[15:0] bus is unchanged. For big endian,
the upper and lower bytes of HOST_DATA[15:0] are swapped before being
stored internally.

For 8-bit transfers, the order in which the bytes are sent are based on the
bit/little endian setting as shown in Figure 8-7. Consider a 16-bit word
stored in internal memory:

ADSP-BF54x Blackfin Processor Hardware Reference 8-17

Host DMA Port

Access Control

Configurations only occur when they are allowed. The ALLOW_CNFG bit
does not go low after configuration words are written if the access type is
disallowed. In the case of a disallowed configuration, the configuration
words are not driven on the DAB bus, and DMA controller does not get
programmed. There is no NACK provided to the host in the event of a
disallowed configuration.

By default, the HOSTDP module prohibits the external host from per-
forming host data read and writes. Blackfin software is required to enable
host reads or writes. Host data reads and writes are enabled or disabled
separately by the EHR and EHW bits in the HOST_CONTROL register. Once
enabled, the host can perform read or write transactions. Writes to the
configuration port, control commands and status reads are permitted
regardless of the EHR and EHW settings. It is very important that the
EHR/EHW bits are written once before ever allowing configuration from
the Host and then not changed later.

Figure 8-6. 16-Bit Transfer Byte Order

Figure 8-7. 8-Bit Transfer Byte Order

MEMORY

ADDRESS: DATA: HOST_DATA BUS
LITTLE ENDIAN

HOST_DATA BUS
BIG ENDIAN

0x0

0x1

A

B B A

15 0

A B

15 0

ADDRESS: DATA:

0x0

0x1

A

B

LITTLE ENDIAN:

1st A, 2nd B

BIG ENDIAN:

1st B, 2nd A

Description of Operation

8-18 ADSP-BF54x Blackfin Processor Hardware Reference

 For more information, see the memory configuration discussion in
“Security” on page 16-1.

In acknowledge mode, if the transactions are disabled, host writes are still
allowed on the bus, but the actual write data is ignored. Similarly, host
reads still occur on the bus, but the data returned is indeterminate.

In interrupt mode, transitions on FRDY never occur.

 The host cannot interrogate the HOSTDP to see whether only
read or write access is granted. Therefore, keep the EHR and EHW
settings global without altering them.

Improving HOSTDP DMA Bus Bandwidth

Since the HOSTDP can be configured as a 16-bit wide parallel interface,
data can move into and out of the peripheral quickly as compared to other
serial peripherals on the chip. A FIFO is used to buffer this data and inter-
nal DMA bus requests are made judiciously to minimize the amount of
DMA bandwidth that is used on the DMA bus. DAB bus arbitration over-
head and direction change penalties are minimized. This is the default
behavior (BDR=1 in HOST_CONTROL) and the Host DMA port generally fol-
lows this behavior, shown in Table 8-3, for receive (host write) operations:

Table 8-3. Host Write Operations

32-Bit Words in FIFO DMA Request Freq
(SCLK cycles)

Bursts per DMA Request

1 – 4 24 Up to 4

5 – 8 16 4

9 – 12 8 4

>12 2 0

ADSP-BF54x Blackfin Processor Hardware Reference 8-19

Host DMA Port

For example, if there are ten words written into the FIFO by the host pro-
cessor, on the eighth SCLK cycle, DMA is requested. Once the DAB
approves the request, it transfers four words. Assuming the host processor
does not write any new words to the FIFO, the HOSTDP again requests
DMA 16 cycles later and another four words are transferred. Twenty-four
SCLK cycles later, the remaining two words are transferred. Note that
words stored in the FIFO are 32 bits.

For transmit (host read) operation, the values look similar. Refer to
Table 8-4.

This default behavior can be overridden by clearing the burst DMA
requests (BDR) bit in the HOST_CONTROL register. This allows the HOSTDP
to perform internal DMA bus requests whenever there is a single word of
data in the FIFO for host writes and at least one empty slot for host reads.
In this case, DMA bus requests are made more often. This allows higher
throughput through the HOSTDP at the expense of the other peripherals
on the chip.

Table 8-4. Host Read Operation

32-bit Words in FIFO DMA Request Freq
(SCLK cycles)

Bursts per DMA Request

0 – 4 2 0

5 – 8 8 4

9 – 12 16 4

>12 24 Up to 4

Description of Operation

8-20 ADSP-BF54x Blackfin Processor Hardware Reference

Control Commands Between the
External Host and HOSTDP

Control commands can be sent from the host to the HOSTDP by writing
to the configuration port with bits 3 and 2 of the data high. When the
Host DMA port is waiting for configuration, a control command cannot
be sent because it will be misinterpreted as a configuration write. After
configuration is finished, control commands can be issued at any time. If
the host is unsure of whether configuration is pending, it needs to read the
HOST_STATUS register to check.

The commands that are supported are shown in Table 8-5.

The host IRQ command provides a mechanism for the host to interrupt
the HOSTDP. When the host writes a host IRQ command to the config-
uration port, the HIRQ bit in the HOST_STATUS register is set and a
HOSTDP status interrupt is signaled.

The handshake bit (HSHK) in HOST_STATUS can be set or cleared anytime by
the slave processor. This bit can be used as a flag which the host can read.
In an application, the host might interrupt with the host IRQ command
requesting information. The interrupt service routine could then set or
clear the HSHK bit. The host could then read the status register and test for
the value of the HSHK bit.

The DMA finish command performs all the same functions as the
HOSTDP reset (HOSTDP_RST) bit in HOST_CONTROL, except modifying the
HOST_STATUS register contents. In addition, it stops any DMA activity.

Table 8-5. Control Commands

HOST_DATA[7:0] Command

8'b000111xx Host IRQ

8'b001011xx DMA finish

8'b001111xx to 8'b111111xx Ignored

ADSP-BF54x Blackfin Processor Hardware Reference 8-21

Host DMA Port

The DMA FINISH command may not complete right away, instead it
completes only after the DAB state machine has moved to a particular idle
state.

There are additional restrictions on when a DMA Finish command may
be sent by the host processor. For more information see “DMA Control
Commands” on page 7-39.

When the HOSTDP module receives a FINISH command from the host
during a write operation, the DMA channel’s FIFO is still drained grace-
fully and requests a DMA completion interrupt. However, the
HOSTDP’s FIFO is flushed immediately. To avoid loss of data, the host
may want to wait until the FIFOEMPTY bit in HOST_STATUS is asserted before
issuing the finish command.

Programming Model
The following sections describe the programming model for the Host
DMA port.

ADSP-BF54x processor Slave
Figure 8-8 shows how to enable the Host DMA port. It shows how to
properly set up interrupt service routines for both host read and write
which clear the interrupts and prepare the HOSTDP for to be configured
by the host again.

Programming Model

8-22 ADSP-BF54x Blackfin Processor Hardware Reference

Host Processor
Figure 8-9 and Figure 8-10 demonstrate how to program a host processor
to send a configuration to the ADSP-BF54x processor slave. They also
show when to send or receive data in both acknowledge and interrupt
modes.

Figure 8-8. Enable the Host DMA Port

ENABLE PORT IN
HOST_CONTROL

TEST DMA_DONE
IN DMA_IRQ_STATUS

WAIT FOR INTERRUPTS
IN THE SELECTED IVG

W1C DMA_DONE

SET DMA_CMPLT
IN HOST_STATUS

DMA_DONE = 0

DMA_DONE = 1

DMA CHANNEL INTERRUPT SERVICE

ROUTINE. ENTRY CAUSED BY INTERRUPTS,

EXITS AFTER AN RTI INSTRUCTION.

START

BF54x SLAVE PROGRAMING MODEL STOP MODE

HOST READ OR WRITE

RTI

FIND AND CLEAR
INTERRUPT CAUSE

ADSP-BF54x Blackfin Processor Hardware Reference 8-23

Host DMA Port

Figure 8-9. Program Host Processor, Part 1

POLL ALLOW_CNFG
IN HOST_STATUS

WRITE ALL SEVEN
CONFIGURATION WORDS

POLL DMA_RDY
IN HOST_STATUS

READ OR WRITE THE AMOUNT OF
DATA SPECIFIED IN CONFIG VALUES

END

FOLLOW - ON
TRANSACTION?

START

ALLOW_CNFG = 0

READY = 0

ALLOW_CNFG = 1

NO

YES

READY = 1

HOST PROCESSOR

ACKNOWLEDGE MODE WITH DMA

SET TO STOP MODE

Host DMA Port Registers

8-24 ADSP-BF54x Blackfin Processor Hardware Reference

Host DMA Port Registers
Descriptions and bit diagrams for each of the MMRs discussed in this
chapter are provided in the following sections:
“Host DMA Port Control (HOST_CONTROL) Register” on page 8-25
“Host DMA Port Status (HOST_STATUS) Register” on page 8-27
“HOSTDP Timeout (HOST_TIMEOUT) Register” on page 8-29

Figure 8-10. Program Host Processor, Part 2

POLL ALLOW_CNFG
IN HOST_STATUS

WRITE ALL SEVEN
CONFIGURATION WORDS

READ OR WRITE FIFO DEPTH OF DATA

END

FOLLOW -ON
TRANSACTION?

START

ALLOW_CNFG = 0

ALLOW_CNFG = 1

NO

YES

HOST PROCESSOR
INTERRUPT MODE WITH DMA

SET TO STOP MODE

WAIT FOR FALLING EDGE
ON FRDY

ALL DATA READ
OR WRITTEN?

YES

NO

FRDY INTERRUPT

SERVICE ROUTINE

ADSP-BF54x Blackfin Processor Hardware Reference 8-25

Host DMA Port

Host DMA Port Control (HOST_CONTROL) Register
The HOSTDP control register (HOST_CONTROL), shown in Figure 8-11, is
used to enable the HOSTDP module as well as to establish transfer modes
of operation.

Additional information for the HOST_CONTROL register bits include:

• HOSTDP Enable (HOSTDP_EN)
This bit enables the HOSTDP interface. This bit controls the
muxing of the shared HOSTDP and PPI pins. Before disabling the
HOSTDP, always reset it first.

• Little/Big Endian (HOSTDP_END)
When set, this bit swaps the lower and upper byte of data when
reading or writing to HOSTDP FIFO. A value of 0 represents little
endian and a value of 1 represents big endian.

• 8/16-Bit Host Data Transfer (HOSTDP_DATA_SIZE)
This bit sets the HOSTDP external data transfer width. This bit,
along with HOSTDP_EN, controls the muxing of the HOSTDP data
pins and the EPPI pins. A value of 0 is 8-bit data and a value of 1 is
16-bit

Figure 8-11. HOSTDP Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 1 0 0 0 0 0 0 0 0 0

HOSTDP Control Register (HOST_CONTROL)

HOSTDP Enable (HOSTDP_EN)Burst DMA Requests (BDR)

Reset = 0x0400

HOSTDP Endian (HOSTDP_END)

0xFFC03A00

Enable Host Writes (EHW)

Bus Timeout Enable (BT_EN)

Interrupt Mode (INT_MODE)

HRDY Override (HRDY_OVR)

8/16 Bit Mode
(HOSTDP_DATA_SIZE)

HOSTDP Reset (HOSTDP_RST)

 Enable Host Reads (EHR)

Host DMA Port Registers

8-26 ADSP-BF54x Blackfin Processor Hardware Reference

• HOSTDP Reset (HOSTDP_RST)
This is a soft reset which does not affect the contents of
HOST_CONTROL. Programming this bit causes the FIFO to flush,
turns off the DMA channel, and returns the HOSTDP to a state
where it is waiting for configuration. It also causes HOST_STATUS to
clear to the same value as a hard reset with the exception of the BTE
bit, which is always the same as BT_EN in HOST_CTL. Host DMA
port reset will not complete right away, instead it completes only
after the DAB state machine has moved to a particular idle state.
This bit is always read as a binary 0.

• Host Ready Override (HRDY_OVR)
Setting this bit high forces HRDY high. If HRDY_OVR bit is written
high, HRDY is driven high for all remaining FIFO transfers. Also, the
ALLOW_CNFG bit is driven low to prevent accidental configurations.

• Interrupt Mode (INT_MODE)
This bit, when set, is used to select interrupt mode. When cleared,
it selects acknowledge Mode. A value of 0 selects acknowledge
mode and a value of 1 selects interrupt mode.

• Bus Timeout Enable (BT_EN)
This bit, when set, enables HOSTDP’s interrupt to occur when a
current host transaction has not finished before a programmed
timeout value occurs.

• Enable HOSTDP Write (EHW)
This bit, when set, enables HOSTDP’s writes to occur. If disabled,
host writes appear to occur on the pins, but the actual write data is
ignored.

ADSP-BF54x Blackfin Processor Hardware Reference 8-27

Host DMA Port

• Enable HOSTDP Read (EHR)
This bit, when set, enables HOSTDP’s reads to occur. If disabled,
host reads return zero data.

• Burst DMA Requests (BDR)
When set, as by default, the HOSTDP’s module groups multiple
data words and requests DMA bursts to the DAB bus. When
cleared, every individual data word requests its separate DMA
transfer.

Host DMA Port Status (HOST_STATUS) Register
The HOSTDP status register (HOST_STATUS), shown in Figure 8-12, holds
the key status information of the HOSTDP. Bits in this register are read
by the external host to query status of transaction. This register can also be
read and written through PAB. Note the differences in how to write and
clear bits as well as the many bits which are read-only.

Figure 8-12. HOSTDP Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 1 1 0

HOSTDP Status Register (HOST_STATUS)

DMA Ready (DMA_RDY)Bus Timeout Enabled (BTE)

Reset = 0x000C

FIFO Full (FIFOFULL)DMA direction (DMA_DIR)

0xFFC03A04

Allow Config (ALLOW_CNFG)

Host Timeout (HOSTDP_TOUT)

DMA Complete (DMA_CMPLT)

Host Handshake (HSHK)

FIFO Empty (FIFOEMPTY)

Host Interrupt Request (HIRQ)

Host DMA Port Registers

8-28 ADSP-BF54x Blackfin Processor Hardware Reference

Additional information for the HOST_STATUS register bits include:

• DMA Ready (DMA_RDY) - read-only
This bit is set one cycle after the last control word (YMODIFY) is
written to the DMA. The bit is cleared when the COMPLETE bit is set
by software.

• FIFO Full (FIFOFULL) - read-only
This bit is set when the HOSTDP FIFO is full.

• FIFO Empty (FIFOEMPTY) - read-only
This bit is set when the HOSTDP FIFO is empty.

• DMA Complete (DMA_CMPLT) - write-1-to-set
This bit must be set by software in the interrupt service routine
called when the DMA operation is completed. This bit is cleared
after the last control word (YMODIFY) is written to the DMA
controller.

• HOSTDP Handshake (HSHK) - read/write
This bit is set and cleared by software and functions as a gen-
eral-purpose handshake bit. Often it is used to indicate an error to
the host device. This bit does not control HOSTDP hardware and
is cleared by the HOSTDP_RST bit.

• HOSTDP Timeout (HOSTDP_TOUT) - write-1-to-clear
This bit is set when the HOSTDP time-out occurs. When set, it
requests a HOSTDP status interrupt. The interrupt service routine
(ISR) must write this bit to one to clear it.

• HOSTDP Interrupt Request (HIRQ) - write-1-to-clear
This bit is set when the host writes a HOSTDP IRQ control com-
mand to the configuration port. When set, this bit requests a
HOSTDP status interrupt. The interrupt service routine (ISR)
must write this bit to one to clear it.

ADSP-BF54x Blackfin Processor Hardware Reference 8-29

Host DMA Port

• Allow Configurations (ALLOW_CNFG) - read-only
The host processor is required to poll this bit to see when the Host
DMA port is enabled and configuration writes are allowed. This bit
is cleared when the last configuration word (YMODIFY) is written by
the host. The bit is set again when the descriptor is completely
passed to the DMA channel.

• DMA Direction (DMA_DIR) - read-only
This bit is set to 0 when DMA is set for read and set to 1 for DMA
writes. It reflects the WNR bit in the DMA_CONFIG word. If a former
work unit was active, the bit does not update until the DMA_CPLT bit
is set by software.

• Bus Timeout Enabled (BTE) - read-only
This bit is just a copy of the BT_EN bit in the HOST_CONTROL register.
The host can read this bit to determine if software has enabled the
bus timeout feature.

 This bit must be set by the interrupt service routine software which
is called when the DMA is finished.

HOSTDP Timeout (HOST_TIMEOUT) Register
The HOSTDP timeout feature is previously described in “Acknowledge
Mode” on page 8-10.

Figure 8-13. HOSTDP Timeout Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HOSTDP Timeout Register (HOST_TIMEOUT)

Reset = 0x00000xFFC03A08

Programming Examples

8-30 ADSP-BF54x Blackfin Processor Hardware Reference

The HOSTDP timeout register (HOST_TIMEOUT), shown in Figure 8-13,
holds the timeout value. A timer is loaded with this value when a host
transaction is started. If HOSTDP does not respond with HRDY within the
programmed amount of time, the TIMEOUT bit in the HOST_STATUS register
is set and an interrupt is generated. This feature takes effect only when the
BT_EN bit in the HOST_CONTROL register is set to 1.

The length of the timeout generated by this register is governed by the fol-
lowing equation:

For example, using an SCLK frequency of 133 MHz and HOST_TIMEOUT =
0x7ED, the timeout period is approximately one second.

Programming Examples

Listing 8-1. Enable 8-Bit HOSTDP data in pin MUXing

/* Enable 8-bit HOSTDP data in pin MUXing */

P5.H = hi(PORTD_FER);

P5.L = lo(PORTD_FER);

R5.L = PD15 | PD14 | PD13 | PD12 | PD11 | PD10 | PD9 | PD8 | nPD7

| nPD6 | nPD5 | nPD4 | nPD3 | nPD2 | nPD1 | nPD0;

w[P5] = R5.L;

P5.H=hi(PORTD_MUX);

P5.L=lo(PORTD_MUX);

R5.H=hi(MUX(1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0));

R5.L=lo(MUX(1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0));

[P5] = R5;

timeout 2^16 * HOST_TIMEOUT sclk_freq =

ADSP-BF54x Blackfin Processor Hardware Reference 8-31

Host DMA Port

/* Enable 16-bit HOSTDP data in pin MUXing */

P5.H = hi(PORTD_FER);

P5.L = lo(PORTD_FER);

R5.L = PD15 | PD14 | PD13 | PD12 | PD11 | PD10 | PD9 | PD8 | PD7

| PD6 | PD5 | PD4 | PD3 | PD2 | PD1 | PD0;

w[P5] = R5.L;

P5.H=hi(PORTD_MUX);

P5.L=lo(PORTD_MUX);

R5.H=hi(MUX(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1));

R5.L=lo(MUX(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1));

[P5] = R5;

/* Enable HOSTDP Control Signals in pin MUXing */

P5.H = hi(PORTG_FER);

P5.L = lo(PORTG_FER);

R5.L = nPG15 | nPG14 | nPG13 | nPG12 | PG11 | nPG10 | nPG9 | nPG8

| PG7 | PG6 | PG5 | nPG4 | nPG3 | nPG2 | nPG1 | nPG0;

w[P5] = R5.L;

P5.H=hi(PORTH_MUX);

P5.L=lo(PORTH_MUX);

R5.H=hi(MUX(0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0));

R5.L=lo(MUX(0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0));

[P5] = R5;

P5.H = hi(PORTH_FER);

P5.L = lo(PORTH_FER);

R5.L = nPH15 | nPH14 | nPH13 | nPH12 | nPH11 | nPH10 | nPH9 | nPH8

| nPH7 | nPH6 | nPH5 | PH4 | PH3 | nPH2 | nPH1 | nPH0;

w[P5] = R5.L;

Programming Examples

8-32 ADSP-BF54x Blackfin Processor Hardware Reference

P5.H=hi(PORTH_MUX);

P5.L=lo(PORTH_MUX);

R5.H=hi(MUX(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0));

R5.L=lo(MUX(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

[P5] = R5;
/* Enable 16-bit HOSTDP */

P5.H = hi(HOST_CONTROL);
P5.L = lo(HOST_CONTROL);
R5 = HOSTDP_EN /* HOSTDP Enable */
| nHOSTDP_END /* Little endian transfers */
| HOSTDP_DATA_SIZE /* 16-bit Data Size */
| nINT_MODE /* Acknowledge Mode */
| nBT_EN /* Bus timeout disabled */
| EHW /* Enable Host Writes */
| EHR /* Enable Host Reads */
| BDR (z); /* Burst DMA Requests On */

ADSP-BF54x Blackfin Processor Hardware Reference 9-1

9 GENERAL-PURPOSE PORTS

This chapter describes general-purpose ports, pin multiplexing, gen-
eral-purpose input/output (GPIO) functionality, and pin interrupts. This
chapter includes the following sections:

• “Overview” on page 9-1

• “Module Overview” on page 9-3

• “Pin Multiplexing Scheme” on page 9-4

• “GPIO Functionality” on page 9-24

• “Pin Interrupts” on page 9-26

• “Programming Model” on page 9-29

• “Port Registers” on page 9-33

• “Programming Examples” on page 9-66

Overview
The general-purpose ports cover three jobs:

• Pin multiplexing scheme

• GPIO functionality

• Pin interrupts

This chapter characterizes each of the three topics in detail.

Overview

9-2 ADSP-BF54x Blackfin Processor Hardware Reference

Features
The peripheral pins are functionally organized into ten general-purpose
ports designated port A through port J. These ports feature:

• Up to 152 general-purpose I/O (GPIO) pins

• Input mode, output mode, and open-drain mode of GPIO
operation

• Port multiplexing controlled by individual pin-per-pin base

• Identical port multiplexing scheme on all ADSP-BF54x processor
Blackfin processor family derivatives

• No glue hardware required for unused pins

• Four interrupt channels dedicated to pin interrupts

• All port pins provide interrupt functionality

• Byte-wide pin-to-interrupt assignment

ADSP-BF54x Blackfin Processor Hardware Reference 9-3

General-Purpose Ports

Module Overview
A simplified illustration of the GPIO and pin interrupt signal flow is
shown in Figure 9-1.

Figure 9-1. Simplified GPIO and Pin Interrupt Signal Flow

PERIPHERAL 2 (DATA OUT)

PERIPHERAL 1 (DATA OUT)

PERIPHERAL 1 (OUTPUT ENABLE)

PERIPHERAL 2 (OUTPUT ENABLE)

PERIPHERAL 2 (INPUT ENABLE)

PERIPHERAL 1 (INPUT ENABLE)

PORTx_MUX PORTx_FER

PAD

ALL PERIPHERALS (DATA IN)

PORTx (WRITE)

PORTx_DIR

PORTx_INEN

PINTx_PINSTATE
PINTx_EDGE

PORTx (READ)

PINTx_INVERT

PINTx_ASSIGN

PINTx_REQUEST (READ)

PINTx_MASK

PINTx_LATCH (READ)

PINTx_LATCH (W1C)

PINTx_REQUEST (W1C)

Pin Multiplexing Scheme

9-4 ADSP-BF54x Blackfin Processor Hardware Reference

External Interfaces
The pin multiplexing hardware can be seen as a layer between the on-chip
peripherals and the pads of the silicon. All pins grouped into the ports
“port A” to “port J” are controlled by this unit.

Internal Interfaces
All MMR registers of the pin multiplexing, GPIO and pin interrupt con-
trol blocks can be accessed through the PAB bus. There is no DMA
support. Every one of the four pin interrupt modules has its own and ded-
icated interrupt request output signal that connects directly to the SIC
controller, as shown in Figure 9-2 on page 9-26.

Pin Multiplexing Scheme
ADSP-BF54x processor Blackfin processors feature a rich set of on-chip
peripherals. Each set of peripherals has a combination of input and output
signals associated with them. In total, these are many more signals than
pins available on the processors. Therefore, a powerful pin multiplexing
scheme provides best flexibility to external application space.

Table 9-1 shows all peripheral signals that are accessible off the chip
through the general-purpose ports. The individual members of the
ADSP-BF54x processor Blackfin processor family do not feature all the
listed peripherals at the same time. Note that some signals are optional
and are not necessarily required in all operating modes.

ADSP-BF54x Blackfin Processor Hardware Reference 9-5

General-Purpose Ports

Table 9-1. General-Purpose and Special Function Signals

Module Signals On Ports

A
D

SP
-B

F5
49

A
D

SP
-B

F5
48

A
D

SP
-B

F5
47

A
D

SP
-B

F5
44

A
D

SP
-B

F5
42

EBIU (async) Address (22) H, I x x x x x

Bus Handshake (3) J

Clock (1) I

Ready (1) J

NAND Flash
Controller

Control (2) J x x x x x

ATAPI Control (8) J x x x - x

Reset (1) H

HostDMA Port
(HOSTDP)

Data (16) D x x x x -

Control (3) B, G, H

Address (1) H

Acknowledge (1) H

SD/SDIO
Controller

Data (4) C x x x - x

Clock (1) C

Command (1) C

EPPI0 Data (24) D, F x x x x -

Clock (1) G

Frame Sync (3) G, H

EPPI1 Data (16) D x x x x x

Clock (1) E

Frame Sync (3) E, H

EPPI2 Data (8) D x x x x x

Clock (1) G

Frame Sync (3) G, H

Pin Multiplexing Scheme

9-6 ADSP-BF54x Blackfin Processor Hardware Reference

SPORT0 Data (4) C x x x - -

Clock (2) C

Frame Sync (2) C

SPORT1 Data (4) D x x x x x

Clock (2) D

Frame Sync (2) D

SPORT2 Data (4) A x x x x x

Clock (2) A

Frame Sync (2) A

SPORT3 Data (4) A x x x x x

Clock (2) A

Frame Sync (2) A

SPI0 Data (2) E x x x x x

Clock (1) E

Slave Select (1) E

Slave Enable (3) E

SPI1 Data (2) G x x x x x

Clock (1) G

Slave Select (1) G

Slave Enable (3) G

SPI2 Data (2) B –x –x x - -

Clock (1) B

Slave Select (1) B

Slave Enable (3) B

Table 9-1. General-Purpose and Special Function Signals (Cont’d)

Module Signals On Ports

A
D

SP
-B

F5
49

A
D

SP
-B

F5
48

A
D

SP
-B

F5
47

A
D

SP
-B

F5
44

A
D

SP
-B

F5
42

ADSP-BF54x Blackfin Processor Hardware Reference 9-7

General-Purpose Ports

UART0 Data (2) E x x x x x

UART1 Data (2) H x x x x x

Control (2) E

UART2 Data (2) B x x x - -

UART3 Data (2) B x x x x x

Control (2) B

High Speed USB
OTG

x x x - x

CAN01 Data (2) G x x - x x

CAN11 Data (2) G – x - x -

TWI0 Data (1) E x x x x x

Clock (1) E

TWI1 Data (1) B x x x x -

Clock (1) B

Timer 0-7 PWM/Capture/Clock (8) A, B x x x x x

Alternate Clock Input (8) A

Alternate Capture Input (7) A, B, E, G, H

Timer 8-10 PWM/Capture/Clock (3) H x x x x -

Alternate Clock Input (3) H

Alternate Capture Input (3) H

Up/ Down
Counter

Up / Dir (1) H x x x x x

Down / Gate (1) H

Zero Marker (1) G

Table 9-1. General-Purpose and Special Function Signals (Cont’d)

Module Signals On Ports

A
D

SP
-B

F5
49

A
D

SP
-B

F5
48

A
D

SP
-B

F5
47

A
D

SP
-B

F5
44

A
D

SP
-B

F5
42

Pin Multiplexing Scheme

9-8 ADSP-BF54x Blackfin Processor Hardware Reference

Read from Page 0x05 of the on-chip OTP memory when determining
whether a module is available on a respective ADSP-BF54x processor
Blackfin processor. For details, see “System Reset and Booting” on
page 17-1.

The peripheral pins of the ADSP-BF54x processor Blackfin processors are
functionally organized into ten general-purpose ports which are desig-
nated Port A through port J. Most ports consist of 16 pins; a few have
fewer. By default, all port pins are configured for GPIO operation after
reset. In total, there are 152 GPIO-capable pins. Pin interrupt functional-
ity is covered by a separate functional block.

The individual ports are discussed in the following sections.

KEYPAD Rows (8) D, E x –x x - x

Columns (8) D, E

MXVR Data (2) H x – – - -

Clock (2) C

Control (2) G, H

GPIOs GPIOs (152) A-J x x x x x

1 Automotive only.

Table 9-1. General-Purpose and Special Function Signals (Cont’d)

Module Signals On Ports

A
D

SP
-B

F5
49

A
D

SP
-B

F5
48

A
D

SP
-B

F5
47

A
D

SP
-B

F5
44

A
D

SP
-B

F5
42

ADSP-BF54x Blackfin Processor Hardware Reference 9-9

General-Purpose Ports

Port A
Port A consists of 16 pins, referred to as PA0 to PA15, as shown in
Table 9-2. Besides the 16 GPIOs, this port homes all SPORT2 and SPORT3
signals. If the secondary data pins are not needed, the corresponding pins
can be used for general-purpose timer purposes.

Table 9-2. Port A Pin Configuration

Pin GPI
O

PORTA_MU
X

1st
Function
(MUX = 00)

2nd
Function
(MUX = 01)

3rd
Function
(MUX = 10)

4th
Function
(MUX = 11)

Additiona
l
Use

PA0 PA0 1:0 SPORT2 TFS - - - -

PA1 PA1 3:2 SPORT2
DTSEC

TMR4 - - -

PA2 PA2 5:4 SPORT2 DTPRI - - - -

PA3 PA3 7:6 SPORT2 TSCLK - - - -

PA4 PA4 9:8 SPORT2 RFS - - - -

PA5 PA5 11:10 SPORT2
DRSEC

TMR5 - - -

PA6 PA6 13:12 SPORT2 DRPRI - - - -

PA7 PA7 15:14 SPORT2 RSCLK - - - TACLK0
1

PA8 PA8 17:16 SPORT3 TFS - - - TACLK1
1

PA9 PA9 19:18 SPORT3
DTSEC

TMR6 - - -

PA1
0

PA10 21:20 SPORT3 DTPRI - - - TACLK2
1

PA1
1

PA11 23:22 SPORT3 TSCLK - - - TACLK3
1

PA1
2

PA12 25:24 SPORT3 RFS - - - TACLK4
1

Pin Multiplexing Scheme

9-10 ADSP-BF54x Blackfin Processor Hardware Reference

Port B
Port B consists of 15 pins, referred to as PB0 to PB14, as shown in
Table 9-3. Besides the 15 GPIOs, this port homes TW1, UART2, UART3 and
SPI2 signals. If the SPI2 slave select signals are not needed, the corre-
sponding pins can be used for general-purpose timer purposes.

PA1
3

PA13 27:26 SPORT3
DRSEC

TMR7 - - TACLK5
1

PA1
4

PA14 29:28 SPORT3 DRPRI - - - TACLK6
1

PA1
5

PA15 31:30 SPORT3 RSCLK - - - TACI71,
TACLK7
1

1 To enable timer alternate capture and clock inputs, either the GPIO or the multiplexed peripheral
must enable the pin input driver. This driver is not enabled by the timer.

Table 9-3. Port B Pin Configuration

Pin GPI
O

PORTB_MU
X

1st
Function
(MUX = 00)

2nd
Function
(MUX = 01)

3rd
Function
(MUX = 10)

4th
Function
(MUX = 11)

Additiona
l
Use

PB0 PB0 1:0 TWI1 SCL1 - - - -

PB1 PB1 3:2 TWI1 SDA1 - - - -

PB2 PB2 5:4 UART3
RTS

- - - -

PB3 PB3 7:6 UART3
CTS

- - - -

PB4 PB4 9:8 UART2 TX - - - -

Table 9-2. Port A Pin Configuration (Cont’d)

Pin GPI
O

PORTA_MU
X

1st
Function
(MUX = 00)

2nd
Function
(MUX = 01)

3rd
Function
(MUX = 10)

4th
Function
(MUX = 11)

Additiona
l
Use

ADSP-BF54x Blackfin Processor Hardware Reference 9-11

General-Purpose Ports

PB5 PB5 11:10 UART2 RX - - - TACI22

PB6 PB6 13:12 UART3 TX - - - -

PB7 PB7 15:14 UART3 RX - - - TACI32

PB8 PB8 17:16 SPI2 SS TMR0 - - -

PB9 PB9 19:18 SPI2 SSEL1 TMR1 - - -

PB1
0

PB10 21:20 SPI2 SSEL2 TMR2 - - -

PB1
1

PB11 23:22 SPI2 SSEL3 TMR3 - - HWAIT3

PB1
2

PB12 25:24 SPI2 SCK - - - -

PB1
3

PB13 27:26 SPI2 MOSI - - - -

PB1
4

PB14 29:28 SPI2 MISO - - - -

1 PB_0 and PB_1 are I2C pins which also have GPIO capability. Since the I2C pads can only drive
low, the GPIO for these two bits cannot drive a 1. These pads should be used with an external
pull-up, so that a 1 is seen when they are not pulling down.

2 To enable timer alternate capture and clock Inputs, either the GPIO or the multiplexed periph-
eral must enable the pin input driver. This driver is not enabled by the timer.

3 The Boot Host Wait (HWAIT) signal is a GPIO output that is driven and toggled by the boot
kernel at boot time. An external pulling resistor is required for proper operation. A pull-up re-
sistor instructs the HWAIT signal to behave active high (low when ready for data). A pull-down
resistor instructs the HWAIT signal to behave active low (high when ready for data). After boot
it can be used for other purposes. If PB11 is used for other purposes (for example, timer or SPI
operation), the HWAITA signal on PH7 can be used alternatively. The Alternate Host Wait
(HWAITA) can be alternatively used instead of HWAIT on PH7 when programming the
OTP_ALTERNATE_HWAIT bit in the PBS_MAIN_LO OTP memory page. For details, see
“System Reset and Booting” on page 17-1.

Table 9-3. Port B Pin Configuration (Cont’d)

Pin GPI
O

PORTB_MU
X

1st
Function
(MUX = 00)

2nd
Function
(MUX = 01)

3rd
Function
(MUX = 10)

4th
Function
(MUX = 11)

Additiona
l
Use

Pin Multiplexing Scheme

9-12 ADSP-BF54x Blackfin Processor Hardware Reference

Port C
Port C consists of 14 pins, referred to as PC0 to PC13, as shown in
Table 9-4. Besides the 14 GPIOs, this port homes SPORT0 and SDIO
signals.

Table 9-4. Port C Pin Configuration

Pin GPI
O

PORTC_MU
X

1st
Function
(MUX = 00)

2nd
Function
(MUX = 01)

3rd
Function
(MUX = 10)

4th
Function
(MUX = 11)

Additiona
l
Use

PC0 PC0 1:0 SPORT0 TFS - - - -

PC1 PC1 3:2 SPORT0
DTSEC

MMCLK - - -

PC2 PC2 5:4 SPORT0 DTPRI - - - -

PC3 PC3 7:6 SPORT0 TSCLK - - - -

PC4 PC4 9:8 SPORT0 RFS - - - -

PC5 PC5 11:10 SPORT0
DRSEC

 MBCLK - - -

PC6 PC6 13:12 SPORT0 DRPRI - - - -

PC7 PC7 15:14 SPORT0 RSCLK - - - -

PC8 PC8 17:16 SD D0 - - - -

PC9 PC9 19:18 SD D1 - - - -

PC1
0

PC1
0

21:20 SD D2 - - - -

PC1
1

PC1
1

23:22 SD D3 - - - -

PC1
2

PC1
2

25:24 SD CLK - - - -

PC1
3

PC1
3

27:26 SD CMD - - - -

ADSP-BF54x Blackfin Processor Hardware Reference 9-13

General-Purpose Ports

Port D
Port D consists of 16 pins, referred to as PD0 to PD15, as shown in
Table 9-5. Besides the 16 GPIOs, this port homes data signals of all three
EPPI ports and of the host port. Additionally, there are the SPORT1 signals
and four columns and four rows of the keypad peripheral.

This port provides flexible configurations, whereby 8-, 16-, or 24-bit
EPPI configurations can be balanced against 8- or 16-bit host operation.

Table 9-5. Port D Pin Configuration

Pin GPI
O

PORTD_MU
X

1st
Function
(MUX =
00)

2nd
Function
(MUX = 01)

3rd
Function
(MUX = 10)

4th
Function
(MUX =
11)

Additional
Use

PD0 PD0 1:0 PPI1 D0 HOST D8 SPORT1 TFS PPI0 D18 -

PD1 PD1 3:2 PPI1 D1 HOST D9 SPORT1
DTSEC

PPI0 D19 -

PD2 PD2 5:4 PPI1 D2 HOST D10 SPORT1 DTPRI PPI0 D20 -

PD3 PD3 7:6 PPI1 D3 HOST D11 SPORT1 TSCLK PPI0 D21 -

PD4 PD4 9:8 PPI1 D4 HOST D12 SPORT1 RFS PPI0 D22 -

PD5 PD5 11:10 PPI1 D5 HOST D13 SPORT1
DRSEC

PPI0 D23 -

PD6 PD6 13:12 PPI1 D6 HOST D14 SPORT1 DRPRI - -

PD7 PD7 15:14 PPI1 D7 HOST D15 SPORT1 RSCLK - -

PD8 PD8 17:16 PPI1 D8 HOST D0 PPI2 D0 KEY
ROW0

-

PD9 PD9 19:18 PPI1 D9 HOST D1 PPI2 D1 KEY
ROW1

-

PD1
0

PD1
0

21:20 PPI1 D10 HOST D2 PPI2 D2 KEY
ROW2

-

PD1
1

PD1
1

23:22 PPI1 D11 HOST D3 PPI2 D3 KEY
ROW3

-

Pin Multiplexing Scheme

9-14 ADSP-BF54x Blackfin Processor Hardware Reference

Port E
Port E consists of 16 pins, referred to as PE0 to PE15, as shown in
Table 9-6. Besides the 16 GPIOs, this port homes data signals for SPI0,
UART0, and TWI0. Furthermore, there are UART1 hardware flow control sig-
nals and PPI1 clock and frame sync signals. If not all signals of the SPI0
are needed in an application, the associated pins can operate as rows and
columns for the keypad peripheral.

PD1
2

PD1
2

25:24 PPI1 D12 HOST D4 PPI2 D4 KEY COL0 -

PD1
3

PD1
3

27:26 PPI1 D13 HOST D5 PPI2 D5 KEY COL1 -

PD1
4

PD1
4

29:28 PPI1 D14 HOST D6 PPI2 D6 KEY COL2 -

PD1
5

PD1
5

31:30 PPI1 D15 HOST D7 PPI2 D7 KEY COL3 -

Table 9-6. Port E Pin Configuration

Pin GPI
O

PORTE_MU
X

1st
Function
(MUX = 00)

2nd
Function
(MUX = 01)

3rd
Function
(MUX = 10)

4th
Function
(MUX = 11)

Additional
Use

PE0 PE0 1:0 SPI0 SCK KEY COL7 - - -

PE1 PE1 3:2 SPI0 MISO KEY ROW6 - - -

PE2 PE2 5:4 SPI0 MOSI KEY COL6 - - -

PE3 PE3 7:6 SPI0 SS KEY ROW5 - - -

PE4 PE4 9:8 SPI0 SEL1 KEY COL5 - - -

PE5 PE5 11:10 SPI0 SEL2 KEY ROW4 - - -

Table 9-5. Port D Pin Configuration (Cont’d)

Pin GPI
O

PORTD_MU
X

1st
Function
(MUX =
00)

2nd
Function
(MUX = 01)

3rd
Function
(MUX = 10)

4th
Function
(MUX =
11)

Additional
Use

ADSP-BF54x Blackfin Processor Hardware Reference 9-15

General-Purpose Ports

Port F
Port F consists of 16 pins, referred to as PF0 to PF15, as shown in
Table 9-7. Besides the 16 GPIOs, this port homes 16 data signals of the
PPI0 interface. This port can alternatively provide the ATAPI data signals
if not multiplexed with the asynchronous bus.

PE6 PE6 13:12 SPI0 SEL3 KEY COL4 - - -

PE7 PE7 15:14 UART0 TX KEY ROW7 - - -

PE8 PE8 17:16 UART0 RX - - - TACI01

PE9 PE9 19:18 UART1
RTS

- - - -

PE1
0

PE10 21:20 UART1
CTS

- - - -

PE1
1

PE11 23:22 PPI1 CLK - - - -

PE1
2

PE12 25:24 PPI1 FS1 - - - -

PE1
3

PE13 27:26 PPI1 FS2 - - - -

PE1
4

PE14 29:28 TWI0 SCL - - - -

PE1
5

PE15 31:30 TWI0 SDA - - - -

1 To enable timer alternate capture and clock inputs, either the GPIO or the multiplexed peripheral
must enable the pin input driver. This driver is not enabled by the timer.

Table 9-6. Port E Pin Configuration (Cont’d)

Pin GPI
O

PORTE_MU
X

1st
Function
(MUX = 00)

2nd
Function
(MUX = 01)

3rd
Function
(MUX = 10)

4th
Function
(MUX = 11)

Additional
Use

Pin Multiplexing Scheme

9-16 ADSP-BF54x Blackfin Processor Hardware Reference

Table 9-7. Port F Pin Configuration

Pin GPI
O

PORTF_MU
X

1st
Function
(MUX =
00)

2nd Function
(MUX = 01)

3rd
Function
(MUX = 10)

4th
Function
(MUX = 11)

Additiona
l
Use

PF0 PF0 1:0 PPI0 D0 ATAPI D0A1 - - -

PF1 PF1 3:2 PPI0 D1 ATAPI D1A1 - - -

PF2 PF2 5:4 PPI0 D2 ATAPI D2A1 - - -

PF3 PF3 7:6 PPI0 D3 ATAPI D3A1 - - -

PF4 PF4 9:8 PPI0 D4 ATAPI D4A1 - - -

PF5 PF5 11:10 PPI0 D5 ATAPI D5A1 - - -

PF6 PF6 13:12 PPI0 D6 ATAPI D6A1 - - -

PF7 PF7 15:14 PPI0 D7 ATAPI D7A1 - - -

PF8 PF8 17:16 PPI0 D8 ATAPI D8A1 - - -

PF9 PF9 19:18 PPI0 D9 ATAPI D9A1 - - -

PF1
0

PF10 21:20 PPI0 D10 ATAPI

D10A1
- - -

PF1
1

PF11 23:22 PPI0 D11 ATAPI

D11A1
- - -

PF1
2

PF12 25:24 PPI0 D12 ATAPI

D12A1
- - -

PF1
3

PF13 27:26 PPI0 D13 ATAPI

D13A1
- - -

PF1
4

PF14 29:28 PPI0 D14 ATAPI

D14A1
- - -

PF1
5

PF15 31:30 PPI0 D15 ATAPI

D15A1
- - -

1 ATAPI data and address signals are routed to alternate homes when PORTF_MUX[1:0] == b#01.

ADSP-BF54x Blackfin Processor Hardware Reference 9-17

General-Purpose Ports

Port G
Port G consists of 16 pins, referred to as PG0 to PG15, as shown in
Table 9-8. Besides the 16 GPIOs, this port homes EPPI0 control signals,
all CAN signals, as well as the SPI1 signals. If additional SPI1 slave select
signals are not needed by an application, the associated pins can alterna-
tively function as Host DMA port or EPPI2 control signals. Also, the zero
marker input of the counter module is there.

Table 9-8. Port G Pin Configuration

Pin GPI
O

PORTG_MU
X

1st
Function
(MUX =
00)

2nd
Function
(MUX = 01)

3rd
Function
(MUX = 10)

4th
Function
(MUX = 11)

Additional
Use

PG0 PG0 1:0 PPI0 CLK - - - TMRCLK
1

PG1 PG1 3:2 PPI0 FS1 - - - -

PG2 PG2 5:4 PPI0 FS2 ATAPI A0A2 - - -

PG3 PG3 7:6 PPI0 D16 ATAPI A1A2 - - -

PG4 PG4 9:8 PPI0 D17 ATAPI A2A2 - - -

PG5 PG5 11:10 SPI1 SEL1 HOST CE PPI2 FS2 CNT CZM -

PG6 PG6 13:12 SPI1 SEL2 HOST RD PPI2 FS1 - -

PG7 PG7 15:14 SPI1 SEL3 HOST WR PPI2 CLK - -

PG8 PG8 17:16 SPI1 SCK - - - -

PG9 PG9 19:18 SPI1 MISO - - - -

PG1
0

PG1
0

21:20 SPI1 MOSI - - - -

PG1
1

PG1
1

23:22 SPI1 SS MTXONB - - -

PG1
2

PG1
2

25:24 CAN0 TX - - - -

Pin Multiplexing Scheme

9-18 ADSP-BF54x Blackfin Processor Hardware Reference

Port H
Port H consists of 14 pins, referred to as PH0 to PH13, as shown in
Table 9-9. Besides the 14 GPIOs, this port homes six address lines of the
parallel asynchronous memory interface. Furthermore, there are the UART1
data signals and set of miscellaneous control signals, such as Host DMA
port strobes, handshaked-memory DMA request strobes, the third EPPI
frame syncs, and the up- and down-count inputs of the counter module.

The boot host wait (HWAIT) and alternate boot host wait (HWAITA) are not
associated with any hardware block. It is a normal GPIO pin that has a
special purpose during booting. For details, see “System Reset and Boot-
ing” on page 17-1.

PG1
3

PG1
3

27:26 CAN0 RX - - - TACI43

PG1
4

PG1
4

29:28 CAN1 TX - - - -

PG1
5

PG1
5

31:30 CAN1 RX - - - TACI53

1 TMRCLK serves all eleven general-purpose timers.
2 ATAPI data and address signals are routed to alternate homes when PORTF_MUX[1:0] == b#01.
3 To enable timer alternate capture and clock inputs, either the GPIO or the multiplexed peripheral

must enable the pin input driver. This driver is not enabled by the timer.

Table 9-8. Port G Pin Configuration (Cont’d)

Pin GPI
O

PORTG_MU
X

1st
Function
(MUX =
00)

2nd
Function
(MUX = 01)

3rd
Function
(MUX = 10)

4th
Function
(MUX = 11)

Additional
Use

ADSP-BF54x Blackfin Processor Hardware Reference 9-19

General-Purpose Ports

Table 9-9. Port H Pin Configuration

Pin GPI
O

PORTH_MU
X

1st Function
(MUX = 00)

2nd
Function
(MUX = 01)

3rd
Function
(MUX = 10)

4th
Function
(MUX = 11)

Additional
Use

PH0 PH0 1:0 UART1 TX PPI1 FS3 - - -

PH1 PH1 3:2 UART1 RX EPPI0 FS3 - - TACI11

PH2 PH2 5:4 ATAPI
RESET

TMR8 EPPI2 FS3 - -

PH3 PH3 7:6 HOST
ADDR

TMR9 CNT CDG - -

PH4 PH4 9:8 HOST ACK TMR10 CNT CUD - -

PH5 PH5 11:10 MTX DMAR0 - - TACI81,

TACLK81

PH6 PH6 13:12 MRX DMAR1 - - TACI91,

TACLK91

PH7 PH7 15:14 MRXONB - - - TACI101,

TACLK101,

HWAIT2

PH8 PH8 17:16 A4 - - -

PH9 PH9 19:18 A5 - - - -

PH1
0

PH1
0

21:20 A6 - - - -

PH1
1

PH1
1

23:22 A7 - - - -

PH1
2

PH1
2

25:24 A8 - - - -

PH1
3

PH1
3

27:26 A9 - - - -

1 To enable timer alternate capture and clock inputs, either the GPIO or the multiplexed peripheral
must enable the pin input driver. This driver is not enabled by the timer.

Pin Multiplexing Scheme

9-20 ADSP-BF54x Blackfin Processor Hardware Reference

Port I
Port I consists of 16 pins, referred to as PI0 to PI15, as shown in
Table 9-10. Besides the 16 GPIOs, this port homes the upper 16 address
lines of the parallel asynchronous memory interface and the clock for the
synchronous NOR flash interface.

2 The Boot Host Wait (HWAIT) signal is a GPIO output that is driven and toggled by the boot kernel
at boot time. An external pulling resistor is required for proper operation. A pull-up resistor instructs
the HWAIT signal to behave active high (low when ready for data). A pull-down resistor instructs the
HWAIT signal to behave active low (high when ready for data). After boot, it can be used for other
purposes. If PH7 is used for other purposes (for example, MXVR operation), the HWAITA signal on
PB11 can be used alternatively. HWAITA operation is enabled by programming the
OTP_ALTERNATE_HWAIT bit in the PBS_MAIN_LO OTP memory page. For details, see “Sys-
tem Reset and Booting” on page 17-1.

Table 9-10. Port I Pin Configuration

Pin GPI
O

PORTI_MU
X

1st
Function
(MUX =
00)

2nd
Function
(MUX = 01)

3rd
Function
(MUX = 10)

4th
Function
(MUX = 11)

Additional
Use

PI0 PI0 1:0 A10 - - - -

PI1 PI1 3:2 A11 - - - -

PI2 PI2 5:4 A12 - - - -

PI3 PI3 7:6 A13 - - - -

PI4 PI4 9:8 A14 - - - -

PI5 PI5 11:10 A15 - - - -

PI6 PI6 13:12 A16 - - - -

PI7 PI7 15:14 A17 - - - -

PI8 PI8 17:16 A18 - - - -

PI9 PI9 19:18 A19 - - - -

PI1
0

PI10 21:20 A20 - - - -

ADSP-BF54x Blackfin Processor Hardware Reference 9-21

General-Purpose Ports

Port J
Port J consists of 16 pins, referred to as PJ0 to PJ15, as shown in
Table 9-11. Besides the 16 GPIOs, this port provides various control sig-
nals for the NAND flash, NOR flash, and ATAPI interfaces.

PI1
1

PI11 23:22 A21 - - - -

PI1
2

PI12 25:24 A22 - - - -

PI1
3

PI13 27:26 A23 - - - -

PI1
4

PI14 29:28 A24 - - - -

PI1
5

PI15 31:30 A25 NOR CLK - - -

Table 9-11. Port J Pin Configuration

Pin GPI
O

PORTJ_MU
X

1st Function
(MUX = 00)

2nd
Function
(MUX = 01)

3rd
Function
(MUX = 10)

4th
Function
(MUX = 11)

Additional
Use

PJ0 PJ0 1:0 AMC ARDY /
NOR WAIT

- - - -

PJ1 PJ1 3:2 NAND CE - - - -

PJ2 PJ2 5:4 NAND RB - - - -

PJ3 PJ3 7:6 ATAPI DIOR - - - -

PJ4 PJ4 9:8 ATAPI DIOW - - - -

PJ5 PJ5 11:10 ATAPI CS0 - - - -

Table 9-10. Port I Pin Configuration (Cont’d)

Pin GPI
O

PORTI_MU
X

1st
Function
(MUX =
00)

2nd
Function
(MUX = 01)

3rd
Function
(MUX = 10)

4th
Function
(MUX = 11)

Additional
Use

Pin Multiplexing Scheme

9-22 ADSP-BF54x Blackfin Processor Hardware Reference

Port Multiplexing Control
By default, after reset, all port pins are in GPIO input mode with their
output and input drivers disabled. As a result, all unused port pins can be
left unconnected. Disabled pins appear in high-impedance mode to exter-
nal circuits and are pulled low to internal logic.

Each port has two dedicated MMRs that control the port multiplexing,
the 16-bit function enable (PORTx_FER) registers, and the 32-bit port
multiplexing (PORTx_MUX) registers.

 In this chapter, the naming convention for registers and bits uses a
lowercase “x” to represent A to J. For example, the name PORTx_FER
represents PORTA_FER, PORTB_FER, and so on, through PORTJ_FER.

PJ6 PJ6 13:12 ATAPI CS1 - - - -

PJ7 PJ7 15:14 ATAPI
DMACK

- - - -

PJ8 PJ8 17:16 ATAPI
DMARQ

- - - -

PJ9 PJ9 19:18 ATAPI INTRQ - - - -

PJ1
0

PJ10 21:20 ATAPI IORDY - - - -

PJ1
1

PJ11 23:22 AMC BR - - - -

PJ1
2

PJ12 25:24 AMC BG - - - -

PJ1
3

PJ13 27:26 AMC BGH - - - -

Table 9-11. Port J Pin Configuration (Cont’d)

Pin GPI
O

PORTJ_MU
X

1st Function
(MUX = 00)

2nd
Function
(MUX = 01)

3rd
Function
(MUX = 10)

4th
Function
(MUX = 11)

Additional
Use

ADSP-BF54x Blackfin Processor Hardware Reference 9-23

General-Purpose Ports

The bit name Px0 represents PA0, PB0, and so on, through PJ0.
This convention is used in register descriptions common to the ten
ports.

Each bit in the 16-bit PORTx_FER registers represents one port pin. For
example, bit 1 of the PORTA_FER register sets the PA1 pin to GPIO opera-
tion mode when cleared. When set, one of the available peripheral
functions becomes active. The PA1 pin can either operate as a secondary
transmit data signal of SPORT2 or as PWM/capture/clock pin of Timer 4.

Every pair of bits in the PORTx_MUX registers controls the multiplexing
between the peripheral functions available to a pin. This is a 2-bit field
because some pins provide up to four options. The truth table of the bit
field is identical to all ADSP-BF54x processor Blackfin processor family
derivatives, regardless of whether all options are available on a given
silicon.

In the case of the PA1 example, bit 3 and bit 2 control the multiplexer of
the PA1 pin. The truth table of the entire function enable and multiplexing
control is shown in Table 9-12.

Table 9-12. Port Multiplexing Control Example

PORTA_FER [1] PORTA_MUX [3:2] PA1 Function

0 00 GPIO

0 01 GPIO

0 10 GPIO

0 11 GPIO

1 00 SPORT2 DTSEC

1 01 TMR4

1 10 Reserved

1 11 Reserved

GPIO Functionality

9-24 ADSP-BF54x Blackfin Processor Hardware Reference

The port multiplexing scheme provides best granularity, as every pin can
be controlled on an individual basis. If SPORT2 is used in any mode that
does not require the secondary transmit data feature, the PA1 pin can still
be used as GPIO or as TMR4.

GPIO Functionality
Every port pin can operate in GPIO mode. This is the default after reset
and is controlled by the port-specific PORTx_FER function enable register.
Every port has a dedicated set of MMR registers that control GPIO func-
tionality. Every bit in these registers represents a certain GPIO pin of the
specific port. Refer to Figure 9-2 for a related diagram.

 In this chapter, the naming convention for registers and bits uses a
lowercase “x” to represent A through J. For example, the name
PORTx_FER represents PORTA_FER, PORTB_FER, and so on, through
PORTJ_FER. The bit name Px0 represents PA0, PB0, and so on,
through PJ0. This convention is used to discuss registers common
to the ten ports.

By default, every GPIO is in input mode. The input drivers are not
enabled which avoids the need for unnecessary current sinks and the exter-
nal pulling of resistors on unused or do not care pins.

Input Mode
The default mode of every GPIO pin after reset is input mode, but the
input drivers are not enabled. To enable any GPIO input drivers, set the
corresponding bits in the input enable register PORTx_INEN. When
enabled, a read from the PORTx register returns the logical state of the
input pin. The input signal does not overwrite the state of the flip-flop
used for the output case. That state can only be altered by software. If the
input driver is enabled, a write to the PORTx register can alter the state of
the flip-flop, but the change cannot be read back.

ADSP-BF54x Blackfin Processor Hardware Reference 9-25

General-Purpose Ports

Output Mode
Any GPIO pin can be configured for output mode. The GPIO output
drivers are enabled by setting the corresponding bits in the direction regis-
ters. Direction registers are implemented as a pair of write-1-to-set (W1S)
and write-1-to-clear (W1C) MMRs, called PORTx_DIR_SET and
PORTx_DIR_CLEAR. This way, direction of the signal flow of individual
GPIO pins can be altered by separate software threads without mutually
impacting other GPIOs on the same port. Both registers return the same
value when read. A logical 1 indicates an enabled output.

The state of output pins is controlled by the PORTx registers. A logical 0
drives the output low. A logical 1 drives the output high. While the PORTx
register can be written to alter all GPIOs of a specific port at once, there is
also a pair of W1S and W1C MMRs, called PORTx_SET and PORTx_CLEAR
that enable manipulation of individual GPIO outputs. The state of the
outputs can be obtained by reading the PORTx registers.

Because the state of the GPIO output can already be controlled before the
output driver is enabled, it is recommended to first set or clear the
flip-flop to avoid any volatile levels on the output.

Open-Drain Mode
Every GPIO can also be used in open-drain mode. To accomplish this,
first, clear the respective bit in the PORTx or PORTx_CLEAR register then set
the one bit in the PORTx_INEN register. Reads from the PORTx register then
return the status from the pin and do not return the state of the internal
flip-flop. By toggling the output driver through the PORTx_DIR_SET and
PORTx_DIR_CLEAR register pair, the output signal can be pulled low or
three-stated as required. Note that the polarity of the driven signal can be
inverted when the internal flip-flop is set instead. When a GPIO port is
used in open-drain mode, care must be taken not to exceed the VIH oper-
ating condition associated with the respective pin.

Pin Interrupts

9-26 ADSP-BF54x Blackfin Processor Hardware Reference

Pin Interrupts
On the ADSP-BF54x processor Blackfin processor family, the pin inter-
rupts have been completely decoupled from basic GPIO functionality due
to the following set of advantages:

• Flexible mapping scheme enables pins from up to four different
ports to be grouped to one common interrupt scheme.

• Interrupts work on input and output pins regardless of whether in
GPIO or functional mode.

ADSP-BF54x processor Blackfin processors have four SIC interrupt chan-
nels dedicated to pin interrupt purposes. These channels are managed by
four hardware blocks, called PINT0, PINT1, PINT2, and PINT3. Every PINTx
block can sense to up to 32 pins. While PINT0 and PINT1 can sense the
pins of port A and port B, PINT2 and PINT3 manage all the pins from port
C to port J as shown in Figure 9-2.

The diagram shown in Figure 9-1 on page 9-3 shows the signal flow from
the pin through the PINTx module to the SIC controller. Special attention
is required with regard to how the pins are assigned to the PINTx modules
as shown in Figure 9-3.

Figure 9-2. Signal Flow

 IRQ19 IRQ20 IRQ94 IRQ95

PORT C - PORT JPORT A - PORT B

PINT0 PINT1 PINT2 PINT3

ADSP-BF54x Blackfin Processor Hardware Reference 9-27

General-Purpose Ports

The ten ports are subdivided into 8-bit half ports, resulting in lower and
upper half 8-bit units. The PINTx_ASSIGN registers control the 8-bit multi-
plexers shown in Figure 9-3. Lower half units of eight pins can be

Figure 9-3. Pin-to-Interrupt Assignment

IRQ19 PAB IRQ20 PAB

PINT0 PINT1

31 24 23 16 15 8 7 0 31 24 23 16 15 8 7 0

31 24 23 16 15 8 7 0 31 24 23 16 15 8 7 0

BYTE 3 BYTE 2 BYTE 1 BYTE 0 BYTE 3 BYTE 2 BYTE 1 BYTE 0

BYTE 3 BYTE 2 BYTE 1 BYTE 0BYTE 3 BYTE 2 BYTE 1 BYTE 0

PINT2 PINT3

IRQ94 PAB IRQ95 PAB

P
C

.H
P

D
.H

P
E

.H
P

F
.H

P
G

.H
P

H
.H

P
I.

H
P

J
.H

P
C

.L
P

D
.L

P
E

.L
P

F
.L

P
G

.L
P

H
.L

P
I.

L
P

J
.L

P
C

.L
P

D
.L

P
E

.L
P

F
.L

P
G

.L
P

H
.L

P
I.

L
P

J
.L

P
C

.H
P

D
.H

P
E

.H
P

F
.H

P
G

.H
P

H
.H

P
I.

H
P

J
.H

P
C

.H
P

D
.H

P
E

.H
P

F
.H

P
G

.H
P

H
.H

P
I.

H
P

J
.H

P
C

.L
P

D
.L

P
E

.L
P

F
.L

P
G

.L
P

H
.L

P
I.

L
P

J
.L

P
C

.L
P

D
.L

P
E

.L
P

F
.L

P
G

.L
P

H
.L

P
I.

L
P

J
.L

P
C

.H
P

D
.H

P
E

.H
P

F
.H

P
G

.H
P

H
.H

P
I.

H
P

J
.H

P
A

.H

P
B

.H

P
A

.L

P
B

.L

P
A

.H

P
B

.H

P
A

.L

P
B

.L

P
A

.H

P
B

.H

P
A

.L

P
B

.L

P
A

.H

P
B

.H

P
A

.L

P
B

.L

Pin Interrupts

9-28 ADSP-BF54x Blackfin Processor Hardware Reference

forwarded to either byte 0 or byte 2 of either associated PINTx block.
Upper half units can be forwarded to either byte 1 or byte 3 of the pin
interrupt blocks, without further restrictions.

When a half port is assigned to a byte in any PINTx block, the state of the
eight pins (regardless of GPIO or function, input or output) can be seen
in the PINTx_PINSTATE register. While neither input nor output drivers of
the pin are enabled, the pin state is read as zero. The PINTx_PINSTATE reg-
ister reports the inverted state of the pin if the signal inverter is activated
by the PINTx_INVERT_SET register. The inverter can be enabled on a indi-
vidual bit by bit basis. Every bit in the PINTx_INVERT_SET/CLEAR register
pair represents a pin signal.

As shown in Figure 9-1 on page 9-3, the interrupt can be generated on an
active high level of the signal or a raising edge of the signal. The default
behavior is level sensitivity. PINTx_EDGE_SET register can be used to change
the behavior to edge sensitivity. By enabling the inverter using the
PINTx_INVERT_SET register, the interrupt behavior can be altered to trigger
on active-low signals or falling edges.

The PINTx modules also assist if both signal edges are required to generate
interrupts. If two different interrupt requests are required, the
PINTx_ASSIGN registers can route a signal to two different PINTx blocks,
where one block inverts the signal and the other one does not. If both sig-
nal edges can report over the same interrupt, every signal can be routed
through to different bit positions within a single PINTx block, where the
inverted should be enabled for either one. The servicing software routine
can then tell from the PINTx_LATCH whether a falling, a rising or both
edges have occurred.

Regardless whether in level-sensitive or edge-sensitive mode, an interrupt
is always latched by the hardware. Latched signals can be read from the
PINTx_LATCH registers. Latches can only be cleared by software or a hard-
ware reset. To clear, W1C the PINTx_REQUEST or the PINTx_LATCH register.
If the pin state does not change by the time the interrupt service routine
returns, the interrupt is requested again, when in level-sensitive mode.

ADSP-BF54x Blackfin Processor Hardware Reference 9-29

General-Purpose Ports

Because every PINTx block groups up to 32 pin signals, the
PINTx_MASK_SET/CLEAR register pair can control which of the signals can
request an interrupt at system level. Software may interrogate the
PINTx_REQUEST register for signaling pins. PINTx_REQUEST bits represent a
logical AND between the mask and the latch. When any of these bits is
set, an interrupt is forwarded to the SIC controller.

All MMR registers in the pin interrupt module are 32 bits wide. Individ-
ual bits of PINTx registers represent the associated pins. Nevertheless, the
32 bits can also be seen as four groups of eight bits. Each group can man-
age up to eight pins out of either the lower or an upper half of any
associated port.

Programming Model
Figure 9-4, Figure 9-5, and Figure 9-6 show the programming model of
the general-purpose ports. This includes GPIO input and output opera-
tion, as well as open-drain mode. Figure 9-6 (the third part of the
diagram) illustrates the model of the pin interrupt PINTx modules.

Programming Model

9-30 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 9-4. GPIO Programming Model Flow (Part 1)

GPIO OR

PERIPHERAL?

PERIPHERAL
WRITE PORTX_FER TO ENABLE FEATURE

WRITE PORTX_MUX TO SELECT PERIPHERAL

SEE PERIPHERAL FOR MORE DETAILS

WRITE PORTX_FER TO CLEAR REQUIRED BITS (OPTIONAL

IF PORTX_FER HAS NOT BEEN MODIFIED AFTER RESET).

GPIO

WRITE PORTX_SET (W1S) FOR REQUIRED PINS

GPIO OUTPUT OR

INPUT/OPEN-DRAIN?

INITIAL STATE

WRITE PORTX_CLEAR (W1C) REQUIRED PINS

SET CLEAR

WRITE PORTX TO SET OR CLEAR APPROPRIATE BITS

SET & CLEAR

WRITE PORTX_DIR_SET (W1S) TO ENABLE

OUTPUT DRIVERS FOR REQUIRED PINS

OUTPUT

CHANGE STATE

WRITE PORTX_SET (W1S) FOR REQUIRED PINS WRITE PORTX_CLEAR (W1C) FOR REQUIRED PINS

WRITE PORTX TO SET OR CLEAR APPROPRIATE BITS

SET CLEAR

SET & CLEAR

START

CHANGE STATE

YES

NO
DONE

A

INPUT/
OPEN-DRAIN

ADSP-BF54x Blackfin Processor Hardware Reference 9-31

General-Purpose Ports

Figure 9-5. GPIO Programming Model Flow (Part 2)

WRITE PORTX_DIR_CLEAR

(W1C) TO SET APPROPRIATE PINS

AS INPUTS

WRITE PORTX_INEN TO SET

APPROPRIATE BITS TO ENABLE THE

INPUT DRIVERS

PIN POLARITY

INVERTED *

WRITE PINTX_INVERT_SET

(W1S) TO INVERT THE POLARITY OF

THE APPROPRIATE PINS

WRITE PINTX_INVERT_CLEAR

(W1C) TO DISABLE THE INVERTERS

ON THE APPROPRIATE PINS

NOYES

INTERRUPT ABILITY

NO

YES

B
DONE

INPUT OR

OPEN-DRAIN**

INPUT

WRITE PORTX_CLEAR (W1C)

FOR REQUIRED PINS

WRITE PORTX_INEN TO SET

APPROPRIATE BITS TO ENABLE THE

INPUT DRIVERS

OPEN-DRAIN

WRITE PORTX_DIR_SET

(W1S) TO SET APPROPRIATE PINS

AS OUTPUTS AND ENTER ACTIVE

STATE (LOGIC 0)

CHANGE STATE

WRITE PORTX_DIR_CLEAR

(W1C) TO SET APPROPRIATE PINS

AS INPUTS AND ENTER NON-

ACTIVE STATE (LOGIC 1)

ACTIVE OR NON-ACTIVE

STATE

ACTIVE NON-ACTIVE

YES

DONE

NO

A

* The pin polarity set at this point will effect the behaviour of the interrupt functionality detailed in the next figure. If the invert
bit is set for a given pin, and edge sensitive interrupts are configured. The interrupt will be latched on detection of a falling edge.
If the inverse bit is clear, edge sensitive interrupts are generated on the rising edge. For level sensitive interrupts, enabling the
inverter will result in interrupts being detected on a low signal. Disabling the inverter will result in interrupts being latched on high
signals.

** Open-drain mode assumes an external pull-up resistor is fitted

Programming Model

9-32 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 9-6. GPIO Programming Model Flow (Part 3)

B

REGISTER ISR TO REQUIRED

EVTX

ASSIGN PINTX TO REQUIRED

IVGX VIA SIC_IARX

UNMASK PINTX INTERRUPT VIA

SIC_IMASKX

UNMASK EVT_IVGX INTERRUPT

VIA IMASK

ASSIGN PORT PINS TO

APPROPRIATE PINTX BLOCK VIA

PINTX_ASSIGN

UNMASK PINTX INTERRUPT VIA

PINTX_MASK_SET (W1S)

EDGE OR LEVEL

SENSITIVE
WRITE PINTX_EDGE_SET

(W1S) TO SET APPROPRIATE

BITS FOR EDGE SENSITIVITY

WRITE PINTX_EDGE_CLEAR

(W1C) TO SET APPROPRIATE

BITS FOR LEVEL SENSITIVITY

LEVEL EDGE

CLEAR POTENTIAL LATCHES DUE TO

HISTORY VIA PINTX_LATCH

(W1C)

WRITE PORTX_INEN TO SET

APPROPRIATE BITS TO ENABLE THE

INPUT DRIVERS

DONE

ADSP-BF54x Blackfin Processor Hardware Reference 9-33

General-Purpose Ports

Port Registers
The general-purpose ports are programmed using memory-mapped
registers.

Table 9-13 and Table 9-14 on page 9-40 list the registers for port control
and pin interrupt programming.

Table 9-13. Port Control Registers (Multiplexing and GPIO)

Address Offset Register Name Description Notes

0xFFC0 14C0 PORTA_FER “Port x Function Enable
(PORTx_FER) Registers” on
page 9-45

R/W
Reset = 0x0000

0xFFC0 14C4 PORTA “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W
Reset = 0x0000

0xFFC0 14C8 PORTA_SET “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W1S
Reset = 0x0000

0xFFC0
14CC

PORTA_CLEAR “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W1C
Reset = 0x0000

0xFFC0 14D0 PORTA_DIR_SET “Port x GPIO Direction Set
(PORTx_DIR_SET/CLEAR) Regis-
ters” on page 9-48

R/W1S
Reset = 0x0000

0xFFC0 14D4 PORTA_DIR_CLEAR “Port x GPIO Direction Set
(PORTx_DIR_SET/CLEAR) Regis-
ters” on page 9-48

R/W1C
Reset = 0x0000

0xFFC0 14D8 PORTA_INEN “Port x GPIO Input Enable
(PORTx_INEN) Registers” on
page 9-50

R/W
Reset = 0x0000

0xFFC0
14DC

PORTA_MUX “Port Multiplexer Control
(PORTx_MUX) Registers” on
page 9-46

R/W
Reset = 0x0000 0000

Port Registers

9-34 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 14E0 PORTB_FER “Port x Function Enable
(PORTx_FER) Registers” on
page 9-45

R/W
Reset = 0x0000

0xFFC0 14E4 PORTB “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W
Reset = 0x0000

0xFFC0 14E8 PORTB_SET “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W1S
Reset = 0x0000

0xFFC0 14EC PORTB_CLEAR “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W1C
Reset = 0x0000

0xFFC0 14F0 PORTB_DIR_SET “Port x GPIO Direction Set
(PORTx_DIR_SET/CLEAR) Regis-
ters” on page 9-48

R/W1S
Reset = 0x0000

0xFFC0 14F4 PORTB_DIR_CLEAR “Port x GPIO Direction Set
(PORTx_DIR_SET/CLEAR) Regis-
ters” on page 9-48

R/W1C
Reset = 0x0000

0xFFC0 14F8 PORTB_INEN “Port x GPIO Input Enable
(PORTx_INEN) Registers” on
page 9-50

R/W
Reset = 0x0000

0xFFC0 14FC PORTB_MUX “Port Multiplexer Control
(PORTx_MUX) Registers” on
page 9-46

R/W
Reset = 0x0000 0000

0xFFC0 1500 PORTC_FER “Port x Function Enable
(PORTx_FER) Registers” on
page 9-45

R/W
Reset = 0x0000

0xFFC0 1504 PORTC “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W
Reset = 0x0000

0xFFC0 1508 PORTC_SET “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W1S
Reset = 0x0000

Table 9-13. Port Control Registers (Multiplexing and GPIO) (Cont’d)

Address Offset Register Name Description Notes

ADSP-BF54x Blackfin Processor Hardware Reference 9-35

General-Purpose Ports

0xFFC0 150C PORTC_CLEAR “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W1C
Reset = 0x0000

0xFFC0 1510 PORTC_DIR_SET “Port x GPIO Direction Set
(PORTx_DIR_SET/CLEAR) Regis-
ters” on page 9-48

R/W1S
Reset = 0x0000

0xFFC0 1514 PORTC_DIR_CLEAR “Port x GPIO Direction Set
(PORTx_DIR_SET/CLEAR) Regis-
ters” on page 9-48

R/W1C
Reset = 0x0000

0xFFC0 1518 PORTC_INEN “Port x GPIO Input Enable
(PORTx_INEN) Registers” on
page 9-50

R/W
Reset = 0x0000

0xFFC0 151C PORTC_MUX “Port Multiplexer Control
(PORTx_MUX) Registers” on
page 9-46

R/W
Reset = 0x0000 0000

0xFFC0 1520 PORTD_FER “Port x Function Enable
(PORTx_FER) Registers” on
page 9-45

R/W
Reset = 0x0000

0xFFC0 1524 PORTD “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W
Reset = 0x0000

0xFFC0 1528 PORTD_SET “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W1S
Reset = 0x0000

0xFFC0 152C PORTD_CLEAR “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W1C
Reset = 0x0000

0xFFC0 1530 PORTD_DIR_SET “Port x GPIO Direction Set
(PORTx_DIR_SET/CLEAR) Regis-
ters” on page 9-48

R/W1S
Reset = 0x0000

0xFFC0 1534 PORTD_DIR_CLEA
R

“Port x GPIO Direction Set
(PORTx_DIR_SET/CLEAR) Regis-
ters” on page 9-48

R/W1C
Reset = 0x0000

Table 9-13. Port Control Registers (Multiplexing and GPIO) (Cont’d)

Address Offset Register Name Description Notes

Port Registers

9-36 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 1538 PORTD_INEN “Port x GPIO Input Enable
(PORTx_INEN) Registers” on
page 9-50

R/W
Reset = 0x0000

0xFFC0 153C PORTD_MUX “Port Multiplexer Control
(PORTx_MUX) Registers” on
page 9-46

R/W
Reset = 0x0000 0000

0xFFC0 1540 PORTE_FER “Port x Function Enable
(PORTx_FER) Registers” on
page 9-45

R/W
Reset = 0x0000

0xFFC0 1544 PORTE “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W
Reset = 0x0000

0xFFC0 1548 PORTE_SET “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W1S
Reset = 0x0000

0xFFC0 154C PORTE_CLEAR “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W1C
Reset = 0x0000

0xFFC0 1550 PORTE_DIR_SET “Port x GPIO Direction Set
(PORTx_DIR_SET/CLEAR) Regis-
ters” on page 9-48

R/W1S
Reset = 0x0000

0xFFC0 1554 PORTE_DIR_CLEAR “Port x GPIO Direction Set
(PORTx_DIR_SET/CLEAR) Regis-
ters” on page 9-48

R/W1C
Reset = 0x0000

0xFFC0 1558 PORTE_INEN “Port x GPIO Input Enable
(PORTx_INEN) Registers” on
page 9-50

R/W
Reset = 0x0000

0xFFC0 155C PORTE_MUX “Port Multiplexer Control
(PORTx_MUX) Registers” on
page 9-46

R/W
Reset = 0x0000 0000

0xFFC0 1560 PORTF_FER “Port x Function Enable
(PORTx_FER) Registers” on
page 9-45

R/W
Reset = 0x0000

Table 9-13. Port Control Registers (Multiplexing and GPIO) (Cont’d)

Address Offset Register Name Description Notes

ADSP-BF54x Blackfin Processor Hardware Reference 9-37

General-Purpose Ports

0xFFC0 1564 PORTF “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W
Reset = 0x0000

0xFFC0 1568 PORTF_SET “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W1S
Reset = 0x0000

0xFFC0 156C PORTF_CLEAR “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W1C
Reset = 0x0000

0xFFC0 1570 PORTF_DIR_SET “Port x GPIO Direction Set
(PORTx_DIR_SET/CLEAR) Regis-
ters” on page 9-48

R/W1S
Reset = 0x0000

0xFFC0 1574 PORTF_DIR_CLEAR “Port x GPIO Direction Set
(PORTx_DIR_SET/CLEAR) Regis-
ters” on page 9-48

R/W1C
Reset = 0x0000

0xFFC0 1578 PORTF_INEN “Port x GPIO Input Enable
(PORTx_INEN) Registers” on
page 9-50

R/W
Reset = 0x0000

0xFFC0 157C PORTF_MUX “Port Multiplexer Control
(PORTx_MUX) Registers” on
page 9-46

R/W
Reset = 0x0000 0000

0xFFC0 1580 PORTG_FER “Port x Function Enable
(PORTx_FER) Registers” on
page 9-45

R/W
Reset = 0x0000

0xFFC0 1584 PORTG “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W
Reset = 0x0000

0xFFC0 1588 PORTG_SET “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W1S
Reset = 0x0000

0xFFC0 158C PORTG_CLEAR “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W1C
Reset = 0x0000

Table 9-13. Port Control Registers (Multiplexing and GPIO) (Cont’d)

Address Offset Register Name Description Notes

Port Registers

9-38 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 1590 PORTG_DIR_SET “Port x GPIO Direction Set
(PORTx_DIR_SET/CLEAR) Regis-
ters” on page 9-48

R/W1S
Reset = 0x0000

0xFFC0 1594 PORTG_DIR_CLEA
R

“Port x GPIO Direction Set
(PORTx_DIR_SET/CLEAR) Regis-
ters” on page 9-48

R/W1C
Reset = 0x0000

0xFFC0 1598 PORTG_INEN “Port x GPIO Input Enable
(PORTx_INEN) Registers” on
page 9-50

R/W
Reset = 0x0000

0xFFC0 159C PORTG_MUX “Port Multiplexer Control
(PORTx_MUX) Registers” on
page 9-46

R/W
Reset = 0x0000 0000

0xFFC0 15A0 PORTH_FER “Port x Function Enable
(PORTx_FER) Registers” on
page 9-45

R/W
Reset = 0x0000

0xFFC0 15A4 PORTH “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W
Reset = 0x0000

0xFFC0 15A8 PORTH_SET “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W1S
Reset = 0x0000

0xFFC0 15AC PORTH_CLEAR “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W1C
Reset = 0x0000

0xFFC0 15B0 PORTH_DIR_SET “Port x GPIO Direction Set
(PORTx_DIR_SET/CLEAR) Regis-
ters” on page 9-48

R/W1S
Reset = 0x0000

0xFFC0 15B4 PORTH_DIR_CLEA
R

“Port x GPIO Direction Set
(PORTx_DIR_SET/CLEAR) Regis-
ters” on page 9-48

R/W1C
Reset = 0x0000

0xFFC0 15B8 PORTH_INEN “Port x GPIO Input Enable
(PORTx_INEN) Registers” on
page 9-50

R/W
Reset = 0x0000

Table 9-13. Port Control Registers (Multiplexing and GPIO) (Cont’d)

Address Offset Register Name Description Notes

ADSP-BF54x Blackfin Processor Hardware Reference 9-39

General-Purpose Ports

0xFFC0 15BC PORTH_MUX “Port Multiplexer Control
(PORTx_MUX) Registers” on
page 9-46

R/W
Reset = 0x0000 0000

0xFFC0 15C0 PORTI_FER “Port x Function Enable
(PORTx_FER) Registers” on
page 9-45

R/W
Reset = 0x0000

0xFFC0 15C4 PORTI “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W
Reset = 0x0000

0xFFC0 15C8 PORTI_SET “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W1S
Reset = 0x0000

0xFFC0
15CC

PORTI_CLEAR “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W1C
Reset = 0x0000

0xFFC0 15D0 PORTI_DIR_SET “Port x GPIO Direction Set
(PORTx_DIR_SET/CLEAR) Regis-
ters” on page 9-48

R/W1S
Reset = 0x0000

0xFFC0 15D4 PORTI_DIR_CLEAR “Port x GPIO Direction Set
(PORTx_DIR_SET/CLEAR) Regis-
ters” on page 9-48

R/W1C
Reset = 0x0000

0xFFC0 15D8 PORTI_INEN “Port x GPIO Input Enable
(PORTx_INEN) Registers” on
page 9-50

R/W
Reset = 0x0000

0xFFC0
15DC

PORTI_MUX “Port Multiplexer Control
(PORTx_MUX) Registers” on
page 9-46

R/W
Reset = 0x0000 0000

0xFFC0 15E0 PORTJ_FER “Port x Function Enable
(PORTx_FER) Registers” on
page 9-45

R/W
Reset = 0x0000

0xFFC0 15E4 PORTJ “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W
Reset = 0x0000

Table 9-13. Port Control Registers (Multiplexing and GPIO) (Cont’d)

Address Offset Register Name Description Notes

Port Registers

9-40 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 15E8 PORTJ_SET “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W1S
Reset = 0x0000

0xFFC0 15EC PORTJ_CLEAR “Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

R/W1C
Reset = 0x0000

0xFFC0 15F0 PORTJ_DIR_SET “Port x GPIO Direction Set
(PORTx_DIR_SET/CLEAR) Regis-
ters” on page 9-48

R/W1S
Reset = 0x0000

0xFFC0 15F4 PORTJ_DIR_CLEAR “Port x GPIO Direction Set
(PORTx_DIR_SET/CLEAR) Regis-
ters” on page 9-48

R/W1C
Reset = 0x0000

0xFFC0 15F8 PORTJ_INEN “Port x GPIO Input Enable
(PORTx_INEN) Registers” on
page 9-50

R/W
Reset = 0x0000

0xFFC0 15FC PORTJ_MUX “Port Multiplexer Control
(PORTx_MUX) Registers” on
page 9-46

R/W
Reset = 0x0000 0000

Table 9-14. Pin Interrupt Registers

Address
Offset

Register Name Description Notes

0xFFC0 1400 PINT0_MASK_SET “Pin Interrupt Mask
(PINTx_MASK_SET/
PINTx_MASK_CLEAR) Register
Pairs” on page 9-54

R/W1S
Reset = 0x0000 0000

0xFFC0 1404 PINT0_MASK_CLEAR “Pin Interrupt Mask
(PINTx_MASK_SET/
PINTx_MASK_CLEAR) Register
Pairs” on page 9-54

R/W1C
Reset = 0x0000 0000

0xFFC0 1408 PINT0_REQUEST “Interrupt Request and Latch
(PINTx_REQUEST/
PINTx_LATCH) Registers” on
page 9-55

R/W1C
Reset = 0x0000 0000

Table 9-13. Port Control Registers (Multiplexing and GPIO) (Cont’d)

Address Offset Register Name Description Notes

ADSP-BF54x Blackfin Processor Hardware Reference 9-41

General-Purpose Ports

0xFFC0
140C

PINT0_ASSIGN “Pin Interrupt Assignment
(PINTx_ASSIGN) Registers” on
page 9-63

R/W
Reset = 0x0000 0101

0xFFC0 1410 PINT0_EDGE_SET “Interrupt Edge
(PINTx_EDGE_SET/
PINTx_EDGE_CLEAR) Register
Pairs” on page 9-58

R/W1S
Reset = 0x0000 0000

0xFFC0 1414 PINT0_EDGE_CLEAR “Interrupt Edge
(PINTx_EDGE_SET/
PINTx_EDGE_CLEAR) Register
Pairs” on page 9-58

R/W1C
Reset = 0x0000 0000

0xFFC0 1418 PINT0_INVERT_SET “Pin Interrupt Invert Set
(PINTx_INVERT_SET/
PINTx_INVERT_CLEAR) Reg-
isters” on page 9-61

R/W1S
Reset = 0x0000 0000

0xFFC0
141C

PINT0_INVERT_CLEA
R

“Pin Interrupt Invert Set
(PINTx_INVERT_SET/
PINTx_INVERT_CLEAR) Reg-
isters” on page 9-61

R/W1C
Reset = 0x0000 0000

0xFFC0 1420 PINT0_PINSTATE “Pin Interrupt Pin State
(PINTx_PINSTATE) Register”
on page 9-60

RO
Reset = 0x0000 0000

0xFFC0 1424 PINT0_LATCH “Interrupt Request and Latch
(PINTx_REQUEST/
PINTx_LATCH) Registers” on
page 9-55

R/W1C
Reset = 0x0000 0000

0xFFC0 1430 PINT1_MASK_SET “Pin Interrupt Mask
(PINTx_MASK_SET/
PINTx_MASK_CLEAR) Register
Pairs” on page 9-54

R/W1S
Reset = 0x0000 0000

0xFFC0 1434 PINT1_MASK_CLEAR “Pin Interrupt Mask
(PINTx_MASK_SET/
PINTx_MASK_CLEAR) Register
Pairs” on page 9-54

R/W1C
Reset = 0x0000 0000

Table 9-14. Pin Interrupt Registers (Cont’d)

Address
Offset

Register Name Description Notes

Port Registers

9-42 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 1438 PINT1_REQUEST “Interrupt Request and Latch
(PINTx_REQUEST/
PINTx_LATCH) Registers” on
page 9-55

R/W1C
Reset = 0x0000 0000

0xFFC0
143C

PINT1_ASSIGN “Pin Interrupt Assignment
(PINTx_ASSIGN) Registers” on
page 9-63

R/W
Reset = 0x0101 0000

0xFFC0 1440 PINT1_EDGE_SET “Interrupt Edge
(PINTx_EDGE_SET/
PINTx_EDGE_CLEAR) Register
Pairs” on page 9-58

R/W1S
Reset = 0x0000 0000

0xFFC0 1444 PINT1_EDGE_CLEAR “Interrupt Edge
(PINTx_EDGE_SET/
PINTx_EDGE_CLEAR) Register
Pairs” on page 9-58

R/W1C
Reset = 0x0000 0000

0xFFC0 1448 PINT1_INVERT_SET “Pin Interrupt Invert Set
(PINTx_INVERT_SET/
PINTx_INVERT_CLEAR) Reg-
isters” on page 9-61

R/W1S
Reset = 0x0101 0000

0xFFC0
144C

PINT1_INVERT_CLEA
R

“Pin Interrupt Invert Set
(PINTx_INVERT_SET/
PINTx_INVERT_CLEAR) Reg-
isters” on page 9-61

R/W1C
Reset = 0x0000 0000

0xFFC0 1450 PINT1_PINSTATE “Pin Interrupt Pin State
(PINTx_PINSTATE) Register”
on page 9-60

RO
Reset = 0x0000 0000

0xFFC0 1454 PINT1_LATCH “Interrupt Request and Latch
(PINTx_REQUEST/
PINTx_LATCH) Registers” on
page 9-55

R/W1C
Reset = 0x0000 0000

0xFFC0 1460 PINT2_MASK_SET “Pin Interrupt Mask
(PINTx_MASK_SET/
PINTx_MASK_CLEAR) Register
Pairs” on page 9-54

R/W1S
Reset = 0x0000 0000

Table 9-14. Pin Interrupt Registers (Cont’d)

Address
Offset

Register Name Description Notes

ADSP-BF54x Blackfin Processor Hardware Reference 9-43

General-Purpose Ports

0xFFC0 1464 PINT2_MASK_CLEAR “Pin Interrupt Mask
(PINTx_MASK_SET/
PINTx_MASK_CLEAR) Register
Pairs” on page 9-54

R/W1C
Reset = 0x0000 0000

0xFFC0 1468 PINT2_REQUEST “Interrupt Request and Latch
(PINTx_REQUEST/
PINTx_LATCH) Registers” on
page 9-55

R/W1C
Reset = 0x0000 0000

0xFFC0
146C

PINT2_ASSIGN “Pin Interrupt Assignment
(PINTx_ASSIGN) Registers” on
page 9-63

R/W
Reset = 0x0000 0101

0xFFC0 1470 PINT2_EDGE_SET “Interrupt Edge
(PINTx_EDGE_SET/
PINTx_EDGE_CLEAR) Register
Pairs” on page 9-58

R/W1S
Reset = 0x0000 0000

0xFFC0 1474 PINT2_EDGE_CLEAR “Interrupt Edge
(PINTx_EDGE_SET/
PINTx_EDGE_CLEAR) Register
Pairs” on page 9-58

R/W1C
Reset = 0x0000 0000

0xFFC0 1478 PINT2_INVERT_SET “Pin Interrupt Invert Set
(PINTx_INVERT_SET/
PINTx_INVERT_CLEAR) Reg-
isters” on page 9-61

R/W1S
Reset = 0x0000 0000

0xFFC0
147C

PINT2_INVERT_CLEA
R

“Pin Interrupt Invert Set
(PINTx_INVERT_SET/
PINTx_INVERT_CLEAR) Reg-
isters” on page 9-61

R/W1C
Reset = 0x0000 0000

0xFFC0 1480 PINT2_PINSTATE “Pin Interrupt Pin State
(PINTx_PINSTATE) Register”
on page 9-60

RO
Reset = 0x0000 0000

0xFFC0 1484 PINT2_LATCH “Interrupt Request and Latch
(PINTx_REQUEST/
PINTx_LATCH) Registers” on
page 9-55

R/W1C
Reset = 0x0000 0000

Table 9-14. Pin Interrupt Registers (Cont’d)

Address
Offset

Register Name Description Notes

Port Registers

9-44 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 1490 PINT3_MASK_SET “Pin Interrupt Mask
(PINTx_MASK_SET/
PINTx_MASK_CLEAR) Register
Pairs” on page 9-54

R/W1S
Reset = 0x0000 0000

0xFFC0 1494 PINT3_MASK_CLEAR “Pin Interrupt Mask
(PINTx_MASK_SET/
PINTx_MASK_CLEAR) Register
Pairs” on page 9-54

R/W1C
Reset = 0x0000 0000

0xFFC0 1498 PINT3_REQUEST “Interrupt Request and Latch
(PINTx_REQUEST/
PINTx_LATCH) Registers” on
page 9-55

R/W1C
Reset = 0x0000 0000

0xFFC0
149C

PINT3_ASSIGN “Pin Interrupt Assignment
(PINTx_ASSIGN) Registers” on
page 9-63

R/W
Reset = 0x0202 0303

0xFFC0 14A0 PINT3_EDGE_SET “Interrupt Edge
(PINTx_EDGE_SET/
PINTx_EDGE_CLEAR) Register
Pairs” on page 9-58

R/W1S
Reset = 0x0000 0000

0xFFC0 14A4 PINT3_EDGE_CLEAR “Interrupt Edge
(PINTx_EDGE_SET/
PINTx_EDGE_CLEAR) Register
Pairs” on page 9-58

R/W1C
Reset = 0x0000 0000

0xFFC0 14A8 PINT3_INVERT_SET “Pin Interrupt Invert Set
(PINTx_INVERT_SET/
PINTx_INVERT_CLEAR) Reg-
isters” on page 9-61

R/W1S
Reset = 0x0000 0000

0xFFC0
14AC

PINT3_INVERT_CLEA
R

“Pin Interrupt Invert Set
(PINTx_INVERT_SET/
PINTx_INVERT_CLEAR) Reg-
isters” on page 9-61

R/W1C
Reset = 0x0000 0000

Table 9-14. Pin Interrupt Registers (Cont’d)

Address
Offset

Register Name Description Notes

ADSP-BF54x Blackfin Processor Hardware Reference 9-45

General-Purpose Ports

Port Multiplexing Registers
The port multiplexing registers are described in the following sections:

• “Port x Function Enable (PORTx_FER) Registers” on page 9-45

• “Port Multiplexer Control (PORTx_MUX) Registers” on
page 9-46

For information on using these registers, see “Pin Multiplexing Scheme”
on page 9-4.

Port x Function Enable (PORTx_FER) Registers

After reset, all pins default to GPIO mode (See Figure 9-7). Setting a bit
in the port function enable registers enables a peripheral module to take
ownership of the pin. The function enable bits impact output control
only. Regardless of the setting of the function enable bits, both GPIO and
peripherals can still sense the pin input. Once a function is enabled, it is
up to the PORTx_MUX registers as to which peripheral takes control.

0xFFC0 14B0 PINT3_PINSTATE “Pin Interrupt Pin State
(PINTx_PINSTATE) Register”
on page 9-60

RO
Reset = 0x0000 0000

0xFFC0 14B4 PINT3_LATCH “Interrupt Request and Latch
(PINTx_REQUEST/
PINTx_LATCH) Registers” on
page 9-55

R/W1C
Reset = 0x0000 0000

Table 9-14. Pin Interrupt Registers (Cont’d)

Address
Offset

Register Name Description Notes

Port Registers

9-46 ADSP-BF54x Blackfin Processor Hardware Reference

Port Multiplexer Control (PORTx_MUX) Registers

The multiplexer controls which peripheral takes ownership of a pin, if not
in GPIO mode. Some ports have up to four different functions, while oth-
ers have just a single function. Two bits are required to describe every
multiplexer on an individual pin-by-pin scheme.

As a result, PORTx_MUX registers are 32 bits wide. Bit 0 and Bit 1 control
the multiplexer of Pin 0. Bit 2 and Bit 3 control the multiplexer of Pin 1.
Bit 30 and Bit 31 control the multiplexer of Pin 15.

The value of any MUXy bit has no affect on the port pins when the associ-
ated Pxy bit in the PORTx_FER registers is 0. Even if a port has only one
function, the PORTx_MUX register is still present. For single function ports
(no multiplexing is needed), leave the MUXy bits at 0 (default).

Figure 9-7. Port x Function Enable Registers

Port x Function Enable Registers (PORTx_FER)

R/W

Reset = 0x0000A: 0xFFC0 14C0
B: 0xFFC0 14E0
C: 0xFFC0 1500
D: 0xFFC0 1520
E: 0xFFC0 1540
F: 0xFFC0 1560
G: 0xFFC0 1580
H: 0xFFC0 15A0
I: 0xFFC0 15C0
J: 0xFFC0 15E0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Px0 (Port x Bit 0)

For all bits:
0 – GPIO mode
1 – Peripheral mode

Px1 (Port x Bit 1)

Px2 (Port x Bit 2)

Px3 (Port x Bit 3)

Px4 (Port x Bit 4)

Px5 (Port x Bit 5)

Px6 (Port x Bit 6)

Px7 (Port x Bit 7)

Px15 (Port x Bit 15)

Px14 (Port x Bit 14)

Px13 (Port x Bit 13)

Px12 (Port x Bit 12)

Px11 (Port x Bit 11)

Px10 (Port x Bit 10)

Px9 (Port x Bit 9)

Px8 (Port x Bit 8)

ADSP-BF54x Blackfin Processor Hardware Reference 9-47

General-Purpose Ports

Normally, the PORTx_MUX register is accessed by 32-bit load/store instruc-
tions over the PAB bus (See Figure 9-8). The lower 16 bits can be accessed
faster by 16-bit operations, alternately.

Figure 9-8. Port x Multiplexer Control Registers

Port x Multiplexer Control Registers (PORTx_MUX)

R/W

Reset = 0x0000 0000A: 0xFFC0 14DC
B: 0xFFC0 14FC
C: 0xFFC0 151C
D: 0xFFC0 153C
E: 0xFFC0 155C
F: 0xFFC0 157C
G: 0xFFC0 159C
H: 0xFFC0 15BC
I: 0xFFC0 15DC
J: 0xFFC0 15FC

00 0 0 0 0 0 0 0 0 0 0 0 00 0

For all bit fields:
00 = MUXy_0

= default peripheral option
01 = MUXy_1

= 1st alt. peripheral option
10 = MUXy_2

= 2nd alt. peripheral option
11 = MUXy_3

= 3rd alt. peripheral option

MUX15 (Port x Mux 15)

MUX14 (Port x Mux 14)

MUX13 (Port x Mux 13)

MUX12 (Port x Mux 12) MUX11 (Port x Mux 11)

MUX10 (Port x Mux 10)

MUX9 (Port x Mux 9)

MUX8 (Port x Mux 8)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

MUX0 (Port x Mux 0)

MUX1 (Port x Mux 1)

MUX2 (Port x Mux 2)

MUX3 (Port x Mux 3)MUX4 (Port x Mux 4)

MUX5 (Port x Mux 5)

MUX6 (Port x Mux 6)

MUX7 (Port x Mux 7)

31 30 29 28 27 1617181920212223242526

Port Registers

9-48 ADSP-BF54x Blackfin Processor Hardware Reference

GPIO Registers
The general-purpose I/O registers are described in the following sections.

• “Port x GPIO Direction Set (PORTx_DIR_SET/CLEAR) Regis-
ters” on page 9-48

• “Port x GPIO Input Enable (PORTx_INEN) Registers” on
page 9-50

• “Port x GPIO Data (PORTx/ PORTx_SET/PORTx_CLEAR)
Registers” on page 9-51

For information on using these registers, see “GPIO Functionality” on
page 9-24.

Port x GPIO Direction Set
(PORTx_DIR_SET/CLEAR) Registers

The direction registers control the output drivers of the GPIOs (See
Figure 9-9 and Figure 9-10)). If set, the output driver is enabled and the
GPIO is in output mode. If cleared as by default, the output driver is dis-
abled. Note that the input driver is not enabled by default.

ADSP-BF54x Blackfin Processor Hardware Reference 9-49

General-Purpose Ports

Figure 9-9. Port x GPIO Direction Set Registers

Figure 9-10. Port x GPIO Direction Clear Registers

Port x GPIO Direction Set Registers (PORTx_DIR_SET)

R/W1S

Reset = 0x0000A: 0xFFC0 14D0
B: 0xFFC0 14F0
C: 0xFFC0 1510
D: 0xFFC0 1530
E: 0xFFC0 1550
F: 0xFFC0 1570
G: 0xFFC0 1590
H: 0xFFC0 15B0
I: 0xFFC0 15D0
J: 0xFFC0 15F0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Px0 (Port x Bit 0)

For all bits:
0 – Output disabled
1 – Output enabled

Px1 (Port x Bit 1)

Px2 (Port x Bit 2)

Px3 (Port x Bit 3)

Px4 (Port x Bit 4)

Px5 (Port x Bit 5)

Px6 (Port x Bit 6)

Px7 (Port x Bit 7)

Px15 (Port x Bit 15)

Px14 (Port x Bit 14)

Px13 (Port x Bit 13)

Px12 (Port x Bit 12)

Px11 (Port x Bit 11)

Px10 (Port x Bit 10)

Px9 (Port x Bit 9)

Px8 (Port x Bit 8)

Port x GPIO Direction Clear Registers (PORTx_DIR_CLEAR)

R/W1C

Reset = 0x0000A: 0xFFC0 14D4
B: 0xFFC0 14F4
C: 0xFFC0 1514
D: 0xFFC0 1534
E: 0xFFC0 1554
F: 0xFFC0 1574
G: 0xFFC0 1594
H: 0xFFC0 15B4
I: 0xFFC0 15D4
J: 0xFFC0 15F4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Px0 (Port x Bit 0)

For all bits:
0 – Output disabled
1 – Output enabled

Px1 (Port x Bit 1)

Px2 (Port x Bit 2)

Px3 (Port x Bit 3)

Px4 (Port x Bit 4)

Px5 (Port x Bit 5)

Px6 (Port x Bit 6)

Px7 (Port x Bit 7)

Px15 (Port x Bit 15)

Px14 (Port x Bit 14)

Px13 (Port x Bit 13)

Px12 (Port x Bit 12)

Px11 (Port x Bit 11)

Px10 (Port x Bit 10)

Px9 (Port x Bit 9)

Px8 (Port x Bit 8)

Port Registers

9-50 ADSP-BF54x Blackfin Processor Hardware Reference

Port x GPIO Input Enable (PORTx_INEN) Registers

By default, the input drivers are disabled after reset. To use a pin in GPIO
input mode, the input driver must be enabled by writing a “1” to the
PORTx_INEN register. If the input is enabled, reads from the
PORTx/PORTx_SET/PORTx_CLEAR ports return the state of the pins.

However, the state of the output is not overwritten by the input (See
Figure 9-11). It is altered by software writes only. Input and output driv-
ers can be enabled at the same time. In this case, a read of the data register
returns the true value of the data register and not the pin state.

Figure 9-11. Port x GPIO Input Enable Registers

Port x GPIO Input Enable Registers (PORTx_INEN)

R/W

Reset = 0x0000A: 0xFFC0 14D8
B: 0xFFC0 14F8
C: 0xFFC0 1518
D: 0xFFC0 1538
E: 0xFFC0 1558
F: 0xFFC0 1578
G: 0xFFC0 1598
H: 0xFFC0 15B8
I: 0xFFC0 15D8
J: 0xFFC0 15F8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Px0 (Port x Bit 0)

For all bits:
0 – Input disabled
1 – Input enabled

Px1 (Port x Bit 1)

Px2 (Port x Bit 2)

Px3 (Port x Bit 3)

Px4 (Port x Bit 4)

Px5 (Port x Bit 5)

Px6 (Port x Bit 6)

Px7 (Port x Bit 7)

Px15 (Port x Bit 15)

Px14 (Port x Bit 14)

Px13 (Port x Bit 13)

Px12 (Port x Bit 12)

Px11 (Port x Bit 11)

Px10 (Port x Bit 10)

Px9 (Port x Bit 9)

Px8 (Port x Bit 8)

ADSP-BF54x Blackfin Processor Hardware Reference 9-51

General-Purpose Ports

Port x GPIO Data (PORTx/
PORTx_SET/PORTx_CLEAR) Registers

This group of registers controls the state of GPIO pins in output mode.
Writes to the PORTx register impact the state of all pins of the port that are
in output mode, for instance, that have their output driver enabled by the
PORTx_DIR_SET and PORTx_DIR_CLEAR registers. The PORTx_SET and
PORTx_CLEAR registers enable the software to set or clear specific pins with-
out impacting other pins of the port.

When the input driver is enabled by the PORTx_INEN register, reads from
any of the three registers return the state of the respective pins (See
Table 9-12 on page 9-23 through Table 9-14 on page 9-40). When the
input driver is not enabled as by default, reads from any of the registers
return the value previously written to the registers.

Figure 9-12. Port x GPIO Data Registers

Port x GPIO Data Registers (PORTx)

R/W

Reset = 0x0000A: 0xFFC0 14C4
B: 0xFFC0 14E4
C: 0xFFC0 1504
D: 0xFFC0 1524
E: 0xFFC0 1544
F: 0xFFC0 1564
G: 0xFFC0 1584
H: 0xFFC0 15A4
I: 0xFFC0 15C4
J: 0xFFC0 15E4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Px0 (Port x Bit 0)

For all bits:
0 – Signal low
1 – Signal high

Px1 (Port x Bit 1)

Px2 (Port x Bit 2)

Px3 (Port x Bit 3)

Px4 (Port x Bit 4)

Px5 (Port x Bit 5)

Px6 (Port x Bit 6)

Px7 (Port x Bit 7)

Px15 (Port x Bit 15)

Px14 (Port x Bit 14)

Px13 (Port x Bit 13)

Px12 (Port x Bit 12)

Px11 (Port x Bit 11)

Px10 (Port x Bit 10)

Px9 (Port x Bit 9)

Px8 (Port x Bit 8)

Port Registers

9-52 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 9-13. Port x GPIO Data Set Registers

Figure 9-14. Port x GPIO Data Clear Registers

Port x GPIO Data Set Registers (PORTx_SET)

W1S

Reset = 0x0000A: 0xFFC0 14C8
B: 0xFFC0 14E8
C: 0xFFC0 1508
D: 0xFFC0 1528
E: 0xFFC0 1548
F: 0xFFC0 1568
G: 0xFFC0 1588
H: 0xFFC0 15A8
I: 0xFFC0 15C8
J: 0xFFC0 15E8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Px0 (Port x Bit 0)

For all bits:
0 – Signal low
1 – Signal high

Px1 (Port x Bit 1)

Px2 (Port x Bit 2)

Px3 (Port x Bit 3)

Px4 (Port x Bit 4)

Px5 (Port x Bit 5)

Px6 (Port x Bit 6)

Px7 (Port x Bit 7)

Px15 (Port x Bit 15)

Px14 (Port x Bit 14)

Px13 (Port x Bit 13)

Px12 (Port x Bit 12)

Px11 (Port x Bit 11)

Px10 (Port x Bit 10)

Px9 (Port x Bit 9)

Px8 (Port x Bit 8)

Port x GPIO Data Clear Registers (PORTx_CLEAR)

W1C

Reset = 0x0000A: 0xFFC0 14CC
B: 0xFFC0 14EC
C: 0xFFC0 150C
D: 0xFFC0 152C
E: 0xFFC0 154C
F: 0xFFC0 156C
G: 0xFFC0 158C
H: 0xFFC0 15AC
I: 0xFFC0 15CC
J: 0xFFC0 15EC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Px0 (Port x Bit 0)

For all bits:
0 – signal low
1 – signal high

Px1 (Port x Bit 1)

Px2 (Port x Bit 2)

Px3 (Port x Bit 3)

Px4 (Port x Bit 4)

Px5 (Port x Bit 5)

Px6 (Port x Bit 6)

Px7 (Port x Bit 7)

Px15 (Port x Bit 15)

Px14 (Port x Bit 14)

Px13 (Port x Bit 13)

Px12 (Port x Bit 12)

Px11 (Port x Bit 11)

Px10 (Port x Bit 10)

Px9 (Port x Bit 9)

Px8 (Port x Bit 8)

ADSP-BF54x Blackfin Processor Hardware Reference 9-53

General-Purpose Ports

Pin Interrupt Registers
All PINTx registers are 32 bits wide and can be accessed by 32-bit
load/store instructions. They also support 16-bit type of operation where
the upper 16 bits are ignored and the application uses the lower 16 bits
only. Consequently, all PINTx registers support 32-bit PAB accesses as well
as 16-bit PAB accesses for the lower half words. Applications may use
faster 16-bit accesses as long as they do not require functionality of upper
register halves.

The pin interrupt registers are described in the following sections.

• “Pin Interrupt Mask (PINTx_MASK_SET/
PINTx_MASK_CLEAR) Register Pairs” on page 9-54

• “Interrupt Request and Latch (PINTx_REQUEST/
PINTx_LATCH) Registers” on page 9-55

• “Interrupt Edge (PINTx_EDGE_SET/ PINTx_EDGE_CLEAR)
Register Pairs” on page 9-58

• “Pin Interrupt Pin State (PINTx_PINSTATE) Register” on
page 9-60

• “Pin Interrupt Invert Set (PINTx_INVERT_SET/
PINTx_INVERT_CLEAR) Registers” on page 9-61

• “Pin Interrupt Assignment (PINTx_ASSIGN) Registers” on
page 9-63

Port Registers

9-54 ADSP-BF54x Blackfin Processor Hardware Reference

Pin Interrupt Mask (PINTx_MASK_SET/
PINTx_MASK_CLEAR) Register Pairs

The pairs of W1S and W1C registers enable interrupt functionality on
respective pins (See Figure 9-15 and Figure 9-16). Setting a bit enables
the interrupt. After reset, all bits are cleared. Note that the mask cannot be
written directly by the PAB bus (no data register). Masks are controlled by
W1S and W1C operations only.

Figure 9-15. Pin Interrupt Mask Set Registers

Pin Interrupt Mask Set Registers (PINTx_MASK_SET)

W1S

Reset = 0x0000 00000: 0xFFC01400
1: 0xFFC01430
2: 0xFFC01460
3: 0xFFC01490

00 0 0 0 0 0 0 0 0 0 0 0 00 0

For all bits:
0 – Interrupt disable
1 – Interrupt enable

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIQ0 (Pin Interrupt 0)

PIQ1 (Pin Interrupt 1)

PIQ2 (Pin Interrupt 2)

PIQ3 (Pin Interrupt 3)PIQ12 (Pin Interrupt 12)

PIQ13 (Pin Interrupt 13)

PIQ14 (Pin Interrupt 14)

PIQ15 (Pin Interrupt 15)

31 30 29 28 27 1617181920212223242526

PIQ7 (Pin Interrupt 7)

PIQ6 (Pin Interrupt 6)

PIQ5 (Pin Interrupt 5)

PIQ4 (Pin Interrupt 4)

PIQ8 (Pin Interrupt 8)

PIQ9 (Pin Interrupt 9)

PIQ10 (Pin Interrupt 10

PIQ11 (Pin Interrupt 11)

PIQ16 (Pin Interrupt 16)

PIQ17 (Pin Interrupt 17)

PIQ18 (Pin Interrupt 18)

PIQ19 (Pin Interrupt 19)PIQ28 (Pin Interrupt 28)

PIQ29 (Pin Interrupt 29)

PIQ30 (Pin Interrupt 30)

PIQ31 (Pin Interrupt 31)

PIQ23 (Pin Interrupt 23)

PIQ22 (Pin Interrupt 22)

PIQ21 (Pin Interrupt 21)

PIQ20 (Pin Interrupt 20)

PIQ24 (Pin Interrupt 24)

PIQ25 (Pin Interrupt 25)

PIQ26 (Pin Interrupt 26

PIQ27 (Pin Interrupt 27)

ADSP-BF54x Blackfin Processor Hardware Reference 9-55

General-Purpose Ports

Interrupt Request and Latch (PINTx_REQUEST/
PINTx_LATCH) Registers

Both registers indicate whether an interrupt request is latched on the
respective pin (See Figure 9-17). The PINTx_LATCH register is a latch that
operates regardless of the interrupt masks. Bits of the PINTx_REQUEST regis-
ter depend on the mask register. The PINTx_REQUEST register is a logical
AND of the PINTx_LATCH register and the interrupt mask.

Figure 9-16. Pin Interrupt Mask Clear Registers

Pin Interrupt Mask Clear Registers (PINTx_MASK_CLEAR)

W1C

Reset = 0x0000 00000: 0xFFC01404
1: 0xFFC01434
2: 0xFFC01464
3: 0xFFC01494

00 0 0 0 0 0 0 0 0 0 0 0 00 0

For all bits:
0 – Interrupt disable
1 – Interrupt enable

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIQ0 (Pin Interrupt 0)

PIQ1 (Pin Interrupt 1)

PIQ2 (Pin Interrupt 2)

PIQ3 (Pin Interrupt 3)PIQ12 (Pin Interrupt 12)

PIQ13 (Pin Interrupt 13)

PIQ14 (Pin Interrupt 14)

PIQ15 (Pin Interrupt 15)

31 30 29 28 27 1617181920212223242526

PIQ7 (Pin Interrupt 7)

PIQ6 (Pin Interrupt 6)

PIQ5 (Pin Interrupt 5)

PIQ4 (Pin Interrupt 4)

PIQ8 (Pin Interrupt 8)

PIQ9 (Pin Interrupt 9)

PIQ10 (Pin Interrupt 10

PIQ11 (Pin Interrupt 11)

PIQ16 (Pin Interrupt 16)

PIQ17 (Pin Interrupt 17)

PIQ18 (Pin Interrupt 18)

PIQ19 (Pin Interrupt 19)PIQ28 (Pin Interrupt 28)

PIQ29 (Pin Interrupt 29)

PIQ30 (Pin Interrupt 30)

PIQ31 (Pin Interrupt 31)

PIQ23 (Pin Interrupt 23)

PIQ22 (Pin Interrupt 22)

PIQ21 (Pin Interrupt 21)

PIQ20 (Pin Interrupt 20)

PIQ24 (Pin Interrupt 24)

PIQ25 (Pin Interrupt 25)

PIQ26 (Pin Interrupt 26

PIQ27 (Pin Interrupt 27)

Port Registers

9-56 ADSP-BF54x Blackfin Processor Hardware Reference

Having two separate registers here enables the user to interrogate certain
pins in polling mode while others work in interrupt mode. The
PINTx_LATCH registers can be used for edge detection or pin activity
detection.

Both registers have W1C behavior (See Figure 9-18). Writing a 1 to either
clears respective bits in both registers. For interrupt operation, the user
may prefer to W1C the PINTx_REQUEST register (address still loaded in Px
pointer). In polling mode it might be cleaner to W1C the PINTx_LATCH
register.

Figure 9-17. Pin Interrupt Request Registers

Pin Interrupt Request Registers (PINTx_REQUEST)

W1C

Reset = 0x0000 00000: 0xFFC01408
1: 0xFFC01438
2: 0xFFC01468
3: 0xFFC01498

00 0 0 0 0 0 0 0 0 0 0 0 00 0

For all bits:
0 – No interrupt request
1 – Interrupt request

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIQ0 (Pin Interrupt 0)

PIQ1 (Pin Interrupt 1)

PIQ2 (Pin Interrupt 2)

PIQ3 (Pin Interrupt 3)PIQ12 (Pin Interrupt 12)

PIQ13 (Pin Interrupt 13)

PIQ14 (Pin Interrupt 14)

PIQ15 (Pin Interrupt 15)

31 30 29 28 27 1617181920212223242526

PIQ7 (Pin Interrupt 7)

PIQ6 (Pin Interrupt 6)

PIQ5 (Pin Interrupt 5)

PIQ4 (Pin Interrupt 4)

PIQ8 (Pin Interrupt 8)

PIQ9 (Pin Interrupt 9)

PIQ10 (Pin Interrupt 10

PIQ11 (Pin Interrupt 11)

PIQ16 (Pin Interrupt 16)

PIQ17 (Pin Interrupt 17)

PIQ18 (Pin Interrupt 18)

PIQ19 (Pin Interrupt 19)PIQ28 (Pin Interrupt 28)

PIQ29 (Pin Interrupt 29)

PIQ30 (Pin Interrupt 30)

PIQ31 (Pin Interrupt 31)

PIQ23 (Pin Interrupt 23)

PIQ22 (Pin Interrupt 22)

PIQ21 (Pin Interrupt 21)

PIQ20 (Pin Interrupt 20)

PIQ24 (Pin Interrupt 24)

PIQ25 (Pin Interrupt 25)

PIQ26 (Pin Interrupt 26

PIQ27 (Pin Interrupt 27)

ADSP-BF54x Blackfin Processor Hardware Reference 9-57

General-Purpose Ports

Regardless whether in edge-sensitive mode or level-sensitive mode,
PINTx_LATCH bits are never cleared by hardware except at system reset.
Even in level-sensitive mode, the PINTx_LATCH register functions as latch.

Figure 9-18. Pin Interrupt Latch Registers

Pin Interrupt Latch Registers (PINTx_LATCH)

W1C

Reset = 0x0000 00000: 0xFFC01424
1: 0xFFC01454
2: 0xFFC01484
3: 0xFFC014B4

00 0 0 0 0 0 0 0 0 0 0 0 00 0

For all bits:
0 – No interrupt latched
1 – Interrupt latched

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIQ0 (Pin Interrupt 0)

PIQ1 (Pin Interrupt 1)

PIQ2 (Pin Interrupt 2)

PIQ3 (Pin Interrupt 3)PIQ12 (Pin Interrupt 12)

PIQ13 (Pin Interrupt 13)

PIQ14 (Pin Interrupt 14)

PIQ15 (Pin Interrupt 15)

31 30 29 28 27 1617181920212223242526

PIQ7 (Pin Interrupt 7)

PIQ6 (Pin Interrupt 6)

PIQ5 (Pin Interrupt 5)

PIQ4 (Pin Interrupt 4)

PIQ8 (Pin Interrupt 8)

PIQ9 (Pin Interrupt 9)

PIQ10 (Pin Interrupt 10

PIQ11 (Pin Interrupt 11)

PIQ16 (Pin Interrupt 16)

PIQ17 (Pin Interrupt 17)

PIQ18 (Pin Interrupt 18)

PIQ19 (Pin Interrupt 19)PIQ28 (Pin Interrupt 28)

PIQ29 (Pin Interrupt 29)

PIQ30 (Pin Interrupt 30)

PIQ31 (Pin Interrupt 31)

PIQ23 (Pin Interrupt 23)

PIQ22 (Pin Interrupt 22)

PIQ21 (Pin Interrupt 21)

PIQ20 (Pin Interrupt 20)

PIQ24 (Pin Interrupt 24)

PIQ25 (Pin Interrupt 25)

PIQ26 (Pin Interrupt 26

PIQ27 (Pin Interrupt 27)

Port Registers

9-58 ADSP-BF54x Blackfin Processor Hardware Reference

Interrupt Edge (PINTx_EDGE_SET/
PINTx_EDGE_CLEAR) Register Pairs

This register pair controls whether the individual interrupts are edge-sen-
sitive or level-sensitive (See Figure 9-19). Level sensitivity is default. After
a W1S operation to the PINTx_EDGE_SET register, edge sensitivity for the
interrupt is enabled.

Figure 9-19. Pin Interrupt Edge Set Registers

Pin Interrupt Edge Set Registers (PINTx_EDGE_SET)

W1S

Reset = 0x0000 00000: 0xFFC01410
1: 0xFFC01440
2: 0xFFC01470
3: 0xFFC014A0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

For all bits:
0 – Level sensitive
1 – Edge sensitive

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIQ0 (Pin Interrupt 0)

PIQ1 (Pin Interrupt 1)

PIQ2 (Pin Interrupt 2)

PIQ3 (Pin Interrupt 3)PIQ12 (Pin Interrupt 12)

PIQ13 (Pin Interrupt 13)

PIQ14 (Pin Interrupt 14)

PIQ15 (Pin Interrupt 15)

31 30 29 28 27 1617181920212223242526

PIQ7 (Pin Interrupt 7)

PIQ6 (Pin Interrupt 6)

PIQ5 (Pin Interrupt 5)

PIQ4 (Pin Interrupt 4)

PIQ8 (Pin Interrupt 8)

PIQ9 (Pin Interrupt 9)

PIQ10 (Pin Interrupt 10

PIQ11 (Pin Interrupt 11)

PIQ16 (Pin Interrupt 16)

PIQ17 (Pin Interrupt 17)

PIQ18 (Pin Interrupt 18)

PIQ19 (Pin Interrupt 19)PIQ28 (Pin Interrupt 28)

PIQ29 (Pin Interrupt 29)

PIQ30 (Pin Interrupt 30)

PIQ31 (Pin Interrupt 31)

PIQ23 (Pin Interrupt 23)

PIQ22 (Pin Interrupt 22)

PIQ21 (Pin Interrupt 21)

PIQ20 (Pin Interrupt 20)

PIQ24 (Pin Interrupt 24)

PIQ25 (Pin Interrupt 25)

PIQ26 (Pin Interrupt 26

PIQ27 (Pin Interrupt 27)

ADSP-BF54x Blackfin Processor Hardware Reference 9-59

General-Purpose Ports

After a W1C operation to the PINTx_EDGE_CLEAR register, edge sensitivity
for the interrupt is disabled, and the interrupt returns to level sensitivity.

An interrupt request is generated on either edge of a signal, if
PINTx_ASSIGN settings forward a signal to two PINTx channel bits, and one
channel inverts the signal polarity.

Figure 9-20. Pin Interrupt Edge Clear Registers

Pin Interrupt Edge Clear Registers (PINTx_EDGE_CLEAR)

W1C

Reset = 0x0000 00000: 0xFFC01414
1: 0xFFC01444
2: 0xFFC01474
3: 0xFFC014A4

00 0 0 0 0 0 0 0 0 0 0 0 00 0

For all bits:
0 – Level sensitive
1 – Edge sensitive

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIQ0 (Pin Interrupt 0)

PIQ1 (Pin Interrupt 1)

PIQ2 (Pin Interrupt 2)

PIQ3 (Pin Interrupt 3)PIQ12 (Pin Interrupt 12)

PIQ13 (Pin Interrupt 13)

PIQ14 (Pin Interrupt 14)

PIQ15 (Pin Interrupt 15)

31 30 29 28 27 1617181920212223242526

PIQ7 (Pin Interrupt 7)

PIQ6 (Pin Interrupt 6)

PIQ5 (Pin Interrupt 5)

PIQ4 (Pin Interrupt 4)

PIQ8 (Pin Interrupt 8)

PIQ9 (Pin Interrupt 9)

PIQ10 (Pin Interrupt 10

PIQ11 (Pin Interrupt 11)

PIQ16 (Pin Interrupt 16)

PIQ17 (Pin Interrupt 17)

PIQ18 (Pin Interrupt 18)

PIQ19 (Pin Interrupt 19)PIQ28 (Pin Interrupt 28)

PIQ29 (Pin Interrupt 29)

PIQ30 (Pin Interrupt 30)

PIQ31 (Pin Interrupt 31)

PIQ23 (Pin Interrupt 23)

PIQ22 (Pin Interrupt 22)

PIQ21 (Pin Interrupt 21)

PIQ20 (Pin Interrupt 20)

PIQ24 (Pin Interrupt 24)

PIQ25 (Pin Interrupt 25)

PIQ26 (Pin Interrupt 26

PIQ27 (Pin Interrupt 27)

Port Registers

9-60 ADSP-BF54x Blackfin Processor Hardware Reference

Pin Interrupt Pin State (PINTx_PINSTATE) Register

The pin interrupt pin state registers enable the service routine to read the
current state of the pin without reading from GPIO space (See
Figure 9-21). If there was an edge-sensitive interrupt, the service routine
can check whether the state of the pin is still high or turned low.

Note that the content of the PINTx_PINSTATE register depends on the
polarity setting of the PINTx_INVERT_SET/PINTx_INVERT_CLEAR registers.

Figure 9-21. Pin Interrupt Pin State Registers

Pin Interrupt Pin State Registers (PINTx_PINSTATE)

RO

Reset = 0x0000 00000: 0xFFC01420
1: 0xFFC01450
2: 0xFFC01480
3: 0xFFC014B0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

For all bits:
0 – Inverter output low
1 – Inverter output high

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIQ0 (Pin Interrupt 0)

PIQ1 (Pin Interrupt 1)

PIQ2 (Pin Interrupt 2)

PIQ3 (Pin Interrupt 3)PIQ12 (Pin Interrupt 12)

PIQ13 (Pin Interrupt 13)

PIQ14 (Pin Interrupt 14)

PIQ15 (Pin Interrupt 15)

31 30 29 28 27 1617181920212223242526

PIQ7 (Pin Interrupt 7)

PIQ6 (Pin Interrupt 6)

PIQ5 (Pin Interrupt 5)

PIQ4 (Pin Interrupt 4)

PIQ8 (Pin Interrupt 8)

PIQ9 (Pin Interrupt 9)

PIQ10 (Pin Interrupt 10

PIQ11 (Pin Interrupt 11)

PIQ16 (Pin Interrupt 16)

PIQ17 (Pin Interrupt 17)

PIQ18 (Pin Interrupt 18)

PIQ19 (Pin Interrupt 19)PIQ28 (Pin Interrupt 28)

PIQ29 (Pin Interrupt 29)

PIQ30 (Pin Interrupt 30)

PIQ31 (Pin Interrupt 31)

PIQ23 (Pin Interrupt 23)

PIQ22 (Pin Interrupt 22)

PIQ21 (Pin Interrupt 21)

PIQ20 (Pin Interrupt 20)

PIQ24 (Pin Interrupt 24)

PIQ25 (Pin Interrupt 25)

PIQ26 (Pin Interrupt 26

PIQ27 (Pin Interrupt 27)

ADSP-BF54x Blackfin Processor Hardware Reference 9-61

General-Purpose Ports

Pin Interrupt Invert Set (PINTx_INVERT_SET/
PINTx_INVERT_CLEAR) Registers

These register pairs control the inverters at the input of the module (See
Figure 9-22). After reset, the inverters are cleared and the PINTx_PINSTATE
bits contain an exact copy of the pin state. With the inverters on,
PINTx_PINSTATE register reads the inverted/negated pin state.

Figure 9-22. Pin Interrupt Invert Set Registers

Pin Interrupt Invert Set Registers (PINTx_INVERT_SET)

W1S

Reset = 0x0000 00000: 0xFFC01418
1: 0xFFC01448
2: 0xFFC01478
3: 0xFFC014A8

00 0 0 0 0 0 0 0 0 0 0 0 00 0

For all bits:
0 – Input not inverted
1 – Input inverted

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIQ0 (Pin Interrupt 0)

PIQ1 (Pin Interrupt 1)

PIQ2 (Pin Interrupt 2)

PIQ3 (Pin Interrupt 3)PIQ12 (Pin Interrupt 12)

PIQ13 (Pin Interrupt 13)

PIQ14 (Pin Interrupt 14)

PIQ15 (Pin Interrupt 15)

31 30 29 28 27 1617181920212223242526

PIQ7 (Pin Interrupt 7)

PIQ6 (Pin Interrupt 6)

PIQ5 (Pin Interrupt 5)

PIQ4 (Pin Interrupt 4)

PIQ8 (Pin Interrupt 8)

PIQ9 (Pin Interrupt 9)

PIQ10 (Pin Interrupt 10

PIQ11 (Pin Interrupt 11)

PIQ16 (Pin Interrupt 16)

PIQ17 (Pin Interrupt 17)

PIQ18 (Pin Interrupt 18)

PIQ19 (Pin Interrupt 19)PIQ28 (Pin Interrupt 28)

PIQ29 (Pin Interrupt 29)

PIQ30 (Pin Interrupt 30)

PIQ31 (Pin Interrupt 31)

PIQ23 (Pin Interrupt 23)

PIQ22 (Pin Interrupt 22)

PIQ21 (Pin Interrupt 21)

PIQ20 (Pin Interrupt 20)

PIQ24 (Pin Interrupt 24)

PIQ25 (Pin Interrupt 25)

PIQ26 (Pin Interrupt 26

PIQ27 (Pin Interrupt 27)

Port Registers

9-62 ADSP-BF54x Blackfin Processor Hardware Reference

In level-sensitive mode, the interrupt is active when PINTx_PINSTATE is
logical “1”. For instance, when the pin is high and the inverter is off, or
when the pin is low and the inverter is on.

In edge-sensitive mode, the rising edges are latched when the inverter is
off (See Figure 9-23). With the inverter on, falling edges generate the
interrupt.

Figure 9-23. Pin Interrupt Invert Clear Registers

Pin Interrupt Invert Clear Registers (PINTx_INVERT_CLEAR)

W1C

Reset = 0x0000 00000: 0xFFC0141C
1: 0xFFC0144C
2: 0xFFC0147C
3: 0xFFC014AC

00 0 0 0 0 0 0 0 0 0 0 0 00 0

For all bits:
0 – Input not inverted
1 – Input inverted

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIQ0 (Pin Interrupt 0)

PIQ1 (Pin Interrupt 1)

PIQ2 (Pin Interrupt 2)

PIQ3 (Pin Interrupt 3)PIQ12 (Pin Interrupt 12)

PIQ13 (Pin Interrupt 13)

PIQ14 (Pin Interrupt 14)

PIQ15 (Pin Interrupt 15)

31 30 29 28 27 1617181920212223242526

PIQ7 (Pin Interrupt 7)

PIQ6 (Pin Interrupt 6)

PIQ5 (Pin Interrupt 5)

PIQ4 (Pin Interrupt 4)

PIQ8 (Pin Interrupt 8)

PIQ9 (Pin Interrupt 9)

PIQ10 (Pin Interrupt 10

PIQ11 (Pin Interrupt 11)

PIQ16 (Pin Interrupt 16)

PIQ17 (Pin Interrupt 17)

PIQ18 (Pin Interrupt 18)

PIQ19 (Pin Interrupt 19)PIQ28 (Pin Interrupt 28)

PIQ29 (Pin Interrupt 29)

PIQ30 (Pin Interrupt 30)

PIQ31 (Pin Interrupt 31)

PIQ23 (Pin Interrupt 23)

PIQ22 (Pin Interrupt 22)

PIQ21 (Pin Interrupt 21)

PIQ20 (Pin Interrupt 20)

PIQ24 (Pin Interrupt 24)

PIQ25 (Pin Interrupt 25)

PIQ26 (Pin Interrupt 26

PIQ27 (Pin Interrupt 27)

ADSP-BF54x Blackfin Processor Hardware Reference 9-63

General-Purpose Ports

Pin Interrupt Assignment (PINTx_ASSIGN) Registers

The 32-bit pin interrupt assignment registers control the pin-to-interrupt
assignment in a byte-wide manner. Unlike the other pin interrupt regis-
ters, the pin interrupt assignment registers do not consist of 32 individual
bits. They consist of four control bytes each that function as a multiplexer
control.

On ADSP-BF54x processor Blackfin processors, only three bits of each
byte are populated. The other bits are reserved. Both PINT0 and PINT1
blocks can sense to signals of port A and port B. The lower eight pins of
port A or port B for example, can be forwarded to either the byte 0 or byte
2 of the pin interrupt registers. Similarly, the upper eight pins can be for-
warded to byte 1 or byte 3 of the pin interrupt registers. Both PINT2 and
PINT3 blocks can sense to signals of port C to port J. The lower eight pins
of any of those ports can be mapped to byte 0 or byte 2 of the pin inter-
rupt registers. Similarly, the upper eight pins of any two ports can be
mapped to byte 1 and byte 3.

Figure 9-24 shows the PINT0_ASSIGN register.

Figure 9-24. Pin Interrupt Assignment Register 0

Pin Interrupt Assignment Register 0 (PINT0_ASSIGN)

R/W

Reset = 0x000001010xFFC0140C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 1 0 0 0 0 0 0 00 0

31 30 29 28 27 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

17181920212223242526

0xFFC0140C

B0MAP (Byte 0 Mapping)
000= B0MAP_PAL: byte 0 = PA.L
001= B0MAP_PBL: byte 0 = PB.L

B1MAP (Byte 1 Mapping)
000= B1MAP_PAH: byte 1 = PA.H
001= B1MAP_PBH: byte 1 = PB.H

B2MAP (Byte 2 Mapping)
000= B2MAP_PAL: byte 2 = PA.L
001= B2MAP_PBL: byte 2 = PB.L

B3MAP (Byte 3 Mapping)
000= B3MAP_PAH: byte 3 = PA.H
001= B3MAP_PBH: byte 3 = PB.H

Port Registers

9-64 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 9-25 shows the PINT1_ASSIGN register.

Figure 9-25. Pin Interrupt Assignment Register 1

Pin Interrupt Assignment Register 1 (PINT1_ASSIGN)

R/W

Reset = 0x010100000xFFC0143C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 16

10 0 0 0 0 1 0 0 0 0 0 0 00 0

17181920212223242526

B0MAP (Byte 0 Mapping)
000=B0MAP_PAL: byte 0 = PA.L
001= B0MAP_PBL: byte 0 = PB.L

B1MAP (Byte 1 Mapping)
000= B1MAP_PAH: byte 1 = PA.H
001= B1MAP_PBH: byte 1 = PB.H

B2MAP (Byte 2 Mapping)
000= B2MAP_PAL: byte 2 = PA.L
001= B2MAP_PBL: byte 2 = PB.L

B3MAP (Byte 3 Mapping)
000= B3MAP_PAH: byte 3 = PA.H
001= B3MAP_PBH: byte 3 = PB.H

ADSP-BF54x Blackfin Processor Hardware Reference 9-65

General-Purpose Ports

Figure 9-26 shows the PINT2_ASSIGN register.

Figure 9-26. Pin Interrupt Assignment Register 2

Pin Interrupt Assignment Register 2 (PINT2_ASSIGN)

R/W

Reset = 0x000001010xFFC0146C

B2MAP (Byte 2 Mapping)
000= B2MAP_PCL: byte 2 = PC.L
001= B2MAP_PDL: byte 2 = PD.L
010= B2MAP_PEL: byte 2 = PE.L
011= B2MAP_PFL: byte 2 = PF.L
100= B2MAP_PGL: byte 2 = PG.L
101= B2MAP_PHL: byte 2 = PH.L
110= B2MAP_PIL: byte 2 = PI.L
111= B2MAP_PJL: byte 2 = PJ.L

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 1 0 0 0 0 0 0 00 0

31 30 29 28 27 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

17181920212223242526

B0MAP (Byte 0 Mapping)
000= B0MAP_PCL: byte 0 = PC.L
001= B0MAP_PDL: byte 0 = PD.L
010= B0MAP_PEL: byte 0 = PE.L
011= B0MAP_PFL: byte 0 = PF.L
100= B0MAP_PGL: byte 0 = PG.L
101= B0MAP_PHL: byte 0 = PH.L
110= B0MAP_PIL: byte 0 = PI.L
111= B0MAP_PJL: byte 0 = PJ.L

B1MAP (Byte 1 Mapping)
000= B1MAP_PCH: byte 1 = PC.H
001= B1MAP_PDH: byte 1 = PD.H
010= B1MAP_PEH: byte 1 = PE.H
011= B1MAP_PFH: byte 1 = PF.H
100= B1MAP_PGH: byte 1 = PG.H
101= B1MAP_PHH: byte 1 = PH.H
110= B1MAP_PIH: byte 1 = PI.H
111= B1MAP_PJH: byte 1 = PJ.H

B3MAP (Byte 3 Mapping)
000= B3MAP_PCH: byte 3 = PC.H
001= B3MAP_PDH: byte 3 = PD.H
010= B3MAP_PEH: byte 3 = PE.H
011= B3MAP_PFH: byte 3 = PF.H
100= B3MAP_PGH: byte 3 = PG.H
101= B3MAP_PHH: byte 3 = PH.H
110= B3MAP_PIH: byte 3 = PI.H
111= B3MAP_PJH: byte 3 = PJ.H

Programming Examples

9-66 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 9-27 shows the PINT3_ASSIGN register.

Programming Examples
Listing 9-1 illustrates how to enable the output drivers of the port pins
PG6 and PG7 on port G. The pins are toggled afterward.

Listing 9-1. Output Driver Enable

/* enable GPIO mode. */

/* This is optional as all PORTx_FER register

are cleared by default after reset */

P5.H = hi(PORTG_FER);

Figure 9-27. Pin Interrupt Assignment Register 3

Pin Interrupt Assignment Register 3 (PINT3_ASSIGN)

R/W

Reset = 0x020203030xFFC0149C

B2MAP (Byte 2 Mapping)
000= B2MAP_PCL: byte 2 = PC.L
001= B2MAP_PDL: byte 2 = PD.L
010= B2MAP_PEL: byte 2 = PE.L
011= B2MAP_PFL: byte 2 = PF.L
100= B2MAP_PGL: byte 2 = PG.L
101= B2MAP_PHL: byte 2 = PH.L
110= B2MAP_PIL: byte 2 = PI.L
111= B2MAP_PJL: byte 2 = PJ.L

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 1 1 0 0 0 0 0 0 10 0

31 30 29 28 27 16

00 0 0 0 1 0 0 0 0 0 0 0 10 0

17181920212223242526

B0MAP (Byte 0 Mapping)
000= B0MAP_PCL: byte 0 = PC.L
001= B0MAP_PDL: byte 0 = PD.L
010= B0MAP_PEL: byte 0 = PE.L
011= B0MAP_PFL: byte 0 = PF.L
100= B0MAP_PGL: byte 0 = PG.L
101= B0MAP_PHL: byte 0 = PH.L
110= B0MAP_PIL: byte 0 = PI.L
111= B0MAP_PJL: byte 0 = PJ.L

B1MAP (Byte 1 Mapping)
000= B1MAP_PCH: byte 1 = PC.H
001= B1MAP_PDH: byte 1 = PD.H
010= B1MAP_PEH: byte 1 = PE.H
011= B1MAP_PFH: byte 1 = PF.H
100= B1MAP_PGH: byte 1 = PG.H
101= B1MAP_PHH: byte 1 = PH.H
110= B1MAP_PIH: byte 1 = PI.H
111= B1MAP_PJH: byte 1 = PJ.H

B3MAP (Byte 3 Mapping)
000= B3MAP_PCH: byte 3 = PC.H
001= B3MAP_PDH: byte 3 = PD.H
010= B3MAP_PEH: byte 3 = PE.H
011= B3MAP_PFH: byte 3 = PF.H
100= B3MAP_PGH: byte 3 = PG.H
101= B3MAP_PHH: byte 3 = PH.H
110= B3MAP_PIH: byte 3 = PI.H
111= B3MAP_PJH: byte 3 = PJ.H

ADSP-BF54x Blackfin Processor Hardware Reference 9-67

General-Purpose Ports

P5.L = lo(PORTG_FER);

R7 = PG7 | PG6 (z);

R6 = ~R7;

R5 = w[P5](z);

R5 = R5 & R6;

w[P5] = R5;

/* start with PG7=0 and PG6=1 */

P5.L = lo(PORTG);

R5 = w[P5] (z);

R5 = R5 & R6;

bitset(R5, bitpos(PG6));

w[P5] = R5;

/* enable output drivers */

P5.L = lo(PORTG_DIR_SET);

w[P5] = R7;

...

/* clear PG6 */

P5.L = lo(PORTG_CLEAR);

R5 = PG6;

w[P5] = R5;

/* set PG7 */

P5.L = lo(PORTG_CLEAR);

R5 = PG7;

w[P5] = R5;

Note that the level of the GPIO flags can be defined before the output is
enabled. With the separate set and clear ports of the data and direction
registers multiple software threads can control their own pins individually.

Programming Examples

9-68 ADSP-BF54x Blackfin Processor Hardware Reference

Listing 9-2 programs the port pin PG8 on port G in open-drain mode. It
assumes an external pull-up resistor. Once the PG8 bit is also set in the
PORTG_INEN register reads from PORTG register return the actual state of the
pin.

Listing 9-2. Open-Drain Mode Programming

/* set the internal flag to zero */

P5.H = hi(PORTG_CLEAR);

P5.L = lo(PORTG_CLEAR);

R5 = PG8 (z);

w[P5] = R5;

/* enable input driver */

P5.L = lo(PORTG_INEN);

P5.H = hi(PORTG_INEN);

R6 = w[P5] (z);

R6 = R5 | R6;

w[P5] = R6;

/* drive the PG8 pin low */

P5.L = lo(PORTG_DIR_SET);

w[P5] = R5;

...

/* three-state the PG8 pin again */

P5.L = lo(PORTG_DIR_CLEAR);

w[P5] = R5;

Listing 9-3 illustrates the pin interrupt functionality. The input pin PB8 in
configured to request an IVG6 interrupt through the pin interrupt block
PINT0 every time a raising edge is detected.

ADSP-BF54x Blackfin Processor Hardware Reference 9-69

General-Purpose Ports

Listing 9-3. Pin Interrupt Functionality

#include <blackfin.h>

.section program;

.global _main;

_main:

/* register interrupt service routines */

R7.L = lo(_isr_PB8);

R7.H = hi(_isr_PB8);

P5.L = lo(EVT7);

P5.H = hi(EVT7);

[P5] = R7;

/* interrupt assignment PINT0 => IVG7 */

R7.L = lo(0xFFFF0FFF);

R7.H = hi(0xFFFF0FFF);

P5.L = lo(SIC_IAR2);

P5.H = hi(SIC_IAR2);

[P5] = R7;

/* interrupt unmasking */

R7.L = lo(IRQ_PINT0);

R7.H = hi(IRQ_PINT0);

P5.L = lo(SIC_IMASK0);

P5.H = hi(SIC_IMASK0);

[P5] = R7;

R7 = EVT_IVG7;

P5.L = lo(IMASK);

P5.H = hi(IMASK);

[P5] = R7;

/* enable input drivers for push-button on Port B */

Programming Examples

9-70 ADSP-BF54x Blackfin Processor Hardware Reference

/* pin can be also output or input enabled by other functions

*/

P5.L = lo(PORTB_INEN);

P5.H = hi(PORTB_INEN);

R6 = w[P5] (z);

R7 = PB8 (z);

R6 = R6 | R7;

w[P5] = R6;

/* assign PB8 to PINT0 byte 1 */

P5.L = lo(PINT0_ASSIGN);

P5.H = hi(PINT0_ASSIGN);

R7.L = lo(B1MAP_PBH);

R7.H = hi(B1MAP_PBH);

[P5] = R7;

/* set to raising edge sensitivity */

R7.L = lo(PB8);

R7.H = hi(PB8);

P5.L = lo(PINT0_INVERT_CLEAR);

P5.H = hi(PINT0_INVERT_CLEAR);

[P5] = R7;

P5.L = lo(PINT0_EDGE_SET);

P5.H = hi(PINT0_EDGE_SET);

[P5] = R7;

/* W1C potential latches due to history */

P5.L = lo(PINT0_LATCH);

P5.H = hi(PINT0_LATCH);

[P5] = R7;

/* unmask interrupts */

P5.L = lo(PINT0_MASK_SET);

P5.H = hi(PINT0_MASK_SET);

ADSP-BF54x Blackfin Processor Hardware Reference 9-71

General-Purpose Ports

[P5] = R7;

JUMP 0;

_main.end:

Listing 9-4 shows the fragments of an interrupt service routine that
matches for Listing 9-3. The interrupt request can be cleared by W1C
operation to either the PINT0_REQUEST or the PINT0_LATCH register.

Listing 9-4. Interrupt Service Routine Programming

_isr_PB8:

[--SP] = ASTAT;

[--SP] = (R7:5, P5:4);

/* clear interrupt request early in the ISR*/

P5.L = lo(PINT0_REQUEST);

P5.H = hi(PINT0_REQUEST);

R7 = PB8 (z);

[P5] = R7;

/* more service code goes to here */

SSYNC;

(R7:5, P5:4) = [SP++];

ASTAT = [SP++];

RTI;

_isr_PB8.end:

Listing 9-5 provides a C version of Listing 9-3 and Listing 9-4. Addition-
ally, every interrupt event toggles the output on the PF6 GPIO pin.

Programming Examples

9-72 ADSP-BF54x Blackfin Processor Hardware Reference

Listing 9-5. Pin Interrupts and Interrupt Service in C

#include <blackfin.h>

#include <ccblkfn.h>

#include <sys/exception.h>

short dPattern;

/* interrupt service routine */

EX_INTERRUPT_HANDLER(IsrPB8)

{

/* clear interrupt request */

*pPINT0_REQUEST = PB8;

/* toggle output on PG6 */

if (dPattern & PG6)

{

*pPORTG_CLEAR = PG6;

}

else

{

*pPORTG_SET = PG6;

}

dPattern^= PG6;

}

void main (void)

{

/* register interrupt routine */

register_handler(ik_ivg7, IsrPB8);

/* assign PINT0 interrupt to IVG7 */

*pSIC_IAR2 = 0xFFFF0FFFL;

*pSIC_IMASK0 = IRQ_PINT0;

ADSP-BF54x Blackfin Processor Hardware Reference 9-73

General-Purpose Ports

/* enable the PB8 input driver */

*pPORTB_INEN = PB8;

/* assign PB8 to PINT0 byte 1 */

*pPINT0_ASSIGN = B1MAP_PBH;

/* set to raising edge sensitivity */

*pPINT0_INVERT_CLEAR = PB8;

*pPINT0_EDGE_SET = PB8;

/* W1C potential latches due to history */

*pPINT0_LATCH = PB8;

/* unmask interrupts */

*pPINT0_MASK_SET = PB8;

/* initialize PG6 to high */

*pPORTG_SET = PG6;

*pPORTG_DIR_SET = PG6;

dPattern = PG6;

while (1);

}

Listing 9-6 illustrates how to control the port multiplexing. In the exam-
ple, Port H is configured to provide the following signals: UART1 TX and
RX, TMR8, CDG and CUD, DMAR0 and DMAR1 and A4 to A9. PH7 operates in
GPIO mode.

Programming Examples

9-74 ADSP-BF54x Blackfin Processor Hardware Reference

Listing 9-6. Port Multiplexing Example

P5.H = hi(PORTH_FER);

P5.l = lo(PORTH_FER);

R5.L = PH15 | PH14 | PH13 | PH12 | PH11 | PH10 | PH9 |PH8

| nPH7 | PH6 | PH5 | PH4 | PH3 | PH2 | PH1 | PH0;

w[P5] = R5;

P5.H = hi(PORTH_MUX);

P5.L = lo(PORTH_MUX);

R5.H = MUX15_0 |MUX14_0 |MUX13_0 | MUX12_0

| MUX11_0 | MUX10_0 | MUX9_0 | MUX8_0;

R5.L = MUX7_0 |MUX6_1 | MUX5_1 | MUX4_2

| MUX3_2 | MUX2_1 | MUX1_0 | MUX0_0;

[P5] = R5;

/*For the second part where the PORTH_MUX register is configured,

a more compact syntax can be used as shown below.*/

P5.H=hi(PORTH_MUX);

P5.L=lo(PORTH_MUX);

R5.H=hi(MUX(0,0, 0,0,0,0,0,0, 0, 1,1, 2,2, 1, 0,0));

R5.L=lo(MUX(0,0, 0,0,0,0,0,0, 0, 1,1, 2,2, 1, 0,0));

[P5] = R5;

ADSP-BF54x Blackfin Processor Hardware Reference 10-1

10 GENERAL-PURPOSE TIMERS

This chapter describes the general-purpose timer modules and includes
the following sections:

• “Overview and Features” on page 10-1

• “Interface Overview” on page 10-3

• “Description of Operation” on page 10-6

• “Modes of Operation” on page 10-13

• “Programming Model” on page 10-35

• “Timer Registers” on page 10-37

• “Programming Examples” on page 10-53

Overview and Features
The ADSP-BF544, ADSP-BF547, ADSP-BF548, and ADSP-BF549
Blackfin processors feature two general-purpose timer modules that con-
tain eleven identical 32-bit timers. The ADSP-BF542 processors feature
only one timer module with eight timers. Every timer can operate in vari-
ous operating modes on individual configuration. Although the timers
operate completely independent from each other, all of them can be
started and stopped simultaneously for synchronous operation.

Overview and Features

10-2 ADSP-BF54x Blackfin Processor Hardware Reference

Features
The general-purpose timers support the following operating modes:

• Singleshot mode for interval timing and single pulse generation

• Pulse-width modulation (PWM) generation with consistent update
of period and pulse width values

• External signal capture mode with consistent update of period and
pulse width values

• External event counter mode

Feature highlights include:

• Synchronous operation of all timers

• Consistent management of period and pulse width values

• Autobaud detection for CAN and both UART modules

• Period measurement for the GP counter module

• Graceful bit pattern termination when stopping

• Support for center-aligned PWM patterns

• Error detection on implausible pattern values

• All read and write accesses to 32-bit registers are atomic

• Every timer has its dedicated interrupt request output

• Unused timers can function as edge-sensitive pin interrupts

ADSP-BF54x Blackfin Processor Hardware Reference 10-3

General-Purpose Timers

Interface Overview
Figure 10-1 shows the derivative-specific block diagram of the gen-
eral-purpose timer module.

Figure 10-1. Timer Block Diagram

16

BlackfinPAB

GP TIMERS

TIMER_STATUS0

T
M

R
0

T
IM

E
R

 0
T

A
C

I0

T
A

C
L

K
0

P
B

8

(U
A

R
T

0
R

X
)

P
E

8

P
A

7

T
M

R
1

T
IM

E
R

 1
T

A
C

I1

T
A

C
L

K
1

P
B

9

(U
A

R
T

1
R

X
)

P
H

1

P
A

8

T
M

R
2

T
IM

E
R

 2
T

A
C

L
K

2

P
B

10

P
A

10

T
M

R
3

T
IM

E
R

 3
T

A
C

L
K

3

P
B

11

P
A

11

T
M

R
4

T
IM

E
R

 4
T

A
C

L
K

4

P
A

1

P
A

12

T
M

R
5

T
IM

E
R

 5
T

A
C

L
K

5

P
A

5

P
A

13

T
M

R
6

T
IM

E
R

 6
T

A
C

I6

T
A

C
L

K
6

P
A

9

P
A

14

T
M

R
7

T
IM

E
R

 7
T

A
C

L
K

7

P
A

13

TIMER_ENABLE0

TIMER_DISABLE0

T
M

R
C

L
K

(P
P

I0
C

L
K

)
P

G
0

SIC2 CONTROLLER

IR
Q

 9
3

IR
Q

 9
2

IR
Q

 9
1

IR
Q

 9
0

IR
Q

 8
9

IR
Q

 8
8

IR
Q

 8
7

IR
Q

 8
6

T
IM

E
R

 8

T
IM

E
R

 9

T
IM

E
R

 1
0

IR
Q

 1
8

IR
Q

 1
7

IR
Q

 1
6

TIMER_STATUS1

TIMER_ENABLE1

T
A

C
I2

(U
A

R
T

2
R

X
)

P
B

5

T
A

C
I3

(U
A

R
T

3
R

X
)

P
B

7

T
A

C
I4

(C
A

N
0

R
X

)
P

G
13

T
A

C
I5

(C
A

N
1

R
X

)
P

G
15

T
A

C
I7

P
A

15

COUNTER

T
M

R
8

T
A

C
L

K
8

P
H

2
T

A
C

I8

T
M

R
9

T
A

C
L

K
9

P
H

3
T

A
C

I9

T
M

R
10

T
A

C
L

K
10

P
H

4
T

A
C

I1
0

P
H

5

P
H

6

P
H

7

SIC0 CONTROLLER

PORT CONTROL

TIMER_DISABLE1

Interface Overview

10-4 ADSP-BF54x Blackfin Processor Hardware Reference

The timer module features a global infrastructure to control synchronous
operation of all timers if required. The internal structure of the individual
timers is illustrated by Figure 10-2, which shows the details of timer 0 rep-
resentatively. The other timers have identical structure.

External Interface
Every timer has a dedicated TMRx pin that can be found on ports A, B, and
H. If enabled, the TMRx pins output the single pulse or PWM signals gen-
erated by the timer. They function as input in capture and counter modes.
Polarity of the signals is programmable.

Figure 10-2. Internal Timer Structure

TIMER0_CONFIG

PERIOD
MATCH

SCLK

ENABLE
LATCH

32

TMRCLK
TACLK0

TMR0

TIMER0_PERIOD (WRITE)

TIMER0_PERIOD (READ)

COMPARATOR

TIMER0_COUNTER

COMPARATOR

TIMER0_WIDTH (READ)

TIMER0_WIDTH (WRITE)

32

32

32

32

32 INTERRUPT
CONTROL

PIN
CONTROL

EDGE
DETECTOR

32

TRAILING EDGE

LEADING EDGE

OVERFLOW

WIDTH MATCH

PAB

16

TIMEN0

TIMDIS0

TRUN0

TOVF_ERR0

TIMIL0

TMR0

TACI0

TIMER 0

ADSP-BF54x Blackfin Processor Hardware Reference 10-5

General-Purpose Timers

Alternate clock (TACLKx) and capture (TACIx) inputs are found on ports A,
B, E, G, and H. The TACLKx pins can alternatively clock the timers in
PWM_OUT mode.

In WDTH_CAP mode, timers 0-5 feature TACIx inputs that can be used for bit
rate detection on CAN and UART inputs. The TACI0-TACI3 pins connect,
respectively, to the UART0-UART3 RX inputs. Additionally, the TACI4
input connects to the CAN0 RX input, and the TACI5 input connects to
the CAN1 RX input. The TACI6 input senses to an output of the general
purpose counter module and supports capturing of the event timing this
way. The TACI7, TACI8, TACI9 and TACI10 inputs are available on pins for
various purposes. TACIx inputs can be used with or without the respective
UART or CAN peripheral enabled. If the peripheral is not enabled, the
input drivers of the TACIx inputs must be explicitly enabled.

The TMRCLK input is another clock input common to all 11 timers. The
EPPI0 unit is clocked by the same pin; therefore any of the timers can be
clocked by EPPI0_CLK.

In order to enable TMRCLK, the PORTG_FER bit 0 must be set and input
enable for GPIO bit 0 needs to be set in the PORTG_INEN register.

When clocked internally, the clock source is the processor’s peripheral
clock (SCLK). Assuming the peripheral clock is running at 133 MHz, the

maximum period for the timer count is ((232-1) / 133 MHz) =
32.2 seconds.

Clock and capture input pins are sampled every SCLK cycle. The duration
of every low or high state must be one SCLK minimum. The maximum
allowed frequency of timer input signals is SCLK/2.

Internal Interface
Timer registers are always accessed by the core through the 16-bit PAB
bus. Hardware ensures that all read and write operations from and to
32-bit timer registers are atomic.

Description of Operation

10-6 ADSP-BF54x Blackfin Processor Hardware Reference

Every timer has its dedicated interrupt request output that connects to the
SIC controller, for a total of 11 interrupt outputs.

Description of Operation
The core of every timer is a 32-bit counter, that can be interrogated
through the read-only TIMERx_COUNTER register. Depending on operation
mode, the counter is reset to either 0x0000 0000 or 0x0000 0001 when
the timer is enabled. The counter always counts upward. Usually, it is
clocked by SCLK. In PWM mode it can be clocked by the alternate clock
input TACLKx, or the common timer clock input TMRCLK alternatively. In
counter mode, the counter is clocked by edges on the TMRx input. The sig-
nificant edge is programmable.

After 232-1 clocks, the counter overflows. In this case, this is reported by
the overflow/error bit TOVF_ERRx in the TIMER_STATUSx registers. In PWM
and counter mode, the counter is reset by hardware when its content
reaches the values stored in the TIMERx_PERIOD register. In capture mode
the counter is reset by leading edges on the input pin TMRx or TACIx. If
enabled, these events cause the interrupt latch TIMILx in the
TIMER_STATUSx registers to be set and issue a system interrupt request. The
TOVF_ERRx and TIMILx latches are sticky and should be cleared by software
using W1C operations to clear the interrupt request. Each global
TIMER_STATUSx register is 32 bits wide. A single atomic 32-bit read can
consistently report the status of all timers within a given TIMER_STATUSx
register.

Before a timer can be enabled, its mode of operation is programmed in its
timer-specific TIMERx_CONFIG register. Then, one or more timers are
started by writing a 1 to the representative bits in one or more of the
TIMER_ENABLEx registers.

ADSP-BF54x Blackfin Processor Hardware Reference 10-7

General-Purpose Timers

The TIMER_ENABLEx registers can be used to enable some or all timers
within a block simultaneously, through “write-1-to-set” control bits, one
for each timer. Likewise, the TIMER_DISABLEx registers can be used to dis-
able some or all timers within a block at the same time, through
“write-1-to-clear” control bits. The TIMER_ENABLE0 and TIMER_DISABLE0
registers control timers 0-7, while the TIMER_ENABLE1 and TIMER_DISABLE1
registers control timers 8-10. Either the TIMER_ENABLEx or
TIMER_DISABLEx register for a given timer block can be read back to check
the enable status of the timers. A 1 indicates that the corresponding timer
is enabled. The timer starts counting three SCLK cycles after the TIMENx bit
is set.

While the PWM mode is used to generate PWM patterns, the capture
mode (WDTH_CAP) is designed to “receive” PWM signals. A PWM pattern is
represented by a pulse width and a signal period. This is described by the
TIMERx_WIDTH and TIMERx_PERIOD register pair. In capture mode these reg-
isters are read-only. Hardware always captures both values. Regardless of
whether in PWM or capture mode, shadow buffers always ensure consis-
tency between the TIMERx_WIDTH and TIMERx_PERIOD values. In PWM
mode, hardware performs a plausibility check by the time the timer is
enabled. In this case the error type is reported by the TIMERx_CONFIG regis-
ter and signalled by the TOVF_ERRx bit.

Interrupt Processing
Each of the 11 timers can generate a single interrupt. The 11 resulting
interrupt signals are routed to the system interrupt controller block for
prioritization and masking. The TIMER_STATUSx registers latch the timer
interrupts to provide a means for software to determine the interrupt
source.

Description of Operation

10-8 ADSP-BF54x Blackfin Processor Hardware Reference

To enable interrupt generation, set the IRQ_ENA bit and unmask the inter-
rupt source in the IMASK and SIC_IMASKx registers. To poll the TIMILx bit
without interrupt generation, set IRQ_ENA but leave the interrupt masked
at the system level. If enabled by IRQ_ENA, interrupt requests are also gen-
erated by error conditions as reported by the TOVF_ERRx bits.

The system interrupt controller enables flexible interrupt handling. All
timers may or may not share the same CEC interrupt channel, so that a
single interrupt routine services more than one timer. In PWM mode,
multiple timers may run with the same period settings and issue their
interrupt requests simultaneously. In this case, the service routine might
clear all TIMILx latch bits at once (for timers 0-7) by writing 0x000F 000F
to the TIMER_STATUS0 register.

If interrupts are enabled, make sure that the interrupt service routine
(ISR) clears the TIMILx bit in the TIMER_STATUSx register before the RTI
instruction executes. This ensures that the interrupt is not reissued.
Remember that writes to system registers are delayed. If only a few
instructions separate the TIMILx clear command from the RTI instruction,
an extra SSYNC instruction may need to be inserted. In EXT_CLK mode, reset
the TIMILx bit in the TIMER_STATUSx register at the very beginning of the
interrupt service routine to avoid missing any timer events. Figure 10-3
shows the timers interrupt structure.

ADSP-BF54x Blackfin Processor Hardware Reference 10-9

General-Purpose Timers

Figure 10-3. Timers Interrupt Structure

ERROR EVENT

IRQ_ENA

TIMILx

TIMER
IRQx PROCESSOR

CORE

TMODE
PWM_OUT WDTH_CAP EXT_CLK

TOVF_ERRx

RST RST

SET SET

INTERRUPT
EVENT

RESET

TOVF_ERRx WRITE DATA
TIMILx WRITE DATA

MMR WRITE TO
TIMER_STATUSx

COUNTER
OVERFLOW

ILLEGAL
TIMERx_PERIOD

ILLEGAL
TIMERx_WIDTH

1 0 1 0PERIOD_CNT

LEADING
EDGE

TRAILING
EDGE

COUNT = WIDTH

COUNT = PERIOD

TMODE
PWM_OUT WDTH_CAP EXT_CLK

SYSTEM
INTERRUPT

CONTROLLER

Description of Operation

10-10 ADSP-BF54x Blackfin Processor Hardware Reference

Illegal States
Every timer features an error detection circuit. It handles overflow situa-
tions but also performs pulse width versus period plausibility checks.
Errors are reported by the TOVF_ERRx bits in the TIMER_STATUSx register
and the ERR_TYP bit field in the individual TIMERx_CONFIG registers.
Table 10-1 provides a summary of error conditions, by using these terms:

• Startup The first clock period when the timer counter is running
after the timer is enabled by writing TIMER_ENABLEx register.

• Rollover The time when the current count matches the value in
TIMERx_PERIOD register and the counter is reloaded with the value
1.

• Overflow The timer counter was incremented instead of doing a
rollover when it was holding the maximum possible count value of
0xFFFF FFFF. The counter does not have a large enough range to
express the next greater value and so erroneously loads a new value
of 0x0000 0000.

• Unchanged No new error.

• When ERR_TYP is unchanged, it displays the previously
reported error code or 00 if there is no error since this timer
was enabled.

• When TOVF_ERR is unchanged, it reads 0 if there is no error
since this timer was enabled, or if software has performed a
W1C to clear any previous error. If a previous error has not
been acknowledged by software, TOVF_ERR reads 1.

Software should read TOVF_ERR to check for an error. If TOVF_ERR is set,
software can then read ERR_TYP for more information. Once detected,
software should write-1-to-clear TOVF_ERR to acknowledge the error.

ADSP-BF54x Blackfin Processor Hardware Reference 10-11

General-Purpose Timers

Table 10-1 can be read as: “In mode __ at event __, if TIMERx_PERIOD is
__ and TIMERx_WIDTH is __, then ERR_TYP is __ and TOVF_ERR is __.”

 Startup error conditions do not prevent the timer from starting.
Similarly, overflow and rollover error conditions do not stop the
timer. Illegal cases may cause unwanted behavior of the TMRx pin.

Table 10-1. Overview of Illegal States

Mode Event TIMERx_
PERIOD

TIMERx_
WIDTH

ERR_TYP TOVF_ERR

PWM_OUT,
PERIOD_
CNT = 1

Startup
(No boundary
condition tests
performed on
TIMERx_
WIDTH)

== 0 Anything b#10 Set

== 1 Anything b#10 Set

>= 2 Anything Unchanged Unchanged

Rollover == 0 Anything b#10 Set

== 1 Anything b#11 Set

>= 2 == 0 b#11 Set

>= 2 < TIMERx_
PERIOD

Unchanged Unchanged

>= 2 >= TIMERx_
PERIOD

b#11 Set

Overflow, not
possible unless
there is also
another error,
such as
TIMERx_
PERIOD == 0.

Anything Anything b#01 Set

Description of Operation

10-12 ADSP-BF54x Blackfin Processor Hardware Reference

PWM_OUT,
PERIOD_
CNT = 0

Startup Anything == 0 b#01 Set

This case is not detected at startup, but results in an overflow
error once the counter counts through its entire range.

Anything >= 1 Unchanged Unchanged

Rollover Rollover is not possible in this mode.

Overflow, not
possible unless
there is also
another error,
such as
TIMERx_
WIDTH == 0.

Anything Anything b#01 Set

WDTH_CAP Startup TIMERx_PERIOD and TIMERx_WIDTH are read-only in
this mode, no error possible.

Rollover TIMERx_PERIOD and TIMERx_WIDTH are read-only in
this mode, no error possible.

Overflow Anything Anything b#01 Set

EXT_CLK Startup == 0 Anything b#10 Set

>= 1 Anything Unchanged Unchanged

Rollover == 0 Anything b#10 Set

>= 1 Anything Unchanged Unchanged

Overflow, not
possible unless
there is also
another error,
such as
TIMERx_
PERIOD == 0.

Anything Anything b#01 Set

Table 10-1. Overview of Illegal States (Cont’d)

Mode Event TIMERx_
PERIOD

TIMERx_
WIDTH

ERR_TYP TOVF_ERR

ADSP-BF54x Blackfin Processor Hardware Reference 10-13

General-Purpose Timers

Modes of Operation
The following sections provide a functional description of the gen-
eral-purpose timers in various operating modes.

Pulse Width Modulation (PWM_OUT) Mode
Use the PWM_OUT mode for PWM signal or single-pulse generation, for
interval timing or for periodic interrupt generation. Figure 10-4 illustrates
PWM_OUT mode.

Setting the TMODE field to b#01 in the timer configuration
(TIMERx_CONFIG) register enables PWM_OUT mode. Here, the timer TMRx pin
is an output, but it can be disabled by setting the OUT_DIS bit in the
TIMERx_CONFIG register.

In PWM_OUT mode, the bits PULSE_HI, PERIOD_CNT, IRQ_ENA, OUT_DIS,
CLK_SEL, EMU_RUN, and TOGGLE_HI enable orthogonal functionality. They
may be set individually or in any combination, although some combina-
tions are not useful (such as TOGGLE_HI = 1 with OUT_DIS = 1 or
PERIOD_CNT = 0).

Once a timer is enabled, TIMERx_COUNTER register is loaded with a starting
value. If CLK_SEL = 0, the timer counter starts at 0x1. If CLK_SEL = 1, it is
reset to 0x0 as in EXT_CLK mode. The timer counts upward to the value of
the TIMERx_PERIOD register. For either setting of CLK_SEL, when the timer
counter equals the timer period, the timer counter is reset to 0x1 on the
next clock.

In PWM_OUT mode, the PERIOD_CNT bit controls whether the timer generates
one pulse or many pulses. When PERIOD_CNT is cleared (PWM_OUT single
pulse mode), the timer uses the TIMERx_WIDTH register, generates one
asserting and one deasserting edge, then generates an interrupt (if enabled)
and stops. When PERIOD_CNT is set (PWM_OUT continuous pulse mode), the
timer uses both the TIMERx_PERIOD and TIMERx_WIDTH registers and

Modes of Operation

10-14 ADSP-BF54x Blackfin Processor Hardware Reference

generates a repeating (and possibly modulated) waveform. It generates an
interrupt (if enabled) at the end of each period and stops only after it is
disabled. A setting of PERIOD_CNT = 0 counts to the end of the width; a set-
ting of PERIOD_CNT = 1 counts to the end of the period.

 The TIMERx_PERIOD and TIMERx_WIDTH registers are read-only in
some operation modes. Be sure to set the TMODE field in the
TIMERx_CONFIG register to b#01 before writing to these registers.

Figure 10-4. Timer Flow Diagram, PWM_OUT Mode

TIN_SEL

DATA BUS

0

1 PWM_CLK

SCLK

CLK_SEL
EQUAL?

TIMER_ENABLE

EQUAL?

1

1

0

0

YES

CLOCK RESET

ASSERT DEASSERT

INTERRUPT

PERIOD_CNT

TMRx

PWMOUT
LOGIC

PULSE_HI
TOGGLE_HI
OUT_DIS

YES

TACLKx

TMRCLK

TIMERx_COUNTER

TIMERx_PERIOD TIMERx_WIDTH

ADSP-BF54x Blackfin Processor Hardware Reference 10-15

General-Purpose Timers

Output Pad Disable

The output pin can be disabled in PWM_OUT mode by setting the OUT_DIS
bit in the TIMERx_CONFIG register. The TMRx pin is then three-stated
regardless of the setting of PULSE_HI and TOGGLE_HI. This can reduce
power consumption when the output signal is not being used. The TMRx
pin can also be disabled by the PORTx_FER and the PORTx_MUX registers.

Single Pulse Generation

If the PERIOD_CNT bit is cleared, the PWM_OUT mode generates a single pulse
on the TMRx pin. This mode can also be used to implement a precise delay.
The pulse width is defined by the TIMERx_WIDTH register, and the
TIMERx_PERIOD register is not used. See Figure 10-5.

At the end of the pulse, the timer interrupt latch bit TIMILx is set, and the
timer is stopped automatically. No writes to the TIMER_DISABLEx register
are required in this mode. If the PULSE_HI bit is set, an active high pulse is
generated on the TMRx pin. If the PULSE_HI bit is not set, the pulse is active
low.

Figure 10-5. Timer Enable and Automatic Disable Timing

EXAMPLE TIMER ENABLE AND AUTOMATIC DISABLE TIMING
(PWM_OUT MODE, PERIOD_CNT = 0)

3

21X 3

SCLK

TIMERx_WIDTH

TIMERx_COUNTER

TIMENx

TRUNx

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

W1S TO
TIMER_ENABLEx

Modes of Operation

10-16 ADSP-BF54x Blackfin Processor Hardware Reference

The pulse width may be programmed to any value from 1 to (232-1),
inclusive.

Pulse-Width Modulation Waveform Generation

If the PERIOD_CNT bit is set, the internally-clocked timer generates rectan-
gular signals with well-defined period and duty cycles (PWM patterns).
This mode also generates periodic interrupts for real-time signal
processing.

The 32-bit timer period (TIMERx_PERIOD) and timer pulse width
(TIMERx_WIDTH) registers are programmed with the values required by the
PWM signal.

When the timer is enabled in this mode, the TMRx pin is pulled to a deas-
serted state each time the counter equals the value of the TIMERx_WIDTH
register. The pin is asserted again when the period expires (or when the
timer gets started).

To control the assertion sense of the TMRx pin, the PULSE_HI bit in the cor-
responding TIMERx_CONFIG register is used. For a low assertion level, clear
this bit. For a high assertion level, set this bit. When the timer is disabled
in PWM_OUT mode, the TMRx pin is driven to the deasserted level.

Figure 10-6 shows timing details.

If enabled, a timer interrupt is generated at the end of each period. An
interrupt service routine (ISR) must clear the interrupt latch bit (TIMILx)
and might alter period and/or width values. In pulse-width modulation
(PWM) applications, the software needs to update period and pulse width
values while the timer is running. When software updates either period or
pulse width registers, the new values are held by special buffer registers
until the period expires. Then the new period and pulse width values
become active simultaneously. Reads from TIMERx_PERIOD and
TIMERx_WIDTH return the old values until the period expires.

ADSP-BF54x Blackfin Processor Hardware Reference 10-17

General-Purpose Timers

The TOVF_ERRx status bit signifies an error condition in PWM_OUT mode.
The TOVF_ERRx bit is set if TIMERx_PERIOD = 0 or TIMERx_PERIOD = 1 at
startup, or when TIMERx_COUNTER rolls over. It is also set if the
TIMERx_WIDTH register value is greater than or equal to the TIMERx_PERIOD
register value by the time the counter rolls over. The ERR_TYP bits are set
when the TOVF_ERRx bit is set.

Although the hardware reports an error if the TIMERx_WIDTH value equals
the TIMERx_PERIOD value, this is still a valid operation to implement PWM
patterns with 100% duty cycle. If doing so, software must generally ignore
the TOVL_ERRx flags. Pulse width values greater than the period value are
not recommended. Similarly, TIMERx_WIDTH = 0 is not a valid operation.
Duty cycles of 0% are not supported.

To generate the maximum frequency on the TMRx output pin, set the
period value to 2 and the pulse width to 1. This makes TMRx toggle each
SCLK clock, producing a duty cycle of 50%. The period may be pro-

grammed to any value from 2 to (232 – 1), inclusive. The pulse width may
be programmed to any value from 1 to (period – 1), inclusive.

Figure 10-6. Timer Enable Timing

SCLK

TIMERx_PERIOD 4 4 4

EXAMPLE TIMER ENABLE TIMING (PWM_OUT MODE, PERIOD_CNT = 1)

1 1 1

X 41 2 3 1 2 3

TIMERx_WIDTH

TIMERx_COUNTER

TIMENx

TRUNx

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

W1S TO
TIMER_ENABLEx

Modes of Operation

10-18 ADSP-BF54x Blackfin Processor Hardware Reference

PULSE_HI Toggle Mode

The waveform produced in PWM_OUT mode with PERIOD_CNT = 1 normally
has a fixed assertion time and a programmable deassertion time (through
the TIMERx_WIDTH register). When two timers are running synchronously
by the same period settings, the pulses are aligned to the asserting edge as
shown in Figure 10-7.

The TOGGLE_HI mode enables control of the timing of both the asserting
and deasserting edges of the output waveform produced. The phase
between the asserting edges of two timer outputs is programmable. The
effective state of the PULSE_HI bit alternates every period. The adjacent
active low and active high pulses, taken together, create two halves of a
fully arbitrary rectangular waveform. The effective waveform is still active
high when PULSE_HI is set and active low when PULSE_HI is cleared. The
value of the TOGGLE_HI bit has no effect unless the mode is PWM_OUT and
PERIOD_CNT = 1.

In TOGGLE_HI mode, when PULSE_HI is set, an active low pulse is generated
in the first, third, and all odd-numbered periods, and an active high pulse
is generated in the second, fourth, and all even-numbered periods. When

Figure 10-7. Timers With Pulses Aligned to Asserting Edge

TMR0

TMR1

PERIOD 1

TMR2

TOGGLE_HI = 0
PULSE_HI = 1

TOGGLE_HI = 0
PULSE_HI = 1

TOGGLE_HI = 0
PULSE_HI = 1

TIMER
ENABLE

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ADSP-BF54x Blackfin Processor Hardware Reference 10-19

General-Purpose Timers

PULSE_HI is cleared, an active high pulse is generated in the first, third,
and all odd-numbered periods, and an active low pulse is generated in the
second, fourth, and all even-numbered periods.

The deasserted state at the end of one period matches the asserted state at
the beginning of the next period, so the output waveform only transitions
when count = Pulse Width. The net result is an output waveform pulse
that repeats every two counter periods and is centered around the end of
the first period (or the start of the second period).

Figure 10-8 shows an example with three timers running with the same
period settings. When software does not alter the PWM settings at
run-time, the duty cycle is 50%. The values of the TIMERx_WIDTH registers
control the phase between the signals.

Similarly, two timers can generate non-overlapping clocks, by cen-
ter-aligning the pulses while inverting the signal polarity for one of the
timers (see Figure 10-9).

Figure 10-8. Three Timers With Same Period Settings

TMR0

TMR1

TMR2

TIMER
PERIOD 1

TIMER
PERIOD 2

TIMER
PERIOD 3

TIMER
PERIOD 4

WAVEFORM
PERIOD 1

WAVEFORM
PERIOD 2

TIMER
ENABLE

ACTIVE
LOW

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
LOW

ACTIVE
LOW

ACTIVE
LOW

ACTIVE
LOW

ACTIVE
LOW

TOGGLE_HI = 1
PULSE_HI = 1

TOGGLE_HI = 1
PULSE_HI = 1

TOGGLE_HI = 1
PULSE_HI = 1

Modes of Operation

10-20 ADSP-BF54x Blackfin Processor Hardware Reference

When TOGGLE_HI = 0, software updates the TIMERx_PERIOD and
TIMERx_WIDTH registers once per waveform period. When TOGGLE_HI = 1,
software updates the TIMERx_PERIOD and TIMERx_WIDTH registers twice per
waveform. Period values are half as large. In odd-numbered periods, write
(period–width) instead of width to TIMERx_WIDTH in order to obtain cen-
ter-aligned pulses.

For example, if the pseudo-code when TOGGLE_HI = 0 is:

int period, width ;

for (;;) {

period = generate_period(...) ;

width = generate_width(...) ;

waitfor (interrupt) ;

write(TIMERx_PERIOD, period) ;

write(TIMERx_WIDTH, width) ;

}

Figure 10-9. Two Timers With Non-Overlapping Clocks

TMR0

TMR1

WAVEFORM
PERIOD 1

WAVEFORM
PERIOD 2

TIMER
ENABLE

ACTIVE
LOW

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
LOW

ACTIVE
LOW

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
LOW

TOGGLE_HI = 1
PULSE_HI = 0

TOGGLE_HI = 1
PULSE_HI = 1

TIMER
PERIOD 1

TIMER
PERIOD 2

TIMER
PERIOD 3

TIMER
PERIOD 4

ADSP-BF54x Blackfin Processor Hardware Reference 10-21

General-Purpose Timers

Then when TOGGLE_HI = 1, the pseudo-code would be:

int period, width ;

int per1, per2, wid1, wid2 ;

for (;;) {

period = generate_period(...) ;

width = generate_width(...) ;

per1 = period/2 ;

wid1 = width/2 ;

per2 = period/2 ;

wid2 = width/2 ;

waitfor (interrupt) ;

write(TIMERx_PERIOD, per1) ;

write(TIMERx_WIDTH, per1 - wid1) ;

waitfor (interrupt) ;

write(TIMERx_PERIOD, per2) ;

write(TIMERx_WIDTH, wid2) ;

}

As shown in this example, the pulses produced do not need to be symmet-
ric (wid1 does not need to equal wid2). The period can be offset to adjust
the phase of the pulses produced (per1 does not need to equal per2).

The timer enable latch (TRUNx bit in the TIMER_STATUSx register) is
updated only at the end of even-numbered periods in TOGGLE_HI mode.
When TIMER_DISABLEx is written to 1, the current pair of counter periods
(one waveform period) completes before the timer is disabled.

Modes of Operation

10-22 ADSP-BF54x Blackfin Processor Hardware Reference

As when TOGGLE_HI = 0, errors are reported if the TIMERx_PERIOD register is
either set to 0 or 1, or when the width value is greater than or equal to the
period value.

Externally-Clocked PWM_OUT

By default, the timer is clocked internally by SCLK. Alternatively, if the
CLK_SEL bit in the timer configuration (TIMERx_CONFIG) register is set, the
timer is clocked by PWM_CLK. The PWM_CLK is normally input from the
TACLKx pin, but may also be taken from the common TMRCLK pin. Differ-
ent timers may receive different signals on their PWM_CLK inputs,
depending on configuration. As selected by the PERIOD_CNT bit, the
PWM_OUT mode either generates pulse-width modulation waveforms or gen-
erates a single pulse with pulse width defined by the TIMERx_WIDTH
register.

When CLK_SEL is set, the counter resets to 0x0 at startup and increments
on each rising edge of PWM_CLK. The TMRx pin transitions on rising edges
of PWM_CLK. There is no way to select the falling edges of PWM_CLK. In this
mode, the PULSE_HI bit controls only the polarity of the pulses produced.
The timer interrupt may occur slightly before the corresponding edge on
the TMRx pin (the interrupt occurs on an SCLK edge, the pin transitions on
a later PWM_CLK edge). It is still safe to program new period and pulse
width values as soon as the interrupt occurs. After a period expires, the
counter rolls over to a value of 0x1.

The PWM_CLK clock waveform is not required to have a 50% duty cycle, but
the minimum PWM_CLK clock low time is one SCLK period, and the mini-
mum PWM_CLK clock high time is one SCLK period. This implies the
maximum PWM_CLK clock frequency is SCLK/2.

The alternate timer clock inputs (TACLKx) are enabled when a timer is in
PWM_OUT mode with CLK_SEL = 1 and TIN_SEL = 0, without regard to the
content of the PORTx_MUX and PORTx_FER registers.

ADSP-BF54x Blackfin Processor Hardware Reference 10-23

General-Purpose Timers

Stopping the Timer in PWM_OUT Mode

In all PWM_OUT mode variants, the timer treats a disable operation (W1C to
TIMER_DISABLEx) as a “stop is pending” condition. When disabled, it auto-
matically completes the current waveform and then stops cleanly. This
prevents truncation of the current pulse and unwanted PWM patterns at
the TMRx pin. The processor can determine when the timer stops running
by polling for the corresponding TRUNx bit in the TIMER_STATUSx register
to read 0 or by waiting for the last interrupt (if enabled). Note the timer
cannot be reconfigured (TIMERx_CONFIG cannot be written to a new value)
until after the timer stops and TRUNx reads 0.

In PWM_OUT single pulse mode (PERIOD_CNT = 0), it is not necessary to write
TIMER_DISABLEx to stop the timer. At the end of the pulse, the timer stops
automatically, the corresponding bit in TIMER_ENABLEx (and
TIMER_DISABLEx) are cleared, and the corresponding TRUNx bit is cleared
(See Figure 10-5 on page 10-15). To generate multiple pulses, write a 1 to
TIMER_ENABLEx, wait for the timer to stop, then write another 1 to
TIMER_ENABLEx.

In continuous PWM generation mode (PWM_OUT, PERIOD_CNT = 1) software
can stop the timer by writing to the TIMER_DISABLEx register. To prevent
the ongoing PWM pattern from being spoiled in unpredictable fashion,
the timer does not stop immediately when the corresponding 1 is written
to the TIMER_DISABLEx register. Rather, the write simply clears the enable
latch and the timer still completes the ongoing PWM patterns gracefully.
It stops cleanly at the end of the first period when the enable latch is
cleared. During this final period the TIMENx bit returns 0, but the TRUNx
bit still reads as a 1.

If the TRUNx bit is not cleared explicitly, and the enable latch can be
cleared and re-enabled all before the end of the current period, the TRUNx
bit will continue to run as if nothing happened. Typically, software should
disable a PWM_OUT timer and then wait for it to stop itself.

Modes of Operation

10-24 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 10-10 shows detailed timing.

If necessary, the processor can force a timer in PWM_OUT mode to abort
immediately. Do this by first writing a 1 to the corresponding bit in
TIMER_DISABLEx, and then writing a 1 to the corresponding TRUNx bit in
TIMER_STATUSx. This stops the timer whether the pending stop was wait-
ing for the end of the current period (PERIOD_CNT = 1) or the end of the
current pulse width (PERIOD_CNT = 0). This feature may be used to regain
immediate control of a timer during an error recovery sequence.

 Use this feature carefully, because it may corrupt the PWM pattern
generated at the TMRx pin.

When timers are disabled, the TIMERx_COUNTER registers retain their state;
when a timer is re-enabled, the timer counter is reinitialized based on the
operating mode. The TIMERx_COUNTER registers are read-only. Software
cannot overwrite or preset the timer counter value directly.

Figure 10-10. Timer Disable Timing

7

EXAMPLE TIMER DISABLE TIMING (PWM_OUT MODE, PERIOD_CNT = 1)

5

7

5

7

5

7 1 2 3 5 6 74

W1C TO
TIMER_DISABLEx

SCLK

TIMERx_PERIOD

TIMERx_WIDTH

TIMERx_COUNTER

TIMENx

TRUNx

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

ADSP-BF54x Blackfin Processor Hardware Reference 10-25

General-Purpose Timers

Pulse-Width Count and Capture (WDTH_CAP)
Mode

Use the WDTH_CAP mode, often simply called “capture mode,” to measure
pulse widths on the TMRx or TACIx input pins, or to “receive” PWM sig-
nals. Figure 10-11 shows a flow diagram for WDTH_CAP mode.

In WDTH_CAP mode, the TMRx pin is an input pin. The internally-clocked
timer is used to determine the period and pulse width of externally applied
rectangular waveforms. Setting the TMODE field to b#10 in the
TIMERx_CONFIG register enables this mode.

When enabled in this mode, the timer resets the count in the
TIMERx_COUNTER register to 0x0000 0001 and does not start counting until
it detects a leading edge on the TMRx pin.

When the timer detects the first leading edge, it starts incrementing.
When it detects a trailing edge of a waveform, the timer captures the cur-
rent 32-bit value of the TIMERx_COUNTER register into the width buffer
register. At the next leading edge, the timer transfers the current 32-bit
value of the TIMERx_COUNTER register into the period buffer register. The
count register is reset to 0x0000 0001 again, and the timer continues
counting and capturing until it is disabled.

In this mode, software can measure both the pulse width and the pulse
period of a waveform. To control the definition of leading edge and trail-
ing edge of the TMRx pin, the PULSE_HI bit in the TIMERx_CONFIG register is
set or cleared. If the PULSE_HI bit is cleared, the measurement is initiated
by a falling edge, the content of the TIMERx_COUNTER is captured to the
pulse width buffer on the rising edge, and to the period buffer on the next
falling edge. When the PULSE_HI bit is set, the measurement is initiated by
a rising edge, the counter value is captured to the pulse width buffer on
the falling edge, and to the period buffer on the next rising edge.

Modes of Operation

10-26 ADSP-BF54x Blackfin Processor Hardware Reference

In WDTH_CAP mode, these three events always occur at the same time as one
unit:

1. The TIMERx_PERIOD register is updated from the period buffer
register.

2. The TIMERx_WIDTH register is updated from the width buffer
register.

3. The TIMILx bit gets set (if enabled) but does not generate an error.

Figure 10-11. Timer Flow Diagram, WDTH_CAP Mode

SCLK

TIMER_ENABLEx

RESET

INTERRUPT

PERIOD_CNT

TMRx

INTERRUPT
LOGIC

PULSE_HI

TOVF_ERR

TMRx

PULSE_HI

TRAILING
EDGE

DETECT

DATA BUS

LEADING
EDGE

DETECT

TIMERx_COUNTER

TIMERx_WIDTHTIMERx_PERIOD

ADSP-BF54x Blackfin Processor Hardware Reference 10-27

General-Purpose Timers

The PERIOD_CNT bit in the TIMERx_CONFIG register controls the point in
time when this set of transactions is executed. Taken together, these three
events are called a measurement report. The TOVF_ERRx bit does not get set
at a measurement report. A measurement report occurs once per input sig-
nal period (at most).

The current timer counter value is always copied to the width buffer and
period buffer registers at the trailing and leading edges of the input signal,
respectively, but these values are not visible to software. A measurement
report event samples the captured values into visible registers and sets the
timer interrupt to signal that TIMERx_PERIOD and TIMERx_WIDTH are ready
to be read. When the PERIOD_CNT bit is set, the measurement report occurs
just after the period buffer register captures its value (at a leading edge).
When the PERIOD_CNT bit is cleared, the measurement report occurs just
after the width buffer register captures its value (at a trailing edge).

If the PERIOD_CNT bit is set and a leading edge occurred (see Figure 10-12),
then the TIMERx_PERIOD and TIMERx_WIDTH registers report the pulse
period and pulse width measured in the period that just ended. If the
PERIOD_CNT bit is cleared and a trailing edge occurred (see Figure 10-13),
then the TIMERx_WIDTH register reports the pulse width measured in the
pulse that just ended, but the TIMERx_PERIOD register reports the pulse
period measured at the end of the previous period.

Modes of Operation

10-28 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 10-12. Example of Period Capture Measurement Report Timing
(WDTH_CAP Mode, PERIOD_CNT = 1)

STARTS
COUNTING

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMRx EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

SCLK

1 3 1 2 3 4 6 7 8

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

2 4 5 1X

TIMERx_COUNTER

4

TIMERx_PERIOD BUFFER

2 3

TIMERx_WIDTH BUFFER

4

TIMERx_PERIOD

2

8

8

3

TIMERx_WIDTH

TIMILx

TOVF_ERRx

TIMENx

X 0

X 0

X 0

X 0

MEASUREMENT
REPORT

MEASUREMENT
REPORT

ADSP-BF54x Blackfin Processor Hardware Reference 10-29

General-Purpose Timers

Figure 10-13. Example of Width Capture Measurement Report Timing
(WDTH_CAP Mode, PERIOD_CNT = 0)

SCLK

1

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

2 3 5 6 8 3 4 34 7 1 2 1X

TIMERx_COUNTER

8 4

TIMERx_PERIOD BUFFER

3

TIMERx_WIDTH BUFFER

TIMERx_PERIOD

TIMERx_WIDTH

TIMILx

TOVF_ERRx

TIMENx

2

1 2

0 4

3

8

1 2

X 0

X 0

X 0

X 0

STARTS
COUNTING

MEASUREMENT
REPORT

MEASUREMENT
REPORT

MEASUREMENT
REPORT

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMRx EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

Modes of Operation

10-30 ADSP-BF54x Blackfin Processor Hardware Reference

If the PERIOD_CNT bit is cleared and the first trailing edge occurred, then
the first period value has not yet been measured at the first measurement
report, so the period value is not valid. Reading the TIMERx_PERIOD value
in this case returns 0, as shown in Figure 10-13. To measure the pulse
width of a waveform that has only one leading edge and one trailing edge,
set PERIOD_CNT = 0. If PERIOD_CNT = 1 for this case, no period value is cap-
tured in the period buffer register. Instead, an error report interrupt is
generated (if enabled) when the counter range is exceeded and the counter
wraps around. In this case, both TIMERx_WIDTH and TIMERx_PERIOD read 0
(because no measurement report occurred to copy the value captured in
the width buffer register to TIMERx_WIDTH). See the first interrupt in
Figure 10-14.

 When using the PERIOD_CNT = 0 mode described above to measure
the width of a single pulse, it is recommended to disable the timer
after taking the interrupt that ends the measurement interval. If
desired, the timer can then be reenabled as appropriate in prepara-
tion for another measurement. This procedure prevents the timer
from free-running after the width measurement and logging errors
generated by the timer count overflowing.

A timer interrupt (if enabled) is generated if TIMERx_COUNTER wraps
around from 0xFFFF FFFF to 0 in the absence of a leading edge. At that
point, the TOVF_ERRx bit in the TIMER_STATUSx register and the ERR_TYP
bits in the TIMERx_CONFIG register are set, indicating a count overflow due
to a period greater than the counter’s range. This is called an error report.
When a timer generates an interrupt in WDTH_CAP mode, either an error has
occurred (an error report) or a new measurement is ready to be read (a
measurement report), but never both at the same time. The
TIMERx_PERIOD and TIMERx_WIDTH registers are never updated at the time
an error is signaled. Refer to Figure 10-14 and Figure 10-15 for more
information.

ADSP-BF54x Blackfin Processor Hardware Reference 10-31

General-Purpose Timers

Figure 10-14. Example Timing for Period Overflow Followed by Period
Capture (WDTH_CAP Mode, PERIOD_CNT = 1)

STARTS
COUNTING

SCLK

1

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

2 3 1 2 3 40X

TIMERx_COUNTER

4

TIMERx_PERIOD BUFFER

2

TIMERx_WIDTH BUFFER

TIMERx_PERIOD

TIMERx_WIDTH

TIMILx

TOVF_ERRx

TIMENx

4

5

2

ERROR
REPORT

MEASUREMENT
REPORT

0xFFFF
FFFC

0xFFFF
FFFD

0xFFFF
FFFE

0xFFFF
FFFF

X 0

X 0

X 0

X 0

0

2

0

0

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMRx EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

Modes of Operation

10-32 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 10-15. Example Timing for Width Capture Followed by Period
Overflow (WDTH_CAP Mode, PERIOD_CNT = 0)

SCLK

1

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

2 1 2 3 40X

TIMERx_COUNTER

4X

TIMERx_PERIOD BUFFER

3

TIMERx_WIDTH BUFFER

TIMERx_PERIOD

TIMERx_WIDTH

TIMILx

TOVF_ERRx

TIMENx

1 2

0

3

0

X 0

X 0

X 0

0

3

0

3

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMRx EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

STARTS
COUNTING

ERROR
REPORT

MEASUREMENT
REPORT

0xFFFF
FFFC

0xFFFF
FFFD

0xFFFF
FFFE

0xFFFF
FFFF

3

ADSP-BF54x Blackfin Processor Hardware Reference 10-33

General-Purpose Timers

Both TIMILx and TOVF_ERRx are sticky bits, and software has to explicitly
clear them. If the timer overflowed and PERIOD_CNT = 1, neither the
TIMERx_PERIOD nor the TIMERx_WIDTH register were updated. If the timer
overflowed and PERIOD_CNT = 0, the TIMERx_PERIOD and TIMERx_WIDTH
registers were updated only if a trailing edge was detected at a previous
measurement report.

Software can count the number of error report interrupts between mea-
surement report interrupts to measure input signal periods longer than

0xFFFF FFFF. Each error report interrupt adds a full 232 SCLK counts to
the total for the period, but the width is ambiguous. For example, in
Figure 10-14 the period is 0x1 0000 0004 but the pulse width could be
either 0x0 0000 0002 or 0x1 0000 0002.

The waveform applied to the TMRx pin is not required to have a 50% duty
cycle, but the minimum TMRx low time is one SCLK period and the mini-
mum TMRx high time is one SCLK period. This implies the maximum TMRx
input frequency is SCLK/2 with a 50% duty cycle. Under these conditions,
the WDTH_CAP mode timer would measure period = 2 and pulse width = 1.

Autobaud Mode

In WDTH_CAP mode, some of the timers can provide autobaud detection for
the universal asynchronous receiver/transmitter (UART) and controller
area network (CAN) interfaces. The timer input select (TIN_SEL) bit in the
TIMERx_CONFIG register causes the timer to sample the TACIx pin instead of
the TMRx pin, when enabled for WDTH_CAP mode. Autobaud detection can
be used for initial bit rate negotiations as well as for detection of bit rate
drifts while the interface is in operation. For more information on the
UART interface, see Chapter 25, “UART Port Controllers”. For more
information on the CAN interface, see Chapter 31, “CAN Module”.

Modes of Operation

10-34 ADSP-BF54x Blackfin Processor Hardware Reference

Capturing Timings from the GP Counter Module

In WDTH_CAP mode, one of the timers can sense to an internal signal of the
GP counter module through the TACI6 input. This enables the timer to
capture the period between counter events. For details, see “Capturing
Timing Information (Using the General-Purpose Timer)” on page 13-18.

External Event (EXT_CLK) Mode
Use the EXT_CLK mode, sometimes referred to as the “counter mode,” to
count external events, that is, signal edges on the TMRx pin which is an
input in this mode. Figure 10-16 shows a flow diagram for EXT_CLK mode.

The timer works as a counter clocked by an external source, which can
also be asynchronous to the system clock. The current count in
TIMERx_COUNTER represents the number of leading edge events detected.
Setting the TMODE field to b#11 in the TIMERx_CONFIG register enables this
mode. The TIMERx_PERIOD register is programmed with the value of the
maximum timer external count.

The waveform applied to the TMRx pin is not required to have a 50% duty
cycle, but the minimum TMRx low time is one SCLK period, and the mini-
mum TMRx high time is one SCLK period. This implies the maximum TMRx
input frequency is SCLK/2.

Period may be programmed to any value from 1 to (232 – 1), inclusive.

After the timer is enabled, it resets TIMERx_COUNTER to 0x0 and then waits
for the first leading edge on the TMRx pin. This edge causes
TIMERx_COUNTER to be incremented to the value 0x1. Every subsequent
leading edge increments the count register. After reaching the period
value, the TIMILx bit is set, and an interrupt is generated. The next leading
edge reloads TIMERx_COUNTER again with 0x1. The timer continues count-
ing until it is disabled. The PULSE_HI bit determines whether the leading
edge is rising (PULSE_HI set) or falling (PULSE_HI cleared).

ADSP-BF54x Blackfin Processor Hardware Reference 10-35

General-Purpose Timers

The configuration bits, TIN_SEL and PERIOD_CNT, have no effect in this
mode. The TOVF_ERRx and ERR_TYP bits are set if TIMERx_COUNTER wraps
around from 0xFFFF FFFF to 0 or if period = 0 at startup, or when
TIMERx_COUNTER rolls over (from count = period to count = 0x1).
TIMERx_WIDTH is unused.

Programming Model
The architecture of the timer block enables any timer to work individually
or synchronously along with others in its group. That is, timers 0-7 are
members of the same group, and timers 8-10 are members of a separate
group. Regardless of the operation mode, the timers’ programming model
is always straightforward. Because of the error-checking mechanism,
always follow this order when enabling timers:

Figure 10-16. Timer Flow Diagram, EXT_CLK Mode

CLOCKRESET

LEADING
EDGE

DETECT

TIMERx_COUNTER

TIMERx_PERIOD

TIMER_ENABLEx

INTERRUPT

EQUAL?

Y

PULSE_HI TMRx

DATA BUS

Programming Model

10-36 ADSP-BF54x Blackfin Processor Hardware Reference

1. Set timer mode.

2. Write TIMERx_WIDTH and TIMERx_PERIOD registers as applicable.

3. Enable timer.

If this order is not followed, the plausibility check may fail because of
undefined width and period values, or writes to TIMERx_WIDTH and
TIMERx_PERIOD may result in an error condition, because the registers are
read-only in some modes. Accordingly, the timer may not start as
expected.

If in PWM_OUT mode the PWM patterns of the second period differ from
the patterns of the first one, the initialization sequence above might
become:

1. Set timer mode to PWM_OUT.

2. Write first TIMERx_WIDTH and TIMERx_PERIOD value pair.

3. Enable timer.

4. Immediately write second TIMERx_WIDTH and TIMERx_PERIOD value
pair.

Hardware ensures that the buffered width and period values become active
when the first period expires.

Once started, timers require minimal interaction with software, which is
usually performed by an interrupt service routine. In PWM_OUT mode soft-
ware must update the pulse width and/or settings as required. In WDTH_CAP
mode it must store captured values for further processing. In any case, the
service routine should clear the TIMILx bits of the timers it controls.

ADSP-BF54x Blackfin Processor Hardware Reference 10-37

General-Purpose Timers

Timer Registers
The timer peripheral module provides general-purpose timer functional-
ity. It consists of 11 identical timer units.

Each timer has four registers:
“Timer Configuration (TIMERx_CONFIG) Registers” on page 10-42
“TIMERx_PERIOD and TIMERx_WIDTH Registers” on page 10-47
“Timer Counter (TIMERx_COUNTER) Registers” on page 10-44

Additionally, three register sets are shared between the 11 timers:
“Timer Enable (TIMER_ENABLEx) Registers” on page 10-38
“Timer Disable (TIMER_DISABLEx) Registers” on page 10-39
“Timer Status (TIMER_STATUSx) Registers” on page 10-40

TIMER_ENABLE0, TIMER_DISABLE0, and TIMER_STATUS0
control timers 0 to 7.

TIMER_ENABLE1, TIMER_DISABLE1, and TIMER_STATUS1
control timers 8 to 10.

The size of accesses is enforced. A 32-bit access to a TIMERx_CONFIG regis-
ter or a 16-bit access to a TIMERx_WIDTH, TIMERx_PERIOD, or
TIMERx_COUNTER register results in a memory-mapped register (MMR)
error. Both 16- and 32-bit accesses are allowed for the TIMER_ENABLEx,
TIMER_DISABLEx, and TIMER_STATUSx registers. On a 32-bit read of one of
the 16-bit registers, the upper word returns all 0s.

Table 10-6 on page 10-51 summarizes control bit and register usage in
each timer mode.

Timer Registers

10-38 ADSP-BF54x Blackfin Processor Hardware Reference

Timer Enable (TIMER_ENABLEx) Registers
The TIMER_ENABLEx registers, shown in Figure 10-17 and Figure 10-18,
allow all timers within a group to be enabled simultaneously in order to
make them run completely synchronously. For each timer there is a single
W1S control bit. Writing a 1 enables the corresponding timer; writing a 0
has no effect. The bits can be set individually or in any combination. A
read of the TIMER_ENABLEx register shows the status of the enable for the
corresponding timers within a group. A 1 indicates that the timer is
enabled. All unused bits return 0 when read.

Figure 10-17. Timer Enable 0 Register

Figure 10-18. Timer Enable 1 Register

0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000

Timer Enable 0 Register (TIMER_ENABLE0)

TIMEN0 (Timer0 Enable)

TIMEN1 (Timer1 Enable)

1 - Enable timer
Read as 1 when enabled

1 - Enable timer
Read as 1 when enabled

TIMEN2 (Timer2 Enable)
1 - Enable timer
Read as 1 when enabled

0xFFC0 1680

TIMEN3 (Timer3 Enable)
1 - Enable timer
Read as 1 when enabled

TIMEN7 (Timer7 Enable)

TIMEN6 (Timer6 Enable)

1 - Enable timer
Read as 1 when enabled

1 - Enable timer
Read as 1 when enabled

TIMEN5 (Timer5 Enable)
1 - Enable timer
Read as 1 when enabled

TIMEN4 (Timer4 Enable)
1 - Enable timer
Read as 1 when enabled

0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000

Timer Enable 1 Register (TIMER_ENABLE1)

TIMEN8 (Timer8 Enable)

TIMEN9 (Timer9 Enable)

1 - Enable timer
Read as 1 when enabled

1 - Enable timer
Read as 1 when enabled

TIMEN10 (Timer10 Enable)
1 - Enable timer
Read as 1 when enabled

0xFFC0 0640

ADSP-BF54x Blackfin Processor Hardware Reference 10-39

General-Purpose Timers

Timer Disable (TIMER_DISABLEx) Registers
The TIMER_DISABLEx registers, shown in Figure 10-19 and Figure 10-20
allow all timers within a group to be disabled simultaneously. For each
timer there is a single W1C control bit. Writing a 1 disables the corre-
sponding timer; writing a 0 has no effect. The bits within a disable register
can be cleared individually or in any combination. A read of the
TIMER_DISABLEx register returns a value identical to a read of the corre-
sponding TIMER_ENABLEx register. A 1 indicates that the timer is enabled.
All unused bits return 0 when read.

Figure 10-19. Timer Disable 0 Register

Figure 10-20. Timer Disable 1 Register

0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000

TIMDIS0 (Timer0 Disable)

TIMDIS1 (Timer1 Disable)

1 - Disable timer
Read as 1 if this timer is enabled

1 - Disable timer
Read as 1 if this timer is enabled

TIMDIS2 (Timer2 Disable)
1 - Disable timer
Read as 1 if this timer is enabled

0xFFC0 1684

TIMDIS3 (Timer3 Disable)
1 - Disable timer
Read as 1 if this timer is enabled

TIMDIS7 (Timer7 Disable)

TIMDIS6 (Timer6 Disable)

1 - Disable timer
Read as 1 if this timer is enabled

1 - Disable timer
Read as 1 if this timer is enabled

TIMDIS5 (Timer5 Disable)
1 - Disable timer
Read as 1 if this timer is enabled
TIMDIS4 (Timer4 Disable)
1 - Disable timer
Read as 1 if this timer is enabled

Timer Disable 0 Register (TIMER_DISABLE0)

0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000

Timer Disable 1 Register (TIMER_DISABLE1)

TIMDIS8 (Timer8 Disable)

TIMDIS9 (Timer9 Disable)

1 - Disable timer
Read as 1 if this timer is enabled

1 - Disable timer
Read as 1 if this timer is enabled

TIMDIS10 (Timer10 Disable)
1 - Disable timer
Read as 1 if this timer is enabled

0xFFC0 0644

Timer Registers

10-40 ADSP-BF54x Blackfin Processor Hardware Reference

In PWM_OUT mode, a write of a 1 to TIMER_DISABLEx does not stop the cor-
responding timer immediately. Rather, the timer continues running and
stops cleanly at the end of the current period (if PERIOD_CNT = 1) or pulse
(if PERIOD_CNT = 0). If necessary, the processor can force a timer in
PWM_OUT mode to stop immediately by first writing a 1 to the correspond-
ing bit in TIMER_DISABLEx, and then writing a 1 to the corresponding
TRUNx bit in TIMER_STATUSx. See “Stopping the Timer in PWM_OUT
Mode” on page 10-23.

In WDTH_CAP and EXT_CLK modes, a write of a 1 to TIMER_DISABLEx stops
the corresponding timer immediately.

Timer Status (TIMER_STATUSx) Registers
The TIMER_STATUSx registers are used to check the status of all timers
within a group with a single read (see Figure 10-21 and Figure 10-22).
Status bits are sticky and W1C. The TRUNx bits can clear themselves,
which they do when a PWM_OUT mode timer stops at the end of a period.
During a TIMER_STATUSx register read access, all reserved or unused bits
return a 0.

For detailed behavior and usage of the TRUNx bit see “Stopping the Timer
in PWM_OUT Mode” on page 10-23. Writing the TRUNx bits has no
effect in other modes or when a timer has not been enabled. Writing the
TRUNx bits to 1 in PWM_OUT mode has no effect on a timer that has not first
been disabled.

Error conditions are explained in “Illegal States” on page 10-10.

ADSP-BF54x Blackfin Processor Hardware Reference 10-41

General-Purpose Timers

Figure 10-21. Timer Status 0 Register

0

0 0 00 00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0

TIMIL4 (Timer4 Interrupt)

Reset = 0x0000 00000

Timer Status Register 0 (TIMER_STATUS0)

Read as 1 if timer running,
W1C to abort in PWM_OUT
mode

Indicates an interrupt request
when IRQ_ENA is set
TIMIL5 (Timer5 Interrupt)

TRUN6 (Timer6 Slave
Enable Status)

TIMIL6 (Timer6 Interrupt)

Indicates that an error or an
overflow occurred

TOVF_ERR4 (Timer4
Counter Overflow)

Read as 1 if timer running, W1C
to abort in PWM_OUT mode

TRUN5 (Timer5 Slave
Enable Status)

Read as 1 if timer running, W1C to abort
in PWM_OUT mode

TRUN4 (Timer4 Slave Enable
Status)

TOVF_ERR5 (Timer5
Counter Overflow)TOVF_ERR7 (Timer7 Counter Overflow)

Indicates an interrupt request
when IRQ_ENA is set

Indicates an interrupt request
when IRQ_ENA is set

Indicates that an error or an
overflow occurred

Indicates that an error or an overflow occurred

0xFFC0 1688

TIMIL7 (Timer7 Interrupt)
Indicates an interrupt request
when IRQ_ENA is set

Read as 1 if timer
running, W1C to abort in
PWM_OUT mode

TRUN7 (Timer7
Slave Enable Status)

TOVF_ERR6 (Timer6 Counter Overflow)
Indicates that an error or an overflow occurred

All bits are W1C

0 0 00 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

TIMIL0 (Timer0 Interrupt)

0

Read as 1 if timer running,
W1C to abort in PWM_OUT
mode

Indicates an interrupt request
when IRQ_ENA is set
TIMIL1 (Timer1 Interrupt)

TRUN2 (Timer2 Slave
Enable Status)

TIMIL2 (Timer2 Interrupt)

Indicates that an error or an
overflow occurred

TOVF_ERR0 (Timer0
Counter Overflow)

Read as 1 if timer running, W1C
to abort in PWM_OUT mode

TRUN1 (Timer1 Slave
Enable Status)

Read as 1 if timer running, W1C to
abort in PWM_OUT mode

TRUN0 (Timer0 Slave Enable
Status)

TOVF_ERR1 (Timer1
Counter Overflow)TOVF_ERR3 (Timer3 Counter Overflow)

Indicates an interrupt request
when IRQ_ENA is set

Indicates an interrupt request
when IRQ_ENA is set

Indicates that an error or an
overflow occurred

Indicates that an error or an overflow occurred

TIMIL3 (Timer3 Interrupt)
Indicates an interrupt request
when IRQ_ENA is set

Read as 1 if timer
running, W1C to abort
in PWM_OUT mode

TRUN3 (Timer3
Slave Enable Status)

TOVF_ERR2 (Timer2 Counter Overflow)
Indicates that an error or an overflow occurred

Timer Registers

10-42 ADSP-BF54x Blackfin Processor Hardware Reference

Timer Configuration (TIMERx_CONFIG) Registers
Each timer’s operating mode is specified by its TIMERx_CONFIG register
(Figure 10-23 and Table 10-2), which may be written only when the
timer is not running. After disabling the timer in PWM_OUT mode, make
sure the timer has stopped running by checking its TRUNx bit in
TIMER_STATUSx before attempting to reprogram TIMERx_CONFIG. The
TIMERx_CONFIG registers may be read at any time. The ERR_TYP field is
read-only. It is cleared at reset and when the timer is enabled. Each time
TOVF_ERRx is set, ERR_TYP[1:0] is loaded with a code that identifies the
type of error that was detected. This value is held until the next error or
timer enable occurs. For an overview of error conditions, see Table 10-1

Figure 10-22. Timer Status 1 Register

0

0 0 00 00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 Reset = 0x0000 00000

Timer Status Register 1 (TIMER_STATUS1)

0xFFC0 0648

All bits are W1C

0 0 00 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

TIMIL8 (Timer8 Interrupt)

0

Read as 1 if timer running,
W1C to abort in PWM_OUT
mode

Indicates an interrupt request
when IRQ_ENA is set
TIMIL9 (Timer9 Interrupt)

TRUN10 (Timer10 Slave
Enable Status)

TIMIL10 (Timer10 Interrupt)

Indicates that an error or an
overflow occurred

TOVF_ERR8 (Timer8
Counter Overflow)Read as 1 if timer running, W1C

to abort in PWM_OUT mode

TRUN9 (Timer9 Slave
Enable Status)

Read as 1 if timer running, W1C to
abort in PWM_OUT mode

TRUN8 (Timer8 Slave Enable
Status) TOVF_ERR9 (Timer9

Counter Overflow)

Indicates an interrupt request
when IRQ_ENA is set

Indicates an interrupt request
when IRQ_ENA is set

Indicates that an error or an
overflow occurredTOVF_ERR10 (Timer10 Counter Overflow)

Indicates that an error or an overflow occurred

ADSP-BF54x Blackfin Processor Hardware Reference 10-43

General-Purpose Timers

on page 10-11. The TIMERx_CONFIG register also controls the behavior of
the TMRx pin, which becomes an output in PWM_OUT mode (TMODE = 01)
when the OUT_DIS bit is cleared.

Figure 10-23. Timer Configuration Registers

0 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0

TMODE[1:0] (Timer Mode)

Reset = 0x00000

Timer Configuration Registers (TIMERx_CONFIG)

0 - Negative action pulse
1 - Positive action pulse

0 - Use system clock SCLK for counter
1 - Use PWM_CLK to clock counter

0 - The effective state of PULSE_HI
is the programmed state

1 - The effective state of PULSE_HI
alternates each period

00 - No error
01 - Counter overflow error
10 - TIMERx_PERIOD programming error
11 - TIMERx_WIDTH programming error

00 - Reset state - unused
01 - PWM_OUT mode
10 - WDTH_CAP mode
11 - EXT_CLK mode

PULSE_HI

CLK_SEL (Timer Clock Select)

TOGGLE_HI (PWM_OUT PULSE_HI
Toggle Mode)

ERR_TYP[1:0] (Error
Type) - RO

PERIOD_CNT (Period
Count)

0 - Interrupt request disable
1 - Interrupt request enable

0 - Count to end of width
1 - Count to end of period

IRQ_ENA (Interrupt
Request Enable)

PWM_OUT Mode
0 - Clock from TACLKx

input if CLK_SEL = 1
1 - Clock from TMRCLK

input if CLK_SEL = 1
WDTH_CAP Mode
0 - Sample TMRx input
1 - Sample TACIx input

TIN_SEL (Timer Input
Select)

0 - Enable TMRx pad in PWM_OUT mode
1 - Disable pad in PWM_OUT mode

OUT_DIS (Output Pad Disable)

0 - Timer counter stops during emulation
1 - Timer counter runs during emulation

EMU_RUN (Emulation Behavior Select)

For memory-
mapped
addresses, see
Table 10-2.

Timer Registers

10-44 ADSP-BF54x Blackfin Processor Hardware Reference

Timer Counter (TIMERx_COUNTER) Registers
These read-only registers retain their state when disabled. When enabled,
the TIMERx_COUNTER register is reinitialized by hardware based on configu-
ration and mode. The TIMERx_COUNTER register, shown in Figure 10-24
and Table 10-3, may be read at any time (whether the timer is running or
stopped), and it returns an atomic 32-bit value. Depending on the opera-
tion mode, the incrementing counter can be clocked by four different
sources: SCLK, the TMRx pin, the alternative timer clock pin TACLKx, or the
common TMRCLK pin, which is most likely used as the EPPI0 clock
(EPPI0_CLK).

Table 10-2. Timer Configuration Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

TIMER0_CONFIG 0xFFC0 1600

TIMER1_CONFIG 0xFFC0 1610

TIMER2_CONFIG 0xFFC0 1620

TIMER3_CONFIG 0xFFC0 1630

TIMER4_CONFIG 0xFFC0 1640

TIMER5_CONFIG 0xFFC0 1650

TIMER6_CONFIG 0xFFC0 1660

TIMER7_CONFIG 0xFFC0 1670

TIMER8_CONFIG 0xFFC0 0600

TIMER9_CONFIG 0xFFC0 0610

TIMER10_CONFIG 0xFFC0 0620

ADSP-BF54x Blackfin Processor Hardware Reference 10-45

General-Purpose Timers

When the processor core is being accessed by an external emulator debug-
ger, all code execution stops. By default, the TIMERx_COUNTER also halts its
counting during an emulation access in order to remain synchronized with
the software. While stopped, the count does not advance—in PWM_OUT
mode, the TMRx pin waveform is “stretched”; in WDTH_CAP mode, measured
values are incorrect; in EXT_CLK mode, input events on TMRx may be
missed. All other timer functions such as register reads and writes, inter-
rupts previously asserted (unless cleared), and the loading of
TIMERx_PERIOD and TIMERx_WIDTH in WDTH_CAP mode remain active during
an emulation stop.

Some applications may require the timer to continue counting asynchro-
nously to the emulation-halted processor core. Set the EMU_RUN bit in
TIMERx_CONFIG to enable this behavior.

Figure 10-24. Timer Counter Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Counter[15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Counter[31:16]

Reset = 0x0000 0001

Timer Counter Registers (TIMERx_COUNTER)

For memory-
mapped
addresses, see
Table 10-3.

Timer Registers

10-46 ADSP-BF54x Blackfin Processor Hardware Reference

Table 10-3. Timer Counter Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

TIMER0_COUNTER 0xFFC0 1604

TIMER1_COUNTER 0xFFC0 1614

TIMER2_COUNTER 0xFFC0 1624

TIMER3_COUNTER 0xFFC0 1634

TIMER4_COUNTER 0xFFC0 1644

TIMER5_COUNTER 0xFFC0 1654

TIMER6_COUNTER 0xFFC0 1664

TIMER7_COUNTER 0xFFC0 1674

TIMER8_COUNTER 0xFFC0 0604

TIMER9_COUNTER 0xFFC0 0614

TIMER10_COUNTER 0xFFC0 0624

ADSP-BF54x Blackfin Processor Hardware Reference 10-47

General-Purpose Timers

TIMERx_PERIOD and TIMERx_WIDTH Registers
Usage of the TIMERx_PERIOD register, shown in Figure 10-25 and
Table 10-3, and the TIMERx_WIDTH register, shown in Figure 10-26 and
Table 10-4, varies depending on the mode of the timer:

• In pulse width modulation mode (PWM_OUT), both the
TIMERx_PERIOD and TIMERx_WIDTH register values can be updated
“on-the-fly” since these values change simultaneously.

• In pulse-width and period capture mode (WDTH_CAP), the timer
period and timer pulse width buffer values are captured at the
appropriate time. The TIMERx_PERIOD and TIMERx_WIDTH registers
are then updated simultaneously from their respective buffers. Both
registers are read-only in this mode.

• In external event capture mode (EXT_CLK), the TIMERx_PERIOD is
writable and can be updated “on-the-fly.” TIMERx_WIDTH is not
used.

 When a timer is enabled and running, and the software writes new
values to TIMERx_PERIOD and TIMERx_WIDTH, the writes are buffered
and do not update the registers until the end of the current period
(when the value in TIMERx_COUNTER equals the value in
TIMERx_PERIOD).

If new values are not written to TIMERx_PERIOD or TIMERx_WIDTH, the value
from the previous period is reused. Writes to the 32-bit TIMERx_PERIOD
and TIMERx_WIDTH registers are atomic; it is not possible for the high word
to be written without the low word also being written.

Values written to the TIMERx_PERIOD or TIMERx_WIDTH registers are always
stored in the buffer registers. Reads from the TIMERx_PERIOD or
TIMERx_WIDTH registers always return the current, active value of period or
pulse width. Written values are not read back until they become active.

Timer Registers

10-48 ADSP-BF54x Blackfin Processor Hardware Reference

When the timer is enabled, they do not become active until after
TIMERx_PERIOD and TIMERx_WIDTH are updated from their respective buf-
fers at the end of the current period. See Figure 10-2 on page 10-4.

When the timer is disabled, writes to the buffer registers are immediately
copied through to the TIMERx_PERIOD or TIMERx_WIDTH register so that
they are ready for use in the first timer period. For example, to change the
values for the TIMERx_PERIOD or TIMERx_WIDTH registers in order to use a
different setting for each of the first three timer periods after the timer is
enabled, the procedure to follow is:

1. Program the first set of register values.

2. Enable the timer.

3. Immediately program the second set of register values.

4. Wait for the first timer interrupt.

5. Program the third set of register values.

Each new setting is then programmed when a timer interrupt is received.

 In PWM_OUT mode with very small periods (less than 10 counts),
there may not be enough time between updates from the buffer
registers to write both TIMERx_PERIOD and TIMERx_WIDTH. The next
period may use one old value and one new values.

In order to prevent “pulse width >= period” errors, write
TIMERx_WIDTH before TIMERx_PERIOD when decreasing the values,
and write TIMERx_PERIOD before TIMERx_WIDTH when increasing the
value.

ADSP-BF54x Blackfin Processor Hardware Reference 10-49

General-Purpose Timers

Figure 10-25. Timer Period Registers

Table 10-4. Timer Period Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

TIMER0_PERIOD 0xFFC0 1608

TIMER1_PERIOD 0xFFC0 1618

TIMER2_PERIOD 0xFFC0 1628

TIMER3_PERIOD 0xFFC0 1638

TIMER4_PERIOD 0xFFC0 1648

TIMER5_PERIOD 0xFFC0 1658

TIMER6_PERIOD 0xFFC0 1668

TIMER7_PERIOD 0xFFC0 1678

TIMER8_PERIOD 0xFFC0 0608

TIMER9_PERIOD 0xFFC0 0618

TIMER10_PERIOD 0xFFC0 0628

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Period[15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Period[31:16]

Reset = 0x0000 0000

Timer Period Registers (TIMERx_PERIOD)

For memory-
mapped
addresses, see
Table 10-4.

Timer Registers

10-50 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 10-26. Timer Width Registers

Table 10-5. Timer Width Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

TIMER0_WIDTH 0xFFC0 160C

TIMER1_WIDTH 0xFFC0 161C

TIMER2_WIDTH 0xFFC0 162C

TIMER3_WIDTH 0xFFC0 163C

TIMER4_WIDTH 0xFFC0 164C

TIMER5_WIDTH 0xFFC0 165C

TIMER6_WIDTH 0xFFC0 166C

TIMER7_WIDTH 0xFFC0 167C

TIMER8_WIDTH 0xFFC0 060C

TIMER9_WIDTH 0xFFC0 061C

TIMER10_WIDTH 0xFFC0 062C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Width[15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Width[31:16]

Reset = 0x0000 0000

Timer Width Registers (TIMERx_WIDTH)

For memory-
mapped
addresses, see
Table 10-5.

ADSP-BF54x Blackfin Processor Hardware Reference 10-51

General-Purpose Timers

Summary
Table 10-6 summarizes control bit and register usage in each timer mode.

Table 10-6. Control Bit and Register Usage Chart

Bit / Register PWM_OUT Mode WDTH_CAP Mode EXT_CLK Mode

TIMER_ENABLEx 1 - Enable timer
0 - No effect

1 - Enable timer
0 - No effect

1 - Enable timer
0 - No effect

TIMER_DISABLEx 1 - Disable timer at end
of period
0 - No effect

1 - Disable timer
0 - No effect

1 - Disable timer
0 - No effect

TMODE b#01 b#10 b#11

PULSE_HI 1 - Generate high width
0 - Generate low width

1 - Measure high width
0 - Measure low width

1 - Count rising edges
0 - Count falling edges

PERIOD_CNT 1 - Generate PWM
0 - Single width pulse

1 - Interrupt after mea-
suring period
0 - Interrupt after mea-
suring width

Unused

IRQ_ENA 1 - Enable interrupt
0 - Disable interrupt

1 - Enable interrupt
0 - Disable interrupt

1 - Enable interrupt
0 - Disable interrupt

TIN_SEL Depends on CLK_SEL:

If CLK_SEL = 1,
1 - Count TMRCLK
clocks
0 - Count TACLKx
clocks

If CLK_SEL = 0,
Unused

1 - Select TACI input
0 - Select TMRx input

Unused

OUT_DIS 1 - Disable TMRx pin
0 - Enable TMRx pin

Unused Unused

CLK_SEL 1 - PWM_CLK clocks
timer
0 - SCLK clocks timer

Unused Unused

Timer Registers

10-52 ADSP-BF54x Blackfin Processor Hardware Reference

TOGGLE_HI 1 - One waveform period
every two counter periods
0 - One waveform period
every one counter period

Unused Unused

ERR_TYP Reports b#00, b#01,
b#10, or b#11, as appro-
priate

Reports b#00 or b#01, as
appropriate

Reports b#00, b#01, or
b#10, as appropriate

EMU_RUN 0 - Halt during
emulation
1 - Count during
emulation

0 - Halt during
emulation
1 - Count during
emulation

0 - Halt during
emulation
1 - Count during
emulation

TMR Pin Depends on OUT_DIS:
1 - Three-state
0 - Output

Depends on TIN_SEL:
1 - Unused
0 - Input

Input

Period R/W: Period value RO: Period value R/W: Period value

Width R/W: Width value RO: Width value Unused

Counter RO: Counts up on SCLK
or PWM_CLK

RO: Counts up on SCLK RO: Counts up on
TMRx event

TRUNx Read: Timer slave enable
status
Write:
1 - Stop timer if disabled
0 - No effect

Read: Timer slave enable
status
Write:
1 - No effect
0 - No effect

Read: Timer slave enable
status
Write:
1 - No effect
0 - No effect

Table 10-6. Control Bit and Register Usage Chart (Cont’d)

Bit / Register PWM_OUT Mode WDTH_CAP Mode EXT_CLK Mode

ADSP-BF54x Blackfin Processor Hardware Reference 10-53

General-Purpose Timers

Programming Examples
Listing 10-1 configures the PORTA_FER register in a way that all eight TMRx
pins are connected to port A.

Listing 10-1. Port Setup

timer_port_setup:

 [--sp] = (r7:7, p5:5);

 p5.h = hi(PORTA_FER);

 p5.l = lo(PORTA_FER);

 r7.l = PA1|PA5;

 w[p5] = r7;

 p5.l = lo(PORTA_MUX);

 r7.l = PFTE;

 w[p5] = r7;

 (r7:7, p5:5) = [sp++];

TOVF_ERR Set at startup or rollover
if period = 0 or 1
Set at rollover if width >=
Period
Set if counter wraps

Set if counter wraps Set if counter wraps or
set at startup or rollover
if period = 0

IRQ Depends on IRQ_ENA:
1 - Set when TOVF_ERR
set or when counter
equals period and
PERIOD_CNT = 1 or
when counter equals
width and
PERIOD_CNT = 0
0 - Not set

Depends on IRQ_ENA:
1 - Set when
TOVF_ERR set or when
counter captures period
and PERIOD_CNT = 1
or when counter captures
width and
PERIOD_CNT = 0
0 - Not set

Depends on IRQ_ENA:
1 - Set when counter
equals period or
TOVF_ERR set
0 - Not set

Table 10-6. Control Bit and Register Usage Chart (Cont’d)

Bit / Register PWM_OUT Mode WDTH_CAP Mode EXT_CLK Mode

Programming Examples

10-54 ADSP-BF54x Blackfin Processor Hardware Reference

 rts;

timer_port_setup.end:

Listing 10-2 generates signals on the TMR4 (PA1) and TMR5 (PA5) outputs.
By default, timer 5 generates a continuous PWM signal with a duty cycle
of 50% (period = 0x40 SCLKs, width = 0x20 SCLKs) while the PWM sig-
nal generated by timer 4 has the same period but 25% duty cycle
(width = 0x10 SCLKs).

If the preprocessor constant SINGLE_PULSE is defined, every TMRx pin out-
puts only a single high pulse of 0x20 (timer 4) and 0x10 SCLKs (timer 5)
duration.

In any case, the timers are started synchronously and the rising edges are
aligned, that is, the pulses are left-aligned.

Listing 10-2. Signal Generation

// #define SINGLE_PULSE

timer45_signal_generation:

 [--sp] = (r7:7, p5:5);

 p5.h = hi(TIMER_ENABLE0);

 p5.l = lo(TIMER_ENABLE0);

#ifdef SINGLE_PULSE

 r7.l = PULSE_HI | PWM_OUT;

#else

 r7.l = PERIOD_CNT | PULSE_HI | PWM_OUT;

#endif

 w[p5 + TIMER5_CONFIG - TIMER_ENABLE0] = r7;

 w[p5 + TIMER4_CONFIG - TIMER_ENABLE0] = r7;

 r7 = 0x10 (z);

 [p5 + TIMER5_WIDTH - TIMER_ENABLE0] = r7;

 r7 = 0x20 (z);

 [p5 + TIMER4_WIDTH - TIMER_ENABLE0] = r7;

#ifndef SINGLE_PULSE

ADSP-BF54x Blackfin Processor Hardware Reference 10-55

General-Purpose Timers

 r7 = 0x40 (z);

 [p5 + TIMER5_PERIOD - TIMER_ENABLE0] = r7;

 [p5 + TIMER4_PERIOD - TIMER_ENABLE0] = r7;

#endif

 r7.l = TIMEN5 | TIMEN4;

 w[p5] = r7;

 (r7:7, p5:5) = [sp++];

 rts;

timer45_signal_generation.end:

All subsequent examples use interrupts. Listing 10-3 illustrates how inter-
rupts are generated and how interrupt service routines can be registers. In
this example, the timer 5 interrupt is assigned to the IVG7 interrupt chan-
nel of the CEC controller.

Listing 10-3. Interrupt Setup

timer5_interrupt_setup:

 [--sp] = (r7:7, p5:5);

 p5.h = hi(IMASK);

 p5.l = lo(IMASK);

/* register interrupt service routine */

 r7.h = hi(isr_timer5);

 r7.l = lo(isr_timer5);

 [p5 + EVT7 - IMASK] = r7;

/* unmask IVG7 in CEC */

 r7 = [p5];

 bitset(r7, bitpos(EVT_IVG7));

 [p5] = r7;

 p5.h = hi(SIC_IMASK2);

 p5.l = lo(SIC_IMASK2);

/* assign timer 5 IRQ = IRQ91 to IVG7 */

 r7.h = hi(P91_IVG(7));

 r7.l = lo(P91_IVG(7));

 [p5 + SIC_IAR11 - SIC_IMASK2] = r7;

Programming Examples

10-56 ADSP-BF54x Blackfin Processor Hardware Reference

/* enable timer 5 IRQ */

 r7 = [p5];

 bitset(r7, 27);

 [p5] = r7;

/* enable interrupt nesting */

 (r7:7, p5:5) = [sp++];

 [--sp] = reti;

 rts;

timer5_interrupt_setup.end:

The example shown in Listing 10-4 does not drive the TMRx pin. It gener-
ates periodic interrupt requests every 0x1000 SCLK cycles. If the
preprocessor constant SINGLE_PULSE is defined, timer 5 requests an inter-
rupt only once. Unlike in a real application, the purpose of the interrupt
service routine shown in this example is clearing of the interrupt request
and counting interrupt occurrences.

Listing 10-4. Periodic Interrupt Requests

// #define SINGLE_PULSE

timer5_interrupt_generation:

 [--sp] = (r7:7, p5:5);

 p5.h = hi(TIMER_ENABLE0);

 p5.l = lo(TIMER_ENABLE0);

#ifdef SINGLE_PULSE

 r7.l = EMU_RUN | IRQ_ENA | OUT_DIS | PWM_OUT;

#else

 r7.l = EMU_RUN | IRQ_ENA | PERIOD_CNT | OUT_DIS | PWM_OUT;

#endif

 w[p5 + TIMER5_CONFIG - TIMER_ENABLE0] = r7;

 r7 = 0x1000 (z);

#ifndef SINGLE_PULSE

 [p5 + TIMER5_PERIOD - TIMER_ENABLE0] = r7;

 r7 = 0x1 (z);

#endif

ADSP-BF54x Blackfin Processor Hardware Reference 10-57

General-Purpose Timers

 [p5 + TIMER5_WIDTH - TIMER_ENABLE0] = r7;

 r7.l = TIMEN5;

 w[p5] = r7;

 (r7:7, p5:5) = [sp++];

 r0 = 0 (z);

 rts;

timer5_interrupt_generation.end:

isr_timer5:

 [--sp] = astat;

 [--sp] = (r7:7, p5:5);

 p5.h = hi(TIMER_STATUS0);

 p5.l = lo(TIMER_STATUS0);

 r7.h = hi(TIMIL5);

 r7.l = lo(TIMIL5);

 [p5] = r7;

 r0+= 1;

 ssync;

 (r7:7, p5:5) = [sp++];

 astat = [sp++];

 rti;

isr_timer5.end:

Figure 10-27 explains how the signal waveform represented by the period
P and the pulse width W translates to timer period and width values.
Table 10-7 summarizes the register writes.

Programming Examples

10-58 ADSP-BF54x Blackfin Processor Hardware Reference

Since hardware only updates the written period and width values at the
end of periods, software can write new values immediately after the timers
have been enabled. Note that both timers’ period expires at exactly the
same times with the exception of the first timer 5 interrupt (at IRQ1)
which is not visible to timer 4.

Listing 10-5 illustrates how two timers can generate two non-overlapping
clock pulses as typically required for break-before-make scenarios. Both
timers are running in PWM_OUT mode with PERIOD_CNT = 1 and
PULSE_HI = 1.

Figure 10-27. Non-Overlapping Clock Pulses

Table 10-7. Register Writes for Non-Overlapping Clock Pulses

Register Before Enable After
Enable

At IRQ1 At IRQ2

TIMER5_PERIOD P/2

TIMER5_WIDTH P/2 -W/2 W/2 P/2 - W/2 W/2

TIMER4_PERIOD P P/2

TIMER4_WIDTH P -W/2 W/2 P/2-W-2

PF4 (TMR5)

ENABLE IRQ1 IRQ2

P/2 - W/2

PF5 (TMR4)

IRQ3

W/2 W/2 W/2 W/2

P/2 P/2 P/2 P/2

P - W/2

P W

ADSP-BF54x Blackfin Processor Hardware Reference 10-59

General-Purpose Timers

Listing 10-5 generates N pulses on both timer output pins. Disabling the
timers does not corrupt the generated pulse pattern.

Listing 10-5. Non-Overlapping Clock Pulses

#define P 0x1000 /* signal period */

#define W 0x0600 /* signal pulse width */

#define N 4 /* number of pulses before disable */

timer45_toggle_hi:

 [--sp] = (r7:1, p5:5);

 p5.h = hi(TIMER_ENABLE0);

 p5.l = lo(TIMER_ENABLE0);

/* config timers */

 r7.l = IRQ_ENA | PERIOD_CNT | TOGGLE_HI | PULSE_HI | PWM_OUT;

 w[p5 + TIMER5_CONFIG - TIMER_ENABLE0] = r7;

 r7.l = PERIOD_CNT | TOGGLE_HI | PULSE_HI | PWM_OUT;

 w[p5 + TIMER4_CONFIG - TIMER_ENABLE0] = r7;

/* calculate timers widths and period */

 r0.l = lo(P);

 r0.h = hi(P);

 r1.l = lo(W);

 r1.h = hi(W);

 r2 = r1 >> 1; /* W/2 */

 r3 = r0 >> 1; /* P/2 */

 r4 = r3 - r2; /* P/2 - W/2 */

 r5 = r0 - r2; /* P - W/2 */

/* write values for initial period */

 [p5 + TIMER4_PERIOD - TIMER_ENABLE0] = r0;

 [p5 + TIMER4_WIDTH - TIMER_ENABLE0] = r5;

 [p5 + TIMER5_PERIOD - TIMER_ENABLE0] = r3;

 [p5 + TIMER5_WIDTH - TIMER_ENABLE0] = r4;

/* start timers */

 r7.l = TIMEN5 | TIMEN4;

 w[p5 + TIMER_ENABLE0 - TIMER_ENABLE0] = r7;

Programming Examples

10-60 ADSP-BF54x Blackfin Processor Hardware Reference

/* write values for second period */

 [p5 + TIMER4_PERIOD - TIMER_ENABLE0] = r3;

 [p5 + TIMER5_WIDTH - TIMER_ENABLE0] = r2;

/* r0 functions as signal period counter */

 r0.h = hi(N * 2 - 1);

 r0.l = lo(N * 2 - 1);

 (r7:1, p5:5) = [sp++];

 rts;

timer45_toggle_hi.end:

isr_timer5:

 [--sp] = astat;

 [--sp] = (r7:5, p5:5);

 p5.h = hi(TIMER_ENABLE0);

 p5.l = lo(TIMER_ENABLE0);

/* clear interrupt request */

 r7.h = hi(TIMIL5);

 r7.l = lo(TIMIL5);

 [p5 + TIMER_STATUS0 - TIMER_ENABLE0] = r7;

/* toggle width values (width = period - width) */

 r7 = [p5 + TIMER5_PERIOD - TIMER_ENABLE0];

 r6 = [p5 + TIMER5_WIDTH - TIMER_ENABLE0];

 r5 = r7 - r6;

 [p5 + TIMER5_WIDTH - TIMER_ENABLE0] = r5;

 r5 = [p5 + TIMER4_WIDTH - TIMER_ENABLE0];

 r7 = r7 - r5;

 CC = r7 < 0;

 if CC r7 = r6;

 [p5 + TIMER4_WIDTH - TIMER_ENABLE0] = r7;

/* disable after a certain number of periods */

 r0+= -1;

 CC = r0 == 0;

 r5.l = 0;

 r7.l = TIMDIS5 | TIMDIS4;

 if!CC r7 = r5;

ADSP-BF54x Blackfin Processor Hardware Reference 10-61

General-Purpose Timers

 w[p5 + TIMER_DISABLE0 - TIMER_ENABLE0] = r7;

 (r7:5, p5:5) = [sp++];

 astat = [sp++];

 rti;

isr_timer5.end:

Listing 10-6 configures timer 5 in WDTH_CAP mode. If looped back exter-
nally, this code can be used to receive N PWM patterns generated by one
of the other timers. Ensure that the PWM generator uses the same
PERIOD_CNT and PULSE_HI settings.

Listing 10-6. Timer Configured in WDTH_CAP Mode

.section L1_data_a;

.align 4;

#define N 1024

.var buffReceive[N*2];

.section L1_code;

timer5_capture:

 [--sp] = (r7:7, p5:5);

/* setup DAG2 */

 r7.h = hi(buffReceive);

 r7.l = lo(buffReceive);

 i2 = r7;

 b2 = r7;

 l2 = length(buffReceive)*4;

/* config timer for high pulses capture */

 p5.h = hi(TIMER_ENABLE0);

 p5.l = lo(TIMER_ENABLE0);

 r7.l = EMU_RUN|IRQ_ENA|PERIOD_CNT|PULSE_HI|WDTH_CAP;

 w[p5 + TIMER5_CONFIG - TIMER_ENABLE0] = r7;

 r7.l = TIMEN5;

 w[p5 + TIMER_ENABLE0 - TIMER_ENABLE0] = r7;

 (r7:7, p5:5) = [sp++];

 rts;

Programming Examples

10-62 ADSP-BF54x Blackfin Processor Hardware Reference

timer5_capture.end:

isr_timer5:

 [--sp] = astat;

 [--sp] = (r7:7, p5:5);

/* clear interrupt request first */

 p5.h = hi(TIMER_STATUS0);

 p5.l = lo(TIMER_STATUS0);

 r7.h = hi(TIMIL5);

 r7.l = lo(TIMIL5);

 [p5] = r7;

 r7 = [p5 + TIMER0_PERIOD - TIMER_STATUS0];

 [i2++] = r7;

 r7 = [p5 + TIMER0_WIDTH - TIMER_STATUS0];

 [i2++] = r7;

 ssync;

 (r7:7, p5:5) = [sp++];

 astat = [sp++];

 rti;

isr_timer5.end:

ADSP-BF54x Blackfin Processor Hardware Reference 11-1

11 CORE TIMER

This chapter describes the core timer and includes the following sections:

• “Overview and Features” on page 11-1

• “Timer Overview” on page 11-2

• “Description of Operation” on page 11-3

• “Core Timer Registers” on page 11-4

• “Programming Examples” on page 11-7

Overview and Features
The core timer is a programmable, 32-bit interval timer that can generate
periodic interrupts. Unlike other peripherals, the core timer resides inside
the Blackfin processor core and runs at the core clock (CCLK) rate.

Core timer features include:

• 32-bit timer with 8-bit prescaler

• Operation at core clock (CCLK) rate

• Dedicated high-priority interrupt channel

• Single-shot or continuous operation

Timer Overview

11-2 ADSP-BF54x Blackfin Processor Hardware Reference

Timer Overview
The following sections provide an overview of the core timer.

External Interfaces
The core timer does not directly interact with any pins of the chip.

Internal Interfaces
The core timer is accessed through the 32-bit register access bus (RAB).
The module is clocked by the core clock CCLK. The timer has its dedicated
interrupt request signal which is of higher priority than all other peripher-
als’ requests.

Figure 11-1 provides a block diagram of the core timer.

Figure 11-1. Core Timer Block Diagram

DEC

TSCALE

CCLK TIMER ENABLE
AND PRESCALE

LOGIC
ZEROTCOUNT

TCNTL TPERIOD

COUNT REGISTER
LOAD LOGIC

TIMER
INTERRUPT

T
IN

T

T
M

R
E

N

CORE REGISTER ACCESS BUS (RAB)

32

ADSP-BF54x Blackfin Processor Hardware Reference 11-3

Core Timer

Description of Operation
It is up to software to initialize the core timer’s counter (TCOUNT) before the
timer is enabled. The TCOUNT register can be written directly. However,
writes to the TPERIOD register are also passed through to the counter,
TCOUNT.

When the timer is enabled by setting the TMREN bit in the core timer con-
trol register (TCNTL), the TCOUNT register is decremented once every time
the prescaler (TSCALE) expires, that is, every TSCALE + 1 number of CCLK
clock cycles. When the value of the TCOUNT register reaches 0, an interrupt
is generated and the TINT bit is set in the TCNTL register.

If the TAUTORLD bit in the TCNTL register is set, then the TCOUNT register is
reloaded with the contents of the TPERIOD register and the count begins
again. If the TAUTORLD bit is not set, the timer stops operation.

The core timer can be put into low power mode by clearing the TMPWR bit
in the TCNTL register. Before using the timer, set the TMPWR bit. This
restores clocks to the timer unit. When TMPWR bit is set, the core timer may
then be enabled by setting the TMREN bit in the TCNTL register.

 Hardware behavior is undefined if TMREN bit is set when TMPWR = 0.

Interrupt Processing
The core timer has its dedicated interrupt request signal which is of higher
priority than all other peripherals’ requests. The requests goes directly to
the Core Event Controller (CEC) and does not pass the System Interrupt
Controller (SIC). Therefore, the interrupt processing is also completely in
the CCLK domain.

 Unlike requests from other Blackfin processor peripherals, the core
interrupt request is edge sensitive and cleared by hardware auto-
matically as soon as the interrupt is serviced.

Core Timer Registers

11-4 ADSP-BF54x Blackfin Processor Hardware Reference

The TINT bit in the TCNTL register indicates that an interrupt is generated.
Note that this is not a W1C bit. Write a 0 to clear it. However, the write is
optional. It is not required to clear interrupt requests. The core time mod-
ule does not provide any further interrupt enable bit. When the timer is
enabled, interrupts can be masked in the CEC controller.

Core Timer Registers
The core timer includes the following four core memory-mapped registers
(MMRs):

• “Core Timer Control (TCNTL) Register” on page 11-5

• “Core Timer Count (TCOUNT) Register” on page 11-5

• “Core Timer Period (TPERIOD) Register” on page 11-6

• “Core Timer Scale (TSCALE) Register” on page 11-7

Similar to all core MMRs, these registers are always accessed by 32-bit
read and write operations.

ADSP-BF54x Blackfin Processor Hardware Reference 11-5

Core Timer

Core Timer Control (TCNTL) Register
The core timer control (TCNTL) register, shown in Figure 11-2, functions
as a control and status register.

Core Timer Count (TCOUNT) Register
The core timer count register (TCOUNT) shown in Figure 11-3 decrements
once every TSCALE + 1 clock cycles. When the value of TCOUNT reaches 0,
an interrupt is generated and the TINT bit of the TCNTL register is set.

Values written to the TPERIOD register are automatically copied to the
TCOUNT register as well. Nevertheless, the TCOUNT register can be written
directly. In auto-reload mode the value written to TCOUNT may differ from
the TPERIOD value to let the initial period be shorter or longer than the fol-
lowing ones. To do this, write to TPERIOD first and overwrite TCOUNT
register afterward.

Figure 11-2. Core Timer Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0X X X X X X X X X X X X 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

TMPWR

Core Timer Control Register (TCNTL)

Reset = Undefined

TMREN

0 - Puts the timer in low
power mode

1 - Active state. Timer can be
enabled using the TMREN
bit

Meaningful only when
TMPWR = 1
0 - Disable timer
1 - Enable timer

TINT

TAUTORLD

Sticky status bit
0 - Timer has not generated an interrupt
1 - Timer has generated an interrupt

0 - Disable auto-reload feature. When TCOUNT
reaches zero, the timer generates an interrupt and halts

1 - Enable auto-reload feature. When TCOUNT reaches zero
and the timer generates an interrupt, TCOUNT is
automatically reloaded with the contents of TPERIOD
and the timer continues to count

0xFFE0 3000

Core Timer Registers

11-6 ADSP-BF54x Blackfin Processor Hardware Reference

Writes to TCOUNT are ignored once the timer is running.

Core Timer Period (TPERIOD) Register
When auto-reload is enabled, the TCOUNT register is reloaded with the
value of the core timer period register (TPERIOD, shown in Figure 11-4),
whenever TCOUNT register reaches 0. Writes to TPERIOD register are ignored
when the timer is running.

Figure 11-3. Core Timer Count Register

Figure 11-4. Core Timer Period Register

Core Timer Count Register (TCOUNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

Count Value[31:16]

Count Value[15:0]

0xFFE0 300C

Core Timer Period Register (TPERIOD)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

Period Value[31:16]

Period Value[15:0]

0xFFE0 3004

ADSP-BF54x Blackfin Processor Hardware Reference 11-7

Core Timer

Core Timer Scale (TSCALE) Register
The core timer scale register (TSCALE, shown in Figure 11-5,) stores the
scaling value that is one less than the number of cycles between decre-
ments of TCOUNT register. For example, if the value in the TSCALE register is
0, the counter register decrements once every CCLK clock cycle. If the value
of TSCALE register is 1, the counter decrements once every two cycles.

Programming Examples
Listing 11-1 configures the core timer in auto reload mode. Assuming a
CCLK of 500 MHz, the resulting period is 1 s. The initial period is twice as
long as the others.

Listing 11-1. Core Timer Configuration

#include <blackfin.h>

.section L1_code;

.global _main;

_main:

/* Register service routine at EVT6 and unmask interrupt */

 p1.l = lo(IMASK);

Figure 11-5. Core Timer Scale Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Core Timer Scale Register (TSCALE)

Reset = Undefined

Scale Value[7:0]

0xFFE0 3008

Programming Examples

11-8 ADSP-BF54x Blackfin Processor Hardware Reference

 p1.h = hi(IMASK);

 r0.l = lo(isr_core_timer);

 r0.h = hi(isr_core_timer);

 [p1 + EVT6 - IMASK] = r0;

 r0 = [p1];

 bitset(r0, bitpos(EVT_IVTMR));

 [p1] = r0;

/* Prescaler = 50, Period = 10,000,000, First Period = 20,000,000

*/

 p1.l = lo(TCNTL);

 p1.h = hi(TCNTL);

 r0 = 50 (z);

 [p1 + TSCALE - TCNTL] = r0;

 r0.l = lo(10000000);

 r0.h = hi(10000000);

 [p1 + TPERIOD - TCNTL] = r0;

 r0 <<= 1;

 [p1 + TCOUNT - TCNTL] = r0;

/* R6 counts interrupts */

 r6 = 0 (z);

/* start in auto-reload mode */

 r0 = TAUTORLD | TMPWR | TMREN (z);

 [p1] = r0;

_main.forever:

 jump _main.forever;

_main.end:

/* interrupt service routine simple increments R6 */

isr_core_timer:

 [--sp] = astat;

 r6+= 1;

 astat = [sp++];

 rti;

isr_core_timer.end:

ADSP-BF54x Blackfin Processor Hardware Reference 12-1

12 WATCHDOG TIMER

This chapter describes the watchdog timer and includes the following
sections:

• “Overview and Features” on page 12-1

• “Interface Overview” on page 12-3

• “Description of Operation” on page 12-4

• “Watchdog Timer Registers” on page 12-6

• “Programming Examples” on page 12-9

Overview and Features
The Blackfin processor includes a 32-bit timer that can be used to imple-
ment a software watchdog function. A software watchdog can improve
system reliability by generating an event to the processor core if the watch-
dog expires before being updated by software.

Watchdog timer key features include:

• 32-bit watchdog timer

• 8-bit disable bit pattern

• System reset on expire option

Overview and Features

12-2 ADSP-BF54x Blackfin Processor Hardware Reference

• NMI on expire option

• General-purpose interrupt option

Typically, the watchdog timer is used to supervise stability of the system
software. When used in this way, software reloads the watchdog timer in a
regular manner so that the downward counting timer never expires (never
becomes 0). An expiring timer then indicates that system software might
be out of control. At this point a special error handler may recover the sys-
tem. For safety, however, it is often better to reset and reboot the system
directly by hardware control.

Especially in slave boot configurations, a processor reset cannot automati-
cally force the part to reboot. In this case, the processor may reset without
booting again and may negotiate with the host device by the time program
execution starts. Alternatively, a watchdog event can cause an NMI event.
The NMI service routine may request the host device to reset and/or
reboot the Blackfin processor.

Often, the watchdog timer is also programmed to let the processor wake
up from sleep mode after a programmable period of time.

 For easier debugging, the watchdog timer does not decrement
(even if enabled) when the processor is in emulation mode.

ADSP-BF54x Blackfin Processor Hardware Reference 12-3

Watchdog Timer

Interface Overview
Figure 12-1 provides a block diagram of the watchdog timer.

External Interface
The watchdog timer does not directly interact with any pins of the chip.

Internal Interface
The watchdog timer is clocked by the system clock SCLK. Its registers are
accessed through the 16-bit peripheral access bus PAB. The 32-bit regis-
ters WDOG_CNT and WDOG_STAT must always be accessed by 32-bit read/write
operations. Hardware ensures that those accesses are atomic.

Figure 12-1. Watchdog Timer Block Diagram

EVENT
CONTROL

WRITE

SCLK

WDOG_CNT

32

PAB

READ

RELOAD

RESET
WDOG_STAT

WDOG_CTL

WDEV

WDEN

16

EXPIRE

WDRO

NMI

IRQ23

WATCHDOG

Description of Operation

12-4 ADSP-BF54x Blackfin Processor Hardware Reference

When the counter expires, one of three event requests can be generated.
Either a reset or an NMI request is issued to the core event controller
(CEC) or a general-purpose interrupt request is passed to the system inter-
rupt controller (SIC).

Description of Operation
If enabled, the 32-bit watchdog timer counts downward every SCLK cycle.
If it becomes 0, one of three event requests can be issued to either the
CEC or the SIC. Depending on how the WDEV bit field in the WDOG_CTL
register is programmed, the event that is generated may be a reset, a
non-maskable interrupt, or a general-purpose interrupt.

The counter value can be read through the 32-bit WDOG_STAT register. The
WDOG_STAT register cannot, however, be written directly. Rather, software
writes the watchdog period value into the 32-bit WDOG_CNT register before
the watchdog is enabled. Once the watchdog is started, the period value
cannot be altered.

To start the watchdog timer:

1. Set the count value for the watchdog timer by writing the count
value into the watchdog count register (WDOG_CNT). Since the
watchdog timer is not yet enabled, the write to the WDOG_CNT regis-
ters automatically preloads the WDOG_STAT register as well.

2. In the watchdog control register (WDOG_CTL), select the event to
generate upon timeout.

3. Enable the watchdog timer in WDOG_CTL. The watchdog timer then
begins counting down, decrementing the value in the WDOG_STAT
register.

ADSP-BF54x Blackfin Processor Hardware Reference 12-5

Watchdog Timer

If software does not serve the watchdog in time, WDOG_STAT register con-
tinues decrementing until it reaches 0. Then, the programmed event is
generated. The counter stops decrementing and remains at zero. Addition-
ally, the WDRO latch bit in the WDOG_CTL register is set and can be
interrogated by software in case event generation is not enabled.

When the watchdog is programmed to generate a reset, it resets the pro-
cessor core and peripherals. If the NOBOOT bit in the SYSCR register was set
by the time the watchdog reset the part, the chip is not rebooted. This is
recommended behavior in slave boot configurations. The reset handler
may evaluate the RESET_WDOG bit in the software reset register SWRST to
detect a reset caused by the watchdog. For details, see Chapter 17, “Sys-
tem Reset and Booting”.

To prevent the watchdog from expiring, software serves the watchdog by
performing dummy writes to the WDOG_STAT register address in time. The
values written are ignored, but the write commands cause the WDOG_STAT
register to reload from the WDOG_CNT register.

If the watchdog is enabled with a zero value loaded to the counter and the
WDRO bit was cleared, the WDRO bit of the watchdog control register is set
immediately and the counter remains at zero without further decrements.
If, however, the WDRO bit was set by the time the watchdog is enabled, the
counter decrements to 0xFFFF FFFF and continues operation.

Software can disable the watchdog timer only by writing a 0xAD value
(WDDIS) to the WDEN field in the WDOG_CTL register.

Watchdog Timer Registers

12-6 ADSP-BF54x Blackfin Processor Hardware Reference

Watchdog Timer Registers
The watchdog timer is controlled by three registers.

• “Watchdog Count (WDOG_CNT) Register” on page 12-6

• “Watchdog Status (WDOG_STAT) Register” on page 12-7

• “Watchdog Control (WDOG_CTL) Register” on page 12-8

Watchdog Count (WDOG_CNT) Register
The watchdog count register (WDOG_CNT, shown in Figure 12-2) holds the
32-bit unsigned count value. The WDOG_CNT register must always be
accessed with 32-bit read/writes.

The watchdog count register holds the programmable count value. A valid
write to the watchdog count register also preloads the watchdog counter.
For added safety, the watchdog count register can be updated only when
the watchdog timer is disabled. A write to the watchdog count register
while the timer is enabled does not modify the contents of this register.

Figure 12-2. Watchdog Count Register

Watchdog Count Register (WDOG_CNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000 0000

Watchdog Count[31:16]

Watchdog Count[15:0]

0xFFC0 0204

ADSP-BF54x Blackfin Processor Hardware Reference 12-7

Watchdog Timer

Watchdog Status (WDOG_STAT) Register
The 32-bit watchdog status register (WDOG_STAT, shown in Figure 12-3)
contains the current count value of the watchdog timer. Reads to
WDOG_STAT register return the current count value. Values cannot be stored
directly in WDOG_STAT register, but are instead copied from WDOG_CNT
register. This can happen in two ways:

• While the watchdog timer is disabled, writing the WDOG_CNT register
preloads the WDOG_STAT register.

• While the watchdog timer is enabled, but not yet rolled over,
writes to the WDOG_STAT register load it with the value in WDOG_CNT
register.

 Enabling the watchdog timer does not automatically reload
WDOG_STAT register from WDOG_CNT register.

The WDOG_STAT register is a 32-bit unsigned system memory-mapped regis-
ter that must be accessed with 32-bit reads and writes.

Figure 12-3. Watchdog Status Register

Watchdog Status Register (WDOG_STAT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset = 0x0000 0000

Watchdog Status[31:16]

Watchdog Status[15:0]

0xFFC0 0208

Watchdog Timer Registers

12-8 ADSP-BF54x Blackfin Processor Hardware Reference

Watchdog Control (WDOG_CTL) Register
The watchdog control register (WDOG_CTL, shown in Figure 12-4) is a
16-bit system memory-mapped register used to control the watchdog
timer.

The watchdog event (WDEV[1:0]) bit field is used to select the event that is
generated when the watchdog timer expires. Note that if the general-pur-
pose interrupt option is selected, the system interrupt mask register
(SIC_IMASK) should be appropriately configured to unmask that interrupt.
If the generation of watchdog events is disabled, the watchdog timer oper-
ates as described, except that no event is generated when the watchdog
timer expires.

The watchdog enable (WDEN[7:0]) bit field is used to enable and disable
the watchdog timer. Writing any value other than the disable value
(0xAD) into this field enables the watchdog timer. This multibit disable
key minimizes the chance of inadvertently disabling the watchdog timer.

Software can determine whether the watchdog has expired by interrogat-
ing the watchdog rolled over (WDRO) status bit of the watchdog control
register. This is a sticky bit that is set whenever the watchdog timer count
reaches 0. It can be cleared only by writing a 1 to the bit when the watch-
dog has been disabled first.

ADSP-BF54x Blackfin Processor Hardware Reference 12-9

Watchdog Timer

Programming Examples
Listing 12-1 shows how to configure the watchdog timer so that it resets
the chip when it expires. At startup, the code evaluates whether the recent
reset event is caused by the watchdog. Additionally, the example sets the
NOBOOT bit to prevent the memory from being rebooted.

Listing 12-1. Watchdog Timer Configuration

#include <blackfin.h>

#define WDOGPERIOD 0x00200000

.section L1_code;

.global _reset;

_reset:

 ...

/* optionally, test whether reset was caused by watchdog */

 p0.h=hi(SWRST);

 p0.l=lo(SWRST);

 r6 = w[p0] (z);

Figure 12-4. Watchdog Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 1 0 1 0 1 1 0 1 0 0 0

Watchdog Control Register (WDOG_CTL)

WDEV[1:0]
00 - Generate reset event
01 - Generate NMI
10 - Generate GP interrupt
11 - Disable event

generation

WDEN[7:0]
0xAD - Counter disabled
All other values - Counter
enabled

WDRO - W1C
0 - Watchdog timer has not expired
1 - Watchdog timer has expired

Reset = 0x0AD00xFFC0 0200

Programming Examples

12-10 ADSP-BF54x Blackfin Processor Hardware Reference

 CC = bittst(r6, bitpos(RESET_WDOG));

 if !CC jump _reset.no_watchdog_reset;

/* optionally, warn at system level or host device here */

_reset.no_watchdog_reset:

/* optionally, set NOBOOT bit to avoid reboot in case */

 p0.h=hi(SYSCR);

 p0.l=lo(SYSCR);

 r0 = w[p0](z);

 bitset(r0,bitpos(NOBOOT));

 w[p0] = r0;

/* start watchdog timer, reset if expires */

 p0.h = hi(WDOG_CNT);

 p0.l = lo(WDOG_CNT);

 r0.h = hi(WDOGPERIOD);

 r0.l = lo(WDOGPERIOD);

 [p0] = r0;

 p0.l = lo(WDOG_CTL);

 r0.l = WDEN | WDEV_RESET;

 w[p0] = r0;

 ...

 jump _main;

_reset.end:

The subroutine shown in Listing 12-2 can be called by software to service
the watchdog. Note that the value written to the WDOG_STAT register does
not matter.

ADSP-BF54x Blackfin Processor Hardware Reference 12-11

Watchdog Timer

Listing 12-2. Service Watchdog

service_watchdog:

 [--sp] = p5;

 p5.h = hi(WDOG_STAT);

 p5.l = lo(WDOG_STAT);

 [p5] = r0;

 p5 = [sp++];

 rts;

service_watchdog.end:

Listing 12-3 is an interrupt service routine that restarts the watchdog.
Note that the watchdog must be disabled first.

Listing 12-3. Watchdog Restarted by Interrupt Service Routine

isr_watchdog:

 [--sp] = astat;

 [--sp] = (p5:5, r7:7);

 p5.h = hi(WDOG_CTL);

 p5.l = lo(WDOG_CTL);

 r7.l = WDDIS;

 w[p5] = r7;

 bitset(r7, bitpos(WDRO));

 w[p5] = r7;

 r7 = [p5 + WDOG_CNT - WDOG_CTL];

 [p5 + WDOG_CNT - WDOG_CTL] = r7;

 r7.l = WDEN | WDEV_GPI;

 w[p5] = r7;

 (p5:5, r7:7) = [sp++];

 astat = [sp++];

 rti;

isr_watchdog.end:

Programming Examples

12-12 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 13-1

13 ROTARY COUNTER

This chapter describes the rotary (up/down) counter, which provides
support for manually-controlled rotary controllers, such as the volume
wheel on a radio device. This unit also supports industrial encoders.

This chapter describes the rotary counter and includes the following
sections:

• “Overview” on page 13-1

• “Interface Overview” on page 13-3

• “Description of Operation” on page 13-4

• “Functional Description” on page 13-8

• “Programming Mode” on page 13-24

• “Rotary Counter Registers” on page 13-24

• “Programming Examples” on page 13-33

Overview
The primary purpose of the rotary counter is to convert pulses from incre-
mental position encoders into data that is representative of the actual
position. This is done by integrating (counting) pulses on one or two
inputs.

Overview

13-2 ADSP-BF54x Blackfin Processor Hardware Reference

Since integration provides relative position, some devices also feature a
zero position input (zero marker) that can be used to establish a reference
point or alternative to verify that the acquired position does not drift over
time.

In addition, the incremental position information can be used to deter-
mine speed, if the time intervals are measured.

The rotary counter interface provides various and flexible ways to establish
position information. When used in conjunction with the general-purpose
(GP) timer block, the rotary counter interface allows for the acquisition of
coherent position/timestamp information that enables speed calculation.

Features
The rotary counter includes the following features:

• 32-bit rotary counter

• Quadrature encoder mode (gray code)

• Binary encoder mode

• Alternative frequency-direction mode

• Timed direction and up/down counting modes

• Zero marker/pushbutton support

• Capture event timing in association with GP timer

• Boundary comparison and boundary setting features

• Input pin noise filtering (debouncing)

• Flexible error detection/signaling

ADSP-BF54x Blackfin Processor Hardware Reference 13-3

Rotary Counter

Interface Overview
A block diagram of the rotary counter interface is shown in Figure 13-1.
There are two input pins, the count up and direction (CUD) pin and the
count down and gate (CDG) pin, that accept various forms of incremental
inputs and are processed by the 32-bit counter. The third input, count
zero marker (CZM), is the zero marker input. The module interfaces to the
processor by way of the peripheral access bus (PAB) and can optionally
generate an interrupt request through the IRQ line. There is also an out-
put that can be used by the timer module to generate timestamps on
certain events.

The timer output signal is connected internally to the alternate capture
input (TACI6) of the general-purpose timer 6. The interrupt signal goes to
the IRQ68 input of the SIC2 controller.

Figure 13-1. Block Diagram of the Rotary Counter Interface

 QUADRATURE
 32-bit

NOISE FILTERING
PROGRAMMABLE

 AND
 CONTROL BLOCK

 PROCESSOR
 LOGIC AND EVENT
 BOUNDARY DETECTION

 GENERATION

CUD

CDG

CZM

IRQ PAB BUS

TO (GP TIMER
OUTPUT)

 COUNTER

 INTERFACE

Description of Operation

13-4 ADSP-BF54x Blackfin Processor Hardware Reference

Description of Operation
The rotary encoder block has five modes of operation that are described in
this section.

With the exception of the timed direction mode, the rotary timer block
can operate in conjunction with the GP timer block in order to capture
additional timing information (timestamps) associated with events
detected by this block.

The third input (CZM) may be used as a zero marker or to sense the press-
ing of a pushbutton. Refer to “Zero Marker (Pushbutton) Operation” on
page 13-12 for more details.

The three input pins may be filtered (debounced) prior to being evaluated
by the rotary encoder. Refer to “Input Noise Filtering (Debouncing)” on
page 13-8 for more details.

The encoder block also features a flexible boundary comparison. In all of
the operating modes, the counter can be compared to an upper and lower
limit. A variety of actions can be taken when these limits are reached.
Refer to “Boundary Comparison Modes” on page 13-13 for more details.

Quadrature Encoder Mode
In this mode, the CUD:CDG inputs expect a quadrature-encoded signal that
is interpreted as a 2-bit gray code. The order of transitions of the CUD and
CDG inputs determines whether the counter increments or decrements. The
register CNT_COUNTER contains the number of transitions that have
occurred. Refer to Figure 13-2 for more details.

Figure 13-2 shows an example of a series of count up events which is caus-
ing CNT_COUNTER to increment.

ADSP-BF54x Blackfin Processor Hardware Reference 13-5

Rotary Counter

Optionally, an interrupt is generated if both inputs change within one
SCLK cycle. Such transitions are not allowed by gray coding. Therefore, the
register CNT_COUNTER remains unchanged and an error condition is
signaled.

It is possible to reverse the count direction of the gray-coded signal. This
can be achieved by enabling the polarity inverter of either the CUD pin or
the CDG pin, inverting both pins does not alter the behavior. This feature
can be enabled with the CDGINV and CUDINV bits in the CNT_CONFIG register.

As an example, if the CDG:CUD inputs are 00 respectively and the next tran-
sition is to 01, this would normally increment the counter as is seen in
Figure 13-2. If the CUD polarity is inverted this generates a received input
of 01 followed by 00. This will result in a decrement of the counter, alter-
ing the behavior of the connected hardware.

Binary Encoder Mode
This mode is almost identical to the previous mode, with the exception
that the CUD:CDG inputs expect a binary-encoded signal. The order of tran-
sitions of the CUD and CDG inputs determines whether the counter
increments or decrements. The register CNT_COUNTER contains the number
of transitions that have occurred. Refer to Figure 13-3.

In Figure 13-3, a series of binary up count events are causing the
CNT_COUNTER register to increment.

Figure 13-2. Quadrature Events and Counting Mechanism

CDG:CUD inputs

CNT_COUNTER
register value

-3 -2 -1 +1 +2 +3-4 +40

01 11 10 01 11 1000 0000

Description of Operation

13-6 ADSP-BF54x Blackfin Processor Hardware Reference

Optionally, an interrupt is generated if the detected code steps by more
than 1 (in binary arithmetic) within one SCLK cycle. Such transitions are
considered erroneous. Therefore, the register CNT_COUNTER remains
unchanged and an error condition is signaled.

Reversing the CUD and CDG pin polarity has a different effect for the binary
encoder mode than from the quadrature encoder mode. Inverting the
polarity of the CUD pin only or inverting both the CUD and CDG pins result
in reversing the count direction.

Rotary Counter Mode
In this general-purpose mode, the counter is incremented or decremented
at every active edge of the input pins.

If an active edge is detected at the CUD input, the counter increments. The
active edge can be selected by way of the CUDINV bit in the CNT_CONFIG reg-
ister. If this bit is cleared, a rising edge increments the counter. If the
configuration bit is set, a falling edge increments the counter.

If an active edge is detected at the CDG input, the counter decrements. The
active edge can be selected by way of the CDGINV bit in the CNT_CONFIG reg-
ister. If this bit is cleared, a rising edge decrements the counter. If the
configuration bit is set, a falling edge decrements the counter.

If simultaneous edges occur on pin CDG and pin CUD, the counter remains
unchanged and both up-count and down-count events are signaled in the
CNT_STATUS register.

Figure 13-3. Binary Events and Counting Mechanism

CDG:CUD inputs

CNT_COUNTER
register value

-3 -2 -1 +1 +2 +3-4 +40

01 10 11 01 10 1100 0000

ADSP-BF54x Blackfin Processor Hardware Reference 13-7

Rotary Counter

Direction Counter Mode
In this mode the CUD input pin is used to determine direction and the CDG
input is used as a gate.

In this general-purpose mode, the counter is incremented or decremented
at every active edge of the CDG input pin.

The state of the CUD input determines whether the counter increments or
decrements. The polarity can be selected by way of the CUDINV bit in the
CNT_CONFIG register. If this bit is cleared, a high CUD input selects the direc-
tion to increment, a low input selects the direction to decrement. If the
configuration bit is set, the polarity is inverted.

If an active edge is detected at the CDG input, the counter value changes by
one in the selected direction. The active edge can be selected by way of the
CDGINV bit in the CNT_CONFIG register. If this bit is cleared, a rising edge
decrements the counter. If the configuration bit is set, a falling edge decre-
ments the counter.

Timed Direction Mode
In this general-purpose mode, the counter is incremented or decremented
at each SCLK cycle.

The state of the CUD input determines whether the counter increments or
decrements. The polarity can be selected by way of the CUDINV bit in the
CNT_CONFIG register. If this bit is cleared, a high CUD input will increment
the counter, a low input decrements it. If the configuration bit is set, the
polarity is inverted.

The CDG pin can be used to gate the clock. The polarity can be selected by
way of the CDGINV bit in the CNT_CONFIG register. If this bit is cleared, a
high CDG input enables the counter, a low input will stop it. If the configu-
ration bit is set, the polarity is inverted.

Functional Description

13-8 ADSP-BF54x Blackfin Processor Hardware Reference

Functional Description
The following sections describe the rotary counter in more detail.

Input Noise Filtering (Debouncing)
The rotary inputs are asynchronous to the system clock so hardware syn-
chronizes them internally before using. This synchronization causes a
fixed delay of a few clocks before any actions result from the toggling of
the inputs.

Because of the synchronization, the minimum pulse width of the input
signals must be the period of the system clock. For signals which don't
require debouncing, the maximum input frequency is the same as the sys-
tem clock.

In all modes, the three input pins can be optionally filtered in order to
present clean signals to the subsequent rotary encoder logic. This feature
can be enabled or disabled by way of the DEBE bit in the CNT_CONFIG
register.

The filtering mechanism is implemented using counters for each pin. The
counter for each pin is initialized from the DPRESCALE field of the
CNT_DEBOUNCE register. Whenever a transition is detected on a pin, the cor-
responding counter starts counting up to the programmed number of SCLK
cycles. The state of the pin is then latched after time tFILTER, as deter-
mined by the equation below and passed on to the subsequent logic. The
5-bit DPRESCALE field in the CNT_DEBOUNCE register (see Figure 13-12 on
page 13-31) is used to program the desired cycle number and therefore the
debouncing time. The number of SCLK cycles used to program the coun-
ters for each pin can be selected in eighteen steps by way of this register,
see Table 13-1 on page 13-10.

ADSP-BF54x Blackfin Processor Hardware Reference 13-9

Rotary Counter

The time tfilter is determined, given SCLK and the DPRESCALE value con-
tained in the CNT_DEBOUNCE register, by the following formula:

where, DPRESCALE can contain values from 0 (minimum filtering) to 17
(maximum filtering).

Figure 13-4 shows the filtering operation for the CUD pin.

Assuming an SCLK frequency of 133 MHz, the filter time range is shown
by the following two equations, Figure 13-5 on page 13-10, Table 13-1
on page 13-10, and Table 13-2 on page 13-11:

Figure 13-4. Programmable Noise Filtering

tFILTER 128 2
DPRESCALE SCLK =

NOISY EDGES

CUD FILTERED

CUD

t filter

DPRESCALE = 0b00000

tFILTER 128 1 7.5ns 960ns 1s== approx =

DPRESCALE = 0b10001

tFILTER 128 131072 7.5ns 125829s 126ms== approx =

Functional Description

13-10 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 13-5. Filtering Range

Table 13-1. DPRESCALE Filtering Range

DPRESCALE Cycles Debounce Time
(approximately)

00000 1x 1 µs

00001 2x 2 µs

00010 4x 4 µs

00011 8x 8 µs

00100 16x 16 µs

001001 32x 32 µs

00110 64x 64 µs

00111 128x 128 µs

01000 256x 256 µs

01001 512x 512 µs

01010 1024x 1 ms

01011 2048x 2 ms

01100 4096x 4 ms

01101 8192x 82 ms

01110 16384x 16 ms

01111 32768x 32 ms

10000 65536x 64 ms

10001 131072x 126 ms

CNT_DEBOUNCE
5 bits, R/W

@RESET

SEE TABLE BELOW FOR VALUES

0x0000000

ADSP-BF54x Blackfin Processor Hardware Reference 13-11

Rotary Counter

Table 13-2. Prescale Value Programming to Debounce Filter Circuit

Bit
Locatio
n

Name Typ
e

Function

4:0 DPRES-
CALE

R/
W

These bits are used to program the prescale value to the debounce
filter circuit in the counter module. The predefined count value
for “x” (128) determines the number of SCLK cycles to be
counted.

b#00000 1x cycles = 128 SCLK cycles

b#00001 2x cycles = 256 SCLK cycles

b#00010 4x cycles = 512 SCLK cycles

b#00011 8x cycles = 1024 SCLK cycles

b#00100 16x cycles = 2048 SCLK cycles

b#00101 32x cycles = 4056 SCLK cycles

b#00110 64x cycles = 8112 SCLK cycles

b#00111 128x cycles = 16224 SCLK cycles

b#01000 256x cycles = 32448 SCLK cycles

b#01001 512x cycles = 64896 SCLK cycles

b#01010 1024x cycles = 129792 SCLK cycles

b#01011 2048x cycles = 259584 SCLK cycles

b#01100 4096x cycles = 519168 SCLK cycles

b#01101 8192x cycles = 1038336 SCLK cycles

b#01110 16384x cycles = 2076672 SCLK cycles

b#01111 32768x cycles = 4153344 SCLK cycles

b#10000 65536x cycles = 8306688 SCLK cycles

b#10001 131072x cycles = 16613376 SCLK cycles

b#10010 10010b - 11111b: Reserved

Functional Description

13-12 ADSP-BF54x Blackfin Processor Hardware Reference

Zero Marker (Pushbutton) Operation
The CZM input pin can be used to sense the zero marker output of a rotary
device or detect pressing of a pushbutton. There are four programming
schemes all of which are functional in all counter modes. They are listed as
follows:

• Pushbutton mode This mode is enabled by setting the CZMIE bit in
the CNT_IMASK register. An active edge at the CZM input sets the
CZMII bit in the CNT_STATUS register. If enabled by the
peripheral interrupt controller, this generates an interrupt request.
The active edge is selected by the CZMINV bit in the CNT_CONFIG reg-
ister: rising edge if cleared, falling edge if set to one.

• Zero-marker-zeros-counter mode This mode is enabled by setting
the ZMZC bit in the CNT_ CONFIG register. An active level at the CZM
input clears the CNT_COUNTER register and holds it until the CZM pin
is deactivated. In addition, if enabled by the CZMZIE bit in the
CNT_IMASK register, this mode sets the CZMZII bit in the CNT_STATUS
register. If enabled by the peripheral interrupt controller, this gen-
erates an interrupt request. The active level is selected by the
CZMINV bit in the CNT_CONFIG register: active high if cleared, active
low if set to one.

• Zero-marker-error mode This mode is used to detect discrepancies
between the counter value and the zero marker output of certain
rotary encoder devices. It is enabled by setting the CZMEIE bit in the
CNT_IMASK register. When an active edge is detected at the CZM
input pin, the four LSBs of the CNT_COUNTER register are compared
to zero. If they are not zero, a mismatch is signaled by way of the
CZMEII bit in the CNT_STATUS register. If enabled by the peripheral
interrupt controller, this mode generates an interrupt request. The
active edge is selected by the CZMINV bit in the CNT_CONFIG register:
rising edge if cleared, falling edge if set to one.

ADSP-BF54x Blackfin Processor Hardware Reference 13-13

Rotary Counter

• Zero-once mode This mode is used to perform an initial reset of
the counter value when an active zero marker is detected. After
that, the zero marker is ignored (the counter is not reset anymore).
This mode is enabled by setting the W1ZMONCE bit in the
CNT_COMMAND register. The CNT_COUNTER register and the W1ZMONCE
bit are cleared on the next active edge on the CZM pin. Thus, the
W1ZMONCE bit can be read to check whether the event has already
occurred, if desired. The active edge of the CZM pin is selected by
the CZMINV bit in the CNT_CONFIG register: rising edge if cleared,
falling edge if set to one.

Boundary Comparison Modes
The rotary encoder block includes two boundary registers, CNT_MIN
(lower) and CNT_MAX (upper). The counter value is compared to the lower
and upper boundary. Depending on which mode is selected, different
actions are taken if the count value reaches either of the boundary values.

 For all boundary modes, compares do not occur if the change to
CNT_MIN/CNT_MAX/CNT_COUNTER was due to a software event. Soft-
ware events include writing these registers, or events caused by
writing the CNT_COMMAND register. Boundary compare events ONLY
occur due to up/down actions from the counter. This includes set-
ting MINCII/MAXCII and zeroing the counter on a compare to either
CNT_MIN or CNT_MAX.

There are four boundary modes:

• Boundary-compare mode The two boundary registers are simply
compared to the CNT_COUNTER register. If CNT_COUNTER after incre-
menting equals CNT_MAX, the MAXCII bit in the CNT_STATUS register
is set. If the MAXCIE bit in the CNT_IMASK register is set, an interrupt
request is generated. Similarly CNT_COUNTER after decrementing
equals CNT_MIN, the MINCII status bit is set. If the MINCIE bit in the
CNT_IMASK register is set, an interrupt request is generated. The

Functional Description

13-14 ADSP-BF54x Blackfin Processor Hardware Reference

MAXCII and MINCII bits are not set if the CNT_MAX and CNT_MIN reg-
isters are updated by software. For MINCII and MAXCII to be set, all
that needs to happen is for CNT_COUNTER to equal them, regardless
of the direction. As an example, if CNT_MIN=2 and CNT_COUNTER=1
and an up event occurs, MINCII will still be set. Likewise, if
CNT_MAX=2, CNT_COUNTER=3 and a down event occurs, MAXCII will
still be set.

For the special case of CNT_MIN equals CNT_MAX, if CNT_COUNTER
reaches the value in the boundary register both MINCII and MAXCII
are set.

• Boundary-zero mode This mode is similar to the boundary-com-
pare mode. In addition to setting the status bits and requesting
interrupts, the counter value in the CNT_COUNTER register is also set
to zero.

• Boundary auto-extend mode In this mode, the boundary registers
are modified by hardware whenever the counter value reaches
either of them. At startup, the application software should set both
boundary registers to the initial CNT_COUNTER value. The CNT_MAX
register is loaded with the current CNT_COUNTER value if the latter
increments beyond the CNT_MAX value. Similarly, the CNT_MIN regis-
ter is loaded with the CNT_COUNTER value if the latter decrements
below the CNT_MIN value. This mode may be used to keep track (in
hardware) of the widest angle the wheel ever reported, even if the
software did not serve interrupts. The MAXCII and MINCII status
bits are still set when the counter value matches the boundary regis-
ter, not only when it extends the boundary.

In this mode it is envisioned that software would never change
CNT_MIN or CNT_MAX by writing to them or an action from the
CNT_COMMAND register. If software does this, the behavior is best
described by a few examples:

ADSP-BF54x Blackfin Processor Hardware Reference 13-15

Rotary Counter

Example 1: CNT_MAX=2, CNT_COUNTER=1. With three up events,
CNT_COUNTER=CNT_MAX=4. Now if software writes CNT_MAX=2, the
rotary will not auto extend until CNT_COUNTER decrements back
down to two, then increments again.

Example 2: CNT_MIN=2, CNT_COUNTER=3. With three down events
CNT_COUNTER=CNT_MIN=0. Now if software writes CNT_MIN=2, the
rotary will not auto extend until CNT_COUNTER increments back up
to two, then decrements again.

• Boundary-capture mode In this mode, the CNT_COUNTER value is
latched into the CNT_MIN register at one detected edge of the CZM
input pin, and latched into CNT_MAX at the opposite edge. If the
CZMINV bit in the CNT_CONFIG register is cleared, a rising edge cap-
tures into CNT_MIN and a falling edge into CNT_MAX. If the CZMINV bit
is set, the edges are inverted. The MAXCII and MINCII status bits
report the capture event.

The comparison is performed with signed arithmetic. The bound-
ary registers and the counter value are all treated as signed integer
values.

Rotary Encoder Events: Control and Signaling
There are a total of 11 events that can be signaled to the processor by way
of status information and optional interrupt requests. The interrupts are
enabled by the respective bits in the CNT_IMASK register. Dedicated status
bits in the CNT_STATUS register report events. When an interrupt from the
rotary encoder is acknowledged, the application software is responsible for
correct interpretation of the events. It is recommended to logically AND the
content of the CNT_IMASK and CNT_STATUS registers to identify pending
interrupts. Interrupt requests are cleared by write-one-to-clear (W1C)
operations to the CNT_STATUS register. Hardware does not clear the status

Functional Description

13-16 ADSP-BF54x Blackfin Processor Hardware Reference

bits automatically, unless the counter module is disabled. There are four
boundary modes. Status bits are available in any of the counter modes dis-
cussed in “Description of Operation” on page 13-4.

Illegal Gray/Binary Code Events (Two-Step Detection)

As described in the quadrature encoder mode and binary encoder mode
sections, illegal transitions can be detected in these two modes. If this
event occurs, the ICII status bit is set. If enabled by the ICIE bit, an inter-
rupt request is generated. The ICIE bit should only be used (set) in these
two modes.

Up/Down Count Events

The UCII status bit informs whether the counter is incremented. Similarly,
the DCII bit reports decrements. The two events are independent. For
instance, if the counter first increments by one and then decrements by
two, both bits remain set, even though the resulting counter value shows a
decrement by one. In rotary counter mode, hardware may detect simulta-
neous active edges on the CUD and CDG inputs. In that case, the
CNT_COUNTER remains unchanged, but both the UCII and DCII bits are set.

Interrupt requests for these events may be enabled through the UCIE and
DCIE bits. This feature should be used carefully when the counter is
clocked at high rates. This is especially critical when the counter operates
in DIR_TMR mode, as interrupts would be generated every SCLK cycle.

These events can also be used for additional push buttons, if rotary
encoder features are not needed. When rotary counter mode is enabled,
these count events can be used to report interrupts from push buttons that
connect to the CUD and CDG inputs.

ADSP-BF54x Blackfin Processor Hardware Reference 13-17

Rotary Counter

Zero Count Events

The CZEROII status bit indicates that the CNT_COUNTER has reached a value
equal to 0x0000 0000 after an increment or decrement. This bit is not set
when the counter value is set to zero directly by way of a software write
(write to CNT_COUNTER or setting the W1LCNT_ZERO bit in the CNT_COMMAND
register). If enabled by the CZEROIE bit, an interrupt request is generated.

Overflow Events

There are two status bits that indicate whether the signed counter register
has overflowed from a positive to a negative value or vice versa.

The COV31II bit reports that the 32-bit CNT_COUNT register has either incre-
mented from 0x7FFF FFFF to 0x8000.0000 or decremented from
0x8000.0000 to 0x7FFF FFFF. If enabled by the COV31IE bit, an interrupt
request is generated.

Similarly, in applications where only the lower 16 bits of the counter are
of interest, the COV15II status bit reports counter transitions from
0xxxxx 7FFF to 0xxxxx 8000 or reversed. If enabled by the COV15IE bit, an
interrupt request is generated.

Boundary Match Events

The MINCII and MAXCII status bits report boundary events as described in
“Boundary Comparison Modes” on page 13-13. These bits are not set if
the CNT_COUNTER, CNT_MAX or CNT_MIN registers are updated by software or
the CNT_COMMAND register is written to.

The MINCIE and MAXCIE bits in the CNT_IMASK register enable interrupt
generation on boundary events.

Functional Description

13-18 ADSP-BF54x Blackfin Processor Hardware Reference

Zero Marker Events

There are three status bits CZMII, CZMEII and CZMZII associated with zero
marker events, as described in “Zero Marker (Pushbutton) Operation” on
page 13-12. Each of these events can optionally generate an interrupt
request, if enabled by the corresponding CZMIE, CZMEIE and CZMZIE bits in
the CNT_IMASK register.

Capturing Timing Information (Using the
General-Purpose Timer)

To calculate speed, many applications may wish to measure the time
between two count events—in addition to accurately counting encoder
pulses. For more accuracy, particularly at very low speeds, it is also neces-
sary to obtain the time that has elapsed since the last count event. This
additional information allows for estimating how much the GP counter
has advanced since the last counter event.

For this purpose, the GP counter has an internal signal that connects to
the alternate capture input (TACIx) of one of the GP timers. It is func-
tional in all modes, with the exception of the timed direction mode. Refer
to "Internal Interfaces" in Chapter 9, “General-Purpose Ports” for infor-
mation regarding which GP timer(s) are associated with which GP
counter module(s) for your device.

In order to use the timing measurements, the associated GP timer must be
used in the WDTH_CAP mode. The alternate capture input is selected by set-
ting the TIN_SEL bit in the GP timer's TIMER_CONFIG register. For more
information see Chapter 10, “General-Purpose Timers”.

For this purpose, the rotary counter has an internal timer output that con-
nects to the alternate capture inputs (TACIx) of one of the timers as
explained in “Interface Overview” on page 13-3. It is functional in all
modes, with the exception of the timed direction mode.

ADSP-BF54x Blackfin Processor Hardware Reference 13-19

Rotary Counter

In order to use the timing measurements, the associated timer must be
used in pulse width count and capture mode (WDTH_CAP). The alternative
capture input is selected by setting the TIN_SEL bit in the timer’s configu-
ration register. For more information about the GP Timers and their
operating modes refer “Capturing Timings from the GP Counter Mod-
ule” on page 10-34.

Capturing Time Interval Between Successive Counter Events

When the only timing information of interest is the interval between suc-
cessive count events, the associated timer should be programmed in
WDTH_CAP mode with PULSE_HI = 1, PERIOD_CNT = 1 and TIN_SEL = 1. Typ-
ically, this information is sufficient if the speed of rotary encoder events is
known not to reach very low values. Figure 13-6 on page 13-20 shows the
operation of the rotary encoder module and the GP timer in this mode. TO
generates a pulse every time a count event occurs. The general-purpose
timer will update the TIMERx_PERIOD register with the period (measured
from rising edge to rising edge) of the TO signal. The TIMERx_PERIOD regis-
ter is updated at every rising edge of the TO signal and contains the number
of system clock (SCLK) cycles that have elapsed since the previous rising
edge.

Incidentally, the TIMERx_WIDTH register is also updated at the same time,
but is generally of no interest in this mode of operation. If no reads of the
CNT_COUNTER register occur between counter events, the TIMERx_WIDTH reg-
ister only contains the width of the TO pulse. If a read of the CNT_COUNTER
has occurred between events, the TIMERx_WIDTH register will contain the
time between the read of the CNT_COUNTER and the next event.

This mode can also be used with PULSE_HI = 0. In this case, the period of
TO is measured between falling edges. It will result in the same values as in
the previous case, only the latching occurs one SCLK cycle later.

Functional Description

13-20 ADSP-BF54x Blackfin Processor Hardware Reference

Capturing Counter Interval and
CNT_COUNTER Read Timing

It is possible to also capture the time elapsed since the last count event. In
this mode, the associated timer should be programmed in WDTH_CAP mode
with PULSE_HI = 0, PERIOD_CNT = 0 and TIN_SEL = 1. Typically, this addi-
tional information is used to estimate the advancement of the rotary
encoder since the last count event, if the speed is very low. Figure 13-7

Figure 13-6. Capturing Counter Event Time Intervals

SCLK

CUD

CDG

TO

CNT_COUNTER

TIMER_COUNTER

TIMER_PERIOD BUFFER

TIMER_WIDTH BUFFER

TIMER_PERIOD

TIMER_PERIOD

TIMER_WIDTH

Measurement
reports available

1 2 3 4 5

10 3 7 3 4

11111

10 3 7 3 4

11111

1 2 3 1 2 3 4 5 6 7 1 2 3 1 2 3 4 1 2

ADSP-BF54x Blackfin Processor Hardware Reference 13-21

Rotary Counter

shows the operation of the rotary encoder module and the general-purpose
timer in this mode. TO generates a pulse every time a count event occurs.
In addition, when the processor reads the CNT_COUNTER register, the TO sig-
nal presents a pulse which is extended (high) until the next count event.
The general-purpose timer will update the TMRx_PERIOD register with the
period (measured from falling edge to falling edge, because PULSE_HI = 0)
of the TO signal. The TMRx_WIDTH register is updated with the pulse width
(the portion where TO is low, again because PULSE_HI = 0). Both registers
are updated at every rising edge of the TO signal (because PERIOD_CNT = 0).
Therefore, the period register contains the period between the last two
count events and the width register contains the time since the last count
event and the read of the CNT_COUNTER register, both measured in number
of system clock (SCLK) cycles.

The result is that when reading the CNT_COUNTER register, the two time
measurements are also latched and the user has a coherent triplet of infor-
mation to calculate speed and position.

 Restrictions apply to the use of the TO signal in terms of speed.
Therefore, the user must take care to not operate at very high count
events. For instance, if CNT_COUNTER is incremented/decremented
every SCLK cycle (timed direction mode), the TO signal is incorrect.

Functional Description

13-22 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 13-7. Capturing Counter Event Time Intervals and Last Event
Time Interval

SCLK

CUD

CDG

TO

CNT_COUNTER

CNT_COUNTER READ

TIMER_COUNTER

TIMER_PERIOD BUFFER

TIMER_WIDTH BUFFER

TIMER_PERIOD

TIMER_PERIOD

TIMER_WIDTH

Measurement
report of interest
due to read of
CNT_COUNTER

1 2 3 4 5 6

12 3 3 8

142211

x 2 3 3 8

142211

12 1 2 1 2 3 1 2 3 1 2 3 4 5 6 7 8 1 2

X 2

1

12

1

ADSP-BF54x Blackfin Processor Hardware Reference 13-23

Rotary Counter

Counter Commands
In order to facilitate initialization of the peripheral, a register is provided
to perform various operations such as zeroing a counter register, copying
or swapping boundary registers and so on. These actions are taken by writ-
ing a 1 to the appropriate bit in the CNT_COMMAND register.

The CNT_COUNTER, CNT_MIN and CNT_MAX registers can be initialized to zero
by writing a 1 to the W1LCNT_ZERO, W1LMIN_ZERO and W1LMAX_ZERO fields.
In addition to clearing registers, the boundary registers can be modified in
a number of ways. The current counter value in CNT_COUNT can be cap-
tured and loaded into either of the two boundary registers CNT_MAX and
CNT_MIN to create new boundary limits. This is performed by setting the
W1LMAX_CNT and W1LMIN_CNT bits. Alternatively the counter can be loaded
from CNT_MAX or CNT_MIN through the W1LCNT_MAX and W1LCNT_MIN bits. It
is also possible to transfer the current CNT_MAX into CNT_MIN or vice versa
through the W1LMIN_MAX and W1LMAX_MIN bits. The final supported opera-
tion is the ability to only have the zero marker clear the CNT_COUNT register
once as described in “Zero Marker (Pushbutton) Operation” on
page 13-12.

It is possible for multiple actions to be performed simultaneously by set-
ting multiple bits in the CNT_COMMAND register. The bits associated with
each command have been grouped together such that all bits that involve a
write to the CNT_COUNTER register are located within the bits 3:0 of the
CNT_COMMAND register. All commands that involve a write to the CNT_MIN
register are located within bits 7:4 of the CNT_COMMAND register and all
commands that involve a write to the CNT_MAX register are located within
bits 11:8 of the CNT_COMMAND register. Refer to the register diagram
(Figure 13-11 on page 13-30) for more details.

 A maximum of three commands can be issued at any one time,
excluding the W1ZMONCE command. No two commands issued
simultaneously can involve a load to the same counter register. The
following commands must be used exclusively: W1LCNT_MIN,
W1LCNT_MAX, and W1LCNT_ZERO. Never set more than one of them at

Programming Mode

13-24 ADSP-BF54x Blackfin Processor Hardware Reference

the same time. The same requirement stands true for W1LMAX_MIN,
W1LMAX_CNT and W1LMAX_ZERO and also for W1LMIN_MAX, W1LMIN_CNT,
and W1LMIN_ZERO.

Programming Mode
In a typical application, the programmer initializes the rotary encoder to
the desired mode, without enabling it. Normally the events of interest are
processed by way of interrupts rather than by polling the status bit. There-
fore, clear all status bits and activate the generation of interrupt requests
using the CNT_IMASK register. Set up the peripheral interrupt controller
and core interrupts. If timing information is required, set up the appropri-
ate timer in the WDTH_CAP mode with the settings described in “Capturing
Timing Information (Using the General-Purpose Timer)” on page 13-18.
Then, enable interrupts and the peripheral itself.

Rotary Counter Registers
The rotary encoder interface has eight memory-mapped registers (MMRs)
that regulate its operation.

Refer to Table 13-3 for an overview of all MMRs associated with the
rotary encoder interface.

Descriptions and bit diagrams for MMRs are provided in the following
sections.

ADSP-BF54x Blackfin Processor Hardware Reference 13-25

Rotary Counter

Table 13-3. Counter Module Register Overview

Address Register Name Description Notes

0xFFC0 4200 CNT_CONFIG “Configuration (CNT_CONFIG) Regis-
ter” on page 13-26

16 bits
R/W
Reset = 0x0000

0xFFC0 4204 CNT_IMASK “Interrupt Mask (CNT_IMASK) Regis-
ter” on page 13-28

16 bits
R/W
Reset = 0x0000

0xFFC0 4208 CNT_STATUS “Status (CNT_STATUS) Register” on
page 13-28

16 bits
R/W1C
Reset = 0x0000

0xFFC0 420
C

CNT_COMMAN
D

“Command (CNT_COMMAND) Regis-
ter” on page 13-29

16 bits
R/W1ACTION
Reset = 0x0000

0xFFC0 4210 CNT_DEBOUNC
E

“Debounce Prescale
(CNT_DEBOUNCE) Register” on
page 13-30

16 bits
R/W
Reset = 0x0000

0xFFC0 4214 CNT_COUNTER “Counter (CNT_COUNTER) Register”
on page 13-31

32 bits
R/W (16/32 bits)
Reset = 0x0000
0000

0xFFC0 4218 CNT_MAX “Boundary (CNT_MIN and CNT_MAX)
Registers” on page 13-32

32 bits
R/W (16/32 bits)
Reset = 0x0000
0000

0xFFC0 421
C

CNT_MIN “Boundary (CNT_MIN and CNT_MAX)
Registers” on page 13-32

32 bits
R/W (16/32 bits)
Reset = 0x0000
0000

Rotary Counter Registers

13-26 ADSP-BF54x Blackfin Processor Hardware Reference

Configuration (CNT_CONFIG) Register
The configuration (CNT_CONFIG) register is used to configure counter
modes and input pins and to enable the peripheral. It can be accessed at
any time with 16-bit read and write operations.

 To avoid false glitches on startup, write all bits in CNT_CONFIG first,
followed by a second write to the register which enables the coun-
ter (CNTE = 1).

Boundary Register Mode

Since CUD, CDG, and CZM input pins are muxed with other pins, these pins
might be used for a function other than rotary counter. Specifically:

• If the application needs only the pushbutton (CZM) function, then
write INPDIS = 0 to ignore CUD and CDG. This allows a debounced
pushbutton interrupt source.

• If the application needs just the rotary pins CUD and CDG, but not
the CZM, then write INPDIS = 1. Then ensure your software does not
enable any of the pushbutton functions in the rotary counter
registers.

ADSP-BF54x Blackfin Processor Hardware Reference 13-27

Rotary Counter

For further information, see BNDMODE bit in Figure 13-8.

Figure 13-8. Configuration Register

Configuration Register (CNT_CONFIG)

Reset = 0x00000xFFC04200
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

CNTE (Counter
Enable)
0 = Disabled
1 = Enabled

0 = Disabled
1 = Enabled

CDGINV (CDG Pin
Polarity Invert)
0 = Active high, rising edge
1 = Active low, falling edge
CUDINV (CUD Pin Polarity
Invert)
0 = Active high, rising edge
1 = Active low, falling edge

CZMINV (CZM Pin Polarity
Invert)
0 = Active high, rising edge
1 = Active low, falling edge

CNTMODE (Counter Operating Mode)
000: QUAD_ENC - quadrature encoder mode
001: BIN_ENC - binary encoder mode
010: UD_CNT - rotary counter mode
011: Reserved
100: DIR_CNT - direction counter mode
101: DIR_TMR - direction timer mode
110, 111: Reserved

ZMZC (CZM Zeroes Counter
Enable)

BNDMODE
(Boundary Register Mode)
00: BND_COMP
01: BIN_ENC
10: BND_CAPT
11: BND_AEXT

INPDIS (CUD and
CDG Input
Disable)

DEBE (Debounce
Enable)

0 = Enabled
1 = Disabled

Level sensitive - active CZM
pin zeroes CNT_COUNTER

Rotary Counter Registers

13-28 ADSP-BF54x Blackfin Processor Hardware Reference

Interrupt Mask (CNT_IMASK) Register
The interrupt mask (CNT_IMASK) register is used to enable interrupt
request generation from each of the eleven events (See Figure 13-9). It can
be accessed at any time with 16-bit read and write operations.

Status (CNT_STATUS) Register
The status (CNT_STATUS) register provides status information for each of
the eleven events where 0 = no interrupt pending and 1 = interrupt pend-
ing (See Figure 13-10). When an event is detected, the corresponding bit
in this register is set. It remains set until either software writes a 1to the bit
(write-1-to-clear) or the rotary encoder peripheral is disabled.

Figure 13-9. Interrupt Mask Register

Interrupt Mask Register (CNT_IMASK)

Reset = 0x00000xFFC04204
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

ICIE (Illegal gray/binary code
interrupt enable) (two step
detection)

UCIE (Upcount interrupt
enable)

DCIE (Downcount interrupt
enable)

MINCIE (Min count interrupt
enable) (CNT_COUNTER ==
CNT_MIN)

MAXCIE (Max count interrupt
enable) (CNT_COUNTER ==
CNT_MAX)

COV31IE (Bit 31 overflow
interrupt enable)

(0x7FFF FFFF to 0x8000 0000
or reverse order)

COV15IE (Bit 15 overflow inter-
rupt enable) (0xxxxx 7FFF to
0xxxxx 8000 or reverse order)

CZMZIE (Counter zeroed by
zero marker interrupt enable)

CZMEIE (Zero marker error
interrupt enable) (edge on CZM
AND CNT_COUNTER[3:0]
!= b#0000)

CZMIE (CZM pin interrupt
enable/ pushbutton interrupt)

CZEROIE (CNT_COUNTER)
Counts to zero interrupt enable
(CNT_COUNTER == 0x000 0000)

For all bits:
0 = Interrupt disabled
1 = Interrupt enabled

ADSP-BF54x Blackfin Processor Hardware Reference 13-29

Rotary Counter

Command (CNT_COMMAND) Register
The command (CNT_COMMAND) register is used to perform various actions
that are needed occasionally. Each bit performs the indicated action when
a 1 is written to it (See Figure 13-11).

Read operations from this register do not return meaningful values. One
exception is the W1ZONCE bit. It is the only bit that returns a value if the
register is read. A one indicates that the bit is set by software before, but
no zero marker event is detected on the CZM pin yet. Refer to “Zero Marker
(Pushbutton) Operation” on page 13-12 for more details.

 Note that W1LCNT_MIN, W1LCNT_MAX and W1LCNT_ZERO have to be
used exclusively. Never set more than one of them at the same
time. The same requirement stands for W1LMAX_MIN, W1LMAX_CNT
and W1LMAX_ZERO and also for W1LMIN_MAX, W1LMIN_CNT and
W1LMIN_ZERO.

Figure 13-10. Status Register

Status Register (CNT_STATUS)

Reset = 0x00000xFFC04208
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

COV31II (Bit 31 overflow
interrupt) (W1C)

COV15II (Bit 15 overflow
interrupt) (W1C)

CZMZIE (Counter zeroed by
zero marker) (W1C)

CZMEII (Zero marker error
interrupt) (W1C)

CZMII (CZM pin interrupt/
pushbutton interrupt) (W1C)

CZEROII (CNT_COUNTER
counts to zero interrupt)
(W1C)

ICII (Illegal gray/binary
code interrupt) (W1C)

UCII (Upcount interrupt)
(W1C)

DCII (Downcount interrupt)
(W1C)

MINCII (Min interrupt)
(W1C)

MAXCII (Max interrupt)
(W1C)

For all bits:
0 = No interrupt pending
1 = Interrupt pending

Rotary Counter Registers

13-30 ADSP-BF54x Blackfin Processor Hardware Reference

Debounce Prescale (CNT_DEBOUNCE) Register
The debounce prescale (CNT_DEBOUNCE) register is used to select the noise
filtering characteristic of the input pins (See Figure 13-12). Bits [4:0]
determine the filter time. The register can be accessed at any time with
16-bit read and write operations.

Figure 13-11. Command Register

Command Register (CNT_COMMAND)

Reset = 0x00000xFFC0420c
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

W1LCNT_ZERO (Write one to
zero CNT_COUNTER) (W1A)

W1LCNT_MIN (Write one to
zero CNT_COUNTER (W1A)

W1LCNT_MAX (Write one to
load CNT_COUNTER from
CNT_MAX) (W1A)

W1LMIN_ZERO (Write one to
zero CNT_MIN register) (W1A)

W1LMIN_CNT (Write one to
capture CNT_COUNTER to
CNT_MIN register) (W1A)W1LMIN_MAX (Write one to

copy former CNT_MAX to new
CNT_MIN) (W1A)

W1LMAX_ZERO (Write one to zero
CNT_MAX Register) (W1A)

W1LMAX_CNT (Write one to cap-
ture CNT_COUNTER to CNT_MAX
Register) (W1A)

W1LMAX_MIN (Write one to copy
former CNT_MIN to new
CNT_MAX) (W1A)

W1ZMONCE (Write one to
enable single zero marker
clear CNT_COUNT action)
(W1A/R)

tfilter 128 2
DPRESCALE

SCLK =

ADSP-BF54x Blackfin Processor Hardware Reference 13-31

Rotary Counter

Counter (CNT_COUNTER) Register
The counter (CNT_COUNTER) register holds the 32-bit, two’s-complement,
count value (See Figure 13-13). It can be read and written at any time.
Hardware ensures that reads and writes are atomic, by providing respec-
tive shadow registers. This register can be accessed with either 32-bit or
16-bit operations. This allows use of the rotary encoder as a 16-bit coun-
ter, if sufficient for the application.

Figure 13-12. Debounce Register

Debounce Register (CNT_DEBOUNCE)

Reset = 0x00000xFFC04210
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

DPRESCALE (Debounce Delay)

00000: 1x cycles = 128 SCLK cycles
00001: 2x cycles = 256 SCLK cycles
00010: 4x cycles = 512 SCLK cycles
00011: 8x cycles = 1024 SCLK cycles
00100: 16x cycles = 2048 SCLK cycles
00101: 32x cycles = 4056 SCLK cycles
00110: 64x cycles = 8112 SCLK cycles
00111: 128x cycles = 16224 SCLK cycles
01000: 256x cycles = 32448 SCLK cycles
01001: 512x cycles = 64896 SCLK cycles
01010: 1024x cycles = 129792 SCLK cycles
01011: 2048x cycles = 259584 SCLK cycles
01100: 4096x cycles = 519168 SCLK cycles
01101: 8192x cycles = 1038336 SCLK cycles
01110: 16384x cycles = 2076672 SCLK cycles
01111: 32768x cycles = 4153344 SCLK cycles
10000: 65536x cycles = 8306688 SCLK cycles
10001: 131072x cycles = 16613376 SCLK cycles

10010 - 11111: Reserved

Rotary Counter Registers

13-32 ADSP-BF54x Blackfin Processor Hardware Reference

Boundary (CNT_MIN and CNT_MAX) Registers
The boundary (CNT_MIN and CNT_MAX) registers hold the 32-bit,
two’s-complement, lower and upper boundary values (See Figure 13-14
and Figure 13-15). They can be read from and written to at any time.
Hardware ensures that reads and writes are atomic, by providing respec-
tive shadow registers. This register can be accessed with either 32-bit or
16-bit operations. This allows for using the rotary encoder as a 16-bit
counter if sufficient for the application.

Figure 13-13. Counter Register

Figure 13-14. Maximal Count Register

Counter Register (CNT_COUNTER)

Count Value [31:16]

Reset = 0x0000 00000xFFC04214

31 30 29 28 27 26

00 0 0 0 0 0 0 0 0 0 0 0 00

16171819202122232425

0

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

Count Value [15:0]

Maximal Count Register (CNT_MAX)

Reset = 0x0000 00000xFFC04218

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

CNT_MAX [31:16] (Counter Max)
R/W and Reset Value = 0

31 30 29 28 27 26

00 0 0 0 0 0 0 0 0 0 0 0 00

16171819202122232425

0

CNT_MAX [15:0] (Counter Max)
R/W and Reset Value = 0

ADSP-BF54x Blackfin Processor Hardware Reference 13-33

Rotary Counter

Programming Examples
Listing 13-1 illustrates how to configure the port registers to enable rotary
counter functionality through the PORTx_MUX and PORTx_FER registers.

Listing 13-1. Configuring the Port Registers to Enable Rotary Counter

/* enable CDG and CUD features. */

P5.H = hi(PORTH_FER);

P5.L = lo(PORTH_FER);

R5.L = nPH15 | nPH14 | nPH13 | nPH12 | PH11 | nPH10 | nPH9 | nPH8

| nPH7 | nPH6 | nPH5 | PH4 | PH3 | nPH2 | nPH1 | nPH0;

w[P5] = R5.L;

/* enable CZM feature. */

P5.H = hi(PORTG_FER);

P5.L = lo(PORTG_FER);

R5.L = nPG15 | nPG14 | nPG13 | nPG12 | PG11 | nPG10 | nPG9 | nPG8

| nPG7 | nPG6 | nPG5 | nPG4 | PG3 | nPG2 | nPG1 | nPG0;

Figure 13-15. Minimal Count Register

Minimal Count Register (CNT_MIN)

Reset = 0x0000 00000xFFC0421C

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

31 30 29 28 27 26

00 0 0 0 0 0 0 0 0 0 0 0 00

16171819202122232425

0

CNT_MIN [31:16] (Counter Min)
R/W and Reset Value = 0

CNT_MIN [15:0] (Counter Min)
R/W and Reset Value = 0

Programming Examples

13-34 ADSP-BF54x Blackfin Processor Hardware Reference

w[P5] = R5.L;

/* enable CDG and CUD MUX mode. */

P5.H = hi(PORTH_MUX);

P5.L = lo(PORTH_MUX);

R5.H = hi(MUX(0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0));

R5.L = lo(MUX(0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0));

[P5] = R5;

/* enable CZM MUX mode. */

P5.H = hi(PORTG_MUX);

P5.L = lo(PORTG_MUX);

R5.H = hi(MUX(0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0));

R5.L = lo(MUX(0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0));

[P5] = R5;

Listing 13-2 illustrates how to initialize the rotary counter for various
modes. The required rotary counter interrupts are first unmasked. The
rotary counter is then configured for the required mode of operation.
Note at this point we do not enable the rotary counter. Finally, some GP
counter MMRs are cleared, as well as any interrupts that may be pending
in the CNT_STATUS register.

Listing 13-2. Initializing the Rotary Counter

/* Setup Counter Interrupts */

P5.H = hi(CNT_IMASK);

P5.L = lo(CNT_IMASK);

R5 = nCZMZIE /* Counter zeroed by zero marker interrupt */

| CZMEIE /* Zero marker error interrupt */

| CZMIE /* CZM pin interrupt (pushbutton) */

| CZEROIE /* Counts to zero interrupt */

| nCOV15IE /* Counter bit 15 overflow interrupt */

| nCOV31IE /* Counter bit 31 overflow interrupt */

ADSP-BF54x Blackfin Processor Hardware Reference 13-35

Rotary Counter

| MAXCIE /* Max count interrupt */

| MINCIE /* Min count interrupt */

| DCIE /* Downcount interrupt */

| UCIE /* Upcount interrupt */

| ICIE (z); /* Illegal gray/binary code interrupt */

w[P5] = R5;

/* Configure the Rotary Counter mode of operation */

P5.H = hi(CNT_CONFIG);

P5.L = lo(CNT_CONFIG);

R5 = nINPDIS /* Enable CUD and CDG inputs */

| BNDMODE_COMP /* Boundary compare mode */

| nZMZC /* Disable Zero Counter Enable */

| CNTMODE_QUADENC /* Quadrature Encoder Mode */

| CZMINV /* Polarity of CZM pin */

| nCUDINV /* Polarity of CUD pin */

| nCDGINV /* Polarity of CDG Pin */

| nDEBE /* Disable the debounce */

| nCNTE (z); /* Disable the counter */

w[P5] = R5;

/* Zero the CNT_COUNT, CNT_MIN and CNT_MAX registers

This is optional as after reset they are default to zero */

P5.H = hi(CNT_COMMAND);

P5.L = lo(CNT_COMMAND);

R5 = W1LCNT_ZERO | W1LMIN_ZERO | W1LMAX_ZERO (z);

w[P5] = R5;

/* Clear any identified interrupts */

P5.H = hi(CNT_STATUS);

P5.L = lo(CNT_STATUS);

R5.L = ICII /* Illegal Gray/Binary Code Interrupt Identifier

*/

| UCII /* Up count Interrupt Identifier */

Programming Examples

13-36 ADSP-BF54x Blackfin Processor Hardware Reference

| DCII /* Down count Interrupt Identifier */

| MINCII /* Min Count Interrupt Identifier */

| MAXCII /* Max Count Interrupt Identifier */

| COV31II /* Bit 31 Overflow Interrupt Identifier */

| COV15II /* Bit 15 Overflow Interrupt Identifier */

| CZEROII /* Count to Zero Interrupt Identifier */

| CZMII /* CZM Pin Interrupt Identifier */

| CZMEII /* CZM Error Interrupt Identifier */

| CZMZII; /* CZM Zeroes Counter Interrupt Identifier */

w[P5] = R5;

Listing 13-3 illustrates how to set up the peripheral and core interrupts for
the rotary counter. The counter interrupts generated on IRQ68 are mapped
to the IVG7 interrupt. Finally the system and peripheral interrupts are
unmasked and then the rotary counter is enabled.

Listing 13-3. Setting Up the Interrupts for the Rotary Counter

/* Assign the CNT interrupt to IVG7 */

P5.H = hi(SIC_IAR8);

P5.L = lo(SIC_IAR8);

R6.H = hi(0xFFF0FFFF);

R6.L = lo(0xFFF0FFFF);

R7.H = hi(0x00000000);

R7.L = lo(0x00000000);

R5 = [P5];

R5 = R5 & R6; /* zero the Counter interrupt field */

R5 = R5 | R7; /* set Counter interrupt to required priority */

[P5] = R5;

/* Set up the interrupt vector for the rotary counter */

R5.H = hi(_IVG7_handler);

R5.L = lo(_IVG7_handler);

P5.H = hi(EVT7);

ADSP-BF54x Blackfin Processor Hardware Reference 13-37

Rotary Counter

P5.L = lo(EVT7);

[P5] = R5;

/* Unmask IVG7 interrupt in the IMASK register */

P5.H = hi(IMASK);

P5.L = lo(IMASK);

R5 = [P5];

bitset(R5, bitpos(EVT_IVG7));

[P5] = R5;

/* Unmask interrupt 68 generated by the counter */

P5.H = hi(SIC_IMASK2);

P5.L = lo(SIC_IMASK2);

R5 = [P5];

bitset(R5, bitpos(IRQ_CNT));

[P5] = R5;

/* Enable the Rotary Counter */

P5.H = hi(CNT_CONFIG);

P5.L = lo(CNT_CONFIG);

R5 = w[P5](z);

bitset(R5, bitpos(CNTE));

w[P5] = R5.L;

Listing 13-4 illustrates a sample interrupt handler that is responsible for
servicing the rotary counter interrupts. On entry to the handler, the
SIC_ISR2 register is interrogated to determine if the counter is waiting for
a service interrupt. If a counter interrupt is waiting to be serviced, then the
handler that is responsible for processing all counter interrupts is called.

Programming Examples

13-38 ADSP-BF54x Blackfin Processor Hardware Reference

Listing 13-4. Sample Interrupt Handler Rotary Counter Interrupts

_IVG7_handler:

/* Stack management */

[--SP] = RETS;

[--SP] = ASTAT;

[--SP] = (R7:0, P5:0);

/* Was it a counter interrupt? */

P5.H = hi(SIC_ISR2);

P5.L = lo(SIC_ISR2);

R5 = [P5];

CC = bittst(R5, bitpos(IRQ_CNT));

IF !CC JUMP _IVG7_handler.completed;

CALL _IVG7_handler.counter;

_IVG7_handler.completed:

SSYNC;

/* Restore from stack */

(R7:0, P5:0) = [SP++];

ASTAT = [SP++];

RETS = [SP++];

RTI; /* Exit the interrupt service routine */

_IVG7_handler.end:

_IVG7_handler.counter:

/* Stack management */

[--SP] = RETS;

[--SP] = (R7:0, P5:0);

/* Determine what counter interrupts we wish to service */

P5.H = hi(CNT_IMASK);

P5.L = lo(CNT_IMASK);

ADSP-BF54x Blackfin Processor Hardware Reference 13-39

Rotary Counter

R5 = w[P5](z);

P5.H = hi(CNT_STATUS);

P5.L = lo(CNT_STATUS);

R6 = w[P5](z);

R5 = R5 & R6;

/* Interrupt handlers for all rotary counter interrupts */

_IVG7_handler.counter.illegal_code:

CC = bittst(R5, bitpos(ICII));

IF !CC JUMP _IVG7_handler.counter.up_count;

/* Clear the serviced request */

R6 = ICII (z);

w[P5] = R6;

/* insert illegal code handler here */

_IVG7_handler.counter.illegal_code.end:

_IVG7_handler.counter.up_count:

CC = bittst(R5, bitpos(UCII));

IF !CC JUMP _IVG7_handler.counter.down_count;

/* Clear the serviced request */

R6 = UCII (z);

w[P5] = R6;

/* insert up count handler here */

_IVG7_handler.counter.up_count.end:

_IVG7_handler.counter.down_count:

Programming Examples

13-40 ADSP-BF54x Blackfin Processor Hardware Reference

CC = bittst(R5, bitpos(DCII));

IF !CC JUMP _IVG7_handler.counter.min_count;

/* Clear the serviced request */

R6 = DCII (z);

w[P5] = R6;

/* insert down count handler here */

_IVG7_handler.counter.down_count.end:

_IVG7_handler.counter.min_count:

CC = bittst(R5, bitpos(MINCII));

IF !CC JUMP _IVG7_handler.counter.max_count;

/* Clear the serviced request */

R6 = MINCII (z);

w[P5] = R6;

/* insert min count handler here */

_IVG7_handler.counter.min_count.end:

_IVG7_handler.counter.max_count:

CC = bittst(R5, bitpos(MAXCII));

IF !CC JUMP _IVG7_handler.counter.b31_overflow;

/* Clear the serviced request */

R6 = MAXCII (z);

w[P5] = R6;

/* insert max count handler here */

ADSP-BF54x Blackfin Processor Hardware Reference 13-41

Rotary Counter

_IVG7_handler.counter.max_count.end:

_IVG7_handler.counter.b31_overflow:

CC = bittst(R5, bitpos(COV31II));

IF !CC JUMP _IVG7_handler.counter.b15_overflow;

/* Clear the serviced request */

R6 = COV31II (z);

w[P5] = R6;

/* insert bit 31 overflow handler here */

_IVG7_handler.counter.b31_overflow.end:

_IVG7_handler.counter.b15_overflow:

CC = bittst(R5, bitpos(COV15II));

IF !CC JUMP _IVG7_handler.counter.count_to_zero;

/* Clear the serviced request */

R6 = COV15II (z);

w[P5] = R6;

/* insert bit 15 overflow handler here */

_IVG7_handler.counter.b15_overflow.end:

_IVG7_handler.counter.count_to_zero:

CC = bittst(R5, bitpos(CZEROII));

IF !CC JUMP _IVG7_handler.counter.czm;

/* Clear the serviced request */

R6 = CZEROII (z);

w[P5] = R6;

Programming Examples

13-42 ADSP-BF54x Blackfin Processor Hardware Reference

/* insert count to zero handler here */

_IVG7_handler.counter.count_to_zero.end:

_IVG7_handler.counter.czm:

CC = bittst(R5, bitpos(CZMII));

IF !CC JUMP _IVG7_handler.counter.czm_error;

/* Clear the serviced request */

R6 = CZMII (z);

w[P5] = R6;

/* insert czm handler here */

_IVG7_handler.counter.czm.end:

_IVG7_handler.counter.czm_error:

CC = bittst(R5, bitpos(CZMEII));

IF !CC JUMP _IVG7_handler.counter.czm_zeroes_counter;

/* Clear the serviced request */

R6 = CZMEII (z);

w[P5] = R6;

/* insert czm error handler here */

_IVG7_handler.counter.czm_error.end:

_IVG7_handler.counter.czm_zeroes_counter:

CC = bittst(R5, bitpos(CZMZII));

IF !CC JUMP _IVG7_handler.counter.all_serviced;

/* Clear the serviced request */

ADSP-BF54x Blackfin Processor Hardware Reference 13-43

Rotary Counter

R6 = CZMZII (z);

w[P5] = R6;

/* insert czm zeroes counter handler here */

_IVG7_handler.counter.czm_zeroes_counter.end:

_IVG7_handler.counter.all_serviced:

/* Restore from stack */

(R7:0, P5:0) = [SP++];

RETS = [SP++];
RTS;

_IVG7_handler.counter.end:

Listing 13-5 illustrates how to set up timer 6 in order to capture the
period of counter events. The timer is configured for WDTH_CAP mode and
the period between the last two successive counter events is read from
within the up count interrupt handler that was provided in Listing 13-4.

Listing 13-5. Setting Up Timer 6 for Counter Event Period Capture

/* configure the timer for WDTH_CAP mode */

P5.H = hi(TIMER6_CONFIG);

P5.l = lo(TIMER6_CONFIG);

R5 = PULSE_HI | PERIOD_CNT | TIN_SEL | WDTH_CAP (z);

w[P5] = R5.l;

/* Enable Timer 6 */

P5.H = hi(TIMER_ENABLE0);

P5.L = lo(TIMER_ENABLE0);

R5 = TIMEN6 (z);

w[P5] = R5.L;

...

Programming Examples

13-44 ADSP-BF54x Blackfin Processor Hardware Reference

_IVG7_handler.counter.up_count:

CC = bittst(R5, bitpos(UCII));

IF !CC JUMP _IVG7_handler.counter.down_count;

/* Clear the serviced request */

R6 = UCII (z);

w[P5] = R6;

/* insert up count handler here */

/* Read the period between the last two successive events */

P5.H = hi(TIMER6_PERIOD);

P5.L = lo(TIMER6_PERIOD);

R5 = [P5];

P5.H = hi(_event_period);

P5.L = lo(_event_period);

[P5] = R5;

_IVG7_handler.counter.up_count.end:

ADSP-BF54x Blackfin Processor Hardware Reference 14-1

14 REAL-TIME CLOCK

This chapter describes the real-time clock (RTC) and includes the follow-
ing sections:

• “Overview” on page 14-1

• “Interface Overview” on page 14-3

• “Description of Operation” on page 14-3

• “RTC Programming Model” on page 14-6

• “RTC Registers” on page 14-20

• “Programming Examples” on page 14-24

Overview
The RTC provides a set of digital watch features to the processor, includ-
ing time of day, alarm, and stopwatch countdown. It is typically used to
implement either a real-time watch or a life counter, which counts the
elapsed time since the last system reset.

The RTC watch features are clocked by a 32.768 kHz crystal external to
the processor. The RTC uses dedicated power supply pins and is indepen-
dent of any reset, which enables it to maintain functionality even when
the rest of the processor is powered down.

Overview

14-2 ADSP-BF54x Blackfin Processor Hardware Reference

The RTC input clock is divided down to a 1 Hz signal by a prescaler,
which can be bypassed. When bypassed, the RTC is clocked at the
32.768 kHz crystal rate. In normal operation, the prescaler is enabled.

The primary function of the RTC is to maintain an accurate day count
and time of day. The RTC accomplishes this by means of four counters:

• 60-second counter

• 60-minute counter

• 24-hour counter

• 32768-day counter

The RTC increments the 60-second counter once per second and incre-
ments the other three counters when appropriate. The 32768-day counter
is incremented each day at midnight (0 hours, 0 minutes, 0 seconds).
Interrupts can be issued periodically, either every second, every minute,
every hour, or every day. Each of these interrupts can be independently
controlled.

The RTC provides two alarm features, programmed with the RTC alarm
register (RTC_ALARM). The first is a time of day alarm (hour, minute, and
second). When the alarm interrupt is enabled, the RTC generates an inter-
rupt each day at the time specified. The second alarm feature allows the
application to specify a day as well as a time. When the day alarm inter-
rupt is enabled, the RTC generates an interrupt on the day and time
specified. The alarm interrupt and day alarm interrupt can be enabled or
disabled independently.

The RTC provides a stopwatch function that acts as a countdown timer.
The application can program a second count into the RTC stopwatch
count register (RTC_SWCNT). When the stopwatch interrupt is enabled and
the specified number of seconds has elapsed, the RTC generates an
interrupt.

ADSP-BF54x Blackfin Processor Hardware Reference 14-3

Real-Time Clock

Interface Overview
The RTC external interface consists of two clock pins, which together
with the external components form the reference clock circuit for the
RTC. The RTC interfaces internally to the processor system through the
peripheral access bus (PAB), and through the interrupt interface to the
SIC (system interrupt controller).

The RTC has dedicated power supply pins that power the clock functions
at all times, including when the core power supply is turned off.
Figure 14-1 on page 14-4 provides a block diagram of the RTC.

Description of Operation
The following sections describe the operation of the RTC.

RTC Clock Requirements
The RTC timer is clocked by a 32.768 kHz crystal external to the proces-
sor. The RTC system memory-mapped registers (MMRs) are clocked by
this crystal. When the prescaler is disabled, the RTC MMRs are clocked at
the 32.768 kHz crystal frequency. When the prescaler is enabled, the
RTC MMRs are clocked at the 1 Hz rate.

There is no way to disable the RTC counters from software. If a given sys-
tem does not require the RTC functionality, then it may be disabled with
hardware tie-offs. Tie the RTXI and RTCGND pins to EGND, tie the RTCVDD
pin to EVDD, and leave the RTXO pin unconnected. Additionally, writing
RTC_PREN to 0 saves a small amount of power.

Description of Operation

14-4 ADSP-BF54x Blackfin Processor Hardware Reference

Prescaler Enable
The single active bit of the RTC prescaler enable register (RTC_PREN) is
written using a synchronization path. Clearing of the bit is synchronized
to the 32.768 kHz clock. This faster synchronization allows the module to
be put into high-speed mode (bypassing the prescaler) without waiting the

Figure 14-1. RTC Block Diagram

DAYS
COUNTER

DAY
ALARM
EVENT

24 HOURS
EVENT

1

0

9

RTC_ALARM REGISTER

RTC_PREN

EQUAL?

HOURS
COUNTER

MINUTES
COUNTER

SECONDS
COUNTER

HOURS
EVENT

MINUTES
EVENT

SECONDS
EVENT

PRESCALE
COUNTER

5 6 6

9 5 6 6

ALARM
EVENT

Y Y Y Y

32.768
kHz

1 TICK

SET

RST

STOPWATCH
EVENT

STOPWATCH
ENABLE

Y

16

STOPWATCH
COUNTER

WRITE
RTC_SWCNT

EQUAL?

EQUAL 0?

EQUAL? EQUAL?

RTXI

ADSP-BF54x Blackfin Processor Hardware Reference 14-5

Real-Time Clock

full 1 second for the write to complete that would be necessary if the mod-
ule were already running with the prescaler enabled. When this bit is
cleared, the prescaler is disabled, and the RTC runs at the 32.768 kHz
crystal frequency.

When setting the RTC_PREN bit, the first positive edge of the 1 Hz clock
occurs 1 to 2 cycles of the 32.768 kHz clock after the prescaler is enabled.
The write complete status/interrupt works as usual when enabling or dis-
abling the prescale counter. The new RTC clock rate is in effect before the
write complete status is set. In order for the RTC to operate at the proper
rate, software must set the prescaler enable bit after initial powerup. When
this bit is set, the prescaler is enabled, and the RTC runs at a frequency of
1 Hz.

Write RTC_PREN and then wait for the write complete event before pro-
gramming the other registers. It is safe to write RTC_PREN to 1 every time
the processor boots. The first time sets the bit, and subsequent writes have
no effect, as no state is changed.

 Do not disable the prescaler by clearing the bit in RTC_PREN with-
out making sure that there are no writes to RTC MMRs in
progress. Do not switch between fast and slow mode during normal
operation by setting and clearing this bit, as this disrupts the accu-
rate tracking of real time by the counters. To avoid these potential
errors, initialize the RTC during startup through RTC_PREN and do
not dynamically alter the state of the prescaler during normal
operation.

Running without the prescaler enabled is provided primarily as a test
mode. All functionality works, just 32,768 times as fast. Typical software
should never program RTC_PREN to 0. The only reason to do so is to syn-
chronize the 1 Hz tick to a more precise external event, as the 1 Hz tick
predictably occurs a few RTXI cycles after a 0-to-1 transition of RTC_PREN.

RTC Programming Model

14-6 ADSP-BF54x Blackfin Processor Hardware Reference

Use the following sequence to achieve synchronization to within 100 ms.

1. Write RTC_PREN to 0.

2. Wait for the write to complete.

3. Wait for the external event.

4. Write RTC_PREN to 1.

5. Wait for the write to complete.

6. Reprogram the time into RTC_STAT.

RTC Programming Model
The RTC programming model consists of a set of system MMRs. Soft-
ware can configure the RTC and can determine the status of the RTC
through reads and writes to these registers. The RTC interrupt control
register (RTC_ICTL) and the RTC interrupt status register (RTC_ISTAT) pro-
vide RTC interrupt management capability.

Note that software cannot disable the RTC counting function. However,
all RTC interrupts can be disabled, or masked. At reset, all interrupts are
disabled. The RTC state can be read through the system MMR status reg-
isters at any time.

The primary RTC functionality, shown in Figure 14-1 on page 14-4, con-
sists of registers and counters that are powered by an independent RTC
VDD supply. This logic is never reset; it comes up in an unknown state
when RTC VDD is first powered on.

ADSP-BF54x Blackfin Processor Hardware Reference 14-7

Real-Time Clock

The RTC also contains logic powered by the same internal VDD as the
processor core and other peripherals. This logic contains some control
functionality, holding registers for PAB write data, and prefetched PAB
read data shadow registers for each of the five RTC VDD-powered regis-
ters. This logic is reset by the same system reset and clocked by the same
SCLK as the other peripherals.

Figure 14-2 shows the connections between the RTC VDD-powered RTC
MMRs and their corresponding internal VDD-powered write holding reg-
isters and read shadow registers. In the figure, “REG” means each of the
RTC_STAT, RTC_ALARM, RTC_SWCNT, RTC_ICTL, and RTC_PREN registers. The
RTC_ISTAT register connects only to the PAB.

The rising edge of the 1 Hz RTC clock is the “1 Hz tick”. Software can
synchronize to the 1 Hz tick by waiting for the seconds event flag to set or
by waiting for the seconds interrupt (if enabled).

RTC Programming Model

14-8 ADSP-BF54x Blackfin Processor Hardware Reference

Register Writes
Writes to all RTC MMRs, except the RTC interrupt status register
(RTC_ISTAT), are saved in write holding registers and then are synchro-
nized to the RTC 1 Hz clock. The write pending status bit in RTC_ISTAT
indicates the progress of the write. The write pending status bit is set when
a write is initiated and is cleared when all writes are complete. The falling
edge of the write pending status bit causes the write complete flag in
RTC_ISTAT to be set. This flag can be configured in RTC_ICTL to cause an
interrupt. Software does not have to wait for writes to an RTC MMR to

Figure 14-2. RTC Register Architecture

FALLING
EDGE DETECT

WRITE
COMPLETE
EVENT

N

1 Hz
TICK

RST

SET
PAB

16/32

REG WRITE
PENDING

REG WRITE
HOLDING

REG READ
SHADOW RTC_ISTAT

REG

161616/32

N

MMR WRITE
TO REG

5

WRITE
PENDING
STATUS

POWERED BY RTC VDD
CLOCKED BY 1 Hz TICK

POWERED BY INTERNAL VDD
CLOCKED BY SCLK

ADSP-BF54x Blackfin Processor Hardware Reference 14-9

Real-Time Clock

complete before writing to another RTC MMR. The write pending status
bit is set if any writes are in progress, and the write complete flag is set
only when all writes are complete.

 Any writes in progress when peripherals are reset are aborted. Do
not stop SCLK (enter deep sleep mode) or remove Internal VDD
power until all RTC writes have completed.

Do not attempt another write to the same register without waiting
for the previous write to complete. Subsequent writes to the same
register are ignored if the previous write is not complete.

Reading a register that is written before the write complete flag is
set returns the old value. Always check the write pending status bit
before attempting a read or write.

Write Latency
Writes to the RTC MMRs are synchronized to the 1 Hz RTC clock.
When setting the time of day, do not factor in the delay when writing to
the RTC MMRs. The most accurate method of setting the RTC is to
monitor the seconds (1 Hz) event flag or to program an interrupt for this
event and then write the current time to the RTC status register
(RTC_STAT) in the interrupt service routine (ISR). The new value is
inserted ahead of the incrementer. Hardware adds one second to the writ-
ten value (with appropriate carries into minutes, hours and days) and
loads the incremented value at the next 1 Hz tick, when it represents the
then-current time.

Writes posted at any time are properly synchronized to the 1 Hz clock.
Writes complete at the rising edge of the 1 Hz clock. A write posted just
before the 1 Hz tick may not be completed until the 1 Hz tick one second
later. Any write posted in the first 990 s after a 1 Hz tick completes on
the next 1 Hz tick, but the simplest, most predictable and recommended

RTC Programming Model

14-10 ADSP-BF54x Blackfin Processor Hardware Reference

technique is to only post writes to RTC_STAT, RTC_ALARM, RTC_SWCNT,
RTC_ICTL, or RTC_PREN immediately after a seconds interrupt or event. All
five registers may be written in the same second.

W1C bits in the RTC_ISTAT register take effect immediately.

Register Reads
There is no latency when reading RTC MMRs, as the values come from
the read shadow registers. The shadows are updated and ready for reading
by the time any RTC interrupts or event flags for that second are asserted.
Once the internal VDD logic completes its initialization sequence after
SCLK starts, there is no point in time when it is unsafe to read the RTC
MMRs for synchronization reasons. They always return coherent values,
although the values may be unknown.

Deep Sleep
When the dynamic power management controller (DPMC) state is deep
sleep, all clocks in the system (except RTXI and the RTC 1 Hz tick) are
stopped. In this state, the RTC VDD counters continue to increment.
During deep sleep, the internal VDD shadow registers are not updated, but
neither can they be read.

During deep sleep state, all bits in RTC_ISTAT are cleared. Events that
occur during deep sleep are not recorded in RTC_ISTAT. The internal VDD
RTC control logic generates a virtual 1 Hz tick within one RTXI period
(30.52 s) after SCLK restarts. This loads all shadow registers with
up-to-date values and sets the seconds event flag. Other event flags may
also be set. When the system wakes up from deep sleep, whether by an
RTC event or a hardware reset, all of the RTC events that occurred during
that second (and only that second) are reported in RTC_ISTAT.

ADSP-BF54x Blackfin Processor Hardware Reference 14-11

Real-Time Clock

When the system wakes up from deep sleep state, software does not need
to write-1-to-clear the W1C bits in RTC_ISTAT. All W1C bits are already
cleared by hardware. The seconds event flag is set when the RTC internal
VDD logic has completed its restart sequence. Software should wait until
the seconds event flag is set and then may begin reading or writing any
RTC register.

Event Flags

 The unknown values in the registers at powerup can cause event
flags to set before the correct value is written into each of the regis-
ters. By catching the 1 Hz clock edge, the write to RTC_STAT can
occur a full second before the write to RTC_ALARM. This would cause
an extra second of delay between the validity of RTC_STAT and
RTC_ALARM, if the value of the RTC_ALARM out of reset is the same as
the value written to RTC_STAT. Wait for the writes to complete on
these registers before using the flags and interrupts associated with
their values.

The following is a list of flags along with the conditions under which they
are valid:

• Seconds (1 Hz) event flag

Always set on the positive edge of the 1 Hz clock and after shadow
registers have updated after waking from deep sleep. This is valid as
long as the RTC 1 Hz clock is running. Use this flag or interrupt to
validate the other flags.

• Write complete and write pending status

Always valid.

RTC Programming Model

14-12 ADSP-BF54x Blackfin Processor Hardware Reference

• Minutes event flag

Valid only after the second field in RTC_STAT is valid. Use the write
complete and write pending status flags or interrupts to validate the
RTC_STAT value before using this flag value or enabling the
interrupt.

• Hours event flag

Valid only after the minute field in RTC_STAT is valid. Use the write
complete and write pending status flags or interrupts to validate the
RTC_STAT value before using this flag value or enabling the
interrupt.

• 24 Hours event flag

Valid only after the hour field in RTC_STAT is valid. Use the write
complete and write pending status flags or interrupts to validate the
RTC_STAT value before using this flag value or enabling the
interrupt.

• Stopwatch event flag

Valid only after the RTC_SWCNT register is valid. Use the write com-
plete and write pending status flags or interrupts to validate the
RTC_SWCNT value before using this flag value or enabling the
interrupt.

• Alarm event and day alarm event flags

Valid only after the RTC_STAT and RTC_ALARM registers are valid. Use
the write complete and write pending status flags or interrupts to
validate the RTC_STAT and RTC_ALARM values before using this flag
value or enabling its interrupt.

ADSP-BF54x Blackfin Processor Hardware Reference 14-13

Real-Time Clock

Writes posted together at the beginning of the same second take effect
together at the next 1 Hz tick. The following sequence is safe and does not
result in any spurious interrupts from a previous state.

1. Wait for 1 Hz tick.

2. Write-1-to-clear the RTC_ISTAT flags for alarm, day alarm, stop-
watch, and/or per-interval.

3. Write new values for RTC_STAT, RTC_ALARM, and/or RTC_SWCNT.

4. Write new value for RTC_ICTL with alarm, day alarm, stopwatch,
and/or per-interval interrupts enabled.

5. Wait for 1 Hz tick.

6. New values have now taken effect simultaneously.

Setting Time of Day
The RTC status register (RTC_STAT) is used to read or write the current
time. Reads return a 32-bit value that always reflects the current state of
the days, hours, minutes, and seconds counters. Reads and writes must be
32-bit transactions; attempted 16-bit transactions result in an MMR
error. Reads always return a coherent 32-bit value. The hours, minutes,
and seconds fields are usually set to match the real time of day. The day
counter value is incremented every day at midnight to record how many
days have elapsed since it was last modified. Its value does not correspond
to a particular calendar day. The 15-bit day counter provides a range of 89
years, 260 or 261 days (depending on leap years) before it overflows.

After the 1 Hz tick, program RTC_STAT with the current time. At the next
1 Hz tick, RTC_STAT takes on the new, incremented value. For example:

1. Wait for 1 Hz tick.

2. Read RTC_STAT, get 10:45:30.

RTC Programming Model

14-14 ADSP-BF54x Blackfin Processor Hardware Reference

3. Write RTC_STAT to current time, 13:10:59.

4. Read RTC_STAT, still get old time 10:45:30.

5. Wait for 1 Hz tick.

6. Read RTC_STAT, get new current time, 13:11:00.

Using the Stopwatch
The RTC stopwatch count (RTC_SWCNT) register contains the countdown
value for the stopwatch. The stopwatch counts down seconds from the
programmed value and generates an interrupt (if enabled) when the count
reaches 0. The counter stops counting at this point and does not resume
counting until a new value is written to RTC_SWCNT. Once running, the
counter may be overwritten with a new value. This allows the stopwatch
to be used as a watchdog timer with a precision of one second.

The stopwatch can be programmed to any value between 0 and (216 – 1)
seconds, which is a range of 18 hours, 12 minutes, and 15 seconds.

Typically, software should wait for a 1 Hz tick, then write RTC_SWCNT. One
second later, RTC_SWCNT changes to the new value and begins decrement-
ing. Because the register write occupies nearly one second, the time from
writing a value of N until the stopwatch interrupt is nearly N + 1 seconds.
To produce an exact delay, software can compensate by writing N – 1 to
get a delay of nearly N seconds. This implies that you cannot achieve a
delay of 1 second with the stopwatch. Writing a value of 1 immediately
after a 1 Hz tick results in a stopwatch interrupt nearly two seconds later.
To wait one second, software should just wait for the next 1 Hz tick.

The RTC_SWCNT register is not reset. After initial powerup, it may be
running. When the stopwatch is not used, writing it to 0 to force it to stop
saves a small amount of power.

ADSP-BF54x Blackfin Processor Hardware Reference 14-15

Real-Time Clock

Interrupts
The RTC can provide interrupts at several programmable intervals:

• Per second, minute, hour, and day—based on increments to the
respective counters in RTC_STAT

• On countdown from a programmable value—value in RTC_SWCNT
transitions to 0 or is written with 0 by software (whether it was pre-
viously running or already stopped with a count of 0)

• Daily at a specific time—all fields of RTC_ALARM must match
RTC_STAT except the day field

• On a specific day and time—all fields of RTC_ALARM register must
match RTC_STAT

The RTC can be programmed to provide an interrupt at the completion
of all pending writes to any of the 1 Hz registers (RTC_STAT, RTC_ALARM,
RTC_SWCNT, RTC_ICTL, and RTC_PREN). The eight RTC interrupt events can
be individually masked or enabled by the RTC interrupt control register
(RTC_ICTL). The seconds interrupt is generated on each 1 Hz clock tick, if
enabled. The minutes interrupt is generated at the 1 Hz clock tick that
advances the seconds counter from 59 to 0. The hour interrupt is gener-
ated at the 1 Hz clock tick that advances the minute counter from 59 to 0.
The 24-hour interrupt occurs once per 24-hour period at the 1 Hz clock
tick that advances the time to midnight (00:00:00). Any of these inter-
rupts can generate a wakeup request to the processor, if enabled. All
implemented bits are read/write.

This register is only partially cleared at reset, so some events may appear to
be enabled initially. However, the RTC interrupt and the RTC wakeup to
the PLL are handled specially and are masked (forced low) until after the
first write to the RTC_ICTL register is complete. Therefore, all interrupts
act as if they were disabled at system reset (as if all bits of RTC_ICTL were
zero), even though some bits of RTC_ICTL may read as nonzero. If no RTC

RTC Programming Model

14-16 ADSP-BF54x Blackfin Processor Hardware Reference

interrupts are needed immediately after reset, it is recommended to write
RTC_ICTL to 0x0000 so that later read-modify-write accesses function as
intended.

Interrupt status can be determined by reading the RTC interrupt status
register (RTC_ISTAT). All bits in RTC_ISTAT are sticky. Once set by the cor-
responding event, each bit remains set until cleared by a software write to
this register. Event flags are always set; they are not masked by the inter-
rupt enable bits in RTC_ICTL. Values are cleared by writing a 1 to the
respective bit location, except for the write pending status bit, which is
read-only. Writes of 0 to any bit of the register have no effect. This regis-
ter is cleared at reset and during deep sleep.

The RTC interrupt is set whenever an event latched into the RTC_ISTAT
register is enabled in the RTC_ICTL register. The pending RTC interrupt is
cleared whenever all enabled and set bits in RTC_ISTAT are cleared, or when
all bits in RTC_ICTL corresponding to pending events are cleared.

As shown in Figure 14-3, the RTC generates an interrupt request (IRQ)
to the processor core for event handling and wake-up from a sleep state.
The RTC generates a separate signal for wake-up from a deep sleep or
from an internal VDD power-off state. The deep sleep wake-up signal is
asserted at the 1 Hz tick when any RTC interval event enabled in
RTC_ICTL occurs. The assertion of the deep sleep wake-up signal causes the
processor core clock (CCLK) and the system clock (SCLK) to restart. Any
enabled event that asserts the RTC deep sleep wake-up signal also causes
the RTC IRQ to assert once SCLK restarts.

ADSP-BF54x Blackfin Processor Hardware Reference 14-17

Real-Time Clock

State Transitions Summary
Table 14-1 shows how each RTC MMR is affected by the system states.
The phase-locked loop (PLL) states (reset, full on, active, sleep, and deep
sleep) are defined in Chapter 18, “Dynamic Power Management”. “No
power” means none of the processor power supply pins are connected to a
source of energy. “Off” means the processor core, peripherals, and mem-
ory are not powered (internal VDD is off), while the RTC is still powered
and running. External VDD may still be powered. Registers described as
“as written” are holding the last value software wrote to the register. If the
register has not been written since RTC VDD power was applied, then the
state is unknown (for all bits of RTC_STAT, RTC_ALARM, and RTC_SWCNT, and
for some bits of RTC_ISTAT, RTC_PREN, and RTC_ICTL).

Figure 14-3. RTC Interrupt Structure

VOLTAGE
REGULATOR

WRITE
COMPLETE
EVENT

1 Hz
TICK

PLL

RTC_ISTAT ICTL READ
SHADOW

RTC_ICTL

7

RTC
IRQ

7

POWERED BY
RTC VDD

7

7

7

DAY,
HOURS,
SECONDS,
STOPWATCH

24 HOURS,
MINUTES,
ALARM,
EVENTS

POWERED BY
INTERNAL VDD

POWERED BY
EXTERNAL VDD

7 SYSTEM
INTERRUPT

CONTROLLER

PROCESSOR
CORE

WRITE
COMPLETE
ENABLE

77

WAKE FROM
DEEP SLEEP

WAKE
FROM
POWER
OFF

RTC Programming Model

14-18 ADSP-BF54x Blackfin Processor Hardware Reference

Table 14-2 summarizes software’s responsibilities with respect to the RTC
at various system state transition events.

Table 14-1. Effect of States on RTC MMRs

RTC VDD IVDD System State RTC_ICTL RTC_ISTAT RTC_STAT
RTC_SWCNT

RTC_ALARM
RTC_PREN

Off Off No power X X X X

On On Reset As written 0 Counting As written

On On Full on As written Events Counting As written

On On Sleep As written Events Counting As written

On On Active As written Events Counting As written

On On Deep
sleep

As written 0 Counting As written

On Off Off As written X Counting As written

Table 14-2. RTC System State Transition Events

At This Event: Execute This Sequence:

Power on from no power Write RTC_PREN = 1.
Wait for write complete.
Write RTC_STAT to current time.
Write RTC_ALARM, if needed.
Write RTC_SWCNT.
Write RTC_ISTAT to clear any pending RTC events.
Write RTC_ICTL to enable any desired RTC interrupts or to disable
all RTC interrupts.

Full on after reset
or
Full on after power on from off

Wait for seconds event, or write RTC_PREN = 1 and wait for write
complete.
Write RTC_ISTAT to clear any pending RTC events.
Write RTC_ICTL to enable any desired RTC interrupts or to disable
all RTC interrupts.
Read RTC MMRs as required.

ADSP-BF54x Blackfin Processor Hardware Reference 14-19

Real-Time Clock

Wake from deep sleep Wait for seconds event flag to set.
Write RTC_ISTAT to acknowledge RTC deep sleep wakeup.
Read RTC MMRs as required.
The PLL state is now active. Transition to full on as needed.

Wake from sleep If wakeup came from RTC, seconds event flag is set. In this case,
write RTC_ISTAT to acknowledge RTC wakeup IRQ.
Always, read RTC MMRs as required.

Before going to sleep If wakeup by RTC is desired:
Write RTC_ALARM and/or RTC_SWCNT as needed to schedule a
wakeup event.
Write RTC_ICTL to enable the desired RTC interrupt sources for
wakeup.
Wait for write complete.
Enable RTC for wakeup in the system interrupt wakeup-enable reg-
ister (SIC_IWR).

Before going to deep sleep Write RTC_ALARM and/or RTC_SWCNT as needed to schedule a
wakeup event.
Write RTC_ICTL to enable the desired RTC event sources for deep
sleep wakeup.
Wait for write complete.

Before going to off Write RTC_ALARM and/or RTC_SWCNT as needed to schedule a
wakeup event.
Write RTC_ICTL to enable any desired RTC event sources for pow-
erup wakeup.
Wait for write complete.
Set the wake bit in the voltage regulator control register (VR_CTL).

Table 14-2. RTC System State Transition Events (Cont’d)

At This Event: Execute This Sequence:

RTC Registers

14-20 ADSP-BF54x Blackfin Processor Hardware Reference

RTC Registers
The following sections provide register definitions. Illustrations are shown
in Figure 14-4 through Figure 14-9.

Table 14-3 shows the functions of the RTC registers.

Table 14-3. RTC Register Mapping

Register Name For More Info Notes

RTC_STAT “RTC Status (RTC_STAT) Register” on page 14-21 Holds time of day

RTC_ICTL “RTC Interrupt Control (RTC_ICTL) Register” on
page 14-21

Bits 14:7 are
reserved

RTC_ISTAT “RTC Interrupt Status (RTC_ISTAT) Register” on
page 14-22

Bits 13:7 are
reserved

RTC_SWCN
T

“RTC Stopwatch Count (RTC_SWCNT) Register” on
page 14-22

Undefined at reset

RTC_ALARM “RTC Alarm (RTC_ALARM) Register” on page 14-23 Undefined at reset

RTC_PREN “RTC Prescaler Enable (RTC_PREN) Register” on
page 14-23

Always set PREN =
1 for 1 Hz ticks

ADSP-BF54x Blackfin Processor Hardware Reference 14-21

Real-Time Clock

RTC Status (RTC_STAT) Register

RTC Interrupt Control (RTC_ICTL) Register

Figure 14-4. RTC Status Register

Figure 14-5. RTC Interrupt Control Register

Day Counter[14:0]
(0-32767)

Hours[3:0]
(0-23)

Reset = Undefined

RTC Status Register (RTC_STAT)

0xFFC0 0300

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X XX X

31 30 29 28 27 16

XX X X X X X X X X X X X XX

17181920212223242526

X

Hours[4]
(0-23)

Seconds[5:0]
(0-59)

Minutes[5:0]
(0-59)

Minutes Interrupt
EnableHours Interrupt Enable

0 - Interrupt disabled, 1 - Interrupt enabled

Reset = 0x00XX

RTC Interrupt Control Register (RTC_ICTL)

0xFFC0 0304
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X0 0 0 0 0 0 0 X X X X X X0 0

Write Complete
Interrupt Enable

Reserved

Day Alarm Interrupt Enable
(Day, Hour, Minute, Second)

24 Hours Interrupt Enable

Stopwatch Interrupt
Enable

Alarm Interrupt Enable
(Hour, Minute, Second)

Seconds (1Hz) Interrupt
Enable

RTC Registers

14-22 ADSP-BF54x Blackfin Processor Hardware Reference

RTC Interrupt Status (RTC_ISTAT) Register

RTC Stopwatch Count (RTC_SWCNT) Register

Figure 14-6. RTC Interrupt Status Register

Figure 14-7. RTC Stopwatch Count Register

Reset = 0x0000

RTC Interrupt Status Register (RTC_ISTAT)
All bits are write-1-to-clear, except bit 14

0xFFC0 0308
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Write Complete
0 - Writes (if any) not yet

complete
1 - All pending writes

complete

Day Alarm Event Flag

Write Pending
Status (RO)
0 - No writes pending
1 - At least one write

pending

0 - No event
1 - Event occurred

24 Hours Event Flag
0 - No event
1 - Event occurred

Reserved

Stopwatch Event Flag
0 - No event
1 - Event occurred

Alarm Event Flag
0 - No event
1 - Event occurred

0 - No event
1 - Event occurred

Seconds (1 Hz) Event Flag

0 - No event
1 - Event occurred

Minutes Event Flag

0 - No event
1 - Event occurred

Hours Event Flag

Stopwatch Count[15:0]
(0 to 65,535)

Reset = Undefined

RTC Stopwatch Count Register (RTC_SWCNT)

0xFFC0 030C
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X XX X

ADSP-BF54x Blackfin Processor Hardware Reference 14-23

Real-Time Clock

RTC Alarm (RTC_ALARM) Register

RTC Prescaler Enable (RTC_PREN) Register

Figure 14-8. RTC Alarm Register

Figure 14-9. Prescaler Enable Register

Reset = Undefined

RTC Alarm Register (RTC_ALARM)

0xFFC0 0310

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X XX X

31 30 29 28 27 16

XX X X X X X X X X X X X XX

17181920212223242526

X

Hours[4]
(0 to 23)

Day[14:0]
(0 to 32767)

Seconds[5:0]
(0 to 59)

Minutes[5:0]
(0 to 59)

Hours[3:0]
(0 to 23)

PREN (Prescaler Enable)

RTC Prescaler Enable Register (RTC_PREN)

Reset = Undefined0xFFC0 0314
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X0 0 0 0 0 0 0 0 0 0 0 0 00 0

Reserved

Programming Examples

14-24 ADSP-BF54x Blackfin Processor Hardware Reference

Programming Examples
The following RTC code examples show how to enable the RTC pres-
caler, how to set up a stopwatch event to take the RTC out of deep sleep
mode, and how to use the RTC alarm to exit hibernate state. Each of these
code examples assumes that the appropriate header file is included in the
source code (that is, #include <defBF54x.h> for ADSP-BF54x processor
projects).

Enable RTC Prescaler
Listing 14-1 properly enables the prescaler and clears any pending
interrupts.

Listing 14-1. Enabling the RTC Prescaler

RTC_Initialization:

P0.H = HI(RTC_PREN);

P0.L = LO(RTC_PREN);

R0=PREN(Z); /* enable pre-scalar for 1 Hz ticks */

W[P0] = R0.L;

P0.L = LO(RTC_ISTAT);

R0 = 0x807F(Z);

W[P0] = R0.L; /* clear any pending interrupts */

R0 = WRITE_COMPLETE(Z); /* mask for WRITE-COMPLETE bit */

Poll_WC: R1 = W[P0](Z);

R1 = R1 & R0; /* wait for Write Complete */

CC = AZ;

IF CC JUMP Poll_WC;

RTS;

ADSP-BF54x Blackfin Processor Hardware Reference 14-25

Real-Time Clock

RTC Stopwatch For Exiting Deep Sleep Mode
Listing 14-2 sets up the RTC to utilize the stopwatch feature to come out
of deep sleep mode. This code assumes that the _RTC_Interrupt is prop-
erly registered as the ISR for the real-time clock event, the RTC interrupt
is enabled in both IMASK and SIC_IMASK, and that the RTC prescaler has
already been enabled properly.

Listing 14-2. RTC Stopwatch Interrupt to Exit Deep Sleep

/* RTC Wake-Up Interrupt To Be Used With Deep Sleep Code */

_RTC_Interrupt:

P0.H = HI(PLL_CTL);

P0.L = LO(PLL_CTL);

R0 = W[P0](Z);

BITCLR (R0, BITPOS(BYPASS));

W[P0] = R0; /* BYPASS Set By Default, Must Clear It */

IDLE; /* Must go to IDLE for PLL changes to be effected */

R0 = 0x807F(Z);

P0.H = HI(RTC_ISTAT);

P0.L = LO(RTC_ISTAT);

W[P0] = R7; /* clear pending RTC IRQs */

R0 = WRITE_COMPLETE(Z); /* mask for WRITE-COMPLETE bit */

Poll_WC_IRQ: R1 = W[P0](Z);

R1 = R1 & R0; /* wait for Write Complete */

CC = AZ;

IF CC JUMP Poll_WC_IRQ;

RTI;

Deep_Sleep_Code:

P0.H = HI(RTC_SWCNT);

Programming Examples

14-26 ADSP-BF54x Blackfin Processor Hardware Reference

P0.L = LO(RTC_SWCNT);

R1 = 0x0010(Z); /* set stop-watch to 16 seconds */

W[P0] = R1.L; /* will produce ~15 second delay */

P0.L = LO(RTC_ICTL);

R1 = STOPWATCH(Z);

W[P0] = R1.L; /* enable Stop-Watch interrupt */

P0.L = LO(RTC_ISTAT);

R1 = 0x807F(Z);

W[P0] = R1.L; /* clear any pending RTC interrupts */

R0 = WRITE_COMPLETE(Z); /* mask for WRITE-COMPLETE bit */

Poll_WC1: R1 = W[P0](Z);

R1 = R1 & R0; /* wait for Write Complete */

CC = AZ;

IF CC JUMP Poll_WC1;

/* RTC now running with correct stop-watch count and interrupts

*/

P0.H = HI(PLL_CTL);

P0.L = LO(PLL_CTL);

R0 = W[P0](Z);

BITSET (R0, BITPOS(PDWN)); /* set PDWN To Go To Deep Sleep */

W[P0] = R0.L; /* Issue Command for Deep Sleep */

CLI R0; /* Perform PLL Programming Sequence */

IDLE;

STI R0; /* In Deep Sleep When Idle Exits */

RTS;

ADSP-BF54x Blackfin Processor Hardware Reference 14-27

Real-Time Clock

RTC Alarm to Come Out of Hibernate State
Listing 14-3 sets up the RTC to utilize the alarm feature to come out of
hibernate state. This code assumes that the prescaler has already been
properly enabled.

Listing 14-3. Setting RTC Alarm to Exit Hibernate State

Hibernate_Code:

P0.H = HI(RTC_ALARM);

P0.L = LO(RTC_ALARM);

R0 = 0x0010(Z); /* set alarm to 16 seconds from now */

W[P0] = R0.L;

P0.L = LO(RTC_STAT);

R0 = 0; /* Clear RTC Status to Start Counting at 0 */

W[P0] = R0.L;

P0.L = LO(RTC_ICTL);

R0 = ALARM(Z);

W[P0] = R0.L; /* enable Alarm interrupt */

P0.L = LO(RTC_ISTAT);

R0 = 0x807F(Z);

W[P0] = R0.L; /* clear any pending RTC interrupts */

R0 = WRITE_COMPLETE(Z);

Poll_WC1: R1 = W[P0](Z);

R1 = R1 & R0; /* wait for Write Complete */

CC = AZ;

IF CC JUMP Poll_WC1;

/* RTC now running with correct RTC status */

GoToHibernate:

Programming Examples

14-28 ADSP-BF54x Blackfin Processor Hardware Reference

P0.H = HI(VR_CTL);

P0.L = LO(VR_CTL);

R0 = W[P0](Z);

BITCLR(R0, 0); /* Clear FREQ (bits 0 and 1) to */

BITCLR(R0, 1); /* go to Hibernate State */

BITSET(R0, BITPOS(WAKE)); /* Enable RTC Wakeup */

W[P0] = R0.L;

CLI R0; /* Use PLL programming sequence to */

IDLE; /* make VR_CTL changes take effect */

RTS; /* Should Never Execute This */

ADSP-BF54x Blackfin Processor Hardware Reference 15-1

15 ENHANCED PARALLEL
PERIPHERAL INTERFACE

This chapter describes the enhanced parallel peripheral interface (EPPI)
and includes the following sections:

• “Overview” on page 15-1

• “Interface Overview” on page 15-4

• “Description of Operation” on page 15-6

• “Functional Description” on page 15-10

• “EPPI Data Path Options” on page 15-27

• “Programming Model” on page 15-64

• “EPPI Registers” on page 15-73

Overview
The ADSP-BF54x processor Blackfin processor provides up to three
enhanced parallel peripheral interfaces (EPPIs), supporting data widths up
to 24 bits wide. The EPPI supports direct connection to active TFT LCD,
parallel A/D and D/A converters, video encoders and decoders, image sen-
sor modules and other general-purpose peripherals.

Overview

15-2 ADSP-BF54x Blackfin Processor Hardware Reference

The following features are supported in the EPPI module.

• Programmable data length: 8, 10, 12, 14, 16, 18 and 24 bits per
clock cycle.

• Bidirectional and half-duplex port.

• Clock can be provided externally or can be generated internally.

• Various framed and non-framed operating modes. Frame syncs can
be generated internally or can be supplied by an external device.

• Various general-purpose modes with one frame sync, two frame
syncs, three frame syncs and zero frame sync modes for both
receive and transmit.

• ITU-656 status word error detection and correction for ITU-656
Receive modes.

• ITU-656 preamble and status word decode.

• Three different modes for ITU-656 receive modes: active video
only, vertical blanking only, and entire field.

• Horizontal and vertical windowing for GP 2 and 3 frame sync
modes.

• Optional packing and unpacking of data to/from 32 bits from/to 8,
16 and 24 bits. If packing/unpacking is enabled, endianness can be
altered to change the order of packing/unpacking of bytes/words.

ADSP-BF54x Blackfin Processor Hardware Reference 15-3

Enhanced Parallel Peripheral Interface

• Optional sign extension or zero-fill for receive modes.

• During receive modes, alternate even or odd data samples can be
filtered out.

• Programmable clipping of data values for 8-bit and 16-bit transmit
modes.

• RGB888 can be converted to RGB666 or RGB565 for transmit
modes.

• Various de-interleaving/interleaving modes for receiving/transmit-
ting 4:2:2 YCrCb data.

• FIFO watermarks and urgent DMA features.

• Clock gating by an external device asserting the clock gating con-
trol signal.

• Configurable LCD data enable (DEN) output available on frame
sync 3.

Each EPPI is a half-duplex, bidirectional port with a dedicated clock pin
and three frame sync (FS) pins. Each EPPI has a DMA channel associated
with it. Moreover, in some modes, an EPPI may use an additional DMA
channel.

The EPPI supports direct connection to LCD panels, parallel A/D and
D/A converters, video encoders and decoders, CMOS sensors and other
general-purpose peripherals.

The ADSP-BF54x processor Blackfin processors feature up to three sepa-
rate (but functionally identical) EPPI modules. The ADSP-BF544,
ADSP-BF547, ADSP-BF548 and ADSP-BF549 processors feature three
EPPIs, referred to as EPPI0, EPPI1, and EPPI2. EPPI0 is not present on
the ADSP-BF542 processor.

Interface Overview

15-4 ADSP-BF54x Blackfin Processor Hardware Reference

To reduce pin count, some EPPI module pins are multiplexed with other
EPPI pins and peripheral pins. (See Figure 15-8 on page 15-28 for more
details.)

The maximum data widths are:

• EPPI0 supports up to 24 bits of data, 3 frame syncs and a clock.

• EPPI1 supports up to 16 bits of data, 3 frame syncs and a clock.

• EPPI2 supports up to 8 bits of data, 3 frame syncs and a clock.

For simplicity, discussions that apply to all EPPI blocks are denoted as
EPPIx, which refers to any/all EPPI modules. The abbreviations RX and
TX are also used in order to denote receive and transmit modes,
respectively.

Interface Overview
 A block diagram of the EPPI is shown in Figure 15-1.

The EPPI can be supplied with an external clock, or the clock can be gen-
erated internally and supplied to external devices. When using the internal
clock, the maximum frequency possible for EPPIx_CLK is SCLK/2. When
using an external clock, the maximum frequency for EPPIx_CLK is 75
MHz.

 When using an external EPPIx_CLK, there may be up to two cycles
latency before valid data is received or transmitted.

The internal clock can be generated from SCLK if the ICLKGEN bit in the
EPPIx_CONTROL register is set. The generated clock frequency is then deter-
mined by the value in the EPPIx_CLKDIV register.

ADSP-BF54x Blackfin Processor Hardware Reference 15-5

Enhanced Parallel Peripheral Interface

Figure 15-1. EPPI Block Diagram

PORTS

EPPI0_CLK_TIMER

EPPI0_FS1_TIMER

EPPI0_FS2_TIMER

EPPI0_CLKDIV

EPPI0_STATUS

EPPI0_FS1_...

EPPI0_FS2_...

EPPI0_CONTROL

EPPI0_CLIP

EPPI0_LINE

EPPI0_FRAME

EPPI0_V/HCOUNT

DATA RE-ARRANGE
AND CONTROL UNIT

2416
16

HI

LO

16

SCLK

CLK

FS1

FS2

FS3

DMA CONTR.
(DMAC 1)

SIC
CONTROLLER

FIFO
4

32

REQUEST

GRANT

PAB

DAB

32

32

0 17

23

0

5

8

15

0

7

EPPI0_V/HDELAY

EPPI0-2
ERROR

DMA12_EPPI0
DEFAULT

DMA13_EPPI1
DEFAULT

DMA14_EPPI2
DEFAULT

3

SCLK

SCLK

32

32

32

16

16

EPPI CORE

32
FIFO

16

8

FIFO
4

FIFO
4

EPPI 0

EPPI 1

EPPI 2

E
P

P
I 0

E
P

P
I 1

E
P

P
I 2

Description of Operation

15-6 ADSP-BF54x Blackfin Processor Hardware Reference

Description of Operation
The following sections provide descriptions of EPPI operations.

Table 15-1. Operating Modes and Generic EPPI Operation

How to configure Useful for How to configure in
ITU R 656 TX
Mode

ITU-R
BT.656
RX

Entire
field

DIR = 0
XFR_TYPE =
b#01

Active
video

DIR = 0
XFR_TYPE =
b#00

Blanking
only

DIR = 0
XFR_TYPE =
b#10

GP 0 FS TX DIR = 1
XFR_TYPE =
b#11
FS_CFG = b#00

Applications where peri-
odic frame syncs are not
used to frame the data

BLANKGEN = 1
DLEN = (b#000,
b#001 or b#100)

RX DIR = 0
XFR_TYPE =
b#11
FS_CFG = b#00

GP 1 FS TX DIR = 1
XFR_TYPE = 11
FS_CFG = 01

Interfacing with ADCs,
DACs and other gen-
eral-purpose devices

BLANKGEN = 1
DLEN = (b#000,
b#001 or b#100)

RX DIR = 0
XFR_TYPE =
b#11
FS_CFG = b#01

ADSP-BF54x Blackfin Processor Hardware Reference 15-7

Enhanced Parallel Peripheral Interface

EPPI Reset
On a hardware reset, the entire EPPI is reset. All MMRs return to their
default values. EPPI interrupt and DMA requests go inactive. Internally
generated EPPIx_CLK and frame syncs are aborted.

In software, the EPPI can be reset and re-configured by writing 0 to the
EPPIx_EN bit in the EPPIx_CONTROL register. On disabling the EPPI in this
manner, only EPPIx_STATUS is cleared to its reset value. EPPI interrupt
and DMA requests go inactive, and internally generated clock and frame
syncs are aborted.

GP 2 FS TX DIR = 1
XFR_TYPE =
b#11
FS_CFG = b#10

Video applications that use
two hardware synchroniza-
tion signals, HSYNC and
VSYNC

BLANKGEN = 1
DLEN = (b#000,
b#001 or b#100)

RX DIR = 0
XFR_TYPE =
b#11
FS_CFG = b#10

GP 3 FS TX DIR = 1
XFR_TYPE =
b#11
FS_CFG = b#11

Video applications that use
three hardware sync sig-
nals, HSYNC, VSYNC,
and FIELD

BLANKGEN = 1
DLEN = (b#000,
b#001 or b#100)

RX DIR = 0
XFR_TYPE =
b#11
FS_CFG = b#11

Table 15-1. Operating Modes and Generic EPPI Operation (Cont’d)

How to configure Useful for How to configure in
ITU R 656 TX
Mode

Description of Operation

15-8 ADSP-BF54x Blackfin Processor Hardware Reference

Clock Gating

In ITU-R BT.656 and GP 0/1/2 FS modes, EPPIx_FS3 becomes a
clock-gating input. This is valid for both internally and externally sourced
EPPIx_CLK, in both RX and TX modes. This clock gating signal must be
synchronous with EPPIx_CLK and must be driven by the external device on
the rising edge of EPPIx_CLK. Its function is to hold the sync and data lines
in their current state until EPPIx_FS3 is driven low. There are no addi-
tional latency cycles upon coming out of clock gating mode.

 'If clock gating is not required, the EPPIx_FS3 pin must either be
tied to ground, or configured to operate as another of its multi-
plexed functions.

In GP 2 FS transmit mode with internally generated frame syncs,
EPPIx_FS3 functions as a data enable (DEN) pin. Refer to the DEN function-
ality in the section “GP 2 FS Mode” on page 15-24” for more details on
this functionality.

Frame Sync Polarity & Sampling Edge

The POLS and POLC bits provide a mechanism to select the active level of
the frame syncs and the sampling/driving edge of the EPPI clock, respec-
tively. This allows the EPPI to connect to data sources and receivers with a
wide array of control signal polarities. Often, the remote data
source/receiver also offers configurable signal polarities; in these cases, the
POLS and POLC bits simply add increased flexibility.

Table 15-2. Different Settings for POLS

Frame Sync 2 Frame Sync 1

POLS = b#00 Active high/ starts out low Active high/ starts out low

POLS = b#01 Active high/ starts out low Active low/ starts out high

POLS = b#10 Active low/ starts out high Active high/ starts out low

POLS = b#11 Active low/ starts out high Active low/ starts out high

ADSP-BF54x Blackfin Processor Hardware Reference 15-9

Enhanced Parallel Peripheral Interface

 EPPIx_FS3 is always active high and starts out as low. In all modes
other than GP 3 FS mode, it is used as a clock-gating input, with
the exception of when it is configured as a “Data Enable” output in
GP 2 FS mode.

Interrupts

The EPPI generates an interrupt to the System Interrupt Controller under
the following conditions:

• FIFO Overflow

• FIFO Underflow

• Line Track Overflow

• Line Track Underflow

• Frame Track Overflow

• Frame Track Underflow

• Preamble Error not corrected in ITU-R 656 receive modes

Table 15-3. Different Settings for POLC

RX TX

Sample Data Sample/drive syncs Drive Data Sample/drive syncs

POLC = b#00 Falling edge Falling edge Rising edge Rising edge

POLC = b#01 Falling edge Rising edge Rising edge Falling edge

POLC = b#10 Rising edge Falling edge Falling edge Rising edge

POLC = b#11 Rising edge Rising edge Falling edge Falling edge

Functional Description

15-10 ADSP-BF54x Blackfin Processor Hardware Reference

The interrupt remains high until software clears the particular interrupt in
the EPPIx_STATUS register.

 There is only one interrupt line from each EPPI. An EPPI will
therefore internally OR all the above interrupts and send a single
interrupt to the core. The EPPIx_STATUS register must then be read
to find out which error occurred.

Functional Description
The following sections describe the function of the EPPI.

ITU-R 656 Modes
The EPPI supports three input modes and one output mode for ITU-R
656-framed data. These modes are described in this section.

ITU-R 656 Background
In ITU-656 mode, the horizontal (H), vertical (V), and field (F) signals are
sent as an embedded part of the video datastream in a series of bytes that
form a control word.

The letter H is used to distinguish between the start of active video (SAV)
and end of active video (EAV) signals, which indicate the beginning and
end of active video data in each line. SAV occurs on a 1-to-0 transition of
H, and EAV occurs on a 0-to-1 transition of H. The space between EAV
and SAV is filled with horizontal blanking data. Therefore H = 1 during
the horizontal blanking portion of the data stream and H = 0 during the
active video portion of the data stream.

ADSP-BF54x Blackfin Processor Hardware Reference 15-11

Enhanced Parallel Peripheral Interface

The letter V is used to denote the vertical blanking portion of the data
stream. A transition in V can occur only in the EAV sequence. When V = 1,
the data stream contains vertical blanking data and when V = 0, the data
stream contains active video data.

The letter F is used to distinguish Field 1 from Field 2. Interlaced video
has two fields in a frame of data. It requires each field to be handled
uniquely, and alternate rows of each field combined to create the actual
video image.

For interlaced video, F = 0 represents Field 1 and F = 1 represents Field 2.
Progressive video makes no distinction between Field 1 and Field 2, and F
is always 0 for progressive video.

According to the ITU-R 656 recommendation (formerly known as
CCIR-656), a digital video stream has the characteristics shown in
Figure 15-3 and Figure 15-2 on page 15-12 for 525/60 (NTSC) and
625/50 (PAL) systems. The processor supports only the bit-parallel mode
of ITU-R 656. Both 8- and 10-bit video element widths are supported. In
this mode, the horizontal (H), vertical (V), and field (F) signals are sent as
an embedded part of the video datastream in a series of bytes that form a
control word. The start of active video (SAV) and end of active video
(EAV) signals indicate the beginning and end of data elements to read in
on each line. SAV occurs on a 1-to-0 transition of H, and EAV occurs on a
0-to-1 transition of H. An entire field of video is comprised of active video
+ horizontal blanking (the space between an EAV and SAV code) and ver-
tical blanking (the space where V = 1). A field of video commences on a
transition of the F bit. An “odd field” is denoted by a value of F = 0,
whereas F = 1 denotes an even field. Progressive video makes no distinc-
tion between Field 1 and Field 2, whereas interlaced video requires each
field to be handled uniquely, because alternate rows of each field combine
to create the actual video image.

Functional Description

15-12 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 15-2. Typical Video Frame Partitioning for NTSC/PAL Systems in
Interlaced and Progressive ITU-R BT.656 Systems

LINE
NUMBER

F V H
(EAV)

H
(SAV)

LINE
NUMBER

F V H
(EAV)

H
(SAV)

1-3
266-282

4-19
264-265

1-22
311-312

313-335,
624-625

20-263

283-525

23-310

336-623

1 1 1 0

0 01 1

0 0 01

1 0 1 0

0 1 1 0

0 0 1 0

1 1 1 0

1 0 1 0

H
O

R
IZ

O
N

T
A

L
 B

L
A

N
K

IN
G

H
O

R
IZ

O
N

T
A

L
 B

L
A

N
K

IN
G

VERTICAL
BLANKING

FIELD 1
ACTIVE VIDEO

VERTICAL
BLANKING

FIELD 2
ACTIVE VIDEO

VERTICAL
BLANKING

FIELD 1
ACTIVE VIDEO

VERTICAL
BLANKING

FIELD 2
ACTIVE VIDEO

VERTICAL
BLANKING

1

20

264

283

525

1

23

311

336

624

625

EAV SAV

EAV SAV

LINE #

LINE 4

FIELD 1

FIELD 2

LINE 266

LINE 3

LINE 1

LINE 313

LINE 625

FIELD 1

FIELD 2

H
O

R
IZ

O
N

T
A

L
 B

L
A

N
K

IN
G

VERTICAL
BLANKING

ACTIVE VIDEO

1

46

525

EAV SAV

H
O

R
IZ

O
N

T
A

L
 B

L
A

N
K

IN
G

VERTICAL
BLANKING

ACTIVE VIDEO

1

45

625

EAV SAV

VERTICAL
BLANKING

LINE
NUMBER

F V H
(EAV)

H
(SAV)

1-45

46-525

0 1 1 0

0 0 1 0

LINE
NUMBER

F V H
(EAV)

H
(SAV)

45-620

0 1 1 0

0 0 1 0

1-44,
621-625

LINE #
PROGRESSIVE VIDEO

INTERLACED VIDEO

NTSC

NTSC

PAL

PAL

621

ADSP-BF54x Blackfin Processor Hardware Reference 15-13

Enhanced Parallel Peripheral Interface

The SAV and EAV codes are shown in more detail in Table 15-4. Note
there is a defined preamble of three data elements (for example, in the case
of 8-bit video: 0xFF, 0x00, 0x00), followed by the XY status word, which,
aside from the F (field), V (vertical blanking) and H (horizontal blanking)
bits, contains four protection bits for error detection and correction. Note
F and V are only allowed to change as part of EAV sequences (that is,
transition from H = 0 to H = 1).

Figure 15-3. ITU-R 656 8-Bit Parallel Data Stream for NTSC (PAL)
Systems

Table 15-4. Control Sequences for 8-Bit and 10-Bit ITU-R 656 Video

8-Bit Data 10-Bit Data

D9 (MSB) D8 D7 D6 D5 D4 D3 D2 D1 D0

Preamble 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Control Byte 1 F V H P3 P2 P1 P0 0 0

F
F

0
0

0
0

X
Y

8
0

1
0

8
0

1
0

8
0

F
F

0
0

0
0

X
Y

C
B

Y C
R

Y1
0

C
R

Y F
F

4 268 (280 FOR PAL) 4 1440

1716 (1728 FOR PAL)

END OF ACTIVE VIDEO START OF ACTIVE VIDEO START OF
NEXT LINE

DIGITAL
VIDEO
STREAM

EAV
CODE
(H = 1)

HORIZONTAL
BLANKING

SAV
CODE
(H = 0)

~ ~
~ ~

Functional Description

15-14 ADSP-BF54x Blackfin Processor Hardware Reference

The bit definitions are as follows:

• F = 0 for field 1

• F = 1 for field 2

• V = 1 during vertical blanking

• V = 0 when not in vertical blanking

• H = 0 at SAV

• H = 1 at EAV

• P3 = V XOR H

• P2 = F XOR H

• P1 = F XOR V

• P0 = F XOR V XOR H

P3-P0 are protection bits and enable one- and two-bit errors to be
detected, and one-bit errors to be corrected, at the receiver. The EPPI
does this correction if it detects one-bit errors in F, V or H. Errors in the
protection bits themselves are detected but not corrected.

The EPPIx_STATUS register contains two bits, ERR_DET and ERR_NCOR, used
to report the statuses of Error Detected and Error Not Corrected,
respectively.

The ERR_DET bit is set whenever an error is detected in the status word.
However, this bit does not generate an interrupt. The ERR_NCOR bit is set
when more than a 1-bit error is detected in the status word. An interrupt
is generated when the ERR_NCOR bit is set. It can be cleared by clearing the
ERR_NCOR and ERR_DET bits in the EPPIx_STATUS register. Both bits are
sticky and W1C.

ADSP-BF54x Blackfin Processor Hardware Reference 15-15

Enhanced Parallel Peripheral Interface

In many applications, video streams other than the standard NTSC/PAL
formats (for example, CIF, QCIF) can be employed. Because of this, the
processor interface is flexible enough to accommodate different row and
field lengths. In general, as long as the incoming video has the proper
EAV/SAV codes, the EPPI can read it in. In other words, a CIF image
could be formatted to be “656-compliant,” where EAV and SAV values
define the range of the image for each line, and the V and F codes are used
to delimit fields and frames.

ITU-R 656 Input Modes
Figure 15-4 shows a general illustration of data movement in the ITU-R
656 input modes. In the figure, the clock CLK is either provided by the
video source or supplied externally by the system.

Figure 15-4. ITU-R 656 Input Modes

8- OR 10-BIT DATA WITH
EMBEDDED CONTROL

EPPI

EPPIx

EPPIx_CLK

ITU-R 656 INPUT MODE

 656
 COMPATIBLE
VIDEOSOURCE

CLK

Functional Description

15-16 ADSP-BF54x Blackfin Processor Hardware Reference

There are three sub-modes supported for ITU-R 656 inputs: entire field,
active video only, and vertical blanking interval only. Figure 15-5 shows
these three sub-modes.

Entire Field

In this mode, the entire incoming bit stream is read in through the EPPI.
This includes active video as well as control byte sequences and ancillary
data that may be embedded in horizontal and vertical blanking intervals

Data transfer starts immediately after synchronization to Field 1 occurs,
but does not include the first EAV code that contains the F = 0 assignment
for interlaced video, or V = 0 assignment for progressive video.

Active Video

This mode is used when only the active video portion of a field is of inter-
est, and not any of the blanking intervals. The EPPI ignores (does not read
in) all data between EAV and SAV, as well as all data present when V = 1.

Figure 15-5. ITU-R 656 Input Sub-modes

BLANKING

FIELD 1
ACTIVE VIDEO

BLANKING

FIELD 2
ACTIVE VIDEO

BLANKING

BLANKING

FIELD 1
ACTIVE VIDEO

BLANKING

FIELD 2
ACTIVE VIDEO

BLANKING

BLANKING

FIELD 1
ACTIVE VIDEO

BLANKING

FIELD 2
ACTIVE VIDEO

BLANKING

ENTIRE FIELD SENT ACTIVE VIDEO ONLY SENT BLANKING ONLY SENT

ADSP-BF54x Blackfin Processor Hardware Reference 15-17

Enhanced Parallel Peripheral Interface

In this mode, the control byte sequences are not stored to memory; they
are filtered out by the EPPI. After synchronizing to the start of Field 1, the
EPPI ignores incoming samples until it sees an SAV.

 In this mode, the user must specify the number of total (active plus
vertical blanking) lines per frame in the EPPIx_FRAME MMR, and
the number of total (active plus horizontal blanking plus 8) sam-
ples per line in the EPPIx_LINE MMR.

Vertical Blanking Interval (VBI) only

In this mode, data transfer is only active while V = 1 is in the control byte
sequence. This indicates that the video source is in the midst of the Verti-
cal Blanking Interval (VBI), which is sometimes used for ancillary data
transmission. The ITU-R 656 recommendation specifies the format for
these ancillary data packets, but the EPPI is not equipped to decode the
packets themselves. This task must be handled in software. Horizontal
blanking data is logged where it coincides with the rows of the VBI.

The VBI is split into two regions within each field. From the EPPI’s
standpoint, it considers these two separate regions as one contiguous
space. However, keep in mind that frame synchronization begins at the
start of Field 1, which doesn't necessarily correspond to the start of verti-
cal blanking. For instance, in 525/60 systems, the start of Field 1 (F = 0)
corresponds to line 4 of the VBI.

 In this mode, the user must specify the number of total (active plus
vertical blanking) lines per frame in the EPPIx_FRAME MMR, and
the number of total (active plus horizontal blanking plus 8) sam-
ples per line in the EPPIx_LINE MMR.

Functional Description

15-18 ADSP-BF54x Blackfin Processor Hardware Reference

ITU-R 656 Output in GP Transmit Modes
In GP transmit mode, the EPPI provides the functionality to frame an
ITU-R 656 output stream with the proper preambles and blanking inter-
vals. This is done by setting the BLANKGEN bit in the EPPIx_CONTROL
register. The EPPI then only needs to fetch active data from memory
through the DMA channel, thus saving DMA bandwidth. The
EPPIx_AVPL, EPPIx_LVB, EPPIx_LAVF and EPPIx_HBL registers (shown in
Figure 15-7) need to be programmed correctly in order for the EPPI to
internally generate and embed the proper preamble, status word (EAV and
SAV sequences) and blanking data along with the active video from mem-
ory. The EPPI can also drive out the frame syncs based on the FS_CFG
setting.

Figure 15-6 shows the bit stream format in 16-bit transmit modes with
blanking generation (BLANKGEN enabled). Each 16-bit data sample consists
of 8-bit Luma (Y) and 8-bit Chroma (Cr or Cb) components.

Figure 15-7 shows the data transmitted by the EPPI in this mode. After
the EPPI is enabled and if the EPPI FIFO is not empty, the transmission
starts by sending out a EAV sequence for a vertical blanking line. For
interlaced video, F starts at 1. For progressive video, F is always 0.

Figure 15-6. 16-Bit Transmit with Internal Blanking Generation

F
F

0
0

0
0

A
B

1
0

1
0

1
0

1
0

1
0

F
F

0
0

0
0

A
B

Y Y Y Y1
0

Y Y F
F

END OF ACTIVE VIDEO START OF ACTIVE VIDEO START OF
NEXT LINE

DIGITAL
VIDEO
STREAM

EAV
CODE
(H = 1)

HORIZONTAL
BLANKING

SAV
CODE
(H = 0)

~ ~
~ ~

F
F

0
0

0
0

A
B

8
0

8
0

8
0

8
0

8
0

F
F

0
0

0
0

A
B

C
B

C C
B

C8
0

C
B

C F
F

DIGITAL
VIDEO
STREAM

~ ~
~ ~

R B R

ADSP-BF54x Blackfin Processor Hardware Reference 15-19

Enhanced Parallel Peripheral Interface

Note that the internal blanking generation functionality is valid only
when the data length is 8, 10, or 16 bits and when the EPPI is in GP
transmit modes. BLANKGEN generates preambles even in GP 2FS mode.

The ITU-R 656 Output mode's internal blanking generation functional-
ity can also be bypassed (for instance, if it is desired to send ancillary data
in the blanking interval) by clearing the BLANKGEN bit in the
EPPIx_CONTROL register. BLANKGEN generates preambles even in GP 2FS
mode.

Functional Description

15-20 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 15-7. Internally Generated Blanking and Preamble Sequence with
F, V, and H Signals

EAV

EAV

EAV

EAV

EAV

EAV

EAV

EAV

EAV

EAV

EAV

EAV

EAV

EAV

EAV

EAV

EAV

EAV

EAV

EAV

SAV

SAV

SAV

SAV

SAV

SAV

SAV

SAV

SAV

SAV

SAV

SAV

SAV

SAV

SAV

SAV

SAV

SAV

SAV

SAV

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

VERTICAL BLANKING

VERTICAL BLANKING

VERTICAL BLANKING

ACTIVE DATA

ACTIVE DATA

ACTIVE DATA

ACTIVE DATA

ACTIVE DATA

VERTICAL BLANKING

VERTICAL BLANKING

VERTICAL BLANKING

VERTICAL BLANKING

ACTIVE DATA

ACTIVE DATA

ACTIVE DATA

ACTIVE DATA

ACTIVE DATA

VERTICAL BLANKING

VERTICAL BLANKING

VERTICAL BLANKING

F1VB_BD

F1_ACT

F1VB_AD

F2VB_BD

F2VB_AD

F2_ACT

X

X

X

X

X

H
F V

EPPIx_HBL EPPIx_AVPL

ADSP-BF54x Blackfin Processor Hardware Reference 15-21

Enhanced Parallel Peripheral Interface

Frame Synchronization in ITU-R 656 Modes
For interlaced video, start of frame synchronization happens when a
high-to-low transition is detected in F, the field indicator. For progressive
video, start of frame synchronization happens when a high-to-low transi-
tion is detected in V, the vertical blanking indicator. These transitions in
F and V can occur only in the EAV sequence. A start of line is detected on
a low-to-high transition in H, the horizontal blanking indicator, and this
happens in the EAV sequence as well.

For interlaced video, start of frame corresponds to the start of field 1.
Consequently, up to two fields might be ignored (for example, if field 1
just started before the EPPI-to-camera channel was established) before
data is received into the EPPI. For progressive video, start of frame corre-
sponds to the start of active video.

Because all H and V signaling is embedded in the data stream in ITU-R
656 modes, the EPPIx_COUNT registers are ignored. However, the
EPPIx_FRAME register is still used in order to check for synchronization
errors. Therefore, this MMR must be programmed with the number of
lines expected in each frame of video, and the EPPI will keep track of the
number of EAV-to-SAV transitions that occur from the start of a frame
until it decodes the end-of-frame condition (transition from F = 1 to F = 0
in the case of interlaced video and transition from V = 1 to V = 0 in the
case of progressive video).

At this time, the actual number of lines processed is compared against the
value in EPPIx_FRAME. If there is a mismatch, a frame track error is asserted
in the EPPIx_STATUS register. For instance, if an SAV transition was
missed, the current field will only have NUM_ROWS - 1 rows, but resynchro-
nization will reoccur at the start of the next frame. Upon completing
reception of an entire field, the field status bit is toggled in the
EPPIx_STATUS register. This way, an interrupt service routine (ISR) can
discern which field was just read in.

Functional Description

15-22 ADSP-BF54x Blackfin Processor Hardware Reference

General-Purpose EPPI Modes
The general-purpose (GP) EPPI modes are intended to suit a wide variety
of data capture and transmission applications. Each EPPI has three bidi-
rectional frame sync pins. Frame syncs can be generated internally by the
EPPI, or by an external device communicating with the EPPI.

GP modes can be distinguished based on the number of frame syncs used.
The EPPI supports the following GP modes:

• GP 0 FS mode

• GP 1 FS mode

• GP 2 FS mode

• GP 3 FS mode

GP 0 FS RX mode may be triggered internally or externally. GP 0 FS TX
mode is always internally triggered.

All the GP modes, except 0 FS modes, support horizontal windowing. GP
modes with 2 and 3 frame syncs also support vertical windowing.

 For GP TX modes with internal clock or internal frame syncs, the
EPPI will start generating the clock or frame syncs only when the
EPPI FIFO has become full for the first time. For GP 0 FS TX
mode, the EPPI will only start the transmission when the EPPI
FIFO has become full for the first time.

GP 0 FS Mode
GP 0 FS mode is useful for applications where periodic frame syncs are
not used to frame the data.

The EPPI can be configured in GP 0 FS mode by setting XFR_TYPE = b#11
and FS_CFG = b#00 in the EPPIx_CONTROL register.

ADSP-BF54x Blackfin Processor Hardware Reference 15-23

Enhanced Parallel Peripheral Interface

GP 0 FS receive mode is further divided into two sub-modes: internal trig-
ger (FLD_SEL = 0) and external trigger (FLD_SEL = 1), based on how the
data transmission/reception is to be initiated. GP 0 FS transmit mode is
always internally triggered. All subsequent data manipulation is handled
through DMA.

After initial trigger, the EPPI receives/transmits data samples on every
clock cycle. However, if SKIPEN is set for receive mode, the EPPI receives
only alternate data samples.

 The EPPIx_LINE, EPPIx_FRAME, EPPIx_HCOUNT, EPPIx_HDELAY,
EPPIx_VCOUNT and EPPIx_VDELAY registers are not valid for GP 0 FS
mode. Therefore windowing is not possible in this mode. Also, line
and frame track errors are not applicable in this mode.

Frame Synchronization in GP 0 FS External Trigger Mode

When the EPPI is programmed in External Trigger mode, the EPPI will
not generate EPPIx_FS1 and a trigger must be provided by the external
device. The EPPI starts receiving the data as soon as an EPPIx_FS1 asser-
tion is detected. After that, all subsequent data manipulation is handled by
way of DMA and any activity on EPPIx_FS1 is ignored.

Frame Synchronization in GP 0 FS Internal Trigger Mode

When the EPPI is programmed in internal trigger mode, the EPPI starts
receiving/transmitting data as soon as the EPPI clock is enabled and
synchronized.

Note that GP 0 FS transmit mode is always internally triggered. The EPPI
starts transmitting valid data when the EPPI FIFO becomes full and the
EPPI clock is enabled. Care should be taken that the clock is enabled only
after the EPPI FIFO becomes full.

 There may be up to two cycles latency before valid data is received
or transmitted.

Functional Description

15-24 ADSP-BF54x Blackfin Processor Hardware Reference

GP 1 FS Mode
GP 1 FS mode is useful for interfacing the EPPI with analog-to-digital
converters (ADCs), digital-to-analog converters (DACs) and other gen-
eral- purpose devices. This mode works for both transmit and receive.

The EPPI can be configured in GP 1 FS mode by setting XFR_TYPE = b#11
and FS_CFG = b#01 in the EPPIx_CONTROL register. The frame sync may be
provided by an external device or it can be sourced by the EPPI itself.

The EPPI windowing registers must be carefully programmed in GP 1 FS
mode such that:

• The EPPIx_LINE register contains the number of clock cycles
expected between two assertions of EPPIx_FS1. This is used to keep
track of Line Track errors. It must be programmed before the
EPPIx_HCOUNT register.

• The EPPIx_HDELAY register contains the number of clock cycles to
wait after the assertion of EPPIx_FS1, for example, start of frame.

• The EPPIx_HCOUNT register contains the number of data samples to
receive or transmit for each frame.

The EPPIx_FRAME, EPPIx_VDELAY and EPPIx_VCOUNT registers have no effect
in GP 1 FS mode. As a result, frame track errors and vertical windowing
are not possible in this mode.

GP 2 FS Mode
GP 2 FS mode is useful for video applications that use two hardware syn-
chronization signals, HSYNC and VSYNC. The HSYNC can be connected to
EPPIx_FS1 and VSYNC can be connected to EPPIx_FS2.

ADSP-BF54x Blackfin Processor Hardware Reference 15-25

Enhanced Parallel Peripheral Interface

The EPPI can be configured in GP 2 FS mode by setting XFR_TYPE = b#11
and FS_CFG = b#10 in the EPPIx_CONTROL register. The frame syncs may be
provided by an external device or they can be sourced by the EPPI itself.

 The EPPI windowing registers must be programmed for GP2 FS
mode in the sequence listed below.

The EPPI windowing registers must be carefully programmed in GP 2 FS
mode such that:

• The EPPIx_FRAME register contains the number of expected lines
per frame. It should be equal to the number of EPPIx_FS1 asser-
tions expected between start of frame syncs and is used to keep
track of frame track errors. It must be programmed before the
EPPIx_VCOUNT register.

• The EPPIx_LINE register contains the number of clock cycles
expected between two assertions of EPPIx_FS1. This is used to keep
track of line track errors. It must be programmed before the
EPPIx_HCOUNT register.

• The EPPIx_HDELAY register contains the number of clock cycles to
wait after the assertion of EPPIx_FS1, for example, start of line.

• The EPPIx_HCOUNT register contains the number of data samples to
receive or transmit for each line.

• The EPPIx_VDELAY register contains the number of lines to wait
after the start of frame is detected.

• The EPPIx_VCOUNT register contains the number of lines to receive
or transmit.

Functional Description

15-26 ADSP-BF54x Blackfin Processor Hardware Reference

DEN functionality in GP 2 FS Transmit Mode

When EPPI is configured in GP 2 FS TX mode and when the EPPI is
configured for internal frame sync generation, the EPPIx_FS3 pin func-
tions as a data enable (DEN) pin. The functionality of the DEN pin is
described in the following two cases:

Case 1 - When blanking generation (BLANKGEN) is enabled and the EPPI
data length (DLEN) is configured for 8-, 10-, or 16-bit transfers:

The EPPIx_FS3 pin will assert during the “active data” regions, aligned
with EPPIx_CLK according to the clock polarity (POLC) settings. The frame
sync polarity (POLS) setting does not apply here -- EPPIx_FS3 will always
be active high in this mode.

Case 2 - When blanking generation (BLANKGEN) is disabled or it is enabled
but the EPPI data length (DLEN) is configured for a transfer size different
from 8-, 10-, or 16-bits:

The EPPIx_FS3 pin will assert at the start of the active data region on each
line, aligned with EPPIx_CLK according to the clock polarity (POLC) set-
tings. The frame sync polarity (POLS) setting does not apply here --
EPPIx_FS3 will always be active high in this mode. Once asserted,
EPPIx_FS3 will stay asserted for EPPIx_HCOUNT number of clock cycles per
line, and then it will deassert. This behavior on each line will continue for
the total number of lines programmed in EPPIx_VCOUNT per frame, and
repeat at the start of subsequent video frames.

In case 2, if transmission of valid data is held off due to delays pro-
grammed in the EPPIx_HDELAY and/or EPPIx_VDELAY registers, the
assertion of EPPIx_FS3 will also be held off accordingly, on a per-line
and/or per-frame basis.

ADSP-BF54x Blackfin Processor Hardware Reference 15-27

Enhanced Parallel Peripheral Interface

GP 3 FS Mode
GP 3 FS mode is useful for video applications that use three hardware
synchronization signals, HSYNC, VSYNC, and FIELD. The HSYNC can be con-
nected to EPPIx_FS1, VSYNC can be connected to EPPIx_FS2, and FIELD can
be connected to EPPIx_FS3.

The EPPI can be configured in GP 3 FS mode by setting XFR_TYPE = b#11
and FS_CFG = b#11 in the EPPIx_CONTROL register. The frame syncs may be
provided by an external device or they can be sourced by the EPPI itself.

GP 3 FS mode is very much similar in operation to GP 2 FS mode, except
that the Start of Frame synchronization in GP 3 FS mode also takes into
account EPPIx_FS3. All the windowing register (EPPIx_FRAME, EPPIx_LINE,
EPPIx_HDELAY, EPPIx_HCOUNT, EPPIx_VDELAY and EPPIx_VCOUNT) settings,
as well as data reception/transmission and error generation are the same as
for GP 2 FS mode. In addition, for GP 3 FS mode with internal frame
syncs, the FLD_SEL bit setting specifies the condition under which the
transfer should begin.

EPPI Data Path Options
The EPPI data path options are described in this section.

EPPI Data Lengths
EPPI data lengths are configured by setting the DLEN bits in the
EPPIx_CONTROL register.

EPPI0 supports data lengths of 8, 10, 12, 14, 16, 18 or 24 bits.

EPPI1 supports data lengths of 8, 10, 12, 14, or 16 bits.

EPPI2 supports only 8-bit data.

EPPI Data Path Options

15-28 ADSP-BF54x Blackfin Processor Hardware Reference

The EPPI1 data pins are multiplexed with EPPI2 data pins and some
EPPI0 data pins (This is shown visually in Figure 15-8). For more infor-
mation see the PORT_MUX register description in Chapter 9,
“General-Purpose Ports”.

EPPI DMA Channels
Each EPPI has a 32-bit DMA channel connected to it. In addition, if
EPPI2 is unused, EPPI1 may use that DMA channel as an additional
DMA channel. Similarly, if EPPI1 is unused, EPPI2 may use that DMA
channel as an additional DMA channel. However, this second channel is
enabled only when the DMACFG bit is set in the EPPIx_CONTROL register.

Data Packing For Receive Modes
For receive modes, if PACKEN is set in EPPIx_CONTROL, the DMA is a 32-bit
DMA and the EPPI packs the incoming data into 32-bit words based on
the DLEN and SWAPEN bit settings. When SWAPEN = 0, the EPPI puts the first
data in the least significant bits and when SWAPEN = 1, the EPPI puts the
first data in the most significant bits. Following are the packing options
based on the DLEN bits:

Figure 15-8. EPPI Pin Muxing

EPPI 1

EPPI 0

ATAPI

EPPI 2

7 0 23 17 0

ADSP-BF54x Blackfin Processor Hardware Reference 15-29

Enhanced Parallel Peripheral Interface

• When DLEN = 8, four 8-bit words can be packed into one 32-bit
word.

• When DLEN = 16, two 16-bit words can be packed into one 32-bit
word.

• For DLEN values that are more than 8 bits but less than 16 bits, two
such words are either sign-extended or zero-filled, and packed into
one 32-bit word.

• When DLEN = 18, the EPPI sign-extends or zero-fills the 18-bit data
to 24 bits and packs four 24-bit words into three 32-bit words.

• When DLEN = 24, the EPPI packs four 24-bit words into three
32-bit words.

When PACKEN is cleared in the EPPIx_CONTROL register, the EPPI
receives the incoming data and sends it on the DAB bus as-is. If
DLEN is less than or equal to 16 bits, the DMA is a 16-bit DMA;
otherwise it is a 32-bit DMA. Examples of data packing are pro-
vided in “Data Transfer Examples” on page 15-33.

Data Unpacking For Transmit Modes
For transmit modes, if PACKEN is set in EPPIx_CONTROL, the DMA is a
32-bit DMA and the EPPI unpacks the 32-bit word according to the DLEN
and SWAPEN bit settings.

EPPI Data Path Options

15-30 ADSP-BF54x Blackfin Processor Hardware Reference

If SWAPEN = 1, the EPPI transmits the most significant bits as the first data,
and if SWAPEN = 0, the EPPI transmits the least significant bits as the first
data. Following are the various unpacking modes, based on the DLEN bits:

• When DLEN = 8, the EPPI transmits one 32-bit word from memory
as four 8-bit data words.

• For DLEN values greater than 8 bits but less than or equal to 16 bits,
the EPPI transmits one 32-bit word from memory as two data
words.

• When DLEN = 18 or DLEN = 24, the EPPI transmits three 32-bit
words from memory as four data words. Examples of data unpack-
ing are provided in “Data Transfer Examples” on page 15-33.

Sign-Extension and Zero-Filling
For DLEN equal to 10, 12 or 14, data is zero-filled or sign-extended to 16
bits.

For DLEN equal to 18 bits, data is zero-filled or sign-extended to 24 bits if
packing is enabled, and zero-filled or sign-extended to 32 bits if packing is
disabled.

For DLEN equal to 24 bits, data is zero-filled or sign-extended to 32 bits if
packing is disabled.

For DLEN equal to 8 bits, data is zero-filled or sign-extended to 16 bits if
packing is disabled.

If the SIGN_EXT bit in the EPPIx_CONTROL register is set (SIGN_EXT = 1),
then the data is sign-extended, otherwise it is zero-filled.

ADSP-BF54x Blackfin Processor Hardware Reference 15-31

Enhanced Parallel Peripheral Interface

Split Receive Modes
The EPPIx_CONTROL register has three control bits for Split receive modes.
These are SPLT_EVEN_ODD, SUBSPLT_ODD and DMACFG. PACKEN is not valid in
Split modes.

If SPLT_EVEN_ODD is set, the EPPI splits the incoming data stream into two
sub-streams, an even stream and an odd stream, and packs them
separately.

SUBSPLT_ODD is valid only if SPLT_EVEN_ODD is set. If SUBSPLT_ODD is set, the
EPPI sub-splits the odd sub-stream, and packs them separately.

DMACFG is also valid only if SPLT_EVEN_ODD is set. If DMACFG is set, the EPPI
uses two DMA channels and if DMACFG is cleared, the EPPI uses only one
DMA channel.

Split mode can only be used on EPPI1 or EPPI2. Examples are provided
in “Data Transfer Examples” on page 15-33.

Split Transmit Modes
The EPPIx_CONTROL register has three control bits for Split transmit
modes. These are SPLT_EVEN_ODD, SUBSPLT_ODD and DMACFG. The DMA is
always a 32-bit DMA. PACKEN is not valid in Split modes.

If SPLT_EVEN_ODD is set, the EPPI receives the Luma (Y3Y2Y1Y0) and inter-
leaved Chroma (Cr1Cb1Cr0Cb0) data as 32 bits from the DMA channel
and interleaves them to form a 4:2:2 YCrCb data stream to be transmitted
out.

SUBSPLT_ODD is valid only if SPLT_EVEN_ODD is set. If SUBSPLT_ODD is set, the
EPPI receives the Luma (Y3Y2Y1Y0) and de-interleaved Chroma
(Cb3Cb2Cb1Cb0 and Cr3Cr2Cr1Cr0) and interleaves them to form a
4:2:2 YCrCb data stream to be transmitted out.

EPPI Data Path Options

15-32 ADSP-BF54x Blackfin Processor Hardware Reference

DMACFG is also valid only if SPLT_EVEN_ODD is set. If DMACFG is set, the EPPI
uses two DMA channels and if DMACFG is cleared, the EPPI uses only one
DMA channel.

Split mode can only be used on EPPI1 or EPPI2. Examples are provided
in “Data Transfer Examples” on page 15-33.

RGB Data Formats
For transmit modes, the EPPI can convert RGB888 data in memory to
RGB666 at the output if the RGB_FMT_EN bit is set in the EPPIx_CONTROL
register and if DLEN is equal to 18 bits. Similarly, the EPPI can convert
RGB888 data in memory to RGB565 at the output if the RGB_FMT_EN bit
is set in the EPPIx_CONTROL register and if DLEN is equal to 16 bits.

This conversion is done as follows: if PACKEN = 1, the EPPI first unpacks,
according to the SWAPEN settings, the three 32-bit data words from the
DMA into four 24-bit data words to be transmitted out as described ear-
lier. If PACKEN = 0, then the EPPI takes the lower 24 bits of the 32-bit
DMA as the data to be transmitted. Then the EPPI truncates this 24-bit
data word to the required data width by removing the lower 2 bits of G
and the lower 2 or 3 bits of R and B.

 SPLT_EVEN_ODD and RGB_FMT_EN should never be set simultaneously.

Programmed Clipping and Thresholding of Data
Values

The EPPI supports clipping and thresholding of data values for transmit
modes. This feature is valid only when the data length is 8 or 16 bits.

The EPPIx_CLIP register is used to define the lower and upper limits for
the Luma and Chroma components.

ADSP-BF54x Blackfin Processor Hardware Reference 15-33

Enhanced Parallel Peripheral Interface

The bit definitions of this register are shown in Table 15-5.

For the 4:2:2 YCrCb color space, Luma and Chroma typically have differ-
ent lower and upper thresholds, which is why separate thresholds may be
required for even and odd data samples. In the case of monochrome (Y
only) or some non-video clipping applications, LOW_ODD should be the
same as LOW_EVEN, and HIGH_ODD should be the same as HIGH_EVEN.

For 16-bit data lengths, the EPPI will separate each word into upper and
lower bytes, and will consider the lower bytes as odd bytes and the upper
bytes as even bytes during clipping.

Data Transfer Examples
The following sections provide EPPI data transfer examples.

8-Bit Receive Mode

For 8-bit non-split receive mode, the EPPI will pack four bytes of incom-
ing data into one 32-bit word, if PACKEN = 1 in the EPPIx_CONTROL register.
Alternate even or odd samples may be skipped based on the SKIP_EN and
SKIP_EO bits. The first incoming data can be placed either in the least sig-
nificant bit positions or in the most significant bit positions, based on the
SWAPEN bit setting.

Table 15-6 shows an 8-bit receive mode example when PACKEN = 1.

Table 15-5. EPPIx_CLIP Memory Mapped Register

Bits Name Description

7:0 LOW_ODD Lower Limit for Odd Bytes (Chroma)

15:8 HIGH_ODD Upper Limit for Odd Bytes (Chroma)

23:16 LOW_EVEN Lower Limit for Even Bytes (Luma)

31:24 HIGH_EVEN Upper Limit for Even Bytes (Luma)

EPPI Data Path Options

15-34 ADSP-BF54x Blackfin Processor Hardware Reference

If PACKEN = 0, the DMA is a 16-bit DMA and the EPPI either sign-extends
or zero-fills the bytes of incoming data into a 16-bit word. SWAPEN has no
effect if PACKEN = 0.

Table 15-7 shows an 8-bit receive mode example when PACKEN = 0:

Table 15-6. Data Received in 8-Bit Receive Mode with Packing Enabled

Pin
Data
(8 bits)

DMA DATA
when
SKIP_EN = 0
SKIP_EO = X
SWAPEN = 0
SIGN_EXT = X

DMA DATA
when
SKIP_EN = 0
SKIP_EO = X
SWAPEN = 1
SIGN_EXT = X

DMA DATA
when
SKIP_EN = 1
SKIP_EO = 1
SWAPEN = 0
SIGN_EXT = X

DMA DATA
when
SKIP_EN = 1
SKIP_EO = 0
SWAPEN = 0
SIGN_EXT = X

DMA DATA
when
SKIP_EN = 1
SKIP_EO = 1
SWAPEN = 1
SIGN_EXT = X

DMA DATA
when
SKIP_EN = 1
SKIP_EO = 0
SWAPEN = 1
SIGN_EXT = X

0x11

0x22

0x33

0x44 0x4433 2211 0x1122 3344

0x55

0x66

0x77 0x7755 3311 0x1133 5577

0x88 0x8877 6655 0x5566 7788 0x8866 4422 0x2244 6688

0x99

0xAA

0xBB

0xCC 0xCCBB AA99 0x99AA BBCC

0xDD

0xEE

0xFF 0xFFDD BB99 0x99BB DDFF

0x00 0x00FF EEDD 0xDDE EFF00 0x00EE CCAA 0xAACC EE00

ADSP-BF54x Blackfin Processor Hardware Reference 15-35

Enhanced Parallel Peripheral Interface

10/12/14-Bit Receive Modes

For 10-, 12-, or 14-bit non-split receive modes, the EPPI will first either
zero-fill or sign-extend the incoming data (depending on the SIGN_EXT bit)
into a 16-bit word. If PACKEN = 1, the EPPI will then pack two of these
words into one 32-bit word. Alternate even or odd samples may be
skipped based on the SKIP_EN and SKIP_EO bits. The first incoming data
can be placed either in the least significant bit positions or in the most sig-
nificant bit positions, based on the SWAPEN bit setting.

Table 15-8 shows a 10-Bit receive mode example when PACKEN = 1 and
SIGN_EXT = 1:

Table 15-7. Data Received in 8-Bit Receive Mode with Packing Disabled

Pin Data
(8 bits)

DMA DATA
when
SKIP_EN = 0
SKIP_EO = X
SWAPEN = X
SIGN_EXT = 0

DMA DATA
when
SKIP_EN = 0
SKIP_EO = X
SWAPEN = X
SIGN_EXT = 1

DMA DATA
when
SKIP_EN = 1
SKIP_EO = 1
SWAPEN = X
SIGN_EXT = 0

DMA DATA
when
SKIP_EN = 1
SKIP_EO = 0
SWAPEN = X
SIGN_EXT = 1

0x44 0x0044 0x0044 0x0044

0x55 0x0055 0x0055 0x0055

0x66 0x0066 0x0066 0x0066

0x77 0x0077 0x0077 0x0077

0x88 0x0088 0xFF88 0x0088

0x99 0x0099 0xFF99 0xFF99

0xAA 0x00AA 0xFFAA 0x00AA

0xBB 0x00BB 0xFFBB 0xFFBB

EPPI Data Path Options

15-36 ADSP-BF54x Blackfin Processor Hardware Reference

Table 15-8. Data Received in 10-Bit Receive Mode with Sign Extension,
with Packing Enabled

Pin
Data
(10 bits)

MSB DMA DATA
when
SKIP_EN = 0
SKIP_EO = X
SWAPEN = 0
SIGN_EXT=1

DMA DATA
when
SKIP_EN = 0
SKIP_EO = X
SWAPEN = 1
SIGN_EXT=1

DMA DATA
when
SKIP_EN = 1
SKIP_EO = 1
SWAPEN = 0
SIGN_EXT=1

DMA DATA
when
SKIP_EN = 1
SKIP_EO = 0
SWAPEN= 0
SIGN_EXT=1

DMA DATA
when
SKIP_EN = 1
SKIP_EO = 1
SWAPEN = 1
SIGN_EXT=1

DMA DATA
when
SKIP_EN = 1
SKIP_EO = 0
SWAPEN = 1
SIGN_EXT=1

0x111 0

0x222 1 0xFE22 0111 0x0111 FE22

0x333 1 0xFF33 0111 0x0011 FF33

0x044 0 0x0044 FF33 0xff33 0044 0x0044 FE22 0xFE22 0044

0x155 0

0x266 1 0xFE66 0155 0x0155 FE66

0x377 1 0xFF77 0155 0x0155 FF77

0x088 0 0x0088 FF77 0xFF77 0088 0x0088 FE66 0xFE66 0088

ADSP-BF54x Blackfin Processor Hardware Reference 15-37

Enhanced Parallel Peripheral Interface

Table 15-9 Shows a 10-Bit Receive Mode Example when PACKEN = 1 and
SIGN_EXT = 0:

Table 15-9. Data Received in 10-Bit Receive Mode, with Zero-Fill, with
Packing Enabled

Pin
Data
(10 bits)

DMA DATA
when
SKIP_EN = 0
SKIP_EO = X
SWAPEN = 0
SIGN_EXT=0

DMA DATA
when
SKIP_EN = 0
SKIP_EO = X
SWAPEN = 1
SIGN_EXT=0

DMA DATA
when
SKIP_EN = 1
SKIP_EO = 1
SWAPEN = 0
SIGN_EXT=0

DMA DATA
when
SKIP_EN = 1
SKIP_EO = 0
SWAPEN = 0
SIGN_EXT=0

DMA DATA
when
SKIP_EN = 1
SKIP_EO = 1
SWAPEN = 1
SIGN_EXT=0

DMA DATA
when
SKIP_EN = 1
SKIP_EO = 0
SWAPEN = 1
SIGN_EXT=0

0x111

0x222 0x0222 0111 0x0111 0222

0x333 0x0333 0111 0x0011 0333

0x044 0x0044 0333 0x0333 0044 0x0044 0222 0x0222 0044

0x155

0x266 0x0266 0155 0x0155 0266

0x377 0x0377 0155 0x0155 0377

0x088 0x0088 0377 0x0377 0088 0x0088 0266 0x0266 0088

EPPI Data Path Options

15-38 ADSP-BF54x Blackfin Processor Hardware Reference

Table 15-10 shows a 10-bit receive mode example when PACKEN = 0:

16-Bit Receive Mode

For 16-bit non-split receive mode, the EPPI will pack two 16-bit incom-
ing data into one 32-bit word, if PACKEN = 1. Alternate even or odd
samples may be skipped based on the SKIP_EN and SKIP_EO bits. The first
incoming data can be placed either in the least significant bit positions or
in the most significant bit positions, based on the SWAPEN bit setting.

Table 15-10. Data Received in 10-bit Receive Mode with Packing
Disabled

Pin Data
(10 bits)

MSB DMA DATA
when
SKIP_EN = 0
SKIP_EO = X
SWAPEN = X
SIGN_EXT = 1

DMA DATA
when
SKIP_EN = 0
SKIP_EO = X
SWAPEN = X
SIGN_EXT = 0

DMA DATA
when
SKIP_EN = 1
SKIP_EO = 1
SWAPEN = X
SIGN_EXT = 1

DMA DATA
when
SKIP_EN = 1
SKIP_EO = 0
SWAPEN = X
SIGN_EXT = 0

0x111 0 0x0111 0x0111 0x0111

0x222 1 0xFE22 0x0222 0x0222

0x333 1 0xFF33 0x0333 0xFF33

0x044 0 0x0044 0x0444 0x0444

0x155 0 0x0155 0x0155 0x0155

0x266 1 0xFE66 0x0266 0x0266

0x377 1 0xFF77 0x0377 0xFF77

0x088 0 0x0088 0x0088 0x088

ADSP-BF54x Blackfin Processor Hardware Reference 15-39

Enhanced Parallel Peripheral Interface

Table 15-11 shows a 16-bit receive mode example when PACKEN = 1.

Table 15-11. Table 6: Data Received in 16-Bit Receive Mode with Packing
Enabled

Pin
Data
(16 bits)

DMA DATA
when
SKIP_EN = 0
SKIP_EO = X
SWAPEN = 0
SIGN_EXT=X

DMA DATA
when
SKIP_EN = 0
SKIP_EO = X
SWAPEN = 1
SIGN_EXT=X

DMA DATA
when
SKIP_EN = 1
SKIP_EO = 1
SWAPEN = 0
SIGN_EXT=X

DMA DATA
when
SKIP_EN = 1
SKIP_EO = 0
SWAPEN = 0
SIGN_EXT=X

DMA DATA
when
SKIP_EN = 1
SKIP_EO = 1
SWAPEN = 1
SIGN_EXT=X

DMA DATA
when
SKIP_EN = 1
SKIP_EO = 0
SWAPEN = 1
SIGN_EXT=X

0x1111

0x2222 0x2222 1111 0x1111 2222

0x3333 0x3333 1111 0x1111 3333

0x4444 0x4444 3333 0x3333 4444 0x4444 2222 0x2222 4444

0x5555

0x6666 0x6666 5555 0x5555 6666

0x7777 0x7777 5555 0x5555 7777

0x8888 0x8888 7777 0x7777 8888 0x8888 6666 0x6666 8888

EPPI Data Path Options

15-40 ADSP-BF54x Blackfin Processor Hardware Reference

Table 15-12 shows a 16-bit receive mode example when PACKEN = 0:

18-Bit Receive Mode

For 18-bit non-split receive mode, the EPPI will zero-fill or sign-extend
the incoming data into a 32-bit word, if PACKEN = 0. If PACKEN = 1, the
EPPI will first zero-fill or sign-extend the incoming data to 24 bits, and
then pack four such 24-bit data words into three 32-bit words. Alternate
even or odd samples may be skipped based on the SKIP_EN and SKIP_EO
bits. The SWAPEN bit has no effect.

Table 15-12. Data Received in 16-bit Receive Mode with Packing
Disabled

Pin Data
(16 bits)

DMA DATA when
SKIP_EN = 0
SKIP_EO = X
SWAPEN = X
SIGN_EXT = X

DMA DATA when
SKIP_EN = 1
SKIP_EO = 1
SWAPEN = X
SIGN_EXT = X

DMA DATA when
SKIP_EN = 1
SKIP_EO = 0
SWAPEN = X
SIGN_EXT = X

0x1111 0x1111 0x1111

0x2222 0x2222 0x2222

0x3333 0x3333 0x3333

0x4444 0x4444 0x4444

0x5555 0x5555 0x5555

0x6666 0x6666 0x6666

0x7777 0x7777 0x7777

0x8888 0x8888 0x8888

ADSP-BF54x Blackfin Processor Hardware Reference 15-41

Enhanced Parallel Peripheral Interface

Table 15-13 shows an 18-bit receive mode example when PACKEN = 0:

Table 15-14 shows an 18-bit receive mode example when PACKEN = 1:

Table 15-13. Data Received in 18-bit Receive Mode with Packing
Disabled

Pin
Data
(18 bits)

DMA DATA
when
SKIP_EN = 0
SKIP_EO = X
SWAPEN = X
SIGN_EXT = 0

DMA DATA
when
SKIP_EN = 1
SKIP_EO = 1
SWAPEN = X
SIGN_EXT = 0

DMA DATA
when
SKIP_EN = 1
SKIP_EO = 0
SWAPEN = X
SIGN_EXT = 0

0x0 6666 0x0000 6666 0x0000 6666

0x1 7777 0x0001 7777 0x0001 7777

0x2 8888 0x0002 8888 0x0002 8888

0x3 9999 0x0003 9999 0x0003 9999

Table 15-14. Data Received in 18-bit Receive Mode with Packing Enabled

Pin
Data
(18 bits)

DMA DATA
when
SKIP_EN = 0
SKIP_EO = X
SWAPEN = X
SIGN_EXT = 0

DMA DATA
when
SKIP_EN = 1
SKIP_EO = 1
SWAPEN = X
SIGN_EXT = 0

DMA DATA
when
SKIP_EN = 1
SKIP_EO = 0
SWAPEN = X
SIGN_EXT = 0

0x0 1122

0x1 3344 0x4400 1122

0x2 5566 0x5566 0133 0x6600 1122

0x3 7788 0x0377 8802 0x8801 3344

0x0 99AA 0x99AA 0255

0x1 BBCC 0xCC00 99AA 0xBBCC 0377

0x2 DDEE 0xDDEE 01BB 0x02DD EE00

0x3 FF12 0x03FF 122D 0x03FF 1201

EPPI Data Path Options

15-42 ADSP-BF54x Blackfin Processor Hardware Reference

24-Bit Receive Mode

For 24-bit non-split receive mode, the EPPI will zero-fill or sign-extend
the incoming data into a 32-bit word, if PACKEN = 0. If PACKEN = 1, the
EPPI will pack four incoming 24-bit data words into three 32-bit words.
Alternate even or odd samples may be skipped based on the SKIP_EN and
SKIP_EO bits. The SWAPEN bit has no effect.

Table 15-15 shows a 24-bit receive mode example when PACKEN = 0:

Table 15-15. Data Received in 24-bit Receive Mode with Packing
Disabled

Pin
Data
(24 bits)

DMA DATA
when
SKIP_EN = 0
SKIP_EO = X
SWAPEN = X
SIGN_EXT = 0

DMA DATA
when
SKIP_EN = 1
SKIP_EO = 1
SWAPEN = X
SIGN_EXT = 0

DMA DATA
when
SKIP_EN = 1
SKIP_EO = 0
SWAPEN = X
SIGN_EXT = 0

0x6 6666 0x0066 6666 0x0066 6666

0x7 7777 0x0077 7777 0x0077 7777

0x8 8888 0x0088 8888 0x0088 8888

0x9 9999 0x0099 9999 0x0099 9999

ADSP-BF54x Blackfin Processor Hardware Reference 15-43

Enhanced Parallel Peripheral Interface

Table 15-16 shows a 24-bit receive mode example when PACKEN = 1:

8-Bit Split Receive Mode

For 8-bit split receive mode, PACKEN and SIGN_EXT are not valid. The EPPI
always packs four bytes of data into one 32-bit word.

Table 15-17 shows an 8-bit split receive mode example with SWAPEN = 0
and SKIP_EN = 0:

Table 15-16. Data Received in 24-bit Receive Mode with Packing Enabled

Pin Data
(24 bits)

DMA DATA
when
SKIP_EN = 0
SKIP_EO = X
SWAPEN = X

DMA DATA
when
SKIP_EN = 1
SKIP_EO = 1
SWAPEN = X

DMA DATA
when
SKIP_EN = 1
SKIP_EO = 0
SWAPEN = X

0x11 2233

0x44 5566 0x6611 2233

0x77 8899 0x8899 4455 0x9911 2233

0x00 AABB 0x00AA BB77 0xBB44 5566

0xCC DDEE 0xDDEE 7788

0xFF 1234 0x34CC DDEE 0x1234 00AA

0x56 7890 0x7890 FF12 0x5678 90CC

0xAB CDEF 0xABCD EF56 0xABCD EFFF

EPPI Data Path Options

15-44 ADSP-BF54x Blackfin Processor Hardware Reference

Table 15-17. Data Received in 8-bit Split Receive Mode with SKIP_EN = 0
and SWAPEN = 0

Pin
Data
(8
bits)

SPLT_EVEN_ODD = 1
SUBSPLT_ODD = 0
SWAPEN = 0
SKIP_EN = 0
SKIP_EO = X

SPLT_EVEN_ODD = 1
SUBSPLT_ODD = 1
SWAPEN = 0
SKIP_EN = 0
SKIP_EO = X

DMACFG = 1 DMACFG = 0 DMACFG = 1 DMACFG =0

PRIMARY
DMA
CHANNE
L

SECONDARY
DMA
CHANNEL

PRIMARY
DMA
CHANNEL

PRIMARY
DMA
CHANNE
L

SECONDARY
DMA
CHANNEL

PRIMARY
DMA
CHANNEL

V0

Y0

U0

Y1

V1

Y2

U1 U1V1U0V0 U1V1U0V0

Y3 Y3Y2Y1Y0 Y3Y2Y1Y0 Y3Y2Y1Y0 Y3Y2Y1Y0

V2

Y4

U2

Y5

V3 V3V2V1V0 V3V2V1V0

Y6

U3 U3V3U2V2 U3V3U2V2 U3U2U1U0

Y7 Y7Y6Y5Y4 Y7Y6Y5Y4 Y7Y6Y5Y4 Y7Y6Y5Y4

V4 U3U2U1U0

ADSP-BF54x Blackfin Processor Hardware Reference 15-45

Enhanced Parallel Peripheral Interface

Table 15-18 shows an 8-bit split receive mode example with SWAPEN = 1
and SKIP_EN = 0:

Table 15-18. Data Received in 8-bit Split Receive Mode with SKIP_EN = 0
and SWAPEN = 1

Pin Data
(8 bits)

SPLT_EVEN_ODD = 1
SUBSPLT_ODD = 0
SWAPEN = 1
SKIP_EN = 0
SKIP_EO = X

SPLT_EVEN_ODD = 1
SUBSPLT_ODD = 1
SWAPEN = 1
SKIP_EN = 0
SKIP_EO = X

DMACFG = 1 DMACFG = 0 DMACFG = 1 DMACFG = 0

PRIMARY
DMA
CHANNE
L

SECONDAR
Y
DMA
CHANNEL

PRIMARY
DMA
CHANNEL

PRIMARY
DMA
CHANNE
L

SECONDAR
Y
DMA
CHANNEL

PRIMARY
DMA
CHANNEL

V0

Y0

U0

Y1

V1

Y2

U1 V0U0V1U1 V0U0V1U1

Y3 Y0Y1Y2Y3 Y0Y1Y2Y3 Y0Y1Y2Y3 Y0Y1Y2Y3

V2

Y4

U2

Y5

V3 V0V1V2V3 V0V1V2V3

Y6

U3 V2U2V3U3 V2U2V3U3 U0U1U2U3

EPPI Data Path Options

15-46 ADSP-BF54x Blackfin Processor Hardware Reference

For the case when SPLT_EVEN_ODD = 1, SUBSPLT_ODD = 1 and DMACFG = 0,
note that although the second Chroma component (U0U1U2U3 in
Table 15-16) sent over the DMA bus is completely packed before the
Luma component (Y4Y5Y6Y7 in Table 15-16), it is intentionally held
until that previous word is moved out. This is done in order to enable the
separation of Luma and Chroma values into individual buffers when using
2D-DMA.

Y7 Y4Y5Y6Y7 Y4Y5Y6Y7 Y4Y5Y6Y7 Y4Y5Y6Y7

V4 U0U1U2U3

Table 15-18. Data Received in 8-bit Split Receive Mode with SKIP_EN = 0
and SWAPEN = 1 (Cont’d)

Pin Data
(8 bits)

SPLT_EVEN_ODD = 1
SUBSPLT_ODD = 0
SWAPEN = 1
SKIP_EN = 0
SKIP_EO = X

SPLT_EVEN_ODD = 1
SUBSPLT_ODD = 1
SWAPEN = 1
SKIP_EN = 0
SKIP_EO = X

DMACFG = 1 DMACFG = 0 DMACFG = 1 DMACFG = 0

PRIMARY
DMA
CHANNE
L

SECONDAR
Y
DMA
CHANNEL

PRIMARY
DMA
CHANNEL

PRIMARY
DMA
CHANNE
L

SECONDAR
Y
DMA
CHANNEL

PRIMARY
DMA
CHANNEL

ADSP-BF54x Blackfin Processor Hardware Reference 15-47

Enhanced Parallel Peripheral Interface

10/12/14/16-Bit Split Receive Mode with SPLT_16 = 0

For 16-bit split receive mode, PACKEN is not valid. The EPPI always packs
two 16-bit words into one 32-bit word. For 10-, 12-, or 14-bit split
receive modes, the EPPI will first either sign-extend or zero-fill the incom-
ing data into a 16 bit word, and then pack two of these words into one
32-bit word to be sent to the DMA.

Table 15-19 shows a 16-bit split receive mode example with SWAPEN = 0
and SKIP_EN = 0:

Table 15-19. Data received in 16-bit split receive mode with SPLT_16 = 0,
SKIP_EN = 0 and SWAPEN = 0

Pin Data
(16 bits)

SPLT_EVEN_ODD = 1
SUBSPLT_ODD = 0
SWAPEN = 0
SKIP_EN = 0
SKIP_EO = X

SPLT_EVEN_ODD = 1
SUBSPLT_ODD = 1
SWAPEN = 0
SKIP_EN = 0
SKIP_EO = X

DMACFG = 1 DMACFG =
0

DMACFG = 1 DMACFG =
0

PRIMARY
DMA
CHANNE
L

SECONDAR
Y
DMA
CHANNEL

PRIMARY
DMA
CHANNEL

PRIMARY
DMA
CHANNE
L

SECONDAR
Y
DMA
CHANNEL

PRIMARY
DMA
CHANNEL

V0

Y0

U0 U0V0 U0V0

Y1 Y1Y0 Y1Y0 Y1Y0 Y1Y0

V1 V1V0 V1V0

Y2

U1 U1V1 U1V1 U1U0

Y3 Y3Y2 Y3Y2 Y3Y2 Y3Y2

V2 U1U0

EPPI Data Path Options

15-48 ADSP-BF54x Blackfin Processor Hardware Reference

Table 15-20 shows an 16-bit split receive mode example with SWAPEN = 1
and SKIP_EN = 0:

Table 15-20. Data received in 16-bit split receive mode with SPLT_16 = 0,
SKIP_EN = 0 and SWAPEN = 1

Pin Data
(16 bits)

SPLT_EVEN_ODD = 1
SUBSPLT_ODD = 0
SWAPEN = 1
SKIP_EN = 0
SKIP_EO = X

SPLT_EVEN_ODD = 1
SUBSPLT_ODD = 1
SWAPEN = 1
SKIP_EN = 0
SKIP_EO = X

DMACFG = 1 DMACFG =
0

DMACFG = 1 DMACFG =
0

PRIMARY
DMA
CHANNE
L

SECONDAR
Y
DMA
CHANNEL

PRIMARY
DMA
CHANNEL

PRIMARY
DMA
CHANNE
L

SECONDAR
Y
DMA
CHANNEL

PRIMARY
DMA
CHANNEL

V0

Y0

U0 V0U0 V0U0

Y1 Y0Y1 Y0Y1 Y0Y1 Y0Y1

V1 V0V1 V0V1

Y2

U1 V1U1 V1U1 U0U1

Y3 Y2Y3 Y2Y3 Y2Y3 Y2Y3

V2 U0U1

ADSP-BF54x Blackfin Processor Hardware Reference 15-49

Enhanced Parallel Peripheral Interface

16-Bit Split Receive Mode with SPLT_16 = 1

For 16-bit split receive mode, PACKEN is not valid. The EPPI always packs
two 16-bit words into one 32-bit word. The SPLT_16 bit is only valid
when DLEN = 16 bits.

Table 15-21 shows a 16-bit split receive mode example with SPLT_16 = 1,
SWAPEN = 0 and SKIP_EN = 0:

Table 15-21. Data Received in 16-bit Split Receive Mode with SPLT_16 =
1, SKIP_EN = 0 and SWAPEN = 0

Pin Data
(16 bits)

SPLT_EVEN_ODD = 1
SUBSPLT_ODD = 0
SWAPEN = 0
SKIP_EN = 0
SKIP_EO = X

SPLT_EVEN_ODD = 1
SUBSPLT_ODD = 1
SWAPEN = 0
SKIP_EN = 0
SKIP_EO = X

DMACFG = 1 DMACFG =
0

DMACFG = 1 DMACFG =
0

PRIMARY
DMA
CHANNE
L

SECONDAR
Y
DMA
CHANNEL

PRIMARY
DMA
CHANNEL

PRIMARY
DMA
CHANNE
L

SECONDAR
Y
DMA
CHANNEL

PRIMARY
DMA
CHANNEL

V0Y0

U0Y1

V1Y2

U1Y3 Y3Y2Y1Y0 U1V1U0V0 Y3Y2Y1Y0 Y3Y2Y1Y0 Y3Y2Y1Y0

V2Y4 U1V1U0V0

U2Y5

V3Y6 V3V2V1V0 V3V2V1V0

U3Y7 Y7Y6Y5Y4 U3V3U2V2 Y7Y6Y5Y4 Y7Y6Y5Y4 U3U2U1U0 Y7Y6Y5Y4

V4Y8 U3V3U2V2 U3U2U1U0

EPPI Data Path Options

15-50 ADSP-BF54x Blackfin Processor Hardware Reference

8-Bit Transmit Mode

For 8-bit non-split transmit mode, if PACKEN = 1, the DMA is a 32-bit
DMA and the EPPI will unpack the 32-bit word from memory into four
bytes to be transmitted out. The EPPI transmits either the most signifi-
cant bits or the least significant bits as the first data, depending on the
SWAPEN bit setting. If PACKEN = 0, the DMA is a 16-bit DMA and the EPPI
transmits the lower 8 bits. SWAPEN has no effect when PACKEN = 0.

Table 15-22 shows an 8-bit transmit mode example when PACKEN = 1:

Table 15-23 shows a 8-bit transmit mode example when PACKEN = 0:

Table 15-22. Data Sent in 8-bit Transmit Mode with Packing Enabled

DMA Data (32 bits) Pin Data when SWAPEN = 0 Pin Data when SWAPEN = 1

0x1122 3344 0x44 0x11

0x5566 7788 0x33 0x22

0x22 0x33

0x11 0x44

0x88 0x55

0x77 0x66

0x66 0x77

0x55 0x88

Table 15-23. Data Sent in 8-bit Transmit Mode with Packing Disabled

DMA Data (16 bits) Pin Data SWAPEN = X

0x1234 0x34

0x2345 0x45

0x3456 0x56

ADSP-BF54x Blackfin Processor Hardware Reference 15-51

Enhanced Parallel Peripheral Interface

10/12/14-Bit Transmit Modes

For 10-, 12-, or 14-bit non-split transmit modes, if PACKEN = 1, the DMA
is a 32-bit DMA and the EPPI will unpack the 32-bit word from memory
into two 16-bit data words, then transmit the required least significant
bits from each. The EPPI transmits either the most significant word or the
least significant word as the first data, depending on the SWAPEN bit set-
ting. If PACKEN = 0, the DMA is a 16-bit DMA and the EPPI transmits the
required least significant bits. SWAPEN has no effect when PACKEN = 0.

Table 15-24 shows a 10-bit transmit mode example when PACKEN = 1:

Table 15-25 shows a 10-bit transmit mode example when PACKEN = 0:

Table 15-24. Data Sent in 10-bit Transmit Mode with Packing Enabled

DMA Data (32
bits)

Pin Data when SWAPEN =
0

Pin Data when SWAPEN =
1

0x1111 2222 0x222 0x111

0x3333 4444 0x111 0x222

0x044 0x333

0x333 0x044

Table 15-25. Data Sent in 10-bit Transmit Mode with Packing Disabled

DMA Data (16
bits)

Pin Data SWAPEN =
X

0x1234 0x234

0x2345 0x345

0x3456 0x056

0x4567 0x167

EPPI Data Path Options

15-52 ADSP-BF54x Blackfin Processor Hardware Reference

16-Bit Transmit Mode

For 16-bit non-split transmit mode, if PACKEN = 1, the DMA is a 32-bit
DMA and the EPPI will unpack the 32-bit word from memory into two
16-bit data words to be transmitted out. The EPPI transmits either the
most significant bits or the least significant bits as the first data, depend-
ing on the SWAPEN bit setting. If PACKEN = 0, the DMA is a 16-bit DMA
and the EPPI transmits the data as-is. SWAPEN has no effect when
PACKEN = 0.

Table 15-26 shows a 16-bit transmit mode example when PACKEN = 1:

Table 15-27 shows a 16-bit transmit mode example when PACKEN = 0:

Table 15-26. Data Sent in 16-bit Transmit Mode with Packing Enabled

DMA Data (32 bits) Pin Data when SWAPEN = 0 Pin Data when SWAPEN = 1

0x1111 2222 0x2222 0x1111

0x3333 4444 0x1111 0x2222

0x4444 0x3333

0x3333 0x4444

Table 15-27. Data Sent in 16-bit Transmit Mode with Packing Disabled

DMA Data (16 bits) Pin Data SWAPEN = X

0x1234 0x1234

0x2345 0x2345

0x3456 0x3456

ADSP-BF54x Blackfin Processor Hardware Reference 15-53

Enhanced Parallel Peripheral Interface

18-Bit Transmit Mode

For 18-bit transmit mode, if PACKEN = 1, the DMA is a 32-bit DMA and
the EPPI will unpack the 32-bit word from memory.

Table 15-28 shows a 18-bit transmit mode example when PACKEN = 1.
Note that when RGB_FMT_EN is set, the least significant bits of R, G, and B
are dropped.

Table 15-29 shows a 18-bit transmit mode example when PACKEN = 0.
Note that when RGB_FMT_EN is set, the least significant bits of R, G, and B
are dropped.

Table 15-28. Data Sent, 18-bit Transmit Mode with Packing Enabled

DMA Data Pin Data (18-bits)

RGB_FMT_EN = 0 RGB_FMT_EN = 1

0x0123 4567 0x3 4567 0x0 8459

0x89AB CDEF 0x1 EF01 0x3 3EC0

0x0123 4567 0x3 89AB 0x1 98AA

0x1 2345 0x0 0211

Table 15-29. Data Sent in 18-bit Transmit Mode with Packing Disabled

DMA Data Pin Data (18-bits)

RGB_FMT_EN = 0 RGB_FMT_EN = 1

0x0123 4566 0x3 4567 0x0 8459

0x89AB CDEF 0x3 CDEF 0x2 ACFB

0x0123 4567 0x3 4567 0x0 8459

EPPI Data Path Options

15-54 ADSP-BF54x Blackfin Processor Hardware Reference

24-Bit Transmit Mode

For 24-bit transmit mode, if PACKEN = 1, the DMA is a 32-bit DMA and
the EPPI will unpack three 32-bit words from memory into four 24-bit
words to be transmitted out. The effect of the SWAPEN bit setting is shown
in the table below.

Table 15-30 shows a 24-bit transmit mode example when PACKEN = 1:

Table 15-30. Data Sent in 24-bit Transmit Mode

DMA Data (32 bits) Pin Data when SWAPEN = 0 Pin Data when SWAPEN = 1

R1B0G0R0 B0G0R0 R0G0B0

G2R2B1G1 B1G1R1 R1G1B1

B3G3R3B2 B2G2R2 R2G2B2

B3G3R3 R3G3B3

ADSP-BF54x Blackfin Processor Hardware Reference 15-55

Enhanced Parallel Peripheral Interface

8-Bit Split Transmit Mode

For 8-bit split transmit mode, PACKEN is not valid. The EPPI always
unpacks the 32-bit DMA data into four bytes to be transmitted out.

Table 15-31 shows an 8-bit split transmit mode example with
SPLT_EVEN_ODD = 1, SUBSPLT_ODD = 0 and SWAPEN = 0:

Table 15-31. Data sent in 8-bit Split Transmit Mode

DMACFG = 1 DMACFG = 0

DMA0 DATA
(32 bits)

DMA1 DATA
(32 bits)

Pin Data
(8 bits)

DMA0 DATA
(32 bits)

Pin Data
(8 bits)

Y3Y2Y1Y0 U1V1U0V0 V0 U1V1U0V0 V0

Y7Y6Y5Y4 U3V3U2V2 Y0 Y3Y2Y1Y0 Y0

U0 U3V3U2V2 U0

Y1 Y7Y6Y5Y4 Y1

V1 V1

Y2 Y2

U1 U1

Y3 Y3

V2 V2

Y4 Y4

U2 U2

Y5 Y5

V3 V3

Y6 Y6

U3 U3

Y7 Y7

EPPI Data Path Options

15-56 ADSP-BF54x Blackfin Processor Hardware Reference

Table 15-32 shows an 8-bit split transmit mode example with
SPLT_EVEN_ODD = 1, SUBSPLT_ODD = 1 and SWAPEN = 0:

Table 15-32. Data Sent in 8-bit Split Transmit Mode

DMACFG = 1 DMACFG = 0

DMA0 DATA
(32 bits)

DMA1 DATA
(32 bits)

Pin Data
(8 bits)

DMA0 DATA
(32 bits)

Pin Data
(8 bits)

Y3Y2Y1Y0 V3V2V1V0 V0 V3V2V1V0 V0

Y7Y6Y5Y4 U3U2U1U0 Y0 Y3Y2Y1Y0 Y0

V7V6V5V4 U0 U3U2U1U0 U0

U7U6U5U4 Y1 Y7Y6Y5Y4 Y1

V1 V1

Y2 Y2

U1 U1

Y3 Y3

V2 V2

Y4 Y4

U2 U2

Y5 Y5

V3 V3

Y6 Y6

U3 U3

Y7 Y7

ADSP-BF54x Blackfin Processor Hardware Reference 15-57

Enhanced Parallel Peripheral Interface

Table 15-33 shows an 8-bit split transmit mode example with
SPLT_EVEN_ODD = 1, SUBSPLT_ODD = 0 and SWAPEN = 1:

Table 15-33. Data Sent in 8-bit Split Transmit Mode

DMACFG = 1 DMACFG = 0

DMA0 DATA
(32 bits)

DMA1 DATA
(32 bits)

Pin Data
(8 bits)

DMA0 DATA
(32 bits)

Pin Data
(8 bits)

Y3Y2Y1Y0 U1V1U0V0 U1 U1V1U0V0 U1

Y7Y6Y5Y4 U3V3U2V2 Y3 Y3Y2Y1Y0 Y3

V1 U3V3U2V2 V1

Y2 Y7Y6Y5Y4 Y2

U0 U0

Y1 Y1

V0 V0

Y0 Y0

U3 U3

Y7 Y7

V3 V3

Y6 Y6

U2 U2

Y5 Y5

V2 V3

Y4 Y4

EPPI Data Path Options

15-58 ADSP-BF54x Blackfin Processor Hardware Reference

Table 15-34 shows an 8-bit split transmit mode example with
SPLT_EVEN_ODD = 1, SUBSPLT_ODD = 1 and SWAPEN = 1:

Table 15-34. Data Sent in 8-bit Split Transmit Mode

DMACFG = 1 DMACFG = 0

DMA0 DATA
(32 bits)

DMA1 DATA
(32 bits)

Pin Data
(8 bits)

DMA0 DATA
(32 bits)

Pin Data
(8 bits)

Y3Y2Y1Y0 V3V2V1V0 V3 V3V2V1V0 V3

Y7Y6Y5Y4 U3U2U1U0 Y3 Y3Y2Y1Y0 Y3

V7V6V5V4 U3 U3V3U2V2 U3

U7U6U5U4 Y2 Y7Y6Y5Y4 Y2

V2 V2

Y1 Y1

U2 U2

Y0 Y0

V1 V1

Y7 Y7

U1 U1

Y6 Y6

V0 V0

Y5 Y5

U0 U0

Y4 Y4

ADSP-BF54x Blackfin Processor Hardware Reference 15-59

Enhanced Parallel Peripheral Interface

10/12/14/16-Bit Split Transmit Mode with SPLT_16 = 0

For 16-bit split transmit mode, PACKEN is not valid. The EPPI always
unpacks the 32-bit DMA data into two 16-bit words to be transmitted
out. For 10-, 12-, or 14-bit split transmit modes, the EPPI first unpacks
the data in the same way as for 16-bit transmit mode, but transmits only
the required number of least significant bits.

Table 15-35 shows a 16-bit split transmit mode example with
SPLT_EVEN_ODD = 1, SUBSPLT_ODD = 0 and SWAPEN = 0:

Table 15-35. Data Sent in 16-bit Split Transmit Mode

DMACFG = 1 DMACFG = 0

DMA0 DATA
(32 bits)

DMA1 DATA
(32 bits)

Pin Data
(16 bits)

DMA0 DATA
(32 bits)

Pin Data
(16 bits)

Y1Y0 U0V0 V0 U0V0 V0

Y3Y2 U1V1 Y0 Y1Y0 Y0

U0 U1V1 U0

Y1 Y3Y2 Y1

V1 V1

Y2 Y2

U1 U1

Y3 Y3

EPPI Data Path Options

15-60 ADSP-BF54x Blackfin Processor Hardware Reference

Table 15-36 shows a 16-bit split transmit mode example with
SPLT_EVEN_ODD = 1, SUBSPLT_ODD = 1 and SWAPEN = 0:

Table 15-36. Data Sent in 16-bit Split Transmit Mode

DMACFG = 1 DMACFG = 0

DMA0 DATA
(32 bits)

DMA1 DATA
(32 bits)

Pin Data
(16 bits)

DMA0 DATA
(32 bits)

Pin Data
(16 bits)

Y1Y0 V1V0 V0 V1V0 V0

Y3Y2 U1U0 Y0 Y1Y0 Y0

V3V2 U0 U1U0 U0

U3U2 Y1 Y3Y2 Y1

V1 V1

Y2 Y2

U1 U1

Y3 Y3

ADSP-BF54x Blackfin Processor Hardware Reference 15-61

Enhanced Parallel Peripheral Interface

Table 15-37 shows a 16-bit split transmit mode example with
SPLT_EVEN_ODD = 1, SUBSPLT_ODD = 0 and SWAPEN = 1:

Table 15-37. Data Sent in 16-bit Split Transmit Mode

DMACFG = 1 DMACFG = 0

DMA0 DATA
(32 bits)

DMA1 DATA
(32 bits)

Pin Data
(16 bits)

DMA0 DATA
(32 bits)

Pin Data
(16 bits)

Y1Y0 V0U0 V0 V0U0 V0

Y3Y2 V1U1 Y1 Y1Y0 Y1

U0 V1U1 U0

Y0 Y3Y2 Y0

V1 V1

Y3 Y3

U1 U1

Y2 Y2

EPPI Data Path Options

15-62 ADSP-BF54x Blackfin Processor Hardware Reference

Table 15-38 shows an 16-bit split transmit mode example with
SPLT_EVEN_ODD = 1, SUBSPLT_ODD = 1 and SWAPEN = 1:

Table 15-38. Data Sent in 16-bit Split Transmit Mode

DMACFG = 1 DMACFG = 0

DMA0 DATA
(32 bits)

DMA1 DATA
(32 bits)

Pin Data
(16 bits)

DMA0 DATA
(32 bits)

Pin Data
(16 bits)

Y1Y0 V1V0 V1 V1V0 V1

Y3Y2 U1U0 Y1 Y1Y0 Y1

V3V2 U1 U1U0 U1

U3U2 Y0 Y0

V0 V0

Y3 Y1

U0 U0

Y2 Y2

ADSP-BF54x Blackfin Processor Hardware Reference 15-63

Enhanced Parallel Peripheral Interface

16-Bit Split Transmit Mode with SPLT_16 = 1

For 16-bit split transmit mode, PACKEN is not valid. The EPPI always
unpacks the 32-bit DMA data into two 16-bit words to be transmitted
out. The SPLT_16 bit is only valid when DLEN = 16 bits.

Table 15-39 shows a 16-bit split transmit mode example with SPLT_16 =
1, SUBSPLT_ODD = 0 and SWAPEN = 0:

Table 15-39. Data Sent in 16-bit Split Transmit Mode

DMACFG = 1 DMACFG = 0

DMA0 DATA
(32 bits)

DMA1 DATA
(32 bits)

Pin Data
(16 bits)

DMA0 DATA
(32 bits)

Pin Data
(16 bits)

Y3Y2Y1Y0 U1V1U0V0 V0Y0 U1V1U0V0 V0Y0

Y7Y6Y5Y4 U3V3U2V2 U0Y1 Y3Y2Y1Y0 U0Y1

V1Y2 U3V3U2V2 V1Y2

U1Y3 Y7Y6Y5Y4 U1Y3

V2Y4 V2Y4

U2Y5 U2Y5

V3Y6 V3Y6

U3Y7 U3Y7

Programming Model

15-64 ADSP-BF54x Blackfin Processor Hardware Reference

Table 15-40 shows a 16-bit split transmit mode example with
SPLT_16 = 1, SUBSPLT_ODD = 1 and SWAPEN = 0:

Programming Model
The following sections describe the EPPI programming model.

DMA Operation
The EPPI must be used with the processor's DMA engine. This section
discusses how the two interact. For more information about the DMA
engine, including default EPPI DMA channel mappings, see Chapter 7,
“Direct Memory Access”.

Table 15-40. Data Sent in 16-bit Split Transmit Mode

DMACFG = 1 DMACFG = 0

PRIMARY DMA DATA
(32 bits)

SECONDARY DMA DATA
(32 bits)

Pin Data
(16 bits)

DMA0 DATA
(32 bits)

Pin Data
(16 bits)

Y3Y2Y1Y0 V3V2V1V0 V0Y0 V3V2V1V0 V0Y0

Y7Y6Y5Y4 U3U2U1U0 U0Y1 Y3Y2Y1Y0 U0Y1

V7V6V5V4 V1Y2 U3U2U1U0 V1Y2

U7U6U5U4 U1Y3 Y7Y6Y5Y4 U1Y3

V2Y4 V2Y4

U2Y5 U2Y5

V3Y6 V3Y6

U3Y7 U3Y7

ADSP-BF54x Blackfin Processor Hardware Reference 15-65

Enhanced Parallel Peripheral Interface

The EPPI connects to the DMA channels in the following manner:

• EPPI0 always connects to DMA Channel 12 only

• EPPI1 and EPPI2 share DMA Channels 13 and 14. Each EPPI can
connect to either or both of these DMA channels, depending on
the mode of operation

This is shown visually in Figure 15-8 on page 15-28.

The EPPI DMA channels can be configured for either transmit or receive
operation, and have a maximum throughput of (EPPIx_CLK) x (32 bits/
transfer). In modes where data lengths permit, packing may be possible in
order to increase transfer bandwidth. The highest throughput is achieved
with 8-bit data and packing mode enabled.

Configuring the EPPI DMA channels is a necessary step toward using the
EPPI interface. It is the DMA engine that generates interrupts upon com-
pletion of a row, frame, or partial-frame transfer. It is also the DMA
engine that coordinates the origination or destination point for the data
that is transferred through the EPPI.

The processor's 2D DMA capability allows the processor to be interrupted
at the end of a line or after a frame of video is transferred, or if a DMA
error occurs. In fact, the specification of the DMAx_XCOUNT and
DMAx_YCOUNT MMRs allows for flexible data interrupt points. For example,
assume the DMA registers XMODIFY = YMODIFY = 1. Then, if a data frame
contains 320 x 240 bytes (240 rows of 320 bytes each), these conditions
hold:

• Setting XCOUNT = 320, YCOUNT = 240, and DI_SEL = 1 (the DI_SEL
bit is located in DMAx_CONFIG) interrupts on every row transferred,
for the entire frame.

• Setting XCOUNT = 320, YCOUNT = 240, and DI_SEL = 0 interrupts
only on the completion of the frame (when 240 rows of 320 bytes
have been transferred).

Programming Model

15-66 ADSP-BF54x Blackfin Processor Hardware Reference

• Setting XCOUNT = 38,400 (320 x 120), YCOUNT = 2, and DI_SEL = 1
causes an interrupt when half of the frame is transferred, and again
when the whole frame is transferred.

Following is the general procedure for setting up DMA operation with the
EPPI. For more information about configuring the DMA, see Chapter 7,
“Direct Memory Access”.

1. Configure the DMA registers as appropriate for the desired DMA
operating mode.

2. Enable the DMA channel for operation.

3. Configure appropriate EPPI registers.

4. Enable the EPPI by writing a 1 to bit 0 in EPPIx_CONTROL.

In addition, there are two sets of DMA Watermark levels to be pro-
grammed in the EPPIx_CONTROL register: Regular Watermark and Urgent
Watermark. Two examples are given below: one showing the operation of
the watermarks during transmit modes, the other showing their operation
during receive modes.

For transmit modes

Let the urgent watermark be set to 25% Full (FIFO_UWM = b#11) and the
regular watermark be set to 75% Full (FIFO_RWM = b#01). When the EPPI
is enabled, the FIFO is initially empty. An urgent DMA request is asserted
until the FIFO reaches urgent level, for example, the FIFO becomes 25%
full. Then regular DMA requests are made until the FIFO becomes full.
After that, the following things can happen (refer to Figure 15-9):

1. State T0 Suppose, at the very beginning, before the EPPI has
moved out the first data, that the FIFO is full. (Note that a full
FIFO is not necessary to start moving data out, but is assumed here
for simplicity) No DMA request.

ADSP-BF54x Blackfin Processor Hardware Reference 15-67

Enhanced Parallel Peripheral Interface

2. State T1 The EPPI has moved some data out and there are a few
spaces in the FIFO. No DMA request.

3. State T2 Because the data level is reduced to the regular watermark
level, the DMA starts performing Regular DMA requests. This will
result in the following two cases:

4. State T3_0 Case 1. The DMA request is granted, and data is
moved into the FIFO from L3. Regular DMA requests will stop
when the FIFO is full. It returns to state T0.

5. State T3_1 Case 2. The regular DMA Request is not granted. The
EPPI continues moving data out and the data level continues to
decrease.

6. State T4 Because the data level is reduced to the urgent watermark
level, the regular DMA request is changed to an Urgent DMA
request. This will result in the following two cases:

7. State T5_0 Case 1. The urgent DMA request is granted, and more
data is moved into the FIFO from L3. When the data level has
increased to the Regular Watermark level, the Urgent DMA
request is changed to a regular DMA request. It returns to state T2.

8. State T5_1 Case 2. The urgent DMA request is not granted, and
the data level continues to decrease. When the EPPI has moved out
all of the data, an underflow error occurs.

For transmit modes, the numerical value of the urgent watermark should
be less than that of the regular watermark.

Programming Model

15-68 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 15-9. FIFO States during Transmit Modes

REGULAR
WATER MARK

 URGENT
WATER MARK

DMA_IN

DMA_IN

T1

DMA_IN

DMA_IN

DMA_IN

DMA_IN

EPPIx_OUT

EPPIx_OUT

EPPIx_OUT

T0

T2

DMA_IN EPPIx_OUT

T3_0T3_1

EPPIx_OUT

EPPIx_OUT

DMA_IN EPPIx_OUTEPPIx_OUT

T4

T5_1T5_0

UNDERFLOW RETURN TO T2

RETURN TO T0

ADSP-BF54x Blackfin Processor Hardware Reference 15-69

Enhanced Parallel Peripheral Interface

For receive modes

Let the urgent watermark be set to 75% Full (FIFO_UWM = b#01) and the
regular watermark be set to 25% Full (FIFO_RWM = b#11). When the EPPI
is enabled, the FIFO is initially empty. After that, the following things can
happen (Refer to Figure 15-10):

1. State T0 Suppose, at the very beginning, before the EPPI receives
the first data, that the FIFO is empty. No DMA request.

2. State T1 The EPPI has moved some data in and there are a few
data in the FIFO. No DMA request.

3. State T2 Because the data level has reached the regular watermark
level, the DMA starts performing regular DMA requests. This will
result in the following two cases:

4. State T3_0 Case 1. The DMA request is granted, and data is
moved out of the FIFO to L3. Regular DMA requests will stop
when the FIFO is empty. It returns to state T0.

5. State T3_1 Case 2. The regular DMA request is not granted. The
EPPI continues moving data in and the data level continues to
increase.

6. State T4 Because the data level has reached the urgent watermark
level, the regular DMA request is changed to an Urgent DMA
request. This will result in one of the following two cases:

7. State T5_0 Case 1. The urgent DMA request is granted, and more
data is moved out of the FIFO to L3. When the data level has
decreased to the regular watermark level, the urgent DMA request
is changed to a regular DMA request. It returns to state T2.

8. State T5_1 Case 2. The urgent DMA request is not granted, and
the data level continues to increase. After the EPPI has filled all of
the available space in the FIFO, an overflow error occurs.

Programming Model

15-70 ADSP-BF54x Blackfin Processor Hardware Reference

For receive modes, the value of the Regular Watermark should be less than
that of the Urgent Watermark.

Figure 15-10. FIFO States during Receive Modes

REGULAR
WATER MARK

 URGENT
WATER MARK

DMA_IN

DMA_IN

T1

DMA_IN

DMA_OUT

DMA_OUT

DMA_OUT

EPPIx_IN

EPPIx_IN

EPPIx_IN

T0

T2

DMA_OUT EPPIx_IN

T3_0T3_1

EPPIx_IN

EPPIx_IN

DMA_OUT EPPIx_INEPPIx_OUT

T4

T5_1T5_0

OVERFLOW RETURN TO T2

RETURN TO T0

ADSP-BF54x Blackfin Processor Hardware Reference 15-71

Enhanced Parallel Peripheral Interface

Note the following:

• For transmit modes with 1, 2 or 3 frame syncs, the EPPI will not
start transmitting data until its FIFO has some valid data to trans-
mit. Therefore, the frame syncs should be sent only some time after
enabling the EPPI, so that by then, the EPPI FIFO contains suffi-
cient data.

• For transmit modes with internal frame syncs, the EPPI will not
start generating frame syncs until its FIFO is full.

• For GP 0 FS TX modes and for ITU-R 656 Output mode
(BLANKGEN = 1), the EPPI will not start transmitting data until the
EPPI FIFO becomes full.

• When using two DMA channels (DMACFG = 1), both FIFO should
be full.

Elevating EPPI Urgent Requests at DDR Controller
Interface

In addition to the Urgent watermarks that control the priority of EPPI,
two control bits are available to elevate the priority of EPPI0, EPPI1, and
EPPI2 transactions at the DDR controller interface.

Lower priority resources can typically gain access to the DDR interface,
due to the pipelined nature of the requests at the DDR interface, and due
to the DEB bus submitting a DDR request at a maximum of every other
SCLK cycle.

The CORE_EPPI_PRIO and SYS_EPPI_PRIO bits in the HMDMA0_CONTROL regis-
ter (see “Handshake MDMA Control Registers” on page 7-113) are
provided to ensure that under EPPI urgent conditions, for more efficient
use of the external memory bus bandwidth, only the EPPI can gain access

Programming Model

15-72 ADSP-BF54x Blackfin Processor Hardware Reference

to the DDR memory. These bits are required only under high DDR activ-
ity when the core and several other DMA channels (including EPPI-DMA
channels) simultaneously access the DDR memory.

Setting the CORE_EPPI_PRIO bit in the HMDMA0_CONTROL register, blocks all
core accesses to the DDR memory as long as any EPPI request stays
urgent, or for a maximum period of 124 system clock cycles. After 124
system clock cycles, the core can gain access for a period of 4 system clock
cycles.

Setting the SYS_EPPI_PRIO bit in the HMDMA0_CONTROL register blocks all
DMA channels in DMAC0, as well as the USB, PIXC and DMAC1
MDMA channels—as long as any EPPI request stays urgent.

Note that while the EPPI request stays urgent, other peripherals on
DMAC1 are not blocked and any unused bandwidth is allocated to the
DMA channels on DMAC1 based on their priority levels.

Also note that this feature can be individually enabled for EPPI0, EPPI1,
or EPPI2 by enabling the urgent watermark in the respective EPPI control
register.

As an exception, under all conditions, a TESTSET instruction has higher
priority than EPPI-DMA urgent requests. Therefore, even when the
CORE_EPPI_PRIO bit of the HMDMA0_CONTROL register is set, a TESTSET
instruction will not be blocked under an EPPI-DMA urgent condition.

Also, there may be an increase in the interrupt service latency when core
accesses to the DDR are blocked due to pending urgent EPPI accesses.

If the DMA is used in descriptor mode, the DMA descriptors should be
placed in L2 or L1 memory if EPPI urgent conditions are being seen.

ADSP-BF54x Blackfin Processor Hardware Reference 15-73

Enhanced Parallel Peripheral Interface

System Configuration
Due to pin muxing, there are restrictions on the possible system configu-
rations of the EPPI channels. Table 15-41 shows the possible system
configurations.

In addition, Split mode may be used with EPPI1 or EPPI2 in the last
three configurations. This is done by setting the EPPI's DMACFG bit, but is
only valid if the SPLT_EVEN_ODD bit is also set.

EPPI Registers
Table 15-42 contains a list of EPPI memory-mapped registers (MMRs).
Default values of all MMRs are 0x0, except EPPIx_CLIP whose default
value is 0xFF00 FF00.

Table 15-41. EPPI System Configurations

EPPI 0 EPPI 1 EPPI 2

8-24 bits Not supported Not supported

8-18 bits 8 bits 8 bits

8-18 bits 10-14 bits Not supported

8-18 bits 8 bits Not supported

8-18 bits 16 bits Not supported

8-24 bits Not supported 8 bits

EPPI Registers

15-74 ADSP-BF54x Blackfin Processor Hardware Reference

Table 15-42. EPPI Memory-Mapped Registers

Address Register Name Widt
h

Description

0xFFC0 1000 EPPIx_STATUS 16 “EPPI Status (EPPIx_STATUS) Register” on
page 15-77

0xFFC0 1004 EPPIx_HCOUNT 16 “EPPI Horizontal Transfer Count Register
(EPPIx_HCOUNT)” on page 15-93

0xFFC0 1008 EPPIx_HDELAY 16 “EPPI Horizontal Delay Register
(EPPIx_HDELAY)” on page 15-92

0xFFC0
100C

EPPIx_VCOUNT 16 “EPPI Vertical Transfer Count Register
(EPPIx_VCOUNT)” on page 15-91

0xFFC0 1010 EPPIx_VDELAY 16 “EPPI Vertical Delay Register (EPPIx_VDELAY)”
on page 15-91

0xFFC0 1014 EPPIx_FRAME 16 “EPPI Lines per Frame Register (EPPIx_FRAME)”
on page 15-90

0xFFC0 1018 EPPIx_LINE 16 “EPPI Samples per Line Register (EPPIx_LINE)” on
page 15-90

0xFFC0
101C

EPPIx_CLKDIV 16 “EPPI Clock Divide Register (EPPIx_CLKDIV)” on
page 15-93

0xFFC0 1020 EPPIx_CONTRO
L

32 “EPPIx Control (EPPIx_CONTROL) Register” on
page 15-80

0xFFC0 1024 EPPIx_FS1W_HB
L

32 “EPPI FS1 Width Register/EPPI Horizontal Blank-
ing Samples per Line Register
(EPPIx_FS1W_HBL)” on page 15-94

0xFFC0 1028 EPPIx_FS1P_AVP
L

32 “EPPI FS1 Period Register/EPPI Active Video Sam-
ples per Line Register (EPPIx_FS1P_AVPL)” on
page 15-96

0xFFC0
102C

EPPIx_FS2W_LVB 32 “EPPI FS2 Width Register/EPPI Lines of Vertical
Blanking Register (EPPIx_FS2W_LVB)” on
page 15-95

0xFFC0 1030 EPPIx_FS2P_LAV
F

32 “EPPI FS2 Period Register/EPPI Lines of Active
Video per Frame Register (EPPIx_FS2P_LAVF)” on
page 15-97

0xFFC0 1034 EPPIx_CLIP 32 “EPPI Clipping Register (EPPIx_CLIP)” on
page 15-98

ADSP-BF54x Blackfin Processor Hardware Reference 15-75

Enhanced Parallel Peripheral Interface

The MMR addresses shown in Table 15-42 on page 15-74 refer to the
EPPIx registers, that start at a base address of 0xFFC0 1000. EPPI1 and
EPPI2 have base addresses of 0xFFC0 1300 and 0xFFC0 2900, respec-
tively, and follow the same register address increments as shown above for
EPPIx.

Table 15-43 shows which of the MMRs are valid for which operating
modes (an “X” indicates that the register is valid for the particular mode):

EPPIx_CLKDIV is valid for all modes when an internal clock is used
(ICLKEN = 1 in EPPIx_CONTROL).

Table 15-43. MMR Usage Modes

MMR GP 1
Frame
Sync
Modes

GP 2
Frame
Sync
Modes

GP 3
Frame
Sync
Modes

GP 0
Frame
Sync
Modes

ITU
RX
Modes

E
xt

 F
S

In
t

FS

E
xt

 F
S

In
t

Fs

E
xt

 F
S

In
t

FS

E
xt

 T
ri

g

In
t

Tr
ig

R
X

T
X

R
X

T
X

R
X

T
X

R
X

T
X

R
X

T
X

R
X

T
X

R
X

T
X

R
X

T
X

EPPIx_FRAME X X X X X X X X X

EPPIx_LINE X X X X X X X X X X X X X

EPPIx_HDELAY X X X X X X X X X X X X

EPPIx_HCOUNT X X X X X X X X X X X X

EPPIx_VDELAY X X X X X X X X

EPPIx_VCOUNT X X X X X X X

EPPIx_FS1W_HBL X X X X X X

EPPIx_FS1P_AVPL X X X X X X

EPPIx_FS2W_LVB X X X X

EPPIx_FS2P_LAVF X X X X

EPPI Registers

15-76 ADSP-BF54x Blackfin Processor Hardware Reference

EPPIx_CLIP is valid for all transmit modes with an 8-bit or 16-bit data
lengths.

The following registers have multiplexed operation. In GP 1/2/3 Frame
Sync modes, they are used for generation of EPPIx_FS1/EPPIx_FS2. In
GP 0 FS transmit mode when BLANKGEN = 1, they are used as internal
blanking generation registers:

EPPIx_FS2_WIDTH = EPPIx_LVB (Lines of Vertical Blanking)

EPPIx_FS2_PERIOD = EPPIx_LAVF (Lines of Active Video per Field)

EPPIx_FS1_WIDTH = EPPIx_HBL (Horizontal Blank Samples per Line)

EPPIx_FS1_PERIOD = EPPIx_AVPL (Active Video Samples per Line)

Each pair of the above registers has the same physical address.

ADSP-BF54x Blackfin Processor Hardware Reference 15-77

Enhanced Parallel Peripheral Interface

EPPI Status (EPPIx_STATUS) Register
The EPPIx_STATUS register, shown in Figure 15-11, is a 16-bit register that
indicates the status of the EPPI.

Figure 15-11. EPPI Status Register

EPPIx Status Register (EPPIx_STATUS)

Reset = 0x00000xFFC0 1000

CFIFO_ERR (Chroma FIFO
Over/Underflow Error) - W1C

For RX mode, Chroma FIFO
overflow detection:
0 - No overflow error detected
1 - Overflow error has occurred
For TX mode, Chroma FIFO
underflow detection:
0 - No underflow error detected
1 - Underflow error has occurred

YFIFO_ERR (Luma FIFO
Over/Underflow Error) - W1C
For RX mode, Luma FIFO
overflow detection:
0 - No overflow error detected
1 - Overflow error has occurred
For TX mode, Luma FIFO
underflow detection:
0 - No underflow error detected
1 - Underflow error has occurred

LTERR_UNDR (Line Track
Underflow Error) - W1C
0 - No underflow error detected
1 - Underflow error has occurred

LTERR_OVR (Line Track
Overflow Error) - W1C
0 - No overflow error detected
1 - Overflow error has occurred

FTERR_OVR (Frame Track
Overflow Error) - W1C

0 - No overflow error detected
1 - Overflow error has occurred

FTERR_UNDR (Frame Track
Underflow Error) - W1C
0 - No underflow error detected
1 - Underflow error has occurred

ERR_NCOR (Preamble Error)
Not Corrected) - W1C
Used only in ITU Receive modes:
0 - No uncorrected preamble
 error has occurred
1 - Preamble error detected but
 not corrected

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0

DMA1URQ (DMA1 Urgent
Request) - W1C
0 - No urgent DMA1 request
1 - Urgent DMA1 request

DMA0URQ (DMA0 Urgent
Request) - W1C

0 - No urgent DMA0 request
1 - Urgent DMA0 request

ERR_DET (Preamble
Error) not Detected) - RO
Used only in ITU modes:
0 - No preamble error detected
1 - Preamble error detected

FLD (Field) - RO
Current field received by
EPPI:
0 - Field 1
1 - Field 2

0 0

EPPI Registers

15-78 ADSP-BF54x Blackfin Processor Hardware Reference

CFIFO_ERR (Chroma FIFO Overflow/Underflow Error)

When set, this bit indicates that the Chroma FIFO has overflowed (in
receive mode) or underflowed (in transmit mode). This bit is sticky and
must be cleared in software by writing 1 to it.

 In transmit mode, the CFIFO_ERR is set to indicate an underflow
condition only when DMACFG in EPPIx_CONTROL is set.

YFIFO_ERR (Luma FIFO Overflow/Underflow Error)

When set, this bit indicates that the Luma FIFO has overflowed (in
receive mode) or underflowed (in transmit mode). This bit is sticky and
must be cleared in software by writing 1 to it.

 When in transmit mode, a 1 in YFIFO_ERR or CFIFO_ERR indicates
that the FIFOs have underflowed. However, the EPPI may still be
transmitting data out the pins. Therefore, to avoid incomplete data
transmission, the EPPI should not be disabled immediately after
observing a 1 value in these bit. The time delay necessary depends
on the EPPI clock and on the EPPI data length.

LTERR_OVR (Line Track Overflow)

This bit indicates whether a Line Track Overflow Error has occurred (if
set, = 1) or not (if clear, = 0). This bit is sticky and must be cleared in soft-
ware by writing 1 to it.

LTERR_UNDR (Line Track Underflow)

This bit indicates whether a Line Track Underflow Error has occurred (if
set, = 1) or not (if clear, = 0). This bit is sticky and must be cleared in soft-
ware by writing 1 to it.

ADSP-BF54x Blackfin Processor Hardware Reference 15-79

Enhanced Parallel Peripheral Interface

FTERR_OVR (Frame Track Overflow)

This bit indicates whether a Frame Track Overflow Error has occurred (if
set, = 1) or not (if clear, = 0). This bit is sticky and must be cleared in soft-
ware by writing 1 to it.

FTERR_UNDR (Frame Track Underflow)

This bit indicates whether a Frame Track Underflow Error has occurred
(if set, = 1) or not (if clear, = 0). This bit is sticky and must be cleared in
software by writing 1 to it

ERR_NCOR (Preamble Error not Corrected)

This bit is useful only in the ITU receive modes and indicates if an error
in the status word of EAV or SAV sequences can not be cleared (if set, = 1)
or not (if clear, = 0). This bit is sticky and must be cleared in software by
writing 1 to it.

DMA1URQ (DMA1 Urgent Request)

This bit if set indicates that the EPPI is making an Urgent DMA Request.
If the PAB writes a 1 to this bit, it is cleared and the DMA Urgent Request
will go low in the next cycle.

DMA0URQ (DMA0 Urgent Request)

This bit if set indicates that the EPPI is making an Urgent DMA Request.
If the PAB writes a 1 to this bit, it is cleared and the DMA Urgent Request
will go low in the next cycle.

ERR_DET (Preamble Error Detected)

This bit is useful only in ITU receive modes and indicates if an error is
detected in the status word of EAV or SAV sequences (if set, = 1) or not (if
clear, = 0).

EPPI Registers

15-80 ADSP-BF54x Blackfin Processor Hardware Reference

If ERR_NCOR = 0 and ERR_DET = 1, all preamble errors that have occurred
have been corrected. If ERR_NCOR = 1, an error in the preamble was
detected but not corrected. This situation generates an EPPI error inter-
rupt, unless this condition is masked off in the SICx_IMASK register.

FLD (Field)

This bit indicates if the current field being transferred is Field 1 (if
clear, = 0) or Field 2 (if set, = 1)

EPPIx Control (EPPIx_CONTROL) Register
The EPPIx_CONTROL register, shown in Figure 15-12 and Figure 15-13, is a
32-bit register that configures the EPPI for operating mode, control signal
polarities, and data width of the port.

 Be aware that Figure 15-12 and Figure 15-13 split the
EPPIx_CONTROL register “halves” across nonstandard boundaries in
order to maintain the DLEN field intact.

ADSP-BF54x Blackfin Processor Hardware Reference 15-81

Enhanced Parallel Peripheral Interface

Figure 15-12. EPPIx Control Register, Lower Half

EPPIx Control Register (EPPIx_CONTROL), Lower Half

0 - EPPI disabled
1 - EPPI enabled

DIR (Direction)

XFR_TYPE (Operating Mode)

FS_CFG (Frame Sync Configuration)

EPPIx_EN (Enable)

POLC (FS, Data Driving, and
Sampling Edges)

0 - EPPI in Receive mode (input)
1 - EPPI in Transmit mode

In Receive modes:
00 - ITU-R 656, Active Video Only
01 - ITU-R 656, Entire Field
10 - ITU-R 656, Vertical Blanking Only
11 - Non-ITU-R 656, GP Only

Reset = 0x0000

ICLKGEN (Internal Clock Generation)

IFSGEN (Internal FS Generation)
0 - Disabled (FS supplied externally)
1 - Enabled (FS generated internally)

0 - Disabled (supplied externally)
1 - Enabled (generated internally)

BLANKGEN
(ITU Output with Internal Blanking)
In GP 8, 10, and 16 bit transmit modes,
indicates Blanking and Preamble
generation and insertion with active data
from memory or not.
0 - Disabled
1 - Enabled

In all GP Rx modes and in GP Tx modes
with BLANKGEN = 0
00 - GP 0 FS Mode
01 - GP 1 FS Mode
10 - GP 2 FS Mode
11 - GP 3 FS Mode
In Tx modes with BLANKGEN = 1
00 - 0FS. Frame Syncs not driven
01 - 1FS. HSYNC sent on EPPIx_FS1
10 - 2FS. HSYNC sent on EPPIx_FS1
and
 VSYNC on FS2
11 - 3FS. HSYNC sent on EPPIx_FS1,
VSYNC

0xFFC0 1020

POLS
00 - FS1 and FS2 are active high
01 - FS1 is active low and FS2 is
 active high
10 - FS1 is active high and FS2 is
 active low
11 - FS1 and FS2 are active low

In ITU656 Active Video mode:
0 - Read Field 1
1 - Read Fields 1 and 2
In GP 0FS RX mode:
0 - Set Internal Trigger
1 - Set External Trigger
In GP 3FS mode with Internal Frame
Syncs:
0 - FS3 is toggled on FS2 assertion

followed by FS1 assertion
1 - FS3 is toggled on FS2 assertion

FLD_SEL (Field Select/Trigger)

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

For Receive mode:
00 - Sample data on falling edge and
 sample/drive syncs on falling edge
01 - Sample data on falling edge and
 sample/drive syncs on rising edge
10 - Sample data on rising edge and
 sample/drive syncs on falling edge
11 - Sample data on rising edge and
 sample/drive syncs on rising edge

For Transmit mode:
00 - Drive data on rising edge and
 sample/drive syncs on rising edge
01 - Drive data on rising edge and
 sample/drive syncs on falling edge
10 - Drive data on falling edge and
 sample/drive syncs on rising edge
11 - Drive data on falling edge and
 sample/drive syncs on falling edge

ITU_TYPE (Interlaced or Progressive)

For ITU656 Receive and Transmit
Modes:
0 - Interlaced
1 - Progressive

EPPI Registers

15-82 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 15-13. EPPIx Control Register, Upper Half

EPPIx Control Register (EPPIx_CONTROL) Upper Half

SUBSPLT_ODD
(Sub-Split Odd Samples)

DLEN (Data Length)

SKIP_EN (Skip Enable)

SKIP_EO (Skip Even/Odd)

FIFO_RWM (Regular Watermark)
For Transmit modes:
00 - FIFO Full
01 - FIFO 75% Full
10 - FIFO 50% Full
11 - FIFO 25% Full
For Receive Modes:
00 - FIFO Empty
01 - FIFO 75% Full
10 - FIFO 50% Full
11 - FIFO 25% Full

000 - 8 bits
001 - 10 bits
010 - 12 bits
011 - 14 bits
100 - 16 bits
101 - 18 bits
110 - 24 bits
111 - Reserved

For Receive mode Only
0 - Skipping disabled
1 - Skipping enabled

Reset = 0x0000

0 - Disabled
1 - Enabled

DMACFG
(One or Two DMA Channel Modes)

RGB_FMT_EN (Formatting Enable)
For Transmit modes Only:
0 - Disabled
1 - Enabled

Valid only on EPPI1 or EPPI-2, and
only when SPLT_EVEN_ODD is set
0 - One Channel mode
1 - Two Channel mode

For Receive modes Only
0 - Skip odd-numbered elements
1 - Skip even-numbered elements

0xFFC0 1020

FIFO_UWM
(Urgent Watermark)

For Transmit/Receive modes:
00 - Urgent Request Disable
01 - FIFO 75% Full
10 - FIFO 50% Full
11 - FIFO 25% Full

SWAPEN (Swap Enable)
0 - Disabled
1 - Enabled

SIGN_EXT/SPLT_16
For Receive modes when DLEN
not equal to 16 bits:
0 - Cleared (Zero filled)
1 - Set (Sign extension)
For use when SPLT_EVEN_ODD
equals 1 and DLEN equals 16 bits:
0 - Cleared (16 bits of Y or Cr/Cb)
1 - Set (One 8-bit Y and One 8 bit
 Cr/Cb)SPLT_EVEN_ODD

(Split Even/Odd Samples)
0 - Disabled
1 - Enabled

PACKEN (Pack/Unpack Enable)
0 - Disabled
1 - Enabled

31 30 29 28 27 26

00 0 0 0 0 0 0 0 0 0 0 0 00 0

1516171819202122232425

0

ADSP-BF54x Blackfin Processor Hardware Reference 15-83

Enhanced Parallel Peripheral Interface

The EPPIx_EN when set, enables the EPPI for operation. On disabling the
EPPI by writing a 0 to the EN bit of EPPIx_CONTROL, all EPPI MMRs,
except EPIx_STATUS, do not return to their reset values. EPPI Interrupt
and DMA requests go inactive. Internally generated EPPIx_CLK and Frame
Syncs are aborted on disabling the EPPI.

 Once the EPPI is enabled, none of the MMRs should be changed.
If any change is required, the EPPI should first be disabled and
then re-enabled after re-programming the MMRs.

DIR (Direction): Setting this bit configures the EPPI to transmit data. In
transmit mode, data is moved out from memory through the EPPI. Clear-
ing DIR configures the EPPI to receive data. In receive mode, data is
captured by EPPI and moved to memory.

XFR_TYPE[1:0] (Operating Mode): The XFR_TYPE[1:0] field configures
the EPPI for various modes of operation in receive mode. Programming
XFR_TYPE with b#00, b#01, or b#10 configures the EPPI to receive data in
ITU-R 656 active video only, entire field, or vertical blanking only modes
respectively. Programming XFR_TYPE with 0x11 configures EPPI to oper-
ate in general purpose mode.

FS_CFG[1:0] (Frame Sync Configuration): The FS_CFG field is used to
configure the frame syncs of the EPPI.

In receive modes and in transmit modes with BLANKGEN set to 1, setting
this field to b#00, b#01, b#10, or b#11 configures EPPI for general pur-
pose 0, 1, 2, or 3 frame sync modes respectively.

In transmit modes with BLANKGEN cleared to 0, a value of b#00 in this field
means that frame syncs are not driven. A value of 0x01 means that HSYNC
is driven on EPPIx_FS1. A value of b#10 means that HSYNC is driven on
EPPIx_FS1 and that VSYNC is driven on EPPIx_FS2. A value of b#11 means
that HSYNC is driven on EPPIx_FS1, that VSYNC is driven on EPPIx_FS2, and
that FIELD is driven on EPPIx_FS3.

EPPI Registers

15-84 ADSP-BF54x Blackfin Processor Hardware Reference

FLD_SEL (Field Select/Trigger): This bit is useful only in the ITU656
Active Video Only Mode and GP 0 FS RX Mode and GP 3 FS Mode with
Internal Frame Syncs.

In ITU656 Active Video Only Mode, this indicates whether only Field 1
is received (if cleared, = 0) or both Field1 and Field2 are received (if
set, = 1).

In GP 0 FS RX Mode, this indicates whether the trigger is external (if
set, = 1) or internal (if cleared, = 0).

In GP 3 FS Mode with Internal Frame Syncs, this bit indicates, if the
EPPIx_FS3 is toggled on every assertion of EPPIx_FS2 (if set, = 1) or if the
EPPIx_FS3 is toggled on every EPPIx_FS1 assertion followed by EPPIx_FS2
assertion (if cleared, = 0)

ITU_TYPE (ITU Interface or Progressive): This bit is useful only for ITU
receive modes. It indicates whether the ITU656 video is Interlaced (if
cleared, = 0) or Progressive (if set, = 1)

BLANKGEN (ITU Output with Internal Blanking): This bit is useful in GP
Transmit Mode when the data length is configured for 8-, 10-, or 16-bits.
BLACKGEN specifies whether or not to generate blanking and preamble data
and to insert it with the active data being transmitted from memory. If set,
blanking and preamble data is generated and inserted with the active data.
If cleared, the active data is transmitted from memory as is.

Frame syncs may be driven out along with the data based on the configu-
rations of BLANKGEN and FS_CFG.

ICLKGEN (Internal Clock Generation): This bit indicates if the EPPIx_CLK
is generated internally (if set, = 1) or is supplied by an external device (if
cleared, = 0)

IFSGEN (Internal Frame Sync Generation): This bit indicates if the Frame
Syncs are generated internally (if set, = 1) or are supplied by an external
device (if cleared, = 0)

ADSP-BF54x Blackfin Processor Hardware Reference 15-85

Enhanced Parallel Peripheral Interface

POLC[1:0] & POLS[1:0] (Clock Polarity and Frame Sync Polarity): The
POLC[1:0] and POLS[1:0] bits allow the selection of the active level of the
frame syncs and the sampling/driving edge of the EPPI clock, respectively.
This provides a mechanism to connect to data sources and receivers with a
wide array of control signal polarities.

DLEN[2:0] (Data Length): The DLEN[2:0] field is programmed to specify
the data width of the EPPI module. Note that due to pin muxing, there
are restrictions on the possible system configurations of the EPPI chan-
nels. Table 15-41 on page 15-73 shows the possible configurations. In
ITU-R 656 modes, the DLEN field should be configured for 8- or 10-bit
width.

SKIP_EN (skip enable, bit 18)

For receive modes, if this bit is set, alternate even or odd data elements
being read through the EPPI may be skipped based on the value pro-
grammed in the SKIP_EO bit.

SKIP_EO (skip even/odd, bit 19)

 This bit is meaningful only in receive mode and when SKIP_EN is set.
When SKIP_EO is zero, the odd numbered elements are skipped. When
SKIP_EO is one, the even numbered elements are skipped. Element num-
bering starts from 1. Hence, when SKIP_EO is not set, the first incoming
element is skipped, the third incoming element is skipped, and so on. This
is useful, for instance, when reading in a color video signal in YCbCr for-
mat (Cb, Y, Cr, Y, Cb, Y, Cr, Y...). Skipping every other element allows
the EPPI to only read in the Luma (Y) or Chroma (Cr or Cb) values. This
could also be useful when synchronizing two processors to the same
incoming video stream. One processor could handle Luma processing
while the other (whose SKIP_EO bit is set differently from the first proces-
sor’s) could handle Chroma processing.

EPPI Registers

15-86 ADSP-BF54x Blackfin Processor Hardware Reference

PACKEN/UNPACKEN (packing/unpacking enable, bit 20)

For receive modes this bit indicates if packing is enabled or not. For trans-
mit modes this indicates if unpacking is enabled or not. DMA is always 32
bits wide if this bit is set. If this bit is not set and the DLEN is less than or
equal to 16 bits, then the DMA is 16 bits wide.

For receive modes, if this bit is set, then the EPPI packs the incoming data
into 32-bit words. If this bit is cleared, then the EPPI does not do any
packing.

For transmit modes, if this bit is set, then the EPPI always unpacks the
32-bit data from DMA. If this bit is not set, the EPPI does not do any
unpacking.

SWAPEN (swap enable, bit 21)

For receive modes, the EPPI puts the first data in the most significant bits
(if set, = 1) or puts the first data in the least significant bits (if cleared, = 0)
of the DMA word.

For transmit modes, the EPPI transmits the most significant bits in the
DMA word as the first data (if set, = 1) or transmits the least significant
bits in the DMA word as the first data (if cleared, = 0).

SIGN_EXT/SPLT_16 (sign extension or zero filled, bit 22)

This bit has two different functions. When DLEN is not equal to 16 bits it
acts as SIGN_EXT, and when DLEN is equal to 16 bits it acts as SPLT_16.

As SIGN_EXT, this bit is useful only for receive modes and indicates if the
data is sign extended (if set, = 1) or zero filled (if cleared, = 0). This is
valid only for data lengths of 8, 10, 12, 14, 18 or 24 bits.

ADSP-BF54x Blackfin Processor Hardware Reference 15-87

Enhanced Parallel Peripheral Interface

As SPLT_16, this bit is useful only when SPLT_EVEN_ODD = 1 and DLEN = 16.
If set (= 1), then this bit indicates that the 16-bit 4:2:2 YCrCb data has
one 8-bit Y and one 8-bit of either Cr or Cb packed together. Note that Y
is on bits 7:0 and Cr/Cb on bits 15:8. If cleared (= 0), then this bit indi-
cates that the 16 bits of 4:2:2 YCrCb data has 16 bits of Y or Cr/Cb.

SPLT_EVEN_ODD (Split Even and Odd Data Samples)

If it is set, EPPI will split even and odd samples. See “Split Receive
Modes” on page 15-31 and “Split Transmit Modes” on page 15-31 for
more details.

SUBSPLT_ODD (Sub-Split Odd Samples)

If it is set, EPPI will sub-split odd samples. It is valid only if
SPLT_EVEN_ODD is set.

DMACFG (One or Two DMA Channels Mode)

If it is set, EPPI will use two DMA Channels, else EPPI will use only one
DMA Channel. It is valid only when SPLT_EVEN_ODD is set.

RGB_FMT_EN (RGB Formatting Enable)

This bit is valid only for 16-bit or 18-bit transmit modes. For 18-bit
transmit modes, if this is set EPPI converts the RGB888 from Memory
into RGB666 output data. For 16-bit transmit modes, if this is set, EPPI
converts RGB888 from Memory into RGB565 output data.

FIFO_RWM (FIFO Regular Watermarks) and FIFO_UWM (FIFO
Urgent Watermarks)

These bits indicate the regular and the urgent watermark level for the
FIFO respectively.

EPPI Registers

15-88 ADSP-BF54x Blackfin Processor Hardware Reference

RGB_FMT_EN (RGB formatting enable, bit 26)

This bit is valid only for 16-bit or 18-bit transmit modes. For 18-bit
transmit modes, if this bit is set, the EPPI converts the RGB888 data from
memory into RGB666 output data. For 16-bit transmit modes, if this bit
is set, the EPPI converts RGB888 data from memory into RGB565 out-
put data.

 SPLT_EVEN_ODD and RGB_FMT_EN should never be set simultaneously.

Windowing Registers
Windowing is a useful feature for applications where the region of interest
is smaller than the active video stream (for example, sensor calibration,
auto-focusing, etc.). It can result in significant DMA bandwidth
reduction. Each EPPI supports windowing for GP Input modes and has
six MMRs that are used to define the video frame. A pictorial view of
these registers is shown in Figure 15-14.

ADSP-BF54x Blackfin Processor Hardware Reference 15-89

Enhanced Parallel Peripheral Interface

The shaded portion in Figure 15-14 is the captured/transmitted data.
Note that windowing is valid for GP receive and transmit modes.

It is the user’s responsibility to ensure the following:

EPPIx_VDELAY + EPPIx_VCOUNT <= EPPIx_FRAME

EPPIx_HDELAY + EPPIx_HCOUNT <= EPPIx_LINE

Figure 15-14. Windowing Registers to define a Frame

Start of
Line

E
P

P
Ix

_V
D

E
L

A
Y

E
P

P
Ix

_V
C

O
U

N

E
P

P
Ix

_F
R

A
M

E

EPPIx_LINE

EPPIx_HCOUNT
EPPIx_HDELAY

Start of
Frame

EPPI Registers

15-90 ADSP-BF54x Blackfin Processor Hardware Reference

EPPI Lines per Frame Register (EPPIx_FRAME)

The EPPIx_FRAME register, shown in Figure 15-15, is a 16-bit register used
to keep track of Frame Track Overflow and Underflow errors. It should be
programmed with the number of lines expected per frame. Any write to
the EPPIx_FRAME register will also write the same value to the
EPPIx_VCOUNT register. However, any write to EPPIx_VCOUNT does not
affect the EPPIx_FRAME register value. Therefore, the EPPIx_FRAME register
should be programmed before the EPPIx_VCOUNT register.

EPPI Samples per Line Register (EPPIx_LINE)

The EPPIx_LINE register, shown in Figure 15-16, is a 16-bit register used
to keep track of Line Track Overflow and Underflow Errors. It should be
programmed with the number of samples expected per line. Any write to
the EPPIx_LINE register will also write the same value to the EPPIx_HCOUNT
register. However, any write to EPPIx_HCOUNT does not affect the
EPPIx_LINE register value. Therefore, the EPPIx_LINE register should be
programmed before the EPPIx_HCOUNT register.

Figure 15-15. EPPI Lines per Frame Register

Lines per Frame Register (EPPIx_FRAME)

Reset = 0x00000xFFC0 1014

EPPIx_FRAME [15:0]

Holds the number of lines
expected per frame of data

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 15-91

Enhanced Parallel Peripheral Interface

EPPI Vertical Delay Register (EPPIx_VDELAY)

The EPPIx_VDELAY register, shown in Figure 15-17, is a 16-bit register and
contains the number of lines to wait after the start of a new frame before
starting to read/transmit data.

EPPI Vertical Transfer Count Register (EPPIx_VCOUNT)

The EPPIx_VCOUNT register, shown in Figure 15-18, is a 16-bit register and
holds the number of lines to read in or write out, after EPPIx_VDELAY num-
ber of lines from the start of frame. Any write to the EPPIx_FRAME register
modifies the EPPIx_VCOUNT register. However, any write to EPPIx_VCOUNT

Figure 15-16. EPPI Samples per Line Register

Figure 15-17. EPPI Vertical Delay Count Register

Samples per Line Register (EPPIx_LINE)

Reset = 0x00000xFFC0 1018

EPPIx_LINE [15:0]

Holds the number of
samples expected per
line

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Vertical Delay Count Register (EPPIx_VDELAY)

Reset = 0x00000xFFC0 0100C

EPPIx_VDELAY [15:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Number of lines to wait
after the start of a new
frame before starting to
read/transmit data

EPPI Registers

15-92 ADSP-BF54x Blackfin Processor Hardware Reference

does not affect the EPPIx_FRAME register value. Therefore, the
EPPIO_VCOUNT register should be programmed after the EPPIx_FRAME
register.

EPPI Horizontal Delay Register (EPPIx_HDELAY)

The EPPIx_HDELAY register, shown in Figure 15-19, is a 16-bit register and
contains the number of clock cycles to delay after the assertion of
EPPIx_FS1 is detected before starting to read or write data.

Figure 15-18. EPPI Vertical Transfer Count Register

Figure 15-19. EPPI Horizontal Delay Register

Vertical Transfer Count Register (EPPIx_VCOUNT)

Reset = 0x00000xFFC0 1010

EPPIx_VCOUNT [15:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Holds the number of lines
to read in or write out,
after EPPIx_VDELAY
number of lines from the
start of frame

Horizontal Delay Register (EPPIx_HDELAY)

Reset = 0x00000xFFC0 1004

EPPIx_HDELAY [15:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Number of EPPIx_CLK
cycles to delay after
assertion of EPPIx_FS1
before starting to read or
write data

ADSP-BF54x Blackfin Processor Hardware Reference 15-93

Enhanced Parallel Peripheral Interface

EPPI Horizontal Transfer Count
Register (EPPIx_HCOUNT)

The EPPIx_HCOUNT register, shown in Figure 15-20, is a 16-bit register and
holds the number of samples to read in or write out per line, after
EPPIx_HDELAY number of cycles have expired since the assertion of
EPPIx_FS1. Any write to the EPPIx_LINE register modifies the
EPPIx_HCOUNT register. However, any write to EPPIx_HCOUNT does not
affect the EPPIx_LINE register value. Therefore, the EPPIx_HCOUNT register
should be programmed after the EPPIx_LINE register.

EPPI Clock Divide Register (EPPIx_CLKDIV)
The EPPIx_CLKDIV register, shown in Figure 15-21, is a 16-bit register
used for internal clock generation. The generated clock frequency is given
by following formula:

EPPIx_CLK = (SCLK) / (2 * (EPPIx_CLKDIV[15:0] + 1))

Note that a value of 0xFFFF is invalid for EPPIx_CLKDIV register.

Figure 15-20. EPPI Horizontal Transfer Count Register

Horizontal Transfer Count Register (EPPIx_HCOUNT)

Reset = 0x00000xFFC0 1008

EPPIx_HCOUNT [15:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Holds the number of samples
to read in or write out per line,
after EPPIx_HDELAY num-
ber of cycles have expired
since the last assertion of
EPPIx_FS1.

EPPI Registers

15-94 ADSP-BF54x Blackfin Processor Hardware Reference

Frame Sync/ Blanking Generation Registers
The following sections describe the sync and blanking generation registers.

EPPI FS1 Width Register/EPPI Horizontal Blanking
Samples per Line Register (EPPIx_FS1W_HBL)

The EPPIx_FS1W_HBL register, shown in Figure 15-22, is a 32-bit register.

In GP 1, 2 or 3 FS modes, it is used for the generation of Frame Sync 1. It
contains the width required for FS1. The reference clock is EPPIx_CLK.

In GP Transmit mode with BLANKGEN = 1 in EPPIx_CONTROL, it contains
the number of samples of horizontal blanking per line.

When used for blanking generation, only the lower 16 bits are valid.

 A value of 0 for this register is illegal. If it is programmed as 0, the
EPPI will regard its value as 1.

Figure 15-21. EPPI Clock Divide Register

Clock Divide Register (EPPIx_CLK)

Reset = 0x00000xFFC0 101C

EPPIx_CLK Divide[15:0]

Internal clock divider

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 15-95

Enhanced Parallel Peripheral Interface

EPPI FS2 Width Register/EPPI Lines of Vertical
Blanking Register (EPPIx_FS2W_LVB)

EPPIx_FS2W_LVB, shown in Figure 15-23, is a 32-bit register.

In GP 2 or 3 FS modes, it is used for the generation of Frame Sync 2. It
contains the width required for FS2. The reference clock is EPPIx_CLK.

In GP Transmit mode with BLANKGEN = 1 in EPPIx_CONTROL, it contains
the number or lines of vertical blanking.

Figure 15-22. EPPI FS1 Width/Horizontal Blanking Samples per Line
Register

EPPIx_FS1 Width / Horizontal Blanking Samples per Line Register (EPPIx_FS1W_HBL)

Reset = 0x00000xFFC0 1024

EPPIx_FS1W_HBL

In GP 1, 2, or 3 FS modes
used to generate
EPPIx_FS1 width (32-bit).
In GP Transmit mode, with
BLANKGEN = 1, contains
the number of samples of
horizontal blanking per line
(16-bit).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

17181920212223242526

EPPI Registers

15-96 ADSP-BF54x Blackfin Processor Hardware Reference

For progressive video, F2VB_BD and F2VB_AD are ignored.

 A value of 0 in any of the fields is illegal. If programmed as 0, the
EPPI regards its value as 1.

EPPI FS1 Period Register/EPPI Active Video
Samples per Line Register (EPPIx_FS1P_AVPL)

The EPPIx_FS1P_AVPL register, shown in Figure 15-24, is a 32-bit register.

In GP 1, 2, or 3 FS modes, it is used for the generation of Frame Sync 1.
It contains the period required for EPPIx_FS1. The reference clock is
EPPIx_CLK.

In GP Transmit mode with BLANKGEN = 1 in EPPIx_CONTROL, it contains
the number of samples of active video or vertical blanking samples per
line. When used for blanking generation, only the lower 16 bits are valid.

Figure 15-23. EPPI FS2 Width Register/EPPI Lines of Vertical Blanking
Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

FS2 Width Register/EPPI Lines of Vertical Blanking Register (EPPIx_FS2W_LVB)

Reset = 0x00000xFFC0 102C

F2VB_BD

Number of lines of Vertical
Blanking before Field 2
Active Data

F2VB_AD

Number of lines of Vertical
Blanking after Field 2
Active Data

F1VB_AD

Number of lines of Vertical
Blanking after Field 1
Active Data

F1VB_BD

Number of lines of Vertical
Blanking before Field 1
Active Data

31 30 29 28 27 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

17181920212223242526

ADSP-BF54x Blackfin Processor Hardware Reference 15-97

Enhanced Parallel Peripheral Interface

 A value of 0 for this register is illegal. If it is programmed as 0, the
EPPI will regard its value as 1.

EPPI FS2 Period Register/EPPI Lines of Active
Video per Frame Register (EPPIx_FS2P_LAVF)

The EPPIx_FS2_PERIOD register, shown in Figure 15-25, is a 32-bit
register.

In GP 2 or 3 FS modes, it is used for the generation of Frame Sync 2. It
contains the period required for FS2. The reference clock is EPPIx_CLK.

In GP Transmit mode with BLANKGEN = 1 in EPPIx_CONTROL, it contains
the number of lines of active video per field.

Figure 15-24. EPPI FS1 Period Register / EPPI Active Video Samples per
Line Register

Reset = 0x00000xFFC0 1028

EPPIx_FS1P_AVPL

In GP 1, 2, or 3 FS modes
used to generate
EPPIx_FS1 period (32-bit).
In GP Transmit mode, with
BLANKGEN = 1, contains
the number of samples of
active video or vertical
blanking samples per line
(16-bit).

31 30 29 28 27 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

17181920212223242526

EPPIx_FS1 Period Register / EPPI Active Video Samples per Line Register (EPPIx_FS1P_AVPL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0 0

EPPI Registers

15-98 ADSP-BF54x Blackfin Processor Hardware Reference

For progressive video, F2_ACT is ignored.

 A value of 0 for F1_ACT or F2_ACT is illegal. If any of them is set to
0, the EPPI will regard its value as 1.

EPPI Clipping Register (EPPIx_CLIP)
The EPPIx_CLIP register, shown in Figure 15-26, is a 32-bit register used
to define the lower and upper limits for the Luma and Chroma compo-
nents. This is used for clipping of data values during 8-bit or 16-bit
transmit modes. Refer to Figure 15-26 for bit definitions.

All data values for odd samples which are less than LOW_ODD are replaced
with LOW_ODD and all data values for even samples which are less than
LOW_EVEN are replaced with LOW_EVEN.

In the same manner, all data values for odd samples which are more than
HIGH_ODD are replaced with HIGH_ODD and all data values for even samples
which are more than HIGH_EVEN are replaced with HIGH_EVEN.

Figure 15-25. EPPI FS2 Period Register/EPPI Lines of Active Video per
Frame Register

Reset = 0x00000xFFC0 1030

F2_ACT

Number of lines of Active
Data in Field 2

F1_ACT

Number of lines of Active
Data in Field 1

31 30 29 28 27 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

17181920212223242526

FS2 Period Register / EPPI Lines of Active Video per Frame Register EPPIx_FS2_LVF)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0 0

ADSP-BF54x Blackfin Processor Hardware Reference 15-99

Enhanced Parallel Peripheral Interface

For 16-bit data lengths, the EPPI will separate each word into upper and
lower bytes, and will consider the lower bytes as odd bytes and the upper
bytes as even bytes during clipping.

 In GP 0 FS mode with internal blanking generation, clipping is
valid only for the active video part of the transmitted data. ITU-R
656 preambles, status words and blanking data bypass the clipping
logic.

Figure 15-26. EPPI Clipping Register

Clipping Register (EPPIx_CLIP)

Reset = 0xFF00FF000xFFC0 1034

LOW_EVEN

Lower limit for Even Bytes
(Luma)

HIGH_EVEN

Upper limit for Even Bytes (Luma)

HIGH_ODD

Upper limit for Odd Bytes (Chroma)

LOW_ODD

Lower limit for Odd Bytes
(Chroma)

31 30 29 28 27 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

17181920212223242526

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

EPPI Registers

15-100 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 16-1

16 SECURITY

This chapter describes security features of the ADSP-BF54x processor
Blackfin processor and how they can be used to facilitate a secure system.

This chapter includes the following sections:

• “Overview” on page 16-1

• “Description of Operation” on page 16-6

• “Programming Model” on page 16-32

• “Security Registers” on page 16-56

The intention of the chapter is to describe security features of the
ADSP-BF54x processor Blackfin processor and how they can be used to
facilitate a secure system. It is beyond the scope of this chapter to fully
describe various ways to implement secure systems or to describe security
protocols and primitives in any great detail.

Overview
LockboxTM Secure Technology for Analog Devices Blackfin processors is
comprised of a mix of hardware and software mechanisms designed to pre-
vent unauthorized accesses and allow trusted code to execute on the
processor. Throughout the rest of this chapter, the terms Blackfin Lock-

boxTM secure technology and Lockbox will be used interchangeably.

Overview

16-2 ADSP-BF54x Blackfin Processor Hardware Reference

 The developer’s decision to use security features is completely
optional. No security features are enabled by default. The devel-
oper can choose to never implement security features in their
application if it is so desired. The Blackfin will always power
up/boot in Open Mode with no security features or restrictions
enabled.

Blackfin Lockbox™ secure technology allows users to:

• safeguard as little as a single function, a complete system, or any-
thing in-between.

• uniquely identify each processor by a Unique Chip ID.

• utilize secure key storage provided by non-volatile, write-protect-
able One Time Programmable (OTP) memory.

• perform digital signature authentication using elliptic curve cryp-
tography (ECC) and secure one-way hash (SHA-1) algorithms
implemented in firmware.

• keep secret information in secure OTP Memory.

• use any encryption algorithm to protect code or other assets.

• ensure data integrity through digital signature authentication.

• safeguard confidentiality via encryption of any or all of the system
-from core IP (code security) to data integrity.

ADSP-BF54x Blackfin Processor Hardware Reference 16-3

Security

These features in combination provide the following benefits.

• Authenticity/Origin verification—Lockbox secure technology
allows for verification of a code image against its associated digital
signature, and provides for a process to identify entities and data
origins.

• Integrity—Developers can use a digital signature authentication
process to ensure that the message or the content of the storage
media has not been altered in any way. If either the message or dig-
ital signature was altered, Lockbox fails during the authentication
process.

• Confidentiality—Cryptographic encryption/decryption supports
situations that require the ability to prevent unauthorized users
from seeing and using designated files and streams. Methods for
ensuring confidentiality are supported by the secure processing
environment (Secure Mode) and secure memory.

• Renewability—System components can be updated to enhance
security.

The Unique Chip ID enables end users to identify each Blackfin
processor and hence each OEM device in which the processor
resides.

This Lockbox feature can be used in support of revocation and
renewability of licenses in case of security violations in digital
rights management systems. For example:

Unique Chip ID—In combination with a trusted DRM agent
(sourced by the OEM), this feature enables developers to imple-
ment renewability in DRM systems.

Unique Chip ID—Provides capability to identify each OEM
device and “blacklist” devices to remove them from a system.

Features

16-4 ADSP-BF54x Blackfin Processor Hardware Reference

• Prevention of mass copying—Lockbox supports cryptographic
encryption/decryption algorithms for situations when confidential-
ity is required. The Unique Chip ID can also be utilized to “bind”
the processor to one specific boot source/device and can be used to
facilitate antitheft schemes and prevent OEM device cloning.

The ADSP-BF54x processor Blackfin processors featuring Lockbox™
secure technology provide security features that enable applications to use
secure protocols consisting of code authentication and execution of code
within a secure environment. Together these features protect secure mem-
ory spaces and restrict control of security features to authenticated
developer code.

Features
Lockbox is comprised of a combination of hardware and software ele-
ments. These elements are:

• OTP Memory

An array of non-volatile write-protectable memory that can be pro-
grammed by the developer only one time. Half of the array is
public (accessible in any mode) and the other half is private (only
accessible in secure mode). For more information on OTP mem-
ory, refer to Chapter 4, “One-Time Programmable Memory”.

• Secured System Switches

Programmable bitfields in the Secured System Switches MMR to
disable and enable different methods of memory access in support
of a secured environment. Some of these protection mechanisms
include disabling DMA access to L1 and L2 memory and disabling
ADI JTAG instructions from the ICE port.

ADSP-BF54x Blackfin Processor Hardware Reference 16-5

Security

• Secure Mode Control

This involves the Secure State Machine hardware required to sup-
port a transition from an unsecured state of operation (Open
Mode), through an authentication state (Secure Entry Mode) and
finally to a secured state (Secure Mode) where secrets are accessible.

• Firmware

Code that resides in on-chip L1 instruction ROM and performs
digital signature authentication. Having the code that performs the
digital signature authentication in ROM ensures integrity of the
code.

• User callable cryptographic ciphers

In addition to the control code that resides in the on-chip L1
instruction ROM used for authentication, there exists a number of
cryptographic functions (SHA-1, AES and ARC4) that are callable.
The APIs are documented in “Programming Model” on
page 16-32.

• Unique Chip ID

Each ADSP-BF54x processor Blackfin processor has a 128-bit
unique chip identification value stored in public OTP memory.
The Unique Chip ID is programmed and write protected before a
processor leaves the Analog Devices factory. It is always be located
at the same OTP page address.

 The 128-bit Unique Chip ID value can be read but cannot be
modified by the developer or end user. A total of 64K-bits of OTP
memory is available to the developer if additional user-defined ID
values are desired. These IDs can be stored in either public or pri-
vate areas of OTP memory depending on application requirements.
Refer to Chapter 4, “One-Time Programmable Memory” for
details.

Description of Operation

16-6 ADSP-BF54x Blackfin Processor Hardware Reference

Description of Operation
Blackfin Lockbox technology is based upon the concept of authentication
of digital signatures using standards-based algorithms and provides a
secure processing environment in which to execute code and access pro-
tected assets.

Digital signatures are created using a public-key signature algorithm, the
Elliptic Curve Cryptography (ECC) public-key cipher, and a secure
one-way hash algorithm, SHA-1. A public-key algorithm actually uses two
different keys; the public key and the private key (called a key pair). The
private key is known only to its owner and is not stored on-chip, while the
public key can be available to anyone and is stored in the public OTP
memory region on-chip. Public-key algorithms such as ECC are designed
so that if one key is used for encryption, the other is necessary for decryp-
tion. Furthermore, the encryption key cannot be reasonably calculated
from the decryption key. In a digital signature authentication scheme like
Lockbox, the private key is used to generate the signature and the corre-
sponding public key is used to validate the signature. Each ADSP-BF54x
processor Blackfin processor has an on-chip ROM that contains firmware
with the Elliptic Curve Cryptography (ECC) and SHA-1 algorithms.

These are called to verify the digital signatures (ECDSA1).

JTAG emulation and test features are disabled in hardware and certain
memory access restrictions are enabled during verification of the digital
signature. Once the signature is authenticated, the access restrictions are
still in effect and can only be controlled by the authenticated user code.

1 ECDSA implementation on ADSP-BF54x processor Blackfin products only supports the Koblitz
curve.

ADSP-BF54x Blackfin Processor Hardware Reference 16-7

Security

Secure State Machine
The ADSP-BF54x processor processor includes a Secure State Machine to
handle the different protection configurations of the processor depending
on the security situation. The machine states are “Open Mode”, “Secure
Entry Mode” and “Secure Mode” (See Figure 16-1). The following sec-
tions describe these machine states.

The state of the Secure State Machine can be identified by reading bits in
the SECURE_STATUS[1:0] register. The bit values in the upper right of the
states shown in Figure 16-1 correspond to the bit values in
SECURE_STATUS[1:0].

For more information on the SECURE_STATUS register, see “Security Regis-
ters” on page 16-56.

Figure 16-1. Secure State Machine Modes

POWER UP
OR RESET

OPEN
MODE

(00)

ENTRY
HARDWARE

TRIGGER

SECURE ENTRY
MODE

(01)

SOFTWARE
TRIGGER

(SECURE MODE BIT = 1)

SECURE
MODE

(10)

SOFTWARE
TRIGGER

(SECURE MODE BIT = 0)

AUTHENTICATION
FAILURE

Description of Operation

16-8 ADSP-BF54x Blackfin Processor Hardware Reference

Open Mode

This is the default operating state of the processor, in which no restric-
tions are present except restricted access to the Private OTP memory area.
The processor powers up and boots in Open Mode. This is the default
state upon power up and after processor reset. No Lockbox security fea-
tures or protection mechanisms are enabled in this state.

The state flow illustrated in Figure 16-1 shows that the Secure State
Machine can only transition from Open Mode into Secure Entry Mode,
and there is no direct path from Open Mode into Secure Mode.

Secure Entry Mode

The on-chip ROM firmware performs the authentication process in this
operating state. This mode is entered when NMI is active and the program
counter (PC) is vectored to the first address of the authentication firm-
ware in the on-chip ROM. The program counter is monitored to ensure
that it remains within the address range allocated to the Authentication
firmware code. If the program counter vectors outside of the address range
of the authorization code, authentication fails and the state returns to
Open Mode. Any errors caught by firmware or hardware monitor will
result in authentication failure and an abortion of the authentication pro-
cess with the firmware exiting Secure Entry Mode and transitioning back
to Open Mode. If authentication is successful, the firmware initiates the
transition from Secure Entry Mode to Secure Mode.

In Secure Entry Mode, no DMA access is allowed to certain regions of
internal SRAM, and JTAG emulation is disabled. The user should disable
cache prior to initiating authentication. Interrupts are disabled by firm-
ware prior to entry into Secure Mode. Interrupts are either re-enabled by
dropping the interrupt level from NMI via the SESR arguments or by
waiting until the authentication is successful and re-enabling them in the
authenticated code after entry into Secure Mode. In addition, only the

ADSP-BF54x Blackfin Processor Hardware Reference 16-9

Security

public area of OTP memory is accessible in this mode. For more informa-
tion on memory access restrictions within Secure Entry Mode, see “Secure
Entry Service Routine (SESR) API” on page 16-32.

State flow, illustrated in Figure 16-1, shows that the Secure State Machine
can only transition from Secure Entry Mode to Secure Mode upon suc-
cessful digital signature authentication. A transition from Secure Entry
Mode back into Open Mode can occur if digital signature authentication
fails or if the authentication process is aborted due to an error observed by
the firmware. Such errors include illegal memory boundary conditions or
jumps outside of the firmware range (for example, servicing an interrupt).

Secure Mode

In the secure operating state trusted, authenticated code is allowed unre-
stricted access to the processor resources, execution of authenticated code
occurs, decryption of sensitive information, etc. This is the only mode
that allows access (reads and writes) to the private OTP memory space—
where secure data such as secret keys can be stored. The private area of
OTP memory can be used to store confidential, secret information that
only authorized authenticated code can access. This is the only operating
state where users can securely run their own Blackfin implementation of
any cryptographic cipher in which secret keys are used.

Only the code (or message) digitally signed by a trusted source and suc-
cessfully passes through Lockbox’s authentication process can gain access
to Secure Mode.

The state flow illustrated in Figure 16-1 shows that the Secure State
Machine can only transition from Secure Mode back into Open Mode
and there is no direct path from Secure Mode into Secure Entry Mode.
Exit from Secure Mode is implemented through software control by writ-
ing a “0” value to the SECURE0 bit within the SECURE_CONTROL register.

Description of Operation

16-10 ADSP-BF54x Blackfin Processor Hardware Reference

 Assertion of reset or power cycling will also return the processor to
the default Open Mode regardless of the state of operation when
the reset or power cycle event occurred. See special handling of
hardware reset in “Reset Handling in Secure Mode” on page 16-21.

Access to private OTP memory is restricted in Open Mode and
Secure Entry Mode regardless of whether or not other security fea-
tures are enabled or disabled.

SecureMode Control

Figure 15-2 describes the inputs that control the secure state machine
flow.

ADSP-BF54x Blackfin Processor Hardware Reference 16-11

Security

Hardware supports transition from an Open Mode of operation, through
a Secure Entry Mode to a Secured Mode where secrets are accessible.

Open Mode is characterized by being the default mode of processor upon
power up/reset/boot, holding all secured system switches deactivated and
protecting the private OTP memory area from access. The processor is
open with all features being available with no restrictions (except for the
private area of OTP memory).

Figure 16-2. Secure Mode Control

All secure system switches
(SYSSWT) are deactivated.
The SYSSWT register is not
accessible. OTP secrets are
read/write protected.

POWER UP
OR RESET

OPEN
MODE (00)

ENTRY
HARDWARE

TRIGGER

SECURE ENTRY
MODE (01)

SOFTWARE
TRIGGER

(SECURE MODE BIT = 1)

SECURE
MODE (10)

SOFTWARE
TRIGGER

(SECURE MODE BIT = 0)

AUTHENTICATION
FAILURE

Hardware monitor has
detected the proper entry
of Authentication firmware.
NMI must be active.

Exit of firmware will reset
the securitySM. Used if
authentication
fails.

All SYSSWT are activated.
Most SYSSWT are not
accessible including the
OTP secrets enable bit
(OTPSEN).

Firmware has written
the SECURE0 bit.

The SYSSWT register
is fully accessible.
Initially the SYSSWT
values (secured system
switches) are activated.

Writing 0 to the
SECURE0 bit will
reset the securitySM.
Used to exit Secure
mode.

Description of Operation

16-12 ADSP-BF54x Blackfin Processor Hardware Reference

Secure Entry Mode is characterized by executing firmware out of internal
ROM memory to authenticate information loaded into on-chip memory.
All secured system switches are activated. However, private OTP Memory
is not accessible yet.

Secure Mode is entered only after a successful digital signature authentica-
tion process from Secure Entry Mode. It provides access to the private
OTP memory area and makes secured system switches accessible to user
(authenticated) code. This is the mode of operation in which to perform
sensitive decryption or execution of trusted, authenticated code.

Authentication can only be requested and initiated while the processor is
operating in Open Mode. If authentication is requested while the proces-
sor is operating in Secure Mode, the Secure State Machine will not
transition into Secure Entry Mode. Instead, the Secure State Machine will
remain in Secure Mode.

 Open Mode, Secure Entry Mode and Secure Mode are states which
pertain to the Secure State Machine. User Mode and Supervisor
Mode are modes of operation which pertain to the core. The use of
the term “mode” should not be confused and are not necessarily
mutually exclusive. In Open Mode, the processor can operate in
either User or Supervisor Mode. Since the firmware is entered
when the NMI is being handled, Secure Entry Mode must start in
Supervisor Mode. Finally, authenticated code executing in Secure
Mode must be either operating at NMI interrupt level or the inter-
rupt level that triggered the NMI.

Security Features
The following sections provide a functional description of the Security
features.

ADSP-BF54x Blackfin Processor Hardware Reference 16-13

Security

Protection relies on the on-chip ROM code that includes Elliptic Curve
Cryptography (ECC) and SHA-1 algorithms, applied towards verification
of code authenticity using a digital signature. A processor has emulation
and test features disabled in hardware as well as certain memory access
restrictions upon entry into Secure Entry Mode (where authentication is
performed) and maintained into Secure Mode. These functions can be
controlled only by authenticated user application software executing in
Secure Mode.

User code must request authentication by complying with two criteria:
(1) asserting a Non-Maskable Interrupt (NMI) and (2) vector the program
counter (PC) to the first executable address in the Secure Entry Service
Routine (SESR) in firmware which resides in L1 Instruction ROM.

During the authentication process, JTAG emulation is disabled, memory
protection restrictions are enabled and interrupts are masked. The user has
the option to pass arguments to the security firmware to control certain
functionality during the authentication process. Refer to “Secure Entry
Service Routine (SESR) API” on page 16-32.

Digital Signature Authentication

Digital signatures are created off-chip (typically on a host computer) using
the ECC algorithm and SHA-1, both of which are available in the public
domain. In digital signature authentication, the private key generates the
signature (off-chip) and the corresponding public key validates the signa-
ture (on-chip). The private key is known only to its owner and is not
stored on-chip, while the public key can be available to anyone and is
stored on-chip in OTP memory.

Lockbox uses standards-based cryptographic algorithms for digital signa-

ture authentication. ECDSA1 is implemented in the Blackfin
ADSP-BF54x processor processors. Digital signature validation on

1 ECDSA implementation on these Blackfin products only supports the Koblitz curve.

Description of Operation

16-14 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x processor utilizes Elliptic Curve Cryptography1 (ECC)

based on a binary field size of 163 bits and SHA-12 secure one-way hash
(which produces a 160-bit message digest).

In order to generate public/private key pairs or prepare digital signatures
and apply them to application code, developers can use any method that
complies with the Elliptic Curve Digital Signature Algorithm (ECDSA)
specified in FIPS 186-2 with Change Notice 1 dated October 5, 2001,
Digital Signature Standard (DSS). ECDSA is described in ANSI
X9.62-1998. The Lockbox implementation in the ADSP-BF54x processor
processors supports the following Koblitz curve, which is recommended in
FIPS 186-2 for US Federal Government use:

The following steps summarize the Digital Signature Authentication pro-
cess. Steps 1 to 3 correspond to the off-chip creation of a digital signature
of a file or message. Steps 4 to 6 correspond to the on-chip digital signa-
ture authentication. These steps are preceded by generation of a key pair
(Private Key and Public Key) and the programming of the Public Key in
the Public OTP Memory.

1 These implementations are based on the Elliptic Curve Digital Signature Algorithm (ECDSA) speci-
fied in FIPS 186-2 with Change Notice 1 dated October 5, 2001, Digital Signature Standard (DSS)
(http://csrc.nist.gov/cryptval/dss.htm), and specified in ANSI X9.62-1998.

2 SHA-1 is based on the publicly available standard for FIPS 180-2 (Secure Hash Signature Standard
[SHS]) (FIPS PUB 180-2), http://csrc.nist.gov/CryptoToolkit/tkhash.html).

m: 163 (degree of binary field)

a: 1

b: 1 (a and b are the constants in the elliptic curve equation: y2 + xy = x3 + ax + b)

Xg: 2FE13C0537BBC11ACAA07D793DE4E6D5E5C94EEE8

Yg: 289070FB05D38FF58321F2E800536D538CCDAA3D9 (Xg and Yg define the base point G)

r: 4000000000000000000020108A2E0CC0D99F8A5EF (r is the order of the base point G)

T: 4 (T is the normal basis type)

p(t): t163 + t7 + t6 + t3 + 1 (pt(t) is the field polynomial)

http://csrc.nist.gov/cryptval/dss.htm" \t "_parent
http://csrc.nist.gov/cryptval/dss.htm" \t "_parent
http://csrc.nist.gov/CryptoToolkit/tkhash.html" \t "_parent
http://csrc.nist.gov/CryptoToolkit/tkhash.html" \t "_parent

ADSP-BF54x Blackfin Processor Hardware Reference 16-15

Security

1. A one-way hash of the file (message to be authenticated) is pro-
duced using SHA-1 off-chip (for example, using a host PC).

2. The hash is encrypted through ECC off-chip with the private key,
thereby signing the file and completing the generation of the digi-
tal signature.

3. The file and the signed hash are stored on an external device such
as Flash memory or a host device.

4. Upon transfer to the Blackfin processor's internal memory, a
one-way hash of the file is calculated on-chip through SHA-1
(residing in Blackfin on-chip ROM).

5. Using the ECC algorithm (residing in the Blackfin on-chip boot
ROM), the Blackfin decrypts the signed hash with the user's public
key stored in the Blackfin's OTP memory.

6. The two hash results are then compared. If the signed hash matches
the calculated hash, the signature is valid and the file is intact.

If the digital signature authentication process is successful, the Blackfin
processor will transition from Secure Entry Mode to Secure Mode. At this
time, all of the access restrictions mentioned will be in place. JTAG will be
disabled and certain portions of on-chip SRAM memory are restricted
from DMA access. The restrictions can be controlled once in Secure Mode
by having the authenticated code modify the Secure System Switches
(SECURE_SYSSWT) appropriate for use by the developer’s application.

 Encryption/decryption is only necessary when an application
requires confidentiality. It is not always necessary to work with
encrypted code to ensure code security. Authentication alone can
be used when confidentiality is not required when ensuring tam-
per-proof code image and/or non-repudiation in a system.
Authentication thus safeguards code integrity.

Description of Operation

16-16 ADSP-BF54x Blackfin Processor Hardware Reference

Since the digital signature uniquely describes its corresponding
code/message, the code/message itself does not have to be
encrypted if confidentiality is not required. If the code/message is
modified, either intentionally or inadvertently, authentication fails
since the integrity of the code message has been compromised.

Digital Signature Authentication
Performance Measurement

Authentication can be performed at any point during processor operation
in Open Mode. It can be performed immediately upon boot or it can be
performed any time after boot.

The algorithms used in the Lockbox firmware are highly optimized
Blackfin code running from L1 instruction ROM in the core clock
domain. Firmware execution time for the digital signature authentication
process is on the order of 5 million core clock cycles depending upon the
size of the digitally signed application code. This must be considered
when architecting an application in order to allow a sufficient window of
time in which authentication can proceed without requiring servicing of
interrupts in the system.

The time it takes for authentication is dependent on several factors. These
include the size of the message to be authenticated. This affects the
amount of calculations done in the secure hash function (SHA-1). It also
affects the DMA time required to move the message out of L1 data mem-
ory and place it into L1 code memory.

ADSP-BF54x Blackfin Processor Hardware Reference 16-17

Security

Protection Features
In order to establish a secure processing environment and protect the secu-
rity of applications that establish trust and reach the privileged mode of
operation, Lockbox implements access restrictions. These restrictions
include disabling JTAG emulation and disabling DMA access to portions
of on-chip SRAM memory. The memory access restrictions implemented
in hardware on the Blackfin processor are not applied to off-chip memory.
Therefore, external memory is always considered insecure and caching
external memory while operating in Secure Mode represents a security
risk.

Protection features include the following:

• Secure State Machine for implementing privileged states of opera-
tion in which access restrictions may be imposed to protect code
and data.

• Disable DMA access to L1 and on-chip L2 memory

• These restrictions to memory areas are configurable (see “Secured
System Switches (SECURE_SYSSWT) Register” on page 16-57).

• Protection of L1 and on-chip L2 regions of memory with DMA
access controlled when in Secure Mode.

• Disable ADI JTAG emulation from ICE port

• Divert hardware reset to NMI during Secure Mode operation to
prevent “reset attack”.

• Provide software control over hardware protection features accessi-
ble to trusted code operating in Secure Mode.

• OTP memory for storage of customer programmable cipher keys,
unique chip ID or a customer ID

Description of Operation

16-18 ADSP-BF54x Blackfin Processor Hardware Reference

• OTP write protection to protect programmed OTP memory loca-
tions from future tampering

• Private/Secret OTP memory region accessible only in Secure Mode

• Store private key(s) for decryption of data or other validation

• A privileged mode (including firmware execution out of on-chip
ROM) to perform code authentication

Protection mechanisms are summarized Table 16-1 for each state of the
Secure State Machine along with the Secure System Switch register
(SECURE_SYSSWT) that provides control over the protection feature.

ADSP-BF54x Blackfin Processor Hardware Reference 16-19

Security

Table 16-1. Secure State Machine

Secure State
Machine

SECURE_SYSSWT Description Protected Memory
Range

Open Mode
(0x0000 0000)

The switches are
involuntarily set
with
all controls OFF
(unrestricted access).

No protection
mechanisms or
restrictions enabled.

No restrictions1

Secure Entry
(0x0007
04D9)

EMUDABL Emulation Disable Emulation
disabled

L1IDABLE L1 Instruction Memory Disable
0xFFA0 0000 - 0xFFA0 7FFF SRAM

32 KB

L1DADABL L1 Data Bank A Memory Disable
0xFF80 0000 - 0xFF80 7FFF SRAM
and SRAM/Cache

32 KB

L1DBDABL L1 Data Bank B Memory Disable
0xFF90 0000 - 0xFF90 1FFF SRAM

8 KB

L2DABL l2 Memory Disable 64 KB

Secure Mode
(0x0007
04D9)

EMUDABL Emulation Disable User Configurable

RSTDABL RESET Disable User Configurable

L1IDABLE L1 Instruction Memory Disable
0xFFA0 0000 - 0xFFA0 7FFF SRAM

0-32 KB

L1DADABL L1 Data Bank A Memory Disable
0xFF80 0000 - 0xFF80 7FFF SRAM
and SRAM/Cache

0-32 KB

L1DBDABL L1 Data Bank B Memory Disable
0xFF90 0000 - 0xFF90 1FFF SRAM

0-32 KB

L2DABL l2 Memory Disable 0-64 KB

1 Private OTP is only accessible when operating in Secure Mode with OTPSEN bit set in
SECURE_SYSSWT register

Description of Operation

16-20 ADSP-BF54x Blackfin Processor Hardware Reference

On-chip SRAM memory protection takes the form of DMA access restric-
tions only. There is no need to protect the on-chip SRAM from processor
core access because, while operating in Secure Mode, the developer’s
authenticated code has full control over the processor core and execution
of all core software instructions. It is the responsibility of the developer to
take steps to avoid surrendering control of the Program Sequencer and the
core to untrusted code execution.

Operating in Secure Mode
The following sections describe how to enter and exit secure mode.

Entering Secure Mode

Upon successful digital signature authentication, the Secure State
Machine transitions into Secure Mode. The same default protection fea-
tures enabled in Secure Entry Mode are carried forward into Secure Mode.
This includes JTAG emulation being disabled, and DMA access restric-
tions to memory and interrupts being masked. It is the responsibility of
the authenticated code to manipulate or remove these restrictions as
desired.

Exiting Secure Mode

Secure Mode provides a secure operating environment to execute sensitive
code, run cryptographic ciphers and process sensitive data. Upon exiting
Secure Mode, the authenticated code should remove any sensitive code
and data from memory because this sensitive information will still be
accessible in Open Mode if it is not removed prior to exiting Secure
Mode. Exit from Secure Mode is implemented through software control
by writing a “0” value to the SECURE0 bit within the SECURE_CONTROL regis-
ter. Refer to “Security Registers” on page 16-56 and “Clearing Private
Data” on page 16-22 for more information.

ADSP-BF54x Blackfin Processor Hardware Reference 16-21

Security

Reset Handling in Secure Mode
The following describes how hardware is reset, and how to clear private
data/

Hardware Reset

Hardware reset is diverted to NMI when operating in Secure Mode only.
When operating outside of Secure Mode, hardware reset behaves nor-
mally. This protection feature is configurable via the RSTDABL bit within
the SECURE_SYSSWT register when operating within Secure Mode.

This is a protection feature to prevent malicious entities from attempting
to assert hardware reset while sensitive code or data is present in the pro-
cessor’s on-chip SRAM or in the processor’s registers. A “reset attack”
could take the following form: If hardware reset were left unprotected and
reset was asserted while sensitive information were present on-chip, the
processor would return to the default state of Open Mode with no protec-
tion features enabled and a malicious entity could gain access to the
on-chip memory and registers, for example via JTAG emulation. In such a
scenario assets intended to be protected could be compromised.

By diverting hardware reset to NMI while the processor operates in Secure
Mode, servicing of hardware reset can be controlled and delayed in order
to first implement a memory clean-up routine in software to purge sensi-
tive information from internal memory and registers prior to servicing
reset. At the completion of the memory clean-up, the processor can then
be reset via software command and safely returned to Open Mode with no
sensitive information available to be compromised.

By default, the SESR loads the address of a memory clean-up routine
stored in the on-chip L1 instruction ROM into the NMI EVT2 prior to
transitioning from Secure Entry Mode into Secure Mode. See “Clearing
Private Data” on page 16-22 for more information.

Description of Operation

16-22 ADSP-BF54x Blackfin Processor Hardware Reference

Clearing Private Data

As part of the SESR firmware, there is a small routine stored in the
on-chip L1 instruction ROM that clears the internal memory, generates a
RESET event and puts the processor into idle. It is recommended that the
user sets this routine as the new EVT2 NMI vector once the user’s authenti-
cated application code is executing. This will prevent a malicious user
from trying to reset the processor while it is operating in Secure Mode and
then view the contents of internal memory when the processor returns to
Open Mode after servicing RESET. The “Clear Private Data” routine is
located at address 0xFFA1 47E8.

 It is recommended that user software running in Secure Mode
should also perform RAM clean-up prior to clearing the SECURE0
Secure Mode bit and exiting Secure Mode via normal code execu-
tion within user’s secure function. If sensitive code/data remains in
on-chip RAM after exiting Secure Mode without wiping memory
and register contents or cycling power to the processor, it will be
visible and accessible in Open Mode.

This memory wipe routine in the ROM executes a watchdog RESET to
reset the processor at the completion of the memory wipe. The code also
performs a wipe of the OTP_DATA0-3 registers which are used to hold data
from OTP access reads (that is, which could contain secret key or other
sensitive data left by user code execution).

If a custom memory cleanup routine is part of an authenticated message,
the user can use that routine instead of the one provided with the Lockbox
firmware. The user just has to update EVT2 in the event vector table to
point to the start of the custom memory cleanup routine.

Due to the fact that hardware reset is configured by default to be redi-
rected to NMI when the processor is operating in Secure Mode, it is
recommended that the user implements a watchdog reset within the EVT2
NMI ISR in order to reset the processor. A Watchdog reset is imple-
mented by writing a value 2'b00 in WDOG_CTL[2:1] which causes reset of

ADSP-BF54x Blackfin Processor Hardware Reference 16-23

Security

both the core and the peripherals, excluding the RTC block and most of
the DPMC. The watchdog reset will not be redirected to the NMI pin as
in the case of the external hardware reset and it will properly reset the pro-
cessor. For more details of watchdog reset, refer to “Software Resets” in
Chapter 17, System Reset and Booting.

This “reset attack” protection scheme needs to protect only against hard-
ware reset which can be applied externally as the system developer
typically has no control over reset in an embedded system. While operat-
ing in Secure Mode, the developer’s authenticated code has full control
over the processor core and execution of all software instructions, so there
is no need to protect against soft reset instructions. It is not recommended
that the user’s secure application code implement a soft reset without first
deleting sensitive information from memory and registers.

Public Key Requirements
A valid ECC public key must be a non-zero value and meet the following
criteria:

Given the public key value shown here:

3693 68AF 2431 93D0 01E3 9CE7 6BB1 D5DA 08A9 BC0A 615F
7A90 C841 D4F1 E1B0 05E7 0F16 7F6E F7CD 2E25 1B

format in 32-bit little endian as follows:

8A9B C0A6

BB1D 5DA0

1E39 CE76

4319 3D00

6936 8AF2

0000 0003

Description of Operation

16-24 ADSP-BF54x Blackfin Processor Hardware Reference

CD2E 251B

167F 6EF7

B005 E70F

41D4 F1E1

5F7A 90C8

0000 0001

The values should be stored in OTP pages 0x10, 0x11, 0x12 as follows
(where 'L' denotes lower half of page, 'H' denotes upper or high half of
page):

page: 0x010L: 0xBB1d 5DA0 8A9B C0A6

page: 0x010H: 0x4319 3D00 1E39 CE76

page: 0x011L: 0x0000 0003 6936 8AF2

page: 0x011H: 0x167F 6EF7 CD2E 251B

page: 0x012L: 0x41D4 F1E1 B005 E70F

page: 0x012H: 0x0000 0001 5F7A 90C8

The general format takes the form of twelve (12) 32-bit words:

Word 1

Word 2

Word 3

Word 4

Word 5

Word 6

ADSP-BF54x Blackfin Processor Hardware Reference 16-25

Security

Word 7

Word 8

Word 9

Word 10

Word 11

Word 12

Stored into OTP pages in the following order (where 'L' denotes lower
half of page, 'H' denotes upper or high half of page):

page: 0x010L: Word 2 Word 1

page: 0x010H: Word 4 Word 3

page: 0x011L: Word 6 Word 5

page: 0x011H: Word 8 Word 7

page: 0x012L: Word 10 Word 9

page: 0x012H: Word 12 Word 11

Storing Public Cipher Key in Public OTP

In order to make use of security features, the user must first store an ECC
public key in the Blackfin processor public region of OTP memory pages
0x10, 0x11 and 0x12 as specified in the Firmware's Secure Entry Service
Routine (SESR) API and the OTP memory map (see “Secure Entry Ser-
vice Routine (SESR) API” on page 16-32). If no ECC public key is stored
in this area of OTP, digital signature authentication cannot be successfully
completed and no Lockbox security features can be enabled. For more
information see Chapter 4, “One-Time Programmable Memory”.

Description of Operation

16-26 ADSP-BF54x Blackfin Processor Hardware Reference

 If security features which rely upon the ECC public key are not
going to be used, it is recommended that customers write-protect
the ECC public key OTP memory space in order to prevent mali-
cious entities from writing a value into this memory and
potentially exploiting this feature without the developer’s consent.

Cryptographic Ciphers
Lockbox uses SHA-1 and ECC to implement ECDSA as part of the
authentication process to enter into Secure Mode. These ciphers reside in
the firmware in the on-chip L1 instruction ROM. In addition to these
ciphers, the Advanced Encryption Standard (AES) and ARC4 are also
available in the ROM. The SHA-1, AES and ARC4 ciphers are user-call-
able in Open Mode or in Secure Mode. The APIs are documented in
“Programming Model” on page 16-32r. Note that ECC is not user-call-
able and is only executed as part of firmware during the authentication
process.

 Since AES uses symmetric keys that need to be private, and these
private keys typically require confidentiality, it is recommended
that this cipher be executed in Secure Mode to access the keys from
the private area of OTP memory.

Keys
Although Lockbox uses an ECC public key for digital signature authenti-
cation, and has private OTP memory to store private keys for other
cryptographic algorithms, Lockbox does not implement key management.
Lockbox does not implement key generation nor does it implement key
exchanges natively in the Blackfin hardware.

ADSP-BF54x Blackfin Processor Hardware Reference 16-27

Security

In order to use Lockbox, an ECDSA key pair must be generated. The pri-
vate key is used off-chip (typically on a host PC) to sign the message. The
public key is placed in the public OTP memory where it is used to authen-
ticate the signed message. Lockbox is only part of a full cryptosystem. It is
the responsibility of the user to develop the other parts of the cryptosys-
tem necessary for the intended application.

Debug Functionality
The processor is fully compatible with the IEEE 1149.1 standard, also
known as the Joint Test Action Group (JTAG) standard. Full details of
the JTAG standard can be found in the document IEEE Standard Test
Access Port and Boundary-Scan Architecture, ISBN 1-55937-350-4.

ADSP-BF54x processor debug functionality has some modified behavior
dependent upon the access privileges associated with the state of the
Secure State Machine operating mode. This is to ensure that sensitive
information and processing performed within Secure Entry Mode and
Secure Mode will not be compromised via JTAG. Furthermore, public
JTAG instructions necessary for system test and debug (such as boundary
scan and bypass mode) remain in effect regardless of the state of the
Secure State Machine and are not hindered by ADSP-BF54x processor
Secure Mode operation. This makes it possible for developers to debug
their systems without interference from the Blackfin processor or its secu-
rity features.

In compliance with the JTAG standard, ADSP-BF54x processor proces-
sors provide an Instruction Register (IR) that interprets 5-bit instruction
codes to select the test mode that performs the desired test operation. The
instruction register is five bits wide and accommodates up to 32 bound-
ary-scan instructions. The instruction register holds both public and
private instructions. The JTAG standard requires some of the public
instructions; other public instructions are optional. Private instructions
are reserved for the manufacturer's use.

Description of Operation

16-28 ADSP-BF54x Blackfin Processor Hardware Reference

All supported public and private JTAG instructions remain operational
when operating in Open Mode. All supported public JTAG features
remain operational and all private JTAG features are disabled when oper-
ating in Secure Entry Mode and Secure Mode. Refer to Appendix B, “Test
Features” for more information about supported JTAG instructions.

By default, JTAG emulation is disabled when the processor enters Secure
Entry Mode or Secure Mode. There is only one way to enter Secure
Mode—through successful authentication of user code based on digital
signature validation. Once the digital signature authentication process
results in success, the user's trusted, authenticated code is given full con-
trol over the processor, including access to Secured System Switches
register (SECURE_SYSSWT) that enables/disables various protection mecha-
nisms, including JTAG emulation. The Secured System Switch register
provides a setting that will allow authenticated code to enable JTAG emu-
lation either in a one-time secure session setting or in a 'sticky' persistent
manner that allows emulation to be enabled by default the next time the
processor enters Secure Mode. These settings are cleared when reset is
asserted or if processor core power is cycled. See the EMUOVR and EMUDABL
bits in the SECURE_SYSSWT Secure System Switches Register in “Secure Sys-
tem Switch Register, Bits 15:0” on page 16-58.

Two bits within the SECURE_SYSSWT Secure System Switches register con-
trol JTAG emulation; they are Emulation Disable (EMUDABL) and
Emulation Override (EMUOVR). To enable JTAG emulation for the current
session while operating within Secure Mode, SECURE_SYSSWT bit 0
(EMUDABL) must be set to 0. To enable JTAG emulation to remain 'sticky'
and persistently enabled for the current session and for all subsequent
entries into Secure Mode until cleared by the user or until cleared via
RESET or cycling power to the processor, SECURE_SYSSWT bit 0 (EMUDABL)
must be set to 0 and SECURE_SYSSWT bit 14 (EMUOVR) must be set to 1
simultaneously. See “Secure System Switch Register, Bits 15:0” on
page 16-58 for details.

ADSP-BF54x Blackfin Processor Hardware Reference 16-29

Security

 The EMUDABL bit is only directly writable when in Secure Mode.
EMUOVR can be written to a 0 at any time. RESET will clear EMUOVR.
EMUOVR can be cleared by the user at any time and in any mode,
including Open Mode, Secure Entry Mode, and Secure Mode. You
do not have to operate in Secure Mode in order to clear EMUOVR.

The EMUDABL bit is only directly writable when in Secure Mode. EMUOVR
can be written to a 0 at any time. This means if you are in Secure Mode
and wish to remove the privilege of emulation override, you are allowed to
clear EMUOVR. Or if you are operating in Open Mode and wish to remove
emulation override, you can clear EMUOVR. In the case of Secure Entry
Mode, writing the EMUOVR bit to a 0 immediately blocks emulation (and
the EMUDABL bit would read 0 immediately. While Operating in Secure
Entry Mode, the value of EMUDABL is the *not* of EMUOVR, that is, EMUDABL
= ~EMUOVR. While operating in Secure Mode, you can read or write the
EMUOVR bit which has no immediate affect since EMUDABL is in control at
that point.

Upon setting EMUDABL = 0 and EMUOVR = 1, JTAG emulation remains active
and enabled for the current session during Secure Mode operation and for
all subsequent entries into Secure Mode until EMUOVR is cleared (set to 0)
or until RESET or power cycle clears this setting. This is also known as
"sticky" emulation setting.

If 'sticky' emulation is enabled (EMUDABL = 0 and EMUOVR = 1), JTAG emu-
lation will be active and enabled in all modes, that is, Secure Entry, Secure
Mode as well as Open Mode. The Secure State Machine can cycle through
all modes of operation, and JTAG emulation will remain active and
enabled in every mode with these settings in place until cleared by the user
application code, or until RESET or power cycle clears the setting.

For example, a user creates code to be authenticated with a valid digital
signature. The code and digital signature are loaded onto the Blackfin pro-
cessor in Open Mode, Authentication is requested (JTAG emulation is
disabled by default during Authentication in Secure Entry Mode) and the
Authentication process is successful. The processor enters Secure Mode

Description of Operation

16-30 ADSP-BF54x Blackfin Processor Hardware Reference

(JTAG emulation still disabled by default) and control is given to the
authenticated code. Authenticated code sets bits within the Secure System
Switches to enable JTAG Emulation and sets the 'sticky' bit to allow
JTAG emulation to be enabled by default the next time the processor
transitions into Secure Mode as well. Debug within Secure Mode can
occur using emulation now. If a different set of trusted code must be
loaded into the processor, the user can do so now without leaving Secure
Mode or the user can choose to exit Secure Mode and return back to
Open Mode in order to authenticate another set of code or load test/prob-
lematic code. A new set of code and digital signature can now be loaded
and authenticated. Upon entry into Secure Mode. JTAG emulation will
be enabled by default due to the sticky bit setting in the Secure System
Switches. Debug can be performed within Secure Mode without changes
to problematic code.

One possible usage scenario for persistent (sticky) emulation might be as
follows: a “final” production code that must run in Secure Mode is pre-
pared. There seems to be an issue with the code but emulation prevents
working with it. You would take advantage of EMUOVR bit within the
SECURE_SYSSWT register by first performing a simple authentication of code
that sets the EMUOVR bit in order to enable JTAG emulation within Secure
Mode. From there you exit Secure Mode (write a value of "1" to the
SECURE0 bit in the SECURE_CONTROL register, but do not invoke any proces-
sor reset), and call the routine to debug. You would then set a breakpoint
just after authentication. That way you could now step through your code
using JTAG emulation, and operate in Secure Mode.

 Digitally signed user code, which enables either single session or
sticky JTAG emulation, must be treated as confidential by users in
the same manner as private keys. If this code is allowed to fall out-
side of developer control or become public, it can be used to
compromise a developer’s security.

ADSP-BF54x Blackfin Processor Hardware Reference 16-31

Security

In summation, to enable JTAG emulation during Secure Mode, the user
must successfully perform the Authentication process at least one time,
and then program the Secured System Switches while operating in Secure
Mode to enable emulation.

Programming Examples

Listing 16-1. Assembly Code – Enable (“Sticky”) Persistent JTAG
Emulation for Secure Mode Debug

#include <defBF548.h>

.section L1_code;

.align 4;

.global _secure_function;

_secure_function:

/* required nops to account for SESR PC vector target+4 for

overlay ID accommodation*/

nop;

nop;

P0.H = ((SECURE_SYSSWT) >> 16);

P0.L = ((SECURE_SYSSWT) & 0xFFFF);

R0 = [P0];

BITCLR(R0,0);

[P0] = R0;

SSYNC;

_secure_function

.END:

Listing 16-2. C Code – Enable JTAG Emulation for Secure Mode Debug
(single session)

#include <cdefBF548.h>

#define ENABLE_JTAG_MASK 0xFFFFFFFE

void secure_function(void)

Programming Model

16-32 ADSP-BF54x Blackfin Processor Hardware Reference

{

/* Enable JTAG */

*pSECURE_SYSSWT = (*pSECURE_SYSSWT & ENABLE_JTAG_MASK);

ssync();

return;

}

Programming Model
The following sections describe the programming model for security
features.

Secure Entry Service Routine (SESR) API
This section describes the procedure to use Lockbox to authenticate a
message. Memory configuration, input arguments and return codes are
also described here.

In this chapter, the term “message” was widely used to describe the entity
being digitally signed off-chip, and later authenticated on-chip by the
SESR security firmware. “Message”, “secure function” (SF), and “secure
application” are used interchangeably in this section and mean the same
thing.

Starting Authentication
For an application to establish trust and reach the privileged mode of
operation (for example, enter Secure Mode), the Secure State Machine has
to transition from Open Mode, through Secure Entry Mode, to Secure
Mode. In order to transition from Open Mode to Secure Entry Mode,
NMI must be asserted and the program counter (PC) must vector to the
beginning address of the firmware (SESR).

ADSP-BF54x Blackfin Processor Hardware Reference 16-33

Security

Programming Model

16-34 ADSP-BF54x Blackfin Processor Hardware Reference

This can be achieved by loading BFROM_SECURE_ENTRY (defined in bfrom.h)
as the NMI handler in the event vector table (EVT2). Then in supervisor
mode, issue a raise 2 instruction. Similarly, the NMI hardware pin may
be asserted instead of issuing a software raise instruction. Once the pro-
gram counter vectors to the SESR, and while NMI assertion is sensed by
the hardware, the Secure State Machine will transition into Secure Entry
Mode.

Before actually going into Secure Entry Mode, the user will have to set up
the memory environment. This includes specifying the arguments
(described in this section) and moving the message to be authenticated
into L1 data memory.

ADSP-BF54x Blackfin Processor Hardware Reference 16-35

Security

Memory Configuration
Figure 16-3 illustrates the Secure Entry Mode default memory configura-
tion upon initiating authentication and entering the SESR.

Message Placement

The message can be placed in either L1A or in L2 for authentication. If
the message (for example, code) is put into L1A for authentication, it
must be DMA’ed to either L1 code space or L2, where it can execute. If
the message is placed into L2 for processing, it has the option of staying

Figure 16-3. Memory Configuration for Authentication

Data Content for SF
(Optional)

Data Content for SF
(Optional)

SESR
Authentication code

ROM

Digital Signature

Message
(Code and optional
data content to be

authenticated,
a.k.a. SF)

Unused/Protected

Unprotected User
Data

Data variables and
buffers used by

authentication code

L1 Data Bank A L1 Data Bank B

SHA-1

Elliptical Curve
Cipher

Unprotected User
Area

L2

Argument buffers fo
SF and SESR

ECC Data buffers
and variables.

(Reserved)

OTP Access Library

Message
(Code and optional
data content to be

authenticated,
a.k.a. SF)

Data Content for SF
(Optional)

Digital Signature

Data Content for SF
(Optional)

L1 Instr.
ROM or
Boot
ROM

0xFF80 0000

0xFF80 8000

0xFF80 4000

0xFF90 0000

0xFF90 8000

0xFF90 4000

Programming Model

16-36 ADSP-BF54x Blackfin Processor Hardware Reference

where it is and can be executed directly from L2. It is the user’s responsi-
bility to provide the message in L1A or L2 memory for the SESR. If
authentication is successful, the SESR will then move the message via
DMA to the final destination according to the SESR arguments. No fur-
ther action is required by the developer to perform this DMA as it is
executed by the firmware.

Digital Signature

The digital signature is a pair of 163-bit integers. Each integer is padded
to the nearest 32-bit word, resulting in 192 bits for each integer resulting
in a total size of 384 bits. The authentication firmware always expects the
digital signature to be followed by the message. For example, if the mes-
sage is placed in L1A data memory, and the digital signature starts at
address 0xFF80 0000, the message must immediately follow the digital
signature and be located at address 0xFF80 0030. The same holds true if
the message and digital signature are placed in L2 memory as they must be
stored together contiguously in memory with the message always immedi-
ately following the digital signature.

Message Size Constraints

The maximum size of any message to be authenticated is limited by the
size of on-chip memory in the Blackfin. When the Secure State Machine
enters into Secure Entry Mode (authentication), certain portions of
on-chip SRAM memory are protected from DMA accesses. These pro-
tected memory regions include L1A (32 KB) and L1B data memory (8 KB
each), L1 code memory (32 KB) and half of L2 memory (64 KB). This
means that the maximum allowable message/code size that can be authen-
ticated is 32 KB less 48 bytes for the digital signature, if placed in L1A
data memory and 64 KB less 48 bytes if placed in L2 memory.

ADSP-BF54x Blackfin Processor Hardware Reference 16-37

Security

Memory Usage

In data bank B of the L1 memory, the arguments for both the SESR and
the secure function are stored beginning at address 0xFF90 0000. In addi-
tion, a portion of the L1B data memory is reserved for the firmware for
scratch space. All memory above address 0xFF90 1F00 is reserved for
authentication. The user can either allocate this area of memory solely for
Lockbox or save any data elsewhere in memory prior to starting
authentication.

 Any user information residing in the scratch space reserved area of
L1 Data Bank B will be overwritten during the authentication
process.

Memory Protection

This Secure Entry Mode default memory configuration with both pro-
tected and unprotected regions of on-chip SRAM is implemented in order
to allow developers to initiate digital signature authentication at any time
during Open Mode processor operation. If an application is already run-
ning on the processor, the unprotected memory regions can be used for
placement of data buffers. When authentication occurs, access to these
data buffers is not restricted thus the application can be given higher pre-
cedence over the authentication process if necessary.

The Secure Entry Mode default memory protection configuration put into
place upon initiating authentication cannot be modified by the developer.
This is to ensure integrity of the secure processing environment during the
authentication process and help prevent malicious tampering.

Programming Model

16-38 ADSP-BF54x Blackfin Processor Hardware Reference

Secure Function and Secure Entry Service Routine
Arguments

Prior to initiating the authentication, the arguments for both the SESR
and the message (also known as Secure Function) must be set up. The
arguments are stored in argument buffers stored in L1B data memory.
Specifically, the arguments for the Secure Function are stored at the top of
L1B data memory, at address 0xFF90 0000. There are 24 bytes allocated
for the arguments for the secure function. Following the argument buffer
for the Secure Function is the argument buffer for the SESR, at address
0xFF90 0018. For security reasons this authentication protocol accesses
fixed locations for arguments. When the user starts executing the Secure
Function, it receives 2 arguments. The first argument (R0) contains the
address of the Secure Function argument buffer. The second argument
(R1) holds the IMASK value before shut off interrupts.

Secure Function Arguments

When the message is successfully authenticated, the program counter will
vector to the Secure Function with the first argument (R0) containing a
pointer to the top of the L1B data memory. The second argument (R1) of
the secure function is the IMASK value. This value is obtained when the
SESR successfully authenticates the message. Before the message is trans-
ferred via DMA to its final target run location, interrupts are shut off so
tampering cannot occur between the time of successful authentication and
execution of the secure function. The prototype for the secure function is:
void secure_function(tSecureFunctionArgs *, unsigned short

imask);

The 24-byte Secure Function argument buffer is for the convenience of
user to be able to pass arguments to the Secure Function prior to starting
authentication.

It is the responsibility of the user’s Secure Function to re-enable interrupts
by using the saved IMASK value or by using a new IMASK value.

ADSP-BF54x Blackfin Processor Hardware Reference 16-39

Security

The 24-byte Secure Function argument buffer can be used in any aligned
fashion. For example, it can be used to store six 32-bit words or twelve
16-bit words, or any combination of data types such as integers, shorts
and characters, as long as the accesses are aligned.

Secure Entry Service Routine Arguments

The argument buffer for the SESR is shown in Listing 16-3

Listing 16-3. Argument Buffer for SESR

/* SESR argument structure. Expected to reside at address

0xFF900018 */

typedef struct SESR_args {

unsigned short usFlags;/* security firmware flags*/
unsigned short usIRQMask;/* interrupt mask*/
unsigned long ulMessageSize;/* message length in bytes*/
unsigned long ulSFEntryPoint;/* entry point of secure function*/
unsigned long ulMessagePtr;/* pointer to the buffer containing
the digital signature and message */
unsigned long ulReserved1;/* reserved*/
unsigned long ulReserved2;/* reserved*/
} tSESR_args;

usFlags

The first argument, usFlags, is a 16bit bit flag that signals authentication
what to do. Figure Figure 16-4 shows the meaning of the bits.

Bit 0 tells the authentication firmware whether or not to drop the inter-
rupt level. To execute raise 2;, the Blackfin processor must operate in
supervisor mode, in other words, operate at one of the interrupt levels.
NMI must be asserted when authentication is initiated. The caller/user
has the option to deassert NMI and drop back down to a lower interrupt
level (the interrupt level in effect when NMI was asserted to initiate
authentication) or continue authentication at NMI level.

Programming Model

16-40 ADSP-BF54x Blackfin Processor Hardware Reference

By lowering the interrupt level at which the authentication firmware exe-
cutes, other interrupts can be serviced. Be aware that if another interrupt
is serviced and the PC vectors out of the authentication firmware during
authentication, the authentication process fails and returns an error code.

Bit 1 in the flags argument tells the authentication firmware whether or
not to move the message/code to a final code space where it will be exe-
cuted. This is only valid on certain ADSP-BF54x processor processors
with L2 memory. Processors that have no L2 memory must move the mes-
sage/code from L1A data memory to L1 code memory. The moves are
done via memory DMA and are executed by the firmware.

Bit 8 tells the firmware which public key is used for authentication. The
OTP memory holds two public keys. One is programmed by Analog
Devices for failure analysis purposes only and the other is programmed by
the developer.

uslRQMask

The usIRQMask argument is a 16-bit user-defined bitmask to be loaded
into the lower 16 bits of the IMASK MMR if the execution level is to be
lowered from NMI level. This argument allows the user to specify which,

Figure 16-4. Bit Fields for Flags Argument

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x

Reduce Execution Level
(REL)
0 - Continue execution at
NMI level
1 - Drop execution level

Reserved

x x x x x x x x x x x x x x

Reserved

Reserved

Public Key

Index
 0 - ADI key
 1 - Customer Key

x

ADSP-BF54x Blackfin Processor Hardware Reference 16-41

Security

if any, interrupts will be allowed to be serviced should they occur during
the time authentication occurs. Note that if any interrupt is serviced, the
authentication process fails and returns an error code as mentioned above.
For more information regarding IMASK, refer to Blackfin Processor Pro-
gramming Reference.

ulMessageSize

The ulMessageSize argument is a 32-bit non-negative integer that tells
the SESR how big the message is, in bytes. The ulMessageSize must be a
multiple of two, otherwise the SESR returns an error code.

ulSFEntryPoint

The ulSFEntryPoint argument is the final address that the message will be
moved-to and executed-from. Again, since the authentication firmware
expects code as the first portion of the message, the address must be a mul-
tiple of four since instructions can be either 16 bit or 32 bit lengths. If the
message consists of both code and data, it is the user’s responsibility to
move the data to the proper area of data memory for subsequent use
within their application.

ulMessagePtr

The ulMessagePtr argument holds the address where the digital signature
and message are found.

Secure Message Execution

If the authentication of the digital signature is successful, the authentica-
tion firmware will directly vector the program counter to the Secure
Function at its final target location, plus an offset of four bytes. The offset
provides a location for the overlay ID if overlays are used with Lockbox.
To return to the calling function, the authenticated message must execute

Programming Model

16-42 ADSP-BF54x Blackfin Processor Hardware Reference

rtn; if execution level was not signaled to be lowered in the authentica-
tion firmware. Otherwise, if the execution level was lowered, the Secure
Function can return via rts;.

To prevent tampering, interrupts and the watchdog timer are shut off near
the end of successful authentication. It is the user’s responsibility to
re-enable the interrupts and the watchdog timer in the secure function if
they are required in the user’s application.

Return Codes

If for any reason, an error occurs, the SESR returns an error code and bit 7
in the SECURE_STAT MMR sets to indicate that register R0 contains a valid
error code. Table 16-2 lists a portion of the valid return codes.

Table 16-2. List of Return Codes from SESR

Return Codes Value Description

SECFW_SUCCESS 0 Success

SECFW_ERROR_INV_FLAGS -1 “Flags” argument to firmware is
invalid.

SECFW_ERROR_INV_INTMASK -2 IRQ mask specified is invalid.

SECFW_ERROR_INV_CODESZ -3 Code size specified is either non-posi-
tive or odd.

SECFW_ERROR_OOB_CODE -6 The message (Secure function) is too
big and surpasses the protected region
in L1A.

SECFW_ERROR_BAD_EVT -10 One of the ISR specified in the Event
Vector table points inside the authenti-
cation firmware.

SECFW_ERROR_PUBKEY_ZERO -11 Invalid public key of (0,0).

SECFW_ERROR_AUTH_FAILED -12 Invalid message/signature pair.

SECFW_ERROR_DMA -15 MDMA error occurred during DMA
transfer or the message to the final tar-
get vector.

ADSP-BF54x Blackfin Processor Hardware Reference 16-43

Security

In addition to the return codes listed in Table 16-2, a return value
between -62 to -252 is also a valid error return code. These errors are from
OTP accesses.

To decipher the error from an OTP access, there is an offset that must be
added to the error code. The macro OTP_READ_ERROR_OFFSET (defined in
CCES or VisualDSP++ header files with a value of -285) is added to the
return value. The result is a bit mask. Figure 16-5 shows the definition of
the bit fields.

SECFW_ERROR_DROPPING_INT_FAILED -17 Could not drop interrupt level from
NMI.

SECFW_ERROR_FUSE_READ_FAILED -18 Error occurred while reading OTP
memory.

SECFW_ERROR_TGTVECT_NONALIGNED -19 Target vector is not 4 Byte aligned.

SECFW_ERROR_SECURE0_WRITE_FAILED -20 Write to Secure0 bit failed. Secure
State Machine might be blocking the
write because ISR was taken.

SECFW_ERROR_SM_NOT_ENTERED -21 Secure0 bit was written three times but
secure mode was still not entered.

SECFW_ERROR_BAD_TGT_ADDR -22 Target vector must be in L1 code space
or L2 (for ADSP-BF54x processor).

SECFW_ERROR_SF_TOO_BIG -23 Message (Secure function) too big to
fit at target location.

Table 16-2. List of Return Codes from SESR (Cont’d)

Return Codes Value Description

Programming Model

16-44 ADSP-BF54x Blackfin Processor Hardware Reference

Advanced Encryption Standard (AES) API

The ADSP-BF54x processor family of processors include a software imple-
mentation of the Advanced Encryption Standard (AES) as defined by the
FIPS 197 publication in L1 ROM. This implementation of the AES sym-
metric-cipher is C-callable.

The following describes the application programming interface (API) for
using AES including both data types and ROM routines.

ADI_AES_DATA Data Type

typedef struct ADI_AES_DATA

{

u32 *pKeyExpTmp;

u32 *pKR;

u32 *pState;

u32 *pIV;

u32 *pRcon;

u16 *pStateShiftExtract;

u16 *pInvStateShiftExtract;

u8 *pSBox;

u8 *pSBoxMixC;

u8 *pGFMpyTbl;

Figure 16-5. Bit Field Definition Return Value if OTP Error Occurred

0 0

OTP Read Error

Attempt to access invalid OTP space

Double bit error detected

Hamming Code Syndrome error

ECC firmware error

7 6 5 3 2 1

Where OTP error occurred
1 - Page 1 - low half
2 - Page 1 - high half
3 - Page 2 - how half
4 - Page 2 - high half
5 - Page 3 - low half
6 - Page 3 - high half

4

ADSP-BF54x Blackfin Processor Hardware Reference 16-45

Security

u8 *pInvSBox;

u8 *pInvSBoxMixC;

u32 *pStatePointers;

} ADI_AES_DATA;

The AES initialization routine, bfrom_AesInit(), when provided with a
reference to an object of type ADI_AES_DATA, will initialize some of the
buffers specified in the object. The caller of bfrom_AesInit() has to allo-
cate storage both for the object of type ADI_AES_DATA and for the buffers
specified in that object.

Some of the buffers specified in ADI_AES_DATA are necessary only for
encryption or only for decryption. Therefore, if only one of encryption or
decryption is used, fewer buffers from ADI_AES_DATA need to be allocated.

Table 16-3 shows the buffers specified by ADI_AES_DATA, their sizes, and
whether or not they are used in encryption and in decryption.

Table 16-3. Buffers Specified in ADI_AES_DATA

Buffer Encryption Decryption Size (in bytes)

pKeyExpTmp X X 32

pKR X X 16

pState X X 16

pIV X X 16

pRcon X X 64

pStateShiftExtract X X 32

pInvStateShiftExtract X X 32

pSBox X X 256

pSBoxMixC X 1024

pGFMpyTbl X 1024

pInvSBox X 256

Programming Model

16-46 ADSP-BF54x Blackfin Processor Hardware Reference

ADI_AES_KEYEXPANSION Data Type

typedef struct ADI_AES_KEYEXPANSION

{

u8 *pCipherKey;

u8 *pRoundKeys;

u32 udKeySize;

ADI_AES_DATA *pAesData;

} ADI_AES_KEYEXPANSION;

The AES key expansion routines, bfrom_AesKeyexp() and
bfrom_AesInvKeyexp(), when provided with a reference to an object of
type ADI_AES_KEYEXPANSION, will perform an AES key expansion on the
udKeySize-long key stored in pCipherKey, and will store the resulting AES
rounds keys in pRoundKeys. See Table 16-4 for elements in an object of
type.

pInvSBoxMixC X 1024

pStatePointers X X 64

Table 16-4. Elements in an Object of Type ADI_AES_KEYEXPANISION

pCipherKey Pointer to the cipher key buffer, which is expected to hold the 128, 192, or 256-bit
AES key.

pRoundKeys Pointer to a buffer allocated by the caller of the key expansion routines. This buffer
will hold the rounds keys generated by the key expansion routines. Buffer size must
be (4* Nb* (Nr +1) + 1) bytes, where Nb is the number of columns (32-bit words)
comprising the state and Nr is the number of rounds, as described in the AES spec-
ification. According to the specification, Nb is fixed at 4 and Nr can be 10, 12 or
14.

udKeySize The AES key size used (in multiple of 32-bit words). May take on the values 4, 6,
and 8 to specify keys of size 128, 192, and 256-bits respectively.

pAesData Pointer to an object of type ADI_AES_DATA, which is initialized through a call to
bfrom_AesInit()

Table 16-3. Buffers Specified in ADI_AES_DATA (Cont’d)

ADSP-BF54x Blackfin Processor Hardware Reference 16-47

Security

ADI_AES_CIPHER Data Type

typedef struct ADI_AES_CIPHER {

u8 *pInputData;

u8 *pOutputData;

u8 *pRoundKeys;

u32 udDataLength;

u8 *pInitVector;

u32 udKeySize;

u32 udMode;

ADI_AES_DATA *pAesData;

} ADI_AES_CIPHER;

The AES cipher routines, bfrom_AesCipher() and bfrom_AesInvCipher(),
when provided with a reference to an object of type ADI_AES_CIPHER, will
encrypt/decrypt the data in pInputData and will store the output in
pOutputData. See Table 16-5 for elements in an object of type.

Table 16-5. Elements in an Object of Type ADI_AES_CIPHER

pInputData Pointer to the input data buffer. In the case of encryption, this buffer should con-
tain plaintext. In the case of decryption, this buffer should contain ciphertext.

pOutputData Pointer to the output data buffer. After encryption, this buffer will contain cipher-
text. After decryption, this buffer will contain plaintext.

pRoundKeys Pointer to a buffer containing the AES round keys, which are generated by the key
expansion routines bfrom_AesKeyexp() and bfrom_AesInvKeyexp(). Buffer size
must be (4* Nb* (Nr +1) + 1) bytes, where Nb is the number of columns (32-bit
words) comprising the state and Nr is the number of rounds, as described in the
AES specification. According to the specification, Nb is fixed at 4 and Nr can be
10, 12 or 14.

udData-
Length

The length of the input data in multiples of blocks of size 128-bits (16-bytes)
each.

pInitVector Certain block cipher modes of operation require an initialization vector. When an
initialization vector is necessary, pInitVector points to the buffer containing the
initialization vector.

udKeySize The AES key size used (in multiples of 32-bit words). May take on the values 4, 6,
and 8 to specify keys of size 128, 192, and 256-bits respectively.

Programming Model

16-48 ADSP-BF54x Blackfin Processor Hardware Reference

bfrom_AesInit() ROM Routine

Entry address:
0xFFA1 4028

Arguments:
R0: Flags
R1: Pointer to an object of type ADI_AES_DATA

C prototype:
void bfrom_AesInit (u32 udFlags, ADI_AES_DATA *pAesData);

Return values:
AES_BOTH

AES_DECRYPTION

AES_ENCRYPTION

This function initializes the data buffers, which are referenced in
ADI_AES_DATA and allocated by the caller, for use by the AES module.

This function is called first before other calls to the AES module.

Certain buffers are only necessary for encryption or decryption. Therefore,
storage space may be saved by only allocating required buffers. The first
argument specifies whether the user wishes to only encrypt, to only
decrypt, or to both encrypt and decrypt. Table 16-3 lists the buffers refer-
enced by ADI_AES_DATA, their sizes, and whether or not they are necessary
for encryption and/or for decryption. If, for example, the user only needs

udMode udMode specifies the block cipher mode of operation. The supported modes are:
BLOCK_CIPHER_MODE_ECB for electronic codebook mode
BLOCK_CIPHER_MODE_CBC for cipher block chaining mode
BLOCK_CIPHER_MODE_OFB for output feedback mode
BLOCK_CIPHER_MODE_CTR for counter mode

pAesData Pointer to an object of type ADI_AES_DATA, which is initialized through a call
to bfrom_AesInit()

Table 16-5. Elements in an Object of Type ADI_AES_CIPHER (Cont’d)

ADSP-BF54x Blackfin Processor Hardware Reference 16-49

Security

to encrypt data (no decryption necessary), then the user can specify
AES_ENCRYPTION as the first argument to bfrom_AesInit(), thus eliminat-
ing the need to allocate the buffers pGFMpyTbl, pInvSBox, and
pInvSBoxMixC.

bfrom_AesKeyexp() ROM Routine

Entry address:
0xFFA1 402C

Arguments:
R0: Pointer to an object of type ADI_AES_KEYEXPANSION

C prototype:
s32 bfrom_AesKeyexp (ADI_AES_KEYEXPANSION *pAesKeyexpData);

Return values:
AES_SUCCESS

AES_INVALID_KEY_SIZE

This function produces the round keys for the forward cipher from the
cipher key. It should be called before executing bfrom_AesCipher().

bfrom_AesKeyexp() should be called every time a new cipher key is used.
If, for example, several data buffers need to be encrypted and all of them
need to be encrypted using the same key then only one call to
bfrom_AesKeyexp() is necessary. However, if each data buffer needs to be
encrypted using a different key, then bfrom_AesKeyexp() should be called
prior to calling bfrom_AesCipher() for each buffer encryption.

Notice that for the modes of operation BLOCK_CIPHER_MODE_OFB and
BLOCK_CIPHER_MODE_CTR, encryption and decryption are identical. There-
fore, in these modes bfrom_AesKeyexp() should be used instead of
bfrom_AesInvKeyexp() to produce the round keys for the inverse cipher.

Programming Model

16-50 ADSP-BF54x Blackfin Processor Hardware Reference

bfrom_AesInvKeyexp() ROM Routine

Entry address:
0xFFA1 4030

Arguments:
R0: Pointer to an object of type ADI_AES_KEYEXPANSION

C prototype:
s32 bfrom_AesInvKeyexp (ADI_AES_KEYEXPANSION *pAesKeyexpData);

Return values:
AES_SUCCESS

AES_INVALID_KEY_SIZE

This function produces the rounds keys for the inverse cipher from the
cipher key. It should be called before executing bfrom_AesInvCipher().

bfrom_AesInvKeyexp() should be called every time a new cipher key is
used. If, for example, several data buffers need to be decrypted and all of
them need to be decrypted using the same key then only one call to
bfrom_AesInvKeyexp() is necessary. However, if each data buffer needs to
be decrypted using a different key, then bfrom_AesInvKeyexp() should be
called prior to calling bfrom_AesInvCipher() for each buffer decryption.

Notice that for the modes of operation BLOCK_CIPHER_MODE_OFB and
BLOCK_CIPHER_MODE_CTR, encryption and decryption are identical. There-
fore, in these modes bfrom_AesKeyexp() should be used instead of
bfrom_AesInvKeyexp() to produce the round keys for the inverse cipher.

bfrom_AesCipher() ROM Routine

Entry address:
0xFFA1 4020

Arguments:
R0: Pointer to an object of type ADI_AES_CIPHER

ADSP-BF54x Blackfin Processor Hardware Reference 16-51

Security

C prototype:
s32 bfrom_AesCipher (ADI_AES_CIPHER *pAesCipherData);

Return values:
AES_SUCCESS

AES_INVALID_MODE

This function performs the AES forward cipher operation.

Notice that for the modes of operation BLOCK_CIPHER_MODE_OFB and
BLOCK_CIPHER_MODE_CTR, encryption and decryption are identical. There-
fore, in these modes bfrom_AesCipher() should be used instead of
bfrom_AesInvCipher() to perform the AES inverse cipher operation.

bfrom_AesInvCipher() ROM Routine

Entry address:
0xFFA1 4024

Arguments:
R0: Pointer to an object of type ADI_AES_CIPHER

C prototype:
s32 bfrom_AesInvCipher (ADI_AES_CIPHER *pAesCipherData);

Return values:
AES_SUCCESS

AES_INVALID_MODE

This function performs the AES inverse cipher operation.

Notice that for the modes of operation BLOCK_CIPHER_MODE_OFB and
BLOCK_CIPHER_MODE_CTR, encryption and decryption are identical. There-
fore, in these modes bfrom_AesCipher() should be used instead of
bfrom_AesInvCipher() to perform the AES inverse cipher operation.

Programming Model

16-52 ADSP-BF54x Blackfin Processor Hardware Reference

SECURE HASH ALGORITHM (SHA-1) API

The ADSP-BF54x processor processor includes a software implementation
of the Secure Hash Algorithm (SHA-1) in L1 ROM. This implementation
of the SHA-1 hash algorithm is C-callable.

The following describes the application programming interface (API) for
using SHA-1 including both data types and ROM routines.

ADI_SHA1 Data Type

typedef struct ADI_SHA1 {

u8 *pInputMessage;

u32 udMessageSize;

u8 *pOutputDigest;

u8 *pScratchBuffer;

} ADI_SHA1;

The SHA1 hash routine, bfrom_Sha1Hash, when provided with a reference
to an object of type ADI_SHA1, hashes the udMessageSize-long message
referenced by pInputMessage, and stores the hash value (also referred to as
message digest) in the buffer referenced by pOutputDigest. The elements
in an object of type ADI_SHA1, are shown in Table 16-6.

Table 16-6. Elements in an Object of Type ADI_SHA1

pInputMessage Pointer to the input buffer.

udMessageSize The size, in bytes, of the valid input data in pInputMessage.

pOutputDigest Pinter to the output data buffer. After hashing, this buffer will contain the digest
of the input message. The digest is 160-bits (SHA1_HASH_SIZE-bytes) long

pScratchBuffer Pointer to a data buffer of size, SHA1_SCRATCH_BUFFER_SIZE-bytes, used
by the SHA-1 module.

ADSP-BF54x Blackfin Processor Hardware Reference 16-53

Security

bfrom_Sha1Init ROM Routine

Entry address:
0xFFA1 4024

Arguments:
R0: Pointer to a buffer of size SHA1_SCRATCH_BUFFER_SIZE

C prototype:
void bfrom_Sha1Init (u8 *pScratchBuffer);

This function initializes some data elements in pScratchBuffer. It is
called first before making any calls to bfrom_Sha1Hash.

bfrom_Sha1Hash ROM Routine

Entry address:
0xFFA1 4024

Arguments:
R0: Pointer to an object of type ADI_SHA1

C prototype:
void bfrom_Sha1Hash (ADI_SHA1 *pSha1);

This function performs the hash operation.

ARC4 API

The ADSP-BF54x processor processor includes a software implementation
of the ARC4 algorithm in L1 ROM. This implementation of ARC4 is
C-callable.

The following describes the application programming interface (API) for
using ARC4 including both data types and ROM routines.

Programming Model

16-54 ADSP-BF54x Blackfin Processor Hardware Reference

ADI_ARC4_KEY Data Type

typedef struct ADI_ARC4_KEY {

 u32 *pSBox;

 u32 *pKey;

 u32 udKeyLength;

} ADI_ARC4_KEY;

See Table 16-7 for elements in an object of type ADI_ARC4_KEY.

ADI_ARC4_DATA Data Type

typedef struct ADI_ARC4_DATA {

 u32 *pSBox;

 u32 *pData;

 u32 udDataLength;

} ADI_ARC4_DATA;

See Table 16-8 for elements in an object of type ADI_ARC4_DATA.

Table 16-7. Elements in an Object of Type ADI_ARC4_KEY

pSBox Pointer to an ARC4 substitution box.

pKey A pointer to a buffer containing the ARC4 key.

udKeyLength The size of the ARC4 key specified in pKey.

Table 16-8. Elements in an Object of Type ADI_ARC4_DATA

pSBox Pointer to an ARC4 substitution box, which has already been initialized through a
call to bfrom_Arc4Init().

pData A pointer to a buffer containing the data to be encrypted or decrypted. Notice
that the ARC4 module performs encryption and decryption in-place. Therefore,
after calling the ARC4 cipher function, bfrom_Arc4Cipher(), this buffer will con-
tain the encrypted or decrypted output.

udDataLength The size of the data pointed to by pData.

ADSP-BF54x Blackfin Processor Hardware Reference 16-55

Security

bfrom_Arc4Init ROM Routine

Entry address:
0xFFA1 4018

Arguments:
R0: Pointer to an object of type ADI_ARC4_KEY

C prototype:
void bfrom_Arc4Init (ADI_ARC4_KEY *pArc4Key)

The ARC4 initialization routine, bfrom_Arc4Init() initializes the buffer
pointed to by pSBox based on the key specified in pKey and udKeyLength.

bfrom_Arc4Init() should be called first before executing
bfrom_Arc4Cipher().

bfrom_Arc4Cipher ROM Routine

Entry address:
0xFFA1 401C

Arguments:
R0: Pointer to an object of type ADI_ARC4_DATA

C prototype:
void bfrom_Arc4Cipher (ADI_ARC4_DATA *pArc4Data)

The ARC4 encryption/decryption routine, bfrom_Arc4Cipher(),
encrypts/decrypts the data specified in pData and udDataLength using the
substitution box specified in pSBox.

bfrom_Arc4Cipher() should be called after the substitution box has been
initialized through a call to bfrom_Arc4Init().

Security Registers

16-56 ADSP-BF54x Blackfin Processor Hardware Reference

Security Registers
There are three registers which provide information that can be used dur-
ing security mode control and to return status of the Secure State Machine
states. These registers require privileged access depending on the operating
state of the processor.

Table 16-9. Security Registers

Memory
Mapped
Address

Register Size
(Bits)

Description

0xFFC0
4320

SECURE_SYSSWT 32 “Secured System Switches (SECURE_SYSSWT)
Register” on page 16-57

0xFFC0
4324

SECURE_CONTRO
L

16 “Secure Control (SECURE_CONTROL) Regis-
ter” on page 16-64

0xFFC0
4328

SECURE_STATUS 16 “Secure Status (SECURE_STATUS) Register” on
page 16-67

ADSP-BF54x Blackfin Processor Hardware Reference 16-57

Security

Secured System Switches (SECURE_SYSSWT)
Register

Secured system switches control hardware that would otherwise allow a
threat of attack to a secured system. Hardware is controlled voluntarily
and involuntarily as follows:.

• During Open Mode the switches are involuntarily set with all con-
trols off (unrestricted access) with exception of access to OTP
protected “secrets” area. OTP secrets are always protected and can
only be accessible upon entry into Secure Mode.

• During Secure Entry Mode all switches are initially set with all
controls on (restricted access). Two exceptions are the OTP secrets
control (OTPSEN bit) is not accessible so access to the secrets OTP
area remains restricted and the RSTDABL bit remains deactivated
(External Reset is allowed).

• During Secured Mode operation all switches are voluntary (ini-
tially set) and under the control of authenticated code. Therefore
restricted access controls can be reconfigured by authenticated user
code. This includes the activation of Reset Disable (RSTDABL bit).

The register, shown in Figure 16-6 on page 16-58 and Figure 16-7 on
page 16-59, is 32-bits wide and requires 32-bit access. Limited write
access to a few bits is allowed in Secure Entry mode, and full write access
to all bits is allowed in Secure mode. No write access is allowed in Open
Mode.

Security Registers

16-58 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 16-6. Secure System Switch Register, Bits 15:0

00000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EMUDABL
0 - JTAG instructions executed
1 - JTAG instructions ignored

RSTDABL
0 - External Resets generated
1 - External Resets redirected to NMI
pin

L1IDABL
000 - All DMA accesses allowed
001 - 1K byte of memory restricted
non-core access
010 - 2K byte of memory restricted
non-core access
011 - 4K byte of memory restricted
non-core access
100 - 8K byte of memory restricted
non-core access
101 - 16K byte of memory restricted
non-core access
110 - 32K byte of memory restricted
DMA access
111 - Invalid (32K restricted access)

L1DADABL
000 - All DMA accesses allowed
001 - 1K byte of memory has
restricted non-core access
010 - 2K byte of memory has
restricted non-core access
011 - 4K byte of memory has
restricted non-core access
100 - 8K byte of memory has
restricted non-core access
101 - 16K byte of memory has
restricted non-core access
110 - 32K byte of memory has
restricted DMA access
111 - Reserved

0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Secure System Switch Register (SECURE_SYSSWT) Bits 15:0

0xFFC0 4320

OTPSEN
0 - Disable
1 - Enable

EMUOVR
0 - EMUOVR bit is
set
1 - EMUOVR bit is
cleared

RESERVED

DMA1OVR
0 - DMA1 accesses restricted
by Memory Disable settings
1 - Unrestricted DMA1
accesses in all memory area

DMA0OVR
0 - DMA0 accesses restricted
by Memory Disable settings
1 - Unrestricted DMA0
accesses in all memory areas

L1DBDABL
000 - All DMA accesses
allowed
001 - 1K byte of memory has
restricted non-core access
010 - 2K byte of memory has
restricted non-core access
011 - 4K byte of memory has
restricted non-core access
100 - 8K byte of memory has
restricted non-core access
101 - 16K byte of memory has
restricted non-core access
110 - 32K byte of memory has
restricted DMA access
111 - Reserved

ADSP-BF54x Blackfin Processor Hardware Reference 16-59

Security

Figure 16-7. Secure System Switch Register, Bits 31:16

Table 16-10. Secure System Switch Register

Bit
Position

Bit Name Bit Description

Reset = 0x0000
Secured Entry = 0x0007 04D9
Secured Mode = 0x0007 04DB

0 EMUDABL Emulation Disable.
Upon Secured Entry the EMUDABL setting is based on the previous state of
EMUOVR. Upon re-entering Open Mode, EMUDABL is cleared. This bit is
always read accessible. This bit is write accessible only in Secured Mode.
0 - Analog Devices JTAG emulation instructions are recognized and exe-
cuted. Once this bit is cleared while in Secured Mode it will not be set
upon Secured Entry. This condition will remain until reset, at which time
it is cleared. This feature is used in security debug.
1 - Analog Devices JTAG emulation instructions are ignored. Standard
emulation commands such as bypass are allowed.

0000 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

L2DABL [18:16]
000 - All DMA accesses allowed
001 - 1 Kbyte of memory has
restricted non-core access
010 - 2 Kbyte of memory has
restricted non-core access
011 - 4 Kbyte of memory has
restricted non-core access
100 - 8 Kbyte of memory has
restricted non-core access
101 - 16 Kbyte of memory has
restricted non-core access
110 - 32 Kbyte of memory has
restricted DMA access
111 - 64 Kbyte of memory has
restricted DMA access

0 0 0 0 0 0 0 0 0 0 Reset = 0x00000xFFC04320

Secure System Switch Register (SECURE_SYSSWT) Bits 31:16

0

Reserved

Security Registers

16-60 ADSP-BF54x Blackfin Processor Hardware Reference

1 RSTDABL Reset Disable.
This bit is not effected upon Secured Entry. This bit is set upon entering
Secured Mode. Upon re-entering Open Mode, RSTDABL is cleared. This
bit is always read accessible. This bit is write accessible only in Secured
Mode.
0 - External Resets are generated and serviced normally.
1 - External Resets are redirected to the NMI pin. This avoids circumvent-
ing memory clean operations.

4:2 L1IDABL L1 Instruction Memory Disable.
Upon Secured Entry L1IDABL is set to 0x6. Upon re-entering Unsecured
Mode, L1IDABL is cleared. These bits are always read accessible. These
bits are write accessible only in Secured Mode. In the event a DMA access
is performed to a restricted memory area a DMA memory access error will
occur resulting in a DMA_ERR interrupt and a clearing of DMA_RUN.
000 - All DMA accesses are allowed to L1 Instruction areas.
001 - 1K byte of memory (0xFFA0 0000 - 0xFFA0 03FF) has restricted
non core access
010 - 2K byte of memory (0xFFA0 0000 - 0xFFA0 07FF) has restricted
non core access
011 - 4K byte of memory (0xFFA0 0000 - 0xFFA0 0FFF) has restricted
non core access
100 - 8K byte of memory (0xFFA0 0000 - 0xFFA0 1FFF) has restricted
non core access
101 - 16K byte of memory (0xFFA0 0000 - 0xFFA0 3FFF) has restricted
non core access
110 - 32K byte of memory (0xFFA0 0000 - 0xFFA0 7FFF) has restricted
DMA access. This is the initial setting upon entering Secured Entry.
111 - Reserved

Table 16-10. Secure System Switch Register (Cont’d)

Bit
Position

Bit Name Bit Description

ADSP-BF54x Blackfin Processor Hardware Reference 16-61

Security

7:5 L1DADABL L1 Data Bank A Memory Disable.
Upon Secured Entry L1DADABL is set to 0x6. Upon re-entering Open
Mode, L1DADABL is cleared. These bits are always read accessible. These
bits are write accessible only in Secured Mode. In the event a DMA access
is performed to a restricted memory area a DMA memory access error will
occur resulting in a DMA_ERR interrupt and a clearing of DMA_RUN.
000 - All DMA accesses are allowed to L1 data bank A areas.
001 - 1K byte of memory (0xFF80 0000 - 0xFF80 03FF) has restricted
non core access
010 - 2K byte of memory (0xFF80 0000 - 0xFF80 07FF) has restricted
non core access
011 - 4K byte of memory (0xFF80 0000 - 0xFF80 0FFF) has restricted
non core access
100 - 8K byte of memory (0xFF80 0000 - 0xFF80 1FFF) has restricted
non core access
101 - 16K byte of memory (0xFF80 0000 - 0xFF80 3FFF) has restricted
non core access
110 - 32K byte of memory (0xFF80 0000 - 0xFF80 7FFF) has restricted
DMA access. This is the initial setting upon entering Secured Entry.
111 - Reserved

Table 16-10. Secure System Switch Register (Cont’d)

Bit
Position

Bit Name Bit Description

Security Registers

16-62 ADSP-BF54x Blackfin Processor Hardware Reference

10:8 L1DBDABL L1 Data Bank B Memory Disable.
Upon Secured Entry L1DBDABL is set to 0x4 giving L1 Data Bank B 8
Kbyte of non core restricted access. Upon re-entering Open Mode,
L1DBDABL is cleared. These bits are always read accessible. These bits are
write accessible only in Secured Mode. In the event a DMA access is per-
formed to a restricted memory area a DMA memory access error will
occur resulting in a DMA_ERR interrupt and a clearing of DMA_RUN.
000 - All DMA accesses are allowed to L1 data bank B areas.
001 - 1K byte of memory (0xFF90 0000 - 0xFF90 03FF) has restricted
non core access
010 - 2K byte of memory (0xFF90 0000 - 0xFF90 07FF) has restricted
non core access
011 - 4K byte of memory (0xFF90 0000 - 0xFF90 0FFF) has restricted
non core access
100 - 8K byte of memory (0xFF90 0000 - 0xFF90 1FFF) has restricted
non core access. This is the initial setting upon entering Secured Entry.
101 - 16K byte of memory (0xFF90 0000 - 0xFF90 3FFF) has restricted
non core access
110 - 32K byte of memory (0xFF90 0000 - 0xFF90 7FFF) has restricted
DMA access.
111 - Reserved

11 DMA0OVR DMA0 Memory Access Override
Entering Secured Entry or Secured Mode does not effect this bit. Upon
re-entering Open Mode, DMA0OVR is cleared. This bit is always read acces-
sible. This bit is write accessible in both Secured Entry and Secured Mode.
Controls DMA0 access to L1 Instruction, L1 Data and memory other
than L1 regions. When clear access restrictions are based on Memory Dis-
able settings within this register.
0 - DMA0 accesses are restricted based on Memory Disable settings.
1 - Unrestricted DMA0 accesses are allowed to all memory areas.

Table 16-10. Secure System Switch Register (Cont’d)

Bit
Position

Bit Name Bit Description

ADSP-BF54x Blackfin Processor Hardware Reference 16-63

Security

12 DMA1OVR DMA1 Memory Access Override
Entering Secured Entry or Secured Mode does not effect this bit. Upon
re-entering Open Mode, DMA1OVR is cleared. This bit is always read acces-
sible. This bit is write accessible in both Secured Entry and Secured Mode.
Controls DMA1 access to L1 Instruction, L1 Data and memory other
than L1 regions. When clear access restrictions are based on Memory Dis-
able settings within this register.
0 - DMA1 accesses are restricted based on Memory Disable settings.
1 - Unrestricted DMA1 accesses are allowed to all memory areas.

13 RESERVED Reserved bit. This reserved bit always returns a “0” value on a read access.
Writing this bit with any value has no effect.

14 EMUOVR Emulation Override
This bit is always read accessible. This bit may be written with a 1 in
secured mode only.
This bit can be cleared in any mode (Unsecured
mode, Secured Entry and Secured mode). Controls the value of EMUDABL
upon Secured Entry.
0 - Upon Secured Entry the EMUDABL bit is set.
1 - Upon Secured Entry the EMUBABL bit is cleared. This bit can only be
set when EMUDABL (bit-0) is written with a “0” while this bit (bit-14) is
simultaneously written with a 1.

Table 16-10. Secure System Switch Register (Cont’d)

Bit
Position

Bit Name Bit Description

Security Registers

16-64 ADSP-BF54x Blackfin Processor Hardware Reference

15 OTPSEN OTP Secrets Enable.
This bit can be read in all modes but is write accessible in Secured Mode
only.
0 - Read and Programming access of the “secured” OTP Fuse area is
restricted. Accesses will result in an access error (FERROR)
1 - Read and Programming access of the “secured” OTP Fuse area is
allowed. If the corresponding program protection bit for an access is set, a
program access is protected regardless of this bit's setting.

18:16 L2DABL L2 Disable.
Upon Secured Entry L2DABL is set to 0x7. Upon re-entering Open Mode,
L2DABL is cleared. These bits are always read accessible. These bits are
write accessible only in Secured Mode. In the event a DMA access is per-
formed to a restricted memory area a DMA memory access error will
occur resulting in a DMA_ERR interrupt and a clearing of DMA_RUN.
000 - All DMA accesses are allowed to L2.
001 - 1K byte of memory (0xFEB0 0000 - 0xFEB0 03FF) has restricted
non core access
010 - 2K byte of memory (0xFEB0 0000 - 0xFEB0 07FF) has restricted
non core access
011 - 4K byte of memory (0xFEB0 0000 - 0xFEB0 0FFF) has restricted
non core access
100 - 8K byte of memory (0xFEB0 0000 - 0xFEB0 1FFF) has restricted
non core access
101 - 16K byte of memory (0xFEB0 0000 - 0xFEB0 3FFF) has restricted
non core access
110 - 32K byte of memory (0xFEB0 0000 - 0xFEB0 7FFF) has restricted
non core access
111 - 64K byte of memory (0xFEB0 0000 - 0xFEB0 FFFF) has restricted
DMA access. This is the initial setting upon entering Secured Entry.

Table 16-10. Secure System Switch Register (Cont’d)

Bit
Position

Bit Name Bit Description

ADSP-BF54x Blackfin Processor Hardware Reference 16-65

Security

Secure Control (SECURE_CONTROL) Register
The SECURE_CONTROL register is used during Secure Entry Mode authenti-
cation. This register is used to establish Secure Mode transition and can be
used at any time to exit from Secure Mode. The register, shown in
Figure 16-8, is 16-bits wide and requires 16-bit access.

Figure 16-8. Secure Control Register

0000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SECURE0
This is a write only bit.
0 - All SECURE bits are cleared.
1 - Initial 1 sets SECURE1 bit. Next 1
sets SECURE2 bit. Next 1 sets
SECUE2 bit.

SECURE1
This is a read-only bit.
0 - SECURE0 has not been written
with a 1
1 - SECURE0 is written with a 1

SECURE2
This is a read-only bit.
0 - SECURE0 has not been written
with a 1 while SECURE1 is set.
1 - SECURE0 is written with a 1 for a
second time

SECURE3
This is a read-only bit.
0 - SECURE0 has not been written
with a 1 while SECURE2 is set.
1 - SECURE0 is written with a 1 for a
third time

0 0 0 0 0 0 0 0 0 0 Reset = 0x00000xFFC04324

Secure Control Register (SECURE_CONTROL)

0

Reserved

Security Registers

16-66 ADSP-BF54x Blackfin Processor Hardware Reference

SECURE0 bit is user accessible and is used to exit from Secure Mode. Bits
SECURE1, SECURE2, and SECURE3 are not user accessible and are accessed
only by the firmware during the digital signature validation process.

Table 16-11. Secure Control Register

Bit
Position

Bit Name Bit Description

Reset = 0x0000

0 SECURE0 SECURE 0
This is a write only bit. A read always returns “0”. A 1 value can only be writ-
ten to SECURE0 when in Secured Entry. The purpose of this control bit is
to require 3 successive writes with a value of 1 to SECURE0 in order to enter
Secured Mode.
0 - When written with a “0” value, all SECURE bits within this register are
cleared and Open Mode is entered. All SYSSWT bits are cleared with the
exception of EMUOVR. If EMUOVR had been set by the user, it will
remain set (until RESET is asserted or until it is written with a “0”).
1 - Initially when written with a 1 value SECURE1 is set. With a subsequent
1 written SECURE2 is set. A subsequent 1 written will set SECURE3. Upon
a set of SECURE3 Secured Mode is entered.

1 SECURE1 SECURE 1
This is a read-only bit and indicates a successful write of SECURE0 with a
data value of 1
0 - SECURE0 has not been written with a 1 value
1 - SECURE0 is written with a 1 value

2 SECURE2 SECURE 2
This is a read-only bit and indicates two successful writes of SECURE0 with
a data value of 1 has occurred
0 - SECURE0 has not been written with a 1 value while SECURE1 was set.
1 - SECURE0 is written with a 1 value for a second time.

3 SECURE3 SECURE 3
This is a read-only bit and indicates three successful writes of SECURE0
with a data value of 1 has occurred.
0 - SECURE0 has not been written with a 1 value while SECURE2 was set
1 - SECURE0 is written with a 1 value for a third time. The part is currently
in Secured Mode and the SYSSWT register is writable by Authenticated
code.

ADSP-BF54x Blackfin Processor Hardware Reference 16-67

Security

Secure Status (SECURE_STATUS) Register
The SECURE_STATUS register provides information about the current secure
state. This information can be used during security mode control as well
as understanding why an authentication attempt has failed. The register,
shown in Figure 16-9, is 16-bits wide and requires 16-bit access.

Figure 16-9. Secure Status Register

0000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SECMODE
00 - Open Mode
01 - Secured Entry
10 - Secured Mode
11 - Illegal

NMI
0 - Currently NMI is not detected
1 - Currently NMI is detected

AFVALID
0 - Authentication has not begun
properly or is interrupted
1 - Authentication is valid

AFEXIT
0 - No proper exit is made
1 - An improper exit is made

0 0 0 0 0 0 0 0 0 0 Reset = 0x00000xFFC04328

Secure Status Register (SECURE_STATUS)

0

Reserved
SECSTAT
000 - Reset value
001 - Reserved
010 - Reserved
011 - Reserved
100 - Reserved
101 - Reserved
110 - Reserved
111 - Reserved

Security Registers

16-68 ADSP-BF54x Blackfin Processor Hardware Reference

Table 16-12. Secure Status Register

Bit
Position

Bit Name Bit Description

Reset = 0x0000

1:0 SECMODE Secured Mode Control State
This are read-only bits that reflects the current Secure Mode Control's state.
00 - Open Mode
01 - Secured Entry
10 - Secured Mode
11 - Illegal

2 NMI This is a read-only bit that reflects the detection of NMI.
0 - Currently NMI is not detected.
1 - Currently NMI is detected.

3 AFVALID Authentication Firmware Valid
This is a read-only bit that reflects the state of the Real Time Trace logic. If
execution of authentication has begun properly and has had un interrupted
operation the authentication is considered valid. A valid authentication is
required for Secured Entry and Secured Mode operation.
0 - Authentication has not begun properly or is interrupted.
1 - Authentication is valid and is progressing properly and uninterrupted.

4 AFEXIT Authentication Firmware Exit
This is a write one to clear status bit. In the event authentication has begun
properly but has had an improper exit before completion, this bit is set. This
can only occur on an exit from Secured Entry back to Open Mode.
0 - No improper exit is made while executing authentication firmware.
1 - An improper exit from authentication firmware is made.

7:5 SECSTAT Secure Status
These are some read write bits which is defined later. These are intended to
pass a status back to the handler in the event an authentication has failed.
000 - Reset value
001 - Reserved
010 - Reserved
011 - Reserved
100 - Reserved
101 - Reserved
110 - Reserved
111 - Reserved

ADSP-BF54x Blackfin Processor Hardware Reference 16-69

Security

 Authentication Firmware Valid (AFVALID) is an input to the Secure
State Machine and not an output control/status. AFVALID goes
active based on reaching the correct program counter address.

Security Registers

16-70 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 17-1

17 SYSTEM RESET AND
BOOTING

This document contains material that is subject to change without notice.
The content of the boot ROM as well as hardware behavior may change
across silicon revisions. See the anomaly list for differences between silicon
revisions.

Overview
When the RESET input signal releases, the processor starts fetching and
executing instructions from the on-chip boot ROM at address
0xEF00 0000.

The internal boot ROM includes a small boot kernel that loads applica-
tion data from an external memory or host device. The application data is
expected to be available in a well-defined format called the boot stream. A
boot stream consists of multiple blocks of data and special commands that
instruct the boot kernel how to initialize on-chip L1 and L2 SRAM mem-
ories as well as off-chip volatile memories.

The boot kernel processes the boot stream block-by-block until it is
instructed by a special command to terminate the procedure and jump to
the application’s programmable start address, which traditionally is at
0xFFA0 0000 in on-chip L1 memory. This process is called “booting.”

Overview

17-2 ADSP-BF54x Blackfin Processor Hardware Reference

The processor features four dedicated input pins BMODE[3:0] that select
the booting mode. The boot kernel evaluates the BMODE pins and performs
booting from respective sources. Table 17-1 describes the modes of the
BMODE pins.

Table 17-1. Booting Modes

BMODE[3:0] Boot Source Description

0000 No boot – idle The processor does not boot. Rather, the
boot kernel executes an IDLE instruction.

0001 Boot from 8-bit or 16-bit
external flash memory

The kernel boots from address
0x2000 0000 in asynchronous memory
bank 0. The first byte of the boot stream
contains further instructions whether the
memory is eight or 16 bits wide.

0010 Boot from 16-bit
asynchronous FIFO

By using the handshaked memory DMA
(HMDMA1) feature through the DMAR1
input, the kernel boots from address
0x2030 0000 in asynchronous memory
bank 3.

0011 Boot from serial SPI
memory

After an initial device detection routine,
the kernel boots from either 8-bit, 16-bit,
24-bit or 32-bit addressable SPI flash or
EEPROM memory that connects to
SPI0_SEL1.

0100 Boot from SPI host In this slave mode, the kernel expects the
boot stream to be applied to SPI0 by an
external host device.

0101 Boot from serial TWI
memory

The kernel boots from TWI memory con-
nected to TWI0. Memory is expected to
respond to the unique slave identifier of
0xA0.

0110 Boot from TWI host In this slave mode, the kernel expects the
boot stream to be applied to TWI0 by an
external host device. The Blackfin proces-
sor uses the slave identifier 0x5F.

ADSP-BF54x Blackfin Processor Hardware Reference 17-3

System Reset and Booting

0111 Boot from UART1 host In this slave mode, the kernel expects the
boot stream to be applied to UART1 by an
external host device. The UART1RTS out-
put is active and controlled by hardware.
Prior to providing the boot stream, the
host device is expected to send a 0x40
(ASCII '@') character that is examined by
the kernel to adjust the bit rate.

1000 Reserved

1001 Reserved

1010 Boot from SDRAM memory1 This mode provides a quick warm boot
option. It requires the SDRAM controller
to be programmed by the preboot routine
based on OTP settings. The kernel starts
booting from address 0x0000 0010.

1011 Boot from on-chip OTP memory This is the only stand-alone booting mode.
It boots from the on-chip serial OTP
memory. By default, the boot stream is
expected to reside from OTP page 0x40
on. The start page can be altered by pro-
gramming the OTP_START_PAGE field in
OTP page PBS01H.

1100 Reserved

1101 Boot from 8- and 16-bit
NAND flash.

The boot kernel automatically detects
whether an 8-bit small-page device or an
8-/16-bit large-page device is connected to
the NFC. The NAND flash may option-
ally contain further initialization code that
enables some more advanced boot options.

Table 17-1. Booting Modes (Cont’d)

BMODE[3:0] Boot Source Description

Reset and Power-up

17-4 ADSP-BF54x Blackfin Processor Hardware Reference

Reset and Power-up
There is a subroutine in the boot kernel known as preboot, which is exe-
cuted prior to the boot mode being processed. This preboot routine can
customize default values of MMR registers, such as the PLL and SDRAM
controller registers. Furthermore, the SPI and TWI master modes can be
customized. The preboot behavior is controlled through OTP
programming.

To enable booting from volatile memories such as SDRAM, the SDRAM
controller must be programmed before data can be loaded into the mem-
ory. Either the preboot or the initialization code mechanism can be used
for this purpose.

Table 17-2 describes the six types of resets.

 Each type resets the core except for the System Software reset.

1110 Boot from 16-bit Host DMA The kernel initializes the Host DMA unit
to 16-bit ACK mode. Boot stream parsing is
up to the host device. An HIRQ command
causes the kernel to issue a CALL to the
address 0xFFA0 0000.

1111 Boot from 8-bit Host DMA The kernel initializes the Host DMA unit
8-bit INT mode. Boot stream parsing is up
to the host device. An HIRQ command
causes the kernel to issue a CALL to the
address 0xFFA0 0000.

1 This chapter uses the term SDRAM as a synonym for off-chip synchronous dynamic memory. For
the ADSP-BF54x products, SDRAM memory complies with either the DDR1 SDRAM or the
Mobile DDR1 SDRAM standard.

Table 17-1. Booting Modes (Cont’d)

BMODE[3:0] Boot Source Description

ADSP-BF54x Blackfin Processor Hardware Reference 17-5

System Reset and Booting

Table 17-2. Resets

Reset Source Result

Hardware
reset

The RESET pin causes a hardware
reset.

Resets both the core and the peripherals,
including the dynamic power management
controller (DPMC).
Resets bits [15:4] of the SYSCR register. For
more information, see “System Reset Con-
figuration (SYSCR) Register” on
page 17-105.

Wake up
from hiber-
nate
state

Wake-up event as enabled in the
VR_CTL register and reported by
the PLL_STAT register.

Behaves as hardware reset except the WURE-
SET bit in the SYSCR register is set. Booting
can be performed conditionally on this
event.

System
software
reset

Calling the bfrom_SysControl()
routine with the
SYSCTRL_SYSRESET option trig-
gers a system reset.

Resets only the peripherals, excluding the
RTC (real time clock) block and most of
the DPMC. The system software reset clears
bits [15:13] and bits [11:4] of the SYSCR
register, but not the WURESET bit. The core
is not reset and a boot sequence is not trig-
gered. Sequencing continues at the instruc-
tion after bfrom_SysControl() returns.

Watchdog
timer
reset

Programming the watchdog timer
causes a watchdog timer reset.

Resets both the core and the peripherals,
excluding the RTC block and most of the
DPMC. (Because of the partial reset to the
DPMC, the watchdog timer reset is not
functional when the processor is in Sleep or
Deep Sleep modes.)
The SWRST or the SYSCR register can be
read to determine whether the reset source
was the watchdog timer.

Reset and Power-up

17-6 ADSP-BF54x Blackfin Processor Hardware Reference

Hardware Reset
The processor chip reset is an asynchronous reset event. The RESET input
pin must be deasserted after a specified asserted hold time to perform a
hardware reset. For more information, see ADSP-BF542/544/547/548/549
Embedded Processor Data Sheet.

A hardware-initiated reset results in a system-wide reset that includes both
core and peripherals. After the RESET pin is deasserted, the processor
ensures that all asynchronous peripherals have recognized and completed a
reset. After the reset, the processor transitions into the boot mode
sequence configured by the state of the BMODE pins.

The BMODE pins are dedicated mode control pins. No other functions are
shared with these pins, and they may be permanently strapped by tying
them directly to either VDDEXT or GND. The pins and the corresponding
bits in the SYSCR register configure the boot mode that is employed after
hardware reset or system software reset. See Blackfin Processor Program-
ming Reference for further information.

Core
double-fault
reset

A core double fault occurs when an
exception happens while the excep-
tion handler is executing. If the
core enters a double-fault state, a
reset can be caused by unmasking
the DOUBLE_FAULT bit in the
SWRST register.

Resets both the core and the peripherals,
excluding the RTC block and most of the
DPMC. The SWRST or SYSCR registers can
be read to determine whether the reset
source was a core double-fault.

Software reset This reset is caused by executing a
RAISE 1 instruction or by setting
the software reset (SYSRST) bit in
the core debug control register
(DBGCTL) through emulation soft-
ware through the JTAG port. The
DBGCTL register is not visible to the
memory map.

Program executions vector to the
0xEF00 0000 address. The boot code exe-
cutes an immediate system reset to ensure
system consistency.

Table 17-2. Resets (Cont’d)

Reset Source Result

ADSP-BF54x Blackfin Processor Hardware Reference 17-7

System Reset and Booting

Software Resets
A software reset may be initiated in three ways.

• By the watchdog timer, if appropriately configured

• Calling the bfrom_SysControl() API function residing in the
on-chip ROM. For further information, see Chapter 18, “Dynamic
Power Management”.

• By the RAISE 1 instruction

The watchdog timer resets both the core and the peripherals, as long as the
processor is in Active or Full-On mode. A system software reset results in a
reset of the peripherals without resetting the core and without initiating a
booting sequence.

 In order to perform a system reset, the bfrom_SysControl() rou-
tine must be called while executing from L1 memory (either as
cache or as SRAM). When L1 instruction memory is configured as
cache, make sure the system reset sequence is read into the cache.

After either the watchdog or system software reset is initiated, the proces-
sor ensures that all asynchronous peripherals have recognized and
completed a reset.

For a reset generated by formatting the watchdog timer, the processor
transitions into the boot mode sequence. The boot mode is configured by
the state of the BMODE bit field in the SYSCR register.

A software reset is initiated by executing the RAISE 1 instruction or setting
the software reset (SYSRST) bit in the core debug control register (DBGCTL)
(DBGCTL is not visible to the memory map) through emulation software
through the JTAG port.

A software reset only affects the state of the core. The boot kernel immedi-
ately issues a system reset to keep consistency with the system domain.

Reset and Power-up

17-8 ADSP-BF54x Blackfin Processor Hardware Reference

Reset Vector
When reset releases, the processor starts fetching and executing instruc-
tions from address 0xEF00 0000. This is the address where the on-chip
boot ROM resides.

On a hardware reset, the boot kernel initializes the EVT1 register to
0xFFA0 0000. When the booting process completes, the boot kernel
jumps to the location provided by the EVT1 vector register. With the
exception of the HOSTDP boot modes, the content of the EVT1 register is
overwritten by the TARGET ADDRESS field of the first block of the applied
boot stream. If the BCODE field of the SYSCR register is set to 1 (no boot
option), the EVT1 register is not modified by the boot kernel on software
resets. Therefore, programs can control the reset vector for software resets
through the EVT1 register. This process is illustrated by the flow chart in
Figure 17-1.

The content of the EVT1 register may be undefined in emulator sessions.

ADSP-BF54x Blackfin Processor Hardware Reference 17-9

System Reset and Booting

Figure 17-1. Global Boot Flow

START at
0xEF00 0000

Issue System Reset
(SWRST = 0x0007)

RESET

ELSE

HARDWARE

PREBOOT

BCODE

JUMP TO EVT1 VECTOR

BCODE_NOBOOT

PREPARE
ALLBOOT

(BFLAG_WAKEUP = 0)

PREPARE
QUICKBOOT

(BFLAG_WAKEUP = 1)

WAKEUP

BCODE
BCODE_QUICKBOOTELSE

ELSE
BOOT KERNEL

Reset and Power-up

17-10 ADSP-BF54x Blackfin Processor Hardware Reference

Servicing Reset Interrupts
The processor services a reset event like other interrupts. The reset inter-
rupt has top priority. Only emulation events have higher priority. When
coming out of reset, the processor is in supervisor mode and has full access
to all system resources. The boot kernel can be seen as part of the reset ser-
vice routine. It runs at the top interrupt priority level.

Even when the boot process has finished and the boot kernel passes con-
trol to the user application, the processor is still in the reset interrupt. To
enter user mode, the reset service routine must initialize the RETI register
and terminate with an RTI instruction.

For a programming example, see “System Reset” on page 17-145.

Listing 17-1 and Listing 17-2 on page 17-146 show code examples that
handle the reset event. See Blackfin Processor Programming Reference for
details on user and supervisor modes.

Systems that do not work in an operating system environment may not
enter user mode. Typically, the interrupt level needs to be degraded down
to IVG15. Listing 17-3 and Listing 17-4 on page 17-147 show how this is
accomplished.

 Since the boot kernel is running at reset interrupt priority, NMI
events, hardware errors and exceptions are not serviced at boot
time. As soon as the reset service routine returns, the processor can
service the events that occurred during the boot sequence. It is rec-
ommended that programs install NMI, hardware error, and
exception handlers before leaving the reset service routine. This
includes proper initialization of the respective event vector registers
EVTx.

ADSP-BF54x Blackfin Processor Hardware Reference 17-11

System Reset and Booting

Preboot
After reset, the boot kernel residing in the on-chip boot ROM does not
immediately start processing the boot stream. First it calls a subroutine
called preboot, as shown in Figure 17-2 on page 17-12 and Figure 17-3
on page 17-13. The preboot routine customizes the default values of sev-
eral system MMR registers based on user-configurable OTP (one-time
programmable) memory. The following modules can be customized in
this way.

• PLL and voltage regulator settings

• SDRAM controller settings

• Asynchronous EBIU settings

Some OTP bits customize the boot process:

• Bit rate of SPI and TWI master boot modes

• TWI master boot addressing scheme

• Activation of SPI fast read mode

• Boot host wait (HWAIT) signal

Further OTP bits let the user disable certain features of the processor:

• Individual boot modes (for security reasons)

Finally, certain bits are already preset in the factory:

• USB voltage trim

• Individual boot modes

Preboot

17-12 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 17-2. Preboot Flow 1 of 2

RESET

OTP_SET_VR

 SYSCTRL_WRITE = 1

 CALL SysControl ()

BCODE

Load Page N

PBS00L

NO
VALID

N = 0x18

N = N + 4

N
>= 0xDC< 0xDC

YES

BMODE

HARDWARE

WAKEUP

SYSCTRL_PLLCTL = 0

SYSCTRL_PLLDIV = 0

0

> 0

0

1

ELSE

IDLE

TO PREBOOT PAGE 2

PREBOOT

SYSCTRL_PLLCTL = OTP_SET_PLL

SYSCTRL_PLLDIV = OTP_SET_PLL

 pPS->uwPllCtl = OTP_PLL_CTL

 pPS->uwPllDiv = OTP_PLL_DIV

 SYSCTRL_VR_CTL = OTP_SET_VR

 pPS->uwVrCtl = OTP_VRCTL

BCODE_NORMAL or

BCODE_FULLBOOT

SYSCTRL_OTPVOLTAGE = 1

SYSCTRL_VRCTL = 1

pPS->uwVrCtl = VRCTL

ADSP-BF54x Blackfin Processor Hardware Reference 17-13

System Reset and Booting

Figure 17-3. Preboot Flow 2 of 2

FROM PREBOOT PAGE 1

HWAIT Initialization

FPS01 Processing

Save SPI and TWI

Boot Instructions

LOAD_PBS01H BMODE

Manage NFC and

OTP boot start page

0 OR DISABLED
IDLE

VALID

LOAD_PBS02L
Initialize SDRAM

Controller

LOAD_PBS00H
Initialize Async

Controller

RETURN TO MAIN

0

0

0

1

1

1

Preboot

17-14 ADSP-BF54x Blackfin Processor Hardware Reference

Factory Page Settings (FPS)
The content of the boot ROM is identical across all ADSP-BF54x proces-
sor Blackfin processors. The factory settings prevent the boot ROM from
accidentally accessing resources that are not present on a given processor,
which would result in unpredictable behavior and/or hardware errors. The
boot kernel goes to a safe idle state when the user configures the BMODE
pins to a boot mode that is not available on a specific part.

For this purpose, the preboot routine always reads the FPS01L and FPS01H
half pages from OTP memory. These half pages contain factory trim val-
ues for the USB PHY controller that are managed at preboot time, as
required. In addition, the bfrom_SysControl() routine reads the half page
FPS04H and FPS04L to apply factory trim values to the voltage regulator
and SDRAM controller.

Preboot Page Settings (PBS)
Four OTP pages optionally enable the user to customize the behavior of
the processor immediately after reset. These four pages (eight half pages)
can be seen as one contiguous pre-boot settings (PBS) block. By default,
the block spans OTP pages 0x18 to 0x1B. The OTP pages serve the fol-
lowing purposes:

• PBS00L (by default, on half page 0x18L, see “Lower PBS00 Half
Page” on page 17-110 for details)

PLL and voltage regulator settings

Boot customization

Instruction whether to load further half pages

• PBS00H (by default, on half page 0x18H, see “Upper PBS00 Half
Page” on page 17-114 for details)

ADSP-BF54x Blackfin Processor Hardware Reference 17-15

System Reset and Booting

Asynchronous EBIU register settings

• PBS01L (by default on half page 0x19L)

Reserved

• PBS01H (by default, on half page 0x19H, see “Upper PBS01 Half
Page” on page 17-116 for details)

Disabling of boot modes

NFC controller register settings

OTP boot start page

• PBS02L (by default, on half page 0x1AL, see “Lower PBS02 Half
Page” on page 17-118 for details)

Synchronous EBIU register settings

• PBS02H (by default, on half page 0x1AH, see “Upper PBS02 Half
Page” on page 17-119 for details)

Synchronous EBIU register settings.

• PBS03L (by default, on half page 0x1BL, see “Reserved Half
Pages” on page 17-120 for details)

Reserved in current silicon revision. Do not use.

• PBS03H (by default, on half page 0x1BH, see “Reserved Half
Pages” on page 17-120 for details)

Reserved in current silicon revision. Do not use.

The preboot routine reads the main page PBS00L first. Since this page may
instruct the preboot routine to alter the PLL settings, further pages may
read more quickly. This page also instructs the preboot whether further
OTP half pages have to be loaded and processed. By default, the PBS00L
page reads all zeroes, and the preboot does not load further PBS pages.

Preboot

17-16 ADSP-BF54x Blackfin Processor Hardware Reference

Alternative PBS Pages

Especially during the development cycle, the user may fail to write the
proper value to OTP memory and may make multiple attempts to get
things right. Therefore, the PBS00L page provides a mechanism to invali-
date the entire PBS block (consisting of pages (0x18, 0x19, 0x1A and
0x1B) and to use pages 0x1C to 0x1F instead. To do so, set the two
OTP_INVALID bits (bits 62 and 63 on the PBS00L page). If both bits are set,
the preboot routine disregards potential error codes returned by the
bfrom_OtpRead() routine and continues processing from page 0x1C on.
The active PBS block now spans the pages 0x1C to 0x1F. If the user wants
to invalidate the second set of OTP pages as well, setting bits 62 and 63
on page 0x1C (which is the new PBS00L half page) instructs the preboot
routine to continue at page 0x20, and so on.

Theoretically, this can be repeated up to page 0xD8L, if the pages are not
required for other purposes. There are 49 chances to get things right,
before a device may become useless. Note that every page that needs to be
read by the preboot routine causes additional delay to the boot process.

Programming PBS Pages

Due to the need for error checking and correction (ECC), a 64-bit OTP
half page must be written all at once. It is recommended that PBS pages be
programmed only through the API function bfrom_OtpWrite().

 If it is anticipated that the user is customizing the boot-related
OTP pages for safety or security reasons, it is recommended that all
PBS blocks be locked at production time to protect these pages
from being tampered with in the field.

Reading OTP memory is subject to a potential failure rate. Since
the preboot only accesses OTP memory through the
bfrom_OtpRead() function, the ECC error correction is applied and
the statistical failure rate is very low. However, the way the PBS00L
page is tested for being invalid may at some point reduce the ECC

ADSP-BF54x Blackfin Processor Hardware Reference 17-17

System Reset and Booting

reliability. To keep failure rates at a minimum, it is a good idea to
duplicate the content of pages 0x18–0x1B on pages 0x1C–0x1F.
For production parts, the final block should be followed by its
exact copy to maintain the lowest failure rates. Then, even the
unlikely case where one of the OTP_INVALID bits is read incorrectly
would not cause the boot to fail.

Recovering From Misprogrammed PBS Pages

The preboot mechanism provides a powerful method to customize the
chip to the needs of the user. However, as a downside, there are chances
that invalid values programmed to the PBS pages prevent the processor
from operating within required operating conditions. There is specific risk
when the PLL and the voltage regulator are programmed with meaningless
values during the development cycle.

In such cases, the boot mode BMODE = b#0000 helps. In this mode, the pre-
boot routine does not attempt to read any of the user-programmable PBS
pages, and the boot kernel does not try to boot any data. Rather, the pro-
cessor is idled immediately after the FPS pages have been processed. Using
the in-circuit emulator, the user then has the option to invalidate the
actual PBS settings by overwriting both OTP_INVALID bits in the actual
PBS00L with 1s.

For safety reasons, none of the boot modes, except the emulator, can get
control over the processor when in this state.

Customizing Power Management

When the processor awakes with default PLL and voltage regulator set-
tings, the preboot mechanism can be used to alter these settings to custom
values before the boot process takes place. This is done by programming
the OTP half page PBS00L.

Preboot

17-18 ADSP-BF54x Blackfin Processor Hardware Reference

If the OTP_SET_PLL bit is programmed to a 1, the value in the OTP_PLL_DIV
bit field is copied into the PLL_DIV register, and the OTP_PLL_CTL bit field
is copied into the PLL_CTL register, followed by the required IDLE instruc-
tion (if the contents of PLL_CTL are being altered).

If the OTP_SET_VR bit is programmed to a 1, the value in the OTP_VR_CTL
bit field is copied into the VR_CTL register, followed by the required IDLE
instruction (if the contents of VR_CTL are being altered).

The preboot mechanism invokes the bfrom_SysControl() routine to alter
the PLL and the voltage regulator. The bfrom_SysControl() routine not
only performs custom instructions, it also applies correction values from
factory OTP pages FPS01 and FPS04. See Chapter 18, “Dynamic Power
Management” for details on the bfrom_SysControl() routine.

Customizing Booting Options

The OTP pages accessible by the preboot mechanism can also be used to
customize some of the booting options. For example:

• TWI master boot mode operating frequency

• SPI master boot mode operating frequency

• SPI master boot mode read operation mode

• Start page for OTP boot mode

• HWAIT signal behavior

• Disabling of unwanted boot modes

In TWI master boot mode, the OTP_TWI_PRESCALE and OTP_TWI_CLKDIV
values in the preboot half page PBS00L control the respective prescale and
clock divider values written to the TWI0_CONTROL and TWI0_CLKDIV regis-
ters. The table of values can be found in “TWI Master Boot Mode” on

ADSP-BF54x Blackfin Processor Hardware Reference 17-19

System Reset and Booting

page 17-77. The bit field OTP_TWI_TYPE controls whether one, two, three

or four address bytes are used to address the I2C memory device. By
default, two address bytes are used. The address bits embedded in the read
command are not counted.

In SPI master boot mode, the OTP_SPI_BAUD register in the preboot half
page PBS00L controls the value written to the SPI0_BAUD registers. By
default, the clock divider value of 133 can be reduced in power-of-two
steps. The table of values can be found in “SPI Master Boot Modes” on
page 17-69. The OTP_SPI_BAUD bit instructs the boot kernel to use the
0x0B SPI read command instead of the normal 0x03 read command when
accessing the SPI memory device.

In OTP boot mode, the boot kernel normally assumes that the boot
stream starts at OTP page 0x40L. The user can change this start page by
programming the OTP_START_PAGE bit field in the preboot half page
PBS01H.

The boot host wait (HWAIT) signal is available in all boot modes. If the
OTP_RESETOUT_HWAIT bit in the preboot half page PBS00L is set, the boot
kernel does not toggle HWAIT. Rather, it simply drives it to simulate a reset
output signal.

If the OTP_ALTERNATE_HWAIT bit in the same half page is set, the alternate
GPIO pin (HWAITA) is used instead of HWAIT.

If safety or security of an application is impacted by the existence of cer-
tain boot modes, the boot mode disable bits in preboot half page PBS01H
can be used to disable unwanted boot modes. If a disabled boot mode is
chosen by the BMODE pins, the boot kernel goes into a safe idle state and
stops processing. The half page PBS01H is only loaded when the
OTP_LOAD_PBS01H bit in the PBS00L page is set.

Preboot

17-20 ADSP-BF54x Blackfin Processor Hardware Reference

Customizing the Asynchronous Port

The preboot half page PBS00H contains instructions to customize the asyn-
chronous portion of the EBIU controller. This half page is only loaded
and processed when the OTP_LOAD_PBS00H bit in the PBS00L half page is
programmed to a 1.

The OTP_EBIU_AMG field is copied into the EBIU_AMGCTL register. While the
lower bit controls the CLKOUT signal, the upper three AMBEN bits control
which of the four asynchronous banks are enabled. For the FIFO boot
mode, the three AMBEN bits are overruled and are all always set.

The preboot routine analyzes the three AMBEN bits and initializes the 16-bit
portions (this routine is similar to the enabled banks in the EBIU_AMBCTL0
and EBIU_AMBCTL1 registers) with the value provided in the 16-bit
OTP_EBIU_AMBCTL field. In this way, the bus timing of the asynchronous
port can be customized prior to the boot process.

Half page PBS00H also contains the 16-bit OTP_EBIU_FCTL field which is
copied directly to the EBIU_FCTL register.

 Make sure that all bits in the OTP_EBIU_FCTL field that correspond
with reserved bits in the EBIU_FCTL register are written with 0s.

The preboot routine ensures that a zero value is never written to the BCLK
bit field.

The 8-bit value OTP_EBIU_MODE field is copied to the lower eight bits of the
EBIU_MODE register. If any of the four memory banks has its BxMODE field
set to a value of three, a device initialization sequence can be performed.
All four banks are temporarily put into the asynchronous flash mode, and
the four-bit OTP_EBIU_DEVSEQ field controls which sequence is performed.
The 16-bit OTP_EBIU_DEVCFG word is part of the initialization sequence.
Such a sequence is usually required to activate the bursting mode on
multi-mode memories. Currently, the vendor-specific sequences shown in
Table 17-3 are supported.

ADSP-BF54x Blackfin Processor Hardware Reference 17-21

System Reset and Booting

Whenever the PBS00H half page is processed, all EBIU signals that belong
to the interface are enabled at the port muxing level. This includes the
address pins on port H and port J, as well as the ARDY and bus request sig-
nals on port J. In flash boot mode, these signals are activated regardless of
the OTP programming.

Finally, the 8-bit OTP_NFC_CTL field in the PBS01H half page initializes the
eight least significant bits of the NFC_CTL register.

Customizing the Synchronous Port

Since many Blackfin applications require data and/or instruction code to
be loaded into the SDRAM memory at boot time, the SDRAM controller
must be initialized beforehand. This can be done by using either the “Ini-
tialization Code” on page 17-39 or the preboot mechanism described
here. For the SDRAM boot mode, only the preboot mechanism is valid.

Table 17-3. Burst NOR Flash Initialization Sequences

OTP_EBIU_DEVSEQ = 2 OTP_EBIU_DEVSEQ =
4

OTP_EBIU_DEVSEQ = 6

Atmel, Intel, ST (16-bit) Spansion (16-bit) Samsung (16-bit)

w[OTP_EBIU_DEVCFG<<1]
= 0x60

w[0x555<<1] = 0xAA w[0x555<<1] = 0xAA

w[OTP_EBIU_DEVCFG<<1]
= 0x03

w[0x2AA<<1] = 0x55 w[0x2AA<<1] = 0x55

w[0] = 0xFF w[0x555<<1] = 0xD0 w[(OTP_EBIU_DEVCFG[6:0]
<<12 | 0x555)<<1]
= 0xC0

w[0x000]
= OTP_EBIU_DEVCFG

w[0x000] = 0xF0

w[0x000]
= 0xF0

Preboot

17-22 ADSP-BF54x Blackfin Processor Hardware Reference

If the OTP_LOAD_PBS02L and OTP_LOAD_PBS02H bits in the PBS00L half page
have been programmed to a 1, then the two preboot half pages PBS02L and
PBS02H are also loaded and processed. These half pages initialize the
SDRAM controller.

First, the preboot routine tests the SDRS bit in the EBIU_SDSTAT status reg-
ister. To avoid reconfiguring an already enabled SDRAM controller,
processing is bypassed if this bit is already set.

The lower twelve bits of the OTP_EBIU_SDRCC refresh rate value are written
to the EBIU_SDRCC register. Similarly, the lower six bits of the
OTP_EBIU_SDBCTL value are written to the EBIU_SDBCTL bank control regis-
ter. The entire 32-bit OTP_EBIU_SDGCTL word is copied to the EBIU_SDGCTL
global SDRAM control register.

To minimize access latencies during the boot process, an initial dummy
access to the SDRAM is performed immediately after the SDRAM con-
troller is set up. By default, a 32-bit dummy is read from address 0x0000
0000. If the OTP_EBIU_POWERON_DUMMY_WRITE bit is programmed to a “1”, a
32-bit zero value is written to that address instead. This option takes less
time but destroys the previous content of that memory location. Address
0x0000 0000 is rarely used for regular processing since it represents a tar-
get of NULL pointers.

Half page PBS02L contains the two 32-bit values OTP_EBIU_DDRCTL0 and
OTP_EBIU_DDRCTL1 that are directly copied into the EBIU_DDRCTL0 and
EBIU_DDRCTL1 SDRAM control registers, respectively.

Half page PBS02H contains the three 16-bit values OTP_EBIU_DDRCTL2L,
OTP_EBIU_DDRCTL3L and OTP_EBIU_DDRQUEL that are copied into the lower
16 bits of the respective EBIU_DDRCTL2, EBIU_DDRCTL3 and EBIU_DDRQUE
registers.

ADSP-BF54x Blackfin Processor Hardware Reference 17-23

System Reset and Booting

Basic Booting Process
Once the preboot routine returns, the boot kernel residing in the on-chip
boot ROM starts processing the boot stream. The boot stream is either
read from memory or received from a host processor. A boot stream repre-
sents the application data and is formatted in a special manner. The
application data is segmented into multiple blocks of data. Each block
begins with a block header. The header contains control words such as the
destination address and data length information.

As Figure 17-4 on page 17-24 illustrates, the CCES or VisualDSP++ tools
suite features a loader utility (elfloader.exe). The loader utility parses
the input executable file (.dxe), segments the application data into multi-
ple blocks, and creates the header information for each block. The output
is stored in a loader file (.ldr). The loader file contains the boot stream
and is made available to hardware by programming or burning it into
non-volatile external memory. Refer to Loader and Utilities Manual for
information about the loader.

Basic Booting Process

17-24 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 17-5 on page 17-25 shows the parallel or serial boot stream con-
tained in a flash memory device. In host boot scenarios, the non-volatile
memory more likely connects to the host processor rather than directly to
the Blackfin processor. After reset, the headers are read and parsed by the
on-chip boot ROM, and processed block-by-block. Payload data is copied
to destination addresses, either in on-chip L1 and L2 memory or off-chip
SRAM/SDRAM.

 Booting into scratchpad memory (0xFFB0 0000–0xFFB0 0FFF) is
not supported. If booting to scratchpad memory is attempted, the
processor hangs within the on-chip boot ROM. Similarly, booting
into the upper 16 bytes of L1 data bank A (0xFF80 7FF0–
0xFF80 7FFF by default) is not supported. These memory loca-
tions are used by the boot kernel for intermediate storage of block
header information. These memory regions cannot be initialized at
boot time. After booting, they can be used by the application dur-
ing runtime.

Figure 17-4. Project Flow for a Standalone System

BOOTING
UPON RESET

EXTERNAL
MEMORY

SOURCE
FILES

ASSEMBLER
AND/OR

COMPILER
LINKER LOADER

.ASM/.C/.CPP .DOJ(s) .DXE(s)

TARGET SYSTEM

.LDR

B

ADSP-BF54x Blackfin Processor Hardware Reference 17-25

System Reset and Booting

When the BFLAG_INDIRECT flag for any block is set, as in TWI boot modes,
the boot kernel uses another memory block in L1 data bank B (by default,
0xFF90 7E00–0xFF90 7FFF) for intermediate data storage. To avoid con-
flicts, the elfloader utility ensures this region is booted last.

The entire source code of the boot ROM is shipped with the CCES or
VisualDSP++ tools installation. Refer to the source code for any addi-
tional questions not covered in this manual. Note that minor maintenance
work may be done to the content of the boot ROM when silicon is
updated.

Block Headers
A boot stream consists of multiple boot blocks, as shown in Figure 17-5
on page 17-25. Every block is headed by a 16-byte block header. How-
ever, every block does not necessarily have a payload, as shown in
Figure 17-6 on page 17-26.

Figure 17-5. Booting Process

16-BYTE HEADER FOR BLOCK 1

BLOCK 1

16-BYTE HEADER FOR BLOCK 2

BLOCK 2

16-BYTE HEADER FOR BLOCK 3

BLOCK n

. . .

16-BYTE HEADER FOR BLOCK n

BLOCK 3

FLASH/PROM

APPLICATION
CODE/DATA

BLOCK 2

SDRAM

ON-CHIP
BOOT ROM

BLOCK 1
BLOCK 3

LI MEMORY

0xEF00 0000

.LDR FILE

B

Basic Booting Process

17-26 ADSP-BF54x Blackfin Processor Hardware Reference

The 16 bytes of the block header are functionally grouped into four 32-bit
words, the BLOCK CODE, the TARGET ADDRESS, the BYTE COUNT, and the
ARGUMENT fields.

Figure 17-6. Boot Stream Headers

BLOCK 0 HEADER

BLOCK 0 PAYLOAD

BLOCK 1 HEADER

BLOCK 2 HEADER

BLOCK 2 PAYLOAD

BLOCK CODE

TARGET ADDRESS

BYTE COUNT

ARGUMENT

OFFSET 0X0000

OFFSET 0X0004

OFFSET 0X0008

OFFSET 0X000C

0123

4567

891011

12131415

ADSP-BF54x Blackfin Processor Hardware Reference 17-27

System Reset and Booting

Block Code

The first 32-bit word is the BLOCK CODE. See Figure 17-7.

DMA Code Field

The DMA code (DMACODE) field instructs the boot kernel whether to use
8-bit, 16-bit or 32-bit DMA and how to program the source modifier of a
memory DMA. Particularly in case of memory boot modes, this field is
interrogated by the boot kernel to differentiate the 8-bit, 16-bit, and
32-bit cases.

Figure 17-7. Block Code, 31–0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 0 1 1 0 1 0 0 0 0 0 0 01 0

HDRCHK
Header XOR Checksum

Block Code, 31–16

HDRSGN
Header Sign

Block Code, 15–0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

BFLAG_FINAL

BFLAG_FIRST

BFLAG_INDIRECT

BFLAG_IGNORE

BFLAG_INIT

BFLAG_CALLBACK

BFLAG_QUICKBOOT

BFLAG_FILL

DMACODE
DMA Coding

BFLAG_SAVE

BFLAG_AUX

Basic Booting Process

17-28 ADSP-BF54x Blackfin Processor Hardware Reference

The boot kernel tests this field only on the first block and ignores the field
in further blocks (See Table 17-4).

Table 17-4. Bus and DMA Width Coding

DMA Code DMA Width Source DMA
Modify

Application

0 reserved1

1 Reserved to differentiate from ADSP-BF53x boot streams.

1 8-bit 1 Default 8-bit boot from 8-bit source2

2 Used by all byte-wise serial boot modes.

2 8-bit 2 Zero-padded 8-bit boot from 16-bit EBIU

3 8-bit 4 Zero-padded 8-bit boot from 32-bit EBIU3

3 Applicable only to memory boot modes and OTP mode. This code is expected by OTP boot
mode.

4 8-bit 8 Zero-padded 8-bit boot from 64-bit EBIU4

4 Not supported by ADSP-BF54x processor Blackfin products.

5 8-bit 16 Zero-padded 8-bit boot from 128-bit EBIU4

6 16-bit 2 Default 16-bit boot from 16-bit source5

5 This is the only code supported by NAND flash boot.

7 16-bit 4 Zero-padded 16-bit boot from 32-bit EBIU3

8 16-bit 8 Zero-padded 16-bit boot from 64-bit EBIU4

9 16-bit 16 Zero-padded 16-bit boot from 128-bit EBIU4

10 32-bit 4 Default 32-bit boot from 32-bit source3, 5

11 32-bit 8 Zero-padded 32-bit boot from 64-bit EBIU4

12 32-bit 16 Zero-padded 32-bit boot from 128-bit EBIU4

13 64-bit 8 Default 64-bit boot from 64-bit source4

14 64-bit 16 Zero-padded 64-bit boot from 128-bit EBIU4

15 128-bit 16 Default 128-bit boot from 128-bit source4

ADSP-BF54x Blackfin Processor Hardware Reference 17-29

System Reset and Booting

Block Flags Field

Table 17-5. Block Flags

Bit Name Description

4 BFLAG_SAVE Saves the memory of this block to off-chip memory in case of
power failure or a hibernate request. This flag is not used by the
on-chip boot kernel.

5 BFLAG_AUX Nests special block types as required by special purpose sec-
ond-stage loaders. This flag is not used by the on-chip boot ker-
nel.

6 Reserved

7 Reserved

8 BFLAG_FILL Tells the boot kernel to not process any payload data. Instead the
target memory (specified by the TARGET ADDRESS and
BYTE COUNT fields) is filled with the 32-bit value provided by the
ARGUMENT word. The fill operation is always performed by 32-bit
DMA; therefore target address and byte count must be divisible
by four.

9 BFLAG_QUICKBOOT Processes the block for full boot only. Does not process this block
for a quick boot (warm boot).

10 BFLAG_CALLBACK Calls a subfunction that may reside in on-chip or off-chip ROM
or is loaded by an initcode in advance. Often used with the
BFLAG_INDIRECT switch. If BFLAG_CALLBACK is set for any
block, an initcode must register the callback function first. The
function is called when either the entire block is loaded or the
intermediate storage memory is full. The callback function can do
advanced processing such as CRC checksum.

11 BFLAG_INIT This flag causes the boot kernel to issue a CALL instruction to the
target address of the boot block after the entire block is loaded.
The initcode should return by an RTS instruction. It may or may
not be overwritten by application data later in the boot process. If
the code is loaded earlier or resides in ROM, the init block can be
zero sized (no payload).

Basic Booting Process

17-30 ADSP-BF54x Blackfin Processor Hardware Reference

The BFLAG_FIRST flag must not be combined with the BFLAG_FILL flag.
The BFLAG_FIRST flag may be combined with the BFLAG_IGNORE flag to
deposit special user data at the top of the boot stream. Note the special
importance of the elfloader –readall switch.

Header Checksum Field

The header checksum (HDRCHK) field holds a simple XOR checksum of the
other 31 bytes in the boot block header. The boot kernel jumps to the
error routine if the result of an XOR operation across all 32 header bytes

12 BFLAG_IGNORE Indicates a block that is not booted into memory. It instructs the
boot kernel to skip the number of bytes of the boot stream as
specified by BYTE COUNT. In master boot modes, the boot kernel
simply modifies its source address pointer. In this case the
BYTE COUNT value can be seen as a 32-bit two’s-complement off-
set value to be added to the source address pointer. In slave boot
modes, the boot kernel actively loads and changes the payload of
the block. In slave modes the byte count must be a positive value.

13 BFLAG_INDIRECT Boots to an intermediate storage place, allowing for calling an
optional callback function, before booting to the destination.
This flag is used when the boot source does not have DMA sup-
port (TWI for example) and either the destination cannot be
accessed by the core (L1 instruction SRAM) or cannot be effi-
ciently accessed by the core (SDRAM or RAM). This flag is also
used when CALLBACK requires access to data to calculate a check-
sum, or when performing tasks such as decryption or decompres-
sion.

14 BFLAG_FIRST This flag, which is only set on the first block of a DXE, tells the
boot kernel about the special nature of the TARGET ADDRESS and
the ARGUMENT fields. The TARGET ADDRESS field holds the start
address of the application. The ARGUMENT field holds the offset to
the next DXE.

15 BFLAG_FINAL This flag causes the boot kernel to pass control over to the appli-
cation after the final block is processed. This flag is usually set on
the last block of a DXE unless multiple DXEs are merged.

Table 17-5. Block Flags (Cont’d)

Bit Name Description

ADSP-BF54x Blackfin Processor Hardware Reference 17-31

System Reset and Booting

(including the HDRCHK value) differs from zero. The default error routine is
a simple IDLE; instruction. The user can overwrite the default error han-
dler using the initcode mechanism.

Header Sign Field

The header signature (HDRSGN) byte always reads as 0xAD and is used to
verify whether the block pointer actually points to a valid block. The
HDRSGN byte can also be used as a boot stream version control. For the
ADSP-BF54x, ADSP-BF52x and ADSP-BF51x Blackfin processors, the
byte always reads 0xAD. The ADSP-BF53x boot streams always read
0xFF. The ADSP-BF561 boot streams always read 0xA0.

Target Address

This 32-bit field holds the target address where the boot kernel loads the
block payload data. When the BFLAG_FILL flag is set, the boot kernel fills
the memory with the value stored in the ARGUMENT field starting at this
address. If the BFLAG_INIT flag is set the kernel issues a
CALL(TARGET ADDRESS) instruction after the optional payload is loaded.

If the BFLAG_FIRST flag is set, the TARGET ADDRESS field contains the start
address of the application to which the boot kernel jumps at the end of the
boot process. This address will also be stored in the EVT1 register. The elf-
loader utility sets this value to 0xFFA0 0000 for compatibility with other
Blackfin products.

The target address should be divisible by four, because the boot kernel
uses 32-bit DMA for certain operations. The target address must point to
valid on-chip or off-chip memory locations. When booting to external
memories, the memory controller must first be set up by either the pre-
boot or the initcode mechanism. When booting through peripherals that
do not support DMA transfers, such as the TWI or OTP boot mode, the
BFLAG_INDIRECT flag must be set if the target address points to L1 instruc-
tion memory. For performance reasons this is also recommended when
booting to off-chip memories.

Basic Booting Process

17-32 ADSP-BF54x Blackfin Processor Hardware Reference

For the TWI or OTP boot modes, the elfloader utility manages the
BFLAG_INDIRECT flag automatically. Refer to Loader and Utilities Manual
for manual control of the flag.

 Booting to scratchpad memory is not supported. The scratchpad
memory functions as a stack for the boot kernel. The L1 data mem-
ory locations 0xFF80 7FF0 to 0xFF80 7FFF are used by the boot
kernel and should not be overwritten by the application. The mem-
ory range used for intermediate storage as controlled by the
BFLAG_INDIRECT switch should only be booted after the last
BFLAG_INDIRECT bit is processed. By default the address range
0xFF90 7E00–0xFF90 7FFF is used for intermediate storage.

For normal boot operation, the target address points to RAM memory.
There are however a few exceptions where the target address can point to
on-chip or off-chip ROM. For example a zero-sized BFLAG_INIT block
would instruct the boot kernel to call a subroutine residing in ROM or
flash memory. This method is used to activate the CRC32 feature.

Byte Count

This 32-bit field tells the boot kernel how many bytes to process. Nor-
mally, this is the size of the payload data of a boot block. If the
BFLAG_FILL flag is set there is no payload. In this case the BYTE COUNT field
uses the value in its ARGUMENT field to tell the boot kernel how many bytes
to process.

The byte count is a 32-bit value that should be divisible by four. Zero val-
ues are allowed in all block types. Most boot modes are based upon DMA
operation which are only 16-bit words for Blackfin processors. The boot
kernel may therefore start multiple DMA work units for large boot blocks.
This enables a single block to fill to zero the entire SDRAM memory, for
example, resulting in compact boot streams. The HWAIT signal may toggle
for each work unit.

ADSP-BF54x Blackfin Processor Hardware Reference 17-33

System Reset and Booting

If the BFLAG_IGNORE flag is set, the byte count is used to redirect the boot
source pointer to another memory location. In master boot modes, the
byte count is a two’s-complement (signed long integer) value. In slave
boot modes, the value must be positive.

Argument

This 32-bit field is a user variable for most block types. The value is acces-
sible by the initcode or the callback routine and can therefore be used for
optional instructions to these routines. When the CRC32 feature is acti-
vated, the ARGUMENT field holds the checksum over the payload of the
block.

When the BFLAG_FILL flag is set there is no payload. The argument con-
tains the 32-bit fill value, which is most likely a zero.

If the BFLAG_FIRST flag is set, the argument contains the relative
next-DXE pointer for multi-DXE applications. For single-DXE applica-
tions the field points to the next free boot source address after the current
DXE’s boot stream.

Boot Host Wait (HWAIT) Feedback Strobe
The HWAIT feedback strobe is a handshake signal that is used to hold off
the host device from sending further data while the boot kernel is busy.

On ADSP-BF54x processors this feature is implemented by a GPIO that
is toggled by the boot kernel as required. By default the PB11 GPIO is used
for this purpose. If the OTP_ALTERNATE_HWAIT fuse in OTP memory page
PBS00L is programmed, the boot kernel uses the PH7 GPIO instead.

The signal polarity of the HWAIT strobe is programmable by an external
resistor in the 10 k range.

Basic Booting Process

17-34 ADSP-BF54x Blackfin Processor Hardware Reference

A pull-up resistor instructs the HWAIT signal to be active high. In this case
the host is permitted to send header and footer data when HWAIT is low,
but should pause while HWAIT is high. This is the mode used in SPI slave
boot on other Blackfin products.

Similarly, a pull-down resistor programs active-low behavior.

 Note that the HWAIT signal is implemented slightly differently than
on ADSP-BF53x Blackfin processors. In the ADSP-BF54x proces-
sor processors, the meaning of the pulling resistor is inverted and
HWAIT is asserted by default during reset and preboot.

After preboot, the boot kernel first senses the polarity on the respective
HWAIT pin. Then it enables the output driver but keeps the signal in its
asserted state. The signal is not released until the boot kernel is ready for
data, or when a receive DMA is started. As soon as the DMA completes,
HWAIT becomes active again.

The boot host wait signal holds the host from booting in any slave boot
mode and prevents it from being overrun with data. The HWAIT signal is,
however, available in all boot modes with the exception of the NAND
flash boot mode. In some cases it is redundant to other handshake mecha-
nisms, such as the UART RTS signal. See “UART Slave Mode Boot” on
page 17-82.

In general the host device must interrogate the HWAIT signal before every
word that is sent. This requirement can be relaxed for boot modes using
on-chip peripherals that feature larger receive FIFOs. However, the host
must not rely on the DMA FIFO since its content is cleared at the end of
a DMA work unit.

While the HWAIT signal is only used for boot purposes, it may also play a
significant role after booting. In slave boot modes, for example, the host
device does not necessarily know whether the Blackfin processor is in an
active mode or a power-down mode. For example, the HWAIT signal can be
used to signal when the processor is in hibernate mode.

ADSP-BF54x Blackfin Processor Hardware Reference 17-35

System Reset and Booting

Using HWAIT as Reset Indicator

While the HWAIT signal is mandatory in some boot modes, it is optional in
others. When not required for booting, the behavior of the HWAIT signal
(or alternate HWAITA signal, see on page 17-19) can be changed by pro-
gramming the OTP_RESETOUT_HWAIT bit in OTP page PBS00L.

If this bit is set, HWAIT does not toggle during the boot process. Rather,
after page PBS00L is processed (and therefore the PLL has settled) the pre-
boot routine first enables the HWAIT GPIO as an input and senses its state.
Then HWAIT becomes an output and is driven to the invert of the state that
is sensed. An external pulling resistor is required. If using a pull-up resis-
tor, the HWAIT signal is driven low for the rest of the boot process (and
beyond). If using a pull-down resistor, HWAIT is driven high.

With a pull-down resistor, this feature can be used to simulate an
active-low reset output. When the processor is reset, or in hibernate, the
GPIO is in a high impedance state and HWAIT is pulled low by the resistor.
As soon as the processor recovers and has settled the PLL again, the HWAIT
is driven high and can alert external circuits.

Boot Termination
After the successful download of the application into the bootable mem-
ory, the boot kernel passes control to the user application. By default this
is performed by jumping to the vector stored in the EVT1 register. The
boot kernel provides options to execute an RTS instruction or a RAISE 1
instruction instead. The default behavior can be changed by an initcode
routine. The EVT1 register is updated by the boot kernel when processing
the BFLAG_FIRST block. See “Servicing Reset Interrupts” on page 17-10 to
learn how the application can take control.

Before the boot kernel passes program control to the application it does
some housekeeping. Most of the registers that were used are changed back
to their default state but some register values may differ for individual
boot modes. DMA configuration registers and primary register control

Basic Booting Process

17-36 ADSP-BF54x Blackfin Processor Hardware Reference

registers (UART0_LCR, SPI0_CTL, HOST_CONTROL, etc.) are restored, while
others are purposely not restored. For example SPI0_BAUD, UART0_DLH and
UART_DLL remain unchanged so that settings obtained during the booting
process are not lost.

Single Block Boot Streams
The simplest boot stream consists of a single block header and one contig-
uous block of instructions. With appropriate flag instructions the boot
kernel loads the block to the target address and immediately terminates by
executing the loaded block.

Table 17-6 shows an example of a single block boot stream header that
could be loaded from any serial boot mode. It places a 256-byte block of
instructions at L1 instruction SRAM address 0xFFA0 0000. The flags
BFLAG_FIRST and BFLAG_FINAL are both set at the same time. Advanced
flags, such as BFLAG_IGNORE, BFLAG_INIT, BFLAG_CALLBACK and
BFLAG_FILL, do not make sense in this context and should not be used.

With the BFLAG_FIRST flag set, the ARGUMENT field functions as the
next-DXE pointer. This is a relative pointer to the next free source address
or to the next DXE start address in a multi-DXE stream.

Table 17-6. Header for a Single Block Boot Stream

Field Value Comments

BLOCK CODE 0xAD33 C001 0xAD00 0000 | XORSUM |
BFLAG_FINAL | BFLAG_FIRST | (DMACODE & 0x1)

TARGET ADDRESS 0xFFA0 0000 Start address of block and application code

BYTE COUNT 0x0000 0100 256 bytes of code

ARGUMENT 0x0000 0100 Functions as next-DXE pointer in multi-DXE boot
streams

ADSP-BF54x Blackfin Processor Hardware Reference 17-37

System Reset and Booting

Direct Code Execution

Applications may want to avoid long booting times and start code execu-
tion directly from 16-bit flash or SDRAM memory. This feature is called
direct code execution. This is a special case of boot termination that
replaces the no-boot/bypass mode in the ADSP-BF53x Blackfin
processors.

An initial boot block header is needed for the processor to fetch and exe-
cute program code from the boot device as early as possible. The safety
mechanisms of the block, such as the header signature and the XOR
checksum, avoid unpredictable processor behavior due to the boot mem-
ory not being programmed with valid data yet. Rather than blindly
executing code, the boot kernel first executes the preboot routine for sys-
tem customization, then loads the first block header and checks it for
consistency. If the block header is corrupted, the boot kernel goes into a
safe idle state and does not start code execution.

If the initial block header checks good, the boot kernel interrogates the
block flags. If the block has the BFLAG_FINAL flag set, the boot kernel
immediately terminates and jumps directly to the address stored in the
EVT1 register. To cause the boot kernel to customize the EVT1 register in
advance, the initial blocks must also have the BFLAG_FIRST flag set. The
TARGET ADDRESS field is then copied to the EVT1 register. In this way, the
TARGET ADDRESS field of the initial block defines the start address of the
application.

For example in BMODE = 0001, when the block header described in
Table 17-7 on page 17-38 is placed at address 0x2000 0000, the boot ker-
nel is instructed to issue a JUMP command to address 0x2000 0020.

Basic Booting Process

17-38 ADSP-BF54x Blackfin Processor Hardware Reference

The development tools must be instructed to link the above block to
address 0x2000 0000 and the application code to address 0x2000 0020.
An example shown in “Direct Code Execution” on page 17-155 illustrates
how this is accomplished using the CCES or VisualDSP++ tools suite.

Similarly for direct code execution in the SDRAM boot mode
(BMODE = 1010), an initial block as shown in Table 17-8 has to be linked
to address 0x0000 0010.

For multi-DXE boot streams, Figure 17-11 on page 17-59 shows a linked
list of initial blocks that represent different applications.

Table 17-7. Initial Header for Direct Code Execution in BMODE = 0001

Field Value Comments

BLOCK CODE 0xAD7B D006 0xAD00 0000 | XORSUM |
BFLAG_FINAL | BFLAG_FIRST | BFLAG_IGNORE |
(DMACODE & 0x6)

TARGET ADDRESS 0x2000 0020 Start address of application code

BYTE COUNT 0x0000 0010 Ignores 16 bytes to provide space for control data such as
version code and build data. This is optional and can be
zero.

ARGUMENT 0x0000 0010 Functions as next-DXE pointer in multi-DXE boot
streams

Table 17-8. Initial Header for Direct Code Execution in BMODE = 1010

Field Value Comments

BLOCK CODE 0xAD5B D006 0xAD000000 | XORSUM |
BFLAG_FINAL | BFLAG_FIRST | BFLAG_IGNORE |
(DMACODE & 0x6)

TARGET ADDRESS 0x0000 0020 Start address of application code

BYTE COUNT 0x0000 0000 No bubble for control data

ARGUMENT 0x0000 0000 Functions as next-DXE pointer in multi-DXE boot
streams

ADSP-BF54x Blackfin Processor Hardware Reference 17-39

System Reset and Booting

Advanced Boot Techniques
The following sections describe advanced boot techniques.

Initialization Code
Initcode routines are subroutines that the boot kernel calls during the
booting process. The user can customize and speed up the booting mecha-
nisms using this feature. Traditionally, an initcode is used to set up system
PLL, bit rates, wait states and the SDRAM controller. If executed early in
the boot process, the boot time can be significantly reduced.

After the payload data is loaded for a specific boot block, if the
BFLAG_INIT flag is set, the boot kernel issues a CALL instruction to the tar-
get address of the block.

On ADSP-BF54x processor Blackfin processors, initcode routines follow
the C language calling convention so they can be coded in C language or
assembly.

The expected prototype is
void initcode(ADI_BOOT_DATA* pBootStruct);

The header files define the ADI_BOOT_INITCODE_FUNC type: typedef void
ADI_BOOT_INITCODE_FUNC (ADI_BOOT_DATA*) ;

Optionally, the initcode routine can interrogate the formatting structure
and customize its own behavior or even manipulate the regular boot pro-
cess. A pointer to the structure is passed in the R0 register. Assembly
coders must ensure that the routine returns to the boot kernel by a termi-
nating RTS instruction.

Initcodes can rely on the validity of the stack, which resides in scratchpad
memory. The ADI_BOOT_DATA structure resides on the stack. Rules for reg-
ister usage conform to the compiler conventions. See C/C++ Compiler and
Library Manual for Blackfin Processors for more information.

Advanced Boot Techniques

17-40 ADSP-BF54x Blackfin Processor Hardware Reference

In the simple case, initcodes consist of a single instruction section and are
represented by a single block within the boot stream. This block has the
BFLAG_INIT bit set.

An init block can consist of multiple sections where multiple boot blocks
represent the initcode within the boot stream. Only the last block has the
BFLAG_INIT bit set.

The elfloader utility ensures that the last of these blocks vectors to the
initcode entry address. The utility instructs the on-chip boot ROM to exe-
cute a CALL instruction to the given target address.

When the on-chip boot ROM detects a block with the BFLAG_INIT bit set,
it boots the block into Blackfin memory and then executes it by issuing a
CALL to its target address. For this reason, every initcode must be termi-
nated by an RTS instruction to ensure that the processor vectors back to
the on-chip boot ROM for the rest of the boot process.

Sometimes initcode boot blocks have no payload and the BYTE COUNT field
is set to zero. Then the only purpose of the block may be to instruct the
boot kernel to issue the CALL instruction.

Initcode routines can be very different in nature. They might reside in
ROM or SRAM. They might be called once during the booting process or
multiple times. They might be volatile and be overwritten by other boot
blocks after executing, or they might be permanently available after boot
time. The boot kernel has no knowledge of the nature of initcodes and has
no restrictions in this regard. Refer to Loader and Utilities Manual for how
this feature is supported by the tools chain.

It is the user’s responsibility to ensure that all code and data sections that
are required by the initcode are present in memory by the time the
initcode executes. Special attention is required if initcodes are written in
C or C++ language. Ensure that the initcode does not contain calls to the
runtime libraries. Do not assume that parts of the runtime environment,
such as the heap are fully functional. Ensure that all runtime components
are loaded and initialized before the initcode executes.

ADSP-BF54x Blackfin Processor Hardware Reference 17-41

System Reset and Booting

The elfloader utility provides two different mechanisms to support the
initcode feature.

• The -init initcode.dxe command line switch

• The -initcall address/symbol command line switch

If enabled by the elfloader -init initcode.dxe command-line switch, the
initcode is added to the beginning of the boot stream. Here, initcode.dxe
refers to the user-provided custom initialization executable— a separate
project. Figure 17-8 on page 17-42 shows a boot stream example that per-
forms the following steps.

1. Boot initcode into L1 memory.

2. Execute initcode.

3. Initcode initializes the SDRAM controller and returns.

4. Overwrite initcode with final application code.

5. Boot data/code into SDRAM.

6. Continue program execution with block n.

Although initcode.dxe files are built as CrossCore Embedded Studio or
VisualDSP++ projects, they differ from standard projects. Initcodes pro-
vide only a callable sub-function, so they look more like a library than an
application. Nevertheless, unlike library files (.DLB file extension), the
symbol addresses have already been resolved by the linker.

An initcode is always a heading for the regular application code. Conse-
quently whether the initcode consists of one or multiple blocks, it is not
terminated by a BFLAG_FINAL bit indicator—this would cause the boot
ROM to terminate the boot process.

Advanced Boot Techniques

17-42 ADSP-BF54x Blackfin Processor Hardware Reference

It is advantageous to have a clear separation between the initcode and the
application by using the -init switch. If this separation is not needed, the
elfloader -initcall command-line switch might be preferred.
It enables fractions of the application code to be traded as initcode during
the boot process. See Loader and Utilities Manual for further details.

Figure 17-8. Initialization Code Execution/Boot

Blackfin Processor

Header for Init Block

Init Block

Flash/PROM or SPI Device

L1 Memory
Init Block

SDRAM

0xEF00 0000

On-Chip Boot
ROM

........

Header for L1 Data Block

L1 Data Block

SDRAM Block

Header for SDRAM Block

Header for L1 Code Block

L1 Code Block

Header for L1 Data Block

L1 Data Block
Header for L1 Code Block

L1 Code Block

Flash/PROM or SPI Device

Init Block

........

Blackfin Processor

Header for Init Block

Init Block

Header for SDRAM Block

SDRAM Block

SDRAM

On-Chip Boot
ROM

0xEF00 0000

After Init Code
Execution

Before Init Code
Execution

L1 Memory

App Code/Data

App Code/Data

L1 Block

ADSP-BF54x Blackfin Processor Hardware Reference 17-43

System Reset and Booting

Initcode examples are shown in “Programming Examples” on
page 17-145.

Quick Boot
In some booting scenarios, not all memories need to be re-initialized. For
example in a wake-up from hibernate state, off-chip SRAM might not be
impacted if it was powered while the processor was in hibernate state.
Dynamic RAM might also not be impacted if it was put into self-refresh
mode before the processor powered down.

The ADSP-BF54x processor processor’s boot kernel can conditionally
process boot blocks. The normal scenario is all boot, the shortened version
is quick boot. It relies on the following primitives.

• The SYSCR register is read to determine what kind of boot is
expected from the boot kernel. Refer to Figure 17-40 on
page 17-106.

The WURESET bit is used to distinguish between cold boot and warm
boot situations and to identify wake-up from hibernate situations.

The BCODE bit field in the SYSCR register can overrule the native
decision of the boot kernel for a software boot. See the flowchart in
Figure 17-1 on page 17-9.

• The BFLAG_WAKEUP bit in the dFlag word of the ADI_BOOT_DATA
structure indicates that the final decision was to perform a quick
boot. If the boot kernel is called from the application, then the
application can control the boot kernel behavior by setting the
BFLAG_WAKEUP flag accordingly. See the dFlags variable on
Figure 17-54 on page 17-125.

• The BFLAG_QUICKBOOT flag in the BLOCK CODE word of the block
header controls whether the current block is ignored for quick
boot.

Advanced Boot Techniques

17-44 ADSP-BF54x Blackfin Processor Hardware Reference

If both the global BFLAG_WAKEUP and the block-specific BFLAG_QUICKBOOT
flags are set, the boot kernel ignores those blocks. But since the
BFLAG_INIT, BFLAG_CALLBACK, BFLAG_FINAL, and BFLAG_AUX flags are inter-
nally cleared and the BFLAG_IGNORE flag is toggled, through double
negation, the “ignore the ignore block” command instructs the boot ker-
nel to process the block.

Although the BFLAG_INIT flag is suppressed in quick boot, the user may
not want to combine the BFLAG_INIT flag with the BFLAG_QUICKBOOT flag.
The initialization code can interrogate the BFLAG_WAKEUP flag and execute
conditional instructions. For more information see “Quickboot With
Restore From SDRAM” on page 17-152.

Indirect Booting
The processor’s boot kernel provides a control mechanism to let blocks
either boot directly to their final destination or load to an intermediate
storage place, then copy the data to the final destination in a second step.
This feature is motivated by the following requirements.

• Some boot modes such as TWI do not use DMA. They load data
by core instruction. The core cannot access some memories directly
(for example L1 instruction SRAM), or is less efficient than the
DMA in accessing some memories (for example, external
SDRAM).

• In some advanced booting scenarios, the core needs to access the
boot data during the booting process, for example in processing
decompression, decryption and checksum algorithms at boot time.
The indirect booting option helps speed-up and simplify such sce-
narios. Software accesses off-chip memory less efficiently and
cannot access data directly if it resides in L1 instruction SRAM.

Indirect booting is not a global setting. Every boot block can control its
own processing by the BFLAG_INDIRECT flag in the block header.

ADSP-BF54x Blackfin Processor Hardware Reference 17-45

System Reset and Booting

In general a boot block may not fit into the temporary storage memory so
the boot kernel processes the block in multiple steps. The larger the tem-
porary buffer, the faster the boot process. By default the L1 data memory
region between 0xFF90 7E00 and 0xFF90 7FFF is used for intermediate
storage. Initialization code can alter this region by modifying the
pTempBuffer and dTempByteCount variables in the ADI_BOOT_DATA struc-
ture. The default region is at the upper end of a physical memory block.
When increasing the dTempByteCount value, pTempBuffer also has to
change.

Callback Routines
Callback routines, like initialization codes, are user-defined subroutines
called by the boot kernel at boot time. The BFLAG_CALLBACK flag in the
block header controls whether the callback routine is called for a specific
block.

There are several differences between initcodes and callback routines.
While the BFLAG_INIT flag causes the boot kernel to issue a CALL instruc-
tion to the target address of the specific boot block, the BFLAG_CALLBACK
flag causes the boot kernel to issue a CALL instruction to the address held
by the pCallBackFunction pointer in the ADI_BOOT_DATA structure. While
a boot stream can have multiple individual initcodes, it can have just one
callback routine. In the standard boot scenario, the callback routine has to
be registered by an initcode prior to the first block that has the
BFLAG_CALLBACK flag set.

The purpose of the callback routine is to apply standard processing to the
block data. Typically, callback routines contain checksum, decryption,
decompression, or hash algorithms. Checksum or hash words can be
passed through the block header ARGUMENT field.

Since callback routines require access to the payload data of the boot
blocks, the block data must be loaded before it can be processed. Unlike
initcodes, a callback usually resides permanently in memory. If the block

Advanced Boot Techniques

17-46 ADSP-BF54x Blackfin Processor Hardware Reference

is loaded to L1 instruction memory or off-chip memory, the
BFLAG_CALLBACK flag is likely combined with the BFLAG_INDIRECT bit. The
boot kernel performs these steps in the following order.

1. Data is loaded into the temporary buffer defined by the
pTempBuffer variable.

2. The CALL to the pCallBackFunction is issued.

3. After the callback routine returns, the memory DMA copies data to
the destination.

If a block does not fit into the temporary buffer, for example when the
BLOCK COUNT is greater than the dTempByteCount variable, the three steps
are executed multiple times until all payload data is loaded and processed.
The boot kernel passes the parameter dCbFlags to the callback routine to
tell it that it is being invoked the first or the last time for a specific block.
To store intermediate results across multiple calls the callback routine can
use the uwUserShort and dUserLong variables in the ADI_BOOT_DATA
structure.

Callback routines meet C language calling conventions for subroutines.
The prototype is as follows.
s32 CallBackFunction (ADI_BOOT_DATA* pBootStruct,

ADI_BOOT_BUFFER* pCallbackStruct, s32 dCbFlags);

The header file defines the ADI_BOOT_CALLBACK_FUNC type the following
way:
typedef s32 ADI_BOOT_CALLBACK_FUNC (ADI_BOOT_DATA*,

ADI_BOOT_BUFFER*, s32) ;

The pBootStruct argument is passed in R0 and points to the
ADI_BOOT_DATA structure used by the boot kernel. These are handled by
the pTempBuffer and dTempByteCount variables as well as the pHeader
pointer to the ARGUMENT field. The callback routine may process the block
further by modifying the pTempBuffer and dTempByteCount variables.

ADSP-BF54x Blackfin Processor Hardware Reference 17-47

System Reset and Booting

The pCallbackStruct structure passed in R1 provides the address and
length of the data buffer. When the BFLAG_INDIRECT flag is not set, the
pCallbackStruct contains the target address and byte count of the boot
block. If the BFLAG_INDIRECT flag is set, the pCallbackStruct contains a
copy of the pTempBuffer. Depending on the size of the boot block and
processing progress, the byte count provided by pCallbackStruct equals
either dTempByteCount or the remainder of the byte count.

When the BFLAG_INDIRECT flag is set along with the BFLAG_CALLBACK flag,
memory DMA is invoked by the boot kernel after the callback routine
returns. This memory DMA relies on the pCallbackStruct structure not
the global pTempBuffer and dTempByteCount variables.

The callback routine can control the source of the memory DMA by alter-
ing the content of the pCallbackStruct structure, as may be required if
the callback routine performs data manipulation such as decompression.

The dCbFlags parameter passed in R2 tells the callback routine whether it
is invoked the first time (CBFLAG_FIRST) or whether it is called the last
time (CBFLAG_FINAL) for a specific block. The CBFLAG_DIRECT flag indi-
cates that the BFLAG_INDIRECT bit is not active so that the callback routine
will only be called once per block. When the CBFLAG_DIRECT flag is set, the
CBFLAG_FIRST and CBFLAG_FINAL flags are also set.

#define CBFLAG_FINAL 0x0008

#define CBFLAG_FIRST 0x0004

#define CBFLAG_DIRECT 0x0001

A callback routine also has a boolean return parameter in register R0. If the
return value is non-zero, the subsequent memory DMA does not execute.
When the CBFLAG_DIRECT flag is set, the return value has no effect.

Advanced Boot Techniques

17-48 ADSP-BF54x Blackfin Processor Hardware Reference

Error Handler
While the default handler simply puts the processor into idle mode, an
initcode routine can overwrite this pointer to create a customized error
handler. The expected prototype is
void ErrorFunction (ADI_BOOT_DATA* pBootStruct, void

*pFailingAddress);

Use an initcode to write the entry address of the error routine to the
pErrorFunction pointer in the ADI_BOOT_DATA structure. The error han-
dler has access to the boot structure and receives the instruction address
that triggered the error.

CRC Checksum Calculation
The ADSP-BF54x processor Blackfin processors provide an initcode and a
callback routine in ROM that can be used for CRC32 checksum genera-
tion during boot time. The checksum routine only verifies the payload
data of the blocks. The block headers are already protected by the native
XOR checksum mechanism.

Before boot blocks can be tagged with the BFLAG_CALLBACK flag to enable
checksum calculation on the blocks, the boot stream must contain an
initcode block with no payload data and with the CRC32 polynomial in
the block header ARGUMENT word.

The initcode registers a proper CRC32 wrapper to the pCallBackFunction
pointer. The registration principle is similar to the XOR checksum exam-
ple shown in “Programming Examples” on page 17-145.

ADSP-BF54x Blackfin Processor Hardware Reference 17-49

System Reset and Booting

Load Functions
With the exception of the Host DMA boot modes, all boot modes are pro-
cessed by a common boot kernel algorithm. The major customization is
done by a subroutine that must be registered to the pLoadFunction pointer
in the ADI_BOOT_DATA structure. Its simple prototype is as follows.
void LoadFunction (ADI_BOOT_DATA* pBootStruct);

The header files define the following type:
typedef void ADI_BOOT_LOAD_FUNC (ADI_BOOT_DATA*) ;

For a few scenarios some of the flags in the dFlags word of the
ADI_BOOT_DATA structure, such as BFLAG_PERIPHERAL and BFLAG_SLAVE,
slightly modify the boot kernel algorithm.

The boot ROM contains several load functions. One performs a memory
DMA for flash boot, others perform peripheral DMAs or load data from
booting source by polling operation. The first is reused for fill operation
and indirect booting as well.

In second-stage boot schemes, the user can create customized load func-
tions or reuse the original BFROM_PDMA routine and modify the
pDmaControlRegister, pControlRegister and dControlValue values in
the ADI_BOOT_DATA structure. The pDmaControlRegister points to the
DMAx_CONFIG or MDMA_Dx_CONFIG register. When the BFLAG_SLAVE flag is
not set, the pControlRegister and dControlValue variables instruct the
peripheral DMA routine to write the control value to the control register
every time the DMA is started.

Load functions written by users must meet the following requirements.

• Protect against dByteCount values of zero.

• Multiple DMA work units are required if the dByteCount value is
greater than 65536.

• The pSource and pDestination pointers must be properly updated.

Advanced Boot Techniques

17-50 ADSP-BF54x Blackfin Processor Hardware Reference

In slave boot modes, the boot kernel uses the address of the dArgument
field in the pHeader block as the destination for the required dummy
DMAs when payload data is consumed from BFLAG_IGNORE blocks. If the
load function requires access to the block's ARGUMENT word, it should be
read early in the function.

The most useful load functions BFROM_MDMA and BFROM_PDMA are accessible
through the jump table. Others, do not have entries in the jump table.
Their start address can be determined with the help of the hook routine
when calling the respective BFROM_SPIBOOT, BFROM_OTPBOOT etc. functions.
In this way they can be repurposed for runtime utilization.

Calling the Boot Kernel at Runtime
The boot kernel’s primary purpose is to boot data to memory after
power-up and reset cycles. However some of the routines used by the boot
kernel might be of general value to the application. The boot ROM sup-
ports reuse of these routines as C-callable subroutines. Programs such as
second-stage boot kernels, boot managers, and firmware update tools may
call the function in the ROM at runtime. This could load entirely differ-
ent applications or a fraction of an application, such as a code overlay or a
coefficient array.

To call these boot kernel subroutines, the boot ROM provides an API at
address 0xEF00 0000 in the form of a jump table.

When calling functions in the boot ROM, the user must ensure the pres-
ence of a valid stack following C language conventions. See C/C++
Compiler and Library Manual for Blackfin Processors for details.

ADSP-BF54x Blackfin Processor Hardware Reference 17-51

System Reset and Booting

Debugging the Boot Process
If the boot process fails, very little information can be gained by watching
the chip from outside. In master boot modes, the interface signals can be
observed. In slave boot modes only the HWAIT (or the RTS) signal tells
about the progress of the boot process.

However, by using the emulator, there are many possibilities for debug-
ging the boot process. The entire source code of the boot kernel is
provided with the CCES or VisualDSP++ installation. This includes the
project executable (DXE) file. The LOAD SYMBOLS feature helps to navigate
the program. Note that the content of the ROM might differ between sil-
icon revisions. Hardware breakpoints and single-stepping capabilities are
also available. Since the content of the L1 instruction ROM cannot be
read out by the emulator (as this ROM is not supported by the ITEST fea-
ture), these instructions are not displayed in the disassembly window.

Table 17-9 shows program symbols that are of interest.

Table 17-9. Boot Kernel Symbols for Debug

Symbol Comment

_bootrom.assert.default If the program counter halts at the IDLE instruction at the
_bootrom.assert.default address, either the boot kernel or
the preboot has detected an error condition and will not con-
tinue the boot process. A misformatted boot stream, checksum
errors, or invalid PBS settings are the most likely causes of such
an error. The RETS register points to the failing routine. When
stepping a couple of instructions further, there is a way to
ignore the error and to continue the boot process by clearing
the >ASTAT register while the emulator steps over the subse-
quent IF CC JUMP 0 instruction.

_bootrom.bootmenu If the emulator hits a hardware breakpoint at the
_bootrom.bootmenu address, this indicates that the preboot
returned properly. Otherwise the program may hang during
preboot due to improper PBS settings or invalid boot modes.

Advanced Boot Techniques

17-52 ADSP-BF54x Blackfin Processor Hardware Reference

The boot kernel also generates a circular log file in scratch pad memory.
While the pLogBuffer and the dLogByteCount variables describe the loca-
tion and dimension of the log buffer, the pLogCurrent points to the next
free location in the buffer. The log file is updated whenever the kernel
passes the _bootrom.bootkernel.breakpoint label.

_bootrom.bootkernel.entry If the emulator hits a hardware breakpoint at the
_bootrom.bootkernel.entry label, this indicates that device
detection or autobaud returned properly.

_bootrom.bootkernel.breakpoint This is a good address to place a hardware breakpoint. The boot
kernel loads a new block header at this breakpoint. The block
header can be watched at address 0xFF80 7FF0 or wherever the
pHeader points to.

_bootrom.bootkernel.initcode All payload data of the current block is loaded by the time the
program passes the _bootrom.bootkernel.initcode label.
The boot kernel is about to interrogate the BFLAG_INIT flag. If
set, the initcode can be debugged.

_bootrom.bootkernel.exit Once the boot kernel arrives at the _bootrom.bootkernel
exit label, it detects a BFLAG_FINAL flag. After some housekeep-
ing, it jumps to the EVT1 vector.

Table 17-9. Boot Kernel Symbols for Debug (Cont’d)

Symbol Comment

ADSP-BF54x Blackfin Processor Hardware Reference 17-53

System Reset and Booting

At each pass, nine 32-bit words are written to the log file, as follows.

• block code word (dBlockCode) of the block header

• target address (pTargetAddress) of the block header

• byte count (dByteCount) of the block header

• argument word (dArgument) of the block header

• source pointer (pSource) of the boot stream

• block count (dBlockCount)

• internal copy of the dBlockCode word OR’ed with dFlags

• content of the SEQSTAT register

• 0xFFFF FFFA (-6) constant

The ninth word is overwritten by the next entry set, so that 0xFFFF FFFA
always marks the last entry in the log file.

Most of the data structures used by the boot kernel reside on the stack in
scratchpad memory. While executing the boot kernel routine (excluding
subroutines), the P5 points to the ADI_BOOT_DATA structure. Type
“(ADI_BOOT_DATA*) $P5” in the IDE’s expression view or window to see
the structure content.

Boot Management

17-54 ADSP-BF54x Blackfin Processor Hardware Reference

Boot Management
Blackfin processor hardware platforms may be required to run different
software at different times. An example might be a system with at least one
application and one in-the-field firmware upgrade utility. Other systems
may have multiple applications, one starting then terminating, to be
replaced by another application. Conditional booting is called boot man-
agement. Some applications may self-manage their booting rules, while
others may have a separate application that controls the process, namely a
boot manager.

In a master boot mode where the on-chip boot kernel loads the boot
stream from memory, the boot manager is a piece of Blackfin software
which decides at runtime what application is booted next. This may sim-
ply be based on the state of a GPIO input pin interrogated by the boot
manager, or it may be the conclusion of complex system behavior.

Slave boot scenarios are different from master boot scenarios. In slave boot
modes, the host masters boot management by setting the Blackfin proces-
sor to reset and then applying alternate boot data. Optionally, the host
could alter the BMODE configuration pins, resulting in little impact to the
Blackfin processor since the intelligence is provided by the host device.

Booting a Different Application
The boot ROM provides a set of user-callable functions that help to boot
a new application (or a fraction of an application). Usually there is no
need for the boot manager to deal with the format details of the boot
stream.

ADSP-BF54x Blackfin Processor Hardware Reference 17-55

System Reset and Booting

These functions are:

• BFROM_MEMBOOT discussed in “Flash Boot Modes” on page 17-62
and “SDRAM Boot Mode” on page 17-66

• BFROM_TWIBOOT discussed in “TWI Master Boot Mode” on
page 17-77

• BFROM_SPIBOOT discussed in “SPI Master Boot Modes” on
page 17-69

• BFROM_OTPBOOT discussed in “OTP Boot Mode” on page 17-85

• BFROM_NANDBOOT discussed in “NAND Flash Boot Mode” on
page 17-88

The user application, the boot manager application, or an initcode can call
these functions to load the requested boot data. Using the BFLAG_RETURN
flag the user can control whether the routine simply returns to the calling
function or executes the loaded application immediately.

These ROM functions expect the start address of the requested boot
stream as an argument. For BFROM_MEMBOOT, this is a Blackfin memory
address, for BFROM_TWIBOOT and BFROM_SPIBOOT it is a serial address. The
SPI function can also accept the code for the GPIO pin that controls the
device select strobe of the SPI memory.

Boot Management

17-56 ADSP-BF54x Blackfin Processor Hardware Reference

Multi-DXE Boot Streams

If the start addresses of all the boot streams are predefined, the boot man-
ager needs only to call the ROM functions directly. However since the
addresses tend to vary from build to build they may have to be calculated
at runtime.

In the world of the elfloader, a boot stream is always generated from a
DXE file. It is therefore common to talk about multi-DXE or multi-appli-
cation booting. When the elfloader utility accepts multiple DXE files on
its command line, it generates a contiguous boot image by default. The
second boot stream is appended immediately to the first one. Since the
utility updates the ARGUMENT field of all BFLAG_FIRST blocks, the ARGUMENT
field of a BFLAG_FIRST block is called next-DXE pointer (NDP).

The next-DXE pointer of the first DXE boot stream points relatively to
the start address of the second DXE boot stream. A multi-DXE boot
image can be seen as a linked list of boot streams. The next-DXE pointer
of the last DXE boot stream points relatively to the next free address. This
is illustrated by an example shown in the next two figures. Figure 17-9 on
page 17-57 shows a commented sketch as an example. Figure 17-10 on
page 17-58 shows a screenshot of the Blackfin loader file viewer utility for
the same example. The LdrViewer utility is not part of the CrossCore
Embedded Studio or VisualDSP++ tools suite. It is a third-party freeware
product available on www.dolomitics.com.

ADSP-BF54x Blackfin Processor Hardware Reference 17-57

System Reset and Booting

Figure 17-9. Multi-DXE Boot Stream Example for Flash Boot

TARGET ADDRESS = 0xFFA0 0000

BYTE COUNT = 0x0000 0010

ARGUMENT = 0x0000 0120

BLOCK CODE = 0xAD95 5006

Optional 16-byte bubble

TARGET ADDRESS = 0xFFA1 0000

BYTE COUNT = 0x0000 0100

ARGUMENT = 0x0000 0000

BLOCK CODE = 0xADFC 0806

Payload of initcode
0x100 bytes

TARGET ADDRESS = 0xFFA0 0000

BYTE COUNT = 0x0000 0000

ARGUMENT = 0x0000 0220

BLOCK CODE = 0xAD86 5006

TARGET ADDRESS = 0xFFA0 0000

BYTE COUNT = 0x0000 0200

ARGUMENT = 0x0000 0000

BLOCK CODE = 0xADF6 0006

Payload of data/code block
0x200 bytes

TARGET ADDRESS = 0xFF80 0000

BYTE COUNT = 0x0000 8000

ARGUMENT = 0xA5A5 A5A5

BLOCK CODE = 0xADD5 8106

TARGET ADDRESS = 0xFFA0 0000

BYTE COUNT = 0x0000 0000

ARGUMENT = 0x0000 1000

BLOCK CODE = 0xADB4 5006

First block of initcode DXE BFLAG_FIRST | BFLAG_IGNORE

Start address of application

Size of optional bubble

Next DXE pointer

Bubble to be ignored by kernel

BFLAG_INIT (BFLAG_FINAL not set to continue boot processing)

Target address of initcode

Size of initcode

Not used

Initcode

First block of first application DXE BFLAG_FIRST | BFLAG_IGNORE

Start address of application

No bubble

Next DXE pointer

Normal data block

Target address of block data

Size of payload

Not used

Loads L1 instruction SRAM

Last block of first application DXE BFLAG_FINAL | BFLAG_FILL

Fills L1 data bank 0

32-bit fill value

First block of second application DXE BFLAG_FIRST|BFLAG_IGNORE

Start address of application

No bubble

Next DXE pointer

0x2000 0000

0x2000 0010

0x2000 0020

0x2000 0030

0x2000 0130

0x2000 0140

0x2000 0150

0x2000 0350

0x2000 0360

0x2000 1370

Further boot stream of second
application DXE
(0x1000 bytes total)

Boot Management

17-58 ADSP-BF54x Blackfin Processor Hardware Reference

Boot management principles are not only applicable to multi-DXE boot
streams. The same scheme, as shown in Figure 17-11 on page 17-59, can
be applied to direct code executions of multiple applications. See “Direct
Code Execution” on page 17-37 for more information. The example
shows a linked list of initial block headers that instruct the boot kernel to

Figure 17-10. LdrViewer Screen Shot

ADSP-BF54x Blackfin Processor Hardware Reference 17-59

System Reset and Booting

terminate immediately and to start code execution at the address provided
by the TARGET ADDRESS field of the individual blocks. There is nothing in
the boot ROM that prevents multi-DXE applications from mixing regular
boot streams and direct code execution blocks.

Figure 17-11. Multi-DXE Direct Code Execution Arrangement Example

TARGET ADDRESS = 0x2000 0100

BYTE COUNT = 0x0000 0010

ARGUMENT = 0x0000 0010

BLOCK CODE = 0xAD5A D006

Optional 16-byte bubble

TARGET ADDRESS = 0x2001 0000

BYTE COUNT = 0x0000 0000

ARGUMENT = 0x0000 0000

BLOCK CODE = 0xAD5A D006

TARGET ADDRESS = 0x2002 0000

BYTE COUNT = 0x0000 0000

ARGUMENT = 0x0000 0000

BLOCK CODE = 0xAD59 D006

Application 0 at 0x2000 0100

Application 1 at 0x2001 0000

Application 2 at 0x2002 0000

Boot Management

17-60 ADSP-BF54x Blackfin Processor Hardware Reference

Determining Boot Stream Start Addresses

The ROM functions BFROM_MEMBOOT, BFROM_TWIBOOT, BFROM_SPIBOOT, etc.
not only allow the application to boot a subroutine residing at a given
start address, they also assist in walking through linked multi-DXE
streams.

When the BFLAG_NEXTDXE bit in dFlags is set and these functions are
called, the system does not boot but instead walks though the boot stream
following the next-DXE pointers. The dBlockCount parameter can be used
to specify the DXE of interest. The routines then return the start address
of the requested DXE’s boot stream.

Initialization Hook Routine

When the ROM functions BFROM_MEMBOOT, BFROM_SPIBOOT, etc. are called,
they create an instance of the ADI_BOOT_DATA structure on the stack and fill
the items with default values. If the BFLAG_HOOK is set, the boot kernel
invokes a callback routine which was passed as the fourth argument of the
ROM routines, after the default values have been filled. The hook routine
can be used to overwrite the default values. Every hook routine should fit
the prototype:
void hook (ADI_BOOT_DATA* pBS);

The header files define the ADI_BOOT_HOOK_FUNC type the following way:
typedef void ADI_BOOT_HOOK_FUNC (ADI_BOOT_DATA*);

The hook function also gives access to the DMA load function used by the
respective boot mode, which can be used for general purposes at runtime.
For example, in the BFROM_SPIBOOT case, an instance of the load function:
ADI_BOOT_LOAD_FUNC *pSpiLoadFunction;

can be initialized by equipping the hook function with the instruction:
pSpiLoadFunction = pBS->pLoadFunction;

ADSP-BF54x Blackfin Processor Hardware Reference 17-61

System Reset and Booting

Specific Boot Modes
This section discusses individual boot modes and the required hardware
connections.

The boot modes differ in terms of the booting source— for example
whether data is loaded through the SPI or the parallel interface. Boot
modes can also be grouped into slave boot modes and master boot modes.

In slave boot modes, the Blackfin processor functions as a slave to any host
device, which is typically another embedded processor, an FPGA device or
even a desktop computer. Likely, the Blackfin processor RESET input is
controlled by the host device. So, usually the host sets RESET first, then
waits until the preboot routine terminates by sensing the HWAIT output,
and finally provides the boot data.

If a Blackfin processor, configured to operate in any of the slave boot
modes, awakens from hibernate, it cannot boot by its own control. A feed-
back mechanism has to be implemented at the system level to inform the
host device whether the processor is in hibernate state or not. The HWAIT
strobe is an important primitive in such systems.

In the master boot modes, the Blackfin processor usually does not need to
be synchronized and can load the boot data by itself. Master modes typi-
cally read from memory. This can be parallel memory such as flash
devices, or serial memory that is read through SPI or TWI interfaces.

Memory boot modes should also be differentiated from peripheral boot
modes. Boot modes that load boot streams through memory DMA are
referred to as memory boot mode, reading data from regular memory.
Peripheral modes load boot data through peripherals such as UART, TWI
or SPI. With the exception of the FIFO boot, which is a hybrid, all mem-
ory boot modes are master modes. The boot source is typically
non-volatile memory, such as a flash or EPROM device or even on-chip
ROM. When supported by the system in warm boot scenarios, the boot
source can also be SRAM or SDRAM.

Specific Boot Modes

17-62 ADSP-BF54x Blackfin Processor Hardware Reference

Whether from the host (slave booting mode) or from memory (master
booting mode), the boot source does not need to know about the structure
of the boot stream. However in the case of Host DMA boot, the size
(BYTE COUNT) of the boot stream should be known. This is because, having
much more control over the Blackfin processor, the host must know what
data is to be loaded to specific addresses.

No Boot Mode
When the BMODE pins are all tied low (BMODE = 0000), the Blackfin proces-
sor does not boot. Instead it processes factory-programmed OTP pages,
then executes an IDLE instruction, preventing it from executing any
instructions provided by the regular boot source. The purpose of this
mode is to bring the processor up to a clean state after reset.

This mode helps to recover from malicious OTP configuration since it
prevents execution of the user-controllable portion of the preboot routine.

When connecting an emulator and starting a debug session, the processor
awakens from an idle due to the emulation interrupt and can be debugged
in the normal manner.

 The no boot mode is not the same as the bypass mode featured by
the ADSP-BF53x Blackfin processor. To simulate that bypass
mode feature using BMODE = 0001, see “Direct Code Execution” on
page 17-37 and “Direct Code Execution” on page 17-155.

Flash Boot Modes
These booting modes are intended to boot from flash or EEPROM mem-
ories or even from battery-buffered SRAMs. The flash boot modes are
activated by BMODE = 0001. Although this is a single BMODE setting, the
ADSP-BF54x processor Blackfin products support various configurations.

ADSP-BF54x Blackfin Processor Hardware Reference 17-63

System Reset and Booting

• Boot from 8-bit asynchronous flash memory

• Boot from 16-bit asynchronous flash memory

• Boot from 16-bit asynchronous page-mode NOR flash memory

• Boot from 16-bit asynchronous burst-mode NOR flash memory

By default, the boot kernel does not alter any EBIU registers. Therefore,
traditional asynchronous flash is assumed and maximum wait states are
applied. By programming OTP half pages PBS00L and PBS00H, the user has
the option to instruct the preboot routine to alter the EBIU registers as
desired. In this way, the EBIU can be preset to access the flash device in
either page mode or burst mode. There are also options to customize bus
settings, such as wait states and ARDY behavior.

After the preboot routine returns and HWAIT is deasserted the first time, the
boot kernel loads an initial burst of four 16-bit words. Then it interrogates
the DMACODE field in the byte loaded from the 0x2000 0000 address. For
flash mode, the DMA options shown in Table 17-10 are supported.

The DMACODE field is filled by the elfloader utility based on boot mode,
-width and -dmawidth settings. See Loader and Utilities Manual for
details.

Table 17-10. DMA Options

DMACODE DMA
Width

Source
Modify

Comment

1 8 1 Not recommended
Provides ADSP-BF533 style 8-bit boot from 16-bit flash memory

2 8 2 8-bit MDMA boots from 8-bit flash mapped to lower byte of
address bus.

6 16 2 16-bit MDMA boots from 16-bit flash

10 32 4 32-bit MDMA boots from 16-bit flash

Specific Boot Modes

17-64 ADSP-BF54x Blackfin Processor Hardware Reference

After the boot kernel has loaded and interpreted the first four 16-bit
words, it continues loading the rest of the first block header and processes
the boot stream.

Most of the popular page-mode and burst-mode NOR flash devices
default to traditional flash mode and are perfectly designed for altering the
operating mode along the way. Theoretically, if the user hesitated to cus-
tomize boot settings through OTP programming, there was still the
option to start booting in traditional asynchronous mode and to alter
EBIU settings through an initcode which is loaded and executed early in
the boot process.

 If the preboot features are not used and the NOR flash device is
put into burst or page mode, it must be programmed back to the
standard mode before the processor is reset. If the processor can
reset itself without software control (through watchdog or dou-
ble-fault error), a mechanism must be installed that also resets the
flash device back to default mode along with the processor. One
method to address this is to set the OTP_RESETOUT_HWAIT bit in
OTP half page PBS00L and to connect the HWAIT signal to the reset
input pin of the NOR flash device.

Hardware configurations for the individual modes are shown in
Figure 17-12 and Figure 17-13. The chip select is always controlled by the
AMS0 strobe. This maps the boot stream to the Blackfin processor’s address
0x2000 0000.

See the chapter on System Design for connection of page-mode and
burst-mode flash devices.

Some flash devices provide write protection mechanisms, which can be
activated during the power-up and reset cycles of the Blackfin processor.
In the absence of such mechanisms, a pull-up resistor on the AMS0 strobe
prevents the chip select from floating when the state of the processor is
unknown.

ADSP-BF54x Blackfin Processor Hardware Reference 17-65

System Reset and Booting

 In flash mode all the muxed address lines (A4 to A9 on port H and
A10 to A25 on port I) are activated by the boot kernel. When BMODE
= 0001, none of these pins can function as an input without exter-
nal hardware protection. Upper address pins are unlikely to toggle
and can still be used for GPIO output purposes, with the limita-
tion that the pins are driven low during boot time.

When the EBIU registers are configured to burst-flash mode by the pre-
boot due to OTP programming, the boot kernel activates the NOR clock
on the PI15 pin rather than the A25 line.

After RESET has released, the preboot processes a number of OTP pages.
Then, the boot kernel starts reading data from the external flash memory.
The initial cycles of the flash boot are shown in Figure 17-14. The first

Figure 17-12. 8-Bit Flash Interconnection

Figure 17-13. 16-Bit Flash Interconnection

AMS0

BLACKFIN

AOE

AWE

A[N+1:1]

D[7:0]

8-BIT FLASH/PROM

AMS

OE

R/W or WR

ADDR[N:0]

DATA[7:0]

AMS0

BLACKFIN

AOE

AWE

A[N+1:1]

D[15:0]

16-BIT FLASH/PROM

AMS

OE

R/W or WR

ADDR[N:0]

DATA[15:0]

Specific Boot Modes

17-66 ADSP-BF54x Blackfin Processor Hardware Reference

4-word burst loads half of the first boot block header in. After the DMACODE
is evaluated the rest of the first block is loaded by the second 4-word
burst. As settings are now known the next header is then loaded as an
8-word (16-byte) entity.

The boot mode BMODE = 0001 can also be used to instruct the boot kernel
to terminate immediately and directly execute code from the 16-bit flash
memory instead. Code execution from 8-bit flash memory is not sup-
ported. See “Direct Code Execution” on page 17-37 for details.

SDRAM Boot Mode
From the boot kernel perspective, the SDRAM boot mode is just another
memory boot mode like flash boot. The only differences are that the boot
stream is expected at address 0x0000 0010 and the initial eight bytes are
loaded by two 32-bit loads.

Figure 17-14. 16-bit Flash Mode Waveform

RESET

0000 00040002 0008 000A 000C0006 000E

0000 5006 ADB4 0000 0000 0000 000010FFA0

1 1 1

1

0 0 0

0000

0 0 0

0 0 0

1

1

1

1

1

1

1

1

10

1 1 1

0 0 0 0

1 1 1

0 0 0 0

1 1 1

0 0 0

1

0

1

0

1

0

0010 0012 0014 0016 0018 001A 001C

AMS0

AOE

ARE

AWE

ADDRESS

DATA

HWAIT

ADSP-BF54x Blackfin Processor Hardware Reference 17-67

System Reset and Booting

From the application point of view, SDRAM boot is a completely differ-
ent scheme. Since SDRAM is volatile memory, BMODE = 1010 is not a valid
setting when the processor and the memories have just been powered up.
This mode can only be used as a dynamically applied BMODE setting to
install warm boot scenarios.

OTP programming is required to boot from SDRAM. Other boot modes
can configure the SDRAM controller by execution of an initcode. But in
the case of SDRAM boot, the initcode cannot be loaded without having
the SDRAM controller already configured.

SDRAM boot is meaningful when the Blackfin processor is in hibernate
state or is completely shut off for power savings while the SDRAM is kept
alive in self-refresh mode.

Users who prefer to execute code out of SDRAM, rather than performing
a boot from it, may refer to “Direct Code Execution” on page 17-37 for
details.

FIFO Boot Mode
The FIFO boot mode (BMODE = 0010) boots the Blackfin processor from
another processor or FPGA system, referred to as the host device. The host
is decoupled from the Blackfin bus by an asynchronous FIFO memory.
When compared to the glue-less Host DMA boot modes, the FIFO mode
requires less intelligence from the host. The host device is only expected to
handshake with the FIFO and to load the entire boot stream in 16-bit
portions. There is no need for the host to know about the content and for-
mat of the boot stream.

The hardware configuration for the FIFO boot mode is shown in
Figure 7-5 on page 7-48. The FIFO chip select connects to the AMS3
strobe. Data read requests go to the DMAR1 input on pin PH6. The host
device controls the Blackfin processor's RESET input. As in all slave modes,
the host device should not send requests to DMAR1 unless the HWAIT signal

Specific Boot Modes

17-68 ADSP-BF54x Blackfin Processor Hardware Reference

goes inactive. The host device may optionally rely on HWAIT edges to
continue or discontinue transmission of boot data in an interrupt con-
trolled manner.

From the boot kernel perspective the FIFO boot mode (BMODE = 0010) is
just another memory boot mode, the only exception being that the HMDMA1
block is enabled in advance. Activating this functionality makes the FIFO
boot mode become a slave mode.

The bits set in the HMDMA1_CONTROL register are SND, REP and HMDMAEN. The
SND bit is new to ADSP-BF54x Blackfin products. The ADSP-BF54x pro-
cessor’s FIFO boot mode differs slightly from the FIFO boot mode
provided by the ADSP-BF52x and ADSP-BF53x Blackfin processors.

In the FIFO boot mode, the DMACODE field in the boot block headers must
always be 0x06, which instructs the boot kernel to perform 16-bit DMA.
The boot kernel increments the applied addresses as if reading from flash
memory.

Regardless of the HMDMA settings, the source channel of the memory
DMA prefetches four 32-bit words as soon as enabled. Only the transmit
channel is stalled and triggered by the HMDMA module. In 16-bit DMA
mode, these four early reads translate to eight 16-bit reads.

The ADSP-BF54x processor boot kernel ensures that at least 16 valid data
words are ready in the external FIFO—by first counting eight rising edges
on the DMAR1 request input and then disabling the HMDMA module.
When HMDMA is later re-enabled, the prefetch will find valid data and
the MDMA can be started safely.

This method requires that the host send 16 more request strobes after it
has sent the complete boot stream to the FIFO. This is because the trans-
mit channel of the DMA still has to drain the FIFO, which must be
protected from underflow at start.

ADSP-BF54x Blackfin Processor Hardware Reference 17-69

System Reset and Booting

SPI Master Boot Modes
The SPI boot mode (BMODE = 0011) boots from SPI memories connected
to the SPI0SEL1 interface. 8-, 16-, 24-, and 32-bit address words are sup-
ported. Standard SPI memories are read using either the standard 0x03
SPI read command or the 0x0B SPI fast read command.

 Unlike other Blackfin processors, the ADSP-BF54x processor
Blackfin processors have no special support for DataFlash devices
from Atmel. Nevertheless, DataFlash devices can be used for boot-
ing and are sold as standard 24-bit addressable SPI memories. They
also support the fast read mode. If used for booting, DataFlash
memory must be programmed in the power-of-2 page mode.

For booting, the SPI memory is connected as shown in Figure 17-15.

The pull-up resistor on the MISO line is required for automatic device
detection. The pull-up resistor on the SPI0SEL1 line ensures that the mem-
ory is in a known state when the Blackfin GPIO is in a high-impedance
state (for example, during reset). A pull-down resistor on the SPI0SCK line
displays cleaner oscilloscope plots during debugging.

For SPI master boot, the SPE, MSTR and SZ bits are set in the SPI0_CTL reg-
ister. For details see Chapter 22, “SPI-Compatible Port Controllers”.
With TIMOD = 2, the receive DMA mode is selected. Clearing both the

Figure 17-15. Blackfin to SPI Memory Connections

(MASTER SPI DEVICE)
SPI MEMORY

SPI0SCK (PE0) SCK

SPI0SEL1 (PE4) CS

SPI0MOSI (PE2) MOSI

BLACKFIN
(SLAVE SPI DEVICE)

SPI0MISO (PE1) MISO

VDDEXT

10K10K

Specific Boot Modes

17-70 ADSP-BF54x Blackfin Processor Hardware Reference

CPOL and CPHA bits results in SPI mode 0. The boot kernel does not allow
SPI0 hardware to control the SPI0SEL1 pin. Instead, this pin is toggled in
GPIO mode by software. Initialization code is allowed to manipulate the
uwSsel variable in the ADI_BOOT_DATA structure to extend the boot mecha-
nism to a second SPI memory connected to another GPIO pin.

By default, the boot kernel sets the SPI0_BAUD register to a value of 133,
resulting in a bit rate of SCLK/266. This default value can be altered by
programming the 4-bit OTP_SPI_BAUD field in OTP page PBS00L to one of
the values in Table 17-11.

Similarly, the boot kernel uses the standard 0x03 SPI read command, by
default. Programming the OTP_SPI_FASTREAD bit in OTP page PBS00L
enables the fast read mode where the boot kernel uses the 0x0B read com-
mand instead and transmits a dummy zero byte after the address bytes.

Table 17-11. Bit Rate

OTP_SPI_BAUD SPI_BAUD Bit Rate

b#0000 133 SCLK/(2x133)

b#0001 Reserved

b#0010 2 SCLK/(2x2)

b#0011 4 SCLK/(2x4)

b#0100 8 SCLK/(2x8)

b#0101 16 SCLK/(2x16)

b#0110 32 SCLK/(2x32)

b#0111 64 SCLK/(2x64)

ADSP-BF54x Blackfin Processor Hardware Reference 17-71

System Reset and Booting

SPI Device Detection Routine

Since BMODE = 0011 supports booting from various SPI memories, the boot
kernel automatically detects what type of memory is connected. To deter-
mine whether the SPI memory device requires an 8-, 16-, 24- or 32-bit
addressing scheme, the boot kernel performs a device detection sequence
prior to booting. The MISO signal requires a pull-up resistor, since the rou-
tine relies on the fact that memories do not drive their data outputs unless
the right number of address bytes are received.

Initially, the boot kernel transmits a read command (either 0x03 or 0x0B)
on the MOSI line, which is immediately followed by two zero bytes. Once
the transmission is finished, the boot kernel interrogates the data received
on the MISO line. If it does not equal 0xFF (usually a DMACODE value of
0x01 is expected), then an 8-bit addressable device is assumed.

If the received value equals 0xFF, it is assumed that the memory device has
not driven its data output yet and that the 0xFF value is due to the pull-up
resistor. Thus, another zero byte is transmitted and the received data is
tested again. If it differs from 0xFF, either a 16-bit addressable device
(standard mode) or an 8-bit addressable device (fast read mode) is
assumed.

If the value still equals 0xFF, device detection continues. Device detection
aborts immediately if a byte different than 0xFF is received. The boot ker-
nel continues with normal boot operation and it re-issues a read command
to read from address 0 again. The first block header is loaded by two read
sequences, further block headers and block payload fields are loaded by
separate read sequences.

Figure 17-16 illustrates how individual devices would behave.

Specific Boot Modes

17-72 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 17-17 on page 17-73 shows the initial signaling when a 24-bit
addressable SPI memory is connected in SPI master boot mode. After
RESET releases and preboot has processed relevant OTP pages, a 0x03 com-
mand is transmitted to the MOSI output, followed by a number of 0x00
bytes. The 24-bit addressable memory device returns a first data byte at
the fourth zero byte. Then, the device detection has completed and the
boot kernel re-issues a 0x00 address to load the boot stream.

Figure 17-16. SPI Device Detection Principle

0x000x000x03 |0x0B 0x00 0x00 0x00 0x00

0x010xFF0xFF

0xFF0xFF0xFF 0x01

0xFF0xFF0xFF 0xFF 0x01

0xFF0xFF0xFF 0xFF 0xFF 0x01

0xFF0xFF0xFF 0xFF 0xFF 0xFF 0x01

. . .

. . .

. . .

. . .

MOSI

MISO

MISO

MISO

MISO

MISO

STANDARD 8-BIT

STANDARD 16-BIT,
FAST READ 8-BIT

STANDARD 24-BIT,
FAST READ 16-BIT

STANDARD 32-BIT,
FAST READ 24-BIT

FAST READ
32-BIT

ADSP-BF54x Blackfin Processor Hardware Reference 17-73

System Reset and Booting

SPI Slave Boot Mode
For SPI slave mode boot (BMODE = 0100), the Blackfin processor is con-
suming boot data from an external SPI host device. SPI0 is configured as
an SPI slave device. The hardware configuration is shown in Figure 17-18.
As in all slave boot modes, the host device controls the Blackfin processor
RESET input.

Figure 17-17. Typical SPI Master Boot Waveforms

Figure 17-18. Connections Between Host (SPI Master)
and Blackfin Processor (SPI Slave)

HWAIT

SPICLK

SSEL

MOSI

MISO

RESET

00

1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

1

1

1

1 1 1 1 1 1 1 1 1 1 1 1 1
0

0

0

0 0 0 0 0 0 0 0 0 0 0

0
1

0 0

(MASTER SPI DEVICE)
BLACKFIN

SPICLK SPI0 SCK (PE0)

S_SEL SPI0 SS (PE3)

MOSI SPI0 MOSI (PE2)

HOST
(SLAVE SPI DEVICE)

MISO SPI0 MISO (PE1)

HWAIT (PB11 / PH7)FLAG/INTERRUPT

VDDEXT

Specific Boot Modes

17-74 ADSP-BF54x Blackfin Processor Hardware Reference

The host drives the SPI clock and is responsible for the timing. The host
must provide an active-low chip select signal that connects to the SPI0SS
input of the Blackfin processor. It can toggle with each byte transferred or
remain low during the entire procedure. 8-bit data is expected. The 16-bit
mode is not supported.

In SPI slave boot mode, the boot kernel sets the CPHA bit and clears the
CPOL bit in the SPI0_CTL register. Therefore the MOSI pin is latched on the
falling edge of the SPI_SCK pin. For details see Chapter 22, “SPI-Compat-
ible Port Controllers”.

In SPI slave boot mode, HWAIT functionality is critical. The HWAIT hand-
shake signal can operate on either the GPIO pin PB11 or on PH7 when the
OTP_ALTERNATE_HWAIT in OTP page PBS00L is programmed. When high,
the resistor shown in Figure 17-18 programs HWAIT to hold off the host.
HWAIT holds the host off while the Blackfin processor is in reset or execut-
ing the preboot. Once HWAIT turns inactive, the host can send boot data.
The SPI module does not provide very large receive FIFOs, so the host
must test the HWAIT signal for every byte. Figure 17-20 on page 17-76
illustrates the required program flow on the host side.

Figure 17-19 on page 17-75 shows the initial waveform for an SPI slave
boot case. As soon as the Blackfin processor releases HWAIT after reset, the
host device pulls the SPI0SS pin low and starts transmitting data. After the
eighth data word has been received, the boot kernel asserts HWAIT again as
it has to process the DMACODE field of the first block header. When the host
detects the asserted HWAIT it gracefully finishes the transmission of the
on-going word. Then, it pauses transmission until HWAIT releases again.

ADSP-BF54x Blackfin Processor Hardware Reference 17-75

System Reset and Booting

Figure 17-19. Typical SPI Slave Boot Waveforms

HWAIT

SPICLK

SPISS

MOSI

MISO

RESET

0

1

0 0 0 0 0 0 0

0

0 0 0 0 0 0

0 0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1 1

1

0 0
1

0 0
1 1

1

Specific Boot Modes

17-76 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 17-20. SPI Program Flow on Host Device

HWAIT

Start

Pulse /RESET low

Asserted

Assert SPI /SS

Deasserted

HWAIT Asserted

Send Next Byte

Deasserted

More BytesYes

No

EXIT

Release SPI /SS

ADSP-BF54x Blackfin Processor Hardware Reference 17-77

System Reset and Booting

TWI Master Boot Mode
In TWI master boot mode (BMODE = 0101) the boot kernel reads boot data

from I2C memory connected to the TWI0 interface. The Blackfin proces-
sor selects the slave EEPROM with the unique ID 0xA0, submits
successive read commands to the device starting at internal address
0x0000, and begins clocking data to the processor. The EEPROM’s device

select bits A2–A0 must be 0s (tied low) when present. The I2C EPROM

device should comply with Philips I2C Bus Specification version 2.1 and
should have the capability to auto increment its internal address counter
such that the contents of the memory device can be read sequentially.
Connections are shown in Figure 17-21 “TWI Master Boot Mode Con-
nections” on page 17-77.

 On the Blackfin processor, in both TWI master and slave boot
modes, the upper 512 bytes starting at address 0xFF90 3E00 either
must not be used or must be booted last. The boot ROM code uses
this space for the TWI boot modes to temporarily hold the serial
data which is then transferred to L1 instruction memory using
DMA. All boot blocks that target the L1 instruction memory or
external memories must have the BFLAG_INDIRECT bit set. Initcodes
can alter the placement of the temporary buffer by modifying the
pTempBuffer and dTempByteCount variables in the ADI_BOOT_DATA
structure.

Figure 17-21. TWI Master Boot Mode Connections

BLACKFIN (MASTER)

SDA SDA

SCL

I2C COMPATIBLE
MEMORY DEVICE

SCL
A0

A1

A2

GND

VDDEXT

Specific Boot Modes

17-78 ADSP-BF54x Blackfin Processor Hardware Reference

The Blackfin processor‘s TWI controller outputs the address of the I2C
device to boot from, in this case 0xA0, where the least significant bit indi-
cates the direction of the transfer. In this example, it is a write (0) to write
the first two bytes of the internal address from which to start booting
(0x00).

Figure 17-23 “TWI Init and Fill Block Timing” on page 17-78 shows the
TWI init and zero fill blocks.

Figure 17-22 “TWI Master Boot Timing” on page 17-78 shows the initial
waveforms for TWI master boot. After reset, the kernel generates nine
slow pulses on the SCL output to ensure the TWI memory's state machine
exits any pending state. Then a start condition is issued and 0xA0 address
command is issued, where the least significant bit indicates the direction
of the write. In this case it is a write (0) in order to write two more 0x00
address bytes.

Figure 17-22. TWI Master Boot Timing

Figure 17-23. TWI Init and Fill Block Timing

HWAIT

SCL

SDA

RESET

1

1

1

1

1 1 1 1 1 1 1 1 1 1 1 1 1111

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 0 0

0

00 0 0 0 0 0 0000

000

TWI SDA all

TWI SCL all

RESET all

1 1

1

1 1

BUS IDLE
DURING

PROCESSING
OF AN

INIT BLOCK

BUS IDLE
DURING

PROCESSING
OF A

FILL BLOCK

ADSP-BF54x Blackfin Processor Hardware Reference 17-79

System Reset and Booting

By default, it is assumed that the I2C memory device is two-byte address-
able. This can be changed by programming the OTP_TWI_TYPE bit field in
OTP page PBS00L as shown in Table 17-12 and Figure 17-45 on
page 17-111.

The TWI0 controller is programmed to generate a 30% duty cycle clock

in accordance with the I2C clock specification for fast-mode operation
(PRESCALE = 0xA, CLKDIV = 0x811) as shown in Table 17-13. The default
values can be altered by OTP programming. Setting the OTP_TWI0_CLKDIV
bit in OTP page PBS00L changes the OTP_TWI0_CLKDIV register value to
0x3232 as recommended for 100 kHz TWI operation. The
OTP_TWI_PRESCALE field controls the prescale value written to the
TWI0_CONTROL register.

TWI Slave Boot Mode
In TWI slave boot mode (BMODE = 0110) the Blackfin processor consumes

data from a I2C host device connected to the TWI0 interface. The I2C
host selects the slave (Blackfin processor) with the 7-bit slave address
0x5F. When the Blackfin processor acknowledges, the host can download

the boot stream. The I2C host should comply with Philips I2C Bus Speci-
fication version 2.1. The host supplies the serial clock.

Table 17-12. Addressable Bytes

OTP_TWI_TYPE Address Bytes

00 2

01 3

10 4

11 1

Specific Boot Modes

17-80 ADSP-BF54x Blackfin Processor Hardware Reference

Connections are shown in Figure 17-24 “TWI Slave Boot Mode Connec-
tions” on page 17-80.

Table 17-13. Prescale Value

OTP_TWI_PRESCALE PRESCALE Recommended1

000 0x0A SCLK = 100 MHz

001 0x0E SCLK = 140 MHz (theoretical)

010 0x0C SCLK = 120 MHz

011 0x0A SCLK = 100 MHz

100 0x08 SCLK = 80 MHz

101 0x06 SCLK = 60 MHz

110 0x04 SCLK = 40 MHz

111 0x02 SCLK = 20 MHz

1 Check the ADSP-BF542/544/547/548/549 Embedded Processor Data
Sheet for the maximum SCLK frequency.

Figure 17-24. TWI Slave Boot Mode Connections

BLACKFIN
(SLAVE DEVICE)

I2C COMPATIBLE HOST

SDA SDA

SCL

(MASTER DEVICE)

SCL

VDDEXT

ADSP-BF54x Blackfin Processor Hardware Reference 17-81

System Reset and Booting

Figure 17-25 “TWI Slave Boot Timing” on page 17-81 shows initial
waveforms for TWI slave boot. As soon as HWAIT releases after reset the
host starts transmitting the boot stream data. It starts with a start condi-
tion and a 0xBE command, which is a composite of the 0x5F address and
a trailing zero bit to indicate write direction.

Figure 17-26 on page 17-81 shows an example of bit stretching.

 On the Blackfin processor, in both TWI master and slave boot
modes, the upper 512 bytes starting at address 0xFF90 3E00 either
must not be used or must be booted last. The boot ROM code uses
this space for the TWI boot modes to temporarily hold the serial
data which is then transferred to L1 instruction memory using
DMA. All boot blocks that target the L1 instruction memory or
external memories must have the BFLAG_INDIRECT bit set. Initcodes

Figure 17-25. TWI Slave Boot Timing

Figure 17-26. TWI Bit Stretching Timing

HWAIT

SCL

SDA

RESET

0 0 0 0 0
1 1 1 1

0
1

0 0 0 0
1 1 1 1

0 0 0
1 1 1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

1

0
1

TWI SDA all

TWI SCL all

RESET all

1 1

1

0 0

* *

* DURING THE PROCESSING OF INIT AND/OR ZERO FILL BLOCKS, THE BLACKFIN TWI
CONTROLLER STRETCHES THE SCL LINE TO INDICATE TO THE HOST THAT IT CANNOT
ACCEPT ANY BYTES AT THIS TIME.

0

1

Specific Boot Modes

17-82 ADSP-BF54x Blackfin Processor Hardware Reference

can alter the placement of the temporary buffer by modifying the
pTempBuffer and dTempByteCount variables in the ADI_BOOT_DATA
structure.

UART Slave Mode Boot
Figure 17-27 on page 17-82 shows the interconnection required for boot-
ing. The figure does not show physical line drivers and level shifters that
are typically required to meet the individual UART-compatible standards.

For BMODE = 0111, the ADSP-BF54x processor consumes boot data from a
UART host device connected to the UART1 interface. Automatic control
of the RTS output provides flow control.

The host downloads programs formatted as boot streams using an auto-
baud detection sequence. The host selects a bit rate within the UART
clocking capabilities. To determine the bit rate when performing the auto-
baud, the boot kernel expects an “@” character (0x40, eight data bits, one
start bit, one stop bit, no parity bit) on the UART RXD input. The boot
kernel acknowledges, and the host then downloads the boot stream. The
acknowledgement consists of four bytes: 0xBF, UARTx_DLL, UARTx_DLH,
0x00. The host is requested to not send further bytes until it has received
the complete acknowledge string. Once the 0x00 byte is received, the host
can send the entire boot stream. The host should know the total byte

Figure 17-27. UART Slave Boot Mode Connections

(MASTER UART DEVICE)
BLACKFIN

TX UART1 RXD

HOST

(SLAVE UART DEVICE)

RX UART1 TXD

INTERRUPT HWAIT

UART1 RTSCTS

VDDEXT

ADSP-BF54x Blackfin Processor Hardware Reference 17-83

System Reset and Booting

count of the boot stream, but it is not required to have any knowledge
about the content of the boot stream. Further information regarding auto-
baud detection is given in “Autobaud Mode” on page 10-33.

When the boot kernel is processing fill or initcode blocks it might require
extra processing time and needs to hold the host off from sending more
data. This is signalled with the HWAIT output as well as by the RTS output.
When equipped with a pull-up resistor the HWAIT signal imitates the
behavior of an RTS output and could be connected to the CTS input of the
booting host. The host is not allowed to send data until HWAIT turns inac-
tive after a reset cycle. Therefore a pulling resistor on the HWAIT signal is
required.

If the resistor pulls to ground, the host must pause transmission when
HWAIT is low and is permitted to send when HWAIT is high. A pull-up resis-
tor inverts the signal polarity of HWAIT. The host should test HWAIT at every
transmitted byte.

During ADSP-BF54x boot operation, the host device more likely relies on
the RTS output of UART1. Then, the use of HWAIT becomes optional. At
boot time the Blackfin does not evaluate RTS signals driven by the host
and the UART1 CTS input is inactive. Since the RTS is in a high impedance
state when the Blackfin processor is in reset or while executing preboot, an
external pull-up resistor to VDDEXT is recommended.

Figure 17-28. UART Autobaud Waveform

0 0 0
1 1 1

UART1_TX

UART1_RX

UART1_RTS

0

0 0

1

1 1

RESET

HWAIT

1
0

0
1

0

0 0 00 0

1

11

Specific Boot Modes

17-84 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 17-29 on page 17-84 plus Figure 17-30 on page 17-85 show the
initial case of the UART boot mode. As soon as HWAIT releases after reset,
the boot kernel expects to receive a 0x40 byte for bit rate detection. After
the bit rate is known, the UART is enabled and the kernel transmits for
bytes.

Figure 17-29 on page 17-84 and Figure 17-30 on page 17-85 compare
RTS and HWAIT timing when an extended initcode executes. Since code exe-
cution distracts from data loading, the host device should be prevented
from sending more data. The HWAIT timing is much more conservative
than the RTS. If the host relies on HWAIT, the UART receive buffer may not
be filled over watermark level and RTS might not be de-asserted at all. If,
however, the host relies on RTS it will be stalled a couple of bytes later.
Both methods are valid.

 As shown in Figure 17-30, when the UART is enabled, RTS goes
low, encouraging the host to send the boot stream data immedi-
ately. With a half-duplex UART connection this must be avoided.
The host should either rely on the HWAIT signal or wait until it has
received the four bytes from the Blackfin processor, before sending
any data.

Figure 17-29. UART Boot - Host relying on HWAIT

UART1_TX

UART1_RX

UART1_RTS

0

0

0

1

1

RESET

HWAIT

0 0 0 0 0
1 1 11

ADSP-BF54x Blackfin Processor Hardware Reference 17-85

System Reset and Booting

 For UART boot, it is not obvious on how to change the PLL by an
initcode routine. This is because the UARTx_DLL and UARTx_DLH reg-
isters have to be updated to keep the required bit rate constant after
the SCLK frequency has changed. It must be ensured that the host
does not send data while the PLL is changing. The initcode exam-
ples provided along with the CCES or VisualDSP++ tools
installation demonstrate how this can be accomplished.

OTP Boot Mode
In the OTP boot mode (BMODE = 1011), the boot kernel loads the boot
stream from the on-chip OTP memory. OTP booting is a self-sufficient
booting mechanism that does not require external boot memory or a host
device.

By default the boot kernel starts loading the boot stream starting from
OTP page 0x40. This is in the public OTP region. The boot stream can
occupy all pages up to OTP page 0xDF, resulting in a boot stream length
of up to 2560 bytes. The start address of the boot stream can be altered by
programming the OTP_START_PAGE field in the PBS01H page. If there is no
conflict with the alternate preboot pages feature, the OTP_START_PAGE field
can be set to 0x20, resulting in a boot stream length of up to 3072 bytes.

Figure 17-30. UART Boot - Host relying on RTS

UART1_TX

UART1_RX

UART1_RTS

0

0 0

0

1

1

1

RESET

HWAIT

Specific Boot Modes

17-86 ADSP-BF54x Blackfin Processor Hardware Reference

In the current implementation, the OTP engine has no DMA support.
Data is loaded and copied by core instructions. Nevertheless the DMACODE
field should be set to 0xA, indicating 32-bit operation. The boot kernel
ensures proper operation at 32-bit granularity, but 64-bit alignment may
help to reduce the number of OTP pages that have to be read during boot
processing. Byte 0 of the boot stream is expected to be byte 0 of the lower
32-bit word of the lower 0x40 half page.

 In the OTP boot mode, the upper 512 bytes starting at address
0xFF90 3E00 either must not be used or must be booted last. The
boot ROM code uses this space to temporarily hold the serial data
which is then transferred to L1 instruction memory using DMA.
All boot blocks that target the L1 instruction memory or external
memories must have the BFLAG_INDIRECT bit set. Initcodes can alter
the placement of the temporary buffer by modifying the
pTempBuffer and dTempByteCount variables in the ADI_BOOT_DATA
structure.

Host DMA Boot Modes
The Host DMA boot modes differ completely from other boot modes
because the boot kernel has no control over the DMA channels. The host
device masters the DMA, so the host device must parse the boot stream by
itself.

The two host DMA boot modes (BMODE = 1110 for 16-bit and BMODE =
1111 for 8-bit) are almost identical. The differences are the port muxing
control and the initial programming of the HOST_CONTROL register. The
16-bit boot mode uses the HOSTDP’s acknowledge mode while the 8-bit
boot mode sets the INT_MODE bit in the HOST_CONTROL register to activate
the interrupt mode.

Connection of a host device to the Blackfin processor is discussed in
Chapter 8, “Host DMA Port”. For booting, the host device should control
the RESET of the Blackfin processor. The host processor must poll the

ADSP-BF54x Blackfin Processor Hardware Reference 17-87

System Reset and Booting

HOST_STATUS register using a configuration read of the HOSTDP until the
ALLOW_CNFG bit is set (indicating that the host may begin sending the 7
configuration words). This is necessary before each configuration of the
HOSTDP. The host processor may optionally sense the HWAIT signal to
determine when it should begin polling the ALLOW_CNFG bit.

The HOSTDP interface does not support the advanced boot kernel oper-
ations such as fill, CRC or callback. There is simple support to simulate
the initcode functionality. Typically, this feature is not so important when
the preboot OTP memory pages can be programmed to configure the PLL
and SDRAM controllers. However, if the user does not have the option to
program OTP memory, the simulated initcode is the only option to speed
up the processor clocks and to enable the SDRAM controller for booting.
One of these options must be used for the host device to boot into
SDRAM memory.

In order to simulate initcodes the host device must send a valid initcode
routine to L1 instruction address 0xFFA0 0000. Additionally, the host is
required to issue an HIRQ command after sending the 7 configuration
words (but before sending any data) for the initcode block to the
HOSTDP. Once the boot kernel detects an HIRQ command from the host
and the DMA work unit is complete, the boot kernel will issue a CALL
instruction to the address held in the EVT1 register, and the C language
initcode routine is called. EVT1 defaults to 0xFFA0 0000, but it can be
modified by user instructions during the boot process. When the initcode
returns, the regular boot process continues. This can be repeated multiple
times if necessary.

If the initcode routine has properly configured the SDRAM controller,
subsequent Host DMA work units can write to SDRAM memory. Simi-
larly, if the initcode has programmed the PLL, the Host DMA port can
run at higher speed since it is SCLK dependent.

The same scheme is used to terminate the boot process. When the host is
ready to send the final boot block of the application it needs to send the 7
configuration words required by the HOSTDP. The host device should

Specific Boot Modes

17-88 ADSP-BF54x Blackfin Processor Hardware Reference

then send an HIRQ command followed by the remaining data. Once all
data has written, the boot kernel executes another CALL instruction and
the application takes control of the system rather than returning to the
boot kernel.

Figure 17-31 on page 17-89 illustrates boot kernel processing in the Host
DMA boot mode. Figure 17-32 on page 17-90 illustrates host device flow.

NAND Flash Boot Mode
NAND flash boot mode (BMODE = 1101) is intended to boot from SLC
NAND flash memory devices connected directly to the NAND Flash
Controller (NFC) of the ADSP-BF54x processor processors.

By default the NAND flash boot mode configures the read and write delay
strobe timing parameters within the NFC_CTL register with RD_DLY = 0x3
and WR_DLY = 0x3. This provides tRP and tWP timings of four SCLK cycles
(30ns at 133 MHz) to provide maximum compatibility. By programming
OTP half page PBS01H, the user has the option to instruct the preboot rou-
tine to provide alternate settings prior to accessing the NAND flash for
the first access. In NAND flash boot mode, the HWAIT signal does not
toggle. The respective GPIO pins remain in high-impedance mode.

 Providing OTP configurations of RD_DLY = 0x0 and WR_DLY = 0x0
will result in the boot kernel using the default configuration of
RD_DLY = 0x3 and WR_DLY = 0x3. The highest performance settings
for NAND flash boot are enabled with WR_DLY = 0x1 and RD_DLY =
0x0.

ADSP-BF54x Blackfin Processor Hardware Reference 17-89

System Reset and Booting

Figure 17-31. Boot Kernel Processing in Host DMA Boot Mode

BMODE = 1110 BMODE = 1111

ENABLE LOWER 8 BITS
IN PORT MUXING
PREPARE INT MODE

ENABLE 16 BITS
IN PORT MUXING
PREPARE ACK MODE

STACK AND HWAIT
INITIALIZATION
ENABLE HOSTDP

SET HSHK

DEASSERT HWAIT
IDLE
ASSERT HWAIT

HIRQ

ERROR

W1C DMA_DONE
W1S COMPLETE
CLEAR HSHK

DISABLE DMA
DISABLE HOSTDP

CALL EVT1 VECTOR

DMA_DONE

HIRQ

IF EVT1 VECTOR RETURNS BY RTS

1

DMA_ERR

0

1

0

0

0

1

1

Specific Boot Modes

17-90 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 17-32. Host Device Flow in Host DMA Boot Mode

POLL ALLOW_CNFG
IN HOST_STATUS

WRITE SEVEN CONFIGURATION
WORDS ACCORDING TO
TARGET ADDRESS & BYTE COUNT*

POLL DMA_RDY
IN HOST_STATUS

READ OR WRITE THE AMOUNT OF
DATA SPECIFIED IN CONFIG VALUES*

END

START (HWAIT
HAS BEEN
DEASSERTED)

ALLOW_CNFG = 0

DMA_RDY = 0

ALLOW_CNFG = 1

FINAL

FINAL OR INIT

DMA_RDY = 1

NORMAL

WAIT FOR HWAIT TO
DEASSERT AGAIN

READ OR WRITE THE AMOUNT OF
DATA SPECIFIED IN CONFIG VALUES*

WRITE HIRQ CONTROL COMMAND

FINAL, INIT, OR
NORMAL BLOCK?

FINAL OR INIT
BLOCK?

INIT

* Must be a multiple of the
HOSTDP FIFO depth

ADSP-BF54x Blackfin Processor Hardware Reference 17-91

System Reset and Booting

Supported Devices

NAND flash boot provides support for booting from a number of NAND
flash devices from a number of different manufacturers. There are two
main classifications of single SLC NAND flash memories:

• small-page NAND flash

• large-page NAND flash (8-bit and 16-bit)

The small-page NAND flash devices use a different addressing scheme for
accessing the NAND flash array than that required by large-page NAND
flash devices. Additionally small-page devices require a different command
set for reading from different parts of the page.

For booting, small-page devices must comply with the array configuration
in Table 17-14 and support the commands in Table 17-15.

Table 17-14. Supported Small-page Device Array Configuration

Parameter Size

Page Size 512 Bytes

Block Size (excluding spare area) 16384 Bytes (32 pages)

Spare Area 16 Bytes

1st half of page 256 Bytes

2nd half of page 256 Bytes

Maximum number of addressable blocks 524288

Table 17-15. Supported Small-page Commands

Operation Command

Reset 0xFF

Read from 1st half of array 0x00

Read from 2nd half of array 0x01

Read from spare area 0x50

Specific Boot Modes

17-92 ADSP-BF54x Blackfin Processor Hardware Reference

 The NAND flash boot kernel, by default, issues four address cycles
after issuing the read command. This redundancy can be removed
by modifying the uwNumCommands parameter of the
ADI_BOOT_NAND_ADDRESS structure in an initialization routine that
is executed before the main application boot stream is processed.
To load the initialization function however, four address cycles are
always issued. The NAND flash device must be capable of ignoring
the additional address cycles.

NAND flash boot provides support for a number of large-page array con-
figurations. The fourth byte of the NAND flash Electronic Signature is
used to configure the boot kernel for correct access to the memory array.
The boot kernel supports any large-page NAND flash device whose Elec-
tronic Signature fourth byte is complies with the format in Figure 17-33.

Table 17-16 shows the large-page command set that is supported.

Figure 17-33. Supported 4th byte of NAND Flash Electronic Signature

7 6 5 4 3 2 1 0

00 0 0 0 0 0 0

Page Size
(excluding spare area)
00 – 1024 Bytes
01 – 2048 Bytes
10 – 4096 Bytes
11 – 8192 Bytes

Spare Area Size
(per 512 Bytes)
0 – 8 Bytes
1 – 16 Bytes
Ignored

Ignored

Bus Width
0 – 8 Bits
1 – 16 Bits

Block Size
(excluding spare area)
00 – 64 Kbytes
01 – 128 K bytes
10 – 256 K bytes
11 – 512K bytes

ADSP-BF54x Blackfin Processor Hardware Reference 17-93

System Reset and Booting

 Due to the auto detection method used, large-page NAND flash
devices must not react to the issuing of command 0x50 followed by
four address cycles by driving the R B signal low and then high
again.

 The NAND flash boot kernel, by default, issues five address cycles
after issuing the read command. This redundancy can be removed
by modifying the uwNumCommands parameter of the
ADI_BOOT_NAND_ADDRESS structure in an initialization routine that
is executed before the main application boot stream is processed.
To load the initialization function however, five address cycles are
always issued. The NAND flash device must be capable of ignoring
the additional address cycles.

 Supported 16-Bit NAND flash memories must only use the lower
eight bits of the bus for the command and address cycles. 16-bit
command and address cycles are not supported.

Hardware configuration for the NAND flash boot mode is shown in
Figure 17-34.

As the GPIO pins were originally configured as inputs, a pull-up resistor is
required on PJ1\ND_CE. This ensures that the device is not selected after a
reset before the required GPIO pins have been configured correctly.

Table 17-16. Supported Large-page Commands

Operation 1st Command 2nd Command

Reset 0xFF

Read Electronic Signature 0x90

Read 0x00 0x30

Specific Boot Modes

17-94 ADSP-BF54x Blackfin Processor Hardware Reference

NAND Flash Page Structure

The NAND flash boot option transfers data contents from the main area
of the NAND flash using a 256 byte DMA transfer. The spare area section
at the end of the page contains the ECC error checking parity data for
each 256 sub block of the main data area. The spare area section is divided
into equal sizes corresponding to the number of 256 byte blocks contained
within a page. For a 512 Mbyte small-page device, the spare area is
divided into two sections.

The first three bytes of each sub section of the spare area contains the
22-bit ECC parity data for the corresponding data block. The very last
byte of the spare area is reserved in the first and second pages of each block
for the bad-block marker. Figure 17-35 shows the page structure for a
NAND flash device with a page size of 2048-bytes. The 64-byte area is
divided into eight 8-byte sections. The first three bytes of each section
contains the parity data for the corresponding 256-byte block.

The last byte in the page is used as the bad-block marker in the event that
the device only contains 8-bytes of spare area per 512-byte block instead
of the more common 16-bytes per 512-byte block.

Figure 17-34. 8-Bit/16-Bit NAND Flash Interconnection

BLACKFIN

PJ2/ND_RB R B

NAND FLASH

PJ1/ND_CE E

ND_ALE

W

AL

CL

R
ARE

VDDEXT

AWE

ND_CLE

D[7:0] or D[15:0] I/O [7:0] or I/O [15:0]

4.7K4.7K

ADSP-BF54x Blackfin Processor Hardware Reference 17-95

System Reset and Booting

Auto Detection

Once the boot kernel has detected the NAND flash boot option, the first
operation to be performed is the auto detection procedure of the NAND
flash device.

The boot kernel first issues a reset signal to the NAND flash device. The
reset command brings the NAND flash out of the default read mode—
ready to accept a command. The NAND flash reacts by driving the R B
signal low and then high again.

The processor, after issuing the reset command, enters a nested loop that
checks the status of the R B signal every 100 SCLK cycles. A maximum of
100 checks are performed. If the ready busy signal is not driven low and
then high again after 100 attempts, then the boot kernel enters the safe
idle mode as it assumed that no NAND flash device is present. The loop
terminates when R B assertion is detected. The processor then proceeds to
determine if the attached device is a small-page NAND flash device.

Figure 17-35. Page Layout of NAND Flash Device, 2048-Byte Page Size

256 BYTES
NFC PAGE 0

256 BYTES
NFC PAGE 1

256 BYTES
NFC PAGE 2

256 BYTES
NFC PAGE 3

256 BYTES
NFC PAGE 4

256 BYTES
NFC PAGE 5

256 BYTES
NFC PAGE 6

256 BYTES
NFC PAGE 7

NFC
PAGE 0
PARITY

NFC
PAGE 1
PARITY

NFC
PAGE 2
PARITY

NFC
PAGE 3
PARITY

NFC
PAGE 4
PARITY

NFC
PAGE 5
PARITY

NFC
PAGE 6
PARITY

NFC
PAGE 7
PARITY

B
B

5 UNUSED BYTES

22-BIT ECC PARITY OCCUPYING 3 BYTES

4 UNUSED BYTES

BAD BLOCK INDICATOR BYTE
ON PAGES 0 AND 1 OF A
BLOCK, OTHERWISE UNUSED

MAIN AREA OF NAND FLASH PAGE (2048 BYTES)
DIVIDED INTO NAND FLASH CONTROLLER PAGES

SPARE AREA
(64 BYTES)

Specific Boot Modes

17-96 ADSP-BF54x Blackfin Processor Hardware Reference

Small-page device detection consists of issuing a command to read from
the spare area of the device, command 0x50, followed by four address
cycles. Once again the processor enters a nested loop routine waiting for
detection of a rising edge of the ND_RB signal. If the rising edge is detected
then the boot kernel is configured to boot from the supported small-page
device.

If no rising edge is detected by the time the loop terminates, the device is
assumed to be a large-page device. The processor issues another reset com-
mand to reset the large-page device, then proceeds to read the Electronic
Signature to configure the boot kernel appropriately.

Boot Stream Processing

To successfully boot from NAND flash, blocks of data must be first trans-
ferred to the processors internal memory to be processed by the boot
kernel. A 512 byte temporary storage space located at 0xFF907E00 –
0xFF907FFF is used.

This storage space is split into two buffers each consisting of 256 bytes.

The 256 byte buffer at location 0xFF907E00 – 0xFF907EFF is referred to
as the “MainBuffer”. The remaining 256 bytes from 0xFF907F00 –
0xFF907FFF are referred to as the “PrefetchBuffer”.

 As the 0xFF907E00 – 0xFF907FFF address range is usable Data
Bank B memory, the application itself must not resolve anything to
this space. Take care to omit this region from the defined memory
range in the application’s LDF file to prevent boot-time conflicts
from overwriting these buffers.

The NAND flash controller is configured for a 256 byte page size. During
the boot phase, a single block transfer consists of 256 bytes. All block
transfers from the NAND flash device go the PrefetchBuffer. The boot
kernel determines if the MainBuffer is empty, is partially processed or is
fully processed. If the MainBuffer is empty or all data currently residing in

ADSP-BF54x Blackfin Processor Hardware Reference 17-97

System Reset and Booting

the MainBuffer is processed, the boot kernel copies the contents of the
PrefetchBuffer into the MainBuffer—then requests another 256 block of
data from the NAND flash. This process continues until the entire boot
stream is processed.

An important requirement of NAND flash devices is the need for error
checking and correction (ECC) on the received data. The NAND flash
controller of the ADSP-BF54x processor devices uses a Hamming Code
algorithm to automatically generate two sets of parity data for each 256
byte block transfer. The two sets of parity data each consist of 11 bits pro-
viding a total of 22 bits of parity data. This allows for the detection and
correction of a single bit error within a 256 byte block, detection of a dou-
ble error, and detection of an error within the parity data itself.

The boot kernel uses the embedded NFC ECC parity generation hardware
and performs the error correction algorithm after every block transfer to
the PrefetchBuffer. The kernel detects when the requested data resides in a
new page. Before requesting the actual data, the kernel reads the data from
the spare area section of the page, where the ECC parity data resides, to
the PrefetchBuffer. Then the kernel stores the data internally on the stack
to the EccParity structure.

The parity data for the entire NAND flash page is stored, allowing for
error checking to be performed on all further data transfers from that page
without requiring further access to the spare area. Thus the kernel adopts
a more efficient access method when requesting the actual data, by only
issuing a single read command for sequential 256 byte block accesses to a
page.

 Because the NAND flash boot procedure uses a prefetch mecha-
nism, the 256 byte block following the end of the boot stream must
have the correct ECC parity field programmed. Failure to adhere to
this results in the boot kernel generating an uncorrectable error
when fetching the block of data; and the boot process terminates.

Specific Boot Modes

17-98 ADSP-BF54x Blackfin Processor Hardware Reference

Software Configurable NAND Flash Boot Modes

The NAND flash boot mode supports three different boot methods with
regards to handling errors and bad blocks.

• Sequential Block Mode (default)

• Block Skip Mode

• Multiple Image Mode

The three booting options provide users with flexibility in how they use a
NAND flash for booting purposes.

The three boot modes are configured through the uwBlockSkipFeature
variable of the EccParity structure. By default uwBlockSkipFeature = 0,
configuring the device for Sequential Block Mode. The user can change
the boot mode by modifying the uwBlockSkipFeature variable in an ini-
tialization routine that is loaded and executed before the main application
boot stream is processed. Access to the ADI_BOOT_NAND structure is pro-
vided by a pointer stored in the dUserLong parameter of the
ADI_BOOT_DATA structure.

Sequential Block Mode

The default boot method is the Sequential Block Mode. In this mode no
bad block detection is performed. The processor simply boots the boot
stream starting from page 0 of block 0 until the end of the boot stream is
reached. Error correction is always performed for greater reliability. How-
ever, if an uncorrectable error or error in the parity data is detected, the
booting process terminates and the error handler is called.

This boot mode is suited for applications that wish to adopt a second stage
boot loader approach, where the second stage loader starts from the first
byte in the NAND flash.

ADSP-BF54x Blackfin Processor Hardware Reference 17-99

System Reset and Booting

If the boot stream to be loaded spans a number of blocks then all blocks
that the boot stream occupies must be good blocks. If a block is known to
be bad then this boot method should not be adopted for that particular
device.

Figure 17-36 shows some typical usage scenarios for this mode.

Block Skip Mode

This mode is enabled with uwBlockSkipFeature = 1. When enabling this
mode the user must also set uwBlockModifier = 1. Failure to do so can
result in the boot procedure failing.

This boot mode is suited for larger applications not adopting the second
stage loader approach. During the loading of the application to the
NAND flash, upon detection of factory set bad block, the last byte of the
spare area of the first and second page of the bad block is set to a non
0xFF value.

The boot procedure works in a similar manner to the Sequential Block
Mode except on detection of an access to a new block the spare area sec-
tions of the first two pages are loaded. The boot kernel checks the last byte
of each. If either is not equal to 0xFF then the page is detected as bad. A

Figure 17-36. Sequential Block Mode Usage Scenarios

BLOCK 3

BLOCK 2

BLOCK 1

BLOCK 0

BLOCK 3

BLOCK 2

BLOCK 1

BLOCK 0

BLOCK N

BLOCK 1

BLOCK 0

BLOCKS 0 TO N ALL
KNOWN GOOD BLOCKS

…

APPLICATION

APPLICATION

2ND STAGE LOADER

APPLICATION

Specific Boot Modes

17-100 ADSP-BF54x Blackfin Processor Hardware Reference

byte offset of 1 block is then applied to all subsequent data requests thus
skipping any bad blocks. This allows for the booting a single larger stream
that is impeded by bad blocks in the area that the boot stream occupies.

Each time a bad block is encountered the byte offset applied to the address
of the requested data is incremented by 1 block. Figure 17-37 highlights a
typical usage scenario for this boot method.

Figure 17-37. Block Skip Mode Typical Usage Scenario

Last byte of pages 0 and 1 of block set to a non
0xFF value, marking the block as bad. The block
is not programmed with data.

BAD BLOCK

BLOCK 3

BLOCK 2

BLOCK 1

BLOCK 0

BLOCK 6

BLOCK 5

BLOCK 4

APPLICATION

APPLICATION

APPLICATION

BAD BLOCK

APPLICATION

BAD BLOCK

ADSP-BF54x Blackfin Processor Hardware Reference 17-101

System Reset and Booting

Multiple Image Mode

This mode is enabled with uwBlockSkipFeature = 2. Multiple Image
Mode allows for multiple copies of the boot stream to be loaded to the
NAND flash providing maximum reliability. The number of blocks
between each copy of the boot stream is defined by uwBlockModifier.

Upon detection of an access to a new block—as in Block Skip Mode, the
last byte of the spare area of the first and second page of the block are
checked to see if either indicate that the block is bad. If the block is bad,
the block offset is applied to the requested data address to fetch from the
next copy of the application.

This mode is the only mode that can handle uncorrectable errors from
error detection and correction. If an uncorrectable error is received in any
block (including block 0), or an error is detected in the parity data, the
kernel will fetch the same block of data from the next copy of the
application.

The parameter uwMaxCopies specifies how many copies of the application
are located in the NAND flash. If the processor is booting from the final
copy and an uncorrectable error, error in the ECC parity data, or a bad
block occurs —the processor enters a safe idle state and the booting pro-
cess is terminated. This boot method provides greater reliability when
regular boot stream updates are expected throughout the life of the
product.

Figure 17-38 shows a typical usage scenario.

Specific Boot Modes

17-102 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 17-38. Mirror Image Mode Typical Usage Scenario

During programming block 14 is detected
as bad as marked in the factory.

The NAND Flash programmer may choose
to write data to this block or mark the block
as bad by setting the last byte of the
spare area of pages 0 and/or 1 to a
non 0xFF value while still preserving
the factory marked bad block information.

If data is not written to the block the flash
programmer must skip an entire block
of data in the loader stream before
completing the write of the loader stream
to block 15.

BLOCK 0

BLOCK 1

BLOCK 2

BLOCK 3

BLOCK 4

BLOCK 5

BLOCK 6

BLOCK 7

BLOCK 8

BLOCK 9

BLOCK 10

BLOCK 11

BLOCK 12

BLOCK 13

BLOCK 14

BLOCK 15

BLOCK 16

BLOCK 17

BLOCK 18

BLOCK 19

BLOCK 20

COPY 4 OF
APPLICATION

COPY 3 OF
APPLICATION

COPY 2 OF
APPLICATION

COPY 1 OF
APPLICATION

APPLICATION

ADSP-BF54x Blackfin Processor Hardware Reference 17-103

System Reset and Booting

Reset and Booting Registers
Two registers are used for reset and booting—the software reset register
(SWRST) and the system reset configuration register (SYSCR).

Software Reset (SWRST) Register
A software reset can be initiated by setting bits [2:0] in the system soft-
ware reset field in the software reset register (SWRST) shown in
Figure 17-39 on page 17-104. Bit 3 can be used to generate reset upon
core-double-fault. A core-double-fault resets both the core and the periph-
erals, but not the RTC block and most of the DPMC. Bit 15 indicates
whether a software reset has occurred since the last time SWRST was read.
Bit 14 indicates the software watchdog timer has generated the software
reset. Bit 13 indicates the core-double-fault has generated the software
reset. Bits [15:13] are read-only and cleared when the register is read.
Reading the SWRST also clears bits [15:13] in the SYSCR register. Bits [3:0]
are read/write.

Only writing to bits[2:0], resets only the modules in the SCLK domain. It
does not clear the core. The program executes normally at the instruction
after the MMR write to SWRST. The system is kept in the reset state as long
as the bits[2:0] are set to b#111. To release reset, write a zero again. An
example is shown in Listing 17-3 on page 17-146. It is not recommended
that this functionality be used directly. Rather, call the ROM function
bfrom_SysControl() to perform a system reset.

Reset and Booting Registers

17-104 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 17-39. Software Reset Register

0

Software Reset Register (SWRST)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

SYSTEM_RESET
(System Software Reset)
0x0—0x6 – No SW reset
0x7 – Reset system

DOUBLE_FAULT
(Core-Double-Fault Reset
Enable)
0 – Do not generate reset on
core-double-fault
1 – Generate reset upon
core-double-fault

RESET_SOFTWARE
(Software Reset Status) – RO
 0 – No SW reset since last SWRST
read
 1 – SW reset occurred since last
SWRST read

RESET_WDOG
(Software Watchdog Timer Source)
– Read only
 0 – Software reset not generated
by watchdog
 1 – Software reset generated by
watchdog

RESET_DOUBLE
(Core-Double-Fault Reset) – RO
 0 – SW reset not generated by
core-double-fault
 1 – SW reset generated by
core-double-fault

0 0 0 0 0 0 0 0 0 0 0 0 0 00xFFC0 0100 Reset = 0x0000

ADSP-BF54x Blackfin Processor Hardware Reference 17-105

System Reset and Booting

System Reset Configuration (SYSCR) Register
The values sensed from the BMODE[3:0] pins are mirrored into the system
reset configuration register (SYSCR). The values are available for software
access and modification after the hardware reset sequence. Software can
modify only bits[7:4] in this register to customize boot processing upon a
software reset.

The bits [15:13] are exact copies of the same bits in the SWRST register.
Unlike the SWRST register, SYSCR can be read without clearing these bits.
Reading SWRST also causes SYSCR[15:13] to clear.

The WURESET indicates whether there was a wake up from hibernate since
the last hardware reset. The bit cannot be cleared by software.

Bits [11:8] have no booting or reset purpose. These bits control the DMA
arbitration.

The software reset configuration register (SYSCR) is shown in Figure 17-40
on page 17-106.

Reset and Booting Registers

17-106 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 17-40. System Reset Configuration Register

X0000 X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BMODE [3:0]
(Boot Mode) – RO
0000 – No boot, Idle
0001 – Boot from 8-bit or 16-bit flash
0010 – Boot from 16-bit FIFO
0011 – Boot from SPI memory
0100 – Boot from SPI host
0101 – Boot from TWI memory
0110 – Boot from TWI host
0111 – Boot from UART host
1000 – Reserved
1001 – Reserved
1010 – Boot from SDRAM memory,
(warm boot)
1011 – Boot from OTP memory
1100 – Reserved
1101 – Boot from 8- and 16-bit NAND
flash
1110 – Boot from 16-bit Host DMA
(ACK mode)
1111 – Boot from 8-bit Host DMA
(INT mode)

0 0 0 0 0 0 0 0 X X Reset = dependent on pin
values

System Reset Configuration Register (SYSCR)
X – state is initialized from BMODE pins during hardware reset

0xFFC0 0104

SWRESET
Software Reset – RO
A software reset
0 – last reset was not
1 – last reset was

WDRESET
Watchdog Reset – RO
A watchdog reset
0 – last reset was not
1 – last rest was

DFRESET
Double-fault Reset – RO
A double-fault reset
0 – last reset was not
1 – last reset was

WURESET
Wake-up Reset – RO
Since last hardware reset
0 – no wake-up event
1 – there was a wake-up

L2DMAPRIO
RW
0 – DMA0 has higher priority than DMA1 to L2
1 – DMA1 has higher priority than DMA0 to L2

CDMAPRIO
RW
0 – DMA0 has higher priority than DMA1 to L1 memory
1 – DMA1 has higher priority than DMA0 to L1 memory

BCODE[3:0]
Boot Code – RW
0000 – BCODE_NORMAL. Perform quick boot as by WURESET,
update power management
0001 – BCODE_NOBOOT. Do not boot, directly jump to EVT1 vector
0010 – BCODE_QUICKBOOT. Ignore WURESET, always perform
quick boot
0100 – BCODE_ALLBOOT. Ignore WURESET, do not perform quick
boot
0110 – BCODE_FULLBOOT. Ignore WURESET, do not perform quick
boot, update power management
1xxx – reserved

ADSP-BF54x Blackfin Processor Hardware Reference 17-107

System Reset and Booting

Boot Code Revision Control (BK_REVISION)
The boot ROM reserves the 32-bits at address 0xEF00 0040 for a four
byte version code as shown in Figure 17-41.

Figure 17-41. Boot Code Revision Code

Bit 23:16— BK_PROJECT
(Boot Kernel Project)
Reads as 0x01 on ADSP-BF54x processors

0xEF00 0040

Boot Code Revision BK_REVISION Word, 31–16

Bit 31:24— BK_ID
(Boot Kernel Identifier)
Reads as 0xAD

Boot Code Revision BK_REVISION Word, 15–0

Default, See Anomaly Sheet0xEF00 0040

BK_VERSION
(Boot Kernel Version)
Global boot kernel version number

BK_UPDATE
(Boot Kernel Update
Enhancements/Bug fix version specifically made for
the specific project. Refer to the specific processor
anomaly sheet for the version control of a specific
silicon revision.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reset and Booting Registers

17-108 ADSP-BF54x Blackfin Processor Hardware Reference

Boot Code Date Code (BK_DATECODE)
The boot ROM reserves the 32-bits at address 0xEF00 0050 for the build
date as shown in Figure 17-42.

Figure 17-42. Boot Code Date Code

0xEF00 0050

Boot Code Date Code BK_DATECODE Word, 31–16

Bit 31:16 – BK_YEAR

Boot Code Date Code BK_DATECODE Word, 15–0

0xEF00 0050

BK_MONTH BK_DAY

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADSP-BF54x Blackfin Processor Hardware Reference 17-109

System Reset and Booting

Zero Word (BK_ZEROS)
The boot ROM reserves the 32-bits at address 0xEF00 0048 which always
reads as 0x0000 000 as shown in Figure 17-43.

Figure 17-43. Zero Word

0xEF00 0048

Zero Word BK_ZEROS, 31–16

Read only

Zero Word BK_ZEROS, 15–0

0xEF00 0048

Read only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OTP Memory Pages for Booting

17-110 ADSP-BF54x Blackfin Processor Hardware Reference

Ones Word (BK_ONES)
The boot ROM reserves the 32-bits at address 0xEF00 004C which always
reads 0xFFFF FFFF as shown in Figure 17-44.

OTP Memory Pages for Booting
The following sections describe OTP memory pages for booting.

Lower PBS00 Half Page
The 64-bit lower half of page 0x18 is always read by the preboot routine.
These control bits customize the boot process and instruct the preboot
routine whether to process further pages and whether the PLL settings
have to be changed. Other bits customize the SPI and TWI master boot
speed.

Figure 17-44. Ones Word

0xEF00 004C

Ones Word BK_ONES, 31–16

Read only

Ones Word BK_ONES, 15–0

0xEF00 004C

Read only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 11 1

11 1 1 1 1 1 1 1 1 1 1 1 11 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADSP-BF54x Blackfin Processor Hardware Reference 17-111

System Reset and Booting

Figure 17-45. Lower PBS00 Half Page (PBS00L, Bits 63–48)

OTP_INVALID
00 – Pages 0x18 to 0x1B, Valid
11 – Pages 0x18 to 0x1B, Invalid, use
pages 0x1C to 0x1F instead.

OTP_LOAD_PBS03H
Not implemented in current rev.
0 – do not load and process PBS03H
page
1 – load and process PBS03H page

OTP_LOAD_PBS03L
Not implemented in current rev.
0 – do not load and process PBS03L
page
1 – load and process PBS03L page

OTP_LOAD_PBS02H
0 – do not load and process PBS02H
page
1 – load and process PBS02H page

OTP_LOAD_PBS02L
0 – do not load and process PBS02L
page
1 – load and process PBS02L page

OTP_LOAD_PBS01H
0 – do not load and process PBS01H
page
1 – load and process PBS01H page

OTP_LOAD_PBS01L
Not implemented in current rev.
0 – do not load and process PBS01L
page
1 – load and process PBS01L page

Lower PBS00 Half Page (PBS00L, Bits 63–48)
One-Time Programmable

OTP 0x018L + (4 x i) 00 0 0 0 0 0 0 0 0 0 0 0 00 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

OTP_TWI_TYPE
00 – Two address bytes required
01 – Three address bytes required
10 – Four address bytes required
11 – One address byte required

OTP_SET_PLL
0 – Do not set PLL_CTL and
PLL_DIV registers
1 – Set PLL_CTL and PLL_DIV
registers with OTP_PLL_CTL
and OTP_PLL_DIV values

OTP_SET_VR
0 – Do not set VR_CTL register
1 – Set VR_CTL register with
OTP_VR_CTL value

OTP_RESETOUT_HWAIT
0 – Normal HWAIT operation
1 – HWAIT simulates reset output
OTP_ALTERNATE_HWAIT0 –
HWAIT on PB11 GPIO pin
1 – HWAIT on PH7 GPIO pin

OTP_LOAD_PBS00H
0 – Do not load and process
PBS00H page
1 – Load PBS00H page

Default 0x0000

OTP Memory Pages for Booting

17-112 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 17-46. Lower PBS00 Half Page (PBS00L, Bits 47–32)

Lower PBS00 Half Page (PBS00L, Bits 47–32)
One-Time Programmable

OTP 0x018L + (4 x i)
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

00 0 0 0 0 0

OTP_PLL_DIV
Value to be written to PLL_DIV
register if OTP_SET_PLL = 1

OTP_TWI_PRESCALE
for TWI master boot
000 – Prescale = 0xA(for 100MHz SCLK)
001 – Prescale = 0xE (for 140MHz SCLK)
010 – Prescale = 0xC (for 120MHz SCLK)
011 – Prescale = 0xA (for 100MHz SCLK)
100 – Prescale = 0x8 (for 80MHz SCLK)
101 – Prescale = 0x6 (for 60MHz SCLK)
110 – Prescale = 0x4 (for 40MHz SCLK)
111 – Prescale = 0x2 (for 20MHz SCLK)

OTP_TWI_CLKDIV
for TWI master boot0 – CLKDIV = 0x0811
(400kHz TWI operation, 30% duty cycle)
1 – CLKDIV = 0x3232
(100kHz TWI operation, 50% duty cycle)

OTP_SPI_FASTREAD
0 – Standard 0x03 read command
1 – 0x0B fast read command

OTP_SPI_BAUD
for SPI master boot
00 – SPI0_BAUD = 133
01 – reserved
else – SPI0_BAUD = 2^(OTP_SPI0_BAUD–1)

Default 0x00000 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 17-113

System Reset and Booting

Figure 17-47. Lower PBS00 Half Page (PBS00L, Bits 31–0)

Lower PBS00 Half Page (PBS00L, Bits 31–16)
One-Time Programmable

OTP 0x18L + (4 x i) 00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OTP_PLL_CTL
Value to be written to PLL_CTL register if
OTP_SET_PLL = 1

Lower PBS00 Half Page (PBS00L, Bits 15–0)
One-Time Programmable

OTP 0x18L + (4 x i)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

OTP_VR_CTL
Value to be written to VR_CTL register if
OTP_SET_VR = 1

Default 0x0000

Default 0x0000

OTP Memory Pages for Booting

17-114 ADSP-BF54x Blackfin Processor Hardware Reference

Upper PBS00 Half Page
The preboot routine loads the upper 64-bit half of page PBS00 only if the
OTP_LOAD_PBS00H bit in the PBS00L page is set. Page PBS00H customizes the
default setting of the asynchronous portion of the EBIU controller.

Figure 17-48. Upper PBS00 Half Page (PBS00H, Bits 63–32)

00

0

Upper PBS00 Half Page (PBS00H, Bits 63–48)
One-Time Programmable

OTP 0x18H +(4 x i) 00 0 0 0 0 0 0 0 0 0 0 0 00

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

OTP_EBIU_DEVCFG
Device Configuration word to be used
by device sequence.

Upper PBS00 Half Page (PBS00H, Bits 47–32)
One-Time Programmable

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

00 0 0 0 0 0 0 0 0 0 0 00

OTP_EBIU_MODE
Value to be written to the EBIU_MODE
register

OTP_EBIU_DEVSEQ
0010 – perform 16-bit Atmel, Intel, ST
sequence
0100 – perform 16-bit Spansion sequence
0110 – perform 16-bit Samsung sequence
else: do not perform any device sequence

OTP_EBIU_AMG
Value to be written to EBIU_AMGCTL
register

Default 0x0000

Default 0x0000OTP 0x18H +(4 x i)

ADSP-BF54x Blackfin Processor Hardware Reference 17-115

System Reset and Booting

Lower PBS01 Half Page
The half page PBS01L is reserved and not used in the current silicon.

 Do not use this page as it may be populated in future silicon
revisions.

Figure 17-49. Upper PBS00 Half Page (PBS00H, Bits 31–0)

Upper PBS00 Half Page (PBS00H, Bits 31–16)
One-Time Programmable

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Upper PBS00 Half Page (PBS00H, Bits 15–0)
One-Time Programmable

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Default 0x0000

Default 0x0000OTP 0x18H +(4 x i)

OTP 0x18H +(4 x i)

OTP_EBIU_FCTL
Value to be written to the EBIU_FCTL
register if OTP_SET_FCTL = 1

OTP_EBIU_AMBCTL
Value to be written to the EBIU_AMBCTL0 and
EBIU_AMBCTL1 registers. Applies only to banks as
enabled in the OTP_EBIU_AMG value.

OTP Memory Pages for Booting

17-116 ADSP-BF54x Blackfin Processor Hardware Reference

Upper PBS01 Half Page
The preboot routine loads the upper 64-bit half of page 0x19 only if the
OTP_LOAD_PBS01H bit in the PBS00L page is set. This page allows the user to
disable boot modes. If a disabled boot mode configuration is chosen by
the BMODE[3:0] pins, the boot kernel goes into idle state. This half page
also provides customization of the NAND flash controller. In OTP boot
mode, this pages determines where in OTP memory the boot stream
resides.

Figure 17-50. OTP Half Page (PBS01H, Bits 63–16)

Upper PBS01 Half Page (PBS01H, Bits 63–48)
One-Time Programmable

00 0 0 0 0 0 0 0 0 0 0 0 00 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

Reserved

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

00 0 0 0 0 0 0 0 0 0 0 0 00 0OTP 0x19H + (4xi)

Upper PBS01 Half Page (PBS01H, Bits 47–32)
One-Time Programmable

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0OTP 0x19H + (4xi)

Upper PBS01 Half Page (PBS01H, Bits 31–16)
One-Time Programmable

OTP_START_PAGE
OTP start page for OTP boot mode. If 0x00, OTP
boot starts at OTP page 0x40.

OTP 0x19H + (4xi)

Reserved

Default 0x0000

Default 0x0000

Default 0x0000

OTP_NFC_CTL
If non-zero value is written to lower eight
bits of NFC_CTL register.

ADSP-BF54x Blackfin Processor Hardware Reference 17-117

System Reset and Booting

Figure 17-51. OTP Half Page PBS01H (PBS01H, Bits 15–0)

Upper PBS01 Half Page (PBS01H, Bits 15–0)
One-Time Programmable

OTP 0x19H + (4xi)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

OTP_BMODE00_DIS
0 – Do not disable Boot Mode 0
1 – Disable Boot Mode 0

OTP_BMODE01_DIS
0 – Do not disable Boot Mode
1 – Disable Boot Mode 1

OTP_BMODE02_DIS
0 – Do not disable Boot Mode 2
1 – Disable Boot Mode 2

OTP_BMODE03_DIS
0 – Do not disable Boot Mode 3
1 – Disable Boot Mode 3

OTP_BMODE04_DIS
0 – Do not disable Boot Mode 4
1 – Disable Boot Mode 4

OTP_BMODE05_DIS
0 – Do not disable Boot Mode 5
1 – Disable Boot Mode 5

OTP_BMODE06_DIS
0 – Do not disable Boot Mode 6
1 – Disable Boot Mode 6

OTP_BMODE07_DIS
0 – Do not disable Boot Mode 7
1 – Disable Boot Mode 7

BMODE15_DIS
0 – Do not disable
1 – Disable Boot Mode 15

BMODE14_DIS
0 – Do not disable
1 – Disable Boot Mode 14

BMODE13_DIS
0 – Do not disable
1 – Disable Boot Mode 13

BMODE12_DIS
0 – Do not disablE
1 – Disable Boot Mode 12

BMODE11_DIS
0 – Do not disable
1 – Disable Boot Mode 11

BMODE10_DIS
0 – Do not disable
1 – Disable Boot Mode 10

BMODE09_DIS
0 – Do not disable
1 – Disable Boot Mode 9

BMODE08_DIS
0 – Do not disable
1 – Disable Boot Mode 8

Default 0x0000

OTP Memory Pages for Booting

17-118 ADSP-BF54x Blackfin Processor Hardware Reference

Lower PBS02 Half Page
The preboot routine loads the lower 64-bit half of page 0x1A only if the
OTP_LOAD_PBS02L bit in half page PBS00L is set. Half pages PBS02L and
PBS02H customize the SDRAM controller settings.

Figure 17-52. Lower PBS02 Half Page (PBS02L, Bits 63–0)

Lower PBS02 Half Page (PBS02L, Bits 63–48)
One-Time Programmable

00 0 0 0 0 0 0 0 0 0 0 0 00 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

OTP_EBIU_DDRCTL1[63:48]
Values to be written to the EBIU_DDRCTL1
register

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

00 0 0 0 0 0 0 0 0 0 0 0 00 0OTP 0x1AL + (4xi)

Lower PBS02 Half Page (PBS02L, Bits 47–32)
One-Time Programmable

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0OTP 0x1AL + (4xi)

Lower PBS02 Half Page (PBS02L, Bits 31–16)
One-Time Programmable

OTP 0x1AL + (4xi)

Lower PBS02 Half Page (PBS02L, Bits 15–0)
One-Time Programmable

OTP 0x1AL + (4xi)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Default 0x0000

Default 0x0000

Default 0x0000

Default 0x0000

OTP_EBIU_DDRCTL0[31:16]
Values to be written to the EBIU_DDRCTL0
register

OTP_EBIU_DDRCTL0[15:0]

OTP_EBIU_DDRCTL1[47:32]

ADSP-BF54x Blackfin Processor Hardware Reference 17-119

System Reset and Booting

Upper PBS02 Half Page
The preboot routine loads the upper 64-bit half of page 0x16 only if the
OTP_LOAD_PBS02H bit in the PBS00L page is set. Half pages PBS02L and
PBS02H customize the SDRAM controller settings.

Figure 17-53. Upper PBS02 Half Page (PBS02H, Bits 63–0)

Upper PBS02 Half Page (PBS02H, Bits 63–48)
One-Time Programmable

00 0 0 0 0 0 0 0 0 0 0 0 00 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

OTP_EBIU_MOBILE_DDR
0— Normal SDRAM mode
1— Mobile SDRAM mode

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

00 0 0 0 0 0 0 0 0 0 0 0 00 0OTP 0x1AH + (4xi)

Upper PBS02 Half Page (PBS02H, Bits 47–32)
One-Time Programmable

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

OTP_EBIU_DDRQUEL

OTP 0x1AH + (4xi)

Upper PBS02 Half Page (PBS02H, Bits 31–16)
One-Time Programmable

OTP_EBIU_DDRCTL3L
Value to be written to lower half
of EBIU_DDRQUE register

OTP 0x1AH + (4xi)

Upper PBS02 Half Page (PBS02H, Bits 15–0)
One-Time Programmable

OTP 0x1AH + (4xi)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

OTP_EBIU_DDRCTL2L
Value to be written to lower half
of EBIU_DDRQUE register

Default 0x0000

Default 0x0000

Default 0x0000

Default 0x0000

Data Structures

17-120 ADSP-BF54x Blackfin Processor Hardware Reference

Reserved Half Pages
The half pages PBS01L, PBS03L and PBS03H are reserved and not used in the
current silicon.

 Do not use these pages as they may be populated in future silicon
revisions.

Data Structures
The boot kernel uses specific data structures for internal processing.
Advanced users can customize the booting process by changing the con-
tent of the structure within the initcode routines. This section uses C
language definitions for documentation purposes. Developers can use
these structures directly in assembly programs by using the .IMPORT direc-
tive. The structures are supplied by the bfrom.h header file in your CCES
or VisualDSP++ installation directory.

ADI_BOOT_HEADER
typedef struct {

s32 dBlockCode;

void* pTargetAddress;

s32 dByteCount;

s32 dArgument;

} ADI_BOOT_HEADER;

The structure ADI_BOOT_HEADER is used by the boot kernel to load and pro-
cess a block header.

Every block header is loaded to L1 data memory location 0xFF80 7FF0–
0xFF80 7FFF first or where pHeader points to. There it is analyzed by the
boot kernel.

ADSP-BF54x Blackfin Processor Hardware Reference 17-121

System Reset and Booting

ADI_BOOT_BUFFER
typedef struct {

void* pSource;
s32 dByteCount;

} ADI_BOOT_BUFFER;

The structure ADI_BOOT_BUFFER is used for any kind of buffer. For the
user, this structure is important when implementing advanced callback
mechanisms.

ADI_BOOT_DATA
typedef struct {

void* pSource;
void* pDestination;
s16* pControlRegister;
s16* pDmaControlRegister;
s32 dControlValue;
s32 dByteCount;
s32 dFlags;
s16 uwDataWidth;
s16 uwSrcModifyMult;
s16 uwDstModifyMult;
s16 uwHwait;
s16 uwSsel;
s16 uwUserShort;
s32 dUserLong;
s32 dReserved;
ADI_BOOT_ERROR_FUNC* pErrorFunction;
ADI_BOOT_LOAD_FUNC* pLoadFunction;
ADI_BOOT_CALLBACK_FUNC* pCallBackFunction;
ADI_BOOT_HEADER* pHeader;
void* pTempBuffer;
void* pTempCurrent;
s32 dTempByteCount;
s32 dBlockCount;

s32 dClock;
void* pLogBuffer;
void* pLogCurrent;
s32 dLogByteCount;

} ADI_BOOT_DATA;

Data Structures

17-122 ADSP-BF54x Blackfin Processor Hardware Reference

The structure ADI_BOOT_DATA is the main data structure. A pointer to a
ADI_BOOT_DATA structure is passed to most complex subroutines, including
load functions, initcode, and callback routines. The structure has two
parts. While the first is closely related to internal memory load routines,
the second provides access to global boot settings.

Table 17-17 on page 17-122 describes the data structures.

Table 17-17. Structure Variables, ADI_BOOT_DATA

Variable Description

pSource In the context of the boot kernel, the pSource pointer points either to
the start address of the entire boot stream or to the header of the next
boot block. In the context of memory load routines pSource points to
the source address of the DMA work unit.

pDestination The pDestination pointer is only used in memory load routines. It
points to the destination address of the DMA work unit. It points to
either 0xFF80 7FF0 when a header is loaded, or the target address when
the payload data is loaded.

pControlRegister This pointer holds the MMR address of the peripheral’s main control
register (for example UARTx_LCR or SPIx_CTL)

pDmaControlRegister This pointer holds the MMR address of the DMAx_CONFIG register for
the DMA channel in use.

dControlValue The lower 16 bits of this value are written to the pControlRegister
location each time a DMA work unit is started.

dByteCount Number of bytes to be transferred.

dFlags The lower 16 bits of this variable hold the lower 16 bits of the current
block code. The upper 16 bits hold global flags. See “dFlags Word” on
page 17-125.

uwDataWidth This instructs the memory load routine to use:
0 – 8-bit DMA
1 – 16-bit DMA
2 – 32-bit DMA

uwSrcModifyMult This is the multiplication factor used by the DMA source. A value of 1
sets the source modifier to 1 for 8-bit DMA, 2 for 16-bit DMA, or 4 for
32-bit DMA.

ADSP-BF54x Blackfin Processor Hardware Reference 17-123

System Reset and Booting

uwDstModifyMult This is the multiplication factor used by the DMA destination. A value
of 1 sets the destination modifier to 1 for 8-bit DMA, 2 for 16-bit
DMA, or 4 for 32-bit DMA.

uwHwait This 16-bit value holds the GPIO used for HWAIT signaling. The value
can change on the fly. The upper eight bits designate the port number
(for example 01 for Port A, 02 for Port B). The lower four bits designate
the GPIO in the port. For example, GPIO PH11 has a value of 0x080B,
PB7 has a value of 0x0207, PG0 has a value of 0x0700.

uwSsel This 16-bit value holds the GPIO used for SPI slave select. The value
can change on the fly. The upper eight bits designate the port number
(for example 01 for Port A, 02 for Port B). The lower four bits designate
the GPIO in the port.

uwUserShort The programmer can use this 16-bit value for passing parameters
between modules of a customized booting scheme.

dUserLong The programmer can use this 32-bit value for passing parameters
between modules of a customized booting scheme.

dReserved This 32-bit value is reserved for future development.

pErrorFunction This is the pointer to the error handler. See “Error Handler” on
page 17-48.

pLoadFunction This is the pointer to the function responsible for loading data. See
“Load Functions” on page 17-49

pCallBackFunction; This is the pointer to the callback function. See “Callback Routines” on
page 17-45

pHeader The pHeader pointer holds the address for intermediate storage of the
block header. By default this value is set to 0xFF80 7FF0.

pTempBuffer This pointer tells the boot kernel what memory to use for intermediate
storage when the BFLAG_INDIRECT flag is set for a given block. The
pointer defaults to 0xFF90 7E00. The value can be modified by the
initcode routine, but there would be some impact to the CCES or Visu-
alDSP++ tools.

pTempCurrent Defaults to the pTempBuffer value. A load function can modify this
value to manipulate subsequent callback and memory DMA routines.

Table 17-17. Structure Variables, ADI_BOOT_DATA (Cont’d)

Variable Description

Data Structures

17-124 ADSP-BF54x Blackfin Processor Hardware Reference

dTempByteCount This is the size of the intermediate storage buffer used when the
BFLAG_INDIRECT flag is set for a given block. This value defaults to 256
and can be modified by an initcode routine. When increasing this value,
the pTempBuffer must also be changed since by default the block is at
the end of a physical data memory block.

dBlockCount This 32-bit variable counts the boot blocks that are processed by the
boot kernel. If the user sets this value to a negative value, the boot kernel
exits when the variable increments to zero.

dClock The dClock variable holds information about the clock divider used by
individual (serial) boot modes.

pLogBuffer Pointer to the circular log buffer. By default the log buffer resides in L1
scratch pad memory at address 0xFFB0 0400.

pLogCurrent Pointer to the next free entry of the circular log buffer.

dLogByteCount Size of the circular log buffer, default is 0x400 bytes.

Table 17-17. Structure Variables, ADI_BOOT_DATA (Cont’d)

Variable Description

ADSP-BF54x Blackfin Processor Hardware Reference 17-125

System Reset and Booting

dFlags Word

Figure 17-55 and Figure 17-54 on page 17-125 describe the dFlags word.
dFlags [15–0] is a copy of Block Code[15–0] of the block currently being
processed.

Figure 17-54. dFlags Word (Bits 31–16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

BFLAG_HOOK
0 – Do not callback initialization hook
routine
1 – Do callback initialization hook
routine

BFLAG_HDRINDIRECT
0 – Headers are loaded directly
1 – Headers are loaded indirectly

BFLAG_TYPE
00 – (BFLAG_TYPE1) one SPI/TWI
address byte or small-page NAND
01 – (BFLAG_TYPE2) two SPI/TWI
address bytes or large-page NAND
10 – (BFLAG_TYPE3) three SPI/TWI
address bytes
11 – (BFLAG_TYPE4) four SPI/TWI
address bytes

BFLAG_FASTREAD
0 – normal SPI mode
1 – SPI fast read operation

dFlags Word, Bits 31–16

BFLAG_NONRESTORE
0 – restore control registers on
exit
1 – do not restore control regis-
ters on exit

BFLAG_RESET
0 – do not issue system reset on
exit
1 – issue system reset on exit

BFLAG_RETURN
0 – jump to EVT1 address on exit
1 – issue RTS instruction on exit

BFLAG_NEXTDXE
0 – perform exit
1 – look for DXE start address

BFLAG_WAKEUP
0 – no wakeup case, perform boot
1 – wakeup case, perform quick
boot

BFLAG_SLAVE
0 – master boot mode
1 – slave boot mode

BFLAG_PERIPHERAL
0 – memory boot mode
1 – peripheral boot mode

BFLAG_NOAUTO
0 – perform automatic device
detection
1 – suppress automatic device
detection

Data Structures

17-126 ADSP-BF54x Blackfin Processor Hardware Reference

ADI_BOOT_NAND
typedef struct{
 ADI_BOOT_NAND_DEVICE DeviceInfo;
 ADI_BOOT_NAND_BUFFER MainBuffer;
 ADI_BOOT_NAND_BUFFER PrefetchBuffer;
 ADI_BOOT_NAND_ACCESS AddressRequested;
 ADI_BOOT_NAND_ADDRESS AddressCycles;
 ADI_BOOT_NAND_ECC EccParity;
 ADI_BOOT_DATA *pBootData;
void *pReserved;
} ADI_BOOT_NAND;

The boot kernel uses a number of data structures for internal processing.
Advanced users may manipulate some of contents of the structures from
within initcode routines to customize the boot process further.

Figure 17-55. dFlags Word (Bits 15–0)

dFlags Word, Bits 15–0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

BFLAG_FINAL

BFLAG_FIRST

BFLAG_INDIRECT

BFLAG_IGNORE

BFLAG_INIT

BFLAG_CALLBACK

BFLAG_QUICKBOOT

BFLAG_FILL

DMACODE – DMA Coding

BFLAG_SAVE

BFLAG_AUX

ADSP-BF54x Blackfin Processor Hardware Reference 17-127

System Reset and Booting

ADI_BOOT_NAND is the central structure and is used only by the NAND
flash boot kernel. The pointer to ADI_BOOT_NAND is stored in the dUserLong
parameter of ADI_BOOT_DATA when NAND flash boot mode is enabled.
This pointer provides access to the ADI_BOOT_NAND structure through ini-
tialization routines to further customize the booting process.

Table 17-18. Structure Variables, ADI_BOOT_NAND

Variable Description

DeviceInfo Properties relating to the NAND flash device

MainBuffer Information relating to the current contents of the MainBuffer.

PrefetchBuffer Information relating to the current contents of the PrefetchBuffer.

AddressRequested Details of the requested address when the address is converted to an address
suitable for accessing the NAND flash.

AddressCycles Information required to correctly read from the NAND flash device.

EccParity Stores the error correction parity data for a NAND flash page and controls
the operating mode of the NAND flash boot kernel.

pBootData Pointer to the global ADI_BOOT_DATA structure.

pReserved Reserved for future enhancements. Do not use.

Data Structures

17-128 ADSP-BF54x Blackfin Processor Hardware Reference

ADI_BOOT_NAND_DEVICE
typedef struct{
 u32 udIdCode;
 u32 udIdType;
 u16 uwBusWidth;
 u16 uwColumnMaskCount;
 u32 udColumnMask;
 u16 uwPageMaskCount;
 u32 udPageMask;
 u16 uwSpareMaskCount;
 u16 uwSpareAreaBit;
 u32 udBlockSize;
 u16 uwPageSize;
 u16 uwPagesPerBlock;
 u16 uwSpareAreaSize;
 u16 uwSpareAreaModifier;
 u16 uwNFCPages;
} ADI_BOOT_NAND_DEVICE;

This structure provides details about the NAND flash device connected to
the NFC. For booting from supported small-page NAND flash devices
not all parameters are used and thus initialized. For supported large-page
NAND flash memories, the structure is initialized after reading the elec-
tronic signature of the device. The fourth byte of the four byte electronic
signature contains information for initialization of the entire structure.

ADSP-BF54x Blackfin Processor Hardware Reference 17-129

System Reset and Booting

Table 17-19. Structure Variables, ADI_BOOT_NAND_DEVICE

Variable Description

udIdCode The electronic signature of the device as received after issuing the Read
Electronic Signature command. This is only used for large-page
NAND flash devices. It is not populated if a small-page device is
detected, since only a single small-page type is supported.

udType 0 indicates a small-page device. 1 indicates a large-page device.

uwBusWidth Bus width of the device. '0' for 8-bit. '1' for 16-bit.

uwColumnMaskCount Number of bits required to address all columns within a NAND flash
page (excluding the spare area). This is used to translate the address
pSource in ADI_BOOT_DATA to the format required for addressing the
NAND flash device.

udColumnMask Used to extract the column within a page being addressed from the
requested source address.

uwPageMaskCount Number of bits required to address all pages within a single NAND
flash block.

udPageMask Used to extract the page number within a block being addressed from
the source address.

uwSpareMaskCount Number of bits required to address all columns within the spare area at
the end of a NAND flash page.

uwSpareAreaBit Contains the bit position to be set to address the spare area of the
NAND flash page.

udBlockSize Block size of the device in bytes (excluding the spare area).

uwPageSize Page size of the device in bytes (excluding the spare area).

uwPagesPerBlock Number of pages within a block.

uwSpareAreaSize Number of bytes within the spare area of a page.

uwSpareAreaModifier Number of bytes in the spare area dedicated to each 256 byte NAND
flash controller page.

uwNFCPages Number of 256 byte NAND Flash controller pages within a full NAND
flash page.

Data Structures

17-130 ADSP-BF54x Blackfin Processor Hardware Reference

ADI_BOOT_NAND_BUFFER
typedef struct{
 void * pBegin;
 u16 uwLoadedNFCPage;
 u16 uwLoadedNANDPage;
 u16 uwLoadedNANDBlock;
} ADI_BOOT_NAND_BUFFER;

The ADI_BOOT_NAND_BUFFER structure provides details of the current con-
tents of a 256 byte buffer. There are two of these buffers required for
NAND flash boot. The buffer provides details on the location of the buf-
fer as well as its current contents. Since 256 byte blocks of data are read
from the NAND flash memory at a time, the kernel can determine if a
new data fetch is required from the NAND flash or whether the data
resides in one of the two buffers located in internal memory.

Table 17-20. Structure Variables, ADI_BOOT_NAND_BUFFER

Variable Description

pBegin Pointer to the first address of a 256 byte buffer.

uwnLoadedNFCPage The currently loaded 256 byte NAND flash controller sub-page.

uwLoadedNANDPage The currently loaded NAND flash page.

uwLoadedNANDBlock The currently loaded NAND flash block.

ADSP-BF54x Blackfin Processor Hardware Reference 17-131

System Reset and Booting

ADI_BOOT_NAND_ACCESS
typedef struct{
 u16 uwAccessNFCPage;
 u16 uwAccessNANDPage;
 u16 uwAccessNANDBlock;
} ADI_BOOT_NAND_ACCESS;

The actual page and block in which the data resides can be calculated from
the source address provided by the main kernel and the contents of the
ADI_BOOT_NAND_DEVICE structure. This structure is also used along with
the ADI_BOOT_NAND_BUFFER to determine if data needs to be fetched from
the NAND flash memory or whether it already resides in internal
memory.

Table 17-21. Structure Variables, ADI_BOOT_NAND_ACCESS

Variable Description

uwAccessNFCPage The requested 256 byte NAND flash controller sub-page to be accessed.

uwAccessNANDPage The requested NAND flash page to be accessed.

uwAccessNANDBlock The requested NAND flash block to be accessed.

Data Structures

17-132 ADSP-BF54x Blackfin Processor Hardware Reference

ADI_BOOT_NAND_ADDRESS
typedef struct{
void *pSource;
u32 udMainOffset;
u32 udPrefetchOffset;
u16 uwNumAddressCycles;
u16 uwNumCommands;
u16 uwSerialAccess;
ADI_BOOT_NAND *pNandInfo
#pragma align 4
u8 ubCommand0;
u8 ubAddress0;
u8 ubAddress1;
u8 ubAddress2;
u8 ubAddress3;
u8 ubAddress4;
u8 ubCommand1;
} ADI_BOOT_NAND_ADDRESS;

ADI_BOOT_NAND_ADDRESS is modified when the NAND flash boot kernel
decodes the source address provided by the main kernel. When a booting
feature is used that detects bad blocks or uncorrectable errors, offsets for
addressing alternative blocks are applied. When the address is decoded,
the structure is filled with the NAND flash controller commands and
address cycles needed for retrieving the required data.

For supported small-page NAND flash devices, the number of address
cycles is always four and the number of command cycles is one. For
large-page NAND flash devices, the default number of address cycles is
five. Since the upper addressing boundaries of the NAND flash device
cannot be determined from the electronic signature, the kernel is unable
to calculate the exact number of address cycles required to perform a read
from the NAND flash. A majority of large-page NAND flash devices sim-
ply ignore any address cycles on a page read command that are not
required. If a NAND flash device is not capable of ignoring the additional
address cycles and it requires less than the default five address cycles for a
page read operation then the device cannot be supported for NAND boot

ADSP-BF54x Blackfin Processor Hardware Reference 17-133

System Reset and Booting

functionality. To remove the redundant address cycles, the required num-
ber of address cycles can be reconfigured within an initialization file
executed before loading the main application.

Table 17-22. Structure Variables, ADI_BOOT_NAND_ADDRESS

Variable Description

pSource The source address to be accessed.

udMainOffset The current block offset applied to data loaded into the main buffer.

udPrefetchOffset The current block offset applied to data loaded into the prefetch buffer.

uwNumAddress-
Cycles

The number of address cycles required to access the NAND flash device.
This is set to 4 for small-page device booting and 5 for large-page devices.

uwNumCommands The number of command cycles required to perform a read access from
the NAND flash device. This parameter is set to 1 for small-page devices
and 2 for large-page devices.

uwSerialAccess Indicates that the next read access is from the next sequential 256 byte
page to the previous access. This allows for the removal of the issuing of a
read transaction thus optimizing throughput without waiting on unneces-
sary ready/busy assertions.

pNandInfo Pointer to ADI_BOOT_NAND structure

ubCommand0 The first command to be issued to perform a page read from the NAND
flash device.

ubAddress0 The first address cycle issued when performing a page read command.

ubAddress1 The second address cycle issued when performing a page read command.

ubAddress2 The third address cycle issued when performing a page read command.

ubAddress3 The fourth address cycle issued when performing a page read command.

ubAddress4 The fifth address cycle issued when performing a page read command.

ubCommand1 The second command to be issued to perform a page read from the
NAND flash device. Only used for large-page devices.

Data Structures

17-134 ADSP-BF54x Blackfin Processor Hardware Reference

ADI_BOOT_NAND_ECC
typedef struct{
#pragma align 4
u16 uwIndex;
u32 udNFCParity[32];
u16 uwError;
u16 uwBlockSkipFeature;
u16 uwBlockModifier;
u16 uwMaxCopies;
u16 uwCurrentCopy;
} ADI_BOOT_NAND_ECC;

This structure provides stack storage for the error correction parity data
read from the spare area of a page when an access to a new NAND flash
page is detected. The spare area contains parity data for each 256 byte
block in a page. This allows for error correction and detection to be per-
formed on every 256 byte load from the NAND flash. Enough storage
space is provided to support devices up to and including a page size of
8K bytes. ADI_BOOT_NAND_ECC also contains the fields that need to be mod-
ified to enable the NAND flash boot options that skip bad blocks or boot
from mirror images of the original boot stream located in other memory
blocks.

ADSP-BF54x Blackfin Processor Hardware Reference 17-135

System Reset and Booting

Table 17-23. Structure Variables, ADI_BOOT_NAND_ECC

Variable Description

nIndex Index used to access the udNFCParity array

udNFCParity A 32 deep long word array providing storage for up to 32 256-byte
NAND Flash Controller error correction parity data. The array provides
support for page sizes up to and including 8 Kbytes.

uwError Error that was generated within the error correction routine.
0 – No Error
1 – Error found in parity data
2 – Uncorrectable error

uwBlockSkipFeature Specifies the NAND flash boot technique to be implemented. Defaults to
0 unless otherwise altered through an initialization sequence.
0 – Sequential booting from a single boot stream. No bad block checking
performed.
1 – Block Skip Method, allowing for a single boot stream loaded to the
NAND flash to skip bad blocks.
2 – Mirror Image Mode, allowing for booting from multiple copies of the
application in the event that an uncorrectable error or error in the ECC
parity data is detected.

uwError Indicates the error returned from the error correction routine if one
occurred.
0 – No error or correctable error.
1 – Error in ECC parity data.
2 – Uncorrectable error.

uwBlockModifier The number of blocks to skip if a bad block is detected.
If uwBlockSkipFeature is 0 this value is ignored.
For an uwBlockSkipFeature value of 1 this parameter must be 1.
For an uwBlockSkipFeature of 2 this parameter may be any value indi-
cating the number of blocks between multiple copies of the application.

uwMaxCopies The number of copies of the application stored in the NAND flash
device. Only applicable if uwBlockSkipFeature is 2.

uwCurrentCopy Indicates the current copy of the application that is being accessed. Only
applicable if uwBlockSkipFeature is 2.

Callable ROM Functions for Booting

17-136 ADSP-BF54x Blackfin Processor Hardware Reference

Callable ROM Functions for Booting
The following functions support boot management.

BFROM_FINALINIT
Entry address: 0xEF00 0002

Arguments: no arguments

C prototype: void bfrom_FinalInit (void);

The bfrom_FinalInit function never returns. It only executes a JUMP to
the address stored in EVT1.

BFROM_PDMA
Entry address: 0xEF00 0004

Arguments: pointer to ADI_BOOT_DATA in R0

C prototype: void bfrom_PDma (ADI_BOOT_DATA *p);

This is the load function for peripherals such as SPI and UART that sup-
port DMA in their boot modes.

BFROM_MDMA
Entry address: 0xEF00 0006

Arguments: pointer to ADI_BOOT_DATA in R0

C prototype: void bfrom_MDma (ADI_BOOT_DATA *p);

This is the load function used for memory boot modes including the
FIFO mode. This routine is also reused when the BFLAG_FILL or the
BFLAG_INDIRECT flags are specified.

ADSP-BF54x Blackfin Processor Hardware Reference 17-137

System Reset and Booting

BFROM_MEMBOOT
Entry address: 0xEF00 0008

Arguments:

pointer to boot stream in R0

dFlags in R1

dBlockCount in R2

pCallHook passed over the stack in [FP+0x14]

updated block count returned in R0

C prototype:

s32 bfrom_MemBoot (void* pBootStream, s32 dFlags,

 s32 dBlockCount, ADI_BOOT_HOOK_FUNC* pCallHook);

This routine processes any boot stream that maps to the Blackfin memory
starting from address pBootStream.

To boot a new application that may overwrite the calling application, the
dFlags word is usually zero. When done, the routine does not return, but
jumps to the EVT1 vector address. If the BFLAG_RETURN flag is set, an RTS is
executed instead and the routine returns to the parent function. In this
way, fractions of an application can be loaded.

If the dBlockCount parameter is zero or a positive value, all boot blocks are
processed until the BFLAG_FINAL flag is detected. If dBlockCount is a nega-
tive value, the negative number represents the number of blocks to be
booted. For example, –1 causes the kernel to return immediately, –2 pro-
cesses only one block.

The routine returns the updated source address pSource of the boot
stream (for example, the first unused address after the processed boot
stream).

Callable ROM Functions for Booting

17-138 ADSP-BF54x Blackfin Processor Hardware Reference

The BFLAG_NEXTDXE flag suppresses boot loading. The boot kernel steps
through the boot stream by analyzing the next-DXE pointers (in the
ARGUMENT field of a BFLAG_FIRST block) and jumping to the next DXE.
Assuming that the boot image is a chained list of boot streams, the boot
kernel returns the absolute start address of the requested boot stream. In
this example, the start address of the third boot stream (DXE) in a flash
device is returned.
bfrom_MemBoot((void*)0x20000000,

BFLAG_RETURN|BFLAG_NEXTDXE,-3, NULL);

In the above example, the routine would return 0x2000 0000 when
dBlockCount was set to –1. If the parameter dBlockCount is zero or posi-
tive when used along with the BFLAG_NEXTDXE command, the kernel
returns when the BFLAG_FIRST flag on a header in the next-DXE chain is
not set.

If the BFLAG_HOOK switch is set, the memboot routine call (pCallHook rou-
tine) after the ADI_BOOT_DATA structure is filled with default values. It then
can overrule the default settings of the structure.

BFROM_TWIBOOT
Entry address: 0xEF00 000C

Arguments:

TWI address in R0

dFlags in R1

dBlockCount in R2

pCallHook passed over the stack in [FP+0x14]

updated block count returned in R0

ADSP-BF54x Blackfin Processor Hardware Reference 17-139

System Reset and Booting

C prototype:
s32 bfrom_TwiBoot (s32 dTwiAddress, s32 dFlags,

 s32 dBlockCount, ADI_BOOT_HOOK_FUNC* pCallHook);

This routine processes boot streams residing in TWI memories, using the
TWI0 controller. It differs from the BFROM_MEMBOOT routine in that some
functionality is TWI specific.

Additional bits in the dFlags word are relevant. The user should always set
the BFLAG_PERIPHERAL flag but never the BFLAG_SLAVE bit. The BFLAG_TYPE
tells the boot kernel when addressing mode is required for the TWI mem-
ory. The boot kernel derives the values for the TWI0_CONTROL and
TWI0_CLKDIV registers from the lower four bits of the dFlags word. See
Chapter 23, “Two-Wire Interface Controllers”.

BFROM_SPIBOOT
Entry address: 0xEF00 000A

Arguments:

SPI address in R0

dFlags in R1

dBlockCount in R2

pCallHook passed over the stack in [FP+0x14]

updated block count returned in R0

C prototype:
s32 bfrom_SpiBoot (s32 dSpiAddress, s32 dFlags,

 s32 dBlockCount, ADI_BOOT_HOOK_FUNC* pCallHook);

This SPI master boot routine processes boot streams residing in SPI mem-
ories, using the SPI0 controller. It differs from the BFROM_TWIBOOT routine
in that some functionality is SPI specific. The fourth argument pCallHook

Callable ROM Functions for Booting

17-140 ADSP-BF54x Blackfin Processor Hardware Reference

is passed over the stack. It provides a hook to call a callback routine after
the ADI_BOOT_DATA structure is filled with default values. For example, the
pCallHook routine may overwrite the default value of the uwSsel value in
the ADI_BOOT_DATA structure. The coding follows the rules of
uwHWAIT (see “Boot Host Wait (HWAIT) Feedback Strobe” on
page 17-33). A value of 0x0504 represents GPIO PE4 (SPIOSEL1), 0x0505
represents PE5 (SPIOSEL2) and so on.

Additional bits in the dFlags word are relevant. The user should always set
the BFLAG_PERIPHERAL flag but never the BFLAG_SLAVE bit. The
BFLAG_NOAUTO flag instructs the system to skip the SPI device detection
routine. The BFLAG_TYPE then tells the boot kernel what addressing mode
is required for the SPI memory. (see “SPI Device Detection Routine” on
page 17-71). The BFLAG_FASTREAD flag controls whether standard SPI read
(0x3 command) or fast read (0xB) is performed. The boot kernel writes
the lower bits of the dFlags word to the SPI0_BAUD registers.

BFROM_OTPBOOT
Entry address: 0xEF00 000E

Arguments:

OTP byte address in R0

dFlags in R1

dBlockCount in R2

pCallHook passed over the stack in [FP+0x14]

Updated block count returned in R0

C prototype:
s32 bfrom_OtpBoot (s32 dOtpAddress, s32 dFlags,

 s32 dBlockCount, ADI_BOOT_HOOK_FUNC* pCallHook);

ADSP-BF54x Blackfin Processor Hardware Reference 17-141

System Reset and Booting

This OTP boot routine processes boot streams residing in the on-chip,
serial OTP memory. Unlike the bfrom_OtpRead() function which uses the
half-page addressing method, this one requires byte addressing. For exam-
ple, set the dOtpAddress argument to 0x400 to process a boot stream
starting from OTP page 0x40. Remember that one OTP page spans 16
bytes.

BFROM_NANDBOOT
Entry address: 0xEF00 0010

Arguments:

NAND Flash address in R0

dFlags in R1

dBlockCount in R2

pCallHook passed over the stack in [FP+0x14]

updated block count returned in R0

C prototype:
s32 bfrom_NandBoot(s32 dNandAddress,

 s32 dFlags, s32 dBlockCount, ADI_BOOT_HOOK_FUNC *pCallHook)

This NAND flash boot routine processes boot streams residing in NAND
flash memories, using the NAND Flash Controller. Some functionality is
NAND flash specific.

Additional bits in the dFlags word are relevant. When the BFLAG_NOAUTO
flag is set the BFLAG_TYPE field is used to indicate whether the connected
NAND flash is a small-page or large-page device.

BFLAG_TYPE = 00 (BFLAG_TYPE1) indicates small-page NAND Flash

BLAG_TYPE = 01 (BFLAG_TYPE2) indicates large-page NAND Flash

Callable ROM Functions for Booting

17-142 ADSP-BF54x Blackfin Processor Hardware Reference

BFLAG_TYPE — values of 11 and 10 are reserved

Detection of a reserved value results in a call to the error handler.

In the event the NFC_CTL register is set to the default reset value of 0x0200
prior to the call to bfrom_NandBoot(), the read and write delay strobes of
the NFC_CTL register will each be set to three providing tRP and tWP tim-
ings of four SCLK cycles.

BFROM_BOOTKERNEL
Entry address: 0xEF00 0020

Arguments:

pointer to ADI_BOOT_DATA in R0

returns updated source address pSource in R0

C prototype:
s32 bfrom_BootKernel (ADI_BOOT_DATA *p);

This ROM entry provides access to the raw boot kernel routine. It is the
user's responsibility to initialize the items passed in the ADI_BOOT_DATA
structure. Pay particular attention that the function pointers
(pLoadFunction, and pErrorFunction) point to functional routines.

BFROM_CRC32
Entry address: 0xEF00 0030

Arguments:

pointer to look-up table in R0

pointer to data in R1

dByteCount in R2

ADSP-BF54x Blackfin Processor Hardware Reference 17-143

System Reset and Booting

initial CRC value in R0

CRC value returned in R0

C prototype:

s32 bfrom_Crc32 (s32 *pLut, void *pData,

 s32 dByteCount, s32 dInitial);

This routine calculates the CRC32 checksum for a given array of bytes.
The look-up table is typically generated by the BFROM_CRC32POLY routine.
During the boot process this routine is called by the BFROM_CRC32CALLBACK
routine. The dInitial value is normally set to zero unless the CRC32 rou-
tine is called in multiple slices. Then, the dInitial parameter expects the
result of the former run.

BFROM_CRC32POLY
Entry address: 0xEF00 0032

Arguments:

pointer to look-up table in R0

polynomial in R1

updated block count returned in R0

C prototype:
s32 bfrom_Crc32Poly (unsigned s32 *pLut, s32 dPolynomial);

This function generates a 1024-byte look-up table from a given CRC
polynomial. During the boot process this routine is hidden by the
BFROM_CRC32INITCODE routine.

Callable ROM Functions for Booting

17-144 ADSP-BF54x Blackfin Processor Hardware Reference

BFROM_CRC32CALLBACK
Entry address: 0xEF00 0034

Arguments:

pointer to ADI_BOOT_DATA in R0

pointer to ADI_BOOT_BUFFER in R1* Callback Flags in R2

C prototype:
s32 bfrom_Crc32Callback (ADI_BOOT_DATA *pBS, ADI_BOOT_BUFFER

*pCS, s32 dCbFlags);

This is a wrapper function that ensures the BFROM_CRC32 subroutine fits
into the boot process.

BFROM_CRC32INITCODE
Entry address: 0xEF00 0036

Arguments:
pointer to ADI_BOOT_DATA in R0

C prototype:
void bfrom_Crc32Initcode (ADI_BOOT_DATA *p);

This is an initcode residing in ROM with two jobs:

Register BFROM_CRC32CALLBACK as a callback routine to the pCallback
pointer in ADI_BOOT_DATA.

Call BFROM_CRC32POLY to generate the look-up table.

This function is unlikely to be called by user code directly. This function
is called as an initcode during the boot process when the CRC calculation
is desired. See “CRC Checksum Calculation” on page 17-48 for details.

ADSP-BF54x Blackfin Processor Hardware Reference 17-145

System Reset and Booting

Programming Examples
The following sections provide programming examples for system reset
and booting.

System Reset
To perform a system reset, use the code shown in Listing 17-1 or
Listing 17-2. As described in the code comments below, the system soft
reset takes five system clock cycles to complete, so a delay loop is needed.
This code must reside in L1 memory for the system soft reset to work
properly.

Listing 17-1. System Reset in Assembly

/* Issue system soft reset */

P0.L = LO(SWRST) ;

P0.H = HI(SWRST) ;

R0.L = 0x0007 ;

W[P0] = R0 ;

SSYNC ;

/* Wait for System reset to complete (needs to be 5 SCLKs). */

/* Assuming a worst case CCLK:SCLK ratio (15:1), use 5*15 = 75 */

/* as the loop count. */

P1 = 75;

LSETUP(start, end) LCO = P1 ;

start:

end:

NOP ;

/* Clear system soft reset */

R0.L = 0x0000 ;

W[P0] = R0 ;

Programming Examples

17-146 ADSP-BF54x Blackfin Processor Hardware Reference

SSYNC ;

/* Core reset - forces reboot */

RAISE 1 ;

Listing 17-2. System Reset in C Language

bfrom_SysControl(SYSCTRL_SYSRESET, 0, NULL);

Exiting Reset to User Mode
To exit reset while remaining in user mode, use the code shown in
Listing 17-3.

Listing 17-3. Exiting Reset to User Mode

_reset: P1.L = LO(_usercode); /* Point to start of user code */

P1.H = HI(_usercode);

RETI = P1; /* Load address of _start into RETI */

RTI; /* Exit reset priority */

_reset.end:

_usercode: /* Place user code here */

...

The reset handler most likely performs additional tasks not shown in the
examples above. Stack pointers and EVTx registers are initialized here.

Exiting Reset to Supervisor Mode
To exit reset while remaining in supervisor mode, use the code shown in
Listing 17-4.

ADSP-BF54x Blackfin Processor Hardware Reference 17-147

System Reset and Booting

Listing 17-4. Exiting Reset by Staying in Supervisor Mode

_reset:

P0.L = LO(EVT15); /* Point to IVG15 in Event Vector Table */

P0.H = HI(EVT15);

P1.L = LO(_isr_IVG15); /* Point to start of IVG15 code */

P1.H = HI(_isr_IVG15);

[P0] = P1; /* Initialize interrupt vector EVT15 */

P0.L = LO(IMASK); /* read-modify-write IMASK register */

R0 = [P0]; /* to enable IVG15 interrupts */

R1 = EVT_IVG15 (Z);
R0 = R0 | R1; /* set IVG15 bit */
[P0] = R0; /* write back to IMASK */

RAISE 15; /* generate IVG15 interrupt request */
/* IVG 15 is not served until reset handler returns */
P0.L = LO(_usercode);

P0.H = HI(_usercode);

RETI = P0; /* RETI loaded with return address */

RTI; /* Return from Reset Event */

_reset.end:

_usercode: /* Wait in user mode till IVG15 */

JUMP _usercode; /* interrupt is serviced */

_isr_IVG15: /* IVG15 vectors here due to EVT15 */

...

Initcode (SDRAM Controller Setup)
Listing 17-5 shows an example of initcode to setup the SDRAM control-
ler. The SDRAM controller must be initialized before data can be booted
into it. Therefore, the SDRAM controller is typically initialized by an
initcode or by the preboot functionality. The following initcode example
assumes that the preboot did not do the job.

Programming Examples

17-148 ADSP-BF54x Blackfin Processor Hardware Reference

Listing 17-5. Example Initcode (SDRAM Controller Setup)

#include <defBF548.h>

.section initcode;

/*******SDRAM Setup************/

Setup_SDRAM:

/* save to stack following C conventions */

void initcode(ADI_BOOT_DATA* pBS)

{

*pEBIU_RSTCTL |= DDRSRESET;

*pEBIU_DDRCTL0 =

SET_tRC(8)

|

SET_tRAS(6)

|

SET_tRP(2)

|

SET_tRFC(10)

|

SET_tREF(1041);

*pEBIU_DDRCTL1 =

SET_tWTR(2)

|

DDR_DEVSIZE_512

|

DDR_DEVWIDTH_16

|

CS0

|

DDR_DATAWIDTH

|

SET_tWR(2)

|

SET_tMRD(2)

ADSP-BF54x Blackfin Processor Hardware Reference 17-149

System Reset and Booting

|

SET_tRCD(2);

Programming Examples

17-150 ADSP-BF54x Blackfin Processor Hardware Reference

*pEBIU_DDRCTL2 =

nREGE

|

nDLLRESET

|

CASLATENCY2

|

BURSTLENGTH1|

0;}

Initcode (Power Management Control)
The following example shows how to change PLL and the voltage regula-
tor within an initcode. The example assumes that the preboot did not do
the job already.

Listing 17-6. Changing PLL and Voltage Regulator

#include <blackfin.h>
void initcode (ADI_BOOT_DATA* pBS)
{
 ADI_SYSCTRL_VALUES mystruct;
 mystruct.uwVrCtl = 0x...;
 mystruct.uwPllCtl = 0x...;
 mystruct.uwPllDiv = 0x...;
 bfrom_SysControl(SYSCTRL_VRCTL | SYSCTRL_INTVOLTAGE |
 SYSCTRL_PLLCTL | SYSCTRL_PLLDIV |
 SYSCTRL_WRITE,
 &mystruct, NULL);
}

Care must be taken that the reprogramming of the PLL does not break the
communication with the booting host. For example, in the case of UART
boot, the UARTx_DLL and UARTx_DLH registers must be updated to keep the
old bit rate.

ADSP-BF54x Blackfin Processor Hardware Reference 17-151

System Reset and Booting

Initcode (NAND Flash Boot Mode Configuration)
Listing 17-7 shows an example of initcode to enable the advanced ECC
options for NAND flash boot mode. The initcode is loaded while the
NAND flash boot kernel is configured for the default boot mode. In this
example, after the initcode sequence is executed, the NAND flash boot
kernel is in Multiple Image Mode. This example also alters the number of
address cycles for further accesses, which further optimizes the boot kernel
for the attached NAND flash device.

Listing 17-7. Initcode Options with NAND Flash Boot Mode

#include <bfrom.h>
void initcode(ADI_BOOT_DATA* pBS)
{
 /* Create a pointer to the ADI_BOOT_NAND structure */
 ADI_BOOT_NAND *pNS;

 /* Set the pointer to ADI_BOOT_NAND */
 pNS = pBS->dUserLong;

 /* NAND Boot Kernel Configuration
 Mode: Multiple Image Mode
 Number of blocks between each image: 10
 Number of images: 4
 Number of address cycles: 4
 */
 pNS->EccParity.uwBlockSkipFeature = 2;
 pNS->EccParity.uwBlockModifier = 10;
 pNS->EccParity.uwMaxCopies = 3;
 pNS->AddressCycles.uwNumAddressCycles = 4;
}

Programming Examples

17-152 ADSP-BF54x Blackfin Processor Hardware Reference

Quickboot With Restore From SDRAM
This example could be part of an advanced power saving concept. Assume
the Blackfin is waking up from hibernate and processing any master boot
mode. If the SDRAM has not been shut down, but was put in self-refresh
mode, the content of the SDRAM will still be valid after wake up. The
boot process would only have to initialize on-chip memories. Several boot
blocks might be tagged by the BFLAG_QUICKBOOT flag.

Some applications might use a power-down handler that saves the con-
tents of L1 memory to SDRAM before entering the hibernate state.
Listing 17-8 assumes a suitable power-down handler was present that gen-
erated a partial boot stream in SDRAM at address 0x0001 0000
containing all the instructions required to restore the L1 memory
contents.

Listing 17-8. Quickboot with Restore from SDRAM

void L1_recovery_initcode (ADI_BOOT_DATA *pBS)

{

if (pBS->dFlags & BFLAG_WAKEUP) {

bfrom_MemBoot((void*)0x00010000, BFLAG_RETURN, NULL);

}

}

The boot stream generated at 0x0001 0000 will only be processed upon a
wake-up condition. The BFLAG_RETURN ensures that the new instance of
the boot kernel returns to the initcode rather than jumps to the EVT1
vector.

ADSP-BF54x Blackfin Processor Hardware Reference 17-153

System Reset and Booting

XOR Checksum
Listing 17-9 illustrates how an initcode can be used to register a callback
routine. The routine is called after each boot block that has the
BFLAG_CALLBACK flag set. The calculated XOR checksum is compared
against the block header ARGUMENT field. When the checksum fails, this
example goes into idle mode. Otherwise control is returned to the boot
kernel.

Since this callback example accesses the data after it is loaded, it would fail
if the target address were in L1 instruction space. Therefore the
BFLAG_INDIRECT flag should also be set. The xor_callback routine could
then perform the checksum calculation at an intermediate storage place.
The boot kernel transfers the data from the temporary buffer to the final
destination after the callback routine returns.

In general, the block size is bigger than the size of the temporary buffer.
Therefore, the boot kernel may need to divide the processing of a single
block into multiple steps. The callback routine may also need to be
invoked multiple times—every time the temporary buffer is filled up and
once for the remaining bytes. The boot kernel passes the dFlags parame-
ter, so that the callback routines knows whether it is called the first time,
the last time or neither. The dUserLong variable in the ADI_BOOT_DATA
structure is used to store the intermediate results between function calls.

Programming Examples

17-154 ADSP-BF54x Blackfin Processor Hardware Reference

Listing 17-9. XOR Checksum

s32 xor_callback(ADI_BOOT_DATA* pBS, ADI_BOOT_BUFFER* pCS, s32

dFlags)

{

s32 i;

if ((pCS!= NULL) && (pBS->pHeader!= NULL)) {

if (dFlags & CBFLAG_FIRST) {

pBS->dUserLong = 0;

}

for (i=0; i<pCS->dByteCount/sizeof(s32); i++)

{

pBS->dUserLong^= ((s32 *)pCS->pSource)[i];

}

if (dFlags & CBFLAG_FINAL) {

if (pBS->dUserLong!= pBS->pHeader->dArgument) {

idle ();

}

}

}

return 0;

}

void xor_initcode (ADI_BOOT_DATA *pBS)

{

pBS->pCallBackFunction = xor_callback;

}

Note that the callback routine is not volatile. It should not be overwritten
by subsequent boot blocks. It can, however, be overwritten after process-
ing the last block with BFLAG_CALLBACK flag set.

ADSP-BF54x Blackfin Processor Hardware Reference 17-155

System Reset and Booting

The checksum algorithm must be booted first and cannot protect itself.
Problems can be avoided by letting initcode and callback execute directly
from off-chip flash memory. The ADSP-BF54x processor processors pro-
vide a CRC32 checksum algorithm in the on-chip L1 instruction ROM,
that can be used for booting under this scenario. For more information see
“CRC Checksum Calculation” on page 17-48.

Direct Code Execution
This code example illustrates how to instruct the CCES or VisualDSP++
tools to generate a flash image that causes the boot kernel to start code
execution at flash address 0x2000 0020 rather than performing a regular
boot. See “Direct Code Execution” on page 17-37.

First, a 32-byte data block is defined in an assembly file that contains the
initial block.
.section bootblock;

.global _firstblock;

.var _firstblock[4] = 0xAD7BD006,

0x20000020, 0x00000010, 0x00000010;

Then, the linker is instructed to map the initial block to address
0x2000 0000 in the LDF file.
MEMORY

{

MEM_ASYNC0

{

START(0x20000000)

END(0x23FFFFFF)

TYPE(ROM)

WIDTH(8)

}

}

PROCESSOR p0

{

Programming Examples

17-156 ADSP-BF54x Blackfin Processor Hardware Reference

RESOLVE(_firstblock,0x20000000)

RESOLVE(start,0x20000020)

KEEP(start,_firstblock)

SECTIONS

{

flash

{

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($OBJECTS(program)

$LIBRARIES(program))

INPUT_SECTIONS($OBJECTS(bootblock))

} >MEM_ASYNC0

}

}

To invoke the elfloader utility, activate the meminit feature and use the
command-line switches –romsplitter and –maskaddr. Refer to the appli-
cation note Running Programs from Flash on ADSP-BF533 Blackfin
Processors (EE-239) for further details.

Managing PBS Pages in OTP Memory
The following code snips illustrate how to read and write OTP memory,
as it is required for the Preboot Settings (PBS). For detailed description of
OTP API functions bfrom_OtpCommand(), bfrom_OtpRead() and
bfrom_OtpWrite() used here, see Chapter 4, “One-Time Programmable
Memory”.

The first example reads PBS settings from OTP and stores them into an
instance of the ADI_PBS_BLOCK structure. This is a union composite of the
ADI_PBS_HALFPAGES or the ADI_PBS_BITFIELDS types. These structure
types are defined in the bfrom.h header file. The dPbsSet variable
describes the set of PBS pages of interest. A 0x00 value reads from OTP
pages 0x18 to 0x1B. A 0x01 value reads from OTP pages 0x1C to 0x1F
and so on.

ADSP-BF54x Blackfin Processor Hardware Reference 17-157

System Reset and Booting

Listing 17-10. Reading a Set of PBS Pages from OTP Memory

#include <blackfin.h>

#include <bfrom.h>

ADI_PBS_BLOCK PBS;

u32 dPbsSet = 0;

bfrom_OtpCommand(OTP_INIT, OTP_INIT_VALUE);

bfrom_OtpRead(PBS00+dPbsSet*4,OTP_LOWER_HALF,

&(PBS.HalfPages.uqPbs00L));

bfrom_OtpRead(PBS00+dPbsSet*4,

OTP_UPPER_HALF,&(PBS.HalfPages.uqPbs00H));

bfrom_OtpRead(PBS01+dPbsSet*4,OTP_LOWER_HALF,

&(PBS.HalfPages.uqPbs01L));

bfrom_OtpRead(PBS01+dPbsSet*4,OTP_UPPER_HALF,

&(PBS.HalfPages.uqPbs01H));

bfrom_OtpRead(PBS02+dPbsSet*4,OTP_LOWER_HALF,

&(PBS.HalfPages.uqPbs02L));

bfrom_OtpCommand(OTP_CLOSE, 0);

The next example shows how PBS pages can be written.

Listing 17-11. Programming a Set of PBS Pages from OTP Memory

#include <blackfin.h>

#include <bfrom.h>

ADI_PBS_BLOCK PBS;

u32 dPbsSet = 0;

/* fill PBS with meaningful data */

bfrom_OtpCommand(OTP_INIT, OTP_INIT_VALUE);

bfrom_OtpWrite(PBS00+dPbsSet*4, OTP_LOWER_HALF |

OTP_CHECK_FOR_PREV_WRITE,&(PBS.HalfPages.uqPbs00L));

bfrom_OtpWrite(PBS00+dPbsSet*4, OTP_UPPER_HALF |

OTP_CHECK_FOR_PREV_WRITE,&(PBS.HalfPages.uqPbs00H));

bfrom_OtpWrite(PBS01+dPbsSet*4, OTP_LOWER_HALF |

OTP_CHECK_FOR_PREV_WRITE,&(PBS.HalfPages.uqPbs01L));

Programming Examples

17-158 ADSP-BF54x Blackfin Processor Hardware Reference

bfrom_OtpWrite(PBS01+dPbsSet*4, OTP_UPPER_HALF |

OTP_CHECK_FOR_PREV_WRITE,&(PBS.HalfPages.uqPbs01H));

bfrom_OtpWrite(PBS02+dPbsSet*4, OTP_LOWER_HALF |

OTP_CHECK_FOR_PREV_WRITE,&(PBS.HalfPages.uqPbs02L));

bfrom_OtpWrite(PBS02+dPbsSet*4, OTP_UPPER_HALF |

OTP_CHECK_FOR_PREV_WRITE,&(PBS.HalfPages.uqPbs02H));

bfrom_OtpWrite(PBS03+dPbsSet*4, OTP_LOWER_HALF |

OTP_CHECK_FOR_PREV_WRITE,&(PBS.HalfPages.uqPbs03L));

bfrom_OtpWrite(PBS03+dPbsSet*4, OTP_UPPER_HALF |

OTP_CHECK_FOR_PREV_WRITE,&(PBS.HalfPages.uqPbs03H));

bfrom_OtpCommand(OTP_CLOSE, 0);

If a set of PBS pages has been written earlier, but need to be replaced by a
new set, the old PBS pages have to be invalidated. Do not use the
OTP_CHECK_FOR_PREV_WRITE option in this case.

Listing 17-12. Invalidating a Set of PBS Pages

#include <blackfin.h>

#include <bfrom_h>

u32 dPbsSet = 0;

u64 dlInvalidate = (u64)0xC000000000000000;

bfrom_OtpWrite(PBS00+dPbsSet*4,

bfrom_OtpCommand(OTP_INIT, OTP_INIT_VALUE);

OTP_LOWER_HALF | OTP_NO_ECC, &dlInvalidate);

bfrom_OtpCommand(OTP_CLOSE, 0);

dPbsSet++;

/* write next set as in Listing x-2 */

For production you may want to lock the PBS pages to protect them from
being overwritten in the field. This can be performed by the following
instructions:

ADSP-BF54x Blackfin Processor Hardware Reference 17-159

System Reset and Booting

Listing 17-13. Write-protecting a Set of PBS Pages

#include <blackfin.h>

#include <bfrom.h>

u32 dPbsSet = 0;

bfrom_OtpCommand(OTP_INIT, OTP_INIT_VALUE);

bfrom_OtpWrite(PBS00+dPbsSet*4, OTP_LOCK, NULL);

bfrom_OtpWrite(PBS01+dPbsSet*4, OTP_LOCK, NULL);

bfrom_OtpWrite(PBS02+dPbsSet*4, OTP_LOCK, NULL);

bfrom_OtpWrite(PBS03+dPbsSet*4, OTP_LOCK, NULL);

bfrom_OtpCommand(OTP_CLOSE, 0);

When locking PBS pages remember to duplicate the active set of PBS
pages best reliability. In the above examples, if the dPbsSet*4 contains the
final configuration, then program set 5 with the same data. For complete-
ness, note that the above code example does not lock the ECC fields
corresponding to the PBS pages. See Chapter 4, “One-Time Programma-
ble Memory” for details.

Programming Examples

17-160 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 18-1

18 DYNAMIC POWER
MANAGEMENT

This chapter describes the dynamic power management functionality of
the Blackfin processor and includes the following sections:

• “Phase-Locked Loop and Clock Control” on page 18-1

• “Dynamic Power Management Controller” on page 18-7

• “PLL and VR Registers” on page 18-25

• “System Control ROM Function” on page 18-29

• “Programming Examples” on page 18-35

Phase-Locked Loop and Clock Control
The input clock into the processor, CLKIN, provides the necessary clock
frequency, duty cycle, and stability to allow accurate internal clock multi-
plication by means of an on-chip, phase-locked loop (PLL) module.
During normal operation, the user programs the PLL with a multiplica-
tion factor for CLKIN. The resulting, multiplied signal is the voltage
controlled oscillator (VCO) clock. A user-programmable value then divides
the VCO clock signal to generate the core clock (CCLK).

Another user-programmable value divides the VCO signal to generate the
system clock (SCLK). The SCLK signal clocks the peripheral access bus
(PAB), DMA access bus (DAB), external access bus (EAB), and the exter-
nal bus interface unit (EBIU).

Phase-Locked Loop and Clock Control

18-2 ADSP-BF54x Blackfin Processor Hardware Reference

 These buses run at the PLL frequency divided by 1–15 (SCLK
domain). Using the SSEL parameter of the PLL divide register
(PLL_DIV), select a divider value that allows these buses to run at or
below the maximum SCLK rate specified in
ADSP-BF542/544/547/548/549 Embedded Processor Data Sheet.

To optimize performance and power dissipation, the processor allows the
core and system clock frequencies to change dynamically in a “coarse
adjustment.” For a “fine adjustment,” the PLL clock frequency can also be
varied.

PLL Overview
To provide the clock generation for the core and system, the processor
uses an analog PLL with programmable state machine control.

The PLL design serves a wide range of applications. It emphasizes embed-
ded and portable applications and low cost, general-purpose processors, in
which performance, flexibility, and control of power dissipation are key
features. This broad range of applications requires a wide range of fre-
quencies for the clock generation circuitry. The input clock may be a
crystal, a crystal oscillator, or a buffered, shaped clock derived from an
external system clock oscillator.

The PLL interacts with the dynamic power management controller
(DPMC) block to provide power management functions for the processor.
For information about the DPMC, see “Dynamic Power Management
Controller” on page 18-7.

Subject to the maximum VCO frequency, the PLL supports a wide range of
multiplier ratios and achieves multiplication of the input clock, CLKIN. To
achieve this wide multiplication range, the processor uses a combination
of programmable dividers in the PLL feedback circuit and output configu-
ration blocks.

ADSP-BF54x Blackfin Processor Hardware Reference 18-3

Dynamic Power Management

Figure 18-1 illustrates a conceptual model of the PLL circuitry, configura-
tion inputs, and resulting outputs. In the figure, the VCO is an intermediate
clock from which the core clock (CCLK) and system clock (SCLK) are
derived.

PLL Clock Multiplier Ratios
The PLL control register (PLL_CTL) governs the operation of the PLL. For
details about the PLL_CTL register, see “PLL Control (PLL_CTL) Register”
on page 18-26.

The divide frequency (DF) bit and multiplier select (MSEL[5:0]) field con-
figure the various PLL clock dividers:

• DF enables the input divider

• MSEL[5:0] controls the feedback dividers

The reset value of MSEL is 0x8. This value can be reprogrammed at startup
in the boot code.

Figure 18-1. PLL Block Diagram

÷1 or ÷2 fVCO

fVCO

÷1,...,÷15

÷1, ÷2,
÷4 or ÷8

LOOP
FILTER VCO

×1 ,..., ×64

+
-

Output Clock Generator:
Clock Divide and Mux

CLKOUT

CLKBUF

CLKIN XTAL

SSEL [3:0}

MSEL [5:0]
CSEL [1:0]

EN

EN

DF

SCLK

GATE

GATE SCLK

CCLK

CLKINf

PDWN
(Deep Sleep Mode)
Powerdown
CCLK and SCLK off

STOPCK
(Sleep Mode)
Stop Clock
CCLK off

BYPASS
(Active Mode)
CCLK =
SCLK = CLKIN

Phase Locked Loop

CLKINf

PLL_OFF
disable control
input to PLL.
Can additionally be
used with BYPASS

Phase-Locked Loop and Clock Control

18-4 ADSP-BF54x Blackfin Processor Hardware Reference

Table 18-1 illustrates the VCO multiplication factors for the various MSEL
and DF settings.

As shown in the table, different combinations of MSEL[5:0] and DF can
generate the same VCO frequencies. For a given application, one combina-
tion may provide lower power or satisfy the VCO maximum frequency.
Under normal conditions, setting DF to 1 typically results in lower power
dissipation. See ADSP-BF542/544/547/548/549 Embedded Processor Data
Sheet for maximum and minimum frequencies for CLKIN, CCLK, and VCO.

The PLL control register (PLL_CTL) controls operation of the PLL (see
Figure 18-5 on page 18-26). Note that changes to the PLL_CTL register do
not take effect immediately. In general, the PLL_CTL register is first pro-
grammed with a new value, and then a specific PLL programming
sequence must be executed to implement the changes. This is handled by
the System Control ROM Function (SysControl), shown on page 18-29.

Core Clock/System Clock Ratio Control

Table 18-2 describes the programmable relationship between the VCO fre-
quency and the core clock. Table 18-3 shows the relationship of the VCO
frequency to the system clock. Note the divider ratio must be chosen to

Table 18-1. MSEL Encodings

Signal Name
MSEL[5:0]

VCO Frequency
DF = 0 DF = 1

0 64x 32x

1 1x 0.5x

2 2x 1x

N = 3–62 Nx 0.5Nx

63 63x 31.5x

ADSP-BF54x Blackfin Processor Hardware Reference 18-5

Dynamic Power Management

limit the SCLK to a frequency specified in ADSP-BF542/544/547/548/549
Embedded Processor Data Sheet. The SCLK drives all synchronous, sys-
tem-level logic.

The divider ratio control bits, CSEL and SSEL, are in the PLL divide regis-
ter (PLL_DIV). For information about this register, see “PLL Divide
(PLL_DIV) Register” on page 18-26.

The reset value of CSEL[1:0] is 0x0, and the reset value of SSEL[3:0] is
0x4. These values can be reprogrammed at startup by the boot code.

By updating PLL_DIV with an appropriate value, you can change the
CSEL and SSEL value dynamically. Note the divider ratio of the core clock
can never be greater than the divider ratio of the system clock. If the
PLL_DIV register is programmed to illegal values, the SCLK divider is auto-
matically increased to be greater than or equal to the core clock divider.

Unlike writing the PLL_CTL register, the PLL_DIV register can be updated at
any time to change the CCLK and SCLK divide values without the PLL pro-
gramming sequence.

As long as the MSEL and DF control bits in the PLL control register
(PLL_CTL) remain constant, the PLL is locked.

Table 18-2. Core Clock Ratio

Signal Name
CSEL[1:0]

Divider Ratio
VCO/CCLK

Example Frequency Ratios (MHz)
VCO CCLK

00 1 300 300

01 2 600 300

10 4 600 150

11 8 400 50

Phase-Locked Loop and Clock Control

18-6 ADSP-BF54x Blackfin Processor Hardware Reference

 If changing the clock ratio through writing a new SSEL value into
PLL_DIV, take care that the enabled peripherals do not suffer data
loss due to SCLK frequency changes.

When changing clock frequencies in the PLL, the PLL requires time to
stabilize and lock to the new frequency. The PLL lock count register
(PLL_LOCKCNT) defines the number of CLKIN cycles that occur before the
processor sets the PLL_LOCKED bit in the PLL_STAT register. When execut-
ing the PLL programming sequence, the internal PLL lock counter begins
incrementing upon execution of the IDLE instruction. The lock counter
increments by 1 each CLKIN cycle. When the lock counter has incremented
to the value defined in the PLL_LOCKCNT register, the PLL_LOCKED bit is set.

See ADSP-BF542/544/547/548/549 Embedded Processor Data Sheet for
more information about PLL stabilization time and programmed values
for this register. For more information about operating modes, see “Oper-
ating Modes” on page 18-7.

Table 18-3. System Clock Ratio

Signal Name
SSEL[3:0]

Divider Ratio
VCO/SCLK

Example Frequency Ratios (MHz)
VCO SCLK

0000 Reserved N/A N/A

0001 1:1 100 100

0010 2:1 200 100

0011 3:1 400 133

0100 4:1 500 125

0101 5:1 600 120

0110 6:1 600 100

N = 7–15 N:1 600 600/N

ADSP-BF54x Blackfin Processor Hardware Reference 18-7

Dynamic Power Management

Dynamic Power Management Controller
The dynamic power management controller (DPMC) works in conjunc-
tion with the PLL, allowing the user to control the processor’s
performance characteristics and power dissipation dynamically. The
DPMC provides these features that allow the user to control performance
and power:

• Multiple operating modes – The processor works in four operating
modes, each with different performance characteristics and power
dissipation profiles. See “Operating Modes” on page 18-7.

• Peripheral clocks – Clocks to each peripheral are disabled automat-
ically when the peripheral is disabled.

• Voltage control – The processor provides an on-chip switching reg-
ulator controller which, with some external components, can
generate internal voltage levels from the external VDD (VDDEXT)
supply.

Depending on the needs of the system, the voltage level can be
reduced to save power. See “Controlling the Voltage Regulator” on
page 18-17.

Operating Modes
The processor works in four operating modes, each with unique perfor-
mance and power saving benefits. Table 18-4 summarizes the operational
characteristics of each mode.

Dynamic Power Management Controller

18-8 ADSP-BF54x Blackfin Processor Hardware Reference

Dynamic Power Management Controller States
Power management states are synonymous with the PLL control state.
The active and full on states of the DPMC/PLL can be determined by
reading the PLL status register (see “PLL Status (PLL_STAT) Register” on
page 18-27). In these modes, the core can either execute instructions or be
in the idle core state. If the core is in the Idle state, it can be awakened by
several sources.

The following sections describe the DPMC/PLL states in more detail, as
they relate to the power management controller functions.

Full On Mode

Full on mode is the maximum performance mode. In this mode, the PLL
is enabled and not bypassed. Full on mode is the normal execution state of
the processor, with the processor and all enabled peripherals running at
full speed. The system clock (SCLK) frequency is determined by the
SSEL-specified ratio to VCO. DMA access is available to L1 and external
memories. From full on mode, the processor can transition directly to
active, sleep, or deep sleep modes, as shown in Figure 18-2 on page 18-12.

Table 18-4. Operational Characteristics

Operating
Mode

Power
Savings

PLL CCLK SCLK Allowed
DMA
AccessStatus Bypassed

Full On None Enabled No Enabled Enabled L1

Active Medium Enabled 1 Yes Enabled Enabled L1

Sleep High Enabled No Disabled Enabled –

Deep Sleep Maximum Disabled – Disabled Disabled –

1 PLL can also be disabled in this mode.

ADSP-BF54x Blackfin Processor Hardware Reference 18-9

Dynamic Power Management

Active Mode

In active mode, the PLL is enabled but bypassed. Because the PLL is
bypassed, the processor’s core clock (CCLK) and system clock (SCLK) run at
the input clock (CLKIN) frequency. DMA access is available to appropri-
ately configured L1 and external memories.

In active mode, it is possible not only to bypass, but also to disable the
PLL. If disabled, the PLL must be re-enabled before transitioning to full
on or sleep modes.

From active mode, the processor can transition directly to full on, sleep, or
deep sleep modes.

 In this mode or in the transition phase to other modes, changes to
MSEL are not latched by the PLL.

Sleep Mode

Sleep mode significantly reduces power dissipation by idling the core pro-
cessor. The CCLK is disabled in this mode; however, SCLK continues to run
at the speed configured by MSEL and SSEL bit settings. Since CCLK is dis-
abled, DMA access is available only to external memory in sleep mode.
From sleep mode, a wake-up event causes the processor to transition to
one of these modes:

• Active mode if the BYPASS bit in the PLL_CTL register is set

• Full on mode if the BYPASS bit is cleared

The processor resumes execution from the program counter value present
immediately prior to entering sleep mode.

 The STOPCK bit is not a status bit and is therefore unmodified by
hardware when the wakeup occurs. Software must explicitly clear
STOPCK in the next write to PLL_CTL to avoid going back into sleep
mode.

Dynamic Power Management Controller

18-10 ADSP-BF54x Blackfin Processor Hardware Reference

Deep Sleep Mode

Deep sleep mode maximizes power savings by disabling the PLL, CCLK,
and SCLK. In this mode, the processor core and all peripherals except the
real-time clock (RTC) are disabled. DMA is not supported in this mode.

Deep sleep mode can be exited only by a hardware reset event or an RTC
interrupt. A hardware reset begins the hardware reset sequence. An RTC
interrupt causes the processor to transition to active mode, and execution
resumes from where the program counter was when deep sleep mode was
entered. If an interrupt is also enabled in SIC_IMASK0, the vector is taken
immediately after exiting deep sleep and the ISR is executed.

Note an RTC interrupt in deep sleep mode automatically resets some
fields of the PLL control register (PLL_CTL). See Table 18-5.

 When in deep sleep mode, clocking to the DDR is turned off.
Before entering deep sleep mode, software should ensure that
important information in DDR memory is saved to a non-volatile
memory and/or the DDR is placed into self-refresh mode.

Table 18-5. PLL_CTL Values After RTC Wake-up Interrupt

Field Value

PLL_OFF 0

STOPCK 0

PDWN 0

BYPASS 1

ADSP-BF54x Blackfin Processor Hardware Reference 18-11

Dynamic Power Management

Hibernate State

For lowest possible power dissipation, this state allows the internal supply
(VDDINT) to be powered down, while keeping the I/O supply (VDDEXT)
running. Although not strictly an operating mode like the four modes
detailed above, it is illustrative to view it as such in the diagram of
Figure 18-2. Since this feature is coupled to the on-chip switching regula-
tor controller, it is discussed in detail in “Powering Down the Core
(Hibernate State)” on page 18-20.

Operating Mode Transitions
Figure 18-2 graphically illustrates the operating modes and transitions. In
the diagram, ellipses represent operating modes and rectangles represent
processor states. Arrows show the allowed transitions into and out of each
mode or state.

For mode transitions, the text next to each transition arrow shows the
fields in the PLL control register (PLL_CTL) that must be changed for the
transition to occur. For example, the transition from full on mode to sleep
mode indicates that the STOPCK bit must be set to 1 and the PDWN bit must
be set to 0.

For transitions to processor states, the text next to each transition arrow
shows either a processor event (for example, RTC wake-up or hardware
reset) or the fields in the voltage regulator control register (VR_CTL) that
must be changed for the transition to occur.

For information about how to effect mode transitions, see “Programming
Operating Mode Transitions” on page 18-14.

Dynamic Power Management Controller

18-12 ADSP-BF54x Blackfin Processor Hardware Reference

In addition to the mode transitions shown in Figure 18-2, power to the
PLL can be applied and removed while in the active operating mode.

Changes to the PLL do not take effect immediately. As with operating
mode transitions, the PLL programming sequence must be executed for
these changes to take effect:

Figure 18-2. Operating Mode Transitions

Sleep

Full OnActive

Deep
Sleep

Reset

Wakeup &
BYPASS=0

STOPCK=1 &
 PDWN=0

 PDWN=1 PDWN=1

STOPCK=1 &
 PDWN=0

HARDWARE
 RESET

BYPASS=0 & PLL_OFF=0 &
 STOPCK=0 & PDWN=0

BYPASS=1 & STOPCK=0 &
 PDWN=0

Wakeup &
BYPASS=1

Hibernate

 FREQ=00

 FREQ=00

RTC_WAKEUP
 WAKE=1&

USB ACTIVITY
& USBWE = 1

CAN0/1 Activity
& CANWE=1

Keypad Activity &
KPADWE=1

Activity on GPW / MRXON
and GPWE / MXVRWE = 1*

Rotary Activity &
ROTWE = 1

* GPW and GPWE are
available on all processors,
except the ADSP-BF549.
MRXON and MXVRWE
only are available on the
ADSP-BF549.

ADSP-BF54x Blackfin Processor Hardware Reference 18-13

Dynamic Power Management

• PLL disabled: In addition to being bypassed in the active mode, the
PLL can be disabled.

When the PLL is disabled, additional power savings are achieved
although they are relatively small. To disable the PLL, set the
PLL_OFF bit in the PLL_CTL register, and then execute the PLL pro-
gramming sequence.

• PLL enabled: When the PLL is disabled, it can be re-enabled later
when additional performance is required.

The PLL must be re-enabled before transitioning to full on or sleep
operating modes. To re-enable the PLL, clear the PLL_OFF bit in
the PLL_CTL register, and then execute the PLL programming
sequence.

• New multiplier ratio: The clock-in to VCO clock (CLKIN to VCO)
multiplier ratio can also be changed while in full on mode.

The PLL state automatically transitions to active mode while the
PLL is locking. After locking, the PLL returns to full on mode. To
program a new CLKIN to VCO multiplier, write the new MSEL[5:0]
and/or DF values to the PLL_CTL register; then execute the PLL pro-
gramming sequence.

Table 18-6 summarizes the allowed operating mode transitions.

 Attempting to cause mode transitions other than those shown in
Table 18-6 causes unpredictable behavior.

Dynamic Power Management Controller

18-14 ADSP-BF54x Blackfin Processor Hardware Reference

Programming Operating Mode Transitions

The operating mode is defined by the state of the PLL_OFF, BYPASS,
STOPCK, and PDWN bits of the PLL control register (PLL_CTL). Merely modi-
fying the bits of the PLL_CTL register does not change the operating mode
or the behavior of the PLL. Changes to the PLL_CTL register are realized
only after executing a specific code sequence. This sequence is managed by
an user-callable routine in the on-chip ROM called bfrom_SysControl().
When calling this function, no further precautions have to be taken.

If the PLL_CTL register changes include a new CLKIN to VCO multiplier or
the changes reapply power to the PLL, the PLL needs to relock. To relock,
the PLL lock counter is first cleared, and then it begins incrementing,
once per SCLK cycle. After the PLL lock counter reaches the value pro-
grammed into the PLL lock count register (PLL_LOCKCNT), the PLL sets the
PLL_LOCKED bit in the PLL status register (PLL_STAT), and the PLL asserts
the PLL wake-up interrupt.

When the bfrom_SysControl() routine reprograms the PLL_CTL register
with a new value, it executes a subsequent IDLE instruction. It prevents all
other system interrupt sources other than the DPMC from waking the
core up from the idle state. If the lock counter expires, the PLL issues an
interrupt and the code execution continues with the instruction after the
IDLE instruction. Therefore, the system is in the new state by the time the
bfrom_SysControl() routine returns.

Table 18-6. Allowed Operating Mode Transitions

New Mode

Current Mode

Full On Active Sleep Deep Sleep

Full On – Allowed Allowed –

Active Allowed – Allowed Allowed

Sleep Allowed Allowed – –

Deep Sleep Allowed Allowed – –

ADSP-BF54x Blackfin Processor Hardware Reference 18-15

Dynamic Power Management

 If the new value written to the PLL_CTL or VR_CTL register is the
same as the previous value, the PLL wake-up occurs immediately
(PLL is already locked), but the core and system clock are bypassed
for the PLL_LOCKCNT duration. For this interval, code executes at
the CLKIN rate instead of at the expected CCLK rate. Software guards
against this condition by comparing the current value to the new
value before writing the new value.

When the wake-up signal is asserted, the processor continues, causing a
transition to:

• Active mode if the BYPASS bit in the PLL_CTL register is set

• Full on mode if the BYPASS bit is cleared

If the PLL_CTL register is programmed to enter the sleep operating mode,
the processor immediately transitions to the sleep mode and waits for a
wake-up signal before continuing.

If the PLL_CTL register is programmed to enter deep sleep operating mode,
the processor immediately transitions to deep sleep mode and waits for an
RTC interrupt or hardware reset signal:

• An RTC interrupt causes the processor to enter active operating
mode and to return from the bfrom_SysControl() routine.

• A hardware reset causes the processor to execute the reset sequence.
For more information about hardware reset, see Chapter 17, “Sys-
tem Reset and Booting”

If no operating mode transition is programmed, the PLL generates a
wake-up signal, and bfrom_SysControl() routine returns.

Dynamic Power Management Controller

18-16 ADSP-BF54x Blackfin Processor Hardware Reference

Dynamic Supply Voltage Control
In addition to clock frequency control, the processor provides the capabil-
ity to run the core processor at different voltage levels. As power
dissipation is proportional to the voltage squared, significant power reduc-
tions can be accomplished when lower voltages are used.

The processor uses multiple power domains. Each power domain has a
separate VDD supply. Note that the internal logic of the processor and
much of the processor I/O can be run over a range of voltages. See
ADSP-BF542/544/547/548/549 Embedded Processor Data Sheet for details
on the allowed voltage ranges for each power domain and power dissipa-
tion data.

Power Supply Management
The processor provides an on-chip switching regulator controller which,
with some external hardware, can generate internal voltage levels from the
external VDDEXT supply with an external power transistor as shown in
Figure 18-3. This voltage level can be reduced to save power, depending
upon the needs of the system.

ADSP-BF54x Blackfin Processor Hardware Reference 18-17

Dynamic Power Management

 When increasing the VDDINT voltage, the external FET switches
on for a longer period. The VDDEXT supply should have appropri-
ate capacitive bypassing to enable it to provide sufficient current
without drooping the supply voltage.

Controlling the Voltage Regulator

The on-chip core voltage regulator controller manages the internal logic
voltage levels for the VDDINT supply. The voltage regulator control regis-
ter (VR_CTL) controls the regulator (see Figure 18-8 on page 18-28). The
state of the VR_CTL register is maintained during power down modes and
hibernate state. It is only set to its reset value by a powerup reset sequence.
The VR_CTL register should not be written directly. Rather, the
bfrom_SysControl() routine, which resides in the on-chip ROM, should
be used to access it.

The on-chip switching regulator can be modified in terms of its transient
behavior in the GAIN and FREQ fields of the VR_CTL register.

Figure 18-3. Processor Voltage Regulator

VDDVR

VDDINT

VROUT

VROUT

GND

100 µF

10 µH

ZHCS1000FDS9431A

100 nF10 µF100 µF

SHORT AND LOW INDUCTANCE WIRE

VDDEXT (LOW INDUCTANCE)

2.70 V TO 3.6V
INPUT VOLTAGE

RANGE

NOTE: DESIGNER SHOULD MINIMIZE TRACE LENGTH TO FDS9431A.

SET OF
DECOUPLING
CAPACITORS

Dynamic Power Management Controller

18-18 ADSP-BF54x Blackfin Processor Hardware Reference

The two-bit GAIN field controls the internal loop gain of the switching reg-
ulator loop; this field controls how quickly the voltage output settles on its
final value. In general, higher gain allows for quicker settling times but
causes more overshoot in the process.

Table 18-7 lists the gain levels configured by GAIN[1:0].

The two-bit FREQ field controls the switching oscillator frequency for the
voltage regulator. A higher frequency setting allows for smaller switching
capacitor and inductor values, while potentially generating more EMI
(electromagnetic interference).

Table 18-8 lists the switching frequency values configured by FREQ[1:0].

 To bypass onboard regulation, program a value of b#00 in the FREQ
field and leave the VROUT pins floating. Nevertheless, the VLEV field
in the applied VR_CTL value should still reflect the applied voltage
value.

Table 18-7. GAIN Encodings

GAIN Value

b#00 5

b#01 10

b#10 20

b#11 50

Table 18-8. FREQ Encodings

FREQ Value

b#00 Powerdown/bypass onboard regulation

b#01 333 kHz

b#10 667 kHz

b#11 1 MHz

ADSP-BF54x Blackfin Processor Hardware Reference 18-19

Dynamic Power Management

Changing Voltage

Minor changes in operating voltage can be accommodated without requir-
ing special consideration or action by the application program. See
ADSP-BF542/544/547/548/549 Embedded Processor Data Sheet for more
information about supported voltage levels, regulator tolerances, and
allowed rates of change.

 Reducing the processor’s operating voltage to greatly conserve
power or raising the operating voltage to greatly increase perfor-
mance requires significant changes to the operating voltage level.
To ensure predictable behavior when varying the operating voltage,
the processor should be brought to a known and stable state before
the operating voltage is modified.

The recommended procedure is to follow the PLL programming sequence
when varying the voltage. The four-bit voltage level (VLEV) field identifies
the nominal internal voltage level. Refer to
ADSP-BF542/544/547/548/549 Embedded Processor Data Sheet for the
applicable VLEV voltage range and associated voltage tolerances.

Table 18-9 lists the voltage level values for VLEV[3:0].

Table 18-9. VLEV Encodings

VLEV Voltage

b#0000–b#0101 Reserved

b#0110 Reserved

b#0111 Reserved

b#1000 0.95 volts

b#1001 1.00 volts

b#1010 1.05 volts

b#1011 1.10 volts

b#1100 1.15 volts

Dynamic Power Management Controller

18-20 ADSP-BF54x Blackfin Processor Hardware Reference

After changing the voltage level in the VR_CTL register, the PLL automati-
cally enters the active mode when the processor enters the idle state. At
that point, the voltage level changes and the PLL relocks with the new
voltage. After the PLL_LOCKCNT has expired, the part returns to the full on
state. When changing voltages, a larger PLL_LOCKCNT value may be neces-
sary than when changing just the PLL frequency. See
ADSP-BF542/544/547/548/549 Embedded Processor Data Sheet for details.

After the voltage is changed to the new level, the processor can safely
return to any operational mode so long as the operating parameters, such
as core clock frequency (CCLK), are within the limits specified in
ADSP-BF542/544/547/548/549 Embedded Processor Data Sheet for the
new operating voltage level.

Even if the internal voltage regulator is bypassed and the VDDINT voltage is
applied by an external regulator, the bfrom_SysControl() routine must be
called at startup or whenever the voltage changes at run time. Afterwards,
the SYSCTRL_EXTVOLTAGE bit should be set along with a proper VLEV value
in the VR_CTL register.

Powering Down the Core (Hibernate State)

The internal supply regulator for the processor can be shut off by writing
b#00 to the FREQ bits of the VR_CTL register. This disables both CCLK and
SCLK. Furthermore, it sets the internal power supply voltage (VDDINT) to
0 V, eliminating any leakage currents from the processor. The internal
supply regulator can be woken up by several user-selectable events, all of
which are controlled in the VR_CTL register:

b#1101 1.20 volts

b#1110 1.25 volts

b#1111 1.30 volts

Table 18-9. VLEV Encodings (Cont’d)

VLEV Voltage

ADSP-BF54x Blackfin Processor Hardware Reference 18-21

Dynamic Power Management

• Assertion of the RESET pin always exits hibernate state and requires
no modification to VR_CTL.

• RTC event. Set the wake-up enable (WAKE) control bit to enable
wake-up upon a RTC interrupt. This can be any of the RTC inter-
rupts (alarm, daily alarm, day, hour, minute, second, or
stopwatch).

• General-purpose event (all processors except ADSP-BF549). Set the
general-purpose wake-up enable (GPWE) control bit to enable
wake-up upon detection of an active low signal on the GPW pin.

• MXVR event (ADSP-BF549 processor only). Set the MXVR
wake-up enable (MXVRWE) control bit to enable wake-up upon detec-
tion of an active low signal on the MRXON pin. For more information
see Chapter 29, “Media Transceiver Module (MXVR)”.

• Activity on either CANxRX pin. Set the CAN RX wake-up enable
(CANWE) control bit to enable wake-up upon detection of CAN bus
activity on either of the CANxRX pins. For more information see
Chapter 31, “CAN Module”.

• Activity on the rotary counter pins. Set the rotary counter wake-up
enable (ROTWE) control bit to enable wake-up upon activity on the
rotary counter pins. If any edge is detected on either the CUD or CDG
pins, or if an active low state is detected on the CZM pin, this
wake-up event is generated. For more information see Chapter 13,
“Rotary Counter”.

• Activity on the keypad pins. Set the keypad wake-up enable
(KPADWE) control bit to enable wake-up upon activity on the keypad
pins. If an active low state is detected on any of the KEY_ROWx pins,
this wake-up event is generated. For more information see
Chapter 30, “Keypad Interface”.

Dynamic Power Management Controller

18-22 ADSP-BF54x Blackfin Processor Hardware Reference

• USB activity. Set the USB wake-up enable (USBWE) control bit to
enable wake-up upon USB activity. If any edge is detected on the
USB_DP, USB_DM, or USB_VBUS pins, this wake-up event is generated.
For more information see Chapter 26, “USB OTG Controller”.

• The hibernate functions will only work if VDDRTC is supplied.
This is the supply that is needed to maintain the VR_CTL register.

 For the peripheral hibernate wake-up sources described above, a
general-purpose wake-up can be implemented if the peripheral isn't
used. For example, if MXVR is not used, an external host can be
connected to the MRXON pin that holds the pin high until the
wake-up is required. If MXVRWE is set, a transition to low on MRXON
will exit hibernate state, and the host could be set up to provide
this signal.

If the on-chip supply controller is bypassed so that VDDINT is sourced
externally, the only way to power down the core is to remove the external
VDDINT voltage source.

 When the core is powered down, VDDINT is set to 0 V, and so the
internal state of the processor is not maintained, with the exception
of the VR_CTL register. Therefore, any critical information stored
internally (memory contents, register contents, and so on) must be
written to a non-volatile storage device prior to removing power.
Be sure to set the SCKE-low-during-reset (SCKELOW) control bit in
VR_CTL to protect against the default reset state behavior of setting
the EBIU pins to their inactive state. Failure to set this bit results
in the SCKE pin going high during reset, which takes the DDR out
of self-refresh mode, resulting in data decay in the DDR due to loss
of refresh rate.

Powering down VDDINT does not affect VDDEXT. While VDDEXT is still
applied to the processor, external pins are maintained at a three-state level,
unless otherwise specified.

ADSP-BF54x Blackfin Processor Hardware Reference 18-23

Dynamic Power Management

To power down the internal supply:

1. Write 0 to the appropriate bits in the SIC_IWRx registers to prevent
enabled peripheral resources from interrupting the hibernate
process.

2. Call the bfrom_SysControl() routine, ensuring that the FREQ bits
in the VR_CTL variable are set to b#00 and the appropriate wake-up
bit(s) are set to 1 (USBWE, ROTWE, GPWE/MXVRWE, KPADWE, CANWE, WAKE).
Optionally, set the SCKELOW bit if DDR data should be maintained.

3. The bfrom_SysControl() routine will execute until VDDINT transi-
tions to 0V. It never returns.

4. When the processor is woken up, the PLL relocks and the boot
sequence defined by the BMODE[3:0] pin settings takes effect.

The WURESET in the SYSCTRL register is set and stays set until the next hard-
ware reset. The WURESET bit may control conditional boot process.

 If the CLKBUFOE bit is set, the crystal oscillator and CLKBUF signals
remain enabled during hibernate and draw current.

Recovery From Hibernate State

When utilizing the hibernate state to maximize power savings, additional
features of the ADSP-BF54x processor Blackfin processors can be used to
coordinate system response and subsequent system activity when the pro-
cessor resumes execution upon a hibernate wake-up event.

For the system outside of the Blackfin processor, the EXT_WAKE output pin
is deasserted (driven low) when the Blackfin processor is about to enter
the Hibernate state. This pin can be used in the system to signal an exter-
nal component that it is now safe to remove the power supply. The state
of the EXT_WAKE pin is not affected by the reset sequence, and no clock is

Dynamic Power Management Controller

18-24 ADSP-BF54x Blackfin Processor Hardware Reference

required for it to be driven. The EXT_WAKE pin is driven high when the
on-chip regulator is again stable after resuming operation from the hiber-
nate state.

For the Blackfin processor itself, the PLL_STAT register contains a set of
wake-up status bits, which can be interrogated upon warm-boot to deter-
mine which source caused the wake-up event. This information can be
useful to coordinate with external system components regarding lost traf-
fic due to the previous activity causing a wake-up event rather than a
processed message. For example, if a CAN message took the processor out
of hibernate state, that message would not have been received by the pro-
cessor because the processor would have had to perform a self-reset and
boot and run the application before being able to actually handle a CAN
message.

The SCKELOW bit in the VR_CTL register is maintained during the hibernate
state. Typical use of this bit is to protect data in DDR memory during the
hibernate state and subsequent reset event. Because of this, SCKELOW can be
checked by software to determine whether the processor is being booted
for the first time or if it is restarting after a hibernate event. If the applica-
tion had set the bit prior to hibernate to protect the contents of DDR
memory, the bit will read as 1 after the reset event takes place. This feature
is useful if, for example, the desire is to shorten boot times as much as pos-
sible. For larger applications, anything resolved to external memory and
preserved for the duration of the hibernate state does not need to boot
again after the wake-up event takes place. Adding code to an initialization
block that simply checks the SCKELOW bit provides the application with the
ability to determine whether a full boot or some abridged boot is necessary
to have the full application resolved to the internal and external memory
spaces.

ADSP-BF54x Blackfin Processor Hardware Reference 18-25

Dynamic Power Management

PLL and VR Registers
The user interface to the PLL and VR is through five memory-mapped
registers (MMRs) shown in Table 18-10 and illustrated in Figure 18-4
through Figure 18-8.

All four 16-bit MMRs must be accessed with aligned 16-bit reads/writes.

Table 18-10. PLL/VR Register Mapping

Register Name Description Notes

PLL_CTL “PLL Control (PLL_CTL) Regis-
ter” on page 18-26

Requires reprogramming sequence when
written

PLL_DIV “PLL Divide (PLL_DIV) Register”
on page 18-26

Can be written freely

PLL_STAT “PLL Status (PLL_STAT) Regis-
ter” on page 18-27

Monitors active modes of operation and
wake-up events

PLL_LOCKCN
T

“PLL Lock Count
(PLL_LOCKCNT) Register” on
page 18-27

Number of SCLKs allowed for PLL to
relock

VR_CTL “Voltage Regulator Control
(VR_CTL) Register” on
page 18-28

Requires PLL reprogramming sequence
when written

PLL and VR Registers

18-26 ADSP-BF54x Blackfin Processor Hardware Reference

PLL Divide (PLL_DIV) Register

PLL Control (PLL_CTL) Register

Figure 18-4. PLL Divide Register

Figure 18-5. PLL Control Register

PLL Divide Register (PLL_DIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

0 - Reserved
1-15 - SCLK = VCO/X

CSEL[1:0] (Core Select)

0 0 0 0 0 0 0 0 0 0 0 0 1 0

00 - CCLK = VCO/1
01 - CCLK = VCO/2
10 - CCLK = VCO/4
11 - CCLK = VCO/8

SSEL[3:0] (System Select)

Reset = 0x000400xFFC0 0004

00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 1 0 0 0 0 0 0 0 0 0 0

See Table 18-1 on page 18-4
for CLKIN/VCO multiplication
factors

PLL Control Register (PLL_CTL)

BYPASS
0 - Do not bypass PLL
1 - Bypass PLL

MSEL[5:0]
(Multiplier Select)

DF (Divide Frequency)
0 - Pass CLKIN to PLL
1 - Pass CLKIN/2 to PLL
PLL_OFF
0 - Enable control input to PLL
1 - Disable control input to PLL

STOPCK (Stop Clock)
0 - CCLK on
1 - CCLK off

PDWN (Power Down)
0 - All internal clocks on
1 - All internal clocks off

Reset = 0x10000xFFC0 0000

Reserved

Reserved

ADSP-BF54x Blackfin Processor Hardware Reference 18-27

Dynamic Power Management

PLL Status (PLL_STAT) Register

PLL Lock Count (PLL_LOCKCNT) Register

Figure 18-6. PLL Status Register

Figure 18-7. PLL Lock Count Register

000 0 0 0 0 0

PLL Status Register (PLL_STAT)
Read only. Unless otherwise noted, 1 - Processor operating in this mode. For more infor-
mation, see “Operating Modes” on page 18-7.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 0 1 0 0 0 1 Reset = 0x00A2

ACTIVE_PLLENABLED

FULL_ON

ACTIVE_PLLDISABLED

PLL_LOCKED

0xFFC0 000C

RTCWS (RTC
Wake-up Status)

CANWS (CAN Wake-up
Status)

GPWS (General-Purpose
Wake-up Status)

USBWS (USB
Wake-up Status)

KPADWS (Keypad
Wake-up Status)

ROTWS (Rotary
Counter Wake-up
Status)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

LOCKCNT[15:0]
Number of CLKIN cycles
before PLL lock count timer
expires.

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 Reset = 0x0200

PLL Lock Count Register (PLL_LOCKCNT)

0xFFC0 0010

PLL and VR Registers

18-28 ADSP-BF54x Blackfin Processor Hardware Reference

Voltage Regulator Control (VR_CTL) Register

 Bit 10 enables the general-purpose wake-up (GPWE) for all
processors except the ADSP-BF549. On ADSP-BF549 processors
only, bit 10 enables the MXVR wake-up (MXVRWE).

The CLKIN buffer output enable (CLKBUFOE) control bit allows the Blackfin
processor and another device to run from a single crystal oscillator. Clear-
ing this bit prevents the CLKBUF pin from driving a buffered version of the
input clock CLKIN.

Figure 18-8. Voltage Regulator Control Register

00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 1 0 0 0 0 1 1 0 1 0

Voltage Regulator Control Register (VR_CTL)

Reset = 0x40FB

VLEV[3:0] (Internal Voltage Level)
See Table 18-9 for encodings

FREQ[1:0] (Switching Frequency)
Controls the switching oscillator
frequency for the voltage regulator,
see Table 18-7 for encodings

GAIN[1:0] (Voltage Level Gain)
Controls how quickly the voltage
output settles on its final value,
see Table 18-8 for encodings

0 11

WAKE (RTC Wake-up
Enable)
0 - RTC wake-up disabled
1 - RTC wake-up enabled

0xFFC0 0008

SCKELOW
(Drive SCKE Low
During Reset)
0 - Allow SCKE to go

high (=1) during reset
1 - Maintain SCKE low

(=0) during reset

CANWE (CANx Wake-up
Enable)
0 - CAN RX wake-up disabled
1 - CAN RX wake-up enabled

GPWE/MXVRWE
(General-purpose/MXVR
Wake-up Enable)
0 - GP/MXVR wake-up disabled
1 - GP/MXVR wake-up enabledUSBWE (USB

Wake-up Enable)

0 - USB wake-up disabled
1 - USB wake-up enabled

KPADWE (Keypad
Wake-up Enable)

0 - Keypad wake-up disabled
1 - Keypad wake-up enabled

ROTWE (Rotary Coun-
ter Wake-up Enable)

0 - Rotary counter wake-up
disabled
1 - Rotary counter wake-up
enabled

CLKBUFOE (CLKIN
Buffer Output Enable)
0 - CLKIN buffer disabled
1 - CLKIN buffer enabled

ADSP-BF54x Blackfin Processor Hardware Reference 18-29

Dynamic Power Management

System Control ROM Function
The PLL and voltage regulator registers should never be accessed directly.
Rather, always use to the bfrom_SysControl() function to alter or read the
register values. This function resides in the on-chip ROM and can be
called by the user following C language style calling conventions.

Entry address: 0xEF00 0038

Arguments:

• dActionFlags word in R0

• pSysCtrlSettings pointer in R1

• zero value in R2

A potential error message from the internally called bfrom_OtpRead()
function is forwarded and returned in R0.

 The System Control ROM Function does not verify the correct-
ness of the forwarded arguments. Therefore, it is up to the
programmer to choose the correct values.

C prototype: u32 bfrom_SysControl(u32 dActionFlags,
ADI_SYSCTRL_VALUES *pSysCtrlSettings, void *reserved);

The first argument (u32 dActionFlags) holds the instruction flags. The
following flags are supported:

#define SYSCTRL_READ 0x00000000

#define SYSCTRL_WRITE 0x00000001

#define SYSCTRL_SYSRESET 0x00000002

#define SYSCTRL_SOFTRESET 0x00000004

#define SYSCTRL_VRCTL 0x00000010

#define SYSCTRL_EXTVOLTAGE 0x00000020

#define SYSCTRL_INTVOLTAGE 0x00000000

#define SYSCTRL_OTPVOLTAGE 0x00000040

System Control ROM Function

18-30 ADSP-BF54x Blackfin Processor Hardware Reference

#define SYSCTRL_PLLCTL 0x00000100

#define SYSCTRL_PLLDIV 0x00000200

#define SYSCTRL_LOCKCNT 0x00000400

#define SYSCTRL_PLLSTAT 0x00000800

With SYSCTRL_READ and SYSCTRL_WRITE, a read or a write operation is ini-
tialized. SYSCTRL_SYSRESET performs a system reset, and
SYSCTRL_SOFTRESET combines a core and a system reset. The
SYSCTRL_EXTVOLTAGE and SYSCTRL_INTVOLTAGE indicate whether if VDDINT
is supplied externally or generated by the on-chip regulator;
SYSCTRL_OTPVOLTAGE is for factory purposes only. The last five flags
(_VRCTL, _PLLCTL, _PLLDIV, _LOCKCNT, _PLLSTAT) tell the system con-
trol ROM function, which register to write or read. Remember,
SYSCTRL_PLLSTAT is read only.

The second argument (ADI_SYSCTRL_VALUES *pSysCtrlSettings) passes a
pointer to a special structure, which has entries for all PLL and voltage
regulator registers. It is predefined in the bfrom.h header file as

typedef struct {

u16 uwVrCtl;

u16 uwPllCtl;

u16 uwPllDiv;

u16 uwPllLockCnt;

u16 uwPllStat;

} ADI_SYSCTRL_VALUES;

The third argument is reserved and should always be kept zero (NULL
pointer).

ADSP-BF54x Blackfin Processor Hardware Reference 18-31

Dynamic Power Management

For the return value, see the description of the bfrom_OtpRead() ROM
routine, whereby single-bit warnings are suppressed.

 The System Control ROM Function automatically performs the
correct programming sequence for the Dynamic Power Manage-
ment System of the Blackfin processor.

Programming Model
The programming model for the Access System Control ROM Function
in C/C++ and Assembly is described in the following sections.

Access System Control ROM Function in C/C++

To read the PLL_DIV and PLL_CTL register values, specify the SYSCTRL_READ
instruction flag along with SYSCTRL_PLLCTL and SYSCTRL_PLLDIV register
flags. The bfrom_OtpRead() function then only updates the uwPllCtl and
uwPllDiv variables.

ADI_SYSCTRL_VALUES read;

bfrom_SysControl (SYSCTRL_PLLCTL | SYSCTRL_PLLDIV |

SYSCTRL_READ, &read, NULL);

The values of the PLL_CTL and PLL_DIV registers can be accessed in the
read.uwPllCtl and read.uwPllDiv, respectively.

To update register values, specify the SYSCTRL_WRITE instruction flag along
with the register flags of those register that should be modified and have
valid data in the respective ADI_SYSCTRL_VALUES variables.

ADI_SYSCTRL_VALUES write;

write.uwPllCtl = 0x1400;

write.uwPllDiv = 0x0005;

bfrom_SysControl (SYSCTRL_PLLCTL | SYSCTRL_PLLDIV |

SYSCTRL_WRITE, &write, NULL);

System Control ROM Function

18-32 ADSP-BF54x Blackfin Processor Hardware Reference

Access System Control ROM Function in Assembly

The assembler supports C structs. Here it is required to import the file
bfrom.h.

#include <bfrom.h>

.IMPORT “bfrom.h”;

.STRUCT ADI_SYSCTRL_VALUES dpm;

You are free to pre-load the struct:
.STRUCT ADI_SYSCTRL_VALUES dpm = { 0x40DB, 0x1400, 0x0005,

0x0200, 0x00A2 };

You can also load the values dynamically inside the code:

P5.H = hi(dpm);

P5.L = lo(dpm->uwVrCtl);

R7 = 0x40DB (z);

w[P5] = R7;

P5.L = lo(dpm->uwPllCtl);

R7 = 0x1400 (z);

w[P5] = R7;

P5.L = lo(dpm->uwPllDiv);

R7 = 0x0005 (z);

w[P5] = R7;

P5.L = lo(dpm->uwPllLockCnt);

R7 = 0x0200 (z);

w[P5] = R0;

ADSP-BF54x Blackfin Processor Hardware Reference 18-33

Dynamic Power Management

The function u32 bfrom_SysControl(u32 dActionFlags,
ADI_SYSCTRL_VALUES *pSysCtrlSettings, void *reserved); can be
accessed by bfrom_syscontrol. Following the C/C++ run-time environ-
ment conventions, the parameters passed are held by the data registers R0,
R1 and R2.

/* 10 = sizeof(ADI_SYSCTRL_VALUES). uimm18m4: 18-bit unsigned

field that must be a multiple of 4, with a range of 8 through

262,152 bytes (0x00000 through 0x3FFFC) */

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

/* Always allocate at least 12 bytes on the stack for outgoing

arguments, even if the function being called requires less than

this. */

SP += -12;

R0 = (SYSCTRL_VRCTL |

 SYSCTRL_INTVOLTAGE |

 SYSCTRL_PLLCTL |

 SYSCTRL_PLLDIV |

 SYSCTRL_WRITE);

R1.H = hi(dpm);

R1.L = lo(dpm);

R2 = 0 (z);

P5.H = hi(BFROM_SYSCONTROL);

P5.L = lo(BFROM_SYSCONTROL);

call(P5);

SP += 12;

(R7:0,P5:0) = [SP++];

unlink;

rts;

System Control ROM Function

18-34 ADSP-BF54x Blackfin Processor Hardware Reference

As an alternative for taking a C-struct, the processor’s internal scratchpad
memory can be used too. Therefore, the stack/frame pointer must be
loaded and passed.

/* 10 = sizeof(ADI_SYSCTRL_VALUES). uimm18m4: 18-bit unsigned

field that must be a multiple of 4, with a range of 8 through

262,152 bytes (0x00000 through 0x3FFFC) */

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

/* Always allocate at least 12 bytes on the stack for outgoing

arguments, even if the function being called requires less than

this. */

SP += -12;

R7 = 0;

R7.L = 0x40DB;

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwVrCtl)] = R7;

R7.L = 0x1400;

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwPllCtl)] = R7;

R7.L = 0x0005;

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwPllDiv)] = R7;

R7.L = 0x0200;

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwPllLockCnt)] = R7;

R0 = (SYSCTRL_VRCTL |

 SYSCTRL_INTVOLTAGE |

 SYSCTRL_PLLCTL |

 SYSCTRL_PLLDIV |

 SYSCTRL_WRITE);

ADSP-BF54x Blackfin Processor Hardware Reference 18-35

Dynamic Power Management

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 = 0;

P5.H = hi(BFROM_SYSCONTROL);

P5.L = lo(BFROM_SYSCONTROL);

call(P5);

SP += 12;

(R7:0,P5:0) = [SP++];

unlink;

rts;

Programming Examples
The following code examples illustrate how to use the System Control
ROM Function in running various operating mode transitions. Some
setup code has been removed for clarity, and the following assumptions
are made:

• PLL control (PLL_CTL) register setting: 0x1400

• PLL divider (PLL_DIV) register setting: 0x0005

• PLL lock count (PLL_LOCKCNT) register setting: 0x0200

• Clock in (CLKIN) frequency: 25MHz

VCO frequency is 250MHz, core clock frequency is 250MHz and system
clock frequency is 50MHz.

• Voltage regulator control (VR_CTL) register setting: 0x40DB

• Logical voltage level (VDDINT) is at 1.20V

Programming Examples

18-36 ADSP-BF54x Blackfin Processor Hardware Reference

For operating mode transition and voltage regulator examples:

• C

#include <blackfin.h>

#include <bfrom.h>

• Assembly

#include <blackfin.h>

#include <bfrom.h>

.IMPORT “bfrom.h”;

#define IMM32(reg,val) reg##.H=hi(val); reg##.L=lo(val)

Full On Mode to Active Mode and Back
Listing 18-1 and Listing 18-2 provide code for transitioning from full on
operating mode to active mode, in C and Blackfin assembly code,
respectively.

Listing 18-1. Transitioning from Full On Mode to Active Mode (C)

void active(void)

{

ADI_SYSCTRL_VALUES active;

bfrom_SysControl(SYSCTRL_INTVOLTAGE | SYSCTRL_PLLCTL |

SYSCTRL_READ, &active, NULL);

active.uwPllCtl |= (BYPASS | PLL_OFF); /* PLL_OFF bit optional */

bfrom_SysControl(SYSCTRL_INTVOLTAGE | SYSCTRL_PLLCTL |

SYSCTRL_WRITE, &active, NULL);

return;

}

ADSP-BF54x Blackfin Processor Hardware Reference 18-37

Dynamic Power Management

Listing 18-2. Transitioning from Full On Mode to Active Mode (ASM)

__active:

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

SP += -12;

R0 = (SYSCTRL_INTVOLTAGE | SYSCTRL_PLLCTL | SYSCTRL_READ);

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 = 0 (z);

IMM32(P4,BFROM_SYSCONTROL);

call(P4);

R0 = w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwPllCtl)];

bitset(R0,bitpos(BYPASS));

bitset(R0,bitpos(PLL_OFF));

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwPllCtl)] = R0;

R0 = (SYSCTRL_INTVOLTAGE | SYSCTRL_PLLCTL | SYSCTRL_PLLDIV |

SYSCTRL_WRITE);

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 = 0 (z);

IMM32(P4,BFROM_SYSCONTROL);

call(P4);

Programming Examples

18-38 ADSP-BF54x Blackfin Processor Hardware Reference

SP += 12;

(R7:0,P5:0) = [SP++];

unlink;

rts;

__active.end:

To return from active mode (go back to full on mode), the BYPASS bit and
the PLL_OFF bit, respectively, must be cleared again.

Transition to Sleep Mode or Deep Sleep Mode
Listing 18-3 and Listing 18-4 provide code for transitioning from full on
operating mode to sleep or deep sleep mode, in C and Blackfin assembly
code, respectively.

Listing 18-3. Transitioning to Sleep Mode or Deep Sleep Mode,
respectively (C)

void sleep(void)

{

ADI_SYSCTRL_VALUES sleep;

bfrom_SysControl(SYSCTRL_INTVOLTAGE | SYSCTRL_PLLCTL |

SYSCTRL_READ, &sleep, NULL);

active.uwPllCtl |= STOPCK; /* either: Sleep Mode */

active.uwPllCtl |= PDWN; /* or: Deep Sleep Mode */

bfrom_SysControl(SYSCTRL_INTVOLTAGE | SYSCTRL_PLLCTL |

SYSCTRL_WRITE, &sleep, NULL);

return;

}

ADSP-BF54x Blackfin Processor Hardware Reference 18-39

Dynamic Power Management

Listing 18-4. Transitioning to Sleep Mode or Deep Sleep Mode,
respectively (ASM)

__sleep:

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

SP += -12;

R0 = (SYSCTRL_INTVOLTAGE | SYSCTRL_PLLCTL | SYSCTRL_READ);

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 = 0 (z);

IMM32(P4,BFROM_SYSCONTROL);

call(P4);

R0 = w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwPllCtl)];

bitset(R0,bitpos(STOPCK)); /* either: Sleep Mode */

bitset(R0,bitpos(PDWN)); /* or: Deep Sleep Mode */

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwPllCtl)] = R0;

R0 = (SYSCTRL_INTVOLTAGE | SYSCTRL_PLLCTL | SYSCTRL_WRITE);

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 = 0 (z);

IMM32(P4,BFROM_SYSCONTROL);

call(P4);

Programming Examples

18-40 ADSP-BF54x Blackfin Processor Hardware Reference

SP += 12;

(R7:0,P5:0) = [SP++];

unlink;

rts;

__sleep.end:

Setting Wakeups and Entering Hibernate State
Listing 18-5 and Listing 18-6 provide code for configuring the regulator
wakeups (RTC wakeup) and placing the regulator in the hibernate state, in
C and Blackfin assembly code, respectively.

ADSP-BF54x Blackfin Processor Hardware Reference 18-41

Dynamic Power Management

Listing 18-5. Configuring Regulator Wakeups and Entering Hibernate
State (C)

void hibernate(void)

{

ADI_SYSCTRL_VALUES hibernate;

/* SCLKELOW = 1: Enable Drive CKE Low During Reset */
/* Protect DDR contents during reset after wakeup */
hibernate.uwVrCtl = SCKELOW |

 WAKE | /* RTC/Reset Wake-Up Enable */

nCANWE | /* CAN Wake-Up Disable */

nGPWE | /*General-Purpose Wake-Up Disable/*

nUSBWE | /* USB Wake-Up Disable */

nKPADWE | /* Keypad Wake-Up Disable */

nROTWE | /* Rotary Wake-Up Disable */

nCLKBUFOE | /* CLKIN Buffer Output Disable */

 HIBERNATE; /* Powerdown/Bypass On-Board Regulation */

bfrom_SysControl(SYSCTRL_VRCTL | SYSCTRL_INTVOLTAGE |

SYSCTRL_WRITE, &hibernate, NULL);

/* Hibernate State: no code executes until wakeup triggers reset

*/

}

Programming Examples

18-42 ADSP-BF54x Blackfin Processor Hardware Reference

Listing 18-6. Configuring Regulator Wakeups and Entering Hibernate
State (ASM)

__hibernate:

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

SP += -12;

cli R6; /* disable interrupts, copy IMASK to R6 */

/* SCLKELOW = 1: Enable Drive CKE Low During Reset */
/* Protect DDR contents during reset after wakeup */
R0.L = SCKELOW |

WAKE | /* RTC/Reset Wake-Up Enable */

 nCANWE | /* CAN Wake-Up Disable */

 nGPWE | /* General-Purpose Wake-Up Disable */

 nUSBWE | /* USB Wake-Up Disable */

 nKPADWE | /* Keypad Wake-Up Disable */

 nROTWE | /* Rotary Wake-Up Disable */

 nCLKBUFOE | /* CLKIN Buffer Output Disable */

HIBERNATE ; /* Powerdown/Bypass On-Board Regulation */

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwVrCtl)] = R0;

R0 = (SYSCTRL_VRCTL | SYSCTRL_INTVOLTAGE | SYSCTRL_WRITE);

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 = 0 (z);

IMM32(P4,BFROM_SYSCONTROL);

call(P4);

ADSP-BF54x Blackfin Processor Hardware Reference 18-43

Dynamic Power Management

/* Hibernate State: no code executes until wakeup triggers reset

*/

__hibernate.end:

Perform a System Reset or Soft-Reset
Listing 18-7 and Listing 18-8 provide code for executing a system reset or
a soft-reset (= system reset + core reset), in Blackfin assembly and C code,
respectively.

Listing 18-7. Execute a System Reset or a Soft-Reset

void reset(void)

{

bfrom_SysControl(SYSCTRL_SYSRESET, NULL, NULL); /* either */

bfrom_SysControl(SYSCTRL_SOFTRESET, NULL, NULL); /* or */

return;

}

Listing 18-8. Listing 8. Execute a System Reset or a Soft-Reset

__reset:

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

SP += -12;

R0 = (SYSCTRL_SYSRESET); /* either */

R0 = (SYSCTRL_SOFTRESET); /* or */

R1 = 0 (z);

R2 = 0 (z);

IMM32(P4,BFROM_SYSCONTROL);

call(P4);

Programming Examples

18-44 ADSP-BF54x Blackfin Processor Hardware Reference

SP += 12;

(R7:0,P5:0) = [SP++];

unlink;

rts;

__reset.end:

Change VCO, Core Clock, and
System Clock Frequency

Listing 18-9 and Listing 18-10 provide code for changing the CLKIN to VCO
multiplier (from 10x to 21x), keeping CSEL divider at (1) and changing the
SSEL divider (from 5 to 4) in full on operating mode, in C and Blackfin
assembly code, respectively.

Listing 18-9. Transition of Frequencies (C)

void frequency(void)

{

ADI_SYSCTRL_VALUES frequency;

/* Set MSEL = 0-63 --> VCO = CLKIN*MSEL */

frequency.uwPllCtl = SET_MSEL(21) ;

/* Set SSEL = 1-15 --> SCLK = VCO/SSEL */
/* CCLK = VCO / 1 */
frequency.uwPllDiv = SET_SSEL(4) |
CSEL_DIV1 ;

frequency.uwPllLockCnt = 0x0200;

ADSP-BF54x Blackfin Processor Hardware Reference 18-45

Dynamic Power Management

bfrom_SysControl(SYSCTRL_INTVOLTAGE | SYSCTRL_PLLCTL |

SYSCTRL_PLLDIV | SYSCTRL_LOCKCNT | SYSCTRL_WRITE, &frequency,

NULL);

return;

}

Listing 18-10. Transition of Frequencies (ASM)

__frequency:

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

SP += -12;

/* write the struct */

R0 = 0;

R0.L = SET_MSEL(21) ; /* Set MSEL = 0-63 --> VCO = CLKIN*MSEL */

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwPllCtl)] = R0;

R0.L = SET_SSEL(4) | /* Set SSEL = 1-15 --> SCLK = VCO/SSEL */

 CSEL_DIV1 ; /* CCLK = VCO / 1 */

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwPllDiv)] = R0;

R0.L = 0x0200;

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwPllLockCnt)] = R0;

/* argument 1 in R0 */

R0 = (SYSCTRL_INTVOLTAGE | SYSCTRL_PLLCTL | SYSCTRL_PLLDIV |

SYSCTRL_WRITE);

Programming Examples

18-46 ADSP-BF54x Blackfin Processor Hardware Reference

/* argument 2 in R1: structure lays on local stack */

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

/* argument 3 must always be NULL */

R2 = 0;

/* call of SysControl function */

IMM32(P4,BFROM_SYSCONTROL);

call (P4); /* R0 contains the result from SysControl */

SP += 12;

(R7:0,P5:0) = [SP++];

unlink;

rts;

__frequency.end:

Changing Voltage Levels
Listing 18-11 and Listing 18-12 provide code for changing the voltage
level dynamically, in C and Blackfin assembly code, respectively. The volt-
age level will be changed to 1.25V. Additional code may be required to
alter the core clock frequency when voltage level is being decreased. Refer
to ADSP-BF542/544/547/548/549 Embedded Processor Data Sheet for the
applicable VLEV voltage range and associated supported core clock speeds.

ADSP-BF54x Blackfin Processor Hardware Reference 18-47

Dynamic Power Management

Listing 18-11. Changing Core Voltage via the On-Chip Regulator (C)

void voltage(void)

{

ADI_SYSCTRL_VALUES voltage;

voltage.uwVrCtl = VLEV_125 | /* VLEV = 1.25 V */

CLKBUFOE | /* CLKIN Buffer Output Enable */

GAIN_20 | /* GAIN = 20 */

FREQ_1000 ; /* Switching Frequency Is 1 MHz */

bfrom_SysControl(SYSCTRL_VRCTL | SYSCTRL_INTVOLTAGE |

SYSCTRL_WRITE, &voltage, NULL);

return;

}

Listing 18-12. Changing Core Voltage through the On-Chip Regulator
(ASM)

__voltage:

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

SP += -12;

R0.L = VLEV_125 | /* VLEV = 1.25 V */

 CLKBUFOE | /* CLKIN Buffer Output Enable */

 GAIN_20 | /* GAIN = 20 */

 FREQ_1000 ; /* Switching Frequency Is 1 MHz */

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof (ADI_SYSCTRL_VALUES,uwVrCtl)] = R0;

Programming Examples

18-48 ADSP-BF54x Blackfin Processor Hardware Reference

R0 = (SYSCTRL_VRCTL | SYSCTRL_INTVOLTAGE | SYSCTRL_WRITE);

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 = 0 (z);

IMM32(P4,BFROM_SYSCONTROL);

call(P4);

SP += 12;

(R7:0,P5:0) = [SP++];

unlink;

rts;

__voltage.end:

The previous sequence must also be executed when the VDDINT voltage is
applied externally to ensure internal timings can appropriately be adjusted
for the constant or changing VDDINT voltage. In this case, replace the
SYSCTRL_INTVOLTAGE flag with the SYSCTRL_EXTVOLTAGE flag.

ADSP-BF54x Blackfin Processor Hardware Reference 19-1

19 SYSTEM DESIGN

This chapter provides hardware, software, and system design information
to aid users in developing systems based on the Blackfin processor. The
design options implemented in a system are influenced by cost, perfor-
mance, and system requirements. In many cases, the design issues cited
here are discussed in detail in other sections of this manual. In such cases,
a reference is made to the corresponding section of the text, instead of
repeating the discussion in this chapter.

• “Pin Descriptions” on page 19-1

• “Managing Clocks” on page 19-2

• “Configuring and Servicing Interrupts” on page 19-2

• “Semaphores” on page 19-3

• “Data Delays, Latencies, and Throughput” on page 19-4

• “Bus Priorities” on page 19-5

• “System-Level Hardware Design” on page 19-5

• “Recommended Reading” on page 19-19

Pin Descriptions
Refer to ADSP-BF542/544/547/548/549 Embedded Processor Data Sheet
for pin information, including pin numbers for the 400-ball MBGA.

Managing Clocks

19-2 ADSP-BF54x Blackfin Processor Hardware Reference

Managing Clocks
Systems can drive the clock inputs with a crystal oscillator or a buffered,
shaped clock derived from an external clock oscillator. The external clock
connects to the processor’s CLKIN pin. It is not possible to halt, change, or
operate CLKIN below the specified frequency during normal operation. The
processor uses the clock input (CLKIN) to generate on-chip clocks. These
include the core clock (CCLK) and the peripheral clock (SCLK).

Managing Core and System Clocks
The processor produces a multiplication of the clock input provided on
the CLKIN pin to generate the PLL VCO clock. This VCO clock is divided to
produce the core clock (CCLK) and the system clock (SCLK). The core clock
is based on a divider ratio that is programmed through the CSEL bit set-
tings in the PLL_DIV register. The system clock is based on a divider ratio
that is programmed through the SSEL bit settings in the PLL_DIV register.
For detailed information about how to set and change CCLK and SCLK fre-
quencies, see “Dynamic Power Management” on page 18-1.

Configuring and Servicing Interrupts
A variety of interrupts are available. They include both core and periph-
eral interrupts. The processor assigns default core priorities to system-level
interrupts. However, these system interrupts can be remapped through the
system interrupt assignment registers (SIC_IARx). For more information,
see Chapter 6, “System Interrupts”.

The processor core supports nested and non-nested interrupts, as well as
self-nested interrupts.

ADSP-BF54x Blackfin Processor Hardware Reference 19-3

System Design

Semaphores
Semaphores provide a mechanism for communication between multiple
processors or processes/threads running in the same system. They are used
to coordinate resource sharing. For instance, if a process is using a particu-
lar resource and another process requires that same resource, it must wait
until the first process signals that it is no longer using the resource. This
signalling is accomplished through semaphores.

Semaphore coherency is guaranteed by using the test and set byte (atomic)
instruction (TESTSET). The TESTSET instruction performs these functions.

• Loads the half word at memory location pointed to by a P-register.
The P register must be aligned on a half-word boundary.

• Sets CC if the value is equal to zero.

• Stores the value back in its original location (but with the most sig-
nificant bit (MSB) of the low byte set to 1).

The events triggered by TESTSET are atomic operations. The bus for the
memory where the address is located is acquired and not relinquished
until the store operation completes. In multithreaded systems, the TESTSET
instruction is required to maintain semaphore consistency.

To ensure that the store operation is flushed through any store or write
buffers, issue an SSYNC instruction immediately after semaphore release.

The TESTSET instruction can be used to implement binary semaphores or
any other type of mutual exclusion method. The TESTSET instruction sup-
ports a system-level requirement for a multicycle bus lock mechanism.

The processor restricts use of the TESTSET instruction to the external mem-
ory region only. Use of the TESTSET instruction to address any other area
of the memory map may result in unreliable behavior.

Data Delays, Latencies, and Throughput

19-4 ADSP-BF54x Blackfin Processor Hardware Reference

Example Code for Query Semaphore
Listing 19-1 provides an example of a query semaphore that checks the
availability of a shared resource.

Listing 19-1. Query Semaphore

/* Query semaphore. Denotes “Busy” if its value is nonzero. Wait

until free (or reschedule thread-- see note below). P0 holds

address of semaphore. */

QUERY:

TESTSET (P0) ;

IF !CC JUMP QUERY ;

/* At this point, semaphore is granted to current thread, and all

other contending threads are postponed because semaphore value at

[P0] is nonzero. Current thread could write thread_id to sema-

phore location to indicate current owner of resource. */

R0.L = THREAD_ID ;

B[P0] = R0 ;

/* When done using shared resource, write a zero byte to [P0] */

R0 = 0 ;

B[P0] = R0 ;

SSYNC ;

/* NOTE: Instead of busy idling in the QUERY loop, one can use an

operating system call to reschedule the current thread. */

Data Delays, Latencies, and Throughput
For detailed information on latencies and performance estimates on the
DMA and external memory buses, refer to Chapter 2, “Chip Bus
Hierarchy”.

ADSP-BF54x Blackfin Processor Hardware Reference 19-5

System Design

Bus Priorities
For an explanation of prioritization between the various internal buses,
refer to Chapter 2, “Chip Bus Hierarchy”.

System-Level Hardware Design
Because the processor can operate at very fast clock frequencies, signal
integrity and noise problems must be considered for circuit board design
and layout. The following sections discuss these topics and suggest various
techniques to use when designing and debugging signal processing
systems.

External Memory Design Issues
This section describes design issues related to external memory.

DDR Memory

The DDR controller has a dedicated set of pins that require special atten-
tion in board design and layout:

• Follow the recommendations of the DDR memory manufacturer.
A good example of DDR layout recommendations is: TN-46-14:
Hardware Tips for Point-to-Point System Design from Micron
Technology.

• Proper board design and trace length matching is a critical part of
reducing the DQS to DQ and DQM skew of any DDR design.
Proper clock and VREF layout are also critical.

System-Level Hardware Design

19-6 ADSP-BF54x Blackfin Processor Hardware Reference

• When matching trace lengths in board layout, be careful of the
shape of the serpentine pattern. Capacitive coupling between seg-
ments of the trace reduces the effectiveness of length matching.
About 20 mils is a good distance between segments of the same
trace.

• Use serial termination on all data, address and control signals
(except the CLKs) for small memory systems of one to four chips.
Four or more devices may require parallel termination to a sepa-
rately-generated VREF instead of the serial termination.

• The maximum trace length of DQS, DQM and DQ signals should
be less than 3.5 inches. This is a maximum total length for each
signal measured by adding the length before, after and through any
serial termination.

• Signal DDR_VSSR on the Blackfin processor is a shield signal to
reduce noise on the DDR_VREF signal. It should be connected to
ground right at the ball.

• DDR_VREF is a standard DDR signal with a voltage value of
VDD_DDR/2. Place a DDR_VREF filtration capacitor to ground
within 0.1 inch of the ball on the Blackfin processor. The signal
should be derived in the standard way using 1% resistors and 0.1uF
capacitor or capacitors even if using mobile DDR devices that do
not also need the DDR_REF signal.

• The ADSP-BF54x processor processor is available with either a
DDR SDRAM or a Mobile DDR SDRAM controller module
on-chip. Each of these has different specifications. See
ADSP-BF542/544/547/548/549 Embedded Processor Data Sheet for
the proper nominal voltage and working voltage range.

• DDR and Mobile DDR timing calculations can result in margins
that are measured in picoseconds. Therefore, they are complicated
by the characteristics of the printed circuit board. To calculate,
setup, hold, and skew values, consider contributions from the

ADSP-BF54x Blackfin Processor Hardware Reference 19-7

System Design

printed circuit board, the controller and the memory device.
Printed circuit board timing values can be difficult to determine
and can change during the manufacturing process. Board simula-
tion using IBIS models is useful. Be aware that reference plane
noise and crosstalk can change slew rates and shift the time of
arrival of signal edges in ways that may not be predicted by
simulations.

• Mobile DDR, 166MHz or faster speed grade memory devices will
give the setup, hold and skew margins required for PCB parame-
ters. 133MHz devices will have zero PCB margin. 200MHz Mobile
memory will give even larger tolerance for printed circuit board
designs. Special attention should be paid to the recommendations
for reduced trace length, matched trace length, and VREF trace
width and filtering. Additionally, cross talk and noise can be
reduced with careful use of stripline traces and quiet reference
planes.

Memory Bus Pin Muxing and Flow Control

DDR memory has a complete set of dedicated functional pins and has no
flow control.

All other parallel peripherals and memory types (such as SRAM, FLASH,
BURST NOR FLASH, NAND FLASH) have dedicated pins and some
pins that can be used for other functions such as GPIO.

Address bits 4 to 25 are muxed with GPIO functions on port I and port H
and should be selected as address pins before using the asynchronous
memory bus. Only the address pins used in the application need to be
allocated as address pins. If high-order address bits are not needed, those
pins may be used as GPIO. Note however that if booting from a parallel
memory source, all 25 address pins and the BG and BGH pins are driven
as outputs during boot time.

System-Level Hardware Design

19-8 ADSP-BF54x Blackfin Processor Hardware Reference

When using BURST NOR FLASH, select PI15/A25/NR_CLK for the
NOR_CLK muxed function.

When using NAND, select PJ2/ND_RB and PJ1/ND_CE for the ND_RB
and ND_CE muxed functions.

The bus request flow control pin is also muxed with GPIO functions. To
use the asynchronous memory port, PJ11/AMC_BR should be selected for
the AMC_BR function. This pin must then be held high with logic or a pul-
lup resistor to allow bus transactions to be initiated by the processor.

Example Asynchronous Memory Interfaces

This section shows glueless connections to 16-bit SRAM. Note this inter-
face does not require external assertion of ARDY, since the internal wait
state counter is sufficient for deterministic access times of memories.

Figure 19-1 shows the interface to 8-bit SRAM or FLASH. Figure 19-2
shows the interface to 16-bit SRAM or FLASH

Figure 19-1. Interface to 8-Bit SRAM or FLASH

ADSP-BF549
ADSP-BF548
ADSP-BF547
ADSP-BF544
ADSP-BF542

8-BIT SRAM
OR FLASH

[X]

DATA[7:0]

ARDY

BE[1:0

D[7:0]

ADDR[N+1:1] A[N:0]

ARE

[1:0]ABE

AWE

AOE

AMS [X]AMS

R/W OR

OE

WR

ADSP-BF54x Blackfin Processor Hardware Reference 19-9

System Design

Avoiding Bus Contention

Because the three-stated data bus is shared by multiple devices in a system,
be careful to avoid contention. Contention causes excessive power dissipa-
tion and can lead to device failure. Contention occurs during the time one
device is getting off the bus and another is getting on. If the first device is
slow to three-state and the second device is quick to drive, the devices con-
tend. Bus contention can also occur during reset or hibernation. This can
be avoided by external resistors to inactivate chip selects.

There are two cases where contention can occur caused by bus timing.
The first case is a read followed by a write to the same memory space. In
this case, the data bus drivers can potentially contend with those of the
memory device addressed by the read. The second case is back-to-back
reads from two different memory spaces. In this case, the two memory
devices addressed by the two reads can potentially contend at the transi-
tion between the two read operations.

Figure 19-2. Interface to 16-Bit SRAM or FLASH

ADSP-BF549
ADSP-BF548
ADSP-BF547
ADSP-BF544
ADSP-BF542

DATA[15:0]

ARDY

R/W OR

16-BIT SRAM
OR FLASH

BE[1:0]

D[15:0]

ADDR[N+1:1] A[N:0]

ARE

AWE

AOE OE

[X]AMS [X]AMS

[1:0]ABE

WR

System-Level Hardware Design

19-10 ADSP-BF54x Blackfin Processor Hardware Reference

To avoid contention, program the turnaround time (bank transition time)
appropriately in the asynchronous memory bank control registers. This
feature allows software to set the number of clock cycles between these
types of accesses on a bank-by-bank basis. Minimally, the external bus
interface unit (EBIU) provides one cycle for the transition to occur.

BURST FLASH

The use of BURST FLASH is similar to that of asynchronous memory but
requires special attention.

The burst flash connection requires only three special connections in addi-
tion to standard asynchronous memory signals (See Figure 19-3). The
burst clock signal to the flash is provided on PI15 and is the same pin as
A25. The second signal requiring special attention is ADV provided by the
Blackfin processor AOE pin. The WAIT output of the burst flash that should
be connected directly to ARDY.

Figure 19-3. Interface to BURST FLASH

ADSP-BF549
ADSP-BF548
ADSP-BF547
ADSP-BF544
ADSP-BF542

BURST FLASH

[X]

DATA[15:0]

ARDY

DATA[15:0]

ADDR[N:1] ADDR[N:1]

ARE

[1:0]ABE

AWE

AOE

AMS

WE

PI15/A25/NR_CLK

WAIT

CLK

CE

ADV

OE

ADSP-BF54x Blackfin Processor Hardware Reference 19-11

System Design

NAND FLASH

NAND FLASH shares the Asynchronous data bus. The NAND FLASH
connection has many unique connections (See Figure 19-4). The chip
enable is provided by PJ1/ND_CE while the ready busy signal is PJ2/ND_RB.
PJ1/ND_CE requires a pull-up resistor because the general-purpose pins are
inputs at power-up. Other unique signal functions include ND_CLE pro-
vided by ABE0 and ND_ALE provided by ABE1. I/O 0 to 7 or I/O 0 to 15 are
supplied EBIU data pins D0 to D15.

USB Controller
The UTMI (universal transceiver macro interface) of the USB controller is
unique. It is what some companies call the PHY section of the USB con-
troller. It has many features that allow connection directly to a USB cable
connector. The important system hardware requirements are:

Figure 19-4. Interface to NAND FLASH

NAND FLASH

D[15:0]

ARE

ABE1

AWE

PJ2/ND_RB R/B

CE

WE

ADSP-BF549
ADSP-BF548
ADSP-BF547
ADSP-BF544
ADSP-BF542

PJ1/ND_CE

ABE0

ALE

CLE

RE

VDDEXT

4.7K4.7K

I/O[15:0]

System-Level Hardware Design

19-12 ADSP-BF54x Blackfin Processor Hardware Reference

• The UTMI section of the USB does not use the system clock. An
external clock is needed. The frequency must have an exact multi-
ple to 480 MHz. The default value would be a 24 MHz clock to
the USB_XI pin or a 24 MHz crystal circuit used with USB_XI and
USB_XO. If using a crystal, use the same circuit as shown in
ADSP-BF542/544/547/548/549 Embedded Processor Data Sheet for
CLKIN and XTAL.

• The UTMI section of the USB has our standard level of ESD pro-
tection. External protection diodes should be added at the
connector to DP, DM, ID, and VBUS for proper ESD protection.
There are several sources of ESD protection designed specifically
for USB2.

• When operating in USB host mode, the user must supply an exter-
nal 5 V supply at 8 ma or more. The 5 volts can be provided with a
“charge pump” or a normal voltage regulator depending on the
available input voltages available for the application. In either case
recovery from VBUS error conditions require that it be enabled
and disabled in software using a GPIO. It should have a resistor to
set the initial value to disable the external 5 V source. The source
should comply with On-The-Go Supplement to the USB 2.0 Spec-
ification Revision 1.0A. GPIO pin PE7 is used to enable this
regulator in our software examples.

• DP and DM are intended for direct connection to the D+ and D-
of a USB cable connector. They do not require any pull-up or
pull-down resistors as these are applied internally by the UTMI in
accordance with the programmed application mode. Note also that
like any USB design, DP and DM should be routed as a differential
pair with 90 to 100 Ohms mutual impedance.

ADSP-BF54x Blackfin Processor Hardware Reference 19-13

System Design

• If using the USB in device mode only, you may put a pull-up resis-
tor on the USB_ID pin or leave the pin disconnected. Either a
pull-up resistor or leaving the pin disconnected will indicate device
mode. If using the USB in host mode only, connect the USB_ID pin
directly to ground.

• The USB_RST pin should be connected to an unpopulated resistor as
there may be a future advantage to this configuration.

• The USB_VREF pin should be connected to a 0.1 mF capacitor to
ground.

• As stated in ADSP-BF542/544/547/548/549 Embedded Processor
Data Sheet, the 5 V tolerance of the UTMI pins is only true if
VDDUSB has some level of power. Some applications may antici-
pate VBUS power from a device (perhaps located at the other end of
the cable) when the local power is off. If this condition is expected
to last for long periods measured in years, precautions should be
taken to prevent long term damage to the product. One method for
correcting this situation is to use the VBUS power from the external
device to power the VDDUSB pins of the processor.

ATAPI Bus
Special care is needed for ATAPI connections that require 5 V logic.
Active voltage level translation buffers are required for any peripheral that
uses 5 V logic levels.

Voltage Regulator
An internal voltage regulator can be used with the recommended external
circuit to provide a flexible system of power management. Many applica-
tions require a fixed internal voltage value and can use a simple external
voltage regulator to generate the VDDINT supply voltage. The EXT_WAKE
signal is provided to turn off the external voltage regulator when using the

System-Level Hardware Design

19-14 ADSP-BF54x Blackfin Processor Hardware Reference

hibernate operating mode. Because it is a high true power-up signal, it
may be connected directly to the low true shutdown input of many com-
mon regulators.

Signal Integrity
In addition to reducing signal length and capacitive loading, critical sig-
nals should be treated like transmission lines.

Use simple signal integrity methods to prevent transmission line reflec-
tions that may cause extraneous extra clock and sync signals. Additionally,
avoid overshoot and undershoot that can cause long term damage to input
pins.

Some signals are especially critical for short trace length and usually
require series termination. The CLKIN pin should have impedance-match-
ing-series resistance at its driver. SPORT interface signals TCLK, RCLK, RFS,
and TFS should use some termination. Although the serial ports may be
operated at a slow rate, the output drivers still have fast edge rates and for
longer distances the drivers often require resistive termination located at
the source. (Note also that TFS and RFS should not be shorted in multi-
channel mode.) On the PPI interface, the PPI_CLK and SYNC signals also
benefit from these standard signal integrity techniques. If these pins have
multiple sources, it is difficult to keep the traces short. Consider termina-
tion of SDRAM clocks, control, address, and data to improve signal
quality and reduce unwanted EMI.

Adding termination to fix a problem on an existing board requires delays
for new artwork and new boards. A transmission line simulator is recom-
mended for critical signals. IBIS models are available from Analog Devices
Inc. that will assist signal simulation software. Some signals can be cor-
rected with a small zero or 22 Ohm resistor located near the driver. The
resistor value can be adjusted after measuring the signal at all endpoints.

For details, see the reference sources in “Recommended Reading” on
page 19-19 for suggestions on transmission line termination.

ADSP-BF54x Blackfin Processor Hardware Reference 19-15

System Design

Other recommendations and suggestions to promote signal integrity:

• Use more than one ground plane on the printed circuit board
(PCB) to reduce crosstalk. Be sure to use lots of vias between the
ground planes.

• Keep critical signals such as clocks, strobes, and bus requests on a
signal layer next to a ground plane and away from or laid out per-
pendicular to other non-critical signals to reduce crosstalk.

• Experiment with the board and isolate crosstalk and noise issues
from reflection issues. This can be done by driving a signal wire
from a pulse generator and studying the reflections while other
components and signals are passive.

Decoupling Capacitors and Ground Planes
Ground planes must be used for the ground and power supplies. The
capacitors should be placed very close to the VDDEXT and VDDINT pins of the
package as shown in Figure 19-5. Use short and fat traces for this. The
ground end of the capacitors should be tied directly to the ground plane
inside the package footprint of the processor (underneath it, on the bot-
tom of the board), not outside the footprint. A surface-mount capacitor is
recommended because of its lower series inductance.

Connect the power plane to the power supply pins directly with minimum
trace length. A ground plane should be located near the component side of
the board to reduce the distance that ground current must travel through
vias. The ground planes must not be densely perforated with vias or traces
as their effectiveness is reduced.

VDDINT is the highest frequency and requires special attention. Two
things help power filtering above 100 MHz. First, capacitors should be
physically small to reduce the inductance. Surface-mount capacitors of
size 0402 give better results than larger sizes. Secondly, lower values of

System-Level Hardware Design

19-16 ADSP-BF54x Blackfin Processor Hardware Reference

capacitance raises the resonant frequency of the LC circuit. While a cluster
of 0.1mF is acceptable below 50 MHz, a mix of 0.1, 0.01, 0.001mF and
even 100 pF is preferred in the 500 MHz range.

Note that the instantaneous voltage on both internal and external power
pins must at all times be within the recommended operating conditions as
specified in ADSP-BF542/544/547/548/549 Embedded Processor Data
Sheet. Local “bulk capacitance” (many microfarads) is also necessary.
Although all capacitors should be kept close to the power consuming
device, small capacitance values should be the closest. Larger values may
be placed further from the chip.

Figure 19-5. Bypass Capacitor Placement

CASE 1:
BYPASS CAPACITORS ON NON-
COMPONENT (BOTTOM) SIDE OF
BOARD, BENEATH PACKAGE

a

B
ADSP -BF54X

CASE 2:
BYPASS CAPACITORS ON
COMPONENT (TOP) SIDE OF
BOARD, AROUND PACKAGE

ADSP-BF54x Blackfin Processor Hardware Reference 19-17

System Design

5 Volt Tolerance
Outputs that connect to inputs on 5 V devices can float or be pulled up to
5 V. Only the few pins listed as 5 V tolerant in
ADSP-BF542/544/547/548/549 Embedded Processor Data Sheet should be
subjected to 5 volts. Current limiting resistors are not sufficient to main-
tain long-term reliability. Level shifters are required on all other Blackfin
pins to keep the pin voltage at or below absolute maximum ratings.

Resetting the Processor
The reset pin requires a monotonic rise and fall. Therefore the pin should
not be connected directly to an R/C time delay because such a circuit
could be noise-sensitive. In addition to the hardware reset mode provided
through the RESET pin, the processor supports several software reset
modes.

Recommendations for Unused Pins
Most often, there is no need to terminate unused pins, but the handful
that do require termination are listed at the end of the pin list description
section of ADSP-BF542/544/547/548/549 Embedded Processor Data Sheet.

If the real-time clock is not used, RTXI should be pulled low. Also note
that unused peripherals may have separate power connections. These
should be driven to the specified value.

 Peripheral specific power pins require power and ground even
when the peripheral is not used.

Programmable Outputs and Pin Multiplexing
During power-up, each GPIO pin is set to an input and any pins used in
the system as an output should be connected to a pullup or pulldown
resistor to maintain the desired state.

System-Level Hardware Design

19-18 ADSP-BF54x Blackfin Processor Hardware Reference

This would be particularly important in motor drive applications. It is also
important for UART TX and RTS, CAN TX, SPI and serial TWI, ATAPI
and other communications interfaces.

Boot Modes that use HWAIT require a pullup or pulldown resistor on PB11
on the ADSP-BF54x processor processors. HWAIT is driven both high and
low during all boot cycles and may cause contention or unwanted values if
also used as a GPIO.

After the boot cycle, GPIO pins may already be set to input or output
depending on ADSP-BF54x processor family number and the boot cycle
chosen. The I/O/GPIO muxing of all pins may need to be reprogrammed
to support the users application. Care should be taken for compatibility of
function and state, before boot, during boot, and during application pin
usage.

Test Point Access
The debug process is aided by test points on signals such as CLKOUT or
SCLK, bank selects, PPICLK, and RESET. If selection pins such as boot mode
are connected directly to power or ground, they are inaccessible under a
BGA chip. Use pull-up and pull-down resistors instead.

Oscilloscope Probes
When making high speed measurements, be sure to use a “bayonet” type
or similarly short (< 0.5 inch) ground clip, attached to the tip of the oscil-
loscope probe. The probe should be a low capacitance active probe
with 3 pF or less of loading. The use of a standard ground clip with
4 inches of ground lead causes ringing to be seen on the displayed trace
and makes the signal appear to have excessive overshoot and undershoot.
To see the signals accurately, a 1 GHz or better sampling oscilloscope is
needed.

ADSP-BF54x Blackfin Processor Hardware Reference 19-19

System Design

Recommended Reading
For more information, refer to High-Speed Digital Design: A Handbook of
Black Magic, Johnson & Graham, Prentice Hall, Inc., ISBN
0-13-395724-1.

This book is a technical reference that covers the problems encountered in
state-of-the-art, high-frequency digital circuit design. It is an excellent
source of information and practical ideas. Topics covered in the book
include:

• High-speed properties of logic gates

• Measurement techniques

• Transmission lines

• Ground planes and layer stacking

• Terminations

• Vias

• Power systems

• Connectors

• Ribbon cables

• Clock distribution

• Clock oscillators

Recommended Reading

19-20 ADSP-BF54x Blackfin Processor Hardware Reference

Consult your CAD software tools vendor. Some companies offer demon-
stration versions of signal integrity software. Simply by using their free
software, you can learn:

• Transmission lines are real

• Unterminated printed circuit board traces ring and have overshoot
and undershoot

• Simple termination controls signal integrity problems

ADSP-BF54x Blackfin Processor Hardware Reference 20-1

20 NAND FLASH CONTROLLER

The ADSP-BF54x Blackfin processors provide a NAND flash controller
(NFC) interface. The NFC on ADSP-54x processors provides the hard-
ware support for the combination of hardware and software necessary to
interface a processor with NAND flash devices. The NFC provides device
access timing control and hardware error checking.

This chapter includes the following sections:

• “Overview” on page 20-2

• “Interface Overview” on page 20-4

• “Description of Operation” on page 20-5

• “Functional Description” on page 20-8

• “Programming Model” on page 20-16

• “NFC Registers” on page 20-18

• “NFC Programming Examples” on page 20-30

Overview

20-2 ADSP-BF54x Blackfin Processor Hardware Reference

Overview
The NFC provides the following hardware features:

• Support for page program, page read, and block erase of NAND
flash devices, with accesses aligned to page boundaries.

• Error checking and correction (ECC) hardware that facilitates error
detection and correction

• A single 8-bit/16-bit external bus interface for commands,
addresses and data

• Support for SLC (single level cell) NAND flash devices unlimited
in size, with page sizes of 256 and 512 bytes. Larger page sizes can
be supported in software

• Capability of releasing external bus interface pins during long
accesses

• DMA interface to transfer data between internal memory and
NAND flash device

NAND flash devices provide high-density, low-cost memory. However,
NAND flash devices also have long random access times, invalid blocks,
and lower reliability over device lifetimes.

Because of these characteristics, NAND flash is often used for read-only
code storage. In this case, all processor code can be stored in NAND flash
and then transferred to a faster memory (such as SDRAM or SRAM)
before execution.

Another common use of NAND flash is for storage of multimedia files or
other large data segments. In this case, a software file system may be used
to manage the reading and writing of the NAND flash device.

ADSP-BF54x Blackfin Processor Hardware Reference 20-3

NAND Flash Controller

The file system selects memory segments for storage with the goal of
avoiding bad blocks and equally distributing memory accesses across all
address locations.

Bad block management includes both initial bad block detection and
acquired bad block mapping. NAND flash devices contain bad blocks that
are marked by the manufacturer. Software reads the bad block informa-
tion, creates a table of bad block locations, and prevents use of the bad
blocks. As additional blocks corrupt over time, they can be detected by the
hardware and added to the bad block table by software. Software must
provide bad block management, wear-leveling functions, and error correc-
tion. (See “NFC Error Detection” on page 20-12 for details on error
correction.)

When NAND flash is used for read/write data storage, software wear-lev-
eling is required. Wear-leveling increases the life span of NAND flash by
generating an evenly distributed number of program and erase operations
across the entire memory space. Software does this by translating logical
addresses into different physical addresses for each write.

Interface Overview

20-4 ADSP-BF54x Blackfin Processor Hardware Reference

Interface Overview
Figure 20-1 shows the NFC interface.

The port pins used for NFC are shown in Table 20-1. The D15–0 bus,
ND_CLE, ND_ALE, ARE, and AWE pins are shared with the asynchronous mem-
ory controller. In addition, the data bus D15-0 is also shared with the
ATAPI peripheral.

Figure 20-1. NFC Interface Block Diagram

Table 20-1. NFC External Interface

Signal Name Function Default Direction

D15–0 Data and Commands Bus low I/O

ND_CLE Command Latch Enable low O

ND_ALE Address Latch Enable low O

ARE Read Enable high O

AWE Write Enable high O

ND_RB Ready/nBusy Request I

ND_CE Chip Enable high O

EBIU

ATA_BUS

SRAM
CONTROL

PADS

D15–0

ND_CE

NOR FLASH
CONTROL

NAND_BUS

ND_CLE

ND_ALE

AWE

ND_RB

ARE

ADSP-BF54x Blackfin Processor Hardware Reference 20-5

NAND Flash Controller

Description of Operation
The following sections describe the operation of the NAND flash
controller.

Internal Bus Interfaces
The NFC interfaces to both the PAB and DAB buses on ADSP-BF54x
processor Blackfin processors.

Page reads and page writes occur over DAB. The DAB interface consists of
two separate 4-word FIFOs, one for page reads and one for page writes.
Each FIFO is 32-bits wide in 32-bit DMA mode. Page reads and page
writes cannot be triggered at the same time.

All other accesses occur over PAB. PAB accesses always go through the
NFC write buffer. In 8-bit mode, this buffer is 8 bits wide, and, in 16-bit
mode, this buffer is 16 bits wide. In both modes, it is 4 words deep. Soft-
ware must prevent overflow of the buffer. Write buffer entries are not
removed until the access is completed on the external interface. In the case
of a read data request, the entry is not removed until the returned data is
read from the NFC_READ register. After the fourth write to the write buffer,
software must poll WB_FULL or WB_EMPTY in NFC_STAT to determine when
there is additional space in the write buffer or use the WB_EDGE interrupt to
detect when the write buffer has emptied.

After reset, the PAB write buffer has priority over the DAB FIFOs for
access to the NFC external interface. If a page access is initiated while
there are transfers in the write buffer, the page access does not start until
the write buffer is empty. Likewise, once a page access starts, transfers in
the write buffer do not begin until the page access is complete.

Description of Operation

20-6 ADSP-BF54x Blackfin Processor Hardware Reference

Bus Access Types
The NFC supports 8-bit or 16-bit NAND flash devices. PAB accesses
cause only one transfer per bus access. For DAB access, the NFC automat-
ically breaks up 32-bit DAB transfers into multiple NAND flash access
cycles. Table 20-2 describes all the valid access types for both 8- and
16-bit devices as well as the number of NAND flash accesses it takes to
complete the transaction.

Access Timing
The NFC provides configurable access timing control for both read and
write transactions through the NFC_CTL register.

The write enable pulse width (tWP) is the WR_DLY + 1 SCLK. The WR_DLY
selection should be configured such that:

tWP >= Max (tWPmin , (tCS – 1 SCLK))

where tWP is the time for which AWE is driven low, tWPmin is the minimum
write pulse duration from the NAND flash data sheet, and tCS is the chip
enable setup time from the NAND flash data sheet. See NAND Flash
Controller Interface Timing in the ADSP-BF542/544/547/548/549
Embedded Processor Data Sheet.

Table 20-2. NFC Accesses

Bus Bus Width NAND Flash Width NAND Flash Access Cycles Required

PAB 16-bit 8-bit 1

PAB 16-bit 16-bit 1

DAB 32-bit 8-bit 4

DAB 32-bit 16-bit 2

ADSP-BF54x Blackfin Processor Hardware Reference 20-7

NAND Flash Controller

Likewise, the setup time for read data is configurable by changing RD_DLY
in the NFC_CTL register. The RD_DLY selection should be configured such
that:

tRP > Max (tRPmin , tREAmax , (tCEAmax – 1 SCLK))

where tRP is the time for which ARE is driven low, tRPmin is the minimum
read pulse duration from the NAND flash data sheet, tREAmax is the maxi-
mum read enable access time from the NAND flash data sheet, and
tCEAmax is the maximum chip enable access time from the NAND flash
data sheet. See NAND Flash Controller Interface Timing in the
ADSP-BF542/544/547/548/549 Embedded Processor Data Sheet.

Pin Sharing
The NFC shares the ADSP-BF54x processor processors’ pins with the
AMC and ATAPI blocks. There is an asynchronous pin control module
(APCM) that controls and arbitrates the asynchronous interface between
the AMC, NAND, and ATA controllers. When an NFC transfer starts,
the NFC requests the pins. Once the pins are granted, the NFC performs
multiple transfers before releasing the pins. If the transfer is from the write
buffer, NFC retains the pins until the write buffer is empty. If the transfer
is a page access, the NFC performs eight external bus cycles, then checks
to see if the AMC requires the pins. If the AMC does require the pins,
NFC releases them. Otherwise, the NFC continues conducting transfers
until the page is complete or an AMC request occurs.

Functional Description

20-8 ADSP-BF54x Blackfin Processor Hardware Reference

Functional Description
The following sections describe the function of the NAND flash control-
ler. NFC operation include:

• “Page Write” on page 20-8

• “Page Read” on page 20-10

• “Additional Operations” on page 20-11

• “Write Protection” on page 20-12

• “Chip Enable Don’t Care” on page 20-12

• “NFC Error Detection” on page 20-12

• “NFC SmartMedia Support” on page 20-16

Page Write
To store data in NAND flash, first write the program command to the
NFC_CMD register. Then, write a sequence of address bits to the NFC_ADDR
register. For example, a 1Gbit x8 small page NAND flash device, consist-
ing of 512 bytes per page, 32 pages per block and 8192 blocks requires 27
address bits in order to address the full range of memory. In this case,
address bits [7:0] are written to address the column within the page to
access. This is then followed by writing address bits[16:9], [24:17] and
finally [26:24]. Note that for small page NAND flash devices, address bit
[8] is generated automatically by the NAND flash device. Once the DMA
channel has been configured, the next step is to set the page write start bit
in the NFC_PGCTL register. This initiates DMA transfers to complete the
page write. After writing all of the data, software can append the ECC val-
ues from the ECC registers to store them in the spare area of the NAND
flash. Finally, the page program confirm command is written to NFC_CMD
to initiate the NAND flash programming process. The NAND flash

ADSP-BF54x Blackfin Processor Hardware Reference 20-9

NAND Flash Controller

asserts ND_RB until the page is completely programmed. At that time, the
write status bit in the NAND flash device may be checked. Figure 20-2
shows the timing of a NAND flash write access for a device requiring only
three address cycles.

Functional Description

20-10 ADSP-BF54x Blackfin Processor Hardware Reference

Page Read
To read data from NAND flash, first write the read command to the
NFC_CMD register. Then write a sequence of address bits to the NFC_ADDR
register. For a 1Gbit x8 small page NAND flash device, consisting of 512
bytes per page, 32 pages per block and 8192 blocks, 27 address bits are
required in order to address the full range of memory. Address bits [7:0]
are written first in order to address the column to access. This is then fol-
lowed by the address bits [16:9], [24:17] and [26:24]. Not that for small
page devices [A8] is generated automatically by the NAND flash device
and is determined by the read command that is issued prior to the address
cycles. Once all the address cycles have been issued the NAND flash
device becomes busy and software should wait for the rising edge of ND_RB,
indicating that the requested data is available. Once the DMA channel has
been configured, set the page read start bit in NFC_PGCTL. This initiates the
DMA transfers for a page read. As each read occurs, new ECC values are
calculated for each 256 or 512 byte page.

Figure 20-2. NAND Flash Program Operation

CMD A0 A1 A2 D1 D2 D3 CMD

ND_RB

ND_CLE

ND_CE

AWE

ND_ALE

ARE

D0 DN
D15–0

ADSP-BF54x Blackfin Processor Hardware Reference 20-11

NAND Flash Controller

When the page read is complete, the core may complete final data read
requests to obtain the stored ECC values which were written in the spare
area when the page was programmed. Software can compare this to the
new ECC values to determine if any bit errors have occurred. Figure 20-3
shows the timing of a NAND flash read access for a device requiring only
three address cycles.

Additional Operations
The core may execute data read and write transactions directly without the
requirement of DMA. Commands must be written to NFC_CMD, addresses
must be written to NFC_ADDR. For data write transactions, the data to be
written to the NAND flash must go via the NFC_DATA_WR register. Data
reads are requested by first writing to NFC_DATA_RD in order to issue the
read transaction on the NFC interface and then reading back the received
data from NFC_READ after the RD_RDY interrupt has been generated.

To check that an operation is complete, ND_RB may be polled in the
NFC_STAT register or used to trigger an interrupt. Software must always
poll or wait for the ND_RB before performing an operation.

Figure 20-3. NAND Flash Read Operation

CMD A0 A1 A2 D0 D1 D2 D3 DN

ND_RB

ND_CLE

ND_CE

AWE

ND_ALE

ARE

D15–0

Functional Description

20-12 ADSP-BF54x Blackfin Processor Hardware Reference

For 8-bit NAND flash devices, only the lower 8 bits of the NFC_CMD,
NFC_ADDR, NFC_DATA_WR, and NFC_READ registers are valid; the higher bytes
are ignored.

All SLC NAND flash device operations are supported via writing to or
reading from the various NFC registers. For example, erasing a block on
the NAND flash requires the issuing of a specific block erase command
followed by a number of address cycles followed by a block erase confir-
mation command. More advanced operations such as cache program
operations are also supported.

See NAND flash device data sheets for examples of these operations.

Write Protection
NAND flash devices require a write protection input signal (nWP) to pre-
vent inadvertent write or erase operations. A GPIO can be used for this
purpose.

Chip Enable Don’t Care
Some NAND flash devices ignore the read enable, write enable, command
latch enable, and address latch enable control signals when chip select is
deasserted during page reads and page programs. These devices are called
chip enable don’t care (CEDC) NAND flash devices. This is the only type
of device supported by the NFC.

NFC Error Detection
The NFC error checking and correction (ECC) logic can detect one bit of
correctable error or multiple bits of non-correctable error. The NFC
employs a Hamming code algorithm, which generates two sets of parity
bits for every 256 bytes of data. For 512-byte pages, the page is split into
two halves, and separate ECC values are calculated for each half.

ADSP-BF54x Blackfin Processor Hardware Reference 20-13

NAND Flash Controller

For every 256 bytes of data, 22 bits of ECC parity data are generated as
follows:

P1 = D[1] ^ D[3] ^ D[5] ^ D[7] ^ D[9] …^ D[2047];

P2 = D[2] ^ D[3] ^ D[6] ^ D[7] ^ D[10] ^ D[11] … ^ D[2042] ^

D[2043] ^ D[2046] ^ D[2047];

P4 = D[4] ^ D[5] ^ D[6] ^ D[7] ^ D[12] ^ D[13] ^ D[14] ^ D[15] ^

D[20] ^ D[21] ^ D[22] ^ D[23] … ^ D[2044] ^ D[2045] ^ D[2046] ^

D[2047];

P8 = D[8] ^ D[9] ^ D[10] ^ D[11] ^ D[12] ^ D[13] ^ D[14] ^ D[15]

^ D[24] ^ D[25] ^ D[26] D[27] ^ D[28] ^ D[29] ^ D[30] ^ D[31] … ^

D[2040] ^ D[2041] ^ D[2042] ^ D[2043] ^ D[2044] ^ D[2045] ^

D[2046] ^ D[2047];

…

…

P1’ = D[0] ^ D[2] ^ D[4] ^ D[6] ^ D[8] … ^ D[2046];

P2’ = D[0] ^ D[1] ^ D[4] ^ D[5] ^ D[8] ^ D[9] … ^ D[2040] ^

D[2041] ^ D[2044] ^ D[2045];

P4’ = D[0] ^ D[1] ^ D[2] ^ D[3] ^ D[8] ^ D[9] ^ D[10] ^ D[11] ^

D[16] ^ D[17] ^ D[18] ^ D[19] … ^ D[2040] ^ D[2041] ^ D[2042] ^

D[2043];

…

…

Functional Description

20-14 ADSP-BF54x Blackfin Processor Hardware Reference

In this way, P1, P2, P4, P8, P16, P32, P64, P128, P256, P512, and
P1024 as well as P1’, P2’, P4’, P8’, P16’, P32’, P64’, P128’, P256’, P512’,
and P1024’ are calculated, producing a total of 22 parity bits for each 256
bytes (2048 bits) of data.

The NFC writes this 22-bit ECC value into the NFC_ECCx registers. Soft-
ware can store these values in the spare area of the NAND flash device for
later comparison. When reading back data, the NFC automatically calcu-
lates new ECC values from the received data. Software can generate error
syndromes by exclusive OR’ing the stored and newly calculated ECC
values.

Error Analysis

Analyzing the ECC values lets you determine the error syndrome. The
resulting error syndromes indicate what type of data errors have occurred.

For example, when a 256 byte page is read back, ECC0(stored) contains
the parity bits stored read from the spare area. ECC1(stored) contains the
parity’ bits read from the spare area. Similarly, ECC0(calculated) and
ECC1(calculated) contain the newly calculated parity and parity’ bits,
respectively. To interpret the ECC values, software generates the follow-
ing error syndromes:

syndrome0[21:0] = {ECC0calculated[10:0],ECC1calculated[10:0]} ^

{ECC0stored[10:0],ECC1stored[10:0]}

syndrome1[10:0] = ECC0calculated[10:0] ^ ECC0stored[10:0]

syndrome2[10:0] = ECC0calculated[10:0] ^ ECC1calculated[10:0]

syndrome3[10:0] = ECC0stored[10:0] ^ ECC1stored[10:0]

syndrome4[10:0] = syndrome2[10:0] ^ syndrome3[10:0]

ADSP-BF54x Blackfin Processor Hardware Reference 20-15

NAND Flash Controller

Syndrome 0 indicates whether there is an error in the data. Syndrome 4
indicates whether the error is a 1-bit correctable error. Syndrome 1 indi-
cates the bit location of any 1-bit errors. After calculating these
syndromes, software must examine their values and take the appropriate
actions.

• If Syndrome 0 is 0x000, the data is valid and no actions are
required.

• If Syndrome 0 has exactly 11 bits that are 1 and Syndrome 4 is
0x7FF, there is a 1-bit correctable error. Syndrome 1 gives the fail-
ing bit number. For example, if Syndrome 1 is 46, bit 6 in the sixth
word transferred needs to be inverted.

• If Syndrome 0 has only 1 bit that is 1, there is an error in the ECC
data itself. No action is required, since ECC data is discarded after
each page read, but no error checking can be done.

• If Syndrome 0 has any other value, there is a multiple-bit, unrecov-
erable error. Software should mark the block containing this page
as a bad block.

Examples of possible Syndrome 0 values are shown in Table 20-3.

Table 20-3. ECC Syndrome Examples

Syndrome 0 Type of Value Meaning Action Required

0x00 0000 All zero No error in data None

0x2C CA66 Exactly 11 bits are 1, each parity and
parity’ pair is 1 & 0 or 0 & 1

1-bit correctable error Correct error

0x00 0040 Only 1 bit is 1 ECC data was incorrect None

0x06 B35A Random data More than 1-bit error,
non-correctable error

Discard data,
mark bad block

Programming Model

20-16 ADSP-BF54x Blackfin Processor Hardware Reference

Large Page Size Support

Page sizes larger than 512 bytes can be supported by NFC as long as they
require only 1-bit error correction per 512 Bytes. For example, a 2K byte
page can be accessed by treating it as four 512-byte pages. The page pro-
gram and page reads must be conducted as four 512-byte accesses, and the
ECC values for each 512 bytes of data must be read back from the ECC
registers and then temporarily stored. The ECC registers must be reset
before the next 512 bytes are transferred. Once ECC values from all four
512-byte pages are calculated, they are typically written into the NAND
flash spare area for a page write or compared to those in the spare area for
a page program.

NFC SmartMedia Support
NAND flash and SmartMedia devices have nearly identical interfaces. The
main difference is that SmartMedia devices are removable, and, therefore,
require card insertion, card ejection and write protection signals. On
ADSP-BF54x processor Blackfin processors, these features can be sup-
ported using GPIOs.

Programming Model
The following sections describe the NAND flash controller’s program-
ming model.

Before using the NFC, pins with GPIO functions must be configured to
select the NFC functionality. This causes a rising edge detect on ND_RB,
which must be cleared before beginning NFC programming sequences.

ADSP-BF54x Blackfin Processor Hardware Reference 20-17

NAND Flash Controller

To conduct a page read, the core may use the following procedure:

1. The core writes to the appropriate DMA registers to enable the
NFC DMA channel for receive mode and to configure the correct
number of transfers for a single page.

2. The core sets up the appropriate configuration by writing the
NFC_CTL register.

3. The core clears the NFC_ECCx registers by setting the ECC_RST bit in
the NFC_RST register.

4. The core writes the page read commands to NFC_CMD register and
the page addresses to the NFC_ADDR register (maximum of four
writes at a time).

5. The core waits for a rising edge detection on ND_RB.

6. The core sets the page read start bit in the NFC_PGCTL register.

7. When the DMA generates an interrupt on completion, the core
reads the remaining spare bytes.

8. The core compares ECC information stored in the spare bytes to
the ECC register values calculated during the page read.

9. If there is an ECC error, the core must correct the corrupted data.

To conduct a page write, the core may use the following procedure:

1. The core writes to the appropriate DMA registers to enable the
NFC DMA channel for transmit mode and to configure the correct
number of transfers for a single page.

2. The core sets up the appropriate configuration by writing the
NFC_CTL register.

3. The core clears the NFC_ECCx registers by setting the ECC_RST bit in
the NFC_RST register.

NFC Registers

20-18 ADSP-BF54x Blackfin Processor Hardware Reference

4. The core writes the page write commands to NFC_CMD register and
the page addresses to the NFC_ADDR register (maximum of 4 writes
at a time).

5. The core waits for the write buffer to be empty by either polling
the status bit or waiting for the WB_EDGE interrupt.

6. The core sets the page write start bit in the NFC_PGCTL register.

7. When the DMA generates an interrupt on completion, the WR_DONE
bit should be checked to verify the last transfer is complete, then
the core reads the ECC register values and writes those values to
the spare bytes of the page.

8. The core writes the page program confirm command to the
NFC_CMD register.

9. The core waits for the write buffer to empty and for a subsequent
rising edge detection on ND_RB.

NFC Registers
The NFC has a group of memory-mapped registers (MMRs) that regulate
its operation. These registers are listed in Table 20-4 on page 20-19.

Descriptions and bit diagrams for each of these MMRs are provided in the
following sections. The NFC MMRs start at a base address of
0xFFC0 3B00.

The NFC contains control, status, interrupt and ECC registers at address
offsets 0x00]0x2C. The NFC also contains write-only registers at address
offsets 0x40]0x4C that insert commands, address, or data access requests
into a write buffer.

ADSP-BF54x Blackfin Processor Hardware Reference 20-19

NAND Flash Controller

The NFC_ECCx and NFC_COUNT registers should not be read while an access
to NAND flash is happening on the EBIU. Otherwise, the registers may
be updating during a read and coherency of the register bits is not
guaranteed.

Table 20-4 lists all of the NFC memory-mapped registers.

Table 20-4. NFC Memory-Mapped Registers

Address Register Name Description

0xFFC0 3B00 NFC_CTL “NFC Control Register (NFC_CTL)” on page 20-20

0xFFC0 3B04 NFC_STAT “NFC Status Register (NFC_STAT)” on page 20-21

0xFFC0 3B08 NFC_IRQSTAT “NFC Interrupt Status Register (NFC_IRQSTAT)” on
page 20-22

0xFFC0 3B0C NFC_IRQMASK “NFC Interrupt Mask Register (NFC_IRQMASK)” on
page 20-23

0xFFC0 3B10 NFC_ECC0 “NFC ECC Registers (NFC_ECCx)” on page 20-23

0xFFC0 3B14 NFC_ECC1 “NFC ECC Registers (NFC_ECCx)” on page 20-23

0xFFC0 3B18 NFC_ECC2 “NFC ECC Registers (NFC_ECCx)” on page 20-23

0xFFC0 3B1C NFC_ECC3 “NFC ECC Registers (NFC_ECCx)” on page 20-23

0xFFC0 3B20 NFC_COUNT “NFC Count Register (NFC_COUNT)” on page 20-25

0xFFC0 3B24 NFC_RST “NFC Reset Register (NFC_RST)” on page 20-25

0xFFC0 3B28 NFC_PGCTL “NFC Page Control Register (NFC_PGCTL)” on page 20-26

0xFCC0 3B2C NFC_READ “NFC Read Data Register (NFC_READ)” on page 20-26

0xFFC0 3B40 NFC_ADDR “NFC Address Register (NFC_ADDR)” on page 20-27

0xFFC0 3B44 NFC_CMD “NFC Command Register (NFC_CMD)” on page 20-28

0xFFC0 3B48 NFC_DATA_W
R

“NFC Data Write Register (NFC_DATA_WR)” on
page 20-29

0xFFC0 3B4C NFC_DATA_RD “NFC Data Read Register (NFC_DATA_RD)” on
page 20-29

NFC Registers

20-20 ADSP-BF54x Blackfin Processor Hardware Reference

NFC Control Register (NFC_CTL)
The NFC_CTL register (see Figure 20-4) contains timing and mode configu-
ration fields. The read strobe delay (RD_DLY) and write strobe delay
(WR_DLY) fields extend the ARE and AWE strobes, respectively, by the speci-
fied number of cycles. If no extension is specified, ARE and AWE assert for a
single SCLK cycle. The NAND data width (NWIDTH) bit selects the data bus
width size of the external NAND flash device. The page size (PG_SIZE) bit
determines where the ECC data values are written. For a 256-byte page,
ECC values are always calculated in NFC_ECC0 and NFC_ECC1. For a
512-byte page, the first ECC value is calculated in NFC_ECC0 and NFC_ECC1
while the next ECC value is calculated in NFC_ECC2 and NFC_ECC3.

Figure 20-4. NFC Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 1 0 0 0 0 0 0 0 0

NFC Control Register (NFC_CTL)

0x0 to 0xF - The number of
SCLK cycles to extend AWE

Write Strobe Delay (WR_DLY)

Reset = 0x0200

Read/Write

0x0 to 0xF - The number of
SCLK cycles to extend ARE

Read Strobe Delay (RD_DLY)0 - 8-bit NAND Flash
1 - 16-bit NAND Flash

NAND Data Width (NWIDTH)

0 - 256 Bytes
1 - 512 Bytes

Page Size (PG_SIZE)

0xFFC0 3B00

ADSP-BF54x Blackfin Processor Hardware Reference 20-21

NAND Flash Controller

NFC Status Register (NFC_STAT)
The NFC_STAT register (see Figure 20-5) contains status information. The
NBUSY bit contains the synchronized value of the ND_RB pin. The write buf-
fer empty (WB_EMPTY) and write buffer full (WB_FULL) status bits contain
write buffer status information. When WB_FULL is set, writes to any write
buffer register are ignored and cause the WB_OVF bit in the NFC_IRQSTAT
register to be set. The page write pending (PG_WR_STAT) and page read
pending (PG_RD_STAT) bits show indicate that a page write (or read) is
started and not completed.

 As soon as the ND_RB signal has been enabled via PORTJ_FER and the
signal is sampled as high. The NBUSY bit is set in NFC_STAT and the
NBUSYIRQ interrupt is generated

Figure 20-5. NFC Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 1 0 0 0

NFC Status Register (NFC_STAT)

0 - Busy Request
1 - Not Busy

Not Busy (NBUSY)

Reset = 0x0010

Read Only

0 - Write Buffer Not Empty
1 - Write Buffer Empty

Write Buffer Empty (WB_EMPTY)

0 - No Page Read Pending
1 - Page Read Pending

Page Read Pending (PG_RD_STAT)

0 - No Page Write Pending
1 - Page Write Pending

Page Write Pending (PG_WR_STAT)

0 - Write Buffer Not Full
1 - Write Buffer Full

Write Buffer Full (WB_FULL)

0xFFC0 3B04

NFC Registers

20-22 ADSP-BF54x Blackfin Processor Hardware Reference

NFC Interrupt Status Register (NFC_IRQSTAT)
The NFC_IRQSTAT register (see Figure 20-6) reports the status of additional
NFC interrupt sources. All bits in this register are write-1-to-clear (W1C).
The NBUSYIRQ sticky bit is asserted when a rising edge is detected on the
ND_RB signal. This bit must be cleared (W1C) before starting a new access.
The WB_OVF bit is asserted when the write buffer overflows and indicates
an error condition. The write buffer edge detect (WB_EDGE) bit is set when
the write buffer transitions from not empty to empty. The read data ready
(RD_RDY) bit indicates that a read data command has completed and that
data is available for reading from the NFC_READ register. The page write
done (WR_DONE) bit indicates a completed page write and that the last
access in the page was transferred on the external bus.

 As soon as the ND_RB signal has been enabled via PORTJ_FER and the
signal is sampled as high. The NBUSY bit is set in NFC_STAT and the
NBUSYIRQ interrupt is generated

Figure 20-6. NFC Interrupt Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NFC Interrupt Status Register (NFC_IRQSTAT)

Reset = 0x0000

Read/W1C (all bits)

0 - No rising edge of nBUSY detected
1 - Rising edge of nBUSY detected

Not Busy IRQ (NBUSYIRQ)
0 - No Page Write Completed
1 - Page Write Completed

Page Write Done (WR_DONE)

0 - No write buffer overflow detected
1 - Write buffer overflow detected

Write Buffer Overflow (WB_OVF)
0 - No Read Data Read
1 - Read Data in NFC_READ

Read Data Ready (RD_RDY)

0 - No rising edge of Write Buffer Empty
1 - Rising edge of Write Buffer Empty

Write Buffer Edge Detect (WB_EDGE)

0xFFC0 3B08

ADSP-BF54x Blackfin Processor Hardware Reference 20-23

NAND Flash Controller

NFC Interrupt Mask Register (NFC_IRQMASK)
The NFC_IRQMASK register (see Figure 20-7) contains individual mask bits
for each NFC interrupt source. After masking, the bits are OR’ed together
and routed to the system interrupt controller.

NFC ECC Registers (NFC_ECCx)
The NFC_ECCx registers (see Figure 20-8) contain the 22-bit ECC parity
values calculated for data read from or written to the NAND flash device.
When data is written, the processor must store these values in the spare
area of the NAND flash device. When data is read, the ECC values are cal-
culated for comparison with the values stored in the spare area.

The four 16-bit ECC registers are used to hold the ECC data as it is calcu-
lated by the ECC logic. The registers NFC_ECC0 and NFC_ECC1 are used to
hold the 22-bit ECC value for the first 256 bytes of the page. For
512-byte pages, the registers NFC_ECC2 and NFC_ECC3 hold the 22-bit ECC
value for the second half-page (256 bytes). The page size is configured in
NFC_CTL register.

Figure 20-7. NFC Interrupt Mask Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 1 1 1 1

NFC Interrupt Mask Register (NFC_IRQMASK)

0 - Unmask nBUSY interrupt
1 - Mask nBUSY interrupt

MASK_BUSYIRQ

Reset = 0x001F

Read/Write

0 - Unmask WB_OVF interrupt
1 - Mask WB_OVF interrupt

MASK_WBOVF

0 - Unmask WR_DONE interrupt
1 - Mask WR_DONE interrupt

MASK_WRDONE

0 - Unmask RD_RDY interrupt
1 - Mask RD_RDY interrupt

MASK_RDRDY

0 - Unmask WB_EDGE interrupt
1 - Mask WB_EDGE interrupt

MASK_WBEDGE

0xFFC0 3B0C

NFC Registers

20-24 ADSP-BF54x Blackfin Processor Hardware Reference

The values in the ECC registers are updated on every cycle that data is
transferred. They are not updated when spare area bytes are read or writ-
ten. The registers NFC_ECC0 and NFC_ECC1 are valid after the transfer of the
256th byte in a page. the registers NFC_ECC2 and NFC_ECC3 are valid after
the transfer of the 512th byte in a page.

Note that the ECC registers are 16 bits each. When writing the ECC value
to an 8-bit NAND flash device, the lower 8 bits must be written first, fol-
lowed by the upper 8 bits.

Figure 20-8. NFC ECC Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NFC ECC Registers (NFC_ECCx)

P1024,P512,P256,P128,P64,P32,P16,P8,P4,P2,P1
ECC0 (Parity Calculation Result)

Reset = 0x0000

Read -only

P1024’,P512’,P256’,P128’,P64’,P32’,P16’,P8’,P4’,P2’,P1’
ECC1 (Parity Calculation Result)

Reset = 0x0000

Reset = 0x0000

Reset = 0x0000

P1024’,P512’,P256’,P128’,P64’,P32’,P16’,P8’,P4’,P2’,P1’
ECC3 (Parity Calculation Result)

P1024,P512,P256,P128,P64,P32,P16,P8,P4,P2,P1
ECC2 (Parity Calculation Result)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 00xFFC0 3B1C

0xFFC0 3B18

0xFFC0 3B14

0xFFC0 3B10

ADSP-BF54x Blackfin Processor Hardware Reference 20-25

NAND Flash Controller

NFC Count Register (NFC_COUNT)
The NFC_COUNT register (see Figure 20-9) reports the number of bytes
transferred in the current page. The count starts at 1 and increments up to
512 for a 512-byte page. This register is used primarily for debugging pur-
poses. The counter is reset when the ECC_RST bit in the NFC_RST register is
set.

NFC Reset Register (NFC_RST)
The NFC_RST register (see Figure 20-10) allows software to reset the ECC
registers and the NFC counters. This register must be written before each
page is transferred to generate the correct ECC register values. The ECC
reset bit is automatically cleared by the NFC on completion of the reset.

Figure 20-9. NFC Count Register

Figure 20-10. NFC Reset Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NFC Count Register (NFC_COUNT)

Reset = 0x0000

Read Only

0x000-0x3FF - Byte transfer
count, excluding spare bytes

Transfer Count (ECCCNT)

0xFFC0 3B20

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NFC Reset Register (NFC_RST)

0 - No Reset
1 - Reset registers/counters

ECC and NFC counters Reset
(ECC_RST)

Reset = 0x0000

Read/Write

0xFFC0 3B24

NFC Registers

20-26 ADSP-BF54x Blackfin Processor Hardware Reference

NFC Page Control Register (NFC_PGCTL)
The NFC_PGCTL register (see Figure 20-11) allows the processor to initiate
page reads or writes. All bits in the register are write only. The page data is
always transferred using the DAB bus. When either a page read or page
write is pending, page read start (PG_RD_START) and page write start
(PG_WR_START) are ignored.

NFC Read Data Register (NFC_READ)
The NFC_READ register (see Figure 20-12) contains read data returned from
the NAND flash after a read is requested using the NFC_DATA_RD register. If
NWIDTH is configured for 8 bits, only the eight LSB have valid data, other-
wise all 16 bits have valid data. The RD_RDY status bit and interrupt
indicate when new data is available for reading.

Figure 20-11. NFC Page Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NFC Page Control Register (NFC_PGCTL)

0 - No effect
1 - Start page read

Page Read Start

Reset = undefined

Write-only

0 - No effect
1 - Start page write

Page Write Start

0xFFC0 3B28

ADSP-BF54x Blackfin Processor Hardware Reference 20-27

NAND Flash Controller

To prevent overflow of NFC_READ, the read data request is not removed
from the write buffer until the returned data is read back from NFC_READ.
As a result, no other commands, address or data are sent to the NAND
flash while the read data request is active in the write buffer.

NFC Address Register (NFC_ADDR)
The NFC_ADDR register (see Figure 20-13) contains address bits to send to
the NAND flash device. The number of address bits (8 or 16) sent to the
NAND flash device is determined by the NWIDTH bit in the NFC_CTL regis-
ter. Values written to this register are stored in the NFC write buffer.

If the user is connecting to a 16-bit NAND flash that requires 8-bit
addresses, the user can program bits 0-7 of this register with the address
and zero-out bits 8-15.

Figure 20-12. NFC Read Data Register

Figure 20-13. NFC Address Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NFC Data Register (NFC_READ)

Read data from NAND Flash
READ DATA

Reset = 0x0000

Read-only

0xFFC0 3B2C

NFC Address Register (NFC_ADDR)
Write-only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8-bit or 16-bit address value
Address

Reset = undefined0xFFC0 3B40

NFC Registers

20-28 ADSP-BF54x Blackfin Processor Hardware Reference

NFC Command Register (NFC_CMD)
The NFC_CMD register (see Figure 20-14) contains commands to write to
the NAND flash device. The number of command bits (8 or 16) sent to
the NAND flash device is determined by the NWIDTH bit in the NFC_CTL
register. Values written to this register are stored in the NFC write buffer

If the user is connecting to a 16-bit NAND flash that requires 8-bit com-
mands, the user can program bits 0-7 of this register with the command
and zero-out bits 8-15.

Figure 20-14. NFC Command Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NFC Command Register (NFC_CMD)

8-bit or 16-bit command value
Command

Reset = undefined

Write-only

0xFFC0 3B44

ADSP-BF54x Blackfin Processor Hardware Reference 20-29

NAND Flash Controller

NFC Data Write Register (NFC_DATA_WR)
The NFC_DATA_WR register (see Figure 20-15) contains data to write to the
NAND flash device. The number of data bits (8 or 16) sent to the NAND
flash device is determined by the NWIDTH bit in the NFC_CTL register. Values
written to this register are stored in the NFC write buffer.

NFC Data Read Register (NFC_DATA_RD)
The NFC_DATA_RD register (see Figure 20-16) triggers a read request to the
NAND flash device. The data written is ignored. The number of data bits
(8 or 16) sent to the NAND flash device is determined by the NWIDTH bit
in the NFC_CTL register. The read request from this register is stored in the
NFC write buffer.

Figure 20-15. NFC Data Write Register

Figure 20-16. NFC Data Read Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NFC Data Write Register (NFC_DATA_WR)

8- or 16-bit data value
Data Write

Reset = undefined

Write-only

0xFFC0 3B48

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NFC Data Read Register (NFC_DATA_RD)

8- or 16-bit data value
Data Read

Reset = undefined

Write-only

0xFFC0 3B4C

NFC Programming Examples

20-30 ADSP-BF54x Blackfin Processor Hardware Reference

NFC Programming Examples
Listing 20-1 illustrates an example initialization sequence to enable the
use of the NFC.

Listing 20-1. NFC Port Register Configuration

/* Bit macros for NFC Read and Write Strobe Delays */

#define SET_NFC_WR_STROBE(x) ((x)&0xF)

#define SET_NFC_RD_STROBE(x) (((x)&0xF)<<4)

/***

 Mask out all NFC IRQs

**/

P5.L = lo(NFC_IRQMASK);

P5.H = hi(NFC_IRQMASK);

R7.L = MASK_WRDONE | MASK_RDRDY | MASK_WBEDGE | MASK_WBOVF |

MASK_BUSYIRQ;

w[P5] = R7.L;

/***

 Configure port J NFC features

**/

P5.L = lo(PORTJ_FER);

P5.H = hi(PORTJ_FER);

R7.L = nPJ15 | nPJ14 | nPJ13 | nPJ12 | nPJ11 | nPJ10 | nPJ9 |

nPJ8 | nPJ7 |

 nPJ6 | nPJ5 | nPJ4 | nPJ3 | PJ2 | PJ1 | nPJ0;

w[P5] = R7.L;

/***

 Configure port J MUX for NFC use

**/

P5.L = lo(PORTJ_MUX);

ADSP-BF54x Blackfin Processor Hardware Reference 20-31

NAND Flash Controller

P5.H = hi(PORTJ_MUX);

R7.L = lo(MUX(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0));

R7.H = hi(MUX(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0));

[P5] = R7;

/***

 Configure NFC Control register

**/

P5.L = lo(NFC_CTL);

P5.H = hi(NFC_CTL);

R7.L = nPG_SIZE | nNWIDTH | SET_NFC_RD_STROBE(3) |

SET_NFC_WR_STROBE(3);

w[P5] = R7.L;

/**

 Clear any IRQs that may be pending for the NFC.

***/

P5.L = lo(NFC_IRQSTAT);

P5.H = hi(NFC_IRQSTAT);

R7.L = WR_DONE | RD_RDY | WB_EDGE | WB_OVF | NBUSYIRQ;

w[P5] = R7.L;

ssync;

/**

 Enable required NFC IRQs

***/

P5.L = lo(NFC_IRQMASK);

P5.H = hi(NFC_IRQMASK);

R7.L = nWR_DONE | nRD_RDY | nWB_EDGE | nWB_OVF | nNBUSYIRQ;

w[P5] = R7.L;

ssync;

NFC Programming Examples

20-32 ADSP-BF54x Blackfin Processor Hardware Reference

Listing 20-2 illustrates one method on how to perform a page read from
the NAND flash through core read transactions. This example assumes
that only NFC wakeup interrupts are being used to bring the processor
out of idle.

The attached NAND flash is a large page device that requires the issuing
of 5 address cycles for a read operation, the page size of the device is 2048
bytes excluding the spare area. It is assumed that the NAND flash may not
be in read mode already. For a byte read transaction to take place the
NAND flash must first of all be configured for read mode. The address
cycles must then be issued for the data that we wish to access. As it is a
large page device the last address cycle is typically followed by a page read
confirmation command. Once the NAND flash accepts the page read con-
firmation command the device enters a busy state while it transfers the
data to be accessed from the main array into the read buffer where it can
then be accessed through core read transactions.

The data is read from within 2 loops. The outer loop is executed 8 times
in this example.

Outer loop count = NAND Page Size / NFC Page Size

The inner loop is configured for 256 bytes.

Inner loop count = NFC Page Size

Each execution of the inner loop reads one byte from the NAND flash by
issuing a read transaction through the NFC_DATA_RD register. The
received data is then read from the NFC_READ register and stored to a
buffer in internal memory named “_Buffer”. At the end of every 256 byte
block the 22-bit parity data is read from the NFC_ECC1 and
NFC_ECC0 registers and stored to a second buffer in internal memory
named “_CalculatedECC” before resetting the NFC ready for the next
256 byte block.

ADSP-BF54x Blackfin Processor Hardware Reference 20-33

NAND Flash Controller

Upon completion of reading all 2048 bytes, the spare area is then read and
stored at the bottom of the available 2112 byte buffer. This data would be
used along with the newly calculated error correction parity data within
the error correction routine to ensure all read data is correct.

Listing 20-2. Page Read through core read transactions

/***

 Ensure the NFC write buffer is empty

**/

P5.L = lo(NFC_CTL);

P5.H = hi(NFC_CTL);

_check_write_buffer_empty:

 R7 = w[P5 + lo(NFC_STAT - NFC_CTL)](z);

 CC = bittst(R7, bitpos(WB_EMPTY));

 If !CC JUMP _check_write_buffer_empty;

_check_write_buffer_empty.END:

/***

 Issue Read Command (0x00) to NAND Flash

**/

R7 = 0(x);

w[P5+ lo(NFC_CMD - NFC_CTL)] = R7;

/***

 In order to avoid a write buffer overflow error issue 3

 of the 5 address cycles to the NAND flash.

 **/

R7 = 0(x);

w[P5+lo(NFC_ADDR - NFC_CTL)] = R7;

w[P5+lo(NFC_ADDR - NFC_CTL)] = R7;

w[P5+lo(NFC_ADDR - NFC_CTL)] = R7;

/***

NFC Programming Examples

20-34 ADSP-BF54x Blackfin Processor Hardware Reference

 Wait for write buffer to become empty

**/

_check_write_buffer_empty_again:

 R6 = w[P5 + lo(NFC_STAT-NFC_CTL)](z);

 CC = bittst(R6, bitpos(WB_EMPTY));

 If !CC JUMP _check_write_buffer_empty_again;

_check_write_buffer_empty_again.END:

/***

 Issue the remaining 3 address cycles followed by the

 Read Confirmation command

**/

w[P5+lo(NFC_ADDR - NFC_CTL)] = R7;

w[P5+lo(NFC_ADDR - NFC_CTL)] = R7;

R7 = 0x30(z);

w[P5+lo(NFC_CMD - NFC_CTL)] = R7;

/***

 Wait for the NFC not busy wakeup interrupt

**/

_wait_for_ready:

 IDLE;

 R7 = w[P5+lo(NFC_IRQSTAT - NFC_CTL)](z);

 CC = bittst(R7, bitpos(NBUSYIRQ));

_wait_for_ready.END: IF !CC JUMP _wait_for_ready;

R7 = NBUSYIRQ(z);

w[P5+lo(NFC_IRQSTAT - NFC_CTL)] = R7;

/***

 The page we wish to access is now ready to be read from

 the NAND flash. Set up the pointers to the data buffer

 and the buffer where we will store the calculated error

 correction parity data.

 **/

ADSP-BF54x Blackfin Processor Hardware Reference 20-35

NAND Flash Controller

P4.L = lo(_Buffer);

P4.H = hi(_Buffer);

P3.L = lo(_CalculatedECC);

P3.H = hi(_CalculatedECC);

P2 = (2048/256)(z);

LSETUP(_read_data_begin, _read_data_end) LC0 = P2;

P2= 256(z);

_read_data_begin: /* Outer loop */

 /* Reset the NFC */

 R7 = ECC_RST(z);

 w[P5 + lo(NFC_RST - NFC_CTL)] = R7;

 ssync;

 _wait_for_nfc_reset_completion:

 R7 = w[P5 + lo(NFC_RST - NFC_CTL)](z);

 CC = bittst(R7, bitpos(ECC_RST));

 _wait_for_nfc_reset_completion.END:

 if CC jump _wait_for_nfc_reset_completion;

 LSETUP(_read_nfc_page_begin, _read_nfc_page_end) LC1 = P2;

 _read_nfc_page_begin: /* Inner loop */

 w[P5+ lo(NFC_DATA_RD - NFC_CTL)] = R7;

 _wait_for_data_ready:

 IDLE;

 R7 = w[P5+ lo(NFC_IRQSTAT - NFC_CTL)];

 CC = bittst(R7, bitpos(RD_RDY));

 IF !CC JUMP _wait_for_data_ready;

 _wait_for_data_ready.END:

NFC Programming Examples

20-36 ADSP-BF54x Blackfin Processor Hardware Reference

/***

 The byte is now available in the NFC_READ register.

 We need to read the byte which results in the read

 transaction then being removed from the write buffer.

 We need to ensure that this transaction completes before

 clearing the IRQ

**/

 R7 = RD_RDY(z);

 R6 = w[P5+ lo(NFC_READ - NFC_CTL)](z);

 ssync;

 w[P5+ lo(NFC_IRQSTAT - NFC_CTL)] = R7;

 _read_nfc_page_end: b[P4++] = R6;

 /* Read and store the error correction parity data */

 R7 = w[P5+ lo(NFC_ECC0 - NFC_CTL)](z);

 R6 = w[P5+ lo(NFC_ECC1 - NFC_CTL)](z);

 R6 <<= 11;

 R7 = R7 | R6;

_read_data_end: [P3++] = R7;

Listing 20-3 illustrates one method on how to perform a page program
operation to the NAND flash through core write transactions. This exam-
ple assumes that only NFC wakeup interrupts are being used to bring the
processor out of idle.

The attached NAND flash is a large page device that requires the issuing
of 5 address cycles for a program operation, the page size of the device is
2048 bytes excluding the spare area. It is assumed that the NAND flash
may not be in program mode already.

ADSP-BF54x Blackfin Processor Hardware Reference 20-37

NAND Flash Controller

For a byte write transaction to take place the NAND flash must first of all
be configured for page program mode. The address cycles must then be
issued followed by the page data. This is followed by a page program con-
firmation command. Once the NAND flash accepts the page program
confirmation command the device enters a busy state while it transfers the
data to be written into the main NAND flash array.

The data is written from within 2 loops. The outer loop is executed 8
times in this example.

Outer loop count = NAND Page Size / NFC Page Size

The inner loop is configured for the writing of 4 bytes per iteration and is
executed 64 times in order to write a 256 byte block.

Inner loop count = NFC Page Size/4

At the end of every 256 byte block the 22-bit parity data is stored at the
end of the 2112 byte buffer ready to be written after the main 2048 byte
area is written.

Listing 20-3. Page program through core write transactions

/***

 Ensure the NFC write buffer is empty

**/

P5.L = lo(NFC_STAT);

P5.H = hi(NFC_STAT);

_check_write_buffer_empty:

 R7.L = w[P5];

 CC = bittst(R7, bitpos(WB_EMPTY));

 If !CC JUMP _check_write_buffer_empty;

_check_write_buffer_empty.END:

NFC Programming Examples

20-38 ADSP-BF54x Blackfin Processor Hardware Reference

/***

 Issue Program Command (0x80) to NAND Flash

**/

P5.L = lo(NFC_CMD);

P5.H = hi(NFC_CMD);

R7.L = 0x0080;

w[P5] = R7.L;

/***

 In order to avoid a write buffer overflow error

 Issue 3 of the 5 address cycles to the NAND flash

 The read command and the three address cycles are enough

 to fill up the NFC write buffer.

**/

P5.L = lo(NFC_ADDR);

P5.H = hi(NFC_ADDR);

R7.L = 0x0000;

w[P5] = R7.L;

w[P5] = R7.L;

w[P5] = R7.L;

/***

 Wait for write buffer to become empty

**/

P5.L = lo(NFC_STAT);

P5.H = hi(NFC_STAT);

_check_write_buffer_empty_again:

 R7.L = w[P5];

 CC = bittst(R7, bitpos(WB_EMPTY));

 If !CC JUMP _check_write_buffer_empty_again;

_check_write_buffer_empty_again.END:

ADSP-BF54x Blackfin Processor Hardware Reference 20-39

NAND Flash Controller

/***

 Issue the remaining 2 address cycles

**/

P5.L = lo(NFC_ADDR);

P5.H = hi(NFC_ADDR);

R7.L = 0x0000;

w[P5] = R7.L;

w[P5] = R7.L;

/***

 We are now ready to start programming the page with data.

 This routine will program all 2112 bytes of the page. Four

 Bytes are programmed every iteration of the loop to make

 Most efficient use of the 4 deep write buffer

**/

P5.L = lo(NFC_STAT);

P5.H = hi(NFC_STAT);

P4.L = lo(NFC_DATA_WR);

P4.H = hi(NFC_DATA_WR);

P3.L = lo(_Buffer);

P3.H = hi(_Buffer);

P2.L = lo(2112/4);

P2.H = hi(2112/4);

LSETUP(_write_data_begin, _write_data_end) LC0 = P2;

_write_data_begin:

 R7 = b[P3++](z);

 w[P4] = R7.L;

 R7 = b[P3++](z);

 w[P4] = R7.L;

 R7 = b[P3++](z);

 w[P4] = R7.L;

 R7 = b[P3++](z);

 w[P4] = R7.L;

NFC Programming Examples

20-40 ADSP-BF54x Blackfin Processor Hardware Reference

 _check_writes_completed:

 R7.L = w[P5];

 CC = bittst(R7, bitpos(WB_EMPTY));

 If !CC JUMP _check_writes_completed;

 _check_writes_completed.END:

_write_data_end:nop;

/***

 Issue Program Confirm Command (0x10) to NAND Flash

**/

P5.L = lo(NFC_CMD);

P5.H = hi(NFC_CMD);

R7.L = 0x0010;

w[P5] = R7.L;

/***

 Wait for the NFC not busy wakeup interrupt

**/

P5.L = lo(NFC_IRQSTAT);

P5.H = hi(NFC_IRQSTAT);

_wait_for_ready:

 IDLE;

 R7.L = w[P5];

 CC = bittst(R7, bitpos(NBUSYIRQ));

 IF !CC JUMP _wait_for_ready;

_wait_for_ready.END:

w[P5] = R7;

Listing 20-4 illustrates one method on how to perform a page read from
the NAND flash through DMA.

ADSP-BF54x Blackfin Processor Hardware Reference 20-41

NAND Flash Controller

This example assumes that only NFC wakeup interrupts are being used to
bring the processor out of idle. The attached NAND flash is a large page
device that requires the issuing of 5 address cycles for a read operation, the
page size of the device is 2048 bytes excluding the spare area.It is assumed
that the NAND flash may not be in read mode already.

Once the NAND flash is ready after the acceptance of the read confirm
command DMA channel 22 is used to transfer the 2048 bytes of the main
area into internal memory. This involves a single loop that is executed 8
times. Each iterations configures the DMA channel for a 256 byte read
transfer and uses the DMA completion wakeup as an indication that the
block read has completed.

At the end of every 256 byte block the 22-bit parity data is read from the
NFC_ECC1 and NFC_ECC0 registers and stored to a second buffer in
internal memory named “_CalculatedECC” before resetting the NFC
ready for the next 256 byte block.

Upon completion of reading all 2048 bytes, the spare area is then read and
stored at the bottom of the available 2112 byte buffer. The spare area is
read through core transactions as the DMA channel can only be config-
ured for a number of transfers that is an integer multiple of the configured
NFC page size.

NFC Programming Examples

20-42 ADSP-BF54x Blackfin Processor Hardware Reference

Listing 20-4. Page read using DMA

/***

 Ensure the NFC write buffer is empty

**/

P5.L = lo(NFC_CTL);

P5.H = hi(NFC_CTL);

_check_write_buffer_empty:

 R7 = w[P5 + lo(NFC_STAT - NFC_CTL)](z);

 CC = bittst(R7, bitpos(WB_EMPTY));

 If !CC JUMP _check_write_buffer_empty;

_check_write_buffer_empty.END:

/***

 Issue Read Command (0x00) to NAND Flash

**/

R7 = 0(x);

w[P5+ lo(NFC_CMD - NFC_CTL)] = R7;

/***

 In order to avoid a write buffer overflow error

 Issue 3 of the 5 address cycles to the NAND flash

 The read command and the three address cycles are enough

 to fill up the NFC write buffer.

**/

R7 = 0(x);

w[P5+lo(NFC_ADDR - NFC_CTL)] = R7;

w[P5+lo(NFC_ADDR - NFC_CTL)] = R7;

w[P5+lo(NFC_ADDR - NFC_CTL)] = R7;

ADSP-BF54x Blackfin Processor Hardware Reference 20-43

NAND Flash Controller

/***

 Wait for write buffer to become empty

**/

_check_write_buffer_empty_again:

 R6 = w[P5 + lo(NFC_STAT-NFC_CTL)](z);

 CC = bittst(R6, bitpos(WB_EMPTY));

 If !CC JUMP _check_write_buffer_empty_again;

_check_write_buffer_empty_again.END:

/***

 Issue the remaining 2 address cycles followed by the

 Read Confirmation command

**/

w[P5+lo(NFC_ADDR - NFC_CTL)] = R7;

w[P5+lo(NFC_ADDR - NFC_CTL)] = R7;

R7 = 0x30(z);

w[P5+lo(NFC_CMD - NFC_CTL)] = R7;

/***

 Wait for the NFC not busy wakeup interrupt

**/

_wait_for_ready:

 IDLE;

 R7 = w[P5+lo(NFC_IRQSTAT - NFC_CTL)](z);

 CC = bittst(R7, bitpos(NBUSYIRQ));

_wait_for_ready.END: IF !CC JUMP _wait_for_ready;

R7 = NBUSYIRQ(z);

w[P5+lo(NFC_IRQSTAT - NFC_CTL)] = R7;

NFC Programming Examples

20-44 ADSP-BF54x Blackfin Processor Hardware Reference

/***

 The page we wish to access is now ready to be read from

 the NAND flash. Set up the pointers to the data buffer

 and the buffer where we will store the calculated error

 correction parity data.

**/

P4.L = lo(DMA22_CONFIG);

P4.H = hi(DMA22_CONFIG);

P3.L = lo(_CalculatedECC);

P3.H = hi(_CalculatedECC);

P2 = (2048/256)(z);

R3.L = lo(_Buffer);

R3.H = hi(_Buffer);

R4 = (256/4)(z);

R5 = 0x4(x);

LSETUP(_read_data_begin, _read_data_end) LC0 = P2;

_read_data_begin: /* Outer loop */

 /* Reset the NFC */

 R7 = ECC_RST(z);

 w[P5 + lo(NFC_RST - NFC_CTL)] = R7;

 ssync;

 _wait_for_nfc_reset_completion:

 R7 = w[P5 + lo(NFC_RST - NFC_CTL)](z);

 CC = bittst(R7, bitpos(ECC_RST));

 _wait_for_nfc_reset_completion.END:

 if CC jump _wait_for_nfc_reset_completion;

 R7 = 0x00(x);

 w[P4] = R7;

 [P4 + (DMA22_START_ADDR - DMA22_CONFIG)] = R3;

ADSP-BF54x Blackfin Processor Hardware Reference 20-45

NAND Flash Controller

 w[P4 + lo(DMA22_X_COUNT - DMA22_CONFIG)] = R4;

 w[P4 + lo(DMA22_X_MODIFY - DMA22_CONFIG)] = R5;

 R7 = 256(z);

 R3 = R3 + R7;

 R7 = 0x8B(z);

 w[P4] = R7;

 csync;

 R7 = PG_RD_START(x);

 w[P5 + lo(NFC_PGCTL - NFC_CTL)] = R7;

 _wait_for_dma_complete:

 IDLE;

 R7 = w[P4 + lo(DMA22_IRQ_STATUS - DMA22_CONFIG)](z);

 CC = bittst(R7, bitpos(DMA_DONE));

 _wait_for_dma_complete.END: IF !CC JUMP

_wait_for_dma_complete;

 R7 = DMA_DONE(z);

 w[P4 + lo(DMA22_IRQ_STATUS - DMA22_CONFIG)] = R7;

 /* Read and store the error correction parity data */

 R7 = w[P5+ lo(NFC_ECC0 - NFC_CTL)](z);

 R6 = w[P5+ lo(NFC_ECC1 - NFC_CTL)](z);

 R0 = w[P5+ lo(NFC_COUNT - NFC_CTL)](z);

 R6 <<= 11;

 R7 = R7 | R6;

_read_data_end: [P3++] = R7;

NFC Programming Examples

20-46 ADSP-BF54x Blackfin Processor Hardware Reference

/***

 We now wish to read the spare area of the page that

 contains the expected error correction parity data to

 use with the newly calculated parity data

**/

P2 = 0x40(z);

P4.L = lo(_Buffer+2048);

P4.H = hi(_Buffer+2048);

LSETUP(_read_page_spare_begin, _read_page_spare_end) LC1 = P2;

_read_page_spare_begin:

 w[P5+ lo(NFC_DATA_RD - NFC_CTL)] = R7;

 _wait_for_spare_data_ready:

 IDLE;

 R7 = w[P5+ lo(NFC_IRQSTAT - NFC_CTL)];

 CC = bittst(R7, bitpos(RD_RDY));

 IF !CC JUMP _wait_for_spare_data_ready;

 _wait_for_spare_data_ready.END:

/***

 The byte is now available in the NFC_READ register.

 We need to read the byte which results in the read

 transaction then being removed from the write buffer.

 We need to ensure that this transaction completes before

 clearing the IRQ

 **/

 R7 = RD_RDY(z);

 R6 = w[P5+ lo(NFC_READ - NFC_CTL)](z);

 ssync;

 w[P5+ lo(NFC_IRQSTAT - NFC_CTL)] = R7;

 _read_page_spare_end: b[P4++] = R6;

ADSP-BF54x Blackfin Processor Hardware Reference 20-47

NAND Flash Controller

Listing 20-5 illustrates one method on how to perform a page program to
the NAND flash through DMA. This example assumes that only NFC
wakeup interrupts are being used to bring the processor out of idle.

The attached NAND flash is a large page device that requires the issuing
of 5 address cycles for a read operation, the page size of the device is 2048
bytes excluding the spare area. It is assumed that the NAND flash may not
be in program mode already.

Once the page program command and address cycles have been issued to
the NAND flash the data cycles are then initiated through DMA channel
22 to transfer the 2048 bytes of the main area.

This example works differently from the read example through DMA in
that multiple DMA sequences are not configured. For a page write trans-
action a full 2048 byte DMA can be configured. The PG_WR_START
bit in the NFC_PGCTL register is then used to start each smaller DMA
sequence. As the NFC is assumed to be configured for 256 byte page size
in the NFC_CTL register, each issue of the page write start will only allow
the DMA to transfer 256 bytes. This is performed within the single loop
executed 8 times to transfer the 2048 byte page.

At the end of every 256 byte block the 22-bit parity data is read from the
NFC_ECC1 and NFC_ECC0 registers and stored at the end of the 2112
byte buffer.

Upon completion of the 2048 byte DMA, the spare area is then written
through core write transaction before issuing a page program confirmation
command.

NFC Programming Examples

20-48 ADSP-BF54x Blackfin Processor Hardware Reference

Listing 20-5. Page program using DMA

/***

 Ensure the NFC write buffer is empty

**/

P5.L = lo(NFC_CTL);

P5.H = hi(NFC_CTL);

_check_write_buffer_empty:

 R7 = w[P5 + lo(NFC_STAT - NFC_CTL)](z);

 CC = bittst(R7, bitpos(WB_EMPTY));

 If !CC JUMP _check_write_buffer_empty;

_check_write_buffer_empty.END:

/***

 Issue Program Command (0x80) to NAND Flash

**/

R7 = 0x80(z);

w[P5 + lo(NFC_CMD - NFC_CTL)] = R7;

/***

 In order to avoid a write buffer overflow error

 Issue 3 of the 5 address cycles to the NAND flash

 The read command and the three address cycles are enough

 to fill up the NFC write buffer.

**/

R7 = 0x00(x);

w[P5 + lo(NFC_ADDR - NFC_CTL)] = R7;

w[P5 + lo(NFC_ADDR - NFC_CTL)] = R7;

w[P5 + lo(NFC_ADDR - NFC_CTL)] = R7;

ADSP-BF54x Blackfin Processor Hardware Reference 20-49

NAND Flash Controller

/***

 Wait for write buffer to become empty

**/

_check_write_buffer_empty_again:

 R6 = w[P5 + lo(NFC_STAT - NFC_CTL)](z);

 CC = bittst(R6, bitpos(WB_EMPTY));

 If !CC JUMP _check_write_buffer_empty_again;

_check_write_buffer_empty_again.END:

/***

 Issue the remaining 2 address cycles

**/

w[P5 + lo(NFC_ADDR - NFC_CTL)] = R7;

w[P5 + lo(NFC_ADDR - NFC_CTL)] = R7;

/***

 Wait for write buffer to become empty

**/

_check_write_buffer_empty_yet_again:

 R7 = w[P5 + lo(NFC_STAT - NFC_CTL)](z);

 CC = bittst(R7, bitpos(WB_EMPTY));

 If !CC JUMP _check_write_buffer_empty_yet_again;

_check_write_buffer_empty_yet_again.END:

/***

 We are now ready to start programming the page with data.

 This routine will program all 2048bytes of the page

**/

P4.L = lo(DMA22_CONFIG);

P4.H = hi(DMA22_CONFIG);

P2.L = lo(_Buffer+2048);

P2.H = hi(_Buffer+2048);

R7 = 0(x);

w[P4] = R7;

NFC Programming Examples

20-50 ADSP-BF54x Blackfin Processor Hardware Reference

P1 = (2048/256)(z);

R3.L = lo(_Buffer);

R3.H = hi(_Buffer);

R4 = (2048/4)(z);

R5 = 0x4(x);

[P4 + (DMA22_START_ADDR - DMA22_CONFIG)] = R3;

w[P4 + lo(DMA22_X_COUNT - DMA22_CONFIG)] = R4;

w[P4 + lo(DMA22_X_MODIFY - DMA22_CONFIG)] = R5;

R7 = 0x89(z);

w[P4] = R7;

LSETUP(_write_data_begin, _write_data_end) LC0 = P1;

_write_data_begin:

 P1 = (256/4)(z);

 /* Reset the NFC */

 R7 = ECC_RST(z);

 w[P5 + lo(NFC_RST - NFC_CTL)] = R7;

 ssync;

 _wait_for_nfc_reset_completion:

 R7 = w[P5 + lo(NFC_RST - NFC_CTL)](z);

 CC = bittst(R7, bitpos(ECC_RST));

 _wait_for_nfc_reset_completion.END:

 if CC jump _wait_for_nfc_reset_completion;

 R7 = PG_WR_START(x);

 w[P5 + lo(NFC_PGCTL - NFC_CTL)] = R7;

ADSP-BF54x Blackfin Processor Hardware Reference 20-51

NAND Flash Controller

 _wait_for_page_write_complete:

 IDLE;

 R7 = w[P5 + lo(NFC_IRQSTAT - NFC_CTL)](z);

 CC = bittst(R7, bitpos(WR_DONE));

 _wait_for_page_write_complete.END: IF !CC JUMP

_wait_for_page_write_complete;

 R7 = WR_DONE(z);

 w[P5 + lo(NFC_IRQSTAT - NFC_CTL)] = R7;

 /* Read and store the error correction parity data */

 R7 = w[P5+ lo(NFC_ECC0 - NFC_CTL)](z);

 R6 = w[P5+ lo(NFC_ECC1 - NFC_CTL)](z);

 R6 <<= 11;

 R7 = R7 | R6;

 [P2++] = R7;

_write_data_end: P2+=4;

R7 = DMA_DONE(z);

w[P4 + (DMA22_IRQ_STATUS - DMA22_CONFIG)] = R7;

/***

 We are now ready to start writing the spare area of the

 page now we have collected all the parity data

**/

P1 = (64/4)(z);

P4.L = lo(_Buffer+2048);

P4.H = hi(_Buffer+2048);

LSETUP(_write_data_spare_begin, _write_data_spare_end) LC0 = P1;

_write_data_spare_begin:

 R7 = b[P4++](z);

 R6 = b[P4++](z);

 R5 = b[P4++](z);

 R4 = b[P4++](z);

NFC Programming Examples

20-52 ADSP-BF54x Blackfin Processor Hardware Reference

 w[P5 + lo(NFC_DATA_WR - NFC_CTL)] = R7;

 w[P5 + lo(NFC_DATA_WR - NFC_CTL)] = R6;

 w[P5 + lo(NFC_DATA_WR - NFC_CTL)] = R5;

 w[P5 + lo(NFC_DATA_WR - NFC_CTL)] = R4;

 _check_writes_spare_completed:

 R7 = w[P5 + lo(NFC_STAT - NFC_CTL)];

 CC = bittst(R7, bitpos(WB_EMPTY));

 If !CC JUMP _check_writes_spare_completed;

_write_data_spare_end:nop;

/***

 Issue Program Confirm Command (0x10) to NAND Flash

**/

R7 = 0x10(z);

w[P5+ lo(NFC_CMD - NFC_CTL)] = R7;

/***

 Wait for the NFC not busy wakeup interrupt

**/

_wait_for_ready:

 IDLE;

 R7= w[P5 + lo(NFC_IRQSTAT - NFC_CTL)](z);

 CC = bittst(R7, bitpos(NBUSYIRQ));

 IF !CC JUMP _wait_for_ready;

_wait_for_ready.END:

R7 = NBUSYIRQ(z);

w[P5+lo(NFC_IRQSTAT - NFC_CTL)] = R7;

ADSP-BF54x Blackfin Processor Hardware Reference 20-53

NAND Flash Controller

NFC Programming Examples

20-54 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 21-1

21 ATAPI INTERFACE

This chapter describes the processor’s advanced technology attachment
packet interface (ATAPI). This interface is an ATA/ATAPI-6 compliant
host implementation. The ATA interface, also known as the IDE (Inte-
grated Drive Electronics) interface, provides a simple interface to low-cost
non-volatile memories like hard-disk drives, DVD players, CDROM play-
ers/writers, and compact flash and PC-card devices. The ATAPI interface
supports all ATA hardware protocol transfers and the complete set of 80
ATAPI commands.

This chapter includes the following sections:

• “Interface Overview” on page 21-1

• “Description of Operation” on page 21-4

• “Functional Description” on page 21-18

• “Programming Model” on page 21-40

• “ATAPI Registers” on page 21-46

• “ATAPI Standards Reference” on page 21-73

Interface Overview
The ATAPI interface supports all ATA hardware protocol transfers and
the complete set of 80 ATAPI commands.

Interface Overview

21-2 ADSP-BF54x Blackfin Processor Hardware Reference

The ATAPI includes these features:

• ATA/ATAPI-6 compliant core supports:

• PIO modes 0, 1, 2, 3, 4

• Multiword DMA modes 0, 1, 2

• Ultra DMA modes 0, 1, 2, 3, 4, 5 (up to UDMA 100)

• Programmable timing parameters to support ATA interface timing
at any processor clock frequency

• Interface to compact flash (CF) configured in True-IDE mode

Figure 21-1 shows a block diagram of the ATAPI block. The ATAPI host
interfaces to the rest of the system through the PAB and DAB buses. The
PAB bus is used for programming the control and status registers. The
DAB buses are used for transmitting and receiving ATAPI packets

The ATAPI shares its pins with other peripherals on chip. For more infor-
mation see Chapter 9, “General-Purpose Ports”.

Figure 21-1. ATAPI Block Diagram

PAB BUS
ATAPI HOST

ATAPI_DMARQDAB0 BUS

ATAPI_A2-0

DAB1 BUS

ATAPI_INTRQ

ATAPI_CS1–0

ATAPI_IORDY

ATAPI_D15–0

ATAPI_DIOR

ATAPI_PDIAG

ATAPI_RESET

ATAPI_DMACK

ATAPI_DIOW

ADSP-BF54x Blackfin Processor Hardware Reference 21-3

ATAPI Interface

Table 21-1 lists the signal pins for the ATAPI block.

Table 21-1. ATAPI Signals Summary

Signal Dir Description

ATAPI_CS1–0 O Chip select signals from the host used to select the command block or
control block registers. When ATAPI_DMACK is asserted, ATAPI_CS1–0 is
negated and transfers are 16 bits wide.

ATAPI_A2-0 O This is a 3-bit binary code address asserted by the host to access the reg-
ister or data port in the device.

ATAPI_DIOR
ATAPI_HDMARDY
ATAPI_HSTROB
E

O ATAPI_DIOR is the strobe signal asserted by the host to read the device
register or data port.

ATAPI_DIOW
ATAPI_STOP

O ATAPI_DIOW is the strobe signal asserted by the host to write the device
register or data port

ATAPI_DMACK O This signal is used in response to ATAPI_DMARQ to initiate DMA trans-
fers

ATAPI_DMARQ I Asserted by the device during DMA transfers and held until acknowl-
edged by the host via ATAPI_DMACK. The host can pause the DMA trans-
fer by deasserting ATAPI_DMARQ. At the same time, ATAPI_DMACK
can be continuously asserted if more DMA data is available from the
host.

ATAPI_INTRQ I Used by the selected device to interrupt the host when interrupt is pend-
ing.

ATAPI_IORDY
ATAPI_DDMARDY
ATAPI_DSTROB
E

I The device can create wait state when it is not ready to respond for any
host register access (read or write).

ATAPI_RESET O Used by the host as a hard reset to reset the devices connected on the
ATAPI bus.

ATAPI_D15–0 I/
O

Data Bus for ATAPI interface

ATAPI_PDIAG I Used to determine if an 80-pin cable is connected to the host.

Description of Operation

21-4 ADSP-BF54x Blackfin Processor Hardware Reference

Description of Operation
The complete set of ATAPI commands (80) can be categorized into the
following transfer types:

• Programmable IO

• Device register IO

• Multi-word DMA mode

Host PIO/Register Transfers
A write or a read from an address in the 0x00 to 0x0F range to the
ATAPI_DEV_ADDR register with PIO_START set initiates a PIO or a Register
transfer. For address 0x00, PIO data port transfers are initiated; whereas
for all other address values, a register access transfer is initiated.

The sequence of operation for any register transfer is as follows:

• Program the PIO and register timing registers based on the mode
supported by device (decoded by IDENTIFY DEVICE COMMAND)

• For device register write

• Program the ATAPI_DEV_TXBUF register with write data (to be
written into the device).

• Program the ATAPI_DEV_ADDR register with address of the
device register (0x01 to 0x0F).

• Set the appropriate interrupt mask (PIO_DONE_INT) in the
ATAPI_INT_MASK register to enable interrupts.

• Program the ATAPI_CONTROL register with XFER_DIR set to
write (1) and PIO_START set to 1.

ADSP-BF54x Blackfin Processor Hardware Reference 21-5

ATAPI Interface

• Wait for the interrupt to indicate the end of the transfer.

• Alternately, the software can poll the PIO_XFER_ON bit in
ATAPI_STATUS register to wait for the completion of the
transfer.

• For device register read

• Program the ATAPI_DEV_ADDR register with address of device
register (0x01 to 0x0F)

• Set the appropriate interrupt mask (PIO_DONE_INT) in the
ATAPI_INT_MASK register to enable interrupts.

• Program the ATAPI_CONTROL register with XFER_DIR bit set to
read (0) and PIO_START set to 1.

• Wait for the interrupt to indicate the end of the read
operation.

• Alternatively, the software can poll the PIO_XFER_ON bit in
ATAPI_STATUS register to wait for the completion of the
transfer.

• Read the ATAPI_DEV_RXBUF register to obtain the device reg-
ister value.

PIO Data-Out Transfers (Device Write)

This class includes the following commands:

• CFA WRITE MULTIPLE WITHOUT ERASE

• CFA WRITE SECTORS WITHOUT ERASE

• DOWNLOAD MICROCODE

• SECURITY DISABLE PASSWORD

Description of Operation

21-6 ADSP-BF54x Blackfin Processor Hardware Reference

• SECURITY ERASE UNIT

• SECURITY SET PASSWORD

• SECURITY UNLOCK

• WRITE BUFFER

• WRITE MULTIPLE

• WRITE SECTOR(S)

Execution of this class of command includes transfer of one or more
blocks of data from host to device (See Figure 21-2).

A basic PIO data-out command protocol involves the following sequence:

• Program the ATAPI_XFER_LEN register with the number of ATA
words (1 sector = 256 ATA words) to be transfer. The following
sequence is required on interrupt: (1) set ATAPI_DEV_TXBUF with the
next word to transfer; (2) reset PIO_START to 1. This is similar with
the PIO read sequence except that the ATAPI_DEV_RXBUF is read
after each interrupt.

• Program the ATAPI_DEV_ADDR register with device PIO data port
address (0x00).

• Program the ATAPI_CONTROL register with XFER_DIR bit to write (1).

• Set the ATAPI_DEV_TXBUF register with the first word to transfer.

• Enable the appropriate interrupt (PIO_DONE_INT) in the
ATAPI_INT_MASK register.

• Set the ATAPI_DEV_TXBUF register with the first word to transfer.

• Set PIO_START to 1 to start the PIO transfer.

ADSP-BF54x Blackfin Processor Hardware Reference 21-7

ATAPI Interface

• Wait for the interrupt to indicate the completion of the PIO
transfer.

• Alternatively, the software can poll the PIO_XFER_ON bit in
ATAPI_STATUS register to wait for the completion of the transfer.

Figure 21-2. PIO Data-Out Protocol State Machine (Device Write)

IDLE

CMD TO DEVICE SELECTED

BSY=0, DRQ=0, AND DEVICE NOT SELECTED

WRITE

WRITE

CHECK

DATA REG
TRANSFER

INTRQ_WAIT

SELECT

SECTOR COUNT, FEATURES,

COMMAND OPCODE

BSY=0,

ATAPI_INTRQ

BSY=0, DATA REG WRITTTEN

STATUS

CHECK
STATUS

PARAMETERS

COMMAND

DATA

DEVICE

INITIATE

DEVICE
SELECTED

LBA(H), LBA(M), LBA(LOW)

DRQ=0

DATA REGISTER WRITTEN
AND DATA FOR THE

COMMAND TRANSFERRED

DRQ=1

ASSERTED

AND DRQ DATA BLOCK
TRANSFERRED

 WRITTEN AND
 DRQ DATA BLOCK

AND NIEN=0

 TRANSFERRED AND NIEN=1

Description of Operation

21-8 ADSP-BF54x Blackfin Processor Hardware Reference

PIO Data-In Transfers (Device Read)

This class includes:

• CFA TRANSLATE SECTOR

• IDENTIFY DEVICE

• IDENTIFY PACKET DEVICE

• READ BUFFER

• READ MULTIPLE

• READ SECTOR (S)

• SMART READ DATA

Execution of this class of command includes transfer of one or more
blocks of data from device to the host (See Figure 21-3).

A basic PIO data-in command protocol transfer involves the following
sequence:

• Program the ATAPI_XFER_LEN register with number of ATA words
(1 sector = 256 ATA words) that need to be transferred.

• Program the ATAPI_DEV_ADDR register with device PIO data port
address (0x00).

• Program the ATAPI_CONTROL register with XFER_DIR bit set to read
(0).

• Enable the appropriate interrupt (PIO_DONE_INT) in the
ATAPI_INT_MASK register.

• Set the ATAPI_DEV_RXBUF register with the first word to transfer.

• Set PIO_START to 1 to start PIO transfer.

ADSP-BF54x Blackfin Processor Hardware Reference 21-9

ATAPI Interface

Figure 21-3. PIO Data-In State Machine (Device Read)

IDLE

CMD TO DEVICE SELECTED

BSY=0, DRQ=0, AND DEVICE NOT SELECTED

WRITE

WRITE

CHECK

TRANSFER

INTRQ_WAIT

SELECT

WRITE SC, LBA(H), LBA(M), LBA(LOW)

BSY=0,

BSY=0,

STATUS

CHECK
STATUS

PARAMETERS

COMMAND

DATA

DEVICE

INITIATE

DEVICE
SELECTED

DRQ=0

DRQ=1

DATA REGISTER READ
AND ALL DATA FOR

COMMAND COMPLETE

ERROR
RECOVERY

DATA REGISTER READ
 AND DRQ DATA BLOCK

 TRANSFERRED AND ALL
 DATA FOR COMMAND NOT
TRANSFERRED AND NIEN=1

DATA REGISTER READ
 AND DRQ DATA BLOCK

 TRANSFERRED AND ALL
 DATA FOR COMMAND NOT
TRANSFERRED AND NIEN=0

PIO
READ

WAIT ON ATAPI_INTRQ

READ
STATUS REG

Description of Operation

21-10 ADSP-BF54x Blackfin Processor Hardware Reference

• Wait for the interrupt to indicate the completion of the PIO
transfer.

• Alternatively, the software can poll the PIO_XFER_ON bit in
ATAPI_STATUS register to wait for the completion of the transfer.

Host Multiword DMA Transfers
This class includes:

• READ DMA

• WRITE DMA

Execution of this class of command includes the transfer of one or more
blocks of data from the host to device or device to host using multi DMA
command protocol. The host should initialize the DMA channel prior to
transferring data by executing SET_FEATURE command.

A single interrupt is issued by the device at the completion of successful
transfer of all data required by the command or when the transfer is
aborted due to error, whereas in case of PIO command protocol transfers,
interrupt is issued after the end of every DRQ block of data transfer.

Each operation involves the following sequence:

• Program the multiword DMA Timing Registers (Based on the
mode detected by IDENTIFY DEVICE command).

• For a block of DMA data write transfer.

• Program ATAPI_XFER_LEN register with the number of ATA
words to be transferred.

• Program ATAPI_CONTROL register with XFER_DIR bit set to
write (1).

ADSP-BF54x Blackfin Processor Hardware Reference 21-11

ATAPI Interface

• Set the appropriate interrupt mask (MULTI_DONE_INT) in the
ATAPI_INT_MASK register to enable interrupts.

• Set MULTI_START bit to 1.

• Wait for the interrupt to indicate the completion of the
transfer.

• For a block of DMA data read transfer.

• Program ATAPI_XFER_LEN register with number of ATA
words to be transferred.

• Program ATAPI_CONTROL register with XFER_DIR bit set to
read (0).

• Set the appropriate interrupt mask (MULTI_DONE_INT) in the
ATAPI_INT_MASK register to enable interrupts.

• Set MULTI_START bit to 1.

• Wait for the interrupt to indicate the end of the transfer.

For second device: Reprogram the DMA Timing Registers, select the sec-
ond device by writing in to device register and start DMA read/write
operations.

Description of Operation

21-12 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 21-4. Host DMA State Machine

IDLE

CMD TO DEVICE SELECTED

BSY=0, DRQ=0, AND DEVICE NOT SELECTED

WRITE

WRITE

CHECK

TRANSFER

INTRQ_WAIT

SELECT

SECTOR COUNT, FEATURES,

COMMAND OPCODE

BSY=0,

ATAPI_INTRQ

STATUS

CHECK
STATUS

PARAMETERS

COMMAND

DATA

DEVICE

INITIATE

DEVICE
SELECTED

LBA(H), LBA(M), LBA(LOW)

DRQ=0

ASSERTED

BSY=0, DRQ=1,
AND ATAPI_DMARQ=1

 OR
BSY=1, DRQ=0

AND ATAPI_DMARQ=1

ALL DATA

ALL DATA FOR COMMAND
TRANSFERRED AND NIEN=1 OR

DMA BURST TERMINATED

 FOR COMMAND
 TRANSFERRED

AND MORE DATA TO TRANSFER

 AND NIEN=0

ADSP-BF54x Blackfin Processor Hardware Reference 21-13

ATAPI Interface

Host Pausing the Multi-DMA Transfer

The ATAPI host pauses any current multi-DMA transfer when data may
not be immediately available from the system. This is accomplished by not
generating further ATAPI_DIOR/ATAPI_DIOW pulses and at same time keep-
ing the ATAPI_DMACK asserted so that the device does not go for
termination. Once the host is ready, it starts the remaining transfers by
generating the ATAPI_DIOW/ATAPI_DIOR pulses.

Host Terminating the Multi DMA Transfer

The host can terminate the current multi-DMA data transfer (based on
detecting that the current on-going transfer is erroneous) before data
transfer is completed by setting the ATAPI_TERMINATE register bit. The
ATAPI host initiates the termination by negating ATAPI_DMACK within tJ
after an ATAPI_DIOR/ATAPI_DIOW pulse. If the device is able to continue the
transfer of data, the device may leave ATAPI_DMARQ asserted and wait for
the host to reassert ATAPI_DMACK or may negate ATAPI_DMARQ at any time
after detecting that ATAPI_DMACK is negated.

The ATAPI host needs to check the ATAPI_DMARQ line status in the
ATAPI_LINE_STATUS register before issuing any new command. If it detects
that the device is still waiting for the ATAPI_DMACK to assert for the current
transfer, the ATAPI host should either soft reset or hard reset the device.

Device Pausing the Multi-DMA Transfer

To pause the multi-DMA burst, the device negates the ATAPI_DMARQ line
within tL after assertion of the current ATAPI_DIOR/ATAPI_DIOW pulse. In
multiword DMA mode, the device uses the same mechanism (negating
ATAPI_DMARQ line) to indicate a pause or a termination. The ATAPI host
by default gives control back to the firmware by generating a
MULTI_TERM_INT interrupt. It is the responsibility of the firmware to deter-
mine if the transfer is paused or terminated.

Description of Operation

21-14 ADSP-BF54x Blackfin Processor Hardware Reference

The number of pause interrupts to service can be reduced considerably by
setting the END_ON_TERM bit in the ATA_CONTROL register to 1. This allows
the ATAPI host to go into a pause state until the device is ready to transfer
the data.

If the Host Automatic Pause Handling is not used, the user needs to
restart the multiword DMA transfer by setting MULTI_START to 1 to con-
tinue the transfer after determining that the device has paused.

 When using the END_ON_TERM bit, it is mandatory to request and
interrupt from the device by setting the nIEN bit. This enables
catching any error conditions that might occur during a multiword
transfer.

Once the device asserts back the ATAPI_DMARQ, the host restarts generating
ATAPI_DIOW/ATAPI_DIOR pulses and completes the transfer of the remain-
ing blocks of data.

Device Terminating the Multi-DMA Transfer

To terminate the multi-DMA burst, the device negates the ATAPI_DMARQ
within tL after the assertion of the current ATAPI_DIOR/ATAPI_DIOW pulse.
The last word for the burst is then transferred by the negation of the cur-
rent ATAPI_DIOR or ATAPI_DIOW pulse. If all the data for the command has
not been transferred, the device re-asserts ATAPI_DMARQ again at any later
time to resume multi-DMA operation. Under this condition, the ATAPI
host goes into pause state waiting for the ATAPI_DMARQ line to be asserted.
The ATAPI host can wait for a certain period and terminate the DMA
transfer by setting ATAPI_TERMINATE register bit or by a soft reset of the
ATAPI state machine by setting the SOFT_RESET register bit. After setting
these bits, the host should check back to see if the ATAPI_TERMINATE regis-
ter bit got cleared.

ADSP-BF54x Blackfin Processor Hardware Reference 21-15

ATAPI Interface

Host Ultra DMA Command Protocol Transfers
The Ultra DMA transfers are similar to DMA transfers with respect to the
host software. It is only the hardware timing specification and signal-level
handshaking protocol within the device that is different.

The sequence of operation for Ultra DMA transfers is:

• Program the Ultra DMA timing registers with the mode supported
by the device (decoded after the INDENTIFY DEVICE
command)

• For Ultra DMA data-out (Device Writes)

• Program the ATAPI_XFER_LEN register with the number of
ATA words to be transferred.

• Set the appropriate interrupt mask (ULTRA_OUT_DONE_INT) in
the ATAPI_INT_MASK register to enable interrupts.

• Program the ATAPI_CONTROL register with the XFER_DIR bit
set to write (1) and ULTRA_START set to 1.

• Wait for the interrupt to indicate the end of the transfer.

• For Ultra DMA data-in (Device Reads)

• Program the ATAPI_XFER_LEN register with the number of
ATA words to be transferred.

• Set the appropriate interrupt mask (ULTRA_OUT_DONE_INT) in
the ATAPI_INT_MASK register to enable interrupts.

• Program the ATAPI_CONTROL register with the XFER_DIR bit
set to read (0) and ULTRA_START set to 1.

• Wait for the interrupt to indicate the end of the transfer.

Description of Operation

21-16 ADSP-BF54x Blackfin Processor Hardware Reference

Host Pausing the Ultra DMA Data-In Transfer

The ATAPI host pauses any current Ultra DMA transfer when data may
not be immediately available from the system. The ATAPI host pauses the
Ultra DMA data-in transfers by negating ATAPI_HDMARDY. The device stops
generating the ATAPI_DSTROBE edges with in tRFS -(75ns mode0 to 50ns
mode2) of the host negating ATAPI_HDMARDY. After this host waits for
another zero, one, two, or three additional data words and then releases
the ATAPI_DD data pins by three-stating it. The additional data words are a
result of cable round trip delay and tRFS timing for the device.

According to the specification, the host should never pause an Ultra DMA
burst until at least one data word of an Ultra DMA burst is transferred.

Host Terminating the Ultra DMA Data-In Transfer

The host terminates the current Ultra DMA data-in transfer (based on
detecting that the current on going transfer is erroneous) before the trans-
fer is completed by setting the ATAPI_TERMINATE register bit. The ATAPI
host initiates Ultra DMA burst termination by negating ATAPI_HDMARDY
and following the sequence as given in Specification Sec 9.13.4.2 of
ATAPI 4.0. The turn around time for complete termination can vary
depending on the device behavior, as the host should be able to receive
zero, one, and two additional data words after negating ATAPI_HDMARDY.

According to the specification, the host should never initiate Ultra DMA
burst termination until at least one data word of Ultra DMA burst is
transferred.

Device Pausing the Ultra DMA Data-In Transfer

The device can pause the Ultra DMA data-in burst by not generating
additional ATAPI_DSTROBE edges.

ADSP-BF54x Blackfin Processor Hardware Reference 21-17

ATAPI Interface

Device Terminating the Ultra DMA Data-In Transfer

The device can terminate the Ultra DMA data-in burst sequence before
the data for the current command is complete. This causes the
ULTRA_IN_TERMINATED bit to set in the ATAPI_INT_STATUS register. This
event is to be transferred to higher layer software, which can be validated
by reading the device error register.

Host Pausing Ultra DMA Data-Out Transfer

The ATAPI host pauses the Ultra DMA data-out transfers by not generat-
ing ATAPI_HSTROBE edges and three-stating the ATAPI_Dx data pins in
response to PIN release for higher priority peripherals. At same time, the
ATAPI host keeps the ATAPI_DMACK asserted and the HSTOP de-asserted.
This should not make the device start a termination sequence, as the
ATAPI_DMACK is still kept asserted.

Host Terminating Ultra DMA Data-Out Transfer

The host terminates the current Ultra DMA data-out transfer before the
transfer is completed by setting the TERMINATE bit in the ATAPI_CONTROL
register. The ATAPI host starts the termination sequence by not generat-
ing ATAPI_HSTROBE edges, followed by asserting HSTOP, followed by
de-asserting ATAPI_DMACK.

Device Pausing the Ultra DMA Data-Out Transfer

The device can pause an Ultra DMA data-out burst by negating
ATAPI_DDMARDY. The ATAPI host enters into a pause state and waits until
the device asserts ATAPI_DDMARDY.

Functional Description

21-18 ADSP-BF54x Blackfin Processor Hardware Reference

Device Terminating the Ultra DMA Data-Out Transfer

The device terminates the Ultra DMA data-out sequence by negating
ATAPI_DDMARDY before complete data is transferred and then negating
ATAPI_DMARQ after tRP. The ATAPI host enters the pause state once it sees
the ATAPI_DDMARDY getting de-asserted. During pause state, if it sees the
ATAPI_DMARQ getting de-asserted, it goes into the termination sequence.
This results in the ULTRA_OUT_TERMINATED bit getting set in
ATAPI_INT_STATUS register.

Functional Description
The following sections describe the function of the various protocols and
functions in the ATAPI controller. For more detailed information on
exact timing parameters, refer to the ATA/ATAPI-6 Specification and
ADSP-BF542/544/547/548/549 Embedded Processor Data Sheet.

Power-on and Hardware Reset Protocol
The ATAPI host can use the DEV_RST bit in the ATAPI_CONTROL register to
drive the ATAPI_RESET pin of the device. When the ATAPI_RESET signal is
asserted, the connected devices execute the hardware reset protocol. The
host should respond as described below:

1. Assert ATAPI_RESET for at least 25 µs by writing a value of 1 to the
DEV_RST bit (can use one of the system timers).

2. Negate ATAPI_RESET by writing a 0 to the DEV_RST bit and wait at
least 2ms.

3. Read the device status register or the alternate status register.

4. Wait for the busy flag (BSY) to be cleared.

ADSP-BF54x Blackfin Processor Hardware Reference 21-19

ATAPI Interface

5. Perform an IDENTIFY DEVICE or IDENTIFY PACKET
DEVICE command for each connected device.

6. Read the device parameters from each connected device.

7. Program the ATAPI host’s timing registers depending on the data
read from the device(s).

Device Selection Protocol
Before issuing any command to a device except the DEVICE RESET
command, the host should ensure that the selected device is no longer
busy, select the desired device, and insure that it is ready to accept a com-
mand. Figure 21-6 below describes the protocol for device selection.

Figure 21-5. Power-On and Hardware Reset Protocol

IDLE

ASSERT

NEGATE

CHECK READ STATUS/

BSY=0

STATUS

ATAPI_RESET

WAIT

ALT STATUS REG

BSY=1

ASSERT ATAPI_RESET,
NEGATE ATAPI_CS1–0,

ATAPI_A2-0, ATAPI_DMACK,
ATAPI_DIOR, ATAPI_DIOW,
AND RELEASE ATAPI_D15–0

NEGATE

HOST WANTS
RESET OR
POWER ON

ATAPI_RESET

Functional Description

21-20 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 21-6. Device Selection Protocol

START

READ

WRITE

HOST:

YES

BSY=0

STATUS

DEVICE VALUE

NO

HOST WANTS
RESET OR
POWER ON

HOST: READ STATUS
OR ALTERNATE

DRQ=0
?

HOST: WRITE THE
DEVICE/HEAD REGISTER

 WITH APPROPRIATE
DEV BIT VALUE

READ
STATUS

HOST: READ STATUS
OR ALTERNATE

HOST:

YES

BSY=0 NO

DRQ=0
?

END

STATUS REGISTER

STATUS REGISTER

ADSP-BF54x Blackfin Processor Hardware Reference 21-21

ATAPI Interface

Programmed I/O (PIO)
A write to or a read from an address in the 0x00 to 0x0F range initiates a
PIO write or read transfer respectively. The PIO registers of the device are
mapped into this range. When the core detects a read or write access in
this address range, with the PIO_START bit set, it executes a PIO Transfer
cycle or Device IO register transfer cycle as shown in Figure 21-7. The fol-
lowing notes apply to Figure 21-7.

• ADDR consists of signals: ATAPI_CS1–0 and ATAPI_A2-0.

• DATA consists of ATAPI_D15–0 for all devices except devices imple-
menting the CFA feature set when 8-bit transfers are enabled. In
that case, DATA consists of ATAPI_D7–0.

• The negation of ATAPI_IORDY by the device is used to extend the
PIO cycle. The determination of whether the cycle is to be
extended is made by the host after tA from the assertion of
ATAPI_DIOR or ATAPI_DIOW. The assertion and negation of
ATAPI_IORDY are described in the following three cases:

• Device never negates ATAPI_IORDY, devices keep
ATAPI_IORDY released: no wait is generated.

• Device negates ATAPI_IORDY before tA, but causes
ATAPI_IORDY to be asserted before tA. ATAPI_IORDY is
released prior to negation and may be asserted for no more
than 5 ns before release: no wait is generated.

• Device negates ATAPI_IORDY before tA. ATAPI_IORDY is
released prior to negation and may be asserted for no more
than 5 ns before release: wait is generated. The cycle com-
pletes after ATAPI_IORDY is reasserted. For cycles where a
wait is generated and ATAPI_DIOR is asserted, the device
places read data on ATAPI_D7–0 for the tRD before asserting
ATAPI_IORDY.

Functional Description

21-22 ADSP-BF54x Blackfin Processor Hardware Reference

• ATAPI_DMACK is negated during a PIO data transfer.

Host Multi DMA Block Implementation
The ATAPI device initiates a multi DMA transfer by asserting the
ATAPI_DMARQ line. It does so in response to READ DMA, WRITE DMA,
READ DMA QUEUED, WRITE DMA QUEUED and PACKET com-
mands. When the multiword DMA timing registers are programmed, and
the MULTI_START bit is set, the host responds to the assertion of
ATAPI_DMARQ by starting a multi DMA transfer cycle as shown in

Figure 21-7. PIO Data Transfer to/from the Device Timing Diagram

ADDR3–1

WRITE
ATAPI_D15–0
ATAPI_D7–0

READ
ATAPI_D15–0
ATAPI_D7–0

ATAPI_IORDY

ATAPI_IORDY

ATAPI_IORDY

tA

ATAPI_IORDY

SETUP

ATAPI_DIOR/
ATAPI_DIOW

ADSP-BF54x Blackfin Processor Hardware Reference 21-23

ATAPI Interface

Figure 21-8. Either the device or the host can terminate the transfer cycle.
The device terminates the cycle by negating ATAPI_DMARQ; the host termi-
nates the cycle by negating ATAPI_DMACK.

The direction of the data transfer is controlled by the command issued to
the ATAPI devices and the XFER_DIR bit in the ATAPI_CONTROL register.
When set (1), the core’s response is a multi-DMA write cycle. When
cleared (0), the core’s response is a multi-DMA read cycle.

Setting the XFER_DIR bit to write (1) while a READ DMA (QUEUED)
command is issued or setting the XFER_DIR bit to read (0) while a WRITE
DMA (QUEUED) command is issued can lead to unpredictable results
and a deadlock condition (see Figure 21-9).

Figure 21-8. Initiating a Multiword DMA Burst

ATAPI_CS1–0

ATAPI_DMARQ

ATAPI_DMACK

ATAPI_DIOR/

READ

WRITE

ATAPI_D15–0

ATAPI_D15–0

ATAPI_DIOW

ATAPI_DMACK TO
ATAPI_DIOR

DATA
SETUP

READ/WRITE
DATA
HOLD

ATAPI_DIOW
SETUP

Functional Description

21-24 ADSP-BF54x Blackfin Processor Hardware Reference

Table 21-2. Multiword DMA Transfer Timing Table

Multiword DMA Timing Parameters

t0 Cycle time1

tD ATAPI_DIOR/ATAPI_DIOW asserted pulse width1

tE ATAPI_DIOR data access

tF ATAPI_DIOR data hold

tG ATAPI_DIOR/ATAPI_DIOW data setup

tH ATAPI_DIOW data hold

tI ATAPI_DMACK to ATAPI_DIOR/ATAPI_DIOW setup

tJ ATAPI_DIOR/ATAPI_DIOW to ATAPI_DMACK hold

tKR ATAPI_DIOR negated pulse width1

tKW ATAPI_DIOW negated pulse width1

tLR ATAPI_DIOR to ATAPI_DMARQ delay

tLW ATAPI_DIOW to ATAPI_DMARQ delay

tM ATAPI_CS1–0 valid to ATAPI_DIOR/ATAPI_DIOW

tN ATAPI_CS1–0 hold

tZ ATAPI_DMACK to read data released

1 For exact timing information, refer to the ATA/ATAPI-6 Specification and AD-
SP-BF542/544/547/548/549 Embedded Processor Data Sheet.

ADSP-BF54x Blackfin Processor Hardware Reference 21-25

ATAPI Interface

To terminate the data burst, the device negates the ATAPI_DMARQ within tL
of the assertion of the current ATAPI_DIOR or ATAPI_DIOW pulse. The last
data word for the burst is then transferred by the negation of the current
ATAPI_DIOR or ATAPI_DIOW pulse. If all data for the command has not been
transferred, the device re-asserts the ATAPI_DMARQ again at a later time to
resume the DMA operation as shown in Figure 21-10.

Figure 21-9. Sustaining a Multiword DMA Data Burst

ATAPI_DIOR

ATAPI_DIOW
DATA HOLD

ATAPI_CS1–0

ATAPI_DMARQ

ATAPI_DMACK

READ

WRITE

ATAPI_D15–0

ATAPI_D15–0

ATAPI_DIOR

ATAPI_DIOR/
ATAPI_DIOW

ATAPI_DIOW
DATA SETUP

ATAPI_DIOW
DATA SETUP

ATAPI_DIOR

ATAPI_DIOW
DATA HOLD

ATAPI_DIOR

Functional Description

21-26 ADSP-BF54x Blackfin Processor Hardware Reference

To terminate the transmission of a data burst, the host negates
ATAPI_DMACK within tJ after a ATAPI_DIOR or ATAPI_DIOW pulse. No further
ATAPI_DIOR or ATAPI_DIOW pulses are asserted for this burst. If the device is
able to continue the transfer of data, the device leaves the ATAPI_DMARQ
asserted and waits for the host to re-assert ATAPI_DMACK or negates
ATAPI_DMARQ at any time after detecting that ATAPI_DMACK is negated.

Figure 21-10. Device Terminating a Multiword DMA Burst

ATAPI_CS1–0

ATAPI_DMARQ

ATAPI_DMACK

ATAPI_DIOR/

READ

WRITE

ATAPI_D15–0

ATAPI_D15–0

ATAPI_DIOW

ATAPI_DIOR / ATAPI_DIOW
TO ATAPI_DMARQ DELAY

ADSP-BF54x Blackfin Processor Hardware Reference 21-27

ATAPI Interface

Host Ultra DMA Block Implementation
The following steps occur during Ultra DMA-IN transfers.

Initiating an Ultra DMA Data-In Burst

1. The host keeps ATAPI_DMACK in the negated state before an Ultra
DMA burst is initiated.

2. The device asserts ATAPI_DMARQ to initiate an Ultra DMA burst
when ATAPI_DMACK is negated. After assertion of ATAPI_DMARQ the
device does not negate ATAPI_DMARQ until after the first negation of
ATAPI_DSTROBE.

3. Steps (c), (d), and (e) may occur in any order or at the same time.
The host asserts ATAPI_STOP.

4. The host negates ATAPI_HDMARDY.

Figure 21-11. Host Terminating a Multiword DMA

ATAPI_CS1–0

ATAPI_DMARQ

ATAPI_DMACK

ATAPI_DIOR/

READ

WRITE

ATAPI_D15–0

ATAPI_D15–0

ATAPI_DIOW

ATAPI_DIOR / ATAPI_DIOW
TO ATAPI_DMACK HOLD

Functional Description

21-28 ADSP-BF54x Blackfin Processor Hardware Reference

5. The host negates ATAPI_CS1–0 and ADDR3–1. The host keeps
ATAPI_CS1–0 and ADDR3–1 negated until after negating ATAPI_DMACK
at the end of the burst.

6. Steps (c), (d), and (e) occurred at least tACK before the host asserts
ATAPI_DMACK. The host keeps ATAPI_DMACK asserted until the end of
an Ultra DMA burst.

7. The host releases D15–0 within tAZ after asserting ATAPI_DMACK.

8. The device may assert ATAPI_DSTROBE tZIORDY after the host has
asserted ATAPI_DMACK. Once the device has driven ATAPI_DSTROBE
the device does not release ATAPI_DSTROBE until after the host has
negated ATAPI_DMACK at the end of an Ultra DMA burst.

9. The host negates ATAPI_STOP and assert ATAPI_HDMARDY within
tENV after asserting ATAPI_DMACK. After negating ATAPI_STOP and
asserting ATAPI_HDMARDY, the host does not change the state of
either signal until after receiving the first negation of
ATAPI_DSTROBE from the device (for example, after the first data
word is received).

10.The device drives ATAPI_D15–0 no sooner than tZAD after the host
has asserted ATAPI_DMACK, negated ATAPI_STOP, and asserted
ATAPI_HDMARDY.

11.The device drives the first word of the data transfer onto D15–0.
This step may occur when the device first drives D15–0 in step (j).

12.To transfer the first word of data the device negates ATAPI_DSTROBE
within tFS after the host has negated ATAPI_STOP and asserted
ATAPI_HDMARDY. The device negates ATAPI_DSTROBE no sooner than
tDVS after driving the first word of data onto ATAPI_D15–0.

ADSP-BF54x Blackfin Processor Hardware Reference 21-29

ATAPI Interface

In Figure 21-12, the definitions for the ATAPI_DIOW, ATAPI_STOP,
ATAPI_DIOR, ATAPI_HDMARDY, ATAPI_HSTROBE, ATAPI_IORDY,
ATAPI_DDMARDY, and ATAPI_DSTROBE signal lines are not in effect until
ATAPI_DMARQ and ATAPI_DMACK are asserted.

In Figure 21-13, the ATAPI_D15–0 and ATAPI_DSTROBE signals are shown at
both the host and the device to emphasize that cable settling time, as well
as cable propagation delay does not allow the data signals to be considered
stable at the host until some time after they are driven by the device. See
“Data-In Transfer” on page 21-30.

Figure 21-12. Initiating an Ultra DMA Data-In Burst

ATAPI_DMACK

API_STOP

ATAPI_HDMARDY

ATAPI_DSTROBE

ATAPI_ADDR3–1

ATAPI_D15–0

ATAPI_CS1–0

(DEVICE)

ATAPI_DMARQ
(DEVICE)

(HOST)

(HOST)

(HOST)

ATAPI_DMACK TOATAPI_DMACK
SETUP ATAPI_STOP/ATAPI_HDMARDY

Functional Description

21-30 ADSP-BF54x Blackfin Processor Hardware Reference

Data-In Transfer

1. The device drives a data word onto ATAPI_D15–0.

2. The device generates a ATAPI_DSTROBE edge to latch the new word
no sooner than tDVS after changing the state of ATAPI_D15–0. The
device generates a ATAPI_DSTROBE edge no more frequently than
tCYC for the selected Ultra DMA mode. The device does not gener-
ate two rising or two falling ATAPI_DSTROBE edges more frequently
than t2CYC for the selected Ultra DMA mode.

3. The device does not change the state of ATAPI_D15–0 until at least
tDVH after generating a ATAPI_DSTROBE edge to latch the data.

4. The device repeats steps (a), (b), and (c) until the Ultra DMA burst
is paused or terminated by the device or host.

Figure 21-13. Sustaining a Ultra DMA Data IN Burst

ATAPI_DSTROBE

ATAPI_D15–0

ATAPI_DSTROBE

ATAPI_D15–0

(at host)

(at device)

(at device)

(at host)

ADSP-BF54x Blackfin Processor Hardware Reference 21-31

ATAPI Interface

Device pausing an Ultra DMA Data-In Burst

1. The device does not pause an Ultra DMA burst until at least one
data word of an Ultra DMA burst is transferred.

2. The device pauses an Ultra DMA burst by not generating addi-
tional ATAPI_DSTROBE edges

3. The device resumes an Ultra DMA burst by generating a
ATAPI_DSTROBE edge.

Host pausing an Ultra DMA Data-In Burst

1. The host does not pause an Ultra DMA burst until at least one data
word of an Ultra DMA burst is transferred.

2. The host pauses an Ultra DMA burst by negating ATAPI_HDMARDY.

3. The device stops generating ATAPI_DSTROBE edges within tRFS of
the host negating ATAPI_HDMARDY.

4. When operating in Ultra DMA modes 2, 1, or 0, the host is pre-
pared to receive zero, one, or two additional data words after
negating ATAPI_HDMARDY. While operating in Ultra DMA modes 5,
4, or 3, the host can receive zero, one, two, or three additional data
words after negating ATAPI_HDMARDY. The additional data words are
a result of cable round trip delay and tRFS timing for the device.

5. The host resumes an Ultra DMA burst by asserting ATAPI_HDMARDY.

In Figure 21-14, the host may assert ATAPI_STOP to request termination of
the ultra DMA burst no sooner than tRP after ATAPI_HDMARDY is negated.
After negating ATAPI_HDMARDY, the host may receive zero, one, two, or
three more data words from the device.

Functional Description

21-32 ADSP-BF54x Blackfin Processor Hardware Reference

Ultra DMA Timing

Figure 21-14. Host Pausing an Ultra DMA Data-In Burst

Table 21-3. Ultra DMA Sender and Recipient Timing Parameters

Name Description

t2CYCTYP Typical sustained average two-cycle time

tCYC Cycle time allowing for asymmetry and clock variations (from STROBE edge to
STROBE edge)

t2CYC Two cycle time allowing for variations (from rising edge to next rising edge or from
falling edge to next falling edge of STROBE)

tDS Data setup time at recipient (from data valid until STROBE edge)1,2

tDH Data hold time at recipient (from STROBE edge until data may become invalid)1,2

tDVS Data valid setup time at sender (from data valid until STROBE edge)3

tDVH Data valid hold time at sender (from STROBE edge until data may become invalid)3

tCS CRC word setup time at device1

tCH CRC word hold time device1

tCVS CRC word valid setup time at host (from CRC valid until ATAPI_DMACK negation)3

ATAPI_DMACK

ATAPI_STOP

ATAPI_HDMARDY

ATAPI_DSTROBE

D15–0

(DEVICE)

ATAPI_DMARQ
(DEVICE)

(HOST)

(HOST)

(HOST)

READY-TO-FINAL
STROBE

ADSP-BF54x Blackfin Processor Hardware Reference 21-33

ATAPI Interface

tCVH CRC word valid hold time at sender (from DMAC negation until CRC may become

invalid)3

tZFS Time from STROBE output released-to-driving until the first transition of critical tim-
ing

tDZFS Time from data output released-to-driving until the first transition of critical timing

tFS First STROBE time (for device to first negate ATAPI_DSTROBE from ATAPI_STOP
during a data burst)

tLI Limited interlock time4

tMLI Interlock time with minimum4

tUI Unlimited interlock time4

tAZ Maximum time allowed for output drivers to release (from asserted or negated)

tZAH Minimum delay time required for output

tZAD Drivers to assert or negate (from released)

tENV Envelope time (from ATAPI_DMACK to ATAPI_STOP and ATAPI_HDMARDY during
data-in burst initiation and from ATAPI_DMACK to ATAPI_STOP during data-out
burst initiation)

tRFS Ready-to-final-STROBE time (no STROBE edges are sent this long after negation of
ATAPI_DDMARDY)

tRP Ready-to-pause time (that recipient waits to pause after negating ATAPI_DDMARDY)

tIORDYZ Maximum time before releasing ATAPI_IORDY

tZIORDY Minimum time before driving ATAPI_IORDY5

tACK Setup and hold times for ATAPI_DMACK (before assertion or negation)

tSS Time from STROBE edge to negation of ATAPI_DMARQ or assertion of ATAPI_STOP
(when sender terminates a burst)

tDSIC Recipient IC data setup time (from data valid until STROBE edge)6

tDH Recipient IC data hold time (from STROBE edge until data becomes invalid)6

Table 21-3. Ultra DMA Sender and Recipient Timing Parameters (Cont’d)

Name Description

Functional Description

21-34 ADSP-BF54x Blackfin Processor Hardware Reference

In Figure 21-15, the definitions for the ATAPI_STOP, ATAPI_HDMARDY, and
ATAPI_DSTROBE signal lines are not in effect after ATAPI_DMARQ and
ATAPI_DMACK are negated. See“Device Terminating the Ultra DMA
Data-In Transfer” on page 21-17

tDVS Sender IC data valid setup time (from data valid until STROBE edge)7

tDVH Sender IC data valid hold time (from STROBE edge until data becomes invalid)7

1 80-conductor cabling (see Annex A) IS required in order to meet setup (tDS,tCS) and hold
(tDH,tCH) time in modes greater than 2.

2 The parameters tDS and tDH for mode 5 are defined for a recipient at the end of the cable on line
in a configuration with one device at the end of the cable.

3 Timing for tDVS, tDVH, tCVS, and tCVH shall be met for lumped capacitive loads of 15 and 40 pF
at the connector where the Data and STROBE signals have the same capacitive load value. Due
to reflections on the cable, these timing measurements are not valid in a normally functioning
system.

4 The parameters tUI, tMLI and tLI indicate sender-to-recipient or recipient-to-sender interlocks.
For example, one agent (either sender or recipient) is waiting for the other agent to respond with
a signal before proceeding. tUI is an unlimited interlock that has no maximum time value. tMLI
is a limited time-out that has a defined minimum. tLI is a limited time-out that has a defined
maximum.

5 For all modes the parameter tZIORDY may be greater than tENV due to the fact that the host has
a pull-up on ATAPI_IORDY giving it a known state when released.

6 The correct data value is captured by the recipient given input data with a slew rate of 0.4 V/ns
(rising and falling) and the input STROBE with a slew rate of 0.4 V/ns (rising and falling) at
tDSIC and tDHIC timing (as measured through 1.5 V).

7 The parameters tDVSIC and tDVHIC are met for lumped capacitive loads of 15 and 40 pF at the
IC where all signals have the same capacitive load value. Noise that may couple onto the output
signals by external sources in a normally functioning system has not been included in these values.

Table 21-3. Ultra DMA Sender and Recipient Timing Parameters (Cont’d)

Name Description

ADSP-BF54x Blackfin Processor Hardware Reference 21-35

ATAPI Interface

In Figure 21-16, the definitions for the ATAPI_STOP, ATAPI_HDMARDY, and
ATAPI_DSTROBE signal lines are not in effect after ATAPI_DMARQ and
ATAPI_DMACK are negated. See “Host Terminating the Ultra DMA Data-In
Transfer” on page 21-16.

Figure 21-15. Device Terminating Ultra DMA Data-In Burst

ATAPI_DMACK

ATAPI_STOP

ATAPI_HDMARDY

ATAPI_DSTROBE

ADDR3–1

D15–0

ATAPI_CS1–0

(DEVICE)

ATAPI_DMARQ
(DEVICE)

(HOST)

(HOST)

(HOST)

ATAPI_DMARQ TO

ATAPI_STOP/ATAPI_HDMARDY

ATAPI_DSTROBE TO

INTERLOCK
TIME

ATAPI_DMARQ
NEGATION

Functional Description

21-36 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 21-16. Host Terminating Ultra DMA Data-In Burst

ATAPI_DMACK

ATAPI_STOP

ATAPI_HDMARDY

ATAPI_DSTROBE

ADDR3–1

D15–0

ATAPI_CS1–0

(DEVICE)

ATAPI_DMARQ
(DEVICE)

(HOST)

(HOST)

(HOST)

READY TO
PAUSE TIME

READY TO
FINAL STROBE

LIMITED
INTERLOCK

TIME

ADSP-BF54x Blackfin Processor Hardware Reference 21-37

ATAPI Interface

Ultra DMA-Out Timing

Figure 21-17. Initiating Ultra DMA Data-Out Burst

Figure 21-18. Sustaining Ultra DMA Data-Out Burst

ATAPI_DMACK

ATAPI_STOP

ATAPI_DDMARDY

ATAPI_HSTROBE

ADDR3–1

D15–0

ATAPI_CS1–0

(HOST)

ATAPI_DMARQ
(DEVICE)

(HOST)

(HOST)

(DEVICE)

(HOST)

LIMITED
INTERLOCK

TIME

UNLIMITED
INTERLOCK

TIME

ATAPI_HSTROBE

D15–0

ATAPI_HSTROBE

D15–0

(at device)

(at host)

(at host)

(at device)

DATA
SETUP

DATA
HOLD

Functional Description

21-38 ADSP-BF54x Blackfin Processor Hardware Reference

In Figure 21-20, the definitions for the ATAPI_STOP, ATAPI_DDMARDY, and
ATAPI_HSTROBE signal lines are no longer in effect after ATAPI_DMARQ and
ATAPI_DMACK are negated. See “Host Terminating Ultra DMA Data-Out
Transfer” on page 21-17.

Figure 21-19. Device Pausing Ultra DMA Data-Out Burst

ATAPI_DMACK

ATAPI_STOP

ATAPI_DDMARDY

ATAPI_HSTROBE

D15–0

(HOST)

ATAPI_DMARQ
(DEVICE)

(HOST)

(HOST)

(DEVICE)

READY-TO-FINAL
STROBE

ADSP-BF54x Blackfin Processor Hardware Reference 21-39

ATAPI Interface

In Figure 21-21, the definitions for the ATAPI_STOP, ATAPI_DDMARDY, and
ATAPI_HSTROBE signal lines are no longer in effect after ATAPI_DMARQ and
ATAPI_DMACK are negated. See “Device Terminating the Ultra DMA
Data-Out Transfer” on page 21-18.

Figure 21-20. Host Terminating Ultra DMA Data-Out Burst

ATAPI_DMACK

ATAPI_STOP

ATAPI_DDMARDY

ATAPI_HSTROBE

ADDR3–1

D15–0

ATAPI_CS1–0

(HOST)

ATAPI_DMARQ
(DEVICE)

(HOST)

(HOST)

(DEVICE)

ATAPI_DSTROBE TO
ATAPI_STOP
ASSERTION

LIMITED
INTERLOCK

ATAPI_DMACK
HOLD

Programming Model

21-40 ADSP-BF54x Blackfin Processor Hardware Reference

Programming Model
The following sections describe the ATAPI peripheral’s programming
model.

ATAPI Device Configuration and Setup
1. Detection of devices on ATAPI Cable

• Power-On–Reset protocol

• Execute device diagnostic command & hardware
initialization

• Read the device signature

Figure 21-21. Device Terminating Ultra DMA Data OUT Burst

ATAPI_DMACK

ATAPI_STOP

ATAPI_DDMARDY

_HSTROBE

ADDR3–1

D15–0

ATAPI_CS1–0

(HOST)

ATAPI_DMARQ
(DEVICE)

(HOST)

(HOST)

(DEVICE)

READY TO
PAUSE TIME

INTERLOCK TIME
WITH MINIMUM

LIMITED
INTERLOCK

TIME
ATAPI_DMACK

HOLD

ADSP-BF54x Blackfin Processor Hardware Reference 21-41

ATAPI Interface

2. Identifying the features of devices on ATAPI Cable

• Select each device & execute IDENTIFY DEVICE
Command

• Read the signature of each device and decode the features
supported

3. Selecting a Device, configuring the device and executing the
commands

• Select a device

• Configure the device with the mode supported (PIO, DMA,
ultra DMA)

• Prepare the device, deliver & execute the command.

The basic data flow operation from ATAPI host to ATAPI device is
described as follows:

• ATAPI host reads a pre-defined buffer descriptor, decodes it, and
gets the length and start address.

• Fetches the data and processes it.

• Selects a device by doing a register write transfer for setting the DEV
bit in the device control register.

• Writes all device command block parameters for the command
(such as, sector count, LBA, features, among others)

• Splits the complete data for the current command in terms of
DRQ blocks

Programming Model

21-42 ADSP-BF54x Blackfin Processor Hardware Reference

• Polls the device status register (BSY bit) to check if device is ready
for transfer (interrupt of device is disabled) or else waits for inter-
rupt (ATAPI_INTRQ) from device and then reads the status register.

• Triggers the ATAPI controller for DMA transfers equal to the
length of the DRQ block size to/from device data port (using
PIO/DMA/Ultra DMA transfers) or vice-versa. This is repeated
until all the data for the current command is completed.

Figure 21-22. ATAPI Device and Host Configuration

ATAPI DEVICE 0

CONTROL BLOCK

COMMAND BLOCK

SECTOR BUFFERSTORAGE MEMORYGND

DASP-

ATAPI HOST

ATAPI DEVICE 1

CONTROL BLOCK

COMMAND BLOCK

SECTOR BUFFERSTORAGE MEMORY

ATAPI_DD15–0CONTROL

CABLE
SELECT

CABLE
SELECT

ATAPI_PDIAG

ADSP-BF54x Blackfin Processor Hardware Reference 21-43

ATAPI Interface

PIO Data-out Transfers Pseudo-code
//Select the Device

Read Device register (Device Control, Dev bit);

If (not selected)

 Write device register (Device Control, Dev bit);

 Read Device register (Device Control, Dev bit);

// Initialize the Device parameters for the command

Write Device Parameters

 (Sector count Register: Command Data size;

 Feature Register: Specific Data;

 LBA High Register: yy;

 LBA Mid Register: xx;

 LBA Low Register: zz;

)

// Write Device Command

Write Device Register (Command Register, WRITE SECTOR);

// Start Data Transfer

 // Check if the device is ready for data transfer

 Check Device Register (Status Register, bsy=0, drq = 1);

 Start DMA (length: DRQ blockn, addr: x0,

pio_start: 1, xfer_dir: 1)

 Check Device Register (Status Register, bsy =0, drq =0);

// Command Completed

Programming Model

21-44 ADSP-BF54x Blackfin Processor Hardware Reference

Host Multiword DMA Transfers Pseudo-code
// Select the Device

Read Device register (Device Status);

If (not selected)

Write device register (Device Control, Dev bit);

Read Device register (Device Status);

// Initialize the Device parameters for the command

Write Device Parameters (Sector count Register: Command Data

size;

Feature Register: Specific Data;

LBA High Register: yy;

LBA Mid Register: xx;

LBA Low Register: zz;

)

// Write Device Command

Write Device Register (Command Register, WRITE DMA);

// Start Data Transfer

While (Data Transferred < command data size)

{

// Check the device is ready for data transfer

Check Device Register (Status Register, (bsy=0, drq = 1) or

(bsy=1,drq=0));

Start DMA (length: DRQ block1, addr: xxxx,

ultra_start: 1, xfer_dir: 1)

}

Wait for INTRQ_wait () // Host input flag checking

Check Device Register (Status Register, (bsy=0, drq = 0) ;

ADSP-BF54x Blackfin Processor Hardware Reference 21-45

ATAPI Interface

Host Ultra DMA Command Protocol Transfers
Pseudo-code

Prepare_device (cmd, length, tfr_type);

 {

device_register_write (sector_count_reg, length);

device_register_write (lbah_reg, lbah);

device_register_write (lbam_reg, lbam);

device_register_write (lbal_reg, lbal);

device_register_write (command_reg, cmd);

}

cur_len = length;

while(cur_len > cur_dmasize)

{

 {

 do_tx (cur_dmasize , cur_dmem_addr, tfr_type,

last_burst=0);

write_pio (DEV_ADDR, 0);

write_pio (DMEM_LEN, cur_dmasize);

write_pio (DMEM_ADDR, cur_dmem_addr);

write_pio (ATAPI_CONTROL,

xfer_dir_bit,ULTRA_OUT_START);

wait for ATAPI_DONE_FLAG;

}

 cur_len = cur_len – cur_dmasize);

 cur_dmem_addr = cur_dmem_addr + cur_dmasize;

}

 if (cur_len != 0)

 do_tx (cur_dmasize , cur_dmem_addr, tfr_type, last_burst=1);

ATAPI Registers

21-46 ADSP-BF54x Blackfin Processor Hardware Reference

ATAPI Registers
The ATAPI interface’s memory-mapped registers (MMRs) regulate its
operation. Descriptions and bit diagrams for each of these MMRs are pro-
vided in the following sections.

Table 21-4 lists the ATAPI memory-mapped registers, starting at base
address 0xFFC03800. Register addresses are given relative to the base
address.

Table 21-4. ATAPI Core Registers

Address Register Name Description

ATAPI Control Registers

 0xFFC0 3800 ATAPI_CONTROL “ATAPI Control (ATAPI_CONTROL) Reg-
ister” on page 21-49

 0xFFC0 3804 ATAPI_STATUS “ATAPI Status (ATAPI_STATUS) Register”
on page 21-51

 0xFFC0 3808 ATAPI_DEV_ADDR “ATAPI Device Address
(ATAPI_DEV_ADDR) Register” on
page 21-52

 0xFFC0
380C

ATAPI_DEV_TXBUF “ATAPI Device Transmit Buffer
(ATAPI_DEV_TXBUF) Register” on
page 21-53

 0xFFC0 3810 ATAPI_DEV_RXBUF “ATAPI Device Receive Buffer
(ATAPI_DEV_RXBUF) Register” on
page 21-54

 0xFFC0 3814 ATAPI_INT_MASK “ATAPI Interrupt Mask
(ATAPI_INT_MASK) Register” on
page 21-54

 0xFFC0 3818 ATAPI_INT_STATUS “ATAPI Interrupt Status
(ATAPI_INT_STATUS) Register” on
page 21-56

 0xFFC0
381C

ATAPI_XFER_LEN “ATAPI Transfer Length
(ATAPI_XFER_LEN) Register” on
page 21-58

ADSP-BF54x Blackfin Processor Hardware Reference 21-47

ATAPI Interface

 0xFFC0 3820 ATAPI_LINE_STATUS “ATAPI Line Status
(ATAPI_LINE_STATUS) Register” on
page 21-59

 0xFFC0 3824 ATAPI_SM_STATE “ATAPI State Machine Status
(ATAPI_SM_STATE) Register” on
page 21-59

 0xFFC0 3828 ATAPI_TERMINATE “ATAPI Host Terminate
(ATAPI_TERMINATE) Register” on
page 21-60

 0xFFC0
382C

ATAPI_PIO_TFRCNT “ATAPI PIO Transfer Count
(ATAPI_PIO_TFRCNT) Register” on
page 21-61

 0xFFC0 3830 ATAPI_DMA_TFRCNT “ATAPI Multiword DMA Transfer Count
(ATAPI_MULTI_TFRCNT) Register” on
page 21-61

 0xFFC0 3834 ATAPI_ULTRA_IN_TFRCNT “ATAPI Ultra DMA Transfer Count
(ATAPI_ULTRA_IN_TFRCNT) Register”
on page 21-62

 0xFFC0 3838 ATAPI_ULTRA_OUT_TFRCN
T

“ATAPI Ultra DMA OUT Transfer Count
(ATAPI_ULTRA_OUT_TFRCNT) Regis-
ter” on page 21-63

PIO and REG Mode Registers

 0xFFC0 3840 ATAPI_REG_TIM_0 “ATAPI Register Transfer Timing 0
(ATAPI_REG_TIM_0) Register” on
page 21-63

 0xFFC0 3844 ATAPI_PIO_TIM_0 “ATAPI Programmed I/O Timing 0
(ATAPI_PIO_TIM_0) Register” on
page 21-64

 0xFFC0 3848 ATAPI_PIO_TIM_1 “ATAPI Programmed I/O Timing 1
(ATAPI_PIO_TIM_1) Register” on
page 21-64

Table 21-4. ATAPI Core Registers (Cont’d)

Address Register Name Description

ATAPI Registers

21-48 ADSP-BF54x Blackfin Processor Hardware Reference

Multi-DMA Mode Registers

 0xFFC0 3850 ATAPI_MULTI_TIM_0 “ATAPI Multi DMA Timing 0
(ATAPI_MULTI_TIM_0) Register” on
page 21-65

 0xFFC0 3854 ATAPI_MULTI_TIM_1 “ATAPI Multi DMA Timing 1
(ATAPI_MULTI_TIM_1) Register” on
page 21-65

 0xFFC0 3858 ATAPI_MULTI_TIM_2 “ATAPI Multi DMA Timing 2
(ATAPI_MULTI_TIM_2) Register” on
page 21-66

Ultra-DMA Mode Registers

 0xFFC0 3860 ATAPI_ULTRA_TIM_0 “ATAPI Ultra DMA Timing 0
(ATAPI_ULTRA_TIM_0) Register” on
page 21-66

 0xFFC0 3864 ATAPI_ULTRA_TIM_1 “ATAPI Ultra DMA Timing 1
(ATAPI_ULTRA_TIM_1) Register” on
page 21-67

 0xFFC0 3868 ATAPI_ULTRA_TIM_2 “ATAPI Ultra DMA Timing 2
(ATAPI_ULTRA_TIM_2) Register” on
page 21-67

 0xFFC0
386C

ATAPI_ULTRA_TIM_3 “ATAPI Ultra DMA Timing 3
(ATAPI_ULTRA_TIM_3) Register” on
page 21-68

Table 21-4. ATAPI Core Registers (Cont’d)

Address Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference 21-49

ATAPI Interface

ATAPI Control and Status Registers
This section describes the details of the ATAPI core registers.

ATAPI Control (ATAPI_CONTROL) Register

The ATAPI_CONTROL register (see Figure 21-23) starts, stops, and selects
termination handling for ATAPI data transfers.

Figure 21-23. ATAPI Control Register

ATAPI Control Register (ATAPI_CONTROL)

Reset = 0x0000

Read/Write

 0xFFC03800

PIO_START (Start PIO/Reg Op)
0 - Complete data transferred to
 ATAPI device
1 - Starts the PIO/register op

MULTI_START (Start Multi DMA Op)
0 - Complete data transferred to
 ATAPI device
1 - Starts the multiword DMA op

XFER_DIR (Transfer Direction)
0 - Read from Device (dev to host)
1 - Write to Device (host to dev)

ULTRA_START (Start Ultra DMA Op)
0 - Complete data transferred to
 ATAPI device
1 - Starts the ultra DMA operation

IORDY_EN (IORDY Enable)
0 - Using PIO mode2 and below
1 - Using PIO mode3 and above

FIFO_FLUSH (Flush FIFOs)
0 - Enable buffers (second, to
 re-start transfers)
1 - Flush buffers (first)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ULTRA_IN_FIFO_THRS
(Ultra DMA-IN FIFO Threshold)
If the FIFO level reaches the thresh-
old value, the ultra DMA IN Engine
asserts ATAPI_HDMARDY

PIO_USE_DMA (PIO-DMA Enable)
0 - Disable PIO mode DMA
1 - Enable PIO mode to use DMA

TFRCNT_RST (Trans Count Reset)
0 - Cleared on cycle after reset (by hwr)
1 - Resets all the transfer counts

DETECT_TERM (End/Terminate Select)
0 - Flow terminate or Fatal Terminate
 (ATAPI firmware control)
1 - Pause/Re-start Flow
 (ATAPI state machine control)

DEV_RST (Device Reset)
0 - De-asserts the Reset to the
 Device
1 - Asserts Reset to the Device

SOFT_RST (Soft Reset)
0 - Enable state machines (second,
 to re-start transfers)
1 - Reset all state machines (first)

ATAPI Registers

21-50 ADSP-BF54x Blackfin Processor Hardware Reference

The PIO_START, MULTI_START, and ULTRA_START bits start transfer opera-
tions. These bits are reset by the ATAPI host only after the complete data
is transferred on the ATAPI device or when an error occurs during the
transfer.

The FIFO_FLUSH bit flushes the various FIFOs in the system to a known
state. This flush may be required if some data remains in the FIFO
because of early termination of transfers. The bit should be set to flush the
FIFO and then cleared by the firmware to restart the transfers.

The ATAPI_CONTROL register includes a number of reset bits. The SOFT_RST
bit resets all state machines of the ATAPI host independent of the ATAPI
device state. Firmware sets the SOFT_RST bit to reset all state machines,
then firmware clears the SOFT_RST bit to restart the transfers. The DEV_RST
bit, when set, asserts a reset to the ATAPI device. The DEV_RST bit must be
cleared to deassert the reset. The TFRCNT_RST bit resets all the transfer
counts. The host firmware asserts TFRCNT_RST to reset all the transfer
counts, and the hardware clears the TFRCNT_RST bit in the next cycle.

The END_ON_TERM bit selects operation when a device terminate sequence
occurs and selects whether the ATAPI host or firmware controls the restart
of the transfer. When END_ON_TERM is set (=1), if the device initiates the
terminate sequence before the complete data for the command is trans-
ferred, the ATAPI host state machine waits in its intermediate state for the
device response to restart the transfer for the remaining data to be trans-
ferred. If END_ON_TERM is cleared (=0), if the device initiates the terminate
sequence before the complete data for the command is transferred, the
ATAPI host state machine goes to the idle state and asserts the
MULTI_TERM_INT flag in the ATAPI interrupt status register along and
updates the corresponding transfer count. This gives control to the ATAPI
firmware to decide further operation. The ATAPI firmware can then read
the device status register to know whether it was a flow terminate or a fatal
terminate.

ADSP-BF54x Blackfin Processor Hardware Reference 21-51

ATAPI Interface

The PIO_USE_DMA bit is set to enable PIO mode to use DMA. By default,
PIO DMA usage is disabled and data transfer in PIO mode happens by
writing into the ATAPI_DEV_TXBUF register and performing one transfer at a
time.

The ULTRA_IN_FIFO_THRS bits select the ultra DMA input FIFO threshold.
If the FIFO level reaches the threshold value, the ultra DMA input engine
asserts the ATAPI_HDMARDY pin to signal to the device to stop transferring
the data.

ATAPI Status (ATAPI_STATUS) Register

The ATAPI_STATUS register (see Figure 21-24) provides status information
on ATAPI data transfers in progress.

Figure 21-24. ATAPI Status Register

ATAPI Status Register (ATAPI_STATUS)

Reset = 0x0000

Read-only

 0xFFC03804

PIO_XFER_ON (PIO transfer in
progress) - RO

0 - No PIO transfer
1 - Indicates that a PIO transfer
 is in progress

MULTI_XFER_ON (multi-word
DMA transfer in progress) - RO
0 - No multi DMA transfer
1 - Indicates that a multi DMA
 transfer is in progress

ULTRA_XFER_ON (ultra DMA
transfer in progress) - RO
0 - No ultra DMA transfer
1 - Indicates that a ultra DMA
 transfer is in progress

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ULTRA_IN_FL (ultra DMA
input FIFO level) - RO
Indicates current number of
words in the ultra DMA input
FIFO

ULTRA_IN_FIFO_EMPTY - RO
Indicates if the ultra DMA input
FIFO is empty

ATAPI Registers

21-52 ADSP-BF54x Blackfin Processor Hardware Reference

ATAPI Device Address (ATAPI_DEV_ADDR) Register

The ATAPI_DEV_ADDR register (see Figure 21-25) selects the ATAPI device
address.

The DEV_ADDR bits contain the address of the device register or the device
PIO data port. Based on this address, the ATAPI block decides whether to
perform a PIO data port operation or device register operation.

The ATAPI host firmware should program the ATAPI_DEV_ADDR register
with the address of the device register, which is being accessed.

Figure 21-25. ATAPI Device Address Register

Table 21-5. DEV_ADDR Bit Field Value Ranges

Address Value Description

0x00 PIO / DMA /Ultra DMA Data port

0x01 – 0x07 Device Command Block Registers

0x08 – 0x0F Device Control Block Registers

ATAPI Device Address Register (ATAPI_DEV_ADDR)

Reset = 0x0000

Read/Write

0xFFC03808

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

DEV_ADDR (device address)
Indicates address of the device
register or the device PIO data
port

ADSP-BF54x Blackfin Processor Hardware Reference 21-53

ATAPI Interface

ATAPI Device Transmit Buffer
(ATAPI_DEV_TXBUF) Register

The ATAPI_DEV_TXBUF register (see Figure 21-26) holds write data for the
ATAPI device register write transfers.

Table 21-6. ATAPI_DEV_ADDR Register Address Values

Address Value Description

0x01 Error/Feature

0x02 Sector Count

0x03 LBA (low)

0x04 LBA (mid)

0x05 LBA (high)

0x06 Device

0x07 Status/Command

0x0E Alternate Status/Device Control

Figure 21-26. ATAPI Device Transmit Buffer Register

ATAPI Device Transmit Buffer Register (ATAPI_DEV_TXBUF)

Reset = 0x0000

Read/Write

0xFFC0380c

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

REG_TXBUFFER (device trans buffer)
Write data for the device regis-
ter write transfers. This register
needs to be programmed with
the data to be written in to the
device register.

ATAPI Registers

21-54 ADSP-BF54x Blackfin Processor Hardware Reference

ATAPI Device Receive Buffer
(ATAPI_DEV_RXBUF) Register

The ATAPI_DEV_RXBUF register (see Figure 21-26) holds receive data for the
ATAPI device register read transfers.

Figure 21-27. ATAPI Device Receive Buffer Register

ATAPI Device Receive Buffer Register (ATAPI_DEV_RXBUF)

Reset = 0x0000

Read/Write

0xFFC03810

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

REG_RXBUFFER (device Rx buffer)
Read data for the device regis-
ter read transfers. After device
register read operation, ATAPI
host updates this register with
the data read from the device.

ADSP-BF54x Blackfin Processor Hardware Reference 21-55

ATAPI Interface

ATAPI Interrupt Mask (ATAPI_INT_MASK) Register

The ATAPI_INT_MASK register (see Figure 21-28) enables interrupt sources
to assert the interrupt output. Each mask bit corresponds to one interrupt
source bit in the ATAPI interrupt status (ATAPI_INT_STAT) register. For
more information about these interrupts, see “ATAPI Interrupt Status
(ATAPI_INT_STATUS) Register” on page 21-56.

Figure 21-28. ATAPI Interrupt Mask Register

ATAPI Interrupt Mask Register (ATAPI_INT_MASK)

Reset = 0x0000

Read/Write

0xFFC03814

ATAPI_DEV_INT_MASK
Indicates device interrupt mask
0 - Mask interrupt
1 - Unmask interrupt

PIO_DONE_MASK
PIO transfer done interrupt
mask
0 - Mask interrupt
1 - Unmask interrupt

ULTRA_IN_DONE_MASK
ULTRA_IN transfer done
interrupt mask
0 - Mask interrupt
1 - Unmask interrupt

MULTI_DONE_MASK

Multi DMA transfer done interrupt
mask
0 - Mask interrupt
1 - Unmask interrupt

ULTRA_OUT_DONE_MASK

ULTRA_OUT transfer done
interrupt mask
0 - Mask interrupt
1 - Unmask interrupt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ULTRA_OUT_TERM_MASK
Device terminate ultra DMA-out transfer
interrupt mask
0 - Mask interrupt
1 - Unmask interrupt

MULTI_TERM_MASK

Device terminate Multi DMA transfer
interrupt mask
0 - Mask interrupt
1 - Unmask interrupt

ULTRA_IN_TERM_MASK
Device terminate ultra DMA-in transfer
interrupt mask
0 - Mask interrupt
1 - Unmask interrupt

HOST_TERM_XFER_MASK
Host terminate current transfer interrupt
mask
0 - Mask interrupt
1 - Unmask interrupt

ATAPI Registers

21-56 ADSP-BF54x Blackfin Processor Hardware Reference

ATAPI Interrupt Status (ATAPI_INT_STATUS)
Register

The ATAPI_INT_STATUS register (see Figure 21-29) contains information
about functional areas that require service.

After servicing the interrupt source associated with a bit, the user must
clear that interrupt source bit. ATA_DEV_INT is the interrupt generated by
the device. The rest of the interrupts are generated by the host. Either the
device or the host interrupt can be used by the firmware. If the corre-
sponding interrupt mask bit in the ATAPI_INT_STAT register is not set,

Figure 21-29. ATAPI Interrupt Status Register

ATAPI Interrupt Status Register (ATAPI_INT_STATUS)

Reset = 0x0000

Read-only/Write-1-to-Clear

0xFFC03818

ATAPI_DEV_INT (W1C)
Indicates device interrupt status
0 - No interrupt latched
1 - Interrupt latched

PIO_DONE_INT (W1C)

PIO transfer done interrupt
status
0 - No interrupt latched
1 - Interrupt latched

ULTRA_IN_DONE_INT (W1C)

ULTRA_IN transfer done interrupt
status
0 - No interrupt latched
1 - Interrupt latched

MULTI_DONE_INT (W1C)

Multi DMA transfer done interrupt
status
0 - No interrupt latched
1 - Interrupt latched

ULTRA_OUT_DONE_INT (W1C)
ULTRA_OUT transfer done interrupt
status
0 - No interrupt latched
1 - Interrupt latched

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ULTRA_OUT_TERM_iNT (W1C)
Device terminate ultra DMA-out transfer
interrupt status
0 - No interrupt latched
1 - Interrupt latched

MULTI_TERM_INT (W1C)
Device terminate Multi DMA transfer
interrupt status
0 - No interrupt latched
1 - Interrupt latched

ULTRA_IN_TERM_INT (W1C)
Device terminate ultra DMA-in transfer
interrupt status
0 - No interrupt latched
1 - Interrupt latched

HOST_TERM_XFER_INT (W1C)
Host terminate current transfer interrupt
status
0 - No interrupt latched
1 - Interrupt latched

ADSP-BF54x Blackfin Processor Hardware Reference 21-57

ATAPI Interface

there is no interrupt generated. For more information about masking
these interrupts, see “ATAPI Interrupt Mask (ATAPI_INT_MASK) Reg-
ister” on page 21-54.

The ATAPI_DEV_INT (W1C) bit indicates an ATAPI device interrupt is
asserted on the ATAPI interface by the device. It is cleared by writing a 1.

The PIO_DONE_INT, MULTI_DONE_INT, ULTRA_IN_DONE_INT, and
ULTRA_OUT_DONE_INT (W1C) bits indicate that interrupts have been
asserted on completion of various types of transfers.

The HOST_TERM_XFER_INT (W1C) bit indicates that the interrupt is
asserted on host termination of the current transfer.

The MULTI_TERM_INT (W1C) bit indicates that the interrupt is asserted on
device termination of the multiword DMA transfer. The MULTI_TERM_INT
bit is set when the device initiates a termination sequence before the com-
plete data is transferred in multiword DMA mode (for example, when
programmed XFER_LEN of ATA words have not been transferred across the
device). If DETECT_TERM is not set, the control is passed on to the firmware,
and the firmware can read the device status register to detect the reason for
early termination.

The ULTRA_IN_TERM_INT and ULTRA_OUT_TERM_INT (W1C) bits indicate
that interrupts have been asserted on device termination of ultra DMA in
or out transfers. The ULTRA_IN_TERM_INT or ULTRA_OUT_TERM_INT bits are
set when the device initiates a termination sequence before the complete
data is transferred in ultra DMA in or out mode (for example, when pro-
grammed XFER_LEN of ATA words have not been transferred across the
device). If DETECT_TERM is not set, control is passed on to the firmware,
and the firmware can read the device status register to detect the reason for
early termination.

ATAPI Registers

21-58 ADSP-BF54x Blackfin Processor Hardware Reference

ATAPI Transfer Length (ATAPI_XFER_LEN) Register

The ATAPI_XFER_LEN register (see Figure 21-30) holds the transfer length
in number of ATA words (1 ATA word = 2 bytes). This register needs to
be programmed with the number of ATA words that need to be trans-
ferred from device to host or vice versa. This register value is used for all
three transfer modes – PIO, DMA, and ultra DMA. As the transfer pro-
gresses, this register is constantly updated with the number of ATA words
that are pending to be transferred.

Figure 21-30. ATAPI Transfer Length Register

ATAPI Transfer Length Register (ATAPI_XFER_LEN)

Reset = 0x0000

Read/Write

0xFFC0381c

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

XFER_LENGTH (transfer length)
The transfer length (in number of ATA
words) needs to be programmed with the
number of sectors to be transferred from
device to host or vice versa.

ADSP-BF54x Blackfin Processor Hardware Reference 21-59

ATAPI Interface

ATAPI Line Status (ATAPI_LINE_STATUS) Register

The ATAPI_LINE_STATUS register (see Figure 21-31) provides line status
information on the ATAPI interface activity.

ATAPI State Machine Status (ATAPI_SM_STATE)
Register

The ATAPI_SM_STATE register (see Figure 21-32) provides state machine
status information on the ATAPI interface.

Figure 21-31. ATAPI Line Status Register

ATAPI Line Status Register (ATAPI_LINE_STATUS)

Reset = 0x0000

Read-only

0xFFC03820

ATAPI_INTR (RO)

Device interrupt to host
line status

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ATAPI_DASP (RO)

Device DASP to host
line status

ATAPI_CS0N (RO)

ATAPI chip select-0
line status

ATAPI_CS1N (RO)

ATAPI chip select-1
line status

ATAPI_ADDR[2:0] (RO)

ATAPI address
line status

ATAPI_IORDY (RO)

ATAPI I/O ready
line status

ATAPI_DIORN (RO)

ATAPI read
line status

ATAPI_DIOWN (RO)

ATAPI write
line status

ATAPI_DMACKN (RO)

ATAPI DMA acknowledge
line status

ATAPI_DMARQ (RO)

ATAPI DMA request
line status

ATAPI Registers

21-60 ADSP-BF54x Blackfin Processor Hardware Reference

ATAPI Host Terminate (ATAPI_TERMINATE)
Register

When set to 1, the ATAPI_TERMINATE register (see Figure 21-33) initiates a
terminate sequence on the device. Once the termination sequence is over,
bit 0 is reset by the hardware. The ATAPI host firmware should wait until
this bit is cleared before taking any further operation, as the termination
sequence takes some time depending upon the device response.

Figure 21-32. ATAPI State Machine Status Register

Figure 21-33. ATAPI Terminate Register

ATAPI State Machine Status Register (ATAPI_SM_STATE)

Reset = 0x0000

Read-only

0xFFC03824

PIO_CSTATE [3:0] (RO)

PIO mode state machine
current state

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

DMA_CSTATE [3:0] (RO)

DMA mode state machine
current state

ULTRA_OUT_CSTATE [3:0] (RO)

Ultra DMA out mode state
machine current state

ULTRA_IN_CSTATE [3:0] (RO)

Ultra DMA in mode state
machine current state

ATAPI Terminate Register (ATAPI_TERMINATE)

Reset = 0x0000

Read/Write

0xFFC03828

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ATAPI_HOST_TERM
0 – No termination in progress
1 – Termination by host in progress

ADSP-BF54x Blackfin Processor Hardware Reference 21-61

ATAPI Interface

ATAPI PIO Transfer Count (ATAPI_PIO_TFRCNT)
Register

The ATAPI_PIO_TFRCNT register (see Figure 21-34) indicates the PIO trans-
fer count. This count indicates the transfer count of ATA words
transferred across the device for the current DMA burst in PIO mode.
The count gets cleared by setting the TFRCNT_RST bit in the ATAPI_CONTROL
register. If the TFRCNT_RST bit was not set with the start of DMA burst, the
transfer count continues from the previous value.

ATAPI Multiword DMA Transfer Count
(ATAPI_MULTI_TFRCNT) Register

The ATAPI_MULTI_TFRCNT register (see Figure 21-35) indicates the transfer
count of ATA words transferred across the device for the current DMA
burst in multiword DMA mode. The count gets cleared by setting the
TFRCNT_RST bit in the ATAPI_CONTROL register. If the TFRCNT_RST bit is not
set with the start of the DMA burst, the transfer count continues from the
previous value.

Figure 21-34. ATAPI PIO Transfer Count Register

ATAPI PIO Transfer Count Register (ATAPI_PIO_TFRCNT)

Reset = 0x0000

Read-only

0xFFC0382c

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIO_TFRCNT (PIO trans count) - RO
PIO mode transfer count indicates the
transfer count of ATA words transferred
across the device for the current DMA
burst in PIO mode.

ATAPI Registers

21-62 ADSP-BF54x Blackfin Processor Hardware Reference

ATAPI Ultra DMA Transfer Count
(ATAPI_ULTRA_IN_TFRCNT) Register

The ATAPI_ULTRA_IN_TFRCNT register (see Figure 21-36) indicates ultra
DMA in mode transfer count of ATA words transferred across the device
for the current DMA burst in ultra DMA in mode. The count gets cleared
by setting the TFRCNT_RST bit in the ATAPI_CONTROL register. If the
TFRCNT_RST bit is not set with the start of DMA burst, the transfer count
continues from the previous value.

Figure 21-35. ATAPI DMA Transfer Count Register

Figure 21-36. ATAPI Ultra DMA Transfer Count Register

ATAPI DMA Transfer Count Register (ATAPI_DMA_TFRCNT)

Reset = 0x0000

Read-only

0xFFC03830

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

MULTI_TFRCNT (Multi DMA trans count) - RO
DMA mode transfer count indicates the trans-
fer count of ATA words transferred across the
device for the current DMA burst in multi
DMA mode.

ATAPI Ultra DMA Transfer Count Register (ATAPI_ULTRA_IN_TFRCNT)

Reset = 0x0000

Read-only

0xFFC03834

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ULTRA_IN_TFRCNT (Ultra DMA In trans count) - RO
Ultra DMA-IN mode transfer count indicates
the transfer count of ATA words transferred
across the device for the current DMA burst
in Ultra DMA IN mode.

ADSP-BF54x Blackfin Processor Hardware Reference 21-63

ATAPI Interface

ATAPI Ultra DMA OUT Transfer Count
(ATAPI_ULTRA_OUT_TFRCNT) Register

The ATAPI_ULTRA_OUT_TFRCNT register (see Figure 21-37) indicates ultra
DMA in mode transfer count of ATA words transferred across the device
for the current DMA burst in ultra DMA in mode. The count gets cleared
by setting the TFRCNT_RST bit in the ATAPI_CONTROL register. If the
TFRCNT_RST bit is not set with the start of DMA burst, the transfer count
continues from the previous value.

ATAPI Register Transfer Timing 0
(ATAPI_REG_TIM_0) Register

The ATAPI_REG_TIM_0 register (see Figure 21-38) holds timing parameter
settings (in terms of system clock counts) for register transfer operations.

Figure 21-37. ATAPI ULTRA_OUT Transfer Count Register

Figure 21-38. ATAPI Register Transfer Timing 0 Register

ATAPI Ultra DMA Transfer Count Register (ATAPI_ULTRA_OUT_TFRCNT)

Reset = 0x0000

Read-only

0xFFC03838

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ULTRA_OUT_TFRCNT (Ultra DMA Out trans count) - RO
Ultra DMA OUT mode transfer count indi-
cates the transfer count of ATA words
transferred across the device for the current
DMA burst in Ultra DMA OUT mode.

ATAPI Register Transfer Timing 0 Register (ATAPI_REG_TIM_0)

Reset = 0x0000

Read/Write

0xFFC03840

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

TEOC_REG
End of cycle time for register
access transfers.

T2_REG
Selects ATAPI_DIOR and
ATAPI_DIOW pulsewidth.

ATAPI Registers

21-64 ADSP-BF54x Blackfin Processor Hardware Reference

ATAPI Programmed I/O Timing 0
(ATAPI_PIO_TIM_0) Register

The ATAPI_PIO_TIM_0 register (see Figure 21-39) holds timing parameter
settings (in terms of system clock counts) for programmed I/O operations.

ATAPI Programmed I/O Timing 1
(ATAPI_PIO_TIM_1) Register

The ATAPI_PIO_TIM_1 register (see Figure 21-40) holds timing parameter
settings (in terms of system clock counts) for programmed I/O operations.
The value of TEOC is T0-T2.

Figure 21-39. ATAPI Programmed I/O Timing 0 Register

Figure 21-40. ATAPI Programmed I/O Timing 0 Register

ATAPI Register Transfer Timing 0 Register (ATAPI_REG_TIM_0)

Reset = 0x0000

Read/Write

0xFFC03840

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

T3_reg R/W
ATAPI_DIOW
Data hold

T1_reg R/W
Time from Address Valid to
ATAPI_DIOR/ATAPI_DIOW

T2_reg R/W

ATAPI_DIOR/ATAPI_DIOW
Pulse width

ATAPI Programmed I/O Timing 1 Register (ATAPI_PIO_TIM_1)

0x002C

Read/Write

0xFFC03848

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 1 0 1 1 00 0

TEOC_PIO
End of cycle time for PIO
access transfers.

ADSP-BF54x Blackfin Processor Hardware Reference 21-65

ATAPI Interface

ATAPI Multi DMA Timing 0
(ATAPI_MULTI_TIM_0) Register

The ATAPI_MULTI_TIM_0 register (see Figure 21-41) holds timing parame-
ter settings (in terms of system clock counts) for multi-word DMA
operations.

ATAPI Multi DMA Timing 1
(ATAPI_MULTI_TIM_1) Register

The ATAPI_MULTI_TIM_1 register (see Figure 21-42) holds timing parame-
ter settings (in terms of system clock counts) for multi-word DMA
operations.

Figure 21-41. ATAPI Multi DMA Timing 0 Register

Figure 21-42. ATAPI Multi DMA Timing 1 Register

ATAPI Multi DMA Timing 0 Register (ATAPI_MULTI_TIM_0)

Reset = 0x0000

Read/Write

0xFFC03850

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

TM
Selects time from address valid to
ATAPI_DIOR/ATAPI_DIOW

TD
Selects ATAPI_DIOR /
ATAPI_DIOW asserted pulsewidth

ATAPI Multi DMA Timing 1 Register (ATAPI_MULTI_TIM_1)

Reset = 0x0000

Read/Write

0xFFC03854

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

TKR
Selects ATAPI_DIOR negated
pulsewidth

TKW
Selects ATAPI_DIOW negated
pulsewidth

ATAPI Registers

21-66 ADSP-BF54x Blackfin Processor Hardware Reference

ATAPI Multi DMA Timing 2
(ATAPI_MULTI_TIM_2) Register

The ATAPI_MULTI_TIM_2 register (see Figure 21-43) holds timing parame-
ter settings (in terms of system clock counts) for multi-word DMA
operations. The value of TEOC is Tj.

ATAPI Ultra DMA Timing 0
(ATAPI_ULTRA_TIM_0) Register

The ATAPI_ULTRA_TIM_0 register (see Figure 21-44) holds timing parame-
ter settings (in terms of system clock counts) for ultra DMA operations.

Figure 21-43. ATAPI Multi DMA Timing 2 Register

Figure 21-44. ATAPI Ultra DMA Timing 0 Register

ATAPI Multi DMA Timing 2 Register (ATAPI_MULTI_TIM_2)

Reset = 0x0000

Read/Write

0xFFC03858

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

TEOC
Selects End of Cycle for DMA
transfers

TH
Selects ATAPI_DIOW data
hold

ATAPI Ultra DMA Timing 0 Register (ATAPI_ULTRA_TIM_0)

Reset = 0x0000

Read/Write

0xFFC03860

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

TENV
Selects envelope time

TACK
Selects setup and hold times
for TACK
(Minimum Value to be pro-
grammed is 2)

ADSP-BF54x Blackfin Processor Hardware Reference 21-67

ATAPI Interface

ATAPI Ultra DMA Timing 1
(ATAPI_ULTRA_TIM_1) Register

The ATAPI_ULTRA_TIM_1 register (see Figure 21-45) holds timing parame-
ter settings (in terms of system clock counts) for ultra DMA operations.

ATAPI Ultra DMA Timing 2
(ATAPI_ULTRA_TIM_2) Register

The ATAPI_ULTRA_TIM_2 register (see Figure 21-46) holds timing parame-
ter settings (in terms of system clock counts) for ultra DMA operations.

Figure 21-45. ATAPI Ultra DMA Timing 1 Register

Figure 21-46. ATAPI Ultra DMA Timing 2 Register

ATAPI Ultra DMA Timing 1 Register (ATAPI_ULTRA_TIM_1)

Reset = 0x0000

Read/Write

0xFFC03864

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

TCYC_TDVS
Selects cycle time – TDVS time
(min value allowed is 2)

TDVS
Selects data valid setup time
(min value allowed is 2)

ATAPI Ultra DMA Timing 2 Register (ATAPI_ULTRA_TIM_2)

Reset = 0x0000

Read/Write

0xFFC03868

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

TMLI
Selects Interlock time

TSS
Selects Time from STROBE
edge to negation of
ATAPI_DMARQ or asser-
tion of ATAPI_STOP

ATAPI Registers

21-68 ADSP-BF54x Blackfin Processor Hardware Reference

ATAPI Ultra DMA Timing 3
(ATAPI_ULTRA_TIM_3) Register

The ATAPI_ULTRA_TIM_3 register (see Figure 21-47) holds timing parame-
ter settings (in terms of system clock counts) for ultra DMA operations.

 Ultra DMA mode 5 can be used only when SCLK = 133 MHz. Ultra
DMA mode 4 requires SCLK = 100 MHz and above. The other
Ultra DMA modes can used at SCLK frequencies lower than 100
MHz.

ATAPI Device I/O Registers
These are the registers present in an ATAPI-compliant device.

Table 21-7 shows a list of ATAPI device I/O registers present on
ATAPI-compliant devices.

Figure 21-47. ATAPI Ultra DMA Timing 3 Register

ATAPI Ultra DMA Timing 3 Register (ATAPI_ULTRA_TIM_3)

Reset = 0x0000

Read/Write

0xFFC0386c

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

TRP
Selects ready to pause

TZAH
Selects minimum delay
required for output

ADSP-BF54x Blackfin Processor Hardware Reference 21-69

ATAPI Interface

(A: Asserted N: Negated)

The ATAPI I/O registers are all accessed using PIO transfers. When an
access is made to an 8-bit register, the data is expected on ATAPI_D7–0 for a
write access and presented on ATAPI_D7–0 for a read access. When an
access is made to a 16-bit register, the data is expected on ATAPI_D15–0 for
a write access and presented on ATAPI_D15–0 for a read access.

Table 21-7. ATAPI Device I/O Registers

ATAPI_CS1–0 ADDR3–1 READ (ATAPI_DIOR) WRITE (ATAPI_DIOW)

NN XXX Data Bus (Z) Not Used

Control Block Registers

AN 0XX Data Bus (Z) Not Used

AN 10X Data Bus (Z) Not Used

AN 110 (0x0E) Alternate Status Device Control

AN 111 Not Used Not Used

Command Block Registers

NA 000 (0x00) PIO Data PIO Data

NA 001 (0x01) Error Feature

NA 010 (0x02) Sector Count Sector Count

NA 011 (0x03) LBA (low 0-7) LBA (low 0-7)

NA 100 (0x04) LBA (mid 8-15) LBA (mid 8-15)

NA 101 (0x05) LBA (high 16-23) LBA (high16-23)

NA 110 (0x06) Device Device

NA 111 (0x07) Status Command

ATAPI Registers

21-70 ADSP-BF54x Blackfin Processor Hardware Reference

The ATAPI I/O registers are addressed using the ATAPI_CS1–0 and ADDR3–
1 lines. These lines are mapped into the core’s address range using the
DEV_ADDR register of the ATAPI host, making them transparent for
any software wanting to access them. The registers can be mapped into the
0x00 to 0x0F address range, according to the following scheme.

• ATAPI_CS0 <= ADR_I (3)

• ATAPI_CS1 <= not ADR_I (3)

• ADDR2–0 <= ADR_I (2:0)

• ATAPI_CS1–0 reflect the ADR_(3) signal state.

• ATAPI_CS0 is asserted (low level) when ADR_I (3) is negated (‘0’).

• ATAPI_CS1 is asserted (low level) when ADR_I (3) is asserted (‘1’).

• ADDR3–1 reflects the ADR_I (2:0) state.

This makes Device Address map as follows:

• 0x00: Device PIO Data Port/DMA Data Port/Ultra DMA Port

• 0x01 – 0x07: Device Command Block Registers

• 0x08 -- 0x0F: Device Control Block Registers

The various device registers addressable are detailed as follows.

Command Register (R/W)

The command register contains the command code being sent to the
device. command execution begins immediately after this register is writ-
ten. The contents of the command block registers become parameters of
the command when this register is written. Writing this register clears any
pending interrupt condition. For all commands except DEVICE RESET,
this register shall only be written when BSY and DRQ are both cleared to
zero and ATAPI_DMACK is not asserted.

ADSP-BF54x Blackfin Processor Hardware Reference 21-71

ATAPI Interface

Device Control Register (WO)

The device control register allows a host to perform a software reset of
attached devices and to enable or disable the assertion of the INTRQ sig-
nal by a selected device. It contains Software Reset (SRST), Interrupt
Enable (nIEN), and High Order Byte (HOB) bits for the 48-bit address
feature set, as shown in Figure 21-48. When the Device Control register is
written, both devices respond to the write regardless of which device is
selected. When the SRST bit is set to 1, both devices shall perform the
software reset protocol. This register contains software reset, Interrupt
Enable & High Order Byte bits for 48-bit address feature set.

Bit 1: nIEN: If nIEN is set, the device should release INTRQ. If
it is clear, INTRQ should be enabled.

Features Register (WO)

The contents of this register becomes a command parameter after the
command is written and the meaning of this parameter is command
dependent.

Sector Count Register (R/W)

The sector count register holds the number of sectors to be read or
written.

Figure 21-48. Device Control Register

7 6 5 4 3 2 1 0

HOB r r r r SRST nIEN 0

ATAPI Registers

21-72 ADSP-BF54x Blackfin Processor Hardware Reference

Status Register (RO)

The status register contains the device status. The register’s contents are
updated to reflect the current state of the device and the progress of any
command being executed by the device. Reading the status register clears
any pending interrupt. The host should not read the status register when
an interrupt is expected as this may clear the interrupt pending before the
ATAPI_INTRQ can be recognized. The host should generally read the alter-
nate status register to prevent unwanted clearing of pending interrupts.
When INTRQ is asserted, the host can read the Status register to know
the current status.

Bit 7: BSY bit is set by the device during the following events:

• After a command is written (if DRQ is not set).

• Between blocks of data transfer during PIO data-in (before DRQ is
cleared).

• After transfer of data block during PIO data-out (before DRQ is
cleared).

• During data transfer of DMA commands:

• If BSY = 1, device is in control of status register

• If BSY = 0, host is in control of status register

Figure 21-49. Status Register

7 6 5 4 3 2 1 0

BSY DRDY # # DRQ obsolete obsolete ERR

ADSP-BF54x Blackfin Processor Hardware Reference 21-73

ATAPI Interface

Alternate Status Register (RO)

The alternate status register contains the same information as the status
register, but a pending interrupt is not cleared when this register is read.

Error Register (RO)

The error register contents are valid, when ERR bit in the status register is
set (BSY = 0 & DRQ = 0) at the end of command completion (except EXE-
CUTE DEVICE DIAGNOSTICS or DEVICE RESET).

The register contains a diagnostic code following a power-on, hardware or
software reset or command completion of EXECUTE DEVICE DIAG-
NOSTIC OR DEVICE RESET.

Bit 2: ABORT: Says that the particular command is not supported.

All other bit commands are dependent.

ATAPI Standards Reference
The following ATA standards contribute to the ATAPI standard. Refer to
the ATAPI specification for full details. In addition to these terms, this
reference section provides:

• “Summary of IDE/ATA Standards” on page 21-77

• “ATAPI Timing Summary” on page 21-78

• “IDE/ATA Transfer Modes and Protocols” on page 21-78

• “ATAPI Device Selection” on page 21-80

ATAPI Standards Reference

21-74 ADSP-BF54x Blackfin Processor Hardware Reference

ATA (ATA-1)

The original IDE/ATA standard defines the following features and trans-
fer modes:

• Two Hard Disks: The specification calls for a single channel in a
PC, shared by two devices that are configured as master and slave.

• PIO Modes: ATA includes support for PIO modes 0, 1 and 2.

• DMA Modes: ATA includes support for single word DMA modes
0, 1 and 2, and multiword DMA mode 0.

ATA-2

ATA-2 was a significant enhancement of the original ATA standard. It
defines the following improvements over the base ATA standard (with
which it is backward compatible):

• Faster PIO Modes: ATA-2 adds the faster PIO modes 3 and 4 to
those supported by ATA.

• Faster DMA Modes: ATA-2 adds multiword DMA modes 1 and 2
to the ATA modes.

• Block Transfers: ATA-2 adds commands to allow block transfers
for improved performance.

• Logical Block Addressing (LBA): ATA-2 defines support (by the
hard disk) for logical block addressing. Using LBA requires BIOS
support on the other end of the interface as well.

• Improved Identify Drive Command: This command allows hard
disks to respond to inquiries from software, with more accurate
information about their geometry and other characteristics.

ADSP-BF54x Blackfin Processor Hardware Reference 21-75

ATAPI Interface

ATA-3

The ATA-3 standard is a minor revision of ATA-2, which was published
in 1997 as ANSI standard X3.298-1997, AT Attachment 3 Interface. It
defines the following improvements compared to ATA-2 (with which it is
backward compatible):

• Improved Reliability: ATA-3 improves the reliability of the
higher-speed transfer modes, which can be an issue due to the
low-performance standard cable used up to that point in
IDE/ATA. (An improved cable was defined as part of
ATA/ATAPI-4.)

• Self-Monitoring Analysis and Reporting Technology (SMART):
ATA-3 introduced this reliability feature.

• Security Feature: ATA-3 defined security mode, which allows
devices to be protected with a password.

ATA/ATAPI-4

• Ultra DMA Modes: High-speed Ultra DMA modes 0, 1 and 2,
defining transfer rates of 16.7, 25 and 33.3 MB/s were created.

• High-Performance IDE Cable: An improved, 80-conductor IDE
cable was first defined in this standard. It was thought that the
higher-speed Ultra DMA modes would require the use of this cable
in order to eliminate interference caused by their higher speed. In
the end, the use of this cable was left “optional” for these modes.
(It became mandatory under the still faster Ultra DMA modes
defined in ATA/ATAPI-5.)

• Cyclical Redundancy Checking (CRC): This feature was added to
ensure the integrity of data sent using the faster Ultra DMA modes.

ATAPI Standards Reference

21-76 ADSP-BF54x Blackfin Processor Hardware Reference

• Advanced Commands Defined: Special command queuing and
overlapping protocols were defined.

• Command Removal: The command set was “cleaned up”, with sev-
eral older, obsolete commands removed.

ATA/ATAPI-5

The changes defined in ATA/ATAPI-5 include:

• New Ultra DMA Modes: Higher-speed Ultra DMA modes 3 and
4, defining transfer rates of 44.4 and 66.7 MB/s were specified.

• Mandatory 80-Conductor IDE Cable Use: The improved 80-con-
ductor IDE cable first defined in ATA/ATAPI-4 for optional use is
made mandatory for Ultra DMA modes 3 and 4. ATA/ATAPI-5
also defines a method by which a host system can detect if an
80-conductor cable is in use, so it can determine whether or not to
enable the higher speed transfer modes.

• Miscellaneous Command Changes: A few interface commands
were changed, and some old ones deleted.

ATA/ATAPI-6

• New Ultra DMA Modes: Higher-speed Ultra DMA mode 5, defin-
ing a transfer rate of 100 MB/s was specified.

• Mandatory LBA Mode Usage: CHS mode operation not
supported.

ADSP-BF54x Blackfin Processor Hardware Reference 21-77

ATAPI Interface

Summary of IDE/ATA Standards

Table 21-8. IDE/ATA Standards

In
te

rf
ac

e
St

an
da

rd

A
N

SI
 S

ta
nd

ar
d

N
um

be
r

(i
nc

lu
de

s
da

te
)

P
IO

 M
od

es
 A

dd
ed

D
M

A
 M

od
es

 A
dd

ed

U
lt

ra
 D

M
A

M
od

es
 A

dd
ed

N
ot

ab
le

Fe
at

ur
es

 o
r

E
nh

an
ce

m
en

ts
In

tr
od

uc
ed

ATA-1 X3.221-1994 0, 1, 2 Single word 0, 1,
2;
multiword 0

-- --

ATA-2 X3.279-1996 3, 4 Multiword 1, 2 -- Block transfers, Logical block
addressing, Improved identify
drive command

ATA-3 X3.298-1997 -- -- -- Improved reliability, SMART,
Drive security

ATA
ATAPI-4

NCITS 317-1998 -- -- 0, 1, 2 Ultra DMA, 80-conductor
IDE cable, CRC

ATA
ATAPI-5

NCITS 340-2000 -- -- 3, 4 --

ATA
ATAPI-6

-- -- 5 LBA expansion, Acoustic
management,
Multimedia streaming

ATAPI Standards Reference

21-78 ADSP-BF54x Blackfin Processor Hardware Reference

ATAPI Timing Summary
The timings mentioned below are the minimum timings. The maximum
timing is dependent on the devices and is usually using the ACK signal.

• Ultra DMA (M5, M4, M3, M2, M1, M0)- 40, 60, 90, 120, 160,
240 ns

• Multi DMA (M2, M1. M0)- 120, 150, 480 ns

• PIO Access (M4, M3, M2, M1, M0)- 120, 180, 240, 383, 600 ns

IDE/ATA Transfer Modes and Protocols
The following sections describe IDE/ATA transfer modes and protocols.

Programmed (I/O) PIO Modes

The maximum transfer rate is double the reciprocal of the cycle time, dou-
bled because the IDE/ATA interface is two bytes (16 bits) wide.

Table 21-9. Programmed I/O Modes

PIO Mode Cycle Time (ns) Maximum Transfer Rate (MB/s) Defining Standard

Mode 0 600 3.3 ATA

Mode 1 383 5.2 ATA

Mode 2 240 8.3 ATA

Mode 3 180 11.1 ATA-2

Mode 4 120 16.7 ATA-2

ADSP-BF54x Blackfin Processor Hardware Reference 21-79

ATAPI Interface

Direct Memory Access (DMA) Modes

Ultra Direct Memory Access (DMA) Modes

The first implementation of Ultra DMA was specified in the
ATA/ATAPI-4 standard and included three Ultra DMA modes, providing
up to 33 MB/s of throughput. Several newer, faster Ultra DMA modes
were added in subsequent years. The table shows all of the current Ultra
DMA modes, along with their cycle times and maximum transfer rates.

Table 21-10. Multiword DMA Modes

DMA Mode Cycle Time (ns) Maximum Transfer Rate (MB/s) Defining Standard

Multiword
Mode 0

480 4.2 ATA

Multiword
Mode 1

150 13.3 ATA-2

Multiword
Mode 2

120 16.7 ATA-2

Table 21-11. Ultra DMA Modes

Ultra DMA Mode Cycle Time (ns) Maximum Transfer Rate (MB/s) Defining Standard

Mode 0 240 16.7 ATA/ATAPI-4

Mode 1 160 25.0 ATA/ATAPI-4

Mode 2 120 33.3 ATA/ATAPI-4

Mode 3 90 44.4 ATA/ATAPI-5

Mode 4 60 66.7 ATA/ATAPI-5

Mode 5 40 100.0 ATA/ATAPI-6

ATAPI Standards Reference

21-80 ADSP-BF54x Blackfin Processor Hardware Reference

The cycle time shows the speed of the interface clock. Double transition
clocking is what allows Ultra DMA mode 2 to have a maximum transfer
rate of 33.3 MB/s despite having a clock cycle time identical to “regular
DMA” multiword mode 2, which has half that maximum.

Even with the advantage of double transition clocking, going above 33
MB/s finally exceeded the capabilities of the old 40-conductor standard
IDE cable. To use Ultra DMA modes over 2, a special, 80-conductor IDE
cable is required. This cable uses the same 40 pins as the old cables, but
adds 40 ground lines between the original 40 signals to separate those lines
from each other and prevent interference and data corruption. (The
80-conductor cable was actually specified in ATA/ATAPI-4 along with
the first Ultra DMA modes, but it was “optional” for modes 0, 1 and 2.)

ATAPI Device Selection
DEV0: CSEL is negated.

If the CSEL (cable select) of the device is connected to the CSEL of the
cable and ground, the device recognizes itself as DEV0.

DEV1: CSEL is asserted.

 If the CSEL of the device is not connected, it recognizes as DEV1

The host discriminates the two devices by writing the DEV bit in device
register. When two devices are connected on the cable, commands are
written in parallel to both devices. For all commands except EXECUTE
DEVICE DIAGNOSTICS, only the selected device executes the com-
mand. Both devices shall execute an EXECUTE DEVICE DIAGNOSTIC
regardless of which device is selected and DEV1 will post status to DEV0
through ATAPI_PDIAG.

ADSP-BF54x Blackfin Processor Hardware Reference 21-81

ATAPI Interface

When the DEV bit is set to 0, DEV0 is selected. When the DEV bit is set to
1, DEV1 is selected

Figure 21-50. ATAPI Device Selection

HOST Device 0 Device 1

CSEL CONDUCTOR

Ground Open

ATAPI Standards Reference

21-82 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 22-1

22 SPI-COMPATIBLE PORT
CONTROLLERS

This chapter describes the serial peripheral interface (SPI) ports and
includes the following sections:

• “Overview” on page 22-1

• “Interface Overview” on page 22-3

• “Description of Operation” on page 22-16

• “Functional Description” on page 22-26

• “Programming Model” on page 22-30

• “SPI Registers” on page 22-43

• “Programming Examples” on page 22-49

Overview
The processor has up to three SPI ports that provide an I/O interface to a
wide variety of SPI-compatible peripheral devices.

With a range of configurable options, the SPI ports provide a glueless
hardware interface with other SPI-compatible devices. SPI is a full-duplex
synchronous serial interface, supporting master modes, slave modes, and
multimaster environments. The SPI-compatible peripheral implementa-
tion also supports programmable bit rate and clock phase/polarities. The
SPI features the use of open-drain drivers to support the multimaster sce-
nario and to avoid data contention.

Overview

22-2 ADSP-BF54x Blackfin Processor Hardware Reference

SPI is a four-wire interface consisting of two data signals, a device select
signal, and a clock signal. Table 22-1 lists the critical SPI signals.

Each SPI includes these features:

• Full duplex, synchronous serial interface

• Supports 8- or 16-bit word sizes

• Programmable baud rate, clock phase, and polarity

• Supports multimaster environments

• Integrated DMA controller

• Double-buffered transmitter and receiver

• 3 SPI chip select outputs, 1 SPI device select input

• Programmable shift direction of MSB or LSB first

• Interrupt generation on mode fault, overflow, and underflow

• Shadow register to aid debugging

Table 22-1. SPI Signals

Signal Name Function

SPIxSCK SPI Clock Signal Pin

SPIxMOSI Master Out Slave In Data Pin

SPIxMISO Master In Slave Out Data Pin

SPIxSS SPI Device-Select Input Pin

ADSP-BF54x Blackfin Processor Hardware Reference 22-3

SPI-Compatible Port Controllers

Interface Overview
Figure 22-1 provides a block diagram of each SPI. The interface is essen-
tially a shift register that serially transmits and receives data bits, one bit at
a time at the SPIxSCK rate, to and from other SPI devices. SPI data is
transmitted and received at the same time through the use of a shift regis-
ter. When an SPI transfer occurs, data is simultaneously transmitted
(shifted serially out of the shift register) as new data is received (shifted
serially into the other end of the same shift register). The SPIxSCK syn-
chronizes the shifting and sampling of the data on the two serial data pins.

Figure 22-1. SPIx Block Diagram

SPIxMOSI SPIxMISO SPIxSCK

SPIx INTERFACE LOGIC

SHIFT REGISTER

SPIx_RDBR
RECEIVE

REGISTER

SPIx_TDBR
TRANSMIT
REGISTER

SPIx IRQ
OR DMA
REQUEST

SPIx
INTERNAL

CLOCK
GENERATOR

SPIx_CTL
SPIx_STAT

16

16

PAB

DAB

FOUR-DEEP FIFO

M S S M

SPIxSS

Interface Overview

22-4 ADSP-BF54x Blackfin Processor Hardware Reference

External Interface
All of the SPI signals are accessible through GPIO ports. The four SPI sig-
nals that make up the 4-wire interface (SPIxSCK, SPIxMISO, SPIxMOSI, and
SPIxSS) are sometimes multiplexed with other peripherals. By default, all
pins function as GPIOs and each can be individually enabled to function
as an SPI pin by the respective bits in the appropriate PORTx_FER register.

If the configurable pin is shared among multiple peripherals, the associ-
ated PORTx_MUX register will also need to be written to explicitly configure
it as SPI. Table 22-2 provides a mapping of SPI pins to GPIO pins along
with an explanation regarding how to enable these pins for use as SPI.

Table 22-2. SPI/GPIO Pin Mapping and Programming Instructions

SPI Signal GPIO Pin To configure for SPI use

SPI0SCK PE0 PORTE_FER[0] = 1, PORTE_MUX[1:0] = b#00

SPI0MOSI PE2 PORTE_FER[2] = 1, PORTE_MUX[5:4] = b#00

SPI0MISO PE1 PORTE_FER[1] = 1, PORTE_MUX[3:2] = b#00

SPI0SS PE3 PORTE_FER[3] = 1, PORTE_MUX[7:6] = b#00

SPI1SCK PG8 PORTG_FER[8] = 1, PORTG_MUX[17:16] = b#00

SPI1MOSI PG10 PORTG_FER[10] = 1, PORTG_MUX[21:20] = b#00

SPI1MISO PG9 PORTG_FER[9] = 1, PORTG_MUX[19:18] = b#00

SPI1SS PG11 PORTG_FER[11] = 1, PORTG_MUX[23:22] = b#00

SPI2SCK PB12 PORTB_FER[12] = 1, PORTB_MUX[25:24] = b#00

SPI2MOSI PB13 PORTB_FER[13] = 1, PORTB_MUX[27:26] = b#00

SPI2MISO PB14 PORTB_FER[14] = 1, PORTB_MUX[29:28] = b#00

SPI2SS PB8 PORTB_FER[8] = 1, PORTB_MUX[17:16] = b#00

ADSP-BF54x Blackfin Processor Hardware Reference 22-5

SPI-Compatible Port Controllers

Each SPI also features three slave select output signals that are sometimes
multiplexed with other peripheral signals. They can be enabled on an indi-
vidual basis using the PORTx_FER and PORTx_MUX registers. Again, the pins
are enabled as GPIO by default. Table 9-3 on page 9-9 provides a map-
ping of SPI pins to GPIO pins along with an explanation regarding how
to enable these pins for use as SPI. For more information see Chapter 9,
“General-Purpose Ports”.

Serial Peripheral Interface Clock Signal (SPIxSCK)

The SPIxSCK signal is the serial clock signal. This control signal is driven
by the master and controls the rate at which data is transferred. The mas-
ter may transmit data at a variety of bit rates. The SPIxSCK signal cycles
once for each bit transmitted. It is an output signal if the device is config-
ured as a master, and an input signal if the device is configured as a slave.

The SPIxSCK is a gated clock that is active during data transfers only for
the length of the transferred word. The number of active clock edges is
equal to the number of bits driven on the data lines. Slave devices ignore
the serial clock if the SPIxSS input is driven inactive (high).

The SPIxSCK is used to shift out and shift in the data driven on the SPIx-
MISO and SPIxMOSI lines, see “SPI Transfer Protocols” on page 22-17.
Clock polarity and clock phase relative to data are programmable in the
SPIx_CTL register and define the transfer format.

The SPIxSCK signal is routed to a shared port pin which functions as a
GPIO by default. To enable this pin for use as the SPI clock signal, be
sure to first configure the appropriate PORTx_FER register to enable the pin
for peripheral use, and then verify that the associated PORTx_MUX register is
properly set to specifically enable the SPI clock functionality. For more
information see Chapter 9, “General-Purpose Ports”.

Interface Overview

22-6 ADSP-BF54x Blackfin Processor Hardware Reference

Master Out Slave In (MOSI)

The SPIxMOSI signal is the Master Out Slave In pin, one of the bidirec-
tional I/O data pins. If the processor is configured as a master, the
SPIxMOSI pin becomes a data transmit (output) pin, transmitting output
data. If the processor is configured as a slave, the SPIxMOSI pin becomes a
data receive (input) pin, receiving input data. In an SPI interconnection,
the data is shifted out from the SPIxMOSI output pin of the master and
shifted into the SPIxMOSI input(s) of the slave(s).

The SPIxMOSI signal is routed to a shared port pin which functions as a
GPIO by default. To enable this pin for use as the SPI SPIxMOSI signal, be
sure to first configure the appropriate PORTx_FER register to enable the pin
for peripheral use, and then verify that the associated PORTx_MUX register is
properly set to specifically enable the SPI Master Out Slave In functional-
ity. For more information see Chapter 9, “General-Purpose Ports”.

Master In Slave Out (MISO)

The SPIxMISO signal is the Master In Slave Out pin, one of the bidirec-
tional I/O data pins. If the processor is configured as a master, the
SPIxMISO pin becomes a data receive (input) pin, receiving input data. If
the processor is configured as a slave, the SPIxMISO pin becomes a data
transmit (output) pin, transmitting output data. In an SPI interconnec-
tion, the data is shifted out from the SPIxMISO output pin of the slave and
shifted into the SPIxMISO input pin of the master.

The SPIxMISO signal is routed to a shared port pin which functions as a
GPIO by default. To enable this pin for use as the SPIxMISO signal, be sure
to first configure the appropriate PORTx_FER register to enable the pin for
peripheral use, and then verify that the associated PORTx_MUX register is
properly set to specifically enable the SPI Master In Slave Out functional-
ity. For more information see Chapter 9, “General-Purpose Ports”.

 Only one slave is allowed to transmit data at any given time.

ADSP-BF54x Blackfin Processor Hardware Reference 22-7

SPI-Compatible Port Controllers

The SPI configuration example in Figure 22-2 illustrates how the proces-
sor can be used as the slave SPI device. The 8-bit host micro controller is
the SPI master.

 The processor can be booted by way of its SPI interface to allow
user application code and data to be downloaded before runtime.

Serial Peripheral Interface Slave Select
Input Signal

The SPIxSS signal is the SPI serial peripheral slave select input signal. This
is an active-low signal used to enable a processor when it is configured as a
slave device. This input-only pin behaves like a chip select and is provided
by the master device for the slave devices. For a master device, it can act as
an error signal input in case of the multimaster environment. In multi-
master mode, if the SPIxSS input signal of a master is asserted (driven
low), and the PSSE bit in the SPIx_CTL register is enabled, an error has
occurred. This means that another device is also trying to be the master
device.

The SPIxSS signal is routed to a shared port pin which functions as a
GPIO by default. To enable this pin for use as the SPI slave-select input
signal, be sure to first configure the appropriate PORTx_FER register is
properly set to enable the pin for peripheral use, and then verify that the

Figure 22-2. ADSP-BF54x processor as Slave SPI Device

8-BIT HOST
MICROCONTROLLER

ADSP-BF54x PROCESSOR
SLAVE SPI DEVICE

SCLK

MOSI

MISO SPIxMISO

SPIxSCK

SPIxMOSI

SPIxSSS_SEL

Interface Overview

22-8 ADSP-BF54x Blackfin Processor Hardware Reference

associated PORTx_MUX register is set to specifically enable the SPI slave
select input functionality. For more information see Chapter 9, “Gen-
eral-Purpose Ports”.

The enable lead time (T1), the enable lag time (T2), and the sequential
transfer delay time (T3) each must always be greater than or equal to
one-half the SPIxSCK period. See Figure 22-3. The minimum time
between successive word transfers (T4) is two SPIxSCK periods. This is
measured from the last active edge of SPIxSCK of one word to the first
active edge of SPIxSCK of the next word. This is independent of the con-
figuration of the SPI (CPHA, MSTR, and so on).

For a master device with CPHA = 0, the slave select output is inactive (high)
for at least one-half the SPIxSCK period. In this case, T1 and T2 will each
always be equal to one-half the SPIxSCK period.

Serial Peripheral Interface Slave Select Enable
Output Signals

When operating in master mode, Blackfin processors may use any GPIO
pin to enable individual SPI slave devices by software. In addition, the SPI
module provides hardware support to generate up to three slave select
enable signals automatically. See “SPIx Flag Register” on page 22-46 for
details.

Figure 22-3. SPI Timing

T1 T2

SPIxSS
(TO SLAVE)

SPIxSCK
(CPOL =1)

T4
T3

ADSP-BF54x Blackfin Processor Hardware Reference 22-9

SPI-Compatible Port Controllers

These signals are always active low in the SPI protocol. Since the respec-
tive pins are not driven during reset, it is recommended to pull them up
by a resistor.

Table 22-3 summarizes how to setup the port control logic in order to
enable the individual slave select enable outputs.

If enabled as a master, each SPI uses its SPIx_FLG register to enable up to
three general-purpose port pins to be used as individual slave select lines.
Before manipulating this register, the PBx, PEx, and PGx port pins that are
to be used as SPI slave-select outputs must first be configured as such. To

Table 22-3. SPI Slave Select Enable Setup

Signal Name Pin Name Port Control
To Enable Signal

SPI0SEL1 PE4 Set bit 4 in PORTE_FER = 1
Set PORTE_MUX[9:8] = b#00

SPI0SEL2 PE5 Set bit 5 in PORTE_FER = 1
Set PORTE_MUX[11:10] = b#00

SPI0SEL3 PE6 Set bit 6 in PORTE_FER = 1
Set PORTE_MUX[13:12] = b#00

SPI1SEL1 PG5 Set bit 5 in PORTG_FER = 1
Set PORTG_MUX[11:10] = b#00

SPI1SEL2 PG6 Set bit 6 in PORTG_FER = 1
Set PORTG_MUX[13:12] = b#00

SPI1SEL3 PG7 Set bit 7 in PORTG_FER = 1
Set PORTG_MUX[15:14] = b#00

SPI2SEL1 PB9 Set bit 9 in PORTB_FER = 1
Set PORTB_MUX[19:18] = b#00

SPI2SEL2 PB10 Set bit 10 in PORTB_FER = 1
Set PORTB_MUX[21:20] = b#00

SPI2SEL3 PB11 Set bit 11 in PORTB_FER = 1
Set PORTB_MUX[23:22] = b#00

Interface Overview

22-10 ADSP-BF54x Blackfin Processor Hardware Reference

work as SPI output pins, the PBx, PEx, and PGx pins must be enabled for
use by SPI in the appropriate PORTx_FER and PORTx_MUX registers. For
more information see Chapter 9, “General-Purpose Ports”.

Refer to Table 22-4 for more details regarding which port pins must be
configured prior to being modified by way of the SPIx_FLG register.

In slave mode, the SPIx_FLG bits have no effect, and each SPI uses the
SPIxSS input as a slave select. Just as in the master mode case, the SPIxSS
pin must first be configured as a peripheral pin in the PORTx_MUX register,
and then as an SPI pin in the PORTx_FER register. Figure 22-14 on
page 22-46 shows the SPIx_FLG register diagram.

ADSP-BF54x Blackfin Processor Hardware Reference 22-11

SPI-Compatible Port Controllers

Table 22-4. SPIx_FLG Bit Mapping to Port Pins

Bit Name Function Port Pin Default

0 Reserved 0

1 FLS1 SPIxSEL1 Enable SPI0: PE4
SPI1: PG5
SPI2: PB9

0

2 FLS2 SPIxSEL2 Enable SPI0: PE5
SPI1: PG6
SPI2: PB10

0

3 FLS3 SPIxSEL3 Enable SPI0: PE6
SPI1: PG7
SPI2: PB11

0

4 Reserved 0

5 Reserved 0

6 Reserved 0

7 Reserved 0

8 Reserved 1

9 FLG1 SPIxSEL1 Value SPI0: PE4
SPI1: PG5
SPI2: PB9

1

10 FLG2 SPIxSEL2 Value SPI0: PE5
SPI1: PG6
SPI2: PB10

1

11 FLG3 SPIxSEL3 Value SPI0: PE6
SPI1: PG7
SPI2: PB11

1

12 Reserved 1

13 Reserved 1

14 Reserved 1

15 Reserved 1

Interface Overview

22-12 ADSP-BF54x Blackfin Processor Hardware Reference

Slave Select Inputs

If the SPI is in slave mode, SPIxSS acts as the slave select input. When
enabled as a master, SPIxSS can serve as an error detection input for the
SPI in a multimaster environment. The PSSE bit in SPIx_CTL enables this
feature. When PSSE = 1, the SPIxSS input is the master mode error input.
Otherwise, SPIxSS is ignored.

Use of FLS Bits in SPI_FLG for Multiple Slave SPI
Systems

The FLSx bits in the SPIx_FLG register are used in a multiple slave SPI
environment. For example, if there are four SPI devices in the system
including a processor master, the master processor can support the SPI
mode transactions across the other three devices. This configuration
requires only one master processor in this multislave environment. For
example, assume that the SPI is the master. The three port pins that can
be configured as SPI master mode slave-select output pins can be con-
nected to each of the slave SPI device’s SPIxSS pins. In this configuration,
the FLSx bits in SPIx_FLG can be used in three cases.

In cases 1 and 2, the processor is the master and the three microcon-
trollers/peripherals with SPI interfaces are slaves. In case 3, all four devices
connected by way of SPI ports can be other processors.

1. Transmit to all three SPI devices at the same time in a broadcast
mode. Here, all FLSx bits are set.

2. Receive and transmit from one SPI device by enabling only one
slave SPI device at a time.

ADSP-BF54x Blackfin Processor Hardware Reference 22-13

SPI-Compatible Port Controllers

3. If all the slaves are also processors, then the requester can receive
data from only one processor (enabled by clearing the EMISO bit in
the two other slave processors) at a time and transmit broadcast
data to all three at the same time. This EMISO feature may be avail-
able in some other microcontrollers. Therefore, it is possible to use
the EMISO feature with any other SPI device that includes this
functionality.

Figure 22-4 shows one processor as a master with three other SPI-compat-
ible devices as slaves.

The transmit buffer becomes full after it is written to. It becomes empty
when a transfer begins and the transmit value is loaded into the shift regis-
ter. The receive buffer becomes full at the end of a transfer when the shift
register value is loaded into the receive buffer. It becomes empty when the
receive buffer is read.

 The SPIF bit is set when the SPI port is disabled.

Upon entering DMA mode, the transmit buffer and the receive buffer
become empty. That is, the TXS bit and the RXS bit are initially cleared
upon entering DMA mode.

Figure 22-4. Single-Master, Multiple-Slave Configuration

MOSIMISO

SLAVE DEVICE

SCK MOSIMISO SCK MOSIMISO SCK

SPIxMOSISPIxMISO SPIxSCK

MASTER
DEVICE

SLAVE DEVICE SLAVE DEVICE

PB/PE/PGPB/PE/PG

PB/PE/PG

VDD

SPISS

SPIxSS

SPISS SPISS

Interface Overview

22-14 ADSP-BF54x Blackfin Processor Hardware Reference

When using DMA for SPI transmit, the DMA_DONE interrupt signifies that
the DMA FIFO is empty. However, at this point there may still be data in
the SPI DMA FIFO waiting to be transmitted. Therefore, software needs
to poll TXS in the SPIx_STAT register until it goes high for 2 successive
reads, at which point the SPI DMA FIFO will be empty. When the SPIF
bit subsequently gets set, the last word is transferred.

Internal Interfaces
Each SPI has dedicated connections to the processor’s PAB and DAB.

The low-latency PAB bus is used to map the SPI resources into the system
MMR space through the PAB bus. For the PAB accesses to SPI MMRs,
the primary performance criteria is latency, not throughput. Transfer
latencies for both read and write transfers on the PAB are 2 SCLK cycles.

The DAB bus provides a means for DMA SPI transfers to gain access to
on-chip and off-chip memory with little or no degradation in core band-
width to memory. The SPI peripheral, as a DMA master, is capable of
sourcing DMA accesses. A single arbiter supports a programmable priority
arbitration policy for access to the DAB. For more information on the
default arbitration priority see Chapter 2, “Chip Bus Hierarchy”.

DMA Functionality

Each SPI has a single DMA engine which can be configured to support
either an SPI transmit channel or a receive channel, but not both simulta-
neously. Therefore, when configured as a transmit channel, the received
data will essentially be ignored.

ADSP-BF54x Blackfin Processor Hardware Reference 22-15

SPI-Compatible Port Controllers

When configured as a receive channel, what is transmitted is irrelevant. A
16-bit by four-word FIFO (without burst capability) is included to
improve throughput on the DAB.

 When using DMA for SPI transmit, the DMA_DONE interrupt signi-
fies that the DMA FIFO is empty. However, at this point there
may still be data in the SPI DMA FIFO waiting to be transmitted.
Therefore, software needs to poll TXS in the SPIx_STAT register
until it goes low for two successive reads, at which point the SPI
DMA FIFO will be empty. When the SPIF bit subsequently goes
high, the last word is transferred.

The four-word FIFO is cleared when the SPI port is disabled.

SPI Transmit Data Buffer
The SPIx_TDBR register is a 16-bit read-write register. Data is loaded into
this register before being transmitted. Just prior to the beginning of a data
transfer, the data in SPIx_TDBR is loaded into the internal shift register,
which is inaccessible by software. A read of SPIx_TDBR can occur at any
time and does not interfere with or initiate SPI transfers.

When the DMA is enabled for transmit operation, the DMA engine loads
data into the SPIx_TDBR register for transmission just prior to the begin-
ning of a data transfer. A write to SPIx_TDBR should not occur in this
mode because this data will overwrite the DMA data to be transmitted.

When the DMA is enabled for receive operation, the contents of
SPIx_TDBR are repeatedly transmitted. A write to SPIx_TDBR is permitted in
this mode, and this data is transmitted.

If the SZ control bit in the SPIx_CTL register is set, SPIx_TDBR may be reset
to 0 under certain circumstances.

Description of Operation

22-16 ADSP-BF54x Blackfin Processor Hardware Reference

If multiple writes to SPIx_TDBR occur while a transfer is already in prog-
ress, only the last data written is transmitted. None of the intermediate
values written to SPIx_TDBR are transmitted. Multiple writes to SPIx_TDBR
are possible, but not recommended.

SPI Receive Data Buffer
The SPIx_RDBR register is a 16-bit read-only register. At the end of a data
transfer, the data in the shift register is loaded into SPIx_RDBR. During a
DMA receive operation, the data in SPIx_RDBR is automatically read by the
DMA. When SPIx_RDBR is read by way of software, the RXS bit is cleared
and an SPI transfer may be initiated (if TIMOD = b#00).

The SPIx_SHADOW register is provided for use in debugging software. This
register is at a different address than the receive data buffer, SPIx_RDBR,
but its contents are identical to that of SPIx_RDBR. When a software read
of SPIx_RDBR occurs, the RXS bit in SPIx_STAT is cleared and an SPI trans-
fer may be initiated (if TIMOD = b#00 in SPIx_CTL). No such hardware
action occurs when the SPIx_SHADOW register is read. The SPIx_SHADOW reg-
ister is read-only.

Description of Operation
The following sections describe the operation of the SPI.

ADSP-BF54x Blackfin Processor Hardware Reference 22-17

SPI-Compatible Port Controllers

SPI Transfer Protocols
The SPI protocol supports four different combinations of serial clock
phase and polarity (SPI modes 0-3). These combinations are selected
using the CPOL and CPHA bits in SPIx_CTL, as shown in Figure 22-5.

The figures “SPI Transfer Protocol for CPHA = 0” on page 22-18 and
“SPI Transfer Protocol for CPHA = 1” on page 22-19 demonstrate the
two basic transfer formats as defined by the CPHA bit. Two waveforms are
shown for SPIxSCK—one for CPOL = 0 and the other for CPOL = 1. The dia-
grams may be interpreted as master or slave timing diagrams since the
SPIxSCK, SPIxMISO, and SPIxMOSI pins are directly connected between the
master and the slave. The SPIxMISO signal is the output from the slave
(slave transmission), and the SPIxMOSI signal is the output from the master
(master transmission). The SPIxSCK signal is generated by the master, and
the SPIxSS signal is the slave device select input to the slave from the mas-
ter. The diagrams represent an 8-bit transfer (SIZE = 0) with the Most
Significant Bit (MSB) first (LSBF = 0). Any combination of the SIZE and
LSBF bits of SPIx_CTL is allowed. For example, a 16-bit transfer with the
Least Significant Bit (LSB) first is another possible configuration.

Figure 22-5. SPI Modes of Operation

CLOCK PHASE (CPHA)

CPHA = 0 CPHA = 1

CLOCK POLARITY (CPOL)

CPOL = 0

CPOL = 1

SAMPLE
EDGE

DRIVE
EDGE

SAMPLE
EDGE

DRIVE
EDGE

SAMPLE
EDGE

DRIVE
EDGE

SAMPLE
EDGE

DRIVE
EDGE

MODE 0 MODE 1

MODE 2 MODE 3

Description of Operation

22-18 ADSP-BF54x Blackfin Processor Hardware Reference

The clock polarity and the clock phase should be identical for the master
device and the slave device involved in the communication link. The
transfer format from the master may be changed between transfers to
adjust to various requirements of a slave device.

When CPHA = 0, the slave select line, SPIxSS, must be inactive (high)
between each serial transfer. This is controlled automatically by the SPI
hardware logic. When CPHA = 1, SPIxSS may either remain active (low)
between successive transfers or be inactive (high). This must be controlled
by the software by way of manipulation of SPIx_FLG.

Figure 22-6 shows the SPI transfer protocol for CPHA = 0. Note SPIxSCK
starts toggling in the middle of the data transfer, SIZE = 0, and LSBF = 0.

Figure 22-7 shows the SPI transfer protocol for CPHA = 1. Note SPIxSCK
starts toggling at the beginning of the data transfer, SIZE = 0, and
LSBF = 0.

Figure 22-6. SPI Transfer Protocol for CPHA = 0

6MSB

SPIxSS
(TO SLAVE)

SPIxSCK
(CPOL = 0)

SPIxSCK
(CPOL = 1)

SPIxMOSI
(FROM MASTER)

SPIxMISO
(FROM SLAVE)

1 2 3 4 85 6 7

5 4 3 2 1 LSB

6MSB 5 4 3 2 1 LSB

CLOCK CYCLE
NUMBER

 * *

 *

(* = UNDEFINED)

ADSP-BF54x Blackfin Processor Hardware Reference 22-19

SPI-Compatible Port Controllers

SPI General Operation
Each SPI can be used in a single master as well as multimaster environ-
ment. The SPIxMOSI, SPIxMISO, and the SPIxSCK signals are all tied
together in both configurations. SPI transmission and reception are always
enabled simultaneously, unless the broadcast mode is selected. In broad-
cast mode, several slaves can be enabled to receive, but only one of the
slaves must be in transmit mode driving the SPIxMISO line. If the transmit
or receive is not needed, it can simply be ignored. This section describes
the clock signals, SPI operation as a master and as a slave, and error
generation.

Precautions must be taken to avoid data corruption when changing the
SPI module configuration. The configuration must not be changed during
a data transfer. The clock polarity should only be changed when no slaves
are selected. An exception to this is when an SPI communication link con-
sists of a single master and a single slave, CPHA = 1, and the slave select
input of the slave is always tied low. In this case, the slave is always
selected and data corruption can be avoided by enabling the slave only
after both the master and slave devices are configured.

Figure 22-7. SPI Transfer Protocol for CPHA = 1

6MSB

1 2 3 4 85 6 7

5 4 3 2 1 LSB

6MSB 5 4 3 2 1 LSB

 * *

(* = UNDEFINED)

 *

 SPIxSCK
(CPOL = 0)

SPIxSCK
(CPOL = 1)

SPIxMOSI
(FROM MASTER)

SPIxMISO
(FROM SLAVE)

CLOCK CYCLE
NUMBER

SPIxSS
(TO SLAVE)

Description of Operation

22-20 ADSP-BF54x Blackfin Processor Hardware Reference

In a multimaster or multislave SPI system, the data output pins (SPIxMOSI
and SPIxMISO) can be configured to behave as open drain outputs, which
prevents contention and possible damage to pin drivers. An external
pull-up resistor is required on both the SPIxMOSI and SPIxMISO pins when
this option is selected.

The WOM bit controls this option. When WOM is set and the SPI is config-
ured as a master, the SPIxMOSI pin is three-stated when the data driven out
on SPIxMOSI is a logic high. The SPIxMOSI pin is not three-stated when the
driven data is a logic low. Similarly, when WOM is set and the SPI is config-
ured as a slave, the SPIxMISO pin is three-stated if the data driven out on
SPIxMISO is a logic high.

During SPI data transfers, one SPI device acts as the SPI link master,
where it controls the data flow by generating the SPI serial clock and
asserting the SPI device select signal (SPIxSS). The other SPI device acts as
the slave and accepts new data from the master into its shift register, while
it transmits requested data out of the shift register through its SPI trans-
mit data pin. Multiple processors can take turns being the master device,
as can other microcontrollers or microprocessors. One master device can
also simultaneously shift data into multiple slaves (known as broadcast
mode). However, only one slave may drive its output to write data back to
the master at any given time. This must be enforced in broadcast mode,
where several slaves can be selected to receive data from the master, but
only one slave at a time can be enabled to send data back to the master.

In a multimaster or multidevice environment where multiple processors
are connected by way of their SPI ports, all SPIxMOSI pins are connected
together, all SPIxMISO pins are connected together, and all SPIxSCK pins
are connected together.

For a multislave environment, the processor can make use of three pro-
grammable flags for each SPI port, which are dedicated SPI slave select
signals for the SPI slave devices. See Table 22-4 on page 22-11.

 At reset, the SPI is disabled and configured as a slave.

ADSP-BF54x Blackfin Processor Hardware Reference 22-21

SPI-Compatible Port Controllers

SPI Control
The SPIx_CTL register is used to configure and enable the SPI system. This
register is used to enable the SPI interface, select the device as a master or
slave, and determine the data transfer format and word size.

The term “word” refers to a single data transfer of either 8 bits or 16 bits,
depending on the word length (SIZE) bit in SPIx_CTL. There are two spe-
cial bits which can also be modified by the hardware: SPE and MSTR.

The TIMOD field is used to specify the action that initiates transfers to/from
the receive/transmit buffers. When set to b#00, a SPI port transaction is
begun when the receive buffer is read. Data from the first read will need to
be discarded since the read is needed to initiate the first SPI port transac-
tion. When set to b#01, the transaction is initiated when the transmit
buffer is written. A value of b#10 selects DMA receive mode and the first
transaction is initiated by enabling the SPI for DMA receive mode. Subse-
quent individual transactions are initiated by a DMA read of the
SPIx_RDBR. A value of b#11 selects DMA transmit mode and the transac-
tion is initiated by a DMA write of the SPIx_TDBR.

The PSSE bit is used to enable the SPIxSS input for master. When not
used, SPIxSS can be disabled, freeing up a chip pin as general-purpose
I/O.

The EMISO bit enables the SPIxMISO pin as an output. This is needed in an
environment where the master wishes to transmit to various slaves at one
time (broadcast). Only one slave is allowed to transmit data back to the
master. Except for the slave from whom the master wishes to receive, all
other slaves should have this bit cleared.

The SPE and MSTR bits can be modified by hardware when the MODF bit of
the SPIx_STAT register is set. See “Mode Fault Error (MODF)” on
page 22-24.

Figure 22-13 on page 22-45 provides the bit descriptions for SPIx_CTL.

Description of Operation

22-22 ADSP-BF54x Blackfin Processor Hardware Reference

Clock Signals
The SPIxSCK signal is a gated clock that is only active during data transfers
for the duration of the transferred word. The number of active edges is
equal to the number of bits driven on the data lines. The clock rate can be
as high as one-fourth of the SCLK rate. For master devices, the clock rate is
determined by the 16-bit value of SPIx_BAUD. For slave devices, the value
in SPIx_BAUD is ignored. When the SPI device is a master, SPIxSCK is an
output signal. When the SPI is a slave, SPIxSCK is an input signal. Slave
devices ignore the serial clock if the slave select input is driven inactive
(high). See Figure 22-5 on page 22-17.

The SPIxSCK signal is used to shift out and shift in the data driven onto
the MSPIxMISO and SPIxMOSI lines. The data is always shifted out on one
edge of the clock and sampled on the opposite edge of the clock. Clock
polarity and clock phase relative to data are programmable into SPIx_CTL
and define the transfer format.

SPI Baud Rate
The SPIx_BAUD register is used to set the bit transfer rate for a master
device. When configured as a slave, the value written to this register is
ignored. The serial clock frequency is determined by this formula:

Writing a value of 0 or 1 to the register disables the serial clock. There-
fore, the maximum serial clock rate is one-fourth the system clock rate.

SPIxSCK Frequency
SCLK (System Clock Frequency)

2 SPIx_BAUD
---=

ADSP-BF54x Blackfin Processor Hardware Reference 22-23

SPI-Compatible Port Controllers

Table 22-5 lists several possible baud rate values for SPIx_BAUD.

Error Signals and Flags
The SPIx_STAT register is used to detect when an SPI transfer is complete
or if transmission/reception errors occur. The SPIx_STAT register can be
read at any time.

Some of the bits in SPIx_STAT are read-only and other bits are sticky. Bits
that provide information only about the SPI are read-only. These bits are
set and cleared by the hardware. Sticky bits are set when an error condi-
tion occurs. These bits are set by hardware and must be cleared by
software. To clear a sticky bit, the user must write a 1 to the desired bit
position of SPIx_STAT. For example, if the TXE bit is set, the user must
write a 1 to bit 2 of SPIx_STAT to clear the TXE error condition. This allows
the user to read SPIx_STAT without changing its value.

 Sticky bits are cleared on a reset, but are not cleared on an SPI
disable.

See Figure 22-15 on page 22-48 for more information.

Table 22-5. SPI Master Baud Rate Example

SPIx_BAUD Decimal Value SPI Clock (SCK) Divide
Factor

Baud Rate for
SCLK at 100 MHz

0 N/A N/A

1 N/A N/A

2 4 25 MHz

3 6 16.7 MHz

4 8 12.5 MHz

65,535 (0xFFFF) 131,070 763 Hz

Description of Operation

22-24 ADSP-BF54x Blackfin Processor Hardware Reference

Mode Fault Error (MODF)

The MODF bit is set in SPIx_STAT when the SPIxSS input pin of a device
enabled as a master is driven low by some other device in the system. This
occurs in multimaster systems when another device is also trying to be the
master. To enable this feature, the PSSE bit in SPIx_CTL must be set. This
contention between two drivers can potentially damage the driving pins.
As soon as this error is detected, these actions occur:

• The MSTR control bit in SPIx_CTL is cleared, configuring the SPI
interface as a slave

• The SPE control bit in SPIx_CTL is cleared, disabling the SPI system

• The MODF status bit in SPIx_STAT is set

• An SPI error interrupt is generated

These four conditions persist until the MODF bit is cleared by software.
Until the MODF bit is cleared, the SPI cannot be re-enabled, even as a slave.
Hardware prevents the user from setting either SPE or MSTR while MODF is
set.

When MODF is cleared, the interrupt is deactivated. Before attempting to
re-enable the SPI as a master, the state of the SPIxSS input pin should be
checked to make sure the pin is high. Otherwise, once SPE and MSTR are
set, another mode fault error condition immediately occurs.

When SPE and MSTR are cleared, the SPI data and clock pin drivers (SPIx
MOSI, SPIxMISO, and SPIxSCK) are disabled. However, the slave select out-
put pins revert to being controlled by the general-purpose I/O port
registers. This could lead to contention on the slave select lines if these
lines are still driven by the processor. To ensure that the slave select out-
put drivers are disabled once an MODF error occurs, the program must
configure the general-purpose I/O port registers appropriately.

ADSP-BF54x Blackfin Processor Hardware Reference 22-25

SPI-Compatible Port Controllers

When enabling the MODF feature, the program must configure as inputs all
of the port pins that will be used as slave selects. Programs can do this by
configuring the direction of the port pins prior to configuring the SPI.
This ensures that, once the MODF error occurs and the slave selects are auto-
matically reconfigured as port pins, the slave select output drivers are
disabled.

Transmission Error (TXE)

The TXE bit is set in SPIx_STAT when all the conditions of transmission are
met, and there is no new data in SPIx_TDBR (SPIx_TDBR is empty). In this
case, the contents of the transmission depend on the state of the SZ bit in
SPIx_CTL. The TXE bit is sticky (W1C).

Reception Error (RBSY)

The RBSY flag is set in the SPIx_STAT register when a new transfer is com-
pleted, but before the previous data can be read from SPIx_RDBR. The state
of the GM bit in the SPIx_CTL register determines whether SPIx_RDBR is
updated with the newly received data. The RBSY bit is sticky (W1C).

Transmit Collision Error (TXCOL)

The TXCOL flag is set in SPIx_STAT when a write to SPIx_TDBR coincides
with the load of the shift register. The write to SPIx_TDBR can be by way of
software or the DMA. The TXCOL bit indicates that corrupt data may have
been loaded into the shift register and transmitted. In this case, the data in
SPIx_TDBR may not match what was transmitted. This error can easily be
avoided by proper software control. The TXCOL bit is sticky (W1C).

Interrupt Output
Each SPI has two interrupt output signals: a data interrupt and an error
interrupt.

Functional Description

22-26 ADSP-BF54x Blackfin Processor Hardware Reference

The behavior of the SPI data interrupt signal depends on the TIMOD field
in the SPIx_CTL register. In DMA mode (TIMOD = b#1X), the data inter-
rupt acts as a DMA request and is generated when the DMA FIFO is
ready to be written to (TIMOD = b#11) or read from (TIMOD = b#10). In
non-DMA mode (TIMOD = b#0X), a data interrupt is generated when the
SPIx_TDBR is ready to be written to (TIMOD = b#01) or when the SPIx_RDBR
is ready to be read from (TIMOD = b#00).

An SPI error interrupt is generated in a master when a mode fault error
occurs, in both DMA and non-DMA modes. An error interrupt can also
be generated in DMA mode when there is an underflow (TXE when
TIMOD = b#11) or an overflow (RBSY when TIMOD = b#10) error condition.
In non-DMA mode, the underflow and overflow conditions set the TXE
and RBSY bits in the SPIx_STAT register, respectively, but do not generate
an error interrupt.

For more information about this interrupt output, see the discussion of
the TIMOD bits in “SPI Control” on page 22-21.

Functional Description
The following sections describe the functional operation of the SPI.

Master Mode Operation
When the SPI is configured as a master (and DMA mode is not selected),
the interface operates in the following manner.

1. The core writes to the PORTx_FER and/or PORTx_MUX registers to
properly configure the required PBx, PEx, and/or PGx pins for SPI
use.

2. The core writes to SPIx_FLG, setting one or more of the SPI Flag
Select bits (FLSx). This ensures that the desired slaves are properly
deselected while the master is configured.

ADSP-BF54x Blackfin Processor Hardware Reference 22-27

SPI-Compatible Port Controllers

3. The core writes to the SPIx_BAUD and SPIx_CTL registers, enabling
the device as a master and configuring the SPI system by specifying
the appropriate word length, transfer format, baud rate, and other
necessary information.

4. If CPHA = 1, the core activates the desired slaves by clearing one or
more of the SPI flag bits (FLGx) of SPIx_FLG.

5. The TIMOD bits in SPIx_CTL determine the SPI transfer initiate
mode. The transfer on the SPI link begins upon either a data write
by the core to the transmit data buffer (SPIx_TDBR) or a data read
of the receive data buffer (SPIx_RDBR).

6. The SPI then generates the programmed clock pulses on SPIxSCK
and simultaneously shifts data out of SPIxMOSI and shifts data in
from SPIxMISO. Before a shift, the shift register is loaded with the
contents of the SPIx_TDBR register. At the end of the transfer, the
contents of the shift register are loaded into SPIx_RDBR.

7. With each new transfer initiate command, the SPI continues to
send and receive words, according to the SPI transfer initiate mode.

See Figure 22-8 on page 22-39 for additional information.

If the transmit buffer remains empty or the receive buffer remains full, the
device operates according to the states of the SZ and GM bits in SPIx_CTL. If
SZ = 1 and the transmit buffer is empty, the device repeatedly transmits 0s
on the SPIxMOSI pin. One word is transmitted for each new transfer initi-
ate command. If SZ = 0 and the transmit buffer is empty, the device
repeatedly transmits the last word it transmitted before the transmit buffer
became empty. If GM = 1 and the receive buffer is full, the device continues
to receive new data from the SPIxMISO pin, overwriting the older data in
the SPIx_RDBR buffer. If GM = 0 and the receive buffer is full, the incoming
data is discarded, and SPIx_RDBR is not updated.

Functional Description

22-28 ADSP-BF54x Blackfin Processor Hardware Reference

Transfer Initiation From Master (Transfer Modes)
When a device is enabled as a master, the initiation of a transfer is defined
by the two TIMOD bits of SPIx_CTL. Based on those two bits and the status
of the interface, a new transfer is started upon either a read of SPIx_RDBR
or a write to SPIx_TDBR. This is summarized in Table 22-6.

 If the SPI port is enabled with TIMOD = b#01 or TIMOD = b#11, the
hardware immediately issues a first interrupt or DMA request.

Table 22-6. Transfer Initiation

TIMO
D

Function Transfer Initiated Upon Action, Interrupt

b#00 Transmit
and
Receive

Initiate new single word trans-
fer upon read of SPIx_RDBR
and previous transfer com-
pleted.

Interrupt active when receive buffer is full.
Read of SPIx_RDBR clears interrupt.

b#01 Transmit
and
Receive

Initiate new single word trans-
fer upon write to SPIx_TDBR
and previous transfer com-
pleted.

Interrupt active when transmit buffer is empty.
Writing to SPIx_TDBR clears interrupt.

b#10 Receive
with
DMA

Initiate new multiword trans-
fer upon enabling SPIx for
DMA mode. Individual word
transfers begin with a DMA
read of SPIx_RDBR, and last
transfer completed.

Request DMA reads as long as
SPIx DMA FIFO is not empty.

b#11 Transmit
with
DMA

Initiate new multiword trans-
fer upon enabling SPIx for
DMA mode. Individual word
transfers begin with a DMA
write to SPIx_TDBR, and last
transfer completed.

Request DMA writes as long as
SPIx DMA FIFO is not full.

ADSP-BF54x Blackfin Processor Hardware Reference 22-29

SPI-Compatible Port Controllers

Slave Mode Operation
When a device is enabled as a slave (and DMA mode is not selected), the
start of a transfer is triggered by a transition of the SPIxSS select signal to
the active state (low), or by the first active edge of the clock (SPIxSCK),
depending on the state of CPHA.

These steps illustrate SPI operation in the slave mode:

1. The core writes to the appropriate PORTx_FER and PORTx_MUX regis-
ters to properly configure the GPIO pins as SPI signals.

2. The core writes to SPIx_CTL to define the mode of the serial link to
be the same as the mode setup in the SPI master.

3. To prepare for the data transfer, the core writes data to be trans-
mitted into SPIx_TDBR.

4. Once the SPIxSS falling edge is detected, the slave starts shifting
data out on MISO and in from MOSI on SCK edges, depending on the
states of CPHA and CPOL.

5. Reception/transmission continues until SPIxSS is released or until
the slave has received the proper number of clock cycles.

6. The slave device continues to receive/transmit with each new fall-
ing edge transition on SPIxSS and/or SPIxSCK clock edge.

See Figure 22-8 on page 22-39 for additional information.

Programming Model

22-30 ADSP-BF54x Blackfin Processor Hardware Reference

If the transmit buffer remains empty or the receive buffer remains full, the
device operates according to the states of the SZ and GM bits in SPIx_CTL. If
SZ = 1 and the transmit buffer is empty, the device repeatedly transmits 0s
on the SPIxMISO pin. If SZ = 0 and the transmit buffer is empty, it repeat-
edly transmits the last word it transmitted before the transmit buffer
became empty. If GM = 1 and the receive buffer is full, the device contin-
ues to receive new data from the SPIxMOSI pin, overwriting the older data
in SPIx_RDBR. If GM = 0 and the receive buffer is full, the incoming data is
discarded, and SPIx_RDBR is not updated.

Slave Ready for a Transfer
When a device is enabled as a slave, the actions shown in Table 22-7 are
necessary to prepare the device for a new transfer.

Programming Model
The following sections describe the SPI programming model.

Table 22-7. Transfer Preparation

TIMO
D

Function Action, Interrupt

b#00 Transmit and
receive

Interrupt active when receive buffer is full.
Read of SPIx_RDBR clears interrupt.

b#01 Transmit and
receive

Interrupt active when transmit buffer is empty.
Writing to SPIx_TDBR clears interrupt.

b#10 Receive with DMA Request DMA reads as long as SPIx DMA FIFO is not empty.

b#11 Transmit with
DMA

Request DMA writes as long as SPIx DMA FIFO is not full.

ADSP-BF54x Blackfin Processor Hardware Reference 22-31

SPI-Compatible Port Controllers

Beginning and Ending an SPI Transfer
The start and finish of an SPI transfer depend on whether the device is
configured as a master or a slave, whether the CPHA mode is selected, and
whether the transfer initiation mode (TIMOD) is selected. For a master SPI
with CPHA = 0, a transfer starts when either SPIx_TDBR is written to or
SPIx_RDBR is read, depending on TIMOD. At the start of the transfer, the
enabled slave select outputs are driven active (low). However, the SPIxSCK
signal remains inactive for the first half of the first cycle of SPIxSCK. For a
slave with CPHA = 0, the transfer starts as soon as the SPIxSS input goes
low.

For CPHA = 1, a transfer starts with the first active edge of SPIxSCK for both
slave and master devices. For a master device, a transfer is considered fin-
ished after it sends the last data and simultaneously receives the last data
bit. A transfer for a slave device ends after the last sampling edge of
SPIxSCK.

The RXS bit defines when the receive buffer can be read. The TXS bit
defines when the transmit buffer can be filled. The end of a single word
transfer occurs when the RXS bit is set, indicating that a new word has just
been received and latched into the receive buffer, SPIx_RDBR. For a master
SPI, RXS is set shortly after the last sampling edge of SPIxSCK. For a slave
SPI, RXS is set shortly after the last SPIxSCK edge, regardless of CPHA or
CPOL. The latency is typically a few SCLK cycles and is independent of
TIMOD and the baud rate. If configured to generate an interrupt when
SPIx_RDBR is full (TIMOD = b#00), the interrupt goes active one SCLK cycle
after RXS is set. When not relying on this interrupt, the end of a transfer
can be detected by polling the RXS bit.

To maintain software compatibility with other SPI devices, the SPIF bit is
also available for polling. This bit may have a slightly different behavior
from that of other commercially available devices. For a slave device, SPIF
is cleared shortly after the start of a transfer (SPIxSS going low for
CPHA = 0, first active edge of SPIxSCK on CPHA = 1), and is set at the same
time as RXS. For a master device, SPIF is cleared shortly after the start of a

Programming Model

22-32 ADSP-BF54x Blackfin Processor Hardware Reference

transfer (either by writing the SPIx_TDBR or reading the SPIx_RDBR,
depending on TIMOD), and is set one-half SPIxSCK period after the last
SPIxSCK edge, regardless of CPHA or CPOL.

The time at which SPIF is set depends on the baud rate. In general, SPIF is
set after RXS, but at the lowest baud rate settings (SPIx_BAUD < 4). The
SPIF bit is set before RXS is set, and consequently before new data is
latched into SPIx_RDBR, because of the latency. Therefore, for
SPIx_BAUD = 2 or SPIx_BAUD = 3, RXS must be set before SPIF to read
SPIx_RDBR. For larger SPIx_BAUD settings, RXS is guaranteed to be set
before SPIF is set.

If the SPI port is used to transmit and receive at the same time, or to
switch between receive and transmit operation frequently, then the
TIMOD = b#00 mode may be the best operation option. In this mode, soft-
ware performs a dummy read from the SPIx_RDBR register to initiate the
first transfer. If the first transfer is used for data transmission, software
should write the value to be transmitted into the SPIx_TDBR register before
performing the dummy read. If the transmitted value is arbitrary, it is
good practice to set the SZ bit to ensure zero data is transmitted rather
than random values. When receiving the last word of an SPI stream, soft-
ware should ensure that the read from the SPIx_RDBR register does not
initiate another transfer. It is recommended to disable the SPI port before
the final SPIx_RDBR read access. Reading the SPIx_SHADOW register is not
sufficient as it does not clear the interrupt request.

In master mode with the CPHA bit set, software should manually assert the
required slave select signal before starting the transaction. After all data is
transferred, software typically releases the slave select again. If the SPI
slave device requires the slave select line to be asserted for the complete
transfer, this can be done in the SPI interrupt service routine only when
operating in TIMOD = b#00 or TIMOD = b#10 mode. With TIMOD = b#01 or
TIMOD = b#11, the interrupt is requested while the transfer is still in
progress.

ADSP-BF54x Blackfin Processor Hardware Reference 22-33

SPI-Compatible Port Controllers

Master Mode DMA Operation
When enabled as a master with the DMA engine configured to transmit or
receive data, the SPI interface operates as follows.

1. The core writes to the PORTx_FER and/or PORTx_MUX registers to
properly configure the required PBx, PEx, and/or PGx pins for SPI
use.

2. The processor core writes to the appropriate DMA registers to
enable the SPI DMA channel and to configure the necessary work
units, access direction, word count, and so on. For more informa-
tion see Chapter 7, “Direct Memory Access”.

3. The processor core writes to the SPIx_FLG register, setting one or
more of the SPI flag select bits (FLSx).

4. The processor core writes to the SPIx_BAUD and SPIx_CTL registers,
enabling the device as a master and configuring the SPI system by
specifying the appropriate word length, transfer format, baud rate,
and so on. The TIMOD field should be configured to select either
“receive with DMA” (TIMOD = b#10) or “transmit with DMA”
(TIMOD = b#11) mode.

5. If configured for receive, a receive transfer is initiated upon
enabling of the SPI. Subsequent transfers are initiated as the SPI
reads data from the SPIx_RDBR register and writes to the SPI DMA
FIFO. The SPI then requests a DMA write to memory. Upon a
DMA grant, the DMA engine reads a word from the SPI DMA
FIFO and writes to memory.

If configured for transmit, the SPI requests a DMA read from
memory. Upon a DMA grant, the DMA engine reads a word from
memory and writes to the SPI DMA FIFO. As the SPI writes data
from the SPI DMA FIFO into the SPIx_TDBR register, it initiates a
transfer on the SPI link.

Programming Model

22-34 ADSP-BF54x Blackfin Processor Hardware Reference

6. The SPI then generates the programmed clock pulses on SPIxSCK
and simultaneously shifts data out of SPIxMOSI and shifts data in
from SPIxMISO. For receive transfers, the value in the shift register
is loaded into the SPIx_RDBR register at the end of the transfer. For
transmit transfers, the value in the SPIx_TDBR register is loaded into
the shift register at the start of the transfer.

7. In receive mode, as long as there is data in the SPI DMA FIFO (the
FIFO is not empty), the SPI continues to request a DMA write to
memory. The DMA engine continues to read a word from the SPI
DMA FIFO and writes to memory until the SPI DMA word count
register transitions from 1 to 0. The SPI continues receiving words
until SPI DMA mode is disabled.

In transmit mode, as long as there is room in the SPI DMA FIFO
(the FIFO is not full), the SPI continues to request a DMA read
from memory. The DMA engine continues to read a word from
memory and write to the SPI DMA FIFO until the SPI DMA word
count register transitions from 1 to 0. The SPI continues transmit-
ting words until the SPI DMA FIFO is empty.

See Figure 22-9 on page 22-40 for additional information.

For receive DMA operations, if the DMA engine is unable to keep up with
the receive datastream, the receive buffer operates according to the state of
the GM bit. If GM = 1 and the DMA FIFO is full, the device continues to
receive new data from the SPIxMISO pin, overwriting the older data in the
SPIx_RDBR register. If GM = 0, and the DMA FIFO is full, the incoming
data is discarded, and the SPIx_RDBR register is not updated. While per-
forming receive DMA, the transmit buffer is assumed to be empty (and
TXE is set). If SZ = 1, the device repeatedly transmits 0s on the SPIxMOSI
pin. If SZ = 0, it repeatedly transmits the contents of the SPIx_TDBR regis-
ter. The TXE underrun condition cannot generate an error interrupt in this
mode.

ADSP-BF54x Blackfin Processor Hardware Reference 22-35

SPI-Compatible Port Controllers

For transmit DMA operations, the master SPI initiates a word transfer
only when there is data in the DMA FIFO. If the DMA FIFO is empty,
the SPI waits for the DMA engine to write to the DMA FIFO before start-
ing the transfer. All aspects of SPI receive operation should be ignored
when configured in transmit DMA mode, including the data in the
SPIx_RDBR register, and the status of the RXS and RBSY bits. The RBSY over-
run conditions cannot generate an error interrupt in this mode. The TXE
underrun condition cannot happen in this mode (master DMA TX
mode), because the master SPI will not initiate a transfer if there is no data
in the DMA FIFO.

Writes to the SPIx_TDBR register during an active SPI transmit DMA oper-
ation should not occur because the DMA data will be overwritten. Writes
to the SPIx_TDBR register during an active SPI receive DMA operation are
allowed. Reads from the SPIx_RDBR register are allowed at any time.

DMA requests are generated when the DMA FIFO is not empty (when
TIMOD = b#10), or when the DMA FIFO is not full (when TIMOD = b#11).

Error interrupts are generated when there is an RBSY overflow error condi-
tion (when TIMOD = b#10).

A master SPI DMA sequence may involve back-to-back transmission
and/or reception of multiple DMA work units. The SPI controller sup-
ports such a sequence with minimal core interaction.

Slave Mode DMA Operation
When enabled as a slave with the DMA engine configured to transmit or
receive data, the start of a transfer is triggered by a transition of the SPIxSS
signal to the active-low state or by the first active edge of SPIxSCK,
depending on the state of CPHA.

Programming Model

22-36 ADSP-BF54x Blackfin Processor Hardware Reference

The following steps illustrate the SPI receive or transmit DMA sequence
in an SPI slave (in response to a master command).

1. The core writes to the PORTx_FER and PORTx_MUX registers to prop-
erly configure the GPIO pins as SPI signals.

2. The processor core writes to the appropriate DMA registers to
enable the SPI DMA channel and configure the necessary work
units, access direction, word count, and so on. For more informa-
tion see Chapter 7, “Direct Memory Access”.

3. The processor core writes to the SPIx_CTL register to define the
mode of the serial link to be the same as the mode setup in the SPI
master. The TIMOD field will be configured to select either “receive
with DMA” (TIMOD = b#10) or “transmit with DMA”
(TIMOD = b#11) mode.

4. If configured for receive, once the slave select input is active, the
slave starts receiving and transmitting data on SPIxSCK edges. The
value in the shift register is loaded into the SPIx_RDBR register at
the end of the transfer. As the SPI reads data from the SPIx_RDBR
register and writes to the SPI DMA FIFO, it requests a DMA write
to memory. Upon a DMA grant, the DMA engine reads a word
from the SPI DMA FIFO and writes to memory.

If configured for transmit, the SPI requests a DMA read from
memory. Upon a DMA grant, the DMA engine reads a word from
memory and writes to the SPI DMA FIFO. The SPI then reads
data from the SPI DMA FIFO and writes to the SPIx_TDBR register,
awaiting the start of the next transfer. Once the slave select input is
active, the slave starts receiving and transmitting data on active
SPIxSCK edges. The value in the SPIx_TDBR register is loaded into
the shift register at the start of the transfer.

ADSP-BF54x Blackfin Processor Hardware Reference 22-37

SPI-Compatible Port Controllers

5. In receive mode, as long as there is data in the SPI DMA FIFO
(FIFO not empty), the SPI slave continues to request a DMA write
to memory. The DMA engine continues to read a word from the
SPI DMA FIFO and writes to memory until the SPI DMA word
count register transitions from 1 to 0. The SPI slave continues
receiving words on SPIxSCK edges as long as the slave select input is
active.

In transmit mode, as long as there is room in the SPI DMA FIFO
(FIFO not full), the SPI slave continues to request a DMA read
from memory. The DMA engine continues to read a word from
memory and write to the SPI DMA FIFO until the SPI DMA word
count register transitions from 1 to 0. The SPI slave continues
transmitting words on SPIxSCK edges as long as the slave select
input is active.

See Figure 22-9 on page 22-40 for additional information.

For receive DMA operations, if the DMA engine is unable to keep up with
the receive datastream, the receive buffer operates according to the state of
the GM bit. If GM = 1 and the DMA FIFO is full, the device continues to
receive new data from the SPIxMOSI pin, overwriting the older data in the
SPIx_RDBR register. If GM = 0 and the DMA FIFO is full, the incoming
data is discarded, and the SPIx_RDBR register is not updated. While per-
forming receive DMA, the transmit buffer is assumed to be empty and TXE
is set. If SZ = 1, the device repeatedly transmits 0s on the SPIxMISO pin. If
SZ = 0, it repeatedly transmits the contents of the SPIx_TDBR register. The
TXE underrun condition cannot generate an error interrupt in this mode.

For transmit DMA operations, if the DMA engine is unable to keep up
with the transmit stream, the transmit port operates according to the state
of the SZ bit. If SZ = 1 and the DMA FIFO is empty, the device repeatedly
transmits 0s on the SPIxMISO pin. If SZ = 0 and the DMA FIFO is empty,
it repeatedly transmits the last word it transmitted before the DMA buffer
became empty. All aspects of SPI receive operation should be ignored

Programming Model

22-38 ADSP-BF54x Blackfin Processor Hardware Reference

when configured in transmit DMA mode, including the data in the
SPIx_RDBR register, and the status of the RXS and RBSY bits. The RBSY over-
run conditions cannot generate an error interrupt in this mode.

Writes to the SPIx_TDBR register during an active SPI transmit DMA oper-
ation should not occur because the DMA data will be overwritten. Writes
to the SPIx_TDBR register during an active SPI receive DMA operation are
allowed. Reads from the SPIx_RDBR register are allowed at any time.

DMA requests are generated when the DMA FIFO is not empty (when
TIMOD = b#10), or when the DMA FIFO is not full (when TIMOD = b#11).

Error interrupts are generated when there is an RBSY overflow error condi-
tion (when TIMOD = b#10), or when there is a TXE underflow error
condition (when TIMOD = b#11).

ADSP-BF54x Blackfin Processor Hardware Reference 22-39

SPI-Compatible Port Controllers

Figure 22-8. Core-Driven SPI Flow Chart

WRITE PORTx_FER AND PORTx_MUX TO ENABLE SPI SIGNALS

MASTER OR SLAVE?

CPHA = 1
AND

MSTR = 1

TIMOD = b#00

MASTER

SLAVE, MSTR = 0

WRITE SPIx_FLG TO SET APPROPRIATE FLSx BITS

WRITE SPIx_BAUD TO SET DESIRED SPI BIT RATE

MSTR = 1

WRITE SPIx_CTL TO CONFIGURE SPI HARDWARE AND ENABLE SPI PORT

Y

N

WRITE SPIx_FLG
TO SELECT SLAVE(S)

VIA FLGx BITS

WRITE SPIx_TBDR WITH DATA TO SEND OVER SPI

Y

N

READ SPIx_RDBR
TO START
TRANSFER

WAIT FOR TRANSFER COMPLETE

LAST TRANSFER?
Y

N

TIMOD = b#01
Y

N

READ NEW DATA
FROM SPIx_RDBR

CPHA = 1
AND

MSTR = 1

N

Y
WRITE SPIx_FLG

TO DESELECT
SLAVE(S) VIA

FLGx BITS

WRITE SPIx_CTL TO DISABLE SPI PORT

Programming Model

22-40 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 22-9. SPI0 DMA Flow Chart (Part 1 of 3)

WRITE PORTE_FER AND PORTE_MUX TO ENABLE SPI0 SIGNAL

USE
DEFAULT DMA16_4

FOR SPI0?

DMA16_4_CONFIG
FLOW = ?

N

Y

WRITE DESIRED DMA CHANNEL'S
DMAy_x_PERIPHERAL_MAP WITH 0x4000 TO SET AS SPI0.

(REPLACE ALL MENTION OF DMA16_4 REGISTER NAMES

IN THIS FLOW CHART WITH CHOSEN DMAy_x PREFIX.)

WRITE DMA16_4_CONFIG TO CONFIGURE DMA ENGINE

0x4 ARRAY
0x6 SMALL LIST
0x7 LARGE LIST

0x0 STOP
0x1 AUTOBUFFER

POPULATE
DESCRIPTORS

IN MEMORY

WRITE DMA REGISTERS:
DMA16_4_START_ADDR

DMA16_4_X_COUNT
DMA16_4_X_MODIFY

DMA16_4_CONFIG'S NDSIZE FIELD DETERMINES
WHICH DMA REGISTERS TO INITIALIZE STATICALLY

DMA16_4_CONFIG
FLOW = ?

0x6 SMALL LIST
0x7 LARGE LIST

0x4 ARRAY

SET
DMA16_4_CURR_DESC_PTR

TO ADDRESS OF
FIRST DESCRIPTOR

SET
DMA16_4_NEXT_DESC_PTR

TO ADDRESS OF
FIRST DESCRIPTOR

A

ADSP-BF54x Blackfin Processor Hardware Reference 22-41

SPI-Compatible Port Controllers

Figure 22-10. SPI0 DMA Flow Chart (Part 2 of 3)

2D DMA?

IS SPI MASTER
OR SLAVE?

Y

N

WRITE DMA REGISTERS:
DMA16_4_Y_COUNT
DMA16_4_Y_MODIFY

MASTER

A

SLAVE,
MSTR = 0

WRITE SPI0_FLG TO SET APPROPRIATE FLSx BITS

WRITE SPI0_BAUD TO SET DESIRED SPI BIT RATE

MSTR = 1

WRITE SPI0_CTL TO CONFIGURE SPI PORT

CPHA = 1
AND

MSTR = 1

Y

N

WRITE SPI0_FLG
TO SELECT SLAVE(S)

VIA FLGx BITS

WRITE DMA16_4_CONFIG TO ENABLE DMA

WRITE SPI0_CTL TO ENABLE SPI

B

Programming Model

22-42 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 22-11. SPI0 DMA Flow Chart (Part 3 of 3)

INTERRUPT
REQUESTED?

TERMINATE DMA?

Y

N

CLEAR INTERRUPT BY
WRITING THE DMA_DONE

BIT IN DMA16_4_IRQ_STATUS

N

TX OR RX DMA?

TX

B

Y

N

WRITE DMA16_4_CONFIG
TO ENABLE DMA

AGAIN

WAIT FOR DMA_RUN = 0 IN DMA16_4_IRQ_STATUS

WAIT FOR TWO STRAIGHT READS
OF TXS = 0 IN SPI0_STAT

WAIT FOR SPIF = 1 IN SPI0_STAT

CPHA = 1
AND

MSTR = 1

Y

N

WRITE SPI0_FLG TO
DESELECT SLAVE(S)

VIA FLGx BITS

WRITE SPI0_CTL TO DISABLE SPI PORT

WRITE DMA16_4_CONFIG TO DISABLE DMA

FLOW = STOP

Y

RX

ADSP-BF54x Blackfin Processor Hardware Reference 22-43

SPI-Compatible Port Controllers

SPI Registers
The SPI peripheral includes a number of user-accessible registers. Some of
these registers are also accessible through the DMA bus. Four registers
contain control and status information: SPIx_BAUD, SPIx_CTL, SPIx_FLG,
and SPIx_STAT. Two registers are used for buffering receive and transmit
data: SPIx_RDBR and SPIx_TDBR. For more information about
DMA-related registers see Chapter 7, “Direct Memory Access”.

See “Error Signals and Flags” on page 22-23 for more information about
how the bits in these registers are used to signal errors and other
conditions.

Table 22-8 shows the functions of the SPI registers. Figure 22-12 through
Figure 22-18 on page 22-49 provide details.

Table 22-8. SPI Registers

Register Name Description Notes

SPIx_BAUD SPIx port baud rate
registers on page 22-44

Value of 0 or 1 disables the serial clock

SPIx_CTL SPIx port control
registers on page 22-45

SPE and MSTR bits can also be modified by
hardware (when MODF is set)

SPIx_FLG SPIx port flag
registers on page 22-46

Bits 0 and 8 are reserved

SPIx_STAT SPIx port status registers
on page 22-48

SPIF bit can be set by clearing SPE in SPIx_CTL

SPIx_TDBR SPIx port transmit data
buffer registers
on page 22-48

Register contents can also be modified by hard-
ware (by DMA and/or when SZ = 1 in
SPIx_CTL)

SPIx_RDBR SPIx port receive data
buffer registers
on page 22-49

When register is read, hardware events can be trig-
gered

SPIx_SHADOW SPIx port RDBR shadow
registers on page 22-49

Register has the same contents as SPIx_RDBR,
but no action is taken when it is read

SPI Registers

22-44 ADSP-BF54x Blackfin Processor Hardware Reference

SPI Baud Rate (SPIx_BAUD) Register

Figure 22-12. SPI Baud Rate Register

Baud Rate[15:0]
SCLK / (2 SPIx_BAUD)

Reset = 0x0000

SPI Baud Rate Register (SPIx_BAUD)

SPI0: 0xFFC0 0514

SPI1: 0xFFC0 2314
SPI2: 0xFFC0 2414

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 22-45

SPI-Compatible Port Controllers

SPI Control (SPIx_CTL) Register

Figure 22-13. SPI Control Register

TIMOD[1:0] (Transfer Initiation
Mode)
00 - Start transfer with read of

SPIx_RDBR, interrupt when
SPIx_RDBR is full

01 - Start transfer with write of
SPIx_TDBR, interrupt when
SPIx_TDBR is empty

10 - Start transfer with DMA read
of SPIx_RDBR, request further
DMA reads as long as SPI DMA
FIFO is not empty

11 - Start transfer with DMA write
of SPIx_TDBR, request further
DMA writes as long as SPIx DMA
FIFO is not full

SZ (Send Zero)
Send zero or last word when
SPIx_TDBR is empty
0 - Send last word
1 - Send zeros

GM (Get More Data)
When SPIx_RDBR is full, get
data or discard incoming data
0 - Discard incoming data
1 - Get more data, overwrite

previous data

PSSE (Slave Select Enable)
0 - Disable
1 - Enable

EMISO (Enable MISO)
0 - MISO disabled
1 - MISO enabled

Reset = 0x0400

SPE (SPI Enable)
0 - Disabled
1 - Enabled

WOM (Write Open Drain
Master)
0 - Normal
1 - Open drain

MSTR (Master)
Sets the SPI module as
master or slave
0 - Slave
1 - Master

CPOL (Clock Polarity)
0 - Active high SPIxSCK
1 - Active low SPIxSCK

CPHA (Clock Phase)
Selects transfer format and
operation mode
0 - SPIxSCK toggles from middle

of the first data bit, slave select
pins controlled by hardware

1 - SPIxSCK toggles from beginning
of first data bit, slave select
pins controlled by software

LSBF (LSB First)
0 - MSB sent/received first
1 - LSB sent/received first

SIZE (Size of Words)
0 - 8 bits
1 - 16 bits

SPI Control Register (SPIx_CTL)

SPI0: 0xFFC0 0500

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 1 0 0 0 0 0 0 0 0 00 0

SPI1: 0xFFC0 2300

SPI2: 0xFFC0 2400

SPI Registers

22-46 ADSP-BF54x Blackfin Processor Hardware Reference

SPI Flag (SPIx_FLG) Register

The SPIx_FLG register consists of two sets of bits that function as follows.

• Slave select enable (FLSx) bits

Each FLSx bit corresponds to a general purpose port (PBx/PEx/PGx)
pin. When an FLSx bit is set, the corresponding port pin is driven
as a slave select. For example, if FLS1 is set in SPI0_FLG, PE4 is
driven as a slave select (SPI0SEL1). Table 22-4 on page 22-11
shows the association of the FLSx bits and the corresponding port
pins.

If the FLSx bit is not set, the general-purpose port registers
(PORTxIO_DIR and others) configure and control the corresponding
port pins.

• Slave select value (FLGx) bits

Figure 22-14. SPIx Flag Register

Reset = 0xFF00

FLS1 (Slave Select Enable 1)
0 - SPIxSEL1 disabled
1 - SPIxSEL1 enabled

FLS2 (Slave Select Enable 2)
0 - SPIxSEL2 disabled
1 - SPIxSEL2 enabled

FLS3 (Slave Select Enable 3)
0 - SPIxSEL3 disabled
1 - SPIxSEL3 enabled

SPI Flag Register (SPIx_FLG)

SPI0: 0xFFC0 0504

SPI1: 0xFFC0 2304

SPI2: 0xFFC0 2404

FLG3 (Slave Select Value 3)
SPIxSEL3 value

FLG2 (Slave Select Value 2)
SPIxSEL2 value

FLG1 (Slave Select Value 1)
SPIxSEL1 value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 0 0 0 0 0 0 01 1

ADSP-BF54x Blackfin Processor Hardware Reference 22-47

SPI-Compatible Port Controllers

• When a PBx/PEx/PGx pin is configured as a slave select output, the
FLGx bits can determine the value driven onto the output. If the
CPHA bit in SPIx_CTL is set, the output value is set by software
control of the FLGx bits. The SPI protocol permits the slave select
line to either remain asserted (low) or be deasserted between trans-
ferred words. The user must set or clear the appropriate FLGx bits.
For example, to drive PE6 as a slave select, FLS3 in SPI0_FLG must
be set. Clearing FLG3 in SPI0_FLG drives PE6 low; setting FLG3
drives PE6 high. The PE6 pin can be cycled high and low between
transfers by setting and clearing FLG3. Otherwise, PE6 remains
active (low) between transfers.

If CPHA = 0, the SPI hardware sets the output value and the FLGx
bits are ignored. The SPI protocol requires that the slave select be
deasserted between transferred words. In this case, the SPI hard-
ware controls the pins. For example, to use PE6 as a slave select pin,
it is only necessary to set the FLS3 bit in SPI0_FLG. It is not neces-
sary to write to the FLG3 bit, because the SPI hardware
automatically drives the PE6 pin.

SPI Registers

22-48 ADSP-BF54x Blackfin Processor Hardware Reference

SPI Status (SPIx_STAT) Register

SPI Transmit Data Buffer (SPIx_TDBR) Register

Figure 22-15. SPI Status Register

Figure 22-16. SPI Transmit Data Buffer Register

Reset = 0x0001

SPIF (SPI Finished) - RO
Set when SPI single word
transfer complete

MODF (Mode Fault Error) - W1C
Set in a master device when
some other device tries to
become the master

TXE (Transmission Error) - W1C
Set when transmission
occurred with no new data in
SPIx_TDBR

SPI Status Register (SPIx_STAT)

TXCOL (Transmit Collision Error) - W1C
When set, corrupt data may
have been transmitted

RXS (RX Data Buffer Status) - RO
0 - Empty
1 - Full

RBSY (Receive Error) - W1C
Set when data is received with
receive buffer full

TXS (SPIx_TDBR Data Buffer Status) - RO
0 - Empty
1 - Full

SPI0: 0xFFC0 0508

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 00 0

SPI1: 0xFFC0 2308
SPI2: 0xFFC0 2408

Reset = 0x0000

Transmit Data Buffer[15:0]

SPI Transmit Data Buffer Register (SPIx_TDBR)

SPI0: 0xFFC0 050C
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SPI1: 1xFFC0 230C
SPI2: 2xFFC0 240C

ADSP-BF54x Blackfin Processor Hardware Reference 22-49

SPI-Compatible Port Controllers

SPI Receive Data Buffer (SPIx_RDBR) Register

SPI RDBR Shadow (SPIx_SHADOW) Register

Programming Examples
This section includes examples (Listing 22-1 on page 22-50 through
Listing 22-8 on page 22-57) for core generated transfer and for use with
DMA. Each code example assumes that the appropriate defBF54x header
file is included and that core writes to PORTx_FER and PORTx_MUX have been
made to configure port pins associated with the SPI.

Figure 22-17. SPI Receive Data Buffer Register

Figure 22-18. SPI RDBR Shadow Register

Reset = 0x0000

Receive Data Buffer[15:0]

SPI Receive Data Buffer Register (SPIx_RDBR)
RO

SPI0: 0xFFC0 0510

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SPI1: 0xFFC0 2310
SPI2: 0xFFC0 2410

Reset = 0x0000

SPIx_RDBR Shadow[15:0]

SPI RDBR Shadow Register (SPIx_SHADOW)
RO

SPI0: 0xFFC0 0518
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
SPI1: 0xFFC0 2318
SPI2: 0xFFC0 2418

Programming Examples

22-50 ADSP-BF54x Blackfin Processor Hardware Reference

Core Generated Transfer
The following core-driven master-mode SPI example shows how to initial-
ize the hardware, signal the start of a transfer, handle the interrupt and
issue the next transfer, and generate a stop condition.

Initialization Sequence

Before the SPI can transfer data, the registers must be configured as
follows.

Listing 22-1. SPI Register Initialization

SPI0_Register_Initialization:

P0.H = hi(SPI0_FLG);

P0.L = lo(SPI0_FLG);

R0 = W[P0] (Z);

BITSET (R0,0x3); /* FLS3 */

W[P0] = R0; /* Enable slave-select output pin */

P0.H = hi(SPI0_BAUD);

P0.L = lo(SPI0_BAUD);

R0.L = 0x208E; /* Write to SPI Baud rate register */

W[P0] = R0.L; ssync; /* If SCLK = 133 MHz, SPI clock ~= 8 kHz

*/

/* Setup SPI0 Control Register */

/***

 * TIMOD [1:0] = 00 : Transfer On RDBR Read.

 * SZ [2] = 0 : Send Last Word When TDBR Is Empty

 * GM [3] = 1 : Overwrite Previous Data If RDBR Is Full

 * PSSE [4] = 0 : Disables Slave-Select As Input (Master)

 * EMISO [5] = 0 : MISO Disabled For Output (Master)

 * [7] and [6] = 0 : RESERVED

 * SIZE [8] = 1 : 16 Bit Word Length Select

ADSP-BF54x Blackfin Processor Hardware Reference 22-51

SPI-Compatible Port Controllers

 * LSBF [9] = 0 : Transmit MSB First

 * CPHA [10] = 0 : Hardware Controls Slave-Select Outputs

 * CPOL [11] = 1 : Active Low Serial Clock

 * MSTR [12] = 1 : Device Is Master

 * WOM [13] = 0 : Normal MOSI/MISO Data Output

 * (No Open Drain)

 * SPE [14] = 1 : SPI Module Is Enabled

 * [15] = 0 : RESERVED

 ***/

P0.H = hi(SPI0_CTL) ;

P0.L = lo(SPI0_CTL) ;

R0 = 0x5908;

W[P0] = R0.L; ssync; /* Enable SPI0 as MASTER */

Starting a Transfer

After the initialization procedure in the given master mode, a transfer
begins following a dummy read of SPI0_RDBR. Typically, known data
which is desired to be transmitted to the slave is preloaded into the
SPI0_TDBR. In the following code, P1 is assumed to point to the start of the
16-bit transmit data buffer and P2 is assumed to point to the start of the
16-bit receive data buffer. In addition, the user must ensure appropriate
interrupts are enabled for SPI operation.

Listing 22-2. Initiate Transfer

Initiate_Transfer:

P0.H = hi(SPI0_FLG);

P0.L = lo(SPI0_FLG);

R0 = W[P0] (Z);

BITCLR (R0,0xB); /* FLG3 */

W[P0] = R0; /* Drive 0 on enabled slave-select pin */

Programming Examples

22-52 ADSP-BF54x Blackfin Processor Hardware Reference

P0.H = hi(SPI0_TDBR); /* SPI Transmit Register */

P0.L = lo(SPI0_TDBR);

R0 = W[P1++] (z); /* Get First Data To Be Transmitted And

Increment Pointer */

W[P0] = R0; /* Write to SPI0_TDBR */

P0.H = hi(SPI0_RDBR);

P0.L = lo(SPI0_RDBR);

R0 = W[P0] (z); /* Dummy read of SPI0_RDBR kicks off transfer

*/

Post Transfer and Next Transfer

Following the transfer of data, the SPI generates an interrupt, which is ser-
viced if the interrupt is enabled during initialization. In the interrupt
routine, software must write the next value to be transmitted prior to
reading the byte received. This is because a read of the SPI0_RDBR initiates
the next transfer.

Listing 22-3. SPI0 Interrupt Handler

SPI0_Interrupt_Handler:

Process_SPI0_Sample:

P0.H = hi(SPI0_TDBR); /* SPI0 transmit register */

P0.L = lo(SPI0_TDBR);

R0 = W[P1++](z); /* Get next data to be transmitted */

W[P0] = R0.l; /* Write that data to SPI0_TDBR */

Kick_Off_Next:

P0.H = hi(SPI0_RDBR); /* SPI0 receive register */

P0.L = lo(SPI0_RDBR);

R0 = W[P0] (z); /* Read SPI0 receive register (also kicks off

next transfer) */

ADSP-BF54x Blackfin Processor Hardware Reference 22-53

SPI-Compatible Port Controllers

W[P2++] = R0; /* Store received data to memory */

RTI; /* Exit interrupt handler */

Stopping

In order for a data transfer to end after the user has transferred all data,
the following code can be used to stop the SPI. Note that this is typically
done in the interrupt handler to ensure the final data is sent in its entirety.

Listing 22-4. Stopping SPI

Stopping_SPI0:

P0.H = hi(SPI0_CTL);

P0.L = lo(SPI0_CTL);

R0 = W[P0];

BITCLR(R0, 14); /* Clear SPI0 enable bit */

W[P0] = R0.L; ssync; /* Disable SPI */

DMA Transfer
The following DMA-driven master-mode SPI autobuffer example shows
how to initialize DMA, initialize SPI, signal the start of a transfer, and
generate a stop condition.

DMA Initialization Sequence

The following code initializes the DMA to perform a 16-bit memory read
DMA operation in autobuffer mode, and generates an interrupt request
when the buffer is sent. This code assumes that P1 points to the start of
the data buffer to be transmitted and that NUM_SAMPLES is a defined macro
indicating the number of elements being sent.

Programming Examples

22-54 ADSP-BF54x Blackfin Processor Hardware Reference

Listing 22-5. DMA Initialization

Initialize_DMA: /* DMA16_4 = default channel for SPI0 DMA */

P0.H = hi(DMA16_4_CONFIG);

P0.L = lo(DMA16_4_CONFIG);

R0 = 0x1084(z); /* Autobuffer mode, IRQ on complete, linear

16-bit, mem read */

w[P0] = R0;

P0.H = hi(DMA16_4_START_ADDR);

P0.L = lo(DMA16_4_START_ADDR);

[p0] = p1; /* Start address of TX buffer */

P0.H = hi(DMA16_4_X_COUNT);

P0.L = lo(DMA16_4_X_COUNT);

R0 = NUM_SAMPLES;

w[p0] = R0; /* Number of samples to transfer */

R0 = 2;

P0.H = hi(DMA16_4_X_MODIFY);

P0.L = lo(DMA16_4_X_MODIFY);

w[p0] = R0; /* 2 byte stride for 16-bit words */

R0 = 1; /* single dimension DMA means 1 row */

P0.H = hi(DMA16_4_Y_COUNT);

P0.L = lo(DMA16_4_Y_COUNT);

w[p0] = R0;

SPI Initialization Sequence

Before the SPI can transfer data, the registers must be configured as
follows.

ADSP-BF54x Blackfin Processor Hardware Reference 22-55

SPI-Compatible Port Controllers

Listing 22-6. SPI Initialization

SPI_Register_Initialization:

P0.H = hi(SPI0_FLG);

P0.L = lo(SPI0_FLG);

R0 = W[P0] (Z);

BITSET (R0,0x3); /* FLS3 */

W[P0] = R0; /* Enable slave-select output pin */

P1.H = hi(SPI0_BAUD);

P1.L = lo(SPI0_BAUD);

R0.L = 0x208E; /* Write to SPI0 baud rate register */

W[P0] = R0.L; ssync; /* If SCLK = 133MHz, SPI clock ~= 8kHz */

/* Setup SPI Control Register */

/***

 * TIMOD [1:0] = 11 : Transfer on DMA TDBR write

 * SZ [2] = 0 : Send last word when TDBR is empty

 * GM [3] = 1 : Discard incoming data if RDBR is full

 * PSSE [4] = 0 : Disables slave-select as input (master)

 * EMISO [5] = 0 : SPIxMISO disabled for output (master)

 * [7] and [6] = 0 : RESERVED

 * SIZE [8] = 1 : 16 Bit word length select

 * LSBF [9] = 0 : Transmit MSB first

 * CPHA [10] = 0 : Hardware Controls Slave-Select Outputs

 * CPOL [11] = 1 : Active LOW serial clock

 * MSTR [12] = 1 : Device is master

 * WOM [13] = 0 : Normal MOSI/MISO data output

 * (no open drain)

 * SPE [14] = 0 : SPI module is disabled

 * [15] = 0 : RESERVED

 ***/

/* Configure SPI0 as MASTER */

R1 = 0x190B(z); /* Leave disabled until DMA is enabled*/

Programming Examples

22-56 ADSP-BF54x Blackfin Processor Hardware Reference

P1.L = lo(SPI0_CTL);

W[P1] = R1; ssync;

Starting a Transfer

After the initialization procedure in the given master mode, a transfer
begins following enabling of SPI. However, the DMA must be enabled
before enabling the SPI.

Listing 22-7. Starting a Transfer

Initiate_Transfer:

P0.H = hi(DMA16_4_CONFIG);

P0.L = lo(DMA16_4_CONFIG);

R2 = w[P0](z);

BITSET (R2, 0); /*Set DMA enable bit */

w[p0] = R2.L; /* Enable TX DMA */

P4.H = hi(SPI0_CTL);

P4.L = lo(SPI0_CTL);

R2=w[p4](z);

BITSET (R2, 14); /* Set SPI0 enable bit */

w[p4] = R2; /* Enable SPI0 */

Stopping a Transfer

In order for a data transfer to end after the DMA has transferred all
required data, the following code is executed in the SPI DMA interrupt
handler. The example code below clears the DMA interrupt, then waits
for the DMA engine to stop running. When the DMA engine has
completed, SPI0_STAT is polled to determine when the transmit buffer is
empty. If there is data in the SPI Transmit FIFO, it is loaded as soon as
the TXS bit clears. A second consecutive read with the TXS bit clear indi-
cates the FIFO is empty and the last word is in the shift register. Finally,

ADSP-BF54x Blackfin Processor Hardware Reference 22-57

SPI-Compatible Port Controllers

polling for the SPIF bit determines when the last bit of the last word is
shifted out. At that point, it is safe to shut down the SPI port and the
DMA engine.

Listing 22-8. Stopping a Transfer

SPI_DMA_INTERRUPT_HANDLER:

P0.L = lo(DMA16_4_IRQ_STATUS);

P0.H = hi(DMA16_4_IRQ_STATUS);

R0 = 1 ;

W[P0] = R0 ; /* Clear DMA interrupt */

/* Wait for DMA to complete */

P0.L = lo(DMA16_4_IRQ_STATUS);

P0.H = hi(DMA16_4_IRQ_STATUS);

R0 = DMA_RUN; /* 0x08 */

CHECK_DMA_COMPLETE: /* Poll for DMA_RUN bit to clear */

R3 = W[P0] (Z);

R1 = R3 & R0;

CC = R1 == 0;

IF !CC JUMP CHECK_DMA_COMPLETE;

/* Wait for TXS to clear */

P0.L = lo(SPI0_STAT);

P0.H = hi(SPI0_STAT);

R1 = TXS; /* 0x08 */

Check_TXS: /* Poll for TXS = 0 */

R2 = W[P0] (Z);

R2 = R2 & R1;

CC = R0 == 0;

IF !CC JUMP Check_TXS;

Programming Examples

22-58 ADSP-BF54x Blackfin Processor Hardware Reference

R2 = W[P0] (Z); /* Check if TXS stays clear for 2 reads */

R2 = R2 & R1;

CC = R0 == 0;

IF !CC JUMP Check_TXS;

/* Wait for final word to transmit from SPI */

Final_Word:

R0 = W[P0](Z);

R2 = SPIF; /* 0x01 */

R0 = R0 & R2;

CC = R0 == 0;

IF CC JUMP Final_Word;

Disable_SPI:

P0.L = lo(SPI0_CTL);

P0.H = hi(SPI0_CTL);

R0 = W[P0] (Z);

BITCLR (R0,0xe); /* Clear SPI enable bit */

W[P0] = R0; /* Disable SPI */

Disable_DMA:

P0.L = lo(DMA16_4_CONFIG);

P0.H = hi(DMA16_4_CONFIG);

R0 = W[P0](Z);

BITCLR (R0,0x0); /* Clear DMA enable bit */

W[P0] = R0; /* Disable DMA */

RTI; /* Exit Handler */

ADSP-BF54x Blackfin Processor Hardware Reference 23-1

23 TWO-WIRE INTERFACE
CONTROLLERS

ADSP-BF54x processor processors include two 2-wire interface (TWI)
controllers. These controllers allow a device to interface to an Inter IC bus

as specified by the Philips I2C Bus Specification, version 2.1, dated January
2000.

This chapter contains the following sections:

• “Overview” on page 23-2

• “Interface Overview” on page 23-3

• “Description of Operation” on page 23-6

• “TWI General Operation” on page 23-11

• “Functional Description” on page 23-13

• “Programming Model” on page 23-23

• “TWI Registers” on page 23-25

• “Programming Examples” on page 23-52

• “Electrical Specifications” on page 23-63

Overview

23-2 ADSP-BF54x Blackfin Processor Hardware Reference

Overview
Each TWI is fully compatible with the widely used I2C bus standard. It
was designed with a high level of functionality and is compatible with
multi-master, multi-slave bus configurations.

To preserve processor bandwidth the TWI controller can be set up with
transfer initiated interrupts only to service FIFO buffer data reads and
writes. Protocol related interrupts are optional.

Each TWI externally moves 8-bit data while maintaining compliance with

the I2C bus protocol. The TWI controllers include these features:

• Simultaneous master and slave operation on multiple device
systems

• Support for multi-master bus arbitration

• 7-bit addressing

• 100K bits/second and 400K bits/second data rates

• General call address support

• Master clock synchronization and support for clock low extension

• Separate multiple-byte receive and transmit FIFOs

• Low interrupt rate

• Individual override control of data and clock lines in the event of
bus lock-up

• Input filter for spike suppression

• Serial camera control bus support as specified in OmniVision Serial
Camera Control Bus (SCCB) Functional Specification version 2.1.

ADSP-BF54x Blackfin Processor Hardware Reference 23-3

Two-Wire Interface Controllers

Interface Overview
Figure 23-1 provides a block diagram of the TWI controllers. The inter-
face is essentially a shift register that serially transmits and receives data
bits, one bit at a time at the SCLx rate, to and from other TWI devices.
The SCLx synchronizes the shifting and sampling of the data on the serial
data pin.

Figure 23-1. TWI Block Diagram

PAB16

TWI INTERFACE LOGIC

CLOCK
GENERATION

Tx REG

2-DEEP FIFO 2-DEEP FIFO

Rx REG

Tx SHIFT REG Rx SHIFT REG

ARBITRATIONPRESCALERADDRESS
COMPARE

SCL1-0SDA1-0

Interface Overview

23-4 ADSP-BF54x Blackfin Processor Hardware Reference

External Interface
The TWI signals are functionally multiplexed as general-purpose I/O.
These signals, SDAx (serial data) and SCLx (serial clock) are open drain and
as such require pull up resistors.

Serial Clock signal (SCL1–0)

In slave mode this signal is an input and an external master is responsible
for providing the clock.

In master mode the TWI controllers must set this signal to the desired fre-
quency. The TWI controllers support the standard mode of operation (up
to 100 KHz) or fast mode (up to 400 KHz).

The TWI control register (TWIx_CONTROL) is used to set the PRESCALE value
which gives the relationship between the system clock (SCLK) and the TWI
controller’s internally timed events. The internal time reference is derived
from SCLK using a prescaled value.

PRESCALE = fSCLK/10MHz

The PRESCALE value is the number of system clock (SCLK) periods used in
the generation of one internal time reference. The value of PRESCALE must
be set to create an internal time reference with a period of 10 MHz. It is
represented as a 7-bit binary value.

 It is not always possible to achieve 10 MHz accuracy. In such cases,
it is safe to round up the PRESCALE value to the next highest integer.
For example, if SCLK is 133 MHz, the PRESCALE value is calculated
as 133 MHz/10 MHz = 13.3. In this case, a PRESCALE value of 14
ensures that all timing requirements are met.

Serial data signal (SDA1–0)

This is a bidirectional signal on which serial data is transmitted or received
depending on the direction of the transfer.

ADSP-BF54x Blackfin Processor Hardware Reference 23-5

Two-Wire Interface Controllers

TWI Pins

Table 23-1 shows the pins for the TWI. Two bidirectional pins externally

interface the TWI controller to the I2C bus. The interface is simple and
no other external connections or logic are required.

Internal Interfaces
The peripheral bus interface supports the transfer of 16-bit wide data and
is used by the processor in the support of register and FIFO buffer reads
and writes.

The register block contains all control and status bits and reflects what can
be written or read as outlined by the programmer’s model. Status bits can
be updated by their respective functional blocks.

The FIFO buffer is configured as a1-byte-wide 2-deep transmit FIFO buf-
fer and a 1-byte-wide 2-deep receive FIFO buffer.

The transmit shift register serially shifts its data out externally off chip.
The output can be controlled for generation of acknowledgements or it
can be manually overwritten.

The receive shift register receives its data serially from off chip. The
receive shift register is 1 byte wide and data received can either be trans-
ferred to the FIFO buffer or used in an address comparison.

The address compare block supports address comparison in the event any
of the TWI controller module is accessed as a slave.

Table 23-1. TWI Pins

Pin Description

SDA1–0 In/Out TWI serial data, high impedance reset value.

SCL1–0 In/Out TWI serial clock, high impedance reset value.

Description of Operation

23-6 ADSP-BF54x Blackfin Processor Hardware Reference

The prescaler block must be programmed to generate a 10 MHz time ref-
erence relative to the system clock. This time base is used for filtering of
data and timing events specified by the electrical data sheet (See the Phil-
ips Specification), as well as for SCLx clock generation.

The clock generation module is used to generate an external SCLx clock
when in master mode. It includes the logic necessary for synchronization
in a multi-master clock configuration and clock stretching when config-
ured in slave mode.

Description of Operation
The following sections describe the operation of the TWI interface.

TWI Transfer Protocols

The TWI controllers follow the transfer protocol of the Philips I2C Bus
Specification version 2.1 dated January 2000. A simple complete transfer is
diagrammed in Figure 23-2.

Figure 23-2. Basic Data Transfer

ACKR/W

ACK = ACKNOWLEDGE

S P8-BIT DATA ACK7-BIT ADDRESS

P = STOP
S = START

ADSP-BF54x Blackfin Processor Hardware Reference 23-7

Two-Wire Interface Controllers

To better understand the mapping of TWI controller register contents to
a basic transfer, Figure 23-3 details the same transfer as above noting the
corresponding TWI controller bit names. In this illustration, the TWI
controller successfully transmits one byte of data as a master. The slave has
acknowledged both address and data.

Clock Generation and Synchronization

Each TWI controller implementation only issues a clock during master
mode operation and only at the time a transfer is initiated. If arbitration
for the bus is lost, the serial clock output immediately three-states. If mul-
tiple clocks attempt to drive the serial clock line, the TWI controller
synchronizes its clock with the other remaining clocks. This is shown in
Figure 23-4 for TWI controller 0.

Figure 23-3. Data Transfer With Bit Illustration

Figure 23-4. TWI Clock Synchronization

ACKMDIR

ACK = ACKNOWLEDGE

S PXMITDATA8[7:0] ACKMADDR[6:0]

P = STOP
S = START

HIGH
COUNT

LOW
COUNT

TWI CONTROLLER
CLOCK

SECOND MASTER
CLOCK

SCL0
RESULT

Description of Operation

23-8 ADSP-BF54x Blackfin Processor Hardware Reference

The TWI controller’s serial clock (SCLx) output follows these rules:

• Once the clock high (CLKHI) count is complete, the serial clock out-
put is driven low and the clock low (CLKLOW) count begins.

• Once the clock low count is complete, the serial clock line is
three-stated and the clock synchronization logic enters into a delay
mode (shaded area) until the SCLx line is detected at a logic 1 level.
At this time the clock high count begins.

Bus Arbitration

The TWI controllers initiate a master mode transmission (MEN) only when
the bus is idle. If the bus is idle and two masters initiate a transfer, arbitra-
tion for the bus begins. This is shown in Figure 23-5.

The TWI controller monitors the serial data bus (SDAx) while SCLx is high
and if SDAx is determined to be an active logic 0 level while the TWI con-
troller’s data is a logic 1 level, the TWI controller has lost arbitration and
ends generation of clock and data. Note arbitration is not performed only
at serial clock edges, but also during the entire time SCLx is high.

Figure 23-5. TWI Bus Arbitration

START

SCL0 (BUS)

TWI CONTROLLER
DATA

SECOND MASTER
DATA

SDAx (BUS)
ARBITRATION
LOST

ADSP-BF54x Blackfin Processor Hardware Reference 23-9

Two-Wire Interface Controllers

Start and Stop Conditions

Start and stop conditions involve serial data transitions while the serial
clock is a logic 1 level. The TWI controllers generate and recognize these
transitions. Typically start and stop conditions occur at the beginning and
at the conclusion of a transmission with the exception repeated start
“combined” transfers, as shown in Figure 23-6.

The TWI controller’s special case start and stop conditions include:

• TWI controller addressed as a slave-receiver

If the master asserts a stop condition during the data phase of a
transfer, the TWI controller concludes the transfer (SCOMP).

• TWI controller addressed as a slave-transmitter

If the master asserts a stop condition during the data phase of a
transfer, the TWI controller concludes the transfer (SCOMP) and
indicates a slave transfer error (SERR).

• TWI controller as a master-transmitter or master-receiver

If the stop bit is set during an active master transfer, the TWI con-
troller issues a stop condition as soon as possible avoiding any error
conditions (as if data transfer count had been reached).

Figure 23-6. TWI Start and Stop Conditions

START

SCL (BUS)

SDA (BUS)

STOP

Description of Operation

23-10 ADSP-BF54x Blackfin Processor Hardware Reference

General Call Support

The TWI controllers always decode and acknowledge a general call
address if it is enabled as a slave (SEN) and if general call is enabled (GEN).
general call addressing (0x00) is indicated by the GCALL bit being set and
by nature of the transfer the TWI controller is a slave-receiver. If the data
associated with the transfer is to be NAK’ed, the NAK bit can be set.

If the TWI controllers are to issue a general call as a master-transmitter
the appropriate address and transfer direction can be set along with load-
ing transmit FIFO data.

 The byte following the general call address usually defines what
action needs to be taken by the slaves in response to the call. The
command in the second byte is interpreted based on the value of its
LSB. For a TWI slave device, this is not applicable, and the bytes
received after the general call address are considered data.

Fast Mode

Fast mode essentially uses the same mechanics as standard mode of opera-
tion. It is the electrical specifications and timing that are most effected.
When fast mode is enabled (FAST) the following timings are modified to
meet the electrical requirements.

• Serial data rise times before arbitration evaluation (tr)

• Stop condition set-up time from serial clock to serial data
(tSU;STO)

• Bus free time between a stop and start condition (tBUF)

ADSP-BF54x Blackfin Processor Hardware Reference 23-11

Two-Wire Interface Controllers

TWI General Operation
The following sections describe the general operation of the TWI
controllers.

TWI Control
The TWI control register (TWIx_CONTROL) is used to enable the TWI mod-
ule as well as to establish a relationship between the system clock (SCLK)
and the TWI controller’s internally timed events. The internal time refer-
ence is derived from SCLK using a prescaled value.

PRESCALE = fSCLK/10MHz

SCCB compatibility is an optional feature and should not be used in an

I2C bus system. This feature is turned on by setting the SCCB bit in the
TWIx_CONTROL register. When this feature is set all slave asserted acknowl-
edgement bits are ignored by this master. This feature is valid only during
transfers where the TWI is mastering an SCCB bus. Slave mode transfers
should be avoided when this feature is enabled because the TWI control-
lers always generate an acknowledge in slave mode.

For either master and/or slave mode of operation, the TWI controllers are
enabled by setting the TWIx_ENA bit in the TWIx_CONTROL register. It is rec-
ommended that this bit be set at the time PRESCALE is initialized and
remains set. This guarantees accurate operation of bus busy detection
logic.

The PRESCALE field of the TWIx_CONTROL register specifies the number of
system clock (SCLK) periods used in the generation of one internal time
reference. The value of PRESCALE must be set to create an internal time ref-
erence with a period of 10 MHz. It is represented as a 7-bit binary value.

TWI General Operation

23-12 ADSP-BF54x Blackfin Processor Hardware Reference

Clock Signal
The clock signal SCLx is an output in master mode and an input in slave
mode.

During master mode operation, the SCLx clock divider register
(TWIx_CLKDIV) values are used to create the high and low durations of the
serial clock (SCLx). Serial clock frequencies can vary from 400 KHz to less
than 20 KHz. The resolution of the clock generated is 1/10 MHz or
100 ns.

CLKDIV = TWI SCLx period / 10 MHz time reference

For example, for an SCLx of 400 KHz (period = 1/400 KHz = 2500 ns)
and an internal time reference of 10 MHz (period = 100 ns):

CLKDIV = 2500 ns / 100 ns = 25

For an SCLx with a 30% duty cycle, then CLKLOW = 17 and CLKHI = 8.
Note that CLKLOW and CLKHI add up to CLKDIV.

The clock high field of the TWIx_CLKDIV register specifies the number of
10 MHz time reference periods the serial clock (SCLx) waits before a new
clock low period begins, assuming a single master. It is represented as an
8-bit binary value.

The clock low field of the TWIx_CLKDIV register number of internal time
reference periods the serial clock (SCLx) is held low. It is represented as an
8-bit binary value.

ADSP-BF54x Blackfin Processor Hardware Reference 23-13

Two-Wire Interface Controllers

Functional Description
The following sections describe the functional operation of the TWI.

General Setup
General setup refers to register writes that are required for both slave
mode operation and master mode operation. General setup should be per-
formed before either the master or slave enable bits are set.

• Program the TWIx_CONTROL register to enable the TWI controller
and set the prescale value. Program the prescale value to the binary
representation of fSCLK / 10MHz

All values should be rounded up to the next whole number. The TWIx_ENA
bit enable must be set. Note once the TWI controller is enabled a bus
busy condition may be detected. This condition should clear after tBUF
has expired assuming no additional bus activity is detected.

Slave Mode
When enabled, slave mode operation supports both receive and transmit
data transfers. It is not possible to enable only one data transfer direction
and not acknowledge (NAK) the other. This is reflected in the following
setup.

1. Program TWIx_SLAVE_ADDR. The appropriate 7 bits are used in
determining a match during the address phase of the transfer.

2. Program TWIx_XMT_DATA8 or TWIx_XMT_DATA16. These are the initial
data values to be transmitted in the event the slave is addressed and
a transmit is required. This is an optional step. If no data is written
and the slave is addressed and a transmit is required, the serial
clock (SCLx) is stretched and an interrupt is generated until data is
written to the transmit FIFO.

Functional Description

23-14 ADSP-BF54x Blackfin Processor Hardware Reference

3. Program TWIx_INT_MASK. Enable bits are associated with the desired
interrupt sources. As an example, programming the value 0x000F
results in an interrupt output to the processor in the event that a
valid address match is detected, a valid slave transfer completes, a
slave transfer has an error, a subsequent transfer has begun yet the
previous transfer has not been serviced.

4. Program TWIx_SLAVE_CTL. Ultimately this prepares and enables
slave mode operation. As an example, programming the value
0x0005 enables slave mode operation and indicates that data in the
transmit FIFO buffer is intended for slave mode transmission.

Table 23-2 shows what the interaction between the TWI controllers and
the processor might look like using this example.

Master Mode Clock Setup
Master mode operation is set up and executed on a per-transfer basis. An
example of programming steps for a receive and for a transmit are given
separately in following sections. The clock setup programming step listed
here is common to both transfer types.

• Program TWIx_CLKDIV. This defines the clock high duration and
clock low duration.

Table 23-2. Slave Mode Setup Interaction

TWI Controller Processor

Interrupt: SINIT – Slave transfer in progress. Acknowledge: Clear interrupt source bits.

Interrupt: RCVSERV – Receive buffer is full. Acknowledge: Clear interrupt source bits.
Read TWIx_FIFO_STAT.
Read receive FIFO buffer.

... ...

Interrupt: SCOMP – Slave transfer complete. Acknowledge: Clear interrupt source bits.
Read receive FIFO buffer.

ADSP-BF54x Blackfin Processor Hardware Reference 23-15

Two-Wire Interface Controllers

Master Mode Transmit
Follow these programming steps for a single master mode transmit:

1. Program TWIx_MASTER_ADDR. This defines the address transmitted
during the address phase of the transfer.

2. Program TWIx_XMT_DATA8 or TWIx_XMT_DATA16. This is the initial
data transmitted. It is considered an error to complete the address
phase of the transfer and not have data available in the transmit
FIFO buffer.

3. Program TWIx_FIFO_CTL. Indicate if transmit FIFO buffer inter-
rupts should occur with each byte transmitted (8 bits) or with each
2 bytes transmitted (16 bits).

4. Program TWIx_INT_MASK. Enable bits associated with the desired
interrupt sources. As an example, programming the value 0x0030
results in an interrupt output to the processor in the event that the
master transfer completes, and the master transfer has an error.

5. Program TWIx_MASTER_CTL. Ultimately this prepares and enables
master mode operation. As an example, programming the value
0x0201 enables master mode operation, sets the direction to mas-
ter-transmit, uses standard mode timing, and transmits 8 data bytes
before generating a Stop condition.

Table 23-3 shows what the interaction between the TWI controller and
the processor might look like using this example.

Table 23-3. Master Mode Transmit Setup Interaction

TWI Controller Processor

Interrupt: XMTSERV – Transmit buffer is
empty.

Acknowledge: Clear interrupt source bits.
Write transmit FIFO buffer.

Functional Description

23-16 ADSP-BF54x Blackfin Processor Hardware Reference

Master Mode Receive
Follow these programming steps for a single master mode receive:

1. Program TWIx_MASTER_ADDR. This defines the address transmitted
during the address phase of the transfer.

2. Program TWIx_FIFO_CTL. Indicate if receive FIFO buffer interrupts
should occur with each byte received (8 bits) or with each 2 bytes
received (16 bits).

3. Program TWIx_INT_MASK. Enable bits associated with the desired
interrupt sources. For example, programming the value 0x0030
results in an interrupt output to the processor in the event that the
master transfer completes, and the master transfer has an error.

4. Program TWIx_MASTER_CTL. Ultimately this prepares and enables
master mode operation. As an example, programming the value
0x0205 enables master mode operation, sets the direction to mas-
ter-receive, uses standard mode timing, and receives 8 data bytes
before generating a Stop condition.

 After the TWI_DCNT bit is decremented to zero, the TWI master
device sends a NAK to indicate to the slave transmitter that the bus
should be released. This allows the master to send the STOP signal
to terminate the transfer.

... ...

Interrupt: MCOMP – Master transfer com-
plete.

Acknowledge: Clear interrupt source bits.

Table 23-3. Master Mode Transmit Setup Interaction (Cont’d)

TWI Controller Processor

ADSP-BF54x Blackfin Processor Hardware Reference 23-17

Two-Wire Interface Controllers

Table 23-4 shows what the interaction between the TWI controllers and
the processor might look like using this example.

Clock Stretching
Clock stretching is an added functionality of the TWI controller in master

mode operation. This new behavior utilizes self-induced stretching of I2C
clock while waiting on servicing interrupts. Stretching is done automati-
cally by the hardware and no programming is required for this. TWI
Controller as master supports three modes of clock stretching:

• “Clock Stretching During FIFO Underflow” on page 23-18

• “Clock Stretching during FIFO Overflow” on page 23-19

• “Clock Stretching During Repeated Start Condition” on
page 23-21

Table 23-4. Master Mode Receive Setup Interaction

TWI Controller Processor

Interrupt: RCVSERV – Receive buffer is full. Acknowledge: Clear interrupt source bits.
Read receive FIFO buffer.

... ...

Interrupt: MCOMP – Master transfer com-
plete.

Acknowledge: Clear interrupt source bits.
Read receive FIFO buffer.

Functional Description

23-18 ADSP-BF54x Blackfin Processor Hardware Reference

Clock Stretching During FIFO Underflow

During a master mode transmit an interrupt is generated at the instant the
transmit FIFO becomes empty. At this time the most recent byte begins
transmission. If the XMTSERV interrupt is not serviced, the concluding
acknowledge phase of the transfer is stretched. Stretching of the clock con-
tinues until new data bytes are written to the transmit FIFO
(TWIx_XMT_DATA8 or TWIx_XMT_DATA16). No other action is required to
release the clock and continue the transmission. This behavior continues
until the transmission is complete (DCNT = 0) at which time the transmis-
sion is concluded (MCOMP) as shown in Figure 23-7 and described in
Table 23-5.

Figure 23-7. Clock Stretching during FIFO Underflow

S ADDRESS DATA ACK WITH
STRETCH

ACK DATA ACK DATA

11 01 00

XMTSTAT[1:0]

TWIx_XMT_DATA IS WRITTEN AT THIS TIME
AND CLOCK STRETCHING IS RELEASED.

ACKNOWLEDGE WITH STRETCH

01

SCL

ACKNOWLEDGE "STRETCH" BEGINS SOON AFTER SCL FALL.

11

ADSP-BF54x Blackfin Processor Hardware Reference 23-19

Two-Wire Interface Controllers

Clock Stretching during FIFO Overflow

During a master mode receive, an interrupt is generated at the instant the
receive FIFO becomes full. It is during the acknowledge phase of this
received byte that clock stretching begins. No attempt is made to initiate
the reception of an additional byte. Stretching of the clock continues until
the data bytes previously received are read from the receive FIFO buffer
(TWIx_RCV_DATA8, TWIx_RCV_DATA16). No other action is required to
release the clock and continue the reception of data. This behavior
continues until the reception is complete (DCNT = 0x00) at which time the
reception is concluded (MCOMP) as shown in Figure 23-8 and described in
Table 23-6.

Table 23-5. FIFO Underflow Case

TWI Controller Processor

Interrupt: XMTSERV – Transmit FIFO buffer
is empty.

Acknowledge: Clear interrupt source bits.
Write transmit FIFO buffer.

... ...

Interrupt: MCOMP – Master transmit com-
plete (DCNT= 0x00).

Acknowledge: Clear interrupt source bits.

Functional Description

23-20 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 23-8. Clock Stretching During FIFO Overflow

Table 23-6. FIFO Overflow Case

TWI Controller Processor

Interrupt: RCVSERV – Receive FIFO buffer is
full.

Acknowledge: Clear interrupt source bits.
Read receive FIFO buffer.

... ...

Interrupt: MCOMP – Master receive complete. Acknowledge: Clear interrupt source bits.

S ADDRESS DATA
ACK WITH
STRETCH

ACK DATA ACK DATA

00 01 11

RCVSTAT[1:0]

TWIx_RCV_DATA IS READ AT THIS TIME AND
CLOCK STRETCHING IS RELEASED.

ACKNOWLEDGE WITH STRETCH

00

SCL

ACKNOWLEDGE "STRETCH" BEGINS SOON AFTER SCL FALL.

ADSP-BF54x Blackfin Processor Hardware Reference 23-21

Two-Wire Interface Controllers

Clock Stretching During Repeated Start Condition

The repeated start feature in I2C protocol requires transitions between
two subsequent transfers. With the use of clock stretching the task of
managing these transitions becomes simpler, and common to all transfer
types.

Once an initial TWI master transfer has completed (transmit or receive)
the clock initiates a stretch during the repeated start phase between trans-
fers. Concurrent with this event the initial transfer generates a transfer
complete interrupt (MCOMP) to signify the initial transfer has completed
(DCNT = 0). This initial transfer is handled without any special bit setting
sequences or timings. The clock stretching logic described above applies
here. With no system related timing constraints the subsequent transfer
(receive or transmit) is setup and activated. This sequence can be repeated
as many times as required to string a series of repeated start transfers
together. This is shown in Figure 23-9 and described in Table 23-7.

Table 23-7. Repeated Start Case

TWI Controller Processor

Interrupt: MCOMP – Initial transmit has com-
pleted and DCNT = 0x00.

Note: transfer in progress, RSTART previously
set.

Acknowledge: Clear interrupt source bits.

Write TWIx_MASTER_CTL, setting MDIR
(receive), clearing RSTART, and setting new
DCNT value (nonzero).

Interrupt: RCVSERV – Receive FIFO is full. Acknowledge: Clear interrupt source bits.
Read receive FIFO buffer.

... ...

Interrupt: MCOMP – Master receive complete. Acknowledge: Clear interrupt source bits.

Functional Description

23-22 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 23-9. Clock Stretching during Repeated Start Condition

S ADDRESS RSTART/
STRETCH

ADDRESSACK DATA ACK DATA

0x01 0x00 0x80

DCNT[7:0]

MDIR (DIRECTION) AND DCNT ARE
WRITTEN AT THIS TIME.
CLOCK STRETCHING

IS RELEASED.

REPEATED START WITH STRETCH

0x7F

SCLx

REPEATED START "STRETCH" BEGINS SOON AFTER SCLx FALL
DUE TO DCNT=0X00 AND RSTART.

ACK ACK

ADSP-BF54x Blackfin Processor Hardware Reference 23-23

Two-Wire Interface Controllers

Programming Model
Figure 23-10 and Figure 23-11 illustrate the programming model for the
TWI.

Figure 23-10. TWI Slave Mode

WRITE TO TWIx_CONTROL TO SET
 PRESCALE AND ENABLE THE TWI

WRITE TO TWIx_SLAVE_ADDR

DONE

WRITE DATA INTO
TWIx_XMT_DATA

 REGISTER

INTERRUPT
SOURCE

SCOMP

XMTSERV

WRITE TO TWIx_XMT_DATA REGISTER
TO PRE-LOAD THE TX FIFO

WRITE TO TWIx_FIFO_CTL TO SELECT WHETHER
 1 OR 2 BYTES GENERATE INTERRUPTS

WRITE TO TWIx_INT_MASK TO UNMASK
TWI EVENTS TO GENERATE INTERRUPTS

WRITE TO TWIx_SLAVE_CTL TO
ENABLE SLAVE FUNCTIONALITY

WAIT FOR INTERRUPTS

WRITE TWIx_INT_STAT
TO CLEAR INTERRUPT

READ DATA FROM
TWIx_RCV_DATA

REGISTER

RCVSERV

WRITE TWIx_INT_STAT
TO CLEAR INTERRUPT

WRITE TWIx_INT_STAT TO CLEAR INTERRUPT

Programming Model

23-24 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 23-11. TWI Master Mode

DONE

WRITE DATA INTO
TWIx_XMT_DATA

 REGISTER

TRANSFER
DIRECTION

MERR

TRANSMIT

WRITE TO TWIx_CONTROL TO SET
 PRESCALE AND ENABLE THE TWI

WRITE TO TWIx_CLK_DIV

WRITE TO TWIx_MASTER_ADDR WITH THE
ADDRESS OF THE TARGETED DEVICE

WRITE TO TWIx_FIFO_CTL TO SELECT WHETHER
 1 OR 2 BYTES GENERATE INTERRUPTS

WRITE TO TWIx_INT_MASK TO UNMASK
TWI EVENTS TO GENERATE INTERRUPTS

WAIT FOR INTERRUPTS

WRITE TWIx_MASTER_CTL WITH COUNT,
MDIR CLEARED, AND MEN SET. THIS

STARTS THE TRANSFER

RECEIVE

WRITE TWIx_INT_STAT
TO CLEAR INTERRUPT

INTERRUPT
SOURCE

XMTSERVMCOMP

WRITE TWIx_MASTER_CTL WITH COUNT,
MDIR SET, AND MEN SET. THIS

STARTS THE TRANSFER

WAIT FOR INTERRUPTS

INTERRUPT
SOURCE

MCOMPRCVSERV

WRITE TWIx_INT_STAT
TO CLEAR INTERRUPT

READ DATA FROM
TWIx_RCV_DATA

 REGISTER

WRITE TWIx_INT_STAT
TO CLEAR INTERRUPT

MERR

READ TWIx_MASTER_STAT TO GET ERROR CAUSE

HANDLE ERROR AS APPROPRIATE AND W1C THE
CORRESPONDING BIT IN TWIx_MASTER_STAT

WRITE TWIx_INT_STAT TO CLEAR MERR BIT

WAIT FOR INTERRUPTS

ADSP-BF54x Blackfin Processor Hardware Reference 23-25

Two-Wire Interface Controllers

TWI Registers
The TWI controller has 16 registers described in the following sections.
Table 23-8 lists the TWI registers.

Table 23-8. TWIx Registers

TWI0 Memory
Mapped Address

Register Name Description

0xFFC0 0700 TWIx_CLKDIV “SCLx Clock Divider (TWIx_CLKDIV) Register”
on page 23-26

0xFFC0 0704 TWIx_CONTROL “TWI Control (TWIx_CONTROL) Register” on
page 23-27

0xFFC0 0708 TWIx_SLAVE_CTL “TWI Slave Mode Control (TWIx_SLAVE_CTL)
Register” on page 23-27

0xFFC0 0710 TWIx_SLAVE_ADDR “TWI Slave Mode Address
(TWIx_SLAVE_ADDR) Register” on page 23-30

0xFFC0 070C TWIx_SLAVE_STAT “TWI Slave Mode Status (TWIx_SLAVE_STAT)
Register” on page 23-30

0xFFC0 0714 TWIx_MASTER_CTL “TWI Master Mode Control
(TWIx_MASTER_CTL) Register” on page 23-32

0xFFC0 071C TWIx_MASTER_ADD
R

“TWI Master Mode Address
(TWIx_MASTER_ADDR) Register” on
page 23-35

0xFFC0 0718 TWIx_MASTER_STAT “TWI Master Mode Status
(TWIx_MASTER_STAT) Register” on page 23-35

0xFFC0 0720 TWIx_INT_STAT “TWI Interrupt Status (TWIx_INT_STAT) Regis-
ter” on page 23-44

0xFFC0 0724 TWIx_INT_MASK “TWI Interrupt Mask (TWIx_INT_MASK) Regis-
ter” on page 23-43

0xFFC0 0728 TWIx_FIFO_CTL “TWI FIFO Control (TWIx_FIFO_CTL) Regis-
ter” on page 23-39

0xFFC0 072C TWIx_FIFO_STAT “TWI FIFO Status (TWIx_FIFO_STAT) Register”
on page 23-41

TWI Registers

23-26 ADSP-BF54x Blackfin Processor Hardware Reference

SCLx Clock Divider (TWIx_CLKDIV) Register
The TWIx_CLKDIV register values are used during master mode operation to
create the high and low durations of the serial clock (SCLx). Serial clock
frequencies can vary from 400 KHz to less than 20 KHz. The resolution of
the clock generated is 1/10 MHz or 100 ns.

0xFFC0 0780 TWIx_XMT_DATA8 “TWI FIFO Transmit Data Single Byte
(TWIx_XMT_DATA8) Register” on page 23-48

0xFFC0 0784 TWIx_XMT_DATA16 “TWI FIFO Transmit Data Double Byte
(TWIx_XMT_DATA16) Register” on page 23-49

0xFFC0 0788 TWIx_RCV_DATA8 “TWI FIFO Receive Data Single Byte
(TWIx_RCV_DATA8) Register” on page 23-50

0xFFC0 078C TWIx_RCV_DATA16 “TWI FIFO Receive Data Double Byte
(TWIx_RCV_DATA16) Register” on page 23-51

Figure 23-12. SCLx Clock Divider Register

Table 23-8. TWIx Registers (Cont’d)

TWI0 Memory
Mapped Address

Register Name Description

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SCLx Clock Divider Register (TWIx_CLKDIV)

CLKLOW[7:0]

Reset = 0x0000

CLKHI[7:0]

TWI0_CLKDIV 0xFFC00700
TWI1_CLKDIV 0xFFC02200

ADSP-BF54x Blackfin Processor Hardware Reference 23-27

Two-Wire Interface Controllers

TWI Control (TWIx_CONTROL) Register
The TWIx_CONTROL register is used to enable the TWI module as well as to
establish a relationship between the system clock (SCLK) and the TWI con-
troller’s internally timed events. The internal time reference is derived
from SCLK using a prescaled value.

TWI Slave Mode Control (TWIx_SLAVE_CTL) Register
The TWIx_SLAVE_CTL register controls the logic associated with slave mode
operation. Settings in this register do not affect master mode operation
and should not be modified to control master mode functionality.

Figure 23-13. TWI Control Register

TWI Control Register (TWIx_CONTROL)

Reset = 0x0000

TWI0_CONTROL 0xFFC00704
TWI1_CONTROL 0xFFC02204

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SCCB (SCCB Compatibility)
0 - Master transfers are not SCCB compatible
1 - Master transfers are SCCB compatible. All
slave asserted acknowledgement bits are
ignored by this master.

TWI_ENA (TWI Enable)
0 - TWI is disabled
1 - TWI is enabled

PRESCALE[6:0]
See “TWI Control” on page 23-11

TWI Registers

23-28 ADSP-BF54x Blackfin Processor Hardware Reference

Additional information for the TWIx_SLAVE_CTL register bits includes:

• General call enable (GEN)

General call address detection is available only when slave mode is
enabled.

[1] General call address matching is enabled. A general call slave
receive transfer is accepted. All status and interrupt source bits
associated with transfers are updated.

[0] General call address matching is not enabled.

• NAK (NAK)

Figure 23-14. TWI Slave Mode Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Slave Mode Control Register (TWIx_SLAVE_CTL)

Reset = 0x0000

SEN (Slave Enable)
STDVAL (Slave Transmit
Data Valid)

NAK
GEN (General Call Enable)

TWI0_SLAVE_CTL 0xFFC00708
TWI1_SLAVE_CTL 0xFFC02208

ADSP-BF54x Blackfin Processor Hardware Reference 23-29

Two-Wire Interface Controllers

[1] Slave receive transfers generate a data NAK (not acknowledge)
at the conclusion of a data transfer. The slave is still considered to
be addressed. At the time the NAK bit was set, a data byte may
have been in the process of being received. The byte is NAK'd (not
acknowledged) back to the master yet the byte is accepted into the
receive FIFO and receive FIFO status (RCVSTAT) is updated accord-
ingly.

[0] Slave receive transfers generate an ACK at the conclusion of a
data transfer.

• Slave transmit data valid (STDVAL)

[1] Data in the transmit FIFO is available for a slave transmission.

[0] Data in the transmit FIFO is for master mode transmits and is
not allowed to be used during a slave transmit, and the transmit
FIFO is treated as if it is empty.

• Slave enable (SEN)

[1] The slave is enabled. Enabling slave and master modes of oper-
ation concurrently is allowed.

[0] The slave is not enabled. No attempt is made to identify a valid
address. If cleared during a valid transfer, clock stretching ceases,
the serial data line is released, and the current byte is not
acknowledged.

TWI Registers

23-30 ADSP-BF54x Blackfin Processor Hardware Reference

TWI Slave Mode Address (TWIx_SLAVE_ADDR)
Register

The TWIx_SLAVE_ADDR register holds the slave mode address, which is the
valid address that the slave-enabled TWI controller responds to. The TWI
controller compares this value with the received address during the
addressing phase of a transfer.

TWI Slave Mode Status (TWIx_SLAVE_STAT) Register
During and at the conclusion of slave mode transfers, the
TWIx_SLAVE_STAT register holds information on the current transfer. Gen-
erally slave mode status bits are not associated with the generation of
interrupts. Master mode operation does not affect slave mode status bits.

Figure 23-15. TWI Slave Mode Address Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Slave Mode Address Register (TWIx_SLAVE_ADDR)

SADDR[6:0] (Slave
Mode Address)

Reset = 0x0000

TWI0_SLAVE_ADDR 0xFFC00710
TWI1_SLAVE_ADDR 0xFFC02210

ADSP-BF54x Blackfin Processor Hardware Reference 23-31

Two-Wire Interface Controllers

• General call (GCALL)

This bit self clears if slave mode is disabled (SEN = 0).

[1] At the time of addressing, the address was determined to be a
general call.

[0] At the time of addressing, the address was not determined to be
a general call.

• Slave transfer direction (SDIR)

This bit self clears if slave mode is disabled (SEN = 0).

[1] At the time of addressing, the transfer direction was determined
to be slave transmit.

[0] At the time of addressing, the transfer direction was determined
to be slave receive.

Figure 23-16. TWI Slave Mode Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Slave Mode Status Register (TWIx_SLAVE_STAT)

Reset = 0x0000

SDIR (Slave Trans-
fer Direction) - RO

GCALL (General Call) - RO

TWI0_SLAVE_STAT 0xFFC0070C
TWI1_SLAVE_STAT 0xFFC0220C

TWI Registers

23-32 ADSP-BF54x Blackfin Processor Hardware Reference

TWI Master Mode Control (TWIx_MASTER_CTL)
Register

The TWIx_MASTER_CTL register controls the logic associated with master
mode operation. Bits in this register do not affect slave mode operation
and should not be modified to control slave mode functionality.

Additional information for the TWIx_MASTER_CTL register bits includes:

• Serial clock override (SCLOVR)

This bit can be used when direct control of the serial clock line is
required. Normal master and slave mode operation should not
require override operation.

[1] Serial clock output is driven to an active 0 level overriding all
other logic. This state is held until this bit is cleared.

[0] Normal serial clock operation under the control of master
mode clock generation and slave mode clock stretching logic.

Figure 23-17. TWI Master Mode Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Master Mode Control Register (TWIx_MASTER_CTL)

Reset = 0x0000

MEN (Master Mode Enable)
MDIR (Master Transfer
Direction)SDAOVR (Serial

Data Override)

SCLOVR (Serial
Clock Override)

DCNT[7:0] (Data
Transfer Count)

FAST (Fast Mode)
STOP (Issue Stop
Condition)
RSTART (Repeat Start)

TWI0_MASTER_CTL 0xFFC00714
TWI1_MASTER_CTL 0xFFC02214

ADSP-BF54x Blackfin Processor Hardware Reference 23-33

Two-Wire Interface Controllers

• Serial data (SDA) override (SDAOVR)

This bit can be used when direct control of the serial data line is
required. Normal master and slave mode operation should not
require override operation.

[1] Serial data output is driven to an active 0 level overriding all
other logic. This state is held until this bit is cleared.

[0] Normal serial data operation under the control of the transmit
shift register and acknowledge logic.

• Data transfer count (DCNT[7:0])

Indicates the number of data bytes to transfer. As each data word is
transferred, DCNT is decremented. When DCNT is 0, a stop condition
is generated. Setting DCNT to 0xFF disables the counter. In this
transfer mode, data continues to be transferred until it is concluded
by setting the STOP bit. In the event a master transmit is aborted
due to a slave data NAK, the value of DCNT equals the number of
bytes not sent. The byte which was NAK'd by the slave is counted
as a byte which was sent.

• Repeat start (RSTART)

[1] Issue a repeat start condition at the conclusion of the current
transfer (DCNT = 0) and begin the next transfer. The current transfer
concludes with updates to the appropriate status and interrupt bits.
If errors occurred during the previous transfer, a repeat start does
not occur. In the absence of any errors, master enable (MEN) does
not self clear on a repeat start.

[0] Transfer concludes with a stop condition.

TWI Registers

23-34 ADSP-BF54x Blackfin Processor Hardware Reference

• Issue stop condition (STOP)

[1] The transfer concludes as soon as possible avoiding any error
conditions (as if data transfer count had been reached) and at that
time the TWI interrupt mask register (TWIx_INT_MASK) is updated
along with any associated status bits.

[0] Normal transfer operation.

• Fast mode (FAST)

[1] Fast mode (up to 400K bits/s) timing specifications in use.

[0] Standard mode (up to 100K bits/s) timing specifications in use.

• Master transfer direction (MDIR)

[1] The initiated transfer is master receive.

[0] The initiated transfer is master transmit.

• Master mode enable (MEN)

This bit self clears at the completion of a transfer (after the DCNT bit
decrements to zero), including transfers terminated due to errors.

[1] Master mode functionality is enabled. A start condition is gen-
erated if the bus is idle.

[0] Master mode functionality is disabled. If this bit is cleared dur-
ing operation, the transfer is aborted and all logic associated with
master mode transfers are reset. Serial data and serial clock (SDAx,
SCLx) are no longer driven. Write-1-to-clear status bits are not
affected.

ADSP-BF54x Blackfin Processor Hardware Reference 23-35

Two-Wire Interface Controllers

TWI Master Mode Address (TWIx_MASTER_ADDR)
Register

During the transmit phase of a transfer, the TWI controllers, with their
master enabled, transmits the contents of the TWIx_MASTER_ADDR register.
When programming this register, omit the read/write bit. That is, only the
upper 7 bits that make up the slave address should be written to this regis-
ter. For example, if the slave address is b#1010000X, where X is the
read/write bit, then TWIx_MASTER_ADDR is programmed with b#1010000,
which corresponds to 0x50. When sending out the address on the bus, the
TWI controller appends the read/write bit as appropriate based on the
state of the MDIR bit in the master mode control register.

TWI Master Mode Status (TWIx_MASTER_STAT)
Register

The TWIx_MASTER_STAT register holds information during master mode
transfers and at their conclusion. Generally, master mode status bits are
not directly associated with the generation of interrupts but offer informa-
tion on the current transfer. Slave mode operation does not affect master
mode status bits.

Figure 23-18. TWI Master Mode Address Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Master Mode Address Register (TWIx_MASTER_ADDR)

Reset = 0x0000

MADDR[6:0] (Master
Mode Address)

TWI0_MASTER_ADDR 0xFFC0071C
TWI1_MASTER_ADDR 0xFFC0221C

TWI Registers

23-36 ADSP-BF54x Blackfin Processor Hardware Reference

• Bus busy (BUSBUSY)

Indicates whether the bus is currently busy or free. This indication
is not limited to only this device but is for all devices. Upon a start
condition, the setting of the register value is delayed due to the
input filtering. Upon a stop condition the clearing of the register
value occurs after tBUF.

[1] The bus is busy. Clock or data activity is detected.

[0] The bus is free. The clock and data bus signals have been inac-
tive for the appropriate bus free time.

• Serial clock sense (SCLSEN)

This status bit can be used when direct sensing of the serial clock
line is required. The register value is delayed due to the input filter
(nominally 50 ns). Normal master and slave mode operation
should not require this feature.

Figure 23-19. TWI Master Mode Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Master Mode Status Register (TWIx_MASTER_STAT)

Reset = 0x0000

MPROG (Master Transfer
in Progress) - RO
LOSTARB (Lost Arbitration) -
W1C

SCLSEN (Serial Clock Sense) - RO
BUSBUSY (Bus Busy) - RO

SDASEN (Serial Data Sense) - RO

ANAK (Address Not
Acknowledged) - W1C
DNAK (Data Not
Acknowledged) - W1C

BUFWRERR (Buffer Write Error) - W1C
BUFRDERR (Buffer Read Error) - W1C

TWI0_MASTER_STAT 0xFFC00718
TWI1_MASTER_STAT 0xFFC02218

ADSP-BF54x Blackfin Processor Hardware Reference 23-37

Two-Wire Interface Controllers

[1] An active “zero” is currently being sensed on the serial clock.
The source of the active driver is not known and can be internal or
external.

[0] An inactive “one” is currently being sensed on the serial clock.

• Serial data sense (SDASEN)

This status bit can be used when direct sensing of the serial data
line is required. The register value is delayed due to the input filter
(nominally 50 ns). Normal master and slave mode operation
should not require this feature.

[1] An active “zero” is currently being sensed on the serial data line.
The source of the active driver is not known and can be internal or
external.

[0] An inactive “one” is currently being sensed on the serial data
line.

• Buffer write error (BUFWRERR)

[1] The current master transfer was aborted due to a receive buffer
write error. The receive buffer and receive shift register were both
full at the same time. Buffer write error, under normal operation, is
never set due to the master’s ability to stretch the clock and avoid
the circumstances described here. This bit is W1C.

[0] The current master receive has not detected a receive buffer
write error.

TWI Registers

23-38 ADSP-BF54x Blackfin Processor Hardware Reference

• Buffer read error (BUFRDERR)

[1] The current master transfer was aborted due to a transmit buf-
fer read error. At the time data was required by the transmit shift
register the buffer was empty. Buffer read error, under normal
operation, is never set due to the master’s ability to stretch the
clock and avoid the circumstances described here. This bit is W1C.

[0] The current master transmit has not detected a buffer read
error.

• Data not acknowledged (DNAK)

[1] The current master transfer was aborted due to the detection of
a NAK during data transmission. This bit is W1C.

[0] The current master transfer has not detected a NAK during
data transmission.

• Address not acknowledged (ANAK)

[1] The current master transfer was aborted due to the detection of
a NAK during the address phase of the transfer. This bit is W1C.

[0] The current master transfer has not detected NAK during
addressing.

• Lost arbitration (LOSTARB)

[1] The current transfer was aborted due to the loss of arbitration
with another master. This bit is W1C.

[0] The current transfer has not lost arbitration with another
master.

ADSP-BF54x Blackfin Processor Hardware Reference 23-39

Two-Wire Interface Controllers

• Master transfer in progress (MPROG)

[1] A master transfer is in progress.

[0] Currently no transfer is taking place. This can occur once a
transfer is complete or while an enabled master is waiting for an
idle bus.

TWI FIFO Control (TWIx_FIFO_CTL) Register
The TWIx_FIFO_CTL register control bits affect only the FIFO and are not
tied in any way with master or slave mode operation.

Additional information for the TWIx_FIFO_CTL register bits includes:

• Receive buffer interrupt length (RCVINTLEN)

This bit determines the rate at which receive buffer interrupts are
to be generated. Interrupts may be generated with each byte
received or after two bytes are received.

Figure 23-20. TWI FIFO Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Control Register (TWIx_FIFO_CTL)

XMTFLUSH (Transmit Buffer
Flush)

Reset = 0x0000

RCVFLUSH (Receive Buffer
Flush)

RCVINTLEN (Receive Buffer
Interrupt Length)

XMTINTLEN (Transmit Buffer
Interrupt Length)

TWI0_FIFO_CTL 0xFFC00728
TWI1_FIFO_CTL 0xFFC02228

Reserved - Must always write zero

TWI Registers

23-40 ADSP-BF54x Blackfin Processor Hardware Reference

[1] An interrupt (RCVSERV) is set when the RCVSTAT field in the
TWIx_FIFO_STAT register indicates two bytes in the FIFO are full
(11).

[0] An interrupt (RCVSERV) is set when RCVSTAT indicates one or
two bytes in the FIFO are full (b#01 or b#11).

• Transmit buffer interrupt length (XMTINTLEN)

This bit determines the rate at which transmit buffer interrupts are
to be generated. Interrupts may be generated with each byte trans-
mitted or after two bytes are transmitted.

[1] An interrupt (XMTSERV) is set when the XMTSTAT field in the
TWIx_FIFO_STAT register indicates two bytes in the FIFO are
empty (b#00).

[0] An interrupt (XMTSERV) is set when XMTSTAT indicates one or
two bytes in the FIFO are empty (b#01 or b#00).

• Receive buffer flush (RCVFLUSH)

[1] Flush the contents of the receive buffer and update the RCVSTAT
status bit to indicate the buffer is empty. This state is held until
this bit is cleared. During an active receive the receive buffer in this
state responds to the receive logic as if it is full.

[0] Normal operation of the receive buffer and its status bits.

• Transmit buffer flush (XMTFLUSH)

[1] Flush the contents of the transmit buffer and update the
XMTSTAT status bit to indicate the buffer is empty. This state is held
until this bit is cleared. During an active transmit the transmit buf-
fer in this state responds as if the transmit buffer is empty.

[0] Normal operation of the transmit buffer and its status bits.

ADSP-BF54x Blackfin Processor Hardware Reference 23-41

Two-Wire Interface Controllers

TWI FIFO Status (TWIx_FIFO_STAT) Register

TWI FIFO Status

The fields in the TWIx_FIFO_STAT register indicate the state of the FIFO
buffers’ receive and transmit contents. The FIFO buffers do not discrimi-
nate between master data and slave data. By using the status and control
bits provided, the FIFO can be managed to allow simultaneous master and
slave operation.

Figure 23-21. TWI FIFO Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Status Register (TWIx_FIFO_STAT)
All bits are RO.

XMTSTAT[1:0] (Transmit
FIFO Status)

Reset = 0x0000

RCVSTAT[1:0] (Receive FIFO Status)

TWI0_FIFO_STAT 0xFFC0072C
TWI1_FIFO_STAT 0xFFC0222C

TWI Registers

23-42 ADSP-BF54x Blackfin Processor Hardware Reference

• Receive FIFO status (RCVSTAT[1:0])

The RCVSTAT field is read only. It indicates the number of valid data
bytes in the receive FIFO buffer. The status is updated with each
FIFO buffer read using the peripheral data bus or write access by
the receive shift register. Simultaneous accesses are allowed.

[b#11] The FIFO is full and contains two bytes of data. Either a
single or double byte peripheral read of the FIFO is allowed.

[b#10] Reserved

[b#01] The FIFO contains one byte of data. A single byte periph-
eral read of the FIFO is allowed.

[b#00] The FIFO is empty.

• Transmit FIFO status (XMTSTAT[1:0])

The XMTSTAT field is read only. It indicates the number of valid data
bytes in the FIFO buffer. The status is updated with each FIFO
buffer write using the peripheral data bus or read access by the
transmit shift register. Simultaneous accesses are allowed.

[b#11] The FIFO is full and contains two bytes of data.

[b#10] Reserved

[b#01] The FIFO contains one byte of data. A single byte periph-
eral write of the FIFO is allowed.

[b#00] The FIFO is empty. Either a single or double byte periph-
eral write of the FIFO is allowed.

ADSP-BF54x Blackfin Processor Hardware Reference 23-43

Two-Wire Interface Controllers

TWI Interrupt Mask (TWIx_INT_MASK) Register
The TWIx_INT_MASK register enables interrupt sources to assert the inter-
rupt output. Each mask bit corresponds with one interrupt source bit in
the TWI interrupt status (TWIx_INT_STAT) register. Reading and writing
the TWI interrupt mask register does not affect the contents of the TWI
interrupt status register.

Figure 23-22. TWI Interrupt Mask Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Interrupt Mask Register (TWIx_INT_MASK)
For all bits, 0 = Interrupt generation disabled, 1 = Interrupt generation enabled.

SINITM (Slave Transfer
Initiated Interrupt Mask)

Reset = 0x0000

SCOMPM (Slave Transfer
Complete Interrupt Mask)
SERRM (Slave Transfer Error
Interrupt Mask)

SOVFM (Slave Overflow
Interrupt Mask)

RCVSERVM (Receive FIFO
Service Interrupt Mask)

XMTSERVM (Transmit FIFO
Service Interrupt Mask)

MERRM (Master Transfer Error
Interrupt Mask)

MCOMPM (Master Transfer
Complete Interrupt Mask)

TWI0_INT_MASK 0xFFC00724
TWI1_INT_MASK 0xFFC02224

SCLIM (Serial Clock
Interrupt Mask)

SDAIM (Serial Data
Interrupt Mask)

For all bits:
0 - Mask (disable) interrupt generation
1 - Unmask (enable) interrupt generation

TWI Registers

23-44 ADSP-BF54x Blackfin Processor Hardware Reference

TWI Interrupt Status (TWIx_INT_STAT) Register
The TWIx_INT_STAT register contains information about functional areas
requiring servicing. Many of the bits serve as an indicator to further read
and service various status registers. After servicing the interrupt source
associated with a bit, the user must clear that interrupt source bit by writ-
ing a 1 to it.

Figure 23-23. TWI Interrupt Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Interrupt Status Register (TWIx_INT_STAT)
All bits are sticky and W1C.

SINIT (Slave Transfer
Initiated)

Reset = 0x0000

SCOMP (Slave Transfer
Complete)
SERR (Slave Transfer Error)
SOVF (Slave Overflow)

RCVSERV (Receive FIFO Service)

XMTSERV (Transmit FIFO Service)

MERR (Master Transfer Error)

MCOMP (Master Transfer Complete)

TWI0_INT_STAT 0xFFC00720
TWI1_INT_STAT 0xFFC02220

SCLI (Serial Clock
Interrupt)

SDAI (Serial Data
Interrupt)

ADSP-BF54x Blackfin Processor Hardware Reference 23-45

Two-Wire Interface Controllers

• Serial Clock Interrupt (SCLI)

If the TWI module is enabled (TWI_ENA), SCLI is set on a
high-to-low transition of the serial clock pin (SCLx). Normally, this
bit is not required for I2C bus transfers. It is initially set on an I2C
transfer and does not require clearing.

[1] A high-to-low transition was detected on the SCLx pin. This bit
is W1C.

[0] No transition was detected on the SCLx pin.

• Serial Data Interrupt (SDAI)

If the TWI module is enabled (TWI_ENA), SDAI is set on a
high-to-low transition of the serial data pin (SDAx). Normally, this
bit is not required for I2C bus transfers. It is initially set on an I2C
transfer and does not require clearing.

[1] A high-to-low transition was detected on the SDAx pin. This bit
is W1C.

[0] No transition was detected on the SDAx pin.

• Receive FIFO service (RCVSERV)

If RCVINTLEN in the TWIx_FIFO_CTL register is 0, this bit is set each
time the RCVSTAT field in the TWIx_FIFO_STAT register is increased
to either b#01 or b#11. If RCVINTLEN is 1, this bit is set each time
RCVSTAT is updated to b#11.

[0] The receive FIFO does not require servicing or the RCVSTAT
field has not changed since this bit was last cleared.

[1] The receive FIFO has one or two 8-bit locations available to be
read.

TWI Registers

23-46 ADSP-BF54x Blackfin Processor Hardware Reference

• Transmit FIFO service (XMTSERV)

If XMTINTLEN in the TWIx_FIFO_CTL register is 0, this bit is set each
time the XMTSTAT field in the TWIx_FIFO_STAT register is updated to
either b#01 or b#00. If XMTINTLEN is 1, this bit is set each time XMT-
STAT is updated to b#00.

[1] The transmit FIFO buffer has one or two 8-bit locations avail-
able to be written.

[0] FIFO does not require servicing or XMTSTAT field has not
changed since this bit was last cleared.

• Master transfer error (MERR)

[1] A master error has occurred. The conditions surrounding the
error are indicated by the master status register
(TWIx_MASTER_STAT).

[0] No errors have been detected.

• Master transfer complete (MCOMP)

[1] The initiated master transfer has completed. In the absence of a
repeat start, the bus is released.

[0] The completion of a transfer has not been detected.

• Slave overflow (SOVF)

[1] The slave transfer complete (SCOMP) bit was set at the time a
subsequent transfer has acknowledged an address phase. The trans-
fer continues, however, it may be difficult to delineate data of one
transfer from another.

[0] No overflow is detected.

ADSP-BF54x Blackfin Processor Hardware Reference 23-47

Two-Wire Interface Controllers

• Slave transfer error (SERR)

[1] A slave error has occurred. A restart or stop condition has
occurred during the data transmit phase of a transfer.

[0] No errors have been detected.

• Slave transfer complete (SCOMP)

[1] The transfer is complete and either a stop, or a restart was
detected.

[0] The completion of a transfer has not been detected.

• Slave transfer initiated (SINIT)

[1] The slave has detected an address match and a transfer is initi-
ated.

[0] A transfer is not in progress. An address match has not occurred
since the last time this bit was cleared.

TWI Registers

23-48 ADSP-BF54x Blackfin Processor Hardware Reference

TWI FIFO Transmit Data Single Byte
(TWIx_XMT_DATA8) Register

The TWIx_XMT_DATA8 register holds an 8-bit data value written into the
FIFO buffer.

Transmit data is entered into the corresponding transmit buffer in a
first-in first-out order. Although peripheral bus writes are 16 bits, a write
access to TWIx_XMT_DATA8 adds only one transmit data byte to the FIFO
buffer. With each access, the transmit status (XMTSTAT) field in the
TWIx_FIFO_STAT register is updated. If an access is performed while the
FIFO buffer is full, the write is ignored and the existing FIFO buffer data
and its status remains unchanged.

Figure 23-24. TWI FIFO Transmit Data Single Byte Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Transmit Data Single Byte Register (TWIx_XMT_DATA8)
All bits are WO. This register always reads as 0x0000.

XMTDATA8[7:0] (Transmit
FIFO 8-Bit Data)

Reset = 0x0000

TWI0_XMT_DATA8 0xFFC00780
TWI1_XMT_DATA8 0xFFC02280

ADSP-BF54x Blackfin Processor Hardware Reference 23-49

Two-Wire Interface Controllers

TWI FIFO Transmit Data Double Byte
(TWIx_XMT_DATA16) Register

The TWIx_XMT_DATA16 register holds a 16-bit data value written into the
FIFO buffer.

To reduce interrupt output rates and peripheral bus access times, a double
byte transfer data access can be performed. Two data bytes can be written,
effectively filling the transmit FIFO buffer with a single access.

The data is written in little endian byte order as shown in Figure 23-26
where byte 0 is the first byte to be transferred and byte 1 is the second byte
to be transferred. With each access, the transmit status (XMTSTAT) field in
the TWIx_FIFO_STAT register is updated.

If an access is performed while the FIFO buffer is not empty, the write is
ignored and the existing FIFO buffer data and its status remains
unchanged.

Figure 23-25. TWI FIFO Transmit Data Double Byte Register

Figure 23-26. Little Endian Byte Order

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Transmit Data Double Byte Register (TWIx_XMT_DATA16)
All bits are WO. This register always reads as 0x0000.

XMTDATA16[15:0] (Transmit
FIFO 16-Bit Data)

Reset = 0x0000

TWI0_XMT_DATA16 0xFFC00780
TWI1_XMT_DATA16 0xFFC02280

B1 B0

DATA IN REGISTER

TWI Registers

23-50 ADSP-BF54x Blackfin Processor Hardware Reference

TWI FIFO Receive Data Single Byte
(TWIx_RCV_DATA8) Register

The TWIx_RCV_DATA8 register holds an 8-bit data value read from the FIFO
buffer. Receive data is read from the corresponding receive buffer in a
first-in first-out order. Although peripheral bus reads are 16 bits, a read
access to TWIx_RCV_DATA8 accesses only one transmit data byte from the
FIFO buffer. With each access, the receive status (RCVSTAT) field in the
TWIx_FIFO_STAT register is updated. If an access is performed while the
FIFO buffer is empty, the data is unknown and the FIFO buffer status
remains indicating it is empty.

Figure 23-27. TWI FIFO Receive Data Single Byte Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Receive Data Single Byte Register (TWIx_RCV_DATA8)
All bits are RO.

RCVDATA8[7:0] (Receive
FIFO 8-Bit Data)

Reset = 0x0000

TWI0_RCV_DATA8 0xFFC00788
TWI1_RCV_DATA8 0xFFC02288

ADSP-BF54x Blackfin Processor Hardware Reference 23-51

Two-Wire Interface Controllers

TWI FIFO Receive Data Double Byte
(TWIx_RCV_DATA16) Register

The TWIx_RCV_DATA16 register holds a 16-bit data value read from the
FIFO buffer.

To reduce interrupt output rates and peripheral bus access times, a double
byte receive data access can be performed. Two data bytes can be read,
effectively emptying the receive FIFO buffer with a single access. The data
is read in little endian byte order as shown in Figure 23-29 where byte 0 is
the first byte received and byte 1 is the second byte received. With each
access, the receive status (RCVSTAT) field in the TWIx_FIFO_STAT register is
updated to indicate it is empty. If an access is performed while the FIFO
buffer is not full, the read data is unknown and the existing FIFO buffer
data and its status remains unchanged.

Figure 23-28. TWI FIFO Receive Data Double Byte Register

Figure 23-29. Little Endian Byte Order

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Receive Data Double Byte Register (TWIx_RCV_DATA16)
All bits are WO.

RCVDATA16[15:0] (Receive
FIFO 16-Bit Data)

Reset = 0x0000

TWI0_RCV_DATA16 0xFFC0078C
TWI1_RCV_DATA16 0xFFC0228C

B1 B0

DATA IN REGISTER

Programming Examples

23-52 ADSP-BF54x Blackfin Processor Hardware Reference

Programming Examples
The following sections include programming examples for general setup,
slave mode, and master mode, as well as guidance for repeated start
conditions.

Master Mode Setup
Listing 23-1 shows how to initiate polled receive and transmit transfers in
master mode.

Listing 23-1. Master Mode Receive/Transmit Transfer

/***

 Macro for the Count field of the TWIx_MASTER_CTL register

 x can be any value between 0 and 0xFE (254). A value of

 0xFF disables the counter.

***/

#define TWICount(x) (DCNT & ((x) << 6))

.section L1_data_b;

.byte TX_file[file_size] = "DATA.hex";

.BYTE RX_CHECK[file_size];

.byte rcvFirstWord[2];

.SECTION program;

_main:

/***

TWI Master Initialization subroutine

***/

ADSP-BF54x Blackfin Processor Hardware Reference 23-53

Two-Wire Interface Controllers

TWI0_INIT:

/***

Enable the TWI0 controller and set the Prescale value

Prescale = 10 (0xA) for an SCLK = 100 MHz (CLKIN = 50MHz)

Prescale = SCLK / 10 MHz

P1 points to the base of the system MMRs

***/

R1 = TWI0_ENA | 0xA (z);

W[P1 + LO(TWI0_CONTROL)] = R1;

/***

Set CLKDIV:

For example, for an SCL of 400 KHz (period = 1/400 KHz = 2500 ns)

and an internal time reference of 10 MHz (period = 100 ns):

CLKDIV = 2500 ns / 100 ns = 25

For an SCL with a 30% duty cycle, then CLKLOW = 17 (0x11) and

CLKHI = 8.

***/

R5 = CLKHI(0x8) | CLKLOW(0x11) (z);

W[P1 + LO(TWI0_CLKDIV)] = R5;

/***

enable these signals to generate a TWI0 interrupt: optional

***/

R1 = RCVSERV | XMTSERV | MERR | MCOMP (z);

W[P1 + LO(TWI0_INT_MASK)] = R1;

/***

The address needs to be shifted one place to the right,
for example, 1010 001x becomes 0101 0001 (0x51) the TWI0

controller actually send out 1010 001x where x is either a 0 for

writes or 1 for reads

Programming Examples

23-54 ADSP-BF54x Blackfin Processor Hardware Reference

***/

R6 = 0xBF;

R6 = R6 >> 1;

TWI0_INIT.END: W[P1 + LO(TWI0_MASTER_ADDR)] = R6;

/******************** END OF TWI0 INIT **********************/

/***

Starting the Read transfer

Program the Master Control register with:

1. the number of bytes to transfer: TWICount(x)

2. Repeated Start (RESTART): optional

3. speed mode: FAST or SLOW

4. direction of transfer:

MDIR = 1 for reads, MDIR = 0 for writes

5. Master Enable MEN. This kicks off the master transfer

***/

R1 = TWICount(0x2) | FAST | MDIR | MEN;

W[P1 + LO(TWI0_MASTER_CTL)] = R1;

ssync;

/***

Poll the FIFO Status register to know when

2 bytes have been shifted into the RX FIFO

***/

Rx_stat:

R1 = W[P1 + LO(TWI0_FIFO_STAT)](Z);

R0 = 0xC;

R1 = R1 & R0;

CC = R1 == R0;

IF !cc jump Rx_stat;

R0 = W[P1 + LO(TWI0_RCV_DATA16)](Z); /* Read data from the RX

fifo */

ADSP-BF54x Blackfin Processor Hardware Reference 23-55

Two-Wire Interface Controllers

ssync;

/***

check that master transfer has completed

MCOMP is set when Count reaches zero

***/

M_COMP:

R1 = W[P1 + LO(TWI0_INT_STAT)](z);

CC = BITTST (R1, bitpos(MCOMP));

if !CC jump M_COMP;

M_COMP.END: W[P1 + LO(TWI0_INT_STAT)] = R1;

/* load the pointer with the address of the transmit buffer */

P2.H = TX_file;

P2.L = TX_file;

/***

Pre-load the tx FIFO with the first two bytes: this is

necessary to avoid the generation of the Buffer Read Error

(BUFRDERR) which occurs whenever a transmit transfer is

initiated while the transmit buffer is empty

***/

R3 = W[P2++](Z);

W[P1 + LO(TWI0_XMT_DATA16)] = R3;

/***

Initiating the Write operation

Program the Master Control register with:

1. the number of bytes to transfer: TWICount(x)

2. Repeated Start (RESTART): optional

3. speed mode: FAST or Standard

4. direction of transfer:

MDIR = 1 for reads, MDIR = 0 for writes

5. Master Enable MEN. Setting this bit kicks off the transfer

Programming Examples

23-56 ADSP-BF54x Blackfin Processor Hardware Reference

***/

R1 = TWICount(0xFE) | FAST | MEN;

W[P1 + LO(TWI0_MASTER_CTL)] = R1;

SSYNC;

/***

loop to write data to a TWI0 slave device P3 times

***/

P3 = length(TX_file);

LSETUP (Loop_Start1, Loop_End1) LC0 = P3;

Loop_Start1:

/***

check that there's at least one byte location empty in

the tx fifo

***/

XMTSERV_Status:

R1 = W[P1 + LO(TWI0_INT_STAT)](z);

CC = BITTST (R1, bitpos(XMTSERV)); /* test XMTSERV bit */

if !CC jump XMTSERV_Status;

W[P1 + LO(TWI0_INT_STAT)] = R1; /* clear status */

SSYNC;

/***

write byte into the transmit FIFO

***/

R3 = B[P2++](Z);

W[P1 + LO(TWI0_XMT_DATA8)] = R3;

Loop_End1: SSYNC;

/* check that master transfer has completed */

M_COMP1:

R1 = W[P1 + LO(TWI0_INT_STAT)](z);

CC = BITTST (R1, bitpos(MCOMP));

ADSP-BF54x Blackfin Processor Hardware Reference 23-57

Two-Wire Interface Controllers

if !CC jump M_COMP1;

M_COMP1.END:W[P1 + LO(TWI0_INT_STAT)] = R1;

idle;

_main.end:

Slave Mode Setup
Listing 23-2 shows how to configure the slave for interrupt based trans-
fers. The interrupts are serviced in the subroutine _TWI0_ISR shown in
Listing 23-3.

Listing 23-2. Slave Mode Setup

#include <defBF54x.h>

#include "startup.h"

#define file_size 254

#define SYSMMR_BASE 0xFFC00000

#define COREMMR_BASE 0xFFE00000

.GLOBAL _main;

.EXTERN _TWI0_ISR;

.section L1_data_b;

.BYTE TWI0_RX[file_size];

.BYTE TWI0_TX[file_size] = “transmit.dat”;

.section L1_code;

_main:

/***

TWI0 Slave Initialization subroutine

***/

Programming Examples

23-58 ADSP-BF54x Blackfin Processor Hardware Reference

TWI0_SLAVE_INIT:

/***

Enable the TWI0 controller and set the Prescale value

Prescale = 10 (0xA) for an SCLK = 100 MHz (CLKIN = 50MHz)

Prescale = SCLK / 10 MHz

P1 points to the base of the system MMRs

P0 points to the base of the core MMRs

***/

R1 = TWI0_ENA | 0xA (z);

W[P1 + LO(TWI0_CONTROL)] = R1;

/***

Slave address

program the address to which this slave responds to.

this is an arbitrary 7-bit value

***/

R1 = 0x5F;

W[P1 + LO(TWI0_SLAVE_ADDR)] = R1;

/***

Pre-load the TX FIFO with the first two bytes to be

transmitted in the event the slave is addressed and a transmit

is required

***/

R3=0xB537(Z);

W[P1 + LO(TWI0_XMT_DATA16)] = R3;

/***

FIFO Control determines whether an interrupt is generated

for every byte transferred or for every two bytes.

A value of zero which is the default, allows for single byte

events to generate interrupts

***/

ADSP-BF54x Blackfin Processor Hardware Reference 23-59

Two-Wire Interface Controllers

R1 = 0;

 W[P1 + LO(TWI0_FIFO_CTL)] = R1;

/***

enable these signals to generate a TWI0 interrupt

***/

R1 = RCVSERV | XMTSERV | SOVF | SERR | SCOMP | SINIT (z);

W[P1 + LO(TWI0_INT_MASK)] = R1;

/***

Enable the TWI0 Slave

Program the Slave Control register with:

1. Slave transmit data valid (STDVAL) set so that the contents of

the TX FIFO can be used by this slave when a master requests data

from it.

2. Slave Enable SEN to enable Slave functionality

***/

R1 = STDVAL | SEN;

W[P1 + LO(TWI0_SLAVE_CTL)] = R1;

TWI0_SLAVE_INIT.END:

P2.H = HI(TWI0_RX);

P2.L = LO(TWI0_RX);

P4.H = HI(TWI0_TX);

P4.L = LO(TWI0_TX);

/***

Remap the vector table pointer from the default __I10HANDLER

to the new _TWI0_ISR interrupt service routine

***/

R1.H = HI(_TWI0_ISR);

R1.L = LO(_TWI0_ISR);

Programming Examples

23-60 ADSP-BF54x Blackfin Processor Hardware Reference

[P0 + LO(EVT10)] = R1; /* note that P0 points to the base of the

core MMR registers */

/***

ENABLE TWI0 generate to interrupts at the system level

***/

R1 = [P1 + LO(SIC_IMASK)];

BITSET(R1,BITPOS(IRQ_TWI0));

[P1 + LO(SIC_IMASK)] = R1;

/***

ENABLE TWI0 to generate interrupts at the core level

***/

R1 = [P0 + LO(IMASK)];

BITSET(R1,BITPOS(EVT_IVG10));

[P0 + LO(IMASK)] = R1;

/***

 wait for interrupts

***/

idle;

_main.END:

Listing 23-3. TWI0 Slave Interrupt Service Routine

/***

 Function: _TWI0_ISR

 Description: This ISR is executed when the TWI0 controller

detects a slave initiated transfer. After an interrupt is ser-

viced, its corresponding bit is cleared in the TWI0_INT_STAT

register. This done by writing a 1 to the particular bit posi-

tion. All bits are write 1 to clear.

***/

ADSP-BF54x Blackfin Processor Hardware Reference 23-61

Two-Wire Interface Controllers

#include <defBF54x.h>

.GLOBAL _TWI0_ISR;

.section L1_code;

_TWI0_ISR:

/***

read the source of the interrupt

***/

R1 = W[P1 + LO(TWI0_INT_STAT)](z);

/***

Slave Transfer Initiated

***/

CC = BITTST(R1, BITPOS(SINIT));

if !CC JUMP RECEIVE;

R0 = SINIT (Z);

W[P1 + LO(TWI0_INT_STAT)] = R0; /* clear interrupt source bit */

ssync;

/***

Receive service

***/

RECEIVE:

CC = BITTST(R1, BITPOS(RCVSERV));

if !CC JUMP TRANSMIT;

R0 = W[P1 + LO(TWI0_RCV_DATA8)] (Z); /* read data */

B[P2++] = R0 ; /* store bytes into a buffer pointed to by P2 */

R0 = RCVSERV(Z);

W[P1 + LO(TWI0_INT_STAT)] = R0; /*clear interrupt source bit */

ssync;

JUMP _TWI0_ISR.END; /* exit */

Programming Examples

23-62 ADSP-BF54x Blackfin Processor Hardware Reference

/***

Transmit service

***/

TRANSMIT:

CC = BITTST(R1, BITPOS(XMTSERV));

if !CC JUMP SlaveError;

R0 = B[P4++](Z);

W[P1 + LO(TWI0_XMT_DATA8)] = R0;

R0 = XMTSERV(Z);

W[P1 + LO(TWI0_INT_STAT)] = R0; /* clear interrupt source bit */

ssync;

JUMP _TWI0_ISR.END; /* exit */

/***

slave transfer error

***/

SlaveError:

CC = BITTST(R1, BITPOS(SERR));

if !CC SlaveOverflow;

R0 = SERR(Z);

W[P1 + if !CC jump SlaveOverflow LO(TWI0_INT_STAT)] = R0; /*

clear interrupt source bit */

ssync;

JUMP _TWI0_ISR.END; /* exit */

/***

slave overflow

***/

SlaveOverflow:

CC = BITTST(R1, BITPOS(SOVF));

if !CC JUMP SlaveTransferComplete;

R0 = SOVF(Z);

W[P1 + LO(TWI0_INT_STAT)] = R0; /* clear interrupt source bit */

ssync;

ADSP-BF54x Blackfin Processor Hardware Reference 23-63

Two-Wire Interface Controllers

JUMP _TWI0_ISR.END; /* exit */

/***

 slave transfer complete

***/

SlaveTransferComplete:

CC = BITTST(R1, BITPOS(SCOMP));

if !CC JUMP _TWI0_ISR.END;

R0 = SCOMP(Z);

W[P1 + LO(TWI0_INT_STAT)] = R0; /* clear interrupt source bit */

ssync;

/* Transfer complete read receive FIFO buffer and set/clear sema-

phores etc. ... */

R0 = W[P1 + LO(TWI0_FIFO_STAT)](z);

CC = BITTST(R0,BITPOS(RCV_HALF)); /* BIT 2 indicates whether

there's a byte in the FIFO or not */

if !CC JUMP _TWI0_ISR.END;

R0 = W[P1 + LO(TWI0_RCV_DATA8)] (Z); /* read data */

B[P2++] = R0 ; /* store bytes into a buffer pointed to by P2 */

_TWI0_ISR.END:RTI;

Electrical Specifications
All logic complies with the Electrical Specification outlined in the Philips

I2C Bus Specification version 2.1 dated January 2000.

Electrical Specifications

23-64 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 24-1

24 SPORT CONTROLLERS

This chapter describes the processor’s dual-channel synchronous serial
ports (SPORTs) and includes the following sections:

• “Overview” on page 24-1

• “Interface Overview” on page 24-4

• “Description of Operation” on page 24-11

• “Functional Description” on page 24-28

• “SPORT Registers” on page 24-48

• “Programming Examples” on page 24-76

Overview
The ADSP-BF54x processor Blackfin processors feature four identical syn-
chronous serial ports, called SPORTs. Unlike the SPI interface which is
designed for SPI-compatible communication only, the SPORT modules
support a variety of serial data communication protocols, for example:

• A-law or µ-law companding according to G.711 specification

• Multichannel or Time-Division-Multiplexed (TDM) modes

• Stereo Audio I2S Mode

• H.100 Telephony standard support

Overview

24-2 ADSP-BF54x Blackfin Processor Hardware Reference

In addition to these standard protocols, the SPORT modules provide
straight-forward modes to connect to standard peripheral devices, such as
ADCs or codecs, without external glue logic. With support for high data
rates, independent transmit and receive channels, and dual data paths, the
SPORT interface is a perfect choice for direct serial interconnection
between two or more processors in a multiprocessor system. Many proces-
sors provide compatible interfaces, including DSPs from Analog Devices
and other manufacturers.

All SPORTs have the same capabilities and are programmed in the same
way. Each SPORT has its own set of control registers and data buffers.

The SPORTs can operate at up to 1/2 the system clock (SCLK) rate for an
internally generated or external serial clock. Independent transmit and
receive clocks provide greater flexibility for serial communications.

Features
Each of the SPORTs offers these features and capabilities:

• Provides independent transmit and receive functions

• Transfers serial data words from 3 to 32 bits in length, either MSB
first or LSB first

• Provides alternate framing and control for interfacing to I2S serial
devices, as well as other audio formats (for example, left-justified
stereo serial data)

• Has FIFO plus double buffered data (both receive and transmit
functions have a data buffer register and a shift register), providing
additional time to service the SPORT

• Provides two synchronous transmit and two synchronous receive
data signals and buffers in each SPORT to double the total sup-
ported data streams

ADSP-BF54x Blackfin Processor Hardware Reference 24-3

SPORT Controllers

• Performs A-law and -law hardware companding on transmitted
and received words. (See “Companding” on page 24-31 for more
information.)

• Internally generates serial clock and frame sync signals in a wide
range of frequencies or accepts clock and frame sync input from an
external source

• Operates with or without frame synchronization signals for each
data word, with internally generated or externally generated frame
signals, with active high or active low frame signals, and with either
of two configurable pulse widths and frame signal timing

• Performs interrupt-driven, single word transfers to and from
on-chip memory under processor control

• Provides direct memory access transfer to and from memory under
DMA master control. DMA can be autobuffer-based (a repeated,
identical range of transfers) or descriptor-based (individual or
repeated ranges of transfers with differing DMA parameters).

• Has a multichannel mode for TDM interfaces. Each SPORT can
receive and transmit data selectively from a time-division-multi-
plexed serial bit stream on 128 contiguous channels from a stream
of up to 1024 total channels. This mode can be useful as a network
communication scheme for multiple processors. The 128 channels
available to the processor can be selected to start at any channel
location from 0 to 895 = (1023 – 128). Note the multichannel
select registers and the WSIZE register control which subset of the
128 channels within the active region can be accessed.

Interface Overview

24-4 ADSP-BF54x Blackfin Processor Hardware Reference

Interface Overview
SPORT0, SPORT1, SPORT2, and SPORT3 provide an I/O interface to
a wide variety of peripheral serial devices. SPORT0 is accessible through
port C. SPORT1 is accessible through port D. SPORT2 and SPORT3 are
both accessible through port A. For more information about port configu-
ration see Chapter 9, “General-Purpose Ports”. SPORTs provide
synchronous serial data transfer only. Each SPORT has one group of sig-
nals (primary data, secondary data, clock, and frame sync) for transmit
and a second set of signals for receive. The receive and transmit functions
are programmed separately. Each SPORT is a full duplex device, capable
of simultaneous data transfer in both directions. The SPORTs can be pro-
grammed for bit rate, frame sync, and number of bits per word by writing
to memory-mapped registers.

 In this text, the naming conventions for registers and signals use a
lower case x to represent a digit. In this chapter, for example, the
name RFSx signals indicates RFS0, RFS1, RFS2, and RFS3 (corre-
sponding to SPORT0, SPORT1, SPORT2, and SPORT3,
respectively). In this chapter, LSB refers to least significant bit, and
MSB refers to most significant bit.

Port A contains the SPORT2 and SPORT3 pins. Some of the SPORT2
and SPORT3 pins are multiplexed and can be used for other purposes if
the entire SPORT2 and SPORT3 blocks or some of their signals are not
required by an application. However, all pins default to the SPORT2 and
SPORT3 modules settings after reset.

SPORT0 resides in port C. Its secondary data pins are shared with
MXVR. The PORTC_MUX register controls whether the secondary SPORT0
data lines are enabled. By default, all port C pins are configured in GPIO
mode. Writing to PORTC_FER enables peripheral functionality. For more
information see Chapter 9, “General-Purpose Ports”.

ADSP-BF54x Blackfin Processor Hardware Reference 24-5

SPORT Controllers

SPORT1 resides in port D. Its signals are shared with the PPI and
HDMA. The PORTD_MUX register controls whether the SPORT1 lines are
enabled. By default, all port D pins are configured in GPIO mode. Writ-
ing to PORTD_FER enables peripheral functionality. For more information
see Chapter 9, “General-Purpose Ports”.

The secondary data pins of SPORT2 and SPORT3 are multiplexed with
general-purpose timers. The PORTA_MUX register determines whether gen-
eral-purpose timer functionality is enabled. The remaining SPORT2 and
SPORT3 signals aren’t multiplexed, but they can be used as GPIO pins as
dictated by the PORTA_FER register. For more information see Chapter 9,
“General-Purpose Ports”.

 On DMAC1, 32-bit DMA mode is not supported for SPORT2 or
SPORT3. The data word lengths for SPORT2 and SPORT3 may,
however, still be set to 32 bits.

Figure 24-1 shows a simplified block diagram of a single SPORT. Data to
be transmitted is written from an internal processor register to the
SPORT’s SPORTx_TX register through the peripheral bus. This data is
optionally compressed by the hardware and automatically transferred to
the transmit shift register. The bits in the shift register are shifted out on
the SPORT’s DTxPRI/DTxSEC pin, MSB first or LSB first, synchronous to
the serial clock on the TSCLKx pin. The receive portion of the SPORT
accepts data from the DRxPRI/DRxSEC pin synchronous to the serial clock
on the RSCLKx pin. When an entire word is received, the data is optionally
expanded, then automatically transferred to the SPORT’s SPORTx_RX reg-
ister, and then into the RX FIFO where it is available to the processor.
Table 24-1 shows the signals for each SPORT.

Interface Overview

24-6 ADSP-BF54x Blackfin Processor Hardware Reference

Table 24-1. SPORTx Signals

Pin1 Description

DTxPRI Transmit Data Primary

DTxSEC Transmit Data Secondary

TSCLKx Transmit Clock

TFSx Transmit Frame Sync

DRxPRI Receive Data Primary

DRxSEC Receive Data Secondary

RSCLKx Receive Clock

RFSx Receive Frame Sync

1 A lowercase x within a signal name represents a possible value of 0, 1, 2, or 3 (corresponding to
SPORT0, SPORT1, SPORT2, and SPORT3).

ADSP-BF54x Blackfin Processor Hardware Reference 24-7

SPORT Controllers

Blackfin SPORTs are designed such that I2S master mode, LRCLK, is held
at the last driven logic level and does not transition, to provide an edge,
after the final data word is driven out. Therefore, while transmitting a

fixed number of words to an I2S receiver that expects an LRCLK edge to
receive the incoming data word, the SPORT should send a dummy word
after transmitting the fixed number of words. The transmission of this
dummy word toggles LRCLK, generating an edge. Transmission of the

dummy word is not required when the I2S receiver is a Blackfin SPORT.

Figure 24-1. SPORT Block Diagram

COMPANDING
HARDWARE

COMPANDING
HARDWARE

WIDE BUSSES ARE 16 OR 32 BITS, DEPENDING ON SLEN.
FOR SLEN = 2 TO 15, THE PATH IS 16-BIT WIDE WITH 8-DEEP FIFO.
FOR SLEN = 16 TO 31, THE PATH IS 32-BIT WIDE WITH 4-DEEP FIFO.

TFSx
(TDV)*

Rx FIFO
4 x 32 OR 8 x 16

TSCLKx RSCLKx RFSx

PAB

DAB

Tx FIFO
4 x 32 OR 8 x 16

SERIAL
CONTROL

DTx SECDTx PR DRx SECDRx PR

Tx REGISTER Rx REGISTER

Tx PRI
SHIFT REG

Tx SEC
SHIFT REG

Tx PRI
HOLD REG

Tx SEC
HOLD REG

Rx PRI
HOLD REG

Rx SEC
HOLD REG

Rx PRI
SHIFT REG

Rx SEC
SHIFT REG

INTERNAL
CLOCK

GENERATOR

Tx REGISTER IS THE BOTTOM OF THE Tx FIFO
Rx REGISTER IS THE TOP OF THE Rx FIFO.

* IN MULTICHANNEL MODE (MCM), TFS FUNCTIONS AS A TRANSMIT DATA VALID (TDV) OUTPUT.

Interface Overview

24-8 ADSP-BF54x Blackfin Processor Hardware Reference

A SPORT receives serial data on its DRxPRI and DRxSEC inputs and trans-
mits serial data on its DTxPRI and DTxSEC outputs. It can receive and
transmit simultaneously for full-duplex operation. For transmit, the data
bits (DTxPRI and DTxSEC) are synchronous to the transmit clock (TSCLKx).
For receive, the data bits (DRxPRI and DRxSEC) are synchronous to the
receive clock (RSCLKx). The serial clock is an output if the processor gener-
ates it, or an input if the clock is externally generated. Frame
synchronization signals RFSx and TFSx are used to indicate the start of a
serial data word or stream of serial words.

The primary and secondary data pins, if enabled by the port configura-
tion, provide a method to increase the data throughput of the serial port.
They do not behave as totally separate SPORTs; rather, they operate in a
synchronous manner (sharing clock and frame sync) but on separate data.
The data received on the primary and secondary signals is interleaved in
main memory and can be retrieved by setting a stride in the Data Address
Generators (DAG) unit. For more information about DAGs, see the
“Data Address Generators” chapter in Blackfin Processor Programming Ref-
erence. Similarly, for TX, data should be written to the TX register in an
alternating manner—first primary, then secondary, then primary, then
secondary, and so on. This is easily accomplished with the processor’s
powerful DAGs.

In addition to the serial clock signal, data must be signalled by a frame
synchronization signal. The framing signal can occur either at the begin-
ning of an individual word or at the beginning of a block of words.

Figure 24-2 shows a possible port connection for the SPORTs. Note that
serial devices A and B must be synchronous, as they share common frame
syncs and clocks. The same is true for serial pairs C and D, E and F, and G
and H. SPORT1 is Multichannel Mode. In Multichannel mode, TFS
functions as a transmit data valid (TDV) output. Although shown as an
external connection, the TSCLK/RSCLK connection is internal in multichan-
nel mode. See “Multichannel Operation” on page 24-17 for details.

ADSP-BF54x Blackfin Processor Hardware Reference 24-9

SPORT Controllers

Figure 24-2. SPORT3–0 Example Connections

RSCLK0

TSCLK0

TFS0 (TDV)*

RFS0

DT0SEC

DR0SEC

DR0PRI

DT0PRI

RSCLK1

TSCLK1

TFS1 (TDV)*

RFS1

DT1SEC

DR1SEC

DR1PRI

DT1PRI

SPORT1

SERIAL
DEVICE D

(SECONDARY)

SERIAL
DEVICE C

(PRIMARY)

SERIAL
DEVICE B

(SECONDARY)

SERIAL
DEVICE A

(PRIMARY)

SPORT0

RSCLK2

TSCLK2

TFS2 (TDV)*

RFS2

DT2SEC

DR2SEC

DR2PRI

DT2PRI

RSCLK3

TSCLK3

TFS3 (TDV)*

RFS3

DT3SEC

DR3SEC

DR3PRI

DT3PRI

BLACKFIN

SPORT3

SERIAL
DEVICE H

(SECONDARY)

SERIAL
DEVICE G

(PRIMARY)

SERIAL
DEVICE F

(SECONDARY)

SERIAL
DEVICE E

(PRIMARY)

SPORT2

PA5

PA1

PA6

PA2

PA4

PA7

PA0

PA3

PA13

PA9

PA14

PA10

PA12

PA15

PA8

PA11

PORT A

PORT A

PC5

PC1

PC6

PC2

PC4

PC7

PC0

PC3

PD5

PD1

PD6

PD2

PD4

PD7

PD0

PD3

PORT C

PORT D

SERIAL
DEVICE N

* IN MULTICHANNEL MODE (MCM), TFS FUNCTIONS AS A TRANSMIT DATA VALID (TDV) OUTPUT.

Interface Overview

24-10 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 24-3 shows an example of a stereo serial device with three transmit
and two receive channels connected to the processor.

SPORT Pin/Line Terminations
The processor has very fast drivers on all output pins, including the
SPORTs. If connections on the data, clock, or frame sync lines are longer
than six inches, consider using a series termination for strip lines on
point-to-point connections. This may be necessary even when using low
speed serial clocks, because of the edge rates.

Figure 24-3. SPORT1–0 Example Stereo Serial Connection

DBCLK
DLRCLK

DSDATA1

ALRCLK

ABCLK

DSDATA3
DSDATA2

ASDATA1

ASDATA2

AD1836
STEREO SERIAL

DEVICE BLACKFIN

RSCLK0

TSCLK0

TFS0

RFS0

DT0SEC

DR0PRI

DT0PRI

RSCLK1

TSCLK1

TFS1

RFS1

DT1SEC

DR1PRI

DT1PRI

SPORT1

DR1SEC

SPORT0

DR0SECPC5

PC1

PC6

PC2

PC4

PC7

PC0

PC3

PD5

PD1

PD6

PD2

PD4

PD7

PD0

PD3

PORT C

PORT D

ADSP-BF54x Blackfin Processor Hardware Reference 24-11

SPORT Controllers

Description of Operation
The following sections describe the operation of the SPORT controllers.

SPORT Operation
This section describes general SPORT operation, illustrating the most
common use of a SPORT. Since the SPORT functionality is configurable,
this description represents just one of many possible configurations.

Writing to a SPORT’s SPORTx_TX register readies the SPORT for trans-
mission. The TFSx signal initiates the transmission of serial data. Once
transmission has begun, each value written to the SPORTx_TX register is
transferred through the FIFO to the internal transmit shift register. The
bits are then sent, beginning with either the MSB or the LSB as specified
in the SPORTx_TCR1 register. Each bit is shifted out on the driving edge of
TSCLKx. The driving edge of TSCLKx can be configured to be rising or fall-
ing. The SPORT generates the transmit interrupt or requests a DMA
transfer as long as there is space in the TX FIFO.

As a SPORT receives bits, they accumulate in an internal receive register.
When a complete word is received, it is written to the SPORT FIFO regis-
ter and the receive interrupt for that SPORT is generated or a DMA
transfer is initiated. Interrupts are generated differently if DMA block
transfers are performed. For more information see Chapter 7, “Direct
Memory Access”.

SPORT Disable
The SPORTs are automatically disabled by a processor hardware or soft-
ware reset. A SPORT can also be disabled directly by clearing the
SPORT’s transmit or receive enable bits (TSPEN in the SPORTx_TCR1 regis-
ter and RSPEN in the SPORTx_RCR1 register, respectively). Each method has
a different effect on the SPORT.

Description of Operation

24-12 ADSP-BF54x Blackfin Processor Hardware Reference

A processor reset disables the SPORTs by clearing the SPORTx_TCR1,
SPORTx_TCR2, SPORTx_RCR1, and SPORTx_RCR2 registers (including the
TSPEN and RSPEN enable bits) and the SPORTx_TCLKDIV, SPORTx_RCLKDIV,
SPORTx_TFSDIVx, and SPORTx_RFSDIVx clock and frame sync divisor regis-
ters. Any ongoing operations are aborted.

Clearing the TSPEN and RSPEN bits disables the SPORTs and aborts any
ongoing operations. Status bits are also cleared. Configuration bits remain
unaffected and can be read by the software in order to be altered or over-
written. To disable the SPORT output clock, disable the SPORT.

 Note that disabling a SPORT through TSPEN/RSPEN may shorten
any currently active pulses on the TFSx/RFSx and TSCLKx/RSCLKx
outputs, if these signals are configured to be generated internally.

When disabling the SPORT from multichannel operation, first disable
TSPEN and then disable RSPEN. Note both TSPEN and RSPEN must be dis-
abled before re-enabling. Disabling only TX or RX is not allowed.

Setting SPORT Modes
SPORT configuration is accomplished by setting bit and field values in
configuration registers. Each SPORT must be configured prior to being
enabled. Once the SPORT is enabled, further writes to the SPORT con-
figuration registers are disabled (except for SPORTx_RCLKDIV,
SPORTx_TCLKDIV, and multichannel mode channel select registers). To
change values in all other SPORT configuration registers, disable the
SPORT by clearing TSPEN in SPORTx_TCR1 and/or RSPEN in SPORTx_RCR1.

Each SPORT has its own set of control registers and data buffers. These
registers are described in detail in the “SPORT Registers” section. All
control and status bits in the SPORT registers are active high unless other-
wise noted.

ADSP-BF54x Blackfin Processor Hardware Reference 24-13

SPORT Controllers

Stereo Serial Operation
Several stereo serial modes can be supported by the SPORT, including the

popular I2S format. To use these modes, set bits in the SPORT_RCR2 or
SPORT_TCR2 registers. Setting RSFSE or TSFSE in SPORT_RCR2 or SPORT_TCR2
changes the operation of the frame sync pin to a left/right clock as

required for I2S and left-justified stereo serial data. Setting this bit enables
the SPORT to generate or accept the special LRCLK-style frame sync. All
other SPORT control bits remain in effect and should be set
appropriately.

Figure 24-4 on page 24-13 shows timing diagrams for stereo serial mode
transmit operation.

Figure 24-4. SPORT Stereo Serial Modes, Transmit

TFSx

TSCLKx

DTxPRI

TFSx

TSCLKx

DTxPR

TFSx

TSCLKx

DTxPRI

LEFT CHANNEL
RIGHT CHANNEL

LEFT CHANNEL
RIGHT CHANNEL

MSB MSB

MSB MSB

MSB MSB

LSB LSB

LSB LSB

LSB LSB

LEFT-JUSTIFIED MODE—3 TO 32 BITS PER CHANNEL

I2S MODE—3 TO 32 BITS PER CHANNEL

DSP MODE—3 TO 32 BITS PER CHANNEL
1/fS

NOTES:
1. DSP MODE DOES NOT IDENTIFY CHANNEL.
2. TFS NORMALLY OPERATES AT fS EXCEPT FOR DSP MODE WHICH IS 2 x fS.
3. TSCLKx FREQUENCY IS NORMALLY 64 x TFS BUT MAY BE OPERATED IN BURST MODE.

Description of Operation

24-14 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 24-5 on page 24-14 shows timing diagrams for stereo serial mode
receive operation.

 Blackfin SPORTs are designed such that, in I2S master mode,
LRCLK is held at the last driven logic level and does not transition,
to provide an edge, after the final data word is driven out. There-
fore, while transmitting a fixed number of words to an I2S receiver
that expects an LRCLK edge to receive the incoming data word, the
SPORT should send a dummy word after transmitting the fixed
number of words. The transmission of this dummy word toggles
LRCLK, generating an edge. Transmission of the dummy word is not
required when the I2S receiver is a Blackfin SPORT.

Table 24-2 shows several modes that can be configured using bits in
SPORTx_TCR1 and SPORTx_RCR1. The table shows bits for the receive side of
the SPORT, but corresponding bits are available for configuring the trans-

Figure 24-5. SPORT Stereo Serial Modes, Receive

RFSx

RSCLKx

DRxPRI

RFSx

RSCLKx

DRxPRI

RFSx

RSCLKx

DRxPRI

LEFT CHANNEL
RIGHT CHANNEL

LEFT CHANNEL
RIGHT CHANNEL

MSB MSB

MSB MSB

MSB MSB

LSB LSB

LSB LSB

LSB LSB

LEFT-JUSTIFIED MODE—3 TO 32 BITS PER CHANNEL

I2S MODE—3 TO 32 BITS PER CHANNEL

DSP MODE—3 TO 32 BITS PER CHANNEL
1/fS

NOTES:
1. DSP MODE DOES NOT IDENTIFY CHANNEL.
2. RFS NORMALLY OPERATES AT fS EXCEPT FOR DSP MODE WHICH IS 23 fS.
3. RSCLKx FREQUENCY IS NORMALLY 64x RFS BUT MAY BE OPERATED IN BURST MODE.

ADSP-BF54x Blackfin Processor Hardware Reference 24-15

SPORT Controllers

mit portion of the SPORT. A control field which may be either set or
cleared depending on the user’s needs, without changing the standard, is
indicated by an “X.”

Note most bits shown as a 0 or 1 may be changed depending on the user’s
preference, creating many other “almost standard” modes of stereo serial
operation. These modes may be of use in interfacing to codecs with
slightly non-standard interfaces. The settings shown in Table 24-2 pro-
vide glueless interfaces to many popular codecs.

Table 24-2. Stereo Serial Settings

Bit Field Stereo Audio Serial Scheme

I2S Left-Justified DSP Mode

RSFSE 1 1 0

RRFST 0 0 0

LARFS 0 1 0

LRFS 0 1 0

RFSR 1 1 1

RCKFE 1 0 0

SLEN 2 – 31 2 – 31 2 – 31

RLSBIT 0 0 0

RFSDIV
(If internal FS is selected.)

2 – Max 2 – Max 2 – Max

RXSE
(Secondary Enable is available for RX and TX.)

X X X

Description of Operation

24-16 ADSP-BF54x Blackfin Processor Hardware Reference

Note RFSDIV or TFSDIV must still be greater than or equal to SLEN. For I2S
operation, RFSDIV or TFSDIV is usually 1/64 of the serial clock rate. With
RSFSE set, the formulas to calculate frame sync period and frequency (dis-
cussed in “Clock and Frame Sync Frequencies” on page 24-28) still apply,
but now refer to one half the period and twice the frequency. For instance,
setting RFSDIV or TFSDIV = 31 produces an LRCLK that transitions every 32
serial clock cycles and has a period of 64 serial clock cycles.

The LRFS bit determines the polarity of the RFS or TFS frame sync pin for
the channel that is considered a 'right' channel. Thus, setting LRFS = 0
(meaning that it is an active high signal) indicates that the frame sync is
high for the 'right' channel, thus implying that it is low for the 'left' chan-
nel. This is the default setting.

The RRFST and TRFST bits determine whether the first word received or
transmitted is a left or a right channel. If the bit is set, the first word
received or transmitted is a right channel. The default is to receive or
transmit the left channel word first.

The secondary DRxSEC and DTxSEC pins are useful extensions of the

SPORT which pair well with stereo serial mode. Multiple I2S streams of
data can be transmitted or received using a single SPORT. Note the pri-
mary and secondary pins are synchronous, as they share clock and LRCLK
(frame sync) pins. The transmit and receive sides of the SPORT need not
be synchronous, but may share a single clock in some designs. See
Figure 24-3 on page 24-10, which shows multiple stereo serial connec-
tions being made between the processor and an AD1836 codec.

ADSP-BF54x Blackfin Processor Hardware Reference 24-17

SPORT Controllers

Multichannel Operation
The SPORTs offer a multichannel mode of operation which allows the
SPORT to communicate in a Time-Division-Multiplexed (TDM) serial
system. In multichannel communications, each data word of the serial bit
stream occupies a separate channel. Each word belongs to the next consec-
utive channel so that, for example, a 24-word block of data contains one
word for each of 24 channels.

The SPORT can automatically select words for particular channels while
ignoring the others. Up to 128 channels are available for transmitting or
receiving; each SPORT can receive and transmit data selectively from any
of the 128 channels. These 128 channels can be any 128 out of the 1024
total channels. RX and TX must use the same 128-channel region to
selectively enable channels. The SPORT can do any of the following on
each channel:

• Transmit data

• Receive data

• Transmit and receive data

• Do nothing

Data companding and DMA transfers can also be used in multichannel
mode.

The DTxPRI pin is always driven (not three-stated) if the SPORT is
enabled (TSPEN = 1 in the SPORTx_TCR1 register), unless it is in multichan-
nel mode and an inactive time slot occurs. The DTxSEC pin is always driven
(not three-stated) if the SPORT is enabled and the secondary transmit is
enabled (TXSE = 1 in the SPORTx_TCR2 register), unless the SPORT is in
multichannel mode and an inactive time slot occurs.

Description of Operation

24-18 ADSP-BF54x Blackfin Processor Hardware Reference

In multichannel mode, RSCLKx can either be provided externally or gener-
ated internally by the SPORT, and it is used for both transmit and receive
functions. Leave TSCLKx disconnected if the SPORT is used only in multi-
channel mode. If RSCLKx is externally or internally provided, it will be
internally distributed to both the receiver and transmitter circuitry.

 The SPORT multichannel transmit select register and the SPORT
multichannel receive select register must be programmed before
enabling SPORTx_TX or SPORTx_RX operation for multichannel
mode. This is especially important in “DMA data unpacked
mode,” since SPORT FIFO operation begins immediately after
RSPEN and TSPEN are set, enabling both RX and TX. The MCMEN bit
(in SPORTx_MCMC2) must be enabled prior to enabling SPORTx_TX or
SPORTx_RX operation. When disabling the SPORT from multichan-
nel operation, first disable TSPEN and then disable RSPEN. Note both
TSPEN and RSPEN must be disabled before re-enabling. Disabling
only TX or RX is not allowed.

Figure 24-6 shows example timing for a multichannel transfer that has
these characteristics:

• Use TDM method where serial data is sent or received on different
channels sharing the same serial bus

• Can independently select transmit and receive channels

• RFSx signals start of frame

• TFSx is used as “transmit data valid” for external logic, true only
during transmit channels

• Receive on channels 0 and 2, transmit on channels 1 and 2

• Multichannel frame delay is set to 1

ADSP-BF54x Blackfin Processor Hardware Reference 24-19

SPORT Controllers

See “Timing Examples” on page 24-42 for more examples.

Multichannel Enable

Setting the MCMEN bit in the SPORTx_MCM2 register enables multichannel
mode. When MCMEN = 1, multichannel operation is enabled; when
MCMEN = 0, all multichannel operations are disabled.

 Setting the MCMEN bit enables multichannel operation for both the
receive and transmit sides of the SPORT. Therefore, if a receiving
SPORT is in multichannel mode, the transmitting SPORT must
also be in multichannel mode.

 When in multichannel mode, do not enable the stereo serial frame
sync modes or the late frame sync feature, as these features are
incompatible with multichannel mode.

Figure 24-6. Multichannel Operation

RSCLKx

B3 B2 B1 B2DRxPRI

RFSx

B0 IGNORED B3

DTxPRI B2B3 B0 B3 B2B1

CHANNEL 2CHANNEL 1CHANNEL 0

TFSx

MFD = 1

Description of Operation

24-20 ADSP-BF54x Blackfin Processor Hardware Reference

Table 24-3 shows the dependencies of bits in the SPORT configuration
register when the SPORT is in multichannel mode.

Frame Syncs in Multichannel Mode

All receiving and transmitting devices in a multichannel system must have
the same timing reference. The RFSx signal is used for this reference, indi-
cating the start of a block or frame of multichannel data words.

Table 24-3. Multichannel Mode Configuration

SPORTx_RCR1 or
SPORTx_RCR2

SPORTx_TCR1 or
SPORTx_TCR2

Notes

RSPEN TSPEN Set or clear both

IRCLK - Independent

- ITCLK Independent

RDTYPE TDTYPE Independent

RLSBIT TLSBIT Independent

IRFS - Independent

- ITFS Ignored

RFSR TFSR Ignored

- DITFS Ignored

LRFS LTFS Independent

LARFS LATFS Both must be 0

RCKFE TCKFE Set or clear both to same value

SLEN SLEN Set or clear both to same value

RXSE TXSE Independent

RSFSE TSFSE Both must be 0

RRFST TRFST Ignored

ADSP-BF54x Blackfin Processor Hardware Reference 24-21

SPORT Controllers

When multichannel mode is enabled on a SPORT, both the transmitter
and the receiver use RFSx as a frame sync. This is true whether RFSx is gen-
erated internally or externally. The RFSx signal is used to synchronize the
channels and restart each multichannel sequence. Assertion of RFSx indi-
cates the beginning of the channel 0 data word.

Since RFSx is used by both the SPORTx_TX and SPORTx_RX channels of the
SPORT in multichannel mode configuration, the corresponding bit pairs
in SPORTx_RCR1 and SPORTx_TCR1, and in SPORTx_RCR2 and SPORTx_TCR2,
should always be programmed identically, with the possible exception of
the RXSE and TXSE pair and the RDTYPE and TDTYPE pair. This is true even if
SPORTx_RX operation is not enabled.

In multichannel mode, RFSx timing similar to late (alternative) frame
mode is entered automatically; the first bit of the transmit data word is
available and the first bit of the receive data word is sampled in the same
serial clock cycle that the frame sync is asserted, provided that MFD is set
to 0.

The TFSx signal is used as a transmit data valid signal which is active dur-
ing transmission of an enabled word. The SPORT’s data transmit pin is
three-stated when the time slot is not active, and the TFSx signal serves as
an output-enabled signal for the data transmit pin. The SPORT drives
TFSx in multichannel mode whether or not ITFS is cleared. The TFSx pin
in multichannel mode still obeys the LTFS bit. If LTFS is set, the transmit
data valid signal will be active low—a low signal on the TFSx pin indicates
an active channel.

Once the initial RFSx is received, and a frame transfer has started, all other
RFSx signals are ignored by the SPORT until the complete frame is
transferred.

If MFD > 0, the RFSx may occur during the last channels of a previous
frame. This is acceptable, and the frame sync is not ignored as long as the
delayed channel 0 starting point falls outside the complete frame.

Description of Operation

24-22 ADSP-BF54x Blackfin Processor Hardware Reference

In multichannel mode, the RFSx signal is used for the block or frame start
reference, after which the word transfers are performed continuously with
no further RFSx signals required. Therefore, internally generated frame
syncs are always data independent.

Multichannel Frame

A multichannel frame contains more than one channel, as specified by the
window size and window offset. A complete multichannel frame consists
of 1 – 1024 channels, starting with channel 0. The particular channels of
the multichannel frame that are selected for the SPORT are a combination
of the window offset, the window size, and the multichannel select regis-
ters. See Figure 24-7.

Figure 24-7. Relationships for Multichannel Parameters

RFSx

DATA DATA IGNORED

CHANNEL

RSCLKx

DATA IGNORED DATA IGNORED

MULTICHANNEL FRAME

WINDOW OFFSET WINDOW
SPORT_MCMCn

REG FIELD:
SIZE

UNITS:

MFD

RANGE:

NOTE: FRAME LENGTH IS SET BY FRAME SYNC DIVIDE OR EXTERNAL FRAME SYNC PERIOD.

BITS WORDS MULTIPLES OF 8 WORDS
0–15 0–1015 8–128

ADSP-BF54x Blackfin Processor Hardware Reference 24-23

SPORT Controllers

Multichannel Frame Delay

The 4-bit MFD field in SPORTx_MCMC2 specifies a delay between the frame
sync pulse and the first data bit in multichannel mode. The value of MFD is
the number of serial clock cycles of the delay. Multichannel frame delay
allows the processor to work with different types of interface devices.

A value of 0 for MFD causes the frame sync to be concurrent with the first
data bit, which is the equivalent of the late frame sync mode. MFD>0 corre-
sponds to the early frame sync mode. There a new frame sync may occur
before data from the last frame is received, because blocks of data occur
back-to-back. The maximum value allowed for MFD is 15.

Frame sync signals can occur during the first bit of each data word (late)
or during the serial clock cycle immediately preceding the first bit (early).
The LATFS and LARFS bits of the SPORTx_TCR1 and SPORTx_RCR1 registers
configure this option.

Window Size

The window size (WSIZE[3:0]) defines the number of channels that can be
enabled/disabled by the multichannel select registers. This range of words
is called the active window. The number of channels can be any value in
the range of 0 to 15, corresponding to active window size of 8 to 128, in
increments of 8; the default value of 0 corresponds to a minimum active
window size of 8 channels. To calculate the active window size from the
WSIZE register, use this equation:

Number of words in active window = 8 x (WSIZE + 1)

Since the DMA buffer size is always fixed, it is possible to define a smaller
window size (for example, 32 words), resulting in a smaller DMA buffer
size (in this example, 32 words instead of 128 words) to save DMA band-
width. The window size cannot be changed while the SPORT is enabled.

Multichannel select bits that are enabled but fall outside the window
selected are ignored.

Description of Operation

24-24 ADSP-BF54x Blackfin Processor Hardware Reference

Window Offset

The window offset (WOFF[9:0]) specifies where in the 1024-channel range
to place the start of the active window. A value of 0 specifies no offset and
896 is the largest value that permits using all 128 channels. As an example,
a program could define an active window with a window size of 8
(WSIZE = 0) and an offset of 93 (WOFF = 93). This 8-channel window
would reside in the range from 93 to 100. Neither the window offset nor
the window size can be changed while the SPORT is enabled.

If the combination of the window size and the window offset would place
any portion of the window outside of the range of the channel counter,
none of the out-of-range channels in the frame are enabled.

Other Multichannel Fields in SPORTx_MCMC2

The FSDR bit in the SPORTx_MCMC2 register changes the timing relationship
between the frame sync and the clock received. This change enables the
SPORT to comply with the H.100 protocol.

Normally the data is transmitted on the same edge that the TFSx is gener-
ated (FSDR = 0). For example, a positive edge on TFSx causes data to be
transmitted on the positive edge of the TSCLKx—either the same edge or
the following one, depending on when LATFS is set.

When the frame sync/data relationship is used (FSDR = 1), the frame sync
is expected to change on the falling edge of the clock and is sampled on
the rising edge of the clock. This is true even though data received is sam-
pled on the negative edge of the receive clock.

ADSP-BF54x Blackfin Processor Hardware Reference 24-25

SPORT Controllers

Channel Selection Register

A channel is a multibit word from 3 to 32 bits in length that belongs to
one of the TDM channels. Specific channels can be individually enabled
or disabled to select which words are received and transmitted during mul-
tichannel communications. Data words from the enabled channels are
received or transmitted, while disabled channel words are ignored. Up to
128 contiguous channels may be selected out of 1024 available channels.
The SPORTx_MRCSn and SPORTx_MTCSn multichannel select registers are
used to enable and disable individual channels; the SPORTx_MRCSn registers
specify the active receive channels, and the SPORTx_MTCSn registers specify
the active transmit channels.

Four registers make up each multichannel select register. Each of the four
registers has 32 bits, corresponding to 32 channels. Setting a bit enables
that channel, so the SPORT selects its word from the multiple word block
of data (for either receive or transmit). See Figure 24-8.

Channel select bit 0 always corresponds to the first word of the active win-
dow. To determine a channel’s absolute position in the frame, add the
window offset words to the channel select position. For example, setting
bit 7 in MCS2 selects word 71 of the active window to be enabled. Setting
bit 2 in MCS1 selects word 34 of the active window, and so on.

Setting a particular bit in the SPORTx_MTCSn register causes the SPORT to
transmit the word in that channel’s position of the data stream. Clearing
the bit in the SPORTx_MTCSn register causes the SPORT’s data transmit pin
to three-state during the time slot of that channel.

Figure 24-8. Multichannel Select Registers

0 31 0 31 0 31 0 31

0 31 32 63 64 95 96 127

MCS1MCS0

Channel Select 0 – 127

MCS2 MCS3

Description of Operation

24-26 ADSP-BF54x Blackfin Processor Hardware Reference

Setting a particular bit in the SPORTx_MRCSn register causes the SPORT to
receive the word in that channel’s position of the data stream; the received
word is loaded into the SPORTx_RX buffer. Clearing the bit in the
SPORTx_MRCSn register causes the SPORT to ignore the data.

Companding may be selected for all channels or for no channels. A-law or
-law companding is selected with the TDTYPE field in the SPORTx_TCR1
register and the RDTYPE field in the SPORTx_RCR1 register, and applies to all
active channels. (See “Companding” on page 24-31 for more information
about companding.)

Multichannel DMA Data Packing

Multichannel DMA data packing and unpacking are specified with the
MCDTXPE and MCDRXPE bits in the SPORTx_MCMC2 multichannel configuration
register.

If the bits are set, indicating that data is packed, the SPORT expects the
data contained by the DMA buffer corresponds only to the enabled
SPORT channels. For example, if an MCM frame contains 10 enabled
channels, the SPORT expects the DMA buffer to contain 10 consecutive
words for each frame. It is not possible to change the total number of
enabled channels without changing the DMA buffer size, and reconfigur-
ing is not allowed while the SPORT is enabled.

If the bits are cleared (the default, indicating that data is not packed), the
SPORT expects the DMA buffer to have a word for each of the channels
in the active window, whether enabled or not, so the DMA buffer size
must be equal to the size of the window. For example, if channels 1 and 10
are enabled, and the window size is 16, the DMA buffer size would have
to be 16 words (unless the secondary side is enabled). The data to be
transmitted or received would be placed at addresses 1 and 10 of the buf-
fer, and the rest of the words in the DMA buffer would be ignored. This
mode allows changing the number of enabled channels while the SPORT

ADSP-BF54x Blackfin Processor Hardware Reference 24-27

SPORT Controllers

is enabled, with some caution. First read the channel register to make sure
that the active window is not being serviced. If the channel count is 0,
then the multichannel select registers can be updated.

Support for H.100 Standard Protocol
The processor supports the H.100 standard protocol. The following
SPORT parameters must be set to support this standard.

• Set for external frame sync. Frame sync generated by external bus
master.

• TFSR/RFSR set (frame syncs required)

• LTFS/LRFS set (active low frame syncs)

• Set for external clock

• MCMEN set (multichannel mode selected)

• MFD = 0 (no frame delay between frame sync and first data bit)

• SLEN = 7 (8-bit words)

• FSDR = 1 (set for H.100 configuration, enabling half-clock-cycle
early frame sync)

2X Clock Recovery Control

The SPORTs can recover the data rate clock from a provided 2X input
clock. This enables the implementation of H.100 compatibility modes for
MVIP-90 (2M bps data) and HMVIP (8M bps data), by recovering
2 MHz from 4 MHz or 8 MHz from the 16 MHz incoming clock with
the proper phase relationship. A 2-bit mode signal (MCCRM[1:0] in the
SPORTx_MCMC2 register) chooses the applicable clock mode, which includes
a non-divide or bypass mode for normal operation. A value of
MCCRM = b#00 chooses non-divide or bypass mode (H.100-compatible),

Functional Description

24-28 ADSP-BF54x Blackfin Processor Hardware Reference

MCCRM = b#10 chooses MVIP-90 clock divide (extract 2 MHz from
4 MHz), and MCCRM = b#11 chooses HMVIP clock divide (extract 8 MHz
from 16 MHz).

Functional Description
The following sections provide a functional description of the SPORTs.

Clock and Frame Sync Frequencies
The maximum serial clock frequency (for either an internal source or an
external source) is SCLK/2. The frequency of an internally generated clock
is a function of the system clock frequency (SCLK) and the value of the
16-bit serial clock divide modulus registers, SPORTx_TCLKDIV and
SPORTx_RCLKDIV.

TSCLKx frequency = (SCLK frequency)/(2 x (SPORTx_TCLKDIV + 1))

RSCLKx frequency = (SCLK frequency)/(2 x (SPORTx_RCLKDIV + 1))

If the value of SPORTx_TCLKDIV or SPORTx_RCLKDIV is changed while the
internal serial clock is enabled, the change in TSCLKx or RSCLKx frequency
takes effect at the start of the drive edge of TSCLKx or RSCLKx that follows
the next leading edge of TFSx or RFSx.

When an internal frame sync is selected (ITFS = 1 in the SPORTx_TCR1 reg-
ister or IRFS = 1 in the SPORTx_RCR1 register) and frame syncs are not
required, the first frame sync does not update the clock divider if the value
in SPORTx_TCLKDIV or SPORTx_RCLKDIV has changed. The second frame
sync will cause the update.

ADSP-BF54x Blackfin Processor Hardware Reference 24-29

SPORT Controllers

The SPORTx_TFSDIV and SPORTx_RFSDIV registers specify the number of
transmit or receive clock cycles that are counted before generating a TFSx
or RFSx pulse (when the frame sync is internally generated). This enables a
frame sync to initiate periodic transfers. The counting of serial clock
cycles applies to either internally or externally generated serial clocks.

The formula for the number of cycles between frame sync pulses is:

of transmit serial clocks between frame sync assertions = TFSDIV + 1

of receive serial clocks between frame sync assertions = RFSDIV + 1

Use the following equations to determine the correct value of TFSDIV or
RFSDIV, given the serial clock frequency and desired frame sync frequency:

SPORTxTFS frequency = (TSCLKx frequency)/(SPORTx_TFSDIV + 1)

SPORTxRFS frequency = (RSCLKx frequency)/(SPORTx_RFSDIV + 1)

The frame sync would thus be continuously active (for transmit if
TFSDIV = 0 or for receive if RFSDIV = 0). However, the value of TFSDIV (or
RFSDIV) should not be less than the serial word length minus 1 (the value
of the SLEN field in SPORTx_TCR2 or SPORTx_RCR2). A smaller value could
cause an external device to abort the current operation or have other
unpredictable results. If a SPORT is not being used, the TFSDIV (or
RFSDIV) divisor can be used as a counter for dividing an external clock or
for generating a periodic pulse or periodic interrupt. The SPORT must be
enabled for this mode of operation to work.

Maximum Clock Rate Restrictions

Externally generated late transmit frame syncs also experience a delay from
arrival to data output, and this can limit the maximum serial clock speed.
See ADSP-BF542/544/547/548/549 Embedded Processor Data Sheet for
exact timing specifications.

Functional Description

24-30 ADSP-BF54x Blackfin Processor Hardware Reference

Word Length
Each SPORT channel (transmit and receive) independently handles word
lengths of 3 to 32 bits. The data is right-justified in the SPORT data reg-
isters if it is fewer than 32 bits long, residing in the LSB positions. The
value of the serial word length (SLEN) field in the SPORTx_TCR2 and
SPORTx_RCR2 registers of each SPORT determines the word length accord-
ing to this formula:

Serial Word Length = SLEN + 1

 The SLEN value should not be set to 0 or 1; values from 2 to 31 are
allowed. Continuous operation (when the last bit of the current
word is immediately followed by the first bit of the next word) is
restricted to word sizes of 4 or longer (so SLEN 3).

Bit Order
Bit order determines whether the serial word is transmitted MSB first or
LSB first. Bit order is selected by the RLSBIT and TLSBIT bits in the
SPORTx_RCR1 and SPORTx_TCR1 registers. When RLSBIT (or TLSBIT) = 0,
serial words are received (or transmitted) MSB first. When RLSBIT (or
TLSBIT) = 1, serial words are received (or transmitted) LSB first.

Data Type
The TDTYPE field of the SPORTx_TCR1 register and the RDTYPE field of the
SPORTx_RCR1 register specify one of four data formats for both single and
multichannel operation. See Table 24-4.

ADSP-BF54x Blackfin Processor Hardware Reference 24-31

SPORT Controllers

These formats are applied to serial data words loaded into the SPORTx_RX
and SPORTx_TX buffers. SPORTx_TX data words are not actually zero filled or
sign extended, because only the significant bits are transmitted.

Companding
Companding (a contraction of COMpressing and exPANDing) is the pro-
cess of logarithmically encoding and decoding data to minimize the
number of bits that must be sent. The SPORTs support the two most
widely used companding algorithms, -law and A-law. The processor
compands data according to the CCITT G.711 specification. The type of
companding can be selected independently for each SPORT.

When companding is enabled, valid data in the SPORTx_RX register is the
right-justified, expanded value of the eight LSBs received and sign
extended to 16 bits. A write to SPORTx_TX causes the 16-bit value to be
compressed to eight LSBs (sign extended to the width of the transmit
word) and written to the internal transmit register. Although the com-
panding standards support only 13-bit (A-law) or 14-bit (-law)
maximum word lengths, up to 16-bit word lengths can be used. If the
magnitude of the word value is greater than the maximum allowed, the
value is automatically compressed to the maximum positive or negative
value.

Lengths greater than 16 bits are not supported for companding operation.

Table 24-4. TDTYPE, RDTYPE, and Data Formatting

TDTYPE or
RDTYPE

SPORTx_TCR1 Data Formatting SPORTx_RCR1 Data Formatting

b#00 Normal operation Zero fill

b#01 Reserved Sign extend

b#10 Compand using -law Compand using -law

b#11 Compand using A-law Compand using A-law

Functional Description

24-32 ADSP-BF54x Blackfin Processor Hardware Reference

Clock Signal Options
Each SPORT has a transmit clock signal (TSCLKx) and a receive clock sig-
nal (RSCLKx). The clock signals are configured by the TCKFE and RCKFE bits
of the SPORTx_TCR1 and SPORTx_RCR1 registers. Serial clock frequency is
configured in the SPORTx_TCLKDIV and SPORTx_RCLKDIV registers.

 The receive clock pin may be tied to the transmit clock if a single
clock is desired for both receive and transmit.

Both transmit and receive clocks can be independently generated inter-
nally or input from an external source. The ITCLK bit of the SPORTx_TCR1
configuration register and the IRCLK bit in the SPORTx_RCR1 configuration
register determines the clock source.

When IRCLK or ITCLK = 1, the clock signal is generated internally by the
processor, and the TSCLKx or RSCLKx pin is an output. The clock frequency
is determined by the value of the serial clock divisor in the
SPORTx_RCLKDIV register.

When IRCLK or ITCLK = 0, the clock signal is accepted as an input on the
TSCLKx or RSCLKx pins, and the serial clock divisors in the
SPORTx_TCLKDIV/SPORTx_RCLKDIV registers are ignored. The externally gen-
erated serial clocks do not need to be synchronous with the system clock
or with each other. The system clock must have a higher frequency than
RSCLKx and TSCLKx.

 When the SPORT uses external clocks, it must be enabled for a
minimal number of stable clock pulses before the first active frame
sync is sampled. Failure to allow for these clocks may result in a
SPORT malfunction. See the processor data sheet for details.

The first internal frame sync will occur one frame sync delay after the
SPORTs are ready. External frame syncs can occur as soon as the SPORT
is ready.

ADSP-BF54x Blackfin Processor Hardware Reference 24-33

SPORT Controllers

Frame Sync Options
Framing signals indicate the beginning of each serial word transfer. The
framing signals for each SPORT are TFSx (transmit frame sync) and RFSx
(receive frame sync). A variety of framing options are available; these
options are configured in the SPORT configuration registers
(SPORTx_TCR1, SPORTx_TCR2, SPORTx_RCR1 and SPORTx_RCR2). The TFSx
and RFSx signals of a SPORT are independent and are separately config-
ured in the control registers.

Framed Versus Unframed

The use of multiple frame sync signals is optional in SPORT communica-
tions. The TFSR (transmit frame sync required select) and RFSR (receive
frame sync required select) control bits determine whether frame sync sig-
nals are required. These bits are located in the SPORTx_TCR1 and
SPORTx_RCR1 registers.

When TFSR = 1 or RFSR = 1, a frame sync signal is required for every data
word. To allow continuous transmitting by the SPORT, each new data
word must be loaded into the SPORTx_TX hold register before the previous
word is shifted out and transmitted.

When TFSR = 0 or RFSR = 0, the corresponding frame sync signal is not
required. A single frame sync is needed to initiate communications but is
ignored after the first bit is transferred. Data words are then transferred
continuously, unframed.

 With frame syncs not required, interrupt or DMA requests may
not be serviced frequently enough to guarantee continuous
unframed data flow. Monitor status bits or check for a SPORT
Error interrupt to detect underflow or overflow of data.

Functional Description

24-34 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 24-9 illustrates framed serial transfers, which have these
characteristics:

• TFSR and RFSR bits in the SPORTx_TCR1 and SPORTx_RCR1 registers
determine framed or unframed mode.

• Framed mode requires a framing signal for every word. Unframed
mode ignores a framing signal after the first word.

• Unframed mode is appropriate for continuous reception.

• Active low or active high frame syncs are selected with the LTFS and
LRFS bits of the SPORTx_TCR1 and SPORTx_RCR1 registers.

See “Timing Examples” on page 24-42 for more timing examples.

Internal Versus External Frame Syncs

Both transmit and receive frame syncs can be independently generated
internally or can be input from an external source. The ITFS and IRFS bits
of the SPORTx_TCR1 and SPORTx_RCR1 registers determine the frame sync
source.

Figure 24-9. Framed Versus Unframed Data

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

FRAMED
DATA

UNFRAMED
DATA

TFSx
OR

RFSx

TFSx
OR

RFSx

DATA

TSCLKx
OR

RSCLKx

ADSP-BF54x Blackfin Processor Hardware Reference 24-35

SPORT Controllers

When ITFS = 1 or IRFS = 1, the corresponding frame sync signal is gener-
ated internally by the SPORT, and the TFSx pin or RFSx pin is an output.
The frequency of the frame sync signal is determined by the value of the
frame sync divisor in the SPORTx_TFSDIV or SPORTx_RFSDIV register.

When ITFS = 0 or IRFS = 0, the corresponding frame sync signal is
accepted as an input on the TFSx pin or RFSx pin, and the frame sync divi-
sors in the SPORTx_TFSDIV/SPORTx_RFSDIV registers are ignored.

All of the frame sync options are available whether the signal is generated
internally or externally.

Active Low Versus Active High Frame Syncs

Frame sync signals may be either active high or active low (in other words,
inverted). The LTFS and LRFS bits of the SPORTx_TCR1 and SPORTx_RCR1
registers determine frame sync logic levels:

• When LTFS = 0 or LRFS = 0, the corresponding frame sync signal is
active high.

• When LTFS = 1 or LRFS = 1, the corresponding frame sync signal is
active low.

Active high frame syncs are the default. The LTFS and LRFS bits are initial-
ized to 0 after a processor reset.

Sampling Edge for Data and Frame Syncs

Data and frame syncs can be sampled on either the rising or falling edges
of the SPORT clock signals. The TCKFE and RCKFE bits of the SPORTx_TCR1
and SPORTx_RCR1 registers select the driving and sampling edges of the
serial data and frame syncs.

Functional Description

24-36 ADSP-BF54x Blackfin Processor Hardware Reference

For the SPORT transmitter, setting TCKFE = 1 in the SPORTx_TCR1 register
selects the falling edge of TSCLKx to drive data and internally generated
frame syncs and selects the rising edge of TSCLKx to sample externally gen-
erated frame syncs. Setting TCKFE = 0 selects the rising edge of TSCLKx to
drive data and internally generated frame syncs and selects the falling edge
of TSCLKx to sample externally generated frame syncs.

For the SPORT receiver, setting RCKFE = 1 in the SPORTx_RCR1 register
selects the falling edge of RSCLKx to drive internally generated frame syncs
and selects the rising edge of RSCLKx to sample data and externally gener-
ated frame syncs. Setting RCKFE = 0 selects the rising edge of RSCLKx to
drive internally generated frame syncs and selects the falling edge of
RSCLKx to sample data and externally generated frame syncs.

 Note externally generated data and frame sync signals should
change state on the opposite edge than that selected for sampling.
For example, for an externally generated frame sync to be sampled
on the rising edge of the clock (TCKFE = 1 in the SPORTx_TCR1 regis-
ter), the frame sync must be driven on the falling edge of the clock.

The transmit and receive functions of two SPORTs connected together
should always select the same value for TCKFE in the transmitter and RCKFE
in the receiver, so that the transmitter drives the data on one edge and the
receiver samples the data on the opposite edge.

ADSP-BF54x Blackfin Processor Hardware Reference 24-37

SPORT Controllers

In Figure 24-10, TCKFE = RCKFE = 0 and transmit and receive are con-
nected together to share the same clock and frame syncs.

In Figure 24-11, TCKFE = RCKFE = 1 and transmit and receive are con-
nected together to share the same clock and frame syncs.

Figure 24-10. Example of TCKFE = RCKFE = 0, Transmit and Receive
Connected

Figure 24-11. Example of TCKFE = RCKFE = 1, Transmit and Receive
Connected

B1 B2 B3B0

B1 B2 B3B0

TSCLKx = RSCLKx
INTERNAL OR EXTERNAL

TFSx = RFSx
INTERNAL OR EXTERNAL

DTxPRI

DRxPRI

DRIVE
EDGE

SAMPLE
EDGE

B1 B2 B3

TSCLKx = RSCLKx
INTERNAL OR EXTERNAL

TFSx = RFSx
INTERNAL OR EXTERNAL

DTxPRI B0

B1 B2 B3DRxPRI B0

DRIVE
EDGE

SAMPLE
EDGE

Functional Description

24-38 ADSP-BF54x Blackfin Processor Hardware Reference

Early Versus Late Frame Syncs (Normal Versus
Alternate Timing)

Frame sync signals can occur during the first bit of each data word (late)
or during the serial clock cycle immediately preceding the first bit (early).
The LATFS and LARFS bits of the SPORTx_TCR1 and SPORTx_RCR1 registers
configure this option.

When LATFS = 0 or LARFS = 0, early frame syncs are configured; this is the
normal mode of operation. In this mode, the first bit of the transmit data
word is available and the first bit of the receive data word is sampled in the
serial clock cycle after the frame sync is asserted, and the frame sync is not
checked again until the entire word is transmitted or received. In multi-
channel operation, this corresponds to the case when multichannel frame
delay is 1.

If data transmission is continuous in early framing mode (in other words,
the last bit of each word is immediately followed by the first bit of the next
word), then the frame sync signal occurs during the last bit of each word.
Internally generated frame syncs are asserted for one clock cycle in early
framing mode. Continuous operation is restricted to word sizes of 4 or
longer (SLEN 3).

When LATFS = 1 or LARFS = 1, late frame syncs are configured; this is the
alternate mode of operation. In this mode, the first bit of the transmit data
word is available and the first bit of the receive data word is sampled in the
same serial clock cycle that the frame sync is asserted. In multichannel
operation, this is the case when frame delay is 0. Receive data bits are sam-
pled by serial clock edges, but the frame sync signal is only checked during
the first bit of each word. Internally generated frame syncs remain asserted
for the entire length of the data word in late framing mode. Externally
generated frame syncs are only checked during the first bit.

ADSP-BF54x Blackfin Processor Hardware Reference 24-39

SPORT Controllers

Figure 24-12 illustrates the two modes of frame signal timing. In
summary:

• For the LATFS or LARFS bits of the SPORTx_TCR1 or SPORTx_RCR1 reg-
isters: LATFS = 0 or LARFS = 0 for early frame syncs, LATFS = 1 or
LARFS = 1 for late frame syncs.

• For early framing, the frame sync precedes data by one cycle. For
late framing, the frame sync is checked on the first bit only.

• Data is transmitted MSB first (TLSBIT = 0 or RLSBIT = 0) or LSB
first (TLSBIT = 1 or RLSBIT = 1).

• Frame sync and clock are generated internally or externally.

See “Timing Examples” on page 24-42 for more examples.

Figure 24-12. Normal Versus Alternate Framing

B3 B2 B1 B0 ...

CLOCK

DATA

EARLY
FRAME

SYNC

LATE
FRAME

SYNC

Functional Description

24-40 ADSP-BF54x Blackfin Processor Hardware Reference

Data Independent Transmit Frame Sync

Normally the internally generated transmit frame sync signal (TFSx) is
output only when the SPORTx_TX buffer has data ready to transmit. The
data-independent transmit frame sync select bit (DITFS) allows the contin-
uous generation of the TFSx signal, with or without new data. The DITFS
bit of the SPORTx_TCR1 register configures this option.

When DITFS = 0, the internally generated TFSx is only output when a new
data word is loaded into the SPORTx_TX buffer. The next TFSx is generated
once data is loaded into SPORTx_TX. This mode of operation allows data to
be transmitted only when it is available.

When DITFS = 1, the internally generated TFSx is output at its pro-
grammed interval regardless of whether new data is available in the
SPORTx_TX buffer. Whatever data is present in SPORTx_TX is transmitted
again with each assertion of TFSx. The TUVF (transmit underflow status)
bit in the SPORTx_STAT register is set when this occurs and old data is
retransmitted. The TUVF status bit is also set if the SPORTx_TX buffer does
not have new data when an externally generated TFSx occurs. Note that in
this mode of operation, data is transmitted only at specified times.

If the internally generated TFSx is used, a single write to the SPORTx_TX
data register is required to start the transfer.

Moving Data Between SPORTs and Memory
Transmit and receive data can be transferred between the SPORTs and
on-chip memory in one of two ways: with single word transfers or with
DMA block transfers.

If no SPORT DMA channel is enabled, the SPORT generates an interrupt
every time it has received a data word or needs a data word to transmit.
SPORT DMA provides a mechanism for receiving or transmitting an
entire block or multiple blocks of serial data before the interrupt is gener-
ated. The SPORT’s DMA controller handles the DMA transfer, allowing

ADSP-BF54x Blackfin Processor Hardware Reference 24-41

SPORT Controllers

the processor core to continue running until the entire block of data is
transmitted or received. Interrupt service routines (ISRs) can then operate
on the block of data rather than on single words, significantly reducing
overhead.

For more information see Chapter 7, “Direct Memory Access”.

SPORT RX, TX, and Error Interrupts
The SPORT RX interrupt is asserted when RSPEN is enabled and any
words are present in the RX FIFO. If RX DMA is enabled, the SPORT
RX interrupt is turned off and DMA services the RX FIFO.

The SPORT TX interrupt is asserted when TSPEN is enabled and the TX
FIFO has room for words. If TX DMA is enabled, the SPORT TX inter-
rupt is turned off and DMA services the TX FIFO.

The SPORT error interrupt is asserted when any of the sticky status bits
(ROVF, RUVF, TOVF, TUVF) are set. The ROVF and RUVF bits are cleared by
writing 0 to RSPEN. The TOVF and TUVF bits are cleared by writing 0 to
TSPEN.

PAB Errors
The SPORT generates a PAB error for illegal register read or write opera-
tions. Examples include:

• Reading a write-only register (for example, SPORTx_TX)

• Writing a read-only register (for example, SPORTx_RX)

• Writing or reading a register with the wrong size (for example,
32-bit read of a 16-bit register)

• Accessing reserved register locations

Functional Description

24-42 ADSP-BF54x Blackfin Processor Hardware Reference

Timing Examples
Several timing examples are included within the text of this chapter (in the
sections “Framed Versus Unframed” on page 24-33, “Early Versus Late
Frame Syncs (Normal Versus Alternate Timing)” on page 24-38, and
“Frame Syncs in Multichannel Mode” on page 24-20). This section con-
tains additional examples to illustrate other possible combinations of the
framing options.

These timing examples show the relationships between the signals but are
not scaled to show the actual timing parameters of the processor. Consult
the ADSP-BF542/544/547/548/549 Embedded Processor Data Sheet for
actual timing parameters and values.

These examples assume a word length of four bits (SLEN = 3). Framing sig-
nals are active high (LRFS = 0 and LTFS = 0).

Figure 24-13 through Figure 24-18 show framing for receiving data.

In Figure 24-13 and Figure 24-14, the normal framing mode is shown for
non-continuous data (any number of TSCLKx or RSCLKx cycles between
words) and continuous data (no TSCLKx or SRSCLKx cycles between words).

ADSP-BF54x Blackfin Processor Hardware Reference 24-43

SPORT Controllers

Figure 24-15 and Figure 24-16 show non-continuous and continuous
receiving in the alternate framing mode. These four figures show the input
timing requirement for an externally generated frame sync and also the
output timing characteristic of an internally generated frame sync. Note
the output meets the input timing requirement; therefore, with two
SPORT channels used, one SPORT channel could provide RFSx for the
other SPORT channel.

Figure 24-13. SPORT Receive, Normal Framing

Figure 24-14. SPORT Continuous Receive, Normal Framing

B3B3 B2 B1 B0 B2 B1 B0

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

RSCLKx

RFSx OUTPUT

DR

RFSx INPUT

RSCLKx

RFSx OUTPUT

RFSx INPUT

DR B3 B2 B1 B0 B3 B2 B1 B0 B3 B2

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

:

Functional Description

24-44 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 24-17 and Figure 24-18 show the receive operation with normal
framing and alternate framing, respectively, in the unframed mode. A sin-
gle frame sync signal occurs only at the start of the first word, either one
RSCLKx before the first bit (in normal mode) or at the same time as the first
bit (in alternate mode). This mode is appropriate for multiword bursts
(continuous reception).

Figure 24-15. SPORT Receive, Alternate Framing

Figure 24-16. SPORT Continuous Receive, Alternate Framing

B3B3 B2 B1 B0 B2 B1 B0

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

RSCLKx

RFSx OUTPUT

DR

RFSx INPUT

RSCLKx

RFSx OUTPUT

RFSx INPUT

DR B3 B2 B1 B0 B3 B2 B1 B0

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

ADSP-BF54x Blackfin Processor Hardware Reference 24-45

SPORT Controllers

Figure 24-19 through Figure 24-24 show framing for transmitting data
and are very similar to Figure 24-13 through Figure 24-18.

In Figure 24-19 and Figure 24-20, the normal framing mode is shown for
non-continuous data (any number of TSCLKx cycles between words) and
continuous data (no TSCLKx cycles between words). Figure 24-21 and
Figure 24-22 show non-continuous and continuous transmission in the
alternate framing mode. As noted previously for the receive timing dia-
grams, the RFSx output meets the RFSx input timing requirement.

Figure 24-17. SPORT Receive, Unframed Mode, Normal Framing

Figure 24-18. SPORT Receive, Unframed Mode, Alternate Framing

RSCLKx

RFSx

DR B3 B2 B1 B0 B3 B2 B1 B0 B2B3

DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

RSCLKx

RFSx

DR B3 B2 B1 B0 B3 B2 B1 B0 B2B3

DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

Functional Description

24-46 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 24-19. SPORT Transmit, Normal Framing

Figure 24-20. SPORT Continuous Transmit, Normal Framing

Figure 24-21. SPORT Transmit, Alternate Framing

TSCLKx

TFSx OUTPUT

DT B2 B1 B0B3 B2 B1 B0B3

TFSx INPUT

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

B2 B1 B0B3 B2 B1 B0B3 B3 B2

TSCLKx

TFSx OUTPUT

TFSx INPUT

DT

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

B2 B1 B0B3 B2 B1 B0B3

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

TSCLKx

TFSx OUTPUT

DT

TFSx INPUT

ADSP-BF54x Blackfin Processor Hardware Reference 24-47

SPORT Controllers

Figure 24-23 and Figure 24-24 show the transmit operation with normal
framing and alternate framing, respectively, in the unframed mode. A sin-
gle frame sync signal occurs only at the start of the first word, either one
TSCLKx before the first bit (in normal mode) or at the same time as the first
bit (in alternate mode).

Figure 24-22. SPORT Continuous Transmit, Alternate Framing

Figure 24-23. SPORT Transmit, Unframed Mode, Normal Framing

Figure 24-24. SPORT Transmit, Unframed Mode, Alternate Framing

B2 B1 B0B3 B0B3 B2 B1

TSCLKx

TFSx OUTPUT

TFSx INPUT

DT

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

TSCLKx

TFSx

DT B3 B3B0B1B2 B1 B0 B3B2 B2

DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

TSCLKx

TFSx

DT B3 B3B0B1B2 B1 B0 B3B2 B2

DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

SPORT Registers

24-48 ADSP-BF54x Blackfin Processor Hardware Reference

SPORT Registers
The following sections describe the SPORT registers. Table 24-5 provides
an overview of the available control registers.

Table 24-5. SPORT Registers

Register Name Description Notes

SPORTx_TCR1 “Transmit Configuration (SPORTx_TCR1
and SPORTx_TCR2) Registers” on
page 24-51

Bits [15:1] can only be
written if bit 0 = 0

SPORTx_TCR2 “Transmit Configuration (SPORTx_TCR1
and SPORTx_TCR2) Registers” on
page 24-51

SPORTx_TCLKDI
V

“Serial Clock Divider (SPORTx_TCLKDIV
and SPORTx_RCLKDIV) Registers” on
page 24-68

Ignored if external SPORT
clock mode is selected

SPORTx_TFSDIV “Frame Sync Divider (SPORTx_TFSDIV
and SPORTx_RFSDIV) Registers” on
page 24-69

Ignored if external frame
sync mode is selected

SPORTx_TX “Transmit Data (SPORTx_TX) Register” on
page 24-61

SPORTx_RCR1 “SPORTx_RCR1 and SPORTx_RCR2 Reg-
isters” on page 24-56

Bits [15:1] can only be
written if bit 0 = 0

SPORTx_RCR2 “SPORTx_RCR1 and SPORTx_RCR2 Reg-
isters” on page 24-56

SPORTx_RCLKDI
V

“Serial Clock Divider (SPORTx_TCLKDIV
and SPORTx_RCLKDIV) Registers” on
page 24-68

Ignored if external SPORT
clock mode is selected

SPORTx_RFSDIV “Frame Sync Divider (SPORTx_TFSDIV
and SPORTx_RFSDIV) Registers” on
page 24-69

Ignored if external frame
sync mode is selected

SPORTx_RX “Receive Data (SPORTx_RX) Register” on
page 24-64

SPORTx_STAT “SPORT Status (SPORTx_STAT) Register”
on page 24-66

ADSP-BF54x Blackfin Processor Hardware Reference 24-49

SPORT Controllers

SPORTx_MCMC1 “Multichannel Configuration
(SPORTx_MCMCn) Registers” on
page 24-70

Configure this register
before enabling the
SPORT

SPORTx_MCMC2 “Multichannel Configuration
(SPORTx_MCMCn) Registers” on
page 24-70

Configure this register
before enabling the
SPORT

SPORTx_MRCSn “Multichannel Selection Receive
(SPORTx_MRCSn) Registers” on
page 24-72

Select or deselect channels
in a multichannel frame

SPORTx_MTCSn “Multichannel Selection Transmit
(SPORTx_MTCSn) Registers” on
page 24-74

Select or deselect channels
in a multichannel frame

SPORTx_CHNL “Current Channel (SPORTx_CHNL) Regis-
ter” on page 24-71

Currently serviced channel
in a multichannel frame

Table 24-5. SPORT Registers (Cont’d)

Register Name Description Notes

SPORT Registers

24-50 ADSP-BF54x Blackfin Processor Hardware Reference

Register Writes and Effective Latency
When the SPORT is disabled (TSPEN and RSPEN cleared), SPORT register
writes are internally completed at the end of the SCLK cycle in which they
occurred, and the register reads back the newly written value on the next
cycle.

When the SPORT is enabled to transmit (TSPEN set) or receive (RSPEN set),
corresponding SPORT configuration register writes are disabled (except
for SPORTx_RCLKDIV, SPORTx_TCLKDIV, and multichannel mode channel
select registers). The SPORTx_TX register writes are always enabled;
SPORTx_RX, SPORTx_CHNL, and SPORTx_STAT are read-only registers.

After a write to a SPORT register, while the SPORT is disabled, any
changes to the control and mode bits generally take effect when the
SPORT is re-enabled.

 Most configuration registers can only be changed while the
SPORT is disabled (TSPEN/RSPEN = 0). Changes take effect after the
SPORT is re-enabled. The only exceptions to this rule are the
TCLKDIV/RCLKDIV registers and multichannel select registers.

ADSP-BF54x Blackfin Processor Hardware Reference 24-51

SPORT Controllers

Transmit Configuration (SPORTx_TCR1 and
SPORTx_TCR2) Registers

The main control registers for the transmit portion of each SPORT are
registers SPORTx_TCR1 and SPORTx_TCR2, shown in Figure 24-25 and
Figure 24-26.

Figure 24-25. SPORTx Transmit Configuration 1 Register

SPORTx Transmit Configuration 1 Register (SPORTx_TCR1)

0 - Transmit disabled
1 - Transmit enabled

ITFS (Internal Transmit
Frame Sync Select)

ITCLK (Internal Transmit
Clock Select)

TDTYPE[1:0] (Data Format-
ting Type Select)

TLSBIT (Transmit Bit Order)

TSPEN (Transmit Enable)

LTFS (Low Transmit
Frame Sync Select)

LATFS (Late Transmit
 Frame Sync)
0 - Early frame syncs
1 - Late frame syncs

TCKFE (Clock Falling
Edge Select)

0 -External transmit clock
selected

1 - Internal transmit clock
selected

00 - Normal operation
01 - Reserved
10 - Compand using -law
11 - Compand using A-law

0 - Transmit MSB first
1 - Transmit LSB first

Reset = 0x0000

0 - External TFSx used
1 - Internal TFSx used

0 - Drive data and internal
frame syncs with rising
edge of TSCLKx. Sample
external frame syncs with
falling edge of TSCLKx.

1 - Drive data and internal
frame syncs with falling
edge of TSCLKx. Sample
external frame syncs with
rising edge of TSCLKx.

0 - Active high TFSx
1 - Active low TFSx

TFSR (Transmit Frame Sync
Required Select)

DITFS (Data-Independent
Transmit Frame Sync Select)
0 - Data-dependent TFSx generated
1 - Data-independent TFSx generated

0 - Does not require TFSx for
every data word

1 - Requires TFSx for every
data word

SPORT0:
0xFFC0 0800

SPORT1:
0xFFC0 0900

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SPORT2:
0xFFC0 2500

SPORT3:
0xFFC0 2600

SPORT Registers

24-52 ADSP-BF54x Blackfin Processor Hardware Reference

A SPORT is enabled for transmit if bit 0 (TSPEN) of the transmit configu-
ration 1 register is set to 1. This bit is cleared during either a hard reset or
a soft reset, disabling all SPORT transmission.

When the SPORT is enabled to transmit (TSPEN set), corresponding
SPORT configuration register writes are not allowed except for
SPORTx_TCLKDIV and multichannel mode channel select registers. Writes to
disallowed registers have no effect. While the SPORT is enabled,
SPORTx_TCR1 is not written except for bit 0 (TSPEN). For example,

write (SPORTx_TCR1, 0x0001) ; /* SPORT TX Enabled */

write (SPORTx_TCR1, 0xFF01) ; /* ignored, no effect */

write (SPORTx_TCR1, 0xFFF0) ; /* SPORT disabled, SPORTx_TCR1

still equal to 0x0000 */

Figure 24-26. SPORTx Transmit Configuration 2 Register

SPORTx Transmit Configuration 2 Register (SPORTx_TCR2)

SLEN[4:0] (SPORT Word
Length)

TSFSE (Transmit Stereo
Frame Sync Enable)

TRFST (Left/Right Order)
00000 - Illegal value
00001 - Illegal value
Serial word length is value
in this field plus 1

Reset = 0x0000

0 - Left stereo channel first
1 - Right stereo channel first

0 - Normal mode
1 - Frame sync becomes L/R clock

TXSE (TxSEC Enable)

0 - Secondary side disabled
1 - Secondary side enabled

SPORT0:
0xFFC0 0804

SPORT1:
0xFFC0 0904

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SPORT2:
0xFFC0 2504

SPORT3:
0xFFC0 2604

ADSP-BF54x Blackfin Processor Hardware Reference 24-53

SPORT Controllers

Additional information for the SPORTx_TCR1 and SPORTx_TCR2 transmit
configuration register bits includes:

• Transmit enable (TSPEN) This bit selects whether the SPORT is
enabled to transmit (if set) or disabled (if cleared).

Setting TSPEN causes an immediate assertion of a SPORT TX inter-
rupt, indicating that the TX data register is empty and needs to be
filled. This is normally desirable because it allows centralization of
the transmit data write code in the TX interrupt service routine
(ISR). For this reason, the code should initialize the ISR and be
ready to service TX interrupts before setting TSPEN.

Similarly, if DMA transfers are used, DMA control should be con-
figured correctly before setting TSPEN. Set all DMA control
registers before setting TSPEN.

Clearing TSPEN causes the SPORT to stop driving data, TSCLKx,
and frame sync pins; it also shuts down the internal SPORT cir-
cuitry. In low power applications, battery life can be extended by
clearing TSPEN whenever the SPORT is not in use.

 All SPORT control registers should be programmed before TSPEN is
set. Typical SPORT initialization code first writes all control regis-
ters, including DMA control if applicable. The last step in the code
is to write SPORTx_TCR1 with all of the necessary bits, including
TSPEN.

• Internal transmit clock select (ITCLK) This bit selects the internal
transmit clock (if set) or the external transmit clock on the TSCLKx
pin (if cleared). The TCLKDIV MMR value is not used when an
external clock is selected.

• Data formatting type select The two TDTYPE bits specify data for-
mats used for single and multichannel operation.

SPORT Registers

24-54 ADSP-BF54x Blackfin Processor Hardware Reference

• Bit order select (TLSBIT) The TLSBIT bit selects the bit order of the
data words transmitted over the SPORT.

• Serial word length select (SLEN) The serial word length (the num-
ber of bits in each word transmitted over the SPORTs) is
calculated by adding 1 to the value of the SLEN field:

 Serial Word Length = SLEN + 1;

The SLEN field can be set to a value of 2 to 31; 0 and 1 are illegal
values for this field. Three common settings for the SLEN field are
15, to transmit a full 16-bit word; 7, to transmit an 8-bit byte; and
23, to transmit a 24-bit word. The processor can load 16- or 32-bit
values into the transmit buffer through DMA or an MMR write
instruction; the SLEN field tells the SPORT how many of those bits
to shift out of the register over the serial link. The SPORT always
transfers the SLEN+1 lower bits from the transmit buffer.

 The frame sync signal is controlled by the SPORTx_TFSDIV and
SPORTx_RFSDIV registers, not by SLEN. To produce a frame sync
pulse on each byte or word transmitted, the proper frame sync
divider must be programmed into the frame sync divider register;
setting SLEN to 7 does not produce a frame sync pulse on each byte
transmitted.

• Internal transmit frame sync select (ITFS) This bit selects whether
the SPORT uses an internal TFSx (if set) or an external TFSx (if
cleared).

• Transmit frame sync required select (TFSR) This bit selects whether
the SPORT requires (if set) or does not require (if cleared) a trans-
mit frame sync for every data word.

ADSP-BF54x Blackfin Processor Hardware Reference 24-55

SPORT Controllers

 The TFSR bit is normally set during SPORT configuration. A frame
sync pulse is used to mark the beginning of each word or data
packet, and most systems need a frame sync to function properly.

• Data-Independent transmit frame sync select (DITFS) This bit
selects whether the SPORT generates a data-independent TFSx
(sync at selected interval) or a data-dependent TFSx (sync when
data is present in SPORTx_TX) for the case of internal frame sync
select (ITFS = 1). The DITFS bit is ignored when external frame
syncs are selected.

The frame sync pulse marks the beginning of the data word. If
DITFS is set, the frame sync pulse is issued on time, whether the
SPORTx_TX register is loaded or not; if DITFS is cleared, the frame
sync pulse is only generated if the SPORTx_TX data register is loaded.
If the receiver demands regular frame sync pulses, DITFS should be
set, and the processor should keep loading the SPORTx_TX register
on time. If the receiver can tolerate occasional late frame sync
pulses, DITFS should be cleared to prevent the SPORT from trans-
mitting old data twice or transmitting garbled data if the processor
is late in loading the SPORTx_TX register.

• Low transmit frame sync select (LTFS) This bit selects an active
low TFSx (if set) or active high TFSx (if cleared).

• Late transmit frame sync (LATFS) This bit configures late frame
syncs (if set) or early frame syncs (if cleared).

• Clock drive/sample edge select (TCKFE) This bit selects which edge
of the TSCLKx signal the SPORT uses for driving data, for driving
internally generated frame syncs, and for sampling externally gen-
erated frame syncs. If set, data and internally generated frame syncs
are driven on the falling edge, and externally generated frame syncs
are sampled on the rising edge. If cleared, data and internally gen-
erated frame syncs are driven on the rising edge, and externally
generated frame syncs are sampled on the falling edge.

SPORT Registers

24-56 ADSP-BF54x Blackfin Processor Hardware Reference

• Transmit secondary enable (TXSE) This bit enables the transmit
secondary side of the SPORT (if set).

• Stereo serial enable (TSFSE) This bit enables the stereo serial oper-
ating mode of the SPORT (if set). By default this bit is cleared,
enabling normal clocking and frame sync.

• Left/Right order (TRFST) If this bit is set, the right channel is trans-
mitted first in stereo serial operating mode. By default this bit is
cleared, and the left channel is transmitted first.

SPORTx_RCR1 and SPORTx_RCR2 Registers
The main control registers for the receive portion of each SPORT are the
receive configuration registers, SPORTx_RCR1 and SPORTx_RCR2, shown in
Figure 24-27 and Figure 24-28.

A SPORT is enabled for receive if bit 0 (RSPEN) of the receive configura-
tion 1 register is set to 1. This bit is cleared during either a hard reset or a
soft reset, disabling all SPORT reception.

When the SPORT is enabled to receive (RSPEN set), corresponding
SPORT configuration register writes are not allowed except for
SPORTx_RCLKDIV and multichannel mode channel select registers. Writes to
disallowed registers have no effect. While the SPORT is enabled,
SPORTx_RCR1 is not written except for bit 0 (RSPEN). For example,

write (SPORTx_RCR1, 0x0001) ; /* SPORT RX Enabled */

write (SPORTx_RCR1, 0xFF01) ; /* ignored, no effect */

write (SPORTx_RCR1, 0xFFF0) ; /* SPORT disabled, SPORTx_RCR1

still equal to 0x0000 */

ADSP-BF54x Blackfin Processor Hardware Reference 24-57

SPORT Controllers

Figure 24-27. SPORTx Receive Configuration 1 Register

SPORTx Receive Configuration 1 Register (SPORTx_RCR1)

0 - Receive disabled
1 - Receive enabled

IRFS (Internal Receive Frame
Sync Select)

IRCLK (Internal Receive
Clock Select)

RDTYPE[1:0] (Data
Formatting Type Select)

RLSBIT (Receive Bit Order)

RSPEN (Receive Enable)

LRFS (Low Receive Frame
Sync Select)

LARFS (Late Receive
Frame Sync)
0 - Early frame syncs
1 - Late frame syncs

RCKFE (Clock Falling
Edge Select)

0 -External receive clock
selected

1 - Internal receive clock
selected

00 - Zero fill
01 - Sign-extend
10 - Compand using -law
11 - Compand using A-law

0 - Receive MSB first
1 - Receive LSB first

Reset = 0x0000

0 - External RFSx used
1 - Internal RFSx used

0 - Drive internal frame sync
on rising edge of RSCLKx.
Sample data and external
frame sync with falling
edge of RSCLKx.

1 - Drive internal frame sync
on falling edge of RSCLKx.
Sample data and external
frame sync with rising
edge of RSCLKx.

0 - Active high RFSx
1 - Active low RFSx

RFSR (Receive Frame Sync
Required Select)
0 - Does not require RFSx for

every data word
1 - Requires RFSx for every data

word

SPORT0:
0xFFC0 0820

SPORT1:
0xFFC0 0920

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SPORT2:
0xFFC0 2520

SPORT3:
0xFFC0 2620

SPORT Registers

24-58 ADSP-BF54x Blackfin Processor Hardware Reference

Additional information for the SPORTx_RCR1 and SPORTxRCR2 receive con-
figuration register bits:

Figure 24-28. SPORTx Receive Configuration 2 Register

SPORTx Receive Configuration 2 Register (SPORTx_RCR2)

SLEN[4:0] (SPORT Word
Length)

RSFSE (Receive Stereo
Frame Sync Enable)

RRFST (Left/Right Order)
00000 - Illegal value
00001 - Illegal value
Serial word length is value
in this field plus 1

Reset = 0x0000

0 - Left stereo channel first
1 - Right stereo channel first

0 - Normal mode
1 - Frame sync becomes L/R clock

RXSE (RxSEC Enable)

0 - Secondary side disabled
1 - Secondary side enabled

SPORT0:
0xFFC0 0824

SPORT1:
0xFFC0 0924

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SPORT2:
0xFFC0 2524

SPORT3:
0xFFC0 2624

ADSP-BF54x Blackfin Processor Hardware Reference 24-59

SPORT Controllers

• Receive enable (RSPEN) This bit selects whether the SPORT is
enabled to receive (if set) or disabled (if cleared). Setting the RSPEN
bit turns on the SPORT and causes it to sample data from the data
receive pins as well as the receive bit clock and receive frame sync
pins if so programmed.

Setting RSPEN enables the SPORTx receiver, which can generate a
SPORTx RX interrupt. For this reason, the code should initialize
the ISR and the DMA control registers, and should be ready to ser-
vice RX interrupts before setting RSPEN. Setting RSPEN also
generates DMA requests if DMA is enabled and data is received.
Set all DMA control registers before setting RSPEN.

Clearing RSPEN causes the SPORT to stop receiving data; it also
shuts down the internal SPORT receive circuitry. In low power
applications, battery life can be extended by clearing RSPEN when-
ever the SPORT is not in use.

 All SPORT control registers should be programmed before RSPEN is
set. Typical SPORT initialization code first writes all control regis-
ters, including DMA control if applicable. The last step in the code
is to write SPORTx_RCR1 with all of the necessary bits, including
RSPEN.

• Internal receive clock select (IRCLK) This bit selects the internal
receive clock (if set) or external receive clock (if cleared). The RCLK-
DIV MMR value is not used when an external clock is selected.

• Data formatting type select (RDTYPE) The two RDTYPE bits specify
one of four data formats used for single and multichannel
operation.

• Bit order select (RLSBIT) The RLSBIT bit selects the bit order of the
data words received over the SPORTs.

SPORT Registers

24-60 ADSP-BF54x Blackfin Processor Hardware Reference

• Serial word length select (SLEN) The serial word length (the num-
ber of bits in each word received over the SPORTs) is calculated by
adding 1 to the value of the SLEN field. The SLEN field can be set to
a value of 2 to 31; 0 and 1 are illegal values for this field.

 The frame sync signal is controlled by the SPORTx_TFSDIV and
SPORTx_RFSDIV registers, not by SLEN. To produce a frame sync
pulse on each byte or word transmitted, the proper frame sync
divider must be programmed into the frame sync divider register;
setting SLEN to 7 does not produce a frame sync pulse on each byte
transmitted.

• Internal receive frame sync select (IRFS) This bit selects whether
the SPORT uses an internal RFSx (if set) or an external RFSx (if
cleared).

• Receive frame sync required select (RFSR) This bit selects whether
the SPORT requires (if set) or does not require (if cleared) a receive
frame sync for every data word.

• Low receive frame sync select (LRFS) This bit selects an active low
RFSx (if set) or active high RFSx (if cleared).

• Late receive frame sync (LARFS) This bit configures late frame
syncs (if set) or early frame syncs (if cleared).

• Clock drive/sample edge select (RCKFE) This bit selects which edge
of the RSCLKx clock signal the SPORT uses for sampling data, for
sampling externally generated frame syncs, and for driving inter-
nally generated frame syncs. If set, internally generated frame syncs
are driven on the falling edge, and data and externally generated
frame syncs are sampled on the rising edge. If cleared, internally
generated frame syncs are driven on the rising edge, and data and
externally generated frame syncs are sampled on the falling edge.

• RxSec enable (RXSE) This bit enables the receive secondary side of
the SPORT (if set).

ADSP-BF54x Blackfin Processor Hardware Reference 24-61

SPORT Controllers

• Stereo serial enable (RSFSE) This bit enables the stereo serial oper-
ating mode of the SPORT (if set). By default this bit is cleared,
enabling normal clocking and frame sync.

• Left/Right order (RRFST) If this bit is set, the right channel is
received first in stereo serial operating mode. By default this bit is
cleared, and the left channel is received first.

Data Word Formats
The format of the data words transferred over the SPORTs is configured
by the combination of transmit SLEN and receive SLEN; RDTYPE; TDTYPE;
RLSBIT; and TLSBIT bits of the SPORTx_TCR1, SPORTx_TCR2, SPORTx_RCR1,
and SPORTx_RCR2 registers.

Transmit Data (SPORTx_TX) Register
The SPORTx transmit data register (SPORTx_TX) is a write-only register.
Reads produce a Peripheral Access Bus (PAB) error. Writes to this register
cause writes into the transmitter FIFO. The 16-bit wide FIFO is 8 deep
for word length <= 16 and 4 deep for word length > 16. The FIFO is com-
mon to both primary and secondary data and stores data for both. Data
ordering in the FIFO is shown in the Figure 24-29. The SPORTx_TX regis-
ter is shown in Figure 24-30.

SPORT Registers

24-62 ADSP-BF54x Blackfin Processor Hardware Reference

It is important to keep the interleaving of primary and secondary data in
the FIFO as shown. This means that PAB/DMA writes to the FIFO must
follow an order of primary first, and then secondary, if secondary is
enabled. DAB/PAB writes must match their size to the data word length.
For word length up to and including 16 bits, use a 16-bit write. Use a
32-bit write for word length greater than 16 bits.

When transmit is enabled, data from the FIFO is assembled in the TX
Hold register based on TXSE and SLEN, and then shifted into the primary
and secondary shift registers. From here, the data is shifted out serially on
the DTPRI and DTSEC pins.

The SPORT TX interrupt is asserted when TSPEN = 1 and the TX FIFO
has room for additional words. This interrupt does not occur if SPORT
DMA is enabled. For more information see Chapter 7, “Direct Memory
Access”.

Figure 24-29. SPORT Transmit FIFO Data Ordering

015

015

015

015

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

W7

W6
W5

W4

W3

W2
W1

W0

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

W3 LOW

W3 HIGH
W2 LOW

W2 HIGH

W1 LOW

W1 HIGH
W0 LOW

W0 HIGH

SECONDARY W3

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY
PRIMARY

PRIMARY

PRIMARY

SECONDARY

SECONDARY

SECONDARY

W3
W2

W2

W1

W1
W0

W0

SECONDARY W1 LOW

SECONDARY

SECONDARY

SECONDARY

W1 HIGH
W1 LOW

W1 HIGH

W0 LOW

W0 HIGH
W0 LOW

W0 HIGH

ONLY PRIMARY ENABLED
DATA LENGTH <= 16 BITS

ONLY PRIMARY ENABLED
DATA LENGTH > 16 BITS

8 WORDS OF
PRIMARY DATA

IN FIFO

4 WORDS OF
PRIMARY DATA

IN FIFO

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH <= 16 BITS

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH > 16 BITS

4 WORDS OF
PRIMARY DATA AND

4 WORDS OF
SECONDARY DATA

IN FIFO

2 WORDS OF
PRIMARY DATA AND

2 WORDS OF
SECONDARY DATA

IN FIFO

ADSP-BF54x Blackfin Processor Hardware Reference 24-63

SPORT Controllers

The transmit underflow status bit (TUVF) is set in the SPORT status regis-
ter when a transmit frame sync occurs and no new data is loaded into the
serial shift register. In multichannel mode (MCM), TUVF is set whenever
the serial shift register is not loaded, and transmission begins on the cur-
rent enabled channel. The TUVF status bit is a sticky write-1-to-clear
(W1C) bit and is also cleared by disabling the SPORT (writing
TSPEN = 0).

If software causes the core processor to attempt a write to a full TX FIFO
with a SPORTx_TX write, the new data is lost and no overwrites occur to
data in the FIFO. The TOVF status bit is set and a SPORT error interrupt
is asserted. The TOVF bit is a sticky bit; it is only cleared by disabling the
SPORT TX. To find out whether the core processor can access the
SPORTx_TX register without causing this type of error, read the register’s
status first. The TXF bit in the SPORT status register is 0 if space is avail-
able for another word in the FIFO.

The TXF and TOVF status bits in the SPORTx status register are updated
upon writes from the core processor, even when the SPORT is disabled.

Figure 24-30. SPORTx Transmit Data Register

SPORTx Transmit Data Register (SPORTx_TX)

Transmit Data[31:16]

Reset = 0x0000 0000

Transmit Data[15:0]

SPORT0:
0xFFC0 0810

SPORT1:
0xFFC0 0910

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SPORT2:
0xFFC0 2510

SPORT3:
0xFFC0 2610

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SPORT Registers

24-64 ADSP-BF54x Blackfin Processor Hardware Reference

Receive Data (SPORTx_RX) Register
The SPORTx receive data register (SPORTx_RX) is a read-only register.
Writes produce a PAB error. The same location is read for both primary
and secondary data. Reading from this register space causes reading of the
receive FIFO. This 16-bit FIFO is 8 deep for receive word length <= 16
and 4 deep for length > 16 bits. The FIFO is shared by both primary and
secondary receive data. The order for reading using PAB/DMA reads is
important since data is stored in differently depending on the setting of
the SLEN and RXSE configuration bits.

Data storage and data ordering in the FIFO are shown in Figure 24-31.
The SPORTx_RX register is shown in Figure 24-32.

Figure 24-31. SPORT Receive FIFO Data Ordering

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

W7

0

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH <= 16 BITS

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH > 16 BITS

15

W6
W5

W4

W3

W2
W1

W0

W3 LOW

015

W3 HIGH
W2 LOW

W2 HIGH

W1 LOW

W1 HIGH
W0 LOW

W0 HIGH

SECONDARY W3

015

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY
PRIMARY

PRIMARY

PRIMARY

SECONDARY

SECONDARY

SECONDARY

W3
W2

W2

W1

W1
W0

W0

SECONDARY W1 LOW

015

SECONDARY

SECONDARY

SECONDARY

W1 HIGH
W1 LOW

W1 HIGH

W0 LOW

W0 HIGH
W0 LOW

W0 HIGH

4 WORDS OF
PRIMARY DATA AND

4 WORDS OF
SECONDARY DATA

IN FIFO

2 WORDS OF
PRIMARY DATA AND

2 WORDS OF
SECONDARY DATA

IN FIFO

FROM Rx HOLD REGISTER

TO
PAB/DAB
BUSES

TO
PAB/DAB
BUSES

TO
PAB/DAB
BUSES

TO
PAB/DAB
BUSES

FROM Rx HOLD REGISTER

FROM Rx HOLD REGISTER

FROM Rx HOLD REGISTER

ONLY PRIMARY ENABLED
DATA LENGTH <= 16 BITS

ONLY PRIMARY ENABLED
DATA LENGTH > 16 BITS

8 WORDS OF
PRIMARY DATA

IN FIFO

4 WORDS OF
PRIMARY DATA

IN FIFO

ADSP-BF54x Blackfin Processor Hardware Reference 24-65

SPORT Controllers

When reading from the FIFO for both primary and secondary data, read
primary first, followed by secondary. DAB/PAB reads must match their
size to the data word length. For word length up to and including 16 bits,
use a 16-bit read. Use a 32-bit read for word length greater than 16 bits.

When receiving is enabled, data from the DRPRI pin is loaded into the RX
primary shift register, while data from the DRSEC pin is loaded into the RX
secondary shift register. At transfer completion of a word, data is shifted
into the RX hold registers for primary and secondary data, respectively.
Data from the hold registers is moved into the FIFO based on RXSE and
SLEN.

The SPORT RX interrupt is generated when RSPEN = 1 and the RX FIFO
has received words in it. When the core processor has read all the words in
the FIFO, the RX interrupt is cleared. The SPORT RX interrupt is set
only if SPORT RX DMA is disabled; otherwise, the FIFO is read by
DMA reads.

If the program causes the core processor to attempt a read from an empty
RX FIFO, old data is read, the RUVF flag is set in the SPORTx_STAT register,
and the SPORT error interrupt is asserted. The RUVF bit is a sticky bit and
is cleared only when the SPORT is disabled. To determine if the core can
access the RX registers without causing this error, first read the RX FIFO
status (RXNE in the SPORTx status register). The RUVF status bit is updated
even when the SPORT is disabled.

The ROVF status bit is set in the SPORTx_STAT register when a new word is
assembled in the RX shift register and the RX hold register has not moved
the data to the FIFO. The previously written word in the hold register is
overwritten. The ROVF bit is a sticky bit; it is only cleared by disabling the
SPORT RX.

SPORT Registers

24-66 ADSP-BF54x Blackfin Processor Hardware Reference

SPORT Status (SPORTx_STAT) Register
The SPORT status register (SPORTx_STAT) is used to determine if the
access to a SPORT RX or TX FIFO can be made by determining their full
or empty status. This register is shown in Figure 24-33.

The TXF bit in the SPORT status register indicates whether there is room
in the TX FIFO. The RXNE status bit indicates whether there are words in
the RX FIFO. The TXHRE bit indicates if the TX hold register is empty.

The transmit underflow status bit (TUVF) is set whenever the TFSx signal
occurs (from either an external or internal source) while the TX shift regis-
ter is empty. The internally generated TFSx may be suppressed whenever
SPORTx_TX is empty by clearing the DITFS control bit in the SPORT con-
figuration register. The TUVF status bit is a sticky write-1-to-clear (W1C)
bit and is also cleared by disabling the SPORT (writing TSPEN = 0).

For continuous transmission (TFSR = 0), TUVF is set at the end of a trans-
mitted word if no new word is available in the TX hold register.

Figure 24-32. SPORTx Receive Data Register

SPORTx Receive Data Register (SPORTx_RX)

Receive Data[31:16]

Reset = 0x0000 0000

Receive Data[15:0]

SPORT0:
0xFFC0 0818

SPORT1:
0xFFC0 0918

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SPORT2:
0xFFC0 2518

SPORT3:
0xFFC0 2618

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 24-67

SPORT Controllers

The TOVF bit is set when a word is written to the TX FIFO when it is full.
It is a sticky W1C bit and is also cleared by writing TSPEN = 0. Both TXF
and TOVF are updated even when the SPORT is disabled.

When the SPORT RX hold register is full, and a new receive word is
received in the shift register, the receive overflow status bit (ROVF) is set in
the SPORT status register. It is a sticky W1C bit and is also cleared by
disabling the SPORT (writing RSPEN = 0).

The RUVF bit is set when a read is attempted from the RX FIFO and it is
empty. It is a sticky W1C bit and is also cleared by writing RSPEN = 0. The
RUVF bit is updated even when the SPORT is disabled.

Figure 24-33. SPORTx Status Register

SPORTx Status Register (SPORTx_STAT)

0 - Disabled
1 - Enabled

RUVF (Sticky Receive
Underflow Status) - W1C

RXNE (Receive FIFO Not
Empty Status)

ROVF (Sticky Receive
Overflow Status) - W1C

TUVF (Sticky Transmit Underflow Status) - W1C 0 - Disabled
1 - Enabled

0 - Empty
1 - Data present in FIFO

Reset = 0x0040

0 - Disabled
1 - Enabled

TOVF (Sticky Transmit Overflow Status) - W1C
0 - Disabled
1 - Enabled

TXF (Transmit FIFO Full Status)
0 - Not full
1 - Full

TXHRE (Transmit Hold Register Empty)

0 - Not empty
1 - Empty

SPORT0:
0xFFC0 0830

SPORT1:
0xFFC0 0930

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SPORT2:
0xFFC0 2530

SPORT3:
0xFFC0 2630

SPORT Registers

24-68 ADSP-BF54x Blackfin Processor Hardware Reference

Serial Clock Divider (SPORTx_TCLKDIV
and SPORTx_RCLKDIV) Registers

The frequency of an internally generated clock is a function of the system
clock frequency (as seen at the SCLK pin) and the value of the 16-bit serial
clock divider registers. The SPORTx transmit serial clock divider register,
SPORTx_TCLKDIV is shown in Figure 24-34, and the SPORTx receive serial
clock divider register, SPORTx_RCLKDIV is shown in Figure 24-35.

Figure 24-34. SPORTx Transmit Serial Clock Divider Register

Figure 24-35. SPORTx Receive Serial Clock Divider Register

SPORTx Transmit Serial Clock Divider Register (SPORTx_TCLKDIV)

Serial Clock Divide
Modulus[15:0]

Reset = 0x0000
SPORT0:

0xFFC0 0808
SPORT1:

0xFFC0 0908

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SPORT2:
0xFFC0 2508

SPORT3:
0xFFC0 2608

SPORTx Receive Serial Clock Divider Register (SPORTx_RCLKDIV)

SPORT0:
0xFFC0 0828

SPORT2:
0xFFC0 2528

SPORT3:
0xFFC0 2628

SPORT1:
0xFFC0 0928

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0 Reset = 0x0000

Serial Clock Divide
Modulus[15:0]

ADSP-BF54x Blackfin Processor Hardware Reference 24-69

SPORT Controllers

Frame Sync Divider (SPORTx_TFSDIV
and SPORTx_RFSDIV) Registers

The 16-bit SPORTx transmit frame sync divider register (SPORTx_TFSDIV)
and the SPORTx receive frame sync divider register (SPORTx_RFSDIV)
specify how many transmit or receive clock cycles are counted before gen-
erating a TFSx or RFSx pulse when the frame sync is internally generated.
In this way, a frame sync can be used to initiate periodic transfers. The
counting of serial clock cycles applies to either internally or externally gen-
erated serial clocks. These registers are shown in Figure 24-36 and
Figure 24-37.

Figure 24-36. SPORTx Transmit Frame Sync Divider Register

Figure 24-37. SPORTx Receive Frame Sync Divider Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
SPORT0:

0xFFC0 080C
SPORT1:

0xFFC0 090C

SPORT2:
0xFFC0 250C

SPORT3:
0xFFC0 260C

Frame Sync Divider[15:0]

Reset = 0x0000

Number of transmit clock
cycles counted before
generating TFSx pulse

SPORTx Transmit Frame Sync Divider Register (SPORTx_TFSDIV)

SPORTx Receive Frame Sync Divider Register (SPORTx_RFSDIV)

Frame Sync Divider[15:0]

Reset = 0x0000

Number of receive clock
cycles counted before
generating RFSx pulse

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
SPORT0:

0xFFC0 082C
SPORT1:

0xFFC0 092C

SPORT2:
0xFFC0 252C

SPORT3:
0xFFC0 262C

SPORT Registers

24-70 ADSP-BF54x Blackfin Processor Hardware Reference

Multichannel Configuration
(SPORTx_MCMCn) Registers

There are two SPORTx multichannel configuration registers
(SPORTx_MCMCn) for each SPORT, shown in Figure 24-38 and
Figure 24-39. The SPORTx_MCMCn registers are used to configure the multi-
channel operation of the SPORT.

Figure 24-38. SPORTx Multichannel Configuration Register 1

SPORTx Multichannel Configuration Register 1 (SPORTx_MCMC1)

WSIZE[3:0] (Window Size)

WOFF[9:0]
(Window Offset)

Reset = 0x0000

Places start of window
anywhere in the 0 to
1023 channel rangeValue in field = [(Desired window size)/8 –1]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
SPORT0:

0xFFC0 0838
SPORT1:

0xFFC0 0938

SPORT2:
0xFFC0 2538

SPORT3:
0xFFC0 2638

ADSP-BF54x Blackfin Processor Hardware Reference 24-71

SPORT Controllers

Current Channel (SPORTx_CHNL) Register
The 10-bit CHNL field in the SPORTx current channel register
(SPORTx_CHNL) indicates which channel is currently being serviced during
multichannel operation. This field is a read-only status indicator. The
CHNL[9:0] field increments by one as each channel is serviced. The coun-
ter stops at the upper end of the defined window. The channel select
register restarts at 0 at each frame sync. As an example, for a window size
of 8 and an offset of 148, the counter displays a value between 0 and 156.

Once the window size has completed, the channel counter resets to 0 in
preparation for the next frame. Because there are synchronization delays
between RSCLKx and the processor clock, the channel register value is
approximate. It is never ahead of the channel being served, but it may lag
behind.

Figure 24-39. SPORTx Multichannel Configuration Register 2

0x - Bypass mode
10 - Recover 2 MHz clock

from 4 MHz
11 - Recover 8 MHz clock

from 16 MHz

MCDTXPE (Multichannel
DMA Transmit Packing)

MCCRM[1:0] (2X Clock
Recovery Mode)

FSDR (Frame Sync to Data Relationship)
0 - Disabled
1 - Enabled

Reset = 0x0000

0 - Normal
1 - Reversed, H.100 mode

MCDRXPE (Multichannel
DMA Receive Packing)
0 - Disabled
1 - Enabled

Delay between frame sync pulse and the
first data bit in Multichannel mode

MFD[3:0] (Multichannel
Frame Delay)

0 - Multichannel operations disabled
1 - Multichannel operations enabled

MCMEN (Multichannel Frame Mode Enable)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
SPORT0:

0xFFC0 083C
SPORT1:

0xFFC0 093C

SPORT2:
0xFFC0 253C

SPORT3:
0xFFC0 263C

SPORTx Multichannel Configuration Register 2 (SPORTx_MCMC2)

SPORT Registers

24-72 ADSP-BF54x Blackfin Processor Hardware Reference

The SPORTx_CHNL register is shown on Figure 24-40.

Multichannel Selection Receive
(SPORTx_MRCSn) Registers

The multichannel selection registers are used to enable and disable indi-
vidual channels. The SPORTx multichannel receive select registers
(SPORTx_MRCSn, shown in Figure 24-41) specify the active receive chan-
nels. There are four registers, each with 32 bits, corresponding to the 128
channels. Setting a bit enables that channel so that the SPORT selects that
word for receive from the multiple word block of data. For example, set-
ting bit 0 selects word 0, setting bit 12 selects word 12, and so on.

Setting a particular bit in the SPORTx_MRCSn register causes the SPORT to
receive the word in that channel’s position of the data stream; the received
word is loaded into the RX buffer. When the secondary receive side is
enabled by the RXSE bit, both inputs are processed on enabled channels.

Figure 24-40. SPORTx Current Channel Register

Reset = 0x0000

CHNL[9:0] (Current
Channel Indicator)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SPORTx Current Channel Register (SPORTx_CHNL)

RO

SPORT0:
0xFFC0 0834

SPORT1:
0xFFC0 0934

SPORT2:
0xFFC0 2534

SPORT3:
0xFFC0 2634

ADSP-BF54x Blackfin Processor Hardware Reference 24-73

SPORT Controllers

Clearing the bit in the SPORTx_MRCSn register causes the SPORT to ignore
the data on either channel. Table 24-6 lists memory-mapped addresses for
all SPORTx_MRCSn registers.

Figure 24-41. SPORTx Multichannel Receive Select Registers

SPORTx Multichannel Receive Select Registers (SPORTx_MRCSn)
For all bits, 0 - Channel disabled, 1 - Channel enabled, so SPORT selects that word from multiple word
block of data.

31

31

0

0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

31

63

0

32

31

95

0

64

31

127

0

96

Reset = 0x0000 0000

Reset = 0x0000 0000

Reset = 0x0000 0000

Reset = 0x0000 0000

MRCS0

MRCS1

MRCS2

MRCS3

Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

For Memory-mapped
addresses, see
Table 24-6.

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

SPORT Registers

24-74 ADSP-BF54x Blackfin Processor Hardware Reference

Multichannel Selection Transmit
(SPORTx_MTCSn) Registers

The multichannel selection registers are used to enable and disable indi-
vidual channels. The four SPORTx multichannel transmit select registers
(SPORTx_MTCSn, Figure 24-42) specify the active transmit channels. There
are four registers, each with 32 bits, corresponding to the 128 channels.
Setting a bit enables that channel so that the SPORT selects that word for
transmit from the multiple word block of data. For example, setting bit 0
selects word 0, setting bit 12 selects word 12, and so on.

Setting a particular bit in a SPORTx_MTCSn register causes the SPORT to
transmit the word in that channel’s position of the data stream. When the
secondary transmit side is enabled by the TXSE bit, both sides transmit a
word on the enabled channel. Clearing the bit in the SPORTx_MTCSn regis-
ter causes both SPORT controllers’ data transmit pins to three-state
during the time slot of that channel.

Table 24-6. SPORTx Multichannel Receive Select Register
Memory-Mapped Addresses

Register Name Memory-Mapped
Address

Register Name Memory-Mapped
Address

SPORT0_MRCS0 0xFFC0 0850 SPORT2_MRCS0 0xFFC0 2550

SPORT0_MRCS1 0xFFC0 0854 SPORT2_MRCS1 0xFFC0 2554

SPORT0_MRCS2 0xFFC0 0858 SPORT2_MRCS2 0xFFC0 2558

SPORT0_MRCS3 0xFFC0 085C SPORT2_MRCS3 0xFFC0 255C

SPORT1_MRCS0 0xFFC0 0950 SPORT3_MRCS0 0xFFC0 2650

SPORT1_MRCS1 0xFFC0 0954 SPORT3_MRCS1 0xFFC0 2654

SPORT1_MRCS2 0xFFC0 0958 SPORT3_MRCS2 0xFFC0 2658

SPORT1_MRCS3 0xFFC0 095C SPORT3_MRCS3 0xFFC0 265C

ADSP-BF54x Blackfin Processor Hardware Reference 24-75

SPORT Controllers

Figure 24-42. SPORTx Multichannel Transmit Select Registers

SPORTx Multichannel Transmit Select Registers (SPORTx_MTCSn)
For all bits, 0 - Channel disabled, 1 - Channel enabled, so SPORT selects that word from multiple
word block of data.

31

31

0

0

31

63

0

32

31

95

0

64

31

127

0

96

Reset = 0x0000 0000

Reset = 0x0000 0000

Reset = 0x0000 0000

Reset = 0x0000 0000

MTCS0

MTCS1

MTCS2

MTCS3

Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

For Memory-mapped
addresses, see
Table 24-7.

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

Programming Examples

24-76 ADSP-BF54x Blackfin Processor Hardware Reference

Programming Examples
Listing 24-1 through Listing 24-4 on page 24-82 show how a SPORT is
used in conjunction with the DMA controller.

Since serial ports are usually employed for high-speed, continuous serial
transfers, this example shows an auto-buffered, repeated DMA transfer.

While there are many possible configurations, this example uses generic
labels for the content of the SPORT’s configuration registers
(SPORTx_RCRx and SPORTx_TCRx) and the DMA configuration. An example
value is given in the comments, but for the meaning of the individual bits
the user is referred to the detailed explanation in this chapter. All examples
assume core writes to PORTx_FER and PORTx_MUX have been made to prop-
erly configure port pins associated with the SPORT module.

The example configures both the receive and the transmit section. Since
they are completely independent, the code uses separate labels.

Table 24-7. SPORTx Multichannel Transmit Select Register
Memory-Mapped Addresses

Register Name Memory-Mapped
Address

Register Name Memory-Mapped
Address

SPORT0_MTCS0 0xFFC0 0840 SPORT2_MTCS0 0xFFC0 2540

SPORT0_MTCS1 0xFFC0 0844 SPORT2_MTCS1 0xFFC0 2544

SPORT0_MTCS2 0xFFC0 0848 SPORT2_MTCS2 0xFFC0 2548

SPORT0_MTCS3 0xFFC0 084C SPORT2_MTCS3 0xFFC0 254C

SPORT1_MTCS0 0xFFC0 0940 SPORT3_MTCS0 0xFFC0 2640

SPORT1_MTCS1 0xFFC0 0944 SPORT3_MTCS1 0xFFC0 2644

SPORT1_MTCS2 0xFFC0 0948 SPORT3_MTCS2 0xFFC0 2648

SPORT1_MTCS3 0xFFC0 094C SPORT3_MTCS3 0xFFC0 264C

ADSP-BF54x Blackfin Processor Hardware Reference 24-77

SPORT Controllers

SPORT Initialization Sequence
The SPORT’s receiver and transmitter are configured, but they are not
enabled yet.

Listing 24-1. SPORT Initialization

Program_SPORT_TRANSMITTER_Registers:

/* Set P0 to SPORT0 Base Address */

P0.h = hi(SPORT0_TCR1);

P0.l = lo(SPORT0_TCR1);

/* Configure Clock speeds */

R1 = SPORT_TCLK_CONFIG; /* Divider SCLK/TCLK (= 0 to 65535) */

W[P0 + (SPORT0_TCLKDIV – SPORT0_TCR1)] = R1; /* TCK divider

 register */

/* number of Bitclocks between FrameSyncs –1 (= SPORT_SLEN to

65535) */

R1 = SPORT_TFSDIV_CONFIG;

W[P0 + (SPORT0_TFSDIV – SPORT0_TCR1)] = R1; /* TFSDIV

 register */

 /* Transmit configuration */
/* Configuration register 2 (for instance 0x000E for 16-bit

wordlength) */

R1 = SPORT_TRANSMIT_CONF_2;

W[P0 + (SPORT0_TCR2 - SPORT0_TCR1)] = R1;

/* Configuration register 1 (for instance 0x4E12 for inter-

nally generated clk and framesync) */

R1 = SPORT_TRANSMIT_CONF_1;

W[P0] = R1;

ssync; /* NOTE: SPORT0 TX NOT enabled yet (bit 0 of TCR1 must

 be zero) */

Programming Examples

24-78 ADSP-BF54x Blackfin Processor Hardware Reference

Program_SPORT_RECEIVER_Registers:

/* Set P0 to SPORT0 Base Address */

P0.h = hi(SPORT0_RCR1);

P0.l = lo(SPORT0_RCR1);

/* Configure Clock speeds */

R1 = SPORT_RCLK_CONFIG; /* Divider SCLK/RCLK (value 0 to

65535) */

W[P0 + (SPORT0_RCLKDIV - SPORT0_RCR1)] = R1; /* RCK divider

register */

/* number of Bitclock between FrameSyncs -1 (value SPORT_SLEN

to 65535) */

R1 = SPORT_RFSDIV_CONFIG;

W[P0 + (SPORT0_RFSDIV - SPORT0_RCR1)] = R1; /* RFSDIV register

*/

/* Receive configuration */

/* Configuration register 2 (for instance 0x000E for 16-bit

wordlength) */

R1 = SPORT_RECEIVE_CONF_2;

W[P0 + (SPORT0_RCR2 - SPORT0_RCR1)] = R1;

/* Configuration register 1 (for instance 0x4410 for external

clk and framesync) */

R1 = SPORT_RECEIVE_CONF_1;

W[P0] = R1;

ssync; /* NOTE: SPORT0 RX NOT enabled yet (bit 0 of RCR1 must

be zero) */

ADSP-BF54x Blackfin Processor Hardware Reference 24-79

SPORT Controllers

DMA Initialization Sequence
Next the DMA channels for receive (DMA channel 0) and for transmit
(DMA channel 1) are set up for auto-buffered, one-dimensional, 32-bit
transfers. Again, there are other possibilities, so generic labels have been
used, with a particular value shown in the comments. For more informa-
tion see Chapter 7, “Direct Memory Access”.

Note that the DMA channels can be enabled at the end of the configura-
tion since the SPORT is not enabled yet. However, if preferred, the user
can enable the DMA later, immediately before enabling the SPORT. The
only requirement is that the DMA channel be enabled before the associ-
ated peripheral is enabled to start the transfer.

Listing 24-2. DMA Initialization

Program_DMA_Controller:

/* Receiver (DMA channel 0) */

/* Set P0 to DMA Base Address */

P0.l = lo(DMA0_CONFIG);

P0.h = hi(DMA0_CONFIG);

/* Configuration (for instance 0x108A for Autobuffer, 32-bit

wide transfers) */

R0 = DMA_RECEIVE_CONF(z);

W[P0] = R0; /* configuration register */

/* rx_buf = Buffer in Data memory (divide count by four because

of 32-bit DMA transfers) */

R1 = (length(rx_buf)/4)(z);

W[P0 + (DMA0_X_COUNT - DMA0_CONFIG)] = R1; /* X_count register

*/

R1 = 4(z); /* 4 bytes in a 32-bit transfer */

Programming Examples

24-80 ADSP-BF54x Blackfin Processor Hardware Reference

W[P0 + (DMA0_X_MODIFY - DMA0_CONFIG)] = R1; /* X_modify regis-

ter */

/* start_address register points to memory buffer to be filled */

R1.l = rx_buf;

R1.h = rx_buf;

[P0 + (DMA0_START_ADDR - DMA0_CONFIG)] = R1;

BITSET(R0,0); /* R0 still contains value of CONFIG register -

set bit 0 */

W[P0] = R0; /* enable DMA channel (SPORT not enabled yet) */

/* Transmitter (DMA 0channel 1) */

/* Set P0 to DMA Base Address */

P0.l = lo(DMA1_CONFIG);

P0.h = hi(DMA1_CONFIG);

/* Configuration (for instance 0x1088 for Autobuffer, 32-bit

wide transfers) */

R0 = DMA_TRANSMIT_CONF(z);

W[P0] = R0; /* configuration register */

/* tx_buf = Buffer in Data memory (divide count by four because

of 32-bit DMA transfers) */

R1 = (length(tx_buf)/4)(z);

W[P0 + (DMA1_X_COUNT - DMA1_CONFIG)] = R1; /* X_count register

*/

R1 = 4(z); /* 4 bytes in a 32-bit transfer */

W[P0 + (DMA1_X_MODIFY - DMA1_CONFIG)] = R1; /* X_modify regis-

ter */

/* start_address register points to memory buffer to be trans-

mitted from */

R1.l = tx_buf;

R1.h = tx_buf;

ADSP-BF54x Blackfin Processor Hardware Reference 24-81

SPORT Controllers

[P0 + (DMA1_START_ADDR - DMA1_CONFIG)] = R1;

BITSET(R0,0); /* R0 still contains value of CONFIG register -

set bit 0 */

W[P0] = R0; /* enable DMA channel (SPORT not enabled yet) */

Interrupt Servicing
The receive channel and the transmit channel will each generate an inter-
rupt request if so programmed. The following code fragments show the
minimum actions that must be taken. Not shown is the programming of
the core and system event controllers.

Listing 24-3. Servicing an Interrupt

RECEIVE_ISR:

[--SP] = RETI; /* nesting of interrupts */

/* clear DMA interrupt request */

P0.h = hi(DMA0_IRQ_STATUS);

P0.l = lo(DMA0_IRQ_STATUS);

R1 = 1;

W[P0] = R1.l; /* write one to clear */

RETI = [SP++];

rti;

TRANSMIT_ISR:

[--SP] = RETI; /* nesting of interrupts */

/* clear DMA interrupt request */

P0.h = hi(DMA1_IRQ_STATUS);

P0.l = lo(DMA1_IRQ_STATUS);

R1 = 1;

Programming Examples

24-82 ADSP-BF54x Blackfin Processor Hardware Reference

W[P0] = R1.l; /* write one to clear */

RETI = [SP++];

rti;

Starting a Transfer
After the initialization procedure outlined in the previous sections, the
receiver and transmitter are enabled. The core may just wait for interrupts.

Listing 24-4. Starting a Transfer

/* Enable Sport0 RX and TX */

P0.h = hi(SPORT0_RCR1);

P0.l = lo(SPORT0_RCR1);

R1 = W[P0](Z);

BITSET(R1,0);

W[P0] = R1;

ssync; /* Enable Receiver (set bit 0) */

P0.h = hi(SPORT0_TCR1);

P0.l = lo(SPORT0_TCR1);

R1 = W[P0](Z);

BITSET(R1,0);

W[P0] = R1;

ssync; /* Enable Transmitter (set bit 0) */

/* dummy wait loop (do nothing but waiting for interrupts) */

wait_forever:

jump wait_forever;

ADSP-BF54x Blackfin Processor Hardware Reference 25-1

25 UART PORT CONTROLLERS

This chapter describes the universal asynchronous receiver/transmitter
(UART) modules and includes the following sections:

• “Overview” on page 25-1

• “Interface Overview” on page 25-3

• “Description of Operation” on page 25-6

• “Programming Model” on page 25-22

• “UART Registers” on page 25-26

• “Programming Examples” on page 25-51

Overview
The ADSP-BF54x processor Blackfin processors feature multiple separate
and identical UART modules.

ADSP-BF548 and ADSP-BF549 processors feature four UARTs, referred
to as UART0, UART1, UART2, and UART3. UART2 is not present on
ADSP-BF542 and ADSP-BF544 devices.

The UART modules are full-duplex peripherals compatible with PC-style
industry-standard UARTs, sometimes called Serial Controller Interfaces
(SCI). The UARTs convert data between serial and parallel formats. The
serial communication follows an asynchronous protocol that supports var-
ious word length, stop bits, bit rate, and parity generation options.

Overview

25-2 ADSP-BF54x Blackfin Processor Hardware Reference

Features
Each UART includes these features:

• 5 – 8 data bits

• 1 or 2 stop bits (1 1/2 in 5-bit mode)

• Even, odd, and sticky parity bit options

• Additional 4-stage receive FIFO with programmable threshold
interrupt

• Flexible transmit and receive interrupt timings

• 3 interrupt outputs for reception, transmission, and status

• Independent DMA operation for receive and transmit

• Programmable automatic RTS/CTS hardware flow control on
UART1 and UART3

• False start bit detection

• SIR IrDA operation mode

• Internal loop back

• Improved bit rate granularity

The UARTs are logically compliant to EIA-232E, EIA-422, EIA-485 and
LIN standards, but usually require external transceiver devices to meet
electrical requirements. In IrDA® (Infrared Data Association) mode, the
UARTs meet the half-duplex IrDA SIR (9.6/115.2 Kbps rate) protocol.

ADSP-BF54x Blackfin Processor Hardware Reference 25-3

UART Port Controllers

Interface Overview
Figure 25-1 shows a simplified block diagram of one UARTx module and
how it interconnects to the Blackfin architecture and to the outside world.

External Interface
Each UART features an RX and a TX pin available through general-pur-
pose ports. These two pins usually connect to an external transceiver
device that meets the electrical requirements of full duplex (for example,
EIA-232, EIA-422, 4-wire EIA-485) or half duplex (for example, 2-wire

Figure 25-1. UART Block Diagram

UARTx_LSR

UARTx_MSR

UARTx_THR

UARTx_RBR

UARTx_IER

UARTx_MCR

SIC CONTROLLER

UARTx_DLL

UARTx_DLH

DMA CONTROLLER

UARTx_SCR

UARTx_GCTL

TSR
P

O
R

T
S

UARTxR
X

R
E

Q

T
X

R
E

Q

PA
B

D
A

B
x

S
TA

T
R

E
Q

8 8

++

BLACKFIN

UARTxRX

UARTxTX

UARTx_LCR

SET

CLEAR

T
R

A
N

S
C

E
IV

E
R

TO
 T

IM
E

R
x

UARTxCTS

UARTxRTS

NOTE PULLING RESISTORS
ARE FOR THE RESET STATE
ONLY.

FIFO RSR

++

16 16/32

Interface Overview

25-4 ADSP-BF54x Blackfin Processor Hardware Reference

EIA-485, LIN) standards. Additionally, UART1 and UART3 feature a
pair of UARTxCTS (clear to send, input) and UARTxRTS (request to send, out-
put) signals for hardware flow control.

All UART signals are multiplexed and compete with other functions at
pin level. Table 25-1 shows where the signal can be found and how they
are enabled in the port control.

Table 25-1. UART Signals

Signal Pin Port Control Autobaud Timer

UART0 TX PE7 PORTE_MUX[15:14] = b#00
PORTE_FER[7] = 1

-

UART0 RX PE8 PORTE_MUX[17:16] = b#00
PORTE_FER[8] = 1

Timer 0 (TACI0)

UART1 TX PH0 PORTH_MUX[1:0] = b#00
PORTH_FER[0] = 1

-

UART1 RX PH1 PORTH_MUX[3:2] = b#00
PORTH_FER[1] = 1

Timer 1 (TACI1)

UART1 RTS PE9 PORTE_MUX[19:18] = b#00
PORTE_FER[9] = 1

-

UART1 CTS PE10 PORTE_MUX[21:20] = b#00
PORTE_FER[10] = 1

-

UART2 TX PB4 PORTB_MUX[9:8] = b#00
PORTB_FER[4] = 1

-

UART2 RX PB5 PORTB_MUX[11:10] = b#00
PORTB_FER[5] = 1

Timer 2 (TACI2)

UART3 TX PB6 PORTB_MUX[13:12] = b#00
PORTB_FER[6] = 1

-

UART3 RX PB7 PORTB_MUX[15:14] = b#00
PORTB_FER[7] = 1

Timer 3 (TACI3)

UART3 RTS PB2 PORTB_MUX[5:4] = b#00
PORTB_FER[2] = 1

-

UART3 CTS PB3 PORTB_MUX[7:6] = b#00
PORTB_FER[3] = 1

-

ADSP-BF54x Blackfin Processor Hardware Reference 25-5

UART Port Controllers

Internal Interface
The UARTs are DMA-capable peripherals with support for separate TX
and RX DMA master channels. They can be used in either DMA or pro-
grammed non-DMA mode of operation. The non-DMA mode requires
software management of the data flow using either interrupts or polling.
The DMA method requires minimal software intervention as the DMA
engine itself moves the data. For more information see Chapter 7, “Direct
Memory Access”.

All UART registers are 8 bits wide. They connect to the PAB bus. The
UARTx_RBR and UARTx_THR registers also connect to one of the DABx bus-
ses. While UART0 and UART1 connect to the DAB16 bus, UART2 and
UART3 connect to the DAB32 bus.

 By default, no DMA channels are assigned to UART2 and
UART3. To assign, program the PMAP crossbar in the
DMAx_PERIPHERAL_MAP register of the desired DMA channels.

Each UART has three interrupt outputs. The transmit request and receive
request outputs can function as DMA requests and connect to the DMA
controller. Therefore, if the DMA is not enabled, the DMA controller
simply forwards the request to the SIC controller. The status interrupt
output connects directly to the SIC controller.

 When no DMA channel is assigned, a UART has only one inter-
rupt output. To modify, set the EGLSI bit in the UARTx_GCTL
register to redirect transmit and receive requests to the status inter-
rupt output.

Every UART’s RX pin is also sensed by the alternative capture input
(TACIx) of one of the general-purpose timers. Table 25-1 shows the assign-
ment. In capture mode, the timers can be used to detect the bit rate of the
received signal. See “Autobaud Detection” on page 25-20.

Description of Operation

25-6 ADSP-BF54x Blackfin Processor Hardware Reference

Description of Operation
The sections that follow describe the operation of the UART.

UART Transfer Protocol
UART communication follows an asynchronous serial protocol, consisting
of individual data words. A word has 5 to 8 data bits.

All data words require a start bit and at least one stop bit. With the
optional parity bit, this creates a 7- to 12-bit range for each word. The for-
mat of received and transmitted character frames is controlled by the line
control register (UARTx_LCR). Data is always transmitted and received with
the least significant bit (LSB) first.

Figure 25-2 shows a typical physical bitstream measured on one of the TX
pins.

Aside from the standard UART functionality, the UART also supports
serial data communication by way of infrared signals, according to the rec-
ommendations of the Infrared Data Association (IrDA). The physical
layer known as IrDA SIR (9.6/115.2 Kbps rate) is based on
return-to-zero-inverted (RZI) modulation. Pulse position modulation is
not supported.

Figure 25-2. Bitstream on a TX Pin Transmitting an “S” Character (0x53)

DATA BITS STOP BIT(S)

START BIT LSB PARITY BIT (OPTIONAL, ODD OR EVEN)

D0 D1 D2 D3 D4 D5 D6 D7

ADSP-BF54x Blackfin Processor Hardware Reference 25-7

UART Port Controllers

Using the 16x data rate clock, RZI modulation is achieved by inverting
and modulating the non-return-to-zero (NRZ) code normally transmitted
by the UART. On the receive side, the 16x clock is used to determine an
IrDA pulse sample window, from which the RZI-modulated NRZ code is
recovered.

IrDA support is enabled by setting the IREN bit in the UARTx_GCTL register.
The IrDA application requires external transceivers.

UART Transmit Operation
Receive and transmit paths operate completely independently except that
the bit rate and the frame format are identical for both transfer directions.

Transmission is initiated by writes to the UARTx_THR register. If no former
operation is pending, the data is immediately passed from the UARTx_THR
register to the internal TSR register where it is shifted out at a bit rate char-
acterized by the formula that follows with start, stop, and parity bits
appended as defined by the UARTx_LCR register:

The least significant bit (LSB) is always transmitted first. This is bit 0 of
the value written to UARTx_THR.

Writes to the UARTx_THR register clear the THRE flag. Transfers of data from
UARTx_THR to the transmit shift registers (TSR) set this status flag in
UARTx_LSR again.

When enabled by the ETBEI bit in the UARTx_IER register, the THRE flag
requests an interrupt on the dedicated TXREQ output. This signal is routed
through the DMA controller. If the associated DMA channel is enabled,
the TXREQ signal functions as a DMA request, otherwise the DMA control-
ler simply forwards it to the SIC interrupt controller. If no DMA channel

BIT RATE
SCLK

16 1 EDB0– Divisor
---=

Description of Operation

25-8 ADSP-BF54x Blackfin Processor Hardware Reference

is assigned to the UART, the EGLSI bit in the UARTx_GCTL register can redi-
rect the receive and transmit interrupts to the UART status interrupt
alternatively.

The UARTx_THR register and the internal TSR register can be seen as a
two-stage transmit buffer. When data is pending in either one of these reg-
isters, the TEMT flag is low. As soon as all data has left the TSR register, the
TEMT bit goes high again and indicates that all pending transmit operation
has finished. At that time it is safe to disable the UCEN bit or to three-state
off-chip line drivers. An interrupt can be generated by that time either
through the status interrupt channel when the ETFI bit is set, or through
the DMA controller when enabled by the EDTPTI bit.

UART Receive Operation
The receive operation uses the same data format as the transmit configura-
tion, except that one valid stop bit is always sufficient, that is, the STB bit
has no impact to the receiver.

The UART receiver is sensing the falling edges of the RX input. When an
edge is detected, the receiver starts sampling the RX input according to
the bit rate and the EDBO bit settings. The start bit is sampled close to its
midpoint. If sampled low, a valid start condition is assumed. Otherwise,
the detected falling edge is discarded.

After detection of the start bit, the received word is shifted into the inter-
nal shift register (RSR) at a bit rate characterized by the following formula:

After the corresponding stop bit is received, the content of the RSR register
is transferred through the 4-deep receive FIFO to the UARTx_RBR register,
shown in Figure 25-13. Finally, the data ready (DR) bit and the status flags
are updated in the UARTx_LSR register, to signal data reception, parity, and
also error conditions, if required.

BIT RATE
SCLK

16 1 EDB0– Divisor
---=

ADSP-BF54x Blackfin Processor Hardware Reference 25-9

UART Port Controllers

The receive FIFOs and the UARTx_RBR registers can be seen as a five-stage

receive buffer. If the stop bit of the 6th word is received before software
reads the UARTx_RBR register, an overrun error is reported. The overrun
case protects data in the UARTx_RBR and receive FIFO from being overwrit-
ten by further data until the OE bit is cleared by software. The data in the
RSR register, however, is immediately destroyed as soon as the overrun
occurs.

If enabled by the ERBFI bit in the UARTx_IER register, the DR flag requests
an interrupt on the dedicated RXREQ output. This signal is routed through
the DMA controller. If the associated DMA channel is enabled, the RXREQ
signal functions as a DMA request, otherwise the DMA controller simply
forwards it to the SIC interrupt controller. If no DMA channel is assigned
to the UART, the EGLSI bit in the UARTx_GCTL register can redirect the
receive and transmit interrupts to the UART status interrupt alternatively.

The state of the five-deep receiver buffer (including UARTx_RBR) can be
monitored by the receiver FIFO count status (RFCS) bit in the UARTx_MSR
register. The buffer’s behavior is controlled by the receive FIFO interrupt
threshold (RFIT) bit in the UARTx_MCR register. If RFIT is zero, the RFCS bit
is set when the receive buffer holds two or more words. If RFIT is set, the
RFCS bit is set when the receive buffer holds four or more words. The RFCS
bit is cleared by hardware when core or DMA read the UARTx_RBR register
and when the buffer is flushed below the level of two (RFIT=0) or four
(RFIT=4). If the associated interrupt bit ERFCI is enabled, status interrupt
is reported when the RFCS bit is set.

If errors are detected during reception, an interrupt can be requested to a
the status interrupt output. This status interrupt request goes directly to
the SIC interrupt controller. Status interrupt requests are enabled by the
ELSI bit in the UARTx_IER_SET register. The following error situations are
detected. Every error has an indicating bit in the UARTx_LSR register.

• Overrun error (OE bit)

• Parity error (PE bit)

Description of Operation

25-10 ADSP-BF54x Blackfin Processor Hardware Reference

• Framing error/Invalid stop bit (FE bit)

• Break indicator (BI bit)

The sampling clock is 16 times faster than the bit clock. The receiver over
samples every bit 16 times and does a majority decision based on the mid
three samples. This improves immunity against noise and hazards on the
line. Spurious pulses of less than two times the sampling clock period are
disregarded.

Normally, every incoming bit is sampled at exactly the 7th, 8th and 9th
sample clock. If, however, the EDBO bit is set to 1 to achieve better bit
rate granularity and accuracy as required at high operation speeds, the bits
are one roughly sampled at 7/16th, 8/16th and 9/16th of their period.
Hardware design should ensure that the incoming signal is stable between
6/16th and 10/16th of the nominal bit period.

Reception is started when a falling edge is detected on the UARTxRX input
pin. The receiver attempts to see a start bit. The data is shifted into the
internal RSR register. After the 9th sample of the first stop bit is processed,
the received data is copied to the 5-stage receive buffer and the RSR recov-
ers for further data.

The receiver samples data bits close to their midpoint. Because the receiver
clock is usually asynchronous to the transmitter’s data rate, the sampling
point may drift relative to the center of the data bits. The sampling point
is synchronized again with each start bit, so the error accumulates only
over the length of a single word.

Hardware Flow Control
To prevent the UART transmitter from sending data while the receiving
counterpart is not ready, a RTS/CTS hardware flow control mechanism is
supported. The UARTxRTS (request to send) signal is an output that con-
nects to the communication’s partner UARTxCTS (clear to send) input. If
data transfer is bidirectional, the handshake is as shown in Figure 25-3.

ADSP-BF54x Blackfin Processor Hardware Reference 25-11

UART Port Controllers

Regardless of whether working in DMA or non-DMA mode, the receiver
can deassert the UARTxRTS signal to indicate that its receive buffer is getting
full. Further data may cause an overrun error. Consequently, the transmit-
ter pauses transmission when the UARTxCTS input is in deasserted state. On
ADSP-BF54x processor processors, UART1 and UART3, if present, fea-
ture a pair of RTS/CTS pins each. Automatic hardware flow control can be
enabled individually for receiver and transmitter by the UARTx_MCR regis-
ter’s ARTS and ACTS bits.

The signals are usually active low, that is, transmission is halted when the
pin state is high. The polarity of the UARTxCTS and UARTxRTS pins can be
inverted by setting the FCPOL bit in the UARTx_MCR register. If ACTS is
enabled, the UARTxCTS bit in the UARTx_MSR register holds the complement
value (FCPOL = 0) or the value (FCPOL = 1) of the UARTxCTS input pin. In
either case the UARTxCTS bit reads 1 when the external device is ready to
receive data. The delta CTS (DCTS) bit is a sticky version of the UARTxCTS
bit that is set high when the UARTxCTS bit transitions from 0 to 1. It can
request a status interrupt and is cleared by software with a W1C opera-
tion. If the TX handshaking protocol is enabled (bit ACTS = 1), the UART
hardware pauses transmission if the UARTxCTS bit is zero. If the UARTx-
CTS input is deasserted, the transmitter still completes transmission of the

Figure 25-3. UART Hardware Flow

BLACKFIN

UARTxCTS

UARTxRTS

UARTx

UARTxRX

UARTxTX

CTS

RTS

OTHER UART
DEVICE

RX

TX

Description of Operation

25-12 ADSP-BF54x Blackfin Processor Hardware Reference

data work currently held in the internal TSRx register, but does not con-
tinue with the data in UARTx_THR. If the UARTxCTS is asserted again, the
transmitter resumes and loads the content of UARTx_THR into TSRx.

If the RX handshaking protocol is enabled (bit ARTS = 1 in the UARTx_MCR
register), the UARTxRTS output pin is toggled automatically by the
receiver's hardware. The pin’s assertion and de-assertion timing is con-
trolled by the receive FIFO RTS threshold (RFRT) bit in the UARTx_MCR
register. If RFRT is cleared, the UARTxRTS pin is de-asserted when the receive
buffer already holds two words and a third start bit is detected. The
UARTxRTS pin is asserted again when the buffer does not contain any more
data than the word in the UARTx_RBR register. If RFRT is set, the UARTxRTS
pin is de-asserted when the receive buffer already holds four words and a
fifth start bit is detected. The UARTxRTS is re-asserted when the buffer con-
tains less than four words. Hardware guarantees minimal UARTxRTS
de-assertion pulse width of at least the number of data bits as defined by
the WLS bit field in the UARTx_LCR register.

If ACTS = 0, the TX handshaking protocol is disabled, and the UART
transmits data as long as there is data to transmit, regardless of the value of
UARTxCTS. With ACTS = 0 software can pause on-going transmission by set-
ting the XOFF bit in the UARTx_MCR register.

If ARTS = 0, the UARTxRTS pin is not generated automatically by hardware.
The UARTxRTS output can then still be manually controlled by the MRTS bit
in the UARTx_MCR register.

 On reset, when the UART is not yet enabled and the port multi-
plexing has not been programmed, the UARTxRTS pin is not driven.
Some applications may require the UARTxRTS signal to be pulled to
either state by a resistor during reset.

ADSP-BF54x Blackfin Processor Hardware Reference 25-13

UART Port Controllers

IrDA Transmit Operation
To generate the IrDA pulse transmitted by the UART, the normal NRZ
output of the transmitter is first inverted if the TPOLC bit is cleared, so a 0
is transmitted as a high pulse of 16 UART clock periods and a 1 is
transmitted as a low pulse for 16 UART clock periods. The leading edge
of the pulse is then delayed by six UART clock periods. Similarly, the
trailing edge of the pulse is truncated by eight UART clock periods. This
results in the final representation of the original 0 as a high pulse of only
3/16 clock periods in a 16-cycle UART clock period. The pulse is centered
around the middle of the bit time, as shown in Figure 25-4. The final
IrDA pulse is fed to the off-chip infrared driver.

This modulation approach ensures a pulse width output from the UART
of three cycles high out of every 16 UART clock cycles. As shown in
Table 25-2 on page 25-19, the error terms associated with the bit rate gen-
erator are very small and well within the tolerance of most infrared
transceiver specifications.

Figure 25-4. IrDA Transmit Pulse

 0 1 0

8/16

9/167/16

16/16

NRZ

INVERTED

FINAL
IrDA

8/16

9/167/16

16/16

Description of Operation

25-14 ADSP-BF54x Blackfin Processor Hardware Reference

IrDA Receive Operation
The IrDA receiver function is more complex than the transmit function.
The receiver must discriminate the IrDA pulse and reject noise. To do
this, the receiver looks for the IrDA pulse in a narrow window centered
around the middle of the expected pulse.

Glitch filtering is accomplished by counting 16 system clocks from the
time an initial pulse is seen. If the pulse is absent when the counter
expires, it is considered a glitch. Otherwise, it is interpreted as a 0. This is
acceptable because glitches originating from on-chip capacitive cross-cou-
pling typically do not last for more than a fraction of the system clock
period. Sources outside of the chip and not part of the transmitter can be
avoided by appropriate shielding. The only other source of a glitch is the
transmitter itself. The processor relies on the transmitter to perform
within specification. If the transmitter violates the specification, unpre-
dictable results may occur. The 4-bit counter adds an extra level of
protection at a minimal cost. Note because the system clock can change
across systems, the longest glitch tolerated is inversely proportional to the
system clock frequency.

The receive sampling window is determined by a counter that is clocked at
the 16x bit-time sample clock. The sampling window is re-synchronized
with each start bit by centering the sampling window around the start bit.

The polarity of receive data is selectable, using the IRPOL bit. Figure 25-5
gives examples of each polarity type.

• IRPOL = 0 assumes that the receive data input idles 0 and each
active 1 transition corresponds to a UART NRZ value of 0.

• IRPOL = 1 assumes that the receive data input idles 1 and each
active 0 transition corresponds to a UART NRZ value of 0.

 In the IrDA mode the EDB0 bit is ignored. The sample frequency is
always exactly 16 times the bit rate.

ADSP-BF54x Blackfin Processor Hardware Reference 25-15

UART Port Controllers

Interrupt Processing
Each UART module has three interrupt outputs. One is dedicated for
transmission, one for reception, and the third is used to report status
events. As shown in Figure 25-1 on page 25-3, the transmit and receive
requests are routed through the DMA controller. The status request goes
directly to the SIC controller.

If the associated DMA channel is enabled, the request functions as a DMA
request. If the DMA channel is disabled, it simply forwards the request to
the SIC interrupt controller. Note that a DMA channel must be associated
with the UART module to enable TX and RX interrupts. Otherwise, the
transmit and receive requests cannot be forwarded. For more information
see Chapter 7, “Direct Memory Access”.

Figure 25-5. IrDA Receiver Pulse Detection

 0 1

16/16

PULSE
DETECT

OR
OUTPUT

SAMPLING
WINDOWN

8/16 16/16

RECOVERED
NRZ INPUT 1 0

8/16

 0 1

RECEIVED
IrDA

PULSE
IR POL = 1

RECEIVED
IrDA

PULSE
IR POL = 0

Description of Operation

25-16 ADSP-BF54x Blackfin Processor Hardware Reference

 On ADSP-BF54x processor processors not all UARTs have a DMA
channel assigned by default. Even if disabled, a DMA channel is
still required to forward the DMA requests to the SIC controller as
interrupt requests (see Figure 25-1 on page 25-3). Also, if no DMA
channel is assigned, the UART loses its normal receive and trans-
mit interrupt functionality.

To operate in interrupt mode without assigned DMA channels, set
the EGLSI bit in the UARTx_GCTL register. This setup redirects
receive and transmit requests to the status interrupt output. The
status interrupt goes directly to the SIC controller without being
routed through the DMA controller.

Transmit interrupts are enabled by the ETBEI bit in the UARTx_IER_SET
register. If set, the transmit request is asserted along with the THRE bit in
the UART_LSR, indicating that the TX buffer is ready for new data.

Note that the THRE bit resets to 1. When the ETBEI bit is set in the
UARTx_IER_SET register, the UART module immediately issues an inter-
rupt or DMA request. This way, no special handling of the first character
is required when transmission of a string is initiated. Simply set the ETBEI
bit and let the interrupt service routine load the first character from mem-
ory and write it to the UARTx_THR register in the normal manner.
Accordingly, the ETBEI bit can be cleared in the UARTx_IER_CLEAR register
if the string transmission has completed. For more information, see
“DMA Mode” on page 25-24.

The THRE bit is cleared by hardware when new data is written to the
UARTx_THR register. These writes also clear the TX interrupt request. How-
ever, they also initiate further transmission. If software doesn’t want to
continue transmission, the TX request can alternatively be cleared by
clearing the ETBEI bit in the UARTx_IER_CLEAR register.

ADSP-BF54x Blackfin Processor Hardware Reference 25-17

UART Port Controllers

Receive interrupts are enabled by the ERBFI bit in the UARTx_IER_SET reg-
ister. If set, the receive request is asserted along with the DR bit in the
UART_LSR register, indicating that new data is available in the UARTx_RBR
register. When software reads the UARTx_RBR, hardware clears the DR bit
again which in turn clears the receive interrupt request.

The UART status interrupt channels are used for multiple purposes:

• Line Status Interrupts

• Flow Control Interrupts

• Receive FIFO Threshold Interrupts

• Transmission Finished Interrupt

Line status interrupts are enabled by the ELSI bit in the UARTx_IER_SET
register. If set, the status interrupt request is asserted with any of the BI,
FE, PE or OE receive errors bits in the UART_LSR register. Refer to “Line Sta-
tus (UARTx_LSR) Registers” on page 25-34 for details. The error bits in
the UARTx_LSR register are cleared by W1C operation. Once all error con-
ditions are cleared the interrupt request de-asserts.

The receive FIFO count interrupt is enabled by the ERFCI bit in the
UARTx_IER_SET register. If set, a status interrupt is generated when the
RFCS is active. The RFCS bit indicates a receive buffer threshold level. If the
RFIT bit in the UARTx_MCR register is cleared, software can safely read two
words out of the UARTx_RBR register by the time the RFCS interrupt occurs.
If the RFIT bit is set, software can safely read four words. The interrupt
and the RFCS bit clear when the UARTx_RBR is read sufficient times, so that
the receive buffer drains below the threshold of two (RFIT = 0) or four
(RFIT = 1). Because in DMA mode a status service routine may not be per-
mitted to read UARTx_RBR, this interrupt is only recommended in
non-DMA mode. In DMA mode, use this functionality for error recovery
only.

Description of Operation

25-18 ADSP-BF54x Blackfin Processor Hardware Reference

The UARTxCTS interrupts are enabled by the EDSSI bit in the
UARTx_IER_SET register. If active, a status interrupt is generated when the
sticky SCTS bit in the UARTx_MSR register is set, indicating that the trans-
mitter's UARTxCTS input been re-asserted. A W1C operation to the SCTS
bit clears the interrupt request.

A transmission finished interrupt is enabled by the ETFI bit in the
UARTx_IER_SET register. If active, a status interrupt request is asserted
when the TFI bit in the UARTx_LSR register is set. TFI is the sticky version
of the TEMT bit, indicating that a byte that started transmission has com-
pletely finished. The interrupt request is cleared by a W1C operation to
the TFI bit.

Bit Rate Generation
The UART clock is enabled by the UCEN bit in the UARTx_GCTL register.

The sample clock is characterized by the system clock (SCLK) and the
16-bit divisor. The divisor is split into the 8-bit UARTx_DLL and the
UARTx_DLH registers. These registers form a 16-bit divisor.

By default every serial bit is over sampled 16 times. The bit clock is 1/16th
of the sample clock. If not in IrDA mode the bit clock can equal the sam-
ple clock if the EDBO bit in the UARTx_GCTL register is set, so that the
following applies:

Divisor = 65,536 when UARTx_DLL = UARTx_DLH = 0

BIT RATE
SCLK

16 1 EDB0– Divisor
---=

ADSP-BF54x Blackfin Processor Hardware Reference 25-19

UART Port Controllers

Table 25-2 provides example divide factors required to support most stan-
dard baud rates.

 Careful selection of SCLK frequencies, that is, even multiples of
desired bit rates, can result in lower error percentages.

Setting the bit clock equal to the sample clock (EDBO = 1) improves
bit rate granularity and enables the Blackfin bit clock to more
closely match the bit rate of the communication partner. There is,
however, a disadvantage—the power dissipation is higher. Also the
sample points may not be that accurate. It is recommended to use
EDBO = 1 mode only when bit rate accuracy is not acceptable in
EDBO = 0 mode.

The EDBO = 1 mode is not intended to increase operation speed
beyond the electrical limitations of the asynchronous UART trans-
fer protocol.

Table 25-2. UART Bit Rate Examples With 133 MHz SCLK

Bit Rate Dfactor = 16
DL Actual % Error

Dfactor = 1
DL Actual % Error

2400 3464 2399.68 0.013 55417 2399.99 0.001

4800 1732 4799.36 0.013 27708 4800.06 0.001

9600 866 9598.73 0.013 13854 9600.12 0.001

19200 433 19197.46 0.013 6927 19200.23 0.001

38400 216 38483.80 0.218 3464 38394.92 0.013

57600 144 57725.69 0.218 2309 57600.69 0.001

115200 72 115451.39 0.218 1155 115151.52 0.042

921600 9 923611.11 0.218 144 923611.11 0.218

1500000 6 1385416.67 7.639 89 1494382.02 0.375

3000000 3 2770833.33 7.639 44 3022727.27 0.758

6250000 1 8312500.00 33.000 21 6333333.33 1.333

Description of Operation

25-20 ADSP-BF54x Blackfin Processor Hardware Reference

Autobaud Detection
At the chip level, the UART RX pins are routed to the alternate capture
inputs (TACIx) of the general purpose timers. When working in WDTH_CAP
mode these timers can be used to automatically detect the bit rate applied
to the UARTxRX pin by an external device. For more information see
Chapter 10, “General-Purpose Timers”.

The capture capabilities of the timers are often used to supervise the bit
rate at runtime. If the Blackfin UART was talking to any device supplied
by a weak clock oscillator that drifts over time, the Blackfin can re-adjust
its UART bit rate dynamically as required.

Often, autobaud detection is used for initial bit rate negotiations. There,
the Blackfin processor is most likely a slave device waiting for the host to
send a predefined autobaud character as discussed below. This is exactly
the scenario used for UART booting. In this scenario, it is recommended
that the UART clock enable bit UCEN is not enabled while autobaud
detection is performed to prevent the UART from starting reception with
incorrect bit rate matching. Alternatively, the UART can be disconnected
from the UARTxRX pin by setting the LOOP_ENA bit.

A software routine can detect the pulse widths of serial stream bit cells.
Because the sample base of the timers is synchronous with the UART
operation—all derived from SCLK—the pulse widths can be used to calcu-
late the bit rate divider for the UART by using the following formula:

DIVISOR
TIMERx_WIDTH

16
1 EDB0– Number of captured UART bits

--
·

=

ADSP-BF54x Blackfin Processor Hardware Reference 25-21

UART Port Controllers

In order to increase the number of timer counts and therefore the resolu-
tion of the captured signal, it is recommended not to measure just the
pulse width of a single bit, but to enlarge the pulse of interest over more
bits. Traditionally, a NULL character (ASCII 0x00) was used in autobaud
detection, as shown in Figure 25-6.

Because the example frame in Figure 25-6 encloses 8 data bits and 1 start
bit, apply the following formula:

Real UARTx RX signals often have asymmetrical falling and rising edges,
and the sampling logic level is not exactly in the middle of the signal volt-
age range. At higher bit rates, such pulse width-based autobaud detection
might not return adequate results without additional analog signal condi-
tioning. Measuring signal periods works around this issue and is strongly
recommended.

Figure 25-6. Autobaud Detection Character 0x00

FRAME WIDTH

S 1 2 3 4 5 6 7 STOP0

DIVISOR
TIMERx_WIDTH

16
1 EDB0– 9

---=

Programming Model

25-22 ADSP-BF54x Blackfin Processor Hardware Reference

For example, predefine ASCII character “@” (0x40) as the autobaud
detection character and measure the period between two subsequent fall-
ing edges. As shown in Figure 25-7, measure the period between the
falling edge of the start bit and the falling edge after bit 6. Since this
period encloses 8 bits, apply the following:

• Divisor = TIMERx_PERIOD >> 7 if EDB0 = 0

• Divisor = TIMERx_PERIOD >> 3 if EDB0 = 1

An example is provided in Listing 25-2 on page 25-52.

Programming Model
The following sections describe the programming model for the UARTs.

Non-DMA Mode
In non-DMA mode, data is moved to and from the UART by the proces-
sor core. To transmit a character, load it into UARTx_THR. Received data
can be read from UARTx_RBR. The processor must write and read a limited
number of characters at a time.

To prevent any loss of data and misalignments of the serial data stream,
the UARTx_LSR register provides two status flags for handshaking—THRE
and DR.

Figure 25-7. Autobaud Detection Character 0x40

PERIOD

STOPS 1 2 3 4 5 6 70

ADSP-BF54x Blackfin Processor Hardware Reference 25-23

UART Port Controllers

The THRE flag is set when UARTx_THR is ready for new data and cleared
when the processor loads new data into UARTx_THR. Writing UARTx_THR
when it is not empty overwrites the register with the new value and the
previous character is never transmitted.

The DR flag signals when new data is available in UARTx_RBR. This flag is
cleared automatically when the processor reads from UARTx_RBR. Reading
UARTx_RBR when it is not full returns the previously received value. When
UARTx_RBR is not read in time, an overrun condition protects the already
received data from being overwritten by new data until the OE bit is
cleared by software. Only the content of the RSR register can be overwrit-
ten in the overrun case.

The TEMT bit can be interrogated to see whether any transmission is ongo-
ing. The TEMT bit’s sticky counterpart TFI tells whether the transmit buffer
has drained and can trigger a status interrupt, if required.

With interrupts disabled, these status flags can be polled to determine
when data is ready to move. Note that because polling is processor inten-
sive, it is not typically used in real-time signal processing environments.
Since read operations from UARTx_LSR registers have no side effects, differ-
ent software threads can interrogate these registers without mutual
impacts. Polling the SIC_ISRx register without enabling the interrupts by
SIC_MASKx is an alternate method of operation to consider. Software can
write up to two words into the UARTx_THR register before enabling the
UART clock. As soon as the UCEN bit is set, those two words are sent.

Alternatively, UART writes and reads can be accomplished by interrupt
service routines (ISRs). Separate interrupt lines are provided for UART
TX, UARTx RX, and UART status. The independent interrupts can be
enabled individually by the UARTx_IER_SET and UARTx_IER_CLEAR register
pair. The UCEN bit must be set to enable UART transmit interrupts.

Programming Model

25-24 ADSP-BF54x Blackfin Processor Hardware Reference

The ISRs can evaluate the status bits in the UARTx_LSR and UARTx_MSR reg-
isters to determine the signalling interrupt source. Interrupts also must be
assigned and unmasked by the processor’s interrupt controller. The ISRs
must clear the interrupt latches explicitly. See Figure 25-15 on
page 25-43.

To reduce interrupt frequency on the receive side in non-DMA mode, the
ERFCI status interrupt may be used as an alternative to the regular ERBFI
receive interrupt. Hardware ensure that at least two (if RFIT = 0) or four (if
RFIT = 1) words are available in the receive buffer by the time the inter-
rupt is requested.

DMA Mode
In this mode, separate receive (UARTxRX) and transmit (UARTxTX)
DMA channels move data between the UART and memory. The software
does not have to move data, it just has to set up the appropriate transfers
either through the descriptor mechanism or through autobuffer mode.

DMA channels provide a 4-deep FIFO, resulting in total buffer capabili-
ties of 6 words at the transmit and 9 words at the receive side receive sides.
In DMA mode, the latency is determined by the bus activity and arbitra-
tion mechanism and not by the processor loading and interrupt priorities.
For more information see Chapter 7, “Direct Memory Access”.

DMA interrupt routines must explicitly write 1s to the corresponding
DMAx_IRQ_STATUS registers to clear the latched request of the pending
interrupt.

The UART’s DMA is enabled by first setting up the system DMA control
registers and then enabling the UART ERBFI and/or ETBEI interrupts in
the UARTx_IER_SET register. This is because the interrupt request lines
double as DMA request lines. Depending on whether DMA is enabled or
not, upon receiving these requests, the DMA control unit either generates

ADSP-BF54x Blackfin Processor Hardware Reference 25-25

UART Port Controllers

a direct memory access or passes the UART interrupt on to the system
interrupt handling unit. The UART’s status interrupt goes directly to the
system interrupt handling unit, bypassing the DMA unit completely.

For transmit DMA, it is recommended to set the SYNC bit in the
DMAx_CONFIG register. With this bit set, the interrupt generation is delayed
until the entire DMA FIFO is drained to the UART module. The UART
TX DMA interrupt service routine is allowed to disable the DMA or to
clear the ETBEI control bit only when the SYNC bit is set, otherwise up to
four data bytes might be lost.

When the ETBEI bit is set in the UARTx_IER_SET register, an initial transmit
DMA request is issued immediately. It is common practice to clear the
ETBEI bit by the DMA’s service routine.

In DMA transmit mode, the ETBEI bit enables the peripheral request to
the DMA FIFO. The strobe on the memory side is still enabled by the
DMAEN bit. If the DMA count is less than the DMA FIFO depth, which is
4, then the DMA interrupt might be requested already before the ETBEI
bit is set. If this is not wanted, set the SYNC bit in the DMAx_CONFIG register.

Regardless of the SYNC setting, the DMA stream has not left the UART
transmitter completely at the time the interrupt is generated. Transmis-
sion may abort in the middle of the stream, causing data loss, if the UART
clock was disabled without additional synchronization with the TEMT bit.

The ADSP-BF54x processor UART implementation provides new func-
tionality to avoid expensive polling of the TEMT bit. The EDTPTI bit in the
UARTx_IER_SET register enables the TEMT bit to trigger a DMA interrupt.
To delay the DMA completion interrupt until the last data word of a
STOP DMA has left the UART, keep the DMA’s DI_EN bit cleared and set
the EDTPTI bit instead. Then, the normal DMA completion interrupt is
suppressed. Later, the TEMT event triggers a DMA interrupt after the
DMA’s last word has left the UART transmit buffers. If DI_EN and EDTPTI
are set, when finishing STOP mode, the DMA requests two interrupts.

Programming Model

25-26 ADSP-BF54x Blackfin Processor Hardware Reference

The UART’s DMA supports 8-bit and 16-bit operation, but not 32-bit
operation. Sign extension is not supported.

Mixing Modes
Especially on the transmit side, switching from DMA mode to non-DMA
operation on the fly requires some thought. By default, the interrupt tim-
ing of the DMA is synchronized with the memory side of the DMA
FIFOs. Normally, the UARTxTX DMA completion interrupt is generated
after the last byte is copied from the memory into the DMA FIFO. The
UARTxTX DMA interrupt service routine is not yet permitted to disable
the DMA enable bit DMAEN. The interrupt is requested by the time the
DMA_DONE bit is set. The DMA_RUN bit, however, remains set until the data
has completely left the UARTxTX DMA FIFO.

Therefore, when planning to switch from DMA to non-DMA of opera-
tion, always set the SYNC bit in the DMAx_CONFIG word of the last descriptor
or work unit before handing over control to non-DMA mode. Then, after
the interrupt occurs, software can write new data into the UARTx_THR regis-
ter as soon as the THRE bit permits. If the SYNC bit cannot be set, software
can poll the DMA_RUN bit instead. Using the EDTPTI bit can avoid expensive
status bit polling, alternatively.

When switching from non-DMA to DMA operation, take care that the
very first DMA request is issued properly. If the DMA is enabled while the
UART is still transmitting, no precaution is required. If, however, the
DMA is enabled after the TEMT bit became high, the ETBEI bit should be
pulsed to initiate DMA transmission.

ADSP-BF54x Blackfin Processor Hardware Reference 25-27

UART Port Controllers

UART Registers
The processor provides a set of PC-style industry-standard control and
status registers for each UART. These memory-mapped registers (MMRs)
are byte-wide registers that are mapped as half words with the most signif-
icant byte zero filled. Table 25-3 provides an overview of the UART
registers.

Unlike on ADSP-BF53x processors, register addresses are not shared on
ADSP-BF54x processor processors. Each register has its own MMR
address. Consequently, the DLAB bit is not present on ADSP-BF54x pro-
cessor processors’ UARTx_LSR registers. Software must use 16-bit word
load/store instructions to access these registers.

Furthermore, the interrupt processing differs from ADSP-BF53x proces-
sors. Error bits in status registers do not clear on register reads implicitly,
rather they are cleared by write-1-to-clear (W1C) operations. The
UARTx_IIR register is not present at all. The interrupt enable register has
separate set and clear ports, so that separate receive, transmit, and status
interrupt service routines can enable or set masks individually.

Transmit and receive channels are both buffered. The UARTx_THR registers
buffer the transmit shift registers (TSR). The UARTx_RBR registers and an
additional 4-stage receive FIFO buffer the receive shift register (RSR). The
shift registers are not directly accessible by software.

Table 25-3. ADSP-BF54x vs. ADSP-BF53x UART Register

Register Name Address Offset Description

ADSP-BF54
x

ADSP-BF53
x

UARTx_DLL 0x00 0x00
DLAB=1

“Clock Divisor Latch (UARTx_DLL and
UARTx_DLH) Registers” on page 25-46

UARTx_DLH 0x04 0x00
DLAB=1

“Clock Divisor Latch (UARTx_DLL and
UARTx_DLH) Registers” on page 25-46

UART Registers

25-28 ADSP-BF54x Blackfin Processor Hardware Reference

UARTx_GCTL 0x08 0x24 “Global Control (UARTx_GCTL) Registers”
on page 25-50

UARTx_LCR 0x0C 0x0C “Line Control (UARTx_LCR) Registers” on
page 25-29

UARTx_MCR 0x10 0x10 “Modem Control (UARTx_MCR) Registers”
on page 25-32

UARTx_LSR 0x14 0x14 “Line Status (UARTx_LSR) Registers” on
page 25-34

UARTx_MSR 0x18 N/A “Modem Status (UARTx_MSR) Registers”
on page 25-37

UARTx_SCR 0x1C 0x1C “UART Scratch (UARTx_SCR) Registers” on
page 25-49

UARTx_IER_SET 0x20 N/A “Interrupt Enable (UARTx_IER_SET and
UARTx_IER_CLEAR) Registers” on
page 25-40

UARTx_IER_CLEA
R

0x24 N/A “Interrupt Enable (UARTx_IER_SET and
UARTx_IER_CLEAR) Registers” on
page 25-40

UARTx_IER N/A 0x04
DLAB=0

“Line Control (UARTx_LCR) Registers” on
page 25-29

UARTx_THR 0x28 0x00
DLAB=0

“Transmit Hold (UARTx_THR) Registers”
on page 25-39

UARTx_RBR 0x2C 0x00
DLAB=0

“Receive Buffer (UARTx_RBR) Registers” on
page 25-40

UARTx_IIR N/A 0x08 “Line Control (UARTx_LCR) Registers” on
page 25-29

Table 25-3. ADSP-BF54x vs. ADSP-BF53x UART Register (Cont’d)

Register Name Address Offset Description

ADSP-BF54
x

ADSP-BF53
x

ADSP-BF54x Blackfin Processor Hardware Reference 25-29

UART Port Controllers

Line Control (UARTx_LCR) Registers
The line control (UARTx_LCR) registers, shown in Figure 25-8, control the
format of received and transmitted character frames.

The 2-bit WLS field determines whether the transmitted and received
UART word consists of 5, 6, 7 or 8 data bits.

Figure 25-8. UART Line Control Registers

Table 25-4. UART Line Control Register Memory-Mapped Addresses

Register Name Memory-mapped Address

UART0_LCR 0xFFC0 040C

UART1_LCR 0xFFC0 200C

UART2_LCR 0xFFC0 210C

UART3_LCR 0xFFC0 310C

SB (Set Break)
0 - No force
1 - Force TX pin to 0

STP (Stick Parity)
Forces parity to defined value if set and PEN = 1
EPS = 0, parity transmitted and checked as 1
EPS = 1, parity transmitted and checked as 0

EPS (Even Parity Select)
0 - Odd parity when PEN = 1 and STP = 0
1 - Even parity

WLS[1:0] (Word Length
Select)
00 - 5-bit word
01 - 6-bit word
10 - 7-bit word
11 - 8-bit word

STB (Stop Bits)
0 - 1 stop bit
1 - 2 stop bits for non-5-bit

word length or 1 1/2 stop
bits for 5-bit word length

PEN (Parity Enable)
0 - Parity not transmitted or

checked
1 - Transmit and check
 parity

UART Line Control Registers (UARTx_LCR)

Reset = 0x0000For Memory-
mapped
addresses,
see

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

UART Registers

25-30 ADSP-BF54x Blackfin Processor Hardware Reference

The STB bit controls how many stop bits are appended to transmitted
data. When STB = 0, one stop bit is transmitted. If WLS is non zero, STB = 1
instructs the transmitter to add one additional stop bit, two stop bits in
total. If WLS = 0 and 5-bit operation is chosen, STB = 1 forces the transmit-
ter to append one additional half bit, 1 1/2 stop bits in total. Note that
this bit does not impact data reception—the receiver is always satisfied
with one stop bit.

The PEN bit inserts one additional bit between the most significant data bit
and the first stop bit. The polarity of this so-called parity bit depends on
data and the STP and EPS control bits. Both transmitter and receiver calcu-
late the parity value. The receiver compares the received parity bit with
the expected value and issues a parity error if they don’t match. If PEN is
cleared, the STP and the EPS bits are ignored.

The STP bit controls whether the parity is generated by hardware based on
the data bits or whether it is set to a fixed value. If STP = 0 the hardware
calculates the parity bit value based on the data bits. Then, the EPS bit
determines whether odd or even parity mode is chosen. If EPS = 0, odd
parity is used. That means that the total count of logical–1 data bits
including the parity bit must be an odd value. Even parity is chosen by
STP = 0 and EPS = 1. Then, the count of logical–1 bits must be a even
value. If the STP bit is set, then hardware parity calculation is disabled. In
this case, the sent and received parity equals the inverted EPS bit. The
example in Table 25-5 summarizes polarity behavior assuming 8-bit data
words (WLS = 3).

Table 25-5. UART Parity

PEN STP EPS Data (hex) Data (binary, LSB
first)

Parity

0 x x x x None

1 0 0 0x60 0000 0110 1

1 0 0 0x57 1110 1010 0

1 0 1 0x60 0000 0110 0

ADSP-BF54x Blackfin Processor Hardware Reference 25-31

UART Port Controllers

If set, the SB bit forces the UARTxTX pin to low asynchronously, regardless
of whether or not data is currently transmitted. It functions even when the
UART clock is disabled. Since the UARTxTX pin normally drives high, it
can be used as a flag output pin, if the UART is not used.

1 0 1 0x57 1110 1010 1

1 1 0 x x 1

1 1 0 x x 1

1 1 1 x x 0

1 1 1 x x 0

Table 25-5. UART Parity (Cont’d)

PEN STP EPS Data (hex) Data (binary, LSB
first)

Parity

UART Registers

25-32 ADSP-BF54x Blackfin Processor Hardware Reference

Modem Control (UARTx_MCR) Registers
The modem control (UARTx_MCR) registers control the UART port, as
shown in Figure 25-9. Partial modem functionality is supported to allow
for hardware flow control and loopback mode.

Figure 25-9. UART Modem Control Registers

UART Modem Control Registers (UARTx_MCR)

Reset = 0x0000

0 - Forces pin UARTxRTS
to the-assertive state
1 - Forces pin UARTxRTS
to its assertive state

ARTS (Auto UARTxRTS gen-
eration for RX handshake)

MRTS (Manual Request to
Send)

LOOP_ENA (Loopback Mode Enable)

ACTS (Auto CTS operation
for TX handshake)

0 - Pins CTS, UARTxRTS are
negative
 assertive
1 - Pins CTS, RTS are positive
assertive

Disconnects RX from RSR, TX remains active
Internally redirects TX to RSR
Deasserts pin UARTxRTS
Disconnects pin CTS
Internally redirects bit MRTS of UARTx_MCR to
bit CTS of UART_MSR
Enable transmit/receive by setting MRTS bit.

FCPOL (Flow Control Pin
Polarity)

For Memory-
mapped
addresses,
see Table 25-6.

0 - Set RFCS=1 if RX buffer
 count >= 2
1 - Set RFCS=1 if RX buffer
 count >= 4

RFIT (Receive FIFO IRQ
Threshold)

(ignored if ARTS=0)
0 - De-assert RTS pin if
 RX buffer count >=2
 and detect another
 start bit; assert RTS pin
 after an UARTx_RBR
 read and the RX buffer
 count < 2.
1 - De-assert RTS pin if
 RX buffer count >=4
 and detect another
 start bit; assert RTS pin
 after an UARTx_RBR
 read and the RX buffer
 count < 4.

RFRT (Receive FIFO RTS
Threshold)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

XOFF (Transmitter off)
(ignored if ACTS=1)
0 - Enable transmission
1 - Prevent content of
 UARTx_THR to be
 continued to TSR if
 ACTS=0

ADSP-BF54x Blackfin Processor Hardware Reference 25-33

UART Port Controllers

The receive FIFO interrupt threshold (RFIT) bit controls the timing of the
RFCS status bit. If RFIT = 0, the receive threshold is two. If RFIT = 1, the
threshold is four words in the receive buffer.

The manual request to send (MRTS) bit controls the state of the UARTxRTS
output pin only if ARTS = 0. A value of MRTS = 0 forces the UARTxRTS pin to
its de-assertive state, signaling to the external device that the UART is not
ready to receive. A value of MRTS = 1 forces the UARTxRTS pin to its assertive
state, signaling to the external device that the UART is ready to receive.

The automatic RTS (ARTS) bit enables the receive buffer to control the
RTS output depending on the threshold programmed by the RFTR bit. If
RFRT = 0, the RTS signal is de-asserted when already two words are held by
the receive buffer and a third start bit is detected. It is re-asserted if the
buffer contains less than two words. If RFRT = 1, the RTS signal is
de-asserted when already four words are held by the receive buffer and a
fifth start bit is detected. The RTS signal is re-asserted if the buffer contains
less than four words.

Similarly, the automatic CTS (ACTS) bit must be set to enable the CTS
input pin for UARTxTX handshaking. If enabled, the CTS status bit in the
UARTx_MSR register holds the value (if FCPOL = 1) or complement value (if
FCPOL = 0) of the CTS input pin. The CTS status bit can be used to deter-
mine if the external device is ready to receive data (CTS = 1) or if it is busy
(CTS = 0). If ACTS = 0, the UARTxTX handshaking protocol is disabled,
and the UARTxTX line transmits data whenever there is data to send,
regardless of the value of CTS. The transmitter off (XOFF) bit can be used to

Table 25-6. UART Modem Control Register Memory-mapped Addresses

Register Name Memory-mapped Address

UART0_MCR 0xFFC0 0410

UART1_MCR 0xFFC0 2010

UART2_MCR 0xFFC0 2110

UART3_MCR 0xFFC0 3110

UART Registers

25-34 ADSP-BF54x Blackfin Processor Hardware Reference

pause an on-going transmission by software when ACTS = 0. Similarly to
automatic CTS mode, the XOFF bit prevents the data in the UARTx_THR reg-
ister from being continued to the TSR shift register. When ACS = 1, the
XOFF bit is ignored. When ACTS = 0, the state of the CTS input signal is
ignored.

The polarities of the UARTxCTS and UARTxRTS pins can be programmed
using the FCPOL bit. If FCPOL = 0, the pins are negative asserted. If
FCPOL = 1, the pins are positive asserted.

Loopback mode (LOOP_ENA = 1) disconnects the receiver’s input from the
UARTxRX pin, and internally redirects the transmit output to the receiver.
The UARTxTX pin remains active and continues to transmit data externally
as well. Loopback mode also forces the UARTxRTS pin to its de-assertive
state, disconnects the UARTxCTS bit from the UARTxCTS input pin, and
directly connects bit MRTS to bit UARTxCTS of the modem status register
(UARTx_MSR). In loopback mode, writing a 1 to the MRTS bit sets bit UARTx-
CTS, DCTS and enable the UART’s transmitter. Writing a 0 to the MRTS bit
clears bit UARTxCTS and disable the UART’s transmitter.

Line Status (UARTx_LSR) Registers
The line status (UARTx_LSR) registers contain UART status information as
shown in Figure 25-10. Unlike the industrial standard, the ADSP-BF54x
processor processor’s UARTx_LSR register is not read only. Writes to this
register can perform write-one-to-clear (W1C) operations on most status
bits. Reading this register has no side effects.

ADSP-BF54x Blackfin Processor Hardware Reference 25-35

UART Port Controllers

The DR (data ready) bit indicates that data is available in the receiver and
can be read from the UARTx_RBR register. The bit is set by hardware when
the receiver detects the first valid stop bit. It is cleared by hardware when
the UARTx_RBR register is read.

The OE (overrun error) bit indicates that further data is received while the
internal receive buffer was full. It is set when sampling the stop bit of the
6th data word. To avoid overruns, read the UARTx_RBR register in time. In

Figure 25-10. UART Line Status Registers

Table 25-7. UART Line Status Register Memory-mapped Addresses

Register Name Memory-mapped Address

UART0_LSR 0xFFC0 0414

UART1_LSR 0xFFC0 2014

UART2_LSR 0xFFC0 2114

UART3_LSR 0xFFC0 3114

DR (Data Ready) - RO

TEMT (TSR and UARTx_THR Empty) - RO

UART Line Status Registers (UARTx_LSR)

0 - Full
1 - Both empty

0 - THR not empty
1 - THR empty

0 - No break interrupt
1 - Break interrupt; this

indicates UARTxRX was
held low for more than the max-
imum word length

BI (Break Interrupt) - W1C

THRE (THR Empty) - RO

FE (Framing Error) - W1C

0 - No new data
1 - UARTx_RBR holds

new data

OE (Overrun Error) - W1C
0 - No overrun
1 - Overrun error. Read
 buffers not overwritten.

PE (Parity Error) - W1C
0 - No parity error
1 - Parity error

0 - No error
1 - Invalid stop bit error

Reset = 0x0060

TFI (Transmission Finished Indicator) - W1C
0 - TEMT did not transition from 0 to 1
1 - TEMT transition from 0 to 1

For Memory-
mapped
addresses,
see Table 25-7.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

UART Registers

25-36 ADSP-BF54x Blackfin Processor Hardware Reference

DMA receive mode overruns are very unlikely to happen ever. Once an
overrun occurs, the UARTx_RBR and receive FIFO are protected from being
overwritten by new data until the OE bit is cleared by software. The con-
tent of receive shift register RSR, however, is lost as soon as the overrun
occurs. The OE bit is sticky and can be cleared by W1C operations.

The PE (parity error) bit indicates that the received parity bit does not
match the expected value. The PE bit is updated simultaneously with the
DR bit, that is, by the time the first stop bit is received or when data is
loaded from the receive FIFO to the UARTx_RBR register. The bit is sticky
and can be cleared by W1C operations. Invalid parity bits can be simu-
lated by setting the FPE bit in the UARTx_GCTL register.

The FE (framing error) bit indicates that the first stop bit is sampled. The
FE bit is updated simultaneously with the DR bit, that is, by the time the
first stop bit is received or when data is loaded from the receive FIFO to
the UARTx_RBR register. The bit is sticky and can be cleared by W1C oper-
ations. Invalid stop bits can be simulated by setting the FFE bit in the
UARTx_GCTL register.

The BI (break indicator) bit indicates that the first stop bit is sampled low
and the entire data word, including parity bit, consists of low bits only.
The BI bit is updated simultaneously with the DR bit, that is, by the time
the first stop bit is received or when data is loaded from the receive FIFO
to the UARTx_RBR register. The bit is sticky and can be cleared by W1C
operations.

The THRE (transmit hold register empty) bit indicates that the UART
transmit channel is ready for new data and software can write to
UARTx_THR. Writes to UARTx_THR clear the THRE bit. It is set again when
data is passed from UARTx_THR to the internal TSR register.

The TEMT (transmitter empty) bit indicates that both the UARTx_THR regis-
ter and the internal TSR register are empty. In this case the program is
permitted to write to the UARTx_THR register twice without losing data.

ADSP-BF54x Blackfin Processor Hardware Reference 25-37

UART Port Controllers

The TEMT bit can also be used as indicator that pending UART
transmission is completed. At that time it is safe to disable the UCEN bit or
to three-state the off-chip line driver.

The TFI (transmission finished indicator) bit is a sticky version of the TEMT
bit. While TEMT is automatically cleared by hardware when new data is
written to the UARTx_THR register, the sticky TFI bit remains set until it is
cleared by software (W1C). The TFI bit enables more flexible transmit
interrupt timing.

Modem Status (UARTx_MSR) Registers
The modem status (UARTx_MSR) registers, shown in Figure 25-12, contains
current states of the UART’s external UARTxCTS pin and current status of
the UART's internal receive buffers.

Figure 25-11. UART Modem Status Registers

SCTS (Sticky CTS) - W1C

UART Modem Status Registers (UARTx_MSR)

Reset = 0x0000

Holds value of input pin CTS (if FCPOL bit of UART_MCR=1)
Holds complement value of input pin CTS (if FCPOL=0)

CTS (Clear to Send) - RO

Set when CTS transitions
from 0 to 1.
Clear with a W1C operation.

For Memory-
mapped
addresses,
see Table 25-8.

When RFIT=0:
 0: receive buffer < 2 entries
 1: receive buffer >= 2 entries
When RFIT=1:
 0: receive buffer < 4 entries
 1: receive buffer >= 4 entries

RFCS (Receive FIFO Count Status) - RO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

UART Registers

25-38 ADSP-BF54x Blackfin Processor Hardware Reference

The UARTxCTS bit holds the value (if FCPOL = 1) or the complement value
(if FCPOL = 0) of the UARTxCTS input pin. The ACTS bit in the UARTx_MCR
register must be set to enable this feature. The core can read the value of
UARTxCTS to determine if the external device is ready to receive
(UARTxCTS = 1) or if it is busy (UARTxCTS = 0). If ACTS = 0, the UARTxTX
handshaking protocol is disabled, and the UART transmits data as long as
there is data to transmit, regardless of the value of UARTxCTS. When
ACTS = 0, the software can pause transmission temporarily by setting the
XOFF bit.

The SCTS bit is a sticky bit that is set high when UARTxCTS transitions from
0 to 1, and is cleared by software with a W1C operation. The SCTS bit can
trigger a line status interrupt if enabled by the EDSSI bit in the
UARTx_IER_SET register.

The receiver FIFO count status (RFCS) bit is set when the receive buffer
holds more or equal entries than a certain threshold. The threshold is con-
trolled by the RFIT bit in the UARTx_MCR register. If RFIT = 0, the threshold
is two entries. If RFIT = 1, the threshold is four entries. The RFCS bit
cleared when the UARTx_RBR register is read sufficient times until the buffer
is drained below the threshold. The RFCS bit can trigger a status interrupt
if enabled by the ERFCI bit in the UARTx_IER_SET register.

Table 25-8. UART Modem Status Register Memory-mapped Addresses

Register Name Memory-mapped Address

UART0_MSR 0xFFC0 0418

UART1_MSR 0xFFC0 2018

UART2_MSR 0xFFC0 2118

UART3_MSR 0xFFC0 3118

ADSP-BF54x Blackfin Processor Hardware Reference 25-39

UART Port Controllers

In loopback mode (LOOP_ENA = 1), the UARTxCTS bit is disconnected from
the UARTxCTS input pin. Instead, it is directly connected to the MRTS bit of
the UARTx_MCR register.

 Previous implementations of the UART did not have this register.
It is implemented to allow for hardware flow control between the
UART and an external device.

Transmit Hold (UARTx_THR) Registers
The write-only transmit hold (UARTx_THR) registers, shown in
Figure 25-12, is the UART’s transmit buffer. The THRE bit in the
UARTx_LSR registers indicate whether UARTx_THR is ready for new data.
Writes to UARTx_THR automatically propagate to the internal TSR register as
soon as TSR is ready. Then transmit operation is initiated immediately.

Figure 25-12. UART Transmit Holding Registers

Table 25-9. UART Transmit Holding Register Memory-mapped Addresses

Register Name Memory-mapped Address

UART0_THR 0xFFC0 0428

UART1_THR 0xFFC0 2028

UART2_THR 0xFFC0 2128

UART3_THR 0xFFC0 3128

Transmit Hold[7:0]

UART Transmit Holding Registers (UARTx_THR)
W

Reset = 0x0000For Memory-
mapped
addresses,
see Table 25-9.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

UART Registers

25-40 ADSP-BF54x Blackfin Processor Hardware Reference

Receive Buffer (UARTx_RBR) Registers
The read-only UARTx_RBR registers, shown in Figure 25-13, is the UART’s
receive buffer. It is updated by the internal RSR register when a complete
data word is received or when there is pending data in the receive FIFO.
Newly available data is signalled by the DR bit in the UARTx_LSR register.

Interrupt Enable (UARTx_IER_SET
and UARTx_IER_CLEAR) Registers

The interrupt enable register is not implemented as a data register. Instead
it is controlled by the UARTx_IER_SET and UARTx_IER_CLEAR register pair.
Writing ones to UARTx_IER_SET enables interrupts, writing
UARTx_IER_CLEAR disables them. Reads from either register return the
enabled bits. This way, different interrupt service routines can control
transmit, receive, and status interrupts independently and gracefully.

Figure 25-13. UART Receive Buffer Registers

Table 25-10. UART Receive Buffer Register Memory-mapped Addresses

Register Name Memory-mapped Address

UART0_RBR 0xFFC0 042C

UART1_RBR 0xFFC0 202C

UART2_RBR 0xFFC0 212C

UART3_RBR 0xFFC0 312C

Receive Buffer[7:0]

UART Receive Buffer Registers (UARTx_RBR)
RO

Reset = 0x0000For Memory-
mapped
addresses,
see Table 25-10.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 25-41

UART Port Controllers

The UARTx_IER registers, shown in Figure 25-14 and Figure 25-15, are
used to enable requests for system handling of empty or full states of
UART data registers. Unless polling is used as a means of action, the
ERBFI and/or ETBEI bits in this register are normally set.

Setting this register without enabling system DMA causes the UART to
notify the processor of data inventory state by means of interrupts. For
proper operation in this mode, system interrupts must be enabled, and
appropriate interrupt handling routines must be present.

 Each UART features three separate interrupt channels to handle
data transmit, data receive, and line status events independently,
regardless whether DMA is enabled or not. If no DMA channels
are assigned to the UART, set the EGLSI bit in the UARTx_GCTL
register to reroute transmit and receive interrupts to the status
interrupt output.

With system DMA enabled, the UART uses DMA to transfer data to or
from the processor. Dedicated DMA channels are available to receive and
transmit operation. Line error handling can be configured completely
independently from the receive/transmit setup.

UART Registers

25-42 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 25-14. UART Interrupt Enable Set Registers

Table 25-11. UART Interrupt Enable Set Register Memory-mapped
Addresses

Register Name Memory-mapped Address

UART0_IER_SET 0xFFC0 0420

UART1_IER_SET 0xFFC0 2020

UART2_IER_SET 0xFFC0 2120

UART3_IER_SET 0xFFC0 3120

ERBFI (Enable Receive Buf-
fer Full Interrupt)

UART Interrupt Enable Set Registers (UARTx_IER_SET)

ETBEI (Enable Transmit
Buffer Empty Interrupt)

ELSI (Enable RX Status
Interrupt)

0 - No interrupt
1 - Generate RX interrupt if

 DR bit in UARTx_LSR is
 set

0 - No interrupt
1 - Generate TX interrupt if

THRE bit in UARTx_LSR is
 set

0 - No interrupt
1 - Generate status interrupt

 if any of UARTx_LSR[4:1] is
 set

Reset = 0x0000

ETFI (Enable Transmission Finished Interrupt)

EDTPTI (Enable DMA TX Peripheral Triggered Interrupt)

EDSSI (Enable Modem Status Interrupt)

0 - No interrupt
1 - Generate status interrupt if

TFI bit in UARTx_LSR is set

0 - No interrupt
1 - Generate peripheral interrupt command (PIRQ)
 to DMA controller after the last byte from DMA

 is transmitted

0 - No interrupt
1 - Generate status interrupt

 if SCTS bit in UARTx_MSR is set

For Memory-
mapped
addresses,
see Table 25-11.

ERFCI (Enable Receive FIFO Count Interrupt)
0 - No interrupt
1 - Generate status interrupt if RFCS
 bit in UARTx_MSR is set

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 25-43

UART Port Controllers

The UART’s DMA is enabled by first setting up the system DMA control
registers and then enabling the UART ERBFI and/or ETBEI interrupts in
the UARTx_IER register. This is because the interrupt request lines double
as DMA request lines. Depending on whether DMA is enabled or not,
upon receiving these requests, the DMA control unit either generates a

Figure 25-15. UART Interrupt Enable Clear Registers

Table 25-12. UART Interrupt Enable Clear Register Memory-mapped
Addresses

Register Name Memory-mapped Address

UART0_IER_CLEAR 0xFFC0 0424

UART1_IER_CLEAR 0xFFC0 2024

UART2_IER_CLEAR 0xFFC0 2124

UART3_IER_CLEAR 0xFFC0 3124

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ERBFI (Enable Receive Buf-
fer Full Interrupt)

UART Interrupt Enable Clear Registers (UARTx_IER_CLEAR)

ETBEI (Enable Transmit
Buffer Empty Interrupt)

ELSI (Enable RX Status
Interrupt)

0 - No interrupt
1 - Generate RX interrupt if

 DR bit in UARTx_LSR is
 set

0 - No interrupt
1 - Generate TX interrupt if

THRE bit in UARTx_LSR is
set

0 - No interrupt
1 - Generate status interrupt

if any of UARTx_LSR[4:1]
 is set

Reset = 0x0000

ETFI (Enable Transmission Finished Interrupt)

EDTPTI (Enable DMA TX Peripheral Triggered Interrupt)

EDSSI (Enable Modem Status Interrupt)

0 - No interrupt
1 - Generate status interrupt if

 TFI bit in UARTx_LSR is set

0 - No interrupt
1 - Generate PIRQ command to DMA

 controller after the last byte from DMA
 is transmitted

0 - No interrupt
1 - Generate status interrupt

if SCTS bit in UARTx_MSR is set

For Memory-
mapped
addresses,
see Table 25-12.

ERFCI (Enable Receive FIFO Count Interrupt)
0 - No interrupt
1 - Generate status interrupt if RFCS
 bit in UARTx_MSR is set

UART Registers

25-44 ADSP-BF54x Blackfin Processor Hardware Reference

direct memory access or passes the UART interrupt on to the system inter-
rupt handling unit. However, UART’s error interrupt goes directly to the
system interrupt handling unit, bypassing the DMA unit completely.

The ELSI bit enables interrupt generation on an independent interrupt
channel when any of the following conditions are raised by the respective
bit in the UARTx_LSR register:

• Receive overrun error (OE)

• Receive parity error (PE)

• Receive framing error (FE)

• Break interrupt (BI)

The EDSSI bit enables a modem status interrupt on the same status inter-
rupt channel when the SCTS bit in the UARTx_MSR register is set. This
indicates CTS re-assertion. Write-1-to-clear (W1C) the SCTS bit to clear
the interrupt request.

The ERFCI bit enables the receive buffer threshold interrupt if signalled by
the RFCS bit. Read the UARTx_RBR register sufficient times to clear the
interrupt request.

The ETFI bit enables interrupt generation on the status interrupt channel
when both the transmit buffer register and transmit shift register are
empty as indicated by the TFI bit in the UARTx_LSR register. The ETFI
interrupt can be used to avoid expensive polling of the TEMT bit, when the
UART clock or line drivers should be disabled after transmission has com-
pleted. W1C the TFI bit to clear the interrupt request. In DMA operation,
the ETDPTI bit’s functionality might be preferred.

The ETDPTI bit is required for DMA transmit operation only. It enables
the DMA completion interrupt to be delayed until the data has left the
UART completely. If set, it can generate a DMA interrupt by the time the
TEMT bit goes high after the last DMA data word is transmitted.

ADSP-BF54x Blackfin Processor Hardware Reference 25-45

UART Port Controllers

If the ETDPTI bit is cleared, the DMA completion interrupt is generated
when either the last data word is transferred from memory to the DMA
FIFO (DMA’s SYNC bit cleared) or when the last word has left the DMA
FIFO (SYNC bit set). If ETDPTI is set, usually the DMA’s DI_EN is not set in
a STOP mode DMA. Thus, the normal completion interrupt is sup-
pressed. Rather, the TEMT event is signalled through the DMA controller
and triggers the DMA interrupt. If both, DI_EN and ETDPTI are set, two
interrupts are requested at the end of a STOP mode DMA.

 The UARTx_IIR registers are not present on this implementation.
Signalling interrupt sources can be identified by interrogating
UARTx_LSR and UARTx_MSR status registers.

UART Registers

25-46 ADSP-BF54x Blackfin Processor Hardware Reference

Clock Divisor Latch (UARTx_DLL
and UARTx_DLH) Registers

The two 8-bit clock divisor latch registers (UARTx_DLH and UARTx_DLL)
build a 16-bit clock divisor value. They divide the system clock SCLK down
to the bit clock. These registers are shown in Figure 25-16.

ADSP-BF54x Blackfin Processor Hardware Reference 25-47

UART Port Controllers

UART Registers

25-48 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 25-16. UART Divisor Latch Registers

Table 25-13. UART Divisor Latch Low Byte Register Memory-mapped
Addresses

Register Name Memory-mapped Address

UART0_DLL 0xFFC0 0400

UART1_DLL 0xFFC0 2000

UART2_DLL 0xFFC0 2100

UART3_DLL 0xFFC0 3100

Table 25-14. UART Divisor Latch High Byte Register Memory-mapped
Addresses

Register Name Memory-mapped Address

UART0_DLH 0xFFC0 0404

UART1_DLH 0xFFC0 2004

UART2_DLH 0xFFC0 2104

UART3_DLH 0xFFC0 3104

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Divisor Latch Low Byte[7:0]

Divisor Latch High Byte[15:8]

UART Divisor Latch Low Byte Registers (UARTx_DLL)

UART Divisor Latch High Byte Registers (UARTx_DLH)

Reset = 0x0001

Reset = 0x0000

For Memory-
mapped
addresses,
see Table 25-13.

For Memory-
mapped
addresses,
see Table 25-14.

ADSP-BF54x Blackfin Processor Hardware Reference 25-49

UART Port Controllers

 Note the 16-bit divisor formed by UARTx_DLH and UARTx_DLL resets
to 0x0001, resulting in high clock frequency by default. If the
UART is not used, disabling the UART clock saves power.

Note that the bit rate depends also on the EDBO bit in the UARTx_GCTL reg-
ister. Refer to “Bit Rate Generation” on page 25-18.

UART Scratch (UARTx_SCR) Registers
The contents of the 8-bit scratch (UARTx_SCR) registers, shown in
Figure 25-17, are reset to 0x00. They are used for general-purpose data
storage and do not control the UART hardware in any way.

Figure 25-17. UART Scratch Registers

Table 25-15. UART Scratch Register Memory-mapped Addresses

Register Name Memory-mapped Address

UART0_SCR 0xFFC0 041C

UART1_SCR 0xFFC0 201C

UART2_SCR 0xFFC0 211C

UART3_SCR 0xFFC0 311C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Scratch[7:0]

UART Scratch Registers (UARTx_SCR)

Reset = 0x0000For Memory-
mapped
addresses,
see Table 25-15.

UART Registers

25-50 ADSP-BF54x Blackfin Processor Hardware Reference

Global Control (UARTx_GCTL) Registers
The global control (UARTx_GCTL) registers, shown in Figure 25-18, contain
the enable bit for internal UART clocks and for the IrDA mode of opera-
tion of the UARTs.

Figure 25-18. UART Global Control Registers

Table 25-16. UART Global Control Register Memory-mapped Addresses

Register Name Memory-mapped Address

UART0_GCTL 0xFFC0 0408

UART1_GCTL 0xFFC0 2008

UART2_GCTL 0xFFC0 2108

UART3_GCTL 0xFFC0 3108

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

UCEN
0 - Disable UART
1 - Enable UART

Reset = 0x0000

IREN (Enable IrDA Mode)
0 - Disable IrDA
1 - Enable IrDA

FPE (Force Parity Error on Transmit)
0 - Normal operation
1 - Force error

FFE (Force Framing Error on Transmit)
0 - Normal operation
1 - Force error

UART Global Control Registers (UARTx_GCTL)

TPOLC (IrDA TX Polarity
Change)
0 - Serial line idles low
1 - Serial line idles high

RPOLC (IrDA RX Polarity Change)
0 - Serial line idles low
1 - Serial line idles high

EDBO (Enable Divide-by-One)
0 - Bit clock prescaler = 16
1 - Bit clock prescaler = 1

For Memory-
mapped
addresses,
see Table 25-16.

EGLSI (Enable Global LS Interrupt)
0 - TX and RX interrupts routed to
 normal interrupt outputs
1 - TX and RX interrupts redirected to
 status interrupt output

ADSP-BF54x Blackfin Processor Hardware Reference 25-51

UART Port Controllers

The UCEN bit enables the UART clocks. It also resets the state machine and
control registers when cleared. Note that the UCEN bit was not present in
previous UART implementations. It is introduced to save power if the
UART is not used. When porting code, be sure to enable this bit.

The IrDA TX polarity change bit and the IrDA RX polarity change bit are
effective only in IrDA mode. The two force error bits, FPE and FFE, are
intended for test purposes. They are useful for debugging software, espe-
cially in loopback mode.

The EDBO bit enables bypassing of the divide-by-16 prescaler in bit clock
generation. This improves bit rate granularity, especially at high bit rates.
See “Bit Rate Generation” on page 25-18. Do not set this bit in IrDA
mode.

The EGLSI bit redirects TX and RX interrupt requests to the status inter-
rupt output of the UART by ORing them with all other kinds of UART
status interrupt requests. Set this bit when no DMA channel is associated
with the UART. Enabling EGLSI disables the RX/TX interrupt channels
and negates the EDTPTI bit.

Programming Examples
The following programming examples show how to use the UART.

The subroutine in Listing 25-1 shows a typical UART initialization
sequence.

Listing 25-1. UART Initialization

/**

 * Configures UART in 8 data bits, no parity, 1 stop bit mode.

 * Input parameters: r0 holds divisor latch value to be

 * written into

 * DLH:DLL registers.

Programming Examples

25-52 ADSP-BF54x Blackfin Processor Hardware Reference

 * p0 contains the UARTx_GCTL register address

 * Return values: none

 ***/

uart_init:

 [--sp] = r7;

 r7 = UCEN (z); /* First of all, enable UART clock */

 w[p0+UART0_GCTL-UART0_GCTL] = r7;

 w[p0+UART0_DLL-UART0_GCTL] = r0; /* write lower byte to DLL
*/

 r7 = r0 >> 8;

 w[p0+UART0_DLH-UART0_GCTL] = r7; /* write upper byte to DLH
*/

 r7 = STB | WLS(8) (z); /* config to */

 w[p0+UART0_LCR-UART0_GCTL] = r7; /* 8 bits, no parity, 2
stop bits */

 r7 = [sp++];

 rts;

uart_init.end:

The subroutine in Listing 25-2 performs autobaud detection similarly to
UART boot.

Listing 25-2. UART Autobaud Detection Subroutine

/***

 * Assuming 8 data bits, this functions expects a '@'

 * (ASCII 0x40) character

 * on the UARTx RX pin. A Timer performs the autobaud detection.

 * Input parameters: p0 contains the UARTx_GCTL register address

 * p1 contains the TIMERx_CONFIG register

 * address

 * Return values: r0 holds timer period value (equals 8 bits)

ADSP-BF54x Blackfin Processor Hardware Reference 25-53

UART Port Controllers

***/

uart_autobaud:

 [--sp] = (r7:5,p5:5);

 r5.h = hi(TIMER0_CONFIG); /* for generic timer use calculate

*/

 r5.l = lo(TIMER0_CONFIG); /* specific bits first */

 r7 = p1;

 r7 = r7 - r5;

 r7 >>= 4; /* r7 holds the 'x' of TIMERx_CONFIG now */

 r5 = TIMEN0 (z);

 r5 <<= r7; /* r5 holds TIMENx/TIMDISx now */

 r6 = TRUN0 | TOVL_ERR0 | TIMIL0 (z);

 r6 <<= r7;

 CC = r7 <= 3;

 r7 = r6 << 12;

 if !CC r6 = r7; /* r6 holds TRUNx | TOVL_ERRx | TIMILx */

 p5.h = hi(TIMER_STATUS);

 p5.l = lo(TIMER_STATUS);

 w[p5 + TIMER_DISABLE - TIMER_STATUS] = r5; /* disable Timer x

*/

 [p5 + TIMER_STATUS - TIMER_STATUS] = r6; /* clear pending

latches */

 /* period capture, falling edge to falling edge */

 r7 = TIN_SEL | IRQ_ENA | PERIOD_CNT | WDTH_CAP (z);

 w[p1 + TIMER0_CONFIG - TIMER0_CONFIG] = r7;

 w[p5+TIMER_ENABLE-TIMER_STATUS] = r5;

uart_autobaud.wait: /* wait for timer event */

 r7 = w[p5 + TIMER_STATUS - TIMER_STATUS] (z);

 r7 = r7 & r5;

 CC = r7 == 0;

 if CC jump uart_autobaud.wait;

Programming Examples

25-54 ADSP-BF54x Blackfin Processor Hardware Reference

 w[p5 + TIMER_DISABLE - TIMER_STATUS] = r5; /* disable Timer x

*/

 [p5 + TIMER_STATUS - TIMER_STATUS] = r6; /* clear pending

latches */

 /* Save period value to R0 */

 r0 = [p1 + TIMER0_PERIOD - TIMER0_CONFIG];

 /* delay processing as autobaud character is still ongoing */

 r7 = OUT_DIS | IRQ_ENA | PERIOD_CNT | PWM_OUT (z);

 w[p1 + TIMER0_CONFIG - TIMER0_CONFIG] = r7;

 w[p5 + TIMER_ENABLE - TIMER_STATUS] = r5;

uart_autobaud.delay:

 r7 = w[p5 + TIMER_STATUS - TIMER_STATUS] (z);

 r7 = r7 & r5;

 CC = r7 == 0;

 if CC jump uart_autobaud.delay;

 w[p5 + TIMER_DISABLE - TIMER_STATUS] = r5;

 [p5 + TIMER_STATUS - TIMER_STATUS] = r6;

 (r7:5,p5:5) = [sp++];

 rts;

uart_autobaud.end:

The parent routine in Listing 25-3 performs autobaud detection using
UART0 and TIMER0.

Listing 25-3. UART Autobaud Detection Parent Routine

 p0.l = lo(PORTE_FER); /* function enable on UART0 pins PE7 and

PE8 and PF1 */

 p0.h = hi(PORTE_FER); /* by default PORTE_MUX register is all

set */

 r0 = PE8 | PE7 (z)

 w[p0] = r0;

 p0.l = lo(UART0_GCTL); /* select UART 0 */

ADSP-BF54x Blackfin Processor Hardware Reference 25-55

UART Port Controllers

 p0.h = hi(UART0_GCTL);

 p1.l = lo(TIMER0_CONFIG); /* select TIMER 0 */

 p1.h = hi(TIMER0_CONFIG);

 call uart_autobaud;

 r0 >>= 7; /* divide PERIOD value by (16 x 8) */

 call uart_init;

 ...

The subroutine in Listing 25-4 transmits a character by polling operation.

Listing 25-4. UART Character Transmission

/***

 * Transmit a single byte by polling the THRE bit.

 * Input parameters: r0 holds the character to be transmitted

 * p0 contains UARTx_GCTL register address

 * Return values: none

***/

uart_putc:

 [--sp] = r7;

uart_putc.wait:

 r7 = w[p0+UART0_LSR-UART0_GCTL] (z);

 CC = bittst(r7, bitpos(THRE));

 if !CC jump uart_putc.wait;

 w[p0+UART0_THR-UART0_GCTL] = r0; /* write initiates transfer

*/

 r7 = [sp++];

 rts;

uart_putc.end:

Use the routine shown in Listing 25-5 to transmit a C-style string that is
terminated by a null character.

Programming Examples

25-56 ADSP-BF54x Blackfin Processor Hardware Reference

Listing 25-5. UART String Transmission

/**

 * Transmit a null-terminated string.

 * Input parameters: p1 points to the string

 * p0 contains UARTx_GCTL register address

 * Return values: none

***/

uart_puts:

 [--sp] = rets;

 [--sp] = r0;

uart_puts.loop:

 r0 = b[p1++] (z);

 CC = r0 == 0;

 if CC jump uart_puts.exit;

 call uart_putc;

 jump uart_puts.loop;

uart_puts.exit:

 r0 = [sp++];

 rets = [sp++];

 rts;

uart_puts.end:

Note that polling the UART0_LSR register for transmit purposes does not
cause side effects on receive status bits as on former implementations.

In non-DMA interrupt operation, the three UART interrupt request lines
may or may not be ORed together in the SIC controller or by the EGLSI
control bit. If they had three different service routines, they may look as
shown in Listing 25-6.

ADSP-BF54x Blackfin Processor Hardware Reference 25-57

UART Port Controllers

Listing 25-6. UART Non-DMA Interrupt Operation

isr_uart_rx:

 [--sp] = astat;

 [--sp] = r7;

 r7 = w[p0+UART0_RBR-UART0_GCTL] (z);

 b[p4++] = r7;

 ssync;

 r7 = [sp++];

 astat = [sp++];

 rti;

isr_uart_rx.end:

isr_uart_tx:

 [--sp] = astat;

 [--sp] = r7;

 r7 = b[p3++] (z);

 CC = r7 == 0;

 if CC jump isr_uart_tx.final;

 w[p0+UART0_THR-UART0_GCTL] = r7;

 r7 = [sp++];

 astat = [sp++];

 ssync;

 rti;

isr_uart_tx.final:

 r7 = ETBEI (z) ;

 w[p0+UART0_IER_CLR] = r7; /* clear TX interrupt enable */

 ssync;

 r7 = [sp++];

 astat = [sp++];

 rti;

isr_uart_tx.end:

isr_uart_error:

Programming Examples

25-58 ADSP-BF54x Blackfin Processor Hardware Reference

 [--sp] = astat;

 [--sp] = (r7:6);

 r7 = w[p0+UART0_LSR-UART0_GCTL] (z);

 r6 = OE | BI | FE | PE (z);

 w[p0+UART0_LSR-UART0_GCTL] = r6;

 /* do something with the error */

 (r7:6) = [sp++];

 astat = [sp++];

 ssync;

 rti;

isr_uart_error.end:

Listing 25-7 transmits a string by DMA operation, waits until DMA com-
pletes and sends an additional string by polling. Note the importance of
the SYNC bit.

Listing 25-7. UART Transmission SYNC Bit Use

.section data;

.byte sHello[] = 'Hello Blackfin User',13,10,0;

.byte sWorld[] = 'How is life?',13,10,0;

.section program;

 ...

 p1.l = lo(IMASK);

 p1.h = hi(IMASK);

 r0.l = lo(isr_uart_tx); /* register service routine */

 r0.h = hi(isr_uart_tx); /* UART0 TX defaults to IVG10 */

 r0 = [p1 + IMASK - IMASK]; /* unmask interrupt in CEC */

 bitset(r0, bitpos(EVT_IVG10));

 [p1] = r0;

 p1.l = lo(SIC_IMASK0);

 p1.h = hi(SIC_IMASK0); /* unmask interrupt in SIC */

 r0.l = 0x8000;

 r0.h = 0x0000;

ADSP-BF54x Blackfin Processor Hardware Reference 25-59

UART Port Controllers

 [p1] = r0;

 [--sp] = reti; /* enable nesting of interrupts */

 p5.l = lo(DMA7_CONFIG); /* setup DMA in STOP mode */

 p5.h = hi(DMA7_CONFIG);

 r7.l = lo(sHello);

 r7.h = hi(sHello);

 [p5+DMA7_START_ADDR-DMA7_CONFIG] = r7;

 r7 = length(sHello) (z);

 r7+= -1; /* don't send trailing null character */

 w[p5+DMA7_X_COUNT-DMA7_CONFIG] = r7;

 r7 = 1;

 w[p5+DMA7_X_MODIFY-DMA7_CONFIG] = r7;

 r7 = FLOW_STOP | WDSIZE_8 | DI_EN | SYNC | DMAEN (z);

 w[p5] = r7;

 p0.l = lo(UART0_GCTL); /* select UART 0 */

 p0.h = hi(UART0_GCTL);

 r0 = ETBEI (z); /* enable and issue first request */

 w[p0+UART0_IER-UART0_GCTL] = r0;

wait4dma: /* just one way to synchronize with the service routine

*/

 r0 = w[p5+DMA7_IRQ_STATUS-DMA7_CONFIG] (z);

 CC = bittst(r0,bitpos(DMA_RUN));

 if CC jump wait4dma;

 p1.l=lo(sWorld);

 p1.h=hi(sWorld);

 call uart_puts;

forever: jump forever;

isr_uart_tx:

 [--sp] = astat;

Programming Examples

25-60 ADSP-BF54x Blackfin Processor Hardware Reference

 [--sp] = r7;

 r7 = DMA_DONE (z); /* W1C interrupt request */

 w[p5+DMA7_IRQ_STATUS-DMA7_CONFIG] = r7;

 r7 = ETBEI (z);

 w[p0+UART0_IER_CLEAR-UART0_GCTL] = r7;

 ssync;

 r7 = [sp++];

 astat = [sp++];

 rti;

isr_uart_tx.end:

ADSP-BF54x Blackfin Processor Hardware Reference 26-1

26 USB OTG CONTROLLER

This chapter describes the 6-pin USB OTG interface for the USB OTG
controller.

This chapter includes the following sections:

• “Overview” on page 26-1

• “Interface Overview” on page 26-3

• “Description of Operation” on page 26-12

• “Functional Description” on page 26-54

• “Programming Model” on page 26-56

• “USB OTG Registers” on page 26-97

• “References” on page 26-148

• “Glossary of USB Terms ” on page 26-148

Overview
The USB OTG controller provides a low-cost connectivity solution for
consumer mobile devices such as cell phones, digital still cameras and
MP3 players, allowing these devices to transfer data using a point-to-point
USB connection without the need for a personal computer host.

Overview

26-2 ADSP-BF54x Blackfin Processor Hardware Reference

The USB controller can operate in a traditional USB peripheral-only
mode as well as the host mode presented in the On-The-Go (OTG) sup-

plement1 to the USB 2.0 Specification2. In host mode, the USB module
supports transfers at high-speed (480Mbps), full-speed (12Mbps), and
low-speed (1.5Mbps) rates. Peripheral mode supports the high- and
full-speed transfer rates.

The USB controller uses a peripheral bus slave interface to access its con-
trol and status registers as well as read and write to the endpoint packet
buffers. Data is transferred to and from the USB controller through any of
the seven transmit and seven receive endpoint FIFOs, EP1 – EP7, provid-
ing a total of 14 data endpoints. A DCB/DEB bus master interface
provides eight DMA channels to provide a more efficient means of trans-
ferring large amounts of data between the controller and the Blackfin
processor's memory map.

Features
The USB controller provides the following features:

• low speed, full speed, high speed rates supported

• one bidirectional control endpoint

• seven transmit and seven receive unidirectional endpoints

• 7.232K Bytes of FIFOs for packet buffering

• eight DMA master channels

• three top-level maskable general purpose interrupts

• one asynchronous wakeup interrupt

1 On-The-Go Supplement to the USB 2.0 Specification, Rev 1.0a; June 24, 2003; USB-IF
2 Universal Serial Bus Specification 2.0

ADSP-BF54x Blackfin Processor Hardware Reference 26-3

USB OTG Controller

• VBUS control interrupts for external analog VBUS control

• software-controlled clock control on each endpoint for power
reduction

• session request protocol (SRP) and host negotiation protocol
(HNP) capability

• host transaction scheduling in hardware

• soft connect/disconnect feature

• full- and high-speed physical layer UTMI+ level 2 interface for
on-chip PHY

• backwards compatible with existing USB 1.1 hosts

The number of active endpoints at one time is only limited by device
requirements or system bandwidth, because each endpoint operates inde-
pendently from the next. The maximum buffer size per endpoint is 1024
bytes. Software determines the type of transfer for each endpoint individu-
ally and also the manner in which it is transferred between the USB
controller and memory (DMA or interrupt-based). Endpoint zero is used
solely for receive and transmit control transfers, which are used for device
configuration and information gathering.

Interface Overview
The USB controller operates in either of two USB operation modes
(peripheral or host mode) at a given time.

In peripheral mode, the USB controller encodes, decodes, checks, and
directs all USB packets sent and received, responding appropriately to
host requests. Data is transferred from the processor core memory into the
device’s TX FIFOs to be transmitted onto USB as IN packets. In the other
direction USB OUT packets are received into the RX FIFOs (having been

Interface Overview

26-4 ADSP-BF54x Blackfin Processor Hardware Reference

sent from the host) and transferred to system memory for processing or
storage. In peripheral mode, the USB controller acts as a slave device to
another USB host; either a personal computer or another OTG host con-
troller.

When operating in host mode, the USB controller uses simple hosting
capabilities to master point-to-point connections with another USB
peripheral, initiating transfers on the bus for the peripheral to respond.
USB IN packets are received into the RX FIFOs to be moved into the pro-
cessor core memory, and data written into TX FIFOs is transmitted onto
the bus as USB OUT packets. In this mode, the USB controller encodes,
decodes, and checks USB packets sent and received. The controller auto-
matically schedules isochronous and interrupt transfers from the endpoint
buffers such that one transaction is performed every n frames, where n
represents the polling interval programmed for the endpoint.

Figure 26-1 shows the main functional blocks within the USB controller
and its interfaces to the processor core, USB controller RAM, and USB
OTG PHY.

Any of the endpoints can be programmed to be written to or read from
using the DMA master channels to provide the most efficient means of
transferring data between the controller and on-chip memory. USB end-
points 0 through 7 have DMA interrupt lines (USB_DMAxINT) providing a
total of eight DMA request lines. Three top-level maskable interrupts are
provided, each of which can be sourced from any or all of transmit end-
point status, receive endpoint status or global USB status. Details of these
can be found in “Interrupts” on page 26-8.

The USB controller uses the peripheral bus to access control and status
registers and FIFOs from a slave perspective and to transfer data between
the USB engine and on-chip memory as a master. The MMR peripheral
data bus is 16-bits wide, the DMA DCB/DEB data bus is also 16-bits
wide. Using the 16-bit wide data bus, the USB controller to processor core
interface translates into either half word transfers (for both CSR and FIFO
addresses) or byte transfers (FIFO addresses only).

ADSP-BF54x Blackfin Processor Hardware Reference 26-5

USB OTG Controller

The USB controller’s RAM interface supports a single block of synchro-
nous single-port RAM used to buffer the USB packets. 7.232K bytes of
SRAM are available.

Figure 26-1. USB OTG Controller Block Diagram

INT/CLK
CONTROL

MMR SLAVE DECODE
AND DATA MUX

TX EP COUNT
REGISTERS

INTERRUPT
REGISTERS

COMMON
REGISTERS

FIFO DECODE
AND ARB

MMR
SLAVE

MASTER
CONTROL

DMA
REGISTERS

DMA
CHANNELS

DMA
CONTROLLER

CPU
INTERFACE

TRANSMIT (Tx)
ENDPOINTS

RECEIVE (Rx)
ENDPOINTS

HOST TRANSACTION
SCHEDULER

ENDPOINT CONTROL
AND COMBINE

ENDPOINT
CONTROL

CPU-SIDE
BUFFERS

CYCLE/PTR
CONTROL

RAM
INTERFACE

USB-SIDE
BUFFERS

ENDPOINT
RAM

PACKET
ENCODE/
DECODE

PACKET
CONTROL

CRC
GENERATE/

CHECK

HNP/SRP

HS
NEGOTIATE

DATA SYNC

TIMERS

MAIN
PROTOCOL

FSM

UTMI
SYNC AND
PROTOCOL

ENGINEUTMI INTERFACE

SRP WAKEUP
DETECTION

VBUS CONTROL

TO
UTMI PHY

PHY
CLK

ASYNC
WAKEUP

INTERRUPT

INTERRUPTS SYSTEM CLOCK
AND RESET

PAB BUS
SLAVE INTERFACE

DCB/DEB BUS
MASTER INTERFACE

Interface Overview

26-6 ADSP-BF54x Blackfin Processor Hardware Reference

The UTMI+ level 2 PHY interface provides a means of connecting a selec-
tion of high- or full-speed PHYs to the controller, from device-only PHYs
through full OTG compliant PHYs. The details of the PHY interface can
be found in “UTMI Interface” on page 26-56.

The USB controller requires a system clock frequency of greater than
30 MHz to operate correctly on USB.

 The USB controller must not be used if the system clock is operat-
ing at a clock frequency below 30 MHz.

The USB controller is configured as either a USB OTG 'A' device or
'B' device depending on the type of plug inserted into its USB receptacle.
This is determined by the state of the USB_ID (connector ID) pin.

The asynchronous wakeup circuit is used to detect when another
'B' device is asserting its D+ pull-up to initiate the SRP (session request
protocol) when all other clocks are off. This circuit requires a slow clock
(for example, 32kHz).

Before any endpoint register writes can be committed on endpoint zero,
or before control transfers take place, the GLOBAL_ENA bit of the
USB_GLOBAL_CTL register must be set in order to enable the system clock
for the control logic. Likewise, before any endpoints can be set up and
used to transfer data, the related control bit in the USB_GLOBAL_CTL register
must be set.

Use of the controller for OTG functionality requires the capability to
drive VBUS (as a default 'A' device powering the bus), to discharge VBUS
(speeding up the time for VBUS to fall below the SessionEnd threshold as
a 'B' device checking initial conditions), and to charge VBUS to 2.1V
(when initiating SRP as a 'B' device). These controls are driven from the
UTMI interface, but the controller also provides a separate interrupt regis-
ter, USB_OTG_VBUS_IRQ, which represents the drive VBUS, discharge
VBUS, and charge VBUS signaling. See “USB OTG VBUS Interrupt
(USB_OTG_VBUS_IRQ) Register” on page 26-136 for more informa-
tion on these controls.

ADSP-BF54x Blackfin Processor Hardware Reference 26-7

USB OTG Controller

FIFO Configuration
Each bidirectional endpoint (provided as two unidirectional endpoints)
has its own endpoint number (0 for control, 1–7 for data transfer).
Although two endpoints might use the same number, the endpoints may
support different transfer types. Each of these bidirectional endpoints has
a fixed region of the SRAM in the USB controller to which it has access,
and this feature dictates to some extent the types of transfers that may be
used for that particular endpoint. This restriction follows from the maxi-
mum size of USB packets, which varies with each transfer type.
Table 26-1 lists the endpoint FIFO configuration, with an indication of
the transfer types possible for that particular buffer size.

This configuration gives a total USB controller RAM size of 7232 bytes.

Each endpoint FIFO can buffer one or two packets (in double-buffered
mode). The double buffered mode is automatically enabled when the soft-
ware programs a maximum packet size for an endpoint that is equal to or
less than half the actual FIFO size for that endpoint. Double-buffering is
recommended for most applications to improve efficiency by reducing the
frequency with which each endpoint needs to be serviced. Double-buffer-
ing Bulk transactions means that data transfer over the USB is not slowed
if packets can be loaded/unloaded from the FIFO in the time it takes to
transfer a packet over the bus. Double-buffering Isochronous transactions

Table 26-1. FIFO Sizes and Transfer Types

Bidirectional Endpoint
 (RX and TX)

FIFO Size
(each direction)

USB Transfer Types

0 64 bytes Size fixed for Control transfers.

1–4 128 bytes Bulk, Interrupt, Isochronous

5–7 1024 bytes Bulk, Interrupt, Isochronous

Interface Overview

26-8 ADSP-BF54x Blackfin Processor Hardware Reference

also allows more time to load/unload the FIFO, but in addition, it also
allows the SOF interrupt to be used to service the endpoint rather than
the endpoint interrupt. This has the following advantages:

• easy detection of lost packets

• regular interrupt timing (making it easier to source/sink the data)

• If more than one Isochronous endpoint is used, they can all be ser-
viced with one interrupt.

Interrupts
Three active-high top-level interrupts are provided from the USB control-
ler: USB_INT0, USB_INT1 and USB_INT2. Each of these interrupts can be
routed through the programming of a global mask register (USB_GLOBINTR)
and can be sourced from control transfers, transmit (USB_INTRTX), and
receive (USB_INTRRX) endpoint activity, from a range of conditions on the
USB lines (USB_INTRUSB), or from requests for the USB controller to send
VBUS control signals to an external analog chip (USB_OTG_VBUS_IRQ). The
USB_INTRUSB and USB_OTG_VBUS_IRQ sources share the same interrupt line
and can not be routed separately (for example, USB_INTRTX and
USB_INTRRX). Finally, the DMA master channels use a separate interrupt,
USB_DMAxINT, to indicate when a master transfer is pending.

Figure 26-2 shows the various sources of interrupts in the USB controller
and how they are routed to the top-level interrupts using the
USB_GLOBINTR register.

ADSP-BF54x Blackfin Processor Hardware Reference 26-9

USB OTG Controller

Interrupts can be generated from control endpoint zero under the follow-
ing conditions:

• When a control transaction ends before the end of the data is
transferred.

• When a data packet is sent or received from the endpoint 0 FIFOs.

Figure 26-2. USB Interrupt Sources and Routing

USB_INTRTX[7–0]

USB_INTRTXE[7–0]

USB_INTRUSB[7–0]

USB_INTRUSBE[7–0]

USB_OTG_VBUS_IRQ[5–0]

USB_OTG_VBUS_MASK[5–0]

DMA0_INT

USB_DMA0CONTROL
[DMA_ENA]

USB_INTRRX[7–1]

USB_INTRRXE[7–1]

GLOBAL
INTERRUPT
ROUTING

USB_INT0

USB_INT1

USB_INT2

USB_DMAINT

DMA7_INT

USB_DMA7CONTROL
[DMA_ENA]

...

...

...

...

...

...

USB_INTRUSB

USB_INTRTX

USB_INTRRX

(USB_GLOBINTR)

Interface Overview

26-10 ADSP-BF54x Blackfin Processor Hardware Reference

Interrupts can be generated from transmit endpoints (USB_INTRTX) under
the following conditions:

• packet sent from the TX FIFO (host and peripheral mode)

• after three attempts at transmitting a packet with no valid hand-
shake packet received (host mode)

Interrupts can be generated from receive endpoints (USB_INTRRX) under
the following conditions:

• packet received into the RX FIFO (host and peripheral mode)

• when a STALL handshake is received (host mode)

• After three attempts at receiving a packet and no data packet is
received (host mode).

Interrupts can be generated from the USB status (USB_INTRUSB) under the
following conditions:

• When VBUS drops below the VBUS valid threshold during a ses-
sion ('A' device only).

• When SRP signalling is detected ('A' device only).

• When device disconnect is detected (host mode).

• When a session ends (peripheral mode).

• Device connection detected (host mode).

• Start-of-frame (SOF)

• Reset signalling detected on USB (peripheral mode).

• Babble detected (host mode).

ADSP-BF54x Blackfin Processor Hardware Reference 26-11

USB OTG Controller

• In suspend mode when resume signalling detected on USB.

• When suspend signalling is detected (peripheral mode).

Interrupts are generated for the following VBUS control requests by the
USB controller:

• drive VBUS greater than 4.4V (Default 'A' device)

• stop driving VBUS

• start charging VBUS (peripheral mode)

• stop charging VBUS

• start discharging VBUS (peripheral mode)

• stop discharging VBUS

Resets
The USB controller includes an active-high synchronous hardware reset
sourced from the processor core. Another source of peripheral reset is
through the USB, when USB reset signaling is detected on the I/O lines.
As dictated by the USB 2.0 Specification, this state is entered when both
the D+ and D– inputs are driven low for a period of 2.5 µs or more
(though the reset itself is held for typically greater than 10ms by the USB
host).

When a USB reset is detected, the USB controller performs the following
actions:

• USB_FADDR register set to zero

• USB_INDEX register set to zero

• all endpoint FIFOs flushed

• all control and status registers cleared

Description of Operation

26-12 ADSP-BF54x Blackfin Processor Hardware Reference

• all interrupts enabled

• reset interrupt generated

The USB_INTRUSB, USB_OTG_VBUS_IRQ, USB_GLOBINTR, and USB_GLOBAL_CTL
registers are not affected by the USB controller reset. These registers are
only reset (along with those listed above) during a system reset.

Description of Operation
The USB OTG interface may operate in peripheral mode or host mode.

When the USB controller is operating in peripheral mode, the controller
may be attached to a conventional host (such as a personal computer) or
another OTG device operating in host mode. The second device can be
high-speed or full-speed. When linked to another peripheral device, the
USB controller can also act as the host, and if the other device is also a
dual role controller, the two devices can switch roles as required.

The role taken by the USB controller depends on the way the devices are
cabled together. Each USB cable has an 'A' and a 'B' device end. If the 'A'
end of the cable is plugged into the device containing the USB controller,
the USB controller takes the role of the host device and goes into host
mode (in this case the HOST_MODE bit is set to 1). If the 'B' of the cable is
plugged in, the USB controller goes instead into peripheral mode (and the
HOST_MODE bit remains at 0).

When both devices contain dual role controllers, signaling may be used to
switch the roles of the two devices, without switching the cable connecting
the two devices. The conditions under which the USB controller may
switch between peripheral and host mode are detailed in “Host Negotia-
tion/Configuration” on page 26-82.

ADSP-BF54x Blackfin Processor Hardware Reference 26-13

USB OTG Controller

Peripheral Mode Operation
USB OTG interface operations for the peripheral mode differ from host
mode in a number of ways. The following sections describe peripheral
mode operations.

Endpoint Setup

In peripheral mode, there are a few endpoint-specific configuration bits
that are used when setting up an endpoint for transfer for all types of
peripheral transfer. They determine how the processor core interacts with
the endpoint FIFO.

One key parameter required before transfer can occur through an end-
point is the maximum USB packet size that the endpoint can support.
This value is set by the software and depends on a variety of system con-
straints. These include the size of hardware FIFO available and system
latencies as well as the USB transfer type and class being used. The
USB_TX_MAX_PACKET or USB_RX_MAX_PACKET defines the maximum amount
of data that can be transferred to the selected endpoint in a single frame,
and the value must match the programmed maximum individual packet
size (MaxPktSize) of the standard endpoint descriptor for the endpoint.
For TX endpoints, the maximum packet size is programmed using the
USB_TX_MAX_PACKET. For RX endpoints, the USB_RX_MAX_PACKET register is
used. The maximum packet size must not exceed the actual hardware end-
point FIFO size (see Table 26-1 on page 26-7). Because the USB
controller uses a 16-bit interface, the value chosen for MaxPktSize should
be an even number, as this selection simplifies transferring data between
FIFOs and processor core.

If the size of the endpoint FIFO being used is at least twice the
USB_RX_MAX_PACKET or USB_TX_MAX_PACKET, double buffering is automati-
cally enabled for that endpoint.

Description of Operation

26-14 ADSP-BF54x Blackfin Processor Hardware Reference

Additional setup parameters are configured using the USB_RXCSR or
USB_TXCSR register (depending on whether the endpoint in question is RX
or TX). The DMA_ENA bit in this register is used to enable the assertion of
the appropriate DMA request whenever the endpoint is able to receive or
transmit another packet. The AUTOCLEAR_R and AUTOSET_R/T bits can be
used to automatically set the FIFO ready triggers (RXPKTRDY and TXPKTRDY)
whenever a packet is transferred to streamline DMA operation for trans-
fers that span multiple packets. Refer to the descriptions in “USB OTG
Registers” on page 26-97 for more details on the endpoint control and sta-
tus registers.

IN Transactions as a Peripheral

When the USB controller is operating in peripheral mode, data for IN
transactions is handled through the TX FIFOs. The maximum size of data
packet that may be placed in a TX endpoint’s FIFO for transmission is
programmable and (where applicable) is determined by the value written
to the USB_TX_MAX_PACKET register for that endpoint (maximum payload
multiplied by the number of transactions per micro-frame).

The maximum packet size set for any endpoint must not exceed the FIFO
size (see Table 26-1 on page 26-7).

 The USB_TX_MAX_PACKET register should not be written-to while
there is data in the FIFO, as unexpected results may occur.

If the size of the TX endpoint FIFO is less than twice the maximum
packet size for this endpoint (as set in the USB_TX_MAX_PACKET register),
only one packet can be buffered in the FIFO and single packet buffering is
enabled. As each packet to be sent is loaded into the TX FIFO, the
TXPKTRDY bit in USB_TXCSR needs to be set. If the AUTOSET_T bit in
USB_TXCSR is set, the TXPKTRDY bit is automatically set when a maxi-
mum-sized packet is loaded into the FIFO. For packet sizes less than the
maximum, TXPKTRDY always has to be set manually (for example, set by the
processor core).

ADSP-BF54x Blackfin Processor Hardware Reference 26-15

USB OTG Controller

When the TXPKTRDY bit is set, either manually or automatically, the
FIFO_NOT_EMPTY_T bit in USB_TXCSR is also set and the packet is ready to be
sent. When the packet is successfully sent, both TXPKTRDY and
FIFO_NOT_EMPTY_T are cleared and the appropriate TX endpoint interrupt
is generated (if enabled). The next packet can then be loaded into the
FIFO.

If the size of the TX endpoint FIFO is at least twice the maximum packet
size for this endpoint (as set in the USB_TX_MAX_PACKET), two packets can
be buffered in the FIFO and double packet buffering is enabled. As each
packet to be sent is loaded into the TX FIFO, the TXPKTRDY bit in
USB_TXCSR needs to be set. If the AUTOSET_T bit in USB_TXCSR is set, the
TXPKTRDY bit automatically is set when a maximum-sized packet is loaded
into the FIFO. For packet sizes less than the maximum, TXPKTRDY always
has to be set manually (for example, set by the processor core). When the
TXPKTRDY bit is set, either manually or automatically, the
FIFO_NOT_EMPTY_T bit in USB_TXCSR also is set. TXPKTRDY is then immedi-
ately cleared (and an interrupt generated, if enabled). A second packet can
now be loaded into the TX FIFO and TXPKTRDY set again (either manually
or automatically if the packet is the maximum size). Both packets are now
ready to be sent.

When the first packet is successfully sent, TXPKTRDY is cleared and the
appropriate TX endpoint interrupt is generated (if enabled) to signal that
another packet can now be loaded into the TX FIFO. The state of the
FIFO_NOT_EMPTY_T bit at this point indicates how many packets may be
loaded. If the FIFO_NOT_EMPTY_T bit is set then there is another packet in
the FIFO and only one more packet can be loaded. If the
FIFO_NOT_EMPTY_T bit is cleared then there are no packets in the FIFO and
two more packets can be loaded.

OUT Transactions as a Peripheral

When the USB controller is operating in peripheral mode, data for OUT
transactions is handled through the USB controller’s RX FIFOs.

Description of Operation

26-16 ADSP-BF54x Blackfin Processor Hardware Reference

The maximum amount of data received by an RX endpoint in any frame
or micro-frame (in high-speed mode) is programmable and is determined
by the value written to the USB_EP_NIx_RXMAXP register for that endpoint.
This is the maximum payload multiplied by the number of transactions
per micro-frame (where applicable). The maximum packet size must not
exceed the FIFO size (see Table 26-1 on page 26-7).

If the size of the RX endpoint FIFO is less than twice the maximum
packet size for this endpoint (as set in the USB_RX_MAX_PACKET register),
only one data packet can be buffered in the FIFO and single packet buff-
ering is enabled. When a packet is received and placed in the RX FIFO,
the RXPKTRDY bit and the FIFO_FULL_R bit in USB_RXCSR are set and the
appropriate RX endpoint interrupt is generated (if enabled) to signal that
a packet can now be unloaded from the FIFO. After the packet is
unloaded, the RXPKTRDY bit needs to be cleared in order to allow further
packets to be received. If the AUTOCLEAR_R bit in USB_RXCSR is set and a
maximum-sized packet is unloaded from the FIFO, the RXPKTRDY bit is
cleared automatically. The FIFO_FULL_R bit is also cleared. For packet sizes
less than the maximum, RXPKTRDY always has to be cleared manually (for
example, set by the processor core).

If the size of the RX endpoint FIFO is at least twice the maximum packet
size for the endpoint, two data packets can be buffered and double packet
buffering is enabled. When the first packet to be received is loaded into the
RX FIFO, the RXPKTRDY bit in USB_RXCSR is set and the appropriate RX
endpoint interrupt is generated (if enabled) to signal that a packet can
now be unloaded from the FIFO. Note that the FIFO_FULL_R bit in
USB_RXCSR is not set at this point. This bit is only set if a second packet is
received and loaded into the RX FIFO.

After the first packet is unloaded, RXPKTRDY needs to be cleared in order to
allow further packets to be received. If the AUTOCLEAR_R bit in USB_RXCSR is
set and a maximum-sized packet is unloaded from the FIFO, the RXPKTRDY

ADSP-BF54x Blackfin Processor Hardware Reference 26-17

USB OTG Controller

bit is cleared automatically. For packet sizes less than the maximum,
RXPKTRDY always has to be cleared manually (for example, set by the pro-
cessor core).

If the FIFO_FULL_R bit was set to 1 when RXPKTRDY is cleared, the USB
controller first clears the FIFO_FULL_R bit. The controller then sets
RXPKTRDY again to indicate that there is another packet waiting in the
FIFO to be unloaded.

Peripheral Transfer Workflows

The USB transfer types (control, bulk, isochronous and interrupt trans-
fers) each have significantly different system requirements as well as
individual USB transfer-specific features. This dictates that they are each
dealt with slightly differently in software. For these reasons, there is no
uniform way of doing transfers across all transfer types on the USB con-
troller.

The following section provides some guideline peripheral mode transfer
flows for each of the transfer types, in both IN (TX) and OUT (RX) direc-
tions. In the case of bulk endpoints, the optimal transfer flow differs
depending on whether the final size of the transfer is known or unknown.
Whether the transfer size is known or not depends on the USB driver class
being used. Some define the complete transfer size, and others operate on
a packet-by-packet basis using a short packet (a packet of less than
USB_TX_MAX_PACKET or less than USB_RX_MAX_PACKET) to denote the end of
a transfer.

Each of the workflows use the following common method.

1. Configure the endpoint control and status registers and the
USB_TX_MAX_PACKET or USB_RX_MAX_PACKET value.

2. Configure the appropriate data transfer mechanism (DMA or
interrupt setup).

3. Data transfer phase

Description of Operation

26-18 ADSP-BF54x Blackfin Processor Hardware Reference

The workflows do not describe the USB controller’s actions immediately
preceding the endpoint setup (for example, the reception of an IN/OUT
token from the host, token validity checking, or NAK generation, among
others). Note also that there is currently no error-handling contained in
the workflows (for example, checking FIFO_FULL_R bit before writing
data).

The terms packets, frames and transfers are used in the proceeding sec-
tions with their strict USB definitions. (See the “Glossary of USB Terms ”
on page 26-148 for these definitions.)

Control Transactions as a Peripheral

Endpoint 0 is the main control endpoint of the USB controller. As such,
the routines required to service Endpoint 0 are more complicated than
those required to service other endpoints.

The software is required to handle all the Standard Device Requests that
may be sent or received through Endpoint 0. These are described in Uni-
versal Serial Bus Specification, Revision 2.0, Chapter 9. The protocol for
these device requests involves different numbers and types of transactions
per transfer. To accommodate this, the processor needs to take a state
machine approach to command decoding and handling.

The Standard Device Requests received by a USB peripheral can be
divided into three categories: Zero Data Requests (in which all the infor-
mation is included in the command), Write Requests (in which the
command will be followed by additional data), and Read Requests (in
which the device is required to send data back to the host).

This section looks at the sequence of actions that the software must per-
form to process these different types of device request.

 The Setup packet associated with a Standard Device Request
should include an 8-byte command. A Setup packet containing a
command field of anything other than 8 bytes will be automatically
rejected by the USB controller.

ADSP-BF54x Blackfin Processor Hardware Reference 26-19

USB OTG Controller

Write Requests

Write requests involve an additional packet (or packets) of data being sent
from the host after the 8-byte command. An example of a ‘Write’ Stan-
dard Device Request is: SET_DESCRIPTOR.

The sequence of events will begin, as with all requests, when the software
receives an Endpoint 0 interrupt. The RxPktRdy bit will also have been set.
The 8-byte command should then be read from the Endpoint 0 FIFO and
decoded.

As with a zero data request, the USB_CSR0 register should then be written
to set the ServicedRxPktRdy bit (indicating that the command is read
from the FIFO) but in this case the DataEnd bit should not be set (indicat-
ing that more data is expected).

When a second Endpoint 0 interrupt is received, the USB_CSR0 register is
read to check the endpoint status. The RxPktRdy bit is set to indicate that
a data packet is received. The USB_COUNT0 register should then be read to
determine the size of this data packet. The data packet can then be read
from the Endpoint 0 FIFO.

If the length of the data associated with the request (indicated by the
wLength field in the command) is greater than the maximum packet size
for Endpoint 0, further data packets will be sent. In this case, USB_CSR0 is
written to set the ServicedRxPktRdy bit, but the DataEnd bit should not be
set.

When all the expected data packets have been received, the USB_CSR0 regis-
ter is written to set the ServicedRxPktRdy bit and to set the DataEnd bit
(indicating that no more data is expected).

When the host moves to the status stage of the request, another
Endpoint 0 interrupt will be generated to indicate that the request has
completed. No further action is required from the software—the interrupt
is just a confirmation that the request completed successfully.

Description of Operation

26-20 ADSP-BF54x Blackfin Processor Hardware Reference

If the command is an unrecognized command, or for some other reason
cannot be executed, then when it has been decoded, the USB_CSR0 register
should be written to set the ServicedRxPktRdy bit and to set the
SendStall bit. When the host sends more data, the USB controller will
send a STALL to tell the host that the request was not executed. An
Endpoint 0 interrupt will be generated and the SentStall bit will be set.

If the host sends more data after the DataEnd has been set, then the USB
controller will send a STALL. An Endpoint 0 interrupt will be generated
and the SentStall bit will be set.

Read Requests

Read requests have a packet (or packets) of data sent from the function to
the host after the 8-byte command. Examples of Standard Device
Requests for Read are: GET_CONFIGURATION, GET_INTERFACE,
GET_DESCRIPTOR, GET_STATUS, SYNCH_FRAME.

The sequence of events will begin, as with all requests, when the software
receives an Endpoint 0 interrupt. The RxPktRdy bit in USB_CSR0 will also
have been set. The 8-byte command should then be read from the
Endpoint 0 FIFO and decoded. The USB_CSR0 register should then be
written to set the ServicedRxPktRdy bit (indicating that the command has
read from the FIFO).

The data to be sent to the host should then be written to the Endpoint 0
FIFO. If the data to be sent is greater than the maximum packet size for
Endpoint 0, only the maximum packet size should be written to the
FIFO. The USB_CSR0 register should then be written to set the TxPktRdy
bit (indicating that there is a packet in the FIFO to be sent). When the
packet has been sent to the host, another Endpoint 0 interrupt will be
generated and the next data packet can be written to the FIFO.

When the last data packet has been written to the FIFO, the USB_CSR0 reg-
ister should be written to set the TxPktRdy bit and to set the DataEnd bit
(indicating that there is no more data after this packet).

ADSP-BF54x Blackfin Processor Hardware Reference 26-21

USB OTG Controller

When the host moves to the status stage of the request, another
Endpoint 0 interrupt will be generated to indicate that the request has
completed. No further action is required from the software—the interrupt
is just a confirmation that the request completed successfully.

If the command is an unrecognized command, or for some other reason
cannot be executed, then when it has been decoded, the USB_CSR0 register
should be written to set the ServicedRxPktRdy bit and to set the
SendStall bit. When the host requests data, the USB controller will send
a STALL to tell the host that the request was not executed. An Endpoint 0
interrupt will be generated and the SentStall bit will be set.

If the host requests more data after DataEnd has been set, then the USB
controller will send a STALL. An Endpoint 0 interrupt will be generated
and the SentStall bit will be set.

Zero Data Requests

Zero data requests have all their information included in the 8-byte com-
mand and require no additional data to be transferred.

Examples of zero data Standard Device Requests are: SET_FEATURE,
CLEAR_FEATURE, SET_ADDRESS, SET_CONFIGURATION, SET_INTERFACE.

The sequence of events will begin, as with all requests, when the software
receives an Endpoint 0 interrupt. The RxPktRdy bit will also have been set.
The 8-byte command should then be read from the Endpoint 0 FIFO,
decoded and the appropriate action taken. For example if the command is
SET_ADDRESS, the 7-bit address value contained in the command is written
to the USB_FADDR register.

 When the host moves to the status stage it still addresses the device
with the default address, therefore the USB_FADDR should not be
written before the host moves to the status stage. In the next trans-
action the host will then use this new address to address the device.

Description of Operation

26-22 ADSP-BF54x Blackfin Processor Hardware Reference

The USB_CSR0 register should then be written to set the ServicedRxPktRdy
bit (indicating that the command is read from the FIFO) and to set the
DataEnd bit (indicating that no further data is expected for this request).

When the host moves to the status stage of the request, a second
Endpoint 0 interrupt will be generated to indicate that the request has
completed. No further action is required from the software—the second
interrupt is just a confirmation that the request completed successfully.

If the command is an unrecognized command, or for some other reason
cannot be executed, then when it is decoded, the USB_CSR0 register is writ-
ten to set the ServicedRxPktRdy bit and to set the SendStall bit. When
the host moves to the status stage of the request, the USB controller will
send a STALL to tell the host that the request was not executed. A second
Endpoint 0 interrupt will be generated and the SentStall bit will be set.

If the host sends more data after the DataEnd bit is set, then the USB con-
troller will send a STALL. An Endpoint 0 interrupt will be generated and
the SentStall bit will be set.

ENDPOINT 0 States

When the USB is operating as a peripheral, the Endpoint 0 control needs
three modes (IDLE, TX and RX shown in Figure 26-3) corresponding to
the different phases of the control transfer and the states Endpoint 0
enters for the different phases of the transfer (see “Endpoint 0 Service
Routine as Peripheral” on page 26-24).

The default mode on power-up or reset should be IDLE. The RxPktRdy bit
becoming set when Endpoint 0 is in IDLE state indicates a new device
request. Once the device request is unloaded from the FIFO, the USB
decodes the descriptor to find whether there is a data phase and, if so, the
direction of the data phase of the control transfer (in order to set the FIFO
direction).

ADSP-BF54x Blackfin Processor Hardware Reference 26-23

USB OTG Controller

Depending on the direction of the data phase, Endpoint 0 goes into either
TX state or RX state. If there is no data phase, Endpoint 0 remains in
IDLE state to accept the next device request.

Figure 26-3. Endpoint 0 Control States

IDLE

RX StateTX State

Sequence #3

Sequence #2Sequence #1

Sequence #3
Idle

Unload Device Request
and Clear RxPktRdy
and Set DataEnd

Sequence #1

Load FIFO and
Set TxPktRdy

Idle TX State Idle

Load FIFO and
Set TxPktRdy

Unload FIFO and
Clear RxPktRdy

Unload FIFO and
Clear RxPktRdy

Load FIFO and
Set TxPktRdy
and Set DataEnd

Unload FIFO and
Clear RxPktRdy
and Set DataEnd

Unload Device Request
and Clear RxPktRdy

Unload Device Request
and Clear RxPktRdy

Sequence #2

Idle RX State Idle

(NO DATA Phase)

In
te

rr
u

p
t

Setup

Setup

Status Phase
(OUT)

IN Data
Phase

IN Data
Phase

IN Data
Phase

In
te

rr
u

p
t

In
te

rr
u

p
t

In
te

rr
u

p
t

In
te

rr
u

p
t

In
te

rr
u

p
t

In
te

rr
u

p
t

In
te

rr
u

p
t

Setup
Status Phase

(IN)

Status Phase
(IN)

OUT Data
Phase

OUT Data
Phase

OUT Data
Phase

In
te

rr
u

p
t

In
te

rr
u

p
t

In
te

rr
u

p
t

In
te

rr
u

p
t

CPU actions

CPU actions

CPU actions

. . .

. . .

. . .

. . .

Description of Operation

26-24 ADSP-BF54x Blackfin Processor Hardware Reference

The processor needs to take different actions at the different phases of the
possible transfers (for example, “Loading the FIFO”, “Setting TxPktRdy”)
are indicated in Figure 26-3. Note that the USB changes the FIFO direc-
tion depending on the direction of the data phase, independently of the
processor.

Endpoint 0 Service Routine as Peripheral

An Endpoint 0 interrupt is generated:

• When the USB controller sets the RxPktRdy bit after a valid token
has been received and data has been written to the FIFO.

• When the USB controller clears the TxPktRdy bit after the data
packet in the FIFO has been successfully transmitted to the host.

• When the USB controller sets the SentStall bit after a control
transaction is ended due to a protocol violation.

• When the USB controller sets the SetupEnd bit because a control
transfer has ended before DataEnd is set.

The bits mentioned above, are in the USB_CSR0 register.

Whenever the Endpoint 0 service routine is entered, the firmware must
first check whether the current control transfer has been ended due to
either a STALL condition or a premature end-of-control transfer. If the
control transfer ends due to a STALL condition, the SentStall bit would
be set. If the control transfer ends due to a premature end-of-control
transfer, the SetupEnd bit would be set. In either case, the firmware should
abort processing the current control transfer and set the state to IDLE.

Once the firmware has determined that the interrupt was not generated by
an illegal bus state, the next action depends on the Endpoint state.

If Endpoint 0 is in IDLE state, the only valid reason an interrupt can be
generated is as a result of the core receiving data from the USB bus. The
service routine must check for this by testing the RxPktRdy bit. If this bit is

ADSP-BF54x Blackfin Processor Hardware Reference 26-25

USB OTG Controller

set, then the core has received a SETUP packet. This must be unloaded
from the FIFO and decoded to determine the action the core must take.
Depending on the command contained within the SETUP packet, End-
point 0 will enter one of three states:

• If the command is a single packet transaction (SET_ADDRESS,
SET_INTERFACE etc.) without a data phase, the endpoint will remain
in IDLE state.

• If the command has an OUT data phase (SET_DESCRIPTOR etc.), the
endpoint will enter RX state.

• If the command has an IN data phase (GET_DESCRIPTOR etc.), the
endpoint will enter TX state.

If the endpoint is in TX state, the interrupt indicates that the core has
received an IN token and data from the FIFO has been sent. The firmware
must respond to this either by placing more data in the FIFO if the host is

still expecting more data1 or by setting the DataEnd bit to indicate that the
data phase is complete. Once the data phase of the transaction has been
completed, Endpoint 0 should be returned to IDLE state to await the next
control transaction.

If the endpoint is in RX state, the interrupt indicates that a data packet
has been received. The firmware must respond by unloading the received
data from the FIFO. The firmware must then determine whether it has

received all of the expected data1. If it has, the firmware should set the
DataEnd bit and return Endpoint 0 to IDLE state. If more data is
expected, the firmware should set the ServicedRxPktRdy bit to indicate
that it has read the data in the FIFO and leave the endpoint in RX state.

1 Command transactions all include a field that indicates the amount of data the host expects to receive
or is going to send.

Description of Operation

26-26 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 26-4. Endpoint 0 Service Routine

SERVICE
ENDPOINT 0

READ
ENDPOINT 0 CSR

SENT STALL?

YES

CLEAR SENT/STALL BIT
STATE = IDLE

NO

NO

YES

SET
SERVICEDSETUPEND

STATE = IDLE

SETUP
END?

YES

YES

YES

NO

NO

NO

STATE = IDLE? IDLE MODE

TX MODE

RX MODE

STATE = TX?

STATE = RX*

* = BY DEFAULT

ADSP-BF54x Blackfin Processor Hardware Reference 26-27

USB OTG Controller

Idle Mode

The Endpoint 0 control must select the IDLE mode at power-on or reset.
The Endpoint 0 control should return to this mode when the RX and TX
modes are terminated.

This is also the mode in which the SETUP phase of control transfer is
handled (see Figure 26-5 on page 26-27).

Figure 26-5. Endpoint 0 Idle Mode (Setup Phase)

Yes

Process command

Set ServicedRxPktRdy
Set DataEnd

Unload FIFO

Decode command

Set
ServicdRxPktRdy

State = Tx
Yes

State = RX

IDLE Mode

Return

Return

Return

Data Phase
= IN?

Command
has

Data Phase?

No

Yes
Return

No

No

RxPktRdy
set?

Description of Operation

26-28 ADSP-BF54x Blackfin Processor Hardware Reference

TX Mode

When the endpoint is in TX state, all arriving IN tokens need to be
treated as part of a data phase until the required amount of data has been
sent to the host. If either a SETUP or an OUT token is received while the
endpoint is in the TX state, a SetupEnd condition would occur since the
core expects only IN tokens.

Three events can cause the TX mode to terminate before the expected
amount of data has been sent:

• The host sends an invalid token causing a SetupEnd bit set.

• The firmware sends a packet containing less than the maximum
packet size for Endpoint 0.

• The firmware sends an empty data packet.

Figure 26-6. Endpoint 0 TX Mode

TX Mode

Write
MaxP bytes

 to FIFO

Set TxPktRdy
and Set DataEnd

State = IDLE

Last Packet

Return

Set TxPktRdy

Yes

No

ADSP-BF54x Blackfin Processor Hardware Reference 26-29

USB OTG Controller

Until the transaction is terminated, when the firmware receives an inter-
rupt which indicates that a packet has been sent from the FIFO, it simply
loads the FIFO. An interrupt is generated when TxPktRdy is cleared.

When the firmware forces the termination of a transfer (by sending a short
or empty data packet), it should set the DataEnd bit to indicate to the core
that the data phase is complete and that the core should receive an
acknowledge packet next.

RX Mode

In RX mode, all arriving data should be treated as part of a data phase
until the expected amount of data has been received. If either a SETUP or
an IN token is received while the endpoint is in RX state, a SetupEnd con-
dition would occur since the core expects only OUT tokens.

Three events can cause the RX mode to terminate before the expected
amount of data has been received:

• The host sends an invalid token causing a SetupEnd bit set.

• The host sends a packet which contains less than the maximum
packet size for Endpoint 0.

• The host sends an empty data packet.

Until the transaction is terminated, when the firmware receives an inter-
rupt which indicates that new data has arrived (RxPktRdy bit set), it simply
needs to unload the FIFO and clear RxPktRdy by setting the
ServicedRxPktRdy bit.

When the firmware detects the termination of a transfer (by receiving
either the expected amount of data or an empty data packet), it should set
the DataEnd bit to indicate to the core that the data phase is complete and
that the core should receive an acknowledge packet next.

Description of Operation

26-30 ADSP-BF54x Blackfin Processor Hardware Reference

 If the last packet is not a multiple of four bytes it is strongly recom-
mended that the remainder (n bytes mod 4) be unloaded from the
FIFO using the byte addressing FIFO register (EP0 FIFO address +
4). This will prevent the USB controller from sending non-null
data during the status phase of the control transfer.

Figure 26-7. Endpoint 0 RX Mode

RX Mode

Read Count0
register (n)

Set ServicedRxPktRdy
and DataEnd
State = IDLE

Last Packet

Return

Set
ServicedRxPktRdy

Yes

No

Unload n Bytes
from FIFO

Yes Return

NoRxPktRdy
set?

ADSP-BF54x Blackfin Processor Hardware Reference 26-31

USB OTG Controller

Peripheral Mode, Bulk IN, Transfer Size Known

For this process, the maximum individual packet size (MaxPktSize) in
bytes and the complete transfer size (TxferSize) in bytes, must be known.

1. Load MaxPktSize into USB_TX_MAX_PACKET.

2. Set DMA_ENA = 1, AUTOSET_T = 1, ISO_T = 0, FRCDATATOG = 0 in
USB_TXCSR.

3. Load TxferSize into USB_TXCOUNT.

4. Configure the DMA controller to write full TxferSize/2 half words
into the corresponding TX FIFO address.

5. On each USB_DMAxINT transition, the DMA controller writes a new
packet into the FIFO. TXPKTRDY is automatically set when each new
packet is written.

6. Step 5 is repeated for each full packet of the transfer.

7. Even if the final packet is a short packet, the packet automatically
is detected by the USB controller (because USB_TXCOUNT is zero)
and TXPKTRDY is set.

Peripheral Mode, Bulk IN, Transfer Size Unknown

For this process, the maximum individual packet size (MaxPktSize) in
bytes is assumed to be an even number of bytes.

1. Load MaxPktSize into USB_TX_MAX_PACKET.

2. Set DMA_ENA = 1, AUTOSET_T = 1, ISO_T = 0, FRCDATATOG = 0 in
USB_TXCSR.

3. Configure the DMA controller to write MaxPktSize/2 half words
into the corresponding TX FIFO address on each USB_DMAxINT.

Description of Operation

26-32 ADSP-BF54x Blackfin Processor Hardware Reference

4. Set up an ISR, sensitive to the DMA work-block-complete inter-
rupt, that writes a remaining short packet into the TX FIFO using
processor core DMA. Then set TXPKTRDY or simply send a
zero-length packet by toggling TXPKTRDY.

5. On each USB_DMAxINT transition, the DMA controller writes a new
packet into the FIFO. TXPKTRDY automatically is set when each new
packet is written.

6. Step 5 is repeated for each full packet of the transfer.

7. The final short/zero-length packet is managed by the ISR from step
4.

Peripheral Mode, ISO IN, Small MaxPktSize

For this process, the maximum individual packet size (MaxPktSize) in
bytes is less than 128 bytes and is an even number of bytes. Double buffer-
ing is assumed to be enabled, and the auto set feature unused (because
packets are often less than MaxPktSize).

1. Load MaxPktSize into USB_TX_MAX_PACKET.

2. Set ISO_T = 1 in USB_TXCSR.

3. Preload the first two packets into the endpoint TX FIFO and set
TXPKTRDY (or alternatively use the USB_TXCOUNT feature that sets
TXPKTRDY after USB_TXCOUNT bytes have been loaded).

4. Set up an ISR, sensitive to the SOF_B interrupt, which writes a new
packet into the TX FIFO and sets TXPKTRDY.

5. Set SOF_B = 1 in USB_INTRUSBE to generate an interrupt on each
start-of-frame.

6. Step 5 is repeated for each ISO packet.

ADSP-BF54x Blackfin Processor Hardware Reference 26-33

USB OTG Controller

Peripheral Mode, ISO IN, Large MaxPktSize

For this process, the maximum individual packet size (MaxPktSize) in
bytes is greater than 128 bytes and is an even number of bytes. Double
buffering is assumed to be enabled, and the auto set feature unused
(because packets are often less than MaxPktSize).

1. Load MaxPktSize into USB_TX_MAX_PACKET.

2. Set ISO_T = 1 in USB_TXCSR.

3. Set ISO_UPDATE = 1 in USB_POWER to prevent initial packet loaded
into the FIFO from being transmitted on USB until the next 1ms
frame.

4. Load the total number of bytes for the first two packets into
USB_TXCOUNT.

5. Configure the DMA controller to pre-load the two packets (as half
words) into the corresponding TX FIFO address. TXPKTRDY auto-
matically is set by the USB controller when USB_TXCOUNT bytes have
been loaded.

6. Set up an ISR, sensitive to the SOF_B interrupt, which writes a new
packet into the TX FIFO by loading USB_TXCOUNT with the size of
the packet, then configuring the DMA controller to load the
packet.

7. Set SOF_B = 1 in USB_INTRUSBE to generate an interrupt on each
start-of-frame.

8. Step 7 is repeated for each ISO packet.

Description of Operation

26-34 ADSP-BF54x Blackfin Processor Hardware Reference

Peripheral Mode, Bulk OUT, Transfer Size Known

For this process, the maximum individual packet size (MaxPktSize) in
bytes and the complete transfer size (TxferSize) in bytes must be known.

1. Load MaxPktSize into USB_RX_MAX_PACKET.

2. Set DMA_ENA = 1, AUTOCLEAR_R = 1, ISO_R = 0, FRCDATATOG = 0,
DMAREQMODE_R = 0 in USB_RXCSR.

3. Configure the DMA controller to read the full TxferSize/2 half
words from the corresponding RX FIFO address.

4. On each USB_DMAxINT transition, the DMA controller reads
another packet from the FIFO. RXPKTRDY is automatically cleared
by the USB controller when each new packet is read.

5. Step 5 is repeated for each full packet of the transfer.

6. If TxferSize is not an exact multiple of MaxPktSize, the final
USB_DMAxINT transition causes the DMA controller to read out only
the short packet that remains.

Peripheral Mode, Bulk OUT, Transfer Size Unknown

For this process, the maximum individual packet size (MaxPktSize) in
bytes must be known.

1. Load MaxPktSize into USB_RX_MAX_PACKET.

2. Set DMA_ENA = 1, AUTOCLEAR_R = 1, ISO_R = 0, FRCDATATOG = 0,
DMAREQMODE_R = 1 in USB_RXCSR.

3. Set the appropriate EPx_RX_E bit in USB_INTRRXE.

4. Configure the DMA controller to read MaxPktSize/2 half words
from the corresponding RX FIFO address on each USB_DMAxINT
transition.

ADSP-BF54x Blackfin Processor Hardware Reference 26-35

USB OTG Controller

5. Set up an ISR, sensitive to the RX interrupt, which reads
USB_RXCOUNT and then transfers USB_RXCOUNT bytes (in half words)
from the RX FIFO to the processor core. Depending on the num-
ber of bytes in the FIFO, this can be performed by configuring the
DMA to read the data, or by reading it with the processor core.

6. On each USB_DMAxINT transition, the DMA controller reads a
packet from the FIFO. RXPKTRDY is automatically cleared by the
USB controller when each new packet is read.

7. Step 5 is repeated for each full packet of the transfer.

8. If a packet is received that is less than MaxPktSize, the RX inter-
rupt goes high, and the ISR from step 5 reads out the remaining
short packet.

Peripheral Mode, ISO OUT, Small MaxPktSize

For this process, the maximum individual packet size (MaxPktSize) in
bytes is less than 128 bytes, and double buffering is assumed to be
enabled.

1. Load MaxPktSize into USB_RX_MAX_PACKET.

2. Set ISO_R = 1 in USB_RXCSR.

3. Set up an ISR, sensitive to the SOF_B interrupt, that reads the
FIFO_FULL_R bit, reads the USB_RXCOUNT status register, and finally
removes one or two packets (equal to the USB_RXCOUNT number of
bytes) from the FIFO then clears RXPKTRDY.

4. Set SOF_B = 1 in USB_INTRUSBE to generate an interrupt on each
start-of-frame.

5. Step 4 is repeated for each ISO packet.

Description of Operation

26-36 ADSP-BF54x Blackfin Processor Hardware Reference

Peripheral Mode, ISO OUT, Large MaxPktSize

For this process, the maximum individual packet size (MaxPktSize) in
bytes is greater than 128 bytes, and double buffering is assumed to be
enabled.

1. Load MaxPktSize into USB_RX_MAX_PACKET.

2. Set ISO_R = 1 in USB_RXCSR.

3. Set up an ISR, sensitive to the SOF_B interrupt, that reads the
FIFO_FULL_R bit, reads the USB_RXCOUNT status register, and finally
configures the DMA controller to remove one or two packets
(equal to the USB_RXCOUNT number of bytes) from the FIFO.

4. Set up an ISR, sensitive to the DMA work-block-complete inter-
rupt to clear RXPKTRDY.

5. Set SOF_B = 1 in USB_INTRUSBE to generate an interrupt on each
start-of-frame.

6. Step 5 is repeated for each ISO packet.

Peripheral Mode Suspend

When no activity has occurred on the USB for 3 ms, the USB controller
enters suspend mode. If the suspend interrupt (SUSPEND_B) is enabled, an
interrupt is generated at this time.

When resume signaling is detected, the USB controller exits suspend
mode. If the RESUME_B interrupt is enabled, an interrupt is generated. The
processor core can also force the USB controller to exit suspend mode by
setting the RESUME_MODE bit in the USB_POWER register. When this bit is set,
the USB controller exits suspend mode and drives resume signaling onto
the bus. The processor core should clear this bit after 10 ms (a maximum
of 15 ms) to end resume signaling.

ADSP-BF54x Blackfin Processor Hardware Reference 26-37

USB OTG Controller

No RESUME_B interrupt is generated when suspend mode is exited by the
processor core.

Start-of-frame (SOF) Packets

When the USB controller is operating in peripheral mode, it should
receive a start-of-frame packet from the host every millisecond when in
full-speed mode, or every 125 microseconds when in high-speed mode.

When the SOF packet is received, the 11-bit frame number contained in
the packet is written into the USB_FRAME register and an output pulse, last-
ing one USB clock bit period, is generated on SOF_PULSE (internal USB
controller signal). A SOF_B interrupt is also generated (if enabled in the
USB_INTRUSBE register).

After the USB controller has started to receive SOF packets, the controller
expects one every millisecond (or 125 s when in high-speed mode). If no
SOF packet is received after 1.00358 ms (or 125.125 s), it is assumed
that the packet is lost. An SOF_PULSE (together with a SOF_B interrupt, if
enabled) is still generated though the USB_FRAME register is not updated.
The USB controller continues to generate an SOF_PULSE every millisecond
(or 125 s) and re-synchronizes these pulses to the received SOF packets
when these packets are successfully received again.

Soft Connect/Soft Disconnect

In peripheral mode, the USB controller can be programmed to switch
between normal mode and non-driving mode by setting or clearing the
SOFT_CONN bit of the USB_POWER register. When this SOFT_CONN bit is set
to 1, the USB controller is placed in its normal mode and the D+/D– lines
of the USB bus are enabled. When the SOFT_CONN bit is zero, the PHY is
put into non-driving mode and D+ and D– are three-stated. The USB
controller appears to have been disconnected from the USB bus.

Description of Operation

26-38 ADSP-BF54x Blackfin Processor Hardware Reference

After system reset, SOFT_CONN is cleared to 0. From that point, the USB
controller appears disconnected until the software has set SOFT_CONN to 1.
The application software can then choose when to set the PHY to its nor-
mal mode. Systems with a lengthy initialization procedure may use this to
ensure that initialization is complete and the system is ready to perform
enumeration before connecting to the USB.

Error Handling As a Peripheral

A control transfer may be aborted due to a protocol error on the USB, the
host prematurely ending the transfer, or if the function controller software
wishes to abort the transfer (for example, because it cannot process the
command).

The USB controller will automatically detect protocol errors and send a
STALL packet to the host under the following conditions:

1. The host sends more data during the OUT data phase of a write
request than was specified in the command. This condition is
detected when the host sends an OUT token after the DataEnd bit
is set.

2. The host requests more data during the IN data phase of a read
request than was specified in the command. This condition is
detected when the host sends an IN token after the DataEnd bit in
the USB_CSR0 register is set.

3. The host sends more than MaxPktSize data bytes in an OUT data
packet.

4. The host sends a non-zero length DATA1 packet during the status
phase of a read request.

When the USB controller has sent the STALL packet, it sets the SentStall
bit and generates an interrupt. When the software receives an Endpoint 0
interrupt with the SentStall bit set, it should abort the current transfer,
clear the SentStall bit, and return to the IDLE state.

ADSP-BF54x Blackfin Processor Hardware Reference 26-39

USB OTG Controller

If the host prematurely ends a transfer by entering the status phase before
all the data for the request is transferred, or by sending a new SETUP
packet before completing the current transfer, then the SetupEnd bit will
be set and an Endpoint 0 interrupt generated. When the software receives
an Endpoint 0 interrupt with the SetupEnd bit set, it should abort the cur-
rent transfer, set the ServicedSetupEnd bit, and return to the IDLE state.
If the RxPktRdy bit is set, this indicates that the host has sent another
SETUP packet and the software should then process this command.

If the software wants to abort the current transfer, because it cannot pro-
cess the command or has some other internal error, then it should set the
SendStall bit. The USB controller will then send a STALL packet to the
host, set the SentStall bit and generate an Endpoint 0 interrupt.

Stalls Issued to Control Transfers

In peripheral mode, the USB controller automatically issues a STALL hand-
shake to a control transfer under the following conditions:

1. The host sends more data during an OUT data phase of a control
transfer than was specified in the device request during the SETUP
phase. This condition is detected by the USB controller when the
host sends an OUT token (instead of an IN token) after the proces-
sor core has unloaded the last OUT packet and set DATAEND.

2. The host requests more data during an IN data phase of a control
transfer than was specified in the device request during the SETUP
phase. This condition is detected by the USB controller when the
host sends an IN token (instead of an OUT token) after the proces-
sor core has cleared TXPKTRDY and set DATAEND in response to the
ACK issued by the host to what should have been the last packet.

3. The host sends more than MaxPktSize data with an OUT data
token.

Description of Operation

26-40 ADSP-BF54x Blackfin Processor Hardware Reference

4. The host sends the wrong PID (packet identifier) for the OUT sta-
tus phase of a control transfer.

5. The host sends more than a zero length data packet for the OUT
status phase.

Zero Length OUT Data Packets in Control Transfers

A zero-length OUT data packet is used to indicate the end of a control
transfer. In normal operation, such packets should only be received after
the entire length of the device request is transferred (for example, after the
processor core has set DATAEND). If the host sends a zero-length OUT data
packet before the entire length of device request is transferred, this packet
signals the premature end of the transfer. In this case, the USB controller
automatically flushes any IN token loaded by processor core ready for the
data phase from the FIFO and sets SETUPEND.

Host Mode Operation
USB OTG interface operations in host mode differ from peripheral mode
in a number of ways. The following sections describe host mode
operations.

Endpoint Setup and Data Transfer

When the HOST_MODE bit is set to 1, the USB controller operates as a host
for point-to-point communications with another USB device. This second
device may be either a high-speed, full-speed, or low-speed USB function,
but it may not be a hub. Control, bulk, isochronous or interrupt transac-
tions are supported between the USB controller and the second device.

Transfers between the subsystem and endpoint FIFOs in host mode are
similar to peripheral mode. With this in mind, see many of the descrip-
tions of processor core to FIFO data transfer in “Peripheral Mode
Operation” on page 26-13.

ADSP-BF54x Blackfin Processor Hardware Reference 26-41

USB OTG Controller

Control Transaction as a Host

Host control transactions are conducted through Endpoint 0. The soft-
ware is required to handle all the Standard Device Requests that may be
sent or received through Endpoint 0 (as described in Universal Serial Bus
Specification, Revision 2.0, Chapter 9).

For a USB peripheral, there are three categories of Standard Device
Requests to be handled: Zero Data Requests (in which all the information
is included in the command), Write Requests (in which the command will
be followed by additional data), and Read Requests (in which the device is
required to send data back to the host).

Zero Data Requests comprise a SETUP command followed by an IN sta-
tus phase.

Write Requests comprise a SETUP command, followed by an OUT data
phase followed by an IN status phase.

Read Requests comprise a SETUP command, followed by an IN data
phase followed by an OUT status phase.

A timeout may be set to limit the length of time during which the USB
controller will retry a transaction that is continually NAKed by the target.

This limit can be between 2 and 215 frames/microframes and is set
through the USB_NAKLIMIT0 register.

The following sections look at the steps in different phases of a control
transaction to describe the actions of the core in issuing Standard Device
Requests.

 Before initiating transactions as a host, the USB_FADDR register
needs to be set to address the peripheral device. When the device is
first connected, USB_FADDR is set to zero. After a SET_ADDRESS com-
mand is issued, USB_FADDR is set to the target’s new address.

Description of Operation

26-42 ADSP-BF54x Blackfin Processor Hardware Reference

Setup Phase as a Host

The processor core driving the host device performs the following actions
for the SETUP phase of a control transaction.

1. Load the eight bytes of the required device request command into
the Endpoint 0 FIFO

2. Set SETUPPKT_H (bit 3)and TxPtRdy (bit 1) of the USB_CSR0 register.
These bits must be set together.

The USB controller then sends a SETUP token followed by the
8-byte command to Endpoint 0 of the addressed device, retrying as
necessary.

3. At the end of the attempt to send the data, the USB controller will
generate an Endpoint 0 interrupt (for example, set IntrTx.D0).
The processor core should then read USB_CSR0 to establish whether
the STALL_RECEIVED_H bit, the ERROR_H bit or the NAK_TIMEOUT_H
bit is set.

If STALL_RECEIVED_H is set, it indicates that the target did not
accept the command (for example, because it is not supported by
the target device) and so has issued a STALL response.

If ERROR_H is set, it means that the USB controller has tried to send
the SETUP packet and the following data packet three times with-
out getting a response.

If NAK_TIMEOUT_H is set, it means that the USB controller has
received a NAK response to each attempt to send the SETUP
packet, for longer than the time set in the USB_NAKLIMIT0 register.
The USB controller can then be directed either to continue trying
this transaction (until it times out again) by clearing the
NAK_TIMEOUT_H bit or to abort the transaction by flushing the FIFO
before clearing the NAK_TIMEOUT_H bit.

ADSP-BF54x Blackfin Processor Hardware Reference 26-43

USB OTG Controller

4. If none of STALL_RECEIVED_H, ERROR_H or NAK_TIMEOUT_H is set, the
SETUP phase is correctly acknowledged and the processor core
should proceed to the following IN data phase, OUT data phase or
IN status phase specified for the particular Standard Device
Request.

IN Data Phase as a Host

The processor core driving the host device performs the following actions
for the IN data phase of a control transaction.

1. Set REQPKT_H in USB_CSR0.

2. Wait while the USB controller sends the IN token and then
receives the required data back.

3. When the USB controller generates the Endpoint 0 interrupt (for
example, by setting EP0_TX in the USB_INTRTX register)—read
USB_CSR0 to establish whether the STALL_RECEIVED_H bit, the
ERROR_H bit, the NAK_TIMEOUT_H bit or RxPktRdy is set.

If STALL_RECEIVED_H is set, it indicates that the target has issued a
STALL response.

If ERROR_H is set, it means that the USB controller has tried to send
the required IN token three times without getting a response.

If NAK_TIMEOUT_H is set, it means that the USB controller has
received a NAK response to each attempt to send the IN token, for
longer than the time set in the USB_NAKLIMIT0 register. The USB
controller can then be directed either to continue trying this trans-
action (until it times out again) by clearing the NAK_TIMEOUT_H bit;
or to abort the transaction by clearing REQPKT_H before clearing the
NAK_TIMEOUT_H bit.

Description of Operation

26-44 ADSP-BF54x Blackfin Processor Hardware Reference

4. If RxPktRdy is set, the processor core should read the data from the
Endpoint 0 FIFO, then clear RxPktRdy.

5. If further data is expected, the processor core should repeat the pre-
vious steps.

When all the data is successfully received, the processor core should
proceed to the OUT status phase of the control transaction.

OUT Data as a Host (Control)

The processor core driving the host device performs the following actions
for the OUT data phase of a control transaction.

1. Load the data to be sent into the Endpoint 0 FIFO

2. Set the TxPtRdy bit in USB_CSR0.

The USB controller then proceeds to send an OUT token followed
by the data from the FIFO to Endpoint 0 of the addressed device,
retrying as necessary.

3. At the end of the attempt to send the data, the USB controller will
generate an Endpoint 0 interrupt (for example, set EP0_TX in
USB_INTRTX register). The processor core should then read
USB_CSR0 to establish whether the STALL_RECEIVED_H bit (D2), the
ERROR_H bit (D4) or the NAK_TIMEOUT_H bit (D7) is set.

If STALL_RECEIVED_H is set, it indicates that the target has issued a
STALL response.

If ERROR_H is set, it means that the USB controller has tried to send
the OUT token and the following data packet three times without
getting a response.

If NAK_TIMEOUT_H is set, it means that the USB controller has
received a NAK response to each attempt to send the OUT token,
for longer than the time set in the USB_NAKLIMIT0 register. The

ADSP-BF54x Blackfin Processor Hardware Reference 26-45

USB OTG Controller

USB controller can then be directed either to continue trying this
transaction (until it times out again) by clearing the NAK_TIMEOUT_H
bit; or to abort the transaction by flushing the FIFO before clearing
the NAK_TIMEOUT_H bit.

If none of STALL_RECEIVED_H, ERROR_H or USB_NAKLIMIT0 is set, the
OUT data is correctly acknowledged.

4. If further data needs to be sent, the processor core should repeat
the previous steps.

When all the data is successfully sent, the processor core should
proceed to the IN status phase of the control transaction.

IN Status Phase as a Host
(Following SETUP Phase or OUT Data Phase)

The processor core driving the host device performs the following actions
for the IN status phase of a control transaction.

1. Set STATUSPKT_H_H and REQPKT_H (bits 6 and 5 of USB_CSR0, respec-
tively). These bits must be set together.

2. Wait while the USB controller both sends an IN token and receives
a response from the USB peripheral.

3. When the USB controller generates the Endpoint 0 interrupt (for
example, sets EP0_TX in USB_INTRTX register), read USB_CSR0 to
establish whether the STALL_RECEIVED_H bit, the ERROR_H bit, the
NAK_TIMEOUT_H bit or RxPktRdy is set.

If STALL_RECEIVED_H is set, it indicates that the target could not
complete the command and so has issued a STALL response.

If ERROR_H is set, it means that the USB controller has tried to send
the required IN token three times without getting a response.

Description of Operation

26-46 ADSP-BF54x Blackfin Processor Hardware Reference

If NAK_TIMEOUT_H is set, it means that the USB controller has
received a NAK response to each attempt to send the IN token, for
longer than the time set in the USB_NAKLIMIT0 register. The USB
controller can then be directed either to continue trying this trans-
action (until it times out again) by clearing the NAK_TIMEOUT_H bit
or to abort the transaction by clearing REQPKT_H and
STATUSPKT_H_H before clearing the NAK_TIMEOUT_H bit.

4. If RxPktRdy is set, the processor core should simply clear RxPktRdy.

OUT Status Phase as a Host (following IN Data Phase)

The processor core driving the host device performs the following actions
for the OUT status phase of a control transaction.

1. Set STATUSPKT_H and TxPktRdy bits. These bits must be set
together.

2. Wait while the USB controller both sends the OUT token and a
zero-length DATA1 packet.

3. At the end of the attempt to send the data, the USB controller will
generate an Endpoint 0 interrupt. The processor core should then
read USB_CSR0 to establish whether the STALL_RECEIVED_H bit, the
ERROR_H bit or the NAK_TIMEOUT_H bit is set.

If STALL_RECEIVED_H is set, it indicates that the target could not
complete the command and so has issued a STALL response.

If ERROR_H is set, it means that the USB controller has tried to send
the STATUS packet and the following data packet three times
without getting a response.

ADSP-BF54x Blackfin Processor Hardware Reference 26-47

USB OTG Controller

If NAK_TIMEOUT_H is set, it means that the USB controller has
received a NAK response to each attempt to send the IN token, for
longer than the time set in the USB_NAKLIMIT0 register. The USB
controller can then be directed either to continue trying this trans-
action (until it times out again) by clearing the NAK_TIMEOUT_H bit
or to abort the transaction by flushing the FIFO before clearing the
NAK_TIMEOUT_H bit.

4. If none of STALL_RECEIVED_H, ERROR_H or NAK_TIMEOUT_H is set, the
status phase is correctly acknowledged.

Host IN Transactions

When the USB controller operates as a host, IN transactions are handled
like OUT transactions are handled when the USB controller is operating
as a peripheral. But the transaction must first be initiated by setting the
REQPKT_H bit in USB_RXCSR. This bit indicates to the transaction scheduler
that there is an active transaction on this endpoint. The transaction sched-
uler then sends an IN token to the target function.

When the packet is received and placed in the RX FIFO, the RXPKTRDY bit
in USB_RXCSR is set, and the appropriate RX endpoint interrupt is gener-
ated (if enabled) to signal that a packet can now be unloaded from the
FIFO. When the packet is unloaded, RXPKTRDY is cleared. The
AUTOCLEAR_R bit in the USB_RXCSR register can be used to have RXPKTRDY
automatically cleared when a maximum sized packet is unloaded from the
FIFO. There is also an AUTOREQ_RH bit in USB_RXCSR that causes the
REQPKT_H bit to be automatically set when the RXPKTRDY bit is cleared. The
AUTOCLEAR_R and AUTOREQ_RH bits can be used with an external DMA con-
troller to perform complete bulk transfers without processor core
intervention.

Description of Operation

26-48 ADSP-BF54x Blackfin Processor Hardware Reference

If the target function responds to a bulk or interrupt IN token with a
NAK, the USB controller keeps retrying the transaction until the NAK
limit set (in USB_NAKLIMIT0) is reached. If the target function responds
with a STALL, the USB controller does not retry the transaction, but does
interrupt the processor core with the RXSTALL_TH bit in the USB_RXCSR reg-
ister set. If the target function does not respond to the IN token within
the required time (or there was a CRC or bit-stuff error in the packet), the
USB controller retries the transaction. If after three attempts the target
function still has not responded, the USB controller clears the REQPKT_H
bit and interrupts the processor core with the DATAERROR_R bit in
USB_RXCSR set.

Host OUT Transactions

When the USB controller operates as a host, OUT transactions are han-
dled in a similar manner to the way IN transactions are handled when the
USB controller operates as a peripheral.

The TXPKTRDY bit in the USB_TXCSR register needs to be set as each packet is
loaded into the TX FIFO and the AUTOSET_T bit in USB_TXCSR can be used
to cause the TXPKTRDY bit to be automatically set when a maximum sized
packet is loaded into the FIFO. The AUTOSET_T bit can be used with an
external DMA controller to perform complete bulk transfers without pro-
cessor core intervention.

If the target function responds to the OUT token with a NAK, the USB
controller keeps retrying the transaction until the NAK limit set in
USB_NAKLIMIT0 is reached. If the target function responds with a STALL,
the USB controller does not retry the transaction, but does interrupt the
processor core with the RXSTALL_TH bit in the USB_TXCSR register set. If the
target function does not respond to the OUT token within the required
time (or there was a CRC or bit-stuff error in the packet), the USB con-
troller retries the transaction. If after three attempts the target function
still has not responded, the USB controller flushes the FIFO and inter-
rupts the processor core with the ERROR_TH bit in USB_TXCSR set.

ADSP-BF54x Blackfin Processor Hardware Reference 26-49

USB OTG Controller

Transaction Scheduling

When operating as a host, the USB controller maintains a frame counter.
If the target function is a full-speed device, the USB controller automati-
cally sends an SOF packet at the start of each frame or micro-frame. If the
target function is a low-speed device, a K state is transmitted on the bus to
act as a keep-alive to stop the low-speed device from going into suspend
mode.

After the SOF packet is transmitted, the USB controller cycles through all
the endpoints looking for active transactions. An active transaction is
defined as an RX endpoint for which the REQPKT_H bit is set or a TX end-
point for which the TXPKTRDY bit is set. An active isochronous or interrupt
transaction will only start if it is found on the first transaction scheduler
cycle of a frame and if the interval counter for that endpoint has counted
down to zero. This ensures that only one interrupt or isochronous transac-
tion occurs per endpoint per n frames (where n is the interval set in the
USB_TXINTERVAL or USB_RXINTERVAL register for that endpoint).

An active bulk transaction is started immediately, provided there is suffi-
cient time left in the frame to complete the transaction before the next
SOF packet is due. If the transaction needs to be retried (for example,
because a NAK was received or the target function did not respond) then
the transaction is not retried until the transaction scheduler has checked
all the other endpoints for active transactions first. This check ensures that
an endpoint that is sending a lot of NAKs does not block other transac-
tions on the bus. The USB controller lets you specify a limit
(USB_TXINTERVAL or USB_RXINTERVAL registers) to the length of time in
which NAKs may be received from a particular target before the endpoint
is timed out.

Description of Operation

26-50 ADSP-BF54x Blackfin Processor Hardware Reference

Babble

If the bus is still active at the end of a frame, the USB controller assumes
that the function it is connected to has malfunctioned, suspends all trans-
actions, generates a babble interrupt (RESET_OR_BABLE_B), and clears the
SESSION bit in the USB_OTG_DEV_CTL register to end the session. This will
cause the USB controller to revert to peripheral mode. The USB control-
ler does not start a transaction until the bus is inactive for at least the
minimum inter-packet delay. The controller also does not start a transac-
tion unless it can be finished before the end of the frame.

To recover from a babble error condition, the processor must take the fol-
lowing actions inside the interrupt service routine.

1. Turn off VBUS
Wait until the VBUS level indicator reads b#01.

2. Turn on VBUS
Wait until the VBUS level indicator reads b#11.

3. Set the SESSION bit

The VBUS level indicator is a field of the USB_OTG_DEV_CTL register.

 Because VBUS is sourced external to the processor, make sure that
in your hardware design you connect a GPIO to the external source
so that you can use software to turn VBUS on and off.

ADSP-BF54x Blackfin Processor Hardware Reference 26-51

USB OTG Controller

VBUS Events

The USB On-The-Go specification defines a series of thresholds to which
the devices involved in point-to-point communications are required to
respond.

• VBUS Valid (required to be between 4.4V and 4.75V)

• Session Valid for ‘A’ device (required to be between 0.8V and
2.1V)

• Session End (required to be between 0.2V and 0.8V)

Which thresholds are critical and the processor response depends upon
whether the device is an ‘A’ device or a ‘B’ device and the circumstances of
the event. These actions are described below.

Actions as an “A” Device

VBUS >VBUS Valid with session initiated by USB controller (that is,
VBUS level indicator = b#11 and session bit is set). When VBUS is greater
than VBUS Valid, the USB controller selects Host Mode and waits for a
device to be connected. It then generates a connect interrupt. The proces-
sor resets and enumerates the connected ‘B’ device.

VBUS > Session Valid with session initiated by ‘B’ device (that is, VBUS
level indicator = b#10 and session bit is clear). When VBUS is greater than
Session Valid, the USB controller generates a session request interrupt.
The processor sets the session bit and the USB controller either stays in
Host mode or changes to Peripheral mode, depending upon the state of
the pull-up resistor on the ‘B’ device. For more information, refer to the
Host Negotiation Protocol of the OTG specification. The selected mode
is indicated by the state of the Host Mode bit.

Description of Operation

26-52 ADSP-BF54x Blackfin Processor Hardware Reference

VBUS below VBUS Valid while the Session bit remains set (that is,
VBUS level indicator b#11 and session bit is set). This indicates a prob-
lem with the VBUS power level. For example, the battery power may have
dropped too low to sustain VBUS Valid. Or, the ‘B’ device may be draw-
ing more current than the ‘A’ device can provide. In either case, the USB
controller will automatically terminate the session and generate a VBUS
error interrupt.

To recover from this VBUS error condition, the processor must take the
following actions inside the VBUS error interrupt handler.

• Turn off VBUS
Wait until the VBUS level indicator reads b#01.

• Turn on VBUS
Wait until the VBUS level indicator reads b#11.

• Set the SESSION bit

The VBUS level indicator is a field of the USB_OTG_DEV_CTL register.

 Because VBUS is sourced external to the processor, make sure that
in your hardware design you connect a GPIO to the external source
so that you can use software to turn VBUS on and off.

Actions as a “B” Device

VBUS > Session Valid (that is, VBUS level indicator = b#10 and session
bit is clear). This indicates activity from the ‘A’ device. The USB control-
ler sets the session bit and disconnects the pull down resistor on the D+
line.

VBUS < Session Valid while the session bit remains set (that is, VBUS
level indicator = b#01 and session bit is set). This indicates that the ‘A’
device has lost power (or become disconnected). The USB controller
clears the session bit and generates a disconnect interrupt. The processor
ends the session.

ADSP-BF54x Blackfin Processor Hardware Reference 26-53

USB OTG Controller

VBUS < Session End (that is, VBUS level indicator = b#00). This is the
condition under which a ‘B’ device can initiate a session request. If the ses-
sion bit is set, then after 2ms of SE0 on the bus, the USB controller starts
SRP by first pulsing the data line, then pulsing VBUS.

Host Mode Reset

If the RESET bit in the USB_POWER register is set while the USB controller is
in host mode, the USB controller generates reset signaling on the bus. The
processor core should keep this bit set for 20 ms to ensure correct resetting
of the target device. After the processor core has cleared the bit, the USB
controller starts its frame counter and transaction scheduler.

Host Mode Suspend

If the SUSPEND_MODE bit in the USB_POWER register is set, the USB controller
completes the current transaction then stops the transaction scheduler and
frame counter. No further transactions are started and no SOF packets are
generated.

To exit suspend mode, the processor core should set the RESUME_MODE bit
and clear the SUSPEND_MODE bit in the USB_POWER register. While the
RESUME_MODE bit is high, the USB controller generates resume signaling on
the bus. After 20 ms, the processor core should clear the RESUME_MODE bit,
at which point the frame counter and transaction scheduler are started.

While in suspend mode, the USB controller clock is stopped to reduce
power. The SUSPEND_BE output also goes low, if enabled. This feature may
be used to power-down the USB drivers. If remote wake-up is to be sup-
ported, power to the PHY must be maintained, so the USB controller can
detect resume signaling on the bus.

Functional Description

26-54 ADSP-BF54x Blackfin Processor Hardware Reference

Functional Description
The following sections describe the function of the USB OTG interface.

On-Chip Bus Interfaces
The USB controller uses two independent bus interfaces (peripheral slave
and DCB/DEB master) to communicate with a processor-based subsys-
tem. The slave interface allows the processor core to access the control and
status registers (including DMA master registers) and the endpoint FIFOs.
The master interface is used to drive data into or out of the endpoint
FIFOs with minimal processor core interaction.

The peripheral bus slave interface has the following characteristics.

• 16-bit wide transfers

• Wait states are asserted when FIFO accesses take place (maximum
of three are possible when contention for the SRAM occurs).

The DCB/DEB bus master interface has the following characteristics:

• 16-bit wide read and write data busses

• write transfers of byte and 16-bit words are possible (byte accesses
are used only for remaining bytes in a transfer)

• read transfers of 16 bits (first few or last few bytes may be discarded
based on starting address and DMA count respectively)

ADSP-BF54x Blackfin Processor Hardware Reference 26-55

USB OTG Controller

Interface Pins
The USB OTG external interface has the pins shown in Table 26-2.

Power and Clocking
The USB controller uses the system clock CLK (greater than 30 MHz
required) to generate an internal clock used to clock the USB registers.
The transceiver clock is a 60MHz clock sourced from the UTMI PHY and
is used by the PHY interface logic and USB engine. The A 32 KHz clock
(refer to the USB_SRP_CLKDIV register) is used for D+ pulse detection for
SRP signaling by an OTG 'B' device only.

During SUSPEND and when no session is active, the clock to much of
the USB controller is stopped to reduce power consumption. The clock
becomes operational again when RESUME signaling is detected on the
USB lines.

Table 26-2. USB 2.0 HS OTG Pins

Signal
Name

Input/
Output

Description

USB_DP I/O USB D+ pin

USB_DM I/O USB D– pin

USB_XI C Clock XTAL input 1

USB_XO C Clock XTAL input 2

USB_ID I USB ID pin

USB_VBUS I/O USB VBUS pin

USB_VREF O USB voltage reference source (Test purposes only)

USB_RSET O USB resistance set (Test purposes only)

Programming Model

26-56 ADSP-BF54x Blackfin Processor Hardware Reference

UTMI Interface
The interface to the on-chip PHY uses the industry-standard UTMI+
(universal transceiver macro interface) level 2. This provides full
high-speed device and OTG functionality, but does not support commu-
nication to a hub.

The PHY is a mixed-signal block and includes the following:

• full-speed and high-speed drivers and receivers (single-ended and
differential)

• data line pull-up and pull-down resistors

• full-speed and high-speed CDR

• VBUS and USB_ID level detection

• host disconnect detection

• full-speed/high-speed shift registers, NRZI encode/decode and
bit-stuff encode/decode

Although the UTMI specification indicates that VBUS charging, driving
and discharging be done inside the PHY, for process-restricting and power
reasons, these functions are typically implemented off-chip in a separate
USB charge-pump chip.

Programming Model
The following sections describe the USB OTG programming model.

ADSP-BF54x Blackfin Processor Hardware Reference 26-57

USB OTG Controller

Peripheral Mode Flow Charts

Figure 26-8. USB Control Setup Phase

Host actions are shown white. USB actions are shaded

Appropriate
data phase/

OUT transaction
status phase

Token sent by host
(SETUP token expected)

IDLE state

DATA0 packet
sent by host

Data loaded into FIFO
RxPktRdy set

ACK sent by USB
EPO interrupt generated

(if enabled)

2-16
full-speed
bit periods

or 8-736
high-speed
bit periods

2-6.5
full-speed
bit periods

or 8-192
high-speed
bit periods

Valid Data0
packet sent

within required
time?

Yes

Yes

No

CPU should unload FIFO, clear RxPktRdy,
then reload FIFO and set InPktRdy if IN data phase expected

or set DataEnd if no data phase expected

Valid
setup

token?

No

Programming Model

26-58 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 26-9. Control In Data Phase

Status phase
(see next page)

Token sent by host
(IN token expected)

TX state

Data1/0 packet
sent by USB

2-6.5
full-speed
bit periods

or 8-192
high-speed
bit periods

Valid IN token?

Yes

Yes

No

No
TxPktRdy set?

NAK sent

SendStall set?
Yes

STALL sent
SentStall bit set

EP0 interrupt generated *

ACK
sent by host

Valid
ACK received?

Yes

No

TxPktRdy cleared
FIFO flushed

EP0 interrupt generated*

2-16
full-speed
bit periods

or 8-736
high-speed
bit periods

No

CPU should reload FIFO and set TxPktRdy,
plus set DataEnd if appropriate

DataEnd set?

Yes

No

CPU should clear SentStall bit

Valid OUT
token?

No

Yes

Early status phase
(see next page)

SetupEnd set;
TxPktRdy cleared

EP0 interrupt generated*

* If enabled

Host actions are shown white. USB actions are shaded

* If enabled

ADSP-BF54x Blackfin Processor Hardware Reference 26-59

USB OTG Controller

Figure 26-10. Control In Data Status Phase

Token sent by host
(OUT token expected)

IDLE state, following
receipt of IN packets

Zero-byte DATA1 packet
sent by host

2-16
full-speed
bit periods

or
8-736

high-speed
bit periods

2-6.5
full-speed
bit periods

or
8-192

high-speed
bit periods

2-6.5
full-speed
bit periods

or
8-192

high-speed
bit periods

IDLE - waiting for
new setup phase

Valid Data Packet
sent within

required time?

Yes

SendStall
set?

Yes

STALL sent
SentStall bit set

EP0 Interrupt generated *

 ACK sent
EP0 Interrupt generated *

No

Early
status
phase

Valid OUT
token?

No
Valid IN token?

No

Yes
Yes

STALL sent
SentStall bit set

EP0 Interrupt generated *

IDLE - waiting
for new setup phase

Late status stage
(protocol stall)

No

* If enabled

Yes
RxPktRdy set?

SendStall set?
Yes

NAK sentACK sent

No

No

Yes

High-speed
mode?

No

Yes

Valid
PING token?

No

STALL sent
SentStall bit set

EP0 interrupt
generated*

CPU should
clear SentStall bit

Host actions are shown white. USB actions are shaded

Programming Model

26-60 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 26-11. Control Out Data Phase

Token sent by host
(OUT token expected)

RX state

DATA1/0 packet
sent by host

2-16
full-speed
bit periods

or
8-736

high-speed
bit periods

2-6.5
full-speed
bit periods

or
8-192

high-speed
bit periods

2-6.5
full-speed
bit periods

or
8-192

high-speed
bit periods

Status phase
(see next page)

IDLE - waiting for
status phase

Last packet?

Valid Data Packet
sent within required

time?

Yes

Yes

Yes
RxPktRdy set?

SendStall
set?

Yes

Yes

 Data loaded into FIFO
EPO interrupt generated*

RxRdyPkt set and ACK sent
or NYET if appropriate

(High-speed mode only)

 DataEnd set?

No

No

Valid OUT
token?

No

Valid IN token?

No

Yes
Yes

Set SetupEnd
EP0 interrupt generated*

Early status phase
(see next page)

Late Status Stage
(Protocol Stall)

No

Yes
RxPktRdy set?

SendStall set?
Yes

NAK sent

NAK sent

ACK sent

No

No

No

Yes

High-speed
mode?

No

No

Yes

Valid
PING token?

No

STALL sent
SentStall bit set

EP0 Interrupt
generated*

STALL sent
SentStall bit set

EP0 Interrupt
generated*

STALL sent
SentStall bit set

EP0 Interrupt
generated*

CPU should
clear SentStall bit

Host actions are shown white. USB actions are shaded

* If enabled

ADSP-BF54x Blackfin Processor Hardware Reference 26-61

USB OTG Controller

Figure 26-12. Control Out Data Status Phase

Token sent by host
(IN token expected)

IDLE state, following
setup / receipt
of OUT packets

ACK
sent by host

2-6.5
full-speed
bit periods

or
8-192

high-speed
bit periods

2-16
full-speed
bit periods

or
8-736

high-speed
bit periods

IDLE
- waiting for

new setup phase

Valid IN token?

Valid ACK
sent within

required time?

No

No

SendStall set?
Yes

Zero-byte DATA1
packet sent

EP0 interrupt generated*

No

Yes

Yes

Early Status Phase

Valid OUT
token?

Yes

STALL sent
SentStall bit set

EP0 Interrupt generated*

STALL sent
SentStall bit set

EP0 Interrupt generated*

IDLE -
waiting for new

setup phase

Late status stage
(protocol stall)

No

* If enabled

Host actions are shown white. USB actions are shaded

Programming Model

26-62 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 26-13. Bulk/Low Bandwidth
Interrupt In Transaction

IN Token sent by host

IDLE state

Valid ACK
received?

ACK
sent by host

2-6.5
full-speed
bit periods

or
8-192

high-speed
bit periods

2-16
full-speed
bit periods

or
8-736

high-speed
bit periods

IDLE

Valid IN token?

TxPktRdy set?

No

No

No

SendStall set?
Yes

TxPktRdy cleared
EP Interrupt generated*

Data0/1 packet
sent by USB

NAK sent

No

Yes

Yes

Yes

STALL sent
SentStall set
FIFO flushed

TxPktRdy cleared
EP Interrupt generated*

* If enabled

CPU needs to reload FIFO,
and set TxPktRdy

CPU should clear
SendStall bit

Host actions are shown white. USB actions are shaded

ADSP-BF54x Blackfin Processor Hardware Reference 26-63

USB OTG Controller

Figure 26-14. Bulk/Low Bandwidth
Interrupt Out Transaction

OUT token
sent by host

DATA0/1 packet
sent by host

IDLE

Valid OUT
token?

Valid data packet
sent within

required time?

Yes

Yes

No

FIFOFull set?

Yes

SendStall set?
Yes

Data loaded into FIFO
EP Interrupt generated*

RxPktRdy set and ACK sent
- or NYET if appropriate
(High-Speed mode only)

No

No

PING packet
sent by host

Valid
PING token?

Yes
FIFOFull set?

SendStall set?
Yes

NAK sent

NAK sent

ACK sent

No

No

Yes

No

High-speed
mode?

No

Yes

CPU should
unload FIFO,

clear RxPktRdy

IDLE state

STALL sent
SentStall bit set

EP interrupt
generated*

STALL sent
SentStall bit set

EP interrupt
generated*

CPU should clear SendStall bit

No

* If enabled

2-16
full-speed
bit periods

or
8-736

high-speed
bit periods

2-6.5
full-speed
bit periods

or
8-192

high-speed
bit periods

Host actions are shown white. USB actions are shaded

Programming Model

26-64 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 26-15. Full-speed/Low Bandwidth
Isochronous In Transaction

IDLE

IN token
sent by host

IDLE state

Data0 packet
sent by USB
TxPktRdy cleared
EP interrupt
generated*

Valid IN token?

Yes

No

No
TxPktRdy set?

0-byte packet sent by USB
underrun bit set

Yes

CPU needs to reload FIFO,
and set TxPktRdy* If enabled

2-6.5
full-speed
bit periods

or
8-192

high-speed
bit periods

Host actions are shown white. USB actions are shaded

ADSP-BF54x Blackfin Processor Hardware Reference 26-65

USB OTG Controller

Figure 26-16. Full-speed/Low Bandwidth
Isochronous Out Transaction

IDLE

OUT Token
sent by host

IDLE state

DATAx packet
sent by host

Valid data packet
sent within

required time?

Yes

Yes

No

FIFOFull set?

No

Yes

Overrun set
RxPktRdy set

EPinterrupt generated*

CPU needs to unload FIFO,
and clear RxPktRdy

Valid OUT token?
No

* If enabled

2-16
full-speed
bit periods

or
8-736

high-speed
bit periods

2-6.5
full-speed
bit periods

or
8-192

high-speed
bit periods

Host actions are shown white. USB actions are shaded

Programming Model

26-66 ADSP-BF54x Blackfin Processor Hardware Reference

Host Mode Flow Charts

Figure 26-17. USB Control Setup Phase

No

Yes
RxStall set

TxPktRdy cleared
Error count cleared
Interrupt generated

TxPktRdy cleared
Error count cleared
Interrupt generated

SETUP token sent

DATA0 packet sent

No

Error count
cleared

Yes

Error count
incremented

Transaction
scheduled

Transaction
complete

No

Yes

Transaction
deemed

completed

NoTxPktRdy
and SetupPkt

both set?

STALL
received?

ACK
received?

Yes

NAK
received?

Command not
supported by target

Error bit set
TxPktRdy cleared

Error count cleared
Interrupt generated

Error count
= 3?

YesNo

Implies problem at
peripheral end of

connection.

NAK limit
reached?

Yes

No

NAK timeout set
Endpoint halted

Interrupt generated

Host actions are shown white. USB actions are shaded

ADSP-BF54x Blackfin Processor Hardware Reference 26-67

USB OTG Controller

Figure 26-18. Control In Data Phase

No

Yes
RxStall set

ReqPkt cleared
Error count cleared
Interrupt generated

ACK sent
RxPktRdy set

IN token sent

No

Error count
incremented

For each IN
packet requested
in SETUP phase

Transaction
complete

No

Yes

Transaction deemed
completed

No
ReqPkt set?

STALL
received?

DATA0/1
received?

Yes

NAK
received?

Problem in data sent

Error bit set
ReqPkt cleared

Error count cleared
Interrupt generated

Error count
= 3?

YesNo

Implies problem at
peripheral end of

connection.

ReqPkt cleared
Error count cleared
Interrupt generated

Error count
cleared

YesNAK limit
reached?

Yes

No

NAK timeout set
Endpoint halted

Interrupt generated

Host actions are shown white. USB actions are shaded

Programming Model

26-68 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 26-19. Control In Data Status Phase

No

Yes
RxStall set

TxPktRdy cleared
Error count cleared
Interrupt generated

TxPktRdy cleared
Error count cleared
Interrupt generated

OUT token sent

Zero-length
DATA1 packet sent

No

Error count
incremented

Transaction
complete

No

Yes

Transaction
deemed

completed

NoTxPktRdy
and StatusPkt

both set?

STALL
received?

ACK
received?

Yes

NAK
received?

Command could not
be completed

Error bit set
TxPktRdy cleared

Error count cleared
Interrupt generated

Error count
= 3?

YesNo

Implies problem at
peripheral end of

connection.

Completion of
IN data phase

Error count
cleared

YesNAK limit
reached?

Yes

No

NAK timeout set
Endpoint halted

Interrupt generated

Host actions are shown white. USB actions are shaded

ADSP-BF54x Blackfin Processor Hardware Reference 26-69

USB OTG Controller

Figure 26-20. Control Out Data Phase

No

Yes
RxStall set

TxPktRdy cleared
Error count cleared
Interrupt generated

TxPktRdy cleared
Error count cleared
Interrupt generated

OUT token sent

DATA0/1 packet sent

No

Error count
incremented

Error count
cleared

Transaction
complete

No

Yes

Transaction
deemed

completed

NoTxPktRdy
set?

STALL
received?

ACK
received?

Yes

NAK
received?

Command could not
be completed

Error bit set
TxPktRdy cleared

Error count cleared
Interrupt generated

Error count
= 3?

YesNo

Implies problem at
peripheral end of

connection.

For each OUT packet
specified in SETUP phase

YesNAK limit
reached?

Yes

No

NAK timeout set
Endpoint halted

Interrupt generated

Host actions are shown white. USB actions are shaded

Programming Model

26-70 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 26-21. Control Out Data Status Phase

No

Yes

Yes

RxStall set
ReqPkt cleared

Error count cleared
Interrupt generated

ACK sent
RxPktRdy set

IN token sent

No

Error count
incremented

Completion of either
SETUP phase or
OUT data phase

Transaction
complete

No

Yes

Transaction
deemed

completed

NoReqPkt
and StatusPkt

both set?

STALL
received?

DATA1
received?

Yes

NAK
received?

Command could not
be completed

Error bit set
ReqPkt cleared

Error count cleared
Interrupt generated

Error count
= 3?

YesNo

Implies problem at
peripheral end of

connection.

ReqPkt cleared
Error count cleared
Interrupt generated

Error count
cleared

NAK limit
reached?

Yes

No

NAK timeout set
Endpoint halted

Interrupt generated

Host actions are shown white. USB actions are shaded

ADSP-BF54x Blackfin Processor Hardware Reference 26-71

USB OTG Controller

Figure 26-22. Bulk/Low Bandwidth Interrupt In Transaction

No

Yes
RxStall set

ReqPkt cleared
Error count cleared
Interrupt generated

ACK sent
RxPktRdy set

IN token sent

No

Error count
incremented

Transaction
scheduled

Transaction
complete

No

Yes

Transaction
deemed

completed

No
ReqPkt set?

STALL
received?

DATA0/1
received?

Yes

NAK
received?

Target has
shut down pipe

Error bit set
ReqPkt cleared

Error count cleared
Interrupt generated

Error count
= 3?

YesNo

Implies problem at
peripheral end of

connection.

ReqPkt cleared
Error count cleared
Interrupt generated

Error count
cleared

YesNAK limit
reached?

Yes

No

NAK timeout set
Endpoint halted

Interrupt generated

Host actions are shown white. USB actions are shaded

Programming Model

26-72 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 26-23. Bulk/Low Bandwidth Interrupt Out Transaction

No

Yes
RxStall set

TxPktRdy cleared
Error count cleared
Interrupt generated

TxPktRdy cleared
Error count cleared
Interrupt generated

OUT token sent

DATA0/1 packet sent

No

Error count
incremented

Transaction
complete

No

Yes

Transaction
deemed

completed

NoTxPktRdy
set?

STALL
received?

ACK
received?

Yes

NAK
received?

Target has
shut down pipe

Error bit set
TxPktRdy cleared

Error count cleared
Interrupt generated

Error count
= 3?

YesNo

Implies problem at
peripheral end of

connection.

Transaction
scheduled

Error count
cleared

YesNAK limit
reached?

Yes

No

NAK timeout set
Endpoint halted

Interrupt generated

Host actions are shown white. USB actions are shaded

ADSP-BF54x Blackfin Processor Hardware Reference 26-73

USB OTG Controller

Figure 26-24. Full-speed/Low Bandwidth
Isochronous In Transaction

IN token sent

No

Transaction
scheduled

Transaction
complete

Yes

No
ReqPkt set?

Data0
received?

Yes

ReqPkt cleared
RxPktRdy set

Interrupt generated

Host actions are shown white. USB actions are shaded

Programming Model

26-74 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 26-25. Full-speed/Low Bandwidth
Isochronous Out Transaction

OUT token sent

Transaction
scheduled

Transaction
complete

Yes

No
TxPktRdy set?

TxPktRdy cleared
Interrupt generated

DATA0 sent

Host actions are shown white. USB actions are shaded

ADSP-BF54x Blackfin Processor Hardware Reference 26-75

USB OTG Controller

DMA Mode Flow Charts

Figure 26-26. Single Packet Transmit During DMA Operation

IDLE state

Set EPx_TX_E bit in USB_INTRTXE
Clear DMAREQ_ENA_T bit in USB_TXCSR

Set DMA reg isters as follows:
Set ADDR = Address of packet to send
Set COUNT = S ize of packet to be sent

Set bits 0, 1, and 3 in USB_DMAxCONTROL
Clear bit 2 in USB_DMAxCONTROL

DMA controller requests bus

Is AHB_HGRANT high?

DMA controller reads from ADDR
and writes to FIFO

Is DMAx_INT = 1?

Set TxPktRdy

Continue as for
bulk IN Transaction

Yes

Yes

No

Actions carried out by
built-in DMA controller

No

Host actions are shown white. USB actions are shaded

Programming Model

26-76 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 26-27. Single Packet Receive During DMA Operation

Wait for packet to be received
as per bulk OUT transaction

IDLE state

Set EPx_RX_E bit in USB_INTRRXE
Clear DMAREQ_ENA_R bit in USB_RXCSR

Is IntrRx.Dn = 1?

Set DMA registers as follows:
Set ADDR = Address to store packet

Set COUNT = Size of packet (from RxCount)
Set bits 0 and 3 in USB_DMAxCONTROL

Clear bits 1 and 2 in USB_DMAxCONTROL

DMA controller requests bus

Is AHB_HGRANT high?

DMA controller reads from FIFO
and writes to ADDR

Is DMAx_INT = 1?

Clear RxPktRdy

Yes

Yes

Yes

IDLE state

No

No

No

Actions carried out by
built-in DMA controller

Host actions are shown white. USB actions are shaded

ADSP-BF54x Blackfin Processor Hardware Reference 26-77

USB OTG Controller

Figure 26-28. Multiple Packet Transmit During DMA Operation

IDLE state

Set EPx_TX_E bit in USB_INTRTXE
Set bits 10, 12 and 15 in USB_TXCSR

DMA controller requests bus

Is AHB_HGRANT high?

DMA controller reads from ADDR,
writes to FIFO and decrements COUNT

IDLE state

Yes

Is DMA_REQ[n-1] high?

Yes

Is COUNT = 0?

Yes

No

TxPktRdy set and packet processed
 as for bulk IN transaction

Set TxPktRdy
(in general case)

Actions carried out by
built-in DMA controller

No

No

DMA controller sets
DMA_NINT

Last packet sent
(in general case)

Set DMA registers as follows:
Set ADDR = Address of data to send

Set COUNT = Amount of data to be sent
Set bits 0, 1, 2 and 3 in USB_DMAxCONTROL

Host actions are shown white. USB actions are shaded

Programming Model

26-78 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 26-29. Multiple Packet Receive During DMA Operation (Data Size
Known)

IDLE state

Set EPx_RX_E bit in USB_INTRRXE
Set bits 13 and 15 in USB_RXCSR

Clear bit 11 in USB_RXCSR
(If Host mode: also set bit 14 in USB_RXCSR)

Set DMA registers as follows:
Set ADDR = address to store data

Set COUNT = amount of data
Set bits 0, 2 and 3 in USB_DMAxCONTROL

Clear bit 1 in USB_DMAxCONTROL

DMA controller requests bus

Is AHB_HGRANT high?

DMA controller reads from FIFO,
writes to ADDR and decrements COUNT

RxPktRdy cleared
 (unless packet less than RxMaxP)

Yes

Yes

Is DMAReq[m] high?

Yes

No

Actions carried out by
built-in DMA controller

No

Is COUNT = 0?

No

IDLE state

DMA controller asserts
DMA_NINT

If necessary,
clear RxPktRdy

Host actions are shown white. USB actions are shaded

ADSP-BF54x Blackfin Processor Hardware Reference 26-79

USB OTG Controller

Figure 26-30. Multiple Packet Receive During DMA Operation (Data Size
Not-known)

No

No

Actions carried out by
built-in DMA controller

IDLE state

Set EPx_RX_E bit in USB_INTRRXE
Set bits 11, 13 and 15 in USB_RXCSR

(If Host mode: also set bit 14 in USB_RXCSR)

Set DMA registers as follows:
Set ADDR = address to store data

Set COUNT = size of buffer
Set bits 0, 2 and 3 in USB_DMAxCONTROL

Clear bit 1 in USB_DMAxCONTROL

DMA controller requests bus

Is AHB_HGRANT high?

DMA controller reads from FIFO,
writes to ADDR and decrements COUNT

RxPktRdy cleared

Yes

IDLE state

No

USB asserts Rx Endpoint interrupt

Read packet from FIFO
Clear RxPkyRdy

Is packet size = RxMaxP?

Yes

is IntrRx[n] = 1?

Yes

No
Is DMAReq[m] high?

Yes

Host actions are shown white. USB actions are shaded

Programming Model

26-80 ADSP-BF54x Blackfin Processor Hardware Reference

OTG Session Request
In order to conserve power, the USB on-the-go supplement allows VBUS
to only be powered up when required and to be turned off when the bus is
not in use.

VBUS is always supplied by the 'A' device on the bus. The USB controller
determines whether it is the 'A' device or the 'B' device by sampling the
USB_ID input from the PHY. This signal is pulled low when an A-type
plug is sensed (signifying that the USB controller is the 'A' device), but
the input is taken high when a B-type plug is sensed (signifying that the
USB controller is the 'B' device).

Starting a Session

When the device containing the USB controller wants to start a session,
the processor core must set the SESSION bit in the USB_OTG_DEV_CTL regis-
ter. The USB controller then enables ID pin sensing. This results in the
USB_ID input either being taken low if an A-type connection is detected or
high if a B-type connection is detected. The B_DEVICE bit in the
USB_OTG_DEV_CTL register is also set to indicate whether the USB control-
ler has adopted the role of the 'A' device or the 'B' device.

If the USB controller is the 'A' device: The USB controller then enters host
mode (the 'A' device is always the default host), and waits for VBUS to go
above the VBUS valid threshold, as indicated when the VBUS1–0 bits in the
USB_OTG_DEV_CTL register go to 11.

 The Blackfin USB controller does not source VBUS, except when
initiating SRP. As such, VBUS must be provided by an external
regulator or USB charge pump. The external VBUS supply must be
able to be switched off and on. This is required so that the USB
controller can recover from VBUS errors or Babble conditions.

ADSP-BF54x Blackfin Processor Hardware Reference 26-81

USB OTG Controller

The USB controller then waits for a peripheral to be connected. When a
peripheral is detected, a connect interrupt (CONN_B bit in USB_INTRUSB) is
generated (if enabled) and either the FSDEV or LSDEV bit in the
USB_OTG_DEV_CTL register is set, depending on whether a full-speed periph-
eral or a low-speed peripheral was detected. The processor core should
then reset this peripheral. To end the session, the processor core should
clear the SESSION bit in USB_OTG_DEV_CTL.

If the USB controller is the 'B' device: The USB controller requests a session
using the session request protocol defined in the USB on-the-go supple-
ment (for example, it first asserts the DISCHRG_VBUS_START bit in
USB_OTG_VBUS_IRQ to discharge VBUS). Then, when VBUS has gone
below the session end threshold (as indicated by the VBUS1–0 bits in the
USB_OTG_DEV_CTL register going to 00), and the line state is SE0 for greater
than 2 ms, the USB controller first pulses the data line then pulses VBUS
(by taking the interrupt CHRG_VBUS_START in USB_OTG_VBUS_IRQ high).

At the end of the session, the SESSION bit is cleared – usually by the USB
controller but it can also be cleared by the processor core if the application
software wishes to perform a software disconnect. For more information,
see the description of “USB OTG Device Control
(USB_OTG_DEV_CTL) Register” on page 26-134. The USB controller
switches on the pull-up resistor on D+. This signals to the 'A' device to
end the session.

Detecting Activity

When the other device of the OTG set-up wants to start a session, it either
raises VBUS above the session valid threshold (if it is the 'A' device as
indicated by the VBUS1–0 bits in the USB_OTG_DEV_CTL register going to
10), or (if it is the 'B' device) first pulses the data line then pulses VBUS.
Depending on which of these actions happens, the USB controller can
determine whether it is the 'A' device or the 'B' device in the current
set-up and act accordingly.

Programming Model

26-82 ADSP-BF54x Blackfin Processor Hardware Reference

If VBUS is raised above the session valid threshold, the USB controller is the
'B' device. The USB controller sets the SESSION bit in the
USB_OTG_DEV_CTL register. When reset signaling is detected on the bus, a
reset interrupt (RESET_OR_BABLE_B =1) is generated (if enabled) that the
processor core should interpret as the start of a session. The USB control-
ler is in peripheral mode at this point as the 'B' device is the default
peripheral.

At the end of the session, the 'A' device turns off the power to VBUS.
When VBUS drops below the session valid threshold (as indicated by the
VBUS1–0 bits in the USB_OTG_DEV_CTL register going to 01), the USB con-
troller detects this and clears the SESSION bit to indicate that the session
has ended. A disconnect interrupt (DISCON_B bit in USB_INTRUSB) is also
generated (if enabled).

If data line/VBUS pulsing is detected, the USB controller is the 'A' device.
The controller generates a SESSION_REQ_B interrupt (bit 6 in USB_INTRUSB,
if enabled) to indicate that the 'B' device is requesting a session. The pro-
cessor core should then start a session by setting the SESSION bit.

Host Negotiation/Configuration
When the USB controller is the 'A' device (USB_ID low, B_DEVICE= 0), the
controller automatically enters host mode when a session starts.

When the USB controller is the 'B' device (USB_ID high, B_DEVICE= 1), the
controller automatically enters peripheral mode when a session starts. The
processor core can request that the USB controller become the host by set-
ting the HOST_REQ bit in the USB_OTG_DEV_CTL register. This bit can be set
either when requesting a session start by setting the SESSION bit in
USB_OTG_DEV_CTL or at any time after a session has started. When the USB
controller next enters suspend mode (no activity on the bus for 3 ms), and
assuming the HOST_REQ bit remains set, the controller enters host mode
and begins host negotiation (as specified in the USB OTG supplement),
causing the PHY to disconnect the pull-up resistor on the D+ line. This

ADSP-BF54x Blackfin Processor Hardware Reference 26-83

USB OTG Controller

should cause the 'A' device to switch to peripheral mode and to connect its
own pull-up resistor. When the USB controller detects this, it generates a
connect interrupt (CONN_B bit in USB_INTRUSB) if this is enabled. The con-
troller also sets the RESET bit in the USB_POWER register to begin resetting
the 'A' device. (The USB controller begins this reset sequence automati-
cally to ensure that reset is started as required within 1 ms of the 'A' device
connecting its pull-up resistor). The processor core should wait at least 20
ms, then clear the RESET bit and enumerate the 'A' device.

When the USB controller-based 'B' device has finished using the bus, the
processor core should put it into suspend mode by setting the
SUSPEND_MODE bit in the USB_POWER register. The 'A' device should detect
this and either terminate the session or revert to host mode. If the 'A'
device is USB controller-based, it generates a disconnect interrupt
(DISCON_B bit in USB_INTRUSB) if this is enabled.

Software Clock Control
Power consumption is minimized in the USB controller by software-con-
trolled clock propagation. The USB_GLOBAL_CTL register is used to enable
clocks to only those parts of the controller that are necessary to perform a
given USB function. The GLOBAL_ENA bit must be set in order to do any
operations with the USB, even including writing to other registers. End-
point 0 control and FIFO access depends on the GLOBAL_ENA bit.

The remaining endpoint 1 – 7 TX and RX register access, transfer opera-
tion and FIFO access is dependent on the corresponding bit of
USB_GLOBAL_CTL being set. State is retained in the registers when the par-
ticular endpoint clock is stopped.

Programming Model

26-84 ADSP-BF54x Blackfin Processor Hardware Reference

Wakeup from Hibernate State
To conserve power when the chip is idle, systems often uses powerdown
modes to shut down power and clocks to various parts of the chip. Hiber-
nate state saves the most power (core clock, peripherals clocks, and
internal power are off; only external power is on).

During the course of normal operation, the software can decide that the
chip has been idle for a long enough period that there is no immediate
need for the clocks to be active and the chip can be put into a power-down
mode such as hibernate. This period of inactivity occurs when there is a
USB suspend state (idle on the bus for greater than 3 ms) or if no OTG
session is valid. The SUSPEND_MODE bit (in USB_POWER) and VBUS1–0 status
bits (in USB_OTG_DEV_CTL) are used to indicate these states.

Before the system software (driver) pushes processor into the hibernate
state, the software has to make sure that the CSR_HBR bit (in
USB_APHY_CNTRL2) is set. Setting this bit activates the non-idle activity
detection logic in the PHY. Any non-idle activity on the USB bus is
detected by the non-idle activity detection logic in the analog PHY. This
logic wakes up the processor and generates a low to high transition on
EXT_WAKE pin.

To be able to use non-idle activity detection logic as a wakeup source for
the processor, enable the USB wakeup source by programming the appro-
priate bits in the voltage regulator control register (VR_CTL). After the
processor wakes up, USB is listed as the wakeup source in the PLL status
(PLL_STAT) register. The EXT_WAKE pin can be used by the external
power-up sequence chip to power up SDRAM or an other external periph-
eral. The processor typically goes through these steps (see Figure 26-31 on
page 26-85) when it comes out of hibernate state.

After the chip comes out of hibernate state, the software has to make sure
that the CSR_RSTD bit of the USB_APHY_CNTRL2 register is set. This setting
deactivates the non-idle activity detection logic and ensures proper USB
functionality.

ADSP-BF54x Blackfin Processor Hardware Reference 26-85

USB OTG Controller

The interrupt will be asserted when either of the following events occur:

• Non-idle signaling occurs during the USB suspend state (including
USB reset signaling)

• VBUS falls below the session valid threshold

Wakeup Without Re-Enumeration
When USB goes into suspend mode after 3 ms of inactivity on the D+ and
D–, it is possible that the processor is pushed into the hibernate state.
Hibernate state implies that all internal power is shut down, and only the
external 3.3 V power is present. And, all the clocks in the processor are
shut down. If the USB were to wake up in response to non-idle activity on

Figure 26-31. Timing Diagram of EXT_WAKE Pin

EXT_WAKE

(USB)
NONIDLE3V

D+/D–
VBUS

ACTIVITY

IVDDRDY

RST_3V

3.3V
POWERUP PROCESSOR

HIBERNATE
PROCESSOR

WAKEUP

NON-IDLE
ACTIVITY

ON
D+/D–/VBUS

ANALOG PHY NON-IDLE ACTIVITY
EDGE DETECTION CIRCUIT IS ON

DURING THIS WINDOW

Programming Model

26-86 ADSP-BF54x Blackfin Processor Hardware Reference

the D+ and D–, the USB controller would have lost the state it was in
before going to hibernate. This lost state would cause the host to re-enu-
merate USB controller device. To prevent re-enumeration of the USB
device, system software must do the following.

• Before the system software (driver) pushes the processor into hiber-
nate, it must make sure that the state of the USB is stored in
external memory flash.

• Also, the software must make sure that the CSR_HBR bit is set in the
USB_APHY_CNTRL2 register.

A low to high transition on CSR_HBR generates a pulse (high) on the csr
hbr lv signal (internal USB controller signal). This signal is used by the
USB analog PHY to retain the states of the pull-up and pull-down resis-
tors during the hibernate state. Retaining the states of the pull-up and
pull-down resistors on D+ and D– implies to the host that the USB con-
troller device is not disconnected from the USB bus.

After the system software pushes the processor into hibernate state, any
non-idle activity on the USB bus is detected by the non-idle activity
detection logic in the analog PHY. After the processor wakes up from the
hibernate state, the processor typically goes through these steps: powering
up the processor, waiting for the PLL to lock, and booting the code into
L1 memory.

After code is loaded into L1 memory, it is executed. The executed code
restores the state of the USB to pre-hibernate state. After the state is
resumed, the analog PHY no longer needs to retain the state of the
pull-ups and pull-downs on D+ and D–. The system software has to make
sure that CSR_RSTD bit is set in the USB_APHY_CNTRL2 register. A low to high
transition on the CSR_RSTD bit generates a pulse on the csr_rstd 1v signal
(internal USB controller signal). This signal is used by the analog PHY to
prevent holding the values of pull-up and pull-down resistors. The

ADSP-BF54x Blackfin Processor Hardware Reference 26-87

USB OTG Controller

pull-ups and pull-downs are now controlled by the USB controller. This
sequence of actions (see Figure 26-32) prevents re-enumeration of the
USB controller device after the processor wakes up from hibernate state.

Figure 26-32. Timing Diagram of the CSR_HBR/CSR_RSTD Bits

HIBERNATE
(3V INT SIG
IN APHY)

CSR_RSTD1V

CSR_RSTD

CSR_HBR1V

CSR_HBR

PROCESSOR
AND USB
STATES

ANALOG PHY RETAINS
THE STATE OF THE
PULL-UP/DOWNS

DURING THIS PERIOD

IDLE
ACTIVITY
ON D+/D–

DATA
TRANSFERS

ON D+/D–

PROCESSOR
HIBERNATES

RESUME
ACTIVITY
ON D+/D–

PROCESSOR
IN RESET

PROCESSOR
USB STATE
RESTORED

IVDDRDY

NONIDLE3V
(USB)

USB ENABLED
HERE

VOLTAGE DROPPING
ON CSR_HBR

THE STATE OF THIS SIGNAL
DEPENDS ON D+/D–

(DRIVEN ONLY WHEN THE
PROCESSOR IS IN HIBERNATE STATE)

SYSTEM S/W MAKES SURE
THAT THIS BIT IS SET

BEFORE HIBERNATING
THE PROCESSOR

SYSTEM S/W MAKES SURE
THAT CSR_RSTD IS PULSED

AFTER USB STATE
IS RESTORED

Programming Model

26-88 ADSP-BF54x Blackfin Processor Hardware Reference

Data Transfer
Regardless of whether the USB controller is operating in host or periph-
eral mode, data is channeled through the endpoint FIFOs to construct
packets to be sent or to be received over the USB. The RX FIFOs are used
to receive OUT packets when in peripheral mode and IN packets when
operating in host mode. Similarly, the TX FIFOs are used to transmit IN
packets when in peripheral mode and OUT packets as a host.

Data may be moved between the FIFOs and memory using either DMA
or interrupts. Each endpoint FIFO has its own individually programmable
options so that each can be set up separately. Different transfer types must
be treated differently by the system. Data transfers of significant size
almost certainly require DMA to move the data around; but smaller
packet sizes might be handled completely by the processor.

Each data endpoint supports both double and single-buffering modes. In
single-buffered operation, FIFOs are unloaded and loaded on a
packet-by-packet basis. Double-buffering imposes less burden on the sys-
tem by allowing two packets to be buffered in a FIFO before it is necessary
to use DMA/interrupts to service the FIFO. Double-buffering mode is
automatically enabled when a MaxPktSize is set for an endpoint that is
equal to or less than half the size in bytes of that FIFO.

Loading/Unloading Packets from Endpoints
Because the peripheral bus slave interface to the USB controller provides a
fixed transfer size of half words (16-bits), some additional work is required
to use packet or transfer sizes that are an odd-number of bytes in length.
This prevents data loss or corruption. This situation only exists for FIFO
interface accesses through the processor core slave interface (DMA mas-
tered endpoints can access individual bytes).

ADSP-BF54x Blackfin Processor Hardware Reference 26-89

USB OTG Controller

For TX endpoints with an odd number of bytes to be written into the
FIFO, there is the possibility that an extra byte could be incorrectly writ-
ten. The USB controller provides hardware counting and comparison
logic to prevent this from occurring. When writing such a packet into the
USB controller, the following steps are required.

• Load the appropriate USB_TXCOUNT register with the packet/transfer
size in bytes.

• Write all the data into the FIFO (using DMA or processor core)
with the final half word of the transfer containing the final byte
aligned to the least significant byte lane.

After a USB_TXCOUNT register is loaded with a value, it counts down the
number of bytes written into that particular FIFO on each processor core
or DMA write. When there is only one byte remaining in the transfer, the
USB controller latches the least significant byte of the last half word.

Another use for the USB_TXCOUNT registers is to streamline DMA transfers,
preventing unnecessary processor interaction in lengthy multi-packet
transfers.

For RX endpoints using odd packet/transfer sizes, the software must com-
pensate for the fact that the least significant byte lane of the final half
word in the transfer is valid.

 For EP0 RX transfers, if the last packet is not a multiple of four
bytes it is strongly recommended that the remainder (n bytes mod
4) be unloaded from the FIFO using a special byte addressing
FIFO register (EP0 FIFO address + 4). This prevents the USB con-
troller from sending non-null data during the status phase of the
control transfer.

Programming Model

26-90 ADSP-BF54x Blackfin Processor Hardware Reference

DMA Master Channels
The USB controller provides eight DMA master channels to provide a
more efficient transfer of larger amounts of data between the FIFOs and
the processor core; and to free up the processor core for other tasks. Each
of these channels is configured and controlled using the DMA control
registers.

Each DMA controller can operate in one of two DMA modes: 0 or 1.
When operating in mode 0, the DMA controller only can be programmed
to load or unload one packet, so processor intervention is required for
each packet transferred over the USB. This mode can be used with any
endpoint, whether it uses control, bulk, isochronous, or interrupt transac-
tions.

When operating in DMA mode 1, the DMA controller can only be pro-
grammed to load/unload a complete bulk transfer, which can be many
packets. After set up, the DMA controller loads or unloads the packets,
interrupting the processor only when the transfer has completed. DMA
mode 1 can only be used with endpoints that use bulk transactions. DMA
mode 1 is most valuable where large blocks of data are transferred to a
bulk endpoint. The USB protocol requires such packets to be split into a
series of packets of MaxPktSize for the endpoint. Mode 1 can be used to
avoid the overhead of having to interrupt the processor after each individ-
ual packet; instead the processor is only interrupted after the transfer has
completed. In some cases, the block of data transferred comprises a
pre-defined number of these packets that the controlling software counts
through the transfer process. In other cases, the last packet in the series
may be less than the maximum packet size and the receiver may use this
“short” packet to signal the end of the transfer. If the total size of the
transfer is an exact multiple of the maximum packet size, the transmitting
software should send a null packet for the receiver to detect.

Each channel can be independently programmed for the selected operat-
ing mode.

ADSP-BF54x Blackfin Processor Hardware Reference 26-91

USB OTG Controller

For bulk OUT transfers using DMA mode 1, the DMA request line is
asserted only when there is an edge transition of the state of the RXPKTRDY
and a payload of MaxPacketSize has been received. If a data packet has
been sitting in the FIFO prior to setting DMAREQMODE1 in USB_RXCSR, the
DMA request line will not be asserted when the DMA is enabled in the
DMAx_Control register. This will cause the data not to be read from the RX
FIFO, resulting in a DMA “hang”. However, since the packet arrived
before DMAREQMODE and DMAREQ_ENA were enabled in USB_RXCSR, an RX
interrupt will be generated for the corresponding endpoint. Therefore, the
software should set the DMAREQMODE to Request Mode 0 to unload the
pre-received packet. The RX interrupt service routine may look something
like this:

DMA transfers may be 8-bit or 16-bit. All the transfer associated with one
packet (with the exception of the last) must be of the same width, so that
the data is consistently byte-aligned or word-aligned. The last transfer may
contain fewer bytes than the previous transfers in order to complete an
odd-byte or odd-word transfer.

Figure 26-33. EP RX Interrupt Service Routine

If USB_RXCOUNT == MaxPktSize

Switch to DMA Mode 0 and unload the packet
(in Mode 0, DMA_REQ is always asserted whenever there’s data in the FIFO)

You should set the DMA_COUNT to MaxPktSize so as to unload only one packet

If AUTOCLEAR is set, you do not need to manually clear RXPKTRDY

Switch back to DMA Mode 1 and set the count to

(Total_Count – MaxPktSize)

Else

Handle as normal for case of short packet

Programming Model

26-92 ADSP-BF54x Blackfin Processor Hardware Reference

DMA Bus Cycles
The DMA controller uses incrementing bursts of an unspecified length on
the peripheral DMA bus. The controller starts a new burst when it is first
granted bus mastership (whether at the start of a USB packet or when
regaining the bus after being thrown off part way through a packet) and
when the peripheral address starts a new 1K byte block.

When unloading packets from the FIFOs, the DMA controller requests
ahead to the USB controller. Although it starts the transfer with two
BUSY cycles while it is getting the first word from the FIFO, all subse-
quent words of the packet are immediately available. No further BUSY
cycles are required. The DMA controller is associated with a two-word
buffer, so no data is lost if it loses bus mastership part way through
unloading a packet. When bus mastership is regained, it can continue
unloading the packet without adding any BUSY cycles.

The DMA start address (written to the DMAxADDR) must be word aligned.

Split transactions and retries are supported.

Transferring Packets Using DMA
Use of the DMA master channels to access the USB controller FIFOs
requires that both the appropriate channel and the endpoint be pro-
grammed appropriately. Many variations are possible. The following
sections detail the standard setups used for the basic actions of transferring
individual packets and multiple packets.

ADSP-BF54x Blackfin Processor Hardware Reference 26-93

USB OTG Controller

Individual Packet: RX Endpoint

The transfer of individual packets is normally carried out using DMA
mode 0. The USB controller RX endpoint is programmed as follows:.

1. The relevant EPx_RX_E bit in the USB_INTRRXE register is set to 1.

2. The DMA_ENA bit of the appropriate USB_RXCSR register is set to 0.
(There is no need to set the USB controller to support DMA for
this operation.)

3. When a packet is received by the USB controller, it generates the
appropriate endpoint interrupt (using USB_INTRRX). The processor
should then program the appropriate DMA master channel as
follows:

• DMAxADDR: memory address to store packet

• USB_DMAxCOUNT: size of packet (determined by reading the
USB controller USB_RXCOUNT register)

• USB_DMAxCONTROL: INT_ENA = 1, DMA_ENA = 1, DIRECTION = 0,
DMAREQMODE_R = 0

The DMA controller then requests bus mastership and transfers the
packet to memory. It interrupts the processor when it has completed the
transfer. The processor should then clear the RXPKTRDY bit in the
USB_RXCSR register.

Programming Model

26-94 ADSP-BF54x Blackfin Processor Hardware Reference

Individual Packet: TX Endpoint

Again using DMA mode 0, a USB controller TX endpoint is programmed
as follows.

1. The relevant EPx_TX_E bit in the USB_INTRTXE register is set to 1.

2. The DMA_ENA bit of the appropriate USB_TxCSR register is set to 0.
(There is no need to set the USB controller to support DMA for
this operation.)

3. When the FIFO can accommodate data, the USB controller inter-
rupts the processor with the appropriate TX endpoint interrupt.
The processor should then program the DMA channel as follows:

• DMAxADDR: memory address of packet to send

• USB_DMAxCOUNT: size of packet to be sent

• USB_DMAxCONTROL: INT_ENA = 1, DMA_ENA = 1, DIRECTION = 1,
DMAREQMODE_T = 0

The DMA controller then requests bus mastership and transfers the
packet to the USB controller FIFO. When it has completed the transfer, it
generates a DMA interrupt. The processor should then set the TXPKTRDY
bit in the USB_TXCSR register.

Multiple Packets: RX Endpoint

Multiple packets normally are transferred using DMA mode 1. The DMA
controller is programmed using the DMA registers:

• DMAxADDR: memory address of the buffer in which to store transfer

• USB_DMAxCOUNT: maximum size of data buffer

• USB_DMAxCONTROL: INT_ENA = 1, DMA_ENA = 1, DIRECTION = 0,
DMAREQMODE_R = 1

ADSP-BF54x Blackfin Processor Hardware Reference 26-95

USB OTG Controller

The USB controller RX endpoint should now be programmed as follows:

1. The relevant EPx_RX_E bit in the USB_INTRRXE register is set to 1.

2. The AUTOCLEAR_R, DMAREQ_ENA_R and DMAREQMODE_R bits of the
appropriate USB_RXCSR register is set to 1. In host mode, the
AUTOREQ_RH and DMAREQMODE_RH bits should also be set to 1.

As each packet is received by the USB controller, the DMA master chan-
nel requests bus mastership and transfers the packet to memory. With
AUTOCLEAR_R set, the USB controller automatically clears its RXPKTRDY bit.
This process continues automatically until the USB controller receives a
short packet (one of less than the maximum packet size for the endpoint)
signifying the end of the transfer. This short packet is not transferred by
the DMA controller: instead the USB controller interrupts the processor
by generating the appropriate endpoint interrupt. The processor can then
read the USB_RXCOUNT register to see the size of the short packet and either
unload it manually or reprogram the DMA controller in mode 0 to unload
the packet.

The DMAxADDR register is incremented as the packets are unloaded, so the
processor can determine the size of the transfer by comparing the current
value of DMAxADDR with the start address of the memory buffer.

If the size of the transfer exceeds the data buffer size, the DMA controller
stops unloading the FIFO and interrupts the processor.

Programming Model

26-96 ADSP-BF54x Blackfin Processor Hardware Reference

Multiple Packets: TX Endpoints

Using DMA mode 1 for a TX endpoint, the DMA controller is pro-
grammed as follows:

• DMAxADDR: memory address of data block to send

• USB_DMAxCOUNT: size of data block

• USB_DMAxCONTROL: INT_ENA = 1, DMA_ENA = 1, DIRECTION = 1,
DMAREQMODE_T = 1

The USB controller TX endpoint is programmed as follows:

1. The relevant EPx_TX_E bit in the USB_INTRTXE register is set to 1.

2. The AUTOSET_T and DMA_ENA bits of the appropriate
USB_EP_NIx_TXCSR register is set to 1.

When the FIFO in the USB controller becomes available, the DMA con-
troller requests bus mastership and transfers a packet to the FIFO. With
AUTOSET_T set, the USB controller automatically sets the TXPKTRDY bit.
This process continues until the entire data block is transferred to the
USB controller. The DMA controller then interrupts the processor by tak-
ing DMAx_INT low. If the last packet to be loaded was less than the
maximum packet size for the endpoint, the TXPKTRDY bit is not set for this
packet; the processor should respond to the DMA interrupt by setting the
TXPKTRDY bit to allow the last short packet to be sent. If the last packet to
be loaded was of the maximum packet size, then the action to take
depends on whether the transfer is under the control of an application
such as the mass storage software on Windows system that keeps count of
the individual packets sent. If the transfer is not under such control, the
processor should still respond to the DMA interrupt by setting the
TXPKTRDY bit. This has the effect of sending a null packet for the receiving
software to interpret as indicating the end of the transfer.

ADSP-BF54x Blackfin Processor Hardware Reference 26-97

USB OTG Controller

USB OTG Registers
The USB OTG has a number of memory-mapped registers (MMRs) that
regulate its operation. Descriptions and bit diagrams for most of these
registers are provided in the following sections. See Table A-22 on
page A-42 for a complete list of USB-OTG registers and their addresses.

USB Global Control (USB_GLOBAL_CTL) Register
The USB_GLOBAL_CTL register (see Figure 26-34) enables software control
of the internal clocking of the USB. This control permits reducing power
consumption by minimizing switching activity in endpoint logic, which is
not required for use.

Before an endpoint can be used for transfer on USB it must first be acti-
vated by setting the appropriate bit in the USB_GLOBAL_CTL register. The
GLOBAL_ENA bit must be set any time the USB controller is required for
use. The GLOBAL_ENA bit also brings the USB PHY and USB PLL out of
reset state. The USB PLL locks with the frequency multiplier value pro-
grammed in the USB_PLLOSC_CTRL register. When USB_GLOBAL_CTL is not
configured, the behavior of the USB controller is undefined and writes
into CSR registers and FIFOs are not committed. It is not possible to
access an endpoint FIFO location when that endpoint is not activated in
this register. Similarly, the GLOBAL_ENA bit is required for access to the
endpoint 0 FIFO locations. For more information on the USB controller
clocking scheme, see “Power and Clocking” on page 26-55.

USB OTG Registers

26-98 ADSP-BF54x Blackfin Processor Hardware Reference

 Bit 15, which is marked as reserved in Figure 26-34, implements
the test mode timer reduction. When set, this bit reduces the values
used in the timers internal to the USB protocol block in order to
drastically reduce the simulation time. This bit should only be set
for simulation purposes, because setting it causes incorrect USB
behavior if set during normal operation.

Figure 26-34. USB Global Control Register

USB Global Control Register (USB_GLOBAL_CTL)

Reset = 0x0000

Read/Write

GLOBAL_ENA (USB Enable)
0 - Disable
1 - Enable USB
EP1_TX_ENA (TX EP1 Enable)
0 - Disable
1 - Enable endpoint 1 TX

EP3_TX_ENA (TX EP3 Enable)
0 - Disable
1 - Enable endpoint 3 TX

EP2_TX_ENA (TX EP2 Enable)
0 - Disable
1 - Enable endpoint 2 TX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

EP4_TX_ENA (TX EP4 Enable)
0 - Disable
1 - Enable endpoint 4 TX
EP5_TX_ENA (TX EP5 Enable)
0 - Disable
1 - Enable endpoint 5 TX
EP6_TX_ENA (TX EP6 Enable)
0 - Disable
1 - Enable endpoint 6 TX
EP7_TX_ENA (TX EP7 Enable)
0 - Disable
1 - Enable endpoint 7 TX

EP1_RX_ENA (RX EP1 Enable)

0 - Disable
1 - Enable endpoint 1 RX

EP3_RX_ENA
(RX EP3 Enable)
0 - Disable
1 - Enable endpoint 3 RX
EP2_RX_ENA (RX EP2 Enable)
0 - Disable
1 - Enable endpoint 2 RX

EP4_RX_ENA
(RX EP4 Enable)
0 - Disable
1 - Enable endpoint 4 RX

EP5_RX_ENA
(RX EP5 Enable)
0 - Disable
1 - Enable endpoint 5 RX

EP6_RX_ENA
(RX EP6 Enable)
0 - Disable
1 - Enable endpoint 6 RX

EP7_RX_ENA
(RX EP7 Enable)
0 - Disable
1 - Enable endpoint 7 RX

Reserved

ADSP-BF54x Blackfin Processor Hardware Reference 26-99

USB OTG Controller

USB Power Management (USB_POWER) Register
The USB_POWER register (see Figure 26-35) controls suspend and resume
signaling and controls some operational aspects of the USB controller.

ENABLE_SUSPENDM

The ENABLE_SUSPENDM (bit 0) is set by the processor core to enable the
SUSPENDM output (internal USB controller signal). When this bit is set, the
SUSPENDM output signal is used by the USB PHY to power-down its drivers
when the USB controller is not active.

Figure 26-35. USB Power Management Register

USB Power Management Register (USB_POWER)

Reset = 0x0020

Read/Write, Read Only

ENABLE_SUSPENDM
(Suspend Mode Output Enable)
0 - Disable (or indicate disabled)
1 - Enable (or indicate enabled)
SUSPEND_MODE
(Suspend Mode Enable)
0 - Disable (or indicate mode off)
1 - Enable (or indicate mode on)

RESET
(USB Reset)
0 - No reset
1 - Reset USB

RESUME_MODE
(Resume Mode Flag)
0 - Mode off indicator (or disable)
1 - Mode on indicator (or enable)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 1 0 0 0 00 0

ISO_UPDATE
(Isochronous Update Enable)
0 - Disable
1 - Enable

HS_ENABLE
(High Speed Mode Enable)
0 - Disable
1 - Enable

SOFT_CONN
(Soft Connect Enable)
0 - Disabled
1 - Enabled

ro ro ro ro ro ro ro ro – – r/w ro r/w r/w set r/w

ro ro ro ro ro ro ro ro r/w r/w r/w ro ro r/w ro r/w

Host Mode Access

Peripheral Mode Access

HS_MODE
(High Speed Mode Flag)
0 - Mode off indicator
1 - Mode on indicator

USB OTG Registers

26-100 ADSP-BF54x Blackfin Processor Hardware Reference

SUSPEND_MODE

In host mode, SUSPEND_MODE (bit 1) is set by the processor core to enter
suspend mode. In peripheral mode, this bit is set on entry into suspend
mode. It is cleared when the processor core reads the interrupt register, or
sets the resume bit.

RESUME_MODE

The RESUME_MODE (bit 2) is set by the processor core to generate resume
signaling when the function is in suspend mode. The processor core
should clear this bit after 10 ms (a maximum of 15 ms) to end resume sig-
naling. In host mode, this bit is also automatically set when resume
signaling from the target is detected while the USB controller is
suspended.

RESET

The RESET (bit 3) bit is set when reset signaling is present on the bus. This
bit is read/write from the processor core in host mode but read-only in
peripheral mode.

HS_MODE

When HS_MODE (bit 4) is set, this read-only bit indicates high-speed mode
successfully negotiated during a USB reset. In peripheral mode, it
becomes valid when the USB reset completes (as indicated by the USB
reset interrupt). In host mode, it becomes valid when the
RESET_OR_BABLE_B bit is cleared. It remains valid for the duration of the
session.

HS_ENABLE

When HS_ENABLE (bit 5) is set by the processor core, the USB controller
negotiates for high speed when the device is reset by the hub/host. If it is
not set, the controller only operates in full-speed mode. By default
HS_ENABLE is set to 1.

ADSP-BF54x Blackfin Processor Hardware Reference 26-101

USB OTG Controller

SOFT_CONN

If the soft connect/disconnect feature is enabled (bit 6, SOFT_CONN = 1),
then the USB D+/D–lines are enabled when this bit is set by the processor
core and three-stated when this bit is cleared by the processor core. Only
valid in peripheral mode.

ISO_UPDATE

When ISO_UPDATE (bit 7) is set by the processor core, the USB controller
waits for an SOF token from the time TXPKTRDY is set before sending the
packet. If an IN token is received before an SOF token, then a zero length
data packet is sent. Only valid in peripheral mode. Also, this bit only
affects endpoints performing isochronous transfers.

USB OTG Registers

26-102 ADSP-BF54x Blackfin Processor Hardware Reference

USB Function Address (USB_FADDR) Register
The USB_FADDR register (see Figure 26-36) contains the 7-bit address of
the peripheral part of the transaction.

When the USB controller is being used in peripheral mode (HOST_MODE =
0 in USB_OTG_DEV_CTL), this register is written with the address received
through a SET_ADDRESS command. The address is used for decoding the
function address in subsequent token packets.

When the USB controller is being used in host mode (HOST_MODE = 1 in
USB_OTG_DEV_CTL), this register is set to the value sent in a SET_ADDRESS
command during device enumeration as the address for the peripheral
device.

Figure 26-36. USB Function Address Register

USB Function Address Register (USB_FADDR)

Reset = 0x0000

Read/Write

FUNCTION_ADDRESS
(Peripheral Device Address)

0x7F - 0x00 Address Value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 26-103

USB OTG Controller

USB Test Mode (USB_TESTMODE) Register
The USB_TESTMODE register (see Figure 26-37) places the USB controller
into test mode state and also can put the USB controller into one of the
four test modes for high-speed operation (see the USB 2.0 specification).

Figure 26-37. USB Test Mode Register

USB Test Mode Register (USB_TESTMODE)

Reset = 0x0000

Read/Write

Test_SE0_NAK
(High Speed Mode only). The
CPU sets this bit to enter the
Test_SE0_NAK test mode. In this
mode, the USBDRC remains in
High-speed mode but responds to
any valid IN token with a NAK.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Test_J
(High Speed Mode only). The
CPU sets this bit to enter the
Test_J test mode. In this mode,
the USBDRC transmits a continu-
ous J on the bus.
Test_K
(High Speed Mode only). The
CPU sets this bit to enter the
Test_K test mode. In this mode,
the USBDRC transmits a continu-
ous K on the bus.
Test_Packet
(High Speed Mode only). The
CPU sets this bit to enter the
Test_Packet test mode. In this
mode, the USBDRC repetitively
transmits on the bus a 53-byte
test packet, the form of which is
defined in the USB 2.0 Specifica-
tion, Section 7.1.20. Note that the
test packet has a fixed format and
must be loaded into the Endpoint
0 FIFO before this test mode is
entered.

Force_HS
The CPU sets this bit to force the USBDRC
into High-speed mode when it receives a USB
reset.

Force_FS
The CPU sets this bit to force the USBDRC
into Full-speed mode when it receives a USB
reset.

FIFO_Access
The CPU sets this bit to transfer the
packet in the Endpoint 0 TX FIFO to the
Endpoint 0 RX FIFO. It is cleared
automatically.

ForceHost
The CPU may set this bit to instruct the
core to enter Host mode when the Ses-
sion bit is set, regardless of whether the
core is connected to any peripheral. In
order to ensure the correct operating
speed in this mode, the Force_FS or
Force_HS bit must also be set for this
feature.

Reserved
Undefined, always returns zero.

USB OTG Registers

26-104 ADSP-BF54x Blackfin Processor Hardware Reference

USB_TESTMODE is not used in normal operation. Only one of the bits may
be set at one time, except for bit 5 in conjunction with the ForceHost
feature.

USB Global Interrupt (USB_GLOBINTR) Register
The USB_GLOBINTR register (see Figure 26-38) selects routing for each of
the three USB interrupt sources (USB_INTRRX, USB_INTRTX and
USB_INTRUSB/USB_OTG_VBUS_IRQ) to any or all of the top-level interrupts
(USB_INT0, USB_INT1 and USB_INT2).

Each interrupt source is represented by a configuration bit across each of
the top-level interrupts. Setting each to a 1, routes that source to the
interrupt.

Figure 26-38. USB Global Interrupt Register

USB Global Interrupt Register (USB_GLOBINTR)

Reset = 0x0111

Read/Write

USB_INT0_R
(INTR_USB/VBUS to USB_INT0)
0 - No routing
1 - Route USB/VBUS IRQ to INT0
RX_INT0_R
(INTR_RX to USB_INT0)
0 - No routing
1 - Route RX IRQ to INT0

USB_INT1_R
(INTR_USB/VBUS to USB_INT1)
0 - No routing
1 - Route USB/VBUS IRQ to INT1

TX_INT0_R
(INTR_TX to USB_INT0)
0 - No routing
1 - Route TX IRQ to INT0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 1 0 0 0 1 0 0 00 0

RX_INT2_R
(INTR_RX to USB_INT2)
0 - No routing
1 - Route RX IRQ to INT2

TX_INT1_R
(INTR_TX to USB_INT1)
0 - No routing
1 - Route TX IRQ to INT1

USB_INT2_R
(INTR_USB/VBUS to USB_INT2)
0 - No routing
1 - Route USB/VBUS IRQ to INT2

RX_INT1_R
(INTR_RX to USB_INT1)
0 - No routing
1 - Route RX IRQ to INT1

TX_INT2_R
(INTR_TX to USB_INT2)
0 - No routing
1 - Route TX IRQ to INT2

ADSP-BF54x Blackfin Processor Hardware Reference 26-105

USB OTG Controller

USB Transmit Interrupt (USB_INTRTX) Register
The USB_INTRTX register (see Figure 26-39) indicates which interrupts are
currently active for endpoint 0 and the TX endpoints 1–7. Writing 1 to
bits 0–7 when they are high clears that particular bit and de-asserts the
corresponding interrupt source.

Figure 26-39. USB Transmit Interrupt Register

USB Transmit Interrupt Register (USB_INTRTX)

Reset = 0x0000

Read/Write

EP0_TX (TX EP0 Interrupt)
0 - No interrupt
1 - TX endpoint 0 interrupt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

EP1_TX (TX EP1 Interrupt)
0 - No interrupt
1 - TX endpoint 1 interrupt
EP2_TX (TX EP2 Interrupt)
0 - No interrupt
1 - TX endpoint 2 interrupt
EP3_TX (TX EP3 Interrupt)
0 - No interrupt
1 - TX endpoint 3 interrupt

EP7_TX (TX EP7 Interrupt)
0 - No interrupt
1 - TX endpoint 7 interrupt
EP6_TX (TX EP6 Interrupt)
0 - No interrupt
1 - TX endpoint 6 interrupt
EP5_TX (TX EP5 Interrupt)
0 - No interrupt
1 - TX endpoint 5 interrupt
EP4_TX (TX EP4 Interrupt)
0 - No interrupt
1 - TX endpoint 4 interrupt

USB OTG Registers

26-106 ADSP-BF54x Blackfin Processor Hardware Reference

USB Receive Interrupt (USB_INTRRX) Register
The USB_INTRRX register (see Figure 26-40) indicates which interrupts are
currently active for the RX endpoints 1–7. Writing 1 to bits 1–7 when
they are high clears that particular bit and de-asserts the corresponding
interrupt source.

Figure 26-40. USB Receive Interrupt Register

USB Receive Interrupt Register (USB_INTRRX)

Reset = 0x0000

Read/Write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

EP1_RX (RX EP1 Interrupt)
0 - No interrupt
1 - RX endpoint 1 interrupt
EP2_RX (RX EP2 Interrupt)
0 - No interrupt
1 - RX endpoint 2 interrupt
EP3_RX (RX EP3 Interrupt)
0 - No interrupt
1 - RX endpoint 3 interrupt

EP7_RX (RX EP7 Interrupt)
0 - No interrupt
1 - RX endpoint 7 interrupt
EP6_RX (RX EP6 Interrupt)
0 - No interrupt
1 - RX endpoint 6 interrupt
EP5_RX (RX EP5 Interrupt)
0 - No interrupt
1 - RX endpoint 5 interrupt
EP4_RX (RX EP4 Interrupt)
0 - No interrupt
1 - RX endpoint 4 interrupt

ADSP-BF54x Blackfin Processor Hardware Reference 26-107

USB OTG Controller

USB Transmit Interrupt Enable (USB_INTRTXE)
Register

The USB_INTRTXE register (see Figure 26-41) enables interrupts for end-
point 0 and the TX endpoints 1–7.

Writing 1 to bits 0–7 enables (unmasks) the corresponding interrupt
source. Writing 0 to bits 0–7 disables (masks) an interrupt source. The
corresponding status bit in the USB_INTRTX register may still be set, but no
interrupt is asserted. On reset, the bits corresponding to endpoint 0 and
the TX endpoints included in the design are set to 1 (for example, all TX
interrupts are enabled).

Figure 26-41. USB Transmit Interrupt Enable Register

USB Transmit Interrupt Enable Register (USB_INTRTXE)

Reset = 0x00FF

Read/Write

EP0_TX_E (TX EP0 Interrupt)
0 - Disable interrupt
1 - Enable endpoint 0 interrupt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 1 1 1 1 1 1 10 0

EP1_TX_E (TX EP1 Interrupt)
0 - Disable interrupt
1 - Enable TX endpoint 1 interrupt
EP2_TX_E (TX EP2 Interrupt)
0 - Disable interrupt
1 - Enable TX endpoint 2 interrupt
EP3_TX_E (TX EP3 Interrupt)
0 - Disable interrupt
1 - Enable TX endpoint 3 interrupt

EP7_TX_E (TX EP7 Interrupt)
0 - Disable interrupt
1 - Enable TX endpoint 7 interrupt
EP6_TX_E (TX EP6 Interrupt)
0 - Disable interrupt
1 - Enable TX endpoint 6 interrupt
EP5_TX_E (TX EP5 Interrupt)
0 - Disable interrupt
1 - Enable TX endpoint 5 interrupt
EP4_TX_E (TX EP4 Interrupt)
0 - Disable interrupt
1 - Enable TX endpoint 4 interrupt

USB OTG Registers

26-108 ADSP-BF54x Blackfin Processor Hardware Reference

USB Receive Interrupt Enable (USB_INTRRXE)
Register

The USB_INTRRXE register (see Figure 26-42) enables interrupts for the RX
endpoints 1–7.

Writing 1 to bits 1–7 enables (unmasks) the corresponding interrupt
source. Writing 0 to bits 1–7 disables (masks) an interrupt source. The
corresponding status bit in the USB_INTRRX register may still be set, but no
interrupt is asserted. On reset, the bits corresponding to endpoint 0 and
the TX endpoints included in the design are set to 1 (for example, all TX
interrupts are enabled).

Figure 26-42. USB Receive Interrupt Enable Register

USB Receive Interrupt Enable Register (USB_INTRRXE)

Reset = 0x00FE

Read/Write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 1 1 1 1 1 1 10 0

EP1_RX_E (RX EP 1 Interrupt)
0 - Disable interrupt
1 - Enable RX endpoint 1 interrupt
EP2_RX_E (RX EP 2 Interrupt)
0 - Disable interrupt
1 - Enable RX endpoint 2 interrupt
EP3_RX_E (RX EP 3 Interrupt)
0 - Disable interrupt
1 - Enable RX endpoint 3 interrupt

EP7_RX_E (RX EP 7 Interrupt)
0 - Disable interrupt
1 - Enable RX endpoint 7 interrupt
EP6_RX_E (RX EP 6 Interrupt)
0 - Disable interrupt
1 - Enable RX endpoint 6 interrupt
EP5_RX_E (RX EP 5 Interrupt)
0 - Disable interrupt
1 - Enable RX endpoint 5 interrupt
EP4_RX_E (RX EP 4 Interrupt)
0 - Disable interrupt
1 - Enable RX endpoint 4 interrupt

ADSP-BF54x Blackfin Processor Hardware Reference 26-109

USB OTG Controller

USB Common Interrupts (USB_INTRUSB) Register
The USB_INTRUSB register (see Figure 26-43) indicates which USB inter-
rupts are currently active.

Writing a 1 to any of the bits 0–7 when they are high de-asserts the inter-
rupt source corresponding to that bit. The USB_INTRUSB register shares an
interrupt source line with USB_OTG_VBUS_IRQ.

Figure 26-43. USB Common Interrupts Register

USB Common Interrupts Register (USB_INTRUSB)

Reset = 0x0000

Read/Write

RESUME_B
(Resume Indicator)
0 - Not detected
1 - Resume signaling detected
 while USB in Suspend mode
RESET_OR_BABLE_B
(Reset/Babble Indicator)
0 - Not detected
1 - Babble detected (host mode)
 Reset detected (peripheral mode)
SOF_B
(Start-of-frame Indicator)
0 - Not detected
1 - Start of USB frame detected

SUSPEND_B
(Suspend Indicator)
0 - Not detected
1 - Suspend signaling detected
 (valid in peripheral mode)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

VBUS_ERROR_B
(VBUS Threshold Indicator)
0 - Not detected
1 - VBUS below VBUS Valid threshold detected
 (valid when USB is 'A' device

DISCON_B
(Disconnect Indicator)
0 - Not detected
1 - Device disconnect detected (host mode)
 Session end detected (peripheral mode)

SESSION_REQ_B
(Session Request Indicator)
0 - Not detected
1 - Session request signalling detected
 (valid when USB is 'A' device)

CONN_B
(Connection Indicator)
0 - Not detected
1 - Device connection detected
 (valid in host mode)

USB OTG Registers

26-110 ADSP-BF54x Blackfin Processor Hardware Reference

USB Common Interrupt Enable (USB_INTRUSBE)
Register

The USB_INTRUSBE register (see Figure 26-44) enables common USB inter-
rupts. Writing 1 to bits 0–7 enables (unmasks) the corresponding
interrupt source. Writing 0 to bits 0–7 disables (masks) an interrupt
source. The corresponding status bit in the USB_INTUSB register may still
be set, but no interrupt is asserted. On reset, the RESUME_BE and
RESET_OR_BABLE_BE bits are set to 1 (for example, interrupts for resume
signalling detection and reset/babble detection are enabled).

Figure 26-44. USB Common Interrupts Enable Register

USB Common Interrupts Enable Register (USB_INTRUSBE)

Reset = 0x0006

Read/Write

RESUME_BE
(Resume Indicator Interrupt)
0 - Disable interrupt
1 - Enable interrupt
 (valid in suspend mode)
RESET_OR_BABLE_BE
(Reset/Babble Indicator Interrupt)
0 - Not detected
1 - Enable interrupt on
 Babble (host) or Reset (peripheral)
SOF_BE
(Start-of-frame Indicator Interrupt)
0 - Disable interrupt
1 - Enable interrupt

SUSPEND_BE
(Suspend Indicator Interrupt)
0 - Disable interrupt
1 - Enable interrupt
 (valid in peripheral mode)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 1 10 0

VBUS_ERROR_BE
(VBUS Threshold Indicator Interrupt)
0 - Disable interrupt
1 - Enable interrupt
 (valid when USB is 'A' device

DISCON_BE
(Disconnect Indicator Interrupt)
0 - Disable interrupt
1 - Enable interrupt on
 disconnect (host) or session end (peripheral)

SESSION_REQ_BE
(Session Request Indicator Interrupt)
0 - Disable interrupt
1 - Enable interrupt
 (valid when USB is 'A' device)

CONN_BE
(Connection Indicator Interrupt)
0 - Disable interrupt
1 - Enable interrupt
 (valid in host mode)

ADSP-BF54x Blackfin Processor Hardware Reference 26-111

USB OTG Controller

USB Frame Number (USB_FRAME) Register
The USB_FRAME register (see Figure 26-45) contains the last received frame
number; bit 10 is MSB; bit 0 is LSB.

USB Index (USB_INDEX) Register
The USB_INDEX register (see Figure 26-46) contains an index value for
alternate addressing of USB endpoint control and status registers.

Each TX endpoint and each RX endpoint have their own set of con-
trol/status registers located between address 0xFFC0 3E00 and
0xFFC0 3FF8. In addition, one indexed set of TX control/status and one
set of RX control/status registers appear between address 0xFFC0 3C40

Figure 26-45. USB Frame Number Register

Figure 26-46. USB Index Register

USB Frame Number Register (USB_FRAME)

Reset = 0x0000

Read/Write

FRAME_NUMBER
(USB Frame Number)
0x7FF - 0x000 Frame Value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

USB Index Register (USB_INDEX)

Reset = 0x0000

Read/Write

SELECTED_ENDPOINT
(USB Endpoint Index)
0xF - 0x0 Index Value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

USB OTG Registers

26-112 ADSP-BF54x Blackfin Processor Hardware Reference

and 0xFFC0 3C68. The USB_INDEX is a 4-bit register that determines
which set of endpoint control/status registers are accessed at the indexed
address range.

Before accessing an endpoint’s control/status registers using the indexed
range, the endpoint number is written to the USB_INDEX register to ensure
that the correct control/status registers appear in the indexed range of the
memory map.

USB TX Max Packet (USB_TX_MAX_PACKET)
Register

The USB_TX_MAX_PACKET register (see Figure 26-47) defines the maximum
amount of data that can be transferred through the selected transmit end-
point in a single frame. When setting this value, you must consider the
constraints placed by the USB specification on packet sizes for bulk, inter-
rupt and isochronous transactions in full-speed operations. The
USB_TX_MAX_PACKET register provides indexed access to the
USB_EP_NIx_TXMAXP register for each TX endpoint (except endpoint 0).

Figure 26-47. USB TX Max Packet Register

USB TX Max Packet Register (USB_TX_MAX_PACKET)

Reset = 0x0000

Read/Write

MAX_PACKET_SIZE_T
(TX Max Packet Size Value)
0x7FF - 0x000 maximum data
pay load in a frame

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Reserved

ADSP-BF54x Blackfin Processor Hardware Reference 26-113

USB OTG Controller

USB Control/Status EP0 (USB_CSR0) Register
The USB_CSR0 register (see Figure 26-48) provides control and status bits
for endpoint 0. Note that some bits may be set to clear automatically. The
interpretation of the USB_CSR0 register depends on whether the USB con-
troller is acting as a peripheral or as a host.

Many bits in this register have different operations (control versus status)
depending on whether the USB is in peripheral or host mode. This regis-
ter includes the following bits:

Figure 26-48. USB Control/Status EP0 Register

USB Control/Status EP0 Register (USB_CSR0)

Reset = 0x0000

Read/Write

TXPKTRDY
(Data Packet in FIFO Indicator)
0 - Not detected
1 - Detected data packet in FIFO
STALL_SENT /
STALL_RECEIVED_H
(STALL Handshake Sent – peripheral/
STALL Handshake Received – host)
0 - Not detected
1 - Stall handshake sent/received
DATAEND / SETUPPKT_H
(Data End Ind. – peripheral/
Send Setup Token – host)
0 - Cleared automatically
1 - Set for data/packet signalling

RXPKTRDY
(Data Packet Receive Indicator)
0 - Not detected
1 - Detected data packet receive

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SENDSTALL/REQPKT_H
(Send STALL Handshake – peripheral/
Request an IN Transaction – host)
0 - Cleared automatically
1 - Set to terminate/request transaction

SETUPEND / ERROR_H
(Setup End – peripheral/
Timeout Error Indicator – host)
0 - Cleared automatically
1 - Control transaction abnormal end
/timeout

SERVICED_RXPKTRDY/STATUSPKT_H
(RX Packet Serviced – peripheral/
Packet Transaction Status – host)
0 - Cleared automatically
1 - Clear/indicate packet status

SERVICED_SETUPEND/NAK_TIMEOUT_H
(Setup End Serviced – peripheral/
EP Halted After a NAK – host)
0 - Cleared automatically
1 - Clear/indicate EP status

FLUSHFIFO
(Flush Endpoint FIFO)
0 - No flush
1 - Flush endpoint FIFO

DISABLE_PING_H

0 - Issue PING tokens
1 - Do not issue PING

USB OTG Registers

26-114 ADSP-BF54x Blackfin Processor Hardware Reference

RXPKTRDY

In peripheral mode, RXPKTRDY (bit 0) is set when a data packet is received.
An interrupt is generated when this bit is set. The processor core clears
this bit by setting the SERVICED_RXPKTRDY bit.

In host mode, RXPKTRDY (bit 0) is set when a data packet is received. An
interrupt is generated (if enabled) when this bit is set. The processor core
should clear this bit when the packet is read from the FIFO.

TXPKTRDY

In peripheral mode, the processor core sets TXPKTRDY (bit 1) after loading a
data packet into the FIFO. It is cleared automatically when the data
packet is transmitted. An interrupt is generated (if enabled) when the bit
is cleared.

In host mode, the processor core sets TXPKTRDY (bit 1) after loading a data
packet into the FIFO. It is cleared automatically when the data packet is
transmitted. An interrupt is generated (if enabled) when the bit is cleared.

STALL_SENT / STALL_RECEIVED_H

In peripheral mode, STALL_SENT (bit 2) is set when a STALL handshake is
transmitted. The processor core should clear this bit.

In host mode, STALL_RECEIVED_H (bit 2) is set when a STALL handshake is
received. The processor core should clear this bit.

DATAEND / SETUPPKT_H

In peripheral mode, the processor core sets DATAEND (bit 3):

1. When setting TXPKTRDY for the last data packet.

2. When clearing RXPKTRDY after unloading the last data packet.

3. When setting TXPKTRDY for a zero length data packet. It is cleared
automatically.

ADSP-BF54x Blackfin Processor Hardware Reference 26-115

USB OTG Controller

In host mode, the processor core sets SETUPPKT_H (bit 3), at the same time
as the TXPKTRDY bit is set, to send a SETUP token instead of an OUT
token for the transaction.

SETUPEND / ERROR_H

In peripheral mode, SETUPEND (bit 4) is set when a control transaction
ends before the DATAEND bit is set. An interrupt is generated and the FIFO
is flushed at this time. The bit is cleared by the processor core writing a 1
to the SERVICED_SETUPEND bit.

In host mode, ERROR_H (bit 4) is set when three attempts have been made
to perform a transaction with no response from the peripheral. The pro-
cessor core should clear this bit. An interrupt is generated when this bit is
set.

SENDSTALL / REQPKT_H

In peripheral mode, the processor core writes a 1 to SENDSTALL (bit 5) to
terminate the current transaction. The STALL handshake is transmitted,
then this bit automatically is cleared.

In host mode, the processor core sets REQPKT_H (bit 5) to request an IN
transaction. It is cleared when RXPKTRDY is set.

SERVICED_RXPKTRDY / STATUSPKT_H

In peripheral mode, the processor core writes a 1 to SERVICED_RXPKTRDY
(bit 6) to clear the RXPKTRDY bit. It is cleared automatically.

In host mode, the processor core sets STATUSPKT_H (bit 6) at the same time
as the TXPKTRDY or REQPKT_H bit is set, to perform a status stage transac-
tion. Setting this bit ensures that the data toggle is set to 1 so that a
DATA1 packet is used for the Status Stage transaction.

USB OTG Registers

26-116 ADSP-BF54x Blackfin Processor Hardware Reference

SERVICED_SETUPEND / NAK_TIMEOUT_H

In peripheral mode, the processor core writes a 1 to SERVICED_SETUPEND
(bit 7) to clear the SETUPEND bit. It is cleared automatically.

In host mode, NAK_TIMEOUT_H (bit 7) is set when endpoint 0 is halted fol-
lowing the receipt of NAK responses for longer than the time set by the
USB_NAKLIMIT0 register. The processor core should clear this bit to allow
the endpoint to continue.

FLUSHFIFO

In peripheral mode, the processor core writes a 1 to the FLUSHFIFO (bit 8)
to flush the next packet to be transmitted/read from the endpoint 0 FIFO.
The FIFO pointer is reset and the TXPKTRDY or RXPKTRDY bit (below) is
cleared. FLUSHFIFO has no effect unless TXPKTRDY or RXPKTRDY is set.

In host mode, the processor core writes a 1 to FLUSHFIFO (bit 8) to flush
the next packet to be transmitted/read from the endpoint 0 FIFO. The
FIFO pointer is reset and the TXPKTRDY or RXPKTRDY bit (below) is cleared.
FLUSHFIFO has no effect unless TXPKTRDY or RXPKTRDY is set.

DISABLE_PING_H

The processor core writes a 1 to this bit to instruct the USB controller not
to issue PING tokens in data and status phases of a high-speed control
transfer (for use with devices that do not respond to PING).

ADSP-BF54x Blackfin Processor Hardware Reference 26-117

USB OTG Controller

USB TX Control/Status EPx (USB_TXCSR) Register
The USB_TXCSR register (see Figure 26-49) provides control and status bits
for transfers through the currently selected TX endpoint.

Figure 26-49. USB TX Control/Status EPx Register

USB TX Control/Status EPx Register (USB_TXCSR)

Reset = 0x0000

Read/Write

FIFO_NOT_EMPTY_T
(Data Packet in FIFO Indicator)
0 - Not detected
1 - Detected FIFO not empty

STALL_SENT_T
(STALL Handshake Sent – peripheral/
Reserved – host)
0 - Not detected
1 - Stall handshake sent/received

TXPKTRDY_T
(Data Packet in FIFO Indicator)
0 - Not detected
1 - Detected data in FIFO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

STALL_SEND_T/RXSTALL_TH
(Send STALL Handshake – peripheral/
Request an IN Transaction – host)
0 - Cleared automatically
1 - Set to terminate/request transaction

UNDERRUN_T/ERROR_TH
(No TXPKTRDY for IN token – peripheral/
Timeout Error Ind. – host)
0 - Cleared automatically
1 - Control transaction abnormal end /
timeout

INCOMPTX_T/NAK_TIMEOUT_H
(Large Packet Split – peripheral /
EP Halted After a NAK – host)

0 - Cleared automatically
1 - Indicates split packet/EP status

FLUSHFIFO_T
(Flush Endpoint FIFO)
0 - Cleared automatically
1 - Flush endpoint FIFO

CLEAR_DATATOGGLE_T
(Clear Endpoint Data Toggle)
0 - Cleared automatically
1 - Resets endpoint data toggle

DMAREQMODE_T
(DMA Mode Select)
0 - DMA mode 0
1 - DMA mode 1

FORCE_DATATOGGLE_T
(Force Data Toggle)
0 - Cleared automatically
1 - Forces endpoint data toggle

DMAREQ_ENA_T
(DMA Request Enable TX EP)
0 - Disable
1 - Enable DMA requests

ISO_T
(Isochronous Transfers Enable)
0 - Disable
1 - Enable

AUTOSET_T
(TXPKTRDY Autoset Enable)
0 - Disable
1 - Enable

USB OTG Registers

26-118 ADSP-BF54x Blackfin Processor Hardware Reference

Note that some bits may be set to clear automatically. The interpretation
of the USB_TXCSR register depends on whether the USB controller is acting
as a peripheral or as a host.

There is a USB_EP_NIx_TXCSR register for each TX endpoint, except end-
point 0. These registers may be accessed directly through the register
address or through the USB_TXCSR register indexed by the USB_INDEX
register.

Many bits in the USB_TXCSR register have different operations (control ver-
sus status) depending on whether the USB is in peripheral or host mode.
This register includes the following bits:

TXPKTRDY_T

In peripheral mode, the processor core sets TXPKTRDY_T (bit 0) after load-
ing a data packet into the FIFO. It is cleared automatically when a data
packet is transmitted. An interrupt is generated (if enabled) when the bit
is cleared.

In host mode, the processor core sets TXPKTRDY_T (bit 0) after loading a
data packet into the FIFO. It is cleared automatically when a data packet
is transmitted. An interrupt is generated (if enabled) when the bit is
cleared.

FIFO_NOT_EMPTY_T

In peripheral mode, the USB sets FIFO_NOT_EMPTY_T (bit 1) when there is
at least one packet in the TX FIFO.

In host mode, the USB sets FIFO_NOT_EMPTY_T (bit 1) when there is at
least one packet in the TX FIFO.

UNDERRUN_T / ERROR_TH

In peripheral mode, the USB sets UNDERRUN_T (bit 2) if an IN token is
received when TXPKTRDY is not set. The processor core should clear this bit.

ADSP-BF54x Blackfin Processor Hardware Reference 26-119

USB OTG Controller

In host mode, the USB sets ERROR_TH (bit 2) when three attempts have
been made to send a packet and no handshake packet is received. The pro-
cessor core should clear this bit. An interrupt is generated when the bit is
set. Valid only when the endpoint is operating in bulk or interrupt mode.

FLUSHFIFO_T

In peripheral mode, the processor core writes a 1 to FLUSHFIFO_T (bit 3) to
flush the next packet to be transmitted from the endpoint TX FIFO. The
FIFO pointer is reset and the TXPKTRDY bit (below) is cleared. This pointer
may be set simultaneously with TxPktRdy to abort the packet that is cur-
rently being loaded into the FIFO. FLUSHFIFO_T has no effect unless
TXPKTRDY is set. Note that if the FIFO is double-buffered, FLUSHFIFO_T
may need to be set twice to completely clear the FIFO.

In host mode, the processor core writes a 1 to FLUSHFIFO_T (bit 3) to flush
the next packet to be transmitted from the endpoint TX FIFO. The FIFO
pointer is reset and the TXPKTRDY bit (below) is cleared. This pointer may
be set simultaneously with TxPktRdy to abort the packet that is currently
being loaded into the FIFO. FLUSHFIFO_T has no effect unless TXPKTRDY is
set. Note that, if the FIFO is double-buffered, FLUSHFIFO_T may need to
be set twice to completely clear the FIFO.

STALL_SEND_T / STALL_RECEIVED_TH

In peripheral mode, the processor core writes a 1 to STALL_SEND_T (bit 4)
to issue a STALL handshake to an IN token. The processor core clears this
bit to terminate the stall condition. This bit has no effect where the end-
point is being used for isochronous transfers.

In host mode, bit 4 is reserved.

STALL_SENT_T / RXSTALL_TH

In peripheral mode, SENTSTALL (bit 5) is set when a STALL handshake is
transmitted. The FIFO is flushed and the TXPKTRDY bit is cleared. The
processor core should clear this bit.

USB OTG Registers

26-120 ADSP-BF54x Blackfin Processor Hardware Reference

In host mode, RXSTALL_TH (bit 5) is set when a STALL handshake is
received. The FIFO is flushed and the TXPKTRDY bit is cleared. The proces-
sor core should clear this bit.

CLEAR_DATATOGGLE_T

In peripheral mode, the processor core writes a 1 to CLEAR_DATATOGGLE_T
(bit 6) to reset the endpoint data toggle to 0.

In host mode, the processor core writes a 1 to CLEAR_DATATOGGLE_T (bit 6)
to reset the endpoint data toggle to 0.

INCOMPTX_T / NAK_TIMEOUT_TH

In peripheral mode, this bit always returns 0.

In host mode, NAK_TIMEOUT_TH (bit 7) is set when the TX endpoint is
halted following the receipt of NAK responses for longer than the time set
as the NAK limit by the USB_TXINTERVAL register. The processor core
should clear this bit to allow the endpoint to continue. This bit is valid
only for bulk endpoints.

DMAREQMODE_T

In peripheral mode, the processor core sets DMAREQMODE_T (bit 10) to select
DMA mode 1 and clears this bit to select DMA mode 0.

In host mode, the processor core sets DMAREQMODE_T (bit 10) to select
DMA mode 1 and clears this bit to select DMA mode 0.

FORCE_DATATOGGLE_T

In peripheral mode, the processor core sets FORCE_DATATOGGLE_T (bit 11)
to force the endpoint data toggle to switch and the data packet to be
cleared from the FIFO, regardless of whether an ACK was received. This
can be used by interrupt TX endpoints that are used to communicate rate
feedback for isochronous endpoints.

ADSP-BF54x Blackfin Processor Hardware Reference 26-121

USB OTG Controller

In host mode, the processor core sets FRCDATATOG (bit 11) to force the end-
point data toggle to switch and the data packet to be cleared from the
FIFO, regardless of whether an ACK was received. This can be used by
interrupt TX endpoints that are used to communicate rate feedback for
isochronous endpoints.

DMAREQ_ENA_T

In peripheral mode, the processor core sets DMAREQ_ENA_T (bit 12) to
enable the DMA request for the TX endpoint.

In host mode, the processor core sets DMAREQ_ENA_T (bit 12) to enable the
DMA request for the TX endpoint.

ISO_T

In peripheral mode, the processor core sets ISO_T (bit 14) to enable the
TX endpoint for isochronous transfers, and clears it to enable the TX end-
point for bulk or interrupt transfers. This bit only has an effect in
peripheral mode.

In host mode, bit 14 is unused, and always returns zero.

AUTOSET_T

In peripheral mode, if the processor core sets AUTOSET_T (bit 15), TXPKTRDY
automatically is set when data of the maximum packet size (value in
USB_TX_MAX_PACKET) is loaded into the TX FIFO. If a packet of less than
the maximum packet size is loaded, then TXPKTRDY must be set manually.

In host mode, if the processor core sets AUTOSET_T (bit 15), TXPKTRDY auto-
matically is set when data of the maximum packet size (value in
USB_TX_MAX_PACKET) is loaded into the TX FIFO. If a packet of less than
the maximum packet size is loaded, then TXPKTRDY must be set manually.

USB OTG Registers

26-122 ADSP-BF54x Blackfin Processor Hardware Reference

USB RX Max Packet (USB_RX_MAX_PACKET)
Register

The USB_RX_MAX_PACKET register (see Figure 26-50) defines the maximum
amount of data that can be transferred through the selected transmit end-
point in a single frame.

The USB_RX_MAX_PACKET register provides indexed access to the
USB_EP_NIx_RXMAXP register for each RX endpoint (except endpoint 0).
Bits[10:0] define (in bytes) the maximum payload transmitted in a single
transaction. The legal value loaded can be up to 1023 bytes but is subject
to the constraints placed by the USB specification on packet sizes for bulk,
interrupt and isochronous transfers in full-speed operation.

 A value greater than the maximum allowed of 1023 for full-speed
USB operation produces unpredictable results.

The value written to this register should match the programmed maxi-
mum individual packet size (MaxPktSize) of the standard endpoint
descriptor for the associated endpoint (see Universal Serial Bus Specifica-
tion Revision 2.0, Chapter 9). A mismatch could cause unexpected results.

The total amount of data represented by the value written to this register
must not exceed the RX FIFO size, and should not exceed half the FIFO
size if double-buffering is required.

Figure 26-50. USB RX Max Packet Register

USB RX Max Packet Register (USB_RX_MAX_PACKET)

Reset = 0x0000

Read/Write

MAX_PACKET_SIZE_R
(RX Max Packet Size Value)
0x7FF - 0x000 maximum data
pay load in a frame

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0

Reserved

0 00

ADSP-BF54x Blackfin Processor Hardware Reference 26-123

USB OTG Controller

USB RX Control/Status (USB_RXCSR) Register
The USB_RXCSR register (see Figure 26-51) provides control and status bits
for transfers through the currently selected RX endpoint.

Figure 26-51. USB RX Control/Status EPx Register

USB RX Control/Status EPx Register (USB_RXCSR)

Reset = 0x0000

Read/Write

FIFO_FULL_R
(FIFO not empty Indicator)
0 - Not detected
1 - Detected FIFO not empty

FLUSHFIFO_R
(Flush Endpoint FIFO)
0 - Cleared automatically
1 - Flush FIFO

RXPKTRDY_R
(Data Packet in FIFO Indicator)
0 - Not detected
1 - Detected data in FIFO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

STALL_SEND_R/REQPKT_RH
(Send STALL Handshake – peripheral/
Request an IN Transaction – host)
0 - Cleared automatically
1 - Set to terminate/request transaction

OVERRUN_R/ERROR_RH
(TXPKTRDY not Set for IN token – peripheral
TXPKTRDY not Set for IN token – host)
0 - Cleared automatically
1 - Control transaction abnormal end /timeout

INCOMPRX_R/INCOMPRX_RH
(Large Packet Split – peripheral/host)
0 - Cleared automatically
1 - Indicates split packet / EP status

DATAERROR_R
(Load Error of OUT Data to FIFO)
0 - Not detected
1 - Error detected

STALL_SENT_R/STALL_RECEIVED_RH
(Stall Handshake Sent – peripheral/
Stall Handshake Received – host)
0 - Cleared automatically
1 - Set to indicate handshake

DMAREQMODE_R/DMAREQMODE_RH
(DMA Mode Select – peripheral/host)
0 - DMA mode 0
1 - DMA mode 1

DISNYET_R (Disable Nyet Handshakes)
0 - Enable handshake
1 - Disable handshake

DMAREQ_ENA_R
(DMA Request Enable TX EP)
0 - Disable
1 - Enable DMA requests

ISO_R/AUTOREQ_RH
(Peripheral:
Isochronous Transfer Enable
Host:
Automatically Set REQPKT_H)
0 - Disable
1 - Enable

AUTOCLEAR_R
(RxPktRdy Autoclear Enable)
0 - Disable
1 - Enable

CLEAR_DATATOGGLE_R
(Clear Endpoint Data Toggle)
0 - Cleared automatically
1 - Resets endpoint data toggle

USB OTG Registers

26-124 ADSP-BF54x Blackfin Processor Hardware Reference

Note that some bits may be set to clear automatically. The interpretation
of the USB_RXCSR register depends on whether the USB controller is acting
as a peripheral or as a host.

There is a USB_EP_NIx_RXCSR register for each RX endpoint, except end-
point 0. These registers may be accessed directly through the register
address or through the USB_RXCSR register indexed by the USB_INDEX
register.

Many bits in the USB_RXCSR register have different operations (control ver-
sus status) depending on whether the USB is in peripheral or host mode.
This register includes the following bits:

RXPKTRDY_R

In peripheral mode, RXPKTRDY_R (bit 0) is set when a data packet is
received. The processor core should clear this bit when the packet is
unloaded from the RX FIFO. An interrupt is generated when the bit is set.

In host mode, RXPKTRDY_R (bit 0) is set when a data packet is received. The
processor core should clear this bit when the packet is unloaded from the
RX FIFO. An interrupt is generated when the bit is set.

FIFO_FULL_R

In peripheral mode, FIFO_FULL_R (bit 1) is set when no more packets can
be loaded into the RX FIFO.

In host mode, FIFO_FULL_R (bit 1) is set when no more packets can be
loaded into the RX FIFO.

OVERRUN_R / ERROR_RH

In peripheral mode, OVERRUN_R (bit 2) is set if an OUT packet cannot be
loaded into the RX FIFO. The processor core should clear this bit. This
bit is only valid when the endpoint is operating in isochronous mode. In
bulk mode, it always returns zero.

ADSP-BF54x Blackfin Processor Hardware Reference 26-125

USB OTG Controller

In host mode, the USB sets ERROR_RH (bit 2) when 3 attempts have been
made to receive a packet and no data packet is received. The processor
core should clear this bit. An interrupt is generated when the bit is set.
This bit is only valid when the TX endpoint is operating in bulk or inter-
rupt mode. In isochronous mode, it always returns zero.

DATAERROR_R

In peripheral mode, DATAERROR_R (bit 3) is set when RXPKTRDY is set if the
data packet has a CRC or bit-stuff error. It is cleared when RXPKTRDY is
cleared. This bit is only valid when the endpoint is operating in isochro-
nous mode. In bulk mode, it always returns zero.

In host mode, when operating in isochronous mode, DATAERROR_R (bit 3)
is set when RXPKTRDY is set and the data packet has a CRC or bit-stuff error
and cleared when RXPKTRDY is cleared. In bulk mode, this bit is set when
the RX endpoint is halted following the receipt of NAK responses for lon-
ger than the time set as the NAK limit by the USB_RXINTERVAL register.
The processor core should clear this bit to allow the endpoint to continue.

FLUSHFIFO_R

In peripheral mode, the processor core writes a 1 to FLUSHFIFO_R (bit 4) to
flush the next packet to be read from the endpoint RX FIFO. The FIFO
pointer is reset and the RXPKTRDY bit (below) is cleared. FLUSHFIFO_R has
no effect unless RXPKTRDY is set. Note that, if the FIFO is double-buffered,
FLUSHFIFO_R may need to be set twice to completely clear the FIFO.

In host mode, the processor core writes a 1 to FLUSHFIFO_R (bit 4) to flush
the next packet to be read from the endpoint RX FIFO. The FIFO pointer
is reset and the RXPKTRDY bit (below) is cleared. FLUSHFIFO_R has no effect
unless RXPKTRDY is set. Note that, if the FIFO is double-buffered,
FLUSHFIFO_R may need to be set twice to completely clear the FIFO.

USB OTG Registers

26-126 ADSP-BF54x Blackfin Processor Hardware Reference

STALL_SEND_R / REQPKT_RH

In peripheral mode, the processor core writes a 1 to STALL_SEND_R (bit 5)
to issue a STALL handshake. The processor core clears this bit to terminate
the stall condition. This bit has no effect where the endpoint is being used
for isochronous transfers.

In host mode, the processor core writes a 1 to REQPKT_RH (bit 5) to request
an IN transaction. It is cleared when RXPKTRDY is set.

STALL_SENT_R / STALL_RECEIVED_RH

In peripheral mode, STALL_SENT_R (bit 6) is set when a STALL handshake is
transmitted. The processor core should clear this bit.

In host mode, when a STALL handshake is received, STALL_RECEIVED_RH
(bit 6) is set and an interrupt is generated. The processor core should clear
this bit.

CLEAR_DATATOGGLE_R

In peripheral mode, the processor core writes a 1 to CLEAR_DATATOGGLE_R
(bit 7) to reset the endpoint data toggle to 0.

In host mode, the processor core writes a 1 to CLEAR_DATATOGGLE_R (bit 7)
to reset the endpoint data toggle to 0.

INCOMPRX_R / INCOMPRX_RH

In peripheral mode, INCOMPRX_R (bit 8) always returns 0.

In host mode, INCOMPRX_RH (bit 8) always returns 0.

DMAREQMODE_R / DMAREQMODE_RH

In peripheral mode, the processor core sets DMAREQMODE_R (bit 11) to select
DMA request mode 1 and clears this bit to select DMA request mode 0.

ADSP-BF54x Blackfin Processor Hardware Reference 26-127

USB OTG Controller

In host mode, the processor core sets DMAREQMODE_RH (bit 11) to select
DMA mode 1 and clears this bit to select DMA mode 0.

DISNYET_R

In peripheral mode, the processor core sets DISNYET_R (bit 12) to disable
the sending of NYET handshakes. When set, all successfully received RX
packets are acknowledged, including at the point at which the FIFO
becomes full. This bit only has an effect in high-speed mode, where it is
set for all interrupt endpoints.

In host mode, the processor core sets DISNYET_R (bit 12) to disable the
sending of NYET handshakes. When set, all successfully received RX
packets are acknowledged including the point at which the FIFO becomes
full. This bit only has an effect in high-speed mode, where it is set for all
interrupt transfers.

DMAREQ_ENA_R

In peripheral mode, the processor core sets DMAREQ_ENA_R (bit 13) to
enable the DMA request for the RX endpoint.

In host mode, the processor core sets DMAREQ_ENA_R (bit 13) to enable the
DMA request for the RX endpoint.

ISO_R / AUTOREQ_RH

In peripheral mode, the processor core sets ISO_R (bit 14) to enable the
RX endpoint for isochronous transfers, and clears it to enable the RX end-
point for bulk or interrupt transfers.

In host mode, if the processor core sets AUTOREQ_RH (bit 14), the REQPKT_H
bit automatically is set when the RXPKTRDY bit is cleared.

USB OTG Registers

26-128 ADSP-BF54x Blackfin Processor Hardware Reference

AUTOCLEAR_R

In peripheral mode, if the processor core sets AUTOCLEAR_R (bit 15), the
RXPKTRDY bit automatically is cleared when a packet of USB_RX_MAX_PACKET
bytes is unloaded from the RX FIFO. When packets of less than the maxi-
mum packet size are unloaded, RXPKTRDY must be cleared manually.

In host mode, if the processor core sets AUTOCLEAR_R (bit 15), the
RXPKTRDY bit automatically is cleared when a packet of USB_RX_MAX_PACKET
bytes is unloaded from the RX FIFO. When packets of less than the maxi-
mum packet size are unloaded, RXPKTRDY must be cleared manually.

USB Count 0 (USB_COUNT0) Register
The USB_COUNT0 register (see Figure 26-52) indicates the number of
received data bytes in the endpoint 0 FIFO. The value returned changes as
the contents of the FIFO change and is only valid while RXPKTRDY is set.

USB RX Byte Count EPx (USB_RXCOUNT) Register
The USB_RXCOUNT register (see Figure 26-53) holds the number of received
data bytes in the packet in the RX FIFO. Note that the value returned
changes as the FIFO is unloaded and is only valid while RXPKTRDY in
USB_RXCSR is set.

Figure 26-52. USB Count 0 Register

USB Count 0 Register (USB_COUNT0)

Reset = 0x0000

Read Only

EP0_RX_COUNT
(Number of RX bytes in
EP0 FIFO)
0x7F - 0x00 RX bytes

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 26-129

USB OTG Controller

USB TX Type (USB_TXTYPE) Register
The USB_TXTYPE register (see Figure 26-54) selects the endpoint number
and transaction protocol to use for the currently selected TX endpoint.
There is a USB_TXTYPE register for each TX endpoint.

Figure 26-53. USB RX Byte Count Register

Figure 26-54. USB TX Type Register

USB RX Byte Count EPx Register (USB_RXCOUNT)

Reset = 0x0000

Read Only

RX_COUNT
(Number of received bytes
in the packet in the RX FIFO)
0x1FFF - 0x000 Number of
bytes received

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

USB TX Type Register (USB_TXTYPE)

Reset = 0x0000

Read/Write

TARGET_EP_NO_T
(EPx Number)
0xF - 0x0 Endpoint value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PROTOCOL_T
(Transfer Type)

00: Illegal
01: Isochronous
10: Bulk
11: Interrupt

USB OTG Registers

26-130 ADSP-BF54x Blackfin Processor Hardware Reference

USB NAK Limit 0 (USB_NAKLIMIT0) Register
The USB_NAKLIMIT0 register (see Figure 26-55) determines the number of
frames/micro-frames after which the endpoint should timeout on receiv-
ing a stream of NAK responses for bulk endpoints.

USB TX Interval (USB_TXINTERVAL) Register
The USB_TXINTERVAL register (see Figure 26-56) defines the polling inter-
val for the currently selected TX endpoint for interrupt, isochronous, and
bulk transfers. There is a USB_TXINTERVAL register for each configured TX
endpoint, except endpoint 0

Figure 26-55. USB NAK Limit 0 Register

Figure 26-56. USB TX Interval Register

USB NAK Limit 0 Register (USB_NAKLIMIT0)

Reset = 0x0000

Read Only

EP0_NAK_LIMIT
(Timeout Value in Frames
for EP0 Timeouts)
0x1F - 0x00 Number of frames
before timeout

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

USB TX Interval Register (USB_TXINTERVAL)

Reset = 0x0000

Read/Write

TX_POLL_INTERVAL
(Polling Interval for Selected
TX EP)
0xFF - 0x00 Interval value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 26-131

USB OTG Controller

Table 26-4 relates transfer types to TX_POLL_INTERVAL values (number of
frames).

USB RX Type (USB_RXTYPE) Register
The USB_RXTYPE register (see Figure 26-57) selects the endpoint number
and transaction protocol to use for the currently selected RX endpoint.
There is a USB_RXTYPE register for each RX, except endpoint 0.

Table 26-3. Interval Value Versus Transfer Type

Transfer
Type

Speed Valid
Values (m)

Interpretation

Interrupt Low Speed or Full Speed 1 – 255 Polling interval is m frames.

High Speed 1 – 16 Polling interval is 2(m-1) micro-frames.

Isochronous Full Speed or High Speed 1 – 16 Polling interval is 2(m-1) frames or
micro-frames.

Bulk Full Speed or High Speed 2 – 16 NAK Limit is 2(m-1) frames or micro-
frames. Note: A value of 0 or 1 disables
the NAK timeout function.

Figure 26-57. USB RX Type Register

USB RX Type Register (USB_RXTYPE)

Reset = 0x0000

Read/Write

TARGET_EP_NO_R
(EPx Number)
0xF - 0x0 Endpoint value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PROTOCOL_R
(Transfer Type)
00: Illegal
01: Isochronous
10: Bulk
11: Interrupt

USB OTG Registers

26-132 ADSP-BF54x Blackfin Processor Hardware Reference

USB RX Interval (USB_RXINTERVAL) Register
The USB_RXINTERVAL register (see Figure 26-58) defines the polling inter-
val in number of frames for the currently selected RX endpoint for
interrupt, isochronous, and bulk transfers. There is a USB_RXINTERVAL reg-
ister for each configured RX endpoint, except endpoint 0.

Table 26-4 relates transfer types to RX_POLL_INTERVAL values (number of
frames).

Figure 26-58. USB RX Interval Register

Table 26-4. Interval Value Versus Transfer Type

Transfer
Type

Speed Valid
Values (m)

Interpretation

Interrupt Low Speed or Full Speed 1 – 255 Polling interval is m frames.

High Speed 1 – 16 Polling interval is 2(m-1) micro-frames.

Isochronous Full Speed or High Speed 1 – 16 Polling interval is 2(m-1) frames or
micro-frames.

Bulk Full Speed or High Speed 2 – 16 NAK Limit is 2(m-1) frames or micro-
frames. Note: A value of 0 or 1 disables
the NAK timeout function.

USB RX Interval Register (USB_RXINTERVAL)

Reset = 0x0000

Read/Write

RX_POLL_INTERVAL
(Polling Interval for Selected
RX EP)
0xFF - 0x00 Interval value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 26-133

USB OTG Controller

USB TX Byte Count EPx (USB_TXCOUNT) Register
The USB_TXCOUNT register (see Figure 26-59) selects the size in bytes of the
packet/transfer which is about to be written into a TX endpoint FIFO.

As the packet is transferred, USB_TXCOUNT is a register that can be used by
the processor core to program the size in bytes of the packet/transfer that
is about to be written into a TX endpoint FIFO. The value is decremented
by two when the processor core writes to the corresponding USB_EPx_FIFO
high word address and is decremented by one when the processor core
writes a byte to the FIFO using the corresponding USB_EPx_FIFO low word
address. If the count itself reaches 0x0001 (which would only happen for
odd-sized transfers), the next write into either USB_EPx_FIFO high word or
USB_EPx_FIFO low word writes only the least significant byte of the half
word into the FIFO. This aids DMA transfers that require IO accesses to
go to the same address. USB_TXCOUNT must be re-loaded after it has
counted to zero. It is not activated until it is loaded with a non-zero value.

See “Loading/Unloading Packets from Endpoints” on page 26-88 for
more information about using USB_TXCOUNT.

Figure 26-59. USB TX Byte Count EPx Register

USB TX Byte Count EPx Register (USB_TXCOUNT)

Reset = 0x0000

Read Only

TX_COUNT
(Number bytes to be TX in
the packet)
0x1FFF - 0x000 Number of
bytes to send

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

USB OTG Registers

26-134 ADSP-BF54x Blackfin Processor Hardware Reference

USB Endpoint FIFO (USB_EPx_FIFO) Registers
Each endpoint uses a FIFO register (USB_EPx_FIFO) for data transfer. For
more information about these FIFOs, see “Data Transfer” on page 26-88.

USB OTG Device Control (USB_OTG_DEV_CTL)
Register

The USB_OTG_DEV_CTL register (see Figure 26-60) selects whether the USB
controller is operating in peripheral mode or in host mode, and for con-
trolling and monitoring the USB VBUS line.

SESSION

When operating as an 'A' device, SESSION (bit 0) is set or cleared by the
processor core to start or end a session. When operating as a 'B' device,
SESSION is set/cleared by the USB controller when a session starts/ends.

Figure 26-60. USB OTG Device Control Register

USB OTG Device Control Register (USB_OTG_DEV_CTL)

Reset = 0x0080

Read/Write

HOST_REQ
(Host Negotiation Request)
0 - Not request
1 - Place request
HOST_MODE
(Host mode Indicator)
0 – Peripheral mode
1 – Host mode

LSDEV (Low-Speed Indicator)
0 - Not detected
1 - Low-speed detected

SESSION
(Session Indicator)
0 - Not detected
1 - Detected session

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 1 0 0 0 0 0 00 0

B_DEVICE ('A' or 'B' Device Indicator)
0 - 'A' device detected
1 - 'B' device detected
FSDEV (Full or High-Speed Indicator)
0 - Not detected
1 - Full or high-speed detected

VBUS1–0 (VBUS Level Indicator)
00 - Below SessionEnd
01 - Above SessionEnd, below session valid
10 - Above session valid, below VBUS valid
11 - Above VBUS valid

ADSP-BF54x Blackfin Processor Hardware Reference 26-135

USB OTG Controller

SESSION is also set by the processor core to initiate the session request pro-
tocol. When the USB controller is in Suspend mode, the bit may be
cleared by the processor core to perform a software disconnect.

HOST_REQ

When HOST_REQ (bit 1) is set, the USB controller initiates the host negoti-
ation when suspend mode is entered. HOST_REQ is cleared when host
negotiation is completed. ('B' device only)

HOST_MODE

The HOST_MODE (bit 2) read-only bit is set when the USB controller is act-
ing as a host.

VBUS0[1:0]

The VBUS (bits 4–3) bits are read-only bits that encode the current VBUS
level.

LSDEV

The LSDEV (bit 5) read-only bit is set when a low-speed device is detected
being connected to the port. Only valid in host mode.

FSDEV

The FSDEV (bit 6) read-only bit is set when a full-speed or high-speed
device is detected being connected to the port. High speed devices are dis-
tinguished from full-speed by checking for high-speed chirps when the
device detects a USB reset. Only valid in host mode.

B_DEVICE

The B_DEVICE (bit 7) read-only bit indicates whether the USB controller is
operating as the 'A' device or the 'B' device. Only valid while a session is
in progress.

USB OTG Registers

26-136 ADSP-BF54x Blackfin Processor Hardware Reference

USB OTG VBUS Interrupt (USB_OTG_VBUS_IRQ)
Register

The USB_OTG_VBUS_IRQ register (see Figure 26-61) is an interrupt status
register used to indicate when VBUS is required to be driven, charged or
discharged as required by the OTG supplement. Writing a 1 to any of the
bits 0 – 5 when they are active clears that bit and the corresponding inter-
rupt. The USB_OTG_VBUS_IRQ register shares an interrupt source with
USB_INTRUSB.

Because the charge pump and VBUS charge/discharge circuit is located in
a component/chip external to the on-chip PHY, the USB_OTG_VBUS_IRQ is
provided as a means of allowing the software to drive the necessary control
through a general-purpose, or dedicated IO.

DRIVE_VBUS_ON

When DRIVE_VBUS_ON (bit 0) is set, this status bit indicates the VBUS con-
trol circuit must be driven to greater than 4.4V ('A' device only).

Figure 26-61. USB OTG VBUS Interrupt Register

USB OTG VBUS Interrupt Register (USB_OTG_VBUS_IRQ)

Reset = 0x0000

Read/Write

DRIVE_VBUS_OFF
(Drive VBUS OFF)
0 - Not affected
1 - Turn drive OFF
CHRG_VBUS_START
(Charge VBUS Start)
0 – Not affected
1 – Start charging VBUS

CHRG_VBUS_END
(Charge VBUS End)
0 - Not affected
1 - End charging VBUS

DRIVE_VBUS_ON
(Drive VBUS ON)
0 - Not affected
1 - Turn drive ON

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

DISCHRG_VBUS_END
(Discharge VBUS End)
0 - Not affected
1 - End discharging VBUS
DISCHRG_VBUS_START
(Discharge VBUS Start)
0 - Not affected
1 - Start discharging VBUS

ADSP-BF54x Blackfin Processor Hardware Reference 26-137

USB OTG Controller

DRIVE_VBUS_OFF

When DRIVE_VBUS_OFF (bit 1) is set, this status bit indicates the charge
pump is to be shut off to end driving VBUS. ('A' device only).

CHRG_VBUS_START

When CHRG_VBUS_START (bit 2) is set, this status bit indicates the external
control circuit is to begin charging VBUS to signal SRP ('B' device only).

CHRG_VBUS_END

When CHRG_VBUS_END (bit 3) is set, this status bit indicates the external
VBUS control is to end charging of VBUS ('B' device only).

DISCHRG_VBUS_START

When DISCHRG_VBUS_START (bit 4) is set, this status bit indicates that
VBUS is to be discharged in order to speed up VBUS discharging below
SessionEnd threshold ('B' device only).

DISCHRG_VBUS_END

When DISCHRG_VBUS_END (bit 5) is set, this status bit indicates that VBUS
control is to end discharging of VBUS ('B' device only).

USB OTG VBUS Mask (USB_OTG_VBUS_MASK)
Register

The USB_OTG_VBUS_MASK register (see Figure 26-62) provides interrupt
enable bits for the interrupt sources in USB_OTG_VBUS_IRQ.

USB OTG Registers

26-138 ADSP-BF54x Blackfin Processor Hardware Reference

USB Link Info (USB_LINKINFO) Register
The USB_LINKINFO register (see Figure 26-63) specifies PHY delays.

Figure 26-62. USB OTG VBUS Mask Register

Figure 26-63. USB Link Info Register

USB OTG VBUS Mask Register (USB_OTG_VBUS_MASK)

Reset = 0x0000

Read/Write

DRIVE_VBUS_OFF_ENA
(Drive VBUS Off Interrupt Enable)
0 - Disable (mask)
1 - Enable (unmask)

0 - Disable (mask)
1 - Enable (unmask)

DISCHRG_VBUS_START_ENA
(Discharge VBUS Start Interrupt Enable)
0 - Disable (mask)
1 - Enable (unmask)

DRIVE_VBUS_ON_ENA
(Drive VBUS On Interrupt Enable)
0 - Disable (mask)
1 - Enable (unmask)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

DISCHRG_VBUS_END_ENA
(Discharge VBUS End Interrupt Enable)
0 - Disable (mask)
1 - Enable (unmask)

0 - Disable (mask)
1 - Enable (unmask)

CHRG_VBUS_END_ENA
(Charge VBUS End Interrupt Enable) CHRG_VBUS_START_ENA

(Charge VBUS Start Interrupt Enable)

USB Link Info Register (USB_LINKINFO)

Reset = 0x005C

Read/Write

WTID
(Wait from ID pull-up)
Sets the delay in units of 4.369ms
between ID pull-up being asserted
and IDDIG being considered valid (for
example, when the ID pin is sam-
pled). The default setting is 52.43ms.

WTCON
(Wait for Connect/Disconnect)
Sets the wait in units of 533.3ns that
will be allowed for the user to connect
or disconnect. The default setting is
2.667 µs.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 1 0 1 1 1 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 26-139

USB OTG Controller

USB VBUS Pulse Length (USB_VPLEN) Register
The USB_VPLEN register (see Figure 26-64) defines the duration of the
VBUS pulsing charge for SRP initiation.

USB High-Speed EOF 1 (USB_HS_EOF1) Register
For high-speed transactions, the USB_HS_EOF1 register (see Figure 26-65)
defines the minimum time gap allowed between the start of the last trans-
action and the EOF.

Figure 26-64. USB VBUS Pulse Length Register

Figure 26-65. USB High-Speed EOF 1 Register

USB VBUS Pulse Length Register (USB_VPLEN)

Reset = 0x003C

Read/Write

VPLEN
(VBUS Pulse Length)
Defines the duration of the VBUS
pulsing charge in units of 546.1 µs.
The default setting corresponds to
32.77ms.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 1 1 1 1 00 0

USB High-Speed EOF1 Register (USB_HS_EOF1)

Reset = 0x0080

Read/Write

HS_EOF1
(High-Speed EOF 1)
Defines for high-speed transactions
the time before EOF to stop beginning
new transactions, in units of 133.3ns.
The default setting corresponds to
17.07 µs.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 1 0 0 0 0 0 00 0

USB OTG Registers

26-140 ADSP-BF54x Blackfin Processor Hardware Reference

USB Full-Speed EOF 1 (USB_FS_EOF1) Register
For full-speed transactions, the USB_FS_EOF1 register (see Figure 26-66)
defines the minimum time gap allowed between the start of the last trans-
action and the EOF.

USB Low-Speed EOF 1 (USB_LS_EOF1) Register
For low-speed transactions, the USB_LS_EOF1 register (see Figure 26-67)
defines the minimum time gap allowed between the start of the last trans-
action and the EOF.

Figure 26-66. USB Full-Speed EOF 1 Register

Figure 26-67. USB Low-Speed EOF 1 Register

USB Full-Speed EOF1 Register (USB_FS_EOF1)

Reset = 0x0077

Read/Write

FS_EOF1
(Full-Speed EOF 1)
Defines for full-speed transactions the
time before EOF to stop beginning new
transactions, in units of 533.3ns. The
default setting corresponds to 63.46
µs.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 1 1 1 0 1 10 0

USB Low-Speed EOF1 Register (USB_LS_EOF1)

Reset = 0x0072

Read/Write

LS_EOF1
(Low-Speed EOF 1)
Defines for Low-Speed transactions
the time before EOF to stop beginning
new transactions, in units of 1.067 µs.
The default setting corresponds to
121.6 µs.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 1 1 0 0 10 0 0

ADSP-BF54x Blackfin Processor Hardware Reference 26-141

USB OTG Controller

USB APHY Control 2 (USB_APHY_CNTRL2)
Register

The USB_APHY_CNTRL register (see Figure 26-68) controls transition of
USB operation from normal to suspend to hibernate to resume normal.

CSR_HBR

The CSR_HBR (bit 0) signals the analog PHY to hold the state of the
pull-up and pull-downs on the D+ and D– for hibernate.

CSR_RSTD

The CSR_RSTD (bit 1) signals the analog PHY to release its hold on the
D+/D– pull-ups and pull-downs and give control back to the USB
controller.

Figure 26-68. USB APHY Control 2 Register

USB APHY Control 2 Register (USB_APHY_CNTRL2)

Reset = 0x0000

Read/Write

CSR_RSTD
(USB Restore Control)
Restore control of D+/D-
pull-up/pull-down to USB controller.
0 - No restore
1 - Restore

CSR_HBR
(USB Hibernate)
Gives control of D+/D-
pull-up/pull-down to PHY.
0 - No hibernate
1 - Hibernate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Reserved

USB OTG Registers

26-142 ADSP-BF54x Blackfin Processor Hardware Reference

USB PLL OSC Control (USB_PLLOSC_CTRL)
Register

The USB controller requires an internal clock of 960 MHz. This internal
USB clock is generated from an external crystal. Recommended crystal
values are 12 MHz, 24 MHz, and 30 MHz. Using a higher crystal fre-
quency will result in less jitter. The USB PLL multiplier select field
(USB_MSEL) should be programmed so that the resulting USB PLL output
frequency will be 960 MHz, as defined by the following equation:

where CLKIN_Freq is the value of the external crystal used. The reset
value of this register clears the DF bit and sets the USB_MSEL to 20. There-
fore, using a 24 MHz crystal will result in:

This register must be programmed before the USB module is enabled.

The USB_PLLOSC_CTRL register (see Figure 26-69) programs PLL and oscil-
lator controls.

Figure 26-69. USB PLL OSC Control Register

USB PLL output frequency 2 USB_MSEL CLKIN_Freq DF 1+ =

2 20 24 0 1+ 960 MHz=

USB PLL OSC Control Register (USB_PLLOSC_CTRL)

Reset = 0x3028

Read/Write, Read-Only

M (PLL Multiplier Select)
0x3F - 0x00 Multiplier selections

DF (Divide CLKIN by 2)
0 - No divide
1 - Divide

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 0 0 0 0 0 0 1 0 1 0 00 0

FORCE_MSEL
0 - No force
1 - Force PLL frequency multi-
plier (m) into divider circuit

Reserved

PLL_STABLE (RO)
0 - PLL is not stable
(Still locking)
1 - PLL is stable

ADSP-BF54x Blackfin Processor Hardware Reference 26-143

USB OTG Controller

USB SRP Clock Divider (USB_SRP_CLKDIV)
Register

The USB_SRP_CLKDIV register (see Figure 26-70) programs the clock
divider for sleep recovery of the USB peripheral (wakeup from sleep
mode).

The processor is capable of running at peripheral clock frequencies up to
133 MHz. A 12-bit USB_SRP_CLKDIV register can be programmed to the
desired value to divide the peripheral clock frequency that would clock the
wakeup circuitry when the chip is put into sleep mode. For reliable opera-
tion of the circuit the user should program a value in the divider register
that would divide the peripheral clock frequency greater than or equal to
32 kHz. The formula for calculating the value to be programmed into the
USB_SRP_CLKDIV register is:

If SCLK = 130 MHz then CLKDIV = 4062 – 1 = 4061

If SCLK = 32 MHz then CLKDIV = 1000 – 1 = 999

Figure 26-70. USB SRP Clock Divider Register

USB SRP Clock Divider Register (USB_SRP_CLKDIV)

Reset = 0x0000

Read/Write

CLKDIV (Clock Divisor)
0xFFF - 0x000 Divisor value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SRPEN
(SRP Counter Enable)
0 - Disable
1 - Enable

SCLK frequency in kHz
32

--- 1– CLKDIV value=

USB OTG Registers

26-144 ADSP-BF54x Blackfin Processor Hardware Reference

USB DMA Interrupt (USB_DMA_INTERRUPT)
Register

The USB_DMA_INTERRUPT register (see Figure 26-71) indicates which of the
eight DMA master channels have a pending interrupt. The interrupt is
generated when the corresponding DMA master channel DMA count reg-
ister reaches zero. When the status is read by the processor core, software
should write a 1 to the corresponding bit to clear the status.

USB DMAx Control (USB_DMA_CONTROL)
Registers

There is one USB_DMAx_CONTROL register (see Figure 26-72 on
page 26-145) for each DMA master channel. DMA control is used to
assign, configure and control each endpoint with a corresponding DMA
master channel. The n in the address below indicates the channel number
0 – 7.

Figure 26-71. USB DMA Interrupt Register

USB DMA Interrupt Register (USB_DMA_INTERRUPT)

Reset = 0x0000

Read/Write

DMA0_INT
0 - No interrupt
1 - DMA0 pending interrupt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

DMA1_INT
0 - No interrupt
1 - DMA1 pending interrupt
DMA2_INT
0 - No interrupt
1 - DMA2 pending interrupt
DMA3_INT
0 - No interrupt
1 - DMA3 pending interrupt

DMA7_INT
0 - No interrupt
1 - DMA7 pending interrupt
DMA6_INT
0 - No interrupt
1 - DMA6 pending interrupt
DMA5_INT
0 - No interrupt
1 - DMA5 pending interrupt
DMA4_INT
0 - No interrupt
1 - DMA4 pending interrupt

ADSP-BF54x Blackfin Processor Hardware Reference 26-145

USB OTG Controller

DMA_ENA

DMA_ENA (bit 0) enables the corresponding DMA master channel to allow
it to transfer data between the FIFOs and on-chip memory.

DIRECTION

DIRECTION (bit 1) determines the direction of the DMA transfer. A value
of 0 indicates a DMA write (for use with RX endpoints), and a 1 indicates
a DMA read (for use with TX endpoints).

MODE

MODE (bit 2) determines whether the channel operates in DMA mode 0 or
DMA mode 1.

INT_ENA

INT_ENA (bit 3) enables DMA interrupts for that channel (enable bit for
the corresponding bit in the USB_DMA_INTERRUPT register).

Figure 26-72. USB DMAx Control Registers

USB DMAx Control Registers (USB_DMAxCONTROL)

Reset = 0x0000

Read/Write

DIRECTION (DMA TX or RX)
0 - RX direction
1 - TX direction

DMA_ENA (DMA Enable)
0 - Disable
1 - Enable

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

EPNUM (Endpoint Number)
0x7 - 0x0 Endpoint for the transfer

MODE (DMA Mode)
0 - DMA mode 0
1 - DMA mode 1
INT_ENA (Interrupt Enable)
0 - Disable
1 - Enable

BURST_MODE (DMA Burst Selection)
00 - Burst of unspecified length
01 - Reserved
10 - Reserved
11 - Reserved
BUSERROR (DMA Bus Error)
0 - No error
1 - Error

USB OTG Registers

26-146 ADSP-BF54x Blackfin Processor Hardware Reference

EPNUM

The EPNUM (bits 7–4) value indicates the endpoint that is to be used for the
DMA transfer. The only values that are valid in this implementation are 0
through 7.

BUSERROR

BUSERROR (bit 8) indicates a peripheral bus error was encountered by the
master channel.

BURST_MODE

BURST_MODE (bits 10–9) determine the type of burst transfer the corre-
sponding DMA channel uses to transfer data.

USB DMAx Address Low (USB_DMAxADDRLOW)
Registers

The USB_DMAxADDRLOW registers (see Figure 26-73) hold the least-signifi-
cant half word of the full 32-bit DMA address. This indicates the location
in on-chip memory where DMA data is written or read.

Figure 26-73. USB DMAx Address Low Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

USB DMA Address Low Registers (USB_DMAxADDRLOW)

Reset = 0x0000 0000

Read/Write

DMA_ADDR_LOW
(Polling Interval for
Selected TX EP)
0xFFFF - 0x0000 values

ADSP-BF54x Blackfin Processor Hardware Reference 26-147

USB OTG Controller

USB DMAx Address High
(USB_DMAxADDRHIGH) Registers

The USB_DMAxADDRHIGH registers (see Figure 26-74) hold the most-signifi-
cant half word of the full 32-bit DMA address. This indicates the location
in on-chip memory where DMA data is written or read.

USB DMAx Count Low
(USB_DMAxCOUNTLOW) Registers

The USB_DMAxCOUNTLOW registers (see Figure 26-75) hold the least-signifi-
cant half word of the full 32-bit DMA count for each DMA channel. The
32-bit DMA count indicates the number of bytes to be transferred for a
given DMA work block.

Figure 26-74. USB DMAx Address High Registers

Figure 26-75. USB DMAx Count Low Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

USB DMA Address High Registers (USB_DMAxADDRHIGH)

Reset = 0x0000 0000

Read/Write

DMA_ADDR_HIGH
(Polling Interval for
Selected TX EP)
0xFFFF - 0x0000 values

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

USB DMA Count Low Registers (USB_DMAxCOUNTLOW)

Reset = 0x0000 0000

Read/Write

DMA_COUNT_LOW
(Polling Interval for
Selected TX EP)
0xFFFF - 0x0000 values

References

26-148 ADSP-BF54x Blackfin Processor Hardware Reference

USB DMAx Count High
(USB_DMAxCOUNTHIGH) Registers

The USB_DMAxCOUNTHIGH registers (see Figure 26-76 on page 26-148) hold
the most-significant half word of the full 32-bit DMA count for each
DMA channel. The 32-bit DMA count indicates the number of bytes to
be transferred for a given DMA work block.

References
The following references provide further information regarding the USB.

• On-The-Go Supplement to the USB 2.0 Specification, Rev 1.0a, June
24, 2003, USB-IF

• Universal Serial Bus Specification 2.0

Glossary of USB Terms
A list of common USB terms and their definitions as used in this specifica-
tion and with respect to the USB controller follows:

Figure 26-76. USB DMAx Count High Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

USB DMA Count High Registers (USB_DMAxCOUNTHIGH)

Reset = 0x0000 0000

Read/Write

DMA_COUNT_HIGH
(Polling Interval for
Selected TX EP)
0xFFFF - 0x0000 values

ADSP-BF54x Blackfin Processor Hardware Reference 26-149

USB OTG Controller

'A' Device

The USB device with a mini-A plug inserted into its receptacle. The 'A'
device always supplies power to VBUS.

'B' Device

The USB device with a standard-B or mini-B plug inserted into its recep-
tacle. The 'B' device starts a session as the peripheral.

Bidirectional endpoint

An endpoint that can concurrently support receive and transfer packets.

Control endpoint

An endpoint that is solely used for transfer of USB control packets for
setup and configuration. In all USB devices, the control endpoint refers to
the bidirectional endpoint 0.

Dual role device

A USB device that can operate either as the USB host in an OTG session
or as a traditional USB peripheral.

Endpoint

A single physical communication channel for USB, implemented as a
FIFO and control logic for that endpoint. Each endpoint has an associated
USB transfer type, maximum packet size, bandwidth requirement, end-
point number, and (often) a fixed transfer direction.

Frame

A regular, fixed 1ms time slot that can contain several transactions. The
transfer type determines what transactions are permitted for a given
endpoint.

Glossary of USB Terms

26-150 ADSP-BF54x Blackfin Processor Hardware Reference

HNP

Host negotiation protocol. Part of the USB OTG Supplement that allows
the host function to be transferred between two connected dual role
devices.

Packet

The lowest level of data exchange on USB. The size is determined by the
transfer type and buffer size of the USB peripheral.

PHY

The PHY is a transceiver circuit that implements the physical layer of
USB. For full speed USB OTG this includes line drivers and receivers,
pull-up/pull-down resistors as well as device ID and VBUS level
detection.

Session

A period during which USB transfers take place within an OTG connec-
tion. This can be initiated by the 'A' device (by driving VBUS) or 'B'
device (by initiating SRP). VBUS is powered during a session.

SRP

Session request protocol. Part of the USB OTG Supplement that allows a
'B' device to turn on VBUS and initiate a USB session.

Transaction

Collection of one or more packets in sequence

Transfer

 Collection of one or more transfers in sequence

ADSP-BF54x Blackfin Processor Hardware Reference 26-151

USB OTG Controller

Unidirectional endpoint

Endpoint with its direction fixed in a single direction (for example, it can
only receive packets from the USB) in both host and peripheral modes.

Glossary of USB Terms

26-152 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 27-1

27 SECURE DIGITAL HOST

This chapter describes the ADSP-BF54x processor Blackfin processor
secure digital host (SDH) interface and includes the following sections:

• “Overview” on page 27-1

• “Interface Overview” on page 27-2

• “Description of Operation” on page 27-5

• “Functional Description” on page 27-8

• “Programming Model” on page 27-31

• “SDH Registers” on page 27-52

• “Programming Examples” on page 27-74

Overview
The ADSP-BF54x processor Blackfin processors provide an SDH interface
for multimedia Cards (MMC), secure digital memory cards (SD card),
and secure digital input/output cards (SDIO). All of these cards use simi-
lar interface protocols. The main difference between MMC and SD
support is the initialization sequence. The main difference between SD
card and SDIO support is the use of interrupt and read wait signals for
SDIO.

Interface Overview

27-2 ADSP-BF54x Blackfin Processor Hardware Reference

Features of the SDH interface include:

• Support for a single SD or SDIO card

• Support for one or more MMC cards

• Support for 1-bit and 4-bit MMC and SD modes
(SPI mode is not supported)

• Programmable clock frequency generated from SCLK

• Card detection capabilities (insertion/removal)

• SDIO interrupt and read wait features

• High capacity card support, such as SDHC, implemented within
software

• 512-byte transmit/receive FIFO

• Dedicated DMA channel with 32-bit DMA access bus

Interface Overview
The SDH interface handles the multimedia and secure digital card func-
tions. This includes clock generation, power management, command
transfer, and data transfer. The bus interface converts 16-bit PAB accesses
to 32-bit register accesses to the memory mapped registers; and generates
interrupt requests to the processor core and system. The SDH has two
interrupt signals (IRQ0 and IRQ1), that are fed to the system interrupt con-
troller (SIC), IRQ72 and IRQ73 respectively.

The SDH block has 22 individual status bits in the SDH_STATUS register
that can be configured to generate an interrupt. The status bits can be
mapped to either of the two interrupts fed to the system interrupt control-
ler. This allows for greater flexibility in system configuration.

ADSP-BF54x Blackfin Processor Hardware Reference 27-3

Secure Digital Host

To generate an interrupt on IRQ0, the interrupt should be enabled by set-
ting the corresponding bit in the SDH_MASK0 register. Interrupts that are
required to be generated on IRQ1 are enabled by setting the corresponding
bit in the SDH_MASK1 register.

In addition to the status flags in the SDH_STATUS register generating inter-
rupts, each of the flags in the SDH_ESTAT register are also capable of
generating an interrupt. Interrupts for the SDH_ESTAT flags are enabled by
setting the corresponding bit in the SDH_EMASK register. The interrupts are
sent to the SIC through IRQ0.

The 32-bit DAB bus allows for efficient transfer of data, both to and from
internal memory, using a dedicated DMA channel.

The SDH is a 6-pin interface (see Figure 27-1 on page 27-4) consisting of:

• SD_CLK
The clock signal applied to the card from the SDH. All command
and data signal transfers are synchronous to this clock. The fre-
quency can vary between zero and the maximum clock frequency.
Refer to ADSP-BF542/544/547/548/549 Embedded Processor Data
Sheet for maximum supported clock frequencies.

• SD_CMD
A bidirectional command signal used for the transfer of commands
and card initialization. Using this signal, the SDH sends com-
mands to the card, and the card sends responses back to the SDH.
This signal can be configured for both push-pull mode and
open-drain mode, but only MMC cards support the open-drain
mode. The open-drain mode allows for multiple MMC cards to
share data and command signals on the SDH interface, and allows
for the initialization sequence to take place on all cards.

Interface Overview

27-4 ADSP-BF54x Blackfin Processor Hardware Reference

• SD_DATA3–0
These are the configurable bidirectional data channels used for all
data transfers to and from the card. The data bus width can be con-
figured as 1-bit or 4-bit. For specific commands, the device can
also drive its status onto the data lines.

 Although multiple MMC cards can be bused to the single SDH
interface, an MMC card cannot be bused with an SD or SDIO card
such that they share the command and/or data signals. Multiple
MMC cards bused together respond to CMD1 and CMD2 com-
mands simultaneously, using open drain drivers. For any other card
type, broadcast commands with a response must not be issued if
the command or data signals are shared between cards.

Figure 27-1. SDH Interface Block Diagram

512-BYTE FIFO

TX AND RX LOGIC

CLOCK DIVIDER
AND SYNC LOGIC

SD_CLK SD_CMD SD_DATAX

IRQ0

IRQ1

SECURE DIGITAL HOST

DAB1

PAB 16

32

ADSP-BF54x Blackfin Processor Hardware Reference 27-5

Secure Digital Host

Table 27-1 shows the functional operations for the SDH interface pins in
all supported protocol modes.

Description of Operation
The SDH controller is a fast, synchronous peripheral that uses various
protocols to communicate with MMC, SD and SDIO cards. The SDH is
compatible with the following protocols:

• MMC (Multimedia Card) bus protocol

• SD (Secure Digital) bus protocol

• SDIO (Secure Digital Input Output) bus protocol

 The SDH does not support the SPI bus protocol.

Table 27-1. SDH Protocol Interface

Signal
Name

MMC
(1-bit)

MMC
(4-bit)

SD
(1-bit)

SD
(4-bit)

SDIO
(1-bit)

SDIO
(4-bit)

Direction

SD_CLK CLK CLK CLK CLK CLK CLK Output

SD_CMD Com-
mand/
response

Com-
mand/
response

Com-
mand/
response

Com-
mand/
response

Command Command Bidirectional

SD_DATA
0

Dat0 Dat0 Dat0 Dat0 Dat0 Dat0 Bidirectional

SD_DATA
1

Not used Dat1 Not used Dat1 Interrupt Dat1 or
interrupt

Bidirectional

SD_DATA
2

Not used Dat2 Not used Dat2 Read wait Dat2 or
read wait

Bidirectional

SD_DATA
3

Not used
/card
detect

Dat3
/card
detect

Not used
/card
detect

Dat3
/card
detect

Not used Dat3 Bidirectional

Description of Operation

27-6 ADSP-BF54x Blackfin Processor Hardware Reference

Communication takes place through master and slave configurations
where the SDH is the master and the card is the slave device. The SDH
communicates with the card using a message-based bus protocol in which
the host sends commands serially using the SD_CMD signal. Some com-
mands require that the card provide a response back to the host. This
response is also sent serially using the SD_CMD signal.

Data transfers, both to and from the card, occur using the SD_DATAx sig-
nals. The number of data lines used for the data transfer can be configured
to either one or four using SD_DATA0 or SD_DATA3-0. All SD_CMD and
SD_DATAx transfers are synchronous with SD_CLK.

Cyclic redundancy codes (CRC) are used to protect commands, responses
and data transfers from transmission errors. Every command sent by the
host and almost every response returned by the card on SD_CMD, generates
a CRC7 code. A CRC16 code is used on the SD_DATAx signals to protect
block data transfers. In the 4-bit bus configuration, CRC16 is calculated
for each individual data signal.

When it is powered and detected or has been reset, a device connected to
the SDH must be identified and initialized by the host. The software
determines whether the device is compatible with the SDH controller and
the implemented software drivers. This phase in the procedure is known
as the card identification mode.

When a device is in card identification mode, the host performs the fol-
lowing actions:

• Reset the device

• Validate the device operating voltage range

• Identify the device type

• Assign/request a relative card address (RCA)

ADSP-BF54x Blackfin Processor Hardware Reference 27-7

Secure Digital Host

The card will only transition to a stand-by state when it has been assigned
an RCA and it is known to be in data transfer mode. Data transfers can
only take place when the device has entered the data transfer mode. All
communications between the host and card during the card identification
phase occur using the SD_CMD signal. The maximum clock frequency dur-
ing this identification phase is typically far lower than the maximum data
transfer frequency for the card.

Once the device is in data transfer mode, communication can take place
using the SD_CMD and the SD_DATAx signals. The card is further interro-
gated to identify bus widths, maximum clock frequency, and the device
capacity. At this point the bus width can be altered and the clock fre-
quency from the SDH can be increased.

Data can be written to the card or read from the card using two different
methods:

• Stream reads and writes

• Block reads and writes

Stream transfers produce a continuous stream of data until the SDH stops
the transfer by setting a specific command. For stream read and write
operations, additional maximum operating frequency limitations may be
imposed by the device. Stream write operations may also have restrictions
that are dependent upon writable block boundaries.

Block based transfers result in a block of a pre-configured size being trans-
ferred. The block size depends on the device and is obtained by reading
registers contained on the device during the device detection procedure.

Functional Description

27-8 ADSP-BF54x Blackfin Processor Hardware Reference

Functional Description
The following sections describe the functions and features of the SDH
controller as well as the MMC, SD, and SDIO protocols. For further
detailed information on timing parameters and protocol requirements,
refer to ADSP-BF542/544/547/548/549 Embedded Processor Data Sheet
and the following standards and specifications.

• MMCA System Specification

• JESD84 series of JEDEC standards

• SD Specifications Part 1 Physical Layer Specification

• SD Specifications Part 1 Physical Layer Simplified Specification

• SD Specifications Part E1 SDIO Specification

SDH Clock Configuration
The SDH is a fast, synchronous peripheral with a programmable clock fre-
quency that is supplied by the SD_CLK signal. The interface between the
SDH and the PAB/DAB busses operates at SCLK frequency. Communica-
tion between the clock domain that is supplied externally from the SDH
on the SD_CLK signal and the internal SDH access to the PAB and DAB
busses is accomplished using synchronizers in the SDH module. The
SD_CLK frequency is configured by the 8-bit CLKDIV field and the
CLKDIV_BYPASS bit of the SDH_CLK_CTL register (see “SDH Clock Control
Register (SDH_CLK_CTL)” on page 27-55.

If CLKDIV_BYPASS is set, the clock frequency driven on the SD_CLK signal is
derived directly from SCLK.

If CLKDIV_BYPASS is cleared, the clock divider logic provides an SD_CLK fre-
quency as shown below, where CLKDIV is an 8-bit value ranging between 0
and 255.

ADSP-BF54x Blackfin Processor Hardware Reference 27-9

Secure Digital Host

The SD_CLK output is enabled or disabled by the CLK_E bit in the
SDH_CLK_CTL register. A power save feature is implemented by setting
PWR_SV_E, which disables the SD_CLK output when there are no transfers
taking place on the SDH interface.

SDH Interface Configuration
The SDH supports multiple card types under various protocols. Different
card types may require slightly different interface configurations.

The command signal on MMC cards operates in two different modes,
depending upon the operating mode of the card. During the card identifi-
cation mode, the command signal operates in open-drain configuration;
but when the card enters data transfer mode, the signal is configured to
push-pull mode.

 The internal pull-up resistor for the SD_CMD signal is only intended
to keep the signal from floating. The internal pull-up resistor is not
sufficient during the card identification phase when the MMC card
SD_CMD signal is operating in open-drain mode. If support for
MMC devices is required, an external pull-up resistor should be
added to the SD_CMD signal as detailed in the JEDEC standard.

The bus width used for data transfers is configurable to either 1-bit or
4-bits using the WIDE_BUS bit in the SDH_CLK_CTL register (see “SDH Clock
Control Register (SDH_CLK_CTL)” on page 27-55.

SD_CLK
SCLK

2 CLKDIV 1+
--=

Functional Description

27-10 ADSP-BF54x Blackfin Processor Hardware Reference

To stop signals from floating when no card is inserted or during times
when all card drivers are in a high-impedance mode, various pull-up and
pull-down resistor configurations can be enabled on the SDH_CMD and
SDH_DATAx signals. The SDH_CFG register (see “SDH Clock Control Regis-
ter (SDH_CLK_CTL)” on page 27-55 provides the following options:

• Enable or disable pull-down on the SD_DATA3 signal

• Enable or disable pull-up on the SD_DATA3 signal

• Enable or disable pull-ups on the SD_DATA2–0 and SD_CMD signals

Card Detection
The SDH allows for software to detect when a card is inserted into its slot.
SD and SDIO cards have an internal pull-up on the SD_DATA3 line that can
be used as a card detect signal to indicate to the SDH that a card is pres-
ent. After reset and once GPIO pins are configured for SDH
functionality, the SD_DATA3 signal powers-up low due to a pull-down resis-
tor that is enabled by default. When a card is inserted into the slot, a rising
edge is detected on SD_DATA3 by the SDH and the SD_CARD_DET bit is set in
the SDH_E_STATUS register. Once the card is detected the pull-down resis-
tor on the SD_DATA3 signal should be disabled by clearing the PD_SDDAT3
bit of the SDH_CFG register; and the pull-up should be enabled by setting
the PUP_SDDAT3 bit. Once the card has been correctly identified, the
pull-up resistor within the card must also be disabled by issuing the
SET_CLR_CARD_DETECT command.

ADSP-BF54x Blackfin Processor Hardware Reference 27-11

Secure Digital Host

 Most SD/MMC sockets contain two additional signals for card
detect and write protect functionality. It is highly recommended
that card detection be implemented by using these signals.
Figure 27-2 on page 27-12 shows a typical interface between the
SDH interface and the card socket. The card detect signal should
be debounced and interfaced to a GPIO signal. This provides the
most robust and reliable method of card detection and is compati-
ble with all SD/SDIO and MMC devices. In addition to providing
card detect functionality, it also allows for interrupt driven card
removal detection.

Functional Description

27-12 ADSP-BF54x Blackfin Processor Hardware Reference

SDH Power Saving Configuration
The SDH requires two internal clock signals that are derived directly from
SCLK. One of these clock signals is routed to the clock divider and gener-
ates the SD_CLK clock.

For the SDH to function, these clocks must be enabled by setting CLKS_EN
in the SDH_CFG register. Clearing CLKS_EN disables the SDH regardless of
other SDH clock configurations. The SD_CLK signal can be enabled or dis-
abled using CLK_E in the SDH_CLK_CTL register.

Figure 27-2. Example SD/MMC Socket interface to SDH

3.3 V
REQUIRED
FOR MMC
CARD
SUPPORT

SDH INTERFACE SD/MMC SOCKET

CARD
DETECT

WRITE
PROTECT

SD_CLK

SD_CMD

SD_DATA0

SD_DATA1

SD_DATA2

SD_DATA3

GPIO

GPIO

DATA1

DATA0

DATA2

DATA3

CMD

CLK

ADSP-BF54x Blackfin Processor Hardware Reference 27-13

Secure Digital Host

Additional power saving options can be implemented by setting PWR_SV_E,
which disables the SD_CLK output when there are no transfers taking place
on the SDH interface. These configurations are shown in Table 27-2

Table 27-2. SDH Power Saving Configurations

CLKS_EN CLK_EN PWR_SV_E SDH State SD_CLK output

0 0 0 Disabled No clock

0 0 1 Disabled No clock

0 1 0 Disabled No clock

0 1 1 Disabled No clock

1 0 0 Enabled No clock

1 0 1 Enabled No clock

1 1 0 Enabled Continuous clock1

1 The PWR_ON field of the SDH_PWR_CTL register must be set to 0x3. If PWR_ON is
0x0—the clock will not output.

1 1 1 Enabled Clock only driven during transfers1

Functional Description

27-14 ADSP-BF54x Blackfin Processor Hardware Reference

SDH Commands and Responses
The SDH sends commands to and receives responses from the card using
the SD_CMD signal. A command to be sent to the card is issued by writing to
the SDH_COMMAND register (see “SDH Command Register
(SDH_COMMAND)” on page 27-57). This register contains a 6-bit
CMD_IDX field that contains the command index to be sent to the card. The
command index provides support for a total of 64 commands—0
(CMD0) to 63 (CMD63). Some commands require that an argument be
sent with the command, an address for a read transaction for example. An
argument is always sent with the command and it is the responsibility of
the card to either ignore or use the argument field based on the command
that is received. The argument sent with the command is provided using
the SDH_ARGUMENT register (see “SDH Argument Register
(SDH_ARGUMENT)” on page 27-57).

All command transfers are protected by a 7-bit cyclic redundancy check
(CRC) code, more commonly referred to as a CRC7 checksum. This
allows for transmission errors to be detected and for the command to be
re-issued to the card in the event of an error. All commands sent to the
card are composed of 48-bits as shown in Table 27-3 on page 27-14.

Table 27-3. SDH Command Format

Bit Position Width Value Description

47 1 0 Start bit

46 1 1 Transmitter bit

[45:40] 6 - Command index

[39:8] 32 - Argument

[7:1] 7 - CRC7 checksum

0 1 1 End bit

ADSP-BF54x Blackfin Processor Hardware Reference 27-15

Secure Digital Host

The CMD_RSP and CMD_L_RSP fields of the SDH_COMMAND register also provide
configuration information about whether a response is to be expected back
from the card and the type of response. The SDH can be configured for
any of the following responses.

• No response

• Short response (see Table 27-4 on page 27-15)

• Long response (see Table 27-5 on page 27-16)

Table 27-4. SDH Short Response Format

Bit Position Width Value Description

47 1 0 Start bit

46 1 0 Transmitter bit

[45:40] 6 Command index or check bits1

1 Responses that do not contain the command index have b#111111 in the
check bits field.

[39:8] 32 Card status, register contents or argument field

[7:1] 7 CRC7 checksum or check bits2

2 Responses that do not contain a CRC7 check sum have b#111111 in the
check bits field.

0 1 1 End bit

Functional Description

27-16 ADSP-BF54x Blackfin Processor Hardware Reference

Like the commands, all responses are sent on the SD_CMD signal. A response
always has a '0' start bit followed by a '0' transmission bit to indicate the
transfer is from card to SDH. Unlike the commands issued by the SDH,
not all responses are protected by a CRC7 checksum. Refer to the appro-
priate specification for full details on the response formats for a specific
device and whether they are protected by a CRC7 checksum.

When a short response is received, the 48-bit response is broken down by
the SDH. The 32-bit field containing bits[39:8] is stored to
SDH_RESPONSE0, where bit 39 of the response corresponds to bit 31 of
SDH_RESPONSE0; and bit 8 corresponds to bit 0 of SDH_RESPONSE0.
Bits[45:40] of the response are stored to the RESP_CMD field of the
SDH_RESP_CMD register.

For a long response, bits [127:1] of the response are stored in
SDH_RESPONE3–0. Bit 31 of SDH_RESPONSE0 contains the most significant
bit (bit 127) of the response, and bit 1 of SDH_RESPONSE3 contains bit 1 of
the response. Bit 0 of SDH_RESPONSE0 is always zero.

Table 27-5. SDH Long Response Format

Bit Position Width Value Description

135 1 0 Start bit

134 1 0 Transmitter bit

[133:128] 6 111111 Check bits1

[127:1] 127 - Register contents including internal CRC72

0 1 1 End bit

1 Responses that do not contain the command index have b#111111 in the
check bits field.

2 Responses that do not contain a CRC7 check sum have b#111111 in the
check bits field.

ADSP-BF54x Blackfin Processor Hardware Reference 27-17

Secure Digital Host

Figure 27-3 on page 27-18 shows the command path state machine. For
the state machine to be active, the SDH must be enabled through
CLKS_EN. Disabling the clocks to the SDH results in the state machine
returning to the IDLE state.

The command path state machine is responsible for setting and clearing a
number of status flags in the SDH_STATUS register (see “SDH Status Regis-
ter (SDH_STATUS)” on page 27-63). Table 20-6 lists the status flags that
are affected by the command path state machine.

Functional Description

27-18 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 27-3. Command Path State Machine

IDLE

CLKS_EN &&
CMD_E &&
!CMD_PEND_E

CLKS_EN &&
CMD_PEND_E
&& CMD_E

DAT_END

PEND

SEND

WAIT

RECEIVE

CMD_RSP

!CMD_TIMEOUT ||
INTERRUPT REQUEST FROM CARD

!CLKS_EN || SD_RST
||CMD_CRC_FAIL ||
CMD_RSP_END

!CLKS_EN || SD_RST
||CMD_TIMEOUT

!CLKS_EN || SD_RST
||CMD_SENT

!CLKS_EN || SD_RST

ADSP-BF54x Blackfin Processor Hardware Reference 27-19

Secure Digital Host

The command path operates in a half-duplex mode, so that commands
and responses can either be sent or received. If the state machine is not in
the SEND state, the SD_CMD output is in high impedance state.

The following sections describe the SDH command path states.

IDLE State

The command path state machine remains in the IDLE state when it is
not active. The command path state machine is enabled and leaves the
IDLE state when the CMD_EN bit of the SDH_COMMAND register is set. The
state goes to the PEND state if the CMD_PEND_E bit in SDH_COMMAND register
is set; otherwise it enters the SEND state.

Table 27-6. SDH Command Path Status Flags

SDH_STATUS Flag Description State Flag Set in

CMD_ACT Command transfer is in progress WAIT_S

CMD_SENT Command without response sent successfully SEND

CMD_TIMEOUT Response timeout occurred (64 SD_CLK cycles) WAIT_S

CMD_CRC_FAIL Response CRC failure RECEIVE

CMD_RSP_END Response CRC successful RECEIVE

Figure 27-4. SDH Command Transfer

SD_CLK

SD_CMD

SEND WAIT RECEIVE IDLE

S T E S T E

S = START BIT
T = TRANSMITTER BIT
E = END BIT

Functional Description

27-20 ADSP-BF54x Blackfin Processor Hardware Reference

When the command path state machine returns to the IDLE state from
another state and the return is not due to SDH being disabled or reset—
the state machine remains in the IDLE state for at least eight SD_CLK
cycles. During this time, the SDH continues to drive the SD_CLK signal
even if the PWR_SV_E feature is enabled. This allows the card to complete
the current operation. If enabled again, the state machine leaves the IDLE
state only after the eight SD_CLK cycles have passed.

PEND State

The SDH enters the PEND state if the CMD_PEND_E bit in the SDH_COMMAND
register is set. The state machine remains in the PEND state until it is
notified by the data path sub block that the data transfer has completed.
This is indicated by the DAT_END flag being set when the SDH_DATA_CNT
decrements to zero. This mode allows for the automatic transmission of a
STOP_TRANSMISSION command after reading or writing the required
amount of data for stream-based transactions.

 The CMD_PEND_E feature is not functional for block-based transfers
and cannot be used to automatically issue the STOP_TRANSMISSION
command for MULTIPLE_BLOCK_READ or MULTIPLE_BLOCK_WRITE
operations.

SEND State

During the SEND state, the SDH sets the CMD_ACT flag in the SDH_STATUS
register to indicate a transfer is in progress. The behavior of the state
machine after the command is sent, depends upon whether the command
expects a response back from the card.

If no response is expected, the SDH clears the CMD_ACT flag and sets the
CMD_SENT flag to indicate that a command operation without a response
has been completed. The state then goes to IDLE.

If a response is expected, the SDH enters the WAIT state.

ADSP-BF54x Blackfin Processor Hardware Reference 27-21

Secure Digital Host

WAIT State

In the WAIT state, the SDH waits for a response to be received on the
SD_CMD signal. Upon entering this state, an internal timer starts. If the
response is not received within 64 SD_CLK cycles, the CMD_TIMEOUT flag is
set and the CMD_ACT flag is cleared. The state machine then enters the
IDLE state, awaiting the next action.

A response, sent back from the card and indicated by the "0" start bit on
the SD_CMD signal, transitions the SDH to the RECEIVE state where it is
ready to receive a short or long response.

The WAIT state can also detect card interrupts. This is an optional feature
that applies only to MMC cards. The feature is enabled by setting the
CMD_INT_E bit in the SDH_COMMAND register. When CMD_INT_E is set, the
timeout timer that is normally started upon entry to the WAIT state is
disabled. The SDH remains in this state until a card interrupt is detected.
Cards that implement this feature may have functions with a delayed
response that is triggered by an internal event in the card. Once the event
is triggered the card sends the response. The SDH then detects this start
bit of the response and proceeds to the RECEIVE state.

RECEIVE State

In the RECEIVE state the SDH reads the response on the SD_CMD signal
from the card. Upon receiving either the short or long response, if the
response passes the CRC check, the CMD_ACT flag is cleared and the
CMD_RSP_END flag is set. If the CRC check fails, the CMD_CRC_FAIL flag is
set. In either case, the state machine then goes to the IDLE state.

Functional Description

27-22 ADSP-BF54x Blackfin Processor Hardware Reference

SDH Command Path CRC

For all commands and responses, the CRC generator calculates the 7-bit
CRC checksum for the 40 bits preceding the CRC code on the 48-bit sig-
nal. This includes the start bit, transmitter bit, command index, and
command argument (or card status). The 7-bit CRC checksum is calcu-
lated for the first 120 bits of the register contents field for the long
response format. Note that the start bit, transmitter bit, and the six check
bits are not used in the CRC calculation for the long response. The com-
mand and response CRC checksum is a 7-bit value calculated as follows:

 with:

and for a short response:

or for a long response:

SDH Data
Data transfers both to and from the SDH take place over the SDH data
bus signals SD_DATA[3:0]. The SDH data bus width is configured by the
WIDE_BUS field of the SDH_CLK_CTL register (see “SDH Clock Control Reg-
ister (SDH_CLK_CTL)” on page 27-55). The default is 1-bit bus mode,
where data is transferred over the SD_DATA0 signal.

Or 4-bit mode can be enabled, after first configuring the card. This mode
transfers four bits per SD_CLK cycle using the SD_DATA[3:0] signals.

CRC[6:0] Remainder
x7 M x

G x
------------------------=

G x x7 x3 1+ +=

M x x39 (start bit) ... x0 (last bit before CRC)+ +=

M x x119 (start bit) ... x0 (last bit before CRC)+ +=

ADSP-BF54x Blackfin Processor Hardware Reference 27-23

Secure Digital Host

The SDH data path state machine operates at SD_CLK frequency. The state
machine leaves the IDLE state when the DTX_E field of the SDH_DATA_CTL
register is set, enabling the data transfer. The state entered upon leaving
the IDLE state is determined by DTX_DIR. The data path state machine is
shown in Figure 27-5 on page 27-23.

The data path status flags are shown in Table 27-7.

Figure 27-5. Data Path State Machine

IDLE

WAIT_S WAIT_R

SEND

BUSY

RECEIVE

DTX_E && DTX_DIRDTX_E && !DTX_DIR

START_BIT_ERR ||
DAT_TIMEOUT ||
RX_DAT_ZERO ||
!DTX_E

!START_BIT_ERROR

DAT_CRC_FAIL ||
!DTX_E

DAT_BLK_END ||
DAT_END ||
RX_OVERRUN

DAT_BLK_END

END OF PACKET
&& !DTX_MODE

TX_DAT_RDY

DAT_CRC_FAIL
|| DAT_TIMEOUT
||!DTX_E

DAT_END ||
!DTX_E

DAT_CRC_FAIL ||
DAT_END ||
TX_UNDERRUN
|| !DTX_E

Functional Description

27-24 ADSP-BF54x Blackfin Processor Hardware Reference

Table 27-7. Data Path Status Flags

SDH_STATUS Flag Description States Flag Set in

TX_ACT Data transmit in progress WAIT_S

RX_ACT Data receive in progress WAIT_R

DAT_BLK_END Data block sent successfully and
 CRC pass token received

BUSY
(Block transfer mode only)

Data block received correctly and
 CRC passed

RECEIVE
(Block transfer only)

DAT_CRC_FAIL Data block CRC failed on transmit SEND
(If transmitted data is not a
 multiple of DTX_BLK_LGTH.)
BUSY
(If CRC token indicates failure.)

Data block CRC failed on receive RECEIVE

DAT_TIMEOUT Transmit timeout occurred before
card
de-asserted busy signal on
SD_DATA0

BUSY

Receive timeout error occurred
 before start bit of data detected

WAIT_R

DAT_END All data sent SEND

All data received RECEIVE

START_BIT_ERR Start bit not detected on all
 SDH_DATAx signals

WAIT_R

TX_FIFO_STAT Transmit FIFO is half empty SEND

TX_FIFO_FULL Transmit FIFO is full SEND

TX_FIFO_EMPTY Transmit FIFO is empty SEND

TX_UNDERRUN Transmit FIFO under run error SEND

TX_DAT_RDY Valid data available in the transmit
FIFO

SEND

RX_FIFO_STAT Receive FIFO is half empty RECEIVE

RX_FIFO_FULL Receive FIFO is full RECEIVE

ADSP-BF54x Blackfin Processor Hardware Reference 27-25

Secure Digital Host

SDH Data Transmit Path

The transmit path consists of the WAIT_S, SEND and BUSY states. Both
SDH_DATA_LGTH and SDH_DATA_TIMER must be configured before enabling
the data path state machine with SDH_DATA_CTL. Upon leaving the IDLE
state and entering the WAIT_S state, the SDH sets the TX_ACTIVE flag and
copies SDH_DATA_LGTH into SDH_DATA_CNT.

The behavior of the SEND state depends on which transfer mode is
configured.

• Stream Transfer Mode

If the SDH is configured for stream transfer mode, the SDH sends
data to the card until SDH_DATA_CNT expires, at which point the
DAT_END flag is set and the state machine returns to the IDLE state.

Additionally the transition of SDH_DATA_CNT to zero activates the
command path state machine if it is currently in the PEND state.

If at any point during the stream transfer the transmit FIFO
becomes empty and data is not available in the FIFO by the time
the next transfer is due to take place, the TX_UNDERRUN flag is set
before returning to the IDLE state.

RX_FIFO_EMPTY Receive FIFO is empty RECEIVE

RX_ OVERRUN Receive FIFO over run error RECEIVE

RX_FIFO_RDY Valid data is available in the receive
FIFO

RECEIVE

Table 27-7. Data Path Status Flags (Cont’d)

SDH_STATUS Flag Description States Flag Set in

Functional Description

27-26 ADSP-BF54x Blackfin Processor Hardware Reference

• Block Transfer Mode

In block transfer mode, DTX_BLK_LGTH bytes, as specified during the
write to SDH_DATA_CTL, are transmitted. Each byte transferred also
decrements SDH_DATA_CNT.

Upon completion of the block transfer, the SDH appends an inter-
nally generated 16-bit CRC code and an end bit to the data
transferred over the SDH_DATAx signals. The SDH then waits for the
card token response on the SD_DATA0 line to indicate whether the
data was received correctly by the card or not.

If the CRC response token sent by the card indicates the data was
received correctly, the DAT_BLK_END flag is set before moving to the
BUSY state. If the data was not received correctly, the
DAT_CRC_FAIL flag is set before returning to the IDLE state.

The decrementing of SDH_DATA_CNT to zero results in the DAT_END
flag being set. If the total number of bytes transmitted for the cur-
rent block results in the SDH_DATA_CNT decrementing to zero and
the number of bytes transferred is not equal to DTX_BLK_LGTH, the
transmission stops and the DAT_CRC_FAIL flag is set. The data path
returns to the IDLE state.

If at any point during the block transfer the transmit FIFO
becomes empty and data is not available in the FIFO by the time
the next transfer is due to take place, the TX_UNDERRUN flag is set
before returning to the IDLE state.

During the BUSY state, SDH continuously samples SD_DATA0 which at
this point is driven low by the card to indicate that the card is busy. When
a logic high state is detected, indicating that the card is no longer busy, the
state machine returns to the WAIT_S state. It then either returns to IDLE
if all data has been sent, or moves back to the SEND state to start another
block transfer.

ADSP-BF54x Blackfin Processor Hardware Reference 27-27

Secure Digital Host

Upon entering the BUSY state, the SDH started decrementing the time-
out value specified by SDH_DATA_TIMER. If the SDH timeout counter
expires before the SD_DATA0 signal is detected high, the SDH sets the
DAT_TIMEOUT flag and returns to the IDLE state.

SDH Data Receive Path

The receive path consists of the WAIT_R and the RECEIVE states. Both
SDH_DATA_LGTH and SDH_DATA_TIMER must be configured before enabling
the data path state machine with SDH_DATA_CTL. Upon leaving the IDLE
state and entering the WAIT_R state the SDH sets the RX_ACTIVE flag and
copies SDH_DATA_LGTH into SDH_DATA_CNT. The behavior of the RECEIVE
state is influenced by the transfer mode.

Once the receive path has entered the WAIT_R state after being enabled
for a receive transaction, the SDH starts decrementing the timeout value
supplied by the SDH_DATA_TIMER.

If the SDH is configured for a 1-bit data bus, the DAT_TIMEOUT flag is set if
a start bit is not detected on the SD_DATA0 signal before the timeout coun-
ter reaches zero. The state machine then returns to the IDLE state.

If the SDH is configured for 4-bit bus mode and the start bit is not
detected on all four SD_DATAx signals before the timeout counter expires—
the DAT_TIMEOUT flag is set. The state machine returns to the IDLE state. If
a start bit is detected on some, but not all, of the SD_DATAx signals on the
same sampled SD_CLK cycle, then the START_BIT_ERR flag is set and the
state machine returns to the IDLE state. Upon correct detection of the
start bit, the state machine goes to the RECEIVE state.

Functional Description

27-28 ADSP-BF54x Blackfin Processor Hardware Reference

The behavior of the RECEIVE state differs for stream and block transfers.

• For stream transfers, the received data is packed into bytes and
written to the data FIFO. Data is continuously received and writ-
ten to the data FIFO until SDH_DATA_CNT decrements to zero.

When the counter reaches zero the remaining data in the shift reg-
ister is written into the FIFO, the DAT_END flag is set and the state
machine goes to the WAIT_R state.

When the receive FIFO is detected empty, the RX_DAT_ZERO flag is
set and the state goes to the IDLE state.

If the data FIFO becomes full and data has not been read from the
FIFO prior to the next byte being written to the FIFO, then the
RX_OVERRRUN flag is set. The state goes to the WAIT_R state then
into the IDLE state.

• In block transfer mode, the received data is packed into bytes and
written to the data FIFO. When DTX_BLK_LGTH bytes have been
received, the SDH reads the 16-bit CRC check bits. If the received
CRC matches the internally calculated CRC, the DAT_BLK_END flag
is set and the state goes to the WAIT_R state.

If the SDH_DATA_CNT counter expires in alignment with the end of a
DTX_BLK_LGTH block, the DAT_END and DAT_BLK_END flags are set,
and the state goes to the WAIT_R state. When the receive FIFO is
detected empty, the RX_DAT_ZERO flag is set, and the state goes to
the IDLE state.

If SDH_DATA_CNT expires before the end of a DTX_BLK_LGTH block,
the DAT_CRC_FAIL flag is set. The state goes to the IDLE state.

ADSP-BF54x Blackfin Processor Hardware Reference 27-29

Secure Digital Host

SDH Data Path CRC

The data CRC generator of the SDH calculates the 16-bit CRC checksum
for all bits sent or received for a given block transaction. The data path
CRC generator is not enabled for stream based data transfers. For a 1-bit
bus configuration, the 16-bit CRC is calculated for all data sent on the
SD_DATA0 signal. For a 4-bit wide data bus, the 16-bit CRC is calculated
separately for each SD_DATAx signal. The data path CRC checksum is a
16-bit value calculated as follows.

with:

where:

SDH Data FIFO

The data FIFO is a 32-bit wide, 16-word deep data buffer with transmit
and receive logic. The FIFO configuration depends on the state of the
TX_ACT and RX_ACT flags. If TX_ACT is set, the FIFO operates as a transmit
FIFO, supplying data to the SDH for transfer to the card. If RX_ACT is set,
the FIFO operates as a receive FIFO, where the SDH writes data received
from the card. If neither TX_ACT nor RX_ACT flags are set, then the FIFO is
disabled.

CRC[15:0] Remainder
x16 M x

G x
--------------------------=

G x x16 x12 x5 1+ + +=

M x x 8 DTX_BLK_LGTH 1– (first data bit) ... x0 (last data bit)+ +=

Functional Description

27-30 ADSP-BF54x Blackfin Processor Hardware Reference

When the transmit FIFO is disabled, all the transmit status flags are
de-asserted and the transmit read and write pointers are reset. The SDH
asserts the TX_ACT flag upon starting a data transfer. During the data trans-
fer the transmit logic maintains the transmit FIFO status flags shown in
Table 27-8 on page 27-30.

When the receive FIFO is disabled, all the receive status flags are
de-asserted and the receive read and write pointers are reset. The SDH
asserts the RX_ACT flag upon starting a data read transaction. During the
data transfer, the receive logic maintains the receive FIFO status flags
shown in Table 27-9 on page 27-30.

Table 27-8. SDH Transmit FIFO Status Flags

SDH_STATUS Flag Description

TX_FIFO_STAT Transmit FIFO is half empty

TX_FIFO_FULL Transmit FIFO is full

TX_FIFO_EMPTY Transmit FIFO is empty

TX_UNDERRUN Transmit FIFO under run error

TX_DAT_RDY Valid data available in the transmit FIFO

Table 27-9. SDH Receive FIFO Status Flags

SDH_STATUS Flag Description

RX_FIFO_STAT Receive FIFO is half empty

RX_FIFO_FULL Receive FIFO is full

RX_FIFO_EMPTY Receive FIFO is empty

RX_OVERRUN Receive FIFO under run error

RX_DAT_RDY Valid data available in the receive FIFO

ADSP-BF54x Blackfin Processor Hardware Reference 27-31

Secure Digital Host

SDIO Interrupt and Read Wait Support

Two additional SDH features implement SDIO functionality.

• Hardware interrupt support over the SD_DATA1 pin

• Read wait request over the SD_DATA2 pin

SDIO devices can have multiple interrupt sources that are mapped to a
single interrupt line. The interrupt is level sensitive, allowing multiple
functions to generate an interrupt simultaneously. Thus the interrupt
request will continually be asserted until all sources generating an inter-
rupt are determined and cleared by the SDH.

The sources of the interrupts are found by interrogating the SDIO device.
The interrupts are cleared through operations unique to each function.

The SDIO device sends an interrupt request to the SDH by asserting the
SD_DATA1 signal low. The interrupt status is indicated by the SDIO_INT_DET
bit of the SDH_E_STATUS register. The status can be configured to interrupt
the processor through the SDIO_MSK bit of the SDH_E_MASK register.

When the SDH is configured for 1-bit bus width, the interrupt is gener-
ated by the SDIO with no timing constraints since the SD_DATA1 signal
acts as a dedicated IRQ signal. The SDH should be configured using
SDH_CFG such that pull-ups are enabled on all SD_DATAx signals. When the
SDH samples SD_DATA1 low, the SDH asserts the SDIO_INT_DET flag. This
flag is asserted until the SD_DATA1 signal is sampled high again.

When the SDH is configured for 4-bit bus width, the SD_DATA1 signal is
shared between the IRQ signal and the SD_DATA1 signal. In this configura-
tion the interrupt is only recognized by the SDH within a specific
interrupt period.

Programming Model

27-32 ADSP-BF54x Blackfin Processor Hardware Reference

Programming Model
This section contains the following procedures:

“Card Identification” on page 27-32

“Single Block Write Operations” on page 27-35

“Single Block Read Operations” on page 27-39

“Multiple Block Write Operations” on page 27-43

“Multiple Block Read Operations” on page 27-48

Card Identification
Before data transfers can take place between the SDH and the
SD/MMC/SDIO device, the device type must be identified. During this
phase, the SD_CLK frequency is typically limited to no more than 400 kHz.

SD Card Identification Procedure

Refer to the following documents for details on the SD commands and
response types.

• SD Specifications Part 1 Physical Layer Specification

• SD Specifications Part 1 Physical Layer Simplified Specification

The SD card identification procedure is shown below.

1. Issue the IDLE command to the card using the SDH_COMMAND
register.

2. Issue the SEND_IF command through the SDH_COMMAND register, sup-
plying the SDH supported voltage and a check pattern using the
SDH_ARGUMENT register. The command expects an R7 response type.
If a valid response with a compatible voltage range and matching

ADSP-BF54x Blackfin Processor Hardware Reference 27-33

Secure Digital Host

check pattern is received, the card is compliant with
SD veSDHon 2.00 or later. If a response is received with an
incompatible voltage range the card cannot be used. If no response
is received at all, as indicated by the CMD_RSP_TIMEOUT flag on the
SDH_STATUS register, go to step 5.

3. Issue the SD_SEND_OP_COND command through the SDH_COMMAND
register, supplying the voltage window supported and whether the
host supports high capacity cards using the SDH_ARGUMENT register.
The SDH expects an R3 response to this command. The SDH can
reject the card at this point if the voltage range is not compatible.

If the card returns a response indicating that it is busy, resend the
SD_SEND_OP_CMD until the card indicates it is ready. If the host does
not support the high capacity mode as indicated by setting the
HCS bit of the argument to 0—a high capacity card never clears
the busy status bit. The card should be identified within one sec-
ond. If in that time the card is still busy, or no valid responses have
been received, the card is rejected.

4. If the host supports high capacity cards, verify whether the
response in the SDH_RESPONSE0 register indicates that the card
capacity status (CCS) bit is set. If CCS is set, an
SD VeSDHon 2.00 or later high capacity SD memory card is pres-
ent—proceed to step 6. If the CCS bit is cleared, then the card is
an SD VeSDHon 2.00 or later standard capacity memory card—
proceed to step 6.

5. Issue the SD_SEND_OP_COND command through the SDH_COMMAND
register, supplying the voltage window supported and with the
High Capacity Support (HCS) bit set to 0 using the SDH_ARGUMENT
register. The SDH expects an R3 response to this command, at
which point the card can be rejected if the voltage range is not
compatible.

Programming Model

27-34 ADSP-BF54x Blackfin Processor Hardware Reference

If the card returns a response indicating that it is busy, resend the
SD_SEND_OP_CMD until the card indicates that it is ready. The card
should be identified within one second. If in that time the card is
still busy or no valid responses have been received, the card is
rejected. Once the response indicates that the card is ready, the
card type has been identified as an SD VeSDHon 1.x Standard
Capacity memory card.

6. Issue the ALL_SEND_CID command through the SDH_COMMAND regis-
ter. An R2 response type is expected. This results in the card
sending contents of the 128-bit card identification (CID) register
and transitioning from the ready mode to identification mode.

7. Issue the SEND_RELATIVE_ADDR command through the SDH_COMMAND
register. An R1 response type is expected. This results in the card
issuing a new relative address which must be used to select the card
in the future for data transfers. The card then moves into standby
mode, completing the identification procedure.

MMC Identification Procedure

1. Issue the IDLE command through the SDH_COMMAND register.

2. Issue the SEND_OP_COND command through the SDH_COMMAND regis-
ter, supplying the operating voltage window that the host is
compatible with and the access mode that the host supports, byte
or sector, through the SDH_ARGUMENT register. The SDH expects an
R3 type response. This allows the host to reject the card if it is not
compatible with the supply voltage or if the access mode is not sup-
ported by the host software. If the card returns an indication that it
is busy this step should be repeated until the card is either rejected
or not busy.

ADSP-BF54x Blackfin Processor Hardware Reference 27-35

Secure Digital Host

3. Issue the ALL_SEND_CID command through the SDH_COMMAND regis-
ter. The SDH expects an R2 response to this command. This
results in the card sending the contents of the 128-bit card identifi-
cation (CID) register and transitioning from ready to identification
mode.

4. Issue the SET_RELATIVE_ADDR command through the SDH_COMMAND
register, providing a 16-bit relative card address (RCA) through the
SDH_ARGUMENT register that will get assigned to the card. An R1
response type is expected. This results in the card being assigned
with the provided RCA which must be used to select the card in
the future for data transfers. The card then moves into standby
mode, completing the identification procedure.

Single Block Write Operations
Block write operations typically consist of 512 bytes of data per block. If
the card is found to support other block lengths, or the default block
length as specified in the CID register is not 512, then the block length of
the SDH must be configured accordingly. The block length of the card
and the block length of the SDH must be configured for the same block
size at all times. The block length of the SDH is configured using the
DTX_BLK_LGTH field of the SDH_DATA_CTL register.

 It is important to pay attention as to when the data path state
machine is enabled and when data is written to the FIFO for trans-
fer to the card. Write transactions require that data be written after
the response has completed for the WRITE_BLOCK command. If the
data path state machine is enabled prior to sending the
WRITE_BLOCK command, data must not be written to the transmit
FIFO through the DMA or core until after the response has been
received as indicated by the CMD_RSP_END event. Failure to adhere
to this procedure can result in data being written to the card in vio-
lation to the block write timing parameters resulting in a data CRC
failure.

Programming Model

27-36 ADSP-BF54x Blackfin Processor Hardware Reference

 Using Core

1. Write the 16-bit RCA of the card to the upper 16-bits of the
SDH_ARGUMENT register.

2. Write the SELECT/DESELECT_CARD command to the
SDH_COMMAND register. This configures the command path state
machine to expect a short response by setting CMD_RSP and clearing
CMD_L_RSP. The response type is R1b.

3. Wait for the CMD_RSP_END indication in the SDH_STATUS register.
When the indication is detected, clear the status bit using the
SDH_STATUS_CLR register.

4. Verify the response in the SDH_RESPONSE0 register to ensure that the
device is not busy and that no errors have occurred.

5. Write to the SDH_DATA_LGTH register, the number of bytes to be
transferred. This is 512 bytes for a single block.

6. Write to the SDH_DATA_TIMER register, the appropriate timeout
value for a write operation.

7. Write the destination start address to the SDH_ARGUMENT register.
The address must be aligned to a 512 byte boundary. If the address
is misaligned, the card is not a high capacity SD card or sector
addressable MMC card, and accesses are not enabled.

8. Write the WRITE_BLOCK command to the SDH_COMMAND register.
This configures the command path state machine to expect a short
response by setting CMD_RSP and clearing CMD_L_RSP. The response
type is R1.

9. Wait for the CMD_RSP_END indication in the SDH_STATUS register.
When the indication is detected, the clear the status bit using the
SDH_STATUS_CLR register.

ADSP-BF54x Blackfin Processor Hardware Reference 27-37

Secure Digital Host

10.Enable the data path state machine by setting the DTX_BLK_LGTH
bits in the SDH_DATA_CTL register to 9 for a 512 byte block. DTX_E
should also be set to enable the data path state machine. All other
fields of the SDH_DATA_CTL register should be zero.

11.Write data to the SDH_FIFO register until the FIFO is full as indi-
cated by the TX_FIFO_FULL flag of the SDH_STATUS register.
Continue to write data to the FIFO as long as the FIFO is not full
or write data in blocks of eight 32-bit words if polling on the
TX_FIFO_STAT bit indicates the transmit FIFO is half empty. Con-
tinue to write data until all 128 32-bit words (512 bytes) have been
transferred.

12.Wait for the DAT_BLK_END event that indicates the card has
responded with the CRC token. If the SDH_DATA_LGTH register was
set to 512 bytes in step 5, DAT_END is also set.

13.Clear the DAT_BLK_END and DAT_END flags in the SDH_STATUS_CLR
register.

Using DMA

1. Write the 16-bit RCA of the card to the upper 16-bits of the
SDH_ARGUMENT register.

2. Write the SELECT/DESELECT_CARD command to the
SDH_COMMAND register. This configures the command path state
machine to expect a short response by setting CMD_RSP and clearing
CMD_L_RSP. The response type is R1b.

3. Wait for the CMD_RSP_END indication in the SDH_STATUS register.
When the indication is detected, clear the status bit using the
SDH_STATUS_CLR register.

4. Verify the response in the SDH_RESPONSE0 register to ensure that the
device is not busy and that no errors have occurred.

Programming Model

27-38 ADSP-BF54x Blackfin Processor Hardware Reference

5. Configure the DMA channel assigned to the SDH controller by
writing the address of the first byte of data to be written to the card
to the DMAx_START_ADDR register. The DMAx_X_COUNT register should
be set to 128 and the DMAx_X_MODIFY register should be set to 4.
The DMAx_CONFIG register should be set for DMA enable, a word
size of 32-bits.

6. Once the DMA channel has been configured and enabled, write
the number of bytes to be transferred to the SDH_DATA_LGTH regis-
ter. This is 512 bytes for a single block.

7. Write the appropriate timeout value for a write operation to the
SDH_DATA_TIMER register.

8. Write the destination start address to the SDH_ARGUMENT register.
The address must be aligned to a 512 byte boundary. If the address
is misaligned, the card is not a high capacity SD card or sector
addressable MMC card, and accesses are not enabled.

9. Write the WRITE_BLOCK command to the SDH_COMMAND register.
This configures the command path state machine to expect a short
response by setting CMD_RSP and clearing CMD_L_RSP. The response
type is R1.

10.Wait for the CMD_RSP_END event in the SDH_STATUS register. When
the event is detected, clear the status bit using the SDH_STATUS_CLR
register.

11.Enable the data path state machine by setting the DTX_BLK_LGTH
bits in the SDH_DATA_CTL register to 9 for a 512 byte block. DTX_E
and DTX_DMA_E should also be set to enable the data path state
machine and to allow the DMA controller to access the transmit
FIFO. All other fields of the SDH_DATA_CTL register should be zero.

ADSP-BF54x Blackfin Processor Hardware Reference 27-39

Secure Digital Host

12.Wait for the DAT_BLK_END event that indicates the card has
responded with the CRC token. If the SDH_DATA_LGTH register was
set to 512 bytes in step 5, DAT_END is also set.

13.Clear the DAT_BLK_END and DAT_END flags in the SDH_STATUS_CLR
register. Also clear the DMA_DONE bit of the DMAx_IRQ_STATUS regis-
ter, if applicable.

Single Block Read Operations
Block read operations typically consist of 512 bytes of data per block. If
the card supports other block lengths or the default block length as speci-
fied in the CID register is not 512—then the block length of the SDH
must be configured accordingly. The block length of the card and the
block length of the SDH must be configured for the same block size at all
times. The block length of the SDH is configured using the DTX_BLK_LGTH
field of the SDH_DATA_CTL register.

 For data transfers from the card to the SDH, it is important to pay
attention to when data is read from the receive FIFO relative to
when the data path state machine is enabled. Read transactions can
occur on the SD_DATAx signals prior to receiving the response of the
command. Therefore the data path state machine, and the DMA
controller if being used, should be enabled—either prior to issuing
a command that involves a data read packet, or immediately after
the command has been issued but before the CMD_RSP_END event
occurs.

Programming Model

27-40 ADSP-BF54x Blackfin Processor Hardware Reference

Using Core

1. Write the 16-bit RCA of the card to the upper 16-bits of the
SDH_ARGUMENT register.

2. Write SELECT/DESELECT_CARD command to the
SDH_COMMAND register. This configures the command path state
machine to expect a short response by setting CMD_RSP and clearing
CMD_L_RSP. The response type is R1b.

3. Wait for the CMD_RSP_END indication in the SDH_STATUS register.
When the indication is detected, clear the status bit using the
SDH_STATUS_CLR register.

4. Verify the response in the SDH_RESPONSE0 register to ensure that the
device is not busy and that no errors have occurred.

5. Write the number of bytes to be transferred to the SDH_DATA_LGTH
register. This is 512 bytes for a single block.

6. Write the appropriate timeout value for a read operation to the
SDH_DATA_TIMER register.

7. Write the destination start address to the SDH_ARGUMENT register.
The address must be aligned to a 512 byte boundary. If the address
is misaligned, the card is not a high capacity SD card or sector
addressable MMC card, and accesses are not enabled.

8. Enable the data path state machine by setting the DTX_BLK_LGTH
bits in the SDH_DATA_CTL register to 9 for a 512 byte block. DTX_E
and DTX_DIR should also be set to enable the data path state
machine and indicate that the transfer direction is from card to
controller. All other fields of the SDH_DATA_CTL register should be
zero.

ADSP-BF54x Blackfin Processor Hardware Reference 27-41

Secure Digital Host

9. Write the READ_SINGLE_BLOCK command to the SDH_COMMAND
register. This configures the command path state machine to
expect a short response by setting CMD_RSP and clearing CMD_L_RSP.
The response type is R1.

10.To meet timing restrictions related to block read operations, it is
advisable to not wait for the CMD_RSP_END indication in the
SDH_STATUS register. Instead move immediately on the next step.
This is because the card can send data before a response has com-
pleted on the SD_CMD signal. Moving immediately to step 11
ensures that a receive FIFO overflow does not occur.

11.Poll the RX_FIFO_RDY bit or the RX_DAT_ZERO bit in the SDH_STATUS
register. These indicate that the receive FIFO has data available or
is empty. Continue to read data from the SDH_FIFO register until all
512 bytes have been read.

12.When all bytes have been read, wait for the DAT_BLK_END event.
This indicates that the data was received correctly and passed the
CRC check. The DAT_END event may also occur depending on the
value written to SDH_DATA_LGTH.

13.Clear the DAT_BLK_END and DAT_END flags using the SDH_STATUS_CLR
register.

Using DMA

1. Write the 16-bit RCA of the card to the upper 16-bits of the
SDH_ARGUMENT register.

2. Write the SELECT/DESELECT_CARD command to the
SDH_COMMAND register. This configures the command path state
machine to expect a short response by setting CMD_RSP and clearing
CMD_L_RSP. The response type is R1b.

Programming Model

27-42 ADSP-BF54x Blackfin Processor Hardware Reference

3. Wait for the CMD_RSP_END indication in the SDH_STATUS register.
When the indication is detected, clear the status bit using the
SDH_STATUS_CLR register.

4. Verify the response in the SDH_RESPONSE0 register to ensure that the
device is not busy and that no errors have occurred.

5. Configure the DMA channel assigned to the SDH controller.
Write the DMAx_START_ADDR register with the address where the first
byte of received data is to be stored. The DMAx_X_COUNT register
should be set to 128 and the DMAx_X_MODIFY register to 4. The
DMAx_CONFIG register should be set for DMA enable, a word size of
32-bits and direction set to memory write.

6. Write the number of bytes to be transferred to the SDH_DATA_LGTH
register. This is 512 bytes for a single block.

7. Write to the SDH_DATA_TIMER register, the appropriate timeout
value for a read operation.

8. Write the source start address to the SDH_ARGUMENT register. The
address must be aligned to a 512 byte boundary. If the address is
misaligned, the card is not a high capacity SD card or sector
addressable MMC card and accesses are not enabled.

9. Enable the data path state machine by setting the DTX_BLK_LGTH
bits in the SDH_DATA_CTL register to 9 for a 512 byte block. DTX_E,
DTX_DIR and DTX_DMA_E should also be set to enable the data path
state machine, to set the direction of transfer from card to control-
ler, and to allow the DMA controller access to the receive FIFO.
All other fields of the SDH_DATA_CTL register should be zero.

10.Write the READ_SINGLE_BLOCK command to the SDH_COMMAND
register. This configures the command path state machine to
expect a short response by setting CMD_RSP and clearing CMD_L_RSP.
The response type is R1.

ADSP-BF54x Blackfin Processor Hardware Reference 27-43

Secure Digital Host

11.Unlike with core accesses, it is safe to poll the CMD_RSP_END event
and once detected, to clear the status bit using the SDH_STATUS_CLR
register. The DMA controller, enabled in step 5, ensures that any
data sent to the receive FIFO prior to the CMD_RSP_END event is
received correctly.

12.Wait for the DAT_BLK_END event. This indicates that the data was
received correctly and has passed the CRC check. The DAT_END
event may also be set depending on the value written to
SDH_DATA_LGTH.

13.Clear the DAT_BLK_END and DAT_END flags using the SDH_STATUS_CLR
register. Also clear the DMA_DONE bit of the DMAx_IRQ_STATUS regis-
ter if applicable.

Multiple Block Write Operations
Block write operations typically consist of 512 bytes of data per block. If
the card supports other block lengths or the default block length as speci-
fied in the CID register is not 512—then the block length of the SDH
must be configured accordingly. The block length of the card and the
block length of the SDH must be configured for the same block size at all
times. The block length of the SDH is configured using the DTX_BLK_LGTH
field of the SDH_DATA_CTL register.

 Using Core

1. Write the 16-bit RCA of the card to the upper 16-bits of the
SDH_ARGUMENT register.

2. Write the SELECT/DESELECT_CARD command to the
SDH_COMMAND register. This configures the command path state
machine to expect a short response by setting CMD_RSP and clearing
CMD_L_RSP. The response type is R1b.

Programming Model

27-44 ADSP-BF54x Blackfin Processor Hardware Reference

3. Wait for the CMD_RSP_END indication in the SDH_STATUS register.
When the indication is detected, clear the status bit using the
SDH_STATUS_CLR register.

4. Verify the response in the SDH_RESPONSE0 register to ensure that the
device is not busy and that no errors have occurred.

5. Write to the SDH_DATA_LGTH register, the number of bytes to be
transferred. For example 4096—to write eight blocks of 512 bytes.

6. Write to the SDH_DATA_TIMER register, the appropriate timeout
value for a write operation.

7. Write the destination start address to the SDH_ARGUMENT register.
The address must be aligned to a 512 byte boundary. If the address
is misaligned, the card is not a high capacity SD card or sector
addressable MMC card and accesses are not enabled.

8. Write the WRITE_MULTIPLE_BLOCK command to the
SDH_COMMAND register. This configures the command path state
machine to expect a short response by setting CMD_RSP and clearing
CMD_L_RSP. The response type is R1.

9. Wait for the CMD_RSP_END indication in the SDH_STATUS register.
When the indication is detected, clear the status bit using the
SDH_STATUS_CLR register.

10.Enable the data path state machine by setting the DTX_BLK_LGTH
bits in the SDH_DATA_CTL register to 9 for a 512 byte block. DTX_E
should also be set to enable the data path state machine. All other
fields of the SDH_DATA_CTL register should be zero.

ADSP-BF54x Blackfin Processor Hardware Reference 27-45

Secure Digital Host

11.Write data to the SDH_FIFO register until the FIFO is full as indi-
cated by the TX_FIFO_FULL flag of the SDH_STATUS register.
Continue to write data to the FIFO as long as the FIFO is not full
or write data in blocks of eight 32-bit words if polling on the
TX_FIFO_STAT bit indicates the transmit FIFO is half empty. Con-
tinue to write data until all 128 32-bit words (512 bytes) have been
transferred.

12.Wait for the DAT_BLK_END event that indicates the card has
responded with the CRC token.

13.Clear the DAT_BLK_END flag

14.Repeat steps 11 to 13 for the number of blocks to be transferred or
until the DAT_END event occurs. When waiting for the DAT_END
event to occur, move to the next step only when the following
DAT_BLK_END event has occurred.

 Pay particular attention to this step. The DAT_END event occurs
when the SDH_DATA_CNT register decrements to zero. At this point,
the SDH has emptied the FIFO but is waiting for the card to send
the CRC token back for the block. It is only safe to send out the
STOP_TRANSMISSION command when the DAT_BLK_END event
that follows the DAT_END event has occurred. Failure to wait for
both of these events may result in the SDH sending the
STOP_TRANSMISSION command before receiving the CRC
response. This would result in the card treating the final data block
as incomplete and thus the final block would not be programmed.

15.Write the STOP_TRANSMISSION command to the SDH_COMMAND
register. This configures the command path state machine to
expect a short response by setting CMD_RSP and clearing CMD_L_RSP.
The response type is R1.

16.Clear the DAT_END flag using the SDH_STATUS_CLR register.

Programming Model

27-46 ADSP-BF54x Blackfin Processor Hardware Reference

Using DMA

1. Write the 16-bit RCA of the card to the upper 16-bits of the
SDH_ARGUMENT register.

2. Write the SELECT/DESELECT_CARD command to the
SDH_COMMAND register. This configures the command path state
machine to expect a short response by setting CMD_RSP and clearing
CMD_L_RSP. The response type is R1b.

3. Wait for the CMD_RSP_END indication in the SDH_STATUS register.
When the indication is detected, clear the status bit using the
SDH_STATUS_CLR register.

4. Verify the response in the SDH_RESPONSE0 register to ensure that the
device is not busy and that no errors have occurred.

5. Configure the DMA channel assigned to the SDH controller.
Write DMAx_START_ADDR with the address of the first byte of data to
be written to the card. The DMAx_X_COUNT register should be set to
the overall number of 32-bit words to be written, for this example
1024 for the transfer of 4096 bytes. The DMAx_X_MODIFY register
should be set to 4. The DMAx_CONFIG register should be set for
DMA enable and a word size of 32-bits.

6. Once the DMA channel has been configured and enabled, write to
the SDH_DATA_LGTH register, the number of bytes to be transferred.
For example 4096—to write eight blocks of 512 bytes.

7. Write to the SDH_DATA_TIMER register, the appropriate timeout
value for a write operation.

8. Write the destination start address to the SDH_ARGUMENT register.
The address must be aligned to a 512 byte boundary. If the address
is misaligned, the card is not a high capacity SD card or sector
addressable MMC card and accesses are not enabled.

ADSP-BF54x Blackfin Processor Hardware Reference 27-47

Secure Digital Host

9. Write the WRITE_MULTIPLE_BLOCK command to the
SDH_COMMAND register. This configures the command path state
machine to expect a short response by setting CMD_RSP and clearing
CMD_L_RSP. The response type is R1.

10.Wait for the CMD_RSP_END indication in the SDH_STATUS register.
When the indication is detected, clear the status bit using the
SDH_STATUS_CLR register.

11.Enable the data path state machine by setting the DTX_BLK_LGTH
bits in the SDH_DATA_CTL register to 9 for a 512 byte block. DTX_E
and DTX_DMA_E should also be set to enable the data path state
machine, and to allow the DMA controller to access the transmit
FIFO. All other fields of the SDH_DATA_CTL register should be zero.

12.Wait for the DAT_BLK_END events that will be set upon successful
completion of each block transfer. For a 4096 byte transfer,
DAT_BLK_END is set eight times and must be cleared after it is
detected using the SDH_STATUS_CLR register. Either count the num-
ber of DAT_BLK_EVENTS that occurred and move to the next step
once the expected count has been reached or keep processing
DAT_BLK_END events until the DAT_END event occurs and move to the
next step on the next DAT_BLK_END event following the DAT_END
event.

 Pay particular attention to this step. The DAT_END event occurs
when the SDH_DATA_CNT register decrements to zero. At this point,
the SDH has emptied the FIFO but is waiting for the card to send
the CRC token back for the block. It is only safe to send out the
STOP_TRANSMISSION command when the DAT_BLK_END event
that follows the DAT_END event has occurred. Failure to wait for
both of these events may result in the SDH sending the
STOP_TRANSMISSION command before receiving the CRC
response. This would result in the card treating the final data block
as incomplete and thus the final block would not be programmed.

Programming Model

27-48 ADSP-BF54x Blackfin Processor Hardware Reference

13.Write the STOP_TRANSMISSION command to the SDH_COMMAND
register. This configures the command path state machine to
expect a short response by setting CMD_RSP and clearing CMD_L_RSP.
The response type is R1.

14.Clear the DAT_END flag using the SDH_STATUS_CLR register. Also clear
the DMA_DONE bit of the DMAx_IRQ_STATUS register if applicable.

Multiple Block Read Operations
Block read operations typically consist of 512 bytes of data per block. If
the card supports other block lengths or the default block length as speci-
fied in the CID register is not 512 then the block length of the SDH must
be configured accordingly. The block length of the card and the block
length of the SDH must be configured for the same block size at all times.
The block length of the SDH is configured using the DTX_BLK_LGTH field
of the SDH_DATA_CTL register.

Using Core

1. Write the 16-bit RCA of the card to the upper 16-bits of the
SDH_ARGUMENT register.

2. Write the SELECT/DESELECT_CARD command to the
SDH_COMMAND register. This configures the command path state
machine to expect a short response by setting CMD_RSP and clearing
CMD_L_RSP. The response type is R1b.

3. Wait for the CMD_RSP_END indication in the SDH_STATUS register.
When the indication is detected, clear the status bit using the
SDH_STATUS_CLR register.

4. Verify the response in the SDH_RESPONSE0 register to ensure that the
device is not busy and that no errors have occurred.

ADSP-BF54x Blackfin Processor Hardware Reference 27-49

Secure Digital Host

5. Write to the SDH_DATA_LGTH register, the number of bytes to be
transferred. For example 4096—to write eight blocks of 512 bytes.

6. Write to the SDH_DATA_TIMER register, the appropriate timeout
value for a read operation.

7. Write the destination start address to the SDH_ARGUMENT register.
The address must be aligned to a 512 byte boundary. If the address
is misaligned, the card is not a high capacity SD card or sector
addressable MMC card and accesses are not enabled.

8. Enable the data path state machine by setting the DTX_BLK_LGTH
bits in the SDH_DATA_CTL register to 9 for a 512 byte block. DTX_E
and DTX_DIR should also be set to enable the data path state
machine, and to set the direction of transfer from card to control-
ler. All other fields of the SDH_DATA_CTL register should be zero.

9. Write the READ_MULTIPLE_BLOCK command to the
SDH_COMMAND register. This configures the command path state
machine to expect a short response by setting CMD_RSP and clearing
CMD_L_RSP. The response type is R1.

10.To meet timing restrictions related to block read operations, it is
advisable to not wait for the CMD_RSP_END indication in the
SDH_STATUS register. Instead move immediately on the next step.
This is because the card can send data before a response has com-
pleted on the SD_CMD signal. Moving immediately to step 11
ensures that a receive FIFO overflow does not occur.

11.Poll the RX_FIFO_RDY bit or the RX_DAT_ZERO bit in the SDH_STATUS
register. These indicate that the receive FIFO has data available or
is empty. Continue to read data from the SDH_FIFO register until all
the bytes in the block have been read.

Programming Model

27-50 ADSP-BF54x Blackfin Processor Hardware Reference

12.When all bytes have been read, wait for the DAT_BLK_END event.
This indicates that the data was received correctly and passed the
CRC check. Clear the DAT_BLK_END flag using SDH_STATUS_CLR
register.

13.Repeat step 11 to step 13 until the required number of blocks have
been read or until the DAT_END event has occurred.

14.Clear the DAT_END flag using the SDH_STATUS_CLR register.

Using DMA

1. Write the 16-bit RCA of the card to the upper 16-bits of the
SDH_ARGUMENT register.

2. Write the SELECT/DESELECT_CARD command to the
SDH_COMMAND register. This configures the command path state
machine to expect a short response by setting CMD_RSP and clearing
CMD_L_RSP. The response type is R1b.

3. Wait for the CMD_RSP_END indication in the SDH_STATUS register.
When the indication is detected, clear the status bit using the
SDH_STATUS_CLR register.

4. Verify the response in the SDH_RESPONSE0 register to ensure that the
device is not busy and that no errors have occurred.

5. Configure the DMA channel assigned to the SDH controller.
Write the DMAx_START_ADDR register with the address where the first
byte of received data is to be stored. The DMAx_X_COUNT register
should be set to the number of 32-bit words to be read. This would
be 1024 for a 4096 byte read transfer. The DMAx_X_MODIFY register
should be set to 4. The DMAx_CONFIG register should be set for
DMA enable, a word size of 32-bits and direction set to memory
write.

ADSP-BF54x Blackfin Processor Hardware Reference 27-51

Secure Digital Host

6. Write to the SDH_DATA_LGTH register, the number of bytes to be
transferred. This will be 4096 for eight blocks of 512 bytes.

7. Write to the SDH_DATA_TIMER register, the appropriate timeout
value for a read operation.

8. Write the source start address to the SDH_ARGUMENT register. The
address must be aligned to a 512 byte boundary. If the address is
misaligned, the card is not a high capacity SD card or sector
addressable MMC card and accesses are not enabled.

9. Enable the data path state machine by setting the DTX_BLK_LGTH
bits in the SDH_DATA_CTL register to 9 for a 512 byte block. DTX_E,
DTX_DIR and DTX_DMA_E should also be set to enable the data path
state machine, to set the direction of transfer from card to control-
ler, and to allow the DMA controller access to the receive FIFO.
All other fields of the SDH_DATA_CTL register should be zero.

10.Write the READ_MULTIPLE_BLOCK command to the
SDH_COMMAND register. This configures the command path state
machine to expect a short response by setting CMD_RSP and clearing
CMD_L_RSP. The response type is R1.

11.Unlike with core accesses, it is safe to poll the CMD_RSP_END event
and once detected, to clear the status bit using the SDH_STATUS_CLR
register. The DMA controller, enabled in step 5, ensures that any
data sent to the receive FIFO prior to the CMD_RSP_END event is
received correctly.

12.Wait for either the expected number of instances of the
DAT_BLK_END event that will be set on successful completion of each
block transfer—or the DAT_END event. For a 4096 byte transfer and
a block size of 512 bytes, the DAT_BLK_END event occurs eight times
and it should be cleared after it is detected using the
SDH_STATUS_CLR register.

SDH Registers

27-52 ADSP-BF54x Blackfin Processor Hardware Reference

13.Write the STOP_TRANSMISSION command to the SDH_COMMAND
register. This configures the command path state machine to
expect a short response by setting CMD_RSP and clearing CMD_L_RSP.
The response type is R1.

14.Clear the DAT_END flag using the SDH_STATUS_CLR register. Also clear
the DMA_DONE bit of the DMAx_IRQ_STATUS register if applicable.

SDH Registers
The SDH memory-mapped registers (MMRs) regulate the operation of
the SDH. Descriptions and bit diagrams for each of these MMRs are pro-
vided in the following section.

Table 27-10 lists the SDH memory-mapped registers starting at base
address 0xFFC03900.

Table 27-10. SDH Functional Registers

Register
Name

Address Type Access Description

SDH_PWR_CTL 0xFFC0 3900 R/W 16-bit “SDH Power Control Register
(SDH_PWR_CTL)” on page 27-55

SDH_CLK_CTL 0xFFC0 3904 R/W 16-bit “SDH Clock Control Register
(SDH_CLK_CTL)” on page 27-55

SDH_ARGUMENT 0xFFC0 3908 R/W 32-bit “SDH Argument Register
(SDH_ARGUMENT)” on page 27-57

SDH_COMMAND 0xFFC0 390C R/W 16-bit “SDH Command Register
(SDH_COMMAND)” on page 27-57

SDH_RESP_CMD 0xFFC0 3910 R 16-bit “SDH Response Command Register
(SDH_RESP_CMD)” on page 27-58

SDH_RESPONSE0 0xFFC0 3904 R 32-bit “SDH Response Registers
(SDH_RESPONSEx)” on page 27-59

SDH_RESPONSE1 0xFFC0 3908 R 32-bit “SDH Response Registers
(SDH_RESPONSEx)” on page 27-59

ADSP-BF54x Blackfin Processor Hardware Reference 27-53

Secure Digital Host

SDH_RESPONSE2 0xFFC0 391C R 32-bit “SDH Response Registers
(SDH_RESPONSEx)” on page 27-59

SDH_RESPONSE3 0xFFC0 3920 R 32-bit “SDH Response Registers
(SDH_RESPONSEx)” on page 27-59

SDH_DATA_TIMER 0xFFC0 3924 R/W 32-bit “SDH Data Timer Register
(SDH_DATA_TIMER)” on
page 27-60

SDH_DATA_LGTH 0xFFC0 3928 R/W 16-bit “SDH Data Length Register
(SDH_DATA_LGTH)” on
page 27-61

SDH_DATA_CTL 0xFFC0 392C R/W 16-bit “SDH Data Control Register
(SDH_DATA_CTL)” on page 27-61

SDH_DATA_CNT 0xFFC0 3930 R 16-bit “SDH Data Counter Register
(SDH_DATA_CNT)” on page 27-62

SDH_STATUS 0xFFC0 3934 R 32-bit “SDH Status Register
(SDH_STATUS)” on page 27-63

SDH_STATUS_CLR 0xFFC0 3938 W1A 16-bit “SDH Status Clear Register
(SDH_STATUS_CLR)” on
page 27-65

SDH_MASK0 0xFFC0 393C R/W 32-bit “SDH Interrupt Mask Registers
(SDH_MASKx)” on page 27-66

SDH_MASK1 0xFFC0 3940 R/W 32-bit “SDH Interrupt Mask Registers
(SDH_MASKx)” on page 27-66

SDH_FIFO_CNT 0xFFC0 3948 R 16-bit “SDH FIFO Counter Register
(SDH_FIFO_CNT)” on page 27-68

SDH_FIFOx 0xFFC0 3980 R/W 32-bit “SDH Data FIFO Register
(SDH_FIFO)” on page 27-69

SDH_E_STATUS 0xFFC0 39C0 R/W1C 16-bit “SDH Exception Status Register
(SDH_E_STATUS)” on page 27-69

SDH_E_MASK 0xFFC0 39C4 R/W 16-bit “SDH Exception Mask Register
(SDH_E_MASK)” on page 27-70

Table 27-10. SDH Functional Registers (Cont’d)

Register
Name

Address Type Access Description

SDH Registers

27-54 ADSP-BF54x Blackfin Processor Hardware Reference

SDH_CFG 0xFFC0 39C8 R/W 16-bit “SDH Configuration Register
(SDH_CFG)” on page 27-71

SDH_RD_WAIT_EN 0xFFC0 39CC R/W 16-bit “SDH Read Wait Enable Register
(SDH_RD_WAIT_EN)” on
page 27-72

SDH_PID0 0xFFC0 39D0 R 16-bit “SDH Identification Registers
(SDH_PIDx)” on page 27-73

SDH_PID1 0xFFC0 39D4 R 16-bit “SDH Identification Registers
(SDH_PIDx)” on page 27-73

SDH_PID2 0xFFC0 39D8 R 16-bit “SDH Identification Registers
(SDH_PIDx)” on page 27-73

SDH_PID3 0xFFC0 39DC R 16-bit “SDH Identification Registers
(SDH_PIDx)” on page 27-73

SDH_PID4 0xFFC0 39E0 R 16-bit “SDH Identification Registers
(SDH_PIDx)” on page 27-73

SDH_PID5 0xFFC0 39E4 R 16-bit “SDH Identification Registers
(SDH_PIDx)” on page 27-73

SDH_PID6 0xFFC0 39E8 R 16-bit “SDH Identification Registers
(SDH_PIDx)” on page 27-73

SDH_PID7 0xFFC0 39EC R 16-bit “SDH Identification Registers
(SDH_PIDx)” on page 27-73

Table 27-10. SDH Functional Registers (Cont’d)

Register
Name

Address Type Access Description

ADSP-BF54x Blackfin Processor Hardware Reference 27-55

Secure Digital Host

SDH Power Control Register (SDH_PWR_CTL)
The SDH_PWR_CTL register contains bits that control the power to the SDH
module as well as the open-drain configuration for the SDH_CMD signal.
The PWR_ON field must be set to b#11 to enable the SDH. The SDH_CMD_OD
bit, when set, drives the SDH_CMD signal to open-drain mode. The default
mode of operation is push-pull. After a data write, data cannot be written
to this register for five SCLK cycles.

SDH Clock Control Register (SDH_CLK_CTL)
The SDH_CLK_CTL register controls the SDH clock. SDH_CLK is derived
directly from the SCLK by enabling CLKDIV_BYPASS. Otherwise SDH_CLK is
determined by the current SCLK frequency and the CLKDIV field as shown
in Equation 27-1.

Figure 27-6. SDH Power Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Power Control Register (SDH_PWR_CTL)

00 - SDH disabled
01 - Reserved
10 - Reserved
11 - SDH enabled

PWR_ON (Power on)

Reset = 0x0000

Read/Write

0xFFC0 3900

Reserved

0 - Disabled (push-pull)
1 - Enabled

SD_CMD_OD (SDH command open drain)

SDH Registers

27-56 ADSP-BF54x Blackfin Processor Hardware Reference

Equation 27-1. SDH Clock Frequency

To conserve power the SDH clock can be disabled without disabling the
entire SDH interface by using the CLK_EN bit. Additionally, when the
PWR_SV_EN bit is set, the SDH_CLK signal is only driven when the SDH is
performing a transfer either to or from the card. The data bus width of the
SDH interface is also controlled by this register.

Figure 27-7. SDH Power Control Register

SDH_CLK
SCLK

2 CLKDIV 1+
--=

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Clock Control Register (SDH_CLK_CTL)

CLKDIV (Clock divisor)

Reset = 0x0000

Read/write

0xFFC0 3904

Reserved
0x00 - 0xFF
see Equation 27-1

0 - Disable SDH_CLK
1 - Enable SDH_CLK

CLK_E (SDH_CLK enable)

PWR_SV_E
(Power save enable)
0 - Disabled
(SDH_CLK always driven)
1 - Enabled
(SDH_CLK only enabled when bus active)

BUS_MODE
(Data bus width)
0 - 1-bit Data bus
1 - 4-bit Data bus

0 - Disabled
(Do not bypass clock divisor)
1 - Enabled
(SDH_CLK derived directly from SCLK)

CLKDIV_BYPASS
(Bypass clock divisor)

ADSP-BF54x Blackfin Processor Hardware Reference 27-57

Secure Digital Host

SDH Argument Register (SDH_ARGUMENT)
The SDH_ARGUMENT register contains the 32-bit argument that is sent on
the SDH_CMD signal as part of a command message. If a command requires
an argument, the argument must first be loaded into the SDH_ARGUMENT
register prior to writing and enabling the command in the SDH_COMMAND
register.

SDH Command Register (SDH_COMMAND)
The SDH_COMMAND register controls the command path state machine. The
CMD_IDX field contains the index of the command to be issued by the SDH
as part of the command message. If the command requires a response, this
is indicated by CMD_RSP.

The length of the response (short or long) is controlled by the CMD_L_RSP
field. The command path state machine is active when the CMD_E bit is set
and disabled if this bit is cleared.

Figure 27-8. SDH Argument Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Argument Register (SDH_ARGUMENT)

SDH Argument (15:0)

Reset = 0x0000 0000

Read/Write

0xFFC0 3908

31 30 29 28 27 26 25 24 23 22 21 20 19 1 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Argument (31:16)

SDH Registers

27-58 ADSP-BF54x Blackfin Processor Hardware Reference

 The CMD_E bit does not have to be manually cleared after the com-
mand sequence has completed. The command path state machine
automatically terminates and goes to IDLE when the operation has
completed.

SDH Response Command Register
(SDH_RESP_CMD)

The SDH_RESP_CMD register contains the command index field of the last
response received. If the command response does not contain a command
index field, as is the case with a long response, the RESP_CMD field would
typically be ignored. In this situation it will likely contain b#111111
which is the value of the reserved field of the response.

Figure 27-9. SDH Command Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Command Register (SDH_COMMAND)

0x3F - 0x00
(Command number to be issued)

CMD_IDX (Command Index)

Reset = 0x0000

Read/write

0 - Disabled
1 - Enabled

CMD_RSP (Wait for response)

0xFFC0 390C

0 - Disabled
(Send command immediately)
1 - Enabled
(Wait for DAT_END before sending command)

CMD_PEND_E (Pend enable)

0 - Disable command path state machine
1 - Enable command path state machine

CMD_E (Command enable)

0 - Disabled (Short response expected)
1 - Enabled (Long response expected)

CMD_L_RSP (Long response enable)

0 - Disabled
(Timeout after 64 SDH_CLK cycles)
1 - Enabled
(Disable timeout counter and wait for interrupt)

CMD_INT_E (Command interrupt enable)

ADSP-BF54x Blackfin Processor Hardware Reference 27-59

Secure Digital Host

SDH Response Registers (SDH_RESPONSEx)
The SDH_RESPONSEx registers are four registers that contain the response
information received back from a card for a given command message. The
received response may be 32 or 127 bits in length depending on whether
the response type is short or long. The most significant bit of the response
is received first and is located in bit 31 of the SDH_RESPONSE0 register. Bit 0
of SDH_RESPONSE3 is always zero. Table 27-11 shows the SDH response
registers contents for the two types of responses.

Figure 27-10. SDH Command Response Register

Figure 27-11. SDH Response Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Response Command Register (SDH_RESP_CMD)

0x3F - 0x00 Command index)

RESP_CMD
(Command index of last received
response)

Reset = 0x0000

Read

0xFFC0 3910

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Response Registers (SDH_RESPONSEx)

SDH Response (15:0)

Reset = 0x0000 0000

Read

0xFFC0 3914
0xFFC0 3918
0xFFC0 391C
0xFFC0 3920

31 30 29 28 27 26 25 24 23 22 21 20 19 1 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Response (31:16)

SDH Registers

27-60 ADSP-BF54x Blackfin Processor Hardware Reference

SDH Data Timer Register (SDH_DATA_TIMER)
The SDH_DATA_TIMER register contains a 32-bit value for the data timeout
period in SDH_CLK cycles. An internal counter loads the value of this regis-
ter, and starts to decrement when the data path state machine enters the
WAIT_R or the BUSY states. If the timer decrements to zero while the
data path state machine is still in either of these two states, the
DAT_TIMEOUT event is generated. The SDH_DATA_TIMER and the
SDH_DATA_LGTH register must both be written prior to starting a data trans-
fer with the SDH_DATA_CTL register.

Table 27-11. SDH Response Register Contents

Response Register Short Response Long Response

SDH_RESPONSE0 Response bits [31:0] Response bits [127:96]

SDH_RESPONSE1 not used Response bits [95:64]

SDH_RESPONSE2 not used Response bits [63:32]

SDH_RESPONSE3 not used Response bits [31:0]

Figure 27-12. SDH Data Timer Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Data Timer Register (SDH_DATA_TIMER)

Data timeout period (15:0)

Reset = 0x0000 0000

Read/write

0xFFC0 3924

31 30 29 28 27 26 25 24 23 22 21 20 19 1 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Data timeout period (31:16)

ADSP-BF54x Blackfin Processor Hardware Reference 27-61

Secure Digital Host

SDH Data Length Register (SDH_DATA_LGTH)
The SDH_DATA_LGTH register contains a 16-bit value for the number of data
bytes to be transferred before generating the DAT_END event. The value
loaded to this register is copied into the SDH_DATA_CNT register when the
data path state machine is enabled and starts the transfer.

SDH Data Control Register (SDH_DATA_CTL)
The SDH_DATA_CTL register controls the data path state machine. The state
machine becomes enabled once the DTX_E bit is set. The direction of the
transfer is determined by DTX_DIR. If the DMA channel is to be used for
the data transfer then the DTX_DMA_E bit must be set. Otherwise the SDH
FIFO would only be accessible through the core. For block transfers, the
block length must be specified by DTX_BLK_LGTH, where the block length is

2DATA_BLK_LGTH. After a data write, data cannot be written to this regis-
ter for five SCLK cycles.

Figure 27-13. SDH Data Length Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Data Length Register (SDH_DATA_LGTH)

DATA_LENGTH
(Number of bytes to transfer)

Reset = 0x0000

Read

0xFFC0 3928

SDH Registers

27-62 ADSP-BF54x Blackfin Processor Hardware Reference

SDH Data Counter Register (SDH_DATA_CNT)
The SDH_DATA_CNT register gets loaded from the SDH_DATA_LGTH register
when the data path state machine becomes enabled and moves from the
IDLE state to the WAIT_S or WAIT_R states. As the data is transferred,
the counter decrements. When it decrements to zero, the state machine
moves back to the IDLE state and the DAT_END event occurs.

Figure 27-14. SDH Data Control Register

Figure 27-15. SDH Data Counter Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Data Control Register (SDH_DATA_CTL)

0 - Disabled
(Disables data path state machine)
1 - Enabled
(enables data path state machine)

DTX_E (Data transfer enable)

Reset = 0x0000

Read/write

0 - From SDH to card
1 - From card to SDH

DTX_DIR (Data transfer direction)

0xFFC0 392C

0 - Disabled
(Use core to read/write SDH_FIFO)
1 - Enabled
(Use DMA controller to read/write SDH_FIFO)

DTX_DMA_E (Data DMA enable)

0x0 - 0xB
Data Block length from 20 - 211

DTX_BLK_LGTH (Data block length)

0 - Block transfer
1 - Stream transfer

DTX_MODE (Data transfer mode)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Data Counter Register (SDH_DATA_CNT)

DATA_COUNT
(Number of bytes still to be transferred)

Reset = 0x0000

Read

0xFFC0 3930

ADSP-BF54x Blackfin Processor Hardware Reference 27-63

Secure Digital Host

SDH Status Register (SDH_STATUS)
The SDH_STATUS register contains both static and dynamic flags that indi-
cate the status of the SDH. The static flags (bits[10:0]) remain asserted
and must be cleared by writing to the SDH_STATUS_CLR register. The
dynamic flags (bits[21:11]) change state depending on the state of the
underlying logic. Transmit and receive FIFO logic control bits[21:12]
vary depending on the state of the FIFO and whether the FIFO is cur-
rently enabled for a transmit or receive operation.

Figure 27-16. SDH Status Register, Bits [31:16]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Status Register (SDH_STATUS). Bits [31:16]

0 - Not full
1 - Transmit FIFO full

TX_FIFO_FULL
Transmit FIFO full)

Reset = 0x0000 0000

Read/write

0 - Not full
1 - Receive FIFO full

RX_FIFO_FULL
(Receive FIFO full)

0xFFC0 3934

0 - Not empty
1 - Transmit FIFO empty

TX_FIFO_ZERO
(Transmit FIFO empty)

0 - No data
1 - Data available in receive FIFO

RX_FIFO_RDY
(Receive data available)

0 - No data
1 - Data available in transmit FIFO

TX_DAT_RDY
(Transmit data available)

0 - Not empty
1 - Receive FIFO empty

RX_DAT_ZERO
(Receive FIFO empty)

SDH Registers

27-64 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 27-17. SDH Status Register, Bits[15:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Status Register (SDH_STATUS), Bits [15:0]

0 - No CRC received
1 - CRC failed on command response

CMD_CRC_FAIL
(Command response CRC fail)

Reset = 0x0000 0000

Read

0 - No CRC received on data block
1 - CRC failed on data block

DAT_CRC_FAIL
(Data CRC fail)

0xFFC0 3934

0 - Command response not timed out
1 - Command response timed out

CMD_TIMEOUT
(Command time out)

0 - Data not timed out
1 - Data time out

DAT_TIMEOUT
(Data time out)

0 - No error
1 - Underrun error

TX_UNDERRUN
(Transmit FIFO underrun error)

0 - No error
1 - Rx FIFO overrun error

RX_OVERRUN
(Receive FIFO overrun error)

0 - No response received
1 - Response received and CRC passed

CMD_RESP_END
(Command response received)

0 -No command sent
1 - Command sent
(no response required)

CMD_SENT
(Command sent)

0 - No FIFO watermark detected
1 - Receive FIFO half full

RX_FIFO_STAT
(Receive FIFO watermark)

0 - No FIFO watermark detected
1 - Transmit FIFO half empty

TX_FIFO_STAT
(Transmit FIFO watermark)

0 - No data receive in progress
1 - Data receive in progress

RX_ACT (Data receive active)

0 - No data transmit in progress
1 - Data transmit in progress

TX_ACT (Data transmit active)

0 -No command active
1 -Command transfer in progress

CMD_ACT (Command active)

0 -No data block end
1 -End of data block and CRC passed

DAT_BLK_END (Data block end)

0 - No start bit error
1 - Start bit error (start bit not detected
on all enabled data signals)

START_BIT_ERR (Start bit error)

0 - Not end of data
1 - End of data

DAT_END (End of data)

ADSP-BF54x Blackfin Processor Hardware Reference 27-65

Secure Digital Host

SDH Status Clear Register (SDH_STATUS_CLR)
The SDH_STATUS_CLR register is used to clear the static flags of the
SDH_STATUS register. Writing a b#1 to any of the bits, clears the corre-
sponding SDH_STATUS flag.

Figure 27-18. SDH Status Clear Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Status Clear Register (SDH_STATUS_CLR)

0 - No effect
1 - Clear CMD_CRC_FAIL

CMD_CRC_FAIL_STAT
(Clear command response CRC fail)

Reset = 0x0000

Write 1 action

0 - No effect
1 - Clear DAT_CRC_FAIL

DAT_CRC_FAIL_STAT
(Clear data CRC fail)

0xFFC0 3938

0 - No effect
1 - Clear CMD_TIMEOUT

CMD_TIMEOUT_STAT
(Clear command timeout)

0 - No effect
1 - Clear DAT_TIMEOUT

DAT_TIMEOUT_STAT
(Clear data timeout)

0 - No effect
1 - Clear TX_UNDERRRUN

0 - No effect
1 - Clear RX_OVERRUN

RX_OVERRUN_STAT
(Clear receive FIFO overrun error)

0 - No effect
1 - Clear CMD_RESP_END

CMD_RESP_END_STAT
(Clear command response received)

0 - No effect
1 - Clear CMD_SENT

CMD_SENT_STAT
(Clear command sent)

0 - No effect
1 - Clear DAT_BLK_END

DAT_BLK_END_STAT
(Clear data block end)

0 - No effect
1 - Clear START_BIT_ERR

START_BIT_ERR_STAT
(Clear start bit error)

0 - No effect
1 - Clear DAT_END

DAT_END_STAT
(Clear end of data) W1A

TX_UNDERRUN_STAT
(Clear transmit FIFO underrun error)

SDH Registers

27-66 ADSP-BF54x Blackfin Processor Hardware Reference

SDH Interrupt Mask Registers (SDH_MASKx)
The SDH_MASKx registers determine which of the static and dynamic flags
of the SDH_STATUS register generate a request to the SIC for one of the two
available SDH interrupts. An interrupt is enabled by setting the corre-
sponding bit in the SDH_MASKx register to 1. Interrupts enabled by the
SDH_MASK0 register send an IRQ0 interrupt, and interrupts enabled by the
SDH_MASK1 register send an IRQ1 interrupt.

ADSP-BF54x Blackfin Processor Hardware Reference 27-67

Secure Digital Host

Figure 27-19. SDH Interrupt Mask Registers, Bits [15:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Interrupt Mask Registers (SDH_MASKx), Bits [15:0]

CMD_CRC_FAIL_MASK
(Command response CRC fail)

Reset = 0x0000

Read/write

DAT_CRC_FAIL_MASK
(Data CRC fail)

0xFFC0 393C
0xFFC0 3940

CMD_TIMEOUT_MASK
(Command timeout)

DAT_TIMEOUT_MASK
(Data timeout)

TX_UNDERRUN_MASK
(Transmit FIFO underrun error)

RX_OVERRUN_MASK
(Receive FIFO overrun error)

CMD_RESP_END_MASK
(Command response received)

CMD_SENT_MASK
(Command sent)

0 - Disable interrupt
1 - Enable interrupt

RX_FIFO_STAT_MASK
(Receive FIFO watermark)

0 - Disable interrupt
1 - Enable interrupt

TX_FIFO_STAT_MASK
(Transmit FIFO watermark)

0 - Disable interrupt
1 - Enable interrupt

RX_ACT_MASK
(Data receive active)

TX_ACT_MASK
(Data transmit active)

CMD_ACT_MASK
(Command active)

DAT_BLK_END_MASK
(Data block end)

START_BIT_ERR_MASK
(Start bit error)

DAT_END_MASK
(End of data)

0 - Disable interrupt
1 - Enable interrupt

0 - Disable interrupt
1 - Enable interrupt

0 - Disable interrupt
1 - Enable interrupt

0 - Disable interrupt
1 - Enable interrupt

0 - Disable interrupt
1 - Enable interrupt

0 - Disable interrupt
1 - Enable interrupt

0 - Disable interrupt
1 - Enable interrupt

0 - Disable interrupt
1 - Enable interrupt

0 - Disable interrupt
1 - Enable interrupt

0 - Disable interrupt
1 - Enable interrupt

0 - Disable interrupt
1 - Enable interrupt

0 - Disable interrupt
1 - Enable interrupt

0 - Disable interrupt
1 - Enable interrupt

SDH Registers

27-68 ADSP-BF54x Blackfin Processor Hardware Reference

SDH FIFO Counter Register (SDH_FIFO_CNT)
The SDH_FIFO_CNT register contains a value indicating the number of
words still to be read from or written to the FIFO. The SDH_FIFO_CNT reg-
ister is loaded from the SDH_DATA_LGTH register when the DTX_E bit of the
SDH_DATA_CONTROL register is set. If the data length is not word aligned
(multiple of 4) the remaining 1 to 3 bytes are regarded as a word.

Figure 27-20. SDH Interrupt Mask Registers, Bits [31:16]

Figure 27-21. SDH FIFO Counter Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Interrupt Mask Registers (SDH_MASKx), Bits [31:16]

TX_FIFO_FULL_MASK
Transmit FIFO full)

Reset = 0x0000 0000

Read/write

RX_FIFO_FULL_MASK
Receive FIFO full)

0xFFC0 393C
0xFFC0 3940

TX_FIFO_ZERO_MASK
Transmit FIFO empty)

RX_DAT_RDY_MASK
Receive data available)

TX_DAT_RDY_MASK
Transmit data available)

RX_FIFO_ZERO_MASK
Receive FIFO empty)

0 - Disable interrupt
1 - Enable interrupt

0 - Disable interrupt
1 - Enable interrupt

0 - Disable interrupt
1 - Enable interrupt

0 - Disable interrupt
1 - Enable interrupt

0 - Disable interrupt
1 - Enable interrupt

0 - Disable interrupt
1 - Enable interrupt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FIFO_COUNT
(Number of bytes remaining)

Reset = 0x00000x0xFFC0 3948

SDH FIFO Counter Register (SDH_FIFO_CNT)

0x0xFFC0 3948

Read

ADSP-BF54x Blackfin Processor Hardware Reference 27-69

Secure Digital Host

SDH Data FIFO Register (SDH_FIFO)
The SDH_FIFO register provides access to the 16 entry transmit and receive
FIFO. The register is accessed as a 32-bit word.

SDH Exception Status Register (SDH_E_STATUS)
The SDH_E_STATUS register contains exception status bits for SD/SDIO
cards and the card detection logic. These status bits can be used to gener-
ate an interrupt request using the IRQ0 signal by enabling the interrupt in
the SDH_E_MASK register. All bits in this register are write-1-clear bits. The
SDIO_INT_DET interrupt is an interrupt generated by SDIO cards on the
SDH_DATA1 signal. The SD_CARD_DET bit is set when a rising edge is detected
on the SDH_DATA3 signal and is intended for use with MMC devices that
support card detection using this signal.

 Most SD/MMC sockets contain two additional signals for card
detect and write protect functionality. It is highly recommended
that card detection be implemented by using these signals.
Figure 27-2 on page 27-12 shows a typical interface between the
SDH interface and the card socket. The card detect signal should

Figure 27-22. SDH Data FIFO Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Data FIFO Register (SDH_FIFO)

SDH data FIFO (15:0)

Reset = 0x0000 0000

Read/write

0xFFC0 3980

31 30 29 28 27 26 25 24 23 22 21 20 19 1 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH data FIFO (31:16)

SDH Registers

27-70 ADSP-BF54x Blackfin Processor Hardware Reference

be debounced and interfaced to a GPIO signal. This provides the
most robust and reliable method of card detection and is compati-
ble with all SD/SDIO and MMC devices. In addition to providing
card detect functionality, it also allows for interrupt driven card
removal detection.

SDH Exception Mask Register (SDH_E_MASK)
The SDH_E_MASK register contains mask bits for the SDH_E_STAT status bits.
Writing a '1' to the SDH_E_MASK bit enables the interrupt for the corre-
sponding bit in the SDH_E_STAT register.

Figure 27-23. SDH Exception Status Register

Figure 27-24. SDH Exception Mask Register

SD_CARD_DET
(Card detect interrupt) W1C

SDIO_INT_DET
(SDIO interrupt detect) W1C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Exception Status Register (SDH_E_STATUS)

Reset = 0x0000

Read/W1Clear

0xFFC0 39C0

0 - No interrupt detected
1 - Interrupt detected

0 - No interrupt detected
1 - Interrupt detected

SCD_MSK
(Card detect interrupt enable)

SDIO_MSK
(SDIO interrupt enable)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 1 0 0 0 0 0

SDH Exception Mask Register (SDH_E_MASK)

Reset = 0x0040

Read/write

0xFFC0 39C4

0 - Interrupt disabled
1 - Interrupt enabled

0 - Interrupt disabled
1 - Interrupt enabled

ADSP-BF54x Blackfin Processor Hardware Reference 27-71

Secure Digital Host

SDH Configuration Register (SDH_CFG)
The SDH_CFG register enables and disables portions of the SDH module.
The CLKS_EN bit must be set in order to enable the SDH for operation.

After reset PD_SDDAT3 is set to enable pull-down of the SDH_DAT3 signal.
This implements card detection if that feature is available. Once a card is
detected, PD_SDDAT3 should be cleared and PUP_SDDAT3 should be enabled.

The pull-up and pull-down resistors on the SDH_DATAx signals only
become active when the corresponding GPIO pins are configured for
SDH functionality through pin multiplexing. For example, if only the
4-bit data bus is enabled in the pin multiplexing, then setting PUP_SDDAT
only enables the pull-up resistors on the signals that are configured for
SDH use.

The SDH_CFG register provides additional SDIO functionality.

Set SD4E to enable the SDIO 4-bit mode; in addition to setting the bus
width to 4-bit using the WIDE_BUS bit of the SDH_CLK_CTL register.

Setting the MWE bit allows for SDIO interrupts to be detected outside the
specified once cycle window. This should be set when interrupt support is
required during multiple block read transactions from SDIO.

The SDH can also be reset with the SD_RST bit. Writing this bit resets the
SDH module and sets all registers back to their default values.

 PD_SDDAT3 and PUP_SDDAT3 are mutually exclusive and should never
both be set at any given time. Always clear one before setting the
other.

SDH Registers

27-72 ADSP-BF54x Blackfin Processor Hardware Reference

SDH Read Wait Enable Register (SDH_RD_WAIT_EN)
When the RWR bit in the SDH_RD_WAIT_EN register is set, a read-wait request
is sent to the SDIO card. This bit must be cleared when the software is
ready to resume the data transfer. The functionality applies to both 1-bit
and 4-bit SDIO modes.

Figure 27-25. SDH Configuration Register

0 - Disable pull-down on SD_DATA3
1 - Enable pull-down on SD_DATA3

PD_SDDAT3
(SDH_DATA3 pull-down enable)

0 - Disabled
1 - Enabled
(Required when using SDIO
multiple block read operations)

MWE
(SDIO interrupt moving
window enable)

0 - Disable SDIO 4-bit mode
1 - Enable SDIO 4-bit mode

SD4E
(SDIO 4-Bit enable)

PUP_SDDAT (Pull-up enable)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 1 0 1 0 0 0 0

SDH Configuration Register (SDH_CFG)

0 - Disable internal SDH clocks
1 - Enable internal SDH clocks

CLKS_EN
(SDH clocks enable)

Reset = 0x0A00

Read/write

0xFFC0 39C8

PUP_SDDAT3
(SDH_DATA3 pull-up enable)
0 - Disable pull-up on SD_DATA3
1 - Enable pull-up on SD_DATA3

W1A
0 - No action
1 - Reset the SDH

0 - Disable pull-up on SD_DATA2-0
1 - Enable pull-up on SD_DATA2-0

SD_RST
(SDH reset)

ADSP-BF54x Blackfin Processor Hardware Reference 27-73

Secure Digital Host

SDH Identification Registers (SDH_PIDx)
The SDH_PIDx registers contain a fixed value at reset and are used to iden-
tify the peripheral revision. There are a total of eight 16-bit identification
registers of which the lower 8-bits are valid. The contents of these eight
registers are listed in Table 27-12.

Figure 27-26. SDH Read Wait Enable Register

Figure 27-27. SDH Peripheral ID Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Read Wait Enable Register (SDH_RD_WAIT_EN)

0 - Normal operation
1 - Issue read wait request to SDIO device

RWR
(SDIO read wait request enable)

Reset = 0x0000

Read/write

0xFFC0 39CC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Peripheral ID Registers (SDH_PIDx)

SDH_PID
(Peripheral ID)

Reset = 0x0000

Read/Write

See
Table 27-12

Programming Examples

27-74 ADSP-BF54x Blackfin Processor Hardware Reference

Programming Examples
Listing 27-1 shows an example initialization sequence to enable the use of
the SDH.

Listing 27-1. SDH Port Register Configuration and SDH Initialization

_sdh_enable:

 /* save return address and frame pointer only */
 LINK 0;

 /**/

 /* Setup Base MMR address */

 /**/

 P1.L = 0x0000;

 P1.H = HI(PORTC_FER);

 /**/

Table 27-12. SDH Peripheral ID

Address SDH Peripheral ID Register SDH_PID Value

0xFFC0 39D0 SDH_PID0 0x80

0xFFC0 39D4 SDH_PID1 0x11

0xFFC0 39D8 SDH_PID2 0x04

0xFFC0 39DC SDH_PID3 0x00

0xFFC0 39E0 SDH_PID4 0x0D

0xFFC0 39E4 SDH_PID5 0xF0

0xFFC0 39E8 SDH_PID6 0x05

0xFFC0 39EC SDH_PID7 0xB1

ADSP-BF54x Blackfin Processor Hardware Reference 27-75

Secure Digital Host

 /* Disable the card detect and SDIO Interrupt as card detect

is implemented elsewhere via regular GPIO */

 /**/

 R3.L = 0;

 W[P1 + LO(SDH_E_MASK)] = R3;

 /**/

 /* Port Muxing for SDH */

 /**/

 R3.L = lo(MUX(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0));

 R3.H = hi(MUX(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0));

 [P1+LO(PORTC_MUX)] = R3;

 /**/

 /* Enable SDH functionality */

 /**/

 R3.L = PC13 | PC12 |PC11 | PC10 | PC9 | PC8;

 W[P1+LO(PORTC_FER)] = R3;

 ssync;

 /**/

 /* Clear card detect and SDIO status */

 /**/

 R3 = W[P1 + LO(SDH_E_STATUS)];

 W[P1 + LO(SDH_E_STATUS)]= R3;

 /**/

 /* Clear any set status flags */

 /**/

 R3 = W[P1 + LO(SDH_STATUS)];

 W[P1 + LO(SDH_STATUS_CLR)]= R3;

 /**/

 /* Enable SDH Clocks and configure resistors */

Programming Examples

27-76 ADSP-BF54x Blackfin Processor Hardware Reference

 /**/

 R3 = CLKS_EN | PUP_SDDAT | PUP_SDDAT3;

 W[P1 + LO(SDH_CFG)] = R3;

 /**/

 /* Turn on the SDH */

 /**/

 R3 = PWR_ON;

 W[P1+ LO(SDH_PWR_CTL)] = R3;

 /**/

 /* Enable the external clock and configure for power save

mode. Clock divisor = 0xA6 for <400KHz clock */

 /**/

 R3 = PWR_SV_E | CLK_E | 0xA6;

 W[P1 + LO(SDH_CLK_CTL)] = R3;

 UNLINK;

 RTS;

_sdh_enable.END:

Listing 27-2 shows an example routine for sending a command to a
device. The function is called with two passed parameters and returns 0
for a pass condition. If there is a failure, the function returns the status
flag which is read from the SDH_STATUS register. Once the command is
issued the routine polls on the SDH_STATUS register for either a pass or fail-
ure condition. Commands that require a response, return a CMD_CRC_FAIL
or a CMD_TIMEOUT condition in the event of a failure. For a pass condition,
meaning the command was received and the CRC passed, a CMD_RESP_END
response is returned.

For commands that do not require a response, there are no failure condi-
tions. Since the card provides no response at all, a pass condition is
indicated by the CMD_SENT event.

ADSP-BF54x Blackfin Processor Hardware Reference 27-77

Secure Digital Host

Listing 27-2. SDH Send Command Example

/***/

/*send_command(uint32_t Command, uint32_t Argument)*/

/* */

/* Return: uint32_t error, 0 for success else the error */

/* */

/*Command format:

Bits 5:0 of the command are the command index to be sent.

Bit 6 of the command indicates if a response is expected

0 = No response

1 = Response

Bit 7 of the command indicates response type

0 = Short response

1 = Long Response */

/* *//* Descrip-

tion: */

/* Sends a command to the device. If the command expects a

response the error conditions are set to CRC Fail and Command

Timeout. The success condition is set to Command Response End

indicating the command was received. If the command does not

expect a response, there are no error conditions and the success

condition is set to Command Sent. The function returns 0 if there

was no error or it returns the error condition as per the

SDH_STATUS register. Only the success and error conditions are

then cleared in the status register thus maintaining any indica-

tions of other SDH status operations. This example could be

further enhanced to include a check on the received command index

from the response if one is expected and received. */

/* */

/**/

_send_command:

 LINK 0;

 [--SP] = (R7:4, P5:3);

Programming Examples

27-78 ADSP-BF54x Blackfin Processor Hardware Reference

 /*************************/

 /* R0 holds the Command */

 /* R1 holds the Argument */

 /*************************/

 /**/

 /* Set base MMR for SDH register access */

 /**/

 P5.L = 0;

 P5.H = HI(SDH_CLK_CTL);

 /* */

 /***/

 /* Configure error and success factors for the function

Default Errors are CMD_CRC_FAIL and CMD_TIMEOUT

Default Success conditions are CMD_RESP_END

If no response is expected from the sent command there are no

error conditions and the pass condition is CMD_SENT */

 /***/

 _send_command_setup_success_error:

 /***/

 /* Error and success factors if a response is expected */

 /***/

 R5 = CMD_CRC_FAIL | CMD_TIMEOUT; /* Error */
 R4 = CMD_RESP_END; /* Success */

 CC = BITTST(R0, BITPOS(CMD_RSP));

 IF CC JUMP _send_command_setup_success_error.end;

 /**/

 /* Error and success factors if a response is not expected */

 /***/

ADSP-BF54x Blackfin Processor Hardware Reference 27-79

Secure Digital Host

 R5 = 0; /* Error */
 R4 = CMD_SENT; /* Success */
_send_command_setup_success_error.end:

R3 = R4 | R5; /* Combined error & success */

 /**/

 /* Set the CMD_EN bit of the input command to be sent */

 /**/

 bitset(R0,bitpos(CMD_E));

 /**************************************/

 /* Write the argument for the command */

 /**************************************/

 [P5 + LO(SDH_ARGUMENT)] = R1;

 /**************************************/

 /* Issue the command */

 /**************************************/

 W[P5 + LO(SDH_COMMAND)] = R0;

 /***/

 /*Poll the SDH_STATUS register until a pass or fail condition */

 /***/

_send_command_poll_loop:

 R7 = [P5 + LO(SDH_STATUS)];

 R6 = R7 & R3;

 CC = R6 == 0;

 IF CC JUMP _send_command_poll_loop;

/**/

Programming Examples

27-80 ADSP-BF54x Blackfin Processor Hardware Reference

 /* Set default return value to success, then check for an

error condition. If it is an error condition set the return

parameter to the error condition */

 /**/

 R0 = 0;

 R7 = R6 & R5;

 CC = R7 == 0;

 IF CC JUMP _send_command_clear_status;

 R0 = R6 & R5;

 /***/

 /* Clear the pass or fail flags and preserve all other status

flags */

 /***/

 _send_command_clear_status:

 W[P5 + LO(SDH_STATUS_CLR)] = R3;

 (R7:4, P5:3) = [SP++];

 UNLINK;

 RTS;

_send_command.end:

Listing 27-3 shows a very basic routine for SD card identification. Note
that the example is simplified and is not compliant with version 2.0 of the
SD specification. It is included for illustrative purposes only.

Listing 27-3. SD Card Identification Example

_sd_identification:

 LINK 0;

 [--SP] = (R7:4, P5:3);

ADSP-BF54x Blackfin Processor Hardware Reference 27-81

Secure Digital Host

 /**********************************/

 /* Send the IDLE command */

 /**********************************/

 R0 = SD_MMC_CMD_GO_IDLE_STATE;

 R1 = 0;

 CALL _send_command;

/************************************/

/* Fetch card OCR register */

/************************************/

 _sd_identification_request_ocr:

 /***************/

 /* Send CMD55 */

 /***************/

 R0 = SD_MMC_CMD_APP_CMD;

 R1.L = LO(0x00000000);

 R1.H = HI(0x00000000);

 CALL _send_command;

 CC = R0 == 0;

 IF !CC JUMP _error;

 /***************/

 /* Send ACMD41 */

 /***************/

 R0 = SD_CMD_GET_OCR_VALUE;

 R1.L = LO(0x00FF8000);

 R1.H = HI(0x00FF8000);

 CALL _send_command;

 /***/

Programming Examples

27-82 ADSP-BF54x Blackfin Processor Hardware Reference

 /* An R3 response has no valid CRC field so although a

response is required this R3 response will always generate a

CMD_CRC_FAIL condition. So this is special pass condition */

 /***/

 CC = R0 == CMD_CRC_FAIL;

 IF !CC JUMP _error;

 P5.L = 0;

 P5.H = HI(SDH_RESPONSE0);

 /**/

 /* Keep requesting the OCR register until the OCR register

indicates card is no longer busy */

 /**/

 R7 = [P5 + LO(SDH_RESPONSE0)];

 CC = BITTST(R7, 31);

 IF !CC JUMP _sd_identification_request_ocr;

_sd_identification_request_cid:

 /***************/

 /* Send CMD2 */

 /***************/

 R0 = SD_MMC_CMD_ALL_SEND_CID;

 R1 = 0(X);

 CALL _send_command;

 CC = R0 == 0;

 IF !CC JUMP _error;

_sd_identification_request_rca:

 /***************/

 /* Send CMD3 */

 /***************/

 R0 = SD_CMD_SEND_RELATIVE_ADDR;

ADSP-BF54x Blackfin Processor Hardware Reference 27-83

Secure Digital Host

 R1 = 0(X);

 CALL _send_command;

 CC = R0 == 0;

 IF !CC JUMP _error;

 R7 = [P5 + LO(SDH_RESPONSE0)];

 R6.L = LO(0xFFFF0000);

 R6.H = HI(0xFFFF0000);

 R7 = R6 & R7;

 /***/

 /* Save the RCA to a 32-bit parameter. The upper 16-bits con-

tain the RCA. We masked out the lower bits allowing for easy

logic OR operations for commands that require the RCA in their

argument field. */

 /***/

 P5.L = LO(_rca);

 P5.H = HI(_rca);

 [P5] = R7;

 (R7:4, P5:3) = [SP++];

 UNLINK;

 /* Return from subroutine */
 RTS;

 _sd_identification.END:

Listing 27-4 shows a very basic block write routine of 512 bytes through
the use of the SDH DMA channel. This is a simplified example intended
for illustrative purposes only.

Programming Examples

27-84 ADSP-BF54x Blackfin Processor Hardware Reference

Listing 27-4. Single Block Write using DMA

_sdh_single_block_write:

 LINK 0;

 [--SP] = (R7:4, P5:3);

 P4.L = LO(_rca);

 P4.H = HI(_rca);

 R1 = [P4];

 /***************/

 /* Send CMD7 */

 /***************/

 R0 = SD_MMC_CMD_SELECT_DESELECT_CARD;

 CALL _send_command;

 CC = R0 == 0;

 IF !CC JUMP _error;

 P5.L = 0;

 P5.H = HI(SDH_PWR_CTL);

 /***/

 /* R0 contains the block to write to on the card so convert

this to a byte address */

 /***/

 R6 = R0 << 9; /* Convert the block to a byte address */
 R0 = 0(X); /* Write transaction */
 R2 = 512(Z); /* Default block size is 512 */

 /************************************/

 /* Set the data length to 512 bytes */

 /************************************/

 W[P5 + LO(SDH_DATA_LGTH)] = R2;

ADSP-BF54x Blackfin Processor Hardware Reference 27-85

Secure Digital Host

 /***/

 /* Set up the timeout value. See SD Spec for details on how to

calculate the correct value. */

 /***/

 R7.H = HI(0x00FFFFFF);

 R7.L = LO(0x00FFFFFF);

 [P5 + LO(SDH_DATA_TIMER)] = R7;

 R1.L = LO(_write_buffer);

 R1.H = HI(_write_buffer);

 /*********************/

 /* Configure the DMA */

 /*********************/

 R7 = 0(X);

 W[P5 + LO(DMA22_CONFIG)] = R7;

 [P5 + LO(DMA22_START_ADDR)] = R1;

 R2 >>= 2;

 W[P5 + LO(DMA22_X_COUNT)] = R2;

 R7 = 4(X);

 W[P5 + LO(DMA22_X_MODIFY)] = R7;

 R7 = DMAEN | WDSIZE_32 |DI_EN;

 W[P5 + LO(DMA22_CONFIG)] = R7;

 /************************************/

 /* Issue the write block command */

 /************************************/

 R0 = SD_MMC_CMD_WRITE_SINGLE_BLOCK;

 R1 = R6;

Programming Examples

27-86 ADSP-BF54x Blackfin Processor Hardware Reference

 CALL _send_command;

 CC = R0 == 0;

 IF !CC JUMP _error;

 /************************************/

 /* Start the transfer */

 /************************************/

 R7.L = LO(0x0099);

 W[P5 + LO(SDH_DATA_CTL)] = R7;

 R6.L = LO(DAT_END | DAT_BLK_END);

 R6.H = HI(DAT_END | DAT_BLK_END);

 /************************************/

 /* Wait for block completion */

 /************************************/

 _sdh_single_block_write_wait_data_end:

 R7 = [P5 + LO(SDH_STATUS)];

 R7 = R7 & R6;

 CC = R7 == 0;

 IF CC JUMP _sdh_single_block_write_wait_data_end;

 /************************************/

 /* Clear SDH status */

 /************************************/

 W[P5 + LO(SDH_STATUS_CLR)] = R7;

 /************************************/

 /* Clear DMA interrupt */

 /************************************/

 R7.L = LO(DMA_DONE);

 W[P5 + LO(DMA22_IRQ_STATUS)] = R7;

ADSP-BF54x Blackfin Processor Hardware Reference 27-87

Secure Digital Host

 /***/

 /* Keeps reading card status register until no longer busy */

 /***/

 CALL _sd_wait_for_card_ready;

 (R7:4, P5:3) = [SP++];

 UNLINK;

 RTS;

_sdh_single_block_write.end:

Listing 27-5 shows a very basic block read routine of 512 bytes through
the use of the SDH DMA channel. This is a simplified example intended
for illustrative purposes only.

Listing 27-5. Single Block Read using DMA

_sdh_single_block_read:

 LINK 0;

 [--SP] = (R7:4, P5:3);

 P4.L = LO(_rca);

 P4.H = HI(_rca);

 R1 = [P4];

 /***************/

 /* Send CMD7 */

 /***************/

 R0 = SD_MMC_CMD_SELECT_DESELECT_CARD;

 CALL _send_command;

 CC = R0 == 0;

 IF !CC JUMP _error;

 P5.L = 0;

Programming Examples

27-88 ADSP-BF54x Blackfin Processor Hardware Reference

 P5.H = HI(SDH_PWR_CTL);

 /***/

 /* R0 contains the block to write to on the card so convert

this to a byte address. */

 /***/

 R6 = R0 << 9; /* Convert the block to a byte address */

 R0 = 0(X); /* Write transaction */
 R2 = 512(Z); /* Default block size is 512 */

 /************************************/

 /* Set the data length to 512 bytes */

 /************************************/

 W[P5 + LO(SDH_DATA_LGTH)] = R2;

 /***/

 /* Set up the timeout value. See SD Spec for details on how to

calculate the correct value. */

 /***/

 R7.H = HI(0x00FFFFFF);

 R7.L = LO(0x00FFFFFF);

 [P5 + LO(SDH_DATA_TIMER)] = R7;

 R1.L = LO(_read_buffer);

 R1.H = HI(_read_buffer);

 /*********************/

 /* Configure the DMA */

 /*********************/

 R7 = 0(X);

 W[P5 + LO(DMA22_CONFIG)] = R7;

ADSP-BF54x Blackfin Processor Hardware Reference 27-89

Secure Digital Host

 [P5 + LO(DMA22_START_ADDR)] = R1;

 R2 >>= 2;

 W[P5 + LO(DMA22_X_COUNT)] = R2;

 R7 = 4(X);

 W[P5 + LO(DMA22_X_MODIFY)] = R7;

 R7 = DMAEN | WDSIZE_32 |DI_EN | WNR;

 W[P5 + LO(DMA22_CONFIG)] = R7;

 /************************************/

 /* Issue the write block command */

 /************************************/

 R0 = SD_MMC_CMD_READ_SINGLE_BLOCK;

 R1 = R6;

 CALL _send_command;

 CC = R0 == 0;

 IF !CC JUMP _error;

 /************************************/

 /* Start the transfer */

 /************************************/

 R7.L = LO(0x009B);

 W[P5 + LO(SDH_DATA_CTL)] = R7;

 R6.L = LO(DAT_END | DAT_BLK_END);

 R6.H = HI(DAT_END | DAT_BLK_END);

 /************************************/

 /* Wait for block completion */

Programming Examples

27-90 ADSP-BF54x Blackfin Processor Hardware Reference

 /************************************/

 _sdh_single_block_read_wait_data_end:

 R7 = [P5 + LO(SDH_STATUS)];

 R7 = R7 & R6;

 CC = R7 == 0;

 IF CC JUMP _sdh_single_block_read_wait_data_end;

 /************************************/

 /* Clear SDH status */

 /************************************/

 W[P5 + LO(SDH_STATUS_CLR)] = R7;

 /************************************/

 /* Clear DMA interrupt */

 /************************************/

 R7.L = LO(DMA_DONE);

 W[P5 + LO(DMA22_IRQ_STATUS)] = R7;

 /***/

 /* Keeps reading card status register until no longer busy */

 /***/

 CALL _sd_wait_for_card_ready;

 (R7:4, P5:3) = [SP++];

 UNLINK;

 RTS;

_sdh_single_block_read.end:

ADSP-BF54x Blackfin Processor Hardware Reference 28-1

28 PIXEL COMPOSITOR

This chapter describes the pixel compositor (PIXC) and includes the fol-
lowing sections:

• “Overview” on page 28-1

• “Interface Overview” on page 28-2

• “Description of Operation” on page 28-4

• “Functional Description” on page 28-9

• “Programming Model” on page 28-34

• “PIXC Registers” on page 28-35

Overview
The pixel compositor (PIXC) for the ADSP-BF54x processor processor
provides data overlay, transparent color, and color space conversion sup-
port for active (TFT) flat-panel digital color/monochrome LCD displays
or analog NTSC/PAL video output. The color space conversion and
text/graphic overlay capabilities, along with visual effect controls, such as
transparency control, shorten the processing time on an image data
stream, reduce power consumption and save system board space by remov-
ing the need for external glue logic.

 The PIXC DMA channels should be configured for 32-bit transfers
in order to ensure correct operation.

Interface Overview

28-2 ADSP-BF54x Blackfin Processor Hardware Reference

Features
The PIXC includes these features:

• Hardware-based graphics and text overlays

• YUV 4:2:2 or RGB888 input data formats

• Programmable color space conversion on the main image or the
overlay image data path

• Overlay content transparency ratio control

• Transparent color, specified in the desired color space (RGB or
YUV)

• Two DMA input channels and one DMA output channel

• Image data stream outputs for active-matrix TFT LCD panels or
analog NTSC/PAL displays

Interface Overview
A top-level micro architecture diagram of the PIXC appears in
Figure 28-1. As shown in Figure 28-1, the PIXC requires three DMA
channels: one for the image data, one for the overlay data and one for stor-
ing the results back to L3, L2 or L1 memory. Frame C can also be fed back
to the PIXC for multiple stages of processing, taking the place of frame A
when this happens. The EPPI can then format the data for an LCD (for
example, RGB888 to RGB666 or RGB565).

ADSP-BF54x Blackfin Processor Hardware Reference 28-3

Pixel Compositor

Only one color conversion or chroma resampling takes place for each
given use of the PIXC block. The user can assume that a color space con-
verter is present in each of the three places shown above. In reality, any
input format (for both image and overlay) and any output format can be
supported using a single appropriately-positioned color space converter.

Figure 28-2 shows a more detailed functional view of the PIXC block and
shows the relevant connections to the DAB and system interrupt control-
ler (SIC).

Figure 28-1. Pixel Compositor Top-Level Diagram

A RGB/YUV

TV

LCD

MEMORY

422/444

444/422

YUV/RGB

RGB/YUV

422/444

444/422

YUV/RGB

RGB/YUV

422/444

444/422

YUV/RGB

B

MAIN IMAGE
RGB/YUV

OVERLAY
RGB/YUV

C

Description of Operation

28-4 ADSP-BF54x Blackfin Processor Hardware Reference

Description of Operation
This section describes the operation of the pixel compositor (PIXC).

General Description
The PIXC is used to combine and format the data streams required by a
wide variety of digital LCD panels and NTSC/PAL analog video encoders.
It provides all the control needed to allow two data streams from two sep-
arate data buffers to be combined and converted into appropriate formats
for both LCD panels and video output displays. The main image buffer
provides the basic background image presented in the data stream. The
overlay image buffer allows the user to add foreground text and graphics

Figure 28-2. Pixel Compositor Functional Block Diagram

FIFO

32

8

FIFO

32

8

DMA CONTR.
(DMAC 1)

SIC
CONTROLLER

FIFO
4

32

REQUEST

GRANT

PAB

DAB

32

32

PIXC
INTERRUPT

DMA15_IMAGE
DEFAULT

DMA16_OVERLAY
DEFAULT

DMA17_RESULT
DEFAULT

1

SCLK

SCLK

32

32

32

16

SCLK

BYPASS (OPTIONAL)

PIXC_CTL

PIXC_INTRSTAT

PIXC_XHSTART

PIXC_XHEND

PIXC_XVSTART

PIXC_XVEND

RGB/YUV 444/422

YUV/RGB422/444

BYPASS (OPTIONAL)
FIFO

32

8

PIXC_RYCON

PIXC_GUCON
PIXC_PPL

PIXC_CCBIAS

PIXC_TC

RGB/YUV 444/422

YUV/RGB422/444

RGB/YUV 444/422

YUV/RGB422/444

BYPASS (OPTIONAL)

PIXC_LFP

FIFO
4

FIFO
4

PIXEL COMPOSITOR
(PIXC)

ADSP-BF54x Blackfin Processor Hardware Reference 28-5

Pixel Compositor

on top of the main image data stream. This feature is useful for printing
additional graphical or textual information on the screen, such as symbols
or a menu, while showing the main image in the background.

Overlay is an option and can be enabled or disabled. If it is disabled, the
blender/compositor is bypassed and the data stream from the main image
buffer goes directly to memory, with optional color space conversion.

Transparent color is just a special case of blending, masking off the blend
operation on a pixel-by-pixel basis. In other words, if the overlay region
consists of sub-regions that need to be transparent, this can be done by
having these sub-regions in any particular color convenient to the pro-
grammer, and enabling the transparent color feature of the PIXC. Then, if
the color data for a given overlay pixel matches the specified transparent
color, the overlay function is masked for that pixel and its data is taken
solely from the main image buffer, which is stored in memory in either
YUV 4:2:2 interleaved format or RGB888 format.

Regardless of the data format or buffer structure, each color element is 8
bits wide. If overlay is enabled, a graphics/text overlay data buffer is
defined in memory. The color space converter can switch positions among
any of the three locations shown in Figure 28-1 on page 28-3; it can be in
the image data path, the overlay data path, or after the blender. The exact
position of the color space converter depends on the input and output
data formats, which are discussed in more detail in the following sections.

Two dedicated DMA channels, with 32-bit bus widths, are used to trans-
fer data from the main image data buffer and the overlay image data buffer
into two separate PIXC FIFO buffers, where the data is then unpacked.
Each of these FIFO buffers is 32 bits wide and contains 8 entries. The
overlay data buffer can not be larger than the image buffer, and the over-
lay can be set to affect only selected portions of the main image. The
position of the overlay in the main image is controlled by mem-
ory-mapped registers (MMRs) in the PIXC. In the blender, (8-bit) pixel
elements from two buffers are mixed together. One dedicated DMA chan-
nel transfers the combined pixel data back to memory.

Description of Operation

28-6 ADSP-BF54x Blackfin Processor Hardware Reference

Since the end display may be a TV (NTSC/PAL) or an LCD panel, and
since the image/overlay input buffers may be in either RGB888 or YUV
4:2:2 format, a color space conversion may be needed. The color space
conversion is selected according to the input data stream format of the
PIXC. A YUV-to-RGB format conversion is necessary if the end display is
an LCD and if either of the PIXC input data streams is in YUV 4:2:2 for-
mat. Similarly, an RGB-to-YUV format conversion is necessary if the end
display is a TV and if either of the PIXC input data streams is in RGB888
format.

If the final display device is an LCD, the output RGB data stream is
always packed in RGB 8-bit serial format when transferring back to mem-
ory. Similarly, if the final display device is a TV, the YUV data stream is
always packed in YUV 4:2:2 interleaved format when transferring back to
memory.

Data Buffer Formats
For the implementation of overlay, the PIXC needs two input data
streams from two separate data buffers, a main image buffer and an over-
lay buffer. The input data in these buffers must be in YUV 4:2:2 or
RGB888 format (the main image data and the overlay data can be in dif-
ferent formats). The output data is also in one of these two formats,
depending on the output display device being used.

Operation in YUV 4:2:2 Format

Each Y/U/V component is stored in 8 bits of data. The PIXC only accepts
a YUV 4:2:2 interleaved format, in the following sequence:

V1, Y1, U1, Y2, V3, Y3, U3, Y4 …

(Two components with the same suffix number (for example, V1 and U1)
implies they are extracted from the same pixel.)

ADSP-BF54x Blackfin Processor Hardware Reference 28-7

Pixel Compositor

It is the user’s responsibility to ensure that the YUV source data to the
PIXC is in the correct interleaved format. Therefore, data preprocessing
may be necessary in order to meet this requirement.

Figure 28-3 and Figure 28-4 illustrate correct PIXC input buffer structure
and data stream format.

The number of pixels per line in YUV mode must be an even number (for
both input buffers), and the first chroma component in each line must be
a V component.

Figure 28-3. YUV 4:2:2 Data in an Interleaved Data Buffer Structure

Figure 28-4. YUV 4:2:2 Expected Data Stream Format to PIXC

V2 1 Y2 1 U2 1 Y2 2 U2 639 Y2 640

V1 1 Y1 1 U1 1 Y1 2 U1 639 Y1 640

V480 1 Y480 1 U480 1 Y480 2 U480 639 Y480 640

ADDR_BASE + 0

ADDR_BASE + 1280

ADDR_BASE + (479 x 1280)

Y2 U1 Y1 V1

Y4 U3 Y3 V3

B31 B0B16 B15

...

...

Description of Operation

28-8 ADSP-BF54x Blackfin Processor Hardware Reference

Operation in RGB888 Format

Each R/G/B component is stored in 8 bits of data. Figure 28-5 and
Figure 28-6 illustrate correct PIXC input buffer structure and data stream
format.

For operation in RGB format, the total number of pixels in both input
buffers must be a multiple of 4, so that the image boundary aligns with a
32-bit DMA word boundary.

Figure 28-5. RGB888 Data Expected Data Buffer Structure

Figure 28-6. RGB888 Expected Data Stream Format to PIXC

R2 1 R2 1 B2 1 B2 2 G2 640 B2 640

R1 1 G1 1 B1 1 R1 2 G1 640 B1 640

R480 1 G480 1 B480 1 R480 2 G480 640 B480 640

ADDR_BASE + 0

ADDR_BASE + 1920

ADDR_BASE + (479 x 1920)

R12 B11 G11 R11

G13 R13 B12 G12

B31 B0B16 B15

...

...

ADSP-BF54x Blackfin Processor Hardware Reference 28-9

Pixel Compositor

DMA Channels
Three peripheral DMA channels can be assigned to the PIXC, as follows:

• A first input DMA channel is used for transferring either a part of
the image or the entire main image data to the PIXC from memory
(L3, L2, or L1).

• A second input DMA channel is used for transferring the overlay
image to the PIXC from memory (L3, L2, or L1).

• An output DMA channel is used for transferring the blended data
to memory (L3, L2 or L1).

For more information, see “Direct Memory Access” on page 7-1.

The two input DMA channels take the image data and overlay graph-
ics/text data from their buffers into two separate FIFOs.

Whenever the PIXC is enabled, at least two DMA channels should be
enabled and configured appropriately: the image DMA channel and the
output DMA channel. Furthermore, when the overlay function of PIXC is
enabled, the overlay DMA channel should be enabled and configured as
well.

Functional Description
The PIXC implements the following main functions:

• Graphics/text overlay (including video overlay for small frame
sizes)

• Transparency control (alpha blending) of the overlay pixel data

• Transparent color (chroma keying) of the overlay stream

• Color space conversion for LCD panels or NTSC/PAL displays

Functional Description

28-10 ADSP-BF54x Blackfin Processor Hardware Reference

Data Overlay
Overlay is an optional function, so it can be enabled or disabled. If it is
disabled, all overlay functionality is bypassed, and a single data stream
from the main image data buffer goes directly to the image output buffer,
after an optional format conversion. If it is enabled, the blender combines
the pixel data from the two image input buffers.

The overlay image is located in a user-defined rectangle within the main
image and, in most cases, the overlay image is smaller than the main
image. Figure 28-7 illustrates an example of the main and overlay image
regions on a screen, where a foreground triangle overlay sits on top of the
main image in the background. Although the figure does not show this
explicitly, (H-Start, V-Start) can equal (0,0).

In certain situations, it may be beneficial to only DMA the region of the
main image that is affected by the overlay instead of bringing in the entire
main image. For example, in a situation where the intent is to overlay an
image over the main image and to store the result back over the main

Figure 28-7. Main Image and Overlay Image Region

H-START

MAIN IMAGE

OVERLAY H-END

V-START V-END

ADSP-BF54x Blackfin Processor Hardware Reference 28-11

Pixel Compositor

image, one could setup a 2D-DMA to only bring in the area of the main
image that is affected by the overlay. This may reduce the amount of
DMA activity thus potentially improving system performance.

There are two steps to implement the overlay process:

1. Defining an overlay buffer

• The user must define a rectangular region that covers the
whole overlay region no matter what shape the overlay con-
tent is. The overlay buffer holds the pixel data in the entire
rectangular overlay region, which can include some areas
where there is no overlay. In memory, these areas have to be
filled with the transparent color value. (See “Transparency
Control” on page 28-17.)

2. Configuring the overlay DMA

• The user must define a single DMA descriptor for the over-
lay data transfer. The user must also fill the overlay
coordinate registers in the PIXC with appropriate values.
The overlay coordinate register set consists of two pairs of
registers that specify the top left corner (H-Start, V-Start)
and bottom right corner (H-End, V-End) of the overlay,
along with a 4-bit register that specifies the (transparency
ratio) value. Each overlay is thus completely specified by a
set of five registers. The widths and addresses of these regis-
ters are given in “PIXC Registers” on page 28-35.

There is a set of an additional five such registers that can be used to specify
a second overlay region, so that two separate overlay blocks can be defined
simultaneously. Furthermore, either or both of these overlay coordinate
register sets can be enabled or disabled at one time, since separate enable
bits (OVR_A_EN and OVR_B_EN) exist in the PIXC control register for each of
the overlay register sets.

Functional Description

28-12 ADSP-BF54x Blackfin Processor Hardware Reference

If there are more than two overlay blocks needed in a given application,
the two sets of overlay registers must be managed by the user to perform
the additional overlays. This can be done using an interrupt service rou-
tine, where the interrupt from the PIXC is used to re-program the overlay
coordinate registers.

The PIXC can generate an interrupt under two conditions: at the end of
the last valid overlay and at the end of a frame.

Either of these interrupts can be enabled or disabled. However, the PIXC
only has one interrupt line output, so it raises an interrupt (under the
appropriate condition) when either of these two interrupts is triggered. If
both interrupts are enabled, the interrupt status register of the PIXC indi-
cates which of the two conditions caused the interrupt to occur. Once the
PIXC generates an interrupt, it stalls the pixel processing until software
(ISR) clears the interrupt. However, the FIFOs do not stall and keep fill-
ing up even when the PIXC is in a stalled state. Both interrupts can be
cleared by writing a 1 to the respective interrupt status bits.

ADSP-BF54x Blackfin Processor Hardware Reference 28-13

Pixel Compositor

After each interrupt (whether it is a last-valid-overlay interrupt or an
end-of-frame interrupt), the PIXC restarts processing with coordinate reg-
ister set A. In other words, at the time of clearing the interrupt:

• If coordinate set A is enabled (OVR_A_EN = 1), the PIXC assumes
that the first incoming data over the DAB is to be overlaid on the
area specified in coordinate set A.

• If coordinate set A is disabled (OVR_A_EN = 0), and coordinate set B
is enabled (OVR_B_EN = 1), the PIXC assumes that the first incom-
ing data over the DAB is to be overlaid on the area specified in
coordinate set B.

• If both coordinate sets are disabled, the PIXC flushes the overlay
FIFO and make no more data requests on the overlay DMA
channel.

 The overlay enable bits OVR_A_EN and OVR_B_EN should only be
changed inside the interrupt service routines of the PIXC inter-
rupts, or when the overlay block is disabled.

Note that the module enable bit (PIXC_EN) is the root enable for the PIXC.
Both OVR_A_EN and OVR_B_EN are gated with PIXC_EN, so if PIXC_EN is set to
zero, the individual overlay enable bits have no effect, and the module
remains disabled. When PIXC_EN is programmed to zero, both the image
and overlay FIFOs are flushed and no more DMA requests are made on
either of the DMA channels.

Once the DMAs are enabled, the PIXC keeps track of the current pixel
being displayed from the main image data by reading from two user-pro-
grammable registers: PIXC_PPL, which stores the number of pixels per line,
and PIXC_LPF, which stores the number of lines per frame of the display
device.

When the pixel count reaches the top left corner (H-Start, V-Start) of
overlay data, the PIXC starts the overlay. When the pixel count reaches
the top right corner (H-End, V-Start) of overlay data, the PIXC stops the

Functional Description

28-14 ADSP-BF54x Blackfin Processor Hardware Reference

overlay. It starts again at the next line at (H-Start, V-Start+1) and stop at
(H-End, V-Start + 1), and so on until the entire overlay frame is
processed.

 Internally, the start of the overlay DMA would have been pre-
empted by the PIXC before the actual processing of the first
overlay pixel, and DMA data would have been requested until the
overlay FIFO were full. Similarly, the overlay DMA does not stop
at the end of a line. The overlay FIFO continues to be filled with
DMA data, even when the current pixel is not an overlay pixel, but
the supply of overlay pixels from the overlay FIFO is simply halted.

The PIXC decides whether or not to perform overlay mixing for the cur-
rent pixel by using the various PIXC register values. Therefore:

• The PIXC_PPL and PIXC_LPF must be programmed correctly (and
cannot be 0).

• The HSTART and HEND must be less than or equal to PIXC_PPL.

• The VSTART and VEND must be less than or equal to PIXC_LPF.

The user can define multiple rectangular regions covering several separate
overlays, using the same number of DMA descriptors, where each DMA
descriptor corresponds to an overlay region.

Multiple overlay regions are split into two cases:

• Overlay regions with no horizontal overlap.

This is a straightforward case (shown in Figure 28-8). Software can
maintain separate areas in memory for both overlay regions, with
separate H-Start, V-Start, H-End, and V-End coordinates for each

ADSP-BF54x Blackfin Processor Hardware Reference 28-15

Pixel Compositor

region. After the first overlay is completed, the DMA chain pointer
can load the next overlay parameters (index, count, and modifier)
to the DMA registers of the corresponding DMA channel.

Functional Description

28-16 ADSP-BF54x Blackfin Processor Hardware Reference

• Overlay regions with horizontal overlap

In these cases (see Figure 28-9), software has to maintain a com-
bined overlay region in memory. This includes some in-between
area where there is no overlay. This region of memory has to be
filled with the transparent color value (explained below). The
H-Start, V-Start, H-End and V-End coordinates contain the values
of the combined overlay region.

Figure 28-8. Overlay Regions With No Horizontal Overlap

MAIN IMAGE

OVERLAY

ADSP-BF54x Blackfin Processor Hardware Reference 28-17

Pixel Compositor

Transparency Control

When the overlay function is enabled, each overlay pixel is combined with
each main image pixel to generate the displayed output pixel to be dis-
played. Each pixel combination is controlled by a transparency ratio value
alpha (), a 4-bit value that determines the proportion of overlay and
main image that contribute to the output pixel. The pixel combination
algorithm can be expressed as:

• A: 8-bit pixel data in main frame buffer (“background”)

• B: 8-bit pixel data in overlay buffer (“foreground”)

• C: 8-bit combined pixel data

• : Transparency ratio code, which is a 4-bit value present in a
memory-mapped register

Figure 28-9. Overlay Regions With Horizontal Overlap

H-START

MAIN IMAGE

OVERLAY H-END

V-START

V-END

C
B 1+

16
--------------------- A 15 –

16
------------------------+=

Functional Description

28-18 ADSP-BF54x Blackfin Processor Hardware Reference

Table 1 lists the multiplying factors for various values.

 Passing the image alone can be achieved by disabling the overlay
function.

Rounding is performed at the output of the blender, which rounds the
combined pixel data to the nearest integer value.

Table 28-1. Multiplying Factors for Various Values

 Overlay
Multiplying
Factor

Image
Multiplying
Factor

0 1/16 15/16

1 2/16 14/16

2 3/16 13/16

3 4/16 12/16

4 5/16 11/16

5 6/16 10/16

6 7/16 9/16

7 8/16 8/16

8 9/16 7/16

9 10/16 6/16

10 11/16 5/16

11 12/16 4/16

12 13/16 3/16

13 14/16 2/16

14 15/16 1/16

15 1 0

ADSP-BF54x Blackfin Processor Hardware Reference 28-19

Pixel Compositor

Transparent Color

A transparent color is a specific color that is removed from one image to
reveal another “behind” it. This technique is also referred to as chroma
keying. The principal subject is photographed or filmed against a back-
ground having a single color, usually in the blue or green spectrums.
When the phase of the chroma signal corresponds to the pre-programmed
state associated with the background color(s) behind the principal subject,
the signal from the alternate background (which in this case comes from
the main image channel) is inserted in the composite signal and presented
at the output. When the phase of the chroma signal deviates from that
associated with the background color(s) behind the principal subject, the
picture data associated with the principal subject (in this case, the overlay
image) is presented at the output. Figure 28-10 illustrates this concept.

In order to display the main image in the two triangle areas ABE and
CDE in overlay block ABCD, the data in the overlay buffer correspond-
ing to the pixels in the triangle areas ABE and CDE must hold a
specific value, called the transparent color.

Figure 28-10. Transparent Color (Chroma Keying)

MAIN IMAGE

OVERLAY BLOCK
RECTANGLE

A

B C

DE

CHROMA-KEYING
AREAS

OVERLAY CONTENT
TRIANGLE

Functional Description

28-20 ADSP-BF54x Blackfin Processor Hardware Reference

The PIXC provides a 24-bit MMR (storing three 8-bit color components),
for each of the two overlay blocks, in order to designate a particular RGB
or YUV value as the transparent color. The transparent color must be in
the same format (YUV 4:2:2 or RGB888) as the overlay data, regardless of
whether or not a color space conversion is present in the overlay data path.
The PIXC then compares each input pixel value on the overlay channel
with this transparent color. If there is a match, the overlay pixel at this
location is ignored by the blender, and the main image pixel at that loca-
tion is assigned 100% weight.

 If YUV 4:2:2 is the overlay channel input data format, artifacts
may occur at the edge of the transparent color region. In this case,
it is preferable to set the UDS_MOD bit to 0 (duplicating-dropping
mode), in order to get better control of the U and V components at
the edge of the transparent color region.

Color Space Conversion

As shown in Figure 28-1 on page 28-3, depending on the input data for-
mat and display device used, there may be a color space conversion
performed on the data stream of the PIXC. If the input data is in YUV
format, a YUV-to-RGB conversion can be performed for output to an
LCD panel. If the input data is in RGB format, a RGB-to-YUV conver-
sion can be performed for output to NTSC/PAL displays. The color space
conversion may happen on any of the three paths (for example, the main
image data path, the overlay image data path, or the combined data path).
Register bits are used to specify the input, overlay and output formats.

The color space converter block has three main cases of operation:

1. Both the image and the overlay data are in the same format

2. The image and the overlay data are in different formats

3. Color space conversion only

ADSP-BF54x Blackfin Processor Hardware Reference 28-21

Pixel Compositor

These are all described in the following section, along with several special
usage cases. Note that various scenarios may be shown in the same figure
based on the output device chosen, though only a single output destina-
tion is supported at one time.

Case 1 - Image and Overlay in the Same Format

Both input data streams (main image and overlay) are in the same format,
either YUV 4:2:2 or RGB888, so a color space conversion may be per-
formed after alpha blending, depending on the output type. See
Figure 28-11 and Figure 28-12.

Figure 28-11. Both Input Data Streams in YUV 4:2:2 Format

Figure 28-12. Both Input Data Streams in RGB888 Format

TV

LCD

MEMORY

YUV

MAIN IMAGE
YUV

OVERLAY
YUV RGB

LCD

TV

MEMORY

RGB

MAIN IMAGE
RGB

OVERLAY
RGB YUV

Functional Description

28-22 ADSP-BF54x Blackfin Processor Hardware Reference

Case 2 - Image and Overlay in Different Formats

In this case, the two input data streams are not in the same format. The
PIXC has to perform a color space conversion on either the main input
stream or the overlay input stream (depending on the required output for-
mat) before alpha blending can take place. See Figure 28-13 and
Figure 28-14.

Figure 28-13. Main Image in YUV 4:2:2 and Overlay in RGB888

Figure 28-14. Main Image in RGB888 and Overlay in YUV 4:2:2

RGB YUV

LCD

TV

MEMORY

MAIN IMAGE
YUV

OVERLAY
RGB

YUV RGB

YUV RGB

TV

LCD

MEMORY
MAIN IMAGE

RGB

OVERLAY
YUV

RGB YUV

ADSP-BF54x Blackfin Processor Hardware Reference 28-23

Pixel Compositor

Case 3 - Color Space Conversion Only

In this case, there is no overlay blending. The main image is brought into
the PIXC, the color space converted, and then sent back to memory. See
Figure 28-15 and Figure 28-16.

 For this mode, the register settings are: PIXC_EN = 1, OVR_A_EN = 0
and OVR_B_EN = 0.

Figure 28-15. Main Image in RGB888 and Output in YUV 4:2:2
(No Overlay)

Figure 28-16. Main Image in YUV 4:2:2 and Output in RGB888
(No Overlay)

TV

LCD

MEMORY

MAIN IMAGE
RGB

RGB YUV

LCD

TV

MEMORY

MAIN IMAGE
YUV

YUV RGB

Functional Description

28-24 ADSP-BF54x Blackfin Processor Hardware Reference

Color Space Conversion Matrix Equations

The PIXC color space conversion block implements the following matrix
equation:

The Axx coefficients are 10-bit signed values represented in two’s comple-
ment format. A11…A33 are coefficient multipliers (for most cases, it is
sufficient to specify these as integers between –512 and 511), and A14,
A24, A34 are simply offsets added to the result for each row. B1, B2, B3
represent the input pixel component values (for example, YUV or RGB)
and C1, C2, C3 are the output pixel component values. Output pixel val-
ues are rounded to the nearest integer.

The constant K equals 1/512. For example, to set A11’s effective value to
0.299, this coefficient's MMR should be programmed to
ROUND(.299*512), or 153. If a coefficient needs to be programmed
with a value greater than 1, an extra bit exists in each coefficient's MMR
to specify if an extra multiply by 4 must be performed after multiplying
the input value by its coefficient. However, this setting can only be speci-
fied for an entire row, so if this bit is set, all the coefficients for that row
(Ax1-Ax3) should be calculated as ROUND(coeff × 512/4). In other
words, the constant K effectively becomes 1/128 for that row.

K
A11 A12 A13
A21 A22 A23
A31 A32 A33

B1
B2
B3

A14
A24
A34

+
C1
C2
C3

=

ADSP-BF54x Blackfin Processor Hardware Reference 28-25

Pixel Compositor

For reference, the matrix equations representing conversion between YUV
and RGB formats are:

 For YUV-to-RGB conversion, the PIXC expects the input data to
be arranged in the following order: VYUY, VYUY, and so on (see
Figure 28-3). As a result, if the input data is instead arranged as
UYVY, UYVY, and so on, then, the columns Ax2 and Ax3 of the
coefficient matrix are swapped.

For RGB-to-YUV conversion, the PIXC arranges the output data
by default in the following order: VYUY, VYUY, and so on. If the
output data is desired to instead be arranged as UYVY, UYVY, and
so on, then, rows A2x and A3x of the coefficient and bias matrices
are swapped.

Color Space Converter Output Thresholds

Each PIXC output sample is 8 bits wide, whether it is an R, G, B, Y, U or
V component value. Therefore, any output sample must be in the 0 to 255
range. Since all the coefficients are programmable, some of the inputs,
when operated upon by the coefficients, may produce an output outside
the 0 to 255 range. In such cases, the PIXC clips the output component’s
value to 0 or 255.

Y
U
V

0.299 0.587 0.114
0.168– 0.330– 0.498

0.498 0.417– 0.081–

R
G
B

0
128
128

+=

R
G
B

1.000 0.000 1.397
1.000 0.343– 0.711–

1.000 1.765 0.000

Y
U
V

179–

135
226–

+=

Functional Description

28-26 ADSP-BF54x Blackfin Processor Hardware Reference

YUV Conversion Modes

When the color space converter operates between two color spaces, it
requires all components of each pixel to be present in the data stream.
Therefore, the PIXC internally upsamples the YUV 4:2:2 data stream
before a YUV-to-RGB conversion and similarly downsamples the YUV
4:4:4 data stream after a RGB-to-YUV conversion. The resampling always
takes place between YUV 4:2:2 and YUV 4:4:4 formats, but a certain flex-
ibility is provided with regard to how the resampling is done by the PIXC
in each case.

Upsampling

A YUV 4:2:2-to-YUV 4:4:4 conversion can be performed either by averag-
ing or by duplicating the pixel components. The UDS_MOD bit in the
PIXC_CTL register specifies the upsampling mode. The default setting of
this bit is 0, which corresponds to duplication of the chroma components
(Us and Vs) from the odd pixels to the even pixels:

Setting the UDS_MOD bit to 1 enables the averaging of the chroma compo-
nents of the preceding and succeeding pixels to obtain the intermediate
chroma value. In other words, two consecutive odd-numbered pixels’
chroma components are averaged to obtain the intermediate even-num-
bered pixel’s chroma components:

YUV 4:2:2 input: V1Y1, U1Y2, V3Y3, U3Y4, …

YUV 4:4:4 conversion: Y1U1V1, Y2U1V1, Y3U3V3, Y4U3V3, …

YUV 4:2:2 input: V1Y1, U1Y2, V3Y3, U3Y4, …

YUV 4:4:4 conversion: Y1U1V1, Y2U2V2 [U2=(U1+U3)/2,
V2=(V1+V3)/2],Y3U3V3, Y4U4V4
[U4=(U3+U5)/2, V4=(V3+V5)/2], …

ADSP-BF54x Blackfin Processor Hardware Reference 28-27

Pixel Compositor

If the sum of the preceding and succeeding pixels’ U/V components is an
odd number, the average is rounded down (truncated to an integer value).

Since the last pixel on a line is always an even-numbered pixel, the last odd
pixel value on that line is used as the last even pixel value during
upsampling.

Downsampling

A YUV 4:4:4-to-YUV 4:2:2 conversion can be performed either by averag-
ing or by dropping the pixel components. The UDS_MOD bit also governs
the downsampling mode. Setting the UDS_MOD bit to 0 (default) enables the
dropping of the chroma components of the even numbered pixels:

Setting the UDS_MOD bit to 1 enables the averaging of the chroma compo-
nents of two consecutive pixels to obtain a single chroma value for a pixel
pair:

YUV 4:4:4 input: Y1U1V1, Y2U2V2, Y3U3V3, Y4U4V4, …

YUV 4:2:2 conversion: V1Y1, U1Y2, V3Y3, U3Y4, …

YUV 4:4:4 input: Y1U1V1, Y2U2V2, Y3U3V3, Y4U4V4, …

YUV 4:2:2 conversion: V12Y1, U12Y2, V34Y3, U34Y4, …

[U12 = (U1+U2)/2, U34=(U3+U4)/2]

[V12 = (V1+V2)/2, V34=(V3+V4)/2]

Functional Description

28-28 ADSP-BF54x Blackfin Processor Hardware Reference

PIXC Actions

Table 2 lists the PIXC actions that take place based on any possible com-
bination of image, overlay, and output data formats.

• CSC = Color Space Conversion

• US = Upsampling

• DS = Downsampling

• YUV = YUV 4:2:2 format

• RGB = RGB888 format

Table 28-2. PIXC Actions

Image
Data
format

Overlay
Data
format

Output
Data
format

PIXC Actions

YUV No overlay RGB US followed by CSC

RGB No overlay YUV CSC followed by DS

YUV YUV YUV US in both paths followed by DS before output

YUV RGB RGB US in image path, CSC in image path

YUV YUV RGB US in both paths, followed by CSC

YUV RGB YUV CSC in overlay path, US in image path, DS before output

RGB YUV YUV CSC in image path, US in overlay path, DS before output

RGB YUV RGB US in overlay path, CSC in overlay path

RGB RGB YUV CSC followed by DS

RGB RGB RGB No CSC, No US, No DS

ADSP-BF54x Blackfin Processor Hardware Reference 28-29

Pixel Compositor

Recommendations

For best results, the overlay should start on an odd-numbered pixel so that
the U and V components of the image and the overlay are aligned. Other-
wise artifacts may occur in the combined image.

When both the image and the overlay are in YUV 4:2:2 format and the
output is also in YUV 4:2:2 format, the duplicating-dropping mode
(UDS_MOD) is used to prevent a low-pass filtering effect on the images.

Special Usage Cases

There are ways by which the PIXC can be made to operate on certain data
formats that it does not support in any standard modes. For example,
YUV 4:4:4 is similar to RGB 888 with respect to the number of pixels per
32-bit DMA word. So the PIXC can be configured to work with the YUV
4:4:4 data format by intelligently programming the IMG_FORM, OVR_FORM,
and OUT_FORM bit fields and the color space conversion coefficients.

These special usage cases are shown in Figure 28-17 through
Figure 28-20.

Example 1 - Currently Defined Mode

Figure 28-17. Example 1 - Currently Defined Mode

TV

LCD

MEMORY

YUV

MAIN IMAGE
YUV 4:2:2

OVERLAY
YUV 4:2:2 RGB

RGB

YUV 4:2:2

Functional Description

28-30 ADSP-BF54x Blackfin Processor Hardware Reference

Example 1 - Special Usage of This Mode

• IMG_FORM = YUV

• OVR_FORM = YUV

• OUT_FORM = RGB

• All CSC coefficients = 1

In the special usage of this mode, YUV 4:2:2 inputs produce a blended
YUV 4:4:4 data stream. A CSC matrix with coefficients of 1 is needed.

Example 2 - Currently Defined Mode

• IMG_FORM = RGB

• OVR_FORM = RGB

• OUT_FORM = YUV

• All CSC coefficients = 1

Figure 28-18. Example 1 - Special Usage

TV

LCD

MEMORY

YUV

MAIN IMAGE
YUV 4:2:2

OVERLAY
YUV 4:2:2 RGB

YUV 4:4:4

YUV 4:2:2

ADSP-BF54x Blackfin Processor Hardware Reference 28-31

Pixel Compositor

Example 2 - Special Usage of This Mode

In the special usage of this mode, YUV 4:4:4 input produces a blended
YUV 4:2:2 or YUV 4:4:4 data stream. A CSC matrix with coefficients of 1
is needed.

Figure 28-19. Example 2 - Currently Defined Mode

Figure 28-20. Example 2 - Special Usage

LCD

TV

MEMORY

RGB

MAIN IMAGE
RGB

OVERLAY
RGB YUV

YUV 4:2:2

RGB

LCD

TV

MEMORY

RGB

MAIN IMAGE
YUV 4:4:4

OVERLAY
YUV 4:4:4 YUV

YUV 4:2:2

YUV 4:4:4

Functional Description

28-32 ADSP-BF54x Blackfin Processor Hardware Reference

Example 3 - Currently Defined Mode

Example 3 - Special Usage of This Mode

In the special usage of this mode, a YUV 4:4:4 input stream and a YUV
4:2:2 input stream can be blended to produce either a YUV 4:4:4 or a
YUV 4:2:2 output stream.

Figure 28-21. Example 3 - Currently Defined Mode

Figure 28-22. Example 3 - Special Usage

RGB YUV

LCD

TV

MEMORY

MAIN IMAGE
YUV 4:2:2

OVERLAY
RGB

YUV RGB

RGB

YUV 4:2:2

RGB YUV

LCD

TV

MEMORY

MAIN IMAGE
YUV 4:2:2

OVERLAY
YUV 4:4:4

YUV RGB

YUV 4:4:4

YUV 4:2:2

ADSP-BF54x Blackfin Processor Hardware Reference 28-33

Pixel Compositor

If the image format is YUV 4:2:2 and the overlay format is YUV 4:4:4:

• For YUV 4:2:2 output, program IMG_FORM = YUV,
OVR_FORM = RGB, and OUT_FORM = YUV. Also program all the CSC
coefficients to 1.

• For YUV 4:4:4 output, program IMG_FORM = YUV,
OVR_FORM = RGB, and OUT_FORM = RGB. Also program all the CSC
coefficients to 1.

If the image format is YUV4:4:4 and the overlay format is YUV 4:2:2,
simply interchange IMG_FORM and OVR_FORM in the above programming
cases.

Example 4 - Currently Defined Mode

Example 4 - Special Usage of This Mode

• PIXC_EN = 1

• OVR_A_EN = 0

• OVR_B_EN = 0

• IMG_FORM = RGB

Figure 28-23. Example 4 - Currently Defined Mode

TV

MEMORY

MAIN IMAGE
RGB

RGB YUV
YUV 4:2:2

Programming Model

28-34 ADSP-BF54x Blackfin Processor Hardware Reference

• OUT_FORM = YUV

• All CSC coefficients = 1

In the special usage of this mode, a simple downsampling from YUV 4:4:4
to YUV 4:2:2 is performed. Only color space conversion is enabled, using
the PIXC_EN bit. A CSC matrix with coefficients of 1 is needed.

Programming Model
The following sections describe the PIXC programming model.

The output destination of the PIXC can be either an L3 frame buffer or an
L2/L1 line buffer. As a recommendation for saving DMA bandwidth:

• If the size of the overlay content is relatively big, it is more efficient
to send, through the DMA, the output of the PIXC to an L2/L1
line buffer, and then send the data from that line buffer directly
through the EPPI to the display device.

• If the size of the overlay content is relatively small, it is more effi-
cient to send, through the DMA, the output of the PIXC back to
the L3 frame buffer, and then send the data from that frame buffer
through the EPPI to the display device.

Figure 28-24. Example 4 - Special Usage

TV

MEMORY

MAIN IMAGE
YUV 4:4:4

RGB YUV
YUV 4:2:2

ADSP-BF54x Blackfin Processor Hardware Reference 28-35

Pixel Compositor

PIXC Registers
The PIXC has memory-mapped registers (MMRs) that regulate its opera-
tion. These registers are listed in Table 28-3. Descriptions and bit
diagrams for each of these MMRs are provided in the following sections.

Table 28-3. List of PIXC Memory-Mapped Registers

Register Name Widt
h

Address Description

PIXC_CTL 16 0xFFC0 4400 “PIXC Control (PIXC_CTL) Register” on page 28-37

PIXC_PPL 16 0xFFC0 4404 “PIXC Pixels Per Line (PIXC_PPL) Register” on
page 28-38

PIXC_LPF 16 0xFFC0 4408 “PIXC Lines Per Frame (PIXC_LPF) Register” on
page 28-38

PIXC_AHSTART 16 0xFFC0
440C

Horizontal start pixel information of the overlay data
(set A).“PIXC Horizontal Start (PIXC_xHSTART)
Registers” on page 28-39

PIXC_AHEND 16 0xFFC0 4410 Horizontal end pixel information of the overlay data
(set A).“PIXC Horizontal End (PIXC_xHEND) Reg-
isters” on page 28-39

PIXC_AVSTART 16 0xFFC0 4414 Vertical start pixel information of the overlay data (set
A).“PIXC Vertical Start (PIXC_xVSTART) Registers”
on page 28-40

PIXC_AVEND 16 0xFFC0 4418 Vertical end pixel information of the overlay data (set
A).“PIXC Horizontal End (PIXC_xHEND) Registers”
on page 28-39

PIXC_ATRANSP 16 0xFFC0
441C

Transparency ratio (set A).“PIXC Transparency Value
(PIXC_xTRANSP) Registers” on page 28-41

PIXC_BHSTART 16 0xFFC0 4420 Horizontal start pixel information of the overlay data
(set B).“PIXC Horizontal Start (PIXC_xHSTART)
Registers” on page 28-39

PIXC_BHEND 16 0xFFC0 4424 Horizontal end pixel information of the overlay data
(set B).“PIXC Horizontal End (PIXC_xHEND) Reg-
isters” on page 28-39

PIXC Registers

28-36 ADSP-BF54x Blackfin Processor Hardware Reference

All PIXC registers have a default value of zero, except the transparency
ratio registers which have a default value of 0xF.

 The programmer should avoid writing to any of the MMRs when
the module is enabled. Writing to the MMRs during the module
enabled state can lead to unpredictable behavior of the PIXC. All
MMRs can be read when the PIXC is in the enabled state, and this
does not cause any change of status in the PIXC, but register writes
should happen only when the PIXC is disabled, or stalled by an
interrupt condition.

PIXC_BVSTART 16 0xFFC0 4428 Vertical start pixel information of the overlay data (set
B).“PIXC Vertical Start (PIXC_xVSTART) Registers”
on page 28-40

PIXC_BVEND 16 0xFFC0
442C

Vertical end pixel information of the overlay data (set
B).“PIXC Vertical End (PIXC_xVEND) Registers” on
page 28-40

PIXC_BTRANSP 16 0xFFC0 4430 Transparency ratio (set B).“PIXC Transparency Value
(PIXC_xTRANSP) Registers” on page 28-41

PIXC_INTRSTAT 16 0xFFC0
443C

“PIXC Interrupt Status (PIXC_INTRSTAT) Register”
on page 28-41

PIXC_RYCON 32 0xFFC0 4440 R/Y conversion coefficients.“PIXC R/Y Conversion
Coefficient (PIXC_RYCON) Register” on page 28-42

PIXC_GUCON 32 0xFFC0 4444 G/U conversion coefficients.“PIXC G/U Conversion
Coefficient (PIXC_GUCON) Register” on page 28-43

PIXC_BVCON 32 0xFFC0 4448 B/V conversion coefficients.“PIXC B/V Conversion
Coefficient (PIXC_BVCON) Register” on page 28-44

PIXC_CCBIAS 32 0xFFC0
444C

“PIXC Color Conversion Bias (PIXC_CCBIAS) Reg-
ister” on page 28-45

PIXC_TC 32 0xFFC0 4450 “PIXC Transparency Color Value (PIXC_TC) Regis-
ter” on page 28-46

Table 28-3. List of PIXC Memory-Mapped Registers (Cont’d)

Register Name Widt
h

Address Description

ADSP-BF54x Blackfin Processor Hardware Reference 28-37

Pixel Compositor

The following sections provide bit descriptions of the PIXC registers.

PIXC Control (PIXC_CTL) Register
The PIXC_CTL register (Figure 28-25) provides overlay enable, resampling
mode selection, input/output data format selection, transparent color
enable, watermark level selection, and image/overlay FIFO status.

 Watermarking is described in the C/C++ Compiler and Library
Manual for BLACKfin DSPs.

Figure 28-25. PIXC Control Register

PIXC Control Register (PIXC_CTL)

Reset = 0x0000

Read/Write

0xFFC0 4400

PIXC_EN (Pixel Comp Enable)

0 - Disable PIXC operation
1 - Enable PIXC operation

OVR_A_EN (Overlay A Enable)

0 - Disable
1 - Enable

IMG_FORM (Image Data Format)

0 - YUV
1 - RGB

OVR_B_EN (Overlay B Enable)

0 - Disable
1 - Enable

OVR_FORM (Overlay Data Format)

0 - YUV
1 - RGB

OUT_FORM (Output Data Format)

0 - YUV
1 - RGB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

WM_LVL
(Watermark Level—Both FIFOs)

00 - one location empty
01 - 25% empty
10 - 50% empty
11 - 75% empty

IMG_STAT (Image FIFO Status)

10 - Empty
01 - Full

OVR_STAT (Overlay FIFO Status)

10 - Empty
01 - Full

TC_EN (Transparent Color Enable)

0 - Disable transparent color
1 - Enable transparent color

UDS_MOD (Resampling Mode)

0 - Duplicating for upsampling and
dropping for downsampling

1 - Averaging for both upsampling
and downsampling

PIXC Registers

28-38 ADSP-BF54x Blackfin Processor Hardware Reference

PIXC Pixels Per Line (PIXC_PPL) Register
The PIXC_PPL register (Figure 28-26) provides the number of pixels per
line of the display.

PIXC Lines Per Frame (PIXC_LPF) Register
The PIXC_LPF register (Figure 28-26) provides the number of lines per
frame of the display.

Figure 28-26. PIXC Pixels Per Line Register

Figure 28-27. PIXC Lines Per Frame Register

PIXC Pixels Per Line Register (PIXC_PPL)

Reset = 0x0000

Read/Write

0xFFC0 4404

PPL (Pixel Per Line)

0xFFFF-0x0001

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIXC Lines Per Frame Register (PIXC_LPF)

Reset = 0x0000

Read/Write

0xFFC0 4408

LPF (Lines Per Frame)

0xFFFF-0x0001

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 28-39

Pixel Compositor

PIXC Horizontal Start (PIXC_xHSTART) Registers
The PIXC_AHSTART and PIXC_BHSTART registers (Figure 28-28) provide the
horizontal start pixel coordinates of the overlay data.

PIXC Horizontal End (PIXC_xHEND) Registers
The PIXC_AHEND and PIXC_BHEND registers (Figure 28-29) provide the hor-
izontal end pixel coordinates of the overlay data.

Figure 28-28. PIXC Horizontal Start Registers

Figure 28-29. PIXC Horizontal End Registers

PIXC Overlay x Horizontal Start Registers (PIXC_xHSTART)

Reset = 0x0000

Read/Write

0xFFC0 440C

0xFFC0 4420

A/B_HSTART
(Horizontal Start Coordinates)
0xFFF-0x000 values

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIXC Overlay x Horizontal End Registers (PIXC_xHEND)

Reset = 0x0000

Read/Write

0xFFC0 4410

0xFFC0 4424

A/B_HEND
(Horizontal End Coordinates)
0xFFF-0x000 values

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIXC Registers

28-40 ADSP-BF54x Blackfin Processor Hardware Reference

PIXC Vertical Start (PIXC_xVSTART) Registers
The PIXC_AVSTART and PIXC_BVSTART registers (Figure 28-30) provide the
vertical start pixel coordinates of the overlay data.

PIXC Vertical End (PIXC_xVEND) Registers
The PIXC_AVEND and PIXC_BVEND registers (Figure 28-31) provide the ver-
tical end pixel coordinates of the overlay data.

Figure 28-30. PIXC Vertical Start Registers

Figure 28-31. PIXC Vertical End Registers

PIXC Overlay x Vertical Start Registers (PIXC_xVSTART)

Reset = 0x0000

Read/Write

0xFFC0 4414

0xFFC0 4428

A/B_VSTART
(Vertical Start Coordinates)
0x3FF-0x000 values

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIXC Overlay x Vertical End Registers (PIXC_xVEND)

Reset = 0x0000

Read/Write

0xFFC0 4418

0xFFC0 442C

A/B_VEND
(Vertical End Coordinates)
0x3FF-0x000 values

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 28-41

Pixel Compositor

PIXC Transparency Value (PIXC_xTRANSP)
Registers

The PIXC_ATRANSP and PIXC_BTRANSP registers (Figure 28-32) provide the
overlay transparency ratio values.

PIXC Interrupt Status (PIXC_INTRSTAT) Register
The PIXC_INTRSTAT register (Figure 28-33) provides overlay interrupt
configuration and status information.

Figure 28-32. PIXC Transparency Value Registers

Figure 28-33. PIXC Interrupt Status Register

PIXC Overlay x Transparency Value Registers (PIXC_xTRANSP)

Reset = 0x0000

Read/Write

0xFFC0 441C

0xFFC0 4430

A/B_TRANSP
(Overlay Transparency Value)
0xF-0x0 values

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIXC Interrupt Status Register (PIXC_INTRSTAT)

Reset = 0x0000

Read/Write/W1C

0xFFC0443C

OVR_INT_EN (Overlay IRQ Enable)

0 - Disable interrupt
1 - Enable interrupt at the end

of the last valid overlay

FRM_INT_EN (Frame IRQ Enable)

0 - Disable
1 - Enable interrupt at the end

of the frame

OVR_INT_STAT (Overlay IRQ Status)

Overlay interrupt status. Write 1-to clear
interrupt.

FRM_INT_STAT (Frame IRQ Status)

Frame interrupt status. Write 1-to- clear
interrupt.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIXC Registers

28-42 ADSP-BF54x Blackfin Processor Hardware Reference

PIXC R/Y Conversion Coefficient (PIXC_RYCON)
Register

The PIXC_RYCON register (Figure 28-34) provides the R/Y conversion coef-
ficients in the color space conversion matrix.

Figure 28-34. PIXC R/Y Conversion Coefficient Register

PIXC R/Y Conversion Coefficient Register (PIXC_RYCON)

Reset = 0x0000

Read/Write

0xFFC0 4440

A11 (A11 element in
the coefficient matrix)

0x3FF-0x000 values

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

(Bits 19–10)
A12 (A12 element in
the coefficient matrix)

0x3FF-0x000 values

A13 (A13 element in
the coefficient matrix)

0x3FF-0x000 values

RY_MULT4
(Multiply the Row by 4)

0 – Disable
1 – Enable

ADSP-BF54x Blackfin Processor Hardware Reference 28-43

Pixel Compositor

PIXC G/U Conversion Coefficient (PIXC_GUCON)
Register

The PIXC_GUCON register (Figure 28-35) provides the G/U conversion
coefficients in the color space conversion matrix.

Figure 28-35. PIXC G/U Conversion Coefficient Register

PIXC G/U Conversion Coefficient Register (PIXC_GUCON)

Reset = 0x0000

Read/Write

0xFFC0 4444

A21 (A21 element in
the coefficient matrix)

0x3FF-0x000 values

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

A22 (A22 element in
the coefficient matrix)

0x3FF-0x000 values

A23 (A23 element in
the coefficient matrix)

0x3FF-0x000 values

GU_MULT4
(Multiply The Row By 4)

0 – Disable
1 – Enable

PIXC Registers

28-44 ADSP-BF54x Blackfin Processor Hardware Reference

PIXC B/V Conversion Coefficient (PIXC_BVCON)
Register

The PIXC_BVCON register (Figure 28-36) provides the B/V conversion coef-
ficients in the color space conversion matrix.

Figure 28-36. PIXC B/V Conversion Coefficient Register

PIXC B/V Conversion Coefficient Register (PIXC_BVCON)

Reset = 0x0000

Read/Write

0xFFC0 4448

A31 (A31 element in
the coefficient matrix)

0x3FF-0x000 values

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

A32 (A32 element in
the coefficient matrix)

0x3FF-0x000 values

A33 (A33 element in
the coefficient matrix)

0x3FF-0x000 values

BV_MULT4
(Multiply the Row by 4)

0 – Disable
1 – Enable

ADSP-BF54x Blackfin Processor Hardware Reference 28-45

Pixel Compositor

PIXC Color Conversion Bias (PIXC_CCBIAS)
Register

The PIXC_CCBIAS register (Figure 28-37) provides the bias values in the
color space conversion matrix.

Figure 28-37. PIXC Color Conversion Bias Register

PIXC Color Conversion Bias Register (PIXC_CCBIAS)

Reset = 0x0000

Read/Write

0xFFC0 444C

A14
(A14 in bias vector)

0x3FF-0x000 values

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

A24
(A24 in bias vector)

0x3FF-0x000 values

A34
(A34 in bias vector)

0x3FF-0x000 values

PIXC Registers

28-46 ADSP-BF54x Blackfin Processor Hardware Reference

PIXC Transparency Color Value (PIXC_TC)
Register

The PIXC_TC register (Figure 28-38) provides the transparent color value.

Figure 28-38. PIXC Transparency Color Value Register

PIXC Transparency Color Value Register (PIXC_TC)

Reset = 0x0000

Read/Write

0xFFC0 4450

RY_TRANS
(Trans. color – R/Y component)

0xFF-0x00 values

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

BV_TRANS
(Trans. color – B/V component)

0xFF-0x00 values

GU_TRANS
(Trans. color – G/U component)

0xFF-0x00 values

ADSP-BF54x Blackfin Processor Hardware Reference 29-1

29 MEDIA TRANSCEIVER
MODULE (MXVR)

Among the ADSP-BF54x processor Blackfin processors, the MXVR is
only available on the ADSP-BF549 processor.

This chapter includes the following sections:

• “Overview” on page 29-1

• “Interface Signals” on page 29-2

• “MXVR Memory Map” on page 29-4

• “MXVR Registers” on page 29-4

• “General Operation” on page 29-108

Overview
The media transceiver module (MXVR) serves as the network interface to

a Media-Oriented System Transport (MOST®) ring network for the
ADSP-BF54x processor Blackfin processor. The MXVR can be directly
connected to an optical PHY. The optical PHY, the MXVR module and
the MXVR device driver (Network Services Layer 1) together implement

the MOST® NetInterface.

The MXVR is capable of transmitting and receiving synchronous data

streams, asynchronous packet data, and control messages on the MOST®

bus. The MXVR is fully compatible with industry standard MOST® net-
work transceiver devices. The MXVR can simultaneously transmit and

Interface Signals

29-2 ADSP-BF54x Blackfin Processor Hardware Reference

receive the full bandwidth of the bus (24M bps). The MXVR offers fast
lock times, greater jitter immunity, and a sophisticated DMA scheme for
data transfers.

The DMA capabilities of the MXVR make transmission and reception of
data (synchronous data, asynchronous packets, and control messages) easy.
All data to be transmitted and all data received is stored in L1 memory.
This gives the ADSP-BF54x processor core fast and easy access to the data.
Data is transferred from L1 memory to the MXVR for transmission on the

MOST® bus and data received from the MOST® bus by the MXVR is
DMA’ed into L1 memory.

The MXVR has 14 dedicated DMA channels that work autonomously
from the ADSP-BF54x processor processor core. Synchronous data can be
transferred to and from synchronous channels through eight synchronous
data DMA channels. Two more DMA channels support the transmission
and reception of asynchronous packet data and another two DMA chan-
nels support the transmission and reception of control messages. Also, two
additional DMA channels support Remote Read and Remote Write con-
trol messages.

The MXVR can act as the network master or as a network slave in a

MOST® network containing other ADSP-BF54x processor nodes or other

MOST® transceivers.

Interface Signals
Table 29-1 lists the MXVR signal pins. All output pins are 3.3V compli-
ant with the exception of MTXON which can also be configured as an open
drain output and can be pulled up to 5V. The MRX and MRXON input pins
are 5V tolerant. All signal pins except for the dedicated crystal oscillator
pins MXI and MXO, the MFS output pin, and the analog MLF_P and MLF_M pin
are multiplexed with GPIO and other peripheral functions. The selection

ADSP-BF54x Blackfin Processor Hardware Reference 29-3

Media Transceiver Module (MXVR)

of whether the pin has the MXVR functionality or has GPIO or other
peripheral functionality is set within the ADSP-BF54x processor GPIO
module. For more information see Chapter 9, “General-Purpose Ports”.

Table 29-2 lists the special power and ground pins needed for the MXVR.
These supply pins are routed out to signal pins on the package for noise
isolation.

Table 29-1. MXVR Signal Pins

Pin Name MXVR Signal Name MXVR Signal Function MXVR Signal Direction

MXI MXI MXVR Crystal Input Input

MXO MXO MXVR Crystal Output Output

PH6 MRX MXVR Receive Data Input (5V tolerant)

PH5 MTX MXVR Transmit Data Output

PC1 MMCLK MXVR Master Clock Output

PC5 MBCLK MXVR Bit Clock Output

MFS MFS MXVR Frame Sync Output

PG11 MTXON MXVR Transmit PHY On Output (5V tolerant)

PH7 MRXON MXVR Receive PHY On Input (5V tolerant)

MLF_P MLF_P MXVR Loop Filter Plus Analog

MLF_M MLF_M MXVR Loop Filter Minus Analog

MXVR Memory Map

29-4 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Memory Map
Table A-18 on page A-24 shows the memory map for the MXVR. All
MXVR MMRs appear on the PAB bus. All MMR addresses are aligned to
32-bit address boundaries. An incorrectly sized or misaligned read to an
MMR generates a bus error exception and the data returned will be
unknown. An incorrectly sized or misaligned write to an MMR generates a
hardware error interrupt and the write does not modify the MMR.

MXVR Registers
Table 29-3 lists the MXVR registers.

Table 29-2. MXVR Supply Pins

Signal Name Function Supply

VDDMC MXVR Crystal Power Supply 3.3 V

GNDMC MXVR Crystal Ground Ground

VDDMX MXVR I/O Power Supply 3.3 V

GNDMX MXVR I/O Ground Ground

VDDMP MXVR PLL Power Supply 1.2 V

GNDMP MXVR PLL Ground Ground

Table 29-3. MXVR Registers

Register
Address

Register Name Register Description Size
(Bits)

Reset Value

0xFFC0 2700 MXVR_CONFIG “MXVR Configuration
(MXVR_CONFIG)
Register” on page 29-13

16 R/W 0x1FCA

0xFFC0 2704 Reserved – – –

ADSP-BF54x Blackfin Processor Hardware Reference 29-5

Media Transceiver Module (MXVR)

0xFFC0 2708
0xFFC0 270C

MXVR_STATE_0
MXVR_STATE_1

“MXVR State
(MXVR_STATE_0,
MXVR_STATE_1)
Registers” on
page 29-19

32 RO 0x0000 0000

0xFFC0 2710
0xFFC0 2714

MXVR_INT_STAT_0
MXVR_INT_STAT_1

“MXVR Interrupt Sta-
tus Register 0
(MXVR_INT_STAT_0
)” on page 29-29

32 R/W 0x0000 0000

0xFFC0 2718
0xFFC0 271C

MXVR_INT_EN_0
MXVR_INT_EN_1

“MXVR Interrupt
Enable 0
(MXVR_INT_EN_0)
Register” on page 29-43

32 R/W 0x0000 0000

0xFFC0 2720 MXVR_POSITION “MXVR Node Position
(MXVR_POSITION)
Register” on page 29-48

16 RO 0x8000

0xFFC0 2724 MXVR_MAX_POSITION “MXVR Maximum
Node Position
(MXVR_MAX_POSIT
ION) Register” on
page 29-49

16 RO 0x0000

0xFFC0 2728 MXVR_DELAY “MXVR Node Frame
Delay
(MXVR_DELAY) Reg-
ister” on page 29-50

16 RO 0x8000

0xFFC0 272C MXVR_MAX_DELAY “MXVR Maximum
Node Frame Delay
(MXVR_MAX_DELA
Y) Register” on
page 29-52

16 RO 0x0000

0xFFC0 2730 MXVR_LADDR “MXVR Logical
Address
(MXVR_LADDR) Reg-
ister” on page 29-53

32 R/W 0x0000 FFFF

Table 29-3. MXVR Registers (Cont’d)

Register
Address

Register Name Register Description Size
(Bits)

Reset Value

MXVR Registers

29-6 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 2734 MXVR_GADDR “MXVR Group Address
(MXVR_GADDR)
Register” on page 29-54

16 R/W 0x0000

0xFFC0 2738 MXVR_AADDR “MXVR Alternate
Address
(MXVR_AADDR)
Register” on page 29-55

32 R/W 0x0000 0FFF

0xFFC0 273C
0xFFC0 2740
0xFFC0 2744
0xFFC0 2748
0xFFC0 274C
0xFFC0 2750
0xFFC0 2754
0xFFC0 2758
0xFFC0 275C
0xFFC0 2760
0xFFC0 2764
0xFFC0 2768
0xFFC0 276C
0xFFC0 2770
0xFFC0 2774

MXVR_ALLOC_0
MXVR_ALLOC_1
MXVR_ALLOC_2
MXVR_ALLOC_3
MXVR_ALLOC_4
MXVR_ALLOC_5
MXVR_ALLOC_6
MXVR_ALLOC_7
MXVR_ALLOC_8
MXVR_ALLOC_9
MXVR_ALLOC_10
MXVR_ALLOC_11
MXVR_ALLOC_12
MXVR_ALLOC_13
MXVR_ALLOC_14

“MXVR Allocation
Table
(MXVR_ALLOC_0 –
MXVR_ALLOC_14)
Registers” on
page 29-55

32 RO 0xXXXX XXXX

0xFFC0 2778
0xFFC0 277C
0xFFC0 2780
0xFFC0 2784
0xFFC0 2788
0xFFC0 278C
0xFFC0 2790
0xFFC0 2794

MXVR_SYNC_LCHAN_0
MXVR_SYNC_LCHAN_1
MXVR_SYNC_LCHAN_2
MXVR_SYNC_LCHAN_3
MXVR_SYNC_LCHAN_4
MXVR_SYNC_LCHAN_5
MXVR_SYNC_LCHAN_6
MXVR_SYNC_LCHAN_7

 “MXVR Synchronous
Logical Channel
Assignment
(MXVR_SYNC_LCHA
N_0 –
MXVR_SYNC_LCHA
N_7) Registers” on
page 29-57

32 R/W 0xFFFF FFFF

Table 29-3. MXVR Registers (Cont’d)

Register
Address

Register Name Register Description Size
(Bits)

Reset Value

ADSP-BF54x Blackfin Processor Hardware Reference 29-7

Media Transceiver Module (MXVR)

0xFFC0 2798
0xFFC0 27AC
0xFFC0 27C0
0xFFC0 27D4
0xFFC0 27E8
0xFFC0 27FC
0xFFC0 2810
0xFFC0 2824

MXVR_DMA0_CONFIG
MXVR_DMA1_CONFIG
MXVR_DMA2_CONFIG
MXVR_DMA3_CONFIG
MXVR_DMA4_CONFIG
MXVR_DMA5_CONFIG
MXVR_DMA6_CONFIG
MXVR_DMA7_CONFIG

“MXVR DMAx Con-
figuration
(MXVR_DMA0_CON
FIG –
MXVR_DMA7_CON
FIG) Registers” on
page 29-59

32 R/W 0x0000 0000

0xFFC0 279C
0xFFC0 27B0
0xFFC0 27C4
0xFFC0 27D8
0xFFC0 27EC
0xFFC0 2800
0xFFC0 2814
0xFFC0 2828

MXVR_DMA0_START_ADDR
MXVR_DMA1_START_ADDR
MXVR_DMA2_START_ADDR
MXVR_DMA3_START_ADDR
MXVR_DMA4_START_ADDR
MXVR_DMA5_START_ADDR
MXVR_DMA6_START_ADDR
MXVR_DMA7_START_ADDR

“MXVR DMA Channel
x Start Address
(MXVR_DMA0_STAR
T_ADDR –
MXVR_DMA7_STAR
T_ADDR) Registers”
on page 29-69

32 R/W 0xFF00 0000

0xFFC0 27A0
0xFFC0 27B4
0xFFC0 27C8
0xFFC0 27DC
0xFFC0 27F0
0xFFC0 2804
0xFFC0 2718
0xFFC0 272C

MXVR_DMA0_COUNT
MXVR_DMA1_COUNT
MXVR_DMA2_COUNT
MXVR_DMA3_COUNT
MXVR_DMA4_COUNT
MXVR_DMA5_COUNT
MXVR_DMA6_COUNT
MXVR_DMA7_COUNT

“MXVR DMA Channel
x Transfer Count
(MXVR_DMA0_COU
NT –
MXVR_DMA7_COU
NT) Registers” on
page 29-72

16 R/W 0x0001

0xFFC0 27A4
0xFFC0 27B8
0xFFC0 27CC
0xFFC0 27E0
0xFFC0 27F4
0xFFC0 2808
0xFFC0 281C
0xFFC0 2830

MXVR_DMA0_CURR_ADDR
MXVR_DMA1_CURR_ADDR
MXVR_DMA2_CURR_ADDR
MXVR_DMA3_CURR_ADDR
MXVR_DMA4_CURR_ADDR
MXVR_DMA5_CURR_ADDR
MXVR_DMA6_CURR_ADDR
MXVR_DMA7_CURR_ADDR

 “MXVR DMA Chan-
nel x Current Address
(MXVR_DMA0_CUR
R_ADDR –
MXVR_DMA7_CURR
_ADDR) Registers” on
page 29-71

32 RO 0xFF00 0000

Table 29-3. MXVR Registers (Cont’d)

Register
Address

Register Name Register Description Size
(Bits)

Reset Value

MXVR Registers

29-8 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 27A8
0xFFC0 27BC
0xFFC0 27D0
0xFFC0 27E4
0xFFC0 27F8
0xFFC0 280C
0xFFC0 2820
0xFFC0 2834

MXVR_DMA0_CURR_COUNT
MXVR_DMA1_CURR_COUNT
MXVR_DMA2_CURR_COUNT
MXVR_DMA3_CURR_COUNT
MXVR_DMA4_CURR_COUNT
MXVR_DMA5_CURR_COUNT
MXVR_DMA6_CURR_COUNT
MXVR_DMA7_CURR_COUNT

“MXVR DMA Channel
x Current Transfer
Count
(MXVR_DMA0_CUR
R_COUNT –
MXVR_DMA7_CURR
_COUNT) Registers”
on page 29-74

16 RO 0x0000

0xFFC0 2838 MXVR_AP_CTL “MXVR Asynchronous
Packet Control
(MXVR_AP_CTL)
Register” on page 29-75

16 R/W 0x0000

0xFFC0 283C MXVR_APRB_START_ADDR “MXVR Asynchronous
Packet Receive Buffer
Start Address
(MXVR_APRB_STAR
T_ADDR) Register” on
page 29-77

32 R/W 0xFF00 0000

0xFFC0 2840 MXVR_APRB_CURR_ADDR “MXVR Asynchronous
Packet Receive Buffer
Current Address
(MXVR_APRB_CURR
_ADDR) Register” on
page 29-78

32 RO 0xFF00 0000

0xFFC0 2844 MXVR_APTB_START_ADDR “MXVR Asynchronous
Packet Transmit Buffer
Start Address
(MXVR_APTB_STAR
T_ADDR) Register” on
page 29-79

32 R/W 0xFF00 0000

0xFFC0 2848 MXVR_APTB_CURR_ADDR “MXVR Asynchronous
Packet Transmit Buffer
Current Address
(MXVR_APTB_CURR
_ADDR) Register” on
page 29-79

32 RO 0xFF00 0000

Table 29-3. MXVR Registers (Cont’d)

Register
Address

Register Name Register Description Size
(Bits)

Reset Value

ADSP-BF54x Blackfin Processor Hardware Reference 29-9

Media Transceiver Module (MXVR)

0xFFC0 284C MXVR_CM_CTL “MXVR Control Mes-
sage Control
(MXVR_CM_CTL)
Register” on page 29-80

32 R/W 0x0000 0000

0xFFC0 2850 MXVR_CMRB_START_ADDR “MXVR Control Mes-
sage Receive Buffer
Start Address
(MXVR_CMRB_STA
RT_ADDR) Register”
on page 29-82

32 R/W 0xFF00 0000

0xFFC0 2854 MXVR_CMRB_CURR_ADDR “MXVR Control Mes-
sage Receive Buffer
Current Address
(MXVR_CMRB_CUR
R_ADDR) Register” on
page 29-83

32 RO 0xFF00 0000

0xFFC0 2858 MXVR_CMTB_START_ADDR “MXVR Control Mes-
sage Transmit Buffer
Start Address
(MXVR_CMTB_STA
RT_ADDR) Register”
on page 29-84

32 R/W 0xFF00 0000

0xFFC0 285C MXVR_CMTB_CURR_ADDR “MXVR Control Mes-
sage Transmit Buffer
Current Address
(MXVR_CMTB_CUR
R_ADDR) Register” on
page 29-85

32 RO 0xFF00 0000

0xFFC0 2860 MXVR_RRDB_START_ADDR “MXVR Remote Read
Buffer Start Address
(MXVR_RRDB_STAR
T_ADDR) Register” on
page 29-86

32 R/W 0xFF00 0000

Table 29-3. MXVR Registers (Cont’d)

Register
Address

Register Name Register Description Size
(Bits)

Reset Value

MXVR Registers

29-10 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 2864 MXVR_RRDB_CURR_ADDR “MXVR Remote Read
Buffer Current Address
(MXVR_RRDB_CUR
R_ADDR) Register” on
page 29-86

32 RO 0xFF00 0000

0xFFC0 2868
0xFFC0 2870

MXVR_PAT_DATA_0
MXVR_PAT_DATA_1

“MXVR Pattern Data
(MXVR_PAT_DATA_
0,
MXVR_PAT_DATA_1
) Registers” on
page 29-87

32 R/W 0x0000 0000

0xFFC0 286C
0xFFC0 2874

MXVR_PAT_EN_0
MXVR_PAT_EN_1

“MXVR Pattern Enable
(MXVR_PAT_EN_0,
MXVR_PAT_EN_1)
Registers” on
page 29-88

32 R/W 0x0000 0000

0xFFC0 2878
0xFFC0 287C

MXVR_FRAME_CNT_0
MXVR_FRAME_CNT_1

“MXVR Frame Coun-
ter
(MXVR_FRAME_CN
T_0,
MXVR_FRAME_CNT
_1) Registers” on
page 29-90

16 R/W 0x0000

Table 29-3. MXVR Registers (Cont’d)

Register
Address

Register Name Register Description Size
(Bits)

Reset Value

ADSP-BF54x Blackfin Processor Hardware Reference 29-11

Media Transceiver Module (MXVR)

0xFFC0 2880
0xFFC0 2884
0xFFC0 2888
0xFFC0 288C
0xFFC0 2890
0xFFC0 2894
0xFFC0 2898
0xFFC0 289C
0xFFC0 28C0
0xFFC0 28A4
0xFFC0 28A8
0xFFC0 28AC
0xFFC0 28B0
0xFFC0 28B4
0xFFC0 28B8

MXVR_ROUTING_0
MXVR_ROUTING_1
MXVR_ROUTING_2
MXVR_ROUTING_3
MXVR_ROUTING_4
MXVR_ROUTING_5
MXVR_ROUTING_6
MXVR_ROUTING_7
MXVR_ROUTING_8
MXVR_ROUTING_9
MXVR_ROUTING_10
MXVR_ROUTING_11
MXVR_ROUTING_12
MXVR_ROUTING_13
MXVR_ROUTING_14

“MXVR Routing
(MXVR_ROUTING_0
–
MXVR_ROUTING_1
4) Registers” on
page 29-91

32 WO 0xXXXX XXXX

0xFFC0 28BC Reserved – – –

0xFFC0 28C0 MXVR_BLOCK_CNT “MXVR Block Coun-
ter
(MXVR_BLOCK_CN
T) Register” on
page 29-94

16 R/W 0x0000

0xFFC0 28C4
 to
0xFFC0 28CC

Reserved – – –

0xFFC0 28D0 MXVR_CLK_CTL “MXVR Clock Control
(MXVR_CLK_CTL)
Register” on page 29-95

32 R/W 0x0202 0003

0xFFC0 28D4 MXVR_CDRPLL_CTL “MXVR Clock/Data
Recovery PLL Control
(MXVR_CDRPLL_CT
L) Register” on
page 29-101

32 R/W 0x0502 0820

Table 29-3. MXVR Registers (Cont’d)

Register
Address

Register Name Register Description Size
(Bits)

Reset Value

MXVR Registers

29-12 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 28D8 MXVR_FMPLL_CTL “MXVR Frequency
Multiply PLL Control
(MXVR_FMPLL_CTL
) Register” on
page 29-104

32 R/W 0x1900 1020

0xFFC0 28DC MXVR_PIN_CTL “MXVR Pin Control
(MXVR_PIN_CTL)
Register” on
page 29-106

16 R/W 0x0000

0xFFC0 28E0 MXVR_SCLK_CNT “MXVR System Clock
Counter
(MXVR_SCLK_CNT)
Register” on
page 29-107

16 R/W 0x0000

0xFFC0 28E4
 to
0xFFC0 28FF

Reserved – – –

Table 29-3. MXVR Registers (Cont’d)

Register
Address

Register Name Register Description Size
(Bits)

Reset Value

ADSP-BF54x Blackfin Processor Hardware Reference 29-13

Media Transceiver Module (MXVR)

MXVR Configuration (MXVR_CONFIG) Register
The MXVR_CONFIG register sets the configuration of the MXVR node.

The MXVR enable (MXVREN) bit enables or disables the MXVR. When the
MXVREN bit is set to 0, the MXVR is disabled and is effectively held in a
reset state. Disabling the MXVR resets all the MXVR state machines,
resets all status bits, and causes the MXVR to enter all bypass-MXVR dis-
abled mode. When the MXVR is in all bypass - MXVR disabled mode the
MRX input pin is directly connected to MTX output pin and the MXVR can-
not receive or transmit data. When the MXVREN bit is set to 1, the MXVR is
enabled and operates based on how the node is configured in the MXVR
MMR registers. Note that the MXVR should never be enabled without

Figure 29-1. MXVR Configuration Register

APRXEN

LMECH

WAKEUP

0 - Lock Mechanism 0
1 - Lock Mechanism 1

0 - No Effect
1 - Trigger Wakeup Preamble
Always reads as 0

0 - AP Receive Disabled
1 - AP Receive Enabled

MSB

0000 to 0101 - Reserved
0110 - 6 Quadlets Sync Data
0111 - 7 Quadlets Sync Data
...
1111 - 15 Quadlets Sync Data

Reset = 0x1FCA

MXVREN
0 - MXVR disabled
1 - MXVR enabled

0 - Slave Mode
1 - Master Mode

ACTIVE
0 - All Bypass Mode
1 - Active Mode

0 - No Synchronous Delay
1 - 2 Frame Synchronous Delay

NCMRXEN
0 - Normal CM RX Disabled
1 - Normal CM RX Enabled

0 - Remote Write RX Disabled
1 - Remote Write RX Enabled

MTXEN
0 - TX Output Disabled
1 - TX Output Enabled

MTXONB
0 - MTXON Output Low
1 - MTXON Output High

EPARITY
0 - Odd Parity
1 - Even Parity

SDELAY

RWRRXEN

MMSM

MXVR Configuration Register (MXVR_CONFIG)

0 0 0 0 0 0 01 1 1 1 1 1 1 1 1

123456789101112131415 0

0xFFC0 2700

MXVR Registers

29-14 ADSP-BF54x Blackfin Processor Hardware Reference

the MXVR PLLs enabled and at frequency. Also note that all synchronous
data DMA channels should be disabled (by setting MDMAENx = 0) and soft-
ware should wait until all synchronous data DMA channels are inactive
(DMAACTIVEx == 0 and DMAPMENx == 0) before disabling the MXVR.

The MXVR Master Mode/Slave Mode Select (MMSM) bit determines
whether the MXVR is the network timing master or is a network slave
node. If the MMSM bit is set to 1, the MXVR will be in Master Mode. When
in Master Mode, the transmit clock is supplied by the MXVR FMPLL.
The transmit clock is then used to generate the data stream transmitted on
the MTX pin. In addition, MXVR CDRPLL recovers the receive clock from
the incoming data stream received on the MRX pin. The receive clock is
then used by the MXVR to sample the incoming data stream.

If the MMSM bit is set to 0, the MXVR will be in Slave Mode. When in Slave
Mode, MXVR CDRPLL recovers the receive clock from the incoming
data stream received on the MRX pin. The receive clock is then used by the
MXVR to sample the incoming data stream. In addition, the receive clock
is used to generate the data stream transmitted on the MTX pin.

The Active Mode (ACTIVE) bit determines whether the MXVR will operate
in Active Mode or in All Bypass - MXVR Enabled Mode once the MXVR
is enabled. When in Active Mode the MXVR can transmit and receive
data. When in All Bypass - MXVR Enabled Mode, the MRX input pin is
directly connected to MTX and the MXVR can only receive data. When the
MXVREN bit is set to 1 and the ACTIVE bit is set to 1, the MXVR will operate
in Active Mode. When the MXVREN bit is set to 1 and the ACTIVE bit is set
to 0, the MXVR will operate in All Bypass - MXVR Enabled Mode. When
the MXVREN bit is set to 0, the ACTIVE bit has no meaning.

The Synchronous Data Delay (SDELAY) bit determines whether the syn-
chronous data field will be delayed by two frames (SDELAY=1) or zero
frames (SDELAY=0) passing through the MXVR. In the zero frame delay
case the synchronous data will only be delayed by a few bit periods passing
through the MXVR. If the MXVR is in All Bypass - MXVR Disabled
Mode (MXVREN = 0) or in All Bypass - MXVR Enabled Mode (MXVREN = 1

ADSP-BF54x Blackfin Processor Hardware Reference 29-15

Media Transceiver Module (MXVR)

and ACTIVE = 0), the SDELAY bit has no meaning. If the MXVR is in Active
Mode (MXVREN = 1 and ACTIVE = 1) and Master Mode (MMSM = 1), there will
always be two frame delays for synchronous data and the SDELAY bit will
always read as 1. If the MXVR is in Active Mode (MXVREN = 1 and ACTIVE
= 1), Slave Mode (MMSM = 0), and the SDELAY bit is set to 1, there will be
two frame delays for synchronous data. If the MXVR is in Active Mode
(MXVREN = 1 and ACTIVE = 1), Slave Mode (MMSM = 0), and the SDELAY bit is
set to 0, there will only be a few bit delays for synchronous data. Note that
synchronous data routing can only be done if the MXVR is the Master
and is in Active Mode or if the MXVR is a Slave and is in Active Mode
with the SDELAY bit is set to 1.

Table 29-4 lists all possible operating modes of the MXVR, the bit encod-
ings to select the modes, and the functionality in the modes.

Table 29-4. MXVR Operating Modes

Mode

M
X

V
R

E
N

M
M

SM

A
C

T
IV

E

SD
E

L
A

Y Functionality

All Bypass -
MXVR Disabled

0 X X X -Bypassed from MRX to MTX
-Cannot receive or transmit SD, AP, and CM
-Cannot route or mute SD

Slave Node
All Bypass -
MXVR Enabled

1 0 0 X -Bypassed from MRX to MTX
-Can only receive SD, AP, and CM
-Cannot route or mute SD

Slave Node
Active Mode -
Zero Frame Delay

1 0 1 0 -SD delayed by few bit periods
-Can receive and transmit SD, AP, and CM
-Cannot route SD, Can mute SD

Slave Node
Active Mode -
Two Frame Delay

1 0 1 1 -SD delayed by 2 frame periods
-Can receive and transmit SD, AP, and CM
-Can route and mute SD

Master Node
Active Mode -
Two Frame Delay

1 1 1 1 -SD delayed by 2 frame periods
-Can receive and transmit SD, AP, and CM
-Can route and mute SD

SD = Synchronous Data, AP = Asynchronous Packets, CM = Control Messages

MXVR Registers

29-16 ADSP-BF54x Blackfin Processor Hardware Reference

The Normal Control Message Receive Enable (NCMRXEN) bit determines
whether the MXVR is enabled to receive Normal control messages. If the
MXVR receives a Normal control message and the NCMRXEN bit is set to 1,
the MXVR will write the received data into the Control Message Receive
Buffer. If the MXVR receives a Normal control message when the NCMRXEN
bit is set to 0, the MXVR will not respond to the Normal control message
and will not write to the Control Message Receive Buffer. The NCMRXEN bit
is reset to 0.

The Remote Write Receive Enable (RWRRXEN) bit determines whether the
MXVR is enabled to receive Remote Write control messages. If the
MXVR receives a Remote Write control message and the RWRRXEN bit is set
to 1, the MXVR will write the received data into the Remote Read Buffer
and will store the MAP and Length values. If the MXVR receives a
Remote Write control message when the RWRRXEN bit is set to 0, the
MXVR will not write the received data to the Remote Read Buffer and
will not write the MAP or Length value. In addition the MXVR will
respond to the Remote Write control message with Transmission Status of
0x11 (Not Supported). The RWRRXEN bit is reset to 0.

The MXVR Transmit Data Enable (MTXEN) bit enables or disables the data
stream transmitted on the MTX pin when the MXVR is enabled. If the
MXVREN bit is set to 1 and the MTXEN bit is set to 0, the MTX pin will remain
at a logic low level. If the MXVREN bit is set to 1 and the MTXEN bit is set to 1,
the MTX pin will output the transmitted data stream. If the MXVREN bit is set
to 0, the MXVR will be in All Bypass - MXVR Disabled Mode and the
MTXEN bit has no meaning.

The MXVR Transmit PHY (MTXONB) bit sets the state of the MTXON output
pin. The MTXON output pin can be used to gate on and off the power sup-

plied to the Transmit PHY (in the case of MOST®, the Transmit FOT).
The MTXON pin can either be operated as a 3.3V compliant output or as an
open drain output depending on the state of the MTXONBOD bit in the
MXVR_PIN_CTL register. If the MTXONB bit is set to a 0, the MTXON output pin
will be driven to a 0V logic-low level. If the MTXONB bit is set to a 1 and the

ADSP-BF54x Blackfin Processor Hardware Reference 29-17

Media Transceiver Module (MXVR)

MTXONBOD bit is set to a 0, the MTXON output pin will be driven to a 3.3V
logic-high level. If the MTXONB bit is set to a 1 and the MTXONBOD bit is set to
a 1, the MTXON output pin will be three-stated (allowing a pull-up resistor
to pull the MTXON output pin to a 5V logic-high level). The MTXONB bit is
reset to 1.

The MXVR Even Parity Select (EPARITY) bit indicates whether the parity
bit in the frame should be generated with Even Parity or Odd Parity. If
the EPARITY bit is set to 0, Odd Parity will be selected. If the EPARITY bit is

set to 1, Even Parity will be selected. For MOST®, Even Parity should
always be selected. The EPARITY bit is reset to 1.

The synchronous boundary value transmitted by the Master node in a net-
work determines how many quadlets in the frame are dedicated to
synchronous data and how many quadlets are dedicated to asynchronous
packet data. A quadlet is 4 bytes of data or 4 physical channels in the
frame. There are a total of 15 quadlets for synchronous and asynchronous
data in the frame. If the synchronous boundary is 6, then 24 bytes will be
dedicated to synchronous data and 36 bytes will be dedicated to asynchro-
nous packet data. The MXVR is capable of operating with a synchronous

boundary from 0 to 15; however, the MOST® specification limits the syn-
chronous boundary to the range 6 to 14.

When the MXVR is in Master Mode, the value written to the MSB field
will be transmitted over the network to all of the slaves as the synchronous
boundary. When the MXVR is in Slave Mode, the MSB field is not used.
When the MXVR is in either Master Mode or Slave Mode, the synchro-
nous boundary value which was received by the node over the network can
be observed as the RSB field in MXVR_STATE_0 register.

MXVR Registers

29-18 ADSP-BF54x Blackfin Processor Hardware Reference

The Synchronous Boundary (MSB) field is writable if the MXVR is in Mas-
ter Mode (MMSM = 1) and is read-only if the MXVR is in Slave Mode (MMSM
= 0). Writes to the MSB while in Slave Mode will be ignored and the MSB
value will not be effected. Note that a particular procedure must be fol-
lowed to dynamically change the synchronous boundary for the network
to ensure that no data is corrupted and the asynchronous packet channel
does not hang.

The Asynchronous Packet Receive Enable (APRXEN) bit determines
whether the MXVR is enabled to receive Asynchronous Packets. If the
MXVR receives an Asynchronous Packet and the APRXEN bit is set to 1, the
MXVR will write the received data into the Asynchronous Packet Receive
Buffer. If the MXVR receives an Asynchronous Packet when the APRXEN
bit is set to 0, the MXVR will not write the packet to the Asynchronous
Packet Receive Buffer. The APRXEN bit is reset to 0.

The Wake-Up (WAKEUP) bit is used to trigger the MXVR when in Master
Mode to send the wake-up preamble which will indicate to any node in
low-power mode to wake-up. If the MMSM bit is set to 1, writing a 1 to the
WAKEUP bit will trigger the MXVR to send the wake-up preamble on the
network. If MMSM is set to 0, writing a 1 to the WAKEUP bit will have no
effect. Writing a 0 to the WAKEUP bit will have no effect. The WAKEUP bit
will always read as 0.

The Lock Mechanism Select (LMECH) bit determines in what order the
MXVR Master will send network preambles while locking the network.
Lock Mechanism 0 provides the fastest lock time from the completely
unlocked state to the super block locked state in a network with only
MXVR nodes. Lock Mechanism 1 takes longer than Lock Mechanism 0 to
go from the completely unlocked state to the super block locked state;
however, if a node in the ring causes an unlock (for example, a node going
from All Bypass to Active or vice-versa), only nodes downstream from that
node will go unlocked while upstream nodes will remain at their same lock
level. Lock Mechanism 1 is generally a better choice for mixed networks
which include transceivers other than the MXVR. If the LMECH bit is set to

ADSP-BF54x Blackfin Processor Hardware Reference 29-19

Media Transceiver Module (MXVR)

0, Lock Mechanism 0 is selected. If the LMECH bit is set to 1, Lock Mecha-
nism 1 is selected. When the MXVR is in Slave Mode (MMSM = 0), the
LMECH bit has no meaning. The LMECH bit is reset to 0.

MXVR State (MXVR_STATE_0, MXVR_STATE_1)
Registers

The MXVR_STATE_x registers indicate the current state of the MXVR. All
bits in the MXVR_STATE_x registers are read-only bits.

Figure 29-2. MXVR State Register

MXVR State Register 0 (MXVR_STATE_0)

For all bits,
0 - State Event is not occurring
1 - State Event is occurring

DERRNUM

RSB

MRXONB

RGSIP

DALIP

ALIP

RRDIP

RWRIP

FLOCK

BLOCK

NACT

SBLOCK

FMPLLST

CMRX

CMTX

CMARB

CMBSY

APRX

APTX

APARB

APBSY

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

123456789101112131415 0

171819202122232425262728293031 16

Reset = 0x0000 0000

CDRPLLST

0xFFC0 2708

MXVR Registers

29-20 ADSP-BF54x Blackfin Processor Hardware Reference

The Network Active (NACT) bit is a read-only bit which indicates whether
the MRX input pin is active. If a single rising edge or falling edge of the MRX
pin is detected by the MXVR, the NACT bit will change to a 1. If no rising
or falling edges are detected on the MRX input pin for 40 SCLK periods (300
ns for 133 MHz SCLK), the NACT bit will change to a 0. Note that if SCLK is
operating at frequency less than 50 MHz, not every edge will be detected.

The Super Block Lock (SBLOCK) bit is a read-only bit which indicates
whether the MXVR has locked onto the incoming data stream being
received on the MRX input pin and all the preambles are occurring in the
right positions. Once the CDRPLL is started-up and the MXVR is
enabled, the MXVR will attempt to Super Block Lock. Once the MXVR
has Frame Locked, Block Locked, and received the Allocation Table in the
correct position in the incoming data stream, the MXVR will be Super
Block Locked and the SBLOCK bit will change to 1. If a single preamble is
missed or occurs at the wrong position, the MXVR will immediately lose

Figure 29-3. MXVR State Register

MXVR State Register 1 (MXVR_STATE_1)

DMAPMEN7
DMAPMEN6
DMAPMEN5
DMAPMEN4
DMAPMEN3
DMAPMEN2
DMAPMEN1
DMAPMEN0

OBERRNUM

Reset = 0x0000 0000

DMAACTIVE0
DMAACTIVE1
DMAACTIVE2
DMAACTIVE3

0xFFC0 270C

DMAACTIVE5
DMAACTIVE6
DMAACTIVE7

SRXNUMB
Sync RX FIFO Number of Bytes
0000 - FIFO Empty
1000 - FIFO Full (8 bytes)

Reserved

Sync TX FIFO Number of Bytes
0000 - FIFO Empty
1000 - FIFO Full (8 bytes)

STXNUMB

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

123456789101112131415 0

171819202122232425262728293031 16

APCONT

DMAACTIVE4

ADSP-BF54x Blackfin Processor Hardware Reference 29-21

Media Transceiver Module (MXVR)

Super Block Lock and the SBLOCK bit will change to 0. Note that the
MXVR can be Super Block Locked when the MXVR is in All Bypass -
MXVR Enabled Mode or in Active Mode; however, the MXVR cannot
Super Block Lock when the MXVR is in All Bypass - MXVR Disabled
Mode.

The MXVR Frequency Multiply PLL State Machine State (FMPLLST) field
is a read-only field which gives the current state of the FMPLL State
Machine. The FMPLL state encodings are given in Table 29-5.

The MXVR Clock/Data Recovery PLL State Machine State (CDRPLLST)
field is a read-only field which gives the current state of the CDRPLL
State Machine. The CDRPLL state encodings are given in Table 29-6.

Table 29-5. FMPLL State Machine States

FMPLLST FMPLL State Machine State

b#00 FMPLL_RESET

b#01 FMPLL_RAMP

b#10 FMPLL_FMUL

b#11 FMPLL_LOCKED

Table 29-6. CDRPLL State Machine States

CDRPLLST CDRPLL State Machine State

b#000 CDRPLL_RESET

b#001 CDRPLL_RAMP

b#010 CDRPLL_FMUL

b#011 CDRPLL_LOCKED

b#100 CDRPLL_FHOLD

b#101 CDRPLL_ACQUIRE

b#110 - b#111 Reserved

MXVR Registers

29-22 ADSP-BF54x Blackfin Processor Hardware Reference

The Asynchronous Packet Transmit Buffer Busy (APBSY) bit is a read-only
bit that indicates when the Asynchronous Packet Transmit Buffer is busy
transmitting an Asynchronous Packet. The APBSY bit will change to 1
when the STARTAP bit in the MXVR_AP_CTL register is written to 1 which
starts the transmission of the packet in the Asynchronous Packet Transmit
Buffer. The APBSY bit will change to 0 once the Asynchronous Packet is
transmitted or once the Asynchronous Packet being transmitted is success-
fully cancelled. Note that the Asynchronous Packet Transmit Buffer
should never be modified when the APBSY bit is a 1.

The Asynchronous Packet Arbitrating (APARB) bit is a read-only bit that
indicates when the MXVR is arbitrating for the asynchronous packet
channel so that an asynchronous packet can be transmitted. If the APARB
bit is a 1, the MXVR is arbitrating for the asynchronous packet channel. If
the APARB bit is a 0, the MXVR is not arbitrating for the asynchronous
packet channel. While the MXVR is arbitrating for the asynchronous
packet channel, the current asynchronous packet transmission can be can-
celled. However, once the MXVR has won arbitration and the
asynchronous packet is being transmitted, the transmission cannot be can-
celled. Note that when an attempt is made to cancel an asynchronous
packet, due to delays in clock synchronization and delays in reading and
writing MMRs, the APTS and APTC bits in the MXVR_INT_STAT_1 register
should be used to verify whether or not the asynchronous packet was suc-
cessfully cancelled.

The Asynchronous Packet Transmitting (APTX) bit is a read-only bit that
indicates when the MXVR is actively transmitting an asynchronous
packet. If the APTX bit is a 1, the MXVR has won arbitration and is in the
process of transmitting an asynchronous packet. If the APTX bit is a 0, the
MXVR is not in the process of transmitting an asynchronous packet.
Once the MXVR has started transmitting an asynchronous packet, the
current asynchronous packet transmission cannot be cancelled.

ADSP-BF54x Blackfin Processor Hardware Reference 29-23

Media Transceiver Module (MXVR)

The Asynchronous Packet Receiving (APRX) bit is a read-only bit that indi-
cates when the MXVR is actively receiving an asynchronous packet. If the
APRX bit is a 1, the MXVR is in the process of receiving an asynchronous
packet. If the APRX bit is a 0, the MXVR is not in the process of receiving
an asynchronous packet. Note that the Asynchronous Packet Received
(APR) bit in the MXVR_INT_STAT_1 register will change to 1 when the recep-
tion of an asynchronous packet has completed and can optionally generate
an interrupt.

The Control Message Transmit Buffer Busy (CMBSY) bit is a read-only bit
that indicates when the Control Message Transmit Buffer is busy in the
process of transmitting a Control Message. The CMBSY bit will change to 1
when the STARTCM bit in the MXVR_CM_CTL register is written to 1 which
starts the process of transmitting the Control Message in the Control Mes-
sage Transmit Buffer. The CMBSY bit will change to a 0 once the Control
Message is transmitted or once the Control Message being transmitted is
successfully cancelled. Note that the Control Message Transmit Buffer
should never be modified when the CMBSY bit is a 1.

The Control Message Arbitrating (CMARB) bit is a read-only bit that indi-
cates when the MXVR is arbitrating for the control message channel so
that a control message can be transmitted. If the CMARB bit is a 1, the
MXVR is arbitrating for the control message channel. If the CMARB bit is a
0, the MXVR is not arbitrating for the control message channel. While the
MXVR is arbitrating for the control message channel, the current control
message transmission can be cancelled. However, once the MXVR has
won arbitration and the control message is being transmitted, the trans-
mission cannot be cancelled. Note that when an attempt is made to cancel
a control message, due to delays in clock synchronization and delays in
reading and writing MMRs, the CMTS and CMTC bits in the
MXVR_INT_STAT_1 register should be used to verify whether or not the con-
trol message was successfully cancelled.

MXVR Registers

29-24 ADSP-BF54x Blackfin Processor Hardware Reference

The Control Message Transmitting (CMTX) bit is a read-only bit that indi-
cates when the MXVR is actively transmitting a control message. If the
CMTX bit is a 1, the MXVR has won arbitration and is in the process of
transmitting a control message. If the CMTX bit is a 0, the MXVR is not in
the process of transmitting a control message. Once the MXVR has started
transmitting a control message, the current control message transmission
cannot be cancelled.

The Receiving Control Message (CMRX) bit is a read-only bit that indicates
when the MXVR is actively receiving a Normal control message. If the
CMRX bit is a 1, the MXVR is in the process of receiving a Normal control
message. If the CMRX bit is a 0, the MXVR is not in the process of receiving
a Normal control message. Note that the Control Message Received (CMR)
bit in the MXVR_INT_STAT_0 register will change to 1 when the reception of
a Normal control message has successfully completed and can optionally
generate an interrupt.

The MRXON Input Pin State (MRXONB) bit is a read-only bit which gives the
current state of the MRXON input pin. The MRXON input pin should be con-
nected to the optical or electrical PHY status output which indicates
whether the PHY is currently receiving data. If the PHY is receiving data,
the MRXON input pin will be driven to 0, If the PHY is not receiving data,
the MRXON input pin will be driven to 1. A transition from 0 to 1 on the
MRXON input pin causes the assertion of the ML2H interrupt event and a tran-
sition from 1 to 0 causes the assertion of the MH2L interrupt event. A
transition from 1 to 0 on the MRXON input pin can also be used to wake the
ADSP-BF54x processor from hibernate state.

The Remote GetSource In Progress (RGSIP) bit is a read-only bit which
indicates whether a Remote GetSource system control message is being
received and processed by the MXVR.

The Resource De-Allocate In Progress (DALIP) bit is a read-only bit which
indicates whether a Resource De-Allocate system control message is being
received and processed by the MXVR.

ADSP-BF54x Blackfin Processor Hardware Reference 29-25

Media Transceiver Module (MXVR)

The Resource Allocate In Progress (ALIP) bit is a read-only bit which indi-
cates whether a Resource Allocate system control message is being received
and processed by the MXVR.

The Remote Read In Progress (RRDIP) bit is a read-only bit which indi-
cates whether a Remote Read system control message is being received and
processed by the MXVR. Note that while a Remote Read is in progress,
software should not modify the Remote Read Buffer.

The Remote Write In Progress (RWRIP) bit is a read-only bit which indi-
cates whether a Remote Write system control message is being received
and processed by the MXVR. Note that while a Remote Write is in prog-
ress, software should not modify the Remote Read Buffer.

The Frame Locked (FLOCK) bit is a read-only bit which indicates whether
the MXVR is Frame Locked. Frame Lock is achieved when the CDRPLL
has locked onto the received data and the MXVR has detected preambles
occurring at the start of every frame. When the FLOCK bit is a 1, the
MXVR is Frame Locked and when the FLOCK bit is a 0, the MXVR is not
Frame Locked. Once the MXVR Master is Frame Locked and the ring is
closed, synchronous data and asynchronous packets can be reliably trans-
mitted and received by all nodes in the ring. Note that the MXVR can be
Frame Locked even if the ring network is not closed.

The Block Locked (BLOCK) bit is a read-only bit which indicates whether
the MXVR is Block Locked. Block Lock is achieved when the CDRPLL
has locked onto the received data, the MXVR has Frame Locked, and the
MXVR has received two block preambles in the correct position. When
the BLOCK bit is a 1, the MXVR is Block Locked and when the BLOCK bit is
a 0, the MXVR is not Block Locked. Once an MXVR node is Block
Locked and the ring is closed, control messages can be reliably transmitted
and received by all nodes in the ring. Note that the MXVR can be Block
Locked even if the ring network is not closed.

MXVR Registers

29-26 ADSP-BF54x Blackfin Processor Hardware Reference

The Receive Synchronous Boundary (RSB) field is a read-only field which
gives the synchronous boundary value received in the incoming
datastream by the MXVR. The RSB value is only valid when the MXVR is
Frame Locked.

The DMA Error Channel Number (DERRNUM) field is a read-only field
which indicates which DMA Channel caused the last DMA Error (DERR)
interrupt event. Table 29-7 gives the DERRNUM encodings and the corre-
sponding DMA channel names. If there are multiple DMA channels
causing errors, the DERRNUM will give the value representing the last chan-
nel to error prior to the MXVR_STATE_0 register being read.

Table 29-7. DMA Error Number Encodings

DERRNUM DMA Channel Causing Error

b#0000 Synchronous Data DMA Channel 0

b#0001 Synchronous Data DMA Channel 1

b#0010 Synchronous Data DMA Channel 2

b#0011 Synchronous Data DMA Channel 3

b#0100 Synchronous Data DMA Channel 4

b#0101 Synchronous Data DMA Channel 5

b#0110 Synchronous Data DMA Channel 6

b#0111 Synchronous Data DMA Channel 7

b#1000 Asynchronous Packet Receive DMA Channel

b#1001 Asynchronous Packet Transmit DMA Channel

b#1010 Normal Control Message Receive DMA Channel

b#1011 Control Message Transmit DMA Channel

b#1100 Remote Read Control Message DMA Channel

b#1101 Remote Write Control Message DMA Channel

ADSP-BF54x Blackfin Processor Hardware Reference 29-27

Media Transceiver Module (MXVR)

The Synchronous Receive FIFO Number of Bytes (SRXNUMB) field is a
read-only field that indicates how many bytes of data are currently stored
in the Synchronous Receive FIFO. The number of bytes can range from 0
(FIFO empty) to 8 (FIFO full).

The Synchronous Transmit FIFO Number of Bytes (STXNUMB) field is a
read-only field that indicates how many bytes of data are currently stored
in the Synchronous Transmit FIFO. The number of bytes can range from
0 (FIFO empty) to 8 (FIFO full).

The Asynchronous Packet Continuation (APCONT) bit is a read-only bit
which indicates the state of the last asynchronous packet continuation bit
received over the network. The APCONT bit indicates when the asynchro-
nous packet channel is free and arbitration can occur in the next frame
(when APCONT = 0) or when the current asynchronous packet will continue
in the next frame (when APCONT = 1).

The DMA Out of Bounds Error Channel Number (OBERRNUM) field is a
read-only field which indicates which Synchronous DMA channel caused
the last DMA Out of Bounds (OBERR) interrupt event. Table 29-8 gives
the OBERRNUM encodings and the corresponding DMA channel names. If
there are multiple DMA channels causing errors, the OBERRNUM will give
the value representing the last channel to error prior to the MXVR_STATE_0
register being read.

MXVR Registers

29-28 ADSP-BF54x Blackfin Processor Hardware Reference

The DMAACTIVEx bits indicate whether the DMA channel is active or inac-
tive. When the DMAACTIVEx bit is 1, DMA channel x is active and when the
DMAACTIVEx bit is 0, DMA channel x is inactive. Once the MDMAENx bit
is set to 1, the exact time when the DMA goes active depends on the Flow
Mode selected. When the MDMAENx bit is set to 1 in Stop Mode, the DMA
channel will go active on the next frame boundary reached and will stop
when the number of programmed transfers is complete. When the
MDMAENx bit is set to 1 in Autobuffer Mode, the DMA channel will go
active on the next frame boundary and will continue indefinitely. When
the MDMAENx bit is set to 1 in Packet-Fixed Count Mode, Packet-Variable
Count Mode, or Packet-Start/Stop Mode, the DMA will go active once
DMAPMENx is 1 and the “start pattern” is found. When the DMA channel is
active in Packet-Fixed Count Mode, the DMA channel will go inactive
when the programmed number of transfers is done. When the DMA chan-
nel is active in Packet-Fixed Count Mode, the DMA channel will go
inactive when the number of transfers specified in the packet are done.
When the DMA channel is active in Packet-Start/Stop Mode, the DMA
channel will go inactive when the “stop pattern” is found
(Packet-Start/Stop). In any flow mode if the MDMAENx bit is set to 0, the
DMA channel will go inactive and disable on the next frame boundary
reached.

Table 29-8. DMA Out of Bounds Error Number Encodings

OBERRNUM DMA Channel Causing Error

b#000 Synchronous Data DMA Channel 0

b#001 Synchronous Data DMA Channel 1

b#010 Synchronous Data DMA Channel 2

b#011 Synchronous Data DMA Channel 3

b#100 Synchronous Data DMA Channel 4

b#101 Synchronous Data DMA Channel 5

b#110 Synchronous Data DMA Channel 6

b#111 Synchronous Data DMA Channel 7

ADSP-BF54x Blackfin Processor Hardware Reference 29-29

Media Transceiver Module (MXVR)

The DMAPMENx bits indicate whether the DMA channel is enabled for Pat-
tern Matching. In Packet-Fixed Count Mode, Packet-Variable Count
Mode, or Packet-Start/Stop Mode, when the MDMAENx bit is set to 1, the
DMA channel will be enabled for pattern matching on the next frame
boundary reached. The DMA channel will remain enabled for pattern
matching until the MDMAENx bit is set to 0. Once the MDMAENx bit is set to 0,
the DMA channel will be disabled on the next frame boundary reached.

MXVR Interrupt Status Register 0
(MXVR_INT_STAT_0)

The MXVR_INT_STAT_0 register indicates the current status of all events that
can generate a Status Change Interrupt or a Control Message Interrupt in
the MXVR. Each bit in the MXVR_INT_STAT_0 indicates whether a particu-
lar event has occurred. If the corresponding interrupt enable bit in the
MXVR_INT_EN_0 is set to 1, the occurrence of that event will generate an
interrupt.

MXVR Registers

29-30 ADSP-BF54x Blackfin Processor Hardware Reference

The following status events generate the Status Change Interrupt: NI2A,
NA2I, SBU2L, SBL2U, PRU, MPRU, DRU, MDRU, SBU, ATU, FCZ0, FCZ1, PERR, MH2L,
ML2H, WUP, FU2L, FL2U, BU2L, BL2U, OBERR, PFL, SCZ, FERR, BCZ, BMERR and
DERR.

The following status events generate the Control Message Interrupt: CMR,
CMROF, CMTS, and CMTC, and RWRC.

All bits in the MXVR_INT_STAT_0 register are sticky bits. The sticky bits are
set to 1 when an event occurs, but must be written with a 1 in order to
clear the bit.

Figure 29-4. MXVR Interrupt Status Register 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

123456789101112131415 0

171819202122232425262728293031 16

FERR

MXVR Interrupt Status Register 0 (MXVR_INT_STAT_0)

For all bits,
0 - Status Event has not occurred
1 - Status Event has occurred
All bits are sticky. Must write 1 to bit position to clear sticky bit.

OBERR

DERR

BMERR

BCZ

RWRC

CMTC

CMTS

CMROF

CMR

WUP
ML2H
MH2L
PERR
FCZ1
FCZ0
ATU
SBU

Reset = 0x0000 0000

FU2L

FL2U

BU2L

BL2U

SCZ

NI2A

NA2Il

SBU2L

SBL2U

PRU

MPRU

DRU

MDRU

0xFFC0 2710

PFL

ADSP-BF54x Blackfin Processor Hardware Reference 29-31

Media Transceiver Module (MXVR)

The Network Inactive to Active (NI2A) interrupt event will change to 1
when the Network Activity (NACT) bit changes from Inactive (NACT = 0) to
Active (NACT = 1). If the NI2AEN bit is set to 1 in the MXVR_INT_EN_0 regis-
ter, the assertion of NI2A will generate a Status Change Interrupt. The
NI2A bit can be cleared by writing a 1 to the NI2A bit position.

The Network Active to Inactive (NA2I) interrupt event will change to 1
when the Network Activity State (NACT) bit changes from Active (NACT =
1) to Inactive (NACT = 0). If the NA2IEN bit is set to 1 in the MXVR_INT_EN_0
register, the assertion of NA2I will generate a Status Change Interrupt. The
NA2I bit can be cleared by writing a 1 to the NA2I bit position.

The Super Block Unlocked to Locked (SBU2L) interrupt event will change
to 1 when the Super Block Locked State (SBLOCK) bit changes from Super
Block Unlocked (SBLOCK = 0) to Super Block Locked (SBLOCK = 1). If the
SBU2LEN bit is set to 1 in the MXVR_INT_EN_0 register, the assertion of SBU2L
will generate a Status Change Interrupt. The SBU2L bit can be cleared by
writing a 1 to the SBU2L bit position.

The Super Block Locked to Unlocked (SBL2U) interrupt event will change
to 1 when the Super Block Locked State (SBLOCK) bit changes from Super
Block Locked (SBLOCK = 1) to Super Block Unlocked (SBLOCK = 0). If the
SBL2UEN bit is set to 1 in the MXVR_INT_EN_0 register, the assertion of SBL2U
will generate a Status Change Interrupt. The SBL2U bit can be cleared by
writing a 1 to the SBL2U bit position.

The Position Register Updated (PRU) interrupt event will change to 1
when the node position becomes valid after lock or whenever the node
position changes once valid. PRU will assert when the PVALID bit in the
MXVR_POSITION register changes from 0 to 1 or when the POSITION field in
the MXVR_POSITION register changes while the PVALID bit is a 1. If the
PRUEN bit is set to 1 in the MXVR_INT_EN_0 register, the assertion of PRU will
generate a Status Change Interrupt. The PRU bit can be cleared by writing
a 1 to the PRU bit position. Note that the PRU interrupt event will never

MXVR Registers

29-32 ADSP-BF54x Blackfin Processor Hardware Reference

occur when the MXVR is enabled in Master Mode. In Master Mode, the
PVALID bit will be set to 1 immediately after the MXVR is enabled, but no
PRU interrupt event will be generated.

The Maximum Position Register Updated (MPRU) interrupt event will
change to 1 when the maximum position becomes valid after lock or
whenever the maximum position changes once valid. MPRU will assert when
the MPVALID bit in the MXVR_MAX_POSITION register changes from 0 to 1 or
when the MPOSITION field in the MXVR_MAX_POSITION register changes while
the MPVALID bit is a 1. If the MPRUEN bit is set to 1 in the MXVR_INT_EN_0
register, the assertion of MPRU will generate a Status Change Interrupt. The
MPRU bit can be cleared by writing a 1 to the MPRU bit position.

The Delay Register Updated (DRU) interrupt event will change to 1 when
the delay becomes valid after lock or whenever the delay changes once
valid. DRU will assert when the DVALID bit in the MXVR_DELAY register
changes from 0 to 1 or when the DELAY field in the MXVR_DELAY register
changes while the DVALID bit is a 1. If the DRUEN bit is set to 1 in the
MXVR_INT_EN_0 register, the assertion of DRU will generate a Status Change
Interrupt. The DRU bit can be cleared by writing a 1 to the DRU bit position.
Note that the DRU interrupt event will never occur when the MXVR is
enabled in Master Mode. In Master Mode, the DVALID bit will be set to 1
immediately after the MXVR is enabled, but no DRU interrupt event will
be generated.

The Maximum Delay Register Updated (MDRU) interrupt event will change
to 1 when the maximum delay becomes valid after lock or when the
maximum delay changes once valid. MDRU will assert when the MDVALID bit
in the MXVR_MAX_DELAY register changes from 0 to 1 or when the MDELAY
field in the MXVR_MAX_DELAY register changes while the MDVALID bit is a 1. If
the MDRUEN bit is set to 1 in the MXVR_INT_EN_0 register, the assertion of
MDRU will generate a Status Change Interrupt. The MDRU bit can be cleared
by writing a 1 to the MDRU bit position.

ADSP-BF54x Blackfin Processor Hardware Reference 29-33

Media Transceiver Module (MXVR)

The Synchronous Boundary Updated (SBU) interrupt event will change to
1 when the MXVR is Frame Locked and the Synchronous Boundary
information received over the network changes. When the Synchronous
Boundary information received over the network changes, the Received
Synchronous Boundary (RSB) field in the MXVR_STATE_0 register will be
updated. The SBU bit will only change to 1 in a node operating in Slave
Mode (MMSM = 0). If the SBUEN bit is set to 1 in the MXVR_INT_EN_0 register,
the assertion of SBU will generate a Status Change Interrupt. The SBU bit
can be cleared by writing a 1 to the SBU bit position.

The Allocation Table Updated (ATU) interrupt event indicates when the
allocation table is updated. When the MXVR is in Master Mode (MMSM =
1), ATU will change to 1 whenever a Resource Allocate or a Resource
De-Allocate control message is received and processed or when the Alloca-
tion Table is received over the network (once every 1024 frames). When
in Slave Mode (MMSM = 0), ATU will assert when the Allocation Table is
received over the network (once every 1024 frames). The MXVR does not
determine whether the Allocation Table has changed—only that the Allo-
cation Table is received. Software must read the Allocation Table registers
to determine if any changes have been made. If the ATUEN bit is set to 1 in
the MXVR_INT_EN_0 register, the assertion of ATU will generate a Status
Change Interrupt. The ATU bit can be cleared by writing a 1 to the ATU bit
position. Note that it is recommended to only read the Allocation Table
(MXVR_ALLOC_x registers) either immediately following an ATU event or
immediately following a BCZ event to avoid the possibility of reading the
Allocation Table while it is in the process of being updated.

The Parity Error (PERR) interrupt event will change to 1 whenever the cal-
culated parity of the received frame does not match the parity bit in that
frame. If the PERREN bit is set to 1 in the MXVR_INT_EN_1 register, the asser-
tion of PERR will generate an Status Change Interrupt. The PERR bit can be
cleared by writing a 1 to the PERR bit position.

MXVR Registers

29-34 ADSP-BF54x Blackfin Processor Hardware Reference

The MRXONB Low to High (ML2H) interrupt event will change to 1 when the
MRXONB bit in the MXVR_STATE_0 register changes from low to high, indicat-
ing that the MRXON input pin has changed from low to high (“light on” to
“light off”). If the ML2HEN bit is set to 1 in the MXVR_INT_EN_0 register, the
assertion of ML2H will generate a Status Change Interrupt. The ML2H bit can
be cleared by writing a 1 to the ML2H bit position.

The MRXONB High to Low (MH2L) interrupt event will change to 1 when the
MRXONB bit in the MXVR_STATE_0 register changes from high to low, indicat-
ing that the MRXON input pin has changed from high to low (“light off” to
“light on”). If the MH2LEN bit is set to 1 in the MXVR_INT_EN_0 register, the
assertion of MH2L will generate a Status Change Interrupt. The MH2L bit can
be cleared by writing a 1 to the MH2L bit position.

The Wake-Up Preamble Received (WUP) interrupt event will change to 1
when a Wake-Up Preamble is received over the network by the MXVR.
The WUP bit will assert regardless of the current operating mode of the
MXVR. If the WUPEN bit is set to 1 in the MXVR_INT_EN_0 register, the asser-
tion of WUP will generate a Status Change Interrupt. The WUP bit can be
cleared by writing a 1 to the WUP bit position.

The Frame Counter 0 Zero (FCZ0) interrupt event will change to 1 when
Frame Counter 0 is started by writing a value to the MXVR_FRAME_CNT_0
register and Frame Counter 0 has decremented down to zero. If the
FCZ0EN bit is set to 1 in the MXVR_INT_EN_0 register, the assertion of FCZ0
will generate an Status Change Interrupt. The FCZ0 bit can be cleared by
writing a 1 to the FCZ0 bit position.

The Frame Counter 1 Zero (FCZ1) interrupt event will change to 1 when
Frame Counter 1 is started by writing a value to the MXVR_FRAME_CNT_1
register and Frame Counter 1 has decremented down to zero. If the
FCZ1EN bit is set to 1 in the MXVR_INT_EN_0 register, the assertion of FCZ1
will generate an Status Change Interrupt. The FCZ1 bit can be cleared by
writing a 1 to the FCZ1 bit position.

ADSP-BF54x Blackfin Processor Hardware Reference 29-35

Media Transceiver Module (MXVR)

The Frame Unlocked to Locked (FU2L) interrupt event will change to 1
when the Frame Locked (FLOCK) bit in the MXVR_STATE_0 register changes
from Frame Unlocked (FLOCK=0) to Frame Locked (FLOCK=0). If the
FU2LEN bit is set to 1 in the MXVR_INT_EN_0 register, the assertion of the
FU2L will generate a Status Change Interrupt. The FU2L bit can be cleared
by writing a 1 to the FU2L bit position.

The Frame Locked to Unlocked (FL2U) interrupt event will change to 1
when the Frame Locked (FLOCK) bit in the MXVR_STATE_0 register changes
from Frame Locked (FLOCK=1) to Frame Unlocked (FLOCK=0). If the
FL2UEN bit is set to 1 in the MXVR_INT_EN_0 register, the assertion of the
FL2U will generate a Status Change Interrupt. The FL2U bit can be cleared
by writing a 1 to the FL2U bit position.

The Block Unlocked to Locked (BU2L) interrupt event will change to 1
when the Block Locked (BLOCK) bit in the MXVR_STATE_0 register changes
from Block Unlocked (BLOCK=0) to Block Locked (BLOCK=0). If the BU2LEN
bit is set to 1 in the MXVR_INT_EN_0 register, the assertion of the BU2L will
generate a Status Change Interrupt. The BU2L bit can be cleared by writing
a 1 to the BU2L bit position.

The Block Locked to Unlocked (BL2U) interrupt event will change to 1
when the Block Locked (BLOCK) bit in the MXVR_STATE_0 register changes
from Block Locked (BLOCK=1) to Block Unlocked (BLOCK=0). If the BL2UEN
bit is set to 1 in the MXVR_INT_EN_0 register, the assertion of the BL2U will
generate a Status Change Interrupt. The BL2U bit can be cleared by writing
a 1 to the BL2U bit position.

The DMA Out of Bounds Error (OBERR) interrupt event indicates when a
Synchronous DMA channel attempts to move outside its allocated mem-
ory buffer. A DMA Out of Bounds Error can only occur for channels
operating in the Synchronous Packet-Variable Count mode or the Syn-
chronous Packet-Stat/Stop mode. The allocated memory buffer is defined
by the values programmed in the MXVR_DMAx_START_ADDR register and the
MXVR_DMAx_COUNT register. A DMA Out of Bounds Error is either a result
of a bit error occurring in data being received (for example, a bit error

MXVR Registers

29-36 ADSP-BF54x Blackfin Processor Hardware Reference

causing the variable count value to be received incorrectly or a bit error
causing the stop pattern to be missed) or a result of the synchronous
packet being transmitted incorrectly (for example, the transmitted syn-
chronous packet being larger than the allocated memory buffer). When a
DMA Out of Bounds Error is detected, the DMA channel is automatically
disabled, the OBERR bit is set to 1, and the OBERRNUM field in the
MXVR_STATE_0 register indicates the channel which generated the error. If
the OBERREN bit is set to 1 in the MXVR_INT_EN_0 register, the assertion of
OBERR will generate an Status Change Interrupt. The OBERR bit can be
cleared by writing a 1 to the OBERR bit position.

The PLL Frequency Locked (PFL) interrupt event indicates when the
FMPLL or the CDRPLL transition to their frequency locked states. When
the FMPLL State Machine State (FMPLLST) transitions from the
FMPLL_FMUL state to the FMPLL_LOCKED state or the CDRPLL State
Machine State (CDRPLLST) transitions from the CDRPLL_FMUL state to the
CDRPLL_FHOLD state, the PFL bit will be set to 1. The FMPLLST and the
CDRPLLST can be read in the MXVR_STATE_0 register. If the PFLEN bit is set to
1 in the MXVR_INT_EN_0 register, the assertion of PFL will generate an Sta-
tus Change Interrupt. The PFL bit can be cleared by writing a 1 to the PFL
bit position.

The System Clock Counter Zero (SCZ) interrupt event will change to 1
when the System Clock Counter is started by writing a value to the
MXVR_SCLK_CNT register and System Clock Counter has decremented down
to zero. If the SCZEN bit is set to 1 in the MXVR_INT_EN_0 register, the asser-
tion of SCZ will generate an Status Change Interrupt. The SCZ bit can be
cleared by writing a 1 to the SCZ bit position.

The FIFO Error (FERR) interrupt event will change to 1 when one of the
MXVR internal FIFO’s overflows or underflows. This condition will most
likely cause data corruption. This is a catastrophic event and the MXVR
will automatically disable the effected transmit DMA channels. The inter-
nal FIFO underflows and overflows occur when the MXVR DMA
channels cannot get enough internal DMA bus bandwidth for transfers to

ADSP-BF54x Blackfin Processor Hardware Reference 29-37

Media Transceiver Module (MXVR)

and from L1 to support the network interface. This normally would only
happen if the system clock and/or the core clock frequency are lowered to
a point where the internal busses cannot provide enough bandwidth to
support all the enabled peripherals. If the FERREN bit is set to 1 in the
MXVR_INT_EN_0 register, the assertion of FERR will generate a Status Change
Interrupt. The FERR bit can be cleared by writing a 1 to the FERR bit posi-
tion. If the FERR occurs due to the Synchronous Transmit FIFO
underflowing all Synchronous Data Transmit DMA channels will auto-
matically be disabled. If the FERR occurs due to the Asynchronous Packet
Transmit FIFO underflowing, the Asynchronous Packet Transmit DMA
channel will be disabled. If the FERR occurs due to the Synchronous
Receive FIFO or the Asynchronous Packet Receive FIFO overflowing, the
associated DMA channels will not automatically be disabled; however, the
data received should be assumed to be corrupted.

 If the FERR event ever occurs when running an application, the
application code should be changed (the system clock and/or core
clock frequency should be increased or the amount of DMA band-
width being used should be decreased). The FERR event should
never be allowed to occur in an application as this event indicates
that data corruption may be occurring. In addition, if the FERR
event occurs, the MXVR must be disabled and re-enabled in order
to reset the internal FIFOs prior to re-enabling DMA channels.

The Control Message Received (CMR) interrupt event will change to 1 once
a complete control message is received by the MXVR and stored into the
Control Message Receive Buffer. The CMR bit will not be set for System
control messages or Normal control messages that fail the CRC check. If
the CMREN bit is set to 1 in the MXVR_INT_EN_0 register, the assertion of CMR
will generate a Control Message Interrupt. The CMR bit can be cleared by
writing a 1 to the CMR bit position.

MXVR Registers

29-38 ADSP-BF54x Blackfin Processor Hardware Reference

The Control Message Receive Buffer Overflow (CMROF) interrupt event
will change to 1 when the Control Message Receive Buffer is full and a
new control message is received over the network by the MXVR. The con-
trol message that is received by the MXVR when the Control Message
Receive Buffer is full will be completely lost (the MXVR will respond with
“Buffer Full” transmission status). If the CMROFEN bit is set to 1 in the
MXVR_INT_EN_0 register, the assertion of CMROF will generate a Control
Message Interrupt. The CMROF bit can be cleared by writing a 1 to the
CMROF bit position.

The Control Message Transmit Buffer Successfully Sent (CMTS) interrupt
event will change to 1 when the complete control message in the Control
Message Transmit Buffer is transmitted and the Transmission Status
received back after the message has circled the network is updated in the
Control Message Transmit Buffer. If the CMTSEN bit is set to 1 in the
MXVR_INT_EN_0 register, the assertion of CMTS will generate a Control Mes-
sage Interrupt. The CMTS bit can be cleared by writing a 1 to the CMTS bit
position.

The Control Message Transmit Buffer Successfully Cancelled (CMTC)
interrupt event will change to 1 when the transmission of the control mes-
sage in the Control Message Transmit Buffer is cancelled. The
transmission of the control message can only be cancelled while the
MXVR is arbitrating for the control message channel. Once the MXVR
has won arbitration, the transmission cannot be cancelled. If the CMTCEN
bit is set to 1 in the MXVR_INT_EN_0 register, the assertion of CMTC will gen-
erate a Control Message Interrupt. The CMTC bit can be cleared by writing
a 1 to the CMTC bit position.

The Remote Write Control Message Complete (RWRC) interrupt event will
change to 1 when an incoming Remote Write Control Message is pro-
cessed and the received data is DMA’ed to the Remote Read Buffer and
the received write address and write length have also been DMA’ed to the
Remote Read Buffer. If the RWRCEN bit is set to 1 in the MXVR_INT_EN_0
register, the assertion of RWRC will generate a Control Message Interrupt.

ADSP-BF54x Blackfin Processor Hardware Reference 29-39

Media Transceiver Module (MXVR)

The RWRC bit can be cleared by writing a 1 to the RWRC bit position. The
RWRC bit used by software to know when the Remote Read Buffer is writ-
ten to by another node.

The Block Counter Zero (BCZ) interrupt event will change to 1 when the
Block Counter is started by writing a value to the MXVR_BLOCK_CNT register
and Block Counter has decremented down to zero. If the BCZEN bit is set
to 1 in the MXVR_INT_EN_0 register, the assertion of BCZ will generate an
Status Change Interrupt. The BCZ bit can be cleared by writing a 1 to the
BCZ bit position. Note that the Block Counter only decrements at the
beginning of Normal Blocks and not on the blocks containing the Alloca-
tion Table.

The Biphase Mark Coding Error (BMERR) interrupt event will change to 1
when there is a biphase mark code violation in any part of the frame other
than the expected code violations in the preambles. If the BMERREN bit is
set to 1 in the MXVR_INT_EN_0 register, the assertion of BMERR will generate
a Status Change Interrupt. The BMERR bit can be cleared by writing a 1 to
the BMERR bit position.

The DMA Error (DERR) interrupt event will change to 1 when one of the
DMA channels encounters an error. DMA errors occur when the DMA
channel attempts to access an illegal address in L1 or L2 memory. The
DMA Error Number (DERRNUM) field in the MXVR_STATE_0 register gives a
value which indicates which DMA channel was the last to cause a DMA
error. When a DMA channel encounters an error, the channel will be dis-
abled automatically at the point where the error occurred. If the DERREN
bit is set to 1 in the MXVR_INT_EN_0 register, the assertion of DERR will gen-
erate a Status Change Interrupt. The DERR bit can be cleared by writing a 1
to the DERR bit position.

MXVR Registers

29-40 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Interrupt Status_1 (MXVR_INT_STAT_1)
Register

The MXVR_INT_STAT_1 register indicates the current status of all events that
can generate a Synchronous Data Interrupt or an Asynchronous Packet
Interrupt.

Each bit in the MXVR_INT_STAT_1 indicates whether a particular event has
occurred. If the corresponding interrupt enable bit in the MXVR_INT_EN_1
is set to 1, the occurrence of that event will generate an interrupt.

Figure 29-5. MXVR Interrupt Status Register_1

123456789101112131415 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0
171819202122232425262728293031 16

DONE7

HDONE7

DONE6

HDONE6

DONE3

HDONE3

DONE2

APRPE

APRCE

HDONE2

HDONE0

DONE0

APR

APROF

HDONE1

DONE1

APTS

APTC

Reset = 0x0000 0000

HDONE4

DONE4

HDONE5

Reserved

Reserved

Reserved

Reserved

Reserved

DONE5

MXVR Interrupt Status Register 1 (MXVR_INT_STAT_1

For all bits,
0 - Status Event has not occurred
1 - Status Event has occurred.
All bits are sticky. Must write 1 to bit position to clear sticky bit.

0xFFC0 2714

ADSP-BF54x Blackfin Processor Hardware Reference 29-41

Media Transceiver Module (MXVR)

The following status events will generate a Synchronous Data Interrupt:
HDONE0, DONE0, HDONE1, DONE1, HDONE2, DONE2, HDONE3, DONE3, HDONE4,
DONE4, HDONE5, DONE5, HDONE6, DONE6, HDONE7, and DONE7. The following
status events will generate an Asynchronous Packet Interrupt: APR, APROF,
APTS, APTC, APRCE, and APRPE.

All bits in the MXVR_INT_STAT_1 register are sticky bits. The sticky bits are
set to 1 when an event occurs, but must be written with a 1 in order to
clear the bit.

The DMAx Half-Done (HDONEx) interrupt event will change to 1 when
DMA channel x has completed half of the programmed transfers for the
current block in Stop or Autobuffer Mode or when DMA channel x has
completed an odd numbered packet in one of the Synchronous Packet
Modes. If the HDONEx bit is set to 1 in the MXVR_INT_EN_1 register, the
assertion of HDONEx will generate a Synchronous Data DMA Interrupt.
The HDONEx bit can be cleared by writing a 1 to the HDONEx bit position.

The DMAx Done (DONEx) interrupt event will change to 1 when DMA
channel x has completed all of the programmed transfers for the current
block in Stop or Autobuffer Mode or when DMA channel x has com-
pleted an even numbered packet in one of the Synchronous Packet Modes.
If the DONEx bit is set to 1 in the MXVR_INT_EN_1 register, the assertion of
DONEx will generate a Synchronous Data DMA Interrupt. The DONEx bit
can be cleared by writing a 1 to the DONEx bit position.

The Asynchronous Packet Received (APR) interrupt event will change to 1
once a complete asynchronous packet is received by the MXVR and stored
into the Asynchronous Packet Receive Buffer. If the APREN bit is set to 1 in
the MXVR_INT_EN_1 register, the assertion of APR will generate an Asynchro-
nous Packet Interrupt. The APR bit can be cleared by writing a 1 to the APR
bit position.

The Asynchronous Packet Receive Buffer Overflow (APROF) interrupt
event will change to 1 when the Asynchronous Packet Receive Buffer is
full and a new asynchronous packet is received over the network by the

MXVR Registers

29-42 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR. The asynchronous packet that is received by the MXVR when the
Asynchronous Packet Receive Buffer is full will be completely lost. If the
APROFEN bit is set to 1 in the MXVR_INT_EN_1 register, the assertion of APROF
will generate an Asynchronous Packet Interrupt. The APROF bit can be
cleared by writing a 1 to the APROF bit position.

The Asynchronous Packet Transmit Buffer Successfully Sent (APTS) inter-
rupt event will change to 1 when the complete asynchronous packet in the
Asynchronous Packet Transmit Buffer is transmitted. If the APTSEN bit is
set to 1 in the MXVR_INT_EN_1 register, the assertion of APTS will generate
an Asynchronous Packet Interrupt. The APTS bit can be cleared by writing
a 1 to the APTS bit position.

The Asynchronous Packet Transmit Buffer Successfully Cancelled (APTC)
interrupt event will change to 1 when the transmission of the asynchro-
nous packet in the Asynchronous Packet Transmit Buffer is cancelled. The
transmission of the asynchronous packet can only be cancelled while the
MXVR is arbitrating for the asynchronous packet channel. Once the
MXVR has won arbitration, the transmission cannot be cancelled. If the
APTCEN bit is set to 1 in the MXVR_INT_EN_1 register, the assertion of APTC
will generate an Asynchronous Packet Interrupt. The APTC bit can be
cleared by writing a 1 to the APTC bit position.

The Asynchronous Packet Receive CRC Error (APRCE) interrupt event will
change to 1 when an Asynchronous Packet was received with a CRC
Error. The Asynchronous Packet that was received by the MXVR with a
CRC error will not be stored into the Asynchronous Packet Receive Buf-
fer. If the APRCEEN bit is set to 1 in the MXVR_INT_EN_1 register, the
assertion of APRCE will generate an Asynchronous Packet Interrupt. The
APRCE bit can be cleared by writing a 1 to the APRCE bit position.

The Asynchronous Packet Receive Packet Error (APRPE) interrupt event
will change to 1 when an Asynchronous Packet was received and the
Length stored as part of the Asynchronous Packet did not match the
length of the Asynchronous Packet which was actually received or if the
Asynchronous Packet Continuation (APCONT) bit gets corrupted. If a

ADSP-BF54x Blackfin Processor Hardware Reference 29-43

Media Transceiver Module (MXVR)

Packet Error is detected, and there is an Asynchronous Packet which is
started and is waiting to win arbitration, the MXVR will automatically
cancel the transmission and the APTC will be set to 1. In addition, the
Asynchronous Packet which was being received when the Packet Error
occurred will not be stored in the Asynchronous Packet Receive Buffer. If
the APRPEEN bit is set to 1 in the MXVR_INT_EN_1 register, the assertion of
APRPE will generate an Asynchronous Packet Interrupt. The APRPE bit can
be cleared by writing a 1 to the APRPE bit position. Note that the MXVR
Master can resolve packet errors by asserting the RESETAP bit in the
MXVR_AP_CTL register.

MXVR Interrupt Enable 0 (MXVR_INT_EN_0) Register
The MXVR_INT_EN_0 register is used to enable or disable the generation of
an interrupt when a particular event occurs in MXVR_INT_STAT_0. The
interrupt enables in the MXVR_INT_EN_0 register correspond on a bit-to-bit
basis with the events in the MXVR_INT_STAT_0 register. If an interrupt
enable bit is set to 1, whenever the corresponding event bit in the
MXVR_INT_STAT_0 register is asserted, the associated MXVR interrupt will
be asserted and whenever the event bit is negated, the associated MXVR
interrupt will be negated (assuming no other events are causing that inter-
rupt to be asserted). If the interrupt enable bit is set to 0, the associated
interrupt output will not assert when the corresponding event bit asserts.

Note that interrupt outputs remain asserted as long as the event bit and
the interrupt enable bit are asserted. For the event bits which are sticky
bits, the Interrupt Service Routine must write a 1 to the asserted event bit
position in the MXVR_INT_STAT_0 register in order to clear the event bit.

MXVR Registers

29-44 ADSP-BF54x Blackfin Processor Hardware Reference

The MXVR_INT_EN_0 register contains the following interrupt enables:

• Network Inactive to Active interrupt enable (NI2AEN)

• Network Active to Inactive interrupt enable (NA2IEN)

• Super Block Unlocked to Locked interrupt enable (SBU2LEN)

• Super Block Locked to Unlocked interrupt enable (SBL2UEN)

• Position Register Updated interrupt enable (PRUEN)

• Maximum Position Register Updated interrupt enable (MPRUEN)

• Delay Register Updated interrupt enable (DRUEN)

Figure 29-6. MXVR Interrupt Enable Register 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

123456789101112131415 0

171819202122232425262728293031 16

Reset = 0x0000 0000

MXVR Interrupt Enable Register 0 (MXVR_INT_EN_0)

For all bits,
0 - Do not interrupt when Status Event occurs
1 - Interrupt when Status Event occurs

DERREN
BMERREN
BCZEN
RWRCEN
CMTCEN
CMTSEN
CMROFEN
CMREN

FU2LEN

FL2UEN

BU2LEN

BL2UEN

OBERREN

SCZEN

FERREN

NI2AEN
NA2IlEN
SBU2LEN
SBL2UEN
PRUEN
MPRUEN
DRUEN
MDRUEN

WUPEN
ML2HEN
MH2LEN
PERREN
FCZ1EN
FCZ0EN
ATUEN
SBUEN

0xFFC0 2718

PFLEN

ADSP-BF54x Blackfin Processor Hardware Reference 29-45

Media Transceiver Module (MXVR)

• Maximum Delay Register Updated interrupt enable (MDRUEN)

• Synchronous Boundary Updated interrupt enable (SBUEN)

• Allocation Table Updated interrupt enable (ATUEN)

• Parity Error interrupt enable (PERREN)

• MRXONB High to Low interrupt enable (MH2LEN)

• MRXONB Low to High interrupt enable (ML2HEN)

• Wakeup Preamble Detected interrupt enable (WUPEN)

• Frame Unlocked To Locked interrupt enable (FU2LEN)

• Frame Locked to Unlocked interrupt enable (FU2UEN)

• Block Unlocked to Locked interrupt enable (BU2LEN)

• Block Locked to Unlocked interrupt enable (BL2UEN)

• DMA Out of Bounds Error interrupt enable (OBERREN)

• PLL Frequency Locked interrupt enable (PFLEN)

• System Clock Counter Zero interrupt enable (SCZEN)

• FIFO Error interrupt enable (FERREN)

• Frame Counter 0 Zero interrupt enable (FCZ0EN)

• Frame Counter 1 Zero interrupt enable (FCZ1EN)

• Control Message Received interrupt enable (CMREN)

• Control Message Receive Buffer Overflow interrupt enable

• Control Message Transmit Buffer Successfully Sent interrupt
enable (CMTSEN)

MXVR Registers

29-46 ADSP-BF54x Blackfin Processor Hardware Reference

• Control Message Transmit Buffer Successfully Cancelled interrupt
enable (CMTCEN)

• Remote Write Complete interrupt enable (RWRCEN)

• Block Counter Zero interrupt enable (BCZEN)

• Biphase Mark Coding Error interrupt enable (BMERREN)

• DMA Error interrupt enable (DERREN)

MXVR Interrupt Enable 1 (MXVR_INT_EN_1)
Register

The MXVR_INT_EN_1 register is used to enable or disable the generation of
an interrupt when a particular event occurs in MXVR_INT_STAT_1. The
interrupt enables in the MXVR_INT_EN_1 register correspond on a bit-to-bit
basis with the events in the MXVR_INT_STAT_1 register. If an interrupt
enable bit is set to 1, whenever the corresponding event bit in the
MXVR_INT_STAT_1 register is asserted, the associated MXVR interrupt will
be asserted and whenever the event bit is negated, the associated MXVR
interrupt will be negated (assuming no other events are causing that inter-
rupt to be asserted). If the interrupt enable bit is set to 0, the associated
interrupt output will not assert when the corresponding event bit asserts.

Note that interrupt outputs remain asserted as long as the event bit and
the interrupt enable bit are asserted. For the event bits which are sticky
bits, the Interrupt Service Routine must write a 1 to the asserted event bit
position in the MXVR_INT_STAT_1 register in order to clear the event bit.

ADSP-BF54x Blackfin Processor Hardware Reference 29-47

Media Transceiver Module (MXVR)

The MXVR_INT_EN_1 register contains the following interrupt enables:

• DMA Channel x Half Done interrupt enable (HDONEENx)

• DMA Channel x Done interrupt enable (DONEENx)

• Asynchronous Packet Received interrupt enable (APREN)

• Asynchronous Packet Receive Buffer Overflow interrupt enable
(APROFEN)

• Asynchronous Packet Transmit Buffer Successfully Sent interrupt
enable (APTSEN)

Figure 29-7. MXVR Interrupt Enable Register 1

MXVR Interrupt Enable Register 1 (MXVR_INT_EN_1)

DONEEN7

DONEEN6

HDONEEN7

HDONEEN6

DONEEN3

HDONEEN3

DONEEN2

APRPEEN

APREN

APROFEN

APTSEN

APTCEN

APRCEEN

HDONEEN2

HDONEEN0

DONEEN0

HDONEEN1

DONEEN1

DONEEN5

HDONEEN5

DONEEN4

HDONEEN4

Reset = 0x0000 0000

123456789101112131415 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

171819202122232425262728293031 16

For all bits,
0 - Status Event has not occurred
1 - Status Event has occurred.
All bits are sticky. Must write 1 to bit position to clear sticky bit.

Reserved

Reserved

Reserved

Reserved

Reserved

0xFFC0 271C

MXVR Registers

29-48 ADSP-BF54x Blackfin Processor Hardware Reference

• Asynchronous Packet Transmit Buffer Successfully Cancelled
interrupt enable (APTCEN)

• Asynchronous Packet Receive CRC Error interrupt enable
(APRCEEN)

• Asynchronous Packet Receive Packet Error interrupt enable
(APRPEEN)

MXVR Node Position (MXVR_POSITION) Register
The MXVR_POSITION register is a read-only register that indicates the
MXVR’s physical node position within the ring network. The Master
node is always at position 0. The Slave nodes in the network have their
physical positions checked constantly over the network. If the PVALID bit
is a 1, then the POSITION field is valid and indicates the MXVR’s physical
node position. If the PVALID bit is a 0, then the POSITION field is not valid.
The physical node position can range from 0 to 63.

When the MXVR is disabled, the PVALID bit will be 0. When the MXVR
is enabled in Master Mode, the PVALID bit will be 1 and the POSITION field
will be 0. Once the MXVR is enabled in Master Mode and the PVALID bit
is 1, only asserting reset or disabling the MXVR will cause the PVALID bit
to change to 0. When the MXVR is enabled in Slave Mode, the PVALID bit
will be 0 until the MXVR has reached a lock level at which the node posi-
tion can be correctly determined from the incoming datastream. Once the

Figure 29-8. MXVR Node Position Register

123456789101112131415 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

Reserved

MXVR Node Position Register (MXVR_POSITION)

PVALID
0 - Position Invalid
1 - Position Valid

POSITION

Node Physical Position
0x00 - Timing Master Position
0x01 to 0x3F - Slave Positions

Reset = 0x0000
0xFFC0 2724

ADSP-BF54x Blackfin Processor Hardware Reference 29-49

Media Transceiver Module (MXVR)

node position is correctly determined, the PVALID bit will change to a 1
and the POSITION field will contain the physical node position. Subse-
quent changes to the node position (for example, upstream nodes entering
or exiting All Bypass) will cause the POSITION field to update, but the
PVALID bit will remain a 1 as long the MXVR remains locked throughout
the change. Once the MXVR is enabled in Slave Mode and the PVALID bit
is 1, only asserting reset, disabling the MXVR, or losing lock will cause the
PVALID bit to change to 0.

MXVR Maximum Node Position
(MXVR_MAX_POSITION) Register

The MXVR_MAX_POSITION register is a read-only register that indicates the
total number of Active nodes within the ring network. The Slave nodes in
the network have the MPOSITION field updated once every 1024 frames. If
the MPVALID bit is a 1, then the MPOSITION field is valid. If the MPVALID bit
is a 0, then the MPOSITION field is not valid. The maximum physical node
position can range from 1 (MPOSITION= b#000001) to 64
(MPOSITION=b#000000).

Once the Master has achieved a lock level at which the total number of
nodes in the network can accurately be determined, the MPOSITION field
will be updated, the MPVALID bit will change to a 1 in the Master. At that
point the Master will distribute the MPOSITION value to all the Slave nodes
ever 1024 frames. Once the Slave nodes have achieved a lock level at

Figure 29-9. MXVR Maximum Node Position Register

123456789101112131415 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

Reserved

MXVR Maximum Node Position Register (MXVR_MAX_POSITION)

0 - Maximum Position Invalid
1 - Maximum Position Valid

MPOSITION

Maximum Position
0x01 to 0x3F - Valid Maximum Positions

Reset = 0x0000

MPVALID

0xFFC0 2724

MXVR Registers

29-50 ADSP-BF54x Blackfin Processor Hardware Reference

which the MPOSITION value distributed by the Master can be accurately
received, the MPOSITION field will be updated and the MPVALID bit will
change to a 1 in the Slave nodes. Subsequent changes to the total number
of nodes in the network (for example, nodes entering or exiting All
Bypass) will cause the MPOSITION field to update, but the MPVALID bit will
remain a 1 as long as the MXVR remains locked throughout the change.

Once MPVALID is set to 1, only asserting reset, disabling the MXVR, or los-
ing lock will cause the MPVALID to change to a 0.

MXVR Node Frame Delay (MXVR_DELAY) Register
The MXVR_DELAY register is a read-only register that indicates the number
of nodes with 2 frame delays that synchronous data will pass through
when going from the transmit output of the Master over the network to
the receive input of this MXVR node. The DELAY field value is calculated
by determining the number of Slave nodes operating in Active Mode with
2 frame delays between the Master the MXVR node. The DELAY field value
is calculated once every 1024 frames.

If the DVALID bit is a 1, then the DELAY field is valid. If the DVALID bit is a
0, then the DELAY field is not valid. The DELAY field can range from 0 to 63
(representing from 0 to 126 frame delays for synchronous data).

Figure 29-10. MXVR Node Frame Delay Register

123456789101112131415 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

Reserved

MXVR Node Delay Register (MXVR_DELAY)

0 - Delay Invalid
1 - Delay Valid

DELAY

Delay from Master
0x00 to 0x3F - Valid Delays

Reset = 0x0000

DVALID

0xFFC0 2728

ADSP-BF54x Blackfin Processor Hardware Reference 29-51

Media Transceiver Module (MXVR)

When the MXVR is disabled, the DVALID bit will be 0. When the MXVR
is enabled in Master Mode, the DVALID bit will be 1 and the DELAY field
will be 0. When the MXVR is enabled in Master Mode and the DVALID bit
is 1, only asserting reset or disabling the MXVR will cause the DVALID bit
to change to 0. When the MXVR is enabled in Slave Mode, the DVALID bit
will be 0 until the MXVR has reached a lock level at which the node delay
can be correctly determined from the incoming datastream. Once the
node delay is correctly determined, the DVALID bit will change to a 1 and
the DELAY field will contain the node delay value. Subsequent changes to
the node delay (for example, other nodes changing from 2 frame delays to
0 frame delays) will cause the DELAY field to update, but the DVALID bit will
remain a 1 as long as the MXVR remains locked. Once the MXVR is
enabled in Slave Mode and the DVALID bit is 1, only asserting reset, dis-
abling the MXVR, or losing lock will cause the DVALID bit to change to 0.

Note that synchronous data received by the MXVR and DMA’ed to L1 or
L2 memory is not frame delayed in the process of transferring the data and
synchronous data that is DMA’ed from L1 or L2 memory to the MXVR
for transmit is not frame delayed in the process of transferring the data.

To determine the actual time delay of data transmitted from L1 or L2
memory of one MXVR node “A” to the L1 or L2 memory of MXVR node
“B” can be calculated using one of three formulas:

If (POSITIONA < POSITIONB),

tdelay = 2 * (DELAYA - DELAYB) * (1 / Fs)

If (POSITIONA > POSITIONB) and (SDELAYA == ”0”),

tdelay = 2 * (MDELAY - DELAYA + DELAYB) * (1 / Fs)

If (POSITIONA > POSITIONB) and (SDELAYA == ”1”),

tdelay = 2 * (MDELAY - DELAYA + DELAYB - 1) * (1 / Fs)

MXVR Registers

29-52 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Maximum Node Frame Delay
(MXVR_MAX_DELAY) Register

The MXVR_MAX_DELAY register is a read-only register that indicates the total
number of nodes with two frame delays that synchronous data will pass
through when circling the network. The total number of node delays is
calculated by the Master once every 1024 frames. Then the Master distrib-
utes the MDELAY value to all the Slave nodes once every 1024 frames.

If the MDVALID bit is a 1, then the MDELAY field is valid. If the MDVALID bit is
a 0, then the MDELAY field is not valid. The MDELAY field can range from 0
to 63 (representing from 0 to 126 frame delays for synchronous data).

When the MXVR is disabled, the MDVALID bit will be 0. When the MXVR
is enabled in Master Mode, the MDVALID bit will be 0 until the Master
reaches a lock level at which the total number of node delays in the net-
work can be determined. Once the total number of node delays is
correctly determined, the MDVALID bit will change to a 1 and the MDELAY
field will contain the total number of node delays. Then the Master will
distribute the total number of delays in the network to the Slave nodes
once every 1024 frames.

When the MXVR is enabled in Slave Mode, the MDVALID bit will be 0 until
the MXVR has reached a lock level at which the total number of node
delays can correctly received from the Master. Once the total number of
node delays is correctly received, the MDVALID bit will change to a 1 and

Figure 29-11. MXVR Maximum Node Frame Delay Register

123456789101112131415 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

Reserved

MXVR Maximum Node Frame Delay Register (MXVR_MAX_DELAY)

0 - Maximum Delay Invalid
1 - Maximum Delay Valid

MDELAY

Maximum Delay
0x00 to 0x3F - Valid Maximum Delays

Reset = 0x0000

MDVALID

0xFFC0 272C

ADSP-BF54x Blackfin Processor Hardware Reference 29-53

Media Transceiver Module (MXVR)

the MDELAY field will contain the total number of node delays in the net-
work. Subsequent changes to the total number of node delays (for
example, other nodes changing from 2 frame delays to 0 frame delays) will
cause the MDELAY field to update, but the MDVALID bit will remain a 1 as
long as the MXVR remains locked.

Once MDVALID is set to 1, only asserting reset, disabling the MXVR, or los-
ing lock will cause the MDVALID to change to 0.

MXVR Logical Address (MXVR_LADDR) Register
The MXVR_LADDR register sets the MXVR node's logical address. The logical
address may be programmed to any value; however, address 0x0000 is not
allowed by the protocol, addresses 0x3000 to 0x03FF are reserved for
group and broadcast addresses and addresses 0x0400 to 0x04FF are
reserved for position addresses. In addition, software must determine the
uniqueness of any logical address.

Figure 29-12. MXVR Logical Address Register

123456789101112131415 0

1 1 1 1 1 1 11 1 1 1 1 1 1 1 1

MXVR Logical Address Register (MXVR_LADDR)

0 - Logical Address Not Valid
1 - Logical Address Valid

LADDR
Logical Address
0x0000 - Illegal
0x0001 to 0x02FF - Valid
0x0300 to 0x04FF - Reserved
0x0500 to 0xFFFF - Valid

Reset = 0x0000 FFFF

LVALID

Reserved

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

171819202122232425262728293031 16

0xFFC0 2730

MXVR Registers

29-54 ADSP-BF54x Blackfin Processor Hardware Reference

There is an LVALID bit which should be written to a 1 once the LADDR field
is written. When the LVALID bit is set to a 1, the MXVR will use the value
of the LADDR field as the Logical Address for checking the Destination
Address field of incoming Asynchronous Packets and Control Messages. If
the LVALID bit is set to 0, the MXVR will only use the Alternate Address
from the MXVR_AADDR register for checking the Destination Address field of
incoming Asynchronous Packets. If the LVALID bit is set to 0, the MXVR
will only use the Physical Address from the MXVR_POSITION register and the
Group Address from the MXVR_GADDR register for checking the Destination
Address field of incoming Control Messages.

MXVR Group Address (MXVR_GADDR) Register
The MXVR_GADDR register sets the MXVR node's group address. This
address may be programmed to any value and software must determine the
suitability of any group address. The lower byte of the Group Address can
be written to the GADDRL field. The upper byte is assumed to be 0x03.
There is a GVALID bit which should be written to a 1 once the GADDRL field
is written. When the GVALID bit is set to a 1, the MXVR will use the value
of the GADDRL field to form the Group Address for checking the Destina-
tion Address field of incoming Control Messages. If the GVALID bit is set to
0, the MXVR will only use the Physical Address from the MXVR_POSITION
register and the Logical Address from the MXVR_LADDR register for checking
the Destination Address field of incoming Control Messages.

Figure 29-13. MXVR Group Address Register

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

Reserved

MXVR Group Address Register (MXVR_GADDR)

0 - Group Address Not Valid
1 - Group Address Valid

GADDRL

Group Address Lower Byte
0x00 to 0xC7 - Valid
0xC8 - Reserved (Broadcast)
0xC9 to 0xFF - Valid

Reset = 0x0000

GVALID

123456789101112131415 0

0xFFC0 2734

ADSP-BF54x Blackfin Processor Hardware Reference 29-55

Media Transceiver Module (MXVR)

MXVR Alternate Address (MXVR_AADDR) Register
The MXVR_AADDR register sets the MXVR node’s alternate address. The
alternate address may be programmed to any value and software must
determine the suitability of any alternate address. The AVALID bit should
be written to a 1 once the AADDR field is written. When the AVALID bit is set
to a 1, the MXVR will use the value of the AADDR field as the Alternate
Address for checking the Destination Address field of incoming Asynchro-
nous Packets. If the AVALID bit is set to 0, the MXVR will only use the
Logical Address for checking the Destination Address field of incoming
Asynchronous Packets.

MXVR Allocation Table (MXVR_ALLOC_0
– MXVR_ALLOC_14) Registers

The MXVR_ALLOC_x registers contain the Allocation Table for the network’s
synchronous physical channels. The Master services all allocation and
de-allocation requests, maintains the complete Allocation Table, and

Figure 29-14. MXVR Alternate Address Register

123456789101112131415 0

0 0 0 1 1 1 10 1 1 1 1 1 1 1 1

MXVRAlternateAddressRegister(MXVR_AADDR)

0 - Alternate Address Not Valid
1 - Alternate Address Valid

AADDR
Alternate Address
0x0000 to 0xFFFF - Valid

Reset = 0x0000 0FFF

AVALID

171819202122232425262728293031 16

Reserved

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

MXVR Registers

29-56 ADSP-BF54x Blackfin Processor Hardware Reference

sends the Allocation Table out to all the Slave nodes once every 1024
frames. All Allocation Table related processing is handled by the MXVR
Master in hardware (without interaction from software).

The Allocation Table appears in fifteen read-only registers (MXVR_ALLOC_0
to MXVR_ALLOC_14). The 60 synchronous physical channels each have an
8-bit section in one of the 32-bit MXVR_ALLOC_x registers. Figure 8-17
shows MXVR_ALLOC_0 register as an example of one of the Allocation Table
registers. All other Allocation Table registers have the same format.

The Connection Label (CLx) field indicates which physical channels are
associated with a particular Connection Label value. When the CLx field
value is 0x70, physical channel x has not been allocated. When the CLx
field value is between 0x00 and 0x3B, physical channel x is allocated and
is associated with all other physical channels which have the same CLx field
value.

Figure 29-15. MXVR Allocation Table Register

123456789101112131415 0

x x x x x x xx x x x x x x x x

x x x x x x xx x x x x x x x x

MXVR Allocation Table Register 0 (MXVR_ALLOC_0)

CIU0

CL0

CIU2

CL2

CL1

CIU1

CL3

CIU3

Reset = 0xXXXX XXXX

171819202122232425262728293031 16

For CIUx
0 = Channel Not In Use
1 = Channel In Use

For CLx
0x70 = Not Allocated
0x00 - 0x3B = Legal Connection Labels

0xFFC0 273C

ADSP-BF54x Blackfin Processor Hardware Reference 29-57

Media Transceiver Module (MXVR)

The Channel-In-Use (CIUx) bit indicates whether a particular physical
channel is “In-Use” by a node in the network. If the CIUx bit is 0, physical
channel x is not “In-Use”. If the CIUx bit is 1, physical channel x is
“In-Use”.

The Master node modifies its Allocation Table based on Resource Allocate
and Resource De-Allocate system control messages from itself and from
the Slave nodes in the ring. The Master node distributes the Allocation
Table to all Slaves in the ring over the control message channel once every
1024 frames. As each Slave node receives the Allocation Table, the Slave
node updates its own copy of the Allocation Table and also sets the CIUx
bit for each physical channel that Slave node is using. In this way, once the
Allocation Table returns back to the Master, the Master’s Allocation Table
will show which channels are “In-Use” for the entire network. Note that
in each Slave node, the CIUx bits only reflect which channels are “In-Use”
by upstream nodes (nodes with lower POSITION values).

MXVR Synchronous Logical Channel Assignment
(MXVR_SYNC_LCHAN_0 –
MXVR_SYNC_LCHAN_7) Registers

The MXVR_SYNC_LCHAN_x registers are used to assign logical channel num-
bers to each of the 60 synchronous physical channels. These logical
channel numbers are then used when programming the 8 synchronous
data DMA channels.

There are eight Synchronous Logical Channel Assignment registers
(MXVR_SYNC_LCHAN_0 to MXVR_SYNC_LCHAN_7). The 60 synchronous physi-
cal channels each have an 4-bit field in one of the eight 32-bit
MXVR_SYNC_LCHAN_x registers. Figure 8-18 shows MXVR_SYNC_LCHAN_0 regis-
ter as an example of one of the Synchronous Logical Channel Assignment
registers. All other Synchronous Logical Channel Assignment registers
have the same format.

MXVR Registers

29-58 ADSP-BF54x Blackfin Processor Hardware Reference

The Logical Channel for Physical Channel x (LCHANPCx) field gives the
logical channel number assigned to physical channel x. All LCHANPCx fields
will reset to b#1111 which indicates that the physical channel has not
been assigned to a logical channel. Each physical channel which will be
used for receiving data or transmitting data should have the LCHANPCx field
assigned a logical channel value between b#0000 and b#0111. Logical
channel values between b#1000 and b#1110 are reserved.

All physical channels which have the same logical channel value pro-
grammed to their LCHANPCx fields will be DMA’ed together. For example,
if LCHANPC5, LCHANPC8, and LCHANPC30 each have been written with
b#0110 and Synchronous DMA Channel 3 is programmed to receive data
from logical channel 6 (LCHAN3=b#0110), then Synchronous Data DMA
Channel 3 will DMA data received on physical channels 5, 8, and 30 into
L1 memory.

Figure 29-16. MXVR Synchronous Logical Channel Assignment Register

123456789101112131415 0

MXVR Synchronous Logical Channel Assignment Register 0 (MXVR_SYNC_LCHAN_0)

LCHANPC1

LCHANPC0

LCHANPC5

LCHANPC4

LCHANPC2

LCHANPC3

LCHANPC6

LCHANPC7

Reset = 0xFFFF FFFF

171819202122232425262728293031 16

For LCHANPCx
0000 - 0111= Logical Channels 0 to 7
1000 - 1110 = Reserved
1111 = Unassigned

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0xFFC0 2778

ADSP-BF54x Blackfin Processor Hardware Reference 29-59

Media Transceiver Module (MXVR)

Note that the logical channel numbers assigned to the LCHANPCx fields
have no meaning other than to associate physical channels with each other
and assign them to DMA channels. These logical channel numbers are
completely independent of the Connection Label numbers in the Alloca-
tion Table.

MXVR DMAx Configuration (MXVR_DMA0_CONFIG
– MXVR_DMA7_CONFIG) Registers

The MXVR_DMAx_CONFIG registers set the operating mode for the eight Syn-
chronous Data DMA channels. Each Synchronous Data DMA channel
can transfer synchronous data received by the MXVR from the network to
L1 or L2 memory or can transfer synchronous data stored in L1 or L2
memory to the MXVR to be transmitted over the network. The physical
channels allocated for transferring synchronous data can be grouped into
logical channels by programming the MXVR_SYNC_LCHAN_x registers. The
Synchronous Data DMA channels can then be assigned to a particular log-
ical channel for transmit or receive. In this way synchronous data can
easily be moved from any set of received channels to L1 or L2 memory or
from L1 or L2 memory to any set of transmitted channels.

The DMA channel is enabled by setting the DMAx Enable (MDMAENx) bit
to 1 or disabled by setting the MDMAEN bit to 0. When the MDMAENx bit is set
to 1, the MXVR_DMAx_START_ADDR and MXVR_DMAx_COUNT registers should not
be written. In addition when the MDMAENx bit is set to 1, all bits in the
MXVR_DMAx_CONFIG register except for the MDMAENx bit will be read-only and
writes to other bits in the MXVR_DMAx_CONFIG register will have no effect.
Note that when a DMA channel is enabled or disabled, the DMA channel
will always start or stop at the beginning of a new frame.

 When disabling a DMA channel (by setting MDMAENx to 0), the
associated Logical Channel assignment made in the
MXVR_SYNC_LCHAN_x registers must not be changed until after the
associated DMAACTIVEx bit in the MXVR_STATE_1 register indicates
that the DMA channel has stopped.

MXVR Registers

29-60 ADSP-BF54x Blackfin Processor Hardware Reference

The transfer direction for the DMA channel is set by writing the DMAx
Direction (DDx) bit. When the DDx bit is set to 1, the DMA channel will
transfer data received by the MXVR to an L1 or L2 memory buffer. When
the DDx bit is set to 0, the DMA channel will transfer data from an L1 or
L2 memory buffer to the MXVR to be transmitted.

The DMAx Four Byte Swap Enable (BY4SWAPENx) bit enables or disables
four byte swapping of the data that is DMA’ed to/from L1 or L2 memory.
If BY4SWAPENx is set to 1, the data byte 0 will be swapped with data byte 3
and data byte 1 will be swapped with data byte 2. If BY4SWAPENx is set to 0,
four byte swapping will not take place. For example, data value
0x54987536 when four byte swapped becomes 0x36759854. Four byte
swapping is done by reading and writing the L1 or L2 memory in a differ-
ent order if four byte swapping is enabled. For example, normally data will
be read from/written to L1 or L2 in the following address order: 0x00,
0x01, 0x02, 0x03, 0x04, 0x05, etc. If four byte swapping is enabled, data
will be read from/written to L1 or L2 in the following address order: 0x03,
0x02, 0x01, 0x00, 0x07, 0x06, 0x05, 0x04, etc. Note that when four byte
swapping is enabled, the MXVR_DMAx_CURR_ADDR will reflect the normal
address incrementing (0x00, 0x01, 0x02, 0x03, etc.) even though the L1
or L2 memory accesses will be occurring in the four byte swapping address
order. Note that bit-swapping and four byte-swapping may be used in
conjunction. However, two byte-swapping and four byte-swapping may
not be used at the same time.

The DMAx Logical Channel (LCHANx) field determines which logical
channel in the incoming frame will be received and DMA’ed to L1 or L2
memory or which logical channel in the outgoing frame will be DMA’ed
from L1 or L2 memory and transmitted. The logical channels are defined
in the MXVR_SYNC_LCHAN_x registers. Two DMA channels can have the
same LCHANx field set as long as the data direction for the two channels is
different (one for receive, one for transmit). Programming more than one
DMA channel with the same data direction and the same LCHANx value is
illegal.

ADSP-BF54x Blackfin Processor Hardware Reference 29-61

Media Transceiver Module (MXVR)

The DMAx Bit-Swap Enable (BITSWAPENx) bit enables or disables bit
swapping of the data that is DMA’ed to and from L1 memory. If
BITSWAPENx is set to 1, the data bits will be swapped on a byte-wise basis as
follows:

bit 7 => bit 0 and bit 0 => bit 7

bit 6 => bit 1 and bit 1 => bit 6

bit 5 => bit 2 and bit 2 => bit 5

bit 4 => bit 3 and bit 3 => bit 4

For example, data value 0x35 when bit-swapped becomes 0xAC. If
BITSWAPEN is set to 0, no bit swapping will take place. Note that bit-swap-
ping and byte-swapping may be used in conjunction.

The DMAx Two Byte Swap Enable (BY2SWAPENx) bit enables or disables
two byte swapping of the data that is DMA'd to/from L1 or L2 memory.
If BY2SWAPENx is set to 1, the data byte 0 will be swapped with data byte 1.
If BY2SWAPENx is set to 0, two byte swapping will not take place. For exam-
ple, data value 0x3586 when two byte swapped becomes 0x8635. Two
byte swapping is done by reading and writing the L1 or L2 memory in a
different order if two byte swapping is enabled. For example, normally
data will be read from/written to L1 or L2 in the following address order:
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, etc. If two byte swapping is enabled,
data will be read from/written to L1 or L2 in the following address order:
0x01, 0x00, 0x03, 0x02, 0x05, 0x04, etc. Note that when two byte swap-
ping is enabled, the MXVR_DMAx_CURR_ADDR will reflect the normal address
incrementing (0x00, 0x01, 0x02, 0x03, etc.) even though the L1 or L2
memory accesses will be occurring in the two byte swapping address order.
Note that bit-swapping and two byte-swapping may be used in conjunc-
tion. However, two byte-swapping and four byte-swapping may not be
used at the same time.

MXVR Registers

29-62 ADSP-BF54x Blackfin Processor Hardware Reference

The DMAx Operation Flow (MFLOWx) field determines the operating mode
of the DMA channel. Each DMA channel can operate in Stop Mode,
Autobuffer Mode, Synchronous Packet-Fixed Count Mode, Synchronous
Packet-Variable Count Mode, and Synchronous Packet-Start/Stop Mode.

In Stop Mode, once the DMA is enabled a fixed number of bytes of data
will be transferred from the logical channel to an L1 or L2 memory buffer
(receive) or from an L1 or L2 memory buffer to the logical channel (trans-
mit). The starting address of the L1 or L2 memory buffer is programmed
in the MXVR_DMAx_START_ADDR register and the number of bytes to be trans-
ferred is programmed in the MXVR_DMAx_COUNT register. The DMA channel
will set the HDONEx status event when half of the total number of bytes are
completed, and will set the DONEx status event when the total number of
bytes are completed. Once all the transfers are done the DMA channel will
disable itself. Disabling the DMA channel manually before the DMA has
completed the total number of bytes will halt the DMA transfers and the
values in the MXVR_DMAx_CURR_ADDR and MXVR_DMAx_CURR_COUNT will indi-
cate where the DMA channel stopped. However, when the channel is
re-enabled, the current address and count will reset back to the values pro-
grammed into the MXVR_DMAx_START_ADDR and MXVR_DMAx_COUNT.

In Autobuffer Mode, once the DMA is enabled a fixed number of bytes of
data will be transferred from the logical channel and to an L1 or L2 mem-
ory buffer (receive) or from an L1 or L2 memory buffer to the logical
channel (transmit). The starting address of the L1 or L2 memory buffer is
programmed in the MXVR_DMAx_START_ADDR register and the number of
bytes to be transferred is programmed in the MXVR_DMAx_COUNT register.
The DMA channel will set the HDONEx status event when half of the total
number of bytes are completed, and will set the DONEx status event when
the total number of bytes are completed. Once all the transfers are done
the DMA will remain enabled and will restart from the address specified
in the MXVR_DMAx_START_ADDR register and with the transfer count in the
MXVR_DMAx_COUNT register. Disabling the DMA channel manually when
the DMA is programmed for Autobuffer Mode will halt the DMA trans-
fers and the values in the MXVR_DMAx_CURR_ADDR and

ADSP-BF54x Blackfin Processor Hardware Reference 29-63

Media Transceiver Module (MXVR)

MXVR_DMAx_CURR_COUNT will indicate where the DMA channel stopped.
However, when the channel is re-enabled, the current address and count
will reset back to the values programmed into the MXVR_DMAx_START_ADDR
and MXVR_DMAx_COUNT.

The DMA channels have three Synchronous Packet Autobuffer Modes
which allow the DMA channels to receive packetized data over the syn-
chronous data channels. The three modes are Synchronous
Packet-Variable Count Mode, Synchronous Packet-Start/Stop Mode, and
Synchronous Packet-Fixed Count Mode. These DMA modes are only
used when the MXVR is receiving data and the DMA channel is writing
the data to L1 or L2 memory. These Synchronous Packet Autobuffer
Modes allow the data being received to trigger the DMA channel to start
at the beginning of a packet and trigger the DMA channel to stop at the
end of the packet. Note that the Synchronous Packet Autobuffer Modes
which allow the DMA channels to receive packets of data over the syn-
chronous data portion of the network frame should not be confused with
Asynchronous Packets which are transmitted and received over the asyn-
chronous data portion of the network frame.

When the DMA channel is set for Synchronous Packet-Variable Count
Mode and once the DMA channel is enabled, the DMA channel will
search the data in a logical channel in the received data stream for the
“start pattern”. The logical channel which the DMA channel will search in
and DMA from is defined by the LCHANx field and the “start pattern” is
selected by the STARTPATx field. Once the “start pattern” is found, the
DMA channel will start transferring data received in the logical channel to
L1 or L2 memory and at the same time will search for the transfer count (a
16-bit value representing the number of bytes to be transferred) in the log-
ical channel data stream. The position of the transfer count with respect to
the “start pattern” is programmed in the COUNTPOSx field. The
MXVR_DMAx_CURR_COUNT will initially be set to 0xFFFF when the “start pat-
tern” is found and will decrement with every transfer done prior to
receiving the transfer count. Once the transfer count is received, the
MXVR_DMAx_CURR_COUNT will be based on transfer count from the

MXVR Registers

29-64 ADSP-BF54x Blackfin Processor Hardware Reference

datastream. Once the DMA channel transfers the number of bytes based
on the transfer count to L1 or L2 memory, the DMA will stop transferring
data. The DMA channel will then repeat the process and start looking for
the “start pattern” again.

The first packet of data (and subsequent odd packet numbers) received
will be written to the address specified in the MXVR_DMAx_START_ADDR. The
DMA transfers will continue until the transfer count expires. When the
transfer count expires, the HDONEx bit in the MXVR_INT_STAT_1 register will
be set to 1. The second packet of data (and subsequent even packet num-
bers) received will be written to an address that is defined by the
MXVR_DMAx_START_ADDR plus the value programmed in the
MXVR_DMAx_COUNT. The DMA transfers will continue until the transfer
count expires. When the transfer count expires, the DONEx bit in the
MXVR_INT_STAT_1 register will be set to 1. Subsequent received packets will
ping-pong between these two L1 or L2 memory buffers. Note that the
value programmed to the MXVR_DMAx_COUNT should be sufficiently large
enough to accommodate the largest packet size that will be received.

Synchronous Packet-Variable Count Mode operation will continue until
the MDMAENx is set to 0, until a DMA Out of Bounds Error occurs, or until
a DMA Error occurs. Note that when a DMA channel is enabled or dis-
abled, the DMA channel will always start or stop at the beginning of a
new frame.

When the DMA channel is set for Synchronous Packet-Start/Stop Mode
and once the DMA channel is enabled, the DMA channel will be search-
ing the data in a logical channel in the received data stream for the “start
pattern”. The logical channel which the DMA channel will search in and
DMA from is defined by the LCHANx field and the “start pattern” is
selected by the STARTPATx field. Once the “start pattern” is found, the
DMA channel start transferring data received in the logical channel to L1
or L2 memory and at the same time will search for the “stop pattern” in
the logical channel data stream. The “stop pattern” is selected by the
STOPPATx field. The MXVR_DMAx_CURR_COUNT will initially be set to 0xFFFF

ADSP-BF54x Blackfin Processor Hardware Reference 29-65

Media Transceiver Module (MXVR)

when the “start pattern” is found and will decrement with every transfer
done prior to receiving “stop pattern”. Once the DMA channel receives
the “stop pattern”, the DMA will stop transferring data. The DMA chan-
nel will then repeat the process and start looking for the “start pattern”
again.

The first packet (and subsequent odd packet numbers) of data received
will be written to the address specified in the MXVR_DMAx_START_ADDR. The
DMA transfers will continue until the “stop pattern” is found. Once the
“stop pattern” is found, the HDONEx bit in the MXVR_INT_STAT_1 register
will be set to 1. The second packet (and subsequent even packet numbers)
of data received will be written to an address that is defined by the
MXVR_DMAx_START_ADDR plus the value programmed in the
MXVR_DMAx_COUNT. The DMA transfers will continue until the “stop pat-
tern” is found. Once the “stop pattern” is found, the DONEx bit in the
MXVR_INT_STAT_1 register will be set to 1. Received packets will ping-pong
between these two L1 or L2 memory buffers. Note that the value pro-
grammed to the MXVR_DMAx_COUNT should be sufficiently large enough to
accommodate the largest packet size that will be received.

The Synchronous Packet-Start/Stop Mode operation will continue until
the MDMAENx is set to 0, until a DMA Out of Bounds Error occurs, or until
a DMA Error occurs. Note that when a DMA channel is enabled or dis-
abled, the DMA channel will always start or stop at the beginning of a
new frame.

When the DMA channel is set for Packet-Fixed Count Mode and once the
DMA channel is enabled, the DMA channel will be searching the data in a
logical channel in the received data stream for the “start pattern”. The log-
ical channel which the DMA channel will search in and DMA from is
defined by the LCHANx field and the “start pattern” is selected by the
STARTPATx field. Once the “start pattern” is found, the DMA channel
starts transferring data received in the logical channel to L1 or L2 memory
using the transfer count programmed in the MXVR_DMAx_COUNT register (the
fixed transfer count). Once the DMA channel transfers the number of

MXVR Registers

29-66 ADSP-BF54x Blackfin Processor Hardware Reference

bytes based on the transfer count to L1 or L2 memory, the DMA will stop
transferring data. The DMA channel will then repeat the process and start
looking for the “start pattern” again.

The first packet (and subsequent odd packet numbers) of data received
will be written to the address specified in the MXVR_DMAx_START_ADDR. The
DMA transfers will continue until the transfer count expires. Once the
transfer count expires, the HDONEx bit in the MXVR_INT_STAT_1 register will
be set to 1. The second packet (and subsequent even packet numbers)
received will be written to an address that is defined by the
MXVR_DMAx_START_ADDR plus the value programmed in the
MXVR_DMAx_COUNT. The DMA transfers will continue until the transfer
count expires. When the transfer count expires, the DONEx bit in the
MXVR_INT_STAT_1 register will be set to 1. Received packets will ping-pong
between these two L1 or L2 memory buffers.

The Synchronous Packet-Fixed Count Mode operation will continue until
the MDMAENx is set to 0 or until a DMA Error occurs. Note that when a
DMA channel is enabled or disabled, the DMA channel will always start
or stop at the beginning of a new frame.

The Fixed Pattern Matching select (FIXEDPM) bit determines whether a
pattern match can occur on any byte or bytes in a logical channel or if the
pattern must match the first byte or bytes of the logical channel. If the
FIXEDPM is set to 0, the “start pattern” or “stop pattern” can match any
byte or bytes in the logical channel. If the FIXEDPM is set to 1, the “start
pattern” or “stop pattern” will only match if the first byte of the pattern
matches the first byte in the logical channel (and so on depending on how
many bytes are being matched). For example, if the pattern is two bytes
long and the logical channel is defined as physical channels 8 to 11 and if
FIXEDPM is set to 1, then byte 0 of the pattern must match physical channel
8 and byte 1 of the pattern must match physical channel 9 for there to be
a match. In the same example if FIXEDPM is set to 0, bytes 0 and 1 could

ADSP-BF54x Blackfin Processor Hardware Reference 29-67

Media Transceiver Module (MXVR)

match physical channels 8 and 9, 9 and 10, 10 and 11, 11 in the current
frame and 8 in the next frame, or 11 from the previous frame and 8 in the
current frame.

The Start Pattern select (STARTPATx) field determines which set of pattern
registers will specify the “start pattern”. If the STARTPATx is set to b#00,
pattern registers MXVR_PAT_DATA_0 and MXVR_PAT_EN_0 will specify the
“start pattern”. If the STARTPAT is set to b#01, pattern registers
MXVR_PAT_DATA_1 and MXVR_PAT_EN_1 will specify the “start pattern”. All
other values of STARTPATx are reserved. Note that the “start pattern” itself
will not be DMA'd to L1 or L2 memory.

The Stop Pattern select (STOPPATx) field determines which set of pattern
registers will specify the “stop pattern”. If the STOPPATx is set to b#00, pat-
tern registers MXVR_PAT_DATA_0 and MXVR_PAT_EN_0 will specify the “stop
pattern”. If the STOPPATx is set to b#01, pattern registers MXVR_PAT_DATA_1
and MXVR_PAT_EN_1 will specify the “stop pattern”. All other values of
STOPPATx are reserved. Note that the “stop pattern” itself will be DMA'd
to L1 or L2 memory.

The Count Position (COUNTPOSx) field indicates where the 16-bit transfer
count can be found in the received data stream once the “start pattern” is
found when operating in Synchronous Packet-Variable Count Mode. The
COUNTPOSx indicates the position of the transfer count by giving the num-
ber of bytes between the last byte of the “start pattern” to the first byte of
the transfer count. The COUNTPOSx can range from 0 bytes after the end of
the “start pattern” to 7 bytes after the end of the “start pattern.” For exam-
ple, if the COUNTPOSx was set to 0, then the transfer count would be found
in the first two bytes in the logical channel after the end of the “start pat-
tern”. If the COUNTPOSx was set to 7, then the transfer count would be
found in the eight and ninth bytes in the logical channel after the end of
the “start pattern”. The most significant byte of the transfer count is
received first, and followed by the least significant byte of the transfer
count.

MXVR Registers

29-68 ADSP-BF54x Blackfin Processor Hardware Reference

Note that the number of bytes set by the COUNTPOSx field is with respect to
the logical channel data stream. In other words, the “start pattern” and
transfer count will be in the same logical channel but may be in different
frames. Note that the bytes of data between the “start pattern” and the
transfer count, and the transfer count itself will be DMA'd to L1 or L2
memory.

Figure 29-17. MXVR DMAx Configuration Register

123456789101112131415 0

MXVR DMAx Configuration Register (MXVR_DMAx_CONFIG)

DD

MDMAEN

STARTPAT

FIXEDPM

MFLOW

COUNTPOS

Reset = 0x0000 0000

171819202122232425262728293031 16

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 - Pat Match on Any Byte
 in Logical Channel
1 - Pat Match Only on First
 Byte of Logical Channel

00 - Start Pat from PR0
01 - Start Pat from PR1
10 - 11 Reserved

STOPPAT
00 - Stop Pat from PR0
01 - Stop Pat from PR1
10 - 11 Reserved

0 - Disable DMA Channel
1 - Enable DMA Channel

0 - DMA reads L1 (Transmit)
1 - DMA writes L1 (Receive)

000 - Stop
001 - Autobuffer
010 - Sync Packet-Variable Count
011 - Sync Packet-Start/Stop
100 - Sync Packet-Fixed Count
101 to 111 - Reserved

BY2SWAPEN
0 - Disable Two Byte Swap
1 - Swap Two Bytes (0:1)

BITSWAPEN
0 - Disable Byte-wise Bit Swap
1 - MSB...LSB => LSB...MSB

LCHAN
0000 - Logical Channel 0
0001 - Logical Channel 1
...
0111 - Logical Channel 7
1000 to 1111 - Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

000 - Count is 0 bytes after SP
001 - Count is 1 byte after SP
001 - Count is 2 bytes after SP
...
001 - Count is 7 bytes after SP

Reserved

BY4SWAPEN
0 - Disable Four Byte Swap
1 - Swap Four Bytes (0:3 and 1:2)

ADSP-BF54x Blackfin Processor Hardware Reference 29-69

Media Transceiver Module (MXVR)

MXVR DMA Channel x Start Address
(MXVR_DMA0_START_ADDR –
MXVR_DMA7_START_ADDR) Registers

The MXVR_DMAx_START_ADDR registers set the starting address for the syn-
chronous data DMA channels. The synchronous data DMA channels can
only DMA to or from L1 or L2 memory. Therefore, bits 31-25 are fixed
to 1s.

Once the DMA is enabled, data will begin to be DMA'd to or from the
address given in the MXVR_DMAx_START_ADDR for that channel. The opera-
tion of the DMA channel depends on which DMA mode is selected with
the MFLOWx field:

If the DMA is operating in Stop Mode, once all the transfers specified in
the corresponding MXVR_DMAx_COUNT have been done, the DMA will auto-
matically disable.

If the DMA channel is operating in Autobuffer Mode, once all of the
transfers specified in the corresponding MXVR_DMAx_COUNT have been done,
the DMA will then jump back to the start address programmed in the

Figure 29-18. MXVR DMA Channel x Start Address Registers

MXVR DMA Channel x Start Address Register (MXVR_DMAx_START_ADDR)

Reset = 0xFF00 0000

DMA Start Address [23:16]

DMA Start Address [15:0]

Bits 31-24 are fixed to 0xFF
All other bits are Read/Write when channel is disabled Read-Only when channel is enabled

123456789101112131415 0

171819202122232425262728293031 16

1 1 1 0 0 0 01 1 1 1 1 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

MXVR Registers

29-70 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR_DMAx_START_ADDR and DMA operations will continue from there. In
this way the data received will alternate between being written to the first
memory buffer at MXVR_DMAx_START_ADDR and the second memory buffer
at MXVR_DMAx_START_ADDR + MXVR_DMAx_COUNT/2.

If the DMA channel is operating in Synchronous Packet-Variable Count
Mode, the first packet received will be written to the
MXVR_DMAx_START_ADDR. Once all of the transfers specified by the transfer
count field in the packet itself have been done, the second packet received
will be written to MXVR_DMAx_START_ADDR + MXVR_DMAx_COUNT. Once all of
the transfers specified by the transfer count field in the packet itself have
been done, the third packet received will be written to
MXVR_DMAx_START_ADDR. In this way the packets received will alternate
between being written to the first memory buffer at
MXVR_DMAx_START_ADDR and the second memory buffer at
MXVR_DMAx_START_ADDR + MXVR_DMAx_COUNT.

If the DMA channel is operating in Synchronous Packet-Start/Stop Mode,
the first packet received will be written to the MXVR_DMAx_START_ADDR.
Once all of the transfers specified by the amount of data received between
the "start pattern" and the "stop pattern" have been done, the second
packet received will be written to MXVR_DMAx_START_ADDR +
MXVR_DMAx_COUNT. Once all of the transfers specified by the amount of data
received between the "start pattern" and the "stop pattern" have been
done, the third packet received will be written to MXVR_DMAx_START_ADDR.
In this way the packets received will alternate between being written to the
first memory buffer at MXVR_DMAx_START_ADDR and the second memory
buffer at MXVR_DMAx_START_ADDR + MXVR_DMAx_COUNT.

If the DMA channel is operating in Synchronous Packet-Fixed Count
Mode, the first packet received will be written to the
MXVR_DMAx_START_ADDR. Once all of the transfers specified by the fixed
count in the MXVR_DMAx_COUNT have been done, the second packet received
will be written to MXVR_DMAx_START_ADDR + MXVR_DMAx_COUNT. Once all of
the transfers specified by the fixed count in the MXVR_DMAx_COUNT have

ADSP-BF54x Blackfin Processor Hardware Reference 29-71

Media Transceiver Module (MXVR)

been done, the third packet received will be written to
MXVR_DMAx_START_ADDR. In this way the packets received will alternate
between being written to the first memory buffer at
MXVR_DMAx_START_ADDR and the second memory buffer at
MXVR_DMAx_START_ADDR + MXVR_DMAx_COUNT.

MXVR DMA Channel x Current Address
(MXVR_DMA0_CURR_ADDR –
MXVR_DMA7_CURR_ADDR) Registers

The MXVR_DMAx_CURR_ADDR registers are read-only registers which give the
current address that the synchronous data DMA channels are accessing.
The synchronous data DMA channels can only DMA to or from L1 or L2
memory. Therefore, bits 31–25 are fixed to 1s. Once the DMA is enabled,
data will begin to be DMA'd to or from the address given in the
MXVR_DMAx_START_ADDR for that channel. The MXVR_DMAx_CURR_ADDR will
always show the address which is being DMA'd to or from or the address
that was DMA'd to or from previously for each channel.

Figure 29-19. MXVR DMA Channel x Current Address Register

123456789101112131415 0

171819202122232425262728293031 16

1 1 1 0 0 0 01 1 1 1 1 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

MXVR DMA Channel x Current Address Register (MXVR_DMAx_CURR_ADDR)

All bits are Read-Only

Reset = 0xFF00 0000

DMA Current Address[31:16]

DMA Current Address[15:0]

MXVR Registers

29-72 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR DMA Channel x Transfer Count
(MXVR_DMA0_COUNT – MXVR_DMA7_COUNT)
Registers

The MXVR_DMAx_COUNT registers set the number of bytes that the synchro-
nous data DMA channels will transfer. The synchronous data DMA
channels can only DMA to or from L1 or L2 memory. The maximum
MXVR_DMAx_COUNT value is 65535 (giving a maximum data block size to be
DMA'd of 64K bytes). The value 0x0000 is illegal and should not be writ-
ten to the MXVR_DMAx_COUNT register.

Once the DMA is enabled, data will begin to be DMA'd to or from the
address given in the MXVR_DMAx_START_ADDR for that channel. The meaning
of the MXVR_DMAx_COUNT and the operation of the DMA channel depend
on which DMA mode is selected with the MFLOWx field:

If the DMA is operating in Stop Mode, the MXVR_DMAx_COUNT value is the
total number of bytes to be transferred. Once half of the transfers specified
have been completed, the HDONE interrupt event will be generated. Once
all the transfers specified have completed, the DONE interrupt event will be
generated and the DMA will automatically be disabled.

Figure 29-20. MXVR DMA Channel x Transfer Count Registers

MXVR DMA Channel x Transfer Count Register (MXVR_DMAx_COUNT)

Read/Write when channel is disabled Read-Only when channel is enabled

Reset = 0x0001

DMA Transfer Count
0x0000 - Reserved
0x0001 - 1Transfer
0xFFFF - 65,535 Transfers

123456789101112131415 0

0 0 0 0 0 0 10 0 0 0 0 0 0 0 0

ADSP-BF54x Blackfin Processor Hardware Reference 29-73

Media Transceiver Module (MXVR)

If the DMA channel is operating in Autobuffer Mode, the
MXVR_DMAx_COUNT value is the total number of bytes to be transferred
before the address is reset back to the MXVR_DMAx_START_ADDR. Once half of
the transfers specified have completed, the HDONE interrupt event will be
generated. Once all the transfers specified have completed, the DONE inter-
rupt event will be generated and the DMA will jump back to the start
address programmed in the MXVR_DMAx_START_ADDR and DMA operations
will continue from there.

If the DMA channel is operating in Synchronous Packet-Variable Count
Mode, the MXVR_DMAx_COUNT value is the offset from the
MXVR_DMAx_START_ADDR where every other packet will be written to. The
first packet (third packet, fifth packet, seventh packet, etc.) received will
be written starting at MXVR_DMAx_START_ADDR, while the second packet
(fourth packet, sixth packet, eight packet, etc.) will be written starting at
MXVR_DMAx_START_ADDR + MXVR_DMAx_COUNT. The transfer count for each
packet is included in the packet itself. Therefore, the MXVR_DMAx_COUNT
value should be larger than the length of the largest packet to be received.

If the DMA channel is operating in Synchronous Packet-Start/Stop Mode,
the MXVR_DMAx_COUNT value is the offset from the MXVR_DMAx_START_ADDR
where every other packet will be written to. The first packet (third packet,
fifth packet, seventh packet, etc.) received will be written starting at
MXVR_DMAx_START_ADDR, while the second packet (fourth packet, sixth
packet, eight packet, etc.) will be written starting at
MXVR_DMAx_START_ADDR + MXVR_DMAx_COUNT. The number of transfers to be
done for each packet is determined by the packet itself based on the num-
ber of bytes between the “start pattern” and the “stop pattern”. Therefore,
the MXVR_DMAx_COUNT value should be sufficiently large to hold the longest
packet to be received.

If the DMA channel is operating in Synchronous Packet-Fixed Count
Mode, the MXVR_DMAx_COUNT value is the number of bytes that will be
transferred to store one packet. All packets will be of the same length. The
first packet (third packet, fifth packet, seventh packet, etc.) received will

MXVR Registers

29-74 ADSP-BF54x Blackfin Processor Hardware Reference

be written starting at MXVR_DMAx_START_ADDR, while the second packet
(fourth packet, sixth packet, eight packet, etc.) will be written starting at
MXVR_DMAx_START_ADDR + MXVR_DMAx_COUNT.

MXVR DMA Channel x Current Transfer Count
(MXVR_DMA0_CURR_COUNT
– MXVR_DMA7_CURR_COUNT) Registers

The MXVR_DMAx_CURR_COUNT registers are read-only registers which give an
indication of the current number of bytes remaining to be transferred for
that synchronous data DMA channel. The meaning of the value in the
MXVR_DMAx_CURR_COUNT depends which DMA mode is selected with the
MFLOWx field.

In Stop Mode, Autobuffer Mode, and Synchronous Packet-Fixed Count
Mode, the MXVR_DMAx_CURR_COUNT will always show the number of bytes
which still need to be transferred. When all the transfers that were speci-
fied are done, the MXVR_DMAx_CURR_COUNT will be 0x0000.

In Synchronous Packet-Variable Count Mode, the number of bytes to be
transferred is not known until the transfer count is found in the packet.
Therefore, prior to finding the transfer count the MXVR_DMAx_CURR_COUNT
will decrement from 0xFFFF. Once the transfer count is found, the

Figure 29-21. MXVR DMA Channel x Current Transfer Count Registers

123456789101112131415 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

MXVR DMA Channel x Current Transfer Count Register (MXVR_DMAx_CURR_COUNT)

Read-Only

Reset = 0x0000

DMA Current Transfer Count
0x0000 - All Transfers Complete
0x0001 - 1 Transfer Remaining
0xFFFF - 65,535 Transfers Remaining

ADSP-BF54x Blackfin Processor Hardware Reference 29-75

Media Transceiver Module (MXVR)

MXVR_DMAx_CURR_COUNT will show the number of bytes which still need to
be transferred. When all the transfers that were specified are done, the
MXVR_DMAx_CURR_COUNT will be 0x0000.

In Synchronous Packet-Start/Stop Mode, the number of bytes to be trans-
ferred is not known until the “stop pattern” is found. Therefore, the
MXVR_DMAx_CURR_COUNT will decrement from 0xFFFF.and will stop when
the “stop pattern” is found.

MXVR Asynchronous Packet Control
(MXVR_AP_CTL) Register

The MXVR_AP_CTL register is a 16-bit register that is used to control the
transmission and reception of Asynchronous Packets. The MXVR has an
Asynchronous Packet Transmit Buffer (APTB) and an Asynchronous
Packet Receive Buffer (APRB). The APRB is capable of holding two received
Asynchronous Packets.

The Start Asynchronous Packet Transmission (STARTAP) bit should be set
to 1 once an asynchronous packet to be transmitted is written to the APTB
and the asynchronous packet is ready to be sent. Once the STARTAP bit is

Figure 29-22. MXVR Asynchronous Packet Control Register

123456789101112131415 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

MXVR Asynchronous Packet Control Register (MXVR_AP_CTL)

Reset = 0x0000

Reserved

STARTAP
0 - No effect
1 - Start Sending Packet
Always Reads 0

CANCELAP
0 - No Effect
1 - Cancel Packet Being Sent
Always Reads 0

RESETAP
0 - No effect
1 - Reset AP Channel
 Always Reads 0

APRBE1
0 - AP RX Buffer Entry 1 Empty
1 - AP RX Buffer Entry 1 Full
Write 1 to Clear

APRBE0
0 - AP RX Buffer Entry 0 Empty
1 - AP RX Buffer Entry 0 Full
Write 1 to Clear

0xFFC0 2838

MXVR Registers

29-76 ADSP-BF54x Blackfin Processor Hardware Reference

set to 1, arbitration for the asynchronous channel begins and continues
until arbitration is won or until the asynchronous packet is cancelled with
the CANCELAP bit. The STARTAP bit always reads as 0 and writing a 0 to the
STARTAP bit has no effect.

The Cancel Asynchronous Packet Transmission (CANCELAP) bit allows an
asynchronous packet transmission which is arbitrating for the asynchro-
nous channel to be cancelled. Once arbitration is won, the asynchronous
packet being sent cannot be cancelled. To cancel the asynchronous packet
transmission, the CANCELAP bit should be set to 1. Writing a 1 to the
CANCELAP bit after arbitration is won and the asynchronous packet is
already being sent will have no effect. The CANCELAP bit always reads as 0
and writing a 0 to the CANCELAP bit has no effect.

The Reset Asynchronous Packet Arbitration (RESETAP) bit allows the Mas-
ter to reset the asynchronous packet arbitration if an Asynchronous Packet
Error (APRPE) is detected. Asynchronous packet errors can occur when the
arbitration mechanism gets hung due to a bit error or when the transmit-
ting node does not properly terminate its asynchronous packet
transmission (for example, if a node is reset or disabled during an asyn-
chronous packet transmission).

Before the Master asserts the RESETAP, the Master should allow enough
time for all nodes in the ring to recognize that an asynchronous packet
error has occurred or the Master should notify all slave nodes in the ring
that it will be resetting the asynchronous packet arbitration, so that no
node will attempt transmission during the reset. The asynchronous packet
arbitration reset can take up to 3 frames to complete. The Master should
notify the slave nodes in the ring that the reset of the asynchronous packet
arbitration has completed.

Resetting the asynchronous packet arbitration while a packet is being
transmitted will block the packet from being received by nodes with
positions less than the position of the transmitting node. Transmitting

ADSP-BF54x Blackfin Processor Hardware Reference 29-77

Media Transceiver Module (MXVR)

asynchronous packets while the Master is resetting the asynchronous
packet arbitration could cause packet collisions and could cause further
packet errors.

To reset the asynchronous packet arbitration, the RESETAP bit should be
set to 1. Only the Master (MMSM = 1) can cause a reset of the asynchronous
packet arbitration. Attempting to write the RESETAP bit to a 0 in a Master
node will have no effect. In a Slave node, the RESETAP bit will always be set
to 0. Attempting to write the RESETAP bit to a 1 or 0 in a Slave node will
have no effect.

The Asynchronous Packet Receive Buffer Entry x (APRBEx) bits indicate
whether entry x in the APRB is full or empty. The APRBEx bits are sticky bits
which must be written with a 1 to clear. Writing a 0 to the APRBEx bit will
have no effect. When a received asynchronous packet is DMA'd to an APRB
entry, the corresponding APRBEx bit will be set to 1. Once software has
read the Asynchronous Packet stored in that entry, a 1 should be written
to the corresponding APRBEx bit in order to clear the bit and to indicate
that the entry is empty and can be used for another incoming asynchro-
nous packet. The MXVR will always attempt to DMA an incoming
asynchronous packets to the next sequential APRB buffer entry (first asyn-
chronous packet to APRBE0, second to APRBE1, third to APRBE0, etc.). An
overflow will occur if the next sequential APRBEx bit is 1 when a new asyn-
chronous packet is being received, and the APROF bit in the
MXVR_INT_STAT_0 register will be set to 1.

MXVR Asynchronous Packet Receive Buffer Start
Address (MXVR_APRB_START_ADDR) Register

The MXVR_APRB_START_ADDR register sets the starting address for the Asyn-
chronous Packet Receive Buffer in L1 or L2 memory. The APRB must be
allocated 2048 bytes. The APRB can only reside in L1 or L2 memory and
the APRB must be word aligned. Therefore, bits 31-25 are fixed to 1s and
bit 0 is fixed to 0.

MXVR Registers

29-78 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Asynchronous Packet Receive Buffer
Current Address (MXVR_APRB_CURR_ADDR)
Register

The MXVR_APRB_CURR_ADDR register is a read-only register which gives the
current address that the Asynchronous Packet Receive DMA channel is
writing to in the APRB. The APRB can only reside in L1 or L2 memory.
Therefore, bits 31-25 will always be 1’s and bit 0 will always be 0.

Figure 29-23. MXVR APRB Start Address Register

Figure 29-24. MXVR Asynchronous Packet Receive Buffer Current
Address Register

APRB Start Address[15:1]

APRB Start Address[23:16]

Reset = 0xFF00 0000

Bits 31-24 are fixed to 0xFF, bit 0 is fixed to 0

MXVR Asynchronous Packet Receive Buffer Start Address Register (MXVR_APRB_START_ADDR)

123456789101112131415 0

171819202122232425262728293031 16

1 1 1 0 0 0 01 1 1 1 1 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

Reserved

Reserved

0xFFC0 283C

Reset = 0xFF00 0000

123456789101112131415 0

171819202122232425262728293031 16

1 1 1 0 0 0 01 1 1 1 1 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

MXVR Asynchronous Packet Receive Buffer Current Address Register (MXVR_APRB_CURR_ADDR)

All bits are Read-Only

APRB Current Address[31:16]

APRB Current Address[15:0]

0xFFC0 2840

ADSP-BF54x Blackfin Processor Hardware Reference 29-79

Media Transceiver Module (MXVR)

MXVR Asynchronous Packet Transmit Buffer Start
Address (MXVR_APTB_START_ADDR) Register

The MXVR_APTB_START_ADDR register sets the starting address for the Asyn-
chronous Packet Transmit Buffer in L1 or L2 memory. Enough memory
should be allocated to the APTB based on the largest packet to be transmit-
ted. The APTB can only reside in L1 or L2 memory and the APTB must be
word aligned. Therefore, bits 31-25 are fixed to 1s and bit 0 is fixed to 0.

MXVR Asynchronous Packet Transmit Buffer
Current Address (MXVR_APTB_CURR_ADDR)
Register

The MXVR_APTB_CURR_ADDR register is a read-only register which gives the
current address that the Asynchronous Packet Transmit DMA channel is
reading from in the APTB. The APTB can only reside in L1 or L2 memory.
Therefore, bits 31-24 will always be 1s, and bit 0 will always be 0.

Figure 29-25. MXVR Asynchronous Packet Transmit Buffer Start Address
Register

MXVR Asynchronous Packet Transmit Buffer Start Address Register (MXVR_APTB_START_ADDR)

APTB Start Address[15:1]

APTB Start Address[23:16]

Reset = 0xFF00 0000

Bits 31-24 are fixed to 0xFF, bit 0 is fixed to 0

123456789101112131415 0

171819202122232425262728293031 16

1 1 1 0 0 0 01 1 1 1 1 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

Reserved

Reserved

0xFFC0 2844

MXVR Registers

29-80 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Control Message Control
(MXVR_CM_CTL) Register

The MXVR_CM_CTL register is a 32-bit register that is used to control the
transmission and reception of control messages. The MXVR uses a Con-
trol Message Transmit Buffer (CMTB) which resides in L1 or L2 memory
and holds one control message (System or Normal) to be transmitted. The
MXVR also uses a Control Message Receive Buffer (CMRB) which resides in
L1 or L2 memory and holds up to 16 received Normal control messages.

The Start Control Message Transmission (STARTCM) bit should be set to 1
when a control message is written to the CMTB and the control message is
ready to be sent. Once the STARTCM bit is set to 1, arbitration for the con-
trol message channel begins and continues until arbitration is won for the
control message to be sent or until the control message is cancelled with
the CANCELCM bit. The STARTCM bit always reads as 0 and writing a 0 to the
STARTCM bit has no effect.

Figure 29-26. MXVR Asynchronous Packet Transmit Buffer Current
Address Register

Reset = 0xFF00 0000

123456789101112131415 0

171819202122232425262728293031 16

1 1 1 0 0 0 01 1 1 1 1 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

MXVR Asynchronous Packet Transmit Buffer Current Address Register (MXVR_APTB_CURR_ADDR)

All bits are Read-Only

APTB Current Address[31:16]

APTB Current Address[15:0]

0xFFC0 2848

ADSP-BF54x Blackfin Processor Hardware Reference 29-81

Media Transceiver Module (MXVR)

The Cancel Control Message Transmission (CANCELCM) bit allows a control
message (System or Normal) which is arbitrating for the control message
channel to be cancelled. Once arbitration is won, the control message
being sent cannot be cancelled. To cancel the control message transmis-
sion, the CANCELCM bit should be set to 1. Writing a 1 to the CANCELCM bit
after arbitration is won and the control message is already being sent will
have no effect. The CANCELCM bit always reads as 0 and writing a 0 to the
CANCELCM bit has no effect.

The Control Message Receive Buffer Entry x (CMRBEx) bits indicate
whether entry x in the CMRB is full or empty. The CMRBEx bits are sticky bits
which must be written with a 1 to clear. When a received Normal control
message is DMA'd to the CMRB entry, the corresponding CMRBEx bit will be
set to 1. Once software has read the Normal control message stored in that

Figure 29-27. MXVR Control Message Control Register

MXVR Control Message Control Register (MXVR_CM_CTL)

For all CMRBEx bits:
0 - CMRX Buffer Entry x Empty
1 - CMRX Buffer Entry x Full (Write 1 to Clear)

Reset = 0x0000 0000

CANCELCM
0 - No effect
1 - Cancel Started CM
Always Reads 0

STARTCM
0 - No effect
1 - Start Sending Control Message
Always Reads 0

CMRBE0

CMRBE1

CMRBE2

CMRBE3

CMRBE4

CMRBE5

CMRBE6

CMRBE7

CMRBE15

CMRBE14

CMRBE13

CMRBE12

CMRBE11

CMRBE10

CMRBE9

CMRBE8

123456789101112131415 0

171819202122232425262728293031 16

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0xFFC0 284C

MXVR Registers

29-82 ADSP-BF54x Blackfin Processor Hardware Reference

entry, a 1 should be written to the corresponding CMRBEx bit in order to
clear the bit and to indicate that the entry is empty and can be used for
another incoming Normal control message. The MXVR will always
attempt to DMA an incoming Normal control message to the next
sequential CMRB entry (first Normal control message to CMRBE0, second to
CMRBE1, …, sixteenth to CMRBE15, seventeenth to CMRBE0, etc.). An over-
flow will occur if the next sequential CMRBEx bit is 1 when a new Normal
control message is arriving, and the CMRBOF bit in the MXVR_INT_STAT_0
register will be set to 1. In addition, when an overflow occurs the Trans-
mission Status will be returned to the transmitter indicating “Receive
Buffer Full”.

MXVR Control Message Receive Buffer Start
Address (MXVR_CMRB_START_ADDR) Register

The MXVR_CMRB_START_ADDR register sets the starting address for the Con-
trol Message Receive Buffer (CMRB) in L1 or L2 memory. The CMRB must be
allocated 384 bytes. The CMRB can only reside in L1 or L2 memory and
must be word aligned. Therefore, bits 31–25 are fixed to 1s and bit 0 is
fixed to 0.

ADSP-BF54x Blackfin Processor Hardware Reference 29-83

Media Transceiver Module (MXVR)

MXVR Control Message Receive Buffer Current
Address (MXVR_CMRB_CURR_ADDR) Register

The MXVR_CMRB_CURR_ADDR register is a read-only register which gives the
current address that the Normal Control Message Receive DMA channel
is writing to in the CMRB. The CMRB can only reside in L1 or L2 memory
and must be word aligned. Therefore, bits 31–25 will always be 1s and bit
0 will always be 0.

Figure 29-28. MXVR Control Message Receive Buffer Start Address Reg-
ister

CMRB Start Address[15:1]

CMRB Start Address[23:16]

Reset = 0xFF00 0000

Bits 31-24 are fixed to 0xFF, bit 0 is fixed to 0

123456789101112131415 0

171819202122232425262728293031 16

1 1 1 0 0 0 01 1 1 1 1 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

Reserved

Reserved

MXVR Control Message Receive Buffer Start Address Register (MXVR_CMRB_START_ADDR)

0xFFC0 2850

MXVR Registers

29-84 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Control Message Transmit Buffer Start
Address (MXVR_CMTB_START_ADDR) Register

The MXVR_CMTB_START_ADDR register sets the starting address for the Con-
trol Message Transmit Buffer (CMTB) in L1 or L2 memory. The CMTB must
be allocated 26 bytes. The CMTB can only reside in L1 or L2 memory and
must be word aligned. Therefore, bits 31–25 are fixed to 1s and bit 0 is
fixed to 0.

Figure 29-29. MXVR Control Message Receive Buffer Current Address
Register

Reset = 0xFF00 0000

123456789101112131415 0

171819202122232425262728293031 16

1 1 1 0 0 0 01 1 1 1 1 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

All bits are Read-Only

CMRB Current Address[31:16]

CMRB Current Address[15:0]

MXVR Control Message Receive Buffer Current Address Register (MXVR_CMRB_CURR_ADDR)

0xFFC0 2854

ADSP-BF54x Blackfin Processor Hardware Reference 29-85

Media Transceiver Module (MXVR)

MXVR Control Message Transmit Buffer Current
Address (MXVR_CMTB_CURR_ADDR) Register

This register provides the current address that the Control Message Trans-
mit DMA channel is reads from in the CMTB. The CMTB can only reside in
L1 or L2 memory and must be word aligned. Therefore, bits 31–25 are
always 1s and bit 0 are always 0.

Figure 29-30. MXVR Control Message Transmit Buffer Start Address
Registers

Figure 29-31. MXVR Control Message Transmit Buffer Current Address
Register

CMTB Start Address[15:1]

CMTB Start Address[23:16]

Reset = 0xFF00 0000

Bits 31-24 are fixed to 0xFF, bit 0 is fixed to 0

123456789101112131415 0

171819202122232425262728293031 16

1 1 1 0 0 0 01 1 1 1 1 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

Reserved

Reserved

MXVR Control Message Transmit Buffer Start Address Register (MXVR_CMTB_START_ADDR)

0xFFC0 2858

Reset = 0xFF00 0000

123456789101112131415 0

171819202122232425262728293031 16

1 1 1 0 0 0 01 1 1 1 1 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

All bits are Read-Only

CMTB Current Address[31:16]

CMTB Current Address[15:0]

0xFFC0 285C

MXVR Registers

29-86 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Remote Read Buffer Start Address
(MXVR_RRDB_START_ADDR) Register

The MXVR_RRDB_START_ADDR register sets the starting address for the
Remote Read Buffer (RRDB) in L1 or L2 memory. The RRDB must be allo-
cated 258 bytes. The RRDB can only reside in L1 or L2 memory and must
be word aligned. Therefore, bits 31–25 are fixed to 1s and bit 0 is fixed to
0.

MXVR Remote Read Buffer Current Address
(MXVR_RRDB_CURR_ADDR) Register

The MXVR_RRDB_CURR_ADDR register is a read-only register which gives the
current address that the Remote Read Buffer DMA channel is reading or
writing in the RRDB. The RRDB can only reside in L1 or L2 memory and
must be word aligned. Therefore, bits 31–25 will always be 1s and bit 0
will always be 0.

Figure 29-32. MXVR Remote Read Buffer Start Address Register

RRDB Start Address[15:1]

RRDB Start Address[23:16]

Reset = 0xFF00 0000

Bits 31-24 are fixed to 0xFF, bit 0 is fixed to 0

123456789101112131415 0

171819202122232425262728293031 16

1 1 1 0 0 0 01 1 1 1 1 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

Reserved

Reserved

0xFFC0 2860

ADSP-BF54x Blackfin Processor Hardware Reference 29-87

Media Transceiver Module (MXVR)

MXVR Pattern Registers
The MXVR has two sets of Pattern Registers: Pattern 0 Registers (PR0)
and Pattern 1 Registers (PR1). Each set of Pattern Registers contains a data
register and an enable register. The pattern matching registers define a
pattern which a synchronous DMA channel will search for in the incom-
ing datastream when the DMA channel is in one of the Synchronous
Packet modes. The MXVR_DMAx_CONFIG registers allow the “start pattern” to
be defined by either PR0 or PR1 and the “stop pattern” to be defined by
either PR0 or PR1. The patterns can be from one to four bytes long and can
be enabled in a bit-wise manner to allow “don't cares”.

MXVR Pattern Data (MXVR_PAT_DATA_0,
MXVR_PAT_DATA_1) Registers

The MXVR_PAT_DATA_x registers contain the data value to be used in the
comparison with received synchronous data in a logical channel while
checking for the occurrence of a “start pattern” or a “stop pattern” when a
DMA channel is in one of the Synchronous Packet modes. The data regis-
ter is four bytes long. Pattern matching will only be checked on byte
boundaries and can match across frames within the same logical channel.

Figure 29-33. MXVR Remote Read Buffer Current Address Register

Reset = 0xFF00 0000

123456789101112131415 0

171819202122232425262728293031 16

1 1 1 0 0 0 01 1 1 1 1 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

All bits are Read-Only

RRDB Current Address[31:16]

RRDB Current Address[15:0]

0xFFC0 2854

MXVR Registers

29-88 ADSP-BF54x Blackfin Processor Hardware Reference

The programming of the MXVR_PAT_EN_x registers determines which of the
bits in each of the four bytes will be used to check for a pattern match and
controls the number of bytes to be matched.

MXVR Pattern Enable (MXVR_PAT_EN_0,
MXVR_PAT_EN_1) Registers

The MXVR_PAT_EN_x registers contain bit enables that allow individual bits
within a Match Data Byte to be selectively enabled (a “care”) or disabled
(a “don't care”) in the comparison with the incoming synchronous data
bytes in a logical channel while checking for the occurrence of a “start pat-
tern” or a “stop pattern” when a DMA channel is in one of the
Synchronous Packet modes.

For example, if the Byte0-Bit 7 Match Enable is set to 1 and all the other
bit match enables are set to 0, then only bit 7 of Match Data Byte 0 is
used in the comparison and bits 6–0 of Match Data Byte 0 are “don't
cares”. Therefore, for a pattern match to occur, only bit 7 of the received
synchronous data byte in the logical channel must match bit 7 of Match
Data Byte 0.

Figure 29-34. MXVR Pattern Data Registers

123456789101112131415 0

Reset = 0x0000 0000
171819202122232425262728293031 16

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

MXVR Pattern Data Registers (MXVR_PAT_DATA_0, MXVR_PAT_DATA_1)

Match Data Byte3

Match Data Byte1

Match Data Byte2

Match Data Byte0

MXVR_PAT_DATA_0 0xFFC0 2868

MXVR_PAT_DATA_1 0xFFC0 2870

ADSP-BF54x Blackfin Processor Hardware Reference 29-89

Media Transceiver Module (MXVR)

The number of bytes to be used in pattern matching is also determined by
the MXVR_PAT_EN_x. The number of bytes to be used in matching is deter-
mined by the highest byte number to have at least one bit enabled in the
MXVR_PAT_EN_x. For example, if any bit in Data Byte 3 is enabled for
matching then all 4 bytes will be used in pattern matching. If no bits are
enabled in Data Byte 3, Data Byte 2 and Data Byte 1, and some bits are
enabled in Data Byte 0 then only one byte (Data Byte 0) will be used in
pattern matching.

Figure 29-35. MXVR Pattern Enable Registers

MXVR Pattern Enable Registers (MXVR_PAT_EN_0, MXVR_PAT_EN_1)

For all bits
0 - Corresponding pattern data bit is not used in pattern matching
1 - Corresponding pattern data bit is used in pattern matching

Reset = 0x0000 0000

Byte2 - Bit0 Match En

Byte2 - Bit1 Match En

Byte2 - Bit2 Match En

Byte2 - Bit3 Match En

Byte2 - Bit4 Match En

Byte2 - Bit5 Match En

Byte2 - Bit6 Match En

Byte2 - Bit7 Match En

Byte0 - Bit0 Match En

Byte0 - Bit1 Match En

Byte0 - Bit2 Match En

Byte0 - Bit3 Match En

Byte0 - Bit4 Match En

Byte0 - Bit5 Match En

Byte0 - Bit6 Match En

Byte0 - Bit7 Match En

Byte3 - Bit0 Match En

Byte3 - Bit1 Match En

Byte3 - Bit2 Match En

Byte3 - Bit3 Match En

Byte3 - Bit4 Match En

Byte3 - Bit5 Match En

Byte3 - Bit6 Match En

Byte3 - Bit7 Match En

Byte1 - Bit0 Match En

Byte1 - Bit1 Match En

Byte1 - Bit2 Match En

Byte1 - Bit3 Match En

Byte1 - Bit4 Match En

Byte1 - Bit5 Match En

Byte1 - Bit6 Match En

Byte1 - Bit7 Match En

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

123456789101112131415 0

171819202122232425262728293031 16MXVR_PAT_EN_0 0xFFC0 286C

MXVR_PAT_EN_1 0xFFC0 2874

MXVR Registers

29-90 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Frame Counter (MXVR_FRAME_CNT_0,
MXVR_FRAME_CNT_1) Registers

The MXVR has two completely independent frame counters which each
have an interrupt. Each frame counter is a down-counter which decre-
ments when the MXVR is frame locked and whenever a preamble is
received (at the beginning of every frame). The frame counter can option-
ally generate an interrupt when the counter reaches zero. The frame
counter decrements on all types of preambles. The frame counter is con-
trolled by accessing the MXVR_FRAME_CNT_x register. Writing the
MXVR_FRAME_CNT_x register reloads the frame counter with the 16-bit value
written and starts the counter decrementing when the MXVR is frame
locked and a preamble is received. If the MXVR loses frame lock after the
frame counter is started, the frame counter will pause until the MXVR is
back in frame lock. The value written must be between 0x0001 and
0xFFFFF. Once the frame counter decrements to zero, the corresponding
Frame Counter Zero (FCZ0 or FCZ1) bit in the MXVR_INT_STAT_0 register
will change to 1 and the Status Change Interrupt will assert if the corre-
sponding Frame Counter Zero Interrupt Enable (FCZ0EN, or FCZ1EN) bit in
the MXVR_INT_EN_0 register is set to 1. The FCZ0 and FCZ1 bits in the
MXVR_INT_STAT_0 register are sticky bits which must be written with a 1 in
order to clear the bit and clear the interrupt. The frame counters can be
stopped and reset at any time by writing 0x0000 to the MXVR_FRAME_CNT_x
register and no interrupt will be generated. Reading the MXVR_FRAME_CNT_x
will return the current value of the frame counter.

Figure 29-36. MXVR Frame Counter Registers

MXVR_FRAME_CNT_1 0xFFC0 287C

123456789101112131415 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

MXVR Frame Counter Registers (MXVR_FRAME_CNT_0, MXVR_FRAME_CNT_1)

Reset = 0x0000

FCNT
(Frame Count Value)
Write 0x0000 - Stop Counter
Write 0x0001 to 0xFFFF - Start Counter
Read Returns Current Count Value

MXVR_FRAME_CNT_0 0xFFC0 2878

ADSP-BF54x Blackfin Processor Hardware Reference 29-91

Media Transceiver Module (MXVR)

MXVR Routing (MXVR_ROUTING_0
– MXVR_ROUTING_14) Registers

The MXVR_ROUTING_x registers are used to route data from one synchro-
nous data channel to another or to mute particular synchronous channels.
The MXVR can route synchronous data received on one physical channel
so that it is transmitted on one or more other physical channel. In addi-
tion, the MXVR_ROUTING_x registers may be used to mute one or more
transmitted physical channels. When a synchronous data channel is
muted, the data transmitted on that channel will be 0x00.

All the Routing registers (MXVR_ROUTING_0 - MXVR_ROUTING_14) have the
same register format but each contain routing and muting control for dif-
ferent channels. MXVR_ROUTING_0 contains channels 0 to 3, contains
channels 4 to 7, and so on. Figure 29-37 shows MXVR_ROUTING_0 as an
example of the register format.

Figure 29-37. MXVR Routing Registers

123456789101112131415 0

171819202122232425262728293031 16

x x x x x x xx x x x x x x x x

x x x x x x xx x x x x x x x x

MXVR Routing Register 0 (MXVR_ROUTING_0)

Write-only

Reset = 0xXXXX XXXX

Transmit Channel 3

Mute Channel 3

Reserved

Reserved

Reserved

Reserved

Transmit Channel 1

Mute Channel 1 Transmit Channel 0

Mute Channel 0

Transmit Channel 2

Mute Channel 2

0xFFC0 2880

MXVR Registers

29-92 ADSP-BF54x Blackfin Processor Hardware Reference

The routing function can only be used for synchronous data channels
(channel numbers less than 4 * RSB) when the MXVR is enabled and trans-
mitting in Active Mode with a Synchronous Delay of two frames (when
MXVREN = 1, MTXEN = 1, ACTIVE = 1 and SDELAY = 1 in the MXVR_CONFIG reg-
ister). The muting function can be used for synchronous data channels
when the MXVR is enabled and transmitting in Active Mode (MXVREN=1,
MTXEN=1, and ACTIVE=1).

The MXVR_ROUTING_x registers are not reset, therefore they must be pro-
grammed to a known value after reset. In normal applications the data
received on a particular physical channel should be routed to the same
physical channel for transmission. Therefore, each Transmit Channel x
entry will normally be programmed with the corresponding received chan-
nel number.

Synchronous data received on a particular physical channel can also be
routed onto one or more different physical channels for transmission. For
example, synchronous data received on physical channel 0 can be trans-
mitted on physical channel 1 and synchronous data received on physical
channel 1 can be transmitted on physical channel 0 by programming the
Transmit Channel 0 to 0x01 and the Transmit Channel 1 to 0x00. The
synchronous data received on a physical channel can also be transmitted
on multiple channels. For example, synchronous data received on physical
channel 5 can be transmitted on physical channels 8, 18, and 28 by pro-
gramming Transmit Channel 8 to 0x05, Transmit Channel 18 to 0x05,
and Transmit Channel 28 to 0x05.

In addition, the MXVR_ROUTING_x registers allow individual physical chan-
nels to be muted (causing the channel to transmit 0x00 regardless of what
was received on that channel). When the Mute Channel x bit for a partic-
ular channel is set to 1, the channel will transmit 0x00 data regardless of
the routing value programmed in the Transmit Channel x entry. In other
words, the muting function takes precedence over the routing function.

ADSP-BF54x Blackfin Processor Hardware Reference 29-93

Media Transceiver Module (MXVR)

The MXVR synchronous data DMA channels take precedence over the
channel routing and channel muting functions. If a synchronous data
DMA channel is enabled for transmit, the DMA'd data will be transmit-
ted on the physical channels defined by the LCHAN field overriding any
value programmed into the Transmit Channel entries or Mute Channel
entries for those physical channels. When the DMA channel is disabled,
however, the channel routing or channel muting function specified in the
Transmit Channel entries and Mute Channel entries for those channels will
be active. For example, if physical channels 4 and 5 have the Mute Channel
x bit set, they will output 0x00 data. If a Logical Channel 0 is defined as
physical channels 4 and 5 and a synchronous data DMA channel is setup
to transmit on Logical Channel 0, once the DMA channel is enabled the
DMA’ed data will be transmitted on physical channels 4 and 5. Once the
synchronous data DMA channel is disabled, physical channels 4 and 5 will
transmit 0x00 data again. This is particularly useful when transmitting
synchronous packets in that the muting for the channels the synchronous
packet is being sent on can be enabled so that before and after the syn-
chronous packet data is set the synchronous channels will have all 0x00
data.

The MXVR_ROUTING_x registers are write-only. Reading any of the
MXVR_ROUTING_x registers will result in a bus error exception and will
return unknown data.

The routing and muting fields serve an additional purpose. The fields
determine whether the MXVR will report a physical channel as being
“In-Use”. If the MXVR is muting a particular physical channel or if the
MXVR is routing data from another channel onto that physical channel,
the MXVR will report that physical channel is “In-Use” to the Master. If
the MXVR is not muting a particular physical channel or is not routing
data from another channel onto that physical channel, the MXVR will
report that physical channel is not “In-Use”. If The Master determines
which channels are “In-Use” when the Allocation Table is distributed and
the “Channel-In-Use” bits for all the nodes in the ring are available in the
Master’s MXVR_ALLOC_x registers.

MXVR Registers

29-94 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Block Counter (MXVR_BLOCK_CNT) Register
The MXVR has a Block Counter which has an associated interrupt. The
Block Counter is a down-counter which decrements when the MXVR is
block locked and a normal block preamble is received and can optionally
generate an interrupt when the counter reaches zero. The block counter
does not decrement when the MXVR is not block locked or when the
block preambles are received when the Allocation Table is being distrib-
uted over the control message channel. Two block preambles out of every
sixty-four block preambles are for Allocation Table distribution blocks.

The block counter is controlled by accessing the MXVR_BLOCK_CNT register.
Writing the MXVR_BLOCK_CNT register reloads the block counter with the
16-bit value written and starts the counter decrementing when the MXVR
is block locked and a normal block preamble is received. The value written
must be between 0x0001 and 0xFFFF. If the MXVR loses block lock after
the block counter is started, the block counter pauses until the MXVR is
back in block lock. Once the block counter decrements to zero, the Block
Counter Zero (BCZ) bit in the MXVR_INT_STAT_0 register changes to 1 and
the Status Change Interrupt asserts if the Block Counter Zero Interrupt
Enable (BCZEN) bit in the MXVR_INT_EN_0 register is set to 1. The BCZ bit in
the MXVR_INT_STAT_0 register is a sticky bit which must be written with a 1
in order to clear the bit and the interrupt. The block counter can be
stopped and reset at any time by writing 0x0000 to the MXVR_BLOCK_CNT
register and no interrupt will be generated. Reading the MXVR_BLOCK_CNT
will return the current value of the block counter.

Figure 29-38. MXVR Block Counter Register

123456789101112131415 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

MXVR Block Counter Register (MXVR_BLOCK_CNT)

Reset = 0x0000

BCNT
(Block Count Value)
Write 0x0000 - Stop Counter
Write 0x0001 to 0xFFFF - Start Counter
Read Returns Current Count Value

0xFFC0 28C0

ADSP-BF54x Blackfin Processor Hardware Reference 29-95

Media Transceiver Module (MXVR)

MXVR Clock Control (MXVR_CLK_CTL) Register
The MXVR_CLK_CTL register controls the MXVR Crystal Oscillator and the
MXVR clock outputs.

Figure 29-39. MXVR Clock Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 10 0

MXTALCEN
(MXVR Crystal Osc. Clock Enable)
0 – Disable clock
1 – Enable clock

MXTALFEN
(MXVR Crystal Osc. Feedback Enable)
0 – Disable feedback
1 – Enable feedback

MXTALMUL
(MXVR Crystal Multiplier)
00 - Crystal Freq = 256 * Fs
01 - Crystal Freq = 384 * Fs
10 - Crystal Freq = 512 * Fs
11 - Crystal Freq = 1024 * Fs
(See Table 29-9 for examples)

CLKX3SEL
(Clock Generation Source Select)
0 – Output clocks by the CDRPLL
1 – Output clocks generated by the FMPLL

PLLSMPS
(MXVR PLL State Machine Prescaler)
See Table 29-10 for prescale values.

MMCLKEN
(Master Clock Enable)
0 – Disable MMCLK output pin
1 – Enable MMCLK output pin

MXVR Clock Control Register (MXVR_CLK_CTL)

R/W

Reset = 0x0202 00030xFFC0 28D0 00 0 0 0 1 0 0 0 0 0 0 0 10 0

31 30 29 28 27 1617181920212223242526

MMCLKMUL
(Master Clock Multiplication Factor)
Set to n * Fs, where n can be 1, 2, 4, 8, 16, 32,
64, 128, 256, 384, 512, 768, 1024, and 1536

MBCLKEN
(Bit Clock Enable)
0 – Disable MBCLK output pin
1 – Enable MBCLK output pin

MBCLKDIV
(Bit Clock Divide Factor)
Set to fMMCLK / n, where n can be 2, 4,
8, 16, 32, 64, 128, 256, 512, or 1024

INVRX
(Invert Receive Data)
0 – No invert
1 – Invert MRX pin input to CDRPLL

MFSEN
(Frame Sync Enable)
0 – Disable MFS output pin
1 – Enable MFS output pin

MFSDIV
(Frame Sync Divide Factor)
Set to fMBCLK / n, where n can be 2, 4, 8,
16, 32, 64, 128, 256, 512, or 1024

MFSSYNC
(Frame Sync Select)
See Table 29-11 for select
sync values

MFSSEL
(Frame Sync Select)
See Table 29-11 for sync
values

MXVR Registers

29-96 ADSP-BF54x Blackfin Processor Hardware Reference

The MXVR Crystal Oscillator Clock Enable (MXTALCEN) bit enables or dis-
ables the clock output by the MXVR Crystal Oscillator which is used by
the MXVR PLLs. The MXTALCEN bit enables or disables the clock regardless
of whether a crystal is used between the MXI and MXO pins or whether a
clock is directly driven into the MXI pin. When MXTALCEN is set to 1, the
clock supplied by the MXVR Crystal Oscillator is enabled, and when
MXTALCEN is set to 0, the clock supplied by the MXVR Crystal Oscillator is
disabled. The MXTALCEN is set to 1 by reset. The MXTALCEN can be used to
gate off the clock to the MXVR in order to save power when the network
is not in operation. Note that the crystal should be at frequency and
MXTALCEN should be enabled, or the clock driven on the MXI input should
be at frequency and the MXTALCEN should be enabled prior to starting up
the MXVR PLLs.

The MXVR Crystal Oscillator Feedback Enable (MXTALFEN) bit enables or
disables the resistive feedback between the MXVR Crystal Input pin (MXI)
and the MXVR Crystal Output pin (MXO). The MXVR Crystal Oscillator
supplies a clock which is used by the MXVR PLLs. A crystal can be placed
between the MXI and MXO pins (along with the appropriate capacitors) or a
clock may be driven directly into the MXI pin and the MXO pin can be left
unconnected. When using a crystal, if the MXTALFEN is set to 1, the resistive
feedback between MXI and MXO is enabled and the crystal will oscillate.
When using a crystal, if MXTALFEN is set to 0, the resistive feedback is dis-
abled and the crystal will not oscillate. If a crystal is not used and a clock is
driven directly onto the MXI pin, the MXTALFEN must be set to 1 for proper
operation. The MXTALFEN is set to 1 by reset, so that if a crystal is used, the
crystal will start up during the reset time and software boot time.

The MXVR must either be supplied with an externally generated clock
driven on the MXI pin or must have a crystal (and appropriate external
components) connected between the MXI and MXO pins. In either case, the
frequency should be 256 * Fs, 384 * Fs, 512 * Fs, or 1024 * Fs. The fre-
quency that is being supplied should be programmed into the MXTALMUL
bits in the MXVR_CLK_CTL register. If a crystal is placed between MXI and
MXO, and the network will be disabled for an extended period of time, the

ADSP-BF54x Blackfin Processor Hardware Reference 29-97

Media Transceiver Module (MXVR)

MXTALFEN and the MXTALCEN can be set to 0 to decrease power consump-
tion. If a clock is being directly driven to the MXI pin, and the network will
be disabled for an extended period of time, the MXTALCEN can be set to 0 to
decrease power consumption. However, the clock or crystal must be stable
at frequency prior to starting up the MXVR PLLs in order to lock the
network.

The MXVR Crystal Multiplier (MXTALMUL) field determines the multiplica-
tion factor that will be used when the MXVR PLLs are configured to
multiply the crystal or input clock frequency up to the transmit clock fre-
quency (1024 * Fs). Table 29-9 shows all the crystal frequencies (256 * Fs,
384 * Fs, 512 * Fs, or 1024 * Fs) which can be used to multiply up to the
transmit clock frequency for sample frequencies of 38 kHz, 44.1 kHz, and
48 kHz.

The Clock Generation Source Select (CLKX3SEL) bit selects whether the
MMCLK, MBCLK, and MFS output clocks are generated by the FMPLL or by
the CDRPLL. If the CLKX3SEL bit is set to 1, the FMPLL will generate the
MMCLK, MBCLK, and MFS output clocks. If the CLKX3SEL bit is set to 0, the
CDRPLL will generate the MMCLK, MBCLK, and MFS output clocks. The
CLKX3SEL bit is set to 0 by reset.

The Master Clock Enable (MMCLKEN) bit enables or disables the MXVR
Master Clock output pin (MMCLK). If the MMCLKEN bit is set to 0, the MMCLK
pin will remain at a logic low level. If the MMCLKEN bit is set to 1, the MMCLK

Table 29-9. Crystal Input Frequencies

MXTALMUL Multiply
Factor

Crystal
Frequency

Crystal Frequency Needed for Desired Fs

Fs = 38 kHz Fs = 44.1 kHz Fs = 48 kHz

b#00 8/2 256 * Fs 9.728 MHz 11.2896 MHz 12.288 MHz

b#01 8/3 384 * Fs 14.592 MHz 16.9344 MHz 16.432 MHz

b#10 8/4 512 * Fs 19.456 MHz 22.5792 MHz 24.576 MHz

b#11 8/8 1024 * Fs 38.912 MHz 45.1584 MHz 49.152 MHz

MXVR Registers

29-98 ADSP-BF54x Blackfin Processor Hardware Reference

pin will supply a clock at a frequency determined by the MMCLKMUL field.
The MMCLKEN bit is set to 1 by reset. After reset is negated the MMCLK output
pin will remain low and will not toggle until the MXVR PLL which is
selected to generate the output clocks is started-up and the MMCLKEN bit is
set to 1.

The Master Clock Multiplication Factor (MMCLKMUL) field determines the
frequency of the MXVR Master Clock output pin (MMCLK). The MMCLK
clock frequency can be specified as a multiplication of the sample rate
(Fs). The frequency can be set to be n * Fs where n can be 1, 2, 4, 8, 16,
32, 64, 128, 256, 384, 512, 768, 1024, and 1536. When MMCLKMUL is set
to any value except 1024 * Fs or 1536 * Fs, the MMCLK duty cycle will be
50%. When MMCLKMUL is set to 1024 * Fs or 1536 * Fs, the MMCLK duty
cycle will be 33%. Note that the MMCLKMUL should only be changed when
MMCLKEN, MBCLKEN, and MFSEN are all set to 0.

The MXVR PLL State Machine Prescaler (PLLSMPS) field is a prescale
value used by the FMPLL and CDRPLL lock counters in order to adjust
the lock times based on the SCLK frequency. Table 29-10 shows how the
PLLSMPS field should be programmed based on the SCLK frequency.

Table 29-10. PLLSMPS Encoding Selection

SCLK Frequency Range PLLSMPS

116MHz < fSCLK <= 133MHz b#000

99MHz < fSCLK <= 116MHz b#001

83MHz < fSCLK <= 99MHz b#010

66MHz < fSCLK <= 83MHz b#011

49MHz < fSCLK <= 66MHz b#100

33MHz < fSCLK <= 49MHz b#101

16MHz < fSCLK <= 33MHz b#110

fSCLK <= 16MHz b#111

ADSP-BF54x Blackfin Processor Hardware Reference 29-99

Media Transceiver Module (MXVR)

The Bit Clock Enable (MBCLKEN) bit enables or disables the MXVR Bit
Clock output pin (MBCLK). If the MBCLKEN bit is set to 0, the MBCLK pin will
remain at a logic low level. If the MBCLKEN bit is set to 1, the MBCLK pin will
supply a clock at a frequency determined by the MBCLKDIV field. MBCLKEN is
set to 0 by reset. After reset is negated, the MBCLK output pin will remain
low and will not toggle until the MXVR PLL which is selected to generate
the output clocks is started-up and the MBCLKEN bit is set to 1.

The Bit Clock Divide Factor (MBCLKDIV) field determines the frequency of
the MXVR Bit Clock output pin (MBCLK). The clock output on the MBCLK
pin is generated by the MXVR Master Clock. The MBCLK clock frequency
can be specified as a division of the MXVR Master Clock frequency. The
frequency can be set to be fMMCLK / n where n can be 2, 4, 8, 16, 32, 64,
128, 256, 512, or 1024. When MMCLKMUL is set to any value except 1024 *
Fs or 1536 * Fs, the rising edge of MBCLK occurs in sync with the rising
edge of MMCLK. When MMCLKMUL is set to 1024 * Fs or 1536 * Fs, the rising
edge of MBCLK occurs in sync with the falling edge of MMCLK. Note that the
MBCLKDIV should only be changed when MMCLKEN, MBCLKEN, and MFSEN are
all set to 0.

The Invert Receive (INVRX) bit determines whether the incoming data
stream on the MXVR Receive Data input pin (MRX) will feed into the
CDRPLL as is or whether the data stream will be inverted before feeding
into the CDRPLL. If the INVRX bit is set to 0, the data stream will feed
into the CDRPLL as is. If the INVRX bit is set to a 1, the data stream will
be inverted prior to being fed into the CDRPLL.

The Frame Sync Enable (MFSEN) bit enables or disables the MXVR Frame
Sync output pin (MFS). If the MFSEN bit is set to 0 and MFSSEL is set to b#00
(Clock Mode), the MFS pin will remain at a logic low level. If the MFSEN bit
is set to 0 and MFSSEL is set to b#01 (Active-High Pulse Mode), the MFS
pin will remain at a logic low level. If the MFSEN bit is set to 0 and MFSSEL
is set to b#10 (Active-Low Pulse Mode), the MFS pin will remain at a logic
high level. If the MFSEN bit is set to 1, the MFS pin will supply a clock or
pulse at a frequency determined by the MFSDIV field. MFSEN is set to 0 by

MXVR Registers

29-100 ADSP-BF54x Blackfin Processor Hardware Reference

reset. After reset is negated the MFS output pin will remain in its inactive
state and will not toggle until the MXVR PLL which is selected to gener-
ate the output clocks is started-up and the MFSEN bit is set to 1.

The Frame Sync Divide Factor (MFSDIV) field determines the frequency of
the MXVR Frame Sync output pin (MFS). The clock output on the MFS pin
is generated by the MXVR Bit Clock. The MFS clock frequency can be
specified as a division of the MXVR Bit Clock frequency. The frequency
can be set to be fMBCLK / n where n can be 2, 4, 8, 16, 32, 64, 128, 256,
512, or 1024. Note that the MFSDIV should only be changed when
MMCLKEN, MBCLKEN, and MFSEN are all set to 0.

The Frame Sync Select (MFSSEL) field determines whether the MXVR
Frame Sync output pin (MFS) will generate a 50% duty cycle clock, an
active-high pulse, or an active-low pulse. If the MFSSEL field is set to b#00,
the MFS will generate a 50% duty cycle clock. If the MFSSEL field is set to
b#01, the MFS will generate an active-high pulse with a pulse length equal
to the MBCLK period. If the MFSSEL field is set to 10, the MFS will generate
an active-low pulse with a pulse length equal to the MBCLK period. Note
that the MFSSEL should only be changed when MMCLKEN, MBCLKEN, and
MFSEN are all set to 0.

The Frame Sync Synchronization Select (MFSSYNC) bit determines the syn-
chronization between the MFS and MBCLK output pins. If the MFS is
programmed to be a 50% duty cycle clock (MFSSEL = b#00) or an
active-high pulse (MFSSEL = 01) and the MFSSYNC is set to 0, the rising edge
of MFS occurs in sync with the falling edge of the MBCLK. If the MFS is pro-
grammed to be a 50% duty cycle clock (MCLKSEL = b#00) or an active-high
pulse (MCLKSEL = b#01) and the MFSSYNC is set to 1, the rising edge of MFS
occurs in sync with the rising edge of the MBCLK. If MFS is programmed to
be a active-low pulse (MFSSEL = b#10) and the MFSSYNC is set to 0, the fall-
ing edge of MFS occurs in sync with the falling edge of MBCLK. If MFS is
programmed to be a active-low pulse (MFSSEL = b#10) and the MFSSYNC is
set to 1, the falling edge of MFS occurs in sync with the rising edge of
MBCLK.

ADSP-BF54x Blackfin Processor Hardware Reference 29-101

Media Transceiver Module (MXVR)

MXVR Clock/Data Recovery PLL
Control (MXVR_CDRPLL_CTL) Register

Table 29-11. Frame Sync Synchronization (MFSSYNC) Selections

MFSSYNC MFSSEL Frame Sync Synchronization

0

b#00 The rising edge of MFS occurs in sync with the falling edge of the MBCLK

b#01 The rising edge of MFS occurs in sync with the falling edge of the MBCLK

b#10 The falling edge of MFS occurs in sync with the falling edge of MBCLK

1

b#00 The rising edge of MFS occurs in sync with the rising edge of the MBCLK

b#01 The rising edge of MFS occurs in sync with the rising edge of the MBCLK

b#10 The falling edge of MFS occurs in sync with the rising edge of MBCLK

Figure 29-40. MXVR Clock/Data Recovery PLL Control Register

R/W

Reset = 0x0502 08200xFFC0 28D4 00 0 0 1 0 1 0 0 0 0 0 0 10 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 1 0 0 0 0 0 1 0 0 0 00 0

31 30 29 28 27 1617181920212223242526

CDRSMEN
(MXVR CDRPLL State Machine En.)
0 – Disable state machine
1 – Enable state machine

CDRRSTB
(MXVR CDRPLL Reset)
0 – CDRPLL held in reset
1 – CDRPLL released from reset

CDRSVCO
(MXVR CDRPLL Start VCO)
0 – Disable CDRPLL VCO
1 – Enable CDRPLL VCO

CDRLCNT
(MXVR CDRPLL Lock Counter)
(Do NOT change from default setting.)

CDRSCNT
(MXVR CDRPLL Start Counter)
(Do NOT change from default setting.)

CDRMODE
(MXVR CDRPLL CDR Mode Select)
0 – CDRPLL operates in Frequency Multiply Mode
1 – CDRPLL operates in Clock/Data Recovery Mode

CDRSHPSEL
(MXVR CDRPLL Shaper Select)
Pulse width distortion correction value

CDRSHPEN
(MXVR CDRPLL Shaper Enable)
0 – Disable Shaper
1 – Enable Shaper

CDRCPSEL
(MXVR CDRPLL Charge Pump Current Select)
Selects value for charge pump current in the
CDRPLL

MXVR Registers

29-102 ADSP-BF54x Blackfin Processor Hardware Reference

The MXVR Clock/Data Recovery PLL State Machine Enable (CDRSMEN)
bit enables or disables the state machine which controls the CDRPLL.
When CDRSMEN bit is set to a 1, the CDRPLL state machine will start up
the CDRPLL and control its operation. When the CDRSMEN bit is set to a 0,
the CDRPLL state machine is disabled and the CDRRSTB, CDRSVCO, and
CDRMODE bits directly control the operation of the CDRPLL. It is recom-
mended that the CDRPLL state machine be used to control the

CDRPLL rather than directly controlling the CDRRSTB, CDRSVCO, and
CDRMODE bits. The CDRSMEN bit is set to 0 by reset.

The MXVR Clock/Data Recovery PLL Reset (CDRRSTB) bit controls the
reset to the CDRPLL if the CDRPLL state machine is disabled. When the
CDRPLL state machine is disabled and the CDRRSTB bit is set to a 0, the
CDRPLL is held in reset. When the CDRPLL state machine is disabled
and the CDRRSTB bit is set to a 1, the CDRPLL is released from reset.
When the CDRPLL state machine is enabled, the CDRPLL state machine
controls the CDRPLL and therefore the CDRRSTB bit has no effect. It is
recommended that the CDRPLL state machine be used to control the
CDRPLL rather than directly controlling the CDRRSTB bit. The CDRRSTB
bit is set to 0 by reset.

The MXVR Clock/Data Recovery PLL Start VCO (CDRSVCO) bit controls
the startup of the VCO in the CDRPLL if the CDRPLL state machine is
disabled. When the CDRPLL state machine is disabled and the CDRSVO bit
is set to a 0, the CDRPLL VCO is disabled. When the CDRPLL state
machine is disabled and the CDRSVCO bit is set to a 1, the CDRPLL VCO is
enabled. When the CDRPLL state machine is enabled, the CDRPLL state
machine controls the CDRPLL and therefore the CDRSVCO bit has no
effect. It is recommended that the CDRPLL state machine be used to con-
trol the CDRPLL rather than directly controlling the CDRSVCO bit. The
CDRSVCO bit is set to 0 by reset.

The MXVR Clock/Data Recovery PLL CDR Mode Select (CDRMODE) bit
controls whether the CDRPLL is in Frequency Multiply Mode or
Clock/Data Recovery Mode if the CDRPLL state machine is disabled.

ADSP-BF54x Blackfin Processor Hardware Reference 29-103

Media Transceiver Module (MXVR)

When the CDRPLL state machine is disabled and the CDRMODE bit is set to
a 0, the CDRPLL operates in Frequency Multiply Mode. When the
CDRPLL state machine is disabled and the CDRMODE bit is set to a 1, the
CDRPLL operates in Clock/Data Recovery Mode. When the CDRPLL
state machine is enabled, the CDRPLL state machine controls the
CDRPLL and therefore the CDRMODE bit has no effect. It is recommended
that the CDRPLL state machine be used to control the CDRPLL rather
than directly controlling the CDRMODE bit. The CDRMODE bit is set to 0 by
reset.

The MXVR Clock/Data Recovery PLL Start Counter (CDRSCNT) field con-
trols the start-up time of the CDRPLL if the CDRPLL state machine is
enabled. The CDRSCNT field is set to b#000010 by reset. It is recom-
mended that the CDRSCNT field not be changed from its reset value.

The MXVR Clock/Data Recovery PLL Lock Counter (CDRLCNT) field con-
trols the lock time of the CDRPLL if the CDRPLL state machine is
enabled. The CDRLCNT field is set to b#000010 by reset. It is recom-
mended that the CDRLCNT field not be changed from its reset value.

The MXVR Clock/Data Recovery PLL Shaper Select (CDRSHPSEL) field
controls the amount of pulse width distortion correction to be made to the
incoming data stream when the CDRPLL Shaper is enabled. The
CDRSHPSEL field is set to b#000000 by reset.

The MXVR Clock/Data Recovery PLL Shaper Enable (CDRSHPEN) bit
enables or disables the CDRPLL Shaper which corrects pulse width distor-
tion in the incoming data stream. The CDRSHPSEL bit is set to 0 by reset.

The MXVR Clock/Data Recovery PLL Charge Pump Current Select
(CDRCPSEL) field controls the charge pump current in the CDRPLL. The
CDRCPSEL field is set to 0x05 by reset.

MXVR Registers

29-104 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Frequency Multiply PLL Control
(MXVR_FMPLL_CTL) Register

The MXVR Frequency Multiply PLL State Machine Enable (FMSMEN) bit
enables or disables the state machine which controls the FMPLL. When
FMSMEN bit is set to a 1, the FMPLL state machine will start up the FMPLL
and control its operation. When the FMSMEN bit is set to a 0, the FMPLL
state machine is disabled and the FMRSTB and FMSVCO bits directly control
the operation of the FMPLL. It is recommended that the FMPLL state
machine be used to control the FMPLL rather than directly controlling
the FMRSTB and FMSVCO bits. The FMSMEN bit is set to 0 by reset.

The MXVR Frequency Multiply PLL Reset (FMRSTB) bit controls the reset
to the FMPLL if the FMPLL state machine is disabled. When the FMPLL
state machine is disabled and the FMRSTB bit is set to a 0, the FMPLL is

Figure 29-41. MXVR Frequency Multiply PLL Control Register

MXVR Frequency Multiply PLL Control Register (MXVR_FMPLL_CTL)

R/W

Reset = 0x1900 10200xFFC0 28D8 00 1 1 0 1 0 0 0 0 0 0 00 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 0 0 0 0 0 0 1 0 0 0 00 0

31 30 29 28 27 1617181920212223242526

FMSMEN
(MXVR FMPLL State Machine Enable)
0 – Disable state machine
1 – Enable state machine

FMRSTB
(MXVR FMPLL Reset)
0 – FMPLL held in reset
1 – FMPLL released from reset

FMSVCO
(MXVR FMPLL Start VCO)
0 – Disable FMPLL VCO
1 – Enable FMPLL VCO

FMLCNT
(MXVR FMPLL Lock Counter)
(Do NOT change from default setting.)

FMSCNT
(MXVR FMPLL Start Counter)
(Do NOT change from default setting.)

FMCPSEL
(MXVR FMPLL Charge Pump Current Select)
Selects value for charge pump current in the
FMPLL

0

ADSP-BF54x Blackfin Processor Hardware Reference 29-105

Media Transceiver Module (MXVR)

held in reset. When the FMPLL state machine is disabled and the FMRSTB
bit is set to a 1, the FMPLL is released from reset. When the FMPLL state
machine is enabled, the FMPLL state machine controls the FMPLL and
therefore the FMRSTB bit has no effect. It is recommended that the FMPLL
state machine be used to control the FMPLL rather than directly control-
ling the FMRSTB bit. The FMRSTB bit is set to 0 by reset.

The MXVR Frequency Multiply PLL Start VCO (FMSVCO) bit controls the
startup of the VCO in the FMPLL if the FMPLL state machine is dis-
abled. When the FMPLL state machine is disabled and the FMSVO bit is set
to a 0, the FMPLL VCO is disabled. When the FMPLL state machine is
disabled and the FMSVCO bit is set to a 1, the FMPLL VCO is enabled.
When the FMPLL state machine is enabled, the FMPLL state machine
controls the FMPLL and therefore the FMSVCO bit has no effect. It is rec-
ommended that the FMPLL state machine be used to control the FMPLL
rather than directly controlling the FMSVCO bit. The FMSVCO bit is set to 0
by reset.

The MXVR Frequency Multiply PLL Start Counter (FMSCNT) field con-
trols the start-up time of the FMPLL if the FMPLL state machine is
enabled. The FMSCNT field is set to b#000001 by reset. It is recommended
that the FMSCNT field not be changed from its reset value.

The MXVR Frequency Multiply PLL Lock Counter (FMLCNT) field con-
trols the lock time of the FMPLL if the FMPLL state machine is enabled.
The FMLCNT field is set to b#000100 by reset. It is recommended that the
FMLCNT field not be changed from its reset value.

The MXVR Frequency Multiply PLL Charge Pump Current Select (FMCP-
SEL) field controls the charge pump current in the FMPLL. The FMCPSEL
field is set to 0x19 by reset.

MXVR Registers

29-106 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Pin Control (MXVR_PIN_CTL) Register

The MTXON Open Drain Select (MTXONBOD) bit controls whether the MTXON
pin operates as a 3V compliant output or as a 5V tolerant open drain out-
put. Normally, the MTXON pin is connected to a transistor to turn on and
off the power supply to the Transmit PHY. If the Transmit PHY has a 3V
power supply, the MTXONBOD can be set so that the MTXON pin operates as a
3V compliant output and can be connected to the transistor. If the Trans-
mit PHY has a 5V power supply, the MTXONBOD can be set so that the MTXON
pin operates as a 5V tolerant open drain output and can be connected to
the transistor with a pull-up resistor to 5V. When the MTXONBOD is set to
0, the MTXON pin operates as a 3V compliant output. When the MTXONBOD is
set to 1, the MTXON pin operates as a 5V tolerant open drain output. The
MTXONBOD bit is set to 0 by reset.

The MTXONB Gates MTX Select (MTXONBG) bit controls whether the MTX pin is
gated based on the state of the MTXONB bit in the MXVR_CONFIG register.
When the MTXONBG bit is set to 0, the MTX pin can toggle regardless of the
state of the MTXONB bit in the MXVR_CONFIG register. When the MTXONBG bit
is set to 1 and the MTXONB bit in the MXVR_CONFIG register is set to 1, the

Figure 29-42. MXVR Pin Control Register

MXVR Pin Control Register (MXVR_PIN_CTL)

R/W

Reset = 0x00000xFFC0 28DC
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

MTXONBOD
(MTXON Open Drain Select)
0 – 3V compliant output
1 – Open drain output

MTXONBG
(MTXONB Gates MTX Select)
0 – MTX pin not gated
1 – MTX pin gated by MTXONB

MFSOE
(MFS Output Enable)
0 – MFS pin three-stated
1 – MFS pin output enabled

MFSGPDAT
(MFS General Purpose Output Data)
0 – MFS pin GP output low
1 – MFS pin GP output high

MFSGPSEL
(MFS General Purpose Output Select)
0 – MFS pin is FS clock output
1 – MFS pin is GP output

ADSP-BF54x Blackfin Processor Hardware Reference 29-107

Media Transceiver Module (MXVR)

MTX pin will be driven to a logic low level. When the MTXONBG bit is set to 1
and the MTXONB bit in the MXVR_CONFIG register is 0, the MTX pin is allowed
to toggle. Gating the MTX pin with the MTXONB bit may be desirable since
some Transmit PHYs may partially power up when the MTX pin toggles
even when the power is turned off to the Transmit PHY. The MTXONBG bit
is set to 0 by reset.

The MFS Pin Output Enable (MFSOE) bit controls whether the MFS output
pin is three-stated or output enabled. When the MFSOE bit is set to 0, the
MFS output pin will three-state. When the MFSOE bit is set to 1, the MFS
output pin will be output enabled. The MFSOE bit is set to 0 by reset.

The MFS Pin General Purpose Output Select (MFSGPSEL) bit controls
whether the MFS pin outputs the MXVR Frame Sync clock output or acts
as a general purpose output. When the MFSGPSEL bit is set to 0, the MFS pin
will output the MXVR Frame Sync clock output. When the MFSGPSEL bit
is set to 1, the MFS pin will act as a general purpose output pin controlled
by the MFSGPDAT bit. The MFSGPSEL bit is set to 0 by reset.

The MFS Pin General Purpose Output Data (MFSGPDAT) bit controls the
logic state of the MFS pin when the MFS is acting as a general purpose out-
put. When the MFSGPSEL bit is set to 1 and the MFSGPDAT bit is set to 0, the
MFS pin will output a logic low level. When the MFSGPSEL bit is set to 1 and
the MFSGPDAT bit is set to 1, the MFS pin will output a logic high level.
When the MFSGPSEL bit is set to 0, the state of the MFSGPDAT bit has no
effect on the MFS pin. The MFSGPDAT bit is set to 0 by reset.

MXVR System Clock Counter
(MXVR_SCLK_CNT) Register

The MXVR has a System Clock Counter which has an associated inter-
rupt. The System Clock Counter is a down-counter which decrements
once every 64 SCLK cycles and can optionally generate an interrupt when

General Operation

29-108 ADSP-BF54x Blackfin Processor Hardware Reference

the counter reaches zero. The System Clock Counter decrements
regardless of the state of the MXVR (for example, regardless of whether
the MXVR is enabled or disabled).

The System Clock Counter is controlled by accessing the MXVR_SCLK_CNT
register. Writing the MXVR_SCLK_CNT register reloads the System Clock
Counter with the 16-bit value written and starts the counter decrement-
ing. The value written must be between 0x0001 and 0xFFFF. Once the
System Clock Counter decrements to zero, the System Clock Counter
Zero (SCZ) bit in the MXVR_INT_STAT_0 register will change to 1 and the
Status Change Interrupt will assert if the System Clock Counter Zero
Interrupt Enable (SCZEN) bit in the MXVR_INT_EN_0 register is set to 1. The
SCZ bit in the MXVR_INT_STAT_0 register is a sticky bit which must be writ-
ten with a 1 in order to clear the bit and clear the interrupt. The System
Clock Counter can be stopped and reset at any time by writing 0x0000 to
the MXVR_SCLK_CNT register and no interrupt will be generated. Reading
the MXVR_SCLK_CNT will return the current value of the System Clock
Counter.

General Operation
The following sections describe MXVR general operations.

Figure 29-43. MXVR System Clock Count Register

MXVR System Clock Count Register (MXVR_SCLK_CNT)

R/W

Reset = 0x00000xFFC0 28E0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SCNT
(System Clock Count Value)
Write 0x0000 - Stop Counter
Write 0x0001 to 0xFFFF - Start Counter
Read Returns Current Count Value

ADSP-BF54x Blackfin Processor Hardware Reference 29-109

Media Transceiver Module (MXVR)

Network Services Software
Network Services Layer 1 and Layer 2 software is developed for the

MXVR on the ADSP-BF54x processor which meets the MOST® Core
Compliance specification. It is recommended that this software be used if

the MXVR is to be operated in a MOST® compliant network. Contact
Analog Devices for more information on the Network Services software
stack.

Network Activity Detection
Network activity detection is done to indicate whether a node is receiving
an active data stream. Typically an ADSP-BF54x processor MXVR master
node is triggered to start up the network based on an external event (for
example, car ignition, power switch, etc.), while an ADSP-BF54x proces-
sor MXVR slave node would normally operate in a low-power state until
there is incoming network activity. Once incoming network activity is
detected by the slave node, the MXVR will be started up, the Transmit
PHY will be turned on, and the MXVR slave node will lock onto the
incoming data stream. Once incoming network activity (circling the ring
network) is detected by the master node, the MXVR master will lock onto
the incoming data stream.

The MXVR has three methods for detecting network activity. One
method monitors the state of the MRXON input, a second method detects
edges on the MRX input, and a third method assumes that when
ADSP-BF54x processor is powered-on that there is network activity. Note
that the first two network activity detection methods can be utilized to
generate interrupts even when the MXVR is disabled

The first method can be used in the case where the active-low status out-
put of the Receive PHY is connected to the MXVR MRXON input. When
the Receive PHY detects no network activity, the status output is high and
when the Receive PHY detects network activity, the status output is low.

General Operation

29-110 ADSP-BF54x Blackfin Processor Hardware Reference

When the Receive PHY first detects network activity, the MRXON input will
transition from high to low. The high to low transition on the MRXON input
can wake the ADSP-BF54x processor from the hibernate state if the
MXVRWE bit in the VR_CTL register is set to 1. For more information see
Chapter 18, “Dynamic Power Management”. A high to low transition on
the MRXON input will set the MH2L bit in the MXVR_INT_STAT_0 register to 1
and if the MH2LEN bit in the MXVR_INT_EN_0 register is set to 1, an MXVR
Status interrupt will be generated. The MXVR Status interrupt can also be
programmed in the SIC_IWR1 register to wake the core from the Idle state.

When the Receive PHY detects a cessation of network activity, the MRXON
input will transition from low to high. The low to high transition on the
MRXON input will set the ML2H bit in the MXVR_INT_STAT_0 register to 1 and
if the ML2HEN bit in the MXVR_INT_EN_0 register is set to 1, an MXVR Status
interrupt will be generated. This interrupt on the cessation of network
activity could be used to trigger the ADSP-BF54x processor to enter a
low-power state.

In the second method for detecting network activity the MXVR detects
edges on the MRX input. If a single rising or falling edge is detected on the
MRX input, the MXVR will set the NACT bit in the MXVR_STATE_0 register to
1 indicating that there is network activity. If there are no rising or falling
edges detected on the MRX input for 40 SCLK cycles, the MXVR will set the
NACT bit to 0 indicating there is no network activity.

When the MXVR first detects network activity, the NACT bit will transition
from low to high. The low to high transition of the NACT bit will set the
NI2A bit in the MXVR_INT_STAT_0 register to 1 and if the NI2AEN bit in the
MXVR_INT_EN_0 register is set to 1, an MXVR Status interrupt will be gen-
erated. The MXVR Status interrupt can also be programmed in the
SIC_IWR1 to wake the core from the Idle state.

When the MXVR detects a cessation of network activity, the NACT bit will
transition from high to low. The high to low transition of the NACT bit will
set the NA2I bit in the MXVR_INT_STAT_0 register to 1 and if the NA2IEN bit

ADSP-BF54x Blackfin Processor Hardware Reference 29-111

Media Transceiver Module (MXVR)

in the MXVR_INT_EN_0 register is set to 1, an MXVR Status interrupt will
be generated. This interrupt on the cessation of network activity could be
used to trigger the ADSP-BF54x processor to enter a low-power state.

The third method for network activity detection is handled completely
outside of the ADSP-BF54x processor. In this method the Receive PHY
status output controls the power supply for the ADSP-BF54x processor.
When the Receive PHY status output indicates that there is no network
activity, the power supply for the ADSP-BF54x processor is gated off.
When the Receive PHY status output indicates that there is network activ-
ity, the power supply for the ADSP-BF54x processor is turned on. Once
the reset to the ADSP-BF54x processor negates after the power-on-reset,
the software can assume that there is network activity.

Node Initialization
Prior to starting up the MXVR PLL and enabling the MXVR
ADSP-BF54x processor pin multiplexing, the MXVR_CONFIG register, the
MXVR_CLK_CTL register, the MXVR_ROUTING_x registers, and the buffer start
address registers must be initialized. The initialization of the MXVR_CONFIG
register differs between a node to be started up in Master mode and a node
to be started up in Slave mode. The initialization of the MXVR_CLK_CTL and
the MXVR_ROUTING_x registers is the same for Master and Slave mode.

Initialization of Processor Pin Multiplexing

The GPIO_x_FER and GPIO_x_MUX registers for ports C, H, and G must be
programmed to select the MXVR pins. For more information on how the
GPIO registers should be programmed see Chapter 9, “General-Purpose
Ports”.

General Operation

29-112 ADSP-BF54x Blackfin Processor Hardware Reference

Master Mode Initialization of MXVR_CONFIG
Register

The MXVREN bit should remain 0 (keeping the MXVR disabled) until the
MXVR PLLs are started up. The MMSM bit should be set to 1, the ACTIVE
bit should be set to 1, the SDELAY bit should be set to 1, the NCMRXEN
should be set to 0, and the RWRRXEN should be set to 0. The MTXEN bit
should be set to 0 and the MTXONB bit should be set to 1 to keep the Trans-
mit PHY turned off until the MXVR is enabled. The EPARITY bit should
normally be set to 1 to select Even Parity. The MSB field should be set to a
value less than b#0110 to indicate the ring is not yet locked. The APRXEN
should be set to 0. The LMECH bit should be set to 0 or 1 depending on the
desired locking mechanism.

Slave Mode Initialization of MXVR_CONFIG
Register

The MXVREN bit should remain 0 (keeping the MXVR disabled). The MMSM
bit should be set to 0, the ACTIVE bit should be set to 1, the SDELAY bit can
be set to either 0 or 1, the NCMRXEN should be set to 0, and the RWRRXEN
should be set to 0. The MTXEN bit should be set to 0 and the MTXONB bit
should be set to 1 to keep the Transmit PHY turned off until the MXVR
is enabled. The EPARITY bit should normally be set to 1 to select Even Par-
ity. The MSB field is a don’t care in slave mode. The APRXEN should be set
to 0 and the WAKEUP bit should be set to 0. The LMECH bit is a don’t care in
slave mode.

Initialization of the MXVR_CLK_CTL Register

The MXTALCEN and MXTALFEN bits are both reset to 1 to allow a crystal con-
nected between MXI and MXO to start-up immediately following the
negation of reset. If either or both of these bits were set to 0 to save power,
they must be set to 1 prior to starting up the MXVR PLLs. If a crystal is
used, enough time should be allowed for the crystal to start-up prior to
enabling the MXVR PLLs. The MXTALMUL bits should be set based on the

ADSP-BF54x Blackfin Processor Hardware Reference 29-113

Media Transceiver Module (MXVR)

frequency of the crystal or clock driven into MXI. The MMCLKEN, MBCLKEN,
and MFSEN bits should be set to 0. The state of the other bits in the
MXVR_CLK_CTL register do not matter until the MXVR PLLs are started up.

Initialization of the MXVR_ROUTING_x Registers

Unless specific rerouting of synchronous data between received and trans-
mitted physical channels is desired once the MXVR is enabled and
activated, the Transmit Channel x fields should be written to forward
each received channel to the corresponding transmitted channel. In addi-
tion, unless specific channel muting is desired, the Mute Channel x fields
should be programmed to disable muting. For example, the
MXVR_ROUTING_x registers could be written to forward all channels and dis-
able all muting as follows:

*pMXVR_ROUTING_0 = 0x0302 0100;

*pMXVR_ROUTING_1 = 0x0706 0504;

*pMXVR_ROUTING_2 = 0x0B0A 0908;

…

*pMXVR_ROUTING_13 = 0x3736 3534;

*pMXVR_ROUTING_14 = 0x3B3A 3938;

Initialization of the Buffer Start Address Registers

The control message transmit and receive buffers, the asynchronous
packet transmit and receive buffers, and the remote read buffer should be
allocated space in L1 or L2 memory. The starting address of these buffers
should then be programmed into the MXVR_CMTB_START_ADDR,
MXVR_CMRB_START_ADDR, MXVR_APTB_START_ADDR, MXVR_APRB_START_ADDR,
and MXVR_RRDB_START_ADDR registers.

General Operation

29-114 ADSP-BF54x Blackfin Processor Hardware Reference

Start Up of the MXVR PLLs
The initialization of the MXVR PLLs differs between a node to be started
up in Master mode and a node to be started up in Slave mode. In a Master
node, both the FMPLL and CDRPLL are used while in a Slave node only
the CDRPLL is used.

Master Mode Initialization and
Start Up of MXVR FMPLL and CDRPLL

Once the clock supplied on the MXI is stable and at frequency, the MXVR
FMPLL and CDRPLL can be started up. Prior to starting up the PLLs, be
sure that the MPS field in the MXVR_CLK_CTL register is programmed prop-
erly based on the SCLK frequency as this prescaler is used to control the
PLL state machine lock times.

The FMPLL state machine will control the FMPLL start up and lock
sequence. In order to enable the FMPLL state machine, the
MXVR_FMPLL_CTL register should normally be programmed with the FMSMEN
bit set to 1 and with all other fields set to their reset values. Once the
FMPLL has started up, has locked to the MXI clock and is operating at the
network frequency 1024 * Fs, the PFL bit in the MXVR_INT_STAT_0 register
will be set to 1 and can optionally be enabled to generate a Status Change
Interrupt. The current state of the FMPLL state machine can also be mon-
itored by looking at the FMPLLST field in the MXVR_STATE_0 register. At the
point when the PFL bit is asserted due to FMPLL locking at the network
frequency, the FMPLL state machine will be in the FMPLL_LOCKED state.

The CDRPLL state machine will control the CDRPLL start up and lock
sequence. In order to enable the CDRPLL state machine, the
MXVR_CDRPLL_CTL register should normally be programmed with the
CDRCPSEL set to 0xFF and the CDRSMEN bit set to 1 and all other fields set to
their reset values. Once the CDRPLL has started up, has locked to the MXI
clock and is operating at the network frequency 1024 * Fs, the PFL bit in
the MXVR_INT_STAT_0 register will be set to 1 and can optionally be

ADSP-BF54x Blackfin Processor Hardware Reference 29-115

Media Transceiver Module (MXVR)

enabled to generate a Status Change Interrupt. The current state of the
CDRPLL state machine can also be monitored by looking at the CDRPLLST
field in the MXVR_STATE_0 register. At the point when the PFL bit is
asserted due to CDRPLL locking at the network frequency, the CDRPLL
state machine will be in the CDRPLL_FHOLD state.

The FMPLL and CDRPLL state machines can be enabled one after the
other or simultaneously (for a faster overall lock time); however, it should
be noted that the PFL event asserts once for frequency lock of the FMPLL
and a second time for frequency lock of the CDRPLL.

Once the FMPLL and CDRPLL are locked at the network frequency
(FMPLL state machine in the FMPLL_LOCKED state and the CDRPLL state
machine in the CDRPLL_FHOLD state), the MXVR output clocks can be
enabled and the MXVR can be enabled in Master mode to start the pro-

cess of locking the MOST® network. The MXVR should never be enabled
in Master mode without the FMPLL and CDRPLL having been started up
and locked at frequency.

Slave Mode Initialization and
Start Up of MXVR CDRPLL

Once the clock supplied on the MXI is stable and at frequency, the MXVR
CDRPLL can be started up. Prior to starting up the CDRPLL, be sure
that the MPS field in the MXVR_CLK_CTL register is programmed properly
based on the SCLK frequency as this prescaler is used to control the PLL
state machine lock times.

The CDRPLL state machine will control the CDRPLL start up and lock
sequence. In order to enable the CDRPLL state machine, the
MXVR_CDRPLL_CTL register should normally be programmed with the
CDRCPSEL set to 0xFF and the CDRSMEN bit set to 1 and all other fields set to
their reset values. Once the CDRPLL has started up, has locked to the MXI
clock, and is operating at the network frequency 1024 * Fs, the PFL bit in
the MXVR_INT_STAT_0 register will be set to 1 and can optionally be

General Operation

29-116 ADSP-BF54x Blackfin Processor Hardware Reference

enabled to generate a Status Change Interrupt. The current state of the
CDRPLL state machine can also be monitored by looking at the CDRPLLST
field in the MXVR_STATE_0 register. At the point when the PFL bit is
asserted due to CDRPLL locking at the network frequency, the CDRPLL
state machine will be in the CDRPLL_FHOLD state.

Once the CDRPLL is locked at the network frequency (the CDRPLL state
machine in the CDRPLL_FHOLD state), the MXVR can be enabled in Slave

mode to start the process of locking in the MOST® network. The MXVR
should never be enabled in Slave mode without the CDRPLL having been
started up and locked at frequency.

Enabling MXVR Output Clocks
Once the FMPLL or the CDRPLL have been started up and are frequency
locked, the MXVR output clocks MMCLK, MBCLK, and MFS can programmed
and enabled. The MXVR output clocks can either be generated by the
FMPLL or by the CDRPLL depending on how the CLKX3SEL bit in the
MXVR_CLK_CTL register is programmed. If the CLKX3SEL bit is set to 1, the
MXVR output clocks are generated by the FMPLL which is locked to the
frequency of the MXI input clock. If the CLKX3SEL bit is set to 0, the
MXVR output clocks are generated by the CDRPLL which is either
locked to the frequency of the MXI input clock (when the CDRPLL is in
frequency multiply mode) or locked to the frequency of the incoming data
stream (when the CDRPLL is in clock/data recovery mode).

ADSP-BF54x Blackfin Processor Hardware Reference 29-117

Media Transceiver Module (MXVR)

The following steps should be followed to program the MXVR output
clocks once MXVR PLL which is to generate the clocks is frequency
locked:

1. MMCLKEN, MBCLKEN, and MFSEN in the MXVR_CLK_CTL register should
all be set to 0 (disabling the MXVR output clocks).

2. Ensure that the MXVR is selected in the GPIO pin multiplexing
for the PORTC_1 (MMCLK) and PORTC_5 (MBCLK) pins. Also, ensure that
the MFSGPSEL bit is set to 0 and the MFSOE bit is set to 1 in the
MXVR_PIN_CTL register.

3. Write the MMCLKMUL, MBCLKDIV, MFSDIV, MFSSEL, and MFSSYNC fields
in the MXVR_CLK_CTL register to define the frequency and relation-
ship of the MXVR output clocks.

4. Wait 1 µsec.

5. Write to the MMCLKEN, MBCLKEN, and MFSEN bits in the MXVR_CLK_CTL
register to enable the individual MXVR output clocks to start tog-
gling as desired. Set MMCLKEN to 1 to enable MMCLK. Set MBCLKEN to 1
to enable MBCLK. Set MFSEN to 1 to enable MFS.

Network Lock

The steps for enabling the MXVR and attempting to lock the MOST®
network are slightly different for Master and Slave nodes. The steps for a
Master node and the steps for a Slave node are described in the following
sections.

Network Lock for a Master Node

Once the FMPLL and CDRPLL are at frequency, the MXVR can be
enabled, the MXVR transmit can be enabled, and the PHY Transmitter
can be turned on. This is accomplished by writing to the MXVR_CONFIG reg-
ister and setting the MXVREN bit to 1, the MTXEN bit to 1, and the MTXONB bit

General Operation

29-118 ADSP-BF54x Blackfin Processor Hardware Reference

to 0. All other bits in the MXVR_CONFIG register should be left programmed
as described in “Node Initialization” on page 29-111. Once the
MXVR_CONFIG register has been written, the MXVR begins transmitting the
network datastream on the MTX output pin and the PHY Transmitter
transmits the datastream to the first slave node in the network and it
begins its lock sequence.

Once the MXVR master node starts to receive incoming network activity
(circling the ring network) on MRX, the CDRPLL attempts to lock onto the
incoming datastream and recover the clock and data. The CDRPLL state
machine completely controls this process. The FLOCK, BLOCK, and SBLOCK
bits in the MXVR_STATE_0 register indicate the current network lock level of
the MXVR. In addition, state changes on the lock level state bits are indi-
cated by the FU2L, FL2U, BU2L, BL2U, SBU2L, and SBL2U interrupt event bits
in the MXVR_INT_STAT_0 register. These interrupt events can generate an
MXVR Status interrupt if enabled.

In the Master node, the MXVR CDRPLL charge pump current is initial-
ized to the highest possible charge pump current value of 0xFF. This value
does not need to be changed based on the number of nodes in the network
as is the case in the Slave node.

Whenever the MXVR loses frame lock, the CDRPLL state machine causes
the CDRPLL to relock to the clock supplied on the MXI pin and stabilize
at the network frequency 1024 * Fs before attempting to relock onto the
incoming datastream. This process is completely handled in hardware by
the CDRPLL state machine and no software intervention is required when
re-locking the network after an unlock or ring break.

Network Lock For a Slave Node

Once the CDRPLL is at frequency and the slave node has detected net-
work activity, the MXVR can be enabled, the MXVR transmit can be
enabled, and the PHY Transmitter can be turned on. This is accomplished
by writing to the MXVR_CONFIG register and setting the MXVREN bit to 1, the
MTXEN bit to 1, and the MTXONB bit to 0. All other bits in the MXVR_CONFIG

ADSP-BF54x Blackfin Processor Hardware Reference 29-119

Media Transceiver Module (MXVR)

register should be left programmed as described in “Node Initialization”
on page 29-111. Once the MXVR_CONFIG register has been written, the
MXVR begins transmitting the network datastream on the MTX output pin
and the PHY Transmitter transmits the datastream to the next slave node
in the network and it begins its lock sequence.

Once the MXVR is enabled, the CDRPLL attempts to lock onto the
incoming datastream and recover the clock and data. The CDRPLL state
machine completely controls this process. The FLOCK, BLOCK, and SBLOCK
bits in the MXVR_STATE_0 register indicate the current network lock level of
the MXVR. In addition state changes on the lock level state bits are
indicated by the FU2L, FL2U, BU2L, BL2U, SBU2L, and SBL2U interrupt event
bits in the MXVR_INT_STAT_0 register. These interrupt events can generate
an MXVR Status interrupt if enabled.

In the Slave node, the MXVR CDRPLL charge pump current should be
adjusted for best PLL jitter performance based on the position of the slave
in the network. In the Slave, whenever the PRU event occurs and the
PVALID bit is asserted, the CDRPLL MCPSEL field should be programmed
based on the following formula:

 MCPSEL = POSITION << 4

 This formula applies for networks with 16 nodes or less. Therefore,
the CDRPLL MCPSEL value in the Slave nodes will range from 0x10
to 0xF0. For networks with more than 16 nodes, contact Analog
Devices, Inc. for further details.

Whenever the MXVR loses frame lock, the CDRPLL state machine causes
the CDRPLL to relock to the clock supplied on the MXI pin and stabilize
at the network frequency 1024 * Fs before attempting to relock onto the
incoming datastream. This process is completely handled in hardware by
the CDRPLL state machine and no software intervention is required when
re-locking the network after an unlock or ring break.

General Operation

29-120 ADSP-BF54x Blackfin Processor Hardware Reference

Network Initialization
Once the network is locked, the Master node typically changes the value
of the MSB in the MXVR_CONFIG register. Once the MSB field is changed, the
Master will distribute the new synchronous boundary over the network.
The update of the RSB value in each of the slave nodes and in the master
node is used to indicate that the network lock is stable and the ring is
closed. In the slave nodes, the update of the RSB value will cause the SBU
interrupt event to be asserted. Note that once the network is in operation,
a special procedure must be followed to dynamically change the synchro-
nous boundary without disrupting the asynchronous packet channel.

The MXVR will automatically determine the node position, node delay,
maximum node position, and maximum node delay from the network.
Once the lock level of the MXVR is such that these values can be deter-
mined, the fields and valid bits in the MXVR_POSITION, MXVR_DELAY,
MXVR_MAX_POSITION, and MXVR_MAX_DELAY registers will be updated. In
addition, the PRU, DRU, MPRU, and MDRU interrupt events in the
MXVR_INT_STAT_0 register will assert when these values become valid or
change.

The MXVR will also automatically receive the Allocation Table distrib-
uted by the Master node in the MXVR_ALLOC_x registers. The Master node
in the network distributes its Allocation Table once every 1024 frames.
Once the distribution of the Allocation Table has completed, the ATU
interrupt event will assert. The assertion of the ATU interrupt event only
indicates that the Allocation Table distribution is received and does not
indicate whether the Allocation Table has changed since the last distribu-
tion. In the Master node, the ATU interrupt event also asserts when a
Resource Allocate or Resource De-Allocate control message has caused the
Allocation Table to be updated.

For the logical address to be used in the address comparison for received
control messages and receive asynchronous packets, the LADDR field should
be written and the LVALID bit should be set to 1 in the MXVR_LADDR register.
Note that software must determine the uniqueness of the logical address.

ADSP-BF54x Blackfin Processor Hardware Reference 29-121

Media Transceiver Module (MXVR)

For the group address to be used in the address comparison for received
control messages, the GADDRL field should be written and the GVALID bit
should be set to 1 in the MXVR_GADDR register.

For the alternate address to be used in the address comparison for received
asynchronous packets, the AADDR field should be written and the AVALID
bit should be set to 1 in the MXVR_AADDR register.

To enable the reception of Normal control messages the NCMRXEN bit in the
MXVR_CONFIG register must be set to 1. Any Normal control message
addressed to the MXVR while the NCMRXEN bit is set to 0 will not be
received in the CMRB and the transmission status response “Not Supported”
will be given.

To enable the reception of Remote Write control messages, the RWRRXEN
bit in the MXVR_CONFIG register must be set to 1. Any Remote Write con-
trol message addressed to the MXVR while the RWRRXEN bit is set to 0 will
not update the RRDB and the transmission status response “Not Sup-
ported” will be given.

To enable the reception of asynchronous packets, the APRXEN bit in the
MXVR_CONFIG register must be set to 1. Any asynchronous packet addressed
to the MXVR while the APRXEN bit is set to 0 will not be received in the
APRB.

Synchronous Data Routing and Muting
The MXVR can either re-transmit incoming synchronous data on the
same outgoing physical channel as it was received on or re-transmit
incoming synchronous data on one or more different outgoing physical
channels. The process of either forwarding data on the same physical
channel or re-transmitting it on different physical channels is called rout-
ing. The MXVR can also mute individual synchronous data physical
channels and can automatically mute physical channels when a synchro-
nous data DMA channel has completed transmission. When a physical

General Operation

29-122 ADSP-BF54x Blackfin Processor Hardware Reference

channel is muted, the data 0x00 is transmitted on that physical channel.
The routing and muting functions for each synchronous data physical
channel are specified in the MXVR Routing registers.

The MXVR Routing registers must always be initialized prior to enabling
the MXVR. All outgoing synchronous data physical channels which will
not have data routed onto them should be programmed to forward the
data from the corresponding incoming synchronous data physical channel.
In order to forward data from incoming synchronous data physical chan-
nel m to outgoing synchronous data physical channel m, the Transmit
Channel m field in the appropriate MXVR_ROUTING_x register must be
programmed with the value m. For example, to forward the incoming data
on physical channel 5 to the outgoing physical channel 5, the Transmit
Channel 5 field in MXVR_ROUTING_1 should be written with 0x05.

In order to use the Routing registers to route data from one incoming syn-
chronous data physical channel to one or more outgoing synchronous data
physical channels, the MXVR must be a Master enabled in Active Mode
(MXVREN=1, MMSM=1, and ACTIVE=1) or must be a Slave enabled in Active
Mode with the Synchronous Data Delay set to 2 frames (MXVREN=1,
MMSM=0, ACTIVE=1, and SDELAY=1). In addition, a DMA channel transmit-
ting data onto a synchronous data physical channel or the muting of a
synchronous data physical channel takes precedence over any programmed
routing for that physical channel. To route data from incoming synchro-
nous data physical channel m onto outgoing synchronous data physical
channel n, the Transmit Channel n field in the appropriate
MXVR_ROUTING_x register must be programmed with the value m. For
example, to route the incoming data on physical channel 20 to the outgo-
ing physical channel 30, the Transmit Channel 30 field in the
MXVR_ROUTING_5 register should be written with 0x14.

The Routing registers also control the muting of individual synchronous
data physical channels. In order to use the muting function, the MXVR
must be enabled in Active Mode (MXVREN=1 and ACTIVE=1). In addition, a
DMA channel transmitting data onto a synchronous data physical channel

ADSP-BF54x Blackfin Processor Hardware Reference 29-123

Media Transceiver Module (MXVR)

takes precedence over muting for that physical channel. However, when
the DMA channel is stopped, the synchronous data physical channel will
be muted if muting is enabled for that physical channel. Enabling muting
for channels which will be transmitted on keeps junk data from echoing
on the bus when the transmission stops and indicates that the channel is in
use even when the DMA is not actively transmitting data. To enable mut-
ing for synchronous data physical channel m, the Mute Channel m bit in
the appropriate MXVR_ROUTING_x register should be set to 1. To disable
muting, the Mute Channel m bit should be set to 0. For example, to mute
physical channel 33, the Mute Channel 33 bit in the MXVR_ROUTING_9
should be set to 1.

Synchronous Data Transmission
The MXVR has 8 dedicated DMA channels for synchronous data trans-
mission and reception. These 8 DMA channels can be programmed
individually for transmission or reception and can be mapped to logical
channels composed of any number of physical channels in the synchro-
nous data field of the frame.

In order to set up a DMA channel for synchronous data transmission, a
Logical Channel must first be defined. A Logical Channel is a set of syn-
chronous data physical channels on which the data will be transmitted or
received. A Logical Channel can include from one physical channel up to
(RSB * 4) physical channels in size. The MXVR supports up to 8 defined
Logical Channels and the Logical Channels are identified by a number
from 0 to 7. Logical Channel m is defined by writing the number m into
one or more LCHANPCx fields in the MXVR_SYNC_LCHAN_x which represent
the synchronous data physical channels. All LCHANPCx fields which have
the number m written to them are part of Logical Channel m.

Once the Logical Channel is defined, the DMA channel can be config-
ured. The MXVR has 8 DMA channels dedicated for synchronous data
transmission and reception. All 8 DMA channels have the same function-
ality and any number of them can be used simultaneously. In order to

General Operation

29-124 ADSP-BF54x Blackfin Processor Hardware Reference

configure DMA channel x for transmission, the configuration bits in the
MXVR_DMAx_CONFIG register should be programmed. On the first write to
the MXVR_DMAx_CONFIG register, the MDMAENx bit should be set to 0, the DDx
bit should be set to 0 to transmit data, the LCHANx field should be pro-
grammed with the defined Logical Channel number, the BITSWAPENx and
BYSWAPENx bits should be set to select any data manipulation prior to
transmission, and the MFLOWx should be programmed to either Stop Mode
or Autobuffer Mode.

Note that the Synchronous Packet DMA Mode encodings of the MFLOWx
field and the FIXEDPMx, STARTPATx, STOPPATx and COUNTPOSx fields are only
used when the DMA channel is receiving data.

Then the address of the data buffer in L1 or L2 memory to be transmitted
should be programmed to the MXVR_DMAx_START_ADDR register and the
number of bytes to be transmitted should be programmed to the
MXVR_DMAx_COUNT register.

Once the Logical Channel has been defined, the configuration bits, the
start address, and the transfer count have been written, the DMA channel
can be enabled. The DMA channel is enabled by writing the
MXVR_DMAx_CONFIG register again with the configuration bits programmed
to the same values as before and with the MDMAENx bit now set to 1.

When the DMA channel is enabled to transmit in Stop Mode, the DMA
channel waits until the start of the next frame so that the data is always
frame aligned. Then the DMA channel starts fetching data from L1 mem-
ory starting at the address specified in MXVR_DMAx_START_ADDR and starts
transmitting the data on the physical channels defined in the associated
Logical Channel. Once the DMA has fetched half of the total number of
bytes specified in MXVR_DMAx_COUNT, the HDONEx status bit is set to 1. The
DMA continues to fetch data from L1 and transmits the data until the
total number of bytes specified in MXVR_DMAx_COUNT has been fetched. At
that point, the DONEx status bit is set to 1 and the DMA channel stops and
disables itself.

ADSP-BF54x Blackfin Processor Hardware Reference 29-125

Media Transceiver Module (MXVR)

When the DMA channel is enabled to transmit in Autobuffer Mode, the
DMA channel waits until the start of the next frame so that the data is
always frame aligned. Then the DMA channel starts fetching data from L1
memory starting at the address specified in MXVR_DMAx_START_ADDR and
starts transmitting the data on the physical channels defined in the associ-
ated Logical Channel. Once the DMA has fetched half of the total
number of bytes specified in MXVR_DMAx_COUNT, the HDONEx status bit is set
to 1. The DMA continues to fetch data from L1 and transmits the data
until the total number of bytes specified in MXVR_DMAx_COUNT has been
fetched. At that point, the DONEx status bit is set to 1, and the DMA chan-
nel restarts itself fetching data from the address programmed in the
MXVR_DMAx_START_ADDR and using the transfer count in MXVR_DMAx_COUNT.
The DMA channel continues to operate in this fashion indefinitely until it
is manually disabled.

A DMA channel can be disabled manually at any time by writing the
MDMAEN bit to 0, however the DMA channel will not actually stop until the
start of the next frame. The associated DMAACITVEx bit in the MXVR_STATE_1
register can be monitored to see when the DMA channel has actually
stopped. Note that as a general rule the Logical Channel definition in the
MXVR_SYNC_LCHAN_x registers should not be changed while a DMA channel
is active which uses that Logical Channel.

Synchronous Data Reception
In order to set up a DMA channel for data reception, a Logical Channel
must first be defined. A Logical Channel is a set of synchronous data phys-
ical channels on which the data will be transmitted or received. A Logical
Channel can include from one physical channel up to (RSB * 4) physical
channels in size. The MXVR supports up to 8 defined Logical Channels
and the Logical Channels are identified by a number from 0 to 7. Logical
Channel m is defined by writing the number m into one or more LCHANPCx
fields in the MXVR_SYNC_LCHAN_x which represent the synchronous data
physical channels. All LCHANPCx fields which have the number m written to
them are part of Logical Channel m.

General Operation

29-126 ADSP-BF54x Blackfin Processor Hardware Reference

Once the Logical Channel (from which data will be received) has been
defined, the DMA channel can be configured. The MXVR has 8 DMA
channels dedicated for synchronous data transmission and reception. All 8
DMA channels have the same functionality and any number of them can
be used simultaneously. In order to configure DMA channel x for recep-
tion, the bits in the MXVR_DMAx_CONFIG register should be programmed.
On the first write to the MXVR_DMAx_CONFIG, the MDMAENx bit should be set
to 0, the DDx bit should be set to 1 to receive data, the LCHANx field should
be programmed with the defined Logical Channel number, the
BITSWAPENx and BYSWAPENx bits should be set to select any data manipula-
tion prior to transmission, the MFLOWx should be programmed, and the
synchronous packet configuration bits should be programmed if a syn-
chronous packet flow mode is selected.

Then the address of the data buffer in L1 or L2 memory should be pro-
grammed to the MXVR_DMAx_START_ADDR register and the MXVR_DMAx_COUNT
register should be programmed based on the flow mode selected.

Once the Logical Channel has been defined, the configuration bits, the
start address, and the transfer count have been written, the DMA channel
can be enabled. The DMA channel is enabled by writing the
MXVR_DMAx_CONFIG again with the configuration bits programmed to the
same values as before and with the MDMAENx now set to 1.

When the DMA channel is enabled to receive in Stop Mode, the DMA
channel waits until the start of the next frame so that the data is always
frame aligned. Then the DMA channel starts receiving the data on the
physical channels defined in the associated Logical Channel and starts
writing the data to L1 memory starting at the address specified in
MXVR_DMAx_START_ADDR. Once the DMA channel has written half of the
total number of bytes specified in MXVR_DMAx_COUNT, the HDONEx status bit
is set to 1. The DMA continues to receive the data and write the data to
L1 memory until the total number of bytes specified in MXVR_DMAx_COUNT
has been written. At that point, the DONEx status bit is set to 1 and the

ADSP-BF54x Blackfin Processor Hardware Reference 29-127

Media Transceiver Module (MXVR)

DMA channel stops and disables itself. See DMA channels 3, 4, and 5 in
Listing 29-1 on page 29-130 for examples of a DMA channel being pro-
grammed for Stop Mode.

When the DMA channel is enabled to receive in Autobuffer Mode, the
DMA channel waits until the start of the next frame so that the data is
always frame aligned. Then the DMA channel starts receiving the data on
the physical channels defined in the associated Logical Channel and starts
writing data to L1 memory starting at the address specified in
MXVR_DMAx_START_ADDR. Once the DMA channel has written half of the
total number of bytes specified in MXVR_DMAx_COUNT, the HDONEx status bit
is set to 1. The DMA continues to receive the data and to write data to L1
until the total number of bytes specified in MXVR_DMAx_COUNT has been
fetched. At that point, the DONEx status bit is set to 1, and the DMA chan-
nel restarts itself writing data to the address programmed in the
MXVR_DMAx_START_ADDR and using the transfer count in MXVR_DMAx_COUNT.
The DMA channel continues to operate in this fashion indefinitely until it
is manually disabled.

When the DMA channel is enabled to receive in Synchronous
Packet-Variable Count Mode, the DMA channel waits until the start of
the next frame so that the data is always frame aligned. The DMA channel
then monitors incoming data in the Logical Channel looking for the
occurrence of the Start Pattern as defined by the STARTPATx field and the
FIXEDPMx bit. Once the Start Pattern is found, the DMA channel then
starts receiving the data on the physical channels defined in the associated
Logical Channel and starts writing data to L1 memory starting at the
address specified by MXVR_DMAx_START_ADDR. The DMA channel then finds
the transfer count in the received data itself in the position determined by
the COUNTPOSx field. Once the DMA channel has written the total number
of bytes specified by the transfer count found in the packet, the HDONEx
status bit is set to 1. The DMA channel then stops and will again start
monitoring the incoming data in the Logical Channel looking for the
occurrence of the Start Pattern. Once the Start Pattern is found, the DMA
channel then starts receiving the data on the physical channels defined in

General Operation

29-128 ADSP-BF54x Blackfin Processor Hardware Reference

the associated Logical Channel and will start writing the data to L1 mem-
ory starting at the address specified by MXVR_DMAx_START_ADDR +
MXVR_DMAx_COUNT. The DMA channel then finds the transfer count in the
received data itself in the position determined by the COUNTPOSx field.
Once the DMA channel has written the total number of bytes specified by
the transfer count found in the packet, the DONEx status bit is set to 1. The
DMA channel then stops and will again start monitoring the incoming
data in the Logical Channel looking for the occurrence of the Start Pat-
tern. The third packet received is written to the address specified by
MXVR_DMAx_START_ADDR and the fourth packet is written to the address
specified by MXVR_DMAx_START_ADDR + MXVR_DMAx_COUNT, and so on. The
DMA channel continues to operate in this fashion indefinitely until it is
manually disabled. See DMA channel 2 in Listing 29-1 on page 29-130
for an example of a DMA channel being programmed for Synchronous
Packet-Variable Count Mode.

When the DMA channel is enabled to receive in Synchronous
Packet-Start/Stop Mode, the DMA channel waits until the start of the
next frame so that the data is always frame aligned. The DMA channel
then monitors incoming data in the Logical Channel looking for the
occurrence of the Start Pattern as defined by the STARTPATx field and the
FIXEDPMx bit. Once the Start Pattern is found, the DMA channel then
starts receiving the data on the physical channels defined in the associated
Logical Channel and will start writing data to L1 memory starting at the
address specified by MXVR_DMAx_START_ADDR. The DMA channel then
monitors incoming data in the Logical Channel looking for the occurrence
of the Stop Pattern as defined by the STOPPATx field and the FIXEDPMx bit.
Once the DMA channel finds the Stop Pattern, the HDONEx status bit is set
to 1. The DMA channel then stops and will again start monitoring the
incoming data in the Logical Channel looking for the occurrence of the
Start Pattern. Once the Start Pattern is found, the DMA channel then
starts receiving the data on the physical channels defined in the associated
Logical Channel and will start writing the data to L1 memory starting at
the address specified by MXVR_DMAx_START_ADDR + MXVR_DMAx_COUNT. The
DMA channel then monitors incoming data in the Logical Channel

ADSP-BF54x Blackfin Processor Hardware Reference 29-129

Media Transceiver Module (MXVR)

looking for the occurrence of the Stop Pattern as defined by the STOPPATx
field and the FIXEDPMx bit. Once the DMA channel finds the Stop Pattern,
the DONEx status bit is set to 1. The DMA channel then stops and will
again start monitoring the incoming data in the Logical Channel looking
for the occurrence of the Start Pattern. The third packet received is writ-
ten to the address specified by MXVR_DMAx_START_ADDR and the fourth
packet will be written to the address specified by MXVR_DMAx_START_ADDR +
MXVR_DMAx_COUNT, and so on. The DMA channel continues to operate in
this fashion indefinitely until it is manually disabled. See DMA channel 3
in Listing 29-1 on page 29-130 for an example of a DMA channel being
programmed for Synchronous Packet-Start/Stop Mode.

When the DMA channel is enabled to receive in Synchronous
Packet-Fixed Count Mode, the DMA channel waits until the start of the
next frame so that the data is always frame aligned. The DMA channel
then monitors incoming data in the Logical Channel looking for the
occurrence of the Start Pattern as defined by the STARTPATx field and the
FIXEDPMx bit. Once the Start Pattern is found, the DMA channel then
starts receiving the data on the physical channels defined in the associated
Logical Channel and starts writing data to L1 memory starting at the
address specified by MXVR_DMAx_START_ADDR. The DMA channel continues
to receive the data and write the data to L1 memory until the total num-
ber of bytes specified in MXVR_DMAx_COUNT has been written. At that point,
the HDONEx status bit is set to 1. The DMA channel then stops and will
again start monitoring the incoming data in the Logical Channel looking
for the occurrence of the Start Pattern. Once the Start Pattern is found,
the DMA channel then starts receiving the data on the physical channels
defined in the associated Logical Channel and starts writing the data to L1
memory starting at the address specified by MXVR_DMAx_START_ADDR +
MXVR_DMAx_COUNT. The DMA channel continues to receive the data and
write the data to L1 memory until the total number of bytes specified in
MXVR_DMAx_COUNT has been written. At that point, the DONEx status bit is
set to 1. The DMA channel then stops and will again start monitoring the
incoming data in the Logical Channel looking for the occurrence of the
Start Pattern. The third packet received will be written to the address

General Operation

29-130 ADSP-BF54x Blackfin Processor Hardware Reference

specified by MXVR_DMAx_START_ADDR and the fourth packet will be written
to the address specified by MXVR_DMAx_START_ADDR + MXVR_DMAx_COUNT,
and so on. The DMA channel continues to operate in this fashion indefi-
nitely until it is manually disabled. See DMA channel 4 in Listing 29-1 on
page 29-130 for an example of a DMA channel being programmed for
Synchronous Packet-Fixed Count Mode.

A DMA channel can be disabled manually at any time by writing the
MDMAEN bit to 0; however, the DMA channel will not actually stop until
the start of the next frame. The associated DMAACITVEx bit in the
MXVR_STATE_1 register can be monitored to see when the DMA channel
has actually stopped. Note that as a general rule, the Logical Channel
definition in the MXVR_SYNC_LCHAN_x registers should not be changed
while a DMA channel which uses that Logical Channel is active.

Listing 29-1. Synchronous Packet Modes Code Example

// Declare and define the sync packet transmit buffers.

U8_t tx_sync_pkt_vc[16] = {0xF0,0xF1,0xF2,0xF3,

0xAA,0x00,0x0C,0xAA,

0x01,0x02,0x03,0x04,

0x05,0x06,0x07,0x08};

U8_t tx_sync_pkt_ss[16] = {0xF0,0xF1,0xF2,0xF3,

0x10,0x11,0x12,0x13,

0x14,0x15,0x16,0x17,

0xFF,0xFF,0xFF,0xFF};

U8_t tx_sync_pkt_fc[20] = {0xFF,0xFF,0xFF,0xFF,

0x20,0x21,0x22,0x23,

0x24,0x25,0x26,0x27,

0x28,0x29,0x2A,0x2B,

0x2C,0x2D,0x2E,0x2F};

// Declare the sync packet receive buffers.

ADSP-BF54x Blackfin Processor Hardware Reference 29-131

Media Transceiver Module (MXVR)

U8_t rx_sync_pkt_vc[32];

U8_t rx_sync_pkt_ss[32];

U8_t rx_sync_pkt_fc[32];

// Initialize the sync packet receive buffers.

for (i=0; i<32; i++)

{

rx_sync_pkt_vc[i] = 0x00;

rx_sync_pkt_ss[i] = 0x00;

rx_sync_pkt_fc[i] = 0x00;

}

// Set up the routing registers to mute the

// physical channels which will be used for

// Logical Channels 0, 1, and 2.

*pMXVR_ROUTING_0 = 0x83828180;

*pMXVR_ROUTING_1 = 0x87868584;

*pMXVR_ROUTING_2 = 0x8B8A8988;

// Define Logical Channels 0, 1, and 2.

*pMXVR_SYNC_LCHAN_0 = 0x11110000;

*pMXVR_SYNC_LCHAN_1 = 0xFFFF2222;

// Set up the Pattern Registers

*pMXVR_PAT_DATA_0 = 0xF0F1F2F3;

*pMXVR_PAT_EN_0 = 0xFFFFFFFF;

*pMXVR_PAT_DATA_1 = 0xFFFFFFFF;

*pMXVR_PAT_EN_1 = 0xFFFFFFFF;

// Configure and enable DMA channels 0, 1, and 2 in

// each of the synchronous packet reception modes

// using Logical Channels 0, 1, and 2.

General Operation

29-132 ADSP-BF54x Blackfin Processor Hardware Reference

*pMXVR_DMA0_CONFIG = STARTPAT_0 | COUNTPOS_1| MFLOW_PVC |

LCHAN_0 | DD_RX;

pMXVR_DMA0_START_ADDR = (void) rx_sync_pkt_vc;

*pMXVR_DMA0_COUNT = (U16_t) 16;

*pMXVR_DMA0_CONFIG |= MDMAEN;

*pMXVR_DMA1_CONFIG = STARTPAT_0 | STOPPAT_1 | MFLOW_PSS |

LCHAN_1 | DD_RX;

pMXVR_DMA1_START_ADDR = (void) rx_sync_pkt_ss;

*pMXVR_DMA1_COUNT = (U16_t) 16;

*pMXVR_DMA1_CONFIG |= MDMAEN;

*pMXVR_DMA2_CONFIG = STARTPAT_1 | MFLOW_PFC | LCHAN_2 | DD_RX;

pMXVR_DMA2_START_ADDR = (void) rx_sync_pkt_fc;

*pMXVR_DMA2_COUNT = (U16_t) 16;

*pMXVR_DMA2_CONFIG |= MDMAEN;

// Wait for DMA channels 0, 1, and 2 to start up in

// the synchronous packet / pattern matching mode.

while (!(*pMXVR_STATE_1 & DMAPMEN0));

while (!(*pMXVR_STATE_1 & DMAPMEN1));

while (!(*pMXVR_STATE_1 & DMAPMEN2));

// Setup and enable DMA channels to transmit sync packets in

// Stop Mode on Logical Channels 0, 1, and 2, so they will be

// received by DMA channels 0, 1, and 2.

*pMXVR_DMA3_CONFIG = MFLOW_STOP | LCHAN_0 | DD_TX;

pMXVR_DMA3_START_ADDR = (void) tx_sync_pkt_vc;

*pMXVR_DMA3_COUNT = (U16_t) 16;

*pMXVR_DMA3_CONFIG |= MDMAEN;

*pMXVR_DMA4_CONFIG = MFLOW_STOP | LCHAN_1 | DD_TX;

pMXVR_DMA4_START_ADDR = (void) tx_sync_pkt_ss;

*pMXVR_DMA4_COUNT = (U16_t) 16;

ADSP-BF54x Blackfin Processor Hardware Reference 29-133

Media Transceiver Module (MXVR)

*pMXVR_DMA4_CONFIG |= MDMAEN;

*pMXVR_DMA5_CONFIG = MFLOW_STOP | LCHAN_2 | DD_TX;

pMXVR_DMA5_START_ADDR = (void) tx_sync_pkt_fc;

*pMXVR_DMA5_COUNT = (U16_t) 20;

*pMXVR_DMA5_CONFIG |= MDMAEN;

// Wait for first set of packets to be received on

// DMA channels 0, 1, and 2 and for the HDONE bits

// to be set.

while (!(*pMXVR_INT_STAT_1 & HDONE0));

while (!(*pMXVR_INT_STAT_1 & HDONE1));

while (!(*pMXVR_INT_STAT_1 & HDONE2));

*pMXVR_INT_STAT_1 = HDONE0 | HDONE1 | HDONE2;

// Re-transmit the same 3 sync packets again.

*pMXVR_DMA3_CONFIG |= MDMAEN;

*pMXVR_DMA4_CONFIG |= MDMAEN;

*pMXVR_DMA5_CONFIG |= MDMAEN;

// Wait for second set of packets to be received on

// DMA channels 0, 1, and 2 and for the DONE bits to

// be set.

while (!(*pMXVR_INT_STAT_1 & DONE0));

while (!(*pMXVR_INT_STAT_1 & DONE1));

while (!(*pMXVR_INT_STAT_1 & DONE2));

*pMXVR_INT_STAT_1 = DONE0 | DONE1 | DONE2;

General Operation

29-134 ADSP-BF54x Blackfin Processor Hardware Reference

Asynchronous Packet Transmission
The MXVR Asynchronous Packet Transmit Buffer (APTB) is an area of
memory that is allocated to hold an asynchronous packet to be transmit-
ted. The APTB must reside in L1 or L2 memory and the starting address of
the APTB is programmed in the MXVR_APTB_START_ADDR register. Enough
memory should be allocated for the largest asynchronous packet to be
transmitted. The largest allowed asynchronous packet data length is 1014
bytes and with 12 bytes for packet priority, addressing, and length fields,
the APTB must be 1026 bytes.

Once the asynchronous packet to be transmitted is written to the APTB,
the STARTAP bit in the MXVR_AP_CTL register should be set to 1 to trigger
the MXVR to begin arbitration and transmission of the asynchronous
packet. At that point the MXVR will start DMA’ing the asynchronous
packet from the APTB into the MXVR and will begin arbitrating for the
asynchronous packet channel.

While the MXVR is still arbitrating for the asynchronous packet channel,
the asynchronous packet transmission can be cancelled by setting the
CANCELAP bit to 1 in the MXVR_AP_CTL register. Once the STARTAP bit is set
to 1, the APTB cannot be written until either the asynchronous packet is
successfully sent or is successfully cancelled.

The asynchronous packet is said to be successfully sent if the MXVR wins
the arbitration for the asynchronous packet channel, and transmits the
packet. Once the packet is transmitted, the MXVR will set the APTS bit in
the MXVR_INT_STAT_1 register and an interrupt can be conditionally
generated.

The asynchronous packet is said to be successfully cancelled if the
CANCELAP bit is set to 1 prior to the MXVR winning arbitration for the
asynchronous packet channel. If the asynchronous packet is successfully
cancelled, the MXVR will set the APTC bit in the MXVR_INT_STAT_1 register
and an interrupt can conditionally be generated.

ADSP-BF54x Blackfin Processor Hardware Reference 29-135

Media Transceiver Module (MXVR)

An asynchronous packet to be transmitted is DMA’ed from the APTB in L1
or L2 memory to the MXVR. The asynchronous packet contains the fol-
lowing fields: AP Priority, AP Destination Address, AP Length, AP
Source Address, and AP Data. These asynchronous packet fields will be
stored at the address offsets given in Table 29-12.

The AP Priority can be any value from 0x01 to 0x0F with 0x01 being the
highest priority and 0x0F being the lowest priority. The AP Priority
value determines how soon after winning arbitration and transmitting an
asynchronous packet will the node attempt to win arbitration again. The
AP Priority value indicates the number of free frames the node will allow
to pass before attempting to arbitrate again. Note that the AP Priority
value self-limits the maximum possible bandwidth a node will get on the
asynchronous packet channel. For example, if a node sends repeated asyn-
chronous packets with an AP Priority value of 0x0F, the node will get 15
times less bandwidth on the asynchronous packet channel than if the
AP Priority value was 0x01

Table 29-12. Asynchronous Packet Transmit Buffer Field Offsets

APTB Address Offsets Field Name

0x000 AP Priority

0x001 Reserved

0x002 AP Destination Address (Upper Byte)

0x003 AP Destination Address (Lower Byte)

0x004 AP Length (in quadlets)

0x005 Reserved

0x006 AP Source Address (Upper Byte)

0x007 AP Source Address (Lower Byte)

0x008 to AP Data End Offset AP Data

General Operation

29-136 ADSP-BF54x Blackfin Processor Hardware Reference

In the actual arbitration process itself when more than one node is arbi-
trating for the asynchronous packet channel and the asynchronous packet
channel is free for more than one frame, the node with the lowest
POSITION will win arbitration. A node which has won arbitration is not
allowed to arbitrate on the first free frame after it has transmitted. In the
case when more than one node is arbitrating for the asynchronous packet
channel after another node has just completed transmitting an asynchro-
nous packet, the next downstream node which is arbitrating will win the
arbitration.

The AP Destination Address should be programmed to be the logical
address or alternate address of the node that will receive the asynchronous
packet.

Software must calculate the AP Length field based on the length of the
asynchronous packet data being transmitted. The AP Length field is a
length in quadlets and the value includes 6 bytes for the AP Source
Address (2 bytes) and AP CRC (4 bytes). The AP Length field can be calcu-
lated based on the length of the AP Data field (in bytes) using the
following formula:

The AP Source Address can be programmed to be any address represent-
ing the transmitting node. However, it is recommended that the logical
address of the transmitting node be use.

The AP Data field contains the data to be transmitted in the asynchronous
packet. The amount of data transmitted can be from 1 byte to 1014 bytes.

Asynchronous Packet Reception
The MXVR Asynchronous Packet Receive Buffer (APRB) is an area of
memory that is allocated to hold received asynchronous packets. The APRB
must reside in L1 Memory and the starting address of the APRB is pro-
grammed in the MXVR_APRB_START_ADDR register. Enough memory should

AP Length Length AP Data 6+ 4=

ADSP-BF54x Blackfin Processor Hardware Reference 29-137

Media Transceiver Module (MXVR)

be allocated for two 1024-byte asynchronous packets to be stored (2048
total bytes). The asynchronous packets are of variable length (ranging
from 8 bytes to 1024 bytes) so the Length of Data field must be read to
determine where the end of each asynchronous packet is located.

As asynchronous packets are received by the MXVR the packets will be
DMA'd into the APRB in a sequential manner (wrapping from the end back
to the start). For example, APRB Entry 0 will be filled first, then APRB Entry
1, and then APRB Entry 0, etc. As each message is received, the correspond-
ing APRBEx bit in the MXVR_AP_CTL register will be set to 1 by the MXVR
indicating that receive buffer entry number x is full. Once software has
read the asynchronous packet, the APRBEx bit should be cleared by writing
a 1 to the corresponding bit position indicating that receive buffer entry x
is now empty.

If a new asynchronous packet is arriving and the next sequential entry is
full, the Asynchronous Packet Receive Buffer Overflow (APROF) bit in the
MXVR_INT_STAT_0 register will be set to 1 and can conditionally generate
an interrupt. The incoming packet which caused the overflow will be lost.

The two APRB entries are stored as address offsets to the APRB start address
programmed in MXVR_APRB_START_ADDR register. The address offsets for
the two APRB Entries are given in Table 29-13.

Received asynchronous packets are DMA'd to the next sequential APRB
entry in L1 or L2 memory. The asynchronous packet contains the follow-
ing fields: AP Destination Address, AP Length, AP Source Address, and
AP Data. These asynchronous packet fields will be stored at the address
offsets given in Table 29-14. Note that the end of the AP Data field is

Table 29-13. Asynchronous Packet Receive Buffer Entry Offsets

APRB Entry Offset APRB Entry Number

MXVR_APRB_START_ADDR + 0x000 AP Receive Buffer Entry 0

MXVR_APRB_START_ADDR + 0x400 AP Receive Buffer Entry 1

General Operation

29-138 ADSP-BF54x Blackfin Processor Hardware Reference

determined by the AP Length field that was received in the packet. The
AP Length field is a length in quadlets and the value includes 6 bytes for
the AP Source Address (2 bytes) and AP CRC (4 bytes). The address offset
of the final byte of the AP Data field is calculated as follows:

Control Message Transmission
The MXVR Control Message Transmit Buffer (CMTB) is an area of mem-
ory that is allocated to hold a control message to be transmitted. The CMTB
must reside in L1 or L2 memory and the starting address of the CMTB is
programmed in the MXVR_CMTB_START_ADDR register. The CMTB must be
allocated 26 bytes.

Once the control message to be transmitted is written to the CMTB, the
Start Control Message Transmission (STARTCM) bit in the MXVR_CM_CTL reg-
ister should be set to 1 to trigger the MXVR to begin arbitration and
transmission of the control message. At that point the MXVR will DMA
the control message from the CMTB into the MXVR and will begin arbitrat-
ing for the control message channel.

Table 29-14. Asynchronous Packet Receive Buffer Entry Field Offsets

APRB Entry Address Offsets Field Name

0x00 AP Destination Address (Upper Byte)

0x01 AP Destination Address (Lower Byte)

0x02 AP Length (in quadlets)

0x03 Reserved

0x04 AP Source Address (Upper Byte)

0x05 AP Source Address (Lower Byte)

0x06 to AP Data End Offset AP Data

AP Data End Offset 4 AP Length 3+=

ADSP-BF54x Blackfin Processor Hardware Reference 29-139

Media Transceiver Module (MXVR)

While the MXVR is still arbitrating for the control message channel, the
control message transmission can be cancelled by setting the CANCELCM bit
in the MXVR_CM_CTL register. Once the STARTCM bit is set to 1, the CMTB
should not be written until either the control message is successfully sent
or is successfully cancelled.

The control message is said to be successfully sent if the MXVR wins arbi-
tration for the control message channel, transmits the message, and
receives a response back from the destination node or nodes. The response
received back will depend on the type of control message that was trans-
mitted. The response received back from the destination node or nodes
will be DMA'd back to the CMTB. Once the response is DMA'd back to the
CMTB, the MXVR will set the CMTS bit in the MXVR_INT_STAT_0 register to 1
and an interrupt can be conditionally generated. Note that regardless of
the actual response value (for example, Transmission Status) received
back, the MXVR will set the CMTS bit to 1.

The control message is said to be successfully cancelled if the CANCELCM bit
is set to 1 prior to the MXVR winning the arbitration for the control mes-
sage channel. If the control message is successfully cancelled, the MXVR
will set the CMTC bit to in the MXVR_INT_STAT_0 register to 1 and an inter-
rupt can conditionally be generated.

There are six types of control messages: Normal, Remote Read, Remote
Write, Resource Allocate, Resource De-Allocate, and Remote GetSource.
All six types of control message contain the following fields: CM Priority,
CM Destination Address, CM Source Address, CM Message Type, and
CM Transmission Status.

The CM Priority is used in the control message arbitration process. The
CM Priority can range from 0x00 to 0x0F with 0x00 being the lowest pri-
ority and 0x0F being the highest priority. If more than one node is
arbitrating for the control messages channel at the same time, the control
message being sent with the highest CM Priority will win the arbitration.
If the control messages being sent have the same CM Priority, the node
which has won arbitration the least will win the arbitration. If the control

General Operation

29-140 ADSP-BF54x Blackfin Processor Hardware Reference

messages have the same CM Priority and the nodes sending the control
messages have won arbitration an equal amount, then the node with the
lowest POSITION value will win the arbitration.

The CM Destination Address should be programmed to be the logical
address, physical address, or group address of the node that will receive the
control message. The byte order of the CM Destination Address is such
that it can be written with a word write.

The CM Source Address can be programmed to be any address represent-
ing the transmitting node. However, it is recommended that the logical
address of the transmitting node be use. The byte order of the CM Source
Address is such that it can be written with a word write.

The CM Message Type field determines which type of control message is
being sent. Table 29-15 gives the encodings for the six types of control
messages. All other values are illegal. Message types 0x01 to 0x05 are
referred to as system control messages and are handled by the receiving
node completely in hardware.

The CM Transmission Status field indicates whether the destination node
successfully received the control message that was transmitted. The
MXVR will DMA the Transmission Status that was received back from

Table 29-15. CM Message Type Encodings

CM Message Type Type of Message

0x00 Normal Control Message

0x01 Remote Read Control Message

0x02 Remote Write Control Message

0x03 Resource Allocate Control Message

0x04 Resource De-Allocate Control Message

0x05 Remote GetSource Control Message

ADSP-BF54x Blackfin Processor Hardware Reference 29-141

Media Transceiver Module (MXVR)

the destination over the bus into the CM Transmission Status field in the
CMTB. Table 29-16 gives the meaning of the transmission status values
received back when single cast addressing is used.

Table 29-17 gives the possible meanings of the transmission status when
group cast or broadcast addressing is used (since the transmission status
from each of the addressed nodes is OR'd together).

Table 29-16. Single Cast Transmission Status Encodings

CM Transmission Status Meaning of Transmission Status

0x0000 No Response

0x1010 Transmission Successful

0x1111 Not Supported

0x2020 CRC Error

0x2121 Receive Buffer Full

Table 29-17. Group Cast/Broadcast Transmission Status
Encodings

CM Transmission Status Meaning of Transmission Status

0x0000 No Response

0x1010 Transmission Successful

Transmission Successful and No Response

0x1111 Not Supported

Not Supported and No Response

Not Supported and Transmission Successful

Not Supported and No Response and Transmission Successful

0x2020 CRC Error

CRC Error and No Response

General Operation

29-142 ADSP-BF54x Blackfin Processor Hardware Reference

Normal Control Message Transmission
The Normal control message is used to transmit data between nodes. The
CM Priority, CM Destination Address, CM Source Address, CM Message
Type (0x00), and CM Data fields should be written to the CMTB at the
address offsets given in Table 29-18.

0x2121 Receive Buffer Full

Receive Buffer Full and No Response

Receive Buffer Full and CRC Error

Receive Buffer Full and CRC Error and No Response

0x3030 CRC Error and Transmission Successful

CRC Error and Transmission Successful and No Response

0x3131 Transmission Successful and Receive Buffer Full

Not Supported and CRC Error

Not Supported and Receive Buffer Full

Transmission Successful and Receive Buffer Full and No Response

Not Supported and CRC Error and No Response

Not Supported and Receive Buffer Full and No Response

Transmission Successful and Not Supported and CRC Error

Transmission Successful and Not Supported and Receive Buffer Full

Transmission Successful and Not Supported and CRC Error and No
Response

Transmission Successful and Not Supported and Receive Buffer Full
and No Response

Table 29-17. Group Cast/Broadcast Transmission Status
Encodings (Cont’d)

CM Transmission Status Meaning of Transmission Status

ADSP-BF54x Blackfin Processor Hardware Reference 29-143

Media Transceiver Module (MXVR)

The CM Data field contains the data payload to be sent from the source to
the destination. For Normal control messages sent using single cast
addressing all 17 bytes of the CM Data field may be used for data transmis-
sion. For Normal control messages sent using group cast or broadcast
addressing, only the first 16 bytes of the CM Data field should be used for
data transmission. The 17th byte should be used as a unique message ID
so that the destination nodes can ignore retries once they have successfully
received the Normal control message. Note that software must handle the
transmission of retries by retransmitting the same Normal control message
with the same message ID and checking the transmission status received
back.

Once a Normal control message is written to the CMTB and the STARTCM bit
is set to 1, the CM Priority, CM Destination Address, CM Source
Address, CM Message Type and CM Data fields are DMA'd from the CMTB to
the MXVR. Once the MXVR wins arbitration the Normal control mes-
sage is sent over the control message channel. The transmission status
from the destination node or nodes is received back by the MXVR and is
DMA'd back to the CMTB. The transmission status for the Normal control
message will be stored in the CM Transmission Status field of the CMTB at
the address offset given in Table 29-18.

Table 29-18. Normal Control Message Transmit Buffer Entry Field
Offsets

CMTB Address Offsets Field Name

0x00 CM Priority

0x01 Reserved

0x02 CM Destination Address

0x04 CM Source Address

0x06 CM Message Type (Write 0x00)

0x07 - 0x17 CM Data

0x18 CM Transmission Status

General Operation

29-144 ADSP-BF54x Blackfin Processor Hardware Reference

If the destination node successfully receives the Normal control message,
the Normal control message will be written into one of the CMRB entries
and the transmission status of “Transmission Successful” will be returned.
If the destination node has reception of Normal control messages disabled
(NCMRXEN=0), the Normal control message will not be written to the CMRB
and the transmission status of “Not Supported” will be returned. If the
destination node detects a CRC error in the Normal control message, the
Normal control message will not be written to the CMRB and the transmis-
sion status of “CRC Error” will be returned. If the destination node’s CMRB
is full, the Normal control message will not be written to the CMRB and the
transmission status of “Receive Buffer Full” will be returned. If no node
responds to the Normal control message, the transmission status of “No
Response” will be returned.

Remote Read Control Message Transmission
The Remote Read control message is used to read data from memory or
registers in another node without disturbing the node’s operation. When a
Remote Read control message is sent to another MXVR node, data is read
from the destination node’s Remote Read Buffer (RRDB). The
CM Priority, CM Destination Address, CM Source Address, CM Message
Type (0x01), and CM Read Address fields should be written to the CMTB at
the address offsets given in Table 29-19.

For Remote Read control messages, the CM Destination Address field
should be restricted to single cast addresses.

The CM Read Address field contains the address offset in the RRDB of the
destination node where data should be read from. A Remote Read control
message always reads 8 bytes of data at a time. Since the RRDB is 256 bytes
long the CM Read Address can range from 0x00 to 0xFF. If the CM Read
Address is in the range 0xF9 to 0xFF, the reads will wrap around to the
start of the RRDB. For example, if the CM Read Address is 0xFE, the 8 bytes
of data returned will be from address offsets 0xFE, 0xFF, 0x00, 0x01,
0x02, 0x03, 0x04, 0x05 in the destination node’s RRDB.

ADSP-BF54x Blackfin Processor Hardware Reference 29-145

Media Transceiver Module (MXVR)

Once a Remote Read control message is written to the CMTB and the
STARTCM bit is set to 1, the CM Priority, CM Destination Address,
CM Source Address, CM Message Type and CM Read Address fields are
DMA’ed from the CMTB to the MXVR. Once the MXVR wins arbitration
the Remote Read control message is sent over the control message
channel. The data read from the RRDB and the transmission status from the
destination node is received back by the MXVR and is DMA'd back to the
CMTB. The Remote Read data will be stored in the CM Read Data field and
the transmission status for the Remote Read control message will be stored
in the CM Transmission Status field of the CMTB at the address offsets
given in Table 29-19.

If the destination node successfully receives the Remote Read control mes-
sage and returns the data from its RRDB, the transmission status of
“Transmission Successful” will be returned. If there is a CRC error in the

Table 29-19. Remote Read Control Message Transmit Buffer Entry Field
Offsets

CMTB Address Offsets Field Name

0x00 CM Priority

0x01 Reserved

0x02 CM Destination Address

0x04 CM Source Address

0x06 CM Message Type (Write 0x01)

0x07 Reserved (Write 0x00)

0x08 CM Read Address

0x09 Reserved (Write 0x00)

0x0A - 0x11 CM Read Data

0x12 - 0x13 Reserved

0x14 CM Transmission Status

0x16 - 0x19 Reserved

General Operation

29-146 ADSP-BF54x Blackfin Processor Hardware Reference

Remote Read control message, the data from its RRDB will not be returned
and the transmission status of “CRC Error” will be returned. If no node
responds to the Remote Read control message, the transmission status of
“No Response” will be returned.

Remote Write Control Message Transmission
The Remote Write control message is used to write data to memory or
registers in another node without disturbing the node’s operation. When a
Remote Write control message is sent to another MXVR node, data is
written to the destination node’s Remote Read Buffer (RRDB). The CM Pri-
ority, CM Destination Address, CM Source Address, CM Message Type
(0x02), and CM Write Address and CM Write Length fields should be writ-
ten to the CMTB at the address offsets given in Table 29-20.

The CM Write Address field contains the address offset in the RRDB of the
destination node where data should be written to. A Remote Write con-
trol message can write from 1 to 8 bytes of data at a time. Since the RRDB is
256 bytes long the CM Write Address can range from 0x00 to 0xFF. If the
CM Write Address is in the range 0xF9 to 0xFF, the writes will wrap
around to the start of the RRDB if the number of bytes being written causes
the address to go past 0xFF. For example, if the CM Write Address is 0xFE
and 6 bytes of data are to be written, then the data will be written to
address offsets 0xFE, 0xFF, 0x00, 0x01, 0x02, and 0x03 in the destination
node’s RRDB.

The CM Write Length field contains the number of bytes of data to be
written in the RRDB of the destination node. The CM Write Length field
should be in the range from 0x01 to 0x08 (indicating the number of bytes
to be written). Note that if the CM Write Length field is outside the range
0x01 to 0x08, destination node will not write the data to its RRDB.

ADSP-BF54x Blackfin Processor Hardware Reference 29-147

Media Transceiver Module (MXVR)

The CM Write Data field contains the data that is to be written into the
RRDB of the destination node. Regardless of whether 1 byte or 8 bytes of
data are to be written to the RRDB of the destination node, the specified
number of bytes of data should be written starting at the address offset
given for CM Write Data.

Once a Remote Write control message is written to the CMTB and the
STARTCM bit is set to 1, the CM Priority, CM Destination Address,
CM Source Address, CM Message Type, CM Write Address,
CM Write Length and CM Write Data fields are DMA'd from the CMTB to
the MXVR. Once the MXVR wins arbitration, the Remote Write control
message is sent over the control message channel. The transmission status
from the destination node is received back by the MXVR and is DMA'd
back to the CMTB. The transmission status for the Remote Write control
message will be stored in the CM Transmission Status field of the CMTB at
the address offset given in Table 29-20.

Table 29-20. Remote Write Control Message Transmit Buffer Entry Field
Offsets

CMTB Address Offsets Field Name

0x00 CM Priority

0x01 Reserved

0x02 CM Destination Address

0x04 CM Source Address

0x06 CM Message Type (Write 0x02)

0x07 Reserved (Write 0x00)

0x08 CM Write Address

0x09 CM Write Length

0x0A - 0x11 CM Write Data

0x12 - 0x13 Reserved

General Operation

29-148 ADSP-BF54x Blackfin Processor Hardware Reference

If the destination node successfully receives the Remote Write control
message, the CM Write Data will be written to its RRDB, the CM Write
Address will be written to its RRDB Write Address field, and the CM Write
Length will be written to its RRDB Write Length field, and the transmis-
sion status of “Transmission Successful” will be returned. If the
destination node has the reception of Remote Write control messages dis-
abled (RWRRXEN=”0”) or if the CM Write Length is not in the range from
0x01 to 0x08, the RRDB will not be written and the transmission status of
“Not Supported” will be returned. If the destination node detects a CRC
error in the Remote Write control message, the RRDB will not be written
and the transmission status of “CRC Error” will be returned. If no node
responds to the Remote Write control message, the transmission status of
“No Response” will be returned.

Resource Allocate Control Message Transmission
The Resource Allocate control message is used to request dynamic alloca-
tion of synchronous channels from the Master node. When a Resource
Allocate control message is sent to the Master to request a certain number
of channels, the Master determines whether there are enough channels
available and if so allocates the channels by assigning a connection label to
the channels in the Allocation Table. The connection label and the chan-
nel numbers allocated are returned to the transmitting node. All nodes in
the network (including the Master itself), send Resource Allocate control
messages to the Master to allocate channels. The CM Priority,

0x14 CM Transmission Status

0x16 - 0x19 Reserved

Table 29-20. Remote Write Control Message Transmit Buffer Entry Field
Offsets

CMTB Address Offsets Field Name

ADSP-BF54x Blackfin Processor Hardware Reference 29-149

Media Transceiver Module (MXVR)

CM Destination Address, CM Source Address, CM Message Type (0x03),
and CM Allocate Number Channels fields should be written to the CMTB at
the address offsets given in Table 29-21.

For Resource Allocate control messages, the CM Destination Address field
should be restricted to either the logical address or the physical address of
the Master node.

The CM Allocate Number Requested field contains the number of chan-
nels that the transmitting node is requesting to be allocated. The CM
Allocate Number Requested should be in the range from 0x01 to 0x08.
(indicating the number of channels being requested). If more than 8 chan-
nels are needed, more than one Resource Allocate control message should
be sent to the Master.

Once a Resource Allocate control message is written to the CMTB and the
STARTCM bit is set to 1, the CM Priority, CM Destination Address, CM
Source Address, CM Message Type, and CM Allocate Number Requested
fields are DMA'd from the CMTB to the MXVR. Once the MXVR wins
arbitration the Resource Allocate control message is sent over the control
message channel. The response and transmission status from the destina-
tion node is received back by the MXVR and is DMA'd back to the CMTB.
The response will be stored in the CM Allocate Status, CM Allocate Num-
ber Free, and CM Allocate Channel List and the transmission status will
be stored in the CM Transmission Status field of the CMTB at the address
offsets given in Table 29-21.

Table 29-21. Resource Allocate Control Message Transmit Buffer Entry
Field Offsets

CMTB Address Offsets Field Name

0x00 CM Priority

0x01 Reserved

0x02 CM Destination Address

0x04 CM Source Address

General Operation

29-150 ADSP-BF54x Blackfin Processor Hardware Reference

The destination node will return the status of the allocation request in the
CM Allocate Status. Table 29-22 gives the meaning of the CM Allocate
Status values. If the “Allocation Successful” response is given and there
was not a CRC error in the Resource Allocate control message, the
requested number of channels have been allocated. If the “Destination
Busy” response is given the Master node is incapable of processing the
allocation request at this time and the allocation request should be re-sent.
If the “Insufficient Free Channels” response is given, then there are not
enough free channels to satisfy the allocation request and therefore, the
allocation was not done. If the “Allocation Request Incorrect” response is
given, then the CM Allocate Request value was out of range (0x00 or
greater than 0x08) and the allocation was not done. If the “Wrong Desti-
nation” response is given, then the Resource Allocate control message was

0x06 CM Message Type (Write 0x03)

0x07 Reserved (Write 0x00)

0x08 CM Allocate Number Requested

0x09 Reserved (Write 0x00)

0x0A CM Allocate Status

0x0B CM Allocate Number Free

0x0C - 0x13 CM Allocate Channel List

0x14 - 0x15 Reserved

0x16 CM Transmission Status

0x18 - 0x19 Reserved

Table 29-21. Resource Allocate Control Message Transmit Buffer Entry
Field Offsets

CMTB Address Offsets Field Name

ADSP-BF54x Blackfin Processor Hardware Reference 29-151

Media Transceiver Module (MXVR)

sent to a Slave node and the allocation was not done. Note that an MXVR
Master will never respond with “Destination Busy”; however, Master
nodes implemented with other transceivers may do so.

The CM Allocate Number Free field will contain the number of channels
which are still free after the current allocation request is processed and
available to be allocated. If the Resource Allocate control message is sent
to a Slave node, the CM Allocate Number Free response will be 0x00.

The CM Allocate Channel List field will contain 8 bytes representing
physical channel numbers. If the CM Allocate Status response was “Allo-
cation Successful”, then the first byte of the CM Allocate Channel List
will be the first of the channels that was allocated and will be the Connec-
tion Label. If n channels were requested to be allocated (CM Allocate
Requested = n), then the first n bytes in the CM Allocate Channel List
will be the actual channels allocated. For example, if 3 channels were
requested to be allocated and the allocation was successful, then the chan-
nel numbers stored in the CM Allocate Channel List at address offsets
0x0C, 0x0D, and 0x0E are the channels that were allocated.

Table 29-22. CM Allocate Status Encodings

CM Allocate Status Meaning of CM Allocate Status

0x01 Allocation Successful

0x02 Destination Busy

0x03 Insufficient Free Channels

0x04 Allocation Request Incorrect

0x05 Wrong Destination

General Operation

29-152 ADSP-BF54x Blackfin Processor Hardware Reference

If the destination node successfully receives the Resource Allocate control
message, the transmission status of “Transmission Successful” will be
returned. If the destination node detects a CRC error in the Resource
Allocate control message, the allocation will not take place (even if the CM
Allocate Status response was “Allocation Successful”) and the transmis-
sion status of “CRC Error” will be returned. If no node responds to the
Resource Allocate control message, the transmission status of “No
Response” will be returned.

Resource De-Allocate Control Message
Transmission

The Resource De-Allocate control message is used to request dynamic
de-allocation of synchronous channels from the Master node. A Resource
De-Allocate control message can be sent to the Master to either de-allocate
all the channels that are currently allocated or to de-allocate all the chan-
nels associated with a particular Connection Label. When a Resource
De-Allocate control message is sent to the Master, the Master determines
whether or not the request is valid, responds with the de-allocate status
and updates the Allocation Table. All nodes in the network (including the
Master itself), send Resource De-Allocate control messages to the Master
to de-allocate channels. The CM Priority, CM Destination Address, CM
Source Address, CM Message Type (0x04), and CM De-Allocate Connec-
tion Label fields should be written to the CMTB at the address offsets given
in Table 29-23.

For Resource De-Allocate control messages, the CM Destination Address
field should be restricted to either the logical address or the physical
address of the Master node.

The CM De-Allocate Connection Label field contains either the Connec-
tion Label for the channels to be de-allocated or contains 0x7F if all
channels are to be de-allocated. The CM De-Allocate Number Requested

ADSP-BF54x Blackfin Processor Hardware Reference 29-153

Media Transceiver Module (MXVR)

should be in the range from 0x00 to the uppermost synchronous channel
number or can be 0x7F. The uppermost synchronous channel number can
be determined by the following formula:

Uppermost Synchronous Channel Number = (4 * RSB) - 1

Once a Resource De-Allocate control message is written to the CMTB and
the STARTCM bit is set to 1, the CM Priority, CM Destination Address, CM
Source Address, CM Message Type, and CM De-Allocate Connection
Label fields are DMA'd from the CMTB to the MXVR. Once the MXVR
wins arbitration the Resource De-Allocate control message is sent over the
control message channel. The response and transmission status from the
destination node is received back by the MXVR and is DMA'd back to the
CMTB. The response will be stored in the CM De-Allocate Status field and
the transmission status will be stored in the CM Transmission Status field
of the CMTB at the address offsets given in Table 29-23.

Table 29-23. Resource De-Allocate Control Message Transmit Buffer
Entry Field Offsets

CMTB Address Offsets Field Name

0x00 CM Priority

0x01 Reserved

0x02 CM Destination Address

0x04 CM Source Address

0x06 CM Message Type (Write 0x04)

0x07 Reserved (Write 0x00)

0x08 CM De-Allocate Connection Label

0x09 Reserved (Write 0x00)

0x0A CM De-Allocate Status

0x0B -0x0D Reserved

0x0E CM Transmission Status

0x10 - 0x19 Reserved

General Operation

29-154 ADSP-BF54x Blackfin Processor Hardware Reference

The destination node will return the status of the de-allocation request in
the CM De-Allocate Status. Table 29-24 gives the meaning of the CM
De-Allocate Status values. If the “De-Allocation Successful” response is
given and there was not a CRC error in the Resource De-Allocate control
message, the channels requested to be de-allocated have been successfully
de-allocated. If the “Destination Busy” response is given the Master node
is incapable of processing the de-allocation request at this time and the
de-allocation request should be re-sent. If the “De-Allocation Request
Incorrect” response is given, then the CM De-Allocate Connection Label
value was out of range (greater than 0x7F) and the de-allocation was not
done. If the “Wrong Destination” response is given, then the Resource
De-Allocate control message was sent to a Slave node and the de-alloca-
tion was not done. Note that an MXVR Master will never respond with
“Destination Busy”; however, Master nodes implemented with other
transceivers may do so.

If the destination node successfully receives the Resource De-Allocate con-
trol message, the transmission status of “Transmission Successful” will be
returned. If the destination node detects a CRC error in the Resource
De-Allocate control message, the de-allocation will not take place (even if
the CM De-Allocate Status response was “De-Allocation Successful”) and
the transmission status of “CRC Error” will be returned. If no node
responds to the Resource De-Allocate control message, the transmission
status of “No Response” will be returned.

Table 29-24. CM De-Allocate Status Encodings

CM De-Allocate Status Meaning of CM De-Allocate Status

0x01 De-Allocation Successful

0x02 Destination Busy

0x04 De-Allocation Request Incorrect

0x05 Wrong Destination

ADSP-BF54x Blackfin Processor Hardware Reference 29-155

Media Transceiver Module (MXVR)

Remote GetSource Control Message Transmission
The Remote GetSource control message is used to determine which node
is transmitting data on a particular physical channel. A Remote GetSource
control message can be sent using broadcast addressing and the node
which is transmitting on the channel specified in the CM GetSource Chan-
nel field will respond with its physical address, logical address and group
address. In addition, by setting the CM GetSource Channel field to 0xFF
and sending a Remote GetSource control message to a node using single
cast addressing, the destination node will respond with its physical
address, logical address, and group address. The CM Priority, CM Desti-
nation Address, CM Source Address, CM Message Type (0x04), and
CM GetSource Channel fields should be written to the CMTB at the address
offsets given in Table 29-25.

For Remote GetSource control messages, the CM Destination Address
field should normally be sent using broadcast addressing; however, single
cast addressing may be used to request a particular node to return its phys-
ical, logical and group addresses by sending 0xFF in the CM GetSource
Channel field.

The CM GetSource Channel field contains a physical channel number. The
CM GetSource Channel should be in the range from 0x00 to the uppermost
synchronous channel number or can be 0xFF. The uppermost synchro-
nous channel number can be determined by the following formula:

Uppermost Synchronous Channel Number = (4 * RSB) - 1

Once a Remote GetSource control message is written to the CMTB and the
STARTCM bit is set to 1, the CM Priority, CM Destination Address, CM
Source Address, CM Message Type, and CM GetSource Channel fields are
DMA'd from the CMTB to the MXVR. Once the MXVR wins arbitration
the Remote GetSource control message is sent over the control message
channel. The response and transmission status from the destination node
is received back by the MXVR and is DMA'd back to the CMTB. The
response will be stored in the CM GetSource Physical Address (Low), CM

General Operation

29-156 ADSP-BF54x Blackfin Processor Hardware Reference

GetSource Group Address (Low), CM GetSource Logical Address (Low),
and CM GetSource Logical Address (High) fields and the transmission
status will be stored in the CM Transmission Status field of the CMTB at
the address offsets given in Table 29-25.

Table 29-25. Remote GetSource Control Message Transmit Buffer Entry
Field Offsets

CMTB Address Offsets Field Name

0x00 CM Priority

0x01 Reserved

0x02 CM Destination Address

0x04 CM Source Address

0x06 CM Message Type (Write 0x05)

0x07 Reserved (Write 0x00)

0x08 CM GetSource Channel

0x09 Reserved (Write 0x00)

0x0A - 0x0C Reserved

0x0D CM GetSource Physical Address
(Low)

0x0E Reserved

0x0F CM GetSource Group Address (Low)

0x10 CM GetSource Logical Address
(High)

0x11 CM GetSource Logical Address (Low)

0x12 - 0x13 Reserved

0x14 CM Transmission Status

0x16 - 0x19 Reserved

ADSP-BF54x Blackfin Processor Hardware Reference 29-157

Media Transceiver Module (MXVR)

If the destination node is an MXVR, the destination node will respond to
the Remote GetSource control message if the destination node is routing
data onto or is muting the channel specified in the CM GetSource Channel
field or if the CM GetSource Channel field is 0xFF. Other types of trans-
ceivers respond when the specified channel is routed.

If the destination node responds to the Remote GetSource control mes-
sage, the node will return the low byte of its physical address (POSITION) in
the CM GetSource Physical Address (Low) field.

If the destination node responds to the Remote GetSource control mes-
sage, the node will return the low byte of its group address (GADDRL) in the
CM GetSource Group Address (Low) field.

If the destination node responds to the Remote GetSource control mes-
sage, the node will return its logical address (LADDR) in the CM GetSource
Logical Address (High) and CM GetSource Logical Address (Low)
fields.

If the Remote GetSource control message was sent and a response was
received back and there was not a CRC error, the transmission status of
“Transmission Successful” will be returned. If the Remote GetSource con-
trol message was sent and a response was received back but there was a
CRC error, the transmission status of “CRC Error” will be returned. If the
Remote GetSource control message was sent and no node responded, the
transmission status of “No Response” will be returned. Note that since
broadcast addressing is normally used when sending a Remote GetSource
control message, it is possible that multiple nodes may respond and there-
fore, the transmitting node will receive back the response sent from the
closest upstream node that responded.

Control Message Reception
The following sections describe control message reception operations.

General Operation

29-158 ADSP-BF54x Blackfin Processor Hardware Reference

Normal Control Message Reception

The MXVR Control Message Receive Buffer (CMRB) is an area of memory
that is allocated to hold received control messages. The CMRB must reside
in L1 or L2 memory and the starting address of the CMRB is programmed in
the MXVR_CMRB_START_ADDR register. Enough memory should be allocated
for sixteen 24-byte messages to be stored (384 total bytes).

As Normal control messages are received by the MXVR the Normal con-
trol messages will be DMA'd into the CMRB in a sequential manner
(wrapping from the end back to the start). For example, CMRBE0 will be
filled first, then CMRBE1, …, then CMRB15, then CMRE0, etc. As each message
is received, the corresponding CMRBEx bit in the MXVR_CM_CTL register will
be set to 1 by the MXVR indicating that receive buffer entry number x is
full. Once software has read the Normal control message, the CMRBEx bit
should be cleared by writing a 1 to the corresponding bit position indicat-
ing that receive buffer entry x is now empty.

If a new Normal control message is arriving and the next sequential entry
is full, the Control Message Receive Buffer Overflow (CMRBOF) bit in the
MXVR_INT_STAT_0 register will be set to 1 and can conditionally generate
an interrupt. The incoming message which caused the overflow will be lost
and the Transmission Status will be returned to the transmitter indicating
that the receive buffer was full. Note that an overflow will occur if the
next sequential entry is full regardless of whether other entries in the CMRB
are empty.

The 16 CMRB Entries are stored as address offsets to the CMRB start address
programmed in the MXVR_CMRB_START_ADDR register. The address offsets
for the 16 CMRB Entries are given in Table 29-26.

Table 29-26. Control Message Receive Buffer Entry Offsets

CMRB Entry Offset CMRB Entry Number

MXVR_CMRB_START_ADDR + 0x000 CM Receive Buffer Entry 0

MXVR_CMRB_START_ADDR + 0x016 CM Receive Buffer Entry 1

ADSP-BF54x Blackfin Processor Hardware Reference 29-159

Media Transceiver Module (MXVR)

Received Normal control messages are DMA'd to the next sequential CMRB
Entry in L1 or L2 memory. The Normal control message contains the fol-
lowing fields: CM Destination Address, CM Source Address, CM Message
Type, and CM Data. The byte order of the CM Destination Address and CM
Source Address will be swapped from the order that they were received,
so that the addresses can be read properly with a word access. These Nor-
mal control message fields will be stored at the address offsets given in
Table 29-27.

Remote Read and Remote Write Reception

The MXVR Remote Read Buffer (RRDB) is a buffer in L1 or L2 memory
that is allocated to allow other nodes to remotely read from and write to
the ADSP-BF54x processor over the network. When a Remote Read con-
trol message is received by the MXVR, the 8 bytes of data requested will
be DMA'd from the RRDB into the MXVR so that the data can be sent out
in response to the Remote Read control message. When a Remote Write
control message is received by the MXVR, the up to 8 bytes of write data

MXVR_CMRB_START_ADDR + 0x02C CM Receive Buffer Entry 2

MXVR_CMRB_START_ADDR + 0x16 * x CM Receive Buffer Entry x

MXVR_CMRB_START_ADDR + 0x14A CM Receive Buffer Entry 15

Table 29-27. Control Message Receive Buffer Entry Field Offsets

CMRB Entry Address Offsets Field Name

0x00 CM Destination Address

0x02 CM Source Address

0x04 CM Message Type

0x05 - 0x15 CM Data

Table 29-26. Control Message Receive Buffer Entry Offsets

CMRB Entry Offset CMRB Entry Number

General Operation

29-160 ADSP-BF54x Blackfin Processor Hardware Reference

will be DMA'd to the addresses specified in the Remote Write control
message. In addition, the write address and write data length will also be
written into fields in the RRDB.

The RRDB must reside in L1 or L2 memory and the starting address of the
RRDB is programmed in the MXVR_RRDB_START_ADDR register. The RRDB must
be allocated 258 bytes in L1 or L2 memory (256 bytes for data, one byte
for the RRDB Write Address field and one byte for the RRDB Write Length
field.

It is the responsibility of the software to ensure that a Remote Read con-
trol message is not in progress when updating the RRDB. When a Remote
Read control message is being received, the RRDIP state bit will be asserted.
Software should not write the RRDB while the RRDIP bit is asserted. The
RRDIP bit asserts microseconds before the actual data read occurs and
remains asserted for microseconds after the data read occurs.

When a Remote Write control message is being received, the Remote
Write In Progress (RWRIP) bit in the MXVR_STATE_0 register will be asserted.
The RWRIP bit will assert microseconds before the actual data write occurs.
When the received CM Write Data, CM Write Address, and CM Write
Length have been DMA'ed to the RRDB, the Remote Write Complete
(RWRC) status bit will assert and an interrupt can be conditionally
generated.

The start address of the RRDB is programmed in MXVR_RRDB_START_ADDR
register. The received CM Write Data will be written into the RRDB Data
field at the offset specified by the received CM Write Address. The
received CM Write Address will be written into the RRDB Write Address
field and the received CM Write Length will be written into the RRDB
Write Length field so that when the Remote Write completes, software
can easily determine which bytes have been remotely written. Table 29-28
gives the offsets of the RRDB Data, the RRDB Write Address, and the RRDB
Write Length fields in the RRDB.

ADSP-BF54x Blackfin Processor Hardware Reference 29-161

Media Transceiver Module (MXVR)

Resource Allocate Reception

The reception of Resource Allocate control messages by the MXVR is han-
dled completely in hardware. No software intervention is required other
than to observe changes to the Allocation Table once the Resource Allo-
cate control message is processed by the MXVR.

If a Resource Allocate control message is received by the MXVR when in
Master mode, the ALIP bit in the MXVR_STATE_0 register will change to 1 to
indicate a Resource Allocate control message is being processed. While the
ALIP bit is a 1, the Allocation Table should not be read since the Alloca-
tion Table may be only partially updated. The MXVR will first determine
whether the allocation request is correct, which channels are currently free
in the Allocation Table, and whether there are enough channels available
to satisfy the request. The MXVR will respond with the appropriate CM
Allocate Status, CM Allocate Number Free, and CM Allocate Channel
List. If no CRC error occurs during the Resource Allocate control mes-
sage, the MXVR will update its Allocation Table to reflect the allocation
request. Once the Allocation Table is updated in the Master, the ATU bit in
the MXVR_INT_STAT_0 register will change to 1. Note that the Master only
distributes its Allocation Table to the Slave nodes once every 1024 frames.

If a Resource Allocate control message is received by the MXVR when in
Slave mode, the MXVR will respond with the CM Allocate Status of
“Wrong Destination”.

Table 29-28. Remote Read Buffer Field Offsets

RRDB Address Offsets Field Name

0x000 - 0x0FF RRDB Data

0x100 RRDB Write Address

0x101 RRDB Write Length

General Operation

29-162 ADSP-BF54x Blackfin Processor Hardware Reference

Resource De-Allocate Reception

The reception of Resource De-Allocate control messages by the MXVR is
handled completely in hardware. No software intervention is required
other than to observe changes to the Allocation Table once the Resource
De-Allocate control message is processed by the MXVR.

If a Resource De-Allocate control message is received by the MXVR when
in Master mode, the DALIP bit in the MXVR_STATE_0 register will change to
1 to indicate a Resource De-Allocate control message is being processed.
While the DALIP bit is a 1, the Allocation Table should not be read since
the Allocation Table may be only partially updated. The MXVR will first
determine whether the de-allocation request is correct, and which chan-
nels are currently allocated to the connection label in the request. The
MXVR will respond with the appropriate CM De-Allocate Status. If no
CRC error occurs during the Resource De-Allocate control message, the
MXVR will update its Allocation Table to reflect the de-allocation
request. Once the Allocation Table is updated in the Master, the ATU bit in
the MXVR_INT_STAT_0 register will change to 1. Note that the Master only
distributes its Allocation Table to the Slave nodes once every 1024 frames.

If a Resource De-Allocate control message is received by the MXVR when
in Slave mode, the MXVR will respond with the CM De-Allocate Status
of “Wrong Destination”.

Remote GetSource Reception

The reception of Remote GetSource control messages by the MXVR is
handled completely in hardware. No software intervention is required.

If a Remote GetSource control message is received by the MXVR, the
RGSIP bit in the MXVR_STATE_0 register will change to 1 to indicate a
Remote GetSource control message is being processed. The MXVR will
first determine whether it should respond to the Remote GetSource con-
trol message. The MXVR will respond if the MXVR is muting or routing
data onto the channel specified in the CM GetSource Channel field or if

ADSP-BF54x Blackfin Processor Hardware Reference 29-163

Media Transceiver Module (MXVR)

the CM GetSource Channel field is 0xFF. The MXVR is muting channel n
when the Channel Mute n bit in the appropriate MXVR_ROUTING_x register is
set to 1. The MXVR is routing data onto channel n when the Transmit
Channel n field in the appropriate MXVR_ROUTING_x register is set to any
value other than n. If the CM GetSource Channel field is 0xFF, the MXVR
will always respond regardless of what channels are being muted or routed.
The MXVR will not respond if the CM GetSource Channel field has a
value between 4 * RSB and 0xFE.

When the MXVR responds to a Remote GetSource control message, the
MXVR returns the low byte of its Physical Address, the low byte of its
Group Address, and the high and low bytes of its Logical Address. Note
that values in the POSITION, GADDRL, and LADDR fields are returned in the
response regardless of whether the corresponding valid bits are set to 1.
Note that the Remote GetSource control message is normally sent as a
broadcast message, so it is possible that more than one node could respond
with one response overwriting another.

MXVR Low Power Operation
The ADSP-BF54x processor processor provides a number of mechanisms
for dynamically controlling performance and power dissipation. The main
mechanisms are controlling the voltage level of the processor through the
on-chip voltage regulator, controlling the core clock and system clock fre-
quencies, and controlling the operating mode of the core and the system
PLL. For more information see Chapter 18, “Dynamic Power Manage-
ment”. Within the ADSP-BF54x processor dynamic power management
framework, the MXVR has six general power/functionality states as shown
in Table 29-29.

General Operation

29-164 ADSP-BF54x Blackfin Processor Hardware Reference

These power/functionality states are listed in order from least power sav-
ings (Full On Mode) to greatest power savings (Power Gated Off). The
functionality of the MXVR in each of these states is described in the fol-
lowing sections.

Full On Mode

When the ADSP-BF54x processor is operated in the Full On mode, the
MXVR is fully functional and can be operated in any of its modes. While
in the Full On mode, the system PLL generates the core clock and system
clock. For power savings the core clock frequency can be reduced based on
the minimum core processing performance required by the application
and the system clock frequency can be reduced based on the minimum
internal and external bus bandwidth required by the application. Once the

Table 29-29. ADSP-BF54x processor Power/MXVR Functionality States

ADSP-BF54x
processor
Power State

MXVR
State

MXVR
Data
Rx/Tx

Core
Clock

System
Clock

Wake-up
Source

MOST
Network

Full-on Mode Any Yes1 From PLL From PLL Active

Active Mode Any Yes1 From
CLKIN

From
CLKIN

Active

Sleep Mode Any Yes Disabled From PLL Any Inter-
rupt

Active

Deep Sleep
Mode

All Bypass -
MXVR Dis-
abled

No Disabled Disabled Reset or
RTC

Active

Hibernate State Powered
Down

No Powered
Down

Powered
Down

Reset, RTC,
MRXON,
CANRX

Not Active

Power Gated Off
to ADSP-BF54x
processor

Powered
Down

No Powered
Down

Powered
Down

Handled on
Board-Level

Not Active

1 Core Clock frequency and System Clock frequency must be operated at a high enough frequency
to support MXVR and other system DMA bandwidth to L1 or L2 memory.

ADSP-BF54x Blackfin Processor Hardware Reference 29-165

Media Transceiver Module (MXVR)

minimum core clock frequency and system clock frequency required for
the application is known, the voltage level of the on-chip voltage regulator
may be lowered to further reduce power consumption. The tables giving
the minimum operating voltage level for a given core clock/system clock
frequency combination can be found in the
ADSP-BF542/544/547/548/549 Embedded Processor Data Sheet.

The MXVR utilizes its DMA channels to transfer data to and from L1 or
L2 memory in order to transmit and receive synchronous data, asynchro-
nous packets, and control messages. This means that the core clock and
system clock frequency must be operated at a high enough frequency to
support the bandwidth and latency requirements of the MXVR DMA
channels in conjunction with all other L1 or L2 memory bandwidth used
in the system (for example, memory DMA operations to/from L1 or L2,
other peripheral DMA to/from L1 or L2, and core accesses to/from L1 or
L2). Therefore, performance analysis must be done on a given application
when choosing the minimum core clock and system clock frequencies.
During this analysis, the MXVR’s FIFO Error interrupt event (FERR)
should be monitored. If the FERR interrupt ever asserts, the MXVR DMAs
are being starved and data corruption may have occurred due to the lack
of DMA bandwidth. If this occurs, the core clock and/or system clock
frequency should be increased or other traffic to L1 or L2 memory should
be reduced.

If the MXVR is going to be operated in All Bypass-MXVR Disabled mode
for long periods of time while in Full On mode, the MXVR CDRPLL, the
FMPLL, and the MXVR Crystal Oscillator or MXI clock input can be dis-
abled to reduce power consumption. To disable the CDRPLL, the
CDRSMEN bit should be set to 0 in the MXVR_CDRPLL_CTL register. To disable
the FMPLL, the FMSMEN bit should be set to 0 in the MXVR_FMPLL_CTL reg-
ister. If a crystal is connected between MXI and MXO, to disable the MXVR
Crystal Oscillator the MXTALFEN and MXTALCEN bits should be set to 0 in the
MXVR_CLK_CTL register to 0. If an external oscillator is used to supply the

General Operation

29-166 ADSP-BF54x Blackfin Processor Hardware Reference

MXI clock, the external oscillator should be disabled or the MXTALCEN bit
should be set to 0 in the MXVR_CLK_CTL register to gate off the MXI clock in
the pad.

Active Mode

When the ADSP-BF54x processor is operated in the Active Mode, the
MXVR is fully functional and can be operated in any of its modes. While
in the Active Mode the system PLL is bypassed and the core clock and sys-
tem clock run at the frequency of CLKIN. The core clock frequency must be
operated at a high enough frequency to support the core processing per-
formance required by the application and the system clock frequency must
be operated at a high enough frequency to support the internal and exter-
nal bus bandwidth required by the application. Based on the core clock
frequency and system clock frequency, the voltage level of the on-chip
voltage regulator may be lowered to further reduce power consumption.
The tables giving the minimum operating voltage level for a given core
clock/system clock frequency combination can be found in the
ADSP-BF542/544/547/548/549 Embedded Processor Data Sheet.

The MXVR utilizes its DMA channels to transfer data to and from L1 or
L2 memory in order to transmit and receive synchronous data, asynchro-
nous packets, and control messages. This means that the core clock and
system clock frequency must be operated at a high enough frequency to
support the bandwidth and latency requirements of the MXVR DMA
channels in conjunction with all other L1 or L2 memory bandwidth used
in the system (for example, memory DMA operations to/from L1 or L2,
other peripheral DMA to/from L1 or L2, and core accesses to/from L1 or
L2). Therefore, performance analysis must be done on a given application
when choosing the minimum core clock and system clock frequencies.
During this analysis, the MXVR’s FIFO Error interrupt event (FERR)
should be monitored. If the FERR interrupt ever asserts, the MXVR DMAs
are being starved and data corruption may have occurred due to the lack

ADSP-BF54x Blackfin Processor Hardware Reference 29-167

Media Transceiver Module (MXVR)

of DMA bandwidth. If this occurs, the core clock and/or the system clock
frequency should be increased or other traffic to L1 or L2 memory should
be reduced.

If the MXVR is going to be operated in All Bypass-MXVR Disabled mode
for long periods of time while in Active Mode, the MXVR CDRPLL, the
FMPLL, and the MXVR Crystal Oscillator or MXI clock input can be dis-
abled to reduce power consumption. To disable the CDRPLL, the
CDRSMEN bit should be set to 0 in the MXVR_CDRPLL_CTL register. To disable
the FMPLL, the FMSMEN bit should be set to 0 in the MXVR_FMPLL_CTL reg-
ister. If a crystal is connected between MXI and MXO, to disable the MXVR
Crystal Oscillator the MXTALFEN and MXTALCEN bits should be set to 0 in the
MXVR_CLK_CTL register to 0. If an external oscillator is used to supply the
MXI clock, the external oscillator should be disabled or the MXTALCEN bit
should be set to 0 in the MXVR_CLK_CTL register to gate off the MXI clock in
the pad.

Sleep Mode

When the ADSP-BF54x processor is operated in Sleep Mode and the
MXVR may be operated in any of its modes. The MXVR can transmit and
receive synchronous data, asynchronous packets, and control messages as
long as their associated memory buffers are located in L2 memory
(accesses to L1 memory while in Sleep Mode is not allowed). Since the

MOST® bus protocol is handled in hardware, the MXVR may be oper-

ated as either a master or a slave while in Sleep Mode. As the MOST®
network master, the MXVR can continue to handle allocation and de-allo-
cation system control messages and other background network functions.

Once the ADSP-BF54x processor has entered Sleep Mode, it can be
woken up back into either the Full On mode or Active Mode by any sys-
tem interrupt. The wake-up interrupt should be enabled within the

General Operation

29-168 ADSP-BF54x Blackfin Processor Hardware Reference

peripheral and within the IC_IWRx registers. Within the MXVR the inter-
rupt sources that typically would be used to wake-up from Sleep Mode
are:

• Reception of a Wake-up Preamble on the MOST® network (WUP)

• Detection of edges the MRXON input which is typically connected to
the MOST® FOR Status Output (MH2L, ML2H)

• Detection of network activity changes on the MRX input (NI2A,
NA2I)

• System Clock Counter, Frame Counter, or Block Counter
time-outs (SCZ, FCZx, BCZ)

• Detection of network lock changes (SBU2L, SBL2U, BU2L, BL2U, FU2L,
FL2U)

• Detection of network status changes (PRU, MPRU, DRU, MDRU, SBU,
ATU)

• Reception of synchronous data, a control message or an asynchro-
nous packet (HDONEx, DONEx, CMR, RWRC, APR)

Some examples of other interrupt sources that may typically be used to
wake-up from Sleep Mode are:

• Real Time Clock events

• Timer time-out

• PFx pin edge or level

• Peripheral data reception or transmission

If the MXVR is going to be operated in All Bypass-MXVR Disabled mode
while in Sleep Mode, the CDRPLL, the FMPLL, and the MXVR Crystal
Oscillator or MXI clock input can be disabled to reduce power consump-
tion. To disable the CDRPLL the CDRSMEN bit should be set to 0 in the

ADSP-BF54x Blackfin Processor Hardware Reference 29-169

Media Transceiver Module (MXVR)

MXVR_CDRPLL_CTL register. To disable the FMPLL, the FMSMEN bit should
be set to 0 in the MXVR_FMPLL_CTL register. If a crystal is connected
between MXI and MXO, to disable the MXVR Crystal Oscillator the
MXTALFEN and MXTALCEN bits should be set to 0 in the MXVR_CLK_CTL regis-
ter. If an external oscillator is used to supply the MXI clock, the external
oscillator should be disabled or the MXTALCEN bit should be set to 0 in the
MXVR_CLK_CTL register to gate off the MXI clock in the pad.

Deep Sleep Mode

When the ADSP-BF54x processor is operated in Deep Sleep Mode, the
core clock and the system clock are disabled, therefore, the MXVR may
only be operated in All Bypass-MXVR Disabled mode. The MXVR is by
default in the All Bypass-MXVR Disabled mode after reset, or the All
Bypass-MXVR Disabled mode may be entered by writing the MXVREN bit
to 0. Within the All Bypass-MXVR Disabled mode, the MRX input is

directly connected to the MTX output, so the MOST® network can still be
active while an ADSP-BF54x processor slave node is in Deep Sleep Mode.

Deep Sleep Mode can be exited only by a Real Time Clock interrupt or
hardware reset. A Real Time Clock interrupt causes the ADSP-BF54x pro-
cessor to transition to the Active Mode and the core will continue
executing the code following the idle instruction. A hardware reset will
cause the ADSP-BF54x processor to exit Deep Sleep Mode and begin the
hardware reset booting sequence.

If a crystal is connected between MXI and MXO, the MXVR Crystal Oscilla-
tor may also be disabled to eliminate the power consumption of the crystal
oscillator during Deep Sleep Mode. This is accomplished by setting the
MXTALFEN and MXTALCEN bits to 0 in the MXVR_CLK_CTL register before exe-
cuting the idle instruction that causes the ADSP-BF54x processor to enter
Deep Sleep Mode. The reset sequence when exiting from Deep Sleep
Mode will cause the MXTALFEN and MXTALCEN bits to be reset to 1, so the
MXVR Crystal Oscillator will start up during the reset sequence. If an

General Operation

29-170 ADSP-BF54x Blackfin Processor Hardware Reference

external oscillator is used to supply the MXI clock, the external oscillator
should be disabled or the MXTALCEN bit should be set to 0 in the
MXVR_CLK_CTL register to gate off the MXI clock in the pad.

Hibernate State

When the ADSP-BF54x processor is operated in Hibernate State, the
on-chip voltage regulator is turned off and the internal power supplies
(VDDINT, VDDMP) transition to 0V. The only power that is used in this mode
is the leakage current on the external power supplies (VDDEXT, VDDDDR,
VDDUSB, VDDMC, VDDMX) and the current used by the Real Time Clock. In
Hibernate State, the MXVR is completely powered off, so there is no lon-
ger a connection between the MRX input and the MTX output. Therefore, the

MOST® network cannot be active while the ADSP-BF54x processor is in
Hibernate State.

There are four wake-up sources that can wake the ADSP-BF54x processor
from Hibernate State:

• Real Time Clock Interrupt

• Asserting Hardware Reset

• Asserting the MRXON input low (typically connected to the MOST®
FOR Status output)

• Asserting the CANRX input low

Hardware reset always wakes up the ADSP-BF54x processor from hiber-
nate state. The other hibernate wake-up sources can be individually
enabled by setting bits in the VR_CTL register before executing the idle
instruction that causes the ADSP-BF54x processor to enter hibernate
state. In the VR_CTL register, the WAKE bit should be set to 1 to allow
wake-up on Real Time Clock interrupts, the MXVRWE bit should be set to 1
to allow wake-up on the assertion of MRXON. When any one of the enabled

ADSP-BF54x Blackfin Processor Hardware Reference 29-171

Media Transceiver Module (MXVR)

wake-up source events occurs, the on-chip voltage regulator will turn on
and the ADSP-BF54x processor will begin the hardware reset booting
sequence.

If a crystal is connected between MXI and MXO, the MXVR Crystal Oscilla-
tor may also be disabled to eliminate the power consumption of the crystal
oscillator during Hibernate State. This is accomplished by setting the
MXTALFEN and MXTALCEN bits in the MXVR_CLK_CTL register to 0 before exe-
cuting the idle instruction that causes the ADSP-BF54x processor to enter
Hibernate State. The reset sequence when exiting from Hibernate State
will cause the MXTALFEN and MXTALCEN bits to be reset to 1, so the MXVR
Crystal Oscillator will start up during the reset sequence. If an external
oscillator is used to supply the MXI clock, the external oscillator should be
disabled or the MXTALCEN bit should be set to 0 in the MXVR_CLK_CTL regis-
ter to gate off the MXI clock in the pad.

Power Gating the ADSP-BF54x processor

To achieve the lowest possible power consumption for a MOST® node,
the external power supplies (VDDEXT, VDDDDR, VDDUSB, VDDMC, VDDMX,
VDDRTC) to the ADSP-BF54x processor should be gated off and pulled to
0V. This effectively reduces the ADSP-BF54x processor power consump-

tion to zero. Typically the MOST® FOR status output would be used to
gate the ADSP-BF54x processor power supplies on and off based on the
reception of modulated light.

General Operation

29-172 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 30-1

30 KEYPAD INTERFACE

This chapter describes the 16-pin programmable keypad interface and
includes the following sections:

• “Interface Overview” on page 30-1

• “Description of Operation” on page 30-2

• “Functional Description” on page 30-7

• “Programming Model” on page 30-9

• “Keypad Registers” on page 30-10

• “Programming Examples” on page 30-20

Interface Overview
The 16-pin programmable keypad interface features:

• Programmable input keypad matrix size

• Programmable debounce filter width

• Press-release-press mode support

• Interrupt on any key pressed capability

• Multiple key pressed detection and limited multiple key resolution
capability

Description of Operation

30-2 ADSP-BF54x Blackfin Processor Hardware Reference

The keypad is a 16-pin interface module that is used to detect the key
pressed in an 8x8 (maximum) keypad matrix. The size of the input keypad
matrix is software programmable. The interface is capable of filtering the
bounce on the input pins with a programmable width of the filtered
bounce. The keypad module supports two modes of operation,
press-release-press mode and Press-Hold mode. The press-release-press
mode identifies a press-release-press sequence of a key as two consecutive
presses of the same key. The Press-Hold mode checks the input key's state
in periodic intervals to determine the number of times the same key is
meant to be pressed.

The keypad interface module can be programmed to generate an interrupt
request when it identifies that any key is pressed. Software can be pro-
grammed to detect simultaneous multiple key presses with limited
multiple key resolution capability.

Description of Operation
The following sections describe the operation of the keypad interface.

Keypad Operation
A keypad interface consists of a matrix with two sets of wires, one set that
runs horizontally (rows), and another that runs vertically (columns) with a
pushbutton switch at each intersection. The row and column wires do not
touch, but run over each other. When the pushbutton is pressed, a contact
is established at the intersection of a given row and column serving as a
switch. The number of switches for a given matrix depends on the number
of rows and columns. For example, a 4x4 matrix can support up to 16
switches. A block diagram of the keypad interface is shown in Figure 30-1.

As shown in the figure, the column wires are connected to the column
outputs of the keypad interface while the row wires are connected to the
row inputs. Each row wire of the keypad has a pull-up resistor that pulls

ADSP-BF54x Blackfin Processor Hardware Reference 30-3

Keypad Interface

the row wires high. When no key is pressed, there is no contact between
any of the column drivers to the row inputs. As a result, all row inputs are
read as 1. When a pushbutton is pressed, a contact is established between
each corresponding row and column wire. Row inputs will sense the value
driven by the column drivers. To determine which key is pressed, the col-
umn drivers drive zero. On a key press, the zero will be visible on the row
inputs. The interface being aware of which column was driven with what
value along with reading the row inputs, it could determine which key is
pressed. The rest of the pages define and explain the infrastructure to
determine the keys pressed.

Figure 30-1. Blackfin Processor Keypad Interface

10K 10K10K 10K

KEY_COLO[0]

KEY_COLO[1]

KEY_COLO[2]

KEY_COLO[3]

KEY_ROWI[0]

KEY_ROWI[1]

KEY_ROWI[2]

KEY_ROWI[3]

COL0 COL1 COL2 COL3

ROW0

ROW1

ROW2

ROW3

Pullup
Resistor

 4x4
Keypad
 Matrix

Description of Operation

30-4 ADSP-BF54x Blackfin Processor Hardware Reference

Keypad Enable/Disable
The keypad module is enabled by setting the KPAD_EN field of the KPAD_CTL
register. Once enabled, the keypad module state machine drives all col-
umn outputs with a value of 0 and scans the row inputs for a key press.

The keypad module is disabled by clearing the KPAD_EN field. Clearing this
field clears all input enables, counters, and drivers, and resets the state of
keypad module. When the KPAD_EN field is cleared, the keypad module
loses the capability to generate an interrupt request to the core.

Input Keypad Matrix Programmability

The keypad module can support a maximum of an 8x8 matrix, for a total
of 64 buttons. The input keypad matrix is programmable through the
KPAD_ROWEN and KPAD_COLEN fields of the KPAD_CTL register. The
KPAD_ROWEN bit field is used to program the number of active rows, while
KPAD_COLEN programs the number of active columns. The value of the
(KPAD_ROWEN + 1) determines the number of rows enabled in the input key-
pad matrix. Similarly, the value of the (KPAD_COLEN + 1) determines the
number of active columns.

Waking Up on Keypad Press
When the processor is in hibernation, it can be waken up by the activity
on the keypad row pins. To do that, before the processor is put into hiber-
nation, the keypad wakeup enable (KPADWE) control bit of VR_CTL register
must be set. To use the row pin KEY_ROWx to wake up the processor, its

Table 30-1. Input Keypad Matrix Programmability

KPAD_ROWEN Value KPAD_COLEN Value Input Keypad Matrix

b#011 b#001 4 Rows and 2 Columns

b#010 b#001 3 Rows and 2 Columns

b#111 b#111 8 Rows and 8 Columns

ADSP-BF54x Blackfin Processor Hardware Reference 30-5

Keypad Interface

corresponding bit in PORTx_FER register must be set to 0 (GPIO mode)
and its corresponding bit in PORTx must be set to 1. Then, when an active
low state is detected on the KEY_ROWx pin, a wakeup event is generated and
wakes up the processor from hibernation. For more information about
hibernation and GPIO, see Chapter 18, “Dynamic Power Management”
and Chapter 9, “General-Purpose Ports”.

Sensitivity of Keypad Interface
The sensitivity of the keypad interface to key presses is programmable
through KPAD_PRESCALE and KPAD_MSEL registers. Together with the
DBON_SCALE and COLDRV_SCALE fields in the KPAD_MSEL register, the value in
the prescale register is used to calculate the debounce period (Tdb) and col-
umn drive period (Tcw).

Once a key press shorts the column and row wires, the debounce counter
in the keypad module is triggered. The row inputs are sampled after the
programmable (DBON_SCALE) debounce time of Tdb. If any of the sampled
row inputs is zero, this kicks off evaluate state. The Keypad interface logic
three-states all the column outputs (except one) for a pre-programmed
column drive width of Tcw. With external pull-up resistors pulling up all
row inputs, the Keypad interface logic pulls down one column at a time
for Tcw and samples the row inputs to determine which key is pressed.

Limited Multiple Key Resolution
The keypad interface can be programmed to generate an interrupt for
multiple key press detection by writing b#10 to the KPAD_IRQMODE bit field
of the KPAD_CTL register (single key presses will also generate an interrupt
in this mode). The KPAD_ROWCOL register records the keys pressed and can
be read in the interrupt service routine for data on keys pressed. It must be
noted that only certain key press combinations can be exactly resolved by
reading the KPAD_ROWCOL register as follows:

Description of Operation

30-6 ADSP-BF54x Blackfin Processor Hardware Reference

• Keys pressed in a single row and a single column

• Keys pressed in a single row and a multiple columns

• Keys pressed in multiple rows and a single column

In case of keys pressed in multiple rows and multiple columns, it is not
possible to predict the exact keys pressed with the existing hardware. The
KPAD_MROWCOL bit field of the KPAD_STAT can be used to distinguish this
scenario from the others. This bit field is set by the keypad interface when
it detects key presses on multiple rows and multiple columns, allowing the
user to define an action for this condition.

Keypad Interrupt Modes
The keypad interface module can be programmed to interrupt the core
when it detects a key press based on the KPAD_IRQMODE bit field in the
KPAD_CTL register. The KPAD_IRQMODE provides programmability to sup-
press interrupt generation on multiple key presses (single key presses will
still generate an interrupt in this mode). Alternately, the keypad module
can be programmed to interrupt the core on any key press (single or mul-
tiple key presses) on any row or column.

Implementing Press-Hold Feature
In some applications, it might be desirable to detect prolonged key presses
and interpret them as multiple key presses. This feature is referred to as
press-hold in this manual. The keypad module provides the KPAD_PRESSED
bit field of the KPAD_STAT register to implement this feature.

After a key press is detected and the module has completed scanning for
keys pressed, the keypad module interface asserts KPAD_PRESSED until the
pressed key is released. If the interrupt generation is enabled (by setting
the KPAD_IRQMODE bit field in the KPAD_CTL register to either b#01 or
b#10), the core is interrupted when a single key press or multiple key
presses are detected, depending on the interrupt mode chosen. In the

ADSP-BF54x Blackfin Processor Hardware Reference 30-7

Keypad Interface

interrupt service routine for the keypad peripheral, the user can choose to
read the KPAD_PRESSED bit of the KPAD_STAT register in periodic intervals to
determine the number of times the key was meant to be pressed. During
this state, all other key presses are ignored by the keypad interface. Once
the key is released, the interface clears the KPAD_PRESSED bit. The
KPAD_PRESSED bit indicates the state of the pressed key after the evaluation
phase has ended.

Functional Description
The state diagram section describes the 16-pin programmable keypad
interface.

State Diagram
The illustration shown in Figure 30-2 shows the different states of the
keypad module. Once the KPAD_EN bit in the KPAD_CTL register is set, the
keypad module goes into the Scan_Inputs state. In this state, all
column outputs are driven with a value of 0 and the inputs are constantly
read. If a key is pressed, it pulls down the corresponding row line which is
read as 0. This event triggers the debounce counter and pushes the module
into the Evaluate_Key_Pressed state.

In the Evaluate_Key_Pressed state, the state encoder drives a 0 on one
column at a time and samples the input. If any of the inputs happen to be
0, then the inputs are sampled in a temporary register. This process is
repeated for all valid columns (determined by the COLEN field of the
KPAD_CTL register). Every time a 0 is observed on the row input, it is added
with the previously added temporary register value. This is to register mul-
tiple keys pressed at the same time. Once all the columns are driven with
one single 0 at a time, the interface moves the data in the temporary regis-
ter to the KPAD_ROWCOL register. Once the data is sampled into the
KPAD_ROWCOL register, its KPAD_ROW and KPAD_COL fields are checked for
multiple 1s. If multiple 1s are found, then based on the KPAD_IRQMODE bits

Functional Description

30-8 ADSP-BF54x Blackfin Processor Hardware Reference

in the KPAD_CTL register, an interrupt to the core is asserted. If no 1s are
found, no interrupt is asserted. Next, the interface goes into the wait state
where it checks for the pressed key to be released. Once the pressed key is
released, it jumps to the Scan_Inputs state to detect the next key pressed.
No matter which state the keypad is currently in, clearing the keypad
enable bit of the KPAD_CTL register pushes the module into the disabled
state.

Figure 30-2. State Diagram

 Keypad
Disabled

 Scan
Inputs

 Evaluate
Key Pressed

 Wait for
 pressed key
to be released

KPAD_EN = 0

KPAD_EN = 1

KPAD_EN = 0
KPAD_EN = 0

KPAD_EN = 0

Pressed key
released

 Key not released
Evaluation process
is not done

Key pressed

No key pressed

Evaulation process is done

ADSP-BF54x Blackfin Processor Hardware Reference 30-9

Keypad Interface

Programming Model
The following sections describe the programming model. The general pro-
cedure of programming the keypad module is:

1. Based on the characteristics of the keypad and application conditions,
determine the column drive width and debounce time.

2. Use the actual SCLK and the formulae introduced in “KPAD_PRESCALE
Register” and “KPAD_MSEL Register” subsections to calculate the register
fields KPAD_PRESCALE_VAL, COLDRV_SCALE, and DBON_SCALE.

3. Write KPAD_PRESCALE and KPAD_MSEL registers based on the values
obtained in step 2.

4. Write KPAD_CTL register to define the size of the keypad and the IRQ
mode, and enable the keypad module.

5. In the interrupt service routine, read KPAD_STAT register to determine
the status of the pressed key, and W1C to clear the bit KPAD_IRQ. Then
read KPAD_ROWCOL to determine which key(s) is pressed, and then take
application-specific actions accordingly.

Keypad Registers

30-10 ADSP-BF54x Blackfin Processor Hardware Reference

Keypad Registers
Descriptions and bit diagrams for each of the memory-mapped registers
(MMRs) are provided in the following subsections.

Keypad Control (KPAD_CTL) Register
The keypad control (KPAD_CTL) register, shown in Figure 30-3 and
Table 30-3 is used to enable the keypad Interface module. This register
programs the size of the input keypad matrix and interrupt modes, and
controls the enabling/disabling of the Keypad module.

On reset, a read of this register returns a value of 0x0000, which implies
that the keypad interface module is mapped onto a 1x1 keypad matrix.
Reserved bits are read as 0s.

Table 30-2. Control/Status/Data Registers

Name Address
Offset

Access Description

KPAD_CTL 0xFFC0 4100 R/W “Keypad Control (KPAD_CTL) Register” on
page 30-10

KPAD_PRESCAL
E

0xFFC0 4104 R/W “Keypad Prescale (KPAD_PRESCALE) Register”
on page 30-13

KPAD_MSEL 0xFFC0 4108 R/W “Keypad Multiplier Select (KPAD_MSEL) Regis-
ter” on page 30-15

KPAD_ROWCOL 0xFFC0
410C

R/WC “Keypad Row-Column (KPAD_ROWCOL) Regis-
ter” on page 30-15

KPAD_STAT 0xFFC0 4110 R/W1
C

“Keypad Status (KPAD_STAT) Register” on
page 30-18

KPAD_SOFTEVA
L

0xFFC0 4114 R/W “Keypad Software Evaluate (KPAD_SOFTEVAL)
Register” on page 30-20

ADSP-BF54x Blackfin Processor Hardware Reference 30-11

Keypad Interface

Figure 30-3. Keypad Control Register

Table 30-3. Keypad Control Register Bit Descriptions

Item Bit(s) Value Description

KPAD_EN 0 Keypad enable bit.

0 Disables the Keypad Interface module. Clearing this bit clears all
the input enables, counters, drivers, resets the state of Keypad
Interface module, and disables the device. When this bit is cleared,
the Keypad Interface module loses the capability to generate inter-
rupt request to the core.

1 Enables the Keypad Interface module. Once this bit is enabled, the
rest of the bits in this register are not allowed to change. When
KPAD_EN bit is enabled, the only way to change any other bits is to
clear KPAD_EN and reprogram rest of the bits.

Keypad Control Register (KPAD_CTL)

Reset = 0x0000 0xFFC04100

KPAD_EN (Keypad Enable)
0 - Disabled
1 - Enabled

KPAD_IRQMODE (Multikey
Press interrupt Enable)
00 - Interrupt Disabled
01 - Single key (single row,
 single column) press
 interrupt enable
10 - Single key press multiple
 key press interrupt enable
11 - Reserved

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0

KPAD_ROWEN (Row Enable
width)

KPAD_COLEN
(Column Enable Width)
000 - 0 column enabled
001 - 0-1 columns enabled
010 - 0-2 columns enabled
011 - 0-3 columns enabled
100 - 0-4 columns enabled
101 - 0-5 columns enabled
110 - 0-6 columns enabled
111 - 0-7 columns enabled

0 0

000 - 0 row enabled
001 - 0-1 rows enabled
010 - 0-2 rows enabled
011 - 0-3 rows enabled
100 - 0-4 rows enabled
101 - 0-5 rows enabled
110 - 0-6 rows enabled
111 - 0-7 rows enabled

Keypad Registers

30-12 ADSP-BF54x Blackfin Processor Hardware Reference

When keys are pressed in a single-row, multiple-column scenario (or a
multiple-row, single-column scenario), it is possible to predict the pressed
keys by reading the KPAD_ROWCOL register. When multiple keys in multiple
rows (or multiple columns) are pressed simultaneously, it is not possible to
predict the exact keys pressed with the existing hardware. The
KPAD_MROWCOL bit of the KPAD_STAT register is used to make the distinction
between the above two scenarios. It is up to the program to define the
actions to take if it recognizes that multiple rows and multiple column
keys are pressed simultaneously.

KPAD_IRQMODE 1-2 Multikey press interrupt enable bits.
Enable the interrupt generation capability of the peripheral. These
bits control the interrupt generation, based on the number of keys
pressed simultaneously.

b#00 Disables interrupts. Regardless of any input key of the keypad
matrix being pressed, this causes the keypad interface module to
lose the capability to generate interrupt requests to the core.

b#01 A single key press generates an interrupt. Simultaneous multiple
key presses do not generate an interrupt.

b#10 A single key press (or multiple keys pressed in any row and col-
umn) generates an interrupt.

b#11 Reserved. The keypad interface behavior becomes unpredictable if
the user programs 11 into KPAD_IRQMODE.

Reserved 3-9 Reserved

KPAD_COLEN 13-15 Column enable width.
This three-bit field programs the number of active columns. The
value in this field + 1 determines the number of columns enabled
in the input keypad matrix.

KPAD_ROWEN 10-12 Row enable width.
This three-bit field programs the number of active rows. The value
in this field + 1 determines the number of rows enabled in the
input keypad matrix.

Table 30-3. Keypad Control Register Bit Descriptions (Cont’d)

Item Bit(s) Value Description

ADSP-BF54x Blackfin Processor Hardware Reference 30-13

Keypad Interface

Examples

b#011 in KPAD_ROWEN and b#001 in KPAD_COLEN yields a 4-row, 2-column
matrix.

b#010 in KPAD_ROWEN and b#001 in KPAD_COLEN yields a 3-row, 2-column
matrix.

b#111 in KPAD_ROWEN and b#111 in KPAD_COLEN yields an 8-row, 8-column
matrix.

Keypad Prescale (KPAD_PRESCALE) Register
The KPAD_PRESCALE register, shown in Figure 30-4, is used to program the
pre-scale value that would be used in deriving delay parameters that the
interface module should be sensitive to.

The KPAD_PRESCALE is a 16-bit register. The lower 6 bits are programmable
and the rest of the bits are reserved. This makes the dynamic range of the
prescale = 1 - 64. The value in the prescale register is used to calculate
both debounce period (Tdb) and column drive period (Tcw).

The KPAD_PRESCALE register is used to establish a convenient time base so
that the user could use the KPAD_MSEL register to generate the necessary
time delays.

Figure 30-4. Key Prescale Register

Keypad Prescale Register (KPAD_PRESCALE)

Reset = 0x0000 0xFFC04104

KPAD_PRESCALE_VAL
(Key Prescale)
Key Prescale Value (5:0)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

0 0

Keypad Registers

30-14 ADSP-BF54x Blackfin Processor Hardware Reference

The formula to get a timescale of T follows:

When using this formula, Note the unit of SCLK and the time scale must
agree. For example, to generate a 0.1 ms timescale, the formula is:

Taking some real numbers of SCLK:

SCLK = 133 MHz, to generate 0.1 ms time base, KPAD_PRESCALE[5:0] = 12

SCLK = 50 MHz, to generate 0.1 ms time base, KPAD_PRESCALE[5:0] = 4

SCLK = 10 MHz, to generate 0.1 ms time base, KPAD_PRESCALE[5:0] = 0

This register cannot be written once the keypad is enabled.

Prescale Value
SCLK Frequency T

1024
--- 1–=

Prescale Value
SCLK Frequency in MHz 100ms

1024
--- 1–=

ADSP-BF54x Blackfin Processor Hardware Reference 30-15

Keypad Interface

Keypad Multiplier Select (KPAD_MSEL) Register
The KPAD_MSEL register, shown in Figure 30-5, is used to program differ-
ent delay parameters (column drive width Tcw and debounce time Tdb)
that the keypad module should be sensitive to.

The settings (COLDRV_SCALE, DBON_SCALE) of KPAD_MSEL register are deter-
mined by the values of Tcw and Tdb. They can be calculated as follows:

COLDRV_SCALE = [(Tcw * SCLK)/ (KPAD_PRESCALE +1) * 1024)]-1

DBON_SCALE = [(Tdb * SCLK)/ (KPAD_PRESCALE +1) * 1024)]-1

Keypad Row-Column (KPAD_ROWCOL) Register
The KPAD_ROWCOL register, shown in Figure 30-6, is used to register the
input row values and column output values once the interface logic gets to
a valid state.

Figure 30-5. Keypad Multiplier Select Register

Keypad Multiplier Select Register (KPAD_MSEL)

Reset = 0x0000 0xFFC04108

DBON_SCALE
(Debounce Scale)
Debounce Delay
Multiplier Select [7:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0

COLDRV_SCALE
(Column Driver Scale)
Column Driver Period
Multiplier Select [15:8]

0 0

Keypad Registers

30-16 ADSP-BF54x Blackfin Processor Hardware Reference

The KPAD_ROWCOL register is used to determine the keys pressed. In the
Evaluate_Key_Pressed state, each column is driven with a low value and
the rest of the columns are tri-stated. Row inputs are read and, if at least
one input is found to be zero, the corresponding row inputs and column
outputs are accumulated in the temporary register. This process is
repeated for all of the columns, one at a time. Once all of the columns are
individually driven with a low value, then the interface moves data con-
tents in the temporary register into the KPAD_ROWCOL register. By the end
of the evaluation state, the KPAD_ROWCOL register has information about
whether a single key is pressed, multiple keys have been pressed, or no key
is pressed. Based on the values of the KPAD_IRQMODE bits in the KPAD_CTL
register and the number of keys pressed, an interrupt to the core is
asserted. A value of 1 in KPAD_ROW implies that a key is pressed, and a
value of 0 implies that a key has not been pressed.

A write to the KPAD_ROWCOL register clears the register (loads with a value
of 0x0000). A read of this register on reset returns a value of 0x0000.

Figure 30-7 provides an explanation of the KPAD_ROWCOL register and inter-
rupt generation when key x is pressed. Case 6 shows the situation where it
is not possible to distinguish the keys when they are pressed in multiple
rows and columns.

Figure 30-6. Keypad Row-Column Register

Keypad Row-Column Register (KPAD_ROWCOL)

Reset = 0x0000 0xFFC0410c

KPAD_ROW (Key Row)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0

KPAD_COL (Key Column)

0 0

ADSP-BF54x Blackfin Processor Hardware Reference 30-17

Keypad Interface

Figure 30-7. Interrupt Generation When X-Key Pressed

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

X

Case 1 (Single key press)

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

X X X

Case 2 (Multiple keys in same
 row pressed)

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

X

X

X

Case 3 (Multiple keys in same
 columns pressed)

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

X

X

Case 4 (Multiple keys in multiple rows
 and multiple columns pressed)

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

X

X

Case 5 (Multiple keys in multiple rows
 and multiple columns pressed)

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

X

X

X

X

Case 6 (Multiple keys in multiple rows
 and multiple columns pressed)

Keypad Registers

30-18 ADSP-BF54x Blackfin Processor Hardware Reference

Keypad Status (KPAD_STAT) Register
The KPAD_STAT register, shown in Figure 30-8, is used to hold and clear
the status of the interrupt generated by the keypad module. It is also help-
ful in resolving the pressed keys when multiple keys are pressed
simultaneously.

The KPAD_IRQ bit in the KPAD_STAT register is used to indicate that there is
an interrupt request generated by the Keypad Interface module. The
KPAD_IRQMODE bits in KPAD_CTL are the interrupt enable bits of the keypad
interface. If KPAD_IRQMODE = b#00, the peripheral loses the capability to
generate an interrupt. The KPAD_IRQ is asserted once the module evaluates
the keys pressed, based on the KPAD_IRQMODE bits and the number of keys
pressed. Assertion of this bit signifies that an interrupt request to the core
is asserted. This bit is a sticky bit, which means that, once asserted, it
remains asserted until the user clears it. This bit is cleared on reset, when
the KPAD_EN bit in the KPAD_CTL register is cleared or by writing a 1 to the
KPAD_IRQ bit in the KPAD_STAT register.

Figure 30-8. Keypad Status Register

Keypad Status Register (KPAD_STAT)

Reset = 0x0000 0xFFC04110

KPAD_IRQ
(Keypad Interrupt)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

0 0

KPAD_PRESSED (Key Pressed) 0 = No interrupt
1 = Interrupt Pending (sticky)

KPAD_MROWCOL
(Key Multiple Row Column)
00 - No key pressed
01 - Single key pressed
10 - Multiple keys in the
 same row or column
11 - Multiple keys in the
 same multiple rows and
 multiple columns
 pressed

0 = Pressed key is currently
 released
1 = Key is currently pressed

ADSP-BF54x Blackfin Processor Hardware Reference 30-19

Keypad Interface

The KPAD_MROWCOL bits are used to indicate whether multiple rows and col-
umns in the KPAD_ROWCOL register are asserted at the same time. Physically,
this would mean that more than one row key and more than one column
key have been pressed simultaneously. In this scenario, it becomes impos-
sible to predict the exact keys pressed with the existing hardware. The user
could choose to ignore the key press action. These bits become particu-
larly handy when one row and multiple columns or one column and
multiple rows of the KPAD_ROWCOL register are pressed simultaneously. In
these scenarios it is possible to detect the exact keys pressed by reading the
KPAD_ROWCOL register. Interrupt generation in this situation is enabled by
KPAD_IRQMODE bits in the KPAD_CTL register. In the interrupt service routine
the user can read the status of the KPAD_MROWCOL bits in the KPAD_STAT reg-
ister to determine multiple row and multiple column keys have been
pressed or not and appropriate action can be taken. These bits get number
of keys pressed information from the KPAD_ROWCOL register. These bits are
cleared when the KPAD_ROWCOL register is cleared. The KPAD_ROWCOL register
is cleared by doing a PAB write to the KEY_ROWCOL register.

The KPAD_PRESSED bit indicates the state of the pressed key after the evalu-
ation phase has ended. This bit remains high until the pressed key is
released. This bit could be used by the customer to implement the
Press-Hold feature. Once the key is pressed, the keypad interface generates
an interrupt provided the KPAD_IRQMODE bits in the KPAD_CTL register are
set appropriately. The user could choose to read the KPAD_PRESSED bit of
the status register in the interrupt service retinue to determine if the
pressed key is released or not and then take the appropriate action. This
bit is cleared once the interface gets into the scan inputs state. On reset, a
read of this register returns a value of 0x0000.

Programming Examples

30-20 ADSP-BF54x Blackfin Processor Hardware Reference

Keypad Software Evaluate (KPAD_SOFTEVAL)
Register

The KPAD_SOFTEVAL register, shown in Figure 30-9, is used to force the
interface into the evaluate state.

Enabling the SOFTEVAL bit forces the interface to go through the evaluate
phase. If the interface is either in the Scan_Inputs state or Wait state, a
write to the SOFTEVAL bit in the KPAD_SOFTEVAL register causes the interface
to jump to the evaluate phase. At the end of the evaluation phase, an inter-
rupt to the core is asserted based on the value in the KPAD_ROWCOL register
and KPAD_IRQMODE. The SOFTEVAL bit is cleared at the end of the evaluate
phase. If the write to the SOFTEVAL bit happens when the module is in the
evaluation phase, the interface proceeds with its normal sequence of
actions except that at the end of the evaluation phase, the SOFTEVAL bit is
cleared.

Programming Examples
Listing 30-1 describes the configuration of the keypad module.

Figure 30-9. Keypad Software Evaluate Register

Keypad Software Evaluate Register (KPAD_SOFTEVAL)

Reset = 0x0000 0xFFC04114

KPAD_SOFTEVAL_E
(Key Programmable
Force Evaluate)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

0 0

0 - Normal Mode
1 - Force Evaluate Mode

ADSP-BF54x Blackfin Processor Hardware Reference 30-21

Keypad Interface

Listing 30-1. Configure Keypad Module

/* Configure the prescale register KPAD_PRESCALE */

P0.L = LO(KPAD_PRESCALE);

P0.H = HI(KPAD_PRESCALE);

R0.L = 4; /*0.1 MS WITH 50MHz SCLK */

W[P0] = R0.L;
/* Configure the column drive width and debounce time */

P0.L = LO(KPAD_MSEL);

P0.H = HI(KPAD_MSEL);

R0.L = 0x0909 /* 1 MS WITH 50MHz SCLK, for both column drive

width and debounce time */

W[P0] = R0.L;

/* Configure the KPAD_CTL register to set keypad size to 5 rows

by 6 columns, multiple key press interrupt enabled, keypad module

enabled */

P0.L = LO(KPAD_CTL);

P0.H = HI(KPAD_CTL);

R0.L = 0xB005;

W[P0] = R0.L;
SSYNC;

Programming Examples

30-22 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 31-1

31 CAN MODULE

This chapter describes the controller area network (CAN) modules. Famil-
iarity with the CAN standard is assumed. Refer to Version 2.0 of CAN
Specification from Robert Bosch GmbH.

This chapter includes the following sections:

• “Overview” on page 31-1

• “Interface Overview” on page 31-2

• “CAN Operation” on page 31-10

• “Functional Operation” on page 31-24

• “CAN Registers” on page 31-41

• “Programming Examples” on page 31-85

Overview
The ADSP-BF544, ADSP-BF548, and ADSP-BF549 Blackfin processors
have two separate and identical CAN modules, referred to as CAN0 and
CAN1. The CAN1 module is not present on ADSP-BF542 derivatives.
There are no CAN modules present on the ADSP-BF547 Blackfin proces-
sor. Neither of the CAN modules may be available on commercial and/or
industrial grade products. For more information see
ADSP-BF542/544/547/548/549 Embedded Processor Data Sheet.

Interface Overview

31-2 ADSP-BF54x Blackfin Processor Hardware Reference

Key features of the CAN module include:

• Conformity to the CAN 2.0B (active) standard

• Support for standard (11-bit) and extended (29-bit) identifiers

• Support for data rates of up to 1Mbit/s

• 32 mailboxes (8 transmit, 8 receive, 16 configurable)

• Dedicated acceptance mask for each mailbox

• Data filtering (first 2 bytes) can be used for acceptance filtering
(DeviceNet™ mode)

• Error status and warning registers

• Universal counter module

• Readable receive and transmit pin values

The CAN module is a low bit rate serial interface intended for use in
applications where bit rates are typically up to 1Mbit/s. The CAN proto-
col incorporates a data CRC check, message error tracking and fault node
confinement as means to improve network reliability to the level required
for control applications.

Interface Overview
The interface to the CAN bus is a simple two-wire line. See Figure 31-1
for a symbolic representation of the CAN transceiver interconnection, and
Figure 31-2 for a block diagram. The Blackfin processor’s CANxTX output
and CANxRX input pins are connected to an external CAN transceiver’s TX
and RX pins (respectively). The CANxTX and CANxRX pins operate with TTL
levels and are appropriate for operation with CAN bus transceivers
according to ISO/DIS 11898.

ADSP-BF54x Blackfin Processor Hardware Reference 31-3

CAN Module

The CANxRX and CANxTX signals can be found on GPIO Port G, pins PG12–
PG15. By default, these pins are in GPIO mode. To enable CAN function-
ality, the appropriate bits must be set in the PORTG_FER register. If CAN0
is used, set bits 12 and 13. If CAN1 is used, set bits 14 and 15.

Additionally, the associated bit fields of the PORTG_MUX register must be
kept zero, which is their default value. CAN data is defined to be either
dominant (logic 0) or recessive (logic 1). The default state of the CANxTX
output is recessive.

Figure 31-1. Representation of CAN Transceiver Interconnection

BLACKFIN

CANxRX

CAN
TRANSCEIVER

RX

CANxTX TX

CANL

CANH
FIELD BUS

Interface Overview

31-4 ADSP-BF54x Blackfin Processor Hardware Reference

The PG13 pin (CAN0RX input pin) is also internally routed to the alternate
capture input TACI4 of the GP timer 4. Similarly, the PG15 pin (CAN1RX
input pin) also goes to the alternate capture input TACI5 of the GP timer
5. This way, GP timers 4 and 5 can be used to auto-detect or adjust the bit
rate on the CAN bus.

Figure 31-2. CANx Block Diagram

M
A

IL
B

O
X

 C
O

N
T

R
O

L
 2

MAILBOX INTERRUPT TRANSMIT 2

MAILBOX INTERRUPT MASK 2

RECEIVE MESSAGE LOST 1
REMOTE FRAME HANDLING 2

OVERWRITE PROTECTION/SINGLE SHOT 2

AILBOX INTERRUPT RECEIVE 2

TRANSMIT REQUEST RESET 2

RECEIVE MESSAGE PENDING 2

MAILBOX DIRECTION 1

2TRANSMIT ACKNOWLEDGE 2
ABORT ACKNOWLEDGE 1

TRANSMIT REQUEST SET 1

MAILBOX ENABLE 2

DATA

TIMESTAMP

DATA LENGTH

M
A

IL
B

O
X

 31

DATA

TIMESTAMP

ACCEPTANCE MASK

MESSAGE IDENTIFICATION

DATA LENGTH

M
A

IL
B

O
X

 18

M
A

IL
B

O
X

 17

M
A

IL
B

O
X

 16

M
A

IL
B

O
X

 15

DATA

TIMESTAMP

ACCEPTANCE MASK

MESSAGE IDENTIFICATION

DATA LENGTH

M
A

IL
B

O
X

 2

M
A

IL
B

O
X

 1

M
A

IL
B

O
X

 C
O

N
T

R
O

L
 1

TRANSMIT

MAILBOX INTERRUPT TRANSMIT 1

MAILBOX INTERRUPT MASK 1

RECEIVE MESSAGE LOST 1
REMOTE FRAME HANDLING 1

OVERWRITE PROTECTION/SINGLE SHOT 1

MAILBOX INTERRUPT RECEIVE 1

TRANSMIT REQUEST RESET 1

RECEIVE MESSAGE PENDING 1

MAILBOX DIRECTION 1

TRANSMIT ACKNOWLEDGE 1
ABORT ACKNOWLEDGE 1

TRANSMIT REQUEST SET 1

MAILBOX ENABLE 1

IN
T

E
R

-
R

U
P

T
S

GLOBAL INTERRUPT MASK

GLOBAL INTERRUPT FLAG

GLOBAL INTERRUPT STATUS

E
R

R
O

R
H

A
N

D
L

E
R

C
O

U
N

T
E

R
G

L
O

B
A

L
C

O
N

T
R

O
LDEBUG

ERROR STATUS

ERROR COUNTERS

ERROR WARNING

MODE

COUNTER

RELOAD/CAPTURE

GLOBAL STATUS

GLOBAL CONTROL

T
IM

IN
GBIT TIMING

CLOCK DIVIDEM
A

IL
B

O
X

 0

DATA

TIMESTAMP

ACCEPTANCE MASK

MESSAGE IDENTIFICATION

DATA LENGTH

RECEIVE

ACCEPTANCE
FILTER

...

...

...

...

INTERRUPT

SIC CONTROLLER

P
O

R
T

 G

T
R

A
N

S
C

E
IV

E
R

PA
B

16

CANx

BLACKFIN

ADSP-BF54x Blackfin Processor Hardware Reference 31-5

CAN Module

CAN Mailbox Area
The full-CAN controller features 32 message buffers, which are called
mailboxes. Eight mailboxes are dedicated for message transmission, eight
are for reception, and 16 are programmable in direction. See Figure 31-3.

Accordingly, the CAN module architecture is based around a 32-entry
mailbox RAM. The mailbox is accessed sequentially by the CAN serial
interface or the Blackfin core. Each mailbox consists of eight 16-bit con-
trol and data registers and two optional 16-bit acceptance mask registers,
all of which must be configured before the mailbox itself is enabled. Since
the mailbox area is implemented as RAM, the reset values of these registers
are undefined. The data is divided into fields, which includes a message
identifier, a time stamp, a byte count, up to 8 bytes of data, and several
control bits.

Figure 31-3. CAN Mailbox Area

FDF

EXTID_HI / DFC

AME

EXTID_HI / DFC

TSV

DLC

BASEIDAMIDEFMD

BYTE 6

CANx_AM00H

CANx_AM00L

CANx_MB00_ID1

CANx_MB00_ID0

CANx_MB00_TIMESTAMP

CANx_MB00_LENGTH

CANx_MB00_DATA3

CANx_MB00_DATA2

CANx_MB00_DATA1

CANx_MB00_DATA0BYTE 7

BYTE 4 BYTE 5

BYTE 2 BYTE 3

BYTE 0 BYTE 1

EXTID_LO

BASEIDIDERTR EXTID_LO

WORD9

WORD8

WORD7

WORD6

WORD5

WORD4

WORD3

WORD2

WORD1

WORD0

Interface Overview

31-6 ADSP-BF54x Blackfin Processor Hardware Reference

The CAN mailbox identification (CANx_MBxx_ID0/1) register pair includes:

• The 29 bit identifier (base part BASEID plus extended part
EXTID_LO/HI)

• The acceptance mask enable bit (AME)

• The remote transmission request bit (RTR)

• The identifier extension bit (IDE)

 Do not write to the identifier of a message object while the mailbox
is enabled for the CAN module (the corresponding bit in CANx_MCx
is set).

The other mailbox area registers are:

• The data length code (DLC) in CANx_MBxx_LENGTH. The upper 12
bits of CANx_MBxx_LENGTH of each mailbox are marked as reserved.
These 12 bits should always be set to 0.

• Up to eight bytes for the data field, sent MSB first from the
CANx_MBxx_DATA3/2/1/0 registers, respectively, based on the number
of bytes defined in the DLC. For example, if only one byte is trans-
mitted or received (DLC = 1), then it is stored in the most
significant byte of the CANx_MBxx_DATA3 register.

• Two bytes for the time stamp value (TSV) in the
CANx_MBxx_TIMESTAMP register

The final registers in the mailbox area are the acceptance mask registers
(CANx_AMxxH and CANx_AMxxL). The acceptance mask is enabled when the
AME bit is set in the CANx_MBxx_ID1 register. If the “filtering on data field”
option is enabled (DNM = 1 in the CANx_CONTROL register and FDF = 1 in the
corresponding acceptance mask), the EXTID_HI[15:0] bits of
CANx_MBxx_ID0 are reused as acceptance code (DFC) for the data field filter-
ing. For more information, see “Receive Operation” on page 31-16.

ADSP-BF54x Blackfin Processor Hardware Reference 31-7

CAN Module

CAN Mailbox Control
Mailbox control MMRs function as control and status registers for the 32
mailboxes. Each bit in these registers represents one specific mailbox.
Since CAN MMRs are all 16 bits wide, pairs of registers are required to
manage certain functionality for all 32 individual mailboxes. Mailboxes
0-15 are configured/monitored in registers with a suffix of 1. Similarly,
mailboxes 16-31 use the same named register with a suffix of 2. For exam-
ple, the CAN mailbox direction registers (CANx_MDx) would control
mailboxes as shown in Figure 31-4.

The mailbox control register area consists of these register pairs:

• CANx_MC1 and CANx_MC2 (mailbox enable registers)

• CANx_MD1 and CANx_MD2 (mailbox direction registers)

• CANx_TA1 and CANx_TA2 (transmit acknowledge registers)

• CANx_AA1 and CANx_AA2 (abort acknowledge registers)

• CANx_TRS1 and CANx_TRS2 (transmit request set registers)

• CANx_TRR1 and CANx_TRR2 (transmit request reset registers)

• CANx_RMP1 and CANx_RMP2 (receive message pending registers)

• CANx_RML1 and CANx_RML2 (receive message lost registers)

Figure 31-4. CAN Register Pairs

MD15

15

CANx_MD1

0

MD14 MD13 MD12 MD11 MD10 MD9 MD8 MD7 MD6 MD5 MD4 MD3 MD2 MD1 MD0

MD31

15

CANx_MD2

0

MD30 MD29 MD28 MD27 MD26 MD25 MD24 MD23 MD22 MD21 MD20 MD19 MD18 MD17 MD16

Interface Overview

31-8 ADSP-BF54x Blackfin Processor Hardware Reference

• CANx_RFH1 and CANx_RFH2 (remote frame handling registers)

• CANx_OPSS1 and CANx_OPSS2 (overwrite protection/single shot
transmission registers)

• CANx_MBIM1 and CANx_MBIM2 (mailbox interrupt mask registers)

• CANx_MBTIF1 and CANx_MBTIF2 (mailbox transmit interrupt flag
registers)

• CANx_MBRIF1 and CANx_MBRIF2 (mailbox receive interrupt flag
registers)

Since mailboxes 24–31 support transmit operation only and mailboxes
0–7 are receive-only mailboxes, the lower eight bits in the 1 registers and
the upper eight bits in the “2” registers are sometimes reserved or are
restricted in their usage.

CAN Protocol Basics
Although the CANxRX and CANxTX pins are TTL-compliant signals, the
CAN signals beyond the transceiver (see Figure 31-1 on page 31-3) have
asymmetric drivers. A low state on the CANxTX pin activates strong drivers
while a high state is driven weakly. Consequently, active low is called the
“dominant” state and active high is called “recessive.” If the CAN module
is passive, the CANxTX pin is always high. If two CAN nodes transmit at the
same time, dominant bits overwrite recessive bits.

The CAN protocol defines that all nodes trying to send a message on the
CAN bus attempt to send a frame once the CAN bus becomes available.
The start of frame indicator (SOF) signals the beginning of a new frame.
Each CAN node then begins transmitting its message starting with the
message ID. While transmitting, the CAN controller samples the CANxRX
pin to verify that the logic level being driven is the value it just placed on
the CANxTX pin. This is where the names for the logic levels apply. If a
transmitting node places a recessive ‘1’ on CANxTX and detects a dominant

ADSP-BF54x Blackfin Processor Hardware Reference 31-9

CAN Module

‘0’ on the CANxRX pin, it knows that another node has placed a dominant
bit on the bus, which means another node has higher priority. So, if the
value sensed on CANxRX is the value driven on CANxTX, transmission contin-
ues, otherwise the CAN controller senses that it has lost arbitration and
configuration determines what the next course of action is once arbitra-
tion is lost. See Figure 31-5 for more details regarding CAN frame
structure.

Figure 31-5 is a basic 11-bit identifier frame. After the SOF and identifier
is the RTR bit, which indicates whether the frame contains data (data
frame) or is a request for data associated with the message identifier in the
frame being sent (remote frame).

 Due to the inherent nature of the CAN protocol, a dominant bit in
the RTR field wins arbitration against a remote frame request
(RTR = 1) for the same message ID, thereby defining a remote
request to be lower priority than a data frame.

The next field of interest is the IDE. When set, it indicates that the mes-
sage is an extended frame with a 29-bit identifier instead of an 11-bit
identifier. In an extended frame, the first part of the message resembles
Figure 31-6.

Figure 31-5. Standard CAN Frame

SOF IDENTIFIER RTR

1 11 1

ARBITRATION PHASE

CRCIDE ACK0...8 BYTESr0 DLC

1 41 0 ... 64 16 2 7 3

EOF IFS

SOF
RTR

CRC

IDE

ACK

r0
DLC

EOF
IFS

- START OF FRAME (SINGLE BIT = 0)
- REMOTE TRANSMISSION REQUEST (REMOTE FRAME = 1)
- IDENTIFIER EXTENSION (EXTENDED ID FRAME = 1)
- RESERVED FOR FUTURE EXPANSION
- DATA LENGTH CONTROL (NUMBER OF DATA BYTES IN FRAME)
- CYCLIC REDUNDANCY CHECK (ERROR BITS IN FRAME)
- ACKNOWLEDGE (RECEIVER DRIVES ONE DOMINANT BIT TO ACK)
- END OF FRAME (SERIES OF 7 RECESSIVE BITS = b#1111111)
- INTERFRAME SPACE (3 RECESSIVE BITS = b#111)

CAN Operation

31-10 ADSP-BF54x Blackfin Processor Hardware Reference

As could be concluded with regards to the RTR field, a dominant bit in the
IDE field wins arbitration against an extended frame with the same lower
11-bits, therefore, standard frames are higher priority than extended
frames. The substitute remote request bit (SRR, always sent as recessive),
the reserved bits r0 and r1 (always sent as dominant), and the checksum
(CRC) are generated automatically by the internal logic.

CAN Operation
The CAN controller is in configuration mode when coming out of proces-
sor reset or hibernate. It is only when the CAN is in configuration mode
that hardware behavior can be altered. Before initializing the mailboxes
themselves, the CAN bit timing must be set up to work on the CAN bus
that the controller is expected to connect to.

Bit Timing
The CAN controller does not have a dedicated clock. Instead, the CAN
clock is derived from the system clock (SCLK) based on a configurable
number of time quanta. The Time Quantum (TQ) is derived from the
formula TQ = (BRP+1)/SCLK, where BRP is the 10-bit BRP field in the
CANx_CLOCK register. Although the BRP field can be set to any value, it is
recommended that the value be greater than or equal to 4, as restrictions
apply to the bit timing configuration when BRP is less than 4.

The CANx_CLOCK register defines the TQ value, and multiple time quanta
make up the duration of a CAN bit on the bus. The CANx_TIMING register
controls the nominal bit time and the sample point of the individual bits

Figure 31-6. Extended CAN Frame

SOF IDENTIFIER SRR

1 11 1 1 18 1 1 4

RTRIDE r1

1

IDENTIFIER r0 DLC

ADSP-BF54x Blackfin Processor Hardware Reference 31-11

CAN Module

in the CAN protocol. Figure 31-7 shows the three phases of a CAN bit—
the synchronization segment, the segment before the sample point, and
the segment after the sample point.

The synchronization segment is fixed to one TQ. It is required to syn-
chronize the nodes on the bus. All signal edges are expected to occur
within this segment.

The TSEG1 and TSEG2 fields of CANx_TIMING control how many TQs the
CAN bits consist of, resulting in the CAN bit rate. The nominal bit time
is given by the formula tBIT = TQ x (1 + (1 + TSEG1) + (1 + TSEG2)). For safe
receive operation on given physical networks, the sample point is pro-
grammable by the TSEG1 field. The TSEG2 field holds the number of TQs
needed to complete the bit time. Often, best sample reliability is achieved
with sample points in the high 80% range of the bit time. Never use sam-
ple points lower than 50%. Thus, TSEG1 should always be greater than or
equal to TSEG2.

The Blackfin CAN module does not distinguish between the propagation
segment and the phase segment 1 as defined by the standard. The TSEG1
value is intended to cover both of them. The TSEG2 value represents the
phase segment 2.

If the CAN module detects a recessive-to-dominant edge outside the syn-
chronization segment, it can automatically move the sampling point such
that the CAN bit is still handled properly. The synchronization jump

Figure 31-7. Three Phases of a CAN Bit

TQTQ

NOMINAL BIT TIME

TQ x (TSEG2 + 1)

TQ TQTQ TQ TQTQ TQTQ
t

TQTQTQ

SYNC
TQ x (TSEG1 + 1)

SAMPLE POINTTRANSMIT POINT

TQ TQ

CAN Operation

31-12 ADSP-BF54x Blackfin Processor Hardware Reference

width (SJW) field specifies the maximum number of TQs, ranging from 1
to 4 (SJW + 1), allowed for such a re-synchronization attempt. The SJW
value should not exceed TSEG2 or TSEG1. Therefore, the fundamental rule
for writing CANx_TIMING is:

SJW <= TSEG2 <= TSEG1

In addition to this fundamental rule, phase segment 2 must also be greater
than or equal to the Information Processing Time (IPT). This is the time
required by the logic to sample CANxRX input. On the Blackfin CAN mod-
ule, this is 3 SCLK cycles. Because of this, restrictions apply to the minimal
value of TSEG2 if the clock prescaler BRP is lower than 2. If BRP is set to 0,
the TSEG2 field must be greater than or equal to 2. If the prescaler is set
to 1, the minimum TSEG2 is 1.

 All nodes on a CAN bus should use the same nominal bit rate.

With all the timing parameters set, the final consideration is how sam-
pling is performed. The default behavior of the CAN controller is to
sample the CAN bit once at the sampling point described by the
CANx_TIMING register, controlled by the SAM bit. If the SAM bit is set, how-
ever, the input signal is oversampled three times at the SCLK rate. The
resulting value is generated by a majority decision of the three sample val-
ues. Always keep the SAM bit cleared if the BRP value is less than 4.

Do not modify the CANx_CLOCK or CANx_TIMING registers during normal
operation. Always enter configuration mode first. Writes to these registers
have no effect if not in configuration or debug mode. If not coming out of
processor reset or hibernate, enter configuration mode by setting the CCR
bit in the master control (CANx_CONTROL) register and poll the global CAN
status (CANx_STATUS) register until the CCA bit is set.

 If the GPIO pins are not first enabled for CAN functionality, the
module does not enter configuration mode.

If the TSEG1 field of the CANx_TIMING register is programmed to ‘0,’
the module does not leave configuration mode.

ADSP-BF54x Blackfin Processor Hardware Reference 31-13

CAN Module

During configuration mode, the module is not active on the CAN bus
line. The CANxTX output pin remains recessive and the module does not
receive/transmit messages or error frames. After leaving the configuration
mode, all CAN core internal registers and the CAN error counters are set
to their initial values.

A soft reset does not change the values of CANx_CLOCK and CANx_TIMING.
Thus, an ongoing transfer through the CAN bus cannot be corrupted by
changing the bit timing parameter or initiating the soft reset (SRS = 1 in
CANx_CONTROL).

Transmit Operation
Figure 31-8 shows the CAN transmit operation. Mailboxes 24-31 are ded-
icated transmitters. Mailboxes 8-23 can be configured as transmitters by
writing 0 to the corresponding bit in the CANx_MDx register. After writing
the data and the identifier into the mailbox area, the message is sent after
mailbox n is enabled (MCn = 1 in CANx_MCx) and, subsequently, the corre-
sponding transmit request bit is set (TRSn = 1 in CANx_TRSx).

When a transmission completes, the corresponding bits in the transmit
request set register and in the transmit request reset register (TRRn in
CANx_TRRx) are cleared. If transmission was successful, the corresponding
bit in the transmit acknowledge register (TAn in CANx_TAx) is set. If the
transmission was aborted due to lost arbitration or a CAN error, the corre-
sponding bit in the abort acknowledge register (AAn in CANx_AAx) is set. A
requested transmission can also be manually aborted by setting the corre-
sponding TRRn bit in CANx_TRRx.

Multiple CANx_TRSx bits can be set simultaneously by software, and these
bits are reset after either a successful or an aborted transmission. The TRSn
bits can also be set by the CAN hardware when using the auto-transmit
mode of the universal counter, when a message loses arbitration and the
single-shot bit is not set (OPSSn = 0 in CANx_OPSSx), or in the event of a

CAN Operation

31-14 ADSP-BF54x Blackfin Processor Hardware Reference

remote frame request. The latter is only possible for receive/transmit mail-
boxes if the automatic remote frame handling feature is enabled (RFHn = 1
in CANx_RFHx).

Special care should be given to mailbox area management when a TRSn bit
is set. Write access to the mailbox is permissible with TRSn set, but chang-
ing data in such a mailbox may lead to unexpected data during
transmission.

Enabling and disabling mailboxes has an impact on transmit requests. Set-
ting the TRSn bit associated with a disabled mailbox may result in
erroneous behavior. Similarly, disabling a mailbox before the associated
TRSn bit is reset by the internal logic can cause unpredictable results.

Retransmission

Normally, the current message object is sent again after arbitration is lost
or an error frame is detected on the CAN bus line. If there is more than
one transmit message object pending, the message object with the highest
mailbox is sent first (see Figure 31-8). The currently aborted transmission
is restarted after any messages with higher priority are sent.

A message which is currently under preparation is not replaced by another
message which is written into the mailbox. The message under preparation
is one that is copied into the temporary transmit buffer when the internal
transmit request for the CAN core module is set. The message in the buf-
fer is not replaced until it is sent successfully, the arbitration on the CAN
bus line is lost, or there is an error frame on the CAN bus line.

ADSP-BF54x Blackfin Processor Hardware Reference 31-15

CAN Module

Single Shot Transmission

If the single shot transmission feature is used (OPSSn = 1 in CANx_OPSSx),
the corresponding TRSn bit is cleared after the message is successfully sent
or if the transmission is aborted due to a lost arbitration or an error frame
on the CAN bus line. Thus, there is no further attempt to transmit the
message again if the initial try failed, and the abort error is reported (AAn =
1 in CANx_AAx)

Figure 31-8. CAN Transmit Operation Flow Chart

AT LEAST 1 BIT SET IN CANx_TRSx REGISTERS

STARTING WITH
MAILBOX 31,

FIND HIGHEST SET
TRSn BIT

MESSAGE
ABORTED?

YES NO

CLEAR TRSn
AND REPORT
ABORT ERROR

PLACE MESSAGE
n IN TEMPORARY

TRANSMIT BUFFER

EXIT EXIT

CLEAR TRSn
AND REPORT

TRANSMIT
SUCCESSFUL

CAN Operation

31-16 ADSP-BF54x Blackfin Processor Hardware Reference

Auto-Transmission

In auto-transmit mode, the message in mailbox 11 can be sent periodically
using the universal counter. This mode is often used to broadcast heart-
beats to all CAN nodes. Accordingly, messages sent this way usually have
high priority.

The period value is written to the CANx_UCRC register. When enabled in
this mode (set UCCNF[3:0] = 0x3 in CANx_UCCNF), the counter
(CANx_UCCNT) is loaded with the value in the CANx_UCRC register. The coun-
ter decrements at the CAN bit clock rate down to 0 and is then reloaded
from CANx_UCRC. Each time the counter reaches a value of 0, the TRS11 bit
is automatically set by internal logic, and the corresponding message from
mailbox 11 is sent.

For proper auto-transmit operation, mailbox 11 must be configured as a
transmit mailbox and must contain valid data (identifier, control bits, and
data) before the counter first expires after this mode is enabled.

Receive Operation
The CAN hardware autonomously receives messages and discards invalid
messages. Once a valid message is successfully received, the receive logic
interrogates all enabled receive mailboxes sequentially, from mailbox 23
down to mailbox 0, whether the message is of interest to the local node or
not.

Each incoming data frame is compared to all identifiers stored in active
receive mailboxes (MDn = 1 and MCn = 1) and to all active transmit mail-
boxes with the remote frame handling feature enabled (RFHn = 1 in
CANx_RFHx).

ADSP-BF54x Blackfin Processor Hardware Reference 31-17

CAN Module

The message identifier of the received message, along with the identifier
extension (IDE) and remote transmission request (RTR) bits, are compared
against each mailbox’s register settings. In standard mode, the message is
compared to the content of the CANx_MByy_ID1 register. In extended
mode, the content of the CANx_MByy_ID0 register must also match.

If the AME bit is not set, a match is signalled only if IDE, RTR, and all (11 or
29) identifier bits are exact. If, however, AME is set, the acceptance mask
registers determine which of the identifier, IDE, and RTR bits need to
match.

The following logic applies:

• (Received Message ID XNOR CANx_MBxx_ID0/1)

or

• (AME and CANx_AMxxH/L).

This logic appears graphically in Figure 31-9.

A one at the respective bit position in the CAN_AMxxH/L mask registers
means that the bit does not need to match when AME=1. This way, a mail-
box can accept a group of messages.

Figure 31-9. CAN Receive Message Logic

MATCH

AME

CANx_AMyy_H/L

CANx_MByy_ID1/0

RECEIVED MESSAGE

CAN Operation

31-18 ADSP-BF54x Blackfin Processor Hardware Reference

If the acceptance filter finds a matching identifier, the content of the
received data frame is stored in that mailbox. A received message is stored
only once, even if multiple receive mailboxes match its identifier. If the
current identifier does not match any mailbox, the message is not stored.

Figure 31-10 illustrates the decision tree of the receive logic when process-
ing the individual mailboxes.

If a message is received for a mailbox and that mailbox still contains
unread data (RMPn = 1), the user has to decide whether the old message
should be overwritten or not. If OPSSn = 0, the receive message lost bit
(RMLn in CANx_RMLx) is set and the stored message is overwritten. This
results in the receive message lost interrupt being raised in the global CAN
interrupt status register (RMLIS = 1 in CANx_GIS). If OPSSn = 1, the next
mailboxes are checked for another matching identifier. If no match is
found, the message is discarded and the next message is checked.

 If a receive mailbox is disabled, an ongoing receive message for that
mailbox is lost even if a second mailbox is configured to receive the
same identifier.

Table 31-1. Mailbox Used for Acceptance Mask Filtering

Mailbox used for Acceptance Filtering

MCn MDn RFHn Mailbox n Comment

0 x x Ignored Mailbox n disabled

1 0 0 Ignored Mailbox n enabled
Mailbox n configured for transmit
Remote frame handling disabled

1 0 1 Used Mailbox n enabled
Mailbox n configured for transmit
Remote frame handling enabled

1 1 x Used Mailbox n enabled
Mailbox n configured for receive

ADSP-BF54x Blackfin Processor Hardware Reference 31-19

CAN Module

Data Acceptance Filter

If DeviceNet mode is enabled (DNM = 1 in CANx_CONTROL) and the mailbox
is set up for filtering on data field, the filtering is done on the standard ID
of the message and data fields. The data field filtering can be programmed
for either the first byte only or the first two bytes, as shown in Table 31-2.

Figure 31-10. CAN Receive Operation Flow Chart

MAILBOX
ENABLED?

AME?

Y

FROM MESSAGE RECEIVER/PREVIOUS MAILBOX

0COMPARE ALL
BITS

MATCH?

Y

N

EXIT

NEXT MAILBOX
N

1 COMPARE
UNMASKED
BITS ONLY

NEXT MAILBOX

MAILBOX
DIRECTION?

RECEIVE

MAILBOX
READY?

TRANSMIT

REMOTE
 MAILBOX?

N
NEXT MAILBOX

Y
OVERWRITE

PROTECTION?

N

N

Y

REPORT
OVERFLOW

ERROR

SAVE MESSAGE
TO MAILBOX

TRANSMIT
REMOTE

MESSAGE

Y
NEXT MAILBOX

EXIT EXIT

CAN Operation

31-20 ADSP-BF54x Blackfin Processor Hardware Reference

If the FDF bit is set in the corresponding CANx_AMxxH register, the
CANx_AMxxL register holds the data field mask (DFM[15:0]). If the FDF bit is
cleared in the corresponding CANx_AMxxH register, the CANx_AMxxL register
holds the extended identifier mask (EXTID_HI[15:0]).

Watchdog Mode

Watchdog mode is used to make sure messages are received periodically. It
is often used to observe whether or not a certain node on the network is
alive and functioning properly, and, if not, to detect and manage its fail-
ure case accordingly.

Upon programming the universal counter to watchdog mode (set
UCCNF[3:0] = 0x2 in CANx_UCCNF), the counter in the CANx_UCCNT register
is loaded with the predefined value contained in the CAN universal coun-
ter reload/capture register (CANx_UCRC). This counter then decrements at
the CAN bit rate. If the UCCT and UCRC bits in the CANx_UCCNF register are
set and a message is received in mailbox 4 before the counter counts down
to 0, the counter is reloaded with the CANx_UCRC contents. If the counter
has counted down to 0 without receiving a message in mailbox 4, the
UCEIS bit in the global CAN interrupt status (CANx_GIS) register is set, and
the counter is automatically reloaded with the contents of the CANx_UCRC

Table 31-2. Data Field Filtering

FDF
Filter On Data Field

FMD
Full Mask Data Field

Description

0 0 Do not allow filtering on the data
field

0 1 Not allowed. FMD must be 0 if FDF
is 0.

1 0 Filter on first data byte only

1 1 Filter on first two data bytes

ADSP-BF54x Blackfin Processor Hardware Reference 31-21

CAN Module

register. If an interrupt is desired, the UCEIM bit in the CANx_GIM register
must also be set. With the mask bit set, when a watchdog interrupt occurs,
the UCEIF bit in the CANx_GIF register is also set.

The counter can be reloaded with the contents of CANx_UCRC or disabled
by writing to the CANx_UCCNF register.

The time period it takes for the watchdog interrupt to occur is controlled
by the value written into the CANx_UCRC register by the user.

Time Stamps
To get an indication of the time of reception or the time of transmission
for each message, program the CAN universal counter to time stamp
mode (set UCCNF[3:0] = 0x1 in CANx_UCCNF). The value of the 16-bit
free-running counter (CANx_UCCNT) is then written into the
CANx_MBxx_TIMESTAMP register of the corresponding mailbox when a
received message is stored or a message is transmitted.

The time stamp value is captured at the sample point of the start of frame
(SOF) bit of each incoming or outgoing message. Afterwards, this time
stamp value is copied to the CANx_MBxx_TIMESTAMP register of the corre-
sponding mailbox.

If the mailbox is configured for automatic remote frame handling, the
time stamp value is written for transmission of a data frame (mailbox con-
figured as transmit) or the reception of the requested data frame (mailbox
configured as receive).

The counter can be cleared (set UCRC bit to 1) or disabled (set UCE bit to 0)
by writing to the CANx_UCCNF register. The counter can also be loaded with
a value by writing to the counter register itself (CANx_UCCNT).

CAN Operation

31-22 ADSP-BF54x Blackfin Processor Hardware Reference

It is also possible to clear the counter (CANx_UCCNT) by reception of a mes-
sage in mailbox number 4 (synchronization of all time stamp counters in
the system). This is accomplished by setting the UCCT bit in the
CANx_UCCNF register.

An overflow of the counter sets a bit in the global CAN interrupt status
register (UCEIS in the CANx_GIS register). A global CAN interrupt can
optionally occur by unmasking the bit in the global CAN interrupt mask
register (UCEIM in the CANx_GIM register). If the interrupt source is
unmasked, a bit in the global CAN interrupt flag register is also set (UCEIF
in the CANx_GIF register).

Remote Frame Handling
Automatic handling of remote frames can be enabled for a transmit mail-
box by setting the corresponding bit in the remote frame handling
registers (CANx_RFHx) of a transmit mailbox.

Remote frames are data frames with no data field and the RTR bit set. The
data length code of the responding data frame is overruled by the DLC of
the requesting remote frame. A data length code can be programmed with
values in the range of 0 to 15, but data length code values greater than 8
are considered as 8. A remote frame contains:

• the identifier bits

• the control field DLC

• the remote transmission request (RTR) bit

Only configurable mailboxes 8–23 can process remote frames, but all
mailboxes can receive and transmit remote frame requests. When setup for
automatic remote frame handling, the CANx_OPSSx register has no effect.
All content of a mailbox is always overwritten by an incoming message.

 If a remote frame is received, the DLC of the corresponding mailbox
is overwritten with the received value.

ADSP-BF54x Blackfin Processor Hardware Reference 31-23

CAN Module

Erroneous behavior may result when the remote frame handling bit (RFHn)
is changed and the corresponding mailbox is currently processed.

To avoid the risk of inconsistent messages, it is recommended to tempo-
rarily disable the mailbox while its data registers are updated. See
“Temporarily Disabling Mailboxes”.

Temporarily Disabling Mailboxes
If a mailbox is enabled and configured as “transmit,” write accesses to the
data field should be guarded to avoid transmission of inconsistent mes-
sages. Special care must be taken if the mailbox is transmitting (or
attempting to transmit) repeatedly. Also, if this mailbox is used for auto-
matic remote frame handling, the data field must be updated without
losing an incoming remote request frame and without sending inconsis-
tent data. Therefore, the CAN controller allows for temporary mailbox
disabling, which can be enabled by programming the mailbox temporary
disable register (CANx_MBTD).

The pointer to the requested mailbox must be written to the TDPTR[4:0]
bits of the CANx_MBTD register and the mailbox temporary disable request
bit (TDR) must be set. The corresponding mailbox temporary disable flag
(TDA) is subsequently set by the internal logic.

If a mailbox is configured as “transmit” (MDn = 0) and TDA is set, the con-
tent of the data field of that mailbox can be updated. If there is an
incoming remote request frame while the mailbox is temporarily disabled,
the corresponding transmit request set bit (TRSn) is set by the internal
logic and the data length code of the incoming message is written to the
corresponding mailbox. However, the message being requested is not sent
until the temporary disable request is cleared (TDR = 0). Similarly, all trans-
mit requests for temporarily disabled mailboxes are ignored until TDR is
cleared. Additionally, transmission of a message is immediately aborted if
the mailbox is temporarily disabled and the corresponding TRRn bit for
this mailbox is set.

Functional Operation

31-24 ADSP-BF54x Blackfin Processor Hardware Reference

If a mailbox is configured as “receive” (MDn = 1), the temporary disable flag
is set and the mailbox is not processed. If there is an incoming message for
the mailbox n being temporarily disabled, the internal logic waits until the
reception is complete or there is an error on the CAN bus to set TDA. Once
TDA is set, the mailbox can then be completely disabled (MCn = 0) without
the risk of losing an incoming frame. The temporary disable request (TDR)
bit must then be reset as soon as possible.

When TDA is set for a given mailbox, only the data field of that mailbox
can be updated. Accesses to the control bits and the identifier are denied.

Functional Operation
The following sections describe the functional operation of the CAN
module, including interrupts, the event counter, warnings and errors,
debug features, and low power features.

CAN Interrupts
The CAN module provides three independent interrupts: two mailbox
interrupts (mailbox receive interrupt MBRIRQ and mailbox transmit inter-
rupt MBTIRQ) and the global CAN interrupt GIRQ. The values of these three
interrupts can also be read back in the interrupt status registers.

Mailbox Interrupts

Each of the 32 mailboxes in the CAN module may generate a receive or
transmit interrupt, depending on the mailbox configuration. To enable a
mailbox to generate an interrupt, set the corresponding MBIMn bit in
CANx_MBIMx.

If a mailbox is configured as a receive mailbox, the corresponding receive
interrupt flag is set (MBRIFn = 1 in CANx_MBRIFx) after a received message is
stored in mailbox n (RMPn = 1 in CANx_RMPx). If the automatic remote

ADSP-BF54x Blackfin Processor Hardware Reference 31-25

CAN Module

frame handling feature is used, the receive interrupt flag is set after the
requested data frame is stored in the mailbox. If any MBRIFn bits are set in
CANx_MBRIFx, the MBRIRQ interrupt output is raised in CANx_INTR. In order
to clear the MBRIRQ interrupt request, all of the set MBRIFn bits must be
cleared by software by writing a 1 to those set bit locations in
CANx_MBRIFx. Prior to this, the RMPn bit must also be cleared by software.

If a mailbox is configured as a transmit mailbox, the corresponding trans-
mit interrupt flag is set (MBTIFn = 1 in CANx_MBTIFx) after the message in
mailbox n is sent correctly (TAn = 1 in CANx_TAx). The TAn bits maintain
state even after the corresponding mailbox n is disabled (MCn = 0). If the
automatic remote frame handling feature is used, the transmit interrupt
flag is set after the requested data frame is sent from the mailbox. If any
MBTIFn bits are set in CANx_MBTIFx, the MBTIRQ interrupt output is raised in
CANx_INTR. In order to clear the MBTIRQ interrupt request, all of the set
MBTIFn bits must be cleared by software by writing a 1 to those set bit loca-
tions in CANx_MBTIFx. Additionally, software must clear the associated TAn
bit or set the associated TRSn bit to clear the interrupt source that asserts
the MBTIFn bit.

Global CAN Interrupt

The global CAN interrupt logic is implemented with three registers—the
global CAN interrupt mask register (CANx_GIM), where each interrupt
source can be enabled or disabled separately; the global CAN interrupt
status register (CANx_GIS); and the global CAN interrupt flag register
(CANx_GIF). The interrupt mask bits only affect the content of the global
CAN interrupt flag register (CANx_GIF). If the mask bit is not set, the cor-
responding flag bit is not set when the event occurs. The interrupt status
bits in the global CAN interrupt status register, however, are always set if
the corresponding interrupt event occurs, independent of the mask bits.
Thus, the interrupt status bits can be used for polling of interrupt events.

Functional Operation

31-26 ADSP-BF54x Blackfin Processor Hardware Reference

The global CAN interrupt output (GIRQ) bit in the global CAN interrupt
status register is only asserted if a bit in the CANx_GIF register is set. The
GIRQ bit remains set as long as at least one bit in the interrupt flag register
CANx_GIF is set. All bits in the interrupt status and in the interrupt flag
registers remain set until cleared by software or a soft reset has occurred.

 In the ISR, the interrupt latch should be cleared by a W1C opera-
tion to the corresponding bit of the CANx_GIS register. This clears
the related bits of both the CANx_GIS and CANx_GIF registers.

There are several interrupt events that can activate this GIRQ interrupt:

• Access denied interrupt (ADIM, ADIS, ADIF)
At least one access to the mailbox RAM occurred during a data
update by internal logic.

• Universal counter exceeded interrupt (UCEIM, UCEIS, UCEIF)
There was an overflow of the universal counter (in time stamp
mode or event counter mode) or the counter has reached the value
0x0000 (in watchdog mode).

• Receive message lost interrupt (RMLIM, RMLIS, RMLIF)
A message is received for a mailbox that currently contains unread
data. At least one bit in the receive message lost register
(CANx_RMLx) is set. If the bit in CANx_GIS (and CANx_GIF) is reset
and there is at least one bit in CANx_RMLx still set, the bit in
CANx_GIS (and CANx_GIF) is not set again. The internal interrupt
source signal is only active if a new bit in CANx_RMLx is set.

• Abort acknowledge interrupt (AAIM, AAIS, AAIF)
At least one AAn bit in the abort acknowledge registers CANx_AAx is
set. If the bit in CANx_GIS (and CANx_GIF) is reset and there is at
least one bit in CANx_AAx still set, the bit in CANx_GIS (and
CANx_GIF) is not set again. The internal interrupt source signal is
only active if a new bit in CANx_AAx is set. The AAn bits maintain
state even after the corresponding mailbox n is disabled (MCn = 0).

ADSP-BF54x Blackfin Processor Hardware Reference 31-27

CAN Module

• Access to unimplemented address interrupt (UIAIM, UIAIS, UIAIF)
There was a CPU access to an address which is not implemented in
the controller module.

• Wakeup interrupt (WUIM, WUIS, WUIF)
The CAN module has left the sleep mode because of detected activ-
ity on the CAN bus line.

• Bus-Off interrupt (BOIM, BOIS, BOIF)
The CAN module has entered the bus-off state. This interrupt
source is active if the status of the CAN core changes from normal
operation mode to the bus-off mode. If the bit in CANx_GIS (and
CANx_GIF) is reset and the bus-off mode is still active, this bit is not
set again. If the module leaves the bus-off mode, the bit in
CANx_GIS (and CANx_GIF) remains set.

• Error-Passive interrupt (EPIM, EPIS, EPIF)
The CAN module has entered the error-passive state. This inter-
rupt source is active if the status of the CAN module changes from
the error-active mode to the error-passive mode. If the bit in
CANx_GIS (and CANx_GIF) is reset and the error-passive mode is still
active, this bit is not set again. If the module leaves the error-pas-
sive mode, the bit in CANx_GIS (and CANx_GIF) remains set.

• Error warning receive interrupt (EWRIM, EWRIS, EWRIF)
The CAN receive error counter (RXECNT) has reached the warning
limit. If the bit in CANx_GIS (and CANx_GIF) is reset and the error
warning mode is still active, this bit is not set again. If the module
leaves the error warning mode, the bit in CANx_GIS (and CANx_GIF)
remains set.

• Error warning transmit interrupt (EWTIM, EWTIS, EWTIF)
The CAN transmit error counter (TXECNT) has reached the warning
limit. If the bit in CANx_GIS (and CANx_GIF) is reset and the error

Functional Operation

31-28 ADSP-BF54x Blackfin Processor Hardware Reference

warning mode is still active, this bit is not set again. If the module
leaves the error warning mode, the bit in CANx_GIS (and CANx_GIF)
remains set.

Event Counter
For diagnostic functions, it is possible to use the universal counter as an
event counter. The counter can be programmed in the 4-bit UCCNF[3:0]
field of CANx_UCCNF to increment on one of these conditions:

• UCCNF[3:0] = 0x6 – CAN error frame. Counter is incremented if
there is an error frame on the CAN bus line.

• UCCNF[3:0] = 0x7 – CAN overload frame. Counter is incremented
if there is an overload frame on the CAN bus line.

• UCCNF[3:0] = 0x8 – Lost arbitration. Counter is incremented every
time arbitration on the CAN line is lost during transmission.

• UCCNF[3:0] = 0x9 – Transmission aborted. Counter is incremented
every time arbitration is lost or a transmit request is cancelled (AAn
is set).

• UCCNF[3:0] = 0xA – Transmission succeeded. Counter is incre-
mented every time a message sends without detected errors (TAn is
set).

• UCCNF[3:0] = 0xB – Receive message rejected. Counter is incre-
mented every time a message is received without detected errors
but not stored in a mailbox because there is no matching identifier
found.

• UCCNF[3:0] = 0xC – Receive message lost. Counter is incremented
every time a message is received without detected errors but not
stored in a mailbox because the mailbox contains unread data (RMLn
is set).

ADSP-BF54x Blackfin Processor Hardware Reference 31-29

CAN Module

• UCCNF[3:0] = 0xD – Message received. Counter is incremented
every time a message is received without detected errors, whether
the received message is rejected or stored in a mailbox.

• UCCNF[3:0] = 0xE – Message stored. Counter is incremented every
time a message is received without detected errors, has an identifier
that matches an enabled receive mailbox, and is stored in the
receive mailbox (RMPn is set).

• UCCNF[3:0] = 0xF – Valid message. Counter is incremented every
time a valid transmit or receive message is detected on the CAN
bus line.

CAN Warnings and Errors
CAN warnings and errors are controlled using the CANx_CEC register, the
CANx_ESR register, and the CANx_EWR register.

Programmable Warning Limits

It is possible to program the warning level for EWTIS (error warning trans-
mit interrupt status) and EWRIS (error warning receive interrupt status)
separately by writing to the error warning level error count fields for
receive (EWLREC) and transmit (EWLTEC) in the CAN error counter warning
level (CANx_EWR) register. After powerup reset, the CANx_EWR register is set
to the default warning level of 96 for both error counters. After soft reset,
the content of this register remains unchanged.

Functional Operation

31-30 ADSP-BF54x Blackfin Processor Hardware Reference

CAN Error Handling

Error management is an integral part of the CAN standard. Five different
kinds of bus errors may occur during transmissions:

• Bit error – A bit error can be detected by the transmitting node
only. Whenever a node is transmitting, it continuously monitors its
receive pin (CANxRX) and compares the received data with the trans-
mitted data. During the arbitration phase, the node simply
postpones the transmission if the received and transmitted data do
not match. However, after the arbitration phase (that is, once the
RTR bit is sent successfully), a bit error is signaled any time the
value on CANxRX does not equal what is being transmitted on
CANxTX.

• Form error – A form error occurs any time a fixed-form bit posi-
tion in the CAN frame contains one or more illegal bits, that is,
when a dominant bit is detected at a delimiter or end-of-frame bit
position.

• Acknowledge error – An acknowledge error occurs whenever a
message is sent and no receivers drive an acknowledge bit.

• CRC error – A CRC error occurs whenever a receiver calculates the
CRC on the data it received and finds it different than the CRC
that was transmitted on the bus itself.

• Stuff error – The CAN specification requires the transmitter to
insert an extra stuff bit of opposite value after 5 bits have been
transmitted with the same value. The receiver disregards the value
of these stuff bits. However, it takes advantage of the signal edge to
re-synchronize itself. A stuff error occurs on receiving nodes when-
ever the 6th consecutive bit value is the same as the previous five
bits.

ADSP-BF54x Blackfin Processor Hardware Reference 31-31

CAN Module

Once the CAN module detects any of the above errors, it updates the
error status register CANx_ESR as well as the error counter register
CANx_CEC. In addition to the standard errors, the CANx_ESR register features
a flag that signals when the CANxRX pin sticks at dominant level, indicating
that shorted wires are likely.

Error Frames

It is of central importance that all nodes on the CAN bus ignore data
frames that one single node failed to receive. To accomplish this, every
node sends an error frame as soon as it has detected an error. See
Figure 31-11.

Once a device has detected an error, it still completes the ongoing bit and
initiates an error frame by sending six dominant and eight recessive bits to
the bus. This is a violation to the bit stuffing rule and informs all nodes
that the ongoing frame needs to be discarded.

All receivers that did not detect the transmission error in the first instance
now detect a stuff bit error. The transmitter may detect a normal bit error
sooner. It aborts the transmission of the ongoing frame and tries sending
it again later.

Finally, all nodes on the bus have detected an error. Consequently, all of
them send 6 dominant and 8 recessive bits to the bus as well. The result-
ing error frame consists of two different fields. The first field is given by
the superposition of error flags contributed from the different stations,
which is a sequence of 6 to 12 dominant bits. The second field is the error
delimiter and consists of 8 recessive bits indicating the end of frame.

Functional Operation

31-32 ADSP-BF54x Blackfin Processor Hardware Reference

For CRC errors, the error frame is initiated at the end of the frame, rather
than immediately after the failing bit.

After having received 8 recessive bits, every node knows that the error con-
dition is resolved and starts transmission if messages are pending. The
former transmitter that had to abort its operation must win the new arbi-
tration again, otherwise its message is delayed as determined by priority.

Because the transmission of an error frame destroys the frame under trans-
mission, a faulty node erroneously detecting an error can block the bus.
Because of this, there are two node states which determine a node’s right
to signal an error—error active and error passive. Error active nodes are
those which have an error detection rate below a certain limit. These
nodes drive an ‘active error flag’ of 6 dominant bits.

Figure 31-11. CAN Error Scenario Example

8 BITS

6 BITS

NODE 2 TX

NODE 1 TX

NODE 2 DETECTS
ANY ERROR AND
INITIATES ERROR
FRAME

NODE 1 DETECTS
A BIT EROR AND
SIGNALS THE
ERROR ALSO

NODE 1
WAS
TRANS-
MITTING
DATA

NEW START
BIT

NODE 3 TX

ERROR FRAME

RESULTING BUS

6 BITS

6 BITS

NODE 3 DETECTS
A STUFF BIT ERROR
AND SIGNALS THE
ERROR ALSO

ADSP-BF54x Blackfin Processor Hardware Reference 31-33

CAN Module

Nodes with a higher error detection rate are suspected of having a local
problem and, therefore, have a limited right to signal errors. These error
passive nodes drive a ‘passive error flag’ consisting of 6 recessive bits.
Thus, an error passive transmitting node is still able to inform the other
nodes about the abortion of a self-transmitted frame, but it is no longer
able to destroy correctly received frames of other nodes.

Error Levels

The CAN specification requires each node in the system to operate in one
of three levels. See Table 31-3. This prevents nodes with high error rates
from blocking the entire network, as the errors might be caused by local
hardware. The Blackfin CAN module provides an error counter for trans-
mit (TEC) and an error counter for receive (REC). The CAN error count
register CANx_CEC houses each of these 8-bit counters.

After initialization, both the TEC and the REC counters are 0. Each time a
bus error occurs, one of the counters is incremented by either 1 or 8,
depending on the error situation (documented in Version 2.0 of CAN
Specification). Successful transmit and receive operations decrement the
respective counter by 1.

If either of the error counters exceeds 127, the CAN module goes into a
passive state and the CAN error passive mode (EP) bit in CANx_STATUS is
set. Then, it is not allowed to send any more active error frames. However,
it is still allowed to transmit messages and to signal passive error frames in
case the transmission fails because of a bit error.

If one of the counters exceeds 255 (that is, when the 8-bit counters over-
flow), the CAN module is disconnected from the bus. It goes into bus off
mode and the CAN error bus off mode (EBO) bit is set in CANx_STATUS.
Software intervention is required to recover from this state, unless the ABO
bit in the CANx_CONTROL register is enabled.

Functional Operation

31-34 ADSP-BF54x Blackfin Processor Hardware Reference

In addition to these levels, the CAN module also provides a warning
mechanism, which is an enhancement to the CAN specification. There are
separate warnings for transmit and receive. By default, when one of the
error counters exceeds 96, a warning is signaled and is represented in the
CANx_STATUS register by either the CAN receive warning flag (WR) or CAN
transmit warning flag (WT) bits. The error warning level can be pro-
grammed using the error warning register, CANx_EWR. More information is
available on page 31-85.

Additionally, interrupts can occur for all of these levels by unmasking
them in the global CAN interrupt mask register (CANx_GIM) shown
on page 31-49. The interrupts include the bus off interrupt (BOIM), the
error-passive interrupt (EPIM), the error warning receive interrupt (EWRIM),
and the error warning transmit interrupt (EWTIM).

During the bus off recovery sequence, the configuration mode request bit
in the CANx_CONTROL register is set by the internal logic (CCR = 1), thus the
CAN core module does not automatically come out of the bus off mode.
The CCR bit cannot be reset until the bus off recovery sequence is finished.

 This behavior can be over-ridden by setting the auto-bus on (ABO)
bit in the CANx_CONTROL register. After exiting the bus off or config-
uration modes, the CAN error counters are reset.

Table 31-3. CAN Error Level Description

Level Condition Description

Error active Transmit and receive error

counters 128

This is the initial condition level. As long as errors stay
below 128, the node will drive active error flags during
error frames.

Error pas-
sive

Transmit or receive error

counters 128, but
256

Errors have accumulated to a level which requires the
node to drive passive error flags during error frames.

Bus off Transmit or receive error

counters 256

CAN module goes into bus off mode

ADSP-BF54x Blackfin Processor Hardware Reference 31-35

CAN Module

Debug and Test Modes
The CAN module contains test mode features that aid in the debugging of
the CAN software and system. Listing 31-1 provides an example of
enabling CAN debug features.

 When these features are used, the CAN module may not be com-
pliant to the CAN specification. All test modes should be enabled
or disabled only when the module is in configuration mode
(CCA = 1 in the CANx_STATUS register) or in suspend mode (CSA = 1
in CANx_STATUS).

The CDE bit is used to gain access to all of the debug features. This bit
must be set to enable the test mode, and must be written first before sub-
sequent writes to the CANx_DEBUG register. When the CDE bit is cleared, all
debug features are disabled.

Listing 31-1. Enabling CAN0 Debug Features in C on the ADSP-BF549

#include <cdefBF549.h>

/* Enable debug mode, CDE must be set before other flags can be

changed in register */

*pCAN0_DEBUG |= CDE ;

/* Set debug flags */

*pCAN0_DEBUG &= ~DTO ;

*pCAN0_DEBUG |= MRB | MAA | DIL ;

/* Run test code */

/* Disable debug mode */

*pCAN0_DEBUG &= ~CDE ;

Functional Operation

31-36 ADSP-BF54x Blackfin Processor Hardware Reference

When the CDE bit is set, it enables writes to the other bits of the
CANx_DEBUG register. It also enables these features, which are not compliant
with the CAN standard:

• Bit timing registers can be changed anytime, not only during con-
figuration mode. This includes the CANx_CLOCK and CANx_TIMING
registers.

• Allows write access to the read-only transmit/receive error counter
register CANx_CEC.

The mode read back bit (MRB) is used to enable the read back mode. In this
mode, a message transmitted on the CAN bus (or through an internal
loop back mode) is received back directly to the internal receive buffer.
After a correct transmission, the internal logic treats this as a normal
receive message. This feature allows the user to test most of the CAN fea-
tures without an external device.

The mode auto acknowledge bit (MAA) allows the CAN module to generate
its own acknowledge during the ACK slot of the CAN frame. No external
devices or connections are necessary to read back a transmit message. In
this mode, the message that is sent is automatically stored in the internal
receive buffer. In auto acknowledge mode, the module itself transmits the
acknowledge. This acknowledge can be programmed to appear on the
CANxTX pin if DIL = 1 and DTO = 0. If the acknowledge is only going to be
used internally, then these test mode bits should be set to DIL = 0 and
DTO = 1.

The disable internal loop bit (DIL) is used to internally enable the transmit
output to be routed back to the receive input.

The disable transmit output bit (DTO) is used to disable the CANxTX output
pin. When this bit is set, the CANxTX pin continuously drives recessive bits.

ADSP-BF54x Blackfin Processor Hardware Reference 31-37

CAN Module

The disable receive input bit (DRI) is used to disable the CANxRX input.
When set, the internal logic receives recessive bits or receives the internally
generated transmit value in the case of the internal loop enabled (DIL = 0).
In either case, the value on the CANxRX input pin is ignored.

The disable error counters bit (DEC) is used to disable the transmit and
receive error counters in the CANx_CEC register. When this bit is set, the
CANx_CEC holds its current contents and is not allowed to increment or
decrement the error counters. This mode does not conform to the CAN
specification.

 Writes to the error counters should be in debug mode only. Write
access during reception may lead to undefined values. The maxi-
mum value which can be written into the error counters is 255.
Thus, the error counter value of 256 which forces the module into
the bus off state can not be written into the error counters.

Table 31-4 shows several common combinations of test mode bits.

Table 31-4. CAN Test Modes

MR
B

MA
A

DI
L

DT
O

DR
I

CD
E

Functional Description

X X X X X 0 Normal mode, not debug mode.

0 X X X X X No read back of transmit message.

1 0 1 0 0 1 Normal transmission on CAN bus line.
Read back.
External acknowledge from external device required.

1 1 1 0 0 1 Normal transmission on CAN bus line.
Read back.
No external acknowledge required.
Transmit message and acknowledge are transmitted on CAN bus
line.
CANxRX input is enabled.

Functional Operation

31-38 ADSP-BF54x Blackfin Processor Hardware Reference

Low Power Features
The Blackfin processor provides a low power hibernate state, and the
CAN module includes built-in sleep and suspend modes to save power.
The behavior of the CAN module in these three modes is described in the
following sections.

1 1 0 0 0 1 Normal transmission on CAN bus line.
Read back.
No external acknowledge required.
Transmit message and acknowledge are transmitted on CAN bus
line.
CANxRX input and internal loop are enabled (internal OR of
TX and RX).

1 1 0 0 1 1 Normal transmission on CAN bus line.
Read back.
No external acknowledge required.
Transmit message and acknowledge are transmitted on CAN bus
line.
CANxRX input is ignored.
Internal loop is enabled

1 1 0 1 1 1 No transmission on CAN bus line.
Read back.
No external acknowledge required.
Neither transmit message nor acknowledge are transmitted on
CANxTX.
CANxRX input is ignored.
Internal loop is enabled.

Table 31-4. CAN Test Modes (Cont’d)

MR
B

MA
A

DI
L

DT
O

DR
I

CD
E

Functional Description

ADSP-BF54x Blackfin Processor Hardware Reference 31-39

CAN Module

CAN Built-In Suspend Mode

The most modest of power savings modes is the suspend mode. This mode
is entered by setting the suspend mode request (CSR) bit in the
CANx_CONTROL register. The module enters the suspend mode after the cur-
rent operation of the CAN bus is finished, at which point the internal
logic sets the suspend mode acknowledge (CSA) bit in CANx_STATUS. Once
this mode is entered, the module is no longer active on the CAN bus line,
slightly reducing power consumption. When the CAN module is in sus-
pend mode, the CANxTX output pin remains recessive and the module does
not receive/transmit messages or error frames. The content of the CAN
error counters remains unchanged.

The suspend mode can subsequently be exited by clearing the CSR bit in
CANx_CONTROL. The only differences between suspend mode and configura-
tion mode are that writes to the CANx_CLOCK and CANx_TIMING registers are
still locked in suspend mode and the CAN control and status registers are
not reset when exiting suspend mode.

CAN Built-In Sleep Mode

The next level of power savings can be realized by using the CAN mod-
ule’s built-in sleep mode. This mode is entered by setting the sleep mode
request (SMR) bit in the CANx_CONTROL register. The module enters the sleep
mode after the current operation of the CAN bus is finished. Once this
mode is entered, many of the internal CAN module clocks are shut off,
reducing power consumption, and the sleep mode acknowledge (SMACK)
bit is set in CANx_INTR. When the CAN module is in sleep mode, all regis-
ter reads return the contents of CANx_INTR instead of the usual contents.
All register writes, except to CANx_INTR, are ignored in sleep mode.

A small part of the module is clocked continuously to allow for wakeup
out of sleep mode. A write to the CANx_INTR register ends sleep mode. If
the WBA bit in the CANx_CONTROL register is set before entering sleep mode,
a dominant bit on the CANxRX pin also ends sleep mode.

Functional Operation

31-40 ADSP-BF54x Blackfin Processor Hardware Reference

When software sets the SMR bit, hardware sets the CSR bit as well, making
sleep mode a super set of suspend mode. When the controller wakes up
from sleep mode, hardware automatically clears the SMR and CSR bits. If,
however, the controller never enters sleep mode, because the wake-up con-
dition was met before the SMACK bit turns to one, the SMR and CSR may not
get cleared automatically. Therefore, it is good programming practice to
always clear the SMR and CSR by software when returning from sleep mode.

CAN Wakeup From Hibernate State

For greatest power savings, the Blackfin processor provides a hibernate
state, where the internal voltage regulator shuts off the internal power sup-
ply to the chip, turning off the core and system clocks in the process. In
this mode, the only power drawn (roughly 50A) is that used by the regu-
lator circuitry awaiting any of the possible hibernate wakeup events. One
such event is a wakeup due to CAN bus activity. After hibernation, the
CAN module must be re-initialized.

For low power designs, the external CAN bus transceiver is typically put
into standby mode through one of the Blackfin processor’s general pur-
pose I/O pins. While in standby mode, the CAN transceiver continually
drives the recessive logic ‘1’ level onto the CANxRX pin. If the transceiver
then senses CAN bus activity, it will, in turn, drive the CANxRX pin to the
dominant logic ‘0’ level. This signals to the Blackfin processor that CAN
bus activity is detected. If the internal voltage regulator is programmed to
recognize CAN bus activity as an event to exit hibernate state, the part
responds appropriately. Otherwise, the activity on the CANxRX pin has no
effect on the processor state.

To enable this functionality, the voltage control register (VR_CTL) must be
programmed with the CAN wakeup enable bit set. The typical sequence
of events to use the CAN wakeup feature is:

ADSP-BF54x Blackfin Processor Hardware Reference 31-41

CAN Module

1. Use a general-purpose I/O pin to put the external transceiver into
standby mode.

2. Program VR_CTL with the CAN wakeup enable bit (CANWE) set and
the FREQ field set to b#00.

Soft Reset
The CAN controller features a build-in reset mechanism which is referred
to as soft reset. Soft reset is entered immediately after software has set the
SRS bit in the CANx_CONTROL register. Soft reset brings all control registers
to a defined state. Mailbox and error registers remain unaffected. Soft
reset does not alter the CANx_TIMING and CANx_CLOCK registers and does not
disturb the on-going transmission of a currently pending message,
acknowledge bit or error frame. However, when recovering from soft
reset, software may lose track of transmission or reception reports and
interrupts.

CAN Registers
The following sections describe the CAN controller register definitions.

Table 31-5 through Table 31-9 show the functions of the CAN controller
registers.

CAN Registers

31-42 ADSP-BF54x Blackfin Processor Hardware Reference

Table 31-5. CAN Global Registers

Register Name Description Notes

CANx_CONTRO
L

“Master Control (CANx_CONTROL) Regis-
ters” on page 31-45

Reserved bits 15:8 and 3
must always be written as ‘0’

CANx_STATUS “Global CAN Status (CANx_STATUS) Reg-
isters” on page 31-46

Write accesses have no effect

CANx_DEBUG “CAN Debug (CANx_DEBUG) Registers”
on page 31-47

Use of these modes is
not CAN-compliant

CANx_CLOCK “CAN Clock (CANx_CLOCK) Registers” on
page 31-47

Accessible only in
configuration mode

CANx_TIMING “CAN Timing (CANx_TIMING) Registers”
on page 31-48

Accessible only in
configuration mode

CANx_INTR “CAN Interrupt (CANx_INTR) Registers” on
page 31-48

Reserved bits 15:8 and 5:4
must always be written as ‘0’

CANx_GIM “Global CAN Interrupt Mask (CANx_GIM)
Registers” on page 31-49

Bits 15:11 and 9 are
reserved

CANx_GIS “Global CAN Interrupt Status (CANx_GIS)
Registers” on page 31-49

Bits 15:11 and 9 are
reserved

CANx_GIF “Global CAN Interrupt Flag (CANx_GIF)
Registers” on page 31-50

Bits 15:11 and 9 are
reserved

Table 31-6. CAN Mailbox/Mask Registers

Register Name Description Notes

CANx_AMxxH
CANx_AMxxL

“Acceptance Mask
(CANx_AMxx) Registers” on
page 31-50

Do not write when mailbox
MBxx is enabled

CANx_MBxx_ID1
CANx_MBxx_ID0

“Mailbox Word 7
(CANx_MBxx_ID1) Registers”
on page 31-54

Do not write when mailbox
MBxx is enabled

CANx_MBxx_TIMESTAM
P

“Mailbox Word 5
(CANx_MBxx_TIMESTAMP)
Registers” on page 31-58

Holds timestamp information
when timestamp mode is active

ADSP-BF54x Blackfin Processor Hardware Reference 31-43

CAN Module

CANx_MBxx_LENGTH “Mailbox Word 4
(CANx_MBxx_LENGTH) Regis-
ters” on page 31-59

Values greater than 8 are not
allowed. Bits 15:4 are reserved.

CANx_MBxx_DATA3
CANx_MBxx_DATA2
CANx_MBxx_DATA1
CANx_MBxx_DATA0

“Mailbox Word 3–0
(CANx_MBxx_DATA3–0) Regis-
ters” on page 31-61

Software controls reading
correct data, based on DLC

Table 31-7. CAN Mailbox Control Registers

Register Name Description Notes

CANx_MC1
CANx_MC2

“Mailbox Configuration (CANx_MCx)
Registers” on page 31-69

Always disable before modifying
mailbox area or direction

CANx_MD1
CANx_MD2

“Mailbox Direction (CANx_MDx) Regis-
ters” on page 31-70

Never change MDn direction
when
mailbox n is enabled. MD[31:24]
and MD[7:0] are read only

CANx_RMP1
CANx_RMP2

“Receive Message Pending (CANx_RMPx)
Registers” on page 31-71

Clearing RMPn bits also clears
corresponding RMLn bits

CANx_RML1
CANx_RML2

“Receive Message Lost (CANx_RMLx)
Registers” on page 31-72

Write accesses have no effect

CANx_OPSS1
CANx_OPSS2

“Overwrite Protection/Single Shot Trans-
mission (CANx_OPSSx) Register” on
page 31-73

Function depends on mailbox
direction. Has no effect when
RFHn = 1. Do not modify
OPSSn bit if mailbox n is enabled

CANx_TRS1
CANx_TRS2

“Transmission Request Set (CANx_TRSx)
Registers” on page 31-74

May by set by internal logic
under certain circumstances.
TRS[7:0] are read-only

CANx_TRR1
CANx_TRR2

“Transmission Request Reset
(CANx_TRRx) Registers” on page 31-75

TRRn bits must not be set if
mailbox n is disabled or TRSn = 0

CANx_AA1
CANx_AA2

“Abort Acknowledge (CANx_AAx) Regis-
ters” on page 31-76

AAn bit is reset if TRSn bit is set
manually, but not when TRSn is
set by internal logic

Table 31-6. CAN Mailbox/Mask Registers (Cont’d)

Register Name Description Notes

CAN Registers

31-44 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_TA1
CANx_TA2

“Transmission Acknowledge (CANx_TAx)
Registers” on page 31-77

TAn bit is reset if TRSn bit is set
manually, but not when TRSn is
set by internal logic

CANx_MBTD “Temporary Mailbox Disable
(CANx_MBTD) Register” on page 31-78

Allows safe access to data field of
an enabled mailbox

CANx_RFH1
CANx_RFH2

“Remote Frame Handling (CANx_RFHx)
Registers” on page 31-78

Available only to configurable
mailboxes 23:8. RFH[31:24] and
RFH[7:0] are read-only

CANx_MBIM1
CANx_MBIM2

“Mailbox Interrupt Mask
(CANx_MBIMx) Registers” on
page 31-79

Mailbox interrupts are raised only
if these bits are set

CANx_MBTIF
1
CANx_MBTIF
2

“Mailbox Transmit Interrupt Flag
(CANx_MBTIFx) Registers” on
page 31-80

Can be cleared if mailbox or
mailbox interrupt is disabled.
Changing direction while
MBTIFn = 1 results in
MBRIFn = 1 and MBTIFn = 0

CANx_MBRIF
1
CANx_MBRIF
2

“Mailbox Receive Interrupt Flag
(CANx_MBRIFx) Registers” on
page 31-81

Can be cleared if mailbox or
mailbox interrupt is disabled.
Changing direction while
MBRIFn = 1 results in
MBTIFn = 1 and MBRIFn = 0

Table 31-8. CAN Universal Counter Registers

Register Name Description Notes

CANx_UCCNF “Universal Counter Configuration Mode
(CANx_UCCNF) Register” on
page 31-83

Bits 15:8 and bit 4 are reserved

CANx_UCCN
T

“Universal Counter (CANx_UCCNT)
Register” on page 31-84

Counts up or down based on
universal counter mode

CANx_UCRC “Universal Counter Reload/Capture
(CANx_UCRC) Register” on page 31-84

In timestamp mode, holds time
of last successful transmit or
receive

Table 31-7. CAN Mailbox Control Registers (Cont’d)

Register Name Description Notes

ADSP-BF54x Blackfin Processor Hardware Reference 31-45

CAN Module

Global CAN Registers
Figure 31-12 through Figure 31-20 on page 31-50 show the CAN global
registers.

Master Control (CANx_CONTROL) Registers

Table 31-9. CAN Error Registers

Register
Name

Description Notes

CANx_CEC “Error Counter (CANx_CEC) Register”
on page 31-84

Undefined while in bus off mode,
not affected by soft reset

CANx_ESR “Error Status (CANx_ESR) Register” on
page 31-85

Only the first error is stored. SA0 flag
is cleared by recessive bit on CAN bus

CANx_EWR “Error Counter Warning Level
(CANx_EWR) Register” on page 31-85

Default is 96 for each counter

Figure 31-12. Master Control Registers

Master Control Register (CANx_CONTROL)

SRS (Soft Reset)
0 - No effect
1 - Reset

Reset = 0x0080

CAN0:
0xFFC0 2AA0
CAN1:
0xFFC0 32A0

DNM (DeviceNet Mode)
0 - Disable
1 - Enable
ABO (Auto Bus On)
0 - enter configuration

mode after BusOff
recovery sequence

1 - enter active mode
after BusOff recovery
sequence

CCR (CAN Configuration
Mode Request)
0 - Cancelled
1 - Requested
CSR (CAN Suspend Mode
Request)
0 - Cancelled
1 - Requested
SMR (Sleep Mode Request)
0 - Not requested
1 - Enters Sleep mode
WBA (Wake Up on CAN Bus
Activity)
0 - Stays in Sleep mode
1 - Can leave Sleep mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 1 0 0 0 0 0 00 0

Soft reset = 0x0080

CAN Registers

31-46 ADSP-BF54x Blackfin Processor Hardware Reference

Global CAN Status (CANx_STATUS) Registers

• Mail box pointer (MBPTR[4:0])

Represents the mailbox number of the current transmit message.
After a successful transmission, these bits remain unchanged.

[b#11111] The message of mailbox 31 is currently being processed.

…

[b#00000] The message of mailbox 0 is currently being processed.

Figure 31-13. Global CAN Status Registers

Global CAN Status Register (CANx_STATUS)
RO

WT (CAN Transmit Warning
Flag)
0 - TXECNT below limit
1 - TXECNT at limit

Reset = 0x0080
CAN0:
0xFFC0 2A8C
CAN1:
0xFFC0 328C

WR (CAN Receive Warning
Flag)
0 - RXECNT below limit
1 - RXECNT at limit
EP (CAN Error Passive
Mode)
0 - Both TXECNT and
RXECNT < 128
1 - TXECNT or RXECNT >
error passive level

EBO (CAN Error Bus Off
Mode)
0 - TXECNT < 256
1 - TXECNT > bus off limit

REC (Receive
Mode)
0 - Not in receive mode
1 - In receive mode
TRM (Transmit
Mode)
0 - Not in transmit mode
1 - In transmit mode
MBPTR[4:0] (Mailbox Pointer)
See description below
CCA (CAN Configuration
Mode Acknowledge)
0 - Not in Configuration mode
1 - In Configuration mode
CSA (CAN Suspend Mode
Acknowledge)
0 - Not in Suspend mode
1 - In Suspend mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Soft reset = 0x0080

ADSP-BF54x Blackfin Processor Hardware Reference 31-47

CAN Module

CAN Debug (CANx_DEBUG) Registers

CAN Clock (CANx_CLOCK) Registers

Figure 31-14. CAN Debug Registers

Figure 31-15. CAN Clock Registers

CAN Debug Register (CANx_DEBUG)

Reset = 0x0008
0xFFC0 2A88

DEC (Disable Transmit and
Receive Error Counters)
0 - Enable CANx_CEC Tx
 and Rx error counters
1 - Disable CANx_CEC Tx
 and Rx error counters
DRI (Disable Receive
Input Pin, CANxRX)
0 - Enable CANxRX input pin
1 - Disable CANxRX input
 pin-drive recessive internally
DTO (Disable Transmit
Output Pin, CANxTX)
0 - Enable CANxTX output pin
1 - Disable CANxTX output
 pin-drive recessive

CDE (CAN Debug
Mode Enable)
0 - Debug mode disabled
1 - Debug mode enabled
MRB (Mode Read Back)
0 - Read back mode disabled
1 - Read back mode enabled
MAA (Mode Auto
Acknowledge)
0 - Auto acknowledge mode
 disabled
1 - Auto acknowledge mode
 enabled
DIL (Disable Internal Loop)
0 - Enable internal loop
1 - Disable internal loop

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 1 0 00 0

Soft reset = 0x00XX

CAN Clock Register (CANx_CLOCK)

BRP[9:0] (Bit Rate Prescaler
Register) W/R

Reset = 0x00000xFFC0 2A80

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Soft reset = 0xXXXX

CAN Registers

31-48 ADSP-BF54x Blackfin Processor Hardware Reference

CAN Timing (CANx_TIMING) Registers

CAN Interrupt (CANx_INTR) Registers

Figure 31-16. CAN Timing Registers

Figure 31-17. CAN Interrupt Registers

CAN Timing Register (CANx_TIMING)

TSEG1[3:0] (Time Segment 1)

Reset = 0x00000xFFC0 2A84

TSEG2[2:0] (Time Segment 2)
SJW[1:0] (Synchronization Jump Width)
SAM (Sampling)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Soft reset = 0xXXXX

CAN Interrupt Register (CANx_INTR)
RO

MBRIRQ (Mailbox Receive
Interrupt Output)
0 - No receive flags set
1 - One or more receive

flags set

Soft reset = 0x00X0
0xFFC0 2AA4

MBTIRQ (Mailbox Transmit
Interrupt Output)
0 - No transmit flags set
1 - One or more transmit

flags set
GIRQ (Global CAN Interrupt
Output)
0 - No global CAN flags set
1 - One or more global CAN

flags set

CANxRX (Serial Input From Transceiver) - RO

Serial input from CAN bus line from
transceiver
0 - Value is dominant
1 - Value is recessive
CANxTX (Serial Input To Transceiver) - RO

Serial input from CAN bus line
to transceiver
0 - Value is dominant
1 - Value is recessive
SMACK (Sleep Mode
Acknowledge)
0 - Not in sleep mode
1 - Full-CAN module in sleep mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 X X 0 0 0 0 00 0

Reset = 0x00X0
(X = dependent on pin values)

ADSP-BF54x Blackfin Processor Hardware Reference 31-49

CAN Module

Global CAN Interrupt Mask (CANx_GIM) Registers

Global CAN Interrupt Status (CANx_GIS) Registers

Figure 31-18. Global CAN Interrupt Mask Registers

Figure 31-19. Global CAN Interrupt Status Registers

Global CAN Interrupt Mask Register (CANx_GIM)

EWTIM (Error Warning
Transmit Interrupt Mask)

Reset = 0x00000xFFC0 2A98

EWRIM (Error Warning
Receive Interrupt Mask)
EPIM (Error Passive
Interrupt Mask)
BOIM (Bus Off Interrupt Mask)

ADIM (Access Denied
Interrupt Mask)

UCEIM (Universal Counter
Exceeded Interrupt Mask)
RMLIM (Receive Message
Lost Interrupt Mask)
AAIM (Abort Acknowledge
Interrupt Mask)

WUIM (Wakeup Interrupt Mask)
UIAIM (Unimplemented
Address Interrupt Mask)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Soft reset = 0x0000

Global CAN Interrupt Status Register (CANx_GIS)
All bits are W1C

EWTIS (Error Warning
Transmit Interrupt Status)

Reset = 0x00000xFFC0 2A94

EWRIS (Error Warning
Receive Interrupt Status)
EPIS (Error Passive Interrupt
Status)
BOIS (Bus Off Interrupt Status)

ADIS (Access Denied
Interrupt Status)

UCEIS (Universal Counter Exceeded
Interrupt Status)
RMLIS (Receive Message Lost
Interrupt Status)

AAIS (Abort Acknowledge
Interrupt Status)

WUIS (Wakeup Interrupt Status)
UIAIS (Unimplemented
Address Interrupt Status)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Soft reset = 0x0000

CAN Registers

31-50 ADSP-BF54x Blackfin Processor Hardware Reference

Global CAN Interrupt Flag (CANx_GIF) Registers

Mailbox/Mask Registers
Figure 31-21 through Figure 31-30 on page 31-66 show the CAN mail-
box and mask registers.

Acceptance Mask (CANx_AMxx) Registers

The value of the acceptance mask register does not matter when the AME
bit is zero. If AME is set, only those bits that have the corresponding mask
bit cleared are compared to the received message ID. A bit position that is
one in the mask register does not need to match.

Figure 31-20. Global CAN Interrupt Flag Registers

Global CAN Interrupt Flag Register (CANx_GIF)

All bits RO

EWTIF (Error Warning Trans-
mit Interrupt Flag)

Reset = 0x00000xFFC0 2A9c

EWRIF (Error Warning
Receive Interrupt Flag)
EPIF (Error Passive Interrupt
Flag)
BOIF (Bus Off Interrupt Flag)

ADIF (Access Denied
Interrupt Flag)

UCEIF (Universal Counter
Exceeded Interrupt Flag)
RMLIF (Receive Message
Lost Interrupt Flag)
AAIF (Abort Acknowledge
Interrupt Flag)

WUIF (Wakeup Interrupt Flag)
UIAIF (Unimplemented
Address Interrupt Flag)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Soft reset = 0x0000

ADSP-BF54x Blackfin Processor Hardware Reference 31-51

CAN Module

Figure 31-21. Acceptance Mask Registers (H)

Table 31-10. Acceptance Mask Registers (H) Memory-Mapped
Addresses

Register Name CAN0 Memory-mapped Address CAN1 Memory-mapped Address

CANx_AM00H 0xFFC0 2B04 0xFFC0 3304

CANx_AM01H 0xFFC0 2B0C 0xFFC0 330C

CANx_AM02H 0xFFC0 2B14 0xFFC0 3314

CANx_AM03H 0xFFC0 2B1C 0xFFC0 331C

CANx_AM04H 0xFFC0 2B24 0xFFC0 3324

CANx_AM05H 0xFFC0 2B2C 0xFFC0 332C

CANx_AM06H 0xFFC0 2B34 0xFFC0 3334

CANx_AM07H 0xFFC0 2B3C 0xFFC0 333C

CANx_AM08H 0xFFC0 2B44 0xFFC0 3344

CANx_AM09H 0xFFC0 2B4C 0xFFC0 334C

CANx_AM10H 0xFFC0 2B54 0xFFC0 3354

CANx_AM11H 0xFFC0 2B5C 0xFFC0 335C

CANx_AM12H 0xFFC0 2B64 0xFFC0 3364

CANx_AM13H 0xFFC0 2B6C 0xFFC0 336C

CANx_AM14H 0xFFC0 2B74 0xFFC0 3374

Acceptance Mask Register (CANx_AMxxH)

EXTID[17:16] (Extended
Identifier)

Undefined

BASEID[10:0] (Base Identifier)
AMIDE (Acceptance Mask
Identifier Extension)
FMD (Full Mask Data)
FDF (Filter on Data Field)

For Memory-
mapped
addresses, see
Table 31-10.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X XX X X X X X X X X X X X XX

CAN Registers

31-52 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_AM15H 0xFFC0 2B7C 0xFFC0 337C

CANx_AM16H 0xFFC0 2B84 0xFFC0 3384

CANx_AM17H 0xFFC0 2B8C 0xFFC0 338C

CANx_AM18H 0xFFC0 2B94 0xFFC0 3394

CANx_AM19H 0xFFC0 2B9C 0xFFC0 339C

CANx_AM20H 0xFFC0 2BA4 0xFFC0 33A4

CANx_AM21H 0xFFC0 2BAC 0xFFC0 33AC

CANx_AM22H 0xFFC0 2BB4 0xFFC0 33B4

CANx_AM23H 0xFFC0 2BBC 0xFFC0 33BC

CANx_AM24H 0xFFC0 2BC4 0xFFC0 33C4

CANx_AM25H 0xFFC0 2BCC 0xFFC0 33CC

CANx_AM26H 0xFFC0 2BD4 0xFFC0 33D4

CANx_AM27H 0xFFC0 2BDC 0xFFC0 33DC

CANx_AM28H 0xFFC0 2BE4 0xFFC0 33E4

CANx_AM29H 0xFFC0 2BEC 0xFFC0 33EC

CANx_AM30H 0xFFC0 2BF4 0xFFC0 33F4

CANx_AM31H 0xFFC0 2BFC 0xFFC0 33FC

Figure 31-22. Acceptance Mask Registers (L)

Table 31-10. Acceptance Mask Registers (H) Memory-Mapped
Addresses (Cont’d)

Register Name CAN0 Memory-mapped Address CAN1 Memory-mapped Address

Acceptance Mask Register (CANx_AMxxL)

EXTID[15:0]/DFM[15:0]
(Extended Identifier/Data Field
Mask)

UndefinedFor Memory-
mapped
addresses, see
Table 31-11.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X XX X X X X X X X X X X X XX

ADSP-BF54x Blackfin Processor Hardware Reference 31-53

CAN Module

Table 31-11. Acceptance Mask Registers (L) Memory-Mapped
Addresses

Register Name CAN0 Memory-mapped Address

CANx_AM00L 0xFFC0 2B00

CANx_AM01L 0xFFC0 2B08

CANx_AM02L 0xFFC0 2B10

CANx_AM03L 0xFFC0 2B18

CANx_AM04L 0xFFC0 2B20

CANx_AM05L 0xFFC0 2B28

CANx_AM06L 0xFFC0 2B30

CANx_AM07L 0xFFC0 2B38

CANx_AM08L 0xFFC0 2B40

CANx_AM09L 0xFFC0 2B48

CANx_AM10L 0xFFC0 2B50

CANx_AM11L 0xFFC0 2B58

CANx_AM12L 0xFFC0 2B60

CANx_AM13L 0xFFC0 2B68

CANx_AM14L 0xFFC0 2B70

CANx_AM15L 0xFFC0 2B78

CANx_AM16L 0xFFC0 2B80

CANx_AM17L 0xFFC0 2B88

CANx_AM18L 0xFFC0 2B90

CANx_AM19L 0xFFC0 2B98

CANx_AM20L 0xFFC0 2BA0

CANx_AM21L 0xFFC0 2BA8

CANx_AM22L 0xFFC0 2BB0

CANx_AM23L 0xFFC0 2BB8

CANx_AM24L 0xFFC0 2BC0

CAN Registers

31-54 ADSP-BF54x Blackfin Processor Hardware Reference

Mailbox Word 7 (CANx_MBxx_ID1) Registers

CANx_AM25L 0xFFC0 2BC8

CANx_AM26L 0xFFC0 2BD0

CANx_AM27L 0xFFC0 2BD8

CANx_AM28L 0xFFC0 2BE0

CANx_AM29L 0xFFC0 2BE8

CANx_AM30L 0xFFC0 2BF0

CANx_AM31L 0xFFC0 2BF8

Figure 31-23. Mailbox Word 7 Register

Table 31-12. Mailbox Word 7 Register Memory-Mapped
Addresses

Register Name CAN0 Memory-mapped Address

CANx_MB00_ID1 0xFFC0 2C1C

CANx_MB01_ID1 0xFFC0 2C3C

CANx_MB02_ID1 0xFFC0 2C5C

CANx_MB03_ID1 0xFFC0 2C7C

Table 31-11. Acceptance Mask Registers (L) Memory-Mapped
Addresses (Cont’d)

Register Name CAN0 Memory-mapped Address

EXTID[17:16] (Extended
Identifier)

UndefinedFor Memory-
mapped
addresses, see
Table 31-12.

BASEID[10:0] (Base Identifier)
IDE (Identifier Extension)
RTR (Remote Transmission
Request)
AME (Acceptance Mask Enable)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X XX X X X X X X X X X X X XX

ADSP-BF54x Blackfin Processor Hardware Reference 31-55

CAN Module

CANx_MB04_ID1 0xFFC0 2C9C

CANx_MB05_ID1 0xFFC0 2CBC

CANx_MB06_ID1 0xFFC0 2CDC

CANx_MB07_ID1 0xFFC0 2CFC

CANx_MB08_ID1 0xFFC0 2D1C

CANx_MB09_ID1 0xFFC0 2D3C

CANx_MB10_ID1 0xFFC0 2D5C

CANx_MB11_ID1 0xFFC0 2D7C

CANx_MB12_ID1 0xFFC0 2D9C

CANx_MB13_ID1 0xFFC0 2DBC

CANx_MB14_ID1 0xFFC0 2DDC

CANx_MB15_ID1 0xFFC0 2DFC

CANx_MB16_ID1 0xFFC0 2E1C

CANx_MB17_ID1 0xFFC0 2E3C

CANx_MB18_ID1 0xFFC0 2E5C

CANx_MB19_ID1 0xFFC0 2E7C

CANx_MB20_ID1 0xFFC0 2E9C

CANx_MB21_ID1 0xFFC0 2EBC

CANx_MB22_ID1 0xFFC0 2EDC

CANx_MB23_ID1 0xFFC0 2EFC

CANx_MB24_ID1 0xFFC0 2F1C

CANx_MB25_ID1 0xFFC0 2F3C

CANx_MB26_ID1 0xFFC0 2F5C

CANx_MB27_ID1 0xFFC0 2F7C

CANx_MB28_ID1 0xFFC0 2F9C

Table 31-12. Mailbox Word 7 Register Memory-Mapped
Addresses (Cont’d)

Register Name CAN0 Memory-mapped Address

CAN Registers

31-56 ADSP-BF54x Blackfin Processor Hardware Reference

Mailbox Word 6 (CANx_MBxx_ID0) Registers

CANx_MB29_ID1 0xFFC0 2FBC

CANx_MB30_ID1 0xFFC0 2FDC

CANx_MB31_ID1 0xFFC0 2FFC

Figure 31-24. Mailbox Word 6 Register

Table 31-13. Mailbox Word 6 Register Memory-mapped
Addresses

Register Name Memory-mapped Address

CANx_MB00_ID0 0xFFC0 2C18

CANx_MB01_ID0 0xFFC0 2C38

CANx_MB02_ID0 0xFFC0 2C58

CANx_MB03_ID0 0xFFC0 2C78

CANx_MB04_ID0 0xFFC0 2C98

CANx_MB05_ID0 0xFFC0 2CB8

CANx_MB06_ID0 0xFFC0 2CD8

CANx_MB07_ID0 0xFFC0 2CF8

CANx_MB08_ID0 0xFFC0 2D18

Table 31-12. Mailbox Word 7 Register Memory-Mapped
Addresses (Cont’d)

Register Name CAN0 Memory-mapped Address

Mailbox Word 6 Register (CANx_MBxx_ID0)

EXTID[15:0]/DFC[15:0]
(Extended Identifier/Data Field
Acceptance Code)

UndefinedFor Memory-
mapped
addresses, see
Table 31-13.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X XX X X X X X X X X X X X XX

ADSP-BF54x Blackfin Processor Hardware Reference 31-57

CAN Module

CANx_MB09_ID0 0xFFC0 2D38

CANx_MB10_ID0 0xFFC0 2D58

CANx_MB11_ID0 0xFFC0 2D78

CANx_MB12_ID0 0xFFC0 2D98

CANx_MB13_ID0 0xFFC0 2DB8

CANx_MB14_ID0 0xFFC0 2DD8

CANx_MB15_ID0 0xFFC0 2DF8

CANx_MB16_ID0 0xFFC0 2E18

CANx_MB17_ID0 0xFFC0 2E38

CANx_MB18_ID0 0xFFC0 2E58

CANx_MB19_ID0 0xFFC0 2E78

CANx_MB20_ID0 0xFFC0 2E98

CANx_MB21_ID0 0xFFC0 2EB8

CANx_MB22_ID0 0xFFC0 2ED8

CANx_MB23_ID0 0xFFC0 2EF8

CANx_MB24_ID0 0xFFC0 2F18

CANx_MB25_ID0 0xFFC0 2F38

CANx_MB26_ID0 0xFFC0 2F58

CANx_MB27_ID0 0xFFC0 2F78

CANx_MB28_ID0 0xFFC0 2F98

CANx_MB29_ID0 0xFFC0 2FB8

CANx_MB30_ID0 0xFFC0 2FD8

CANx_MB31_ID0 0xFFC0 2FF8

Table 31-13. Mailbox Word 6 Register Memory-mapped
Addresses (Cont’d)

Register Name Memory-mapped Address

CAN Registers

31-58 ADSP-BF54x Blackfin Processor Hardware Reference

Mailbox Word 5 (CANx_MBxx_TIMESTAMP)
Registers

Figure 31-25. Mailbox Word 5 Register

Table 31-14. Mailbox Word 5 Register Memory-Mapped
Addresses

Register Name Memory-mapped Address

CANx_MB00_TIMESTAMP 0xFFC0 2C14

CANx_MB01_TIMESTAMP 0xFFC0 2C34

CANx_MB02_TIMESTAMP 0xFFC0 2C54

CANx_MB03_TIMESTAMP 0xFFC0 2C74

CANx_MB04_TIMESTAMP 0xFFC0 2C94

CANx_MB05_TIMESTAMP 0xFFC0 2CB4

CANx_MB06_TIMESTAMP 0xFFC0 2CD4

CANx_MB07_TIMESTAMP 0xFFC0 2CF4

CANx_MB08_TIMESTAMP 0xFFC0 2D14

CANx_MB09_TIMESTAMP 0xFFC0 2D34

CANx_MB10_TIMESTAMP 0xFFC0 2D54

CANx_MB11_TIMESTAMP 0xFFC0 2D74

CANx_MB12_TIMESTAMP 0xFFC0 2D94

CANx_MB13_TIMESTAMP 0xFFC0 2DB4

CANx_MB14_TIMESTAMP 0xFFC0 2DD4

CANx_MB15_TIMESTAMP 0xFFC0 2DF4

Mailbox Word 5 Register (CANx_MBxx_TIMESTAMP)

TSV[15:0] (Time Stamp Value)

Undefined

For Memory-
mapped
addresses, see
Table 31-14.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X XX X X X X X X X X X X X XX

ADSP-BF54x Blackfin Processor Hardware Reference 31-59

CAN Module

Mailbox Word 4 (CANx_MBxx_LENGTH)
Registers

CANx_MB16_TIMESTAMP 0xFFC0 2E14

CANx_MB17_TIMESTAMP 0xFFC0 2E34

CANx_MB18_TIMESTAMP 0xFFC0 2E54

CANx_MB19_TIMESTAMP 0xFFC0 2E74

CANx_MB20_TIMESTAMP 0xFFC0 2E94

CANx_MB21_TIMESTAMP 0xFFC0 2EB4

CANx_MB22_TIMESTAMP 0xFFC0 2ED4

CANx_MB23_TIMESTAMP 0xFFC0 2EF4

CANx_MB24_TIMESTAMP 0xFFC0 2F14

CANx_MB25_TIMESTAMP 0xFFC0 2F34

CANx_MB26_TIMESTAMP 0xFFC0 2F54

CANx_MB27_TIMESTAMP 0xFFC0 2F74

CANx_MB28_TIMESTAMP 0xFFC0 2F94

CANx_MB29_TIMESTAMP 0xFFC0 2FB4

CANx_MB30_TIMESTAMP 0xFFC0 2FD4

CANx_MB31_TIMESTAMP 0xFFC0 2FF4

Figure 31-26. Mailbox Word 4 Register

Table 31-14. Mailbox Word 5 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-mapped Address

Mailbox Word 4 Register (CANx_MBxx_LENGTH)

DLC[3:0] (Data Length Code)

UndefinedFor Memory-
mapped
addresses, see
Table 31-26.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X XX X X X X X X X X X X X XX

CAN Registers

31-60 ADSP-BF54x Blackfin Processor Hardware Reference

Table 31-15. Mailbox Word 4 Register Memory-Mapped
Addresses

Register Name Memory-mapped Address

CANx_MB00_LENGTH 0xFFC0 2C10

CANx_MB01_LENGTH 0xFFC0 2C30

CANx_MB02_LENGTH 0xFFC0 2C50

CANx_MB03_LENGTH 0xFFC0 2C70

CANx_MB04_LENGTH 0xFFC0 2C90

CANx_MB05_LENGTH 0xFFC0 2CB0

CANx_MB06_LENGTH 0xFFC0 2CD0

CANx_MB07_LENGTH 0xFFC0 2CF0

CANx_MB08_LENGTH 0xFFC0 2D10

CANx_MB09_LENGTH 0xFFC0 2D30

CANx_MB10_LENGTH 0xFFC0 2D50

CANx_MB11_LENGTH 0xFFC0 2D70

CANx_MB12_LENGTH 0xFFC0 2D90

CANx_MB13_LENGTH 0xFFC0 2DB0

CANx_MB14_LENGTH 0xFFC0 2DD0

CANx_MB15_LENGTH 0xFFC0 2DF0

CANx_MB16_LENGTH 0xFFC0 2E10

CANx_MB17_LENGTH 0xFFC0 2E30

CANx_MB18_LENGTH 0xFFC0 2E50

CANx_MB19_LENGTH 0xFFC0 2E70

CANx_MB20_LENGTH 0xFFC0 2E90

CANx_MB21_LENGTH 0xFFC0 2EB0

CANx_MB22_LENGTH 0xFFC0 2ED0

CANx_MB23_LENGTH 0xFFC0 2EF0

CANx_MB24_LENGTH 0xFFC0 2F10

ADSP-BF54x Blackfin Processor Hardware Reference 31-61

CAN Module

Mailbox Word 3–0 (CANx_MBxx_DATA3–0) Registers

The following are the descriptions of Mailbox Word registers
(CANx_MBxx_DATA3/2/1/0) and their appropriate memory-mapped
addresses.

CANx_MB25_LENGTH 0xFFC0 2F30

CANx_MB26_LENGTH 0xFFC0 2F50

CANx_MB27_LENGTH 0xFFC0 2F70

CANx_MB28_LENGTH 0xFFC0 2F90

CANx_MB29_LENGTH 0xFFC0 2FB0

CANx_MB30_LENGTH 0xFFC0 2FD0

CANx_MB31_LENGTH 0xFFC0 2FF0

Figure 31-27. Mailbox Word 3 Register

Table 31-16. Mailbox Word 3 Register Memory-Mapped
Addresses

Register Name Memory-mapped Address

CANx_MB00_DATA3 0xFFC0 2C0C

CANx_MB01_DATA3 0xFFC0 2C2C

Table 31-15. Mailbox Word 4 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-mapped Address

Mailbox Word 3 Register (CANx_MBxx_DATA3)

Data Field Byte 1[7:0]

UndefinedFor Memory-
mapped
addresses, see
Table 31-16.

Data Field Byte 0[7:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X XX X X X X X X X X X X X XX

CAN Registers

31-62 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_MB02_DATA3 0xFFC0 2C4C

CANx_MB03_DATA3 0xFFC0 2C6C

CANx_MB04_DATA3 0xFFC0 2C8C

CANx_MB05_DATA3 0xFFC0 2CAC

CANx_MB06_DATA3 0xFFC0 2CCC

CANx_MB07_DATA3 0xFFC0 2CEC

CANx_MB08_DATA3 0xFFC0 2D0C

CANx_MB09_DATA3 0xFFC0 2D2C

CANx_MB10_DATA3 0xFFC0 2D4C

CANx_MB11_DATA3 0xFFC0 2D6C

CANx_MB12_DATA3 0xFFC0 2D8C

CANx_MB13_DATA3 0xFFC0 2DAC

CANx_MB14_DATA3 0xFFC0 2DCC

CANx_MB15_DATA3 0xFFC0 2DEC

CANx_MB16_DATA3 0xFFC0 2E0C

CANx_MB17_DATA3 0xFFC0 2E2C

CANx_MB18_DATA3 0xFFC0 2E4C

CANx_MB19_DATA3 0xFFC0 2E6C

CANx_MB20_DATA3 0xFFC0 2E8C

CANx_MB21_DATA3 0xFFC0 2EAC

CANx_MB22_DATA3 0xFFC0 2ECC

CANx_MB23_DATA3 0xFFC0 2EEC

CANx_MB24_DATA3 0xFFC0 2F0C

CANx_MB25_DATA3 0xFFC0 2F2C

CANx_MB26_DATA3 0xFFC0 2F4C

Table 31-16. Mailbox Word 3 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-mapped Address

ADSP-BF54x Blackfin Processor Hardware Reference 31-63

CAN Module

CANx_MB27_DATA3 0xFFC0 2F6C

CANx_MB28_DATA3 0xFFC0 2F8C

CANx_MB29_DATA3 0xFFC0 2FAC

CANx_MB30_DATA3 0xFFC0 2FCC

CANx_MB31_DATA3 0xFFC0 2FEC

Figure 31-28. Mailbox Word 2 Register

Table 31-17. Mailbox Word 2 Register Memory-Mapped
Addresses

Register Name Memory-mapped Address

CANx_MB00_DATA2 0xFFC0 2C08

CANx_MB01_DATA2 0xFFC0 2C28

CANx_MB02_DATA2 0xFFC0 2C48

CANx_MB03_DATA2 0xFFC0 2C68

CANx_MB04_DATA2 0xFFC0 2C88

CANx_MB05_DATA2 0xFFC0 2CA8

CANx_MB06_DATA2 0xFFC0 2CC8

CANx_MB07_DATA2 0xFFC0 2CE8

CANx_MB08_DATA2 0xFFC0 2D08

Table 31-16. Mailbox Word 3 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-mapped Address

Mailbox Word 2 Register (CANx_MBxx_DATA2)

UndefinedFor Memory-
mapped
addresses, see
Table 31-17.

Data Field Byte 3[7:0]Data Field Byte 2[7:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X XX X X X X X X X X X X X XX

CAN Registers

31-64 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_MB09_DATA2 0xFFC0 2D28

CANx_MB10_DATA2 0xFFC0 2D48

CANx_MB11_DATA2 0xFFC0 2D68

CANx_MB12_DATA2 0xFFC0 2D88

CANx_MB13_DATA2 0xFFC0 2DA8

CANx_MB14_DATA2 0xFFC0 2DC8

CANx_MB15_DATA2 0xFFC0 2DE8

CANx_MB16_DATA2 0xFFC0 2E08

CANx_MB17_DATA2 0xFFC0 2E28

CANx_MB18_DATA2 0xFFC0 2E48

CANx_MB19_DATA2 0xFFC0 2E68

CANx_MB20_DATA2 0xFFC0 2E88

CANx_MB21_DATA2 0xFFC0 2EA8

CANx_MB22_DATA2 0xFFC0 2EC8

CANx_MB23_DATA2 0xFFC0 2EE8

CANx_MB24_DATA2 0xFFC0 2F08

CANx_MB25_DATA2 0xFFC0 2F28

CANx_MB26_DATA2 0xFFC0 2F48

CANx_MB27_DATA2 0xFFC0 2F68

CANx_MB28_DATA2 0xFFC0 2F88

CANx_MB29_DATA2 0xFFC0 2FA8

CANx_MB30_DATA2 0xFFC0 2FC8

CANx_MB31_DATA2 0xFFC0 2FE8

Table 31-17. Mailbox Word 2 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-mapped Address

ADSP-BF54x Blackfin Processor Hardware Reference 31-65

CAN Module

Figure 31-29. Mailbox Word 1 Register

Table 31-18. Mailbox Word 1 Register Memory-Mapped
Addresses

Register Name Memory-mapped Address

CANx_MB00_DATA1 0xFFC0 2C04

CANx_MB01_DATA1 0xFFC0 2C24

CANx_MB02_DATA1 0xFFC0 2C44

CANx_MB03_DATA1 0xFFC0 2C64

CANx_MB04_DATA1 0xFFC0 2C84

CANx_MB05_DATA1 0xFFC0 2CA4

CANx_MB06_DATA1 0xFFC0 2CC4

CANx_MB07_DATA1 0xFFC0 2CE4

CANx_MB08_DATA1 0xFFC0 2D04

CANx_MB09_DATA1 0xFFC0 2D24

CANx_MB10_DATA1 0xFFC0 2D44

CANx_MB11_DATA1 0xFFC0 2D64

CANx_MB12_DATA1 0xFFC0 2D84

CANx_MB13_DATA1 0xFFC0 2DA4

CANx_MB14_DATA1 0xFFC0 2DC4

CANx_MB15_DATA1 0xFFC0 2DE4

CANx_MB16_DATA1 0xFFC0 2E04

CANx_MB17_DATA1 0xFFC0 2E24

Mailbox Word 1 Register (CANx_MBxx_DATA1)

UndefinedFor Memory-
mapped
addresses, see
Table 31-18.

Data Field Byte 5[7:0]Data Field Byte 4[7:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X XX X X X X X X X X X X X XX

CAN Registers

31-66 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_MB18_DATA1 0xFFC0 2E44

CANx_MB19_DATA1 0xFFC0 2E64

CANx_MB20_DATA1 0xFFC0 2E84

CANx_MB21_DATA1 0xFFC0 2EA4

CANx_MB22_DATA1 0xFFC0 2EC4

CANx_MB23_DATA1 0xFFC0 2EE4

CANx_MB24_DATA1 0xFFC0 2F04

CANx_MB25_DATA1 0xFFC0 2F24

CANx_MB26_DATA1 0xFFC0 2F44

CANx_MB27_DATA1 0xFFC0 2F64

CANx_MB28_DATA1 0xFFC0 2F84

CANx_MB29_DATA1 0xFFC0 2FA4

CANx_MB30_DATA1 0xFFC0 2FC4

CANx_MB31_DATA1 0xFFC0 2FE4

Figure 31-30. Mailbox Word 0 Register

Table 31-18. Mailbox Word 1 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-mapped Address

Mailbox Word 0 Register (CANx_MBxx_DATA0)

UndefinedFor Memory-
mapped
addresses, see
Table 31-19.

Data Field Byte 7[7:0]Data Field Byte 6[7:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X XX X X X X X X X X X X X XX

ADSP-BF54x Blackfin Processor Hardware Reference 31-67

CAN Module

Table 31-19. Mailbox Word 0 Register Memory-Mapped
Addresses

Register Name Memory-mapped Address

CANx_MB00_DATA0 0xFFC0 2C00

CANx_MB01_DATA0 0xFFC0 2C20

CANx_MB02_DATA0 0xFFC0 2C40

CANx_MB03_DATA0 0xFFC0 2C60

CANx_MB04_DATA0 0xFFC0 2C80

CANx_MB05_DATA0 0xFFC0 2CA0

CANx_MB06_DATA0 0xFFC0 2CC0

CANx_MB07_DATA0 0xFFC0 2CE0

CANx_MB08_DATA0 0xFFC0 2D00

CANx_MB09_DATA0 0xFFC0 2D20

CANx_MB10_DATA0 0xFFC0 2D40

CANx_MB11_DATA0 0xFFC0 2D60

CANx_MB12_DATA0 0xFFC0 2D80

CANx_MB13_DATA0 0xFFC0 2DA0

CANx_MB14_DATA0 0xFFC0 2DC0

CANx_MB15_DATA0 0xFFC0 2DE0

CANx_MB16_DATA0 0xFFC0 2E00

CANx_MB17_DATA0 0xFFC0 2E20

CANx_MB18_DATA0 0xFFC0 2E40

CANx_MB19_DATA0 0xFFC0 2E60

CANx_MB20_DATA0 0xFFC0 2E80

CANx_MB21_DATA0 0xFFC0 2EA0

CANx_MB22_DATA0 0xFFC0 2EC0

CANx_MB23_DATA0 0xFFC0 2EE0

CANx_MB24_DATA0 0xFFC0 2F00

CAN Registers

31-68 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_MB25_DATA0 0xFFC0 2F20

CANx_MB26_DATA0 0xFFC0 2F40

CANx_MB27_DATA0 0xFFC0 2F60

CANx_MB28_DATA0 0xFFC0 2F80

CANx_MB29_DATA0 0xFFC0 2FA0

CANx_MB30_DATA0 0xFFC0 2FC0

CANx_MB31_DATA0 0xFFC0 2FE0

Table 31-19. Mailbox Word 0 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-mapped Address

ADSP-BF54x Blackfin Processor Hardware Reference 31-69

CAN Module

Mailbox Control Registers
Figure 31-31 through Figure 31-57 on page 31-82 show the mailbox con-
trol registers.

Mailbox Configuration (CANx_MCx) Registers

Figure 31-31. Mailbox Configuration Register 1

Figure 31-32. Mailbox Configuration Register 2

Mailbox Configuration Register 1 (CANx_MC1)

MC0

MC12

MC13

MC14

MC15

MC1

MC2

MC3

MC4

MC5

For all bits, 0 - Mailbox disabled, 1 - Mailbox enabled

MC6

MC7

MC11

MC10

MC9

MC8

Reset = 0x00000xFFC0 2A00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
Soft reset = 0x0000

Mailbox Configuration Register 2 (CANx_MC2)

MC16

MC28

MC29

MC30

MC31

MC17

MC18

MC19

MC20

MC21

For all bits, 0 - Mailbox disabled, 1 - Mailbox enabled

MC22

MC23

MC27

MC26

MC25

MC24

Reset = 0x00000xFFC0 2A40
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
Soft reset = 0x0000

CAN Registers

31-70 ADSP-BF54x Blackfin Processor Hardware Reference

Mailbox Direction (CANx_MDx) Registers

Figure 31-33. Mailbox Direction Register 1

Figure 31-34. Mailbox Direction Register 2

Mailbox Direction Register 1 (CANx_MD1)

MD0 - RO

MD12

MD13

MD14

MD15

MD1 - RO

MD2 - RO

MD3 - RO

MD4 - RO

MD5 - RO

For all bits, 0 - Mailbox configured as transmit mode, 1 - Mailbox configured as receive mode

MD6 - RO

MD7 - RO

MD11

MD10

MD9

MD8

Reset = 0x00FF0xFFC0 2A04

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 1 1 1 1 1 1 10 0

Soft reset = 0x00FF

Mailbox Direction Register 2 (CANx_MD2)

MD16

MD28 - RO

MD29 - RO

MD30 - RO

MD31 - RO

MD17

MD18

MD19

MD20

MD21

For all bits, 0 - Mailbox configured as transmit mode, 1 - Mailbox configured as receive mode

MD22

MD23

MD27 - RO

MD26 - RO

MD25 - RO

MD24 - RO

Reset = 0x00000xFFC0 2A44

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Soft reset = 0x0000

ADSP-BF54x Blackfin Processor Hardware Reference 31-71

CAN Module

Receive Message Pending (CANx_RMPx) Registers

Figure 31-35. Receive Message Pending Register 1

Figure 31-36. Receive Message Pending Register 2

Receive Message Pending Register 1 (CANx_RMP1)

RMP0

RMP12

RMP13

RMP14

RMP15

RMP1

RMP2

RMP3

RMP4

RMP5

All bits are W1C

RMP6

RMP7

RMP11

RMP10

RMP9

RMP8

Reset = 0x00000xFFC0 2A18

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
Soft reset = 0x0000

Receive Message Pending Register 2 (CANx_RMP2)

RMP16

RMP28 - RO

RMP29 - RO

RMP30 - RO

RMP31 - RO

RMP17

RMP18

RMP19

RMP20

RMP21

All bits are W1C

RMP22

RMP23

RMP27 - RO

RMP26 - RO

RMP25 - RO

RMP24 - RO

Reset = 0x00000xFFC0 2A58
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
Soft reset = 0x0000

CAN Registers

31-72 ADSP-BF54x Blackfin Processor Hardware Reference

Receive Message Lost (CANx_RMLx) Registers

Figure 31-37. Receive Message Lost Register 1

Figure 31-38. Receive Message Lost Register 2

Receive Message Lost Register 1 (CANx_RML1)

RML0

RML12

RML13

RML14

RML15

RML1

RML2

RML3

RML4

RML5

RO

RML6

RML7

RML11

RML10

RML9

RML8

Reset = 0x00000xFFC0 2A1C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Soft reset = 0x0000

Receive Message Lost Register 2 (CANx_RML2)

RML16

RML28

RML29

RML30

RML31

RML17

RML18

RML19

RML20

RML21

RO

RML22

RML23

RML27

RML26

RML25

RML24

Reset = 0x00000xFFC0 2A5C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Soft reset = 0x0000

ADSP-BF54x Blackfin Processor Hardware Reference 31-73

CAN Module

Overwrite Protection/Single Shot
Transmission (CANx_OPSSx) Register

Figure 31-39. Overwrite Protection/Single Shot Transmission Register 1

Figure 31-40. Overwrite Protection/Single Shot Transmission Register 2

Overwrite Protection/Single Shot Transmission Register 1
(CANx_OPSS1)

OPSS0

OPSS12

OPSS13

OPSS14

OPSS15

OPSS1

OPSS2

OPSS3

OPSS4

OPSS5

OPSS6

OPSS7

OPSS11

OPSS10

OPSS9

OPSS8

Reset = 0x00000xFFC0 2A30

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
Soft reset = 0x0000

Overwrite Protection/Single Shot Transmission Register 2
(CANx_OPSS2)

OPSS16

OPSS28

OPSS29

OPSS30

OPSS31

OPSS17

OPSS18

OPSS19

OPSS20

OPSS21

OPSS22

OPSS23

OPSS27

OPSS26

OPSS25

OPSS24

Reset = 0x00000xFFC0 2A70
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
Soft reset = 0x0000

CAN Registers

31-74 ADSP-BF54x Blackfin Processor Hardware Reference

Transmission Request Set (CANx_TRSx) Registers

Figure 31-41. Transmission Request Set Register 1

Figure 31-42. Transmission Request Set Register 2

Transmission Request Set Register 1 (CANx_TRS1)

TRS0 - RO

TRS12

TRS13

TRS14

TRS15

TRS1 - RO

TRS2 - RO

TRS3 - RO

TRS4 - RO

TRS5 - RO

TRS6 - RO

TRS7 - RO

TRS11

TRS10

TRS9

TRS8

Reset = 0x00000xFFC0 2A08
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
Soft reset = 0x0000

Transmission Request Set Register 2 (CANx_TRS2)

TRS16

TRS28

TRS29

TRS30

TRS31

TRS17

TRS18

TRS19

TRS20

TRS21

TRS22

TRS23

TRS27

TRS26

TRS25

TRS24

Reset = 0x00000xFFC0 2A48

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Soft reset = 0x0000

ADSP-BF54x Blackfin Processor Hardware Reference 31-75

CAN Module

Transmission Request Reset (CANx_TRRx) Registers

Figure 31-43. Transmission Request Reset Register 1

Figure 31-44. Transmission Request Reset Register 2

Transmission Request Reset Register 1 (CANx_TRR1)

TRR0 - RO

TRR12

TRR13

TRR14

TRR15

TRR1 - RO

TRR2 - RO

TRR3 - RO

TRR4 - RO

TRR5 - RO

TRR6 - RO

TRR7 - RO

TRR11

TRR10

TRR9

TRR8

Reset = 0x00000xFFC0 2A0C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
Soft reset = 0x0000

Transmission Request Reset Register 2 (CANx_TRR2)

TRR16

TRR28

TRR29

TRR30

TRR31

TRR17

TRR18

TRR19

TRR20

TRR21

TRR22

TRR23

TRR27

TRR26

TRR25

TRR24

Reset = 0x00000xFFC0 2A4C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
Soft reset = 0x0000

CAN Registers

31-76 ADSP-BF54x Blackfin Processor Hardware Reference

Abort Acknowledge (CANx_AAx) Registers

Figure 31-45. Abort Acknowledge Register 1

Figure 31-46. Abort Acknowledge Register 2

Abort Acknowledge Register 1 (CANx_AA1)

AA0 - RO

AA12

AA13

AA14

AA15

AA1 - RO

AA2 - RO

AA3 - RO

AA4 - RO

AA5 - RO

All bits are W1C

AA6 - RO

AA7 - RO

AA11

AA10

AA9

AA8

Reset = 0x00000xFFC0 2A14
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
Soft reset = 0x0000

Abort Acknowledge Register 2 (CANx_AA2)

AA16

AA28

AA29

AA30

AA31

AA17

AA18

AA19

AA20

AA21

All bits are W1C

AA22

AA23

AA27

AA26

AA25

AA24

Reset = 0x00000xFFC0 2A54
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
Soft reset = 0x0000

ADSP-BF54x Blackfin Processor Hardware Reference 31-77

CAN Module

Transmission Acknowledge (CANx_TAx) Registers

Figure 31-47. Transmission Acknowledge Register 1

Figure 31-48. Transmission Acknowledge Register 2

Transmission Acknowledge Register 1 (CANx_TA1)

TA0 - RO

TA12

TA13

TA14

TA15

TA1 - RO

TA2 - RO

TA3 - RO

TA4 - RO

TA5 - RO

All bits are W1C

TA6 - RO

TA7 - RO

TA11

TA10

TA9

TA8

Reset = 0x00000xFFC0 2A10
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
Soft reset = 0x0000

Transmission Acknowledge Register 2 (CANx_TA2)

TA16

TA28

TA29

TA30

TA31

TA17

TA18

TA19

TA20

TA21

All bits are W1C

TA22

TA23

TA27

TA26

TA25

TA24

Reset = 0x00000xFFC0 2A50
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
Soft reset = 0x0000

CAN Registers

31-78 ADSP-BF54x Blackfin Processor Hardware Reference

Temporary Mailbox Disable (CANx_MBTD) Register

Remote Frame Handling (CANx_RFHx) Registers

Figure 31-49. Temporary Mailbox Disable Register

Figure 31-50. Remote Frame Handling Register 1

Temporary Mailbox Disable Feature Register (CANx_MBTD)

TDPTR[4:0] (Temporary
Disable Pointer)

Reset = 0x00000xFFC0 2AAC

TDA (Temporary Disable
Acknowledge)
TDR (Temporary Disable
Request)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Soft reset = 0x0000

Remote Frame Handling Register 1 (CANx_RFH1)

RFH0 - RO

RFH12

RFH13

RFH14

RFH15

RFH1 - RO

RFH2 - RO

RFH3 - RO

RFH4 - RO

RFH5 - RO

RFH6 - RO

RFH7 - RO

RFH11

RFH10

RFH9

RFH8

0xFFC0 2A2C
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
Reset = 0x0000
Soft reset = 0x0000

ADSP-BF54x Blackfin Processor Hardware Reference 31-79

CAN Module

Mailbox Interrupt Mask (CANx_MBIMx) Registers

Figure 31-51. Remote Frame Handling Register 2

Figure 31-52. Mailbox Interrupt Mask Register 1

Remote Frame Handling Register 2 (CANx_RFH2)

RFH16

RFH28 - RO

RFH29 - RO

RFH30 - RO

RFH31 - RO

RFH17

RFH18

RFH19

RFH20

RFH21

RFH22

RFH23

RFH27 - RO

RFH26 - RO

RFH25 - RO

RFH24 - RO

0xFFC0 2A6C
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
Reset = 0x0000
Soft reset = 0x0000

Mailbox Interrupt Mask Register 1 (CANx_MBIM1)

MBIM0

MBIM12

MBIM13

MBIM14

MBIM15

MBIM1

MBIM2

MBIM3

MBIM4

MBIM5

MBIM6

MBIM7

MBIM11

MBIM10

MBIM9

MBIM8

0xFFC0 2A28
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
Reset = 0x0000
Soft reset = 0x0000

CAN Registers

31-80 ADSP-BF54x Blackfin Processor Hardware Reference

Mailbox Transmit Interrupt Flag (CANx_MBTIFx)
Registers

Figure 31-53. Mailbox Interrupt Mask Register 2

Figure 31-54. Mailbox Transmit Interrupt Flag Register 1

Mailbox Interrupt Mask Register 2 (CANx_MBIM2)

MBIM16

MBIM28

MBIM29

MBIM30

MBIM31

MBIM17

MBIM18

MBIM19

MBIM20

MBIM21

MBIM22

MBIM23

MBIM27

MBIM26

MBIM25

MBIM24

0xFFC0 2A68
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
Reset = 0x0000
Soft reset = 0x0000

Mailbox Transmit Interrupt Flag Register 1 (CANx_MBTIF1)

MBTIF0 - RO

MBTIF12

MBTIF13

MBTIF14

MBTIF15

MBTIF1 - RO

MBTIF2 - RO

MBTIF3 - RO

MBTIF4 - RO

MBTIF5 - RO

All bits are W1C

MBTIF6 - RO

MBTIF7 - RO

MBTIF11

MBTIF10

MBTIF9

MBTIF8

0xFFC0 2A20

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
Reset = 0x0000
Soft reset = 0x0000

ADSP-BF54x Blackfin Processor Hardware Reference 31-81

CAN Module

Mailbox Receive Interrupt Flag (CANx_MBRIFx)
Registers

Figure 31-55. Mailbox Transmit Interrupt Flag Register 2

Figure 31-56. Mailbox Receive Interrupt Flag Register 1

Mailbox Transmit Interrupt Flag Register 2 (CANx_MBTIF2)

MBTIF16

MBTIF28

MBTIF29

MBTIF30

MBTIF31

MBTIF17

MBTIF18

MBTIF19

MBTIF20

MBTIF21

All bits are W1C

MBTIF22

MBTIF23

MBTIF27

MBTIF26

MBTIF25

MBTIF24

0xFFC0 2A60
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
Reset = 0x0000
Soft reset = 0x0000

Mailbox Receive Interrupt Flag Register 1 (CANx_MBRIF1)

MBRIF0

MBRIF12

MBRIF13

MBRIF14

MBRIF15

MBRIF1

MBRIF2

MBRIF3

MBRIF4

MBRIF5

All bits are W1C

MBRIF6

MBRIF7

MBRIF11

MBRIF10

MBRIF9

MBRIF8

0xFFC0 2A24
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
Reset = 0x0000
Soft reset = 0x0000

CAN Registers

31-82 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 31-57. Mailbox Receive Interrupt Flag Register 2

Mailbox Receive Interrupt Flag Register 2 (CANx_MBRIF2)

MBRIF16

MBRIF28 - RO

MBRIF29 - RO

MBRIF30 - RO

MBRIF31 - RO

MBRIF17

MBRIF18

MBRIF19

MBRIF20

MBRIF21

All bits are W1C

MBRIF22

MBRIF23

MBRIF27 - RO

MBRIF26 - RO

MBRIF25 - RO

MBRIF24 - RO

0xFFC0 2A64
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
Reset = 0x0000
Soft reset = 0x0000

ADSP-BF54x Blackfin Processor Hardware Reference 31-83

CAN Module

Universal Counter Registers
Figure 31-58 through Figure 31-60 show the universal counter registers.

Universal Counter Configuration Mode
(CANx_UCCNF) Register

Figure 31-58. Universal Counter Configuration Mode Register

Universal Counter Configuration Mode Register (CANx_UCCNF)

UCCNF[3:0] (Universal Coun-
ter Configuration)

0xFFC0 2ACC

UCRC (Universal Counter
Reload/Clear) - WO

UCCT (Universal Counter
CAN Trigger)

UCE (Universal Counter
Enable)

0 - No action
1 - write 1 to reload counter in

watchdog mode
write 1 to clear counter in
all other modes

0 - No trigger
1 - mailbox 4 reception reloads

counter in watchdog mode
 mailbox 4 reception clears

counter in time stamp mode
 no effect in other modes

0 - Counter disabled
1 - Counter enabled

0x0 - Reserved
0x1 - Time stamp mode
0x2 - Watchdog mode
0x3 - Auto-transmit mode
0x4 - Reserved
0x5 - Reserved
0x6 - Count error frames
0x7 - Count overload frames
0x8 - Count arbitration lost
0x9 - Count aborted

transmissions
0xA - Count successful

 transmissions
0xB - Count rejected
 receive messages
0xC - Count receive
 message lost
0xD - Count successful

 receptions
0xE - Count stored receptions
0xF - Count valid messages

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0 Reset = 0x0000
Soft reset = 0x0000

CAN Registers

31-84 ADSP-BF54x Blackfin Processor Hardware Reference

Universal Counter (CANx_UCCNT) Register

Universal Counter Reload/Capture (CANx_UCRC) Register

Error Registers
Figure 31-61 through Figure 31-63 show the CAN controller error
registers.

Error Counter (CANx_CEC) Register

Figure 31-59. Universal Counter Register

Figure 31-60. Universal Counter Reload/Capture Register

Figure 31-61. Error Counter Register

Universal Counter Register (CANx_UCCNT)

UCCNT[15:0]

0xFFC0 2AC4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
Reset = 0x0000
Soft reset = 0x0000

Universal Counter Reload/Capture Register (CANx_UCRC)

UCVAL[15:0]

0xFFC0 2AC8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
Reset = 0x0000
Soft reset = 0x0000

CAN Error Counter Register (CANx_CEC)

RXECNT[7:0] (Receive
Error Counter)

0xFFC0 2A90

TXECNT[7:0] (Transmit Error
Counter)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0 Reset = 0x0000
Soft reset = 0xXXXX

ADSP-BF54x Blackfin Processor Hardware Reference 31-85

CAN Module

Error Status (CANx_ESR) Register

Error Counter Warning Level (CANx_EWR)
Register

Programming Examples
The following CAN code examples (Listing 31-2 through Listing 31-4 on
page 31-89) show how to program the CAN hardware and timing, initial-
ize mailboxes, perform transfers, and service interrupts. Each of these code
examples assumes that the appropriate header file is included in the source
code (that is, #include <defBF549.h> for ADSP-BF549 projects).

Figure 31-62. Error Status Register

Figure 31-63. Error Counter Warning Level Register

Error Status Register (CANx_ESR)
All bits are W1C

ACKE (Acknowledge Error)

0xFFC0 2AB4

SER (Stuff Bit Error)
CRCE (CRC Error)

FER (Form Error)
BEF (Bit Error Flag)
SA0 (Stuck at Dominant)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 1 0 0 0 00 0
Reset = 0x0000
Soft reset = 0x0020

CAN Error Counter Warning Level Register (CANx_EWR)

EWLREC[7:0] (Receive
Error Warning Limit)

0xFFC0 2AB0

EWLTEC[7:0] (Transmit Error
Warning Limit)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 0 0 0 0 0 0 1 1 0 0 0 00 1
Reset = 0x0000
Soft reset = 0xXXXX

Programming Examples

31-86 ADSP-BF54x Blackfin Processor Hardware Reference

CAN Setup Code
The following code initializes the port pins to connect to the CAN0 con-
troller and configures the CAN timing parameters.

Listing 31-2. Initializing CAN0

Initialize_CAN0:

P0.H = HI(PORTG_FER); /* CAN pins multiplexed on Port G */

P0.L = LO(PORTG_FER);

R0 = 0x3000 (Z); /* Enable CAN0 TX/RX pins on PG12/PG13 */

W[P0] = R0;

SSYNC;

/* ===

** Set CAN Bit Timing

**

** CANx_TIMING - SJW, TSEG2, and TSEG1 governed by:

** SJW <= TSEG2 <= TSEG1

**

** ===

*/

P0.H = HI(CAN0_TIMING);

P0.L = LO(CAN0_TIMING);

R0 = 0x0334(Z); /* SJW = 3, TSEG2 = 3, TSEG1 = 4 */

W[P0] = R0;

SSYNC;

/* ===

** CANx_CLOCK - Calculate Prescaler (BRP)

**

** Assume a 500kbps CAN rate is desired, which means

** the duration of the bit on the CAN bus (tBIT) is

** 2us. Using the tBIT formula from the HRM, solve for

** TQ:

ADSP-BF54x Blackfin Processor Hardware Reference 31-87

CAN Module

**

** tBIT = TQ x (1 + (TSEG1 + 1) + (TSEG2 + 1))

** 2us = TQ x (1 + (4 + 1) + (3 + 1))

** 2e-6 = TQ x (1 + 5 + 4)

** TQ = 2e-6 / 10

** TQ = 2e-7

**

** Once time quantum (TQ) is known, BRP can be derived

** from the TQ formula in the HRM. Assume the default

** PLL settings are used for the ADSP-BF54x EZ-KIT,

** which implies that System Clock (SCLK) is 50MHz:

**

** TQ = (BRP+1) / SCLK

** 2e-7 = (BRP+1) / 50e6

** (BRP+1) = 10

** BRP = 9

*/

P0.L = LO(CAN0_CLOCK);

R0 = 9(Z);

W[P0] = R0;

SSYNC;

RTS;

Initializing and Enabling CAN Mailboxes
Before the CAN can transfer data, the mailbox area must be properly set
up and the controller must be initialized properly.

Listing 31-3. Initializing and Enabling Mailboxes

CAN0_Initialize_Mailboxes:

P0.H = HI(CAN0_MD1); /* Configure Mailbox Direction */
P0.L = LO(CAN0_MD1);
R0 = W[P0](Z);

Programming Examples

31-88 ADSP-BF54x Blackfin Processor Hardware Reference

BITCLR(R0, BITPOS(MD8)); /* Set MB08 for Transmit */
BITSET(R0, BITPOS(MD9)); /* Set MB09 for Receive */
W[P0] = R0;
SSYNC;

/* ===
** Populate CAN Mailbox Area
**
** Mailbox 8 transmits ID 0x411 with 4 bytes of data
** Bytes 0 and 1 are a data pattern 0xAABB. Bytes 2
** and 3 will be a count value for the number of times
** that message is properly sent.
**
** Mailbox 9 will receive message ID 0x007
**
** ===
*/

/* Initialize Mailbox 8 For Transmit */
R0 = 0x411 << 2; /* Put Message ID in correct slot */
P0.L = LO(CAN0_MB_ID1(8)); /* Access MB08 ID1 Register */
W[P0] = R0; /* Remote frame disabled, 11 bit ID */

R0 = 0;

P0.L = LO(CAN0_MB_ID0(8));
W[P0] = R0; /* Zero Out Lower ID Register */

R0 = 4;
P0.L = LO(CAN0_MB_LENGTH(8));
W[P0] = R0; /* Set DLC to 4 Bytes */
R0 = 0xAABB(Z);
P0.L = LO(CAN0_MB_DATA3(8));
W[P0] = R0; /* Byte0 = 0xAA, Byte1 = 0xBB */

R0 = 1;
P0.L = LO(CAN0_MB_DATA2(8));
W[P0] = R0; /* Initialize Count to 1 */

/* Initialize Mailbox 9 For Receive */

 R0 = 0x007 << 2; /* Put Message ID in correct slot */

 P0.L = LO(CAN0_MB_ID1(9)); /* Access MB08 ID1 Register */

 W[P0] = R0; /* Remote frame disabled, 11 bit ID */

ADSP-BF54x Blackfin Processor Hardware Reference 31-89

CAN Module

 R0 = 0;

 P0.L = LO(CAN0_MB_ID0(9));

 W[P0] = R0; /* Zero Out Lower ID Register */

 SSYNC;

 /* Enable the Configured Mailboxes */

 P0.L = LO(CAN0_MC1);

 R0 = W[P0](Z);

 BITSET(R0, BITPOS(MC8)); /* Enable MB08 */

 BITSET(R0, BITPOS(MC9)); /* Enable MB09 */

 W[P0] = R0;

 SSYNC;

 RTS;

Initiating CAN Transfers and Processing Interrupts
After the mailboxes are properly set up, transfers can be requested in the
CAN controller. This code example initializes the CAN-level interrupts,
takes the CAN controller out of configuration mode, requests a transfer,
and then waits for and processes CAN TX and RX interrupts. This
example assumes that the CAN0_RX_HANDLER and CAN0_TX_HANDLER have
been properly registered in the system interrupt controller and that the
interrupts are enabled properly in the SIC_IMASK0 register.

Listing 31-4. CAN Transfers and Interrupts

CAN0_SetupIRQs_and_Transfer:

P0.H = HI(CAN0_MBIM1);

P0.L = LO(CAN0_MBIM1);

R0 = 0;

BITSET(R0, BITPOS(MBIM8)); /* Enable Mailbox Interrupts */

BITSET(R0, BITPOS(MBIM9)); /* for Mailboxes 8 and 9 */

W[P0] = R0;

Programming Examples

31-90 ADSP-BF54x Blackfin Processor Hardware Reference

SSYNC;

/* Leave CAN Configuration Mode (Clear CCR) */

P0.L = LO(CAN0_CONTROL);

R0 = W[P0](Z);

BITCLR(R0, BITPOS(CCR));

W[P0] = R0;

P0.L = LO(CAN0_STATUS);

/* Wait for CAN Configuration Acknowledge (CCA) */

WAIT_FOR_CCA_TO_CLEAR:

R1 = W[P0](Z);

CC = BITTST (R1, BITPOS(CCA));

IF CC JUMP WAIT_FOR_CCA_TO_CLEAR;

P0.L = LO(CAN0_TRS1);

R0 = TRS8; /* Transmit Request MB08 */

W[P0] = R0; /* Issue Transmit Request */

SSYNC;

Wait_Here_For_IRQs:

NOP;

NOP;

NOP;

JUMP Wait_Here_For_IRQs;

/* ===

** CAN0_TX_HANDLER

**

** ISR clears the interrupt request from MB8, writes

** new data to be sent, and requests to send again

**

** ===

*/

CAN0_TX_HANDLER:

[--SP] = (R7:6, P5:5); /* Save Clobbered Registers */

[--SP] = ASTAT;

P5.H = HI(CAN0_MB_DATA2(8));

ADSP-BF54x Blackfin Processor Hardware Reference 31-91

CAN Module

P5.L = LO(CAN0_MB_DATA2(8));

R7 = W[P5](Z); /* Retrieve Previously Sent Data */

R6 = 0xFF; /* Mask Upper Byte to Check Lower */

R6 = R6 & R7; /* Byte for Wrap */

R5 = 0xFF; /* Check Wrap Condition */

CC = R6 == R5; /* Check if Lower Byte Wraps */

IF CC JUMP HANDLE_COUNT_WRAP;

R7 += 1; /* If no wrap, Increment Count */

JUMP PREPARE_TO_SEND;

HANDLE_COUNT_WRAP:

R6 = 0xFF00(Z); /* Mask Off Lower Byte */

R7 = R7 & R6; /* Sets Lower Byte to 0 */

R6 = 0x0100(Z); /* Increment Value for Upper Byte */

R7 = R7 + R6; /* Increment Upper Byte */

PREPARE_TO_SEND:

W[P5] = R7; /* Set New TX Data */

P5.L = LO(CAN0_TRS1);

R7 = TRS8;

W[P5] = R7; /* Issue New Transmit Request */

P5.L = LO(CAN0_MBTIF1);

R7 = MBTIF8;

W[P5] = R7; /* Clear Interrupt Request Bit for MB08 */

ASTAT = [SP++]; /* Restore Clobbered Registers */

(R7:6, P5:5) = [SP++];

SSYNC;

RTI;

/* ===

** CAN0_RX_HANDLER

**

** ISR clears the interrupt request from MB9, writes

** new data to be sent, and requests to send again

**

** ===*/

Programming Examples

31-92 ADSP-BF54x Blackfin Processor Hardware Reference

CAN0_RX_HANDLER:

[--SP] = (R7:7, P5:4); /* Save Clobbered Registers */

[--SP] = ASTAT;

P4.H = CAN_RX_WORD; /* Set Pointer to Storage Element */

P4.L = CAN_RX_WORD;

P5.H = HI(CAN0_MBRMP1);

P5.L = LO(CAN0_MBRMP1);

R7 = RMP9;

W[P5] = R7; /* Clear Message Pending for MB09 */

P5.L = LO(CANx_MBRIF1);

R7 = MBRIF9;

W[P5] = R7; /* Clear Interrupt Request Bit for MB09 */

P5.L = LO(CAN_RMP1);

W[P5] = R7; /* Clear Message Pending Bit for MB09 */

P5.L = LO(CAN0_MB_DATA3(9));

R7 = W[P5](Z); /* Read data from mailbox */

W[P4] = R7; /* Store data to SDRAM */

ASTAT = [SP++]; /* Restore Clobbered Registers */

(R7:7, P5:4) = [SP++];

SSYNC;

RTI;

ADSP-BF54x Blackfin Processor Hardware Reference A-1

A SYSTEM MMR ASSIGNMENTS

This appendix lists MMR addresses and register names for the system
memory-mapped registers (MMRs), the core timer registers, and the pro-
cessor-specific memory registers mentioned in this manual, To find more
information about an MMR, refer to the page shown in the “See Page”
column. When viewing the PDF version of this document, click a refer-
ence in the “See Page” column to jump to additional information about
the MMR.

This chapter includes the following sections:

“Dynamic Power Management Registers” on page A-4

“System Reset and Interrupt Control Registers” on page A-4

“Watchdog Timer Registers” on page A-6

“Real-Time Clock Registers” on page A-6

“UART0 Controller Registers” on page A-7

“UART1 Controller Registers” on page A-8

“UART2 Controller Registers” on page A-9

“UART3 Controller Registers” on page A-10

“SPI0 Controller Registers” on page A-11

“SPI1 Controller Registers” on page A-11

“SPI2 Controller Registers” on page A-12

System MMR Assignments

A-2 ADSP-BF54x Blackfin Processor Hardware Reference

“TWI0 Registers” on page A-13

“TWI1 Registers” on page A-14

“SPORT0 Controller Registers” on page A-16

“SPORT1 Controller Registers” on page A-18

“SPORT2 Controller Registers” on page A-20

“SPORT3 Controller Registers” on page A-22

“MXVR Registers” on page A-24

“Keypad Registers” on page A-36

“SDH Registers” on page A-37

“ATAPI Registers” on page A-39

“USB OTG Registers” on page A-41

“External Bus Interface Unit Registers” on page A-58

“DMA/Memory DMA Control Registers” on page A-59

“EPPI0 Registers” on page A-62

“EPPI1 Registers” on page A-63

“EPPI2 Registers” on page A-64

“Host DMA Registers” on page A-65

“PIXC Registers” on page A-66

“Ports Registers” on page A-68

“Timer Registers” on page A-76

“CANx Registers” on page A-79

ADSP-BF54x Blackfin Processor Hardware Reference A-3

System MMR Assignments

“Handshake MDMA Control Registers” on page A-88

“NAND Flash Controller Registers” on page A-90

“Core Timer Registers” on page A-91

“Rotary Counter Registers” on page A-91

“Security Registers” on page A-92

“Processor-Specific Memory Registers” on page A-93

These notes provide general information about the system mem-
ory-mapped registers (MMRs):

The system MMR address range is 0xFFC0 0000 – 0xFFDF FFFF.

All system MMRs are either 16 bits or 32 bits wide. MMRs that are 16
bits wide must be accessed with 16-bit read or write operations. MMRs
that are 32 bits wide must be accessed with 32-bit read or write opera-
tions. Check the description of the MMR to determine whether a 16-bit
or a 32-bit access is required.

All system MMR space that is not defined in this appendix is reserved for
internal use only.

System MMR Assignments

A-4 ADSP-BF54x Blackfin Processor Hardware Reference

Dynamic Power Management Registers
Dynamic power management registers (0xFFC0 0000 – 0xFFC0 00FF)
are listed in Table A-1.

System Reset and Interrupt Control
Registers

System reset and interrupt control registers (0xFFC0 0100 –
0xFFC0 01FF) are listed in Table A-2.

Table A-1. Dynamic Power Management Registers

Memory
Mapped
Address

Register Name Description

0xFFC0 0000 PLL_CTL “PLL Control (PLL_CTL) Register” on page 18-26

0xFFC0 0004 PLL_DIV “PLL Divide (PLL_DIV) Register” on page 18-26

0xFFC0 0008 VR_CTL “Voltage Regulator Control (VR_CTL) Register” on page 18-28

0xFFC0
000C

PLL_STAT “PLL Status (PLL_STAT) Register” on page 18-27

0xFFC0 0010 PLL_
LOCKCNT

“PLL Lock Count (PLL_LOCKCNT) Register” on page 18-27

Table A-2. System Reset and Interrupt Control Registers

Memory
Mapped
Address

Register
Name

Description

0xFFC0 0100 SYRST “Software Reset (SWRST) Register” on page 17-103

0xFFC0 0104 SYSCR “System Reset Configuration (SYSCR) Register” on page 17-105

0xFFC0 010C SIC_IMASK0 “System Interrupt Mask Register 0” on page 6-32

ADSP-BF54x Blackfin Processor Hardware Reference A-5

System MMR Assignments

0xFFC0 0110 SIC_IMASK1 “System Interrupt Mask Register 1” on page 6-33

0xFFC0 0114 SIC_IMASK2 “System Interrupt Mask Register 2” on page 6-34

0xFFC0 0130 SIC_IAR0 “System Interrupt Assignment Register 0” on page 6-26

0xFFC0 0134 SIC_IAR1 “System Interrupt Assignment Register 1” on page 6-26

0xFFC0 0138 SIC_IAR2 “System Interrupt Assignment Register 2” on page 6-27

0xFFC0 013C SIC_IAR3 “System Interrupt Assignment Register 3” on page 6-27

0xFFC0 0140 SIC_IAR4 “System Interrupt Assignment Register 4” on page 6-28

0xFFC0 0144 SIC_IAR5 “System Interrupt Assignment Register 5” on page 6-28

0xFFC0 0148 SIC_IAR6 “System Interrupt Assignment Register 6” on page 6-29

0xFFC0 014C SIC_IAR7 “System Interrupt Assignment Register 7” on page 6-29

0xFFC0 0150 SIC_IAR8 “System Interrupt Assignment Register 8” on page 6-30

0xFFC0 0154 SIC_IAR9 “System Interrupt Assignment Register 9” on page 6-30

0xFFC0 0158 SIC_IAR10 “System Interrupt Assignment Register 10” on page 6-31

0xFFC0 015C SIC_IAR11 “System Interrupt Assignment Register 11” on page 6-31

0xFFC0 0118 SIC_ISR0 “System Interrupt Status Register 0” on page 6-35

0xFFC0 011C SIC_ISR1 “System Interrupt Status Register 1” on page 6-36

0xFFC0 0120 SIC_ISR2 “System Interrupt Status Register 2” on page 6-37

0xFFC0 0124 SIC_IWR0 “System Interrupt Wakeup Register 0” on page 6-38

0xFFC0 0128 SIC_IWR1 “System Interrupt Wakeup Register 1” on page 6-39

0xFFC0 012C SIC_IWR2 “System Interrupt Wakeup Register 2” on page 6-40

Table A-2. System Reset and Interrupt Control Registers (Cont’d)

Memory
Mapped
Address

Register
Name

Description

System MMR Assignments

A-6 ADSP-BF54x Blackfin Processor Hardware Reference

Watchdog Timer Registers
Watchdog timer registers (0xFFC0 0200 – 0xFFC0 02FF) are listed in
Table A-3.

Real-Time Clock Registers
Real-time clock registers (0xFFC0 0300 – 0xFFC0 03FF) are listed in
Table A-4.

Table A-3. Watchdog Timer Registers

Memory
Mapped
Address

Register Name Description

0xFFC0
0200

WDOG_CTL “Watchdog Control (WDOG_CTL) Register” on page 12-8

0xFFC0
0204

WDOG_CNT “Watchdog Count (WDOG_CNT) Register” on page 12-6

0xFFC0
0208

WDOG_
STAT

“Watchdog Status (WDOG_STAT) Register” on page 12-7

Table A-4. Real-Time Clock Registers

Memory
Mapped
Address

Register
Name

Description

0xFFC0 0300 RTC_STAT “RTC Status (RTC_STAT) Register” on page 14-21

0xFFC0 0304 RTC_ICTL “RTC Interrupt Control (RTC_ICTL) Register” on page 14-21

0xFFC0 0308 RTC_ISTAT “RTC Interrupt Status (RTC_ISTAT) Register” on page 14-22

0xFFC0
030C

RTC_
SWCNT

“RTC Stopwatch Count (RTC_SWCNT) Register” on page 14-22

0xFFC0 0310 RTC_ALARM “RTC Alarm (RTC_ALARM) Register” on page 14-23

0xFFC0 0314 RTC_PREN “RTC Prescaler Enable (RTC_PREN) Register” on page 14-23

ADSP-BF54x Blackfin Processor Hardware Reference A-7

System MMR Assignments

UART0 Controller Registers
UART0 controller registers (0xFFC0 0400 – 0xFFC0 04FF) are listed in
Table A-5.

Table A-5. UART0 Controller Registers

Memory
Mapped
Address

Register Name Description

0xFFC0 0400 UART0_DLL “Clock Divisor Latch (UARTx_DLL and UARTx_DLH)
Registers” on page 25-46

0xFFC0 0404 UART0_DLH “Clock Divisor Latch (UARTx_DLL and UARTx_DLH)
Registers” on page 25-46

0xFFC0 0408 UART0_GCTL “Global Control (UARTx_GCTL) Registers” on
page 25-50

0xFFC0
040C

UART0_LCR “Line Control (UARTx_LCR) Registers” on page 25-29

0xFFC0 0410 UART0_MCR “Modem Control (UARTx_MCR) Registers” on
page 25-32

0xFFC0 0414 UART0_LSR “Line Status (UARTx_LSR) Registers” on page 25-34

0xFFC0 0418 UART0_MSR “Modem Status (UARTx_MSR) Registers” on page 25-37

0xFFC0
041C

UART0_SCR “UART Scratch (UARTx_SCR) Registers” on page 25-49

0xFFC0 0420 UART0_IER_SET “Interrupt Enable (UARTx_IER_SET and UARTx_IER_
CLEAR) Registers” on page 25-40

0xFFC0 0424 UART0_IER_
CLEAR

“Interrupt Enable (UARTx_IER_SET and UARTx_IER_
CLEAR) Registers” on page 25-40

0xFFC0 0428 UART0_THR “Transmit Hold (UARTx_THR) Registers” on page 25-39

0xFFC0
042C

UART0_RBR “Receive Buffer (UARTx_RBR) Registers” on page 25-40

System MMR Assignments

A-8 ADSP-BF54x Blackfin Processor Hardware Reference

UART1 Controller Registers
UART1 controller registers (0xFFC0 2000 – 0xFFC0 20FF) are listed in
Table A-6.

Table A-6. UART1 Controller Registers

Memory
Mapped
Address

Register Name Description

0xFFC0 0200 UART1_DLL “Clock Divisor Latch (UARTx_DLL and UARTx_DLH)
Registers” on page 25-46

0xFFC0 0204 UART1_DLH “Clock Divisor Latch (UARTx_DLL and UARTx_DLH)
Registers” on page 25-46

0xFFC0 0208 UART1_GCTL “Global Control (UARTx_GCTL) Registers” on
page 25-50

0xFFC0
020C

UART1_LCR “Line Control (UARTx_LCR) Registers” on page 25-29

0xFFC0 0210 UART1_MCR “Modem Control (UARTx_MCR) Registers” on
page 25-32

0xFFC0 0214 UART1_LSR “Line Status (UARTx_LSR) Registers” on page 25-34

0xFFC0 0218 UART1_MSR “Modem Status (UARTx_MSR) Registers” on page 25-37

0xFFC0
021C

UART1_SCR “UART Scratch (UARTx_SCR) Registers” on page 25-49

0xFFC0 0220 UART1_IER_SET “Interrupt Enable (UARTx_IER_SET and UARTx_IER_
CLEAR) Registers” on page 25-40

0xFFC0 0224 UART1_IER_
CLEAR

“Interrupt Enable (UARTx_IER_SET and UARTx_IER_
CLEAR) Registers” on page 25-40

0xFFC0 0228 UART1_THR “Transmit Hold (UARTx_THR) Registers” on page 25-39

0xFFC0
022C

UART1_RBR “Receive Buffer (UARTx_RBR) Registers” on page 25-40

ADSP-BF54x Blackfin Processor Hardware Reference A-9

System MMR Assignments

UART2 Controller Registers
UART2 controller registers are listed in Table A-7. UART2 is not avail-
able on the ADSP-BF542 and ADSP-BF544 processors.

Table A-7. UART2 Controller Registers

Memory
Mapped
Address

Register Name Description

0xFFC0 2100 UART2_DLL “Clock Divisor Latch (UARTx_DLL and UARTx_DLH)
Registers” on page 25-46

0xFFC0 2104 UART2_DLH “Clock Divisor Latch (UARTx_DLL and UARTx_DLH)
Registers” on page 25-46

0xFFC0 2108 UART2_GCTL “Global Control (UARTx_GCTL) Registers” on
page 25-50

0xFFC0
210C

UART2_LCR “Line Control (UARTx_LCR) Registers” on page 25-29

0xFFC0 2110 UART2_MCR “Modem Control (UARTx_MCR) Registers” on
page 25-32

0xFFC0 2114 UART2_LSR “Line Status (UARTx_LSR) Registers” on page 25-34

0xFFC0 2118 UART2_MSR “Modem Status (UARTx_MSR) Registers” on page 25-37

0xFFC0
211C

UART2_SCR “UART Scratch (UARTx_SCR) Registers” on page 25-49

0xFFC0 2120 UART2_IER_SET “Interrupt Enable (UARTx_IER_SET and UARTx_IER_
CLEAR) Registers” on page 25-40

0xFFC0 2124 UART2_IER_
CLEAR

“Interrupt Enable (UARTx_IER_SET and UARTx_IER_
CLEAR) Registers” on page 25-40

0xFFC0 2128 UART2_THR “Transmit Hold (UARTx_THR) Registers” on page 25-39

0xFFC0
212C

UART2_RBR “Receive Buffer (UARTx_RBR) Registers” on page 25-40

System MMR Assignments

A-10 ADSP-BF54x Blackfin Processor Hardware Reference

UART3 Controller Registers
UART3 controller registers are listed in Table A-8.

Table A-8. UART3 Controller Registers

Memory
Mapped
Address

Register Name Description

0xFFC0 3100 UART3_DLL “UART Divisor Latch Registers” on page 25-48

0xFFC0 3104 UART3_DLH “UART Divisor Latch Registers” on page 25-48

0xFFC0 3108 UART3_GCTL “UART Global Control Registers” on page 25-50

0xFFC0
310C

UART3_LCR “UART Line Control Registers” on page 25-29

0xFFC0 3110 UART3_MCR “UART Modem Control Registers” on page 25-32

0xFFC0 3114 UART3_LSR “UART Line Status Registers” on page 25-35

0xFFC0 3118 UART3_MSR “UART Modem Control Registers” on page 25-32

0xFFC0
311C

UART3_SCR “UART Scratch Registers” on page 25-49

0xFFC0 3120 UART3_IER_SET “UART Interrupt Enable Set Registers” on page 25-42

0xFFC0 3124 UART3_IER_
CLEAR

“UART Interrupt Enable Clear Registers” on page 25-43

0xFFC0 3128 UART3_THR “UART Transmit Holding Registers” on page 25-39

0xFFC0
312C

UART3_RBR “UART Receive Buffer Registers” on page 25-40

ADSP-BF54x Blackfin Processor Hardware Reference A-11

System MMR Assignments

SPI0 Controller Registers
SPI0 controller registers (0xFFC0 0500 – 0xFFC0 05FF) are listed in
Table A-9.

SPI1 Controller Registers
SPI1 controller registers are listed in Table A-10.

Table A-9. SPI0 Controller Registers

Memory
Mapped
Address

Register Name Description

0xFFC0 0500 SPI0_CTL “SPI Control (SPIx_CTL) Register” on page 22-45

0xFFC0 0504 SPI0_FLG “SPI Flag (SPIx_FLG) Register” on page 22-46

0xFFC0 0508 SPI0_STAT “SPI Status (SPIx_STAT) Register” on page 22-48

0xFFC0
050C

SPI0_TDBR “SPI Transmit Data Buffer (SPIx_TDBR) Register” on
page 22-48

0xFFC0 0510 SPI0_RDBR “SPI Receive Data Buffer (SPIx_RDBR) Register” on page 22-49

0xFFC0 0514 SPI0_BAUD “SPI Baud Rate (SPIx_BAUD) Register” on page 22-44

0xFFC0 0518 SPI0_
SHADOW

“SPI RDBR Shadow (SPIx_SHADOW) Register” on page 22-49

Table A-10. SPI1 Controller Registers

Memory
Mapped
Address

Register Name Description

0xFFC0 2300 SPI1_CTL “SPI Control (SPIx_CTL) Register” on page 22-45

0xFFC0 2304 SPI1_FLG “SPI Flag (SPIx_FLG) Register” on page 22-46

0xFFC0 2308 SPI1_STAT “SPI Status (SPIx_STAT) Register” on page 22-48

System MMR Assignments

A-12 ADSP-BF54x Blackfin Processor Hardware Reference

SPI2 Controller Registers
SPI2 controller registers are listed in Table A-10.

0xFFC0
230C

SPI1_TDBR “SPI Transmit Data Buffer (SPIx_TDBR) Register” on
page 22-48

0xFFC0 2310 SPI1_RDBR “SPI Receive Data Buffer (SPIx_RDBR) Register” on page 22-49

0xFFC0 2314 SPI1_BAUD “SPI Baud Rate (SPIx_BAUD) Register” on page 22-44

0xFFC0 2318 SPI1_
SHADOW

“SPI RDBR Shadow (SPIx_SHADOW) Register” on page 22-49

Table A-11. SPI2 Controller Registers

Memory
Mapped
Address

Register Name Description

0xFFC0 2400 SPI2_CTL “SPI Control (SPIx_CTL) Register” on page 22-45

0xFFC0 2404 SPI2_FLG “SPI Flag (SPIx_FLG) Register” on page 22-46

0xFFC0 2408 SPI2_STAT “SPI Status (SPIx_STAT) Register” on page 22-48

0xFFC0
240C

SPI2_TDBR “SPI Transmit Data Buffer (SPIx_TDBR) Register” on
page 22-48

0xFFC0 2410 SPI2_RDBR “SPI Receive Data Buffer (SPIx_RDBR) Register” on page 22-49

0xFFC0 2414 SPI2_BAUD “SPI Baud Rate (SPIx_BAUD) Register” on page 22-44

0xFFC0 2418 SPI2_
SHADOW

“SPI RDBR Shadow (SPIx_SHADOW) Register” on page 22-49

Table A-10. SPI1 Controller Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference A-13

System MMR Assignments

TWI0 Registers
The TWI0 controller has 16 registers described in the following sections.

Table A-13 lists the TWI0 registers.

Table A-12. TWI0 Registers

Memory
Mapped
Address

Register Name Description

0xFFC0 0700 TWI0_CLKDIV “SCLx Clock Divider (TWIx_CLKDIV) Register” on
page 23-26

0xFFC0 0704 TWI0_CONTROL “TWI Control (TWIx_CONTROL) Register” on
page 23-27

0xFFC0 0708 TWI0_SLAVE_CTL “TWI Slave Mode Control (TWIx_SLAVE_CTL) Reg-
ister” on page 23-27

0xFFC0 0710 TWI0_SLAVE_ADDR “TWI Slave Mode Address (TWIx_SLAVE_ADDR)
Register” on page 23-30

0xFFC0
070C

TWI0_SLAVE_STAT “TWI Slave Mode Status (TWIx_SLAVE_STAT) Regis-
ter” on page 23-30

0xFFC0 0714 TWI0_MASTER_CTL “TWI Master Mode Control (TWIx_MASTER_CTL)
Register” on page 23-32

0xFFC0
071C

TWI0_MASTER_
ADDR

“TWI Master Mode Address (TWIx_MASTER_
ADDR) Register” on page 23-35

0xFFC0 0718 TWI0_MASTER_STAT “TWI Master Mode Status (TWIx_MASTER_STAT)
Register” on page 23-35

0xFFC0 0720 TWI0_INT_STAT “TWI Interrupt Status (TWIx_INT_STAT) Register”
on page 23-44

0xFFC0 0724 TWI0_INT_MASK “TWI Interrupt Mask (TWIx_INT_MASK) Register”
on page 23-43

0xFFC0 0728 TWI0_FIFO_CTL “TWI FIFO Control (TWIx_FIFO_CTL) Register” on
page 23-39

0xFFC0
072C

TWI0_FIFO_STAT “TWI FIFO Status (TWIx_FIFO_STAT) Register” on
page 23-41

System MMR Assignments

A-14 ADSP-BF54x Blackfin Processor Hardware Reference

TWI1 Registers
The TWI1 controller has 16 registers described in the following sections.

Table A-13 lists the TW1I registers.

0xFFC0 0780 TWI0_XMT_DATA8 “TWI FIFO Transmit Data Single Byte (TWIx_XMT_
DATA8) Register” on page 23-48

0xFFC0 0784 TWI0_XMT_DATA16 “TWI FIFO Transmit Data Double Byte Register” on
page 23-49

0xFFC0 0788 TWI0_RCV_DATA8 “TWI FIFO Receive Data Single Byte (TWIx_RCV_
DATA8) Register” on page 23-50

0xFFC0
078C

TWI0_RCV_DATA16 “TWI FIFO Receive Data Double Byte (TWIx_RCV_
DATA16) Register” on page 23-51

Table A-13. TWI1 Registers

Memory
Mapped
Address

Register Name Description

0xFFC0 2200 TWI1_CLKDIV “SCLx Clock Divider (TWIx_CLKDIV) Register” on
page 23-26

0xFFC0 2204 TWI1_CONTROL “TWI Control (TWIx_CONTROL) Register” on
page 23-27

0xFFC0 2208 TWI1_SLAVE_CTL “TWI Slave Mode Control (TWIx_SLAVE_CTL) Reg-
ister” on page 23-27

0xFFC0 2210 TWI1_SLAVE_ADDR “TWI Slave Mode Address (TWIx_SLAVE_ADDR)
Register” on page 23-30

0xFFC0
220C

TWI1_SLAVE_STAT “TWI Slave Mode Status (TWIx_SLAVE_STAT) Reg-
ister” on page 23-30

Table A-12. TWI0 Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference A-15

System MMR Assignments

0xFFC0 2214 TWI1_MASTER_CTL “TWI Master Mode Control (TWIx_MASTER_CTL)
Register” on page 23-32

0xFFC 221C TWI1_MASTER_
ADDR

“TWI Master Mode Address (TWIx_MASTER_
ADDR) Register” on page 23-35

0xFFC0 2218 TWI1_MASTER_STAT “TWI Master Mode Status (TWIx_MASTER_STAT)
Register” on page 23-35

0xFFC0 2220 TWI1_INT_STAT “TWI Interrupt Status (TWIx_INT_STAT) Register”
on page 23-44

0xFFC0 2224 TWI1_INT_MASK “TWI Interrupt Mask (TWIx_INT_MASK) Register”
on page 23-43

0xFFC0 2228 TWI1_FIFO_CTL “TWI FIFO Control (TWIx_FIFO_CTL) Register” on
page 23-39

0xFFC0
222C

TWI1_FIFO_STAT “TWI FIFO Status (TWIx_FIFO_STAT) Register” on
page 23-41

0xFFC0 2280 TWI1_XMT_DATA8 “TWI FIFO Transmit Data Single Byte (TWIx_XMT_
DATA8) Register” on page 23-48

0xFFC0 2284 TWI1_XMT_DATA16 “TWI FIFO Transmit Data Double Byte Register” on
page 23-49

0xFFC0 2288 TWI1_RCV_DATA8 “TWI FIFO Receive Data Single Byte (TWIx_RCV_
DATA8) Register” on page 23-50

0xFFC0
228C

TWI1_RCV_DATA16 “TWI FIFO Receive Data Double Byte (TWIx_RCV_
DATA16) Register” on page 23-51

Table A-13. TWI1 Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-16 ADSP-BF54x Blackfin Processor Hardware Reference

SPORT0 Controller Registers
SPORT0 controller registers (0xFFC0 0800 – 0xFFC0 08FF) are listed in
Table A-14.

Table A-14. SPORT0 Controller Registers

Memory
Mapped
Address

Register Name Description

0xFFC0 0800 SPORT0_TCR1 “Transmit Configuration (SPORTx_TCR1 and SPORTx_
TCR2) Registers” on page 24-51

0xFFC0 0804 SPORT0_TCR2 “Transmit Configuration (SPORTx_TCR1 and SPORTx_
TCR2) Registers” on page 24-51

0xFFC0 0808 SPORT0_TCLK-
DIV

“Serial Clock Divider (SPORTx_TCLKDIV and SPORTx_
RCLKDIV) Registers” on page 24-68

0xFFC0
080C

SPORT0_TFSDIV “Frame Sync Divider (SPORTx_TFSDIV and SPORTx_
RFSDIV) Registers” on page 24-69

0xFFC0 0810 SPORT0_TX “Transmit Data (SPORTx_TX) Register” on page 24-61

0xFFC0 0818 SPORT0_RX “Receive Data (SPORTx_RX) Register” on page 24-64

0xFFC0 0820 SPORT0_RCR1 “SPORTx_RCR1 and SPORTx_RCR2 Registers” on
page 24-56

0xFFC0 0824 SPORT0_RCR2 “SPORTx_RCR1 and SPORTx_RCR2 Registers” on
page 24-56

0xFFC0 0828 SPORT0_RCLK-
DIV

“Serial Clock Divider (SPORTx_TCLKDIV and SPORTx_
RCLKDIV) Registers” on page 24-68

0xFFC0
082C

SPORT0_RFSDIV “Frame Sync Divider (SPORTx_TFSDIV and SPORTx_
RFSDIV) Registers” on page 24-69

0xFFC0 0830 SPORT0_STAT “SPORT Status (SPORTx_STAT) Register” on page 24-66

0xFFC0 0834 SPORT0_CHNL “Current Channel (SPORTx_CHNL) Register” on
page 24-71

0xFFC0 0838 SPORT0_MCMC1 “Multichannel Configuration (SPORTx_MCMCn) Regis-
ters” on page 24-70

ADSP-BF54x Blackfin Processor Hardware Reference A-17

System MMR Assignments

0xFFC0
083C

SPORT0_MCMC2 “Multichannel Configuration (SPORTx_MCMCn) Regis-
ters” on page 24-70

0xFFC0 0840 SPORT0_MTCS0 “Multichannel Selection Transmit (SPORTx_MTCSn)
Registers” on page 24-74

0xFFC0 0844 SPORT0_MTCS1 “Multichannel Selection Transmit (SPORTx_MTCSn)
Registers” on page 24-74

0xFFC0 0848 SPORT0_MTCS2 “Multichannel Selection Transmit (SPORTx_MTCSn)
Registers” on page 24-74

0xFFC0
084C

SPORT0_MTCS3 “Multichannel Selection Transmit (SPORTx_MTCSn)
Registers” on page 24-74

0xFFC0 0850 SPORT0_MRCS0 “Multichannel Selection Receive (SPORTx_MRCSn)
Registers” on page 24-72

0xFFC0 0854 SPORT0_MRCS1 “Multichannel Selection Receive (SPORTx_MRCSn)
Registers” on page 24-72

0xFFC0 0858 SPORT0_MRCS2 “Multichannel Selection Receive (SPORTx_MRCSn)
Registers” on page 24-72

0xFFC0
085C

SPORT0_MRCS3 “Multichannel Selection Receive (SPORTx_MRCSn)
Registers” on page 24-72

Table A-14. SPORT0 Controller Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-18 ADSP-BF54x Blackfin Processor Hardware Reference

SPORT1 Controller Registers
SPORT1 controller registers (0xFFC0 0900 – 0xFFC0 09FF) are listed in
Table A-15.

Table A-15. SPORT 1 Controller Registers

Memory
Mapped
Address

Register Name Description

0xFFC0 0900 SPORT1_TCR1 “Transmit Configuration (SPORTx_TCR1 and SPORTx_
TCR2) Registers” on page 24-51

0xFFC0 0904 SPORT1_TCR2 “Transmit Configuration (SPORTx_TCR1 and SPORTx_
TCR2) Registers” on page 24-51

0xFFC0 0908 SPORT1_TCLK-
DIV

“Serial Clock Divider (SPORTx_TCLKDIV and SPORTx_
RCLKDIV) Registers” on page 24-68

0xFFC0
090C

SPORT1_TFSDIV “Frame Sync Divider (SPORTx_TFSDIV and SPORTx_
RFSDIV) Registers” on page 24-69

0xFFC0 0910 SPORT1_TX “Transmit Data (SPORTx_TX) Register” on page 24-61

0xFFC0 0918 SPORT1_RX “Receive Data (SPORTx_RX) Register” on page 24-64

0xFFC0 0920 SPORT1_RCR1 “SPORTx_RCR1 and SPORTx_RCR2 Registers” on
page 24-56

0xFFC0 0924 SPORT1_RCR2 “SPORTx_RCR1 and SPORTx_RCR2 Registers” on
page 24-56

0xFFC0 0928 SPORT1_RCLK-
DIV

“Serial Clock Divider (SPORTx_TCLKDIV and SPORTx_
RCLKDIV) Registers” on page 24-68

0xFFC0
092C

SPORT1_RFSDIV “Frame Sync Divider (SPORTx_TFSDIV and SPORTx_
RFSDIV) Registers” on page 24-69

0xFFC0 0930 SPORT1_STAT “SPORT Status (SPORTx_STAT) Register” on page 24-66

0xFFC0 0934 SPORT1_CHNL “Current Channel (SPORTx_CHNL) Register” on
page 24-71

0xFFC0 0938 SPORT1_MCMC1 “Multichannel Configuration (SPORTx_MCMCn) Regis-
ters” on page 24-70

ADSP-BF54x Blackfin Processor Hardware Reference A-19

System MMR Assignments

0xFFC0
093C

SPORT1_MCMC2 “Multichannel Configuration (SPORTx_MCMCn) Regis-
ters” on page 24-70

0xFFC0 0940 SPORT1_MTCS0 “Multichannel Selection Transmit (SPORTx_MTCSn)
Registers” on page 24-74

0xFFC0 0944 SPORT1_MTCS1 “Multichannel Selection Transmit (SPORTx_MTCSn)
Registers” on page 24-74

0xFFC0 0948 SPORT1_MTCS2 “Multichannel Selection Transmit (SPORTx_MTCSn)
Registers” on page 24-74

0xFFC0
094C

SPORT1_MTCS3 “Multichannel Selection Transmit (SPORTx_MTCSn)
Registers” on page 24-74

0xFFC0 0950 SPORT1_MRCS0 “Multichannel Selection Receive (SPORTx_MRCSn)
Registers” on page 24-72

0xFFC0 0954 SPORT1_MRCS1 “Multichannel Selection Receive (SPORTx_MRCSn)
Registers” on page 24-72

0xFFC0 0958 SPORT1_MRCS2 “Multichannel Selection Receive (SPORTx_MRCSn)
Registers” on page 24-72

0xFFC0
095C

SPORT1_MRCS3 “Multichannel Selection Receive (SPORTx_MRCSn)
Registers” on page 24-72

Table A-15. SPORT 1 Controller Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-20 ADSP-BF54x Blackfin Processor Hardware Reference

SPORT2 Controller Registers
SPORT2 controller registers are listed in Table A-16.

Table A-16. SPORT2 Controller Registers

Memory
Mapped
Address

Register Name Description

0xFFC0 2500 SPORT2_TCR1 “Transmit Configuration (SPORTx_TCR1 and SPORTx_
TCR2) Registers” on page 24-51

0xFFC0 2504 SPORT2_TCR2 “Transmit Configuration (SPORTx_TCR1 and SPORTx_
TCR2) Registers” on page 24-51

0xFFC0 2508 SPORT2_TCLK-
DIV

“Serial Clock Divider (SPORTx_TCLKDIV and SPORTx_
RCLKDIV) Registers” on page 24-68

0xFFC0
250C

SPORT2_TFSDIV “Frame Sync Divider (SPORTx_TFSDIV and SPORTx_
RFSDIV) Registers” on page 24-69

0xFFC0 2510 SPORT2_TX “Transmit Data (SPORTx_TX) Register” on page 24-61

0xFFC0 2518 SPORT2_RX “Receive Data (SPORTx_RX) Register” on page 24-64

0xFFC0 2520 SPORT2_RCR1 “SPORTx_RCR1 and SPORTx_RCR2 Registers” on
page 24-56

0xFFC0 2524 SPORT2_RCR2 “SPORTx_RCR1 and SPORTx_RCR2 Registers” on
page 24-56

0xFFC0 2528 SPORT2_RCLK-
DIV

“Serial Clock Divider (SPORTx_TCLKDIV and SPORTx_
RCLKDIV) Registers” on page 24-68

0xFFC0
252C

SPORT2_RFSDIV “Frame Sync Divider (SPORTx_TFSDIV and SPORTx_
RFSDIV) Registers” on page 24-69

0xFFC0 2530 SPORT2_STAT “SPORT Status (SPORTx_STAT) Register” on page 24-66

0xFFC0 2534 SPORT2_CHNL “Current Channel (SPORTx_CHNL) Register” on
page 24-71

0xFFC0 2538 SPORT2_MCMC1 “Multichannel Configuration (SPORTx_MCMCn) Regis-
ters” on page 24-70

0xFFC0
253C

SPORT2_MCMC2 “Multichannel Configuration (SPORTx_MCMCn) Regis-
ters” on page 24-70

ADSP-BF54x Blackfin Processor Hardware Reference A-21

System MMR Assignments

0xFFC0 2540 SPORT2_MTCS0 “Multichannel Selection Transmit (SPORTx_MTCSn)
Registers” on page 24-74

0xFFC0 2544 SPORT2_MTCS1 “Multichannel Selection Transmit (SPORTx_MTCSn)
Registers” on page 24-74

0xFFC0 2548 SPORT2_MTCS2 “Multichannel Selection Transmit (SPORTx_MTCSn)
Registers” on page 24-74

0xFFC0
254C

SPORT2_MTCS3 “Multichannel Selection Transmit (SPORTx_MTCSn)
Registers” on page 24-74

0xFFC0 2550 SPORT2_MRCS0 “Multichannel Selection Receive (SPORTx_MRCSn)
Registers” on page 24-72

0xFFC0 2554 SPORT2_MRCS1 “Multichannel Selection Receive (SPORTx_MRCSn)
Registers” on page 24-72

0xFFC0 2558 SPORT2_MRCS2 “Multichannel Selection Receive (SPORTx_MRCSn)
Registers” on page 24-72

0xFFC0
255C

SPORT2_MRCS3 “Multichannel Selection Receive (SPORTx_MRCSn)
Registers” on page 24-72

Table A-16. SPORT2 Controller Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-22 ADSP-BF54x Blackfin Processor Hardware Reference

SPORT3 Controller Registers
SPORT3 controller registers (0xFFC0 0900 – 0xFFC0 09FF) are listed in
Table A-17.

Table A-17. SPORT3 Controller Registers

Memory
Mapped
Address

Register Name Description

0xFFC0 2600 SPORT3_TCR1 “Transmit Configuration (SPORTx_TCR1 and SPORTx_
TCR2) Registers” on page 24-51

0xFFC0 2604 SPORT3_TCR2 “Transmit Configuration (SPORTx_TCR1 and SPORTx_
TCR2) Registers” on page 24-51

0xFFC0 2608 SPORT3_TCLK-
DIV

“Serial Clock Divider (SPORTx_TCLKDIV and SPORTx_
RCLKDIV) Registers” on page 24-68

0xFFC0
260C

SPORT3_TFSDIV “Frame Sync Divider (SPORTx_TFSDIV and SPORTx_
RFSDIV) Registers” on page 24-69

0xFFC0 2610 SPORT3_TX “Transmit Data (SPORTx_TX) Register” on page 24-61

0xFFC0 2618 SPORT3_RX “Receive Data (SPORTx_RX) Register” on page 24-64

0xFFC0 2620 SPORT3_RCR1 “SPORTx_RCR1 and SPORTx_RCR2 Registers” on
page 24-56

0xFFC0 2624 SPORT3_RCR2 “SPORTx_RCR1 and SPORTx_RCR2 Registers” on
page 24-56

0xFFC0 2628 SPORT3_RCLK-
DIV

“Serial Clock Divider (SPORTx_TCLKDIV and SPORTx_
RCLKDIV) Registers” on page 24-68

0xFFC0
262C

SPORT3_RFSDIV “Frame Sync Divider (SPORTx_TFSDIV and SPORTx_
RFSDIV) Registers” on page 24-69

0xFFC0 2630 SPORT3_STAT “SPORT Status (SPORTx_STAT) Register” on page 24-66

0xFFC0 2634 SPORT3_CHNL “Current Channel (SPORTx_CHNL) Register” on
page 24-71

0xFFC0 2638 SPORT3_MCMC1 “Multichannel Configuration (SPORTx_MCMCn) Regis-
ters” on page 24-70

ADSP-BF54x Blackfin Processor Hardware Reference A-23

System MMR Assignments

0xFFC0
263C

SPORT3_MCMC2 “Multichannel Configuration (SPORTx_MCMCn) Regis-
ters” on page 24-70

0xFFC0 2640 SPORT3_MTCS0 “Multichannel Selection Transmit (SPORTx_MTCSn)
Registers” on page 24-74

0xFFC0 2644 SPORT3_MTCS1 “Multichannel Selection Transmit (SPORTx_MTCSn)
Registers” on page 24-74

0xFFC0 2648 SPORT3_MTCS2 “Multichannel Selection Transmit (SPORTx_MTCSn)
Registers” on page 24-74

0xFFC0
264C

SPORT3_MTCS3 “Multichannel Selection Transmit (SPORTx_MTCSn)
Registers” on page 24-74

0xFFC0 2650 SPORT3_MRCS0 “Multichannel Selection Receive (SPORTx_MRCSn)
Registers” on page 24-72

0xFFC0 2654 SPORT3_MRCS1 “Multichannel Selection Receive (SPORTx_MRCSn)
Registers” on page 24-72

0xFFC0 2658 SPORT3_MRCS2 “Multichannel Selection Receive (SPORTx_MRCSn)
Registers” on page 24-72

0xFFC0
265C

SPORT3_MRCS3 “Multichannel Selection Receive (SPORTx_MRCSn)
Registers” on page 24-72

Table A-17. SPORT3 Controller Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-24 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Registers
Table A-18 shows the MXVR register memory map.

Table A-18. MXVR Memory Map

Memory
Mapped
Address

Register Name Description

0xFFC0 2700 MXVR_CONFIG
16-bit R/W
Reset = 0x1FCA

“MXVR Configuration (MXVR_CONFIG)
Register” on page 29-13

0xFFC0 2704 Reserved –

0xFFC0 2708 MXVR_STATE_0
32-bit RO
Reset = 0x0000 0000

“MXVR State (MXVR_STATE_0, MXVR_
STATE_1) Registers” on page 29-19

0xFFC0 270C MXVR_STATE_1
32-bit RO
Reset = 0x0000 0000

“MXVR State (MXVR_STATE_0, MXVR_
STATE_1) Registers” on page 29-19

0xFFC0 2710 MXVR_INT_STAT_0
32-bit R?W
Reset = 0x0000 0000

“MXVR Interrupt Status Register 0 (MXVR_
INT_STAT_0)” on page 29-29

0xFFC0 2714 MXVR_INT_STAT_1
32-bit R/W
Reset = 0x0000 0000

“MXVR Interrupt Status_1 (MXVR_INT_
STAT_1) Register” on page 29-40

0xFFC0 2718 MXVR_INT_EN_0
32-bit R/W
Reset = 0x0000 0000

“MXVR Interrupt Enable 0 (MXVR_INT_
EN_0) Register” on page 29-43

0xFFC0 271C MXVR_INT_EN_1
32-bit R/W
Reset = 0x0000 0000

“MXVR Interrupt Enable 1 (MXVR_INT_
EN_1) Register” on page 29-46

0xFFC0 2720 MXVR_POSITION
16-bit RO
Reset = 0x8000

“MXVR Node Position (MXVR_POSITION)
Register” on page 29-48

0xFFC0 2724 MXVR_MAX_POSITION
16-bit RO
Reset = 0x0000

“MXVR Maximum Node Position (MXVR_
MAX_POSITION) Register” on page 29-49

ADSP-BF54x Blackfin Processor Hardware Reference A-25

System MMR Assignments

0xFFC0 2728 MXVR_DELAY
16-bit RO
Reset = 0x8000

“MXVR Node Frame Delay (MXVR_DELAY)
Register” on page 29-50

0xFFC0 272C MXVR_MAX_DELAY
16-bit RO
Reset = 0x0000

“MXVR Maximum Node Frame Delay
(MXVR_MAX_DELAY) Register” on
page 29-52

0xFFC0 2730 MXVR_LADDR
32-bit R/W
Reset = 0x0000 0FFF

“MXVR Logical Address (MXVR_LADDR)
Register” on page 29-53

0xFFC0 2734 MXVR_GADDR
16-bit R/W
Reset = 0x0000

“MXVR Group Address (MXVR_GADDR)
Register” on page 29-54

0xFFC0 2738 MXVR_AADDR
32-bit R/W
Reset = 0x0000 0FFF

“MXVR Alternate Address (MXVR_AADDR)
Register” on page 29-55

0xFFC0 273C MXVR_ALLOC_0
32-bit RO
Reset = 0xXXXX XXXX

“MXVR Allocation Table (MXVR_ALLOC_0
– MXVR_ALLOC_14) Registers” on
page 29-55

0xFFC0 2740 MXVR_ALLOC_1
32-bit RO
Reset = 0xXXXX XXXX

“MXVR Allocation Table (MXVR_ALLOC_0
– MXVR_ALLOC_14) Registers” on
page 29-55

0xFFC0 2744 MXVR_ALLOC_2
32-bit RO
Reset = 0xXXXX XXXX

“MXVR Allocation Table (MXVR_ALLOC_0
– MXVR_ALLOC_14) Registers” on
page 29-55

0xFFC0 2748 MXVR_ALLOC_3
32-bit RO
Reset = 0xXXXX XXXX

“MXVR Allocation Table (MXVR_ALLOC_0
– MXVR_ALLOC_14) Registers” on
page 29-55

0xFFC0 274C MXVR_ALLOC_4
32-bit RO
Reset = 0xXXXX XXXX

“MXVR Allocation Table (MXVR_ALLOC_0
– MXVR_ALLOC_14) Registers” on
page 29-55

Table A-18. MXVR Memory Map (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-26 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 2750 MXVR_ALLOC_5
32-bit RO
Reset = 0xXXXX XXXX

“MXVR Allocation Table (MXVR_ALLOC_0
– MXVR_ALLOC_14) Registers” on
page 29-55

0xFFC0 2754 MXVR_ALLOC_6
32-bit RO
Reset = 0xXXXX XXXX

“MXVR Allocation Table (MXVR_ALLOC_0
– MXVR_ALLOC_14) Registers” on
page 29-55

0xFFC0 2758 MXVR_ALLOC_7
32-bit RO
Reset = 0xXXXX XXXX

“MXVR Allocation Table (MXVR_ALLOC_0
– MXVR_ALLOC_14) Registers” on
page 29-55

0xFFC0 275C MXVR_ALLOC_8
32-bit RO
Reset = 0xXXXX XXXX

“MXVR Allocation Table (MXVR_ALLOC_0
– MXVR_ALLOC_14) Registers” on
page 29-55

0xFFC0 2760 MXVR_ALLOC_9
32-bit RO
Reset = 0xXXXX XXXX

“MXVR Allocation Table (MXVR_ALLOC_0
– MXVR_ALLOC_14) Registers” on
page 29-55

0xFFC0 2764 MXVR_ALLOC_10
32-bit RO
Reset = 0xXXXX XXXX

“MXVR Allocation Table (MXVR_ALLOC_0
– MXVR_ALLOC_14) Registers” on
page 29-55

0xFFC0 2768 MXVR_ALLOC_11
32-bit RO
Reset = 0xXXXX XXXX

“MXVR Allocation Table (MXVR_ALLOC_0
– MXVR_ALLOC_14) Registers” on
page 29-55

0xFFC0 276C MXVR_ALLOC_12
32-bit RO
Reset = 0xXXXX XXXX

“MXVR Allocation Table (MXVR_ALLOC_0
– MXVR_ALLOC_14) Registers” on
page 29-55

0xFFC0 2770 MXVR_ALLOC_13
32-bit RO
Reset = 0xXXXX XXXX

“MXVR Allocation Table (MXVR_ALLOC_0
– MXVR_ALLOC_14) Registers” on
page 29-55

0xFFC0 2774 MXVR_ALLOC_14
32-bit RO
Reset = 0xXXXX XXXX

“MXVR Allocation Table (MXVR_ALLOC_0
– MXVR_ALLOC_14) Registers” on
page 29-55

Table A-18. MXVR Memory Map (Cont’d)

Memory
Mapped
Address

Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference A-27

System MMR Assignments

0xFFC0 2778 MXVR_SYNC_LCHAN_0
32-bit R/W
Reset = 0xFFFF FFFF

“MXVR Synchronous Logical Channel Assign-
ment (MXVR_SYNC_LCHAN_0 – MXVR_
SYNC_LCHAN_7) Registers” on page 29-57

0xFFC0 277C MXVR_SYNC_LCHAN_1
32-bit R/W
Reset = 0xFFFF FFFF

“MXVR Synchronous Logical Channel Assign-
ment (MXVR_SYNC_LCHAN_0 – MXVR_
SYNC_LCHAN_7) Registers” on page 29-57

0xFFC0 2780 MXVR_SYNC_LCHAN_2
32-bit R/W
Reset = 0xFFFF FFFF

“MXVR Synchronous Logical Channel Assign-
ment (MXVR_SYNC_LCHAN_0 – MXVR_
SYNC_LCHAN_7) Registers” on page 29-57

0xFFC0 2784 MXVR_SYNC_LCHAN_3
32-bit R/W
Reset = 0xFFFF FFFF

“MXVR Synchronous Logical Channel Assign-
ment (MXVR_SYNC_LCHAN_0 – MXVR_
SYNC_LCHAN_7) Registers” on page 29-57

0xFFC0 2788 MXVR_SYNC_LCHAN_4
32-bit R/W
Reset = 0xFFFF FFFF

“MXVR Synchronous Logical Channel Assign-
ment (MXVR_SYNC_LCHAN_0 – MXVR_
SYNC_LCHAN_7) Registers” on page 29-57

0xFFC0 278C MXVR_SYNC_LCHAN_5
32-bit R/W
Reset = 0xFFFF FFFF

“MXVR Synchronous Logical Channel Assign-
ment (MXVR_SYNC_LCHAN_0 – MXVR_
SYNC_LCHAN_7) Registers” on page 29-57

0xFFC0 2790 MXVR_SYNC_LCHAN_6
32-bit R/W
Reset = 0xFFFF FFFF

“MXVR Synchronous Logical Channel Assign-
ment (MXVR_SYNC_LCHAN_0 – MXVR_
SYNC_LCHAN_7) Registers” on page 29-57

0xFFC0 2794 MXVR_SYNC_LCHAN_7
32-bit R/W
Reset = 0xFFFF FFFF

“MXVR Synchronous Logical Channel Assign-
ment (MXVR_SYNC_LCHAN_0 – MXVR_
SYNC_LCHAN_7) Registers” on page 29-57

0xFFC0 2798 MXVR_DMA0_CONFIG
32-bit R/W
Reset = 0x0000 0000

“MXVR DMAx Configuration (MXVR_
DMA0_CONFIG – MXVR_DMA7_CON-
FIG) Registers” on page 29-59

0xFFC0 279C MXVR_DMA0_START_ADDR
32-bit R/W
Reset = 0xFF00 0000

“MXVR DMA Channel x Start Address
(MXVR_DMA0_START_ADDR – MXVR_
DMA7_START_ADDR) Registers” on
page 29-69

Table A-18. MXVR Memory Map (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-28 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 27A0 MXVR_DMA0_COUNT
16-bit R/W
Reset = 0x0001

“MXVR DMA Channel x Transfer Count
(MXVR_DMA0_COUNT – MXVR_DMA7_
COUNT) Registers” on page 29-72

0xFFC0 27A4 MXVR_DMA0_CURR_ADDR
32-bit RO
Reset = 0xFF00 0000

“MXVR DMA Channel x Current Address
(MXVR_DMA0_CURR_ADDR – MXVR_
DMA7_CURR_ADDR) Registers” on
page 29-71

0xFFC0 27A8 MXVR_DMA0_CURR_
COUNT
16-bit RO
Reset = 0x0000

“MXVR DMA Channel x Current Transfer
Count (MXVR_DMA0_CURR_COUNT –
MXVR_DMA7_CURR_COUNT) Registers”
on page 29-74

0xFFC0 27AC MXVR_DMA1_CONFIG
32-bit R/W
Reset = 0x0000 0000

“MXVR DMAx Configuration (MXVR_
DMA0_CONFIG – MXVR_DMA7_CON-
FIG) Registers” on page 29-59

0xFFC0 27B0 MXVR_DMA1_START_ADDR
32-bit R/W
Reset = 0xFF00 0000

“MXVR DMA Channel x Start Address
(MXVR_DMA0_START_ADDR – MXVR_
DMA7_START_ADDR) Registers” on
page 29-69

0xFFC0 27B4 MXVR_DMA1_COUNT
16-bit R/W
Reset = 0x0001

“MXVR DMA Channel x Transfer Count
(MXVR_DMA0_COUNT – MXVR_DMA7_
COUNT) Registers” on page 29-72

0xFFC0 27B8 MXVR_DMA1_CURR_ADDR
32-bit RO
Reset = 0xFF00 0000

“MXVR DMA Channel x Current Address
(MXVR_DMA0_CURR_ADDR – MXVR_
DMA7_CURR_ADDR) Registers” on
page 29-71

0xFFC0 27BC MXVR_DMA1_CURR_
COUNT
16-bit RO
Reset = 0x0000

“MXVR DMA Channel x Current Transfer
Count (MXVR_DMA0_CURR_COUNT –
MXVR_DMA7_CURR_COUNT) Registers”
on page 29-74

0xFFC0 27C0 MXVR_DMA2_CONFIG
32-bit R/W
Reset = 0x0000 0000

“MXVR DMAx Configuration (MXVR_
DMA0_CONFIG – MXVR_DMA7_CON-
FIG) Registers” on page 29-59

Table A-18. MXVR Memory Map (Cont’d)

Memory
Mapped
Address

Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference A-29

System MMR Assignments

0xFFC0 27C4 MXVR_DMA2_START_ADDR
32-bit R/W
Reset = 0xFF00 0000

“MXVR DMA Channel x Start Address
(MXVR_DMA0_START_ADDR – MXVR_
DMA7_START_ADDR) Registers” on
page 29-69

0xFFC0 27C8 MXVR_DMA2_COUNT
16-bit R/W
Reset = 0x0001

“MXVR DMA Channel x Transfer Count
(MXVR_DMA0_COUNT – MXVR_DMA7_
COUNT) Registers” on page 29-72

0xFFC0
27CC

MXVR_DMA2_CURR_ADDR
32-bit RO
Reset = 0xFF00 0000

“MXVR DMA Channel x Current Address
(MXVR_DMA0_CURR_ADDR – MXVR_
DMA7_CURR_ADDR) Registers” on
page 29-71

0xFFC0 27D0 MXVR_DMA2_CURR_
COUNT
16-bit RO
Reset = 0x0000

“MXVR DMA Channel x Current Transfer
Count (MXVR_DMA0_CURR_COUNT –
MXVR_DMA7_CURR_COUNT) Registers”
on page 29-74

0xFFC0 27D4 MXVR_DMA3_CONFIG
32-bit R/W
Reset = 0x0000 0000

“MXVR DMAx Configuration (MXVR_
DMA0_CONFIG – MXVR_DMA7_CON-
FIG) Registers” on page 29-59

0xFFC0 27D8 MXVR_DMA3_START_ADDR
32-bit R/W
Reset = 0xFF00 0000

“MXVR DMA Channel x Start Address
(MXVR_DMA0_START_ADDR – MXVR_
DMA7_START_ADDR) Registers” on
page 29-69

0xFFC0
27DC

MXVR_DMA3_COUNT
16-bit R/W
Reset = 0x0001

“MXVR DMA Channel x Transfer Count
(MXVR_DMA0_COUNT – MXVR_DMA7_
COUNT) Registers” on page 29-72

0xFFC0 27E0 MXVR_DMA3_CURR_ADDR
32-bit RO
Reset = 0xFF00 0000

“MXVR DMA Channel x Current Address
(MXVR_DMA0_CURR_ADDR – MXVR_
DMA7_CURR_ADDR) Registers” on
page 29-71

0xFFC0 27E4 MXVR_DMA3_CURR_
COUNT
16-bit RO
Reset = 0x0000

“MXVR DMA Channel x Current Transfer
Count (MXVR_DMA0_CURR_COUNT –
MXVR_DMA7_CURR_COUNT) Registers”
on page 29-74

Table A-18. MXVR Memory Map (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-30 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 27E8 MXVR_DMA4_CONFIG
32-bit R/W
Reset = 0x0000 0000

“MXVR DMAx Configuration (MXVR_
DMA0_CONFIG – MXVR_DMA7_CON-
FIG) Registers” on page 29-59

0xFFC0 27EC MXVR_DMA4_START_ADDR
32-bit R/W
Reset = 0xFF00 0000

“MXVR DMA Channel x Start Address
(MXVR_DMA0_START_ADDR – MXVR_
DMA7_START_ADDR) Registers” on
page 29-69

0xFFC0 27F0 MXVR_DMA4_COUNT
16-bit R/W
Reset = 0x0001

“MXVR DMA Channel x Transfer Count
(MXVR_DMA0_COUNT – MXVR_DMA7_
COUNT) Registers” on page 29-72

0xFFC0 27F4 MXVR_DMA4_CURR_ADDR
32-bit RO
Reset = 0xFF00 0000

“MXVR DMA Channel x Current Address
(MXVR_DMA0_CURR_ADDR – MXVR_
DMA7_CURR_ADDR) Registers” on
page 29-71

0xFFC0 27F8 MXVR_DMA4_CURR_
COUNT
16-bit RO
Reset = 0x0000

“MXVR DMA Channel x Current Transfer
Count (MXVR_DMA0_CURR_COUNT –
MXVR_DMA7_CURR_COUNT) Registers”
on page 29-74

0xFFC0 27FC MXVR_DMA5_CONFIG
32-bit R/W
Reset = 0x0000 0000

“MXVR DMAx Configuration (MXVR_
DMA0_CONFIG – MXVR_DMA7_CON-
FIG) Registers” on page 29-59

0xFFC0 2800 MXVR_DMA5_START_ADDR
32-bit R/W
Reset = 0xFF00 0000

“MXVR DMA Channel x Start Address
(MXVR_DMA0_START_ADDR – MXVR_
DMA7_START_ADDR) Registers” on
page 29-69

0xFFC0 2804 MXVR_DMA5_COUNT
16-bit R/W
Reset = 0x0001

“MXVR DMA Channel x Transfer Count
(MXVR_DMA0_COUNT – MXVR_DMA7_
COUNT) Registers” on page 29-72

0xFFC0 2808 MXVR_DMA5_CURR_ADDR
32-bit RO
Reset = 0xFF00 0000

“MXVR DMA Channel x Current Address
(MXVR_DMA0_CURR_ADDR – MXVR_
DMA7_CURR_ADDR) Registers” on
page 29-71

Table A-18. MXVR Memory Map (Cont’d)

Memory
Mapped
Address

Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference A-31

System MMR Assignments

0xFFC0 280C MXVR_DMA5_CURR_
COUNT
16-bit RO
Reset = 0x0000

“MXVR DMA Channel x Current Transfer
Count (MXVR_DMA0_CURR_COUNT –
MXVR_DMA7_CURR_COUNT) Registers”
on page 29-74

0xFFC0 2810 MXVR_DMA6_CONFIG
32-bit R/W
Reset = 0x0000 0000

“MXVR DMAx Configuration (MXVR_
DMA0_CONFIG – MXVR_DMA7_CON-
FIG) Registers” on page 29-59

0xFFC0 2814 MXVR_DMA6_START_ADDR
32-bit R/W
Reset = 0xFF00 0000

“MXVR DMA Channel x Start Address
(MXVR_DMA0_START_ADDR – MXVR_
DMA7_START_ADDR) Registers” on
page 29-69

0xFFC0 2818 MXVR_DMA6_COUNT
16-bit R/W
Reset = 0x0001

“MXVR DMA Channel x Transfer Count
(MXVR_DMA0_COUNT – MXVR_DMA7_
COUNT) Registers” on page 29-72

0xFFC0 281C MXVR_DMA6_CURR_ADDR
32-bit RO
Reset = 0xFF00 0000

“MXVR DMA Channel x Current Address
(MXVR_DMA0_CURR_ADDR – MXVR_
DMA7_CURR_ADDR) Registers” on
page 29-71

0xFFC0 2820 MXVR_DMA6_CURR_
COUNT
16-bit RO
Reset = 0x0000

“MXVR DMA Channel x Current Transfer
Count (MXVR_DMA0_CURR_COUNT –
MXVR_DMA7_CURR_COUNT) Registers”
on page 29-74

0xFFC0 2824 MXVR_DMA7_CONFIG
32-bit R/W
Reset = 0x0000 0000

“MXVR DMAx Configuration (MXVR_
DMA0_CONFIG – MXVR_DMA7_CON-
FIG) Registers” on page 29-59

0xFFC0 2828 MXVR_DMA7_START_ADDR
32-bit R/W
Reset = 0xFF00 0000

“MXVR DMA Channel x Start Address
(MXVR_DMA0_START_ADDR – MXVR_
DMA7_START_ADDR) Registers” on
page 29-69

0xFFC0 282C MXVR_DMA7_COUNT
16-bit R/W
Reset = 0x0001

“MXVR DMA Channel x Transfer Count
(MXVR_DMA0_COUNT – MXVR_DMA7_
COUNT) Registers” on page 29-72

Table A-18. MXVR Memory Map (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-32 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 2830 MXVR_DMA7_CURR_ADDR
32-bit RO
Reset = 0xFF00 0000

“MXVR DMA Channel x Current Address
(MXVR_DMA0_CURR_ADDR – MXVR_
DMA7_CURR_ADDR) Registers” on
page 29-71

0xFFC0 2834 MXVR_DMA7_CURR_
COUNT
16-bit RO
Reset = 0x0000

“MXVR DMA Channel x Current Transfer
Count (MXVR_DMA0_CURR_COUNT –
MXVR_DMA7_CURR_COUNT) Registers”
on page 29-74

0xFFC0 2838 MXVR_AP_CTL
16-bit R/W
Reset = 0x0000

“MXVR Asynchronous Packet Control
(MXVR_AP_CTL) Register” on page 29-75

0xFFC0 283C MXVR_APRB_START_ADDR
32-bit R/W
Reset = 0xFF00 0000

“MXVR Asynchronous Packet Receive Buffer
Start Address (MXVR_APRB_START_
ADDR) Register” on page 29-77

0xFFC0 2840 MXVR_APRB_CURR_ADDR
32-bit RO
Reset = 0xFF00 0000

“MXVR Asynchronous Packet Receive Buffer
Current Address (MXVR_APRB_CURR_
ADDR) Register” on page 29-78

0xFFC0 2844 MXVR_APTB_START_ADDR
32-bit R/W
Reset = 0xFF00 0000

“MXVR Asynchronous Packet Transmit Buffer
Start Address (MXVR_APTB_START_
ADDR) Register” on page 29-79

0xFFC0 2848 MXVR_APTB_CURR_ADDR
32-bit RO
Reset = 0xFF00 0000

“MXVR Asynchronous Packet Transmit Buffer
Current Address (MXVR_APTB_CURR_
ADDR) Register” on page 29-79

0xFFC0 284C MXVR_CM_CTL
32-bit R/W
Reset = 0x0000 0000

“MXVR Control Message Control (MXVR_
CM_CTL) Register” on page 29-80

0xFFC0 2850 MXVR_CMRB_START_ADDR
32-bit R/W
Reset = 0xFF00 0000

“MXVR Control Message Receive Buffer Start
Address (MXVR_CMRB_START_ADDR)
Register” on page 29-82

0xFFC0 2854 MXVR_CMRB_CURR_ADDR
32-bit RO
Reset = 0xFF00 0000

“MXVR Control Message Receive Buffer Start
Address (MXVR_CMRB_START_ADDR)
Register” on page 29-82

Table A-18. MXVR Memory Map (Cont’d)

Memory
Mapped
Address

Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference A-33

System MMR Assignments

0xFFC0 2858 MXVR_CMTB_START_ADDR
32-bit R/W
Reset = 0xFF00 0000

“MXVR Control Message Transmit Buffer
Start Address (MXVR_CMTB_START_
ADDR) Register” on page 29-84

0xFFC0 285C MXVR_CMTB_CURR_ADDR
32-bit RO
Reset = 0xFF00 0000

“MXVR Control Message Transmit Buffer
Current Address (MXVR_CMTB_CURR_
ADDR) Register” on page 29-85

0xFFC0 2860 MXVR_RRDB_START_ADDR
32-bit R/W
Reset = 0xFF00 0000

“MXVR Remote Read Buffer Start Address
(MXVR_RRDB_START_ADDR) Register”
on page 29-86

0xFFC0 2864 MXVR_RRDB_CURR_ADDR
32-bit RO
Reset = 0xFF00 0000

“MXVR Remote Read Buffer Current Address
(MXVR_RRDB_CURR_ADDR) Register” on
page 29-86

0xFFC0 2868 MXVR_PAT_DATA_0
32-bit R/W
Reset = 0x0000 0000

“MXVR Pattern Data (MXVR_PAT_DATA_
0, MXVR_PAT_DATA_1) Registers” on
page 29-87

0xFFC0 286C MXVR_PAT_EN_0
32-bit R/W
Reset = 0x0000 0000

“MXVR Pattern Enable (MXVR_PAT_EN_0,
MXVR_PAT_EN_1) Registers” on page 29-88

0xFFC0 2870 MXVR_PAT_DATA_1
32-bit R/W
Reset = 0x0000 0000

“MXVR Pattern Data (MXVR_PAT_DATA_
0, MXVR_PAT_DATA_1) Registers” on
page 29-87

0xFFC0 2874 MXVR_PAT_EN_1
32-bit R/W
Reset = 0x0000 0000

“MXVR Pattern Enable (MXVR_PAT_EN_0,
MXVR_PAT_EN_1) Registers” on page 29-88

0xFFC0 2878 MXVR_FRAME_CNT_0
16-bit R/W
Reset = 0x0000

“MXVR Frame Counter (MXVR_FRAME_
CNT_0, MXVR_FRAME_CNT_1) Regis-
ters” on page 29-90

0xFFC0 287C MXVR_FRAME_CNT_1
16-bit R/W
Reset = 0x0000

“MXVR Frame Counter (MXVR_FRAME_
CNT_0, MXVR_FRAME_CNT_1) Regis-
ters” on page 29-90

Table A-18. MXVR Memory Map (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-34 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 2880 MXVR_Routing_0
32-bit WO
Reset = 0xXXXX XXXX

“MXVR Routing (MXVR_ROUTING_0 –
MXVR_ROUTING_14) Registers” on
page 29-91

0xFFC0 2884 MXVR_Routing_1
32-bit WO
Reset = 0xXXXX XXXX

“MXVR Routing (MXVR_ROUTING_0 –
MXVR_ROUTING_14) Registers” on
page 29-91

0xFFC0 2888 MXVR_Routing_2
32-bit WO
Reset = 0xXXXX XXXX

“MXVR Routing (MXVR_ROUTING_0 –
MXVR_ROUTING_14) Registers” on
page 29-91

0xFFC0 288C MXVR_Routing_3
32-bit WO
Reset = 0xXXXX XXXX

“MXVR Routing (MXVR_ROUTING_0 –
MXVR_ROUTING_14) Registers” on
page 29-91

0xFFC0 2890 MXVR_Routing_4
32-bit WO
Reset = 0xXXXX XXXX

“MXVR Routing (MXVR_ROUTING_0 –
MXVR_ROUTING_14) Registers” on
page 29-91

0xFFC0 2894 MXVR_Routing_5
32-bit WO
Reset = 0xXXXX XXXX

“MXVR Routing (MXVR_ROUTING_0 –
MXVR_ROUTING_14) Registers” on
page 29-91

0xFFC0 2898 MXVR_Routing_6
32-bit WO
Reset = 0xXXXX XXXX

“MXVR Routing (MXVR_ROUTING_0 –
MXVR_ROUTING_14) Registers” on
page 29-91

0xFFC0 289C MXVR_Routing_7
32-bit WO
Reset = 0xXXXX XXXX

“MXVR Routing (MXVR_ROUTING_0 –
MXVR_ROUTING_14) Registers” on
page 29-91

0xFFC0 28A0 MXVR_Routing_8
32-bit WO
Reset = 0xXXXX XXXX

“MXVR Routing (MXVR_ROUTING_0 –
MXVR_ROUTING_14) Registers” on
page 29-91

0xFFC0 28A4 MXVR_Routing_9
32-bit WO
Reset = 0xXXXX XXXX

“MXVR Routing (MXVR_ROUTING_0 –
MXVR_ROUTING_14) Registers” on
page 29-91

Table A-18. MXVR Memory Map (Cont’d)

Memory
Mapped
Address

Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference A-35

System MMR Assignments

0xFFC0 28A8 MXVR_Routing_10
32-bit WO
Reset = 0xXXXX XXXX

“MXVR Routing (MXVR_ROUTING_0 –
MXVR_ROUTING_14) Registers” on
page 29-91

0xFFC0 28AC MXVR_Routing_11
32-bit WO
Reset = 0xXXXX XXXX

“MXVR Routing (MXVR_ROUTING_0 –
MXVR_ROUTING_14) Registers” on
page 29-91

0xFFC0 28B0 MXVR_Routing_12
32-bit WO
Reset = 0xXXXX XXXX

“MXVR Routing (MXVR_ROUTING_0 –
MXVR_ROUTING_14) Registers” on
page 29-91

0xFFC0 28B4 MXVR_Routing_13
32-bit WO
Reset = 0xXXXX XXXX

“MXVR Routing (MXVR_ROUTING_0 –
MXVR_ROUTING_14) Registers” on
page 29-91

0xFFC0 28B8 MXVR_Routing_14
32-bit WO
Reset = 0xXXXX XXXX

“MXVR Routing (MXVR_ROUTING_0 –
MXVR_ROUTING_14) Registers” on
page 29-91

0xFFC0 28BC Reserved –

0xFFC0 28C0 MXVR_BLOCK_CNT
16-bit R/W
Reset = 0x0000

“MXVR Block Counter (MXVR_BLOCK_
CNT) Register” on page 29-94

0xFFC0 28C4
 to
0xFFC0
28CC

Reserved –

0xFFC0 28D0 MXVR_CLK_CTL
32-bit R/W
Reset = 0x0202 0003

“MXVR Clock Control (MXVR_CLK_CTL)
Register” on page 29-95

0xFFC0 28D4 MXVR_CDRPLL_CTL
32-bit R/W
Reset = 0x0502 0820

“MXVR Clock/Data Recovery PLL Control
(MXVR_CDRPLL_CTL) Register” on
page 29-101

0xFFC0 28D8 MXVR_FMPLL_CTL
32-bit R/W
Reset = 0x1900 1020

“MXVR Frequency Multiply PLL Control
(MXVR_FMPLL_CTL) Register” on
page 29-104

Table A-18. MXVR Memory Map (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-36 ADSP-BF54x Blackfin Processor Hardware Reference

Keypad Registers
Descriptions and bit diagrams for each of the memory-mapped registers
(MMRs) are provided in the following subsections. See Table A-19.

0xFFC0
28DC

MXVR_PIN_CTL
16-bit R/W
Reset = 0x0000

“MXVR Pin Control (MXVR_PIN_CTL)
Register” on page 29-106

0xFFC0 28E0 MXVR_SCLK_CNT
16-bit R/W
Reset = 0x0000

“MXVR System Clock Counter (MXVR_
SCLK_CNT) Register” on page 29-107

0xFFC0 28E4
 to
0xFFC0 28FF

Reserved –

Table A-19. Control/Status/Data Registers

Memory
Mapped
Address

Register Name Description

0xFFC0 4100 KPAD_CTL “Keypad Control (KPAD_CTL) Register” on page 30-10

0xFFC0 4104 KPAD_PRESCALE “Keypad Prescale (KPAD_PRESCALE) Register” on
page 30-13

0xFFC0 4108 KPAD_MSEL “Keypad Multiplier Select (KPAD_MSEL) Register” on
page 30-15

0xFFC0
410C

KPAD_ROWCOL “Keypad Row-Column (KPAD_ROWCOL) Register” on
page 30-15

0xFFC0 4110 KPAD_STAT “Keypad Status (KPAD_STAT) Register” on page 30-18

0xFFC0 4114 KPAD_SOFTE-
VAL

“Keypad Software Evaluate (KPAD_SOFTEVAL) Register”
on page 30-20

Table A-18. MXVR Memory Map (Cont’d)

Memory
Mapped
Address

Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference A-37

System MMR Assignments

SDH Registers
The Secure Data Host (SDH) interface has memory-mapped registers
(MMRs) that regulate its operation. Descriptions and bit diagrams for
each of these MMRs are provided in the following sections.

The SDH memory-mapped registers start at base address 0xFFC03900. In
Table A-20, register addresses are given relative to the base address. All
functional register bits reset to zero, except the SDH_E_MASKx registers
(which reset to 0x40) and SDH_CFG register (which resets to 0xA0).

Table A-20. SDH Functional Registers

Memory
Mapped
Address

Register Name Description

0xFFC0 3900 SDH_PWR_CTL “SDH Power Control Register (SDH_PWR_CTL)” on
page 27-55

0xFFC0 3904 SDH_CLK_CTL “SDH Clock Control Register (SDH_CLK_CTL)” on
page 27-55

0xFFC0 3908 SDH_ARGUMENT “SDH Argument Register (SDH_ARGUMENT)” on
page 27-57

0xFFC0 390C SDH_COMMAND “SDH Command Register (SDH_COMMAND)” on
page 27-57

0xFFC0 3910 SDH_RESP_CMD “SDH Response Command Register (SDH_RESP_
CMD)” on page 27-58

0xFFC0 3914 SDH_RESPONSE0 “SDH Response Registers (SDH_RESPONSEx)” on
page 27-59

0xFFC0 3918 SDH_RESPONSE1 “SDH Response Registers (SDH_RESPONSEx)” on
page 27-59

0xFFC0 391C SDH_RESPONSE2 “SDH Response Registers (SDH_RESPONSEx)” on
page 27-59

0xFFC0 3920 SDH_RESPONSE3 “SDH Response Registers (SDH_RESPONSEx)” on
page 27-59

System MMR Assignments

A-38 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 3924 SDH_DATA_TIMER “SDH Data Timer Register (SDH_DATA_TIMER)” on
page 27-60

0xFFC0 3928 SDH_DATA_LGTH “SDH Data Length Register (SDH_DATA_LGTH)” on
page 27-61

0xFFC0 392C SDH_DATA_CTL “SDH Data Control Register (SDH_DATA_CTL)” on
page 27-61

0xFFC0 3930 SDH_DATA_CNT “SDH Data Counter Register (SDH_DATA_CNT)” on
page 27-62

0xFFC0 3934 SDH_STATUS “SDH Status Register (SDH_STATUS)” on page 27-63

0xFFC0 3938 SDH_STATUS_CLR “SDH Status Clear Register (SDH_STATUS_CLR)” on
page 27-65

0xFFC0 393C SDH_MASK0 “SDH Interrupt Mask Registers (SDH_MASKx)” on
page 27-66

0xFFC0 3940 SDH_MASK1 “SDH Interrupt Mask Registers (SDH_MASKx)” on
page 27-66

0xFFC0 3944 Reserved –

0xFFC0 3948 SDH_FIFO_CNT “SDH FIFO Counter Register (SDH_FIFO_CNT)” on
page 27-68

0xFFC0 394C
...
0xFFC0 397C

Reserved –

0xFFC0 3980 SDH_FIFOx “SDH Data FIFO Register (SDH_FIFO)” on page 27-69

0xFFC0 3984
...
0xFFC0 3988

Reserved –

0xFFC0 39C0 SDH_E_STATUS “SDH Exception Status Register (SDH_E_STATUS)” on
page 27-69

0xFFC0 39C4 SDH_E_MASK “SDH Exception Mask Register (SDH_E_MASK)” on
page 27-70

Table A-20. SDH Functional Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference A-39

System MMR Assignments

ATAPI Registers
The ATAPI interface’s memory-mapped registers (MMRs) regulate its
operation. Descriptions and bit diagrams for each of these MMRs are pro-
vided in the following sections.

Table A-21 lists the ATAPI memory-mapped registers, starting at base
address 0xFFC0 3800. Register addresses are given relative to the base
address.

0xFFC0 39C8 SDH_CFG “SDH Configuration Register (SDH_CFG)” on
page 27-71

0xFFC0 39CC SDH_RD_WAIT_
EN

“SDH Read Wait Enable Register (SDH_RD_WAIT_
EN)” on page 27-72

0xFFC0 39D0
...
0xFFC0 39EC

SDH_PIDx “SDH Identification Registers (SDH_PIDx)” on
page 27-73

Table A-21. ATAPI Core Registers

Memory
Mapped
Address

Register Name Description

 0xFFC0 3800 ATAPI_CONTROL “ATAPI Control (ATAPI_CONTROL) Regis-
ter” on page 21-49

 0xFFC0 3804 ATAPI_STATUS “ATAPI Status (ATAPI_STATUS) Register” on
page 21-51

 0xFFC0 3808 ATAPI_DEV_ADDR “ATAPI Device Address (ATAPI_DEV_
ADDR) Register” on page 21-52

 0xFFC0
380C

ATAPI_DEV_TXBUF “ATAPI Device Transmit Buffer (ATAPI_
DEV_TXBUF) Register” on page 21-53

Table A-20. SDH Functional Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-40 ADSP-BF54x Blackfin Processor Hardware Reference

 0xFFC0 3810 ATAPI_DEV_RXBUF “ATAPI Device Receive Buffer (ATAPI_DEV_
RXBUF) Register” on page 21-54

 0xFFC0 3814 ATAPI_INT_MASK “ATAPI Interrupt Mask (ATAPI_INT_MASK)
Register” on page 21-54

 0xFFC0 3818 ATAPI_INT_STATUS “ATAPI Interrupt Status (ATAPI_INT_STA-
TUS) Register” on page 21-56

 0xFFC0
381C

ATAPI_XFER_LEN “ATAPI Transfer Length (ATAPI_XFER_LEN)
Register” on page 21-58

 0xFFC0 3820 ATAPI_LINE_STATUS “ATAPI Line Status (ATAPI_LINE_STATUS)
Register” on page 21-59

 0xFFC0 3824 ATAPI_SM_STATE “ATAPI State Machine Status (ATAPI_SM_
STATE) Register” on page 21-59

 0xFFC0 3828 ATAPI_TERMINATE “ATAPI Host Terminate (ATAPI_TERMI-
NATE) Register” on page 21-60

 0xFFC0
382C

ATAPI_PIO_TFRCNT “ATAPI PIO Transfer Count (ATAPI_PIO_
TFRCNT) Register” on page 21-61

 0xFFC0 3830 ATAPI_DMA_TFRCNT “ATAPI Multiword DMA Transfer Count
(ATAPI_MULTI_TFRCNT) Register” on
page 21-61

 0xFFC0 3834 ATAPI_ULTRA_IN_TFRCNT “ATAPI Ultra DMA Transfer Count (ATAPI_
ULTRA_IN_TFRCNT) Register” on
page 21-62

Table A-21. ATAPI Core Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference A-41

System MMR Assignments

USB OTG Registers
Descriptions and bit diagrams for each of these MMRs are provided in the
following sections. See Table A-22.

 0xFFC0 3838 ATAPI_ULTRA_OUT_
TFRCNT

“ATAPI Ultra DMA OUT Transfer Count
(ATAPI_ULTRA_OUT_TFRCNT) Register”
on page 21-63

 0xFFC0 3840 ATAPI_REG_TIM_0 “ATAPI Register Transfer Timing 0 (ATAPI_
REG_TIM_0) Register” on page 21-63

 0xFFC0 3844 ATAPI_PIO_TIM_0 “ATAPI Programmed I/O Timing 0 (ATAPI_
PIO_TIM_0) Register” on page 21-64

 0xFFC0 3848 ATAPI_PIO_TIM_1 “ATAPI Programmed I/O Timing 1 (ATAPI_
PIO_TIM_1) Register” on page 21-64

 0xFFC0 3850 ATAPI_MULTI_TIM_0 “ATAPI Multi DMA Timing 0 (ATAPI_
MULTI_TIM_0) Register” on page 21-65

 0xFFC0 3854 ATAPI_MULTI_TIM_1 “ATAPI Multi DMA Timing 1 (ATAPI_
MULTI_TIM_1) Register” on page 21-65

 0xFFC0 3858 ATAPI_MULTI_TIM_2 “ATAPI Multi DMA Timing 2 (ATAPI_
MULTI_TIM_2) Register” on page 21-66

 0xFFC0 3860 ATAPI_ULTRA_TIM_0 “ATAPI Ultra DMA Timing 0 (ATAPI_
ULTRA_TIM_0) Register” on page 21-66

 0xFFC0 3864 ATAPI_ULTRA_TIM_1 “ATAPI Ultra DMA Timing 1 (ATAPI_
ULTRA_TIM_1) Register” on page 21-67

 0xFFC0 3868 ATAPI_ULTRA_TIM_2 “ATAPI Ultra DMA Timing 2 (ATAPI_
ULTRA_TIM_2) Register” on page 21-67

 0xFFC0
386C

ATAPI_ULTRA_TIM_3 “ATAPI Ultra DMA Timing 3 (ATAPI_
ULTRA_TIM_3) Register” on page 21-68

Table A-21. ATAPI Core Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-42 ADSP-BF54x Blackfin Processor Hardware Reference

Table A-22. USB OTG Memory-Mapped Registers

Memory
Mapped
Address

Register Name Description

0xFFC0 3C00 USB_FADDR “USB Function Address (USB_FADDR) Register”
on page 26-102

0xFFC0 3C04 USB_POWER “USB Power Management (USB_POWER) Register”
on page 26-99

0xFFC0 3C08 USB_INTRTX “USB Transmit Interrupt (USB_INTRTX) Register”
on page 26-105

0xFFC0 3C0C USB_INTRRX “USB Receive Interrupt (USB_INTRRX) Register”
on page 26-106

0xFFC0 3C10 USB_INTRTXE “USB Transmit Interrupt Enable (USB_INTRTXE)
Register” on page 26-107

0xFFC0 3C14 USB_INTRRXE “USB Receive Interrupt Enable (USB_INTRRXE)
Register” on page 26-108

0xFFC0 3C18 USB_INTRUSB “USB Common Interrupts (USB_INTRUSB) Regis-
ter” on page 26-109

0xFFC0 3C1C USB_INTRUSBE “USB Common Interrupt Enable (USB_
INTRUSBE) Register” on page 26-110

0xFFC0 3C20 USB_FRAME “USB Frame Number (USB_FRAME) Register” on
page 26-111

0xFFC0 3C24 USB_INDEX “USB Index (USB_INDEX) Register” on
page 26-111

0xFFC0 3C28 USB_TESTMODE “USB Test Mode (USB_TESTMODE) Register” on
page 26-103
(for Analog Devices internal use only)

0xFFC0 3C2C USB_GLOBINTR “USB Global Interrupt (USB_GLOBINTR) Regis-
ter” on page 26-104

0xFFC0 3C30 USB_GLOBAL_CTL “USB Global Control (USB_GLOBAL_CTL) Regis-
ter” on page 26-97

ADSP-BF54x Blackfin Processor Hardware Reference A-43

System MMR Assignments

USB Packet Control – Indexed Registers

0xFFC0 3C40 USB_TX_MAX_PACKET “USB TX Max Packet (USB_TX_MAX_PACKET)
Register” on page 26-112

0xFFC0 3C44 USB_CSR0 “USB Control/Status EP0 (USB_CSR0) Register” on
page 26-113

0xFFC0 3C44 USB_TXCSR “USB TX Control/Status EPx (USB_TXCSR) Regis-
ter” on page 26-117

0xFFC0 3C48 USB_RX_MAX_PACKET “USB RX Max Packet (USB_RX_MAX_PACKET)
Register” on page 26-122

0xFFC0 3C4C USB_RXCSR “USB RX Control/Status (USB_RXCSR) Register”
on page 26-123

0xFFC0 3C50 USB_COUNT0 “USB Count 0 (USB_COUNT0) Register” on
page 26-128

0xFFC0 3C50 USB_RXCOUNT “USB RX Byte Count EPx (USB_RXCOUNT) Reg-
ister” on page 26-128

0xFFC0 3C54 USB_TXTYPE “USB TX Type (USB_TXTYPE) Register” on
page 26-129

0xFFC0 3C58 USB_NAKLIMIT0 “USB NAK Limit 0 (USB_NAKLIMIT0) Register”
on page 26-130

0xFFC0 3C58 USB_TXINTERVAL “USB TX Interval (USB_TXINTERVAL) Register”
on page 26-130

0xFFC0 3C5C USB_RXTYPE “USB RX Type (USB_RXTYPE) Register” on
page 26-131

0xFFC0 3C60 USB_RXINTERVAL “USB RX Interval (USB_RXINTERVAL) Register”
on page 26-132

0xFFC0 3C68 USB_TXCOUNT “USB TX Byte Count EPx (USB_TXCOUNT) Reg-
ister” on page 26-133

Table A-22. USB OTG Memory-Mapped Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-44 ADSP-BF54x Blackfin Processor Hardware Reference

USB Endpoint FIFO Registers

0xFFC0 3C80 USB_EP0_FIFO “USB Endpoint FIFO (USB_EPx_FIFO) Registers”
on page 26-134

0xFFC0 3C88 USB_EP1_FIFO “USB Endpoint FIFO (USB_EPx_FIFO) Registers”
on page 26-134

0xFFC0 3C90 USB_EP2_FIFO “USB Endpoint FIFO (USB_EPx_FIFO) Registers”
on page 26-134

0xFFC0 3C98 USB_EP3_FIFO “USB Endpoint FIFO (USB_EPx_FIFO) Registers”
on page 26-134

0xFFC0 3CA0 USB_EP4_FIFO “USB Endpoint FIFO (USB_EPx_FIFO) Registers”
on page 26-134

0xFFC0 3CA8 USB_EP5_FIFO “USB Endpoint FIFO (USB_EPx_FIFO) Registers”
on page 26-134

0xFFC0 3CB0 USB_EP6_FIFO “USB Endpoint FIFO (USB_EPx_FIFO) Registers”
on page 26-134

0xFFC0 3CB8 USB_EP7_FIFO “USB Endpoint FIFO (USB_EPx_FIFO) Registers”
on page 26-134

USB OTG Control Registers

0xFFC0 3D00 USB_OTG_DEV_CTL “USB OTG Device Control (USB_OTG_DEV_
CTL) Register” on page 26-134

0xFFC0 3D04 USB_OTG_VBUS_IRQ “USB OTG VBUS Interrupt (USB_OTG_VBUS_
IRQ) Register” on page 26-136

0xFFC0 3D08 USB_OTG_VBUS_MASK “USB OTG VBUS Mask (USB_OTG_VBUS_
MASK) Register” on page 26-137

Table A-22. USB OTG Memory-Mapped Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference A-45

System MMR Assignments

USB PHY Control Registers

0xFFC0 3D48 USB_LINKINFO “USB Link Info (USB_LINKINFO) Register” on
page 26-138

0xFFC0
3D4C

USB_VPLEN “USB VBUS Pulse Length (USB_VPLEN) Register”
on page 26-139

0xFFC0 3D50 USB_HS_EOF1 “USB High-Speed EOF 1 (USB_HS_EOF1) Regis-
ter” on page 26-139

0xFFC0 3D54 USB_FS_EOF1 “USB Full-Speed EOF 1 (USB_FS_EOF1) Register”
on page 26-140

0xFFC0 3D58 USB_LS_EOF1 “USB Low-Speed EOF 1 (USB_LS_EOF1) Register”
on page 26-140

0xFFC0 3DE0 USB_APHY_CNTRL “USB APHY Control 2 (USB_APHY_CNTRL2)
Register” on page 26-141
(for Analog Devices internal use only)

0xFFC0 3DE4 USB_APHY_CALIB (for Analog Devices internal use only)

0xFFC0 3DE8 USB_APHY_CNTRL2 Used to prevent re-enumeration after the processor
goes into hibernate mode.
“USB APHY Control 2 (USB_APHY_CNTRL2)
Register” on page 26-141

0xFFC0
3DEC

USB_PHY_TEST (for Analog Devices internal use only)

0xFFC0 3DF0 USB_PLLOSC_CTRL “USB PLL OSC Control (USB_PLLOSC_CTRL)
Register” on page 26-142

0xFFC0 3DF4 USB_SRP_CLKDIV “USB SRP Clock Divider (USB_SRP_CLKDIV)
Register” on page 26-143

Table A-22. USB OTG Memory-Mapped Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-46 ADSP-BF54x Blackfin Processor Hardware Reference

USB Endpoint 0 Control Registers

0xFFC0 3E00 USB_EP_NI0_TXMAXP Maximum packet size for host Tx endpoint0

0xFFC0 3E04 USB_EP_NI0_TXCSR Control Status register for endpoint 0

0xFFC0 3E08 USB_EP_NI0_RXMAXP Maximum packet size for host Rx endpoint0

0xFFC0 3E0C USB_EP_NI0_RXCSR Control Status register for host Rx endpoint0

0xFFC0 3E10 USB_EP_NI0_
RXCOUNT

Number of bytes received in endpoint 0 FIFO

0xFFC0 3E14 USB_EP_NI0_TXTYPE Sets the transaction protocol and peripheral endpoint
number for the host Tx endpoint0

0xFFC0 3E18 USB_EP_NI0_TXINTER-
VAL

Sets the NAK response timeout on endpoint 0

0xFFC0 3E1C USB_EP_NI0_RXTYPE Sets the transaction protocol and peripheral endpoint
number for the host Rx endpoint0

0xFFC0 3E20 USB_EP_NI0_RXINTER-
VAL

Sets the polling interval for interrupt and isochro-
nous transfers or the NAK response timeout on bulk
transfers for host Rx endpoint0

Table A-22. USB OTG Memory-Mapped Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference A-47

System MMR Assignments

USB Endpoint 1 Control Registers

0xFFC0 3E28 USB_EP_NI0_
TXCOUNT

Number of bytes to be written to the endpoint0 Tx
FIFO

0xFFC0 3E40 USB_EP_NI1_TXMAXP Maximum packet size for host Tx endpoint1

0xFFC0 3E44 USB_EP_NI1_TXCSR Control Status register for endpoint1

0xFFC0 3E48 USB_EP_NI1_RXMAXP Maximum packet size for host Rx endpoint1

0xFFC0 3E4C USB_EP_NI1_RXCSR Control Status register for host Rx endpoint1

0xFFC0 3E50 USB_EP_NI1_
RXCOUNT

Number of bytes received in endpoint1 FIFO

0xFFC0 3E54 USB_EP_NI1_TXTYPE Sets the transaction protocol and peripheral endpoint
number for the host Tx endpoint1

0xFFC0 3E58 USB_EP_NI1_TXINTER-
VAL

Sets the NAK response timeout on endpoint1

0xFFC0 3E5C USB_EP_NI1_RXTYPE Sets the transaction protocol and peripheral endpoint
number for the host Rx endpoint1

0xFFC0 3E60 USB_EP_NI1_RXINTER-
VAL

Sets the polling interval for interrupt and isochro-
nous transfers or the NAK response timeout on bulk
transfers for host Rx endpoint1

Table A-22. USB OTG Memory-Mapped Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-48 ADSP-BF54x Blackfin Processor Hardware Reference

USB Endpoint 2 Control Registers

0xFFC0 3E68 USB_EP_NI1_
TXCOUNT

Number of bytes to be written to the+H102
endpoint1 Tx FIFO

0xFFC0 3E80 USB_EP_NI2_TXMAXP Maximum packet size for host Tx endpoint2

0xFFC0 3E84 USB_EP_NI2_TXCSR Control Status register for endpoint2

0xFFC0 3E88 USB_EP_NI2_RXMAXP Maximum packet size for host Rx endpoint2

0xFFC0 3E8C USB_EP_NI2_RXCSR Control Status register for host Rx endpoint2

0xFFC0 3E90 USB_EP_NI2_
RXCOUNT

Number of bytes received in endpoint2 FIFO

0xFFC0 3E94 USB_EP_NI2_TXTYPE Sets the transaction protocol and peripheral endpoint
number for the host Tx endpoint2

0xFFC0 3E98 USB_EP_NI2_TXINTER-
VAL

Sets the NAK response timeout on endpoint2

0xFFC0 3E9C USB_EP_NI2_RXTYPE Sets the transaction protocol and peripheral endpoint
number for the host Rx endpoint2

0xFFC0 3EA0 USB_EP_NI2_RXINTER-
VAL

Sets the polling interval for interrupt and isochro-
nous transfers or the NAK response timeout on bulk
transfers for host Rx endpoint2

Table A-22. USB OTG Memory-Mapped Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference A-49

System MMR Assignments

USB Endpoint 3 Control Registers

0xFFC0 3EA8 USB_EP_NI2_
TXCOUNT

Number of bytes to be written to the endpoint2 Tx
FIFO

0xFFC0 3EC0 USB_EP_NI3_TXMAXP Maximum packet size for host Tx endpoint3

0xFFC0 3EC4 USB_EP_NI3_TXCSR Control Status register for endpoint3

0xFFC0 3EC8 USB_EP_NI3_RXMAXP Maximum packet size for host Rx endpoint3

0xFFC0
3ECC

USB_EP_NI3_RXCSR Control Status register for host Rx endpoint3

0xFFC0 3ED0 USB_EP_NI3_
RXCOUNT

Number of bytes received in endpoint3 FIFO

0xFFC0 3ED4 USB_EP_NI3_TXTYPE Sets the transaction protocol and peripheral endpoint
number for the host Tx endpoint3

0xFFC0 3ED8 USB_EP_NI3_TXINTER-
VAL

Sets the NAK response timeout on endpoint3

0xFFC0
3EDC

USB_EP_NI3_RXTYPE Sets the transaction protocol and peripheral endpoint
number for the host Rx endpoint3

0xFFC0 3EE0 USB_EP_NI3_RXINTER-
VAL

Sets the polling interval for interrupt and isochro-
nous transfers or the NAK response timeout on bulk
transfers for host Rx endpoint3

Table A-22. USB OTG Memory-Mapped Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-50 ADSP-BF54x Blackfin Processor Hardware Reference

USB Endpoint 4 Control Registers

0xFFC0 3EE8 USB_EP_NI3_
TXCOUNT

Number of bytes to be written to the H124endpoint3
Tx FIFO

0xFFC0 3F00 USB_EP_NI4_TXMAXP Maximum packet size for host Tx endpoint4

0xFFC0 3F04 USB_EP_NI4_TXCSR Control Status register for endpoint4

0xFFC0 3F08 USB_EP_NI4_RXMAXP Maximum packet size for host Rx endpoint4

0xFFC0 3F0C USB_EP_NI4_RXCSR Control Status register for host Rx endpoint4

0xFFC0 3F10 USB_EP_NI4_
RXCOUNT

Number of bytes received in endpoint4 FIFO

0xFFC0 3F14 USB_EP_NI4_TXTYPE Sets the transaction protocol and peripheral endpoint
number for the host Tx endpoint4

0xFFC0 3F18 USB_EP_NI4_TXINTER-
VAL

Sets the NAK response timeout on endpoint4

0xFFC0 3F1C USB_EP_NI4_RXTYPE Sets the transaction protocol and peripheral endpoint
number for the host Rx endpoint4

0xFFC0 3F20 USB_EP_NI4_RXINTER-
VAL

Sets the polling interval for interrupt and isochro-
nous transfers or the NAK response timeout on bulk
transfers for host Rx endpoint4

Table A-22. USB OTG Memory-Mapped Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference A-51

System MMR Assignments

USB Endpoint 5 Control Registers

0xFFC0 3F28 USB_EP_NI4_
TXCOUNT

Number of bytes to be written to the endpoint4 Tx
FIFO

0xFFC0 3F40 USB_EP_NI5_TXMAXP Maximum packet size for host Tx endpoint5

0xFFC0 3F44 USB_EP_NI5_TXCSR Control Status register for endpoint5

0xFFC0 3F48 USB_EP_NI5_RXMAXP Maximum packet size for host Rx endpoint5

0xFFC0 3F4C USB_EP_NI5_RXCSR Control Status register for host Rx endpoint5

0xFFC0 3F50 USB_EP_NI5_
RXCOUNT

Number of bytes received in endpoint5 FIFO

0xFFC0 3F54 USB_EP_NI5_TXTYPE Sets the transaction protocol and peripheral endpoint
number for the host Tx endpoint5

0xFFC0 3F58 USB_EP_NI5_TXINTER-
VAL

Sets the NAK response timeout on endpoint5

0xFFC0 3F5C USB_EP_NI5_RXTYPE Sets the transaction protocol and peripheral endpoint
number for the host Rx endpoint5

0xFFC0 3F60 USB_EP_NI5_RXINTER-
VAL

Sets the polling interval for interrupt and isochro-
nous transfers or the NAK response timeout on bulk
transfers for host Rx endpoint5

Table A-22. USB OTG Memory-Mapped Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-52 ADSP-BF54x Blackfin Processor Hardware Reference

USB Endpoint 6 Control Registers

0xFFC0 3F68 USB_EP_NI5_
TXCOUNT

Number of bytes to be written to the H145
endpoint5 Tx FIFO

0xFFC0 3F80 USB_EP_NI6_TXMAXP Maximum packet size for host Tx endpoint6

0xFFC0 3F84 USB_EP_NI6_TXCSR Control Status register for endpoint6

0xFFC0 3F88 USB_EP_NI6_RXMAXP Maximum packet size for host Rx endpoint6

0xFFC0 3F8C USB_EP_NI6_RXCSR Control Status register for host Rx endpoint6

0xFFC0 3F90 USB_EP_NI6_
RXCOUNT

Number of bytes received in endpoint6 FIFO

0xFFC0 3F94 USB_EP_NI6_TXTYPE Sets the transaction protocol and peripheral endpoint
number for the host Tx endpoint6

0xFFC0 3F98 USB_EP_NI6_TXINTER-
VAL

Sets the NAK response timeout on endpoint6

0xFFC0 3F9C USB_EP_NI6_RXTYPE Sets the transaction protocol and peripheral endpoint
number for the host Rx endpoint6

0xFFC0 3FA0 USB_EP_NI6_RXINTER-
VAL

Sets the polling interval for interrupt and isochro-
nous transfers or the NAK response timeout on bulk
transfers for host Rx endpoint6

Table A-22. USB OTG Memory-Mapped Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference A-53

System MMR Assignments

USB Endpoint 7 Control Registers

0xFFC0 3FA8 USB_EP_NI6_
TXCOUNT

Number of bytes to be written to the endpoint6 Tx
FIFO

0xFFC0 3FC0 USB_EP_NI7_TXMAXP Maximum packet size for host Tx endpoint7

0xFFC0 3FC4 USB_EP_NI7_TXCSR Control Status register for endpoint7

0xFFC0 3FC8 USB_EP_NI7_RXMAXP Maximum packet size for host Rx endpoint7

0xFFC0 3FCC USB_EP_NI7_RXCSR Control Status register for host Rx endpoint7

0xFFC0 3FD0 USB_EP_NI7_
RXCOUNT

Number of bytes received in endpoint7 FIFO

0xFFC0 3FD4 USB_EP_NI7_TXTYPE Sets the transaction protocol and peripheral endpoint
number for the host Tx endpoint7

0xFFC0 3FD8 USB_EP_NI7_TXINTER-
VAL

Sets the NAK response timeout on endpoint7

0xFFC0
3FDC

USB_EP_NI7_RXTYPE Sets the transaction protocol and peripheral endpoint
number for the host Rx endpoint7

0xFFC0 3FE0 USB_EP_NI7_RXINTER-
VAL

Sets the polling interval for interrupt and isochro-
nous transfers or the NAK response timeout on bulk
transfers for host Rx endpoint7

0xFFC0 3FE8 USB_EP_NI7_
TXCOUNT

Number of bytes to be written to the endpoint7 Tx
FIFO

USB DMA Registers

0xFFC0 4000 USB_DMA_INTERRUPT “USB DMA Interrupt (USB_DMA_INTERRUPT)
Register” on page 26-144

Table A-22. USB OTG Memory-Mapped Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-54 ADSP-BF54x Blackfin Processor Hardware Reference

USB Channel 0 Config Registers

0xFFC0 4004 USB_DMA0CONTROL “USB DMAx Control (USB_DMA_CONTROL)
Registers” on page 26-144

0xFFC0 4008 USB_DMA0ADDR
LOW

“USB DMAx Address Low (USB_DMAxAD-
DRLOW) Registers” on page 26-146

0xFFC0 400C USB_DMA0ADDR
HIGH

“USB DMAx Address High (USB_DMAxAD-
DRHIGH) Registers” on page 26-147

0xFFC0 4010 USB_DMA0COUNT
LOW

“USB DMAx Count Low (USB_DMAxCOUNT-
LOW) Registers” on page 26-147

0xFFC0 4014 USB_DMA0COUNT
HIGH

“USB DMAx Count High (USB_DMAxCOUN-
THIGH) Registers” on page 26-148

USB Channel 1 Config Registers

0xFFC0 4024 USB_DMA1CONTROL “USB DMAx Control (USB_DMA_CONTROL)
Registers” on page 26-144

0xFFC0 4028 USB_DMA1ADDR
LOW

“USB DMAx Address Low (USB_DMAxAD-
DRLOW) Registers” on page 26-146

0xFFC0 402C USB_DMA1ADDR
HIGH

“USB DMAx Address High (USB_DMAxAD-
DRHIGH) Registers” on page 26-147

0xFFC0 4030 USB_DMA1COUNT
LOW

“USB DMAx Count Low (USB_DMAxCOUNT-
LOW) Registers” on page 26-147

0xFFC0 4034 USB_DMA1COUNT
HIGH

“USB DMAx Count High (USB_DMAxCOUN-
THIGH) Registers” on page 26-148

Table A-22. USB OTG Memory-Mapped Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference A-55

System MMR Assignments

USB Channel 2 Config Registers

0xFFC0 4044 USB_DMA2CONTROL “USB DMAx Control (USB_DMA_CONTROL)
Registers” on page 26-144

0xFFC0 4048 USB_DMA2ADDR
LOW

“USB DMAx Address Low (USB_DMAxAD-
DRLOW) Registers” on page 26-146

0xFFC0 404C USB_DMA2ADDR
HIGH

“USB DMAx Address High (USB_DMAxAD-
DRHIGH) Registers” on page 26-147

0xFFC0 4050 USB_DMA2COUNT
LOW

“USB DMAx Count Low (USB_DMAxCOUNT-
LOW) Registers” on page 26-147

0xFFC0 4054 USB_DMA2COUNT
HIGH

“USB DMAx Count High (USB_DMAxCOUN-
THIGH) Registers” on page 26-148

USB Channel 3 Config Registers

0xFFC0 4064 USB_DMA3CONTROL “USB DMAx Control (USB_DMA_CONTROL)
Registers” on page 26-144

0xFFC0 4068 USB_DMA3ADDR
LOW

“USB DMAx Address Low (USB_DMAxAD-
DRLOW) Registers” on page 26-146

0xFFC0 406C USB_DMA3ADDR
HIGH

“USB DMAx Address High (USB_DMAxAD-
DRHIGH) Registers” on page 26-147

0xFFC0 4070 USB_DMA3COUNT
LOW

“USB DMAx Count Low (USB_DMAxCOUNT-
LOW) Registers” on page 26-147

0xFFC0 4074 USB_DMA3COUNT
HIGH

“USB DMAx Count High (USB_DMAxCOUN-
THIGH) Registers” on page 26-148

Table A-22. USB OTG Memory-Mapped Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-56 ADSP-BF54x Blackfin Processor Hardware Reference

USB Channel 4 Config Registers

0xFFC0 4084 USB_DMA4CONTROL “USB DMAx Control (USB_DMA_CONTROL)
Registers” on page 26-144

0xFFC0 4088 USB_DMA4ADDR
LOW

“USB DMAx Address Low (USB_DMAxAD-
DRLOW) Registers” on page 26-146

0xFFC0 408C USB_DMA4ADDR
HIGH

“USB DMAx Address High (USB_DMAxAD-
DRHIGH) Registers” on page 26-147

0xFFC0 4090 USB_DMA4COUNT
LOW

“USB DMAx Count Low (USB_DMAxCOUNT-
LOW) Registers” on page 26-147

0xFFC0 4094 USB_DMA4COUNT
HIGH

“USB DMAx Count High (USB_DMAxCOUN-
THIGH) Registers” on page 26-148

USB Channel 5 Config Registers

0xFFC0 40A4 USB_DMA5CONTROL “USB DMAx Control (USB_DMA_CONTROL)
Registers” on page 26-144

0xFFC0 40A8 USB_DMA5ADDR
LOW

“USB DMAx Address Low (USB_DMAxAD-
DRLOW) Registers” on page 26-146

0xFFC0 40AC USB_DMA5ADDR
HIGH

“USB DMAx Address High (USB_DMAxAD-
DRHIGH) Registers” on page 26-147

0xFFC0 40B0 USB_DMA5COUNT
LOW

“USB DMAx Count Low (USB_DMAxCOUNT-
LOW) Registers” on page 26-147

0xFFC0 40B4 USB_DMA5COUNT
HIGH

“USB DMAx Count High (USB_DMAxCOUN-
THIGH) Registers” on page 26-148

Table A-22. USB OTG Memory-Mapped Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference A-57

System MMR Assignments

USB Channel 6 Config Registers

0xFFC0 40C4 USB_DMA6CONTROL “USB DMAx Control (USB_DMA_CONTROL)
Registers” on page 26-144

0xFFC0 40C8 USB_DMA6ADDR
LOW

“USB DMAx Address Low (USB_DMAxAD-
DRLOW) Registers” on page 26-146

0xFFC0 40CC USB_DMA6ADDR
HIGH

“USB DMAx Address High (USB_DMAxAD-
DRHIGH) Registers” on page 26-147

0xFFC0 40D0 USB_DMA6COUNT
LOW

“USB DMAx Count Low (USB_DMAxCOUNT-
LOW) Registers” on page 26-147

0xFFC0 40D4 USB_DMA6COUNT
HIGH

“USB DMAx Count High (USB_DMAxCOUN-
THIGH) Registers” on page 26-148

USB Channel 7 Config Registers

0xFFC0 40E4 USB_DMA7CONTROL “USB DMAx Control (USB_DMA_CONTROL)
Registers” on page 26-144

0xFFC0 40E8 USB_DMA7ADDR
LOW

“USB DMAx Address Low (USB_DMAxAD-
DRLOW) Registers” on page 26-146

0xFFC0 40EC USB_DMA7ADDR
HIGH

“USB DMAx Address High (USB_DMAxAD-
DRHIGH) Registers” on page 26-147

0xFFC0 40F0 USB_DMA7COUNT
LOW

“USB DMAx Count Low (USB_DMAxCOUNT-
LOW) Registers” on page 26-147

0xFFC0 40F4 USB_DMA7COUNT
HIGH

“USB DMAx Count High (USB_DMAxCOUN-
THIGH) Registers” on page 26-148

Table A-22. USB OTG Memory-Mapped Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-58 ADSP-BF54x Blackfin Processor Hardware Reference

External Bus Interface Unit Registers
External bus interface unit (EBIU) registers (0xFFC0 0A00 –
0xFFC0 0AFF) are listed in Table A-23.

Table A-23. EBIU Memory-Mapped Registers

Memory
Mapped
Address

Register Name Description

0xFFC0 0A00 EBIU_AMGCTL “Asynchronous Memory Global Control Register (EBIU_
AMGCTL)” on page 5-57

0xFFC0 0A04 EBIU_
AMBCTL0

“Asynchronous Memory Bank Control Registers (EBIU_
AMBCTL0, EBIU_AMBCTL1)” on page 5-59

0xFFC0 0A08 EBIU_
AMBCTL1

“Asynchronous Memory Bank Control Registers (EBIU_
AMBCTL0, EBIU_AMBCTL1)” on page 5-59

0xFFC0
0A0C

EBIU_MBSCTL “Memory Bank Select Control Register (EBIU_MBSCTL)” on
page 5-63

0xFFC0 0A10 EBIU_ARBSTAT “EBIU Arbitration Status Register (EBIU_ARBSTAT)” on
page 5-69

0xFFC0 0A14 EBIU_MODE “Flash Memory Bank Control Registers (EBIU_FCTL, EBIU_
MODE)” on page 5-64

0xFFC0 0A18 EBIU_FCTL “Flash Memory Bank Control Registers (EBIU_FCTL, EBIU_
MODE)” on page 5-64

0xFFC0 0A20 EBIU_
DDRCTL0

“Memory Control Register 0 (EBIU_DDRCTL0)” on
page 5-24)

0xFFC0 0A24 EBIU_
DDRCTL1

“Memory Control Register 1 (EBIU_DDRCTL1)” on
page 5-25

0xFFC0 0A28 EBIU_
DDRCTL2

“Memory Control Register 2 (EBIU_DDRCTL2)” on
page 5-26

0xFFC0
0A2C

EBIU_
DDRCTL3

“Memory Control Register 3 (EBIU_DDRCTL3), Regular
DDR Devices” on page 5-27
“Memory Control Register 3 (EBIU_DDRCTL3), Mobile
DDR Devices” on page 5-28

ADSP-BF54x Blackfin Processor Hardware Reference A-59

System MMR Assignments

DMA/Memory DMA Control Registers
DMA/Memory DMA control registers (0xFFC0 0B00 – 0xFFC0 0FFF)
are listed in Table A-24.

Since each DMA channel has an identical MMR set with fixed offsets
from the base address associated with that DMA channel, it is convenient
to view the MMR information as provided in Table A-25 and Table A-26.
Table A-25 identifies the base address of each DMA channel, as well as the

0xFFC0 0A30 EBIU_DDRQUE “Queue Configuration Register (EBIU_DDRQUE)” on
page 5-29

0xFFC0 0A34 EBIU_ERRADD “Error Address Register (EBIU_ERRADD)” on page 5-32

0xFFC0 0A38 EBIU_ERRMST “Error Master Register (EBIU_ERRMST)” on page 5-31

0xFFC0
0A3C

EBIU_RSTCTL “Reset Control Register (EBIU_RSTCTL)” on page 5-30

0xFFC0
0A1C

Reserved Reserved

Table A-24. DMA/Memory DMA Control Registers

Memory
Mapped
Address

Register Name Description

0xFFC0
0B0C

DMA_TCPER “DMA Traffic Control Counter Period (DMACx_TCPER) Reg-
isters” on page 7-119

0xFFC0 0B10 DMA_
TCCNT

“DMA Traffic Control Counter (DMACx_TCCNT) Registers”
on page 7-119

Table A-23. EBIU Memory-Mapped Registers

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-60 ADSP-BF54x Blackfin Processor Hardware Reference

register prefix that identifies the channel. Table A-26 then lists the register
suffix and provides its offset from the base address.

As an example, the DMA channel 0 Y_MODIFY register is called DMA0_Y_
MODIFY, and its address is 0xFFC0 0C1C. Likewise, the memory DMA
stream 0 source current address register is called MDMA_S0_CURR_ADDR, and
its address is 0xFFC0 0E64.

Table A-25. DMA Channel Base Addresses

DMA Channel
Identifier

MMR Base
Address

Register Prefix

0 0xFFC0 0C00 DMA0_

1 0xFFC0 0C40 DMA1_

2 0xFFC0 0C80 DMA2_

3 0xFFC0 0CC
0

DMA3_

4 0xFFC0 0D00 DMA4_

5 0xFFC0 0D40 DMA5_

6 0xFFC0 0D80 DMA6_

7 0xFFC0 0DC
0

DMA7_

8 0xFFC0 0E00 DMA8_

9 0xFFC0 0E40 DMA9_

10 0xFFC0 0E80 DMA10_

11 0xFFC0 0EC0 DMA11_

MemDMA stream 0 destina-
tion

0xFFC0 0F00 MDMA_D0_

MemDMA stream 0 source 0xFFC0 0F40 MDMA_S0_

MemDMA stream 1 destina-
tion

0xFFC0 0F80 MDMA_D1_

MemDMA stream 1 source 0xFFC0 0FC0 MDMA_S1_

ADSP-BF54x Blackfin Processor Hardware Reference A-61

System MMR Assignments

Table A-26. DMA Register Suffix and Offset

Register Suffix Offset
From
Base

Description

NEXT_DESC_PTR 0x00 “Next Descriptor Pointer (DMAx_NEXT_DESC_PTR and
MDMA_yy_NEXT_DESC_PTR) Registers” on page 7-106

START_ADDR 0x04 “Start Address (DMAx_START_ADDR and MDMA_yy_
START_ADDR) Registers” on page 7-88

CONFIG 0x08 “DMA Configuration (DMAx_CONFIG and MDMA_yy_
CONFIG) Registers” on page 7-79

X_COUNT 0x10 “Inner Loop Count (DMAx_X_COUNT and MDMA_yy_X_
COUNT) Registers” on page 7-92

X_MODIFY 0x14 “Inner Loop Address Increment (DMAx_X_MODIFY and
MDMA_yy_X_MODIFY) Registers” on page 7-97

Y_COUNT 0x18 “Outer Loop Count (DMAx_Y_COUNT and MDMA_yy_Y_
COUNT) Registers” on page 7-99

Y_MODIFY 0x1C “Outer Loop Address Increment (DMAx_Y_MODIFY and
MDMA_yy_Y_MODIFY) Registers” on page 7-103

CURR_DESC_PTR 0x20 “Current Descriptor Pointer (DMAx_CURR_DESC_PTR and
MDMA_yy_CURR_DESC_PTR) Registers” on page 7-108

CURR_ADDR 0x24 “Current Address (DMAx_CURR_ADDR and MDMA_yy_
CURR_ADDR) Registers” on page 7-90

IRQ_STATUS 0x28 “Interrupt Status (DMAx_IRQ_STATUS and MDMA_yy_
IRQ_STATUS) Registers” on page 7-84

PERIPHERAL_
MAP

0x2C “Peripheral Map (DMAx_PERIPHERAL_MAP and MDMA_
yy_PERIPHERAL_MAP) Registers” on page 7-77

CURR_X_COUNT 0x30 “Current Inner Loop Count (DMAx_CURR_X_COUNT and
MDMA_yy_CURR_X_COUNT) Registers” on page 7-94

CURR_Y_COUNT 0x38 “Current Outer Loop Count (DMAx_CURR_Y_COUNT and
MDMA_yy_CURR_Y_COUNT) Registers” on page 7-101

System MMR Assignments

A-62 ADSP-BF54x Blackfin Processor Hardware Reference

EPPI0 Registers
EPPI0 registers are listed in Table A-29.

Table A-27. EPPI0 Registers

Memory
Mapped
Address

Register Name Description

0xFFC0 1000 EPPI0_STATUS “EPPI Status (EPPIx_STATUS) Register” on page 15-77

0xFFC0 1004 EPPI0_HCOUNT “EPPI Horizontal Transfer Count Register (EPPIx_
HCOUNT)” on page 15-93

0xFFC0 1008 EPPI0_HDELAY “EPPI Horizontal Delay Register (EPPIx_HDELAY)” on
page 15-92

0xFFC0
100C

EPPI0_VCOUNT “EPPI Vertical Transfer Count Register (EPPIx_VCOUNT)”
on page 15-91

0xFFC0 1010 EPPI0_VDELAY “EPPI Vertical Delay Register (EPPIx_VDELAY)” on
page 15-91

0xFFC0 1014 EPPI0_FRAME “EPPI Lines per Frame Register (EPPIx_FRAME)” on
page 15-90

0xFFC0 1018 EPPI0_LINE “EPPI Samples per Line Register (EPPIx_LINE)” on
page 15-90

0xFFC0
101C

EPPI0_CLKDIV “EPPI Clock Divide Register (EPPIx_CLKDIV)” on
page 15-93

0xFFC0 1020 EPPI0_CON-
TROL

“EPPIx Control (EPPIx_CONTROL) Register” on
page 15-80

0xFFC0 1024 EPPI0_FSIW_
HBL

“EPPI FS1 Width Register/EPPI Horizontal Blanking Sam-
ples per Line Register (EPPIx_FS1W_HBL)” on page 15-94

0xFFC0 1028 EPPI0_FSIP_
AVPL

“EPPI FS1 Period Register/EPPI Active Video Samples per
Line Register (EPPIx_FS1P_AVPL)” on page 15-96

0xFFC0
102C

EPPI0_FS2W_
LVB

“EPPI FS2 Width Register/EPPI Lines of Vertical Blanking
Register (EPPIx_FS2W_LVB)” on page 15-95

ADSP-BF54x Blackfin Processor Hardware Reference A-63

System MMR Assignments

EPPI1 Registers
EPPI1 registers are listed in Table A-29.

0xFFC0 1030 EPPI0_FS2P_
LAVF

“EPPI FS2 Period Register/EPPI Lines of Active Video per
Frame Register (EPPIx_FS2P_LAVF)” on page 15-97

0xFFC0 1034 EPPI0_CLIP “EPPI Clipping Register (EPPIx_CLIP)” on page 15-98

Table A-28. EPPI1 Registers

Memory
Mapped
Address

Register Name Description

0xFFC0 1300 EPPI1_STATUS “EPPI Status (EPPIx_STATUS) Register” on page 15-77

0xFFC0 1304 EPPI1_HCOUNT “EPPI Horizontal Transfer Count Register (EPPIx_
HCOUNT)” on page 15-93

0xFFC0 1308 EPPI1_HDELAY “EPPI Horizontal Delay Register (EPPIx_HDELAY)” on
page 15-92

0xFFC0
130C

EPPI1_VCOUNT “EPPI Vertical Transfer Count Register (EPPIx_VCOUNT)”
on page 15-91

0xFFC0 1310 EPPI1_VDELAY “EPPI Vertical Delay Register (EPPIx_VDELAY)” on
page 15-91

0xFFC0 1314 EPPI1_FRAME “EPPI Lines per Frame Register (EPPIx_FRAME)” on
page 15-90

0xFFC0 1318 EPPI1_LINE “EPPI Samples per Line Register (EPPIx_LINE)” on
page 15-90

0xFFC0
131C

EPPI1_CLKDIV “EPPI Clock Divide Register (EPPIx_CLKDIV)” on
page 15-93

0xFFC0 1320 EPPI1_CON-
TROL

“EPPIx Control (EPPIx_CONTROL) Register” on
page 15-80

Table A-27. EPPI0 Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-64 ADSP-BF54x Blackfin Processor Hardware Reference

EPPI2 Registers
EPPI2 registers are listed in Table A-29.

0xFFC0 1324 EPPI1_FSIW_
HBL

“EPPI FS1 Width Register/EPPI Horizontal Blanking Sam-
ples per Line Register (EPPIx_FS1W_HBL)” on page 15-94

0xFFC0 1328 EPPI1_FSIP_
AVPL

“EPPI FS1 Period Register/EPPI Active Video Samples per
Line Register (EPPIx_FS1P_AVPL)” on page 15-96

0xFFC0
132C

EPPI1_FS2W_
LVB

“EPPI FS2 Width Register/EPPI Lines of Vertical Blanking
Register (EPPIx_FS2W_LVB)” on page 15-95

0xFFC0 1330 EPPI1_FS2P_
LAVF

“EPPI FS2 Period Register/EPPI Lines of Active Video per
Frame Register (EPPIx_FS2P_LAVF)” on page 15-97

0xFFC0 1334 EPPI1_CLIP “EPPI Clipping Register (EPPIx_CLIP)” on page 15-98

Table A-29. EPPI2 Registers

Memory
Mapped
Address

Register Name Description

0xFFC0 2900 EPPI2_STATUS “EPPI Status (EPPIx_STATUS) Register” on page 15-77

0xFFC0 2904 EPPI2_HCOUNT “EPPI Horizontal Transfer Count Register (EPPIx_
HCOUNT)” on page 15-93

0xFFC0 2908 EPPI2_HDELAY “EPPI Horizontal Delay Register (EPPIx_HDELAY)” on
page 15-92

0xFFC0
290C

EPPI2_VCOUNT “EPPI Vertical Transfer Count Register (EPPIx_VCOUNT)”
on page 15-91

0xFFC0 2910 EPPI2_VDELAY “EPPI Vertical Delay Register (EPPIx_VDELAY)” on
page 15-91

0xFFC0 2914 EPPI2_FRAME “EPPI Lines per Frame Register (EPPIx_FRAME)” on
page 15-90

Table A-28. EPPI1 Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference A-65

System MMR Assignments

Host DMA Registers
Host DMA registers are listed in Table A-30.

0xFFC0 2918 EPPI2_LINE “EPPI Samples per Line Register (EPPIx_LINE)” on
page 15-90

0xFFC0
291C

EPPI2_CLKDIV “EPPI Clock Divide Register (EPPIx_CLKDIV)” on
page 15-93

0xFFC0 2920 EPPI2_CON-
TROL

“EPPIx Control (EPPIx_CONTROL) Register” on
page 15-80

0xFFC0 2924 EPPI2_FSIW_
HBL

“EPPI FS1 Width Register/EPPI Horizontal Blanking Sam-
ples per Line Register (EPPIx_FS1W_HBL)” on page 15-94

0xFFC0 2928 EPPI2_FSIP_
AVPL

“EPPI FS1 Period Register/EPPI Active Video Samples per
Line Register (EPPIx_FS1P_AVPL)” on page 15-96

0xFFC0
292C

EPPI2_FS2W_
LVB

“EPPI FS2 Width Register/EPPI Lines of Vertical Blanking
Register (EPPIx_FS2W_LVB)” on page 15-95

0xFFC0 2930 EPPI2_FS2P_
LAVF

“EPPI FS2 Period Register/EPPI Lines of Active Video per
Frame Register (EPPIx_FS2P_LAVF)” on page 15-97

0xFFC0 2934 EPPI2_CLIP “EPPI Clipping Register (EPPIx_CLIP)” on page 15-98

Table A-30. Host DMA Registers

Memory
Mapped
Address

Register Name Description

0xFFC0
3A00

HOST_CON-
TROL

“HOSTDP Control Register” on page 8-25

Table A-29. EPPI2 Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-66 ADSP-BF54x Blackfin Processor Hardware Reference

PIXC Registers
The Pixel Compositor has memory-mapped registers (MMRs) that regu-
late its operation. These registers are listed in Table A-31. Descriptions
and bit diagrams for each of these MMRs are provided in the following
sections.

0xFFC0
3A04

HOST_STATUS “HOSTDP Status Register” on page 8-27

0xFFC0
3A08

HOST_TIMEOUT “HOSTDP Timeout Register” on page 8-29

Table A-31. PIXC Memory-Mapped Registers

Memory
Mapped
Address

Register Name Description

0xFFC0 4400 PIXC_CTL “PIXC Control (PIXC_CTL) Register” on page 28-37

0xFFC0 4404 PIXC_PPL “PIXC Pixels Per Line (PIXC_PPL) Register” on page 28-38

0xFFC0 4408 PIXC_LPF “PIXC Lines Per Frame (PIXC_LPF) Register” on page 28-38

0xFFC0
440C

PIXC_AHSTART “PIXC Horizontal Start (PIXC_xHSTART) Registers” on
page 28-39

0xFFC0 4410 PIXC_AHEND “PIXC Horizontal End (PIXC_xHEND) Registers” on
page 28-39

0xFFC0 4414 PIXC_AVSTART “PIXC Vertical Start (PIXC_xVSTART) Registers” on
page 28-40

0xFFC0 4418 PIXC_AVEND “PIXC Vertical End (PIXC_xVEND) Registers” on page 28-40

0xFFC0
441C

PIXC_ATRANSP “PIXC Transparency Value (PIXC_xTRANSP) Registers” on
page 28-41

Table A-30. Host DMA Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference A-67

System MMR Assignments

0xFFC0 4420 PIXC_BHSTART “PIXC Horizontal Start (PIXC_xHSTART) Registers” on
page 28-39

0xFFC0 4424 PIXC_BHEND “PIXC Horizontal End (PIXC_xHEND) Registers” on
page 28-39

0xFFC0 4428 PIXC_BVSTART “PIXC Vertical Start (PIXC_xVSTART) Registers” on
page 28-40

0xFFC0
442C

PIXC_BVEND “PIXC Vertical End (PIXC_xVEND) Registers” on page 28-40

0xFFC0 4430 PIXC_BTRANSP “PIXC Transparency Value (PIXC_xTRANSP) Registers” on
page 28-41

0xFFC0
443C

PIXC_INTRSTAT “PIXC Interrupt Status (PIXC_INTRSTAT) Register” on
page 28-41

0xFFC0 4440 PIXC_RYCON “PIXC R/Y Conversion Coefficient (PIXC_RYCON) Register”
on page 28-42

0xFFC0 4444 PIXC_GUCON “PIXC G/U Conversion Coefficient (PIXC_GUCON) Regis-
ter” on page 28-43

0xFFC0 4448 PIXC_BVCON “PIXC B/V Conversion Coefficient (PIXC_BVCON) Register”
on page 28-44

0xFFC0
444C

PIXC_CCBIAS “PIXC Color Conversion Bias (PIXC_CCBIAS) Register” on
page 28-45

0xFFC0 4450 PIXC_TC “PIXC Transparency Color Value (PIXC_TC) Register” on
page 28-46

Table A-31. PIXC Memory-Mapped Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-68 ADSP-BF54x Blackfin Processor Hardware Reference

Ports Registers
Table A-32 lists the registers for port control and Table A-33 lists the reg-
isters for pin interrupt programming.

Table A-32. Port Control Registers (Multiplexing and GPIO)

Memory
Mapped
Address

Register Name Description

0xFFC014C0 PORTA_FER “Port x Function Enable (PORTx_FER) Registers” on
page 9-45

0xFFC014C4 PORTA
data

“Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

0xFFC014C8 PORTA_SET “Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

0xFFC014C
C

PORTA_CLEAR “Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

0xFFC014D0 PORTA_DIR_SET “Port x GPIO Direction Set (PORTx_DIR_
SET/CLEAR) Registers” on page 9-48

0xFFC014D4 PORTA_DIR_CLEAR “Port x GPIO Direction Set (PORTx_DIR_
SET/CLEAR) Registers” on page 9-48

0xFFC014D8 PORTA_INEN “Port x GPIO Input Enable (PORTx_INEN) Registers”
on page 9-50

0xFFC014D
C

PORTA_MUX “Port Multiplexer Control (PORTx_MUX) Registers” on
page 9-46

0xFFC014E0 PORTB_FER “Port x Function Enable (PORTx_FER) Registers” on
page 9-45

0xFFC014E4 PORTB
data

“Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

0xFFC014E8 PORTB_SET “Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

0xFFC014EC PORTB_CLEAR “Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

ADSP-BF54x Blackfin Processor Hardware Reference A-69

System MMR Assignments

0xFFC014F0 PORTB_DIR_SET “Port x GPIO Direction Set (PORTx_DIR_
SET/CLEAR) Registers” on page 9-48

0xFFC014F4 PORTB_DIR_CLEAR “Port x GPIO Direction Set (PORTx_DIR_
SET/CLEAR) Registers” on page 9-48

0xFFC014F8 PORTB_INEN “Port x GPIO Input Enable (PORTx_INEN) Registers”
on page 9-50

0xFFC014FC PORTB_MUX “Port Multiplexer Control (PORTx_MUX) Registers” on
page 9-46

0xFFC01500 PORTC_FER “Port x Function Enable (PORTx_FER) Registers” on
page 9-45

0xFFC01504 PORTC
data

“Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

0xFFC01508 PORTC_SET “Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

0xFFC0150C PORTC_CLEAR “Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

0xFFC01510 PORTC_DIR_SET “Port x GPIO Direction Set (PORTx_DIR_
SET/CLEAR) Registers” on page 9-48

0xFFC01514 PORTC_DIR_CLEAR “Port x GPIO Direction Set (PORTx_DIR_
SET/CLEAR) Registers” on page 9-48

0xFFC01518 PORTC_INEN “Port x GPIO Input Enable (PORTx_INEN) Registers”
on page 9-50

0xFFC0151C PORTC_MUX “Port Multiplexer Control (PORTx_MUX) Registers” on
page 9-46

0xFFC01520 PORTD_FER “Port x Function Enable (PORTx_FER) Registers” on
page 9-45

0xFFC01524 PORTD
data

“Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

0xFFC01528 PORTD_SET “Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

Table A-32. Port Control Registers (Multiplexing and GPIO) (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-70 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0152C PORTD_CLEAR “Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

0xFFC01530 PORTD_DIR_SET “Port x GPIO Direction Set (PORTx_DIR_
SET/CLEAR) Registers” on page 9-48

0xFFC01534 PORTD_DIR_
CLEAR

“Port x GPIO Direction Set (PORTx_DIR_
SET/CLEAR) Registers” on page 9-48

0xFFC01538 PORTD_INEN “Port x GPIO Input Enable (PORTx_INEN) Registers”
on page 9-50

0xFFC0153C PORTD_MUX “Port Multiplexer Control (PORTx_MUX) Registers” on
page 9-46

0xFFC01540 PORTE_FER “Port x Function Enable (PORTx_FER) Registers” on
page 9-45

0xFFC01544 PORTE
data

“Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

0xFFC01548 PORTE_SET “Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

0xFFC0154C PORTE_CLEAR “Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

0xFFC01550 PORTE_DIR_SET “Port x GPIO Direction Set (PORTx_DIR_
SET/CLEAR) Registers” on page 9-48

0xFFC01554 PORTE_DIR_CLEAR “Port x GPIO Direction Set (PORTx_DIR_
SET/CLEAR) Registers” on page 9-48

0xFFC01558 PORTE_INEN “Port x GPIO Input Enable (PORTx_INEN) Registers”
on page 9-50

0xFFC0155C PORTE_MUX “Port Multiplexer Control (PORTx_MUX) Registers” on
page 9-46

0xFFC01560 PORTF_FER “Port x Function Enable (PORTx_FER) Registers” on
page 9-45

0xFFC01564 PORTF
data

“Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

Table A-32. Port Control Registers (Multiplexing and GPIO) (Cont’d)

Memory
Mapped
Address

Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference A-71

System MMR Assignments

0xFFC01568 PORTF_SET “Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

0xFFC0156C PORTF_CLEAR “Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

0xFFC01570 PORTF_DIR_SET “Port x GPIO Direction Set (PORTx_DIR_
SET/CLEAR) Registers” on page 9-48

0xFFC01574 PORTF_DIR_CLEAR “Port x GPIO Direction Set (PORTx_DIR_
SET/CLEAR) Registers” on page 9-48

0xFFC01578 PORTF_INEN “Port x GPIO Input Enable (PORTx_INEN) Registers”
on page 9-50

0xFFC0157C PORTF_MUX “Port Multiplexer Control (PORTx_MUX) Registers” on
page 9-46

0xFFC01580 PORTG_FER “Port x Function Enable (PORTx_FER) Registers” on
page 9-45

0xFFC01584 PORTG_DIR_
CLEAR

“Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

0xFFC01588 PORTG_SET “Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

0xFFC0158C PORTG_CLEAR “Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

0xFFC01590 PORTG_DIR_SET “Port x GPIO Direction Set (PORTx_DIR_
SET/CLEAR) Registers” on page 9-48

0xFFC01594 PORTG
data

“Port x GPIO Direction Set (PORTx_DIR_
SET/CLEAR) Registers” on page 9-48

0xFFC01598 PORTG_INEN “Port x GPIO Input Enable (PORTx_INEN) Registers”
on page 9-50

0xFFC0159C PORTG_MUX “Port Multiplexer Control (PORTx_MUX) Registers” on
page 9-46

0xFFC015A0 PORTH_FER “Port x Function Enable (PORTx_FER) Registers” on
page 9-45

Table A-32. Port Control Registers (Multiplexing and GPIO) (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-72 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC015A4 PORTH
data

“Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

0xFFC015A8 PORTH_SET “Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

0xFFC015AC PORTH_CLEAR “Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

0xFFC015B0 PORTH_DIR_SET “Port x GPIO Direction Set (PORTx_DIR_
SET/CLEAR) Registers” on page 9-48

0xFFC015B4 PORTH_DIR_
CLEAR

“Port x GPIO Direction Set (PORTx_DIR_
SET/CLEAR) Registers” on page 9-48

0xFFC015B8 PORTH_INEN “Port x GPIO Input Enable (PORTx_INEN) Registers”
on page 9-50

0xFFC015BC PORTH_MUX “Port Multiplexer Control (PORTx_MUX) Registers” on
page 9-46

0xFFC015C0 PORTI_FER “Port x Function Enable (PORTx_FER) Registers” on
page 9-45

0xFFC015C4 PORTI
data

“Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

0xFFC015C8 PORTI_SET “Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

0xFFC015C
C

PORTI_CLEAR “Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

0xFFC015D0 PORTI_DIR_SET “Port x GPIO Direction Set (PORTx_DIR_
SET/CLEAR) Registers” on page 9-48

0xFFC015D4 PORTI_DIR_CLEAR “Port x GPIO Direction Set (PORTx_DIR_
SET/CLEAR) Registers” on page 9-48

0xFFC015D8 PORTI_INEN “Port x GPIO Input Enable (PORTx_INEN) Registers”
on page 9-50

0xFFC015D
C

PORTI_MUX “Port Multiplexer Control (PORTx_MUX) Registers” on
page 9-46

Table A-32. Port Control Registers (Multiplexing and GPIO) (Cont’d)

Memory
Mapped
Address

Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference A-73

System MMR Assignments

Table A-33 lists the registers for pin interrupt programming.

0xFFC015E0 PORTJ_FER “Port x Function Enable (PORTx_FER) Registers” on
page 9-45

0xFFC015E4 PORTJ
data

“Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

0xFFC015E8 PORTJ_SET “Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

0xFFC015EC PORTJ_CLEAR “Port x GPIO Data (PORTx/ PORTx_SET/PORTx_
CLEAR) Registers” on page 9-51

0xFFC015F0 PORTJ_DIR_SET “Port x GPIO Direction Set (PORTx_DIR_
SET/CLEAR) Registers” on page 9-48

0xFFC015F4 PORTJ_DIR_CLEAR “Port x GPIO Direction Set (PORTx_DIR_
SET/CLEAR) Registers” on page 9-48

0xFFC015F8 PORTJ_INEN “Port x GPIO Input Enable (PORTx_INEN) Registers”
on page 9-50

0xFFC015FC PORTJ_MUX “Port Multiplexer Control (PORTx_MUX) Registers” on
page 9-46

Table A-33. Pin Interrupt Registers

Memory
Mapped
Address

Register Name Description

0xFFC01400 PINT0_MASK_SET “Pin Interrupt Mask (PINTx_MASK_SET/ PINTx_
MASK_CLEAR) Register Pairs” on page 9-54

0xFFC01404 PINT0_MASK_CLEAR “Pin Interrupt Mask (PINTx_MASK_SET/ PINTx_
MASK_CLEAR) Register Pairs” on page 9-54

0xFFC01408 PINT0_REQUEST “Interrupt Request and Latch (PINTx_REQUEST/
PINTx_LATCH) Registers” on page 9-55

Table A-32. Port Control Registers (Multiplexing and GPIO) (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-74 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0140
C

PINT0_ASSIGN “Pin Interrupt Assignment (PINTx_ASSIGN) Regis-
ters” on page 9-63

0xFFC01410 PINT0_EDGE_SET “Interrupt Edge (PINTx_EDGE_SET/ PINTx_EDGE_
CLEAR) Register Pairs” on page 9-58

0xFFC01414 PINT0_EDGE_CLEAR “Interrupt Edge (PINTx_EDGE_SET/ PINTx_EDGE_
CLEAR) Register Pairs” on page 9-58

0xFFC01418 PINT0_INVERT_SET “Pin Interrupt Invert Set (PINTx_INVERT_SET/
PINTx_INVERT_CLEAR) Registers” on page 9-61

0xFFC0141
C

PINT0_INVERT_
CLEAR

“Pin Interrupt Invert Set (PINTx_INVERT_SET/
PINTx_INVERT_CLEAR) Registers” on page 9-61

0xFFC01420 PINT0_PINSTATE “Pin Interrupt Pin State (PINTx_PINSTATE) Register”
on page 9-60

0xFFC01424 PINT0_LATCH “Interrupt Request and Latch (PINTx_REQUEST/
PINTx_LATCH) Registers” on page 9-55

0xFFC01430 PINT1_MASK_SET “Pin Interrupt Mask (PINTx_MASK_SET/ PINTx_
MASK_CLEAR) Register Pairs” on page 9-54

0xFFC01434 PINT1_MASK_CLEAR “Pin Interrupt Mask (PINTx_MASK_SET/ PINTx_
MASK_CLEAR) Register Pairs” on page 9-54

0xFFC01438 PINT1_REQUEST “Interrupt Request and Latch (PINTx_REQUEST/
PINTx_LATCH) Registers” on page 9-55

0xFFC0143
C

PINT1_ASSIGN “Pin Interrupt Assignment (PINTx_ASSIGN) Regis-
ters” on page 9-63

0xFFC01440 PINT1_EDGE_SET “Interrupt Edge (PINTx_EDGE_SET/ PINTx_EDGE_
CLEAR) Register Pairs” on page 9-58

0xFFC01444 PINT1_EDGE_CLEAR “Interrupt Edge (PINTx_EDGE_SET/ PINTx_EDGE_
CLEAR) Register Pairs” on page 9-58

0xFFC01448 PINT1_INVERT_SET “Pin Interrupt Invert Set (PINTx_INVERT_SET/
PINTx_INVERT_CLEAR) Registers” on page 9-61

0xFFC0144
C

PINT1_INVERT_
CLEAR

“Pin Interrupt Invert Set (PINTx_INVERT_SET/
PINTx_INVERT_CLEAR) Registers” on page 9-61

Table A-33. Pin Interrupt Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference A-75

System MMR Assignments

0xFFC01450 PINT1_PINSTATE “Pin Interrupt Pin State (PINTx_PINSTATE) Register”
on page 9-60

0xFFC01454 PINT1_LATCH “Interrupt Request and Latch (PINTx_REQUEST/
PINTx_LATCH) Registers” on page 9-55

0xFFC01460 PINT2_MASK_SET “Pin Interrupt Mask (PINTx_MASK_SET/ PINTx_
MASK_CLEAR) Register Pairs” on page 9-54

0xFFC01464 PINT2_MASK_CLEAR “Pin Interrupt Mask (PINTx_MASK_SET/ PINTx_
MASK_CLEAR) Register Pairs” on page 9-54

0xFFC01468 PINT2_REQUEST “Interrupt Request and Latch (PINTx_REQUEST/
PINTx_LATCH) Registers” on page 9-55

0xFFC0146
C

PINT2_ASSIGN “Pin Interrupt Assignment (PINTx_ASSIGN) Regis-
ters” on page 9-63

0xFFC01470 PINT2_EDGE_SET “Interrupt Edge (PINTx_EDGE_SET/ PINTx_EDGE_
CLEAR) Register Pairs” on page 9-58

0xFFC01474 PINT2_EDGE_CLEAR “Interrupt Edge (PINTx_EDGE_SET/ PINTx_EDGE_
CLEAR) Register Pairs” on page 9-58

0xFFC01478 PINT2_INVERT_SET “Pin Interrupt Invert Set (PINTx_INVERT_SET/
PINTx_INVERT_CLEAR) Registers” on page 9-61

0xFFC0147
C

PINT2_INVERT_
CLEAR

“Pin Interrupt Invert Set (PINTx_INVERT_SET/
PINTx_INVERT_CLEAR) Registers” on page 9-61

0xFFC01480 PINT2_PINSTATE “Pin Interrupt Pin State (PINTx_PINSTATE) Register”
on page 9-60

0xFFC01484 PINT2_LATCH “Interrupt Request and Latch (PINTx_REQUEST/
PINTx_LATCH) Registers” on page 9-55

0xFFC01490 PINT3_MASK_SET “Pin Interrupt Mask (PINTx_MASK_SET/ PINTx_
MASK_CLEAR) Register Pairs” on page 9-54

0xFFC01494 PINT3_MASK_CLEAR “Pin Interrupt Mask (PINTx_MASK_SET/ PINTx_
MASK_CLEAR) Register Pairs” on page 9-54

0xFFC01498 PINT3_REQUEST “Interrupt Request and Latch (PINTx_REQUEST/
PINTx_LATCH) Registers” on page 9-55

Table A-33. Pin Interrupt Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-76 ADSP-BF54x Blackfin Processor Hardware Reference

Timer Registers
Timer registers (0xFFC0 0600 – 0xFFC0 06FF) are listed in Table A-34.

0xFFC0149
C

PINT3_ASSIGN “Pin Interrupt Assignment (PINTx_ASSIGN) Regis-
ters” on page 9-63

0xFFC014A0 PINT3_EDGE_SET “Interrupt Edge (PINTx_EDGE_SET/ PINTx_EDGE_
CLEAR) Register Pairs” on page 9-58

0xFFC014A4 PINT3_EDGE_CLEAR “Interrupt Edge (PINTx_EDGE_SET/ PINTx_EDGE_
CLEAR) Register Pairs” on page 9-58

0xFFC014A8 PINT3_INVERT_SET “Pin Interrupt Invert Set (PINTx_INVERT_SET/
PINTx_INVERT_CLEAR) Registers” on page 9-61

0xFFC014A
C

PINT3_INVERT_
CLEAR

“Pin Interrupt Invert Set (PINTx_INVERT_SET/
PINTx_INVERT_CLEAR) Registers” on page 9-61

0xFFC014B0 PINT3_PINSTATE “Pin Interrupt Pin State (PINTx_PINSTATE) Register”
on page 9-60

0xFFC014B4 PINT3_LATCH “Interrupt Request and Latch (PINTx_REQUEST/
PINTx_LATCH) Registers” on page 9-55

Table A-34. Timer Registers

Memory
Mapped
Address

Register Name Description

0xFFC0 1600 TIMER0_CONFIG “Timer Configuration (TIMERx_CONFIG) Registers” on
page 10-42

0xFFC0 1604 TIMER0_COUN-
TER

“Timer Counter (TIMERx_COUNTER) Registers” on
page 10-44

0xFFC0 1608 TIMER0_PERIOD “TIMERx_PERIOD and TIMERx_WIDTH Registers” on
page 10-47

Table A-33. Pin Interrupt Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference A-77

System MMR Assignments

0xFFC0
160C

TIMER0_WIDTH “TIMERx_PERIOD and TIMERx_WIDTH Registers” on
page 10-47

0xFFC0 1610 TIMER1_CONFIG “Timer Configuration (TIMERx_CONFIG) Registers” on
page 10-42

0xFFC0 1614 TIMER1_COUN-
TER

“Timer Counter (TIMERx_COUNTER) Registers” on
page 10-44

0xFFC0 1618 TIMER1_PERIOD “TIMERx_PERIOD and TIMERx_WIDTH Registers” on
page 10-47

0xFFC0
161C

TIMER1_WIDTH “TIMERx_PERIOD and TIMERx_WIDTH Registers” on
page 10-47

0xFFC0 1620 TIMER2_CONFIG “Timer Configuration (TIMERx_CONFIG) Registers” on
page 10-42

0xFFC0 1624 TIMER2_COUN-
TER

“Timer Counter (TIMERx_COUNTER) Registers” on
page 10-44

0xFFC0 1628 TIMER2_PERIOD “TIMERx_PERIOD and TIMERx_WIDTH Registers” on
page 10-47

0xFFC0
162C

TIMER2_WIDTH “TIMERx_PERIOD and TIMERx_WIDTH Registers” on
page 10-47

0xFFC0 1630 TIMER3_CONFIG “Timer Configuration (TIMERx_CONFIG) Registers” on
page 10-42

0xFFC0 1634 TIMER3_COUN-
TER

“Timer Counter (TIMERx_COUNTER) Registers” on
page 10-44

0xFFC0 1638 TIMER3_PERIOD “TIMERx_PERIOD and TIMERx_WIDTH Registers” on
page 10-47

0xFFC0
163C

TIMER3_WIDTH “TIMERx_PERIOD and TIMERx_WIDTH Registers” on
page 10-47

0xFFC0 1640 TIMER4_CONFIG “Timer Configuration (TIMERx_CONFIG) Registers” on
page 10-42

0xFFC0 1644 TIMER4_COUN-
TER

“Timer Counter (TIMERx_COUNTER) Registers” on
page 10-44

Table A-34. Timer Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-78 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 1648 TIMER4_PERIOD “TIMERx_PERIOD and TIMERx_WIDTH Registers” on
page 10-47

0xFFC0
164C

TIMER4_WIDTH “TIMERx_PERIOD and TIMERx_WIDTH Registers” on
page 10-47

0xFFC0 1650 TIMER5_CONFIG “Timer Configuration (TIMERx_CONFIG) Registers” on
page 10-42

0xFFC0 1654 TIMER5_COUN-
TER

“Timer Counter (TIMERx_COUNTER) Registers” on
page 10-44

0xFFC0 1658 TIMER5_PERIOD “TIMERx_PERIOD and TIMERx_WIDTH Registers” on
page 10-47

0xFFC0
165C

TIMER5_WIDTH “TIMERx_PERIOD and TIMERx_WIDTH Registers” on
page 10-47

0xFFC0 1660 TIMER6_CONFIG “Timer Configuration (TIMERx_CONFIG) Registers” on
page 10-42

0xFFC0 1664 TIMER6_COUN-
TER

“Timer Counter (TIMERx_COUNTER) Registers” on
page 10-44

0xFFC0 1668 TIMER6_PERIOD “TIMERx_PERIOD and TIMERx_WIDTH Registers” on
page 10-47

0xFFC0
166C

TIMER6_WIDTH “TIMERx_PERIOD and TIMERx_WIDTH Registers” on
page 10-47

0xFFC0 1670 TIMER7_CONFIG “Timer Configuration (TIMERx_CONFIG) Registers” on
page 10-42

0xFFC0 1674 TIMER7_COUN-
TER

“Timer Counter (TIMERx_COUNTER) Registers” on
page 10-44

0xFFC0 1678 TIMER7_PERIOD “TIMERx_PERIOD and TIMERx_WIDTH Registers” on
page 10-47

0xFFC0
167C

TIMER7_WIDTH “TIMERx_PERIOD and TIMERx_WIDTH Registers” on
page 10-47

0xFFC0 1680 TIMER_ENABLE “Timer Enable (TIMER_ENABLEx) Registers” on
page 10-38

Table A-34. Timer Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference A-79

System MMR Assignments

CANx Registers
CANx registers (0xFFC0 2A00 – 0xFFC0 2FFF) are listed in Table A-35
through Table A-38.

0xFFC0 1684 TIMER_DISABLE “Timer Disable (TIMER_DISABLEx) Registers” on
page 10-39

0xFFC0 1688 TIMER_STATUS “Timer Status (TIMER_STATUSx) Registers” on
page 10-40

Table A-35. CANx Control and Configuration Registers

Memory
Mapped
Address

Register Name Description

0xFFC0 2A00 CANx_MC1 “Mailbox Configuration (CANx_MCx) Registers” on
page 31-69

0xFFC0 2A04 CANx_MD1 “Mailbox Direction (CANx_MDx) Registers” on page 31-70

0xFFC0 2A08 CANx_TRS1 “Transmission Request Set (CANx_TRSx) Registers” on
page 31-74

0xFFC0 2A0C CANx_TRR1 “Transmission Request Reset (CANx_TRRx) Registers” on
page 31-75

0xFFC0 2A10 CANx_TA1 “Transmission Acknowledge (CANx_TAx) Registers” on
page 31-77

0xFFC0 2A14 CANx_AA1 “Abort Acknowledge (CANx_AAx) Registers” on page 31-76

0xFFC0 2A18 CANx_RMP1 “Receive Message Pending (CANx_RMPx) Registers” on
page 31-71

0xFFC0 2A1C CANx_RML1 “Receive Message Lost (CANx_RMLx) Registers” on
page 31-72

Table A-34. Timer Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-80 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 2A20 CANx_MBTIF1 “Mailbox Transmit Interrupt Flag (CANx_MBTIFx) Regis-
ters” on page 31-80

0xFFC0 2A24 CANx_MBRIF1 “Mailbox Receive Interrupt Flag (CANx_MBRIFx) Regis-
ters” on page 31-81

0xFFC0 2A28 CANx_MBIM1 “Mailbox Interrupt Mask (CANx_MBIMx) Registers” on
page 31-79

0xFFC0 2A2C CANx_RFH1 “Remote Frame Handling (CANx_RFHx) Registers” on
page 31-78

0xFFC0 2A30 CANx_OPSS1 “Overwrite Protection/Single Shot Transmission (CANx_
OPSSx) Register” on page 31-73

0xFFC0 2A40 CANx_MC2 “Mailbox Configuration (CANx_MCx) Registers” on
page 31-69

0xFFC0 2A44 CANx_MD2 “Mailbox Direction (CANx_MDx) Registers” on page 31-70

0xFFC0 2A48 CANx_TRS2 “Transmission Request Set (CANx_TRSx) Registers” on
page 31-74

0xFFC0 2A4C CANx_TRR2 “Transmission Request Reset (CANx_TRRx) Registers” on
page 31-75

0xFFC0 2A50 CANx_TA2 “Transmission Acknowledge (CANx_TAx) Registers” on
page 31-77

0xFFC0 2A54 CANx_AA2 “Abort Acknowledge (CANx_AAx) Registers” on page 31-76

0xFFC0 2A58 CANx_RMP2 “Receive Message Pending (CANx_RMPx) Registers” on
page 31-71

0xFFC0 2A5C CANx_RML2 “Receive Message Lost (CANx_RMLx) Registers” on
page 31-72

0xFFC0 2A60 CANx_MBTIF2 “Mailbox Transmit Interrupt Flag (CANx_MBTIFx) Regis-
ters” on page 31-80

0xFFC0 2A64 CANx_MBRIF2 “Mailbox Receive Interrupt Flag (CANx_MBRIFx) Regis-
ters” on page 31-81

0xFFC0 2A68 CANx_MBIM2 “Mailbox Interrupt Mask (CANx_MBIMx) Registers” on
page 31-79

Table A-35. CANx Control and Configuration Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference A-81

System MMR Assignments

0xFFC0 2A6C CANx_RFH2 “Remote Frame Handling (CANx_RFHx) Registers” on
page 31-78

0xFFC0 2A70 CANx_OPSS2 “Overwrite Protection/Single Shot Transmission (CANx_
OPSSx) Register” on page 31-73

0xFFC0 2A80 CANx_CLOCK “CAN Clock (CANx_CLOCK) Registers” on page 31-47

0xFFC0 2A84 CANx_TIMING “CAN Timing (CANx_TIMING) Registers” on page 31-48

0xFFC0 2A88 CANx_DEBUG “CAN Debug (CANx_DEBUG) Registers” on page 31-47

0xFFC0 2A8C CANx_STATUS “Global CAN Status (CANx_STATUS) Registers” on
page 31-46

0xFFC0 2A90 CANx_CEC “Error Counter (CANx_CEC) Register” on page 31-84

0xFFC0 2A94 CANx_GIS “Global CAN Interrupt Status (CANx_GIS) Registers” on
page 31-49

0xFFC0 2A98 CANx_GIM “Global CAN Interrupt Mask (CANx_GIM) Registers” on
page 31-49

0xFFC0 2A9C CANx_GIF “Global CAN Interrupt Flag (CANx_GIF) Registers” on
page 31-50

0xFFC0 2AA0 CANx_CON-
TROL

“Master Control (CANx_CONTROL) Registers” on
page 31-45

0xFFC0 2AA4 CANx_INTR “CAN Interrupt (CANx_INTR) Registers” on page 31-48

0xFFC0
2AAC

CANx_MBTD “Temporary Mailbox Disable (CANx_MBTD) Register” on
page 31-78

0xFFC0 2AB0 CANx_EWR “Error Counter Warning Level (CANx_EWR) Register” on
page 31-85

0xFFC0 2AB4 CANx_ESR “Error Status (CANx_ESR) Register” on page 31-85

0xFFC0 2AC4 CANx_UCCNT “Universal Counter (CANx_UCCNT) Register” on
page 31-84

Table A-35. CANx Control and Configuration Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-82 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 2AC8 CANx_UCRC “Universal Counter Reload/Capture (CANx_UCRC) Regis-
ter” on page 31-84

0xFFC0
2ACC

CANx_UCCNF “Universal Counter Configuration Mode (CANx_UCCNF)
Register” on page 31-83

Table A-36. CANx Mailbox Acceptance Mask Registers

Memory
Mapped
Address

Register Name Description

0xFFC0 2B00 CANx_AM00L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B04 CANx_
AM00H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B08 CANx_AM01L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B0C CANx_
AM01H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B10 CANx_AM02L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B14 CANx_
AM02H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B18 CANx_AM03L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B1C CANx_
AM03H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B20 CANx_AM04L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B24 CANx_
AM04H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B28 CANx_AM05L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B2C CANx_
AM05H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B30 CANx_AM06L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

Table A-35. CANx Control and Configuration Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference A-83

System MMR Assignments

0xFFC0 2B34 CANx_
AM06H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B38 CANx_AM07L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B3C CANx_
AM07H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B40 CANx_AM08L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B44 CANx_
AM08H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B48 CANx_AM09L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B4C CANx_
AM09H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B50 CANx_AM10L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B54 CANx_
AM10H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B58 CANx_AM11L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B5C CANx_
AM11H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B60 CANx_AM12L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B64 CANx_
AM12H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B68 CANx_AM13L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B6C CANx_
AM13H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B70 CANx_AM14L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B74 CANx_
AM14H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B78 CANx_AM15L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

Table A-36. CANx Mailbox Acceptance Mask Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-84 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 2B7C CANx_
AM15H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B80 CANx_AM16L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B84 CANx_
AM16H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B88 CANx_AM17L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B8C CANx_
AM17H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B90 CANx_AM18L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B94 CANx_
AM18H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B98 CANx_AM19L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2B9C CANx_
AM19H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2BA0 CANx_AM20L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2BA4 CANx_
AM20H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2BA8 CANx_AM21L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2BAC CANx_
AM21H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2BB0 CANx_AM22L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2BB4 CANx_
AM22H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2BB8 CANx_AM23L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2BBC CANx_
AM23H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2BC0 CANx_AM24L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

Table A-36. CANx Mailbox Acceptance Mask Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference A-85

System MMR Assignments

Since each CANx mailbox has an identical MMR set, with fixed offsets
from the base address associated with that mailbox, it is convenient to
view the MMR information as provided in Table A-37 and Table A-38.
Table A-37 identifies the base address of each CANx mailbox, as well as

0xFFC0 2BC4 CANx_
AM24H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2BC8 CANx_AM25L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0
2BCC

CANx_
AM25H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2BD0 CANx_AM26L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2BD4 CANx_
AM26H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2BD8 CANx_AM27L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0
2BDC

CANx_
AM27H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2BE0 CANx_AM28L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2BE4 CANx_
AM28H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2BE8 CANx_AM29L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2BEC CANx_
AM29H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2BF0 CANx_AM30L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2BF4 CANx_
AM30H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2BF8 CANx_AM31L “Acceptance Mask (CANx_AMxx) Registers” on page 31-50

0xFFC0 2BFC CANx_
AM31H

“Acceptance Mask (CANx_AMxx) Registers” on page 31-50

Table A-36. CANx Mailbox Acceptance Mask Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-86 ADSP-BF54x Blackfin Processor Hardware Reference

the register prefix that identifies mailbox. Table A-38 then lists the regis-
ter suffix and provides its offset from the base address.

As an example, the CANx mailbox 2 length register is called CAN_MB02_
LENGTH, and its address is 0xFFC0 2C50. Likewise, the CAN mailbox 17
timestamp register is called CAN_MB17_TIMESTAMP, and its address is
0xFFC0 2E34.

Table A-37. CANx Mailbox Base Addresses

Mailbox
Identifie
r

MMR Base
Address

Register Prefix

0 0xFFC0 2C00 CANx_MB00_

1 0xFFC0 2C20 CANx_MB01_

2 0xFFC0 2C40 CANx_MB02_

3 0xFFC0 2C60 CANx_MB03_

4 0xFFC0 2C80 CANx_MB04_

5 0xFFC0 2CA0 CANx_MB05_

6 0xFFC0 2CC
0

CANx_MB06_

7 0xFFC0 2CE0 CANx_MB07_

8 0xFFC0 2D00 CANx_MB08_

9 0xFFC0 2D20 CANx_MB09_

10 0xFFC0 2D40 CANx_MB10_

11 0xFFC0 2D60 CANx_MB11_

12 0xFFC0 2D80 CANx_MB12_

13 0xFFC0 2DA
0

CANx_MB13_

14 0xFFC0 2DC
0

CANx_MB14_

15 0xFFC0 2DE
0

CANx_MB15_

ADSP-BF54x Blackfin Processor Hardware Reference A-87

System MMR Assignments

16 0xFFC0 2E00 CANx_MB16_

17 0xFFC0 2E20 CANx_MB17_

18 0xFFC0 2E40 CANx_MB18_

19 0xFFC0 2E60 CANx_MB19_

20 0xFFC0 2E80 CANx_MB20_

21 0xFFC0 2EA0 CANx_MB21_

22 0xFFC0 2EC0 CANx_MB22_

23 0xFFC0 2EE0 CANx_MB23_

24 0xFFC0 2F00 CANx_MB24_

25 0xFFC0 2F20 CANx_MB25_

26 0xFFC0 2F40 CANx_MB26_

27 0xFFC0 2F60 CANx_MB27_

28 0xFFC0 2F80 CANx_MB28_

29 0xFFC0 2FA0 CANx_MB29_

30 0xFFC0 2FC0 CANx_MB30_

31 0xFFC0 2FE0 CANx_MB31_

Table A-38. CANx Mailbox Register Suffix and Offset

Register
Suffix

Offset
From
Base

Description

DATA0 0x00 “Mailbox Word 3–0 (CANx_MBxx_DATA3–0) Registers” on
page 31-61

DATA1 0x04 “Mailbox Word 3–0 (CANx_MBxx_DATA3–0) Registers” on
page 31-61

Table A-37. CANx Mailbox Base Addresses (Cont’d)

Mailbox
Identifie
r

MMR Base
Address

Register Prefix

System MMR Assignments

A-88 ADSP-BF54x Blackfin Processor Hardware Reference

Handshake MDMA Control Registers
Handshake MDMA registers (0xFFC0 3300 – 0xFFC0 33FF) are listed in
Table A-39.

DATA2 0x08 “Mailbox Word 3–0 (CANx_MBxx_DATA3–0) Registers” on
page 31-61

DATA3 0x0C “Mailbox Word 3–0 (CANx_MBxx_DATA3–0) Registers” on
page 31-61

LENGTH 0x10 “Mailbox Word 4 (CANx_MBxx_LENGTH) Registers” on
page 31-59

TIME-
STAMP

0x14 “Mailbox Word 5 (CANx_MBxx_TIMESTAMP) Registers” on
page 31-58

ID0 0x18 “Mailbox Word 6 (CANx_MBxx_ID0) Registers” on page 31-56

ID1 0x1C “Mailbox Word 7 (CANx_MBxx_ID1) Registers” on page 31-54

Table A-39. HMDMA Registers

Memory
Mapped
Address

Register Name Description

0xFFC0 4500 HMDMA0_CONTROL “Handshake MDMA Control (HMDMAx_CON-
TROL) Registers” on page 7-111

0xFFC0 4504 HMDMA0_ECINIT “Handshake MDMA Initial Edge Count
(HMDMAx_ECINIT) Registers” on page 7-117

0xFFC0 4508 HMDMA0_BCINIT “Handshake MDMA Initial Block Count
(HMDMAx_BCINIT) Registers” on page 7-114

0xFFC0
450C

HMDMA0_ECURGENT “Handshake MDMA Edge Count Urgent
(HMDMAx_ECURGENT) Registers” on
page 7-117

Table A-38. CANx Mailbox Register Suffix and Offset (Cont’d)

Register
Suffix

Offset
From
Base

Description

ADSP-BF54x Blackfin Processor Hardware Reference A-89

System MMR Assignments

0xFFC0 4510 HMDMA0_ECOVER-
FLOW

“Handshake MDMA Edge Count Overflow Inter-
rupt (HMDMAx_ECOVERFLOW) Registers” on
page 7-118

0xFFC0 4514 HMDMA0_ECOUNT “Handshake MDMA Current Edge Count
(HMDMAx_ECOUNT) Registers” on page 7-116

0xFFC0 4518 HMDMA0_BCOUNT “Handshake MDMA Current Block Count
(HMDMAx_BCOUNT) Registers” on page 7-115

0xFFC0 4540 HMDMA1_CONTROL “Handshake MDMA Control (HMDMAx_CON-
TROL) Registers” on page 7-111

0xFFC0 4544 HMDMA1_ECINIT “Handshake MDMA Initial Edge Count
(HMDMAx_ECINIT) Registers” on page 7-117

0xFFC0 4548 HMDMA1_BCINIT “Handshake MDMA Initial Block Count
(HMDMAx_BCINIT) Registers” on page 7-114

0xFFC0
454C

HMDMA1_ECURGENT “Handshake MDMA Edge Count Urgent
(HMDMAx_ECURGENT) Registers” on
page 7-117

0xFFC0 4550 HMDMA1_ECOVER-
FLOW

“Handshake MDMA Edge Count Overflow Inter-
rupt (HMDMAx_ECOVERFLOW) Registers” on
page 7-118

0xFFC0 4554 HMDMA1_ECOUNT “Handshake MDMA Current Edge Count
(HMDMAx_ECOUNT) Registers” on page 7-116

0xFFC0 4558 HMDMA1_BCOUNT “Handshake MDMA Current Block Count
(HMDMAx_BCOUNT) Registers” on page 7-115

Table A-39. HMDMA Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

System MMR Assignments

A-90 ADSP-BF54x Blackfin Processor Hardware Reference

NAND Flash Controller Registers
Table A-28 lists all of the NFC memory-mapped registers.

Table A-40. NFC Memory-Mapped Registers

Memory
Mapped
Address

Register Name Description

0xFFC0 3B00 NFC_CTL “NFC Control Register (NFC_CTL)” on page 20-20

0xFFC0 3B04 NFC_STAT “NFC Status Register (NFC_STAT)” on page 20-21

0xFFC0 3B08 NFC_IRQSTAT “NFC Interrupt Status Register (NFC_IRQSTAT)” on
page 20-22

0xFFC0 3B0C NFC_IRQMASK “NFC Interrupt Mask Register (NFC_IRQMASK)” on
page 20-23

0xFFC0 3B10 NFC_ECC0 “NFC ECC Registers (NFC_ECCx)” on page 20-23

0xFFC0 3B14 NFC_ECC1 “NFC ECC Registers (NFC_ECCx)” on page 20-23

0xFFC0 3B18 NFC_ECC2 “NFC ECC Registers (NFC_ECCx)” on page 20-23

0xFFC0 3B1C NFC_ECC3 “NFC ECC Registers (NFC_ECCx)” on page 20-23

0xFFC0 3B20 NFC_COUNT “NFC Count Register (NFC_COUNT)” on page 20-25

0xFFC0 3B24 NFC_RST “NFC Reset Register (NFC_RST)” on page 20-25

0xFFC0 3B28 NFC_PGCTL “NFC Page Control Register (NFC_PGCTL)” on page 20-26

0xFCC0 3B2C NFC_READ “NFC Read Data Register (NFC_READ)” on page 20-26

0xFFC0 3B40 NFC_ADDR “NFC Address Register (NFC_ADDR)” on page 20-27

0xFFC0 3B44 NFC_CMD “NFC Command Register (NFC_CMD)” on page 20-28

0xFFC0 3B48 NFC_DATA_
WR

“NFC Data Write Register (NFC_DATA_WR)” on
page 20-29

0xFFC0 3B4C NFC_DATA_RD “NFC Data Read Register (NFC_DATA_RD)” on page 20-29

ADSP-BF54x Blackfin Processor Hardware Reference A-91

System MMR Assignments

Core Timer Registers
Core timer registers (0xFFE0 3000 – 0xFFE0 300C) are listed in
Table A-41.

Rotary Counter Registers
The rotary encoder interface has eight memory-mapped registers (MMRs)
that regulate its operation. Refer to Table A-42 for an overview of all
MMRs associated with the rotary encoder interface.

Table A-41. Core Timer Registers

Memory
Mapped
Address

Register
Name

Description

0xFFE0 3000 TCNTL “Core Timer Control (TCNTL) Register” on page 11-5

0xFFE0 3004 TPERIOD “Core Timer Period (TPERIOD) Register” on page 11-6

0xFFE0 3008 TSCALE “Core Timer Scale (TSCALE) Register” on page 11-7

0xFFE0
300C

TCOUNT “Core Timer Count (TCOUNT) Register” on page 11-5

Table A-42. Rotary Counter Module Registers

Memory
Mapped
Address

Register Name Description

0xFFC0 4200 CNT_CONFIG “Configuration (CNT_CONFIG) Register” on page 13-26

0xFFC0 4204 CNT_IMASK “Interrupt Mask (CNT_IMASK) Register” on page 13-28

0xFFC0 4208 CNT_STATUS “Status (CNT_STATUS) Register” on page 13-28

0xFFC0
420C

CNT_COM-
MAND

“Command (CNT_COMMAND) Register” on page 13-29

System MMR Assignments

A-92 ADSP-BF54x Blackfin Processor Hardware Reference

Security Registers
There are three registers which provide information that can be used dur-
ing security mode control and to return status of the Secure State Machine
states (See Table A-43). These registers require privileged access depend-
ing on the operating state of the processor.

0xFFC0 4210 CNT_
DEBOUNCE

“Debounce Prescale (CNT_DEBOUNCE) Register” on
page 13-30

0xFFC0 4214 CNT_COUNTER “Counter (CNT_COUNTER) Register” on page 13-31

0xFFC0 4218 CNT_MAX “Boundary (CNT_MIN and CNT_MAX) Registers” on
page 13-32

0xFFC0
421C

CNT_MIN “Boundary (CNT_MIN and CNT_MAX) Registers” on
page 13-32

Table A-43. Security Registers

Memory
Mapped
Address

Register Name Description

0xFFC0
4320

SECURE_SYSSWT “Secured System Switches (SECURE_SYSSWT) Register”
on page 16-57

0xFFC0
4324

SECURE_CON-
TROL

“Secure Control (SECURE_CONTROL) Register” on
page 16-64

0xFFC0
4328

SECURE_STATUS “Secure Status (SECURE_STATUS) Register” on
page 16-67

Table A-42. Rotary Counter Module Registers (Cont’d)

Memory
Mapped
Address

Register Name Description

ADSP-BF54x Blackfin Processor Hardware Reference A-93

System MMR Assignments

Processor-Specific Memory Registers
Processor-specific memory registers (0xFFE0 0004 – 0xFFE0 0300) are
listed in Table A-44.

Table A-44. Processor-Specific Memory Registers

Memory
Mapped
Address

Register Name Description

0xFFE0
0004

DMEM_CONTROL “Data Memory Control Register (DMEM_CONTROL)”
on page 3-27

0xFFE0
0300

DTEST_COM-
MAND

“Data Test Command Register (DTEST_COMMAND)”
on page 3-44

System MMR Assignments

A-94 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference B-1

B TEST FEATURES

This chapter discusses the test features of the processor and includes the
following sections:

• “JTAG Standard” on page B-1

• “Boundary-Scan Architecture” on page B-2

JTAG Standard
The processor is fully compatible with the IEEE 1149.1 standard, also
known as the Joint Test Action Group (JTAG) standard.

The JTAG standard defines circuitry that may be built to assist in the test,
maintenance, and support of assembled printed circuit boards. The cir-
cuitry includes a standard interface through which instructions and test
data are communicated. A set of test features is defined, including a
boundary-scan register, such that the component can respond to a mini-
mum set of instructions designed to help test printed circuit boards.

The standard defines test logic that can be included in an integrated cir-
cuit to provide standardized approaches to:

• Testing the interconnections between integrated circuits once they
have been assembled onto a printed circuit board

• Testing the integrated circuit itself

• Observing or modifying circuit activity during normal component
operation

Boundary-Scan Architecture

B-2 ADSP-BF54x Blackfin Processor Hardware Reference

The test logic consists of a boundary-scan register and other building
blocks. The test logic is accessed through a Test Access Port (TAP).

Full details of the JTAG standard can be found in the document IEEE
Standard Test Access Port and Boundary-Scan Architecture, ISBN
1-55937-350-4.

 Private ADI JTAG emulation functionality has some modified
behavior dependent on the access privileges associated with the
state of the Secure State Machine operating mode. This is to ensure
that sensitive information and processing performed within Secure
Entry Mode and Secure Mode will not be compromised through
JTAG. For more information about private ADI JTAG emulation
functionality when security features are used, see Chapter 16,
“Security”.

Boundary-Scan Architecture
The boundary-scan test logic consists of:

• A TAP comprised of five pins (see Table B-1)

• A TAP controller that controls all sequencing of events through the
test registers

• An Instruction register (IR) that interprets 5-bit instruction codes
to select the test mode that performs the desired test operation

• Several data registers defined by the JTAG standard

ADSP-BF54x Blackfin Processor Hardware Reference B-3

Test Features

The TAP controller is a synchronous, 16-state, finite-state machine con-
trolled by the TCK and TMS pins. Transitions to the various states in the
diagram occur on the rising edge of TCK and are defined by the state of the
TMS pin, here denoted by either a logic 1 or logic 0 state. For full details of
the operation, see the JTAG standard.

Figure B-1 shows the state diagram for the TAP controller.

Note:

• The TAP controller enters the test-logic-reset state when TMS is
held high after five TCK cycles.

• The TAP controller enters the test-logic-reset state when TRST is
asynchronously asserted.

• An external system reset does not affect the state of the TAP con-
troller, nor does the state of the TAP controller affect an external
system reset.

Table B-1. Test Access Port Pins

Pin Name Input/Output Description

TDI Input Test Data Input

TMS Input Test Mode Select

TCK Input Test Clock

TRST Input Test Reset

TDO Output Test Data Out

Boundary-Scan Architecture

B-4 ADSP-BF54x Blackfin Processor Hardware Reference

Instruction Register
The instruction register is five bits wide and accommodates up to 32
boundary-scan instructions.

The instruction register holds both public and private instructions. The
JTAG standard requires some of the public instructions; other public
instructions are optional. Private instructions are reserved for the manu-
facturer’s use.

Figure B-1. TAP Controller State Diagram

Test-Logic_Reset

Run-Test/Idle Select-DR-Scan

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR-Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

1

1 1 1

1

1

1

1

1

1 1

1

1

1

1

1

0

0
0 0

0 0
0 0

0 0

0

0 0

0
0

0

ADSP-BF54x Blackfin Processor Hardware Reference B-5

Test Features

The binary decode column of Table B-2 lists the decode for the public
instructions. The register column lists the serial scan paths.

Figure B-2 shows the instruction bit scan ordering for the paths shown in
Table B-2.

Table B-2. Decode for Public JTAG-Scan Instructions

Instruction Name Binary Decode
01234

Register

EXTEST 00000 Boundary-Scan

SAMPLE/PRELOAD 10000 Boundary-Scan

BYPASS 11111 Bypass

IDCODE 00010 Device Identification

Boundary-Scan Architecture

B-6 ADSP-BF54x Blackfin Processor Hardware Reference

Public Instructions
The following sections describe the public JTAG scan instructions.

EXTEST – Binary Code 00000

The EXTEST instruction selects the boundary-scan register to be connected
between the TDI and TDO pins. This instruction allows testing of on-board
circuitry external to the device.

Figure B-2. Serial Scan Paths

TDOTDI

N

N-1

N-2 2

1

0

0
130

31

4

3

2

1

0

1

Bypass Register

Boundary-Scan Register

JTAG Instruction Register

Device Identification Register

ADSP-BF54x Blackfin Processor Hardware Reference B-7

Test Features

The EXTEST instruction allows internal data to be driven to the boundary
outputs and external data to be captured on the boundary inputs.

 To protect the internal logic when the boundary outputs are over-
driven or signals are received on the boundary inputs, make sure
that nothing else drives data on the processor’s output pins.

SAMPLE/PRELOAD – Binary Code 10000

The SAMPLE/PRELOAD instruction performs two functions and selects the
Boundary-Scan register to be connected between TDI and TDO. The
instruction has no effect on internal logic.

The SAMPLE part of the instruction allows a snapshot of the inputs and
outputs captured on the boundary-scan cells. Data is sampled on the ris-
ing edge of TCK.

The PRELOAD part of the instruction allows data to be loaded on the device
pins and driven out on the board with the EXTEST instruction. Data is pre-
loaded on the pins on the falling edge of TCK.

BYPASS – Binary Code 11111

The BYPASS instruction selects the BYPASS register to be connected to TDI
and TDO. The instruction has no effect on the internal logic. No data
inversion should occur between TDI and TDO.

IDCODE – Binary Code 00010

The IDCODE instruction selects the device identification register to be con-
nected to TDI and TDO. This register allows identification of the device
through the JTAG TAP.

Boundary-Scan Architecture

B-8 ADSP-BF54x Blackfin Processor Hardware Reference

Boundary-Scan Register
The boundary-scan register is selected by the EXTEST and SAMPLE/PRELOAD
instructions. These instructions allow the pins of the processor to be con-
trolled and sampled for board-level testing.

ADSP-BF54x Blackfin Processor Hardware Reference G-1

G GLOSSARY

ALU.

See Arithmetic/Logic Unit

AMC (Asynchronous Memory Controller).

A configurable memory controller supporting multiple banks of asynchro-
nous memory including SRAM, ROM, and flash, where each bank can be
independently programmed with different timing parameters.

Arithmetic/Logic Unit (ALU).

A processor component that performs arithmetic, comparative, and logical
functions.

bank activate command.

The bank activate command causes the SDRAM to open an internal bank
(specified by the bank address) in a row (specified by the row address).
When the bank activate command is issued, it opens a new row address in
the dedicated bank. The memory in the open internal bank and row is
referred to as the open page. The bank activate command must be applied
before a read or write command.

base address.

The starting address of a circular buffer.

G-2 ADSP-BF54x Blackfin Processor Hardware Reference

base register.

A Data Address Generator (DAG) register that contains the starting
address for a circular buffer.

bit-reversed addressing.

The addressing mode in which the Data Address Generator (DAG) pro-
vides a bit-reversed address during a data move without reversing the
stored address.

Boot memory space.

Internal memory space designated for a program that is executed immedi-
ately after powerup or after a software reset.

burst length.

The burst length determines the number of words that the SDRAM device
stores or delivers after detecting a single write or read command followed
by a NOP (no operation) command, respectively (Number of NOPs =
burst length - 1). Burst lengths of full page, 8, 4, 2, and 1 (no burst) are
available. The burst length is selected by writing the BL bits in the
SDRAM’s mode register during the SDRAM powerup sequence.

Burst Stop command.

The burst stop command is one of several ways to terminate a burst read
or write operation.

burst type.

The burst type determines the address order in which the SDRAM deliv-
ers burst data. The burst type is selected by writing the BT bits in the
SDRAM’s mode register during the SDRAM powerup sequence.

ADSP-BF54x Blackfin Processor Hardware Reference G-3

Glossary

cache block.

The smallest unit of memory that is transferred to/from the next level of
memory from/to a cache as a result of a cache miss.

cache hit.

A memory access that is satisfied by a valid, present entry in the cache.

cache line.

Same as cache block. In this document, cache line is used for cache block.

cache miss.

A memory access that does not match any valid entry in the cache.

cache tag.

Upper address bits, stored along with the cached data line, to identify the
specific address source in memory that the cached line represents.

Cacheability Protection Lookaside Buffer (CPLB).

Storage area that describes the access characteristics of the core memory
map.

CAM (Content Addressable Memory).

Also called associative memory. A memory device that includes compari-
son logic with each bit of storage. A data value is broadcast to all words in
memory; it is compared with the stored values; and values that match are
flagged.

CAS (Column Address Strobe).

A signal sent from the SDC to a DRAM device to indicate that the col-
umn address lines are valid.

G-4 ADSP-BF54x Blackfin Processor Hardware Reference

CAS latency (also tAA, tCAC, CL).

The CAS latency or read latency specifies the time between latching a read
address and driving the data off chip. This spec is normalized to the sys-
tem clock and varies from 2 to 3 cycles based on the speed. The CAS
latency is selected by writing the CL bits in the SDRAM’s mode register
during the SDRAM powerup sequence.

CBR (CAS Before RAS) memory refresh.

DRAM devices have a built-in counter for the refresh row address. By
activating Column Address Strobe (CAS) before activating Row Address
Strobe (RAS), this counter is selected to supply the row address instead of
the address inputs.

CEC.

See Core Event Controller

circular addressing.

The process by which the Data Address Generator (DAG) “wraps around”
or repeatedly steps through a range of registers.

companding.

(Compressing/expanding). The process of logarithmically encoding and
decoding data to minimize the number of bits that must be sent.

conditional branches.

Jump or call/return instructions whose execution is based on defined
conditions.

core.

The core consists of these functional blocks: CPU, L1 memory, event con-
troller, core timer, and performance monitoring registers.

ADSP-BF54x Blackfin Processor Hardware Reference G-5

Glossary

Core Event Controller (CEC).

The CEC works with the System Interrupt Controller (SIC) to prioritize
and control all system interrupts. The CEC handles general-purpose inter-
rupts and interrupts routed from the SIC.

CPLB.

See Cacheability Protection Lookaside Buffer

DAB.

See DMA Access Bus

DAG.

See Data Address Generator

Data Address Generator (DAG).

Processing component that provides memory addresses when data is trans-
ferred between memory and registers.

Data Register File.

A set of data registers that is used to transfer data between computation
units and memory while providing local storage for operands.

data registers (Dreg).

Registers located in the data arithmetic unit that hold operands and results
for multiplier, ALU, or shifter operations.

DCB.

See DMA Core Bus

DEB.

See DMA External Bus

G-6 ADSP-BF54x Blackfin Processor Hardware Reference

descriptor block, DMA.

A set of parameters used by the direct memory access (DMA) controller to
describe a set of DMA sequences.

descriptor loading, DMA.

The process in which the direct memory access (DMA) controller down-
loads a DMA descriptor from data memory and autoinitializes the DMA
parameter registers.

DFT (Design For Testability).

A set of techniques that helps designers of digital systems ensure that those
systems are testable.

Digital Signal Processor (DSP).

An integrated circuit designated for high-speed manipulation of analog
information that is converted into digital form.

direct branches.

Jump or call/return instructions that use absolute addresses that do not
change at runtime (such as a program label), or they use a PC-relative
address.

direct-mapped.

Cache architecture where each line has only one place that it can appear in
the cache. Also described as 1-way associative.

Direct Memory Access (DMA).

A way of moving data between system devices and memory in which the
data is transferred through a DMA port without involving the processor.

ADSP-BF54x Blackfin Processor Hardware Reference G-7

Glossary

dirty, modified.

A state bit, stored along with the tag, indicating whether the data in the
data cache line is changed since it was copied from the source memory
and, therefore, needs to be updated in that source memory.

DMA.

See Direct Memory Access

DMA Access Bus (DAB).

A bus that provides a means for DMA channels to be accessed by the
peripherals.

DMA chaining.

The linking or chaining of multiple direct memory access (DMA)
sequences. In chained DMA, the I/O processor loads the next DMA
descriptor into the DMA parameter registers when the current DMA fin-
ishes and autoinitializes the next DMA sequence.

DMA Core Bus (DCB).

A bus that provides a means for DMA channels to gain access to on-chip
memory.

DMA descriptor registers.

Registers that hold the initialization information for a direct memory
access (DMA) process.

DMA External Bus (DEB).

A bus that provides a means for DMA channels to gain access to off-chip
memory.

G-8 ADSP-BF54x Blackfin Processor Hardware Reference

DPMC (Dynamic Power Management Controller).

A processor’s control block that allows the user to dynamically control the
processor’s performance characteristics and power dissipation.

DQM Data I/O Mask Function.

The SDQM[1:0] pins provide a byte-masking capability on 8-bit writes to
SDRAM.

DRAM (Dynamic Random Access Memory).

A type of semiconductor memory in which the data is stored as electrical
charges in an array of cells, each consisting of a capacitor and a transistor.
The cells are arranged on a chip in a grid of rows and columns. Since the
capacitors discharge gradually—and the cells lose their information—the
array of cells has to be refreshed periodically.

DSP.

See Digital Signal Processor

EAB.

See External Access Bus

EBC.

See External Bus Controller

EBIU.

See External Bus Interface Unit

edge-sensitive interrupt.

A signal or interrupt the processor detects if the input signal is high (inac-
tive) on one cycle and low (active) on the next cycle when sampled on the
rising edge of CLKIN.

ADSP-BF54x Blackfin Processor Hardware Reference G-9

Glossary

Endian format.

The ordering of bytes in a multibyte number.

EPB.

See External Port Bus

EPROM (Erasable Programmable Read-Only Memory).

A type of semiconductor memory in which the data is stored as electrical
charges in isolated (“floating”) transistor gates that retain their charges
almost indefinitely without an external power supply. An EPROM is pro-
grammed by “injecting” charge into the floating gates—a process that
requires relatively high voltage (usually 12V – 25V). Ultraviolet light,
applied to the chip’s surface through a quartz window in the package, dis-
charges the floating gates, allowing the chip to be reprogrammed.

EVT (Event Vector Table).

A table stored in memory that contains sixteen 32-bit entries; each entry
contains a vector address for an interrupt service routine (ISR). When an
event occurs, instruction fetch starts at the address location in the corre-
sponding EVT entry. See ISR.

exclusive, clean.

The state of a data cache line indicating the line is valid and the data con-
tained in the line matches that in the source memory. The data in a clean
cache line does not need to be written to source memory before it is
replaced.

External Access Bus (EAB).

A bus mastered by the core memory management unit to access external
memory.

G-10 ADSP-BF54x Blackfin Processor Hardware Reference

External Bus Controller (EBC).

A component that provides arbitration between the External Access Bus
(EAB) and the DMA External Bus (DEB), granting at most one requester
per cycle.

External Bus Interface Unit (EBIU).

A component that provides glueless interfaces to external memories. It ser-
vices requests for external memory from the core or from a DMA channel.

external port.

A channel or port that extends the processor’s internal address and data
buses off-chip, providing the processor’s interface to off-chip memory and
peripherals.

External Port Bus (EPB).

A bus that connects the output of the EBIU to external devices.

FFT (Fast Fourier Transform).

An algorithm for computing the Fourier transform of a set of discrete data
values. The FFT expresses a finite set of data points, for example a peri-
odic sampling of a real-world signal, in terms of its component
frequencies. Or conversely, the FFT reconstructs a signal from the fre-
quency data. The FFT can also be used to multiply two polynomials.

FIFO (First In, First Out).

A hardware buffer or data structure from which items are taken out in the
same order they were put in.

flash memory.

A type of single transistor cell, erasable memory in which erasing can only
be done in blocks or for the entire chip.

ADSP-BF54x Blackfin Processor Hardware Reference G-11

Glossary

fully associative.

Cache architecture where each line can be placed anywhere in the cache.

glueless.

No external hardware is required.

Harvard architecture.

A processor memory architecture that uses separate buses for program and
data storage. The two buses let the processor fetch a data word and an
instruction word simultaneously.

HLL (High Level Language).

A programming language that provides some level of abstraction above
assembly language, often using English-like statements, where each com-
mand or statement corresponds to several machine instructions.

I2C.

A bus standard specified in the Philips I2C Bus Specification version 2.1
dated January 2000.

IDLE.

An instruction that causes the processor to cease operations, holding its
current state until an interrupt occurs. Then, the processor services the
interrupt and continues normal execution.

index.

Address portion that is used to select an array element (for example, line
index).

G-12 ADSP-BF54x Blackfin Processor Hardware Reference

Index registers.

A Data Address Generator (DAG) register that holds an address and acts
as a pointer to memory.

indirect branches.

Jump or call/return instructions that use a dynamic address from the data
address generator, evaluated at runtime.

input clock.

Device that generates a steady stream of timing signals to provide the fre-
quency, duty cycle, and stability to allow accurate internal clock
multiplication through the phase locked loop (PLL) module.

internal memory bank.

There are up to 4 internal memory banks on a given SDRAM. Each of
these banks can be accessed with the bank select lines BA[1:0]. The bank
address can be thought of as part of the row address.

interrupt.

An event that suspends normal processing and temporarily diverts the flow
of control through an interrupt service routine (ISR). See ISR.

invalid.

Describes the state of a cache line. When a cache line is invalid, a cache
line match cannot occur.

IrDA (Infrared Data Association).

A nonprofit trade association that established standards for ensuring the
quality and interoperability of devices using the infrared spectrum.

isochronous.

Processes where data must be delivered within certain time constraints.

ADSP-BF54x Blackfin Processor Hardware Reference G-13

Glossary

ISR (Interrupt Service Routine).

Software that is executed when a specific interrupt occurs. A table stored
in low memory contains pointers, also called vectors, that direct the pro-
cessor to the corresponding ISR. See EVT.

JTAG (Joint Test Action Group).

An IEEE Standards working group that defines the IEEE 1149.1 standard
for a test access port for testing electronic devices.

JTAG port.

A channel or port that supports the IEEE standard 1149.1 JTAG standard
for system test. This standard defines a method for serially scanning the
I/O status of each component in a system.

jump.

A permanent transfer of the program flow to another part of program
memory.

latency.

The overhead time used to find the correct place for memory access and
preparing to access it.

Least Recently Used algorithm.

Replacement algorithm used by cache that first replaces lines that have
been unused for the longest time.

Least Significant Bit (LSB).

The last or rightmost bit in the normal representation of a binary num-
ber—the bit of a binary number giving the number of ones.

G-14 ADSP-BF54x Blackfin Processor Hardware Reference

Length registers.

A Data Address Generator (DAG) register that specifies the range of
addresses in a circular buffer.

Level 1 (L1) memory.

Memory that is directly accessed by the core with no intervening memory
subsystems between it and the core.

Level 2 (L2) memory.

Memory that is at least one level removed from the core. L2 memory has a
larger capacity than L1 memory, but it requires additional latency to
access.

level-sensitive interrupts.

A signal or interrupt that the processor detects if the input signal is low
(active) when sampled on the rising edge of CLKIN.

LIFO (Last In, First Out).

A data structure from which the next item taken out is the most recent
item put in.

little endian.

The native data store format of the processor. Words and half words are
stored in memory (and registers) with the least significant byte at the low-
est byte address and the most significant byte at the highest byte address of
the data storage location.

loop.

A sequence of instructions that executes several times.

LRU.

See Least Recently Used algorithm

ADSP-BF54x Blackfin Processor Hardware Reference G-15

Glossary

LSB.

See Least Significant Bit

MAC (Media Access Control).

The Ethernet MAC provides a 10/100Mbit/s Ethernet interface, compli-
ant to IEEE Std. 802.3-2002, between an MII (Media Independent
Interface) and the Blackfin peripheral subsystem.

MAC (Multiply/Accumulate).

A mathematical operation that multiplies two numbers and then adds a
third to get the result (see Multiply Accumulator).

Memory Management Unit (MMU).

A component of the processor that supports protection and selective cach-
ing of memory by using cacheability protection lookaside buffers
(CPLBs).

Mode register.

Internal configuration registers within SDRAM devices which allow speci-
fication of the SDRAM device’s functionality.

modified addressing.

The process whereby the Data Address Generator (DAG) produces an
address that is incremented by a value or the contents of a register.

Modify register.

A Data Address Generator (DAG) register that provides the increment or
step size by which an index register is pre- or post-modified during a regis-
ter move.

G-16 ADSP-BF54x Blackfin Processor Hardware Reference

MMR (Memory-Mapped Register).

A specific location in main memory used by the processor as if it were a
register.

MMU.

See Memory Management Unit

MSB (Most Significant Bit).

The first or leftmost bit in the normal representation of a binary num-
ber—the bit of a binary number with the greatest weight (2(n-1)).

multifunction computations.

The parallel execution of multiple computational instructions. These
instructions complete in a single cycle, and they combine parallel opera-
tion of the computational units and memory accesses. The multiple
operations perform the same as if they were in corresponding single func-
tion computations.

multiplier.

A computational unit that performs fixed-point multiplication and exe-
cutes fixed-point multiply/add and multiply/subtract operations.

NMI (Nonmaskable Interrupt).

A high priority interrupt that cannot be disabled by another interrupt.

NRZ (Non-return-to-Zero).

A binary encoding scheme in which a 1 is represented by a change in the
signal and a 0 by no change—there is no return to a reference (0) voltage
between encoded bits. This method eliminates the need for a clock signal.

ADSP-BF54x Blackfin Processor Hardware Reference G-17

Glossary

NRZI (Non-return-to-Zero Inverted).

A binary encoding scheme in which a 0 is represented by a change in the
signal and a 1 is represented by no change—there is no return to a refer-
ence (0) voltage between encoded bits. This method eliminates the need
for a clock signal.

orthogonal.

The characteristic of being independent. An orthogonal instruction set
allows any register to be used in an instruction that references a register.

PAB.

See Peripheral Access Bus

page size.

The amount of memory which has the same row address and can be
accessed with successive read or write commands without needing to acti-
vate another row.

Parallel Peripheral Interface (PPI).

The PPI is a half-duplex, bidirectional port accommodating up to 16 bits
of data. It has a dedicated clock pin and three multiplexed frame sync
pins.

PC (Program Counter).

A register that contains the address of the next instruction to be executed.

peripheral.

Functional blocks not included as part of the core, and typically used to
support system level operations.

Peripheral Access Bus (PAB).

A bus used to provide access to EBIU memory-mapped registers.

G-18 ADSP-BF54x Blackfin Processor Hardware Reference

PF (Programmable Flag).

General-purpose I/O pins. Each PF pin can be individually configured as
either an input or an output pin, and each PF pin can be further config-
ured to generate an interrupt.

Phase-Locked Loop (PLL).

An on-chip frequency synthesizer that produces a full speed master clock
from a lower frequency input clock signal.

PLL.

See Phase-Locked Loop

PPI.

See Parallel Peripheral Interface

precision.

The number of bits after the binary point in the storage format for the
number.

post-modify addressing.

The process in which the Data Address Generator (DAG) provides an
address during a data move and auto-increments after the instruction is
executed.

precharge command.

The precharge command closes a specific active page in an internal bank
and the precharge all command closes all 4 active pages in all 4 banks.

pre-modify addressing.

The process in which the Data Address Generator (DAG) provides an
address during a data move and auto-increments before the instruction is
executed.

ADSP-BF54x Blackfin Processor Hardware Reference G-19

Glossary

PWM (Pulse Width Modulation).

Also called Pulse Duration Modulation (PDM), PWM is a pulse modula-
tion technique in which the duration of the pulses is varied by the
modulating voltage.

RAS (Row Address Strobe).

A signal sent from the SDC to a DRAM device to indicate validity of row
address lines.

Real-Time Clock (RTC).

A component that generates timing pulses for the digital watch features of
the processor, including time of day, alarm, and stopwatch countdown
features.

ROM (Read-Only Memory).

A data storage device manufactured with fixed contents. This term is most
often used to refer to non-volatile semiconductor memory.

RTC.

See Real-Time Clock

RZ (Return-to-Zero modulation).

A binary encoding scheme in which two signal pulses are used for every
bit. A 0 is represented by a change from the low voltage level to the high
voltage level; a 1 is represented by a change from the high voltage level to
the low voltage level. A return to a reference (0) voltage is made between
encoded bits.

G-20 ADSP-BF54x Blackfin Processor Hardware Reference

RZI (Return-to-Zero-Inverted modulation).

A binary encoding scheme in which two signal pulses are used for every
bit. A 1 is represented by a change from the low voltage level to the high
voltage level; a 0 is represented by a change from the high voltage level to
the low voltage level. A return to a reference (0) voltage is made between
encoded bits.

saturation (ALU saturation mode).

A state in which all positive fixed-point overflows return the maximum
positive fixed-point number, and all negative overflows return the maxi-
mum negative number.

SDC (SDRAM Controller).

A configurable memory controller supporting a bank of synchronous
memory consisting of SDRAM.

SDRAM (Synchronous Dynamic Random Access Memory).

A form of DRAM that includes a clock signal with its other control sig-
nals. This clock signal allows SDRAM devices to support “burst” access
modes that clock out a series of successive bits.

SDRAM bank.

Region of external memory that can be configured to be 16M bytes, 32M
bytes, 64M bytes, or 128M bytes and is selected by the SMS pin.

Serial Peripheral Interface (SPI).

A synchronous serial protocol used to connect integrated circuits.

serial ports (SPORTs).

A high speed synchronous input/output device on the processor. The pro-
cessor uses two synchronous serial ports that provide inexpensive
interfaces to a wide variety of digital and mixed-signal peripheral devices.

ADSP-BF54x Blackfin Processor Hardware Reference G-21

Glossary

set.

A group of N-line storage locations in the ways of an N-way cache,
selected by the index field of the address.

set associative.

Cache architecture that limits line placement to a number of sets (or
ways).

shifter.

A computational unit that completes logical and arithmetic shifts.

SIC (System Interrupt Controller).

Part of the processor’s two-level event control mechanism. The SIC works
with the Core Event Controller (CEC) to prioritize and control all system
interrupts. The SIC provides mapping between the peripheral interrupt
sources and the prioritized general-purpose interrupt inputs of the core.

SIMD (Single Instruction, Multiple Data).

A parallel computer architecture in which multiple data operands are pro-
cessed simultaneously using one instruction.

SP (Stack Pointer).

A register that points to the top of the stack.

SPI.

See Serial Peripheral Interface

SRAM.

See Static Random Access Memory

G-22 ADSP-BF54x Blackfin Processor Hardware Reference

stack.

A data structure for storing items that are to be accessed in Last In, First
Out (LIFO) order. When a data item is added to the stack, it is “pushed”;
when a data item is removed from the stack, it is “popped.”

Static Random Access Memory (SRAM).

Very fast read/write memory that does not require periodic refreshing.

system.

The system includes the peripheral set (timers, real-time clock, program-
mable flags, UART, SPORTs, PPI, and SPIs), the external memory
controller (EBIU), the memory DMA controller, as well as the interfaces
between these peripherals, and the optional, external (off-chip) resources.

System clock (SCLK).

A component that delivers clock pulses at a frequency determined by a
programmable divider ratio within the PLL.

System Interrupt Controller (SIC).

Component that maps and routes events from peripheral interrupt sources
to the prioritized, general-purpose interrupt inputs of the Core Event
Controller (CEC).

TAP (Test Access Port).

See JTAG port

TDM.

See Time Division Multiplexing

ADSP-BF54x Blackfin Processor Hardware Reference G-23

Glossary

Time Division Multiplexing (TDM).

A method used for transmitting separate signals over a single channel.
Transmission time is broken into segments, each of which carries one ele-
ment. Each word belongs to the next consecutive channel so that, for
example, a 24-word block of data contains one word for each of the 24
channels.

TWI.

See Two-Wire Interface

Two-Wire Interface (TWI).

The TWI controller allows a device to interface to an Inter IC bus as spec-

ified by the Philips I2C Bus Specification version 2.1 dated January 2000.
The interface is essentially a shift register that serially transmits and
receives data bits, one bit at a time at the SCL rate, to and from other TWI
devices.

UART.

See Universal Asynchronous Receiver Transmitter

Universal Asynchronous Receiver Transmitter (UART).

A module that contains both the receiving and transmitting circuits
required for asynchronous serial communication.

Valid.

A state bit (stored along with the tag) that indicates the corresponding tag
and data are current and correct and can be used to satisfy memory access
requests.

victim.

A dirty cache line that must be written to memory before it can be
replaced to free space for a cache line allocation.

G-24 ADSP-BF54x Blackfin Processor Hardware Reference

Von Neumann architecture.

The architecture used by most non-DSP microprocessors. This architec-
ture uses a single address and data bus for memory access.

Way.

An array of line storage elements in an N-way cache.

W1C.

See Write-1-to-Clear

W1S.

See Write-1-to-Set

Write-1-to-Clear (W1C) bit.

A control or status bit that can be cleared (= 0) by being written to with 1.

Write-1-to-Set (W1S) bit.

A control or status bit that is set by writing 1 to it. It cannot be cleared by
writing 0 to it.

write back.

A cache write policy (also known as copyback). The write data is written
only to the cache line. The modified cache line is written to source mem-
ory only when it is replaced.

write through.

A cache write policy (also known as store through). The write data is writ-
ten to both the cache line and to source memory. The modified cache line
is not written to the source memory when it is replaced.

ADSP-BF54x Blackfin Processor Hardware Reference H-1

I INDEX

Symbols
'A' or 'B' device indicator (B_DEVICE)

bit, 26-134, 26-136
'B' or 'A' device indicator (B_DEVICE)

bit, 26-134, 26-136

Numerics
BCODE, 16-58, 16-59
OTP_EBIU_DDRCTL0, 17-118
16-bit flash interface, 19-8
16-bit SRAM, interface, 19-8
2D DMA, 7-19
BCODE, 17-106
BMODE, 16-58, 16-59, 17-106
ILOC, 3-9
OTP_EBIU_DDRCTL0, 17-118
OTP_EBIU_DDRCTL1, 17-118
8/16 bit mode (DATA_SIZE), 8-25
8-bit flash interface, 19-8
8-bit SRAM interface, 19-8

A
A11 (A11 element/coefficient) bits, 28-42
A11 element/coefficients (A11) bits, 28-42
A12 (A12 element/coefficient) bits, 28-42
A13 (A13 element/coefficient) bits, 28-42
A14 (A14 bias vector) bits, 28-45
A14 bias vector (A14) bits, 28-45
A21 (A21 element/coefficient) bits, 28-43
A21 element/coefficients (A21) bits, 28-43

A22 (A22 element/coefficient) bits, 28-43
A22 element/coefficients (A22) bits, 28-43
A23 (A23 element/coefficient) bits, 28-43
A23 element/coefficients (A23) bits, 28-43
A24 (A24 bias vector) bits, 28-45
A24 bias vector (A24) bits, 28-45
A31 (A31 element/coefficient) bits, 28-44
A31 element/coefficients (A31) bits, 28-44
A32 (A32 element/coefficient) bits, 28-44
A32 element/coefficients (A32) bits, 28-44
A33 (A33 element/coefficient) bits, 28-44
A33 element/coefficients (A33) bits, 28-44
A34 (A34 bias vector) bits, 28-45
A34 bias vector (A34) bits, 28-45
AAIF bit, 31-26, 31-50
AAIM bit, 31-26, 31-49
AAIS bit, 31-26, 31-49
AAn bit, 31-76
ABO bit, 31-45
abort acknowledge interrupt, CAN, 31-26
aborts, DMA, 7-37
acceptance mask filtering, CAN, 31-17
acceptance mask register (CAN_AMxxH),

31-51
acceptance mask register (CAN_AMxxL),

31-52
Access

request priority, See also Arbitration
DMA stalls to L1 or L2 memory, 2-13
latency and throughput for L2 memory,

2-13
priority, L2 port, 2-12

Index

H-2 ADSP-BF54x Blackfin Processor Hardware Reference

access denied interrupt, CAN, 31-26
access to unimplemented address interrupt,

CAN, 31-27
ACKE bit, 31-85
active descriptor queue, and DMA

synchronization, 7-70
active low/high frame syncs, serial port,

24-35
active mode, 1-31, 18-9
Active Mode (ACTIVE) bit, 29-14
ACTIVE_PLLDISABLED bit, 18-27
ACTIVE_PLLENABLED bit, 18-27
ACTS bit, 25-32
ADCs, connecting to, 24-2
address-tag compare operation, 3-17
ADIF bit, 31-26, 31-50
ADIM bit, 31-26, 31-49
ADIS bit, 31-26, 31-49
advanced technology attachment packet

interface, 21-1
A_HEND (overlay A horizontal end) bits,

28-39
A_HSTART (overlay A horizontal start)

bits, 28-39
alarm clock, RTC, 14-2
alarm interrupt enable bit, 14-21
A-law companding, 24-26, 24-31
alignment exceptions, 3-76
All Bypass-MXVR Disabled Mode, 29-13
Allocation Table, 29-56
Allocation Table Updated (ATU) interrupt

event, 29-33
Allocation Table Updated interrupt enable,

29-45
alternate frame sync mode, 24-38
alternate timing, serial port, 24-38
AMC, 1-14
AME bit, 31-54
AMIDE bit, 31-51

AMS, 5-54
ANAK bit, 23-36, 23-38
AP Data field, 29-136
AP Destination Address, 29-136
application data, loading, 17-1
AP Priority, 29-135
APRCEEN, 29-48
APREN, 29-47
APROFEN, 29-47
APRPEEN, 29-48
AP Source Address, 29-136
APTCEN, 29-48
APTSEN, 29-47
Arbitration

DMA bus, 2-17
priority for Sys L2 port access request,

2-12
arbitration

TWI, 23-8
Arbitration priority for Sys L2 port access

request, 2-12
ARTS bit, 25-32
asynchronous controller, 1-14
asynchronous FIFO connection, 7-47
asynchronous memory, 5-2
Asynchronous Memory Bank Address

Range (table), 5-54
asynchronous memory bank address range

(table), 5-5, 5-12, 5-14
Asynchronous Packet Arbitrating (APARB)

bit, 29-22
Asynchronous Packet Continuation

(APCONT) bit, 29-27
Asynchronous Packet Receive Buffer

(APRB), 29-75
Asynchronous Packet Receive Buffer Entry

Field Offsets, 29-138
Asynchronous Packet Receive Buffer Entry

x (APRBEx) bits, 29-77

ADSP-BF54x Blackfin Processor Hardware Reference H-3

Index

Asynchronous Packet Receive Buffer
Overflow (APROF) interrupt event,
29-41

Asynchronous Packet Receive Buffer
Overflow interrupt enable, 29-45,
29-47

Asynchronous Packet Receive CRC Error
(APRCE) interrupt event, 29-42

Asynchronous Packet Receive CRC Error
interrupt enable, 29-45, 29-48

Asynchronous Packet Received (APR) bit,
29-23

Asynchronous Packet Received (APR)
interrupt event, 29-41

Asynchronous Packet Received interrupt
enable, 29-47

Asynchronous Packet Receive Enable
(APRXEN) bit, 29-18

Asynchronous Packet Receive Packet Error
(APRPE) interrupt event, 29-42

Asynchronous Packet Receive Packet Error
interrupt enable, 29-45, 29-48

Asynchronous Packet Receiving (APRX)
bit, 29-23

Asynchronous Packet Reception, 29-136
Asynchronous Packet Transmission,

29-134
Asynchronous Packet Transmit Buffer

(APTB), 29-75
Asynchronous Packet Transmit Buffer

Busy (APBSY) bit, 29-22
Asynchronous Packet Transmit Buffer

Field Offsets, 29-135
Asynchronous Packet Transmit Buffer

Successfully Cancelled (APTC)
interrupt event, 29-42

Asynchronous Packet Transmit Buffer
Successfully Cancelled interrupt
enable, 29-48

Asynchronous Packet Transmit Buffer
Successfully Sent (APTS) interrupt
event, 29-42

Asynchronous Packet Transmit Buffer
Successfully Sent interrupt enable,
29-47

Asynchronous Packet Transmitting
(APTX) bit, 29-22

asynchronous serial communications, 25-6
ASYNC memory banks, 5-3
ATA interface, 21-1
ATAPI

ATAPI Signals Summary, 21-3
host DMA state M = machine, 21-12
host ultra DMA command protocol

transfers, 21-15
PIO data-In state machine, 21-9
PIO data-put protocol state machine,

21-7
power-on and hardware reset protocol,

21-19
summary of IDE/ATA standards, 21-77

ATAPI_ADDR (ATAPI address line
status) bits, 21-59

ATAPI address line status
(ATAPI_ADDR) bits, 21-59

ATAPI chip select 0 line status
(ATAPI_CS0N) bit, 21-59

ATAPI chip select 1 line status
(ATAPI_CS1N) bit, 21-59

ATAPI_CONTROL (ATAPI control)
register, 21-46, 21-49, A-39

ATAPI_CS0N (ATAPI chip select 0 line
status) bit, 21-59

ATAPI_CS1N (ATAPI chip select 1 line
status) bit, 21-59

ATAPI_DASP (device DASP to host line
status) bit, 21-59

Index

H-4 ADSP-BF54x Blackfin Processor Hardware Reference

ATAPI_DEV_ADDR (ATAPI device
register address) register, 21-46,
21-52, A-39

ATAPI device I/O registers, 21-68
ATAPI device register address

(ATAPI_DEV_ADDR) register,
21-46, 21-52, A-39

ATAPI device register receive data
(ATAPI_DEV_RXBUF) register,
21-46, 21-54, A-40

ATAPI device register write data
(ATAPI_DEV_TXBUF) register,
21-46, 21-53, A-39

ATAPI_DEV_INT (device interrupt
status) bit, 21-57

ATAPI_DEV_INT_MASK (device
interrupt mask) bit, 21-55

ATAPI_DEV_RXBUF (ATAPI device
register receive data) register, 21-46,
21-54, A-40

ATAPI_DEV_TXBUF (ATAPI device
register write data) register, 21-46,
21-53, A-39

ATAPI_DIORN (ATAPI read line status)
bit, 21-59

ATAPI_DIOWN (ATAPI write line
status) bit, 21-59

ATAPI_DMAACKN (ATAPI DMA
acknowledge line status) bit, 21-59

ATAPI DMA acknowledge line status
(ATAPI_DMAACKN) bit, 21-59

ATAPI_DMAREQ (ATAPI DMA request
line status) bit, 21-59

ATAPI DMA request line status
(ATAPI_DMAREQ) bit, 21-59

ATAPI_DMA_TFRCNT (ATAPI DMA
transfer count) register, 21-47, 21-61,
A-40

ATAPI DMA transfer count
(ATAPI_DMA_TFRCNT) register,
21-47, 21-61, A-40

ATAPI_HOST_TERM (host termination)
bit, 21-60

ATAPI host terminate
(ATAPI_TERMINATE) register,
21-47, 21-60, A-40

ATAPI interface, 21-1
ATAPI interrupt mask

(ATAPI_INT_MASK) register,
21-46, 21-55, A-40

ATAPI interrupt status
(ATAPI_INT_STATUS) register,
21-46, 21-57, A-40

ATAPI_INT_MASK (ATAPI interrupt
mask) register, 21-46, 21-55, A-40

ATAPI_INTR (device interrupt to host
line status) bit, 21-59

ATAPI_INT_STATUS (ATAPI interrupt
status) register, 21-46, 21-57, A-40

ATAPI_IORDY (ATAPI IORDY line
status) bit, 21-59

ATAPI IORDY line status
(ATAPI_IORDY) bit, 21-59

ATAPI IORDY line status
(UDMAOUT_CSTATE) bits, 21-59

ATAPI_LINE_STATUS (ATAPI line
status) register, 21-47, 21-59, A-40

ATAPI line status
(ATAPI_LINE_STATUS) register,
21-47, 21-59, A-40

ATAPI MDMA timing 0
(ATAPI_MULTI_TIM_0) register,
21-48, 21-65, A-41

ATAPI MDMA timing 1
(ATAPI_MULTI_TIM_1) register,
21-48, 21-65, A-41

ADSP-BF54x Blackfin Processor Hardware Reference H-5

Index

ATAPI MDMA timing 2
(ATAPI_MULTI_TIM_2) register,
21-48, 21-66, A-41

ATAPI_MULTI_TIM_0 (ATAPI MDMA
timing 0) register, 21-48, 21-65, A-41

ATAPI_MULTI_TIM_1 (ATAPI MDMA
timing 1) register, 21-48, 21-65, A-41

ATAPI_MULTI_TIM_2 (ATAPI MDMA
timing 2) register, 21-48, 21-66, A-41

ATAPI_PIO_TFRCNT (ATAPI PIO
transfer count) register, 21-47, 21-61,
A-40

ATAPI_PIO_TIM_0 (ATAPI PIO timing
0) register, 21-47, 21-64, A-41

ATAPI_PIO_TIM_1 (ATAPI PIO timing
1) register, 21-47, 21-64, A-41

ATAPI PIO timing 0
(ATAPI_PIO_TIM_0) register,
21-47, 21-64, A-41

ATAPI PIO timing 1
(ATAPI_PIO_TIM_1) register,
21-47, 21-64, A-41

ATAPI PIO transfer count
(ATAPI_PIO_TFRCNT) register,
21-47, 21-61, A-40

ATAPIPI status (ATAPIPI_STATUS)
register, 21-62

ATAPI read line status (ATAPI_DIORN)
bit, 21-59

ATAPI registers, 21-46, A-39
ATAPI register transfer timing 0

(ATAPI_REG_TIM_0) register,
21-47, 21-63, A-41

ATAPI_REG_TIM_0 (ATAPI register
transfer timing 0) register, 21-47,
21-63, A-41

ATAPI_SM_STATE (ATAPI state
machine status) register, 21-47,
21-59, A-40

ATAPI standards reference, 21-73

ATAPI state machine status
(ATAPI_SM_STATE) register,
21-47, 21-59, A-40

ATAPI_STATUS (ATAPI status) register,
21-51, 21-52, 21-53, 21-54, 21-58,
21-59, 21-60, 21-61, 21-62, 21-63,
21-64, 21-65, 21-66, 21-67, 21-68

ATAPI status (ATAPI_STATUS) register,
21-51, 21-52, 21-53, 21-54, 21-58,
21-59, 21-60, 21-61, 21-62, 21-63,
21-64, 21-65, 21-66, 21-67, 21-68

ATAPI_STATUS register, 21-46, 21-51,
A-39

ATAPI_TERMINATE (ATAPI host
terminate) register, 21-47, 21-60,
A-40

ATAPI transfer length
(ATAPI_XFER_LEN) register,
21-46, 21-58, A-40

ATAPI_UDMAIN_TFRCNT (ATAPI
UDMA transfer count) register,
21-47, 21-62, A-40

ATAPI_UDMAOUT_TFRCNT (ATAPI
UDMAOUT transfer count) register,
21-47, 21-63, A-41

ATAPI UDMAOUT transfer count
(ATAPI_UDMAOUT_TFRCNT)
register, 21-47, 21-63, A-41

ATAPI UDMA timing 0
(ATAPI_ULTRA_TIM_0) register,
21-48, 21-66, A-41

ATAPI UDMA timing 1
(ATAPI_ULTRA_TIM_1) register,
21-48, 21-67, A-41

ATAPI UDMA timing 2
(ATAPI_ULTRA_TIM_2) register,
21-48, 21-67, A-41

ATAPI UDMA timing 3
(ATAPI_ULTRA_TIM_3) register,
21-48, 21-68, A-41

Index

H-6 ADSP-BF54x Blackfin Processor Hardware Reference

ATAPI UDMA transfer count
(ATAPI_UDMAIN_TFRCNT)
register, 21-47, 21-62, A-40

ATAPI_ULTRA_TIM_0 (ATAPI UDMA
timing 0) register, 21-48, 21-66, A-41

ATAPI_ULTRA_TIM_1 (ATAPI UDMA
timing 1) register, 21-48, 21-67, A-41

ATAPI_ULTRA_TIM_2 (ATAPI UDMA
timing 2) register, 21-48, 21-67, A-41

ATAPI_ULTRA_TIM_3 (ATAPI UDMA
timing 3) register, 21-48, 21-68, A-41

ATAPI write line status
(ATAPI_DIOWN) bit, 21-59

ATAPI_XFER_LEN (ATAPI transfer
length) register, 21-46, 21-58, A-40

atomic operations, 3-77
A_TRANSP (overlay A transparency) bits,

28-41
ATUEN, 29-45
autobaud, and general-purpose timers,

10-33
autobaud detection, 10-33, 25-20
Autobuffer Mode, 29-62, 29-69, 29-73,

29-74
autobuffer mode, 7-18, 7-36, 7-82
AUTOCLEAR_R (RxPktRdy autoclear

enable) bit, 26-123
AUTOREQ_RH (autoset ReqPkt) bit,

26-123
autoset ReqPkt (AUTOREQ_R) bit,

26-123
AUTOSET_T (TxPktRdy autoset enable)

bit, 26-117
auto-transmit mode, CAN, 31-16
A_VEND (overlay A vertical end) bits,

28-40
A_VSTART (overlay A vertical start) bits,

28-40

B
bable or reset indicator

(RESET_OR_BABLE_B) bit, 26-109
bable or reset IRQ enable

(RESET_OR_BABLE_BE) bit,
26-110

bank activate command, G-1
BASEID[10:0] field, 31-51, 31-54
baud rate

SPI, 22-23
UART, 25-8, 25-19

baud rate[15:0] field, 22-44
BAUD_RATE (baud rate) bits, 22-44
baud rate (BAUD_RATE) bits, 22-44
BCINIT[15:0] field, 7-114
BCOUNT[15:0] field, 7-115
BCZEN, 29-46
B_DEVICE ('A' or 'B' device indicator)

bit, 26-134, 26-136
BDI bit, 7-113
BDIE bit, 7-50, 7-113
BDR (burst DMA requests) bit, 8-25, 8-27
BEF bit, 31-85
BFLAG_AUX, 17-126
BFLAG_CALLBACK, 17-126
BFLAG_FASTREAD, 17-125
BFLAG_FILL, 17-126
BFLAG_FINAL, 17-126
BFLAG_FIRST, 17-126
BFLAG_HDRINDIRECT, 17-125
BFLAG_HOOK, 17-125
BFLAG_IGNORE, 17-126
BFLAG_INDIRECT, 17-126
BFLAG_INIT, 17-126
BFLAG_NEXTDXE, 17-125
BFLAG_NOAUTO, 17-125
BFLAG_NONRESTORE, 17-125
BFLAG_PERIPHERAL, 17-125
BFLAG_QUICKBOOT, 17-126
BFLAG_RESET, 17-125

ADSP-BF54x Blackfin Processor Hardware Reference H-7

Index

BFLAG_RETURN, 17-125
BFLAG_SAVE, 17-126
BFLAG_SLAVE, 17-125
BFLAG_TYPE, 17-125
BFLAG_WAKEUP, 17-125
B_HEND (overlay B horizontal end) bits,

28-39
B_HSTART (overlay B horizontal start)

bits, 28-39
BI (break indicator) bit, 25-36
BI (break interrupt) bit, 25-35
binary decode, B-5
Biphase Mark Coding Error (BMERR)

interrupt event, 29-39
Biphase Mark Coding Error interrupt

enable, 29-46
bit 15 overflow interrupt enable

(COV15IE) bit, 13-28
bit 15 overflow interrupt identifier

(COV15II) bit, 13-28
bit 31 overflow interrupt enable

(COV31IE) bit, 13-28
bit 31 overflow interrupt identifier

(COV31II) bit, 13-28
bit order, selecting, 24-30
BK_DATECODE (Boot Code Date

Code), 17-108
BK_DAY, 17-108
BK_ID, 17-107
BK_MONTH, 17-108
BK_ONES, 17-110
BK_PROJECT, 17-107
BK_REVISION (Boot Code Revision

Control), 17-107
BK_UPDATE, 17-107
BK_VERSION, 17-107
BK_YEAR, 17-108
BK_ZEROS, 17-109
BL2UEN, 29-45

Blackfin processor family
I/O memory space, 1-9
memory architecture, 1-5

BLANKGEN (ITU output with internal
blanking) bit, 15-81

block, DMA, 7-16
block code field, 17-27
block count, DMA, 7-46
Block Counter Zero (BCZ) interrupt event,

29-39
Block Counter Zero interrupt enable,

29-46
Block diagram, core, 2-6
block diagrams

CAN, 31-4
core timer, 11-2
DMA controller, 7-6, 7-7
EBIU, 5-4
EPPI, 15-5
general-purpose timers, 10-3
interrupt processing, 6-24
PLL, 18-3
processor, 1-4
RTC, 14-4
SPI, 22-3
SPORT, 24-7
TWI, 23-3
UART, 25-3, 25-11
watchdog timer, 12-3

block done interrupt, DMA, 7-50
Block Flags, 17-29
Block Locked (BLOCK) bit, 29-25
Block Locked to Unlocked (BL2U)

interrupt event, 29-35
block transfers, DMA, 7-46
Block Unlocked to Locked (BU2L)

interrupt event, 29-35
BMERREN, 29-46
BMODE00_DIS, 17-117
BMODE01_DIS, 17-117

Index

H-8 ADSP-BF54x Blackfin Processor Hardware Reference

BMODE02_DIS, 17-117
BMODE03_DIS, 17-117
BMODE04_DIS, 17-117
BMODE05_DIS, 17-117
BMODE06_DIS, 17-117
BMODE07_DIS, 17-117
BMODE08_DIS, 17-117
BMODE09_DIS, 17-117
BMODE10_DIS, 17-117
BMODE11_DIS, 17-117
BMODE12_DIS, 17-117
BMODE13_DIS, 17-117
BMODE14_DIS, 17-117
BMODE15_DIS, 17-117
BMODE[2:0] pins, 17-6
BMODE pins, 17-2
BNDMODE (boundary register mode)

bits, 13-27
BOIF bit, 31-27, 31-50
BOIM bit, 31-27, 31-49
BOIS bit, 31-27, 31-49
boost PLL amplitude (TM_PLL_VCO)

bit, 26-142
boot

call boot kernel at run time, 17-50
load function, 17-49
manager, 17-54
quick, 17-43
ROM functions, 17-55
streams

multi-DXE, 17-56
Boot Code Date Code

(BK_DATECODE), 17-108
Boot Code Revision Control

(BK_REVISION), 17-107
boot host wait

HWAIT, 17-33

booting
BFROM_MEMBOOT, 17-55
BFROM_NANDBOOT, 17-55
BFROM_OTPBOOT, 17-55
BFROM_SPIBOOT, 17-55
BFROM_TWIBOOT, 17-55
boot stream, 17-23
host boot scenarios, 17-24
host DMA boot modes, 17-86
indirect, 17-44
memory locations, 17-24
NAND flash boot mode, 17-88
SPI slave mode, 17-73
TWI master mode, 17-77
TWI slave mode, 17-79

booting modes, 17-2
boot kernel, 17-1
Boot Management, 17-54
boot mode

FIFO boot, 17-67
flash boot, 17-62
no-boot, 17-62
SDRAM boot, 17-66
SPI device detection, 17-71

boot ROM
internal, 17-1

boot stream, 17-1, 17-23
boot termination, 17-35
boundary register mode (BNDMODE)

bits, 13-27
boundary-scan architecture, B-2
boundary-scan register, B-8
broadcast mode, 22-12, 22-19, 22-20
BRP[9:0] field, 31-10, 31-47
BT_EN (bus timeout enable) bit, 8-25
B_TRANSP (overlay B transparency) bits,

28-41
BU2LEN, 29-45
buffer registers, timers, 10-47

ADSP-BF54x Blackfin Processor Hardware Reference H-9

Index

buffers
Cacheability Protection Lookaside

Buffers (CPLBs), 3-51, 3-52
Buffer start address register, Initialization,

29-113
BUFRDERR bit, 23-36, 23-38
BUFWRERR bit, 23-36, 23-37
burst DMA requests (BDR) bit, 8-25, 8-27
burst length, G-2
BURST_MODE (DMA burst mode

selection) bits, 26-145
burst type, G-2
BUSBUSY bit, 23-36
Bus connection and arbitration, DMA,

2-17
bus contention, avoiding, 19-9
bus error, EBIU, 5-8
BUSERROR (DMA bus error) bit, 26-145
buses

bandwidth, 1-3
and DMA, 7-51
and peripherals, 1-3
prioritization and DMA, 7-58

BUS_MODE (data bus width) bit, 27-56
bus-off interrupt, CAN, 31-27
bus standard, I2C, 1-15
bus timeout enable (BT_EN) bit, 8-25
B_VEND (overlay B vertical end) bits,

28-40
BV_MULT4 (multiply row by 4) bit,

28-44
B_VSTART (overlay B vertical start) bits,

28-40
BV_TRANS (transparent color - B/V) bits,

28-46
BxMAP (byte x mapping) bits, 9-63
BYPASS bit, 18-26
bypass capacitor placement, 19-16
bypass clock divisor (CLKDIV_BYPASS)

bit, 27-56

BYPASS instruction, B-7
bypass register, B-7
byte x mapping (BxMAP) bits, 9-63

C
cache

coherency support, 3-76
mapping into data banks, 3-34
validity of cache lines, 3-16

Cacheability Protection Lookaside Buffers
(CPLBs), 3-13, 3-51, 3-52

cache block (definition), 3-79
cache hit, 3-79

address-tag compare, 3-17
data cache access, 3-37
definition, 3-17
processing, 3-17

cache inhibited accesses, 3-77
cache line

components, 3-13
definition, 3-79
states, 3-38

cache miss, 3-79
definition, 3-37
replacement policy, 3-18

Cache way Lock, 3-9
callback routines, 17-45
CAN, 31-1 to 31-92

acceptance mask filtering, 31-17
acceptance mask registers, 31-6
acknowledge error, 31-30
architecture, 31-5
autobaud detection, 10-33
auto-transmit mode, 31-16
bit error, 31-30
bit rate detection, 10-5
bit timing, 31-10
block diagram, 31-4
bus interface, 31-2
clock, 31-10

Index

H-10 ADSP-BF54x Blackfin Processor Hardware Reference

CAN (continued)
code examples, 31-85
configuration mode, 31-10, 31-13
CRC error, 31-30
data field filtering, 31-19
debug and test modes, 31-35
disabling mailboxes, 31-23
enabling mailboxes, 31-87
error frames, 31-28, 31-31
error levels, 31-33
errors, 31-29
event counter, 31-28
extended frame, 31-10
features, 31-2
form error, 31-30
global interrupts, 31-25
hibernate state, 31-40
identifier frame, 31-9
initializing, 31-86
initializing mailboxes, 31-87
initiating transfers, 31-89
interrupts, 31-24, 31-89
lost arbitration, 31-28
and low power designs, 31-40
low power features, 31-38
mailbox area registers, 31-6
mailbox control, 31-7
mailboxes, 31-5
mailbox interrupts, 31-24
mailbox RAM, 31-5
message buffers, 31-5
message received, 31-29
message stored, 31-29
multiplexing of signals, 31-3
nominal bit rate, 31-12
nominal bit time, 31-11
overload frame, 31-28
propagation segment, 31-11
protocol basics, 31-8
receive message lost, 31-28

CAN (continued)
receive message rejected, 31-28
receive operation, 31-16
receive operation flow chart, 31-19
registers, table, 31-41
remote frames, 31-22
re-synchronization, 31-12
retransmission, 31-14
sampling, 31-12
single shot transmission, 31-15
sleep mode, 31-39
software reset, 31-13
standard frame, 31-9
stuff error, 31-30
suspend mode, 31-39
test modes, 31-37
time quantum, 31-10
time stamps, 31-21
transceiver interconnection, 31-2
transmission, 31-8
transmission aborted, 31-28
transmission succeeded, 31-28
transmit operation, 31-13
transmit operation flow chart, 31-15
universal counter as event counter, 31-28
valid message, 31-29
wakeup from hibernate, 31-40
warnings, 31-29
watchdog mode, 31-20

CAN_AMxxH (acceptance mask register),
31-51

CAN_AMxxL (acceptance mask register),
31-42, 31-52

CAN_CEC (CAN error counter register),
31-37

Cancel Asynchronous Packet Transmission
(CANCELAP) bit, 29-76

Cancel Control Message Transmission
(CANCELCM) bit, 29-81

ADSP-BF54x Blackfin Processor Hardware Reference H-11

Index

CAN_CLOCK (CAN clock register),
31-10

CAN controller abort acknowledge
(CANx_AA1) register 1, 31-76

CAN controller abort acknowledge
(CANx_AA2) register 2, 31-76

CAN controller acceptance mask
(CANx_AMxxH) registers, 31-50

CAN controller acceptance mask
(CANx_AMxxL) registers, 31-50

CAN controller clock (CANx_CLOCK)
register, 31-47

CAN controller debug (CANx_DEBUG)
register, 31-47

CAN controller error counter
(CANx_CEC) register, 31-84

CAN controller error counter warning level
(CANx_EWR) register, 31-85

CAN controller error status (CANx_ESR)
register, 31-85

CAN controller global interrupt flag
(CANx_GIF) register, 31-50

CAN controller global interrupt mask
(CANx_GIM) register, 31-49

CAN controller global interrupt status
(CANx_GIS) register, 31-49

CAN controller global status
(CANx_STATUS) register, 31-46

CAN controller interrupt pending
(CANx_INTR) register, 31-48

CAN controller mailbox configuration
(CANx_MC1) register 1, 31-69

CAN controller mailbox configuration
(CANx_MC2) register 2, 31-69

CAN controller mailbox direction
(CANx_MD1) register 1, 31-70

CAN controller mailbox direction
(CANx_MD2) register 2, 31-70

CAN controller mailbox interrupt mask
(CANx_MBIM1) register 1, 31-79

CAN controller mailbox interrupt mask
(CANx_MBIM2) register 2, 31-79

CAN controller mailbox receive interrupt
flag (CANx_MBRIF1) register 1,
31-81

CAN controller mailbox receive interrupt
flag (CANx_MBRIF2) register 2,
31-81

CAN controller mailbox transmit interrupt
flag (CANx_MBTIF1) register 1,
31-80

CAN controller mailbox transmit interrupt
flag (CANx_MBTIF2) register 2,
31-80

CAN controller mailbox word 0
(CANx_MBxx_DATA0) register,
31-61

CAN controller mailbox word 1
(CANx_MBxx_DATA1) register,
31-61

CAN controller mailbox word 2
(CANx_MBxx_DATA2) register,
31-61

CAN controller mailbox word 3
(CANx_MBxx_DATA3) register,
31-61

CAN controller mailbox word 4
(CANx_MBxx_LENGTH) register,
31-59

CAN controller mailbox word 5
(CANx_MBxx_TIMESTAMP)
register, 31-58

CAN controller mailbox word 6
(CANx_MBxx_ID0) register, 31-56

CAN controller mailbox word 7
(CANx_MBxx_ID1) register, 31-54

CAN controller master control
(CANx_CONTROL) register, 31-45

Index

H-12 ADSP-BF54x Blackfin Processor Hardware Reference

CAN controller overwrite protection/single
shot transmission (CANx_OPSS1)
register 1, 31-73

CAN controller overwrite protection/single
shot transmission (CANx_OPSS2)
register 2, 31-73

CAN controller receive message lost
(CANx_RML1) register 1, 31-72

CAN controller receive message lost
(CANx_RML2) register 2, 31-72

CAN controller receive message pending
(CANx_RMP1) register 1, 31-71

CAN controller receive message pending
(CANx_RMP2) register 2, 31-71

CAN controller remote frame handling
(CANx_RFH1) register 1, 31-78

CAN controller remote frame handling
(CANx_RFH2) register 2, 31-78

CAN controller temporary mailbox disable
feature (CANx_MBTD) register,
31-78

CAN controller timing (CANx_TIMING)
register, 31-48

CAN controller transmission acknowledge
(CANx_TA1) register 1, 31-77

CAN controller transmission acknowledge
(CANx_TA2) register 2, 31-77

CAN controller transmission request reset
(CANx_TRR1) register 1, 31-75

CAN controller transmission request reset
(CANx_TRR2) register 2, 31-75

CAN controller transmission request set
(CANx_TRS1) register 1, 31-74

CAN controller transmission request set
(CANx_TRS2) register 2, 31-74

CAN controller universal counter
(CANx_UCCNT) register, 31-84

CAN controller universal counter
configuration mode
(CANx_UCCNF) register, 31-83

CAN controller universal counter
reload/capture (CANx_UCRC)
register, 31-84

CAN_DEBUG (CAN debug register),
31-35, 31-36

CAN_EWR (CAN controller error counter
warning level) register, 31-45

CAN_MBxx_DATA0 (mailbox word 0
register), 31-43

CAN_MBxx_DATA1 (mailbox word 1
register), 31-43

CAN_MBxx_DATA2 (mailbox word 2
register), 31-43

CAN_MBxx_DATA registers, 31-6
CAN_MBxx_ID0 (mailbox word 6

register), 31-6, 31-42
CAN_MBxx_ID1 (mailbox word 7

register), 31-6
CAN_MBxx_LENGTH (mailbox word 4

register), 31-6
CAN_MBxx_TIMESTAMP (mailbox

word 5 register), 31-6
CAN_TIMING (CAN timing register),

31-10
CANWE bit, 18-28
CANx_AA1 (CAN controller abort

acknowledge) register 1, 31-76
CANx_AA2 (CAN controller abort

acknowledge) register 2, 31-76
CANx_AAx (CAN controller abort

acknowledge) registers, 31-43
CANx_AMxxH (CAN controller

acceptance mask) registers, 31-42,
31-50

CANx_AMxxL (CAN controller
acceptance mask) registers, 31-42,
31-50

CANx_CEC (CAN controller error
counter) register, 31-45, 31-84

ADSP-BF54x Blackfin Processor Hardware Reference H-13

Index

CANx_CLOCK (CAN controller clock)
register, 31-42, 31-47

CANx_CONTROL master control
register, 31-42, 31-45

CANx_DEBUG CAN controller debug)
register, 31-42, 31-47

CANx_ESR (CAN controller error status)
register, 31-45, 31-85

CANx_EWR (CAN controller error
counter warning level) register, 31-85

CANx_GIF (CAN controller global
interrupt flag) register, 31-42, 31-50

CANx_GIM (CAN controller global
interrupt mask) register, 31-42, 31-49

CANx_GIS (CAN controller global
interrupt status) register, 31-42, 31-49

CANx_INTR (CAN controller interrupt
pending) register, 31-42, 31-48

CANx_MBIM1 (CAN controller mailbox
interrupt mask) register 1, 31-79

CANx_MBIM2 (CAN controller mailbox
interrupt mask) register 2, 31-79

CANx_MBIMx (CAN controller mailbox
interrupt mask) registers, 31-44

CANx_MBRIF1 (CAN controller mailbox
receive interrupt flag) register 1, 31-81

CANx_MBRIF2 (CAN controller mailbox
receive interrupt flag) register 2, 31-81

CANx_MBRIFx (CAN controller mailbox
receive interrupt flag) registers, 31-44

CANx_MBTD (CAN controller
temporary mailbox disable feature)
register, 31-44, 31-78

CANx_MBTIF1 (CAN controller mailbox
transmit interrupt flag) register 1,
31-80

CANx_MBTIF2 (CAN controller mailbox
transmit interrupt flag) register 2,
31-80

CANx_MBTIFx (CAN controller mailbox
transmit interrupt flag) registers,
31-44

CANx_MBxx_DATA0 (CAN controller
mailbox word 0) register, 31-43,
31-61

CANx_MBxx_DATA1 (CAN controller
mailbox word 1) register, 31-43,
31-61

CANx_MBxx_DATA2 (CAN controller
mailbox word 2) register, 31-43,
31-61

CANx_MBxx_DATA3 (CAN controller
mailbox word 3) register, 31-43,
31-61

CANx_MBxx_ID0 (CAN controller
mailbox word 6) register, 31-42,
31-56

CANx_MBxx_ID1 (CAN controller
mailbox word 7) register, 31-42,
31-54

CANx_MBxx_LENGTH (CAN controller
mailbox word 4) register, 31-43,
31-59

CANx_MBxx_TIMESTAMP (CAN
controller mailbox word 5) register,
31-42, 31-58

CANx_MC1 (CAN controller mailbox
configuration) register 1, 31-69

CANx_MC2 (CAN controller mailbox
configuration) register 2, 31-69

CANx_MCx (CAN controller mailbox
configuration) registers, 31-43

CANx_MD1 (CAN controller mailbox
direction) register 1, 31-70

CANx_MD2 (CAN controller mailbox
direction) register 2, 31-70

CANx_MDx (CAN controller mailbox
direction) registers, 31-43

Index

H-14 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_OPSS1 (CAN controller overwrite
protection/single shot transmission)
register 1, 31-73

CANx_OPSS2 (CAN controller overwrite
protection/single shot transmission)
register 2, 31-73

CANx_OPSSx (CAN controller overwrite
protection/single shot transmission)
registers, 31-43

CANx_RFH1 (CAN controller remote
frame handling) register 1, 31-78

CANx_RFH2 (CAN controller remote
frame handling) register 2, 31-78

CANx_RFHx (CAN controller remote
frame handling enable) registers,
31-44

CANx_RML1 (CAN controller receive
message lost) register 1, 31-72

CANx_RML2 (CAN controller receive
message lost) register 2, 31-72

CANx_RMLx (CAN controller receive
message lost) registers, 31-43

CANx_RMP1 (CAN controller receive
message pending) register 1, 31-71

CANx_RMP2 (CAN controller receive
message pending) register 2, 31-71

CANx_RMPx (CAN controller receive
message pending) registers, 31-43

CANxRX bit, 31-48
CANxRX pin, 31-8
CANx_STATUS (CAN controller global

status) register, 31-42, 31-46
CANx_TA12 (CAN controller

transmission acknowledge) register 2,
31-77

CANx_TA1 (CAN controller transmission
acknowledge) register 1, 31-77

CANx_TAx (CAN controller transmit
acknowledge) registers, 31-44

CANx_TIMING (CAN controller timing)
register, 31-42, 31-48

CANx_TRR1 (CAN controller
transmission request reset) register 1,
31-75

CANx_TRR2 (CAN controller
transmission request reset) register 2,
31-75

CANx_TRRx (CAN controller transmit
request reset) registers, 31-43

CANx_TRS1 (CAN controller
transmission request set) register 1,
31-74

CANx_TRS2 (CAN controller
transmission request set) register 2,
31-74

CANx_TRSx (CAN controller transmit
request set) registers, 31-43

CANxTX bit, 31-48
CANxTX pin, 31-8
CANx_UCCNF (CAN controller

universal counter configuration mode)
register, 31-44, 31-83

CANx_UCCNT (CAN controller
universal counter) register, 31-44,
31-84

CANx_UCRC (CAN controller universal
counter reload/capture) register,
31-44, 31-84

capacitors, 19-15
capture mode, See WDTH_CAP mode
card detect interrupt enable (SCD_MSK)

bit, 27-70
card detect interrupt (SD_CARD_DET)

bit, 27-70
CCA bit, 31-46
CCITT G.711 specification, 24-31
CCLK (core clock), 18-4

disabling, 18-20
status by operating mode, 18-8

ADSP-BF54x Blackfin Processor Hardware Reference H-15

Index

CCR bit, 31-45
CDE bit, 31-35, 31-47
CDGINV (CDG pin polarity invert) bit,

13-27
CDG pin polarity invert (CDGINV) bit,

13-27
CDMAPRIO, 17-106
CFIFO_ERR (chroma FIFO error) bit,

15-80
CFIFO_ERR (Chroma FIFO Overflow

Error) bit, 21-49, 21-55, 21-56
Channel-In-Use (CIUx) bit, 29-57
channels

defined, serial, 24-25
serial port TDM, 24-25
serial select offset, 24-25

charge VBUS end interrupt enable
(CHRG_VBUS_END_ENA) bit,
26-138

charge VBUS start interrupt enable
(CHRG_VBUS_START_ENA) bit,
26-138

CHNL[9:0] field, 24-71, 24-72
CHRG_VBUS_END_ENA (charge

VBUS end interrupt enable) bit,
26-138

CHRG_VBUS_START_ENA (charge
VBUS start interrupt enable) bit,
26-138

chroma FIFO error (CFIFO_ERR) bit,
15-80

Chroma FIFO Overflow Error
(CFIFO_ERR) bit, 21-49, 21-55,
21-56

circuit board testing, B-1, B-6
circular addressing, 7-67
clean (definition), 3-80
clear command response CRC fail

(CMD_CRC_FAIL_STAT) bit,
27-65

clear command response received
(CMD_RESP_END_STAT) bit,
27-65

clear command sent
(CMD_SENT_STAT) bit, 27-65

clear command timeout
(CMD_TIMEOUT_STAT) bit,
27-65

clear data block end
(DAT_BLK_END_STAT) bit, 27-65

clear data CRC fail
(DAT_CRC_FAIL_STAT) bit,
27-65

clear data timeout
(DAT_TIMEOUT_STAT) bit,
27-65

CLEAR_DATATOGGLE_R (reset
endpoint data toggle) bit, 26-123

CLEAR_DATATOGGLE_T (reset
endpoint data toggle) bit, 26-117

clear end of data (DAT_END_STAT) bit,
27-65

clearing interrupt requests, 6-41
clear receive FIFO underrun error

(RX_UNDERRUN_STAT) bit,
27-65

clear start bit error
(START_BIT_ERR_STAT) bit,
27-65

clear transmit FIFO underrun error
(TX_UNDERRUN_STAT) bit,
27-65

CLKBUFOE bit, 18-28
CLKDIV_BYPASS (bypass clock divisor)

bit, 27-56
CLKDIV (clock divisor) bits, 26-143,

27-56
CLK_E (SDH_CLK enable) bit, 27-56
CLKHI[7:0] field, 23-26
CLKIN, 1-30, 18-1

Index

H-16 ADSP-BF54x Blackfin Processor Hardware Reference

CLKIN (input clock), 18-2
CLKIN to VCO, changing the multiplier,

18-14
CLKLOW[7:0] field, 23-26
CLK_SEL bit, 10-13, 10-22, 10-43, 10-51
CLKS_EN (SDH clocks enable) bit, 27-72
clock

clock signals, 1-30
EBIU, 5-2
frequency for SPORT, 24-68
managing, 19-2
RTC, 14-3
source for general-purpose timers, 10-5
SPI clock signal, 22-5
types, 19-2

clock divide modulus register, 24-68
clock divisor (CLKDIV) bits, 26-143,

27-56
clock input (CLKIN) pin, 19-2
clock phase, SPI, 22-17, 22-18
clock phase (CPHA) bit, 22-45
clock polarity, SPI, 22-17
clock polarity (CPOL) bit, 22-45
clock rate

core timer, 11-1
SPORT, 24-2

clock ratio, changing, 18-6
clocks

internal, 2-5
CM Allocate Channel List field, 29-151
CM Allocate Number Free field, 29-151
CM Allocate Number Requested field,

29-149
CM Allocate Status, 29-151
CM Allocate Status Encodings, 29-151
CMD_ACT (command active) bit, 27-64
CMD_ACT_MASK (command active)

bit, 27-67
CM Data field, 29-143

CMD_CRC_FAIL (command response
CRC fail) bit, 27-64

CMD_CRC_FAIL_MASK (command
response CRC fail) bit, 27-67

CMD_CRC_FAIL_STAT (clear
command response CRC fail) bit,
27-65

CM De-Allocate Connection Label field,
29-152

CM De-Allocate Status, 29-154
CM De-Allocate Status Encodings, 29-154
CMD_E (command enable) bit, 27-58
CM Destination Address, 29-140
CMD_IDX (command index) bits, 27-58
CMD_INT_E (command interrupt

enable) bit, 27-58
CMD_L_RSP (long response enable) bit,

27-58
CMD_PEND_E (pend enable) bit, 27-58
CMD_RESP_END (command response

received) bit, 27-64
CMD_RESP_END_MASK (command

response received) bit, 27-67
CMD_RESP_END_STAT (clear

command response received) bit,
27-65

CMD_RSP (wait for response) bit, 27-58
CMD_SENT (command sent) bit, 27-64
CMD_SENT_MASK (command sent) bit,

27-67
CMD_SENT_STAT (clear command

sent) bit, 27-65
CMD_TIMEOUT (command time out)

bit, 27-64
CMD_TIMEOUT_MASK (command

timeout) bit, 27-67
CMD_TIMEOUT_STAT (clear

command timeout) bit, 27-65
CM GetSource Channel field, 29-155
CM Message Type Encodings, 29-140

ADSP-BF54x Blackfin Processor Hardware Reference H-17

Index

CM Message Type field, 29-140
CM Priority, 29-139
CM Read Address field, 29-144
CMREN, 29-45
CM Source Address, 29-140
CMTCEN, 29-46
CM Transmission Status, 29-141
CM Transmission Status field, 29-140,

29-141
CMTSEN, 29-45
CM Write Address field, 29-146
CM Write Data field, 29-147
CM Write Length field, 29-146
CNFG_PEND (config pending) bit, 8-27
CNOS (tuning of DPHY clocks) bits,

26-141
CNT_COMMAND (command) register,

13-29
CNT_CONFIG (configuration) register,

13-27, A-91
CNT_COUNTER (counter) register,

13-25, 13-31
CNT_DEBOUNCE (debounce) register,

13-25, 13-31
CNTE (counter enable) bit, 13-27
CNT_IMASK (interrupt mask) register,

13-25, 13-28, A-91, A-92
CNT_MAX (maximal count) register,

13-25, 13-32
CNT_MIN (minimal count) register,

13-25, 13-32
CNTMODE (counter operating mode)

bits, 13-27
CNT_STATUS (status) register, 13-28
codecs, connecting to, 24-2
code examples

CSYNC, 3-79
interrupt enabling and disabling, 3-79
load base of MMRs, 3-79
restoration of the control register, 3-79

COLDRV_SCALE (column driver scale
value) bits, 30-15

column address
strobe latency, G-4

column driver scale value
(COLDRV_SCALE) bits, 30-15

column enable width (KPAD_COLEN)
bits, 30-10

columns value pressed (KPAD_COL) bits,
30-15

command active (CMD_ACT) bit, 27-64
command active (CMD_ACT_MASK)

bit, 27-67
command (CNT_COMMAND) register,

13-29
command enable (CMD_E) bit, 27-58
command index (CMD_IDX) bits, 27-58
command index of last received response

(RESP_CMD) bits, 27-59
command interrupt enable

(CMD_INT_E) bit, 27-58
command response CRC fail

(CMD_CRC_FAIL) bit, 27-64
command response CRC fail

(CMD_CRC_FAIL_MASK) bit,
27-67

command response received
(CMD_RESP_END) bit, 27-64

command response received
(CMD_RESP_END_MASK) bit,
27-67

commands
bank activate, G-1
DMA control, 7-39, 7-40
precharge, G-18
transfer initiate, 22-27

command sent (CMD_SENT) bit, 27-64
command sent (CMD_SENT_MASK) bit,

27-67

Index

H-18 ADSP-BF54x Blackfin Processor Hardware Reference

command time out (CMD_TIMEOUT)
bit, 27-64

command timeout
(CMD_TIMEOUT_MASK) bit,
27-67

companding, 24-17, 24-26
defined, 24-31
lengths supported, 24-31
multichannel operations, 24-26

COMPLETE (DMA complete) bit, 8-27
conditional

branches, 3-74
config pending (CNFG_PEND) bit, 8-27
configuration

CAN, 31-13
L1 Instruction Memory, 3-13
L1 SRAM, 3-2
precautions before changing, 3-12
SPORT, 24-12

configuration (CNT_CONFIG) register,
13-27, A-91

congestion, on DMA channels, 7-55
CONN_B (connection indicator) bit,

26-109
CONN_BE (connection IRQ enable) bit,

26-110
Connection and arbitration, DMA bus,

2-17
connection indicator (CONN_B) bit,

26-109
connection IRQ enable (CONN_BE) bit,

26-110
Connection Label, 29-152
Connection Label (CLx) field, 29-56
Content-Addressable Memory (CAM),

3-51
continuous transition, DMA, 7-35
control bit summary, general-purpose

timers, 10-51
Controller, DMA, 2-4, 2-18

Control Message Arbitrating (CMARB)
bit, 29-23

Control Message Interrupt, 29-30
Control Message Receive Buffer, 29-16
Control Message Receive Buffer (CMRB),

29-80
Control Message Receive Buffer Entry

Field Offsets, 29-159
Control Message Receive Buffer Entry

Offsets, 29-158
Control Message Receive Buffer Entry x

(CMRBEx) bits, 29-81
Control Message Receive Buffer Overflow

(CMROF) interrupt event, 29-38
Control Message Receive Buffer Overflow

interrupt enable, 29-45
Control Message Received (CMR) bit,

29-24
Control Message Received (CMR)

interrupt event, 29-37
Control Message Received interrupt enable,

29-45
Control Message Reception, 29-157
Control Message Transmission, 29-138
Control Message Transmit Buffer Busy

(CMBSY) bit, 29-23
Control Message Transmit Buffer

(CMTB), 29-80
Control Message Transmit Buffer

Successfully Cancelled (CMTC)
interrupt event, 29-38

Control Message Transmit Buffer
Successfully Cancelled interrupt
enable, 29-46

Control Message Transmit Buffer
Successfully Sent (CMTS) interrupt
event, 29-38

Control Message Transmit Buffer
Successfully Sent interrupt enable,
29-45

ADSP-BF54x Blackfin Processor Hardware Reference H-19

Index

Control Message Transmitting (CMTX)
bit, 29-24

Control/optimization, DMA traffic, 2-13
control register

data memory, 3-27
restoration, 3-79

core
core clock (CCLK), 18-4, 19-2
core clock/system clock ratio control,

18-4
powering down, 18-20
waking from idle state, 6-13

core and system reset, code example, 8-30,
17-145, 17-146

Core block diagram, 2-6
core clock, See CCLK
core double-fault reset, 17-6
core event controller (CEC), 6-2, 6-6
core-only software reset, 17-6
core timer, 11-1 to 11-8

block diagram, 11-2
clock rate, 11-1
features, 11-1
initialization, 11-3
internal interfaces, 11-2
interrupts, 11-3
low power mode, 11-3
operation, 11-3
registers, 11-4
scaling, 11-7

core timer control register (TCNTL), 11-3,
11-5

core timer count register (TCOUNT),
11-5

core timer period register (TPERIOD),
11-6

core timer scale register (TSCALE), 11-7
counter, RTC, 14-2
counter (CNT_COUNTER) register,

13-25, 13-31

counter enable (CNTE) bit, 13-27
counter operating mode (CNTMODE)

bits, 13-27
Count Position (COUNTPOSx) field,

29-67
COUNT_TIMEOUT (host timeout

count) bits, 8-29
count to zero interrupt enable (CZEROIE)

bit, 13-28
count to zero interrupt identifier

(CZEROII) bit, 13-28
count value[15:0] field, 11-6
count value[31:16] field, 11-6
COV15IE (bit 15 overflow interrupt

enable) bit, 13-28
COV15II (bit 15 overflow interrupt

identifier) bit, 13-28
COV31IE (bit 31 overflow interrupt

enable) bit, 13-28
COV31II (bit 31 overflow interrupt

identifier) bit, 13-28
CPHA bit, 22-45
CPHA (clock phase) bit, 22-45
CPOL bit, 22-45
CPOL (clock polarity) bit, 22-45
CRC32 checksum generation, 17-48
CRCE bit, 31-85
CRC error, 29-144
CROSSCORE software, 1-36
crosstalk, 19-15
crystal oscillator pins, 29-2
CSA bit, 31-39, 31-46
CSEL[1:0] field, 18-5, 18-26
CSR bit, 31-39, 31-45
CSR_HBR (USB hibernate signal) bit,

26-141
CSR_RSTD (USB pu/pd restore control)

bit, 26-141
CSYNC, 3-74

code example, 3-79

Index

H-20 ADSP-BF54x Blackfin Processor Hardware Reference

CTS (clear to send) bit, 25-37
CTYPE bit, 7-77
CUD and CDZ input disable (INPDIS)

bit, 13-27
CUDINV (CUD pin polarity invert) bit,

13-27
CUD pin polarity invert (CUDINV) bit,

13-27
current address field, 7-91
current address registers

(DMAx_CURR_ADDR), 7-90
(MDMA_yy_CURR_ADDR), 7-90

current descriptor pointer field, 7-109
current descriptor pointer registers

(DMAx_CURR_DESC_PTR), 7-108
(MDMA_yy_CURR_DESC_PTR),

7-108
current inner loop count registers

(DMAx_CURR_X_COUNT), 7-94,
7-95

(MDMA_yy_CURR_X_COUNT),
7-94, 7-95

current outer loop count registers
(DMAx_CURR_Y_COUNT), 7-101
(MDMA_yy_CURR_Y_COUNT),

7-101
CURR_X_COUNT[15:0] field, 7-95
CURR_Y_COUNT[15:0] field, 7-102
CZEROIE (count to zero interrupt enable)

bit, 13-28
CZEROII (count to zero interrupt

identifier) bit, 13-28
CZMEIE (CZM error interrupt enable)

bit, 13-28
CZMEII (CZM error interrupt identifier)

bit, 13-28
CZM error interrupt enable (CZMEIE)

bit, 13-28
CZM error interrupt identifier (CZMEII)

bit, 13-28

CZMIE (CZM pin interrupt enable) bit,
13-28

CZMII (CZM pin interrupt identifier) bit,
13-28

CZMINV (CZM pin polarity invert) bit,
13-27

CZM pin interrupt enable (CZMIE) bit,
13-28

CZM pin interrupt identifier (CZMII) bit,
13-28

CZM pin polarity invert (CZMINV) bit,
13-27

CZM zeroes counter enable (ZMZC) bit,
13-27

CZM zeroes counter interrupt enable
(CZMZIE) bit, 13-28

CZM zeroes counter interrupt identifier
(CZMZII) bit, 13-28

CZMZIE (CZM zeroes counter interrupt
enable) bit, 13-28

CZMZII (CZM zeroes counter interrupt
identifier) bit, 13-28

D
DAB, 7-51, 7-120

clocking, 18-1
DAB, DMA Access Bus, 2-5, 2-17
DAB_TRAFFIC_COUNT[2:0] field,

7-120
data block end (DAT_BLK_END) bit,

27-64
data block end (DAT_BLK_END_MASK)

bit, 27-67
data bus width (WIDE_BUS) bit, 27-56
data cache control instructions, 3-41
data corruption, avoiding with SPI, 22-19
DATA_COUNT (data count) bits, 27-62
data count (DATA_COUNT) bits, 27-62
data CRC fail (DAT_CRC_FAIL) bit,

27-64

ADSP-BF54x Blackfin Processor Hardware Reference H-21

Index

data CRC fail (DAT_CRC_FAIL_MASK)
bit, 27-67

data-driven interrupts, 7-87
DATAEND (data end indicator) bit,

26-113
data end (DAT_END) bit, 27-64
data end indicator (DATAEND) bit,

26-113
DATAERROR_R (load error indicator)

bit, 26-123
data field byte 0[7:0] field, 31-61
data field byte 1[7:0] field, 31-61
data field byte 2[7:0] field, 31-63
data field byte 3[7:0] field, 31-63
data field byte 4[7:0] field, 31-65
data field byte 5[7:0] field, 31-65
data field byte 6[7:0] field, 31-66
data field byte 7[7:0] field, 31-66
data field filtering, CAN, 31-19
data formats, SPORT, 24-30
data interrupt timing select (DI_SEL) bit,

8-6
DATA_LENGTH (number of bytes to

transfer) bits, 27-61
data memory, L1, 3-27
Data Memory Control register

(DMEM_CONTROL), 3-27, 3-52
data move, serial port operations, 24-40
data operations, CPLB, 3-52
data packet in FIFO indicator

(FIFO_NOT_EMPTY_T) bit,
26-117

data packet in FIFO indicator
(RXPKTRDY_R) bit, 26-123

data packet in FIFO indicator
(TXPKTRDY) bit, 26-113

data packet in FIFO indicator
(TXPKTRDY_T) bit, 26-117

data packet receive indicator
(RXPKTRDY) bit, 26-113

data receive active (RX_ACT) bit, 27-64
data receive active (RX_ACT_MASK) bit,

27-67
data sampling, serial, 24-35
DATA_SIZE bit, 8-25
Data SRAM

L1, 3-30
data store format, 3-80
data structures, 17-120

boot_struct, 17-122
buffer_struct, 17-121
header_struct, 17-120

Data Test Command register
(DTEST_COMMAND), 3-44

Data Test Data registers
(DTEST_DATAx), 3-45

data timeout bits, 27-60
data time out (DAT_TIMEOUT bit,

27-64
data timeout (DAT_TIMEOUT_MASK)

bit, 27-67
data transfer block length

(DTX_BLK_LGTH) bits, 27-62
data transfer direction (DTX_DIR) bit,

27-62
data transfer DMA enable

(DTX_DMA_E) bit, 27-62
data transfer enable (DTX_E) bit, 27-62
Data transfer latency

DMA, 2-13
data transfer mode (DTX_MODE) bit,

27-62
data transfers

SPI, 22-20
data transmit active (TX_ACT) bit, 27-64
data transmit active (TX_ACT_MASK)

bit, 27-67
data word, serial data formats, 24-61
DAT_BLK_END (data block end) bit,

27-64

Index

H-22 ADSP-BF54x Blackfin Processor Hardware Reference

DAT_BLK_END_MASK (data block end)
bit, 27-67

DAT_BLK_END_STAT (clear data block
end) bit, 27-65

DAT_CRC_FAIL (data CRC fail) bit,
27-64

DAT_CRC_FAIL_MASK (data CRC fail)
bit, 27-67

DAT_CRC_FAIL_STAT (clear data CRC
fail) bit, 27-65

DAT_END (data end) bit, 27-64
DAT_END_MASK (end of data) bit,

27-67
DAT_END_STAT (clear end of data) bit,

27-65
DAT_TIMEOUT (data time out) bit,

27-64
DAT_TIMEOUT_MASK (data timeout)

bit, 27-67
DAT_TIMEOUT_STAT (clear data

timeout) bit, 27-65
day[14:0] field, 14-23
day alarm interrupt enable bit, 14-21
day counter[14:0] field, 14-21
DBON_SCALE (debounce scale value)

bits, 30-15
DCB, 7-51, 7-121

DCB1, 2-10
DCB2, 2-10, 2-11

DCB, DMA Core Bus, 2-5, 2-17
DCB bus arbitration, 2-18
DCBS (L1 Data Cache Bank Select) bit,

3-35
DCB_TRAFFIC_COUNT field, 7-121
DCB_TRAFFIC_PERIOD field, 7-121
DCIE (down count interrupt enable) bit,

13-28
DCII (down count interrupt identifier) bit,

13-28
DCNT[7:0] field, 23-32, 23-33

DCPLB Address registers
(DCPLB_ADDRx), 3-63

DCPLB_ADDRx (DCPLB Address
registers), 3-63

DCPLB Data registers (DCPLB_DATAx),
3-61

DCPLB_DATAx (DCPLB Data registers),
3-61

DCPLB_FAULT_ADDR (DCPLB Fault
Address register), 3-67

DCPLB Fault Address register
(DCPLB_FAULT_ADDR), 3-67

DCPLB_STATUS (DCPLB Status
register), 3-66

DCPLB Status register
(DCPLB_STATUS), 3-66

DDR, 2-2
DDR SDRAM controller, 1-13
DEB, 7-51, 7-121
DEB, DMA External Bus, 2-5, 2-17
DEBE (debounce enable) bit, 13-27
debounce (CNT_DEBOUNCE) register,

13-25, 13-31
debounce enable (DEBE) bit, 13-27
debounce scale value (DBON_SCALE)

bits, 30-15
DEB_TRAFFIC_COUNT field, 7-121
DEB_TRAFFIC_PERIOD field, 7-121
debugging

test point access, 19-18
DEC bit, 31-37, 31-47
deep sleep mode, 1-32, 18-10
default mapping, peripheral to DMA, 7-10
Delay Register Updated (DRU) interrupt

event, 29-32
Delay Register Updated interrupt enable,

29-44
DERREN, 29-46
descriptor array mode, DMA, 7-22, 7-82
descriptor-based DMA, 7-21

ADSP-BF54x Blackfin Processor Hardware Reference H-23

Index

descriptor chains, DMA, 7-35
descriptor list mode, DMA, 7-22, 7-82,

7-83
descriptor queue, 7-67

management, 7-67
synchronization, 7-67, 7-68

descriptor structures
DMA, 7-65
MDMA, 7-72

destination channels, memory DMA, 7-13
detected FIFO not empty

(FIFO_FULL_R) bit, 26-123
DEV_ADDR (device address) bit, 21-52
development tools, 1-36
device address (DEV_ADDR) bit, 21-52
device DASP to host line status

(ATAPI_DASP) bit, 21-59
device interrupt mask

(ATAPI_DEV_INT_MASK) bit,
21-55

device interrupt status
(ATAPI_DEV_INT) bit, 21-57

device interrupt to host line status
(ATAPI_INTR) bit, 21-59

device receive buffer (REG_RXBUFFER)
bits, 21-54

device terminate multi-DMA transfer
interrupt mask
(MULTI_TERM_MASK) bit, 21-55

device terminate multi-DMA transfer
interrupt status
(MULTI_TERM_INT) bit, 21-57

device terminate ultra-DMA-in transfer
interrupt mask
(UDMAIN_TERM_MASK) bit,
21-55

device terminate ultra-DMA-in transfer
interrupt status
(UDMAIN_TERM_INT) bit, 21-57

device terminate ultra-DMA-out transfer
interrupt mask
(UDMAOUT_TERM_MASK) bit,
21-55

device terminate ultra-DMA-out transfer
interrupt status
(UDMAOUT_TERM_INT) bit,
21-57

device transmit buffer (REG_TXBUFFER)
bits, 21-53

DEV_RST (device reset) bit, 21-49
DF bit, 18-3, 18-4, 18-26
DFC[15:0] field, 31-56
DF (divide CLKIN by 2) bit, 26-142
DFETCH bit, 7-22, 7-29, 7-85
dFlags Word, Bits 15–0, 17-126
dFlags Word, Bits 31–16, 17-125
DFM[15:0] field, 31-52
DFRESET, 16-58, 16-59, 17-106
DI_EN bit, 7-21, 7-80, 7-83
DIL bit, 31-36, 31-47
DIOR/DIOW asserted pulsewidth (TD)

bits, 21-65
DIOR/DIOW pulsewidth

(T2_REG_PIO) bits, 21-64
DIOW data hold (T4_REG) bits, 21-64
DIR (direction) bit, 15-81
direct code execution, 17-37

initial header, 17-36, 17-38
DIRECTION (DMA Tx or Rx selection)

bit, 26-145
direct mapped (definition), 3-79
direct memory access, See DMA
dirty (definition), 3-80
Disable Interrupts (CLI) instruction, 3-79
disable nyet handshake (DISNYET) bit,

26-123
disabling

general-purpose timers, 10-39
PLL, 18-13

Index

H-24 ADSP-BF54x Blackfin Processor Hardware Reference

discharge VBUS end interrupt enable
(DISCHRG_VBUS_END_ENA)
bit, 26-138

discharge VBUS start interrupt enable
(DISCHRG_VBUS_START_ENA)
bit, 26-138

DISCHRG_VBUS_END_ENA
(discharge VBUS end interrupt
enable) bit, 26-138

DISCHRG_VBUS_START_ENA
(discharge VBUS start interrupt
enable) bit, 26-138

DISCON_B (disconnect/session end
indicator) bit, 26-109

DISCON_BE (disconnect/session end
IRQ enable) bit, 26-110

disconnect/session end indicator
(DISCON_B) bit, 26-109

disconnect/session end IRQ enable
(DISCON_BE) bit, 26-110

DI_SEL bit, 7-80, 7-83
DI_SEL (data interrupt, 8-6
DISNYET (disable nyet handshake) bit,

26-123
DITFS bit, 24-40, 24-51, 24-55, 24-66
divide CLKIN by 2 (DF) bit, 26-142
divisor latch high byte[15:8] field, 25-48
divisor latch low byte[7:0] field, 25-48
divisor reset, UART, 25-49
DLC[3:0] field, 31-59
DLEN (data length) bits, 15-82
DMA, 7-1 to 7-133

1D interrupt-driven, 7-64
1D unsynchronized FIFO, 7-65
2D, polled, 7-64
2D array, example, 7-123
2D interrupt-driven, 7-64
autobuffer mode, 7-18, 7-36, 7-82
bandwidth, 7-55
block count, 7-46

DMA (continued)
block diagram, 7-6, 7-7
block done interrupt, 7-50
block transfers, 7-16, 7-46
buffer size, multichannel SPORT, 24-26
channel registers, 7-76
channels, 7-51
channels and control schemes, 7-60
channel-specific register names, 7-75
congestion, 7-55
connecting asynchronous FIFO, 7-47
continuous transfers using autobuffering,

7-64
continuous transition, 7-35
control command restrictions, 7-43
control commands, 7-39, 7-40
data transfers, 7-2
default peripheral mapping, 7-10
descriptor array, 7-30
descriptor array mode, 7-22, 7-82
descriptor-based, 7-21
descriptor-based, initializing, 7-126
descriptor-based vs. register-based

transfers, 7-3
descriptor chains, 7-35
descriptor element offsets, 7-23
descriptor list mode, 7-22, 7-82, 7-83
descriptor lists, 7-30
descriptor queue, 7-67
descriptors, recommended size, 7-24
descriptor structures, 7-65
direction, 7-84
DMA error interrupt, 7-88
double buffer scheme, 7-64
and EBIU, 7-8
errors, 7-37, 7-38
example connection, receive, 7-49
example connection, transmit, 7-48
external interfaces, 7-8
finish control command, 7-41

ADSP-BF54x Blackfin Processor Hardware Reference H-25

Index

DMA (continued)
first data memory access, 7-29
flow chart, 7-26, 7-27
FLOW mode, 7-24
FLOW value, 7-28
for SPI transmit, 22-14
functions, summary, 7-4
handshake operation, 7-45
header file to define descriptor structures

example, 7-127
HMDMA1 block enable example, 7-132
initializing, 7-25
internal interfaces, 7-8
large model mode, 7-83
latency, 7-32
mapping to peripherals, 6-14, 6-15
memory conflict, 7-59
memory DMA, 7-13
memory DMA transfers, 7-9
memory read, 7-33
operation flow, 7-25
orphan access, 7-36
overflow interrupt, 7-50
overview, 1-10
performance considerations, 7-52
peripheral, 7-10
peripheral channels, 7-2
peripheral channels priority, 7-11
peripheral interrupts, 6-13
pipelining requests, 7-47
polling DMA status example, 7-125
polling registers, 7-61
prioritization and traffic control, 7-54 to

7-60
programming examples, 7-122 to 7-133
receive, 7-35
receive restart or finish, 7-44
refresh, 7-30
register-based, 7-17

DMA (continued)
register-based 2D memory DMA

example, 7-123
register naming conventions, 7-76
remapping peripheral assignment, 7-11
request data control command, 7-42
request data urgent control command,

7-42
restart control command, 7-40
round robin operation, 7-57
serial port block transfers, 24-40
single-buffer transfers, 7-63
small model mode, 7-82
software management, 7-60
software-triggered descriptor fetch

example, 7-129
and SPI, 22-14
SPI data transmission, 22-15, 22-16
SPI master, 22-33
SPI slave, 22-35
and SPORT, 24-3
startup, 7-25
stop mode, 7-18, 7-82
stopping transfers, 7-36
support for peripherals, 1-3
switching peripherals from, 7-88
synchronization, 7-60 to 7-70
synchronized transition, 7-35
termination without abort, 7-36
throughput, 7-51
traffic control, 7-58
traffic exceeding available bandwidth,

7-55
transfers, urgent, 7-54
transmit, 7-33
transmit restart or finish, 7-44
triggering transfers, 7-71
two descriptors in small list flow mode,

example, 7-126
two-dimensional, 7-19

Index

H-26 ADSP-BF54x Blackfin Processor Hardware Reference

DMA (continued)
two-dimensional memory DMA setup

example, 7-124
and UART, 25-24, 25-41
using descriptor structures example,

7-128
variable descriptor size, 7-23
word size, changing, 7-35, 7-36
work units, 7-21, 7-30, 7-32

DMA, Related Buses, 2-17
DMA0 Urgent Request (DMA0URQ) bit,

21-49, 21-55, 21-56
DMA0URQ (DMA0 Urgent Request) bit,

21-49, 21-55, 21-56
DMA0URQ (DMA0 urgent request) bit,

15-80
DMA1 Urgent Request (DMA1URQ) bit,

21-49, 21-55, 21-56
DMA1URQ (DMA1 Urgent Request) bit,

21-49, 21-55, 21-56
DMA1URQ (DMA1 urgent request) bit,

15-80
DMA2D bit, 7-80, 7-83
DMA2D (DMA mode) bit, 8-6
DMA Access Bus (DAB), 2-5, 2-17
DMA access to L1 or L2 memory, stalls,

2-13
DMAACTIVEx bits, 29-28
DMA address high

(DMA_ADDR_HIGH) bits, 26-147
DMA address low (DMA_ADDR_LOW)

bits, 26-146
DMA_ADDR_HIGH (DMA address

high) bits, 26-147
DMA_ADDR_LOW (DMA address low)

bits, 26-146
DMA burst mode selection

(BURST_MODE) bits, 26-145
DMA Bus

connection and arbitration, 2-17

DMA bus error (BUSERROR) bit, 26-145
DMAC1_PERIMUX (DMA controller 1

peripheral multiplexer) register, 7-121
DMACFG field, 7-29, 7-72
DMACFG (one/two DMA channel

modes) bit, 15-82
DMA channel registers, 7-73
DMA Channel x Done interrupt enable,

29-47
DMA Channel x Half Done interrupt

enable, 29-47
DMACODE, 17-126
DMA Code field

DMACODE, 17-27
DMA complete (COMPLETE) bit, 8-27
DMA configuration registers

(DMAx_CONFIG), 7-79
(MDMA_yy_CONFIG), 7-79

DMA controller, 2-4, 2-18, 7-2
DMA Core Bus (DCB), 2-5, 2-17
DMA_COUNT_LOW (DMA count low)

bits, 26-147, 26-148
DMA count low (DMA_COUNT_LOW)

bits, 26-147, 26-148
DMA_CSTATE (DMA mode state

machine current state) bits, 21-59
DMACx_TCCNT (DMA traffic control

counter) registers, 7-119
DMACx_TCPER (DMA traffic control

counter period) registers, 7-119
DMA data transfer latency, 2-13
DMA_DIR (DMA direction) bit, 8-27
DMA direction (DMA_DIR) bit, 8-27
DMA_DONE bit, 7-85
DMA_DONE interrupt, 7-85
DMA enable (DMA_ENA) bit, 26-145
DMA_ENA (DMA enable) bit, 26-145
DMAEN bit, 7-25, 7-71, 7-80, 7-84
DMA_ERR bit, 7-85

ADSP-BF54x Blackfin Processor Hardware Reference H-27

Index

DMA Error Channel Number
(DERRNUM) field, 29-26

DMA Error (DERR) interrupt event,
29-39

DMA_ERROR interrupt, 7-37
DMA Error interrupt enable, 29-46
DMA error interrupts, 7-87
DMA External Bus (DEB), 2-5, 2-17
DMA mode 0/1 selection (MODE) bit,

26-145
DMA mode select (DMAREQMODE_R)

bit, 26-123
DMA mode select

(DMAREQMODE_RH) bit, 26-123
DMA mode select (DMAREQMODE_T)

bit, 26-117
DMA mode state machine current state

(DMA_CSTATE) bits, 21-59
DMA performance optimization, 7-50
DMAPMENx, 29-29
DMA queue completion interrupt, 7-70
DMAR0 pin, 7-8
DMAR1 pin, 7-8
DMA ready (READY) bit, 8-27
DMA registers, 7-73
DMAREQ_ENA_R (DMA request

enable) bit, 26-123
DMAREQ_ENA_T (DMA request

enable) bit, 26-117
DMAREQMODE_R (DMA mode select)

bit, 26-123
DMAREQMODE_RH (DMA mode

select) bit, 26-123
DMAREQMODE_T (DMA mode select)

bit, 26-117
DMA request enable

(DMAREQ_ENA_R) bit, 26-123
DMA request enable

(DMAREQ_ENA_T) bit, 26-117
DMA_RUN bit, 7-29, 7-68, 7-72, 7-85

DMARx pin, 7-47
DMA start address field, 7-89
DMA_TC_CNT (DMA traffic control

counter register), 7-120
DMA_TC_PER (DMA traffic control

counter period register), 7-57, 7-120
DMA traffic control counter period register

(DMA_TC_PER), 7-120
DMA traffic control counter register

(DMA_TC_CNT), 7-120
DMA traffic control/optimization, 2-13
DMA_TRAFFIC_PERIOD field, 7-120
DMA Tx or Rx selection (DIRECTION)

bit, 26-145
DMAx Bit-Swap Enable (BITSWAPENx)

bit, 29-61
DMAx_CONFIG (DMA configuration

registers), 7-15, 7-25, 7-33, 7-79
DMAx_CURR_ADDR (current address

registers), 7-90
DMAx_CURR_DESC_PTR (current

descriptor pointer registers), 7-108
DMAx_CURR_X_COUNT (current

inner loop count registers), 7-94, 7-95
DMAx_CURR_Y_COUNT (current

outer loop count registers), 7-101
DMAx Direction (DDx) bit, 29-60
DMAx Done (DONEx) interrupt event,

29-41
DMAx Half-Done (HDONEx) interrupt

event, 29-41
DMAx_INT (USB DMA endpoint x

interrupt) bits, 26-144
DMAx_IRQ_STATUS (interrupt status

registers), 7-84, 7-85
DMAx Logical Channel (LCHANx) field,

29-60
DMAx_NEXT_DESC_PTR (next

descriptor pointer registers), 7-25,
7-106

Index

H-28 ADSP-BF54x Blackfin Processor Hardware Reference

DMAx Operation Flow (MFLOWx) field,
29-62

DMAx_PERIPHERAL_MAP (peripheral
map registers), 7-77

DMAx_START_ADDR (start address
registers), 7-25, 7-88

DMAx_X_COUNT (inner loop count
registers), 7-92

DMAx_X_MODIFY (inner loop address
increment registers), 7-25, 7-97

DMAx_Y_COUNT (outer loop count
registers), 7-99

DMAx_Y_MODIFY (outer loop address
increment registers), 7-25, 7-103

DMEM_CONTROL (Data Memory
Control register), 3-27, 3-52

DNAK bit, 23-36, 23-38
DNM bit, 31-45
DONEENx, 29-47
DOUBLE_FAULT, 17-104
DOUBLE_FAULT bit, 16-40
DOUBLE_RESET, 16-40
DPMC, 18-2, 18-7 to 18-11
D Port, 2-4

interface, 2-9
DR bit, 25-17
DR (data ready) bit, 25-35
DR flag, 25-23
DRI bit, 31-37, 31-47
DRIVE_VBUS_OFF_ENA (drive VBUS

off interrupt enable) bit, 26-138
drive VBUS off interrupt enable

(DRIVE_VBUS_OFF_ENA) bit,
26-138

DRIVE_VBUS_ON_ENA (drive VBUS
on interrupt enable) bit, 26-138

drive VBUS on interrupt enable
(DRIVE_VBUS_ON_ENA) bit,
26-138

DRQ[1:0] field, 7-55, 7-112, 7-113

DRUEN, 29-44
DRxPRI signal, 24-6
DRxPRI SPORT input, 24-8
DRxSEC signal, 24-6
DRxSEC SPORT input, 24-8
DTEST_COMMAND (Data Test

Command register), 3-44
DTEST_DATAx (Data Test Data

registers), 3-45
DTO bit, 31-36, 31-47
DTX_BLK_LGTH (data transfer block

length) bits, 27-62
DTX_DIR (data transfer direction) bit,

27-62
DTX_DMA_E (data transfer DMA

enable) bit, 27-62
DTX_E (data transfer enable) bit, 27-62
DTX_MODE (data transfer mode) bit,

27-62
DTxPRI signal, 24-6
DTxPRI SPORT output, 24-8
DTxSEC signal, 24-6
DTxSEC SPORT output, 24-8
dynamic power management, 1-31, 18-1
dynamic power management controller,

18-2

E
EAB

clocking, 18-1
EAB, External Access Bus, 2-4, 2-5, 2-24
early frame sync, 24-38
EBIU, 1-13, 5-1

as slave, 5-7
block diagram, 5-4
bus errors, 5-8
clock, 5-2
and DMA, 7-8
error detection, 5-8
overview, 5-1

ADSP-BF54x Blackfin Processor Hardware Reference H-29

Index

EBIU (continued)
request priority, 5-2

EBIU, External Bus Interface Unit, 2-2
EBIU_AMGCTL (Asynchronous Memory

Global Control register), 5-58
EBIU Pin List (with Multiplexing), 5-5
EBO bit, 31-46
ECC0 (parity calculation result0) bits,

20-23
ECC1 (parity calculation result1) bits,

20-23
ECC2 (parity calculation result2) bits,

20-23
ECC3 (parity calculation result3) bits,

20-23
ECCCNT (transfer count) bits, 20-24
ECC_RST (ECC (and NFC counters) reset

bit, 20-24
ECINIT[15:0] field, 7-117
ECOUNT[15:0] field, 7-116
EHR (enable host reads) bit, 8-25
EHW (enable host writes) bit, 8-25
elfloader.exe, 17-23
ELSI bit, 25-9, 25-42, 25-43, 25-44
EMISO bit, 22-21, 22-45
EMISO (enable MISO) bit, 22-45
emulation, and timer counter, 10-45
EMU_RUN bit, 10-43, 10-52
enable host reads (EHR) bit, 8-25
enable host writes (EHW) bit, 8-25
Enable Interrupts (STI) instruction, 3-79
enable MISO (EMISO) bit, 22-45
ENABLE_SUSPENDM (suspend mode

output enable) bit, 26-99
enabling

general-purpose timers, 10-38
interrupts, 6-11

endian format
data and instruction storage, 3-69

end of cycle time for PIO access transfers
(TEOC_REG_PIO) bits, 21-64

end of cycle time for register access transfers
(T2_REG) bits, 21-63

end of data (DAT_END_MASK) bit,
27-67

END_ON_TERM (end/terminate select)
bit, 21-49

endpoint number (EPNUM) bits, 26-145
endpoint x Rx enable (EPx_RX_ENA) bits,

26-98
endpoint x Tx enable (EPx_TX_ENA) bits,

26-98
end/terminate select (END_ON_TERM)

bit, 21-49
EN (enable) bit, 15-81
ENICPLB, 3-9
EP0_NAK_LIMIT (EP0 NAK limit) bits,

26-130
EP0 NAK limit (EP0_NAK_LIMIT) bits,

26-130
EP0_RX_COUNT (received byte count in

EP0 FIFO) bits, 26-128
EP bit, 31-46
EP halted after a NAK

(NAK_TIMEOUT_H) bit, 26-113,
26-117

EPIF bit, 31-27, 31-50
EPIM bit, 31-27, 31-49
EPIS bit, 31-27, 31-49
EPNUM (endpoint number) bits, 26-145
EPPI

block diagram, 15-5
control signal polarities, 15-80
data width, 15-80
GP output, 15-12, 15-13
operating modes, 15-80

EPPI clipping (EPPIx_CLIP) register,
15-74, 15-98

Index

H-30 ADSP-BF54x Blackfin Processor Hardware Reference

EPPI_CONTROL (EPPI control register),
15-80

EPPI control register (EPPI_CONTROL),
15-80

EPPI vertical transfer count
(EPPIx_VCOUNT) register, 15-74

EPPIx_CLIP (EPPI clipping) register,
15-74, 15-98

EPPIx_CLKDIV (EPPIx clock divide)
register, 15-93

EPPIx clock divide (EPPIx_CLKDIV)
register, 15-93

EPPIx_CONTROL register, 15-74, 15-82
EPPIx_FRAME (EPPIx lines per frame)

register, 15-90
EPPIx_FS1P_AVPL (EPPIx FS1 period)

register, 15-74, 15-97
EPPIx FS1 period (EPPIx_FS1P_AVPL)

register, 15-74, 15-97
EPPIx_FS1W_HBL (EPPIx FS1 width)

register, 15-94
EPPIx FS1 width (EPPIx_FS1W_HBL)

register, 15-94
EPPIx FS2 period (EPPIx_FS2P_LAVF)

register, 15-74, 15-97
EPPIx_FS2P_LAVF (EPPIx FS2 period)

register, 15-74, 15-97
EPPIx FS2 width (EPPIx_FS2W_LVB)

register, 15-74, 15-95
EPPIx_FS2W_LVB (EPPIx FS2 width)

register, 15-74, 15-95
EPPIx_HCOUNT (EPPIx horizontal

transfer count) register, 15-93
EPPIx_HDELAY (EPPIx horizontal delay

count) register, 15-74, 15-92
EPPIx horizontal delay count

(EPPIx_HDELAY) register, 15-74,
15-92

EPPIx horizontal transfer count
(EPPIx_HCOUNT) register, 15-93

EPPIx_LINE (EPPIx samples per line)
register, 15-74, 15-90

EPPIx lines per frame (EPPIx_FRAME)
register, 15-90

EPPIx samples per line (EPPIx_LINE)
register, 15-74, 15-90

EPPIx_STATUS (EPPI status) register,
15-80

EPPIx status (EPPIx_STATUS) register,
15-80

EPPIx_VCOUNT (EPPI vertical transfer
count) register, 15-74, 15-92

EPPIx_VDELAY (EPPI vertical delay
count) register, 15-91

EPPIx vertical delay count
(EPPIx_VDELAY) register, 15-91

EPPIx vertical transfer count
(EPPIx_VCOUNT) register, 15-92

EPS (even parity select) bit, 25-29
EPx_RX_ENA (endpoint x Rx enable) bits,

26-98
EPx_RX_E (USB Rx endpoint x interrupt

enable) bits, 26-108
EPx_RX (USB Rx endpoint x interrupt)

bits, 26-106
EPx_TX_ENA (endpoint x Tx enable) bits,

26-98
EPx_TX_E (USB Tx endpoint x interrupt

enable) bits, 26-107
EPx_TX (USB Tx endpoint x interrupt)

bits, 26-105
ERBFI bit, 25-9, 25-17, 25-41, 25-42,

25-43
ERR_DET (Error Detected in Preamble)

bit, 21-49, 21-55, 21-56
ERR_DET (preamble error detected) bit,

15-80
ERR_NCOR (Error Not Corrected in

Preamble) bit, 21-49, 21-55, 21-56

ADSP-BF54x Blackfin Processor Hardware Reference H-31

Index

ERR_NCOR (preamble error not
corrected) bit, 15-80

error
bus exception, 29-4
hardware interrupt, 29-4

Error Detected in Preamble (ERR_DET)
bit, 21-49, 21-55, 21-56

error frames, CAN, 31-31
ERROR_H (timeout error) bit, 26-113
Error Not Corrected in Preamble

(ERR_NCOR) bit, 21-49, 21-55,
21-56

error-passive interrupt, CAN, 31-27
ERROR_RH (timeout error indicator) bit,

26-123
errors

DMA, 7-37
misalignment of data, 3-76
not detected by DMA hardware, 7-38
startup, and timers, 10-11

error signals, SPI, 22-23 to 22-25
ERROR_TH (timeout error indicator) bit,

26-117
error type bit, 10-43
error warning receive interrupt, CAN,

31-27
error warning transmit interrupt, CAN,

31-27
ERR_TYP[1:0] field, 10-10, 10-42, 10-43,

10-52
ETBEI bit, 25-7, 25-16, 25-41, 25-42,

25-43
event counter, CAN, 31-28
event handling, 6-6
events

default mapping, 6-15
definition, 6-6
types of, 6-6

event vector table (EVT), 6-2
EVT1 register, 17-8

EWLREC[7:0] field, 31-85
EWLTEC[7:0] field, 31-85
EWRIF bit, 31-27, 31-50
EWRIM bit, 31-27, 31-49
EWRIS bit, 31-27, 31-49
EWTIF bit, 31-27, 31-50
EWTIM bit, 31-27, 31-49
EWTIS bit, 31-27, 31-49
exclusive (definition), 3-80
EXT_CLK mode, 10-34 to 10-35, 10-47

control bit and register usage, 10-51
flow diagram, 10-35

External Access Bus (EAB), 2-4, 2-5, 2-24
External Bus (DEB), DMA, 2-5, 2-17
external bus interface unit, See EBIU
External Bus Interface Unit (EBIU), 2-2
External Bus Interface Unit (EBIU)

Diagram, 5-4
external crystal, 1-30
External memory, 2-2
external memory, 3-50

design issues, 19-5
external memory map

figure, 5-3
EXTEST instruction, B-6
EXTID[15:0] field, 31-52, 31-56
EXTID[17:16] field, 31-51, 31-54

F
F1_ACT bits, 15-97
F1VB_AD bits, 15-95
F1VB_BD bits, 15-95
F2_ACT bits, 15-97
F2VB_AD bits, 15-95
F2VB_BD bits, 15-95
FAST bit, 23-32, 23-34
fast mode, TWI, 23-10
FCPOL (flow control pin polarity) bit,

25-32
FCZ0EN, 29-45

Index

H-32 ADSP-BF54x Blackfin Processor Hardware Reference

FCZ1EN, 29-45
FDF bit, 31-20, 31-51
FE (framing error) bit, 25-35, 25-36
FER bit, 31-85
FERREN, 29-45
FFE bit, 25-50, 25-51
Field (FLD) bit, 21-49, 21-55, 21-56
field (FLD) bit, 15-80
field select/trigger (FLD_SEL) bit, 15-81
FIFO_COUNT (FIFO count) bits, 27-68
FIFO count) (FIFO_COUNT) bits, 27-68
FIFOEMPTY bit, 8-27
FIFO Error (FERR) interrupt event, 29-36
FIFO Error interrupt enable, 29-45
FIFO_FLUSH (flush FIFOs) bit, 21-49
FIFO flush (HOST_FLUSH) bit, 8-25
FIFOFULL bit, 8-27
FIFO_FULL_R (detected FIFO not

empty) bit, 26-123
FIFO_NOT_EMPTY_T (data packet in

FIFO indicator) bit, 26-117
FIFO regular watermark (FIFO_RWM)

bits, 15-82
FIFO_RWM (FIFO regular watermark)

bits, 15-82
FIFO urgent watermarks (FIFO_UWM)

bits, 15-82
FIFO_UWM (FIFO urgent watermarks)

bits, 15-82
finish control command, DMA, 7-41
Fixed Pattern Matching select (FIXEDPM)

bit, 29-66
Flash, 2-2
flash interface, 19-8
FLD (Field) bit, 21-49, 21-55, 21-56
FLD (field) bit, 15-80
FLD_SEL (field select/trigger) bit, 15-81
flex descriptors, 7-3
FLGx bit, 22-46

FLOW[2:0] field, 7-30, 7-31, 7-66, 7-80,
7-82

FLOW bit, 8-6
flow charts

CAN receive operation, 31-19
CAN transmit operation, 31-15
DMA, 7-26, 7-27
general-purpose timers interrupt

structure, 10-9
SPI core-driven, 22-39
SPI DMA, 22-40
timer EXT_CLK mode, 10-35
timer PWM_OUT mode, 10-14
timer WDTH_CAP mode, 10-26
TWI master mode, 23-24
TWI slave mode, 23-23

FLOW mode, DMA, 7-24
FLOW value, DMA, 7-28
FLSx bit, 22-12, 22-46
FLSx (slave select enable) bits, 22-46
flush endpoint FIFO (FLUSHFIFO) bit,

26-113
flush endpoint FIFO (FLUSHFIFO_R)

bit, 26-123
flush endpoint FIFO (FLUSHFIFO_T)

bit, 26-117
FLUSHFIFO (flush endpoint FIFO) bit,

26-113
FLUSHFIFO_R (flush endpoint FIFO)

bit, 26-123
FLUSHFIFO_T (flush endpoint FIFO)

bit, 26-117
FLUSH instruction, 3-41
FLUSHINV instruction, 3-41
FMD bit, 31-51
FORCE_DATATOGGLE_T (force

endpoint data toggle) bit, 26-117
force endpoint data toggle

(FORCE_DATATOGGLE_T) bit,
26-117

ADSP-BF54x Blackfin Processor Hardware Reference H-33

Index

FORCE_MSEL (force PLL frequency
multiplier) bits, 26-142

force PLL frequency multiplier
(FORCE_MSEL) bits, 26-142

formatting enable (RGB_FMT_EN) bit,
15-82

FPE bit, 25-50, 25-51
Frame Counter 0 Zero (FCZ0) interrupt

event, 29-34
Frame Counter 0 Zero interrupt enable,

29-45
Frame Counter 1 Zero (FCZ1) interrupt

event, 29-34
Frame Counter 1 Zero interrupt enable,

29-45
framed serial transfers, characteristics,

24-34
framed/unframed data, 24-33
frame interrupt enable (FRM_INT_EN)

bit, 28-41
frame interrupt status (FRM_INT_STAT)

bit, 28-41
Frame Locked (FLOCK) bit, 29-25
Frame Locked to Unlocked (FL2U)

interrupt event, 29-35
FRAME_NUMBER (USB frame number)

bits, 26-111
frame sync

active high/low, 24-35
early, 24-38
early/late, 24-38
external/internal, 24-34
internal, 24-28
internally generated, 24-69
late, 24-38
multichannel mode, 24-20
sampling edge, 24-35
SPORT options, 24-33

frame sync configuration (FS_CFG) bits,
15-81

frame sync divider[15:0] field, 24-69
frame synchronization

and SPORT, 24-3
frame sync pulse

use of, 24-55
when issued, 24-55

frame sync signal, control of, 24-54, 24-60
Frame Track Overflow Error

(FTERR_OVR) bit, 21-49, 21-55,
21-56

frame track overflow (FTERR_OVR) bit,
15-80

Frame Track Underflow Error
(FTERR_UNDR) bit, 21-49, 21-55,
21-56

frame track underflow (FTERR_UNDR)
bit, 15-80

Frame Unlocked to Locked (FU2L)
interrupt event, 29-35

FREQ[1:0] field, 18-18, 18-28
frequencies, clock and frame sync, 24-28
FRM_INT_EN (frame interrupt enable)

bit, 28-41
FRM_INT_STAT (frame interrupt status)

bit, 28-41
FS_CFG (frame sync configuration) bits,

15-81
FSDEV (full- or high-speed device

indicator) bit, 26-134, 26-136
FSDR bit, 24-24, 24-71
FS_EOF1 (full-speed EOF 1) bits, 26-140
FTERR_OVR (frame track overflow) bit,

15-80
FTERR_OVR (Frame Track Overflow

Error) bit, 21-49, 21-55, 21-56
FTERR_UNDR (frame track underflow)

bit, 15-80
FTERR_UNDR (Frame Track Underflow

Error) bit, 21-49, 21-55, 21-56

Index

H-34 ADSP-BF54x Blackfin Processor Hardware Reference

full duplex, 24-4, 24-8
SPI, 22-1

FULL_ON bit, 18-27
full on mode, 1-31, 18-8
full- or high-speed device indicator

(FSDEV) bit, 26-134, 26-136
full-speed EOF 1 (FS_EOF1) bits, 26-140
FUNCTION_ADDRESS (USB peripheral

device address) bits, 26-102

G
GAIN[1:0] field, 18-18, 18-28
gain levels, 18-18
GCALL bit, 23-31
GEN bit, 23-28
general call address, TWI, 23-10
general-purpose interrupts, 6-6, 6-7
general-purpose ports, 1-14, 9-1 to 9-74
general-purpose timers, 10-1 to 10-62

aborting, 10-24
and startup errors, 10-11
autobaud mode, 10-33
block diagram, 10-3
buffer registers, 10-47
capture mode, 10-7
clock source, 10-5
code examples, 10-53
control bit summary, 10-51
counter, 10-6
disable timing, 10-24
disabling, 10-39
enabling, 10-6, 10-35, 10-38
error detection, 10-10
EXT_CLK mode, 10-47
external interface, 10-4
features, 10-2
flow diagram for EXT_CLK mode,

10-35
generating maximum frequency, 10-17
illegal states, 10-10, 10-11

general-purpose timers (continued)
internal interface, 10-5
internal timer structure, 10-4
interrupts, 10-6, 10-7, 10-16, 10-30
interrupt setup, 10-55
interrupt structure, 10-9
measurement report, 10-27, 10-28,

10-29
non-overlapping clock pulses, 10-59
output pad disable, 10-15
overflow, 10-6
periodic interrupt requests, 10-56
port setup, 10-53
preventing errors in PWM_OUT mode,

10-48
programming model, 10-35
PULSE_HI toggle mode, 10-18
PWM mode, 10-7
PWM_OUT mode, 10-13 to 10-24,

10-47
registers, 10-37
signal generation, 10-54
single pulse generation, 10-15
size of register accesses, 10-37
stopping in PWM_OUT mode, 10-23
three timers with same period, 10-19
two timers with non-overlapping clocks,

10-19
waveform generation, 10-16
WDTH_CAP mode, 10-25, 10-47
WDTH_CAP mode configuration,

10-61
WDTH_CAP mode flow diagram,

10-26
get more data (GM) bit, 22-45
GIRQ bit, 31-48
glitch filtering, UART, 25-14
GLOBAL_ENA (USB enable) bit, 26-98
global interrupts, CAN, 31-25
glueless connection, 19-8

ADSP-BF54x Blackfin Processor Hardware Reference H-35

Index

GM bit, 22-30, 22-45
GM (get more data) bit, 22-45
GPIO, 9-1 to 9-74, 29-3

interrupt request, 6-41
pins, 9-2

ground plane, 19-15
Group cast/Broadcast Transmission Status

Encodings, 29-141
GU_MULT4 (multiply row by 4) bit,

28-43
GU_TRANS (transparent color - G/U)

bits, 28-46

H
H.100, 24-24, 24-27
handshake MDMA, 7-16, 7-45

interrupts, 7-49
handshake MDMA control registers

(HMDMAx_CONTROL), 7-111,
7-113

handshake MDMA current block count
registers (HMDMAx_BCOUNT),
7-115

handshake MDMA current edge count
registers (HMDMAx_ECOUNT),
7-116

handshake MDMA edge count overflow
interrupt registers

(HMDMAx_ECOVERFLOW), 7-118
handshake MDMA edge count overflow

interrupt registers
(HMDMAx_ECOVERFLOW),
7-118

handshake MDMA edge count urgent
registers

(HMDMAx_ECURGENT), 7-117
handshake MDMA initial block count

registers (HMDMAx_BCINIT),
7-114

handshake MDMA initial edge count
registers

(HMDMAx_ECINIT), 7-117
handshake MDMA initial edge count

registers (HMDMAx_ECINIT),
7-117

handshake memory DMA, 7-3
hardware reset, 17-5, 17-6, 17-8
Harvard architecture, 3-5
HDONEENx, 29-47
header checksum field

HDRCHK, 17-30
header signature

HDRSGN, 17-31
hibernate state, 1-33, 18-11, 18-20

and CAN, 31-40
HIGH_EVEN (upper limit for even bytes

(luma) bits, 15-98
high frequency design considerations, 19-5
HIGH_ODD (upper limit for odd bytes

(chroma) bits, 15-98
high- or full-speed device indicator

(FSDEV) bit, 26-134, 26-136
high-speed EOF 1 (HS_EOF1) bits,

26-139
high speed mode enable (HS_ENABLE)

bit, 26-99
high speed mode flag (HS_MODE) bit,

26-99
HIRQ (host interrupt request) bit, 8-27
HMDMA, 7-16
HMDMAEN bit, 7-45, 7-47, 7-113
HMDMAx_BCINIT (handshake MDMA

configuration registers), 7-46, 7-114
HMDMAx_BCOUNT (handshake

MDMA current block count
registers), 7-46, 7-115

HMDMAx_CONTROL (handshake
MDMA control registers), 7-8, 7-111,
7-113

Index

H-36 ADSP-BF54x Blackfin Processor Hardware Reference

HMDMAx_ECINIT (handshake MDMA
initial edge count registers), 7-47,
7-117

HMDMAx_ECOUNT (handshake
MDMA current edge count registers),
7-47, 7-116

HMDMAx_ECOVERFLOW (handshake
MDMA edge count overflow
interrupt registers), 7-118

HMDMAx_ECURGENT (handshake
MDMA edge count urgent registers),
7-117

HMVIP, 24-27
HOST acknowledge mode timeout

(HOST_TIMEOUT) register, 8-29
HOST_CONFIG (HOST configuration)

word, 8-6
HOST configuration word

(HOST_CONFIG), 8-6
HOST_CONTROL (HOST control)

register, 8-25
HOST control (HOST_CONTROL)

register, 8-25
host enable (HOST_EN) bit, 8-25
HOST_END (host endianess) bit, 8-25
host endianess (HOST_END) bit, 8-25
HOST_EN (host enable) bit, 8-25
HOST_FLUSH (FIFO flush) bit, 8-25
host handshake (HSHK) bit, 8-27
host interrupt request (HIRQ) bit, 8-27
host negotiation request (HOST_REQ)

bit, 26-134, 26-136
host ready override (HRDY_OVR) bit,

8-25
HOST_REQ (host negotiation request)

bit, 26-134, 26-136
HOST_STATUS (HOST status) register,

8-27
HOST status (HOST_STATUS) register,

8-27

host terminate current transfer interrupt
mask
(HOST_TERM_XFER_MASK) bit,
21-55

host terminate current transfer interrupt
status (HOST_TERM_XFER_INT)
bit, 21-57

host termination (ATAPI_HOST_TERM)
bit, 21-60

HOST_TERM_XFER_INT (host
terminate current transfer interrupt
status) bit, 21-57

HOST_TERM_XFER_MASK (host
terminate current transfer interrupt
mask) bit, 21-55

host timeout count
(COUNT_TIMEOUT) bits, 8-29

HOST_TIMEOUT (HOST acknowledge
mode timeout) register, 8-29

host timeout (TIMEOUT) bit, 8-27
hours[3:0] field, 14-21, 14-23
hours[4] bit, 14-21, 14-23
hours event flag bit, 14-22
hours interrupt enable bit, 14-21
HRDY_OVR (host ready override) bit,

8-25
HS_ENABLE (high speed mode enable)

bit, 26-99
HS_EOF1 (high-speed EOF 1) bits,

26-139
HSHK (host handshake) bit, 8-27
HS_MODE (high speed mode flag) bit,

26-99

I
I2C bus standard, 1-15, 23-2
I2S, 1-19

format, 24-13
serial devices, 24-2, 24-7

ADSP-BF54x Blackfin Processor Hardware Reference H-37

Index

ICIE (illegal gray/binary code interrupt
enable) bit, 13-28

ICII (illegal gray/binary code interrupt
identifier) bit, 13-28

ICLKGEN (internal clock generation) bit,
15-81

ICPLB Address registers
(ICPLB_ADDRx), 3-64

ICPLB_ADDRx (ICPLB Address
registers), 3-64

ICPLB Data registers (ICPLB_DATAx),
3-59

ICPLB_DATAx (ICPLB Data registers),
3-59

ICPLB Fault Address register
(ICPLB_FAULT_ADDR), 3-67

ICPLB_FAULT_ADDR (ICPLB Fault
Address register), 3-67

ICPLB_STATUS (ICPLB Status register),
3-66

ICPLB Status register (ICPLB_STATUS),
3-66

IDE bit, 31-54
IDE interface, 21-1
idle state

waking from, 6-13
IEEE 1149.1 standard, See JTAG standard
IFSGEN (internal frame sync generation)

bit, 15-81
image data format (IMG_FORM) bit,

28-37
image FIFO status (IMG_STAT) bits,

28-37
IMC, 3-9
IMEM_CONTROL (Instruction Memory

Control Register), 3-9
IMEM_CONTROL (Instruction Memory

Control register), 3-9, 3-52
IMEM_CONTROL (instruction memory

control register), 3-9

IMG_FORM (image data format) bit,
28-37

IMG_STAT (image FIFO status) bits,
28-37

INCOMPTX_RH (large packet split) bit,
26-123

INCOMPTX_R (large packet split) bit,
26-123

INCOMPTX_T (large packet split) bit,
26-117

increase PLL charge pump current
(TM_SELC) bit, 26-142

index (definition), 3-80
INIT bit, 17-40
initcall address/symbol command, 17-41
initcode routines, 17-39
initializing

CAN, 31-10
DMA, 7-25

init initcode.dxe command, 17-41
inner loop address increment registers

(DMAx_X_MODIFY), 7-97
(MDMA_yy_X_MODIFY), 7-97

inner loop count registers
(DMAx_X_COUNT), 7-92
(MDMA_yy_X_COUNT), 7-92

INPDIS (CUD and CDZ input disable)
bit, 13-27

input clock, See CLKIN
input delay bit, 18-26
Inserting Wait States using ARDY (figure),

5-77
instruction bit scan ordering, B-5
instruction cache

coherency, 3-20
Instruction CPLB Enable, 3-9
instruction fetches, 3-52
Instruction Memory Control Register

(IMEM_CONTROL), 3-9

Index

H-38 ADSP-BF54x Blackfin Processor Hardware Reference

Instruction Memory Control register
(IMEM_CONTROL), 3-9, 3-52

instruction register, B-2, B-4
instructions, 1-34

interlocked pipeline, 3-71
load •store, 3-71
See also instructions by name
stored in memory, 3-70
synchronizing, 3-73

Instruction Test Command register
(ITEST_COMMAND), 3-24

Instruction Test Data registers
(ITEST_DATAx), 3-25

Instruction Test registers, 3-23 to 3-26
Integrated Drive Electronics interface, 21-1
INT_ENA (interrupt enable) bit, 26-145
Interface

D Port, 2-9
On-Chip L2 Memory, 2-11

interfaces
internal memory, 5-7
RTC, 14-3

interleaving
of data in SPORT FIFO, 24-62
SPORT data, 24-8

internal bank, G-12
internal boot ROM, 17-1
internal clock generation (ICLKGEN) bit,

15-81
internal clocks, 2-5
internal/external frame syncs, See frame

sync
internal frame sync generation (IFSGEN)

bit, 15-81
internal interfaces, 2-1
internal memory, 1-6, 3-5

interfaces, 5-7
internal supply regulator, shutting off,

18-20

interrupt
enabling and disabling, 3-79
priority watermark, 3-40

interrupt channels, UART, 25-41
interrupt conditions, UART, 25-44
interrupt enable (INT_ENA) bit, 26-145
interrupt handler and DMA

synchronization, 7-68
interrupt mask (CNT_IMASK) register,

13-25, 13-28, A-91, A-92
interrupt mode (INT_MODE) bit, 8-25
interrupt mode (INT_MODE) bit, 8-25
interrupt output, SPI, 22-25
Interrupt Priority register (IPRIO), 3-40
interrupt request enable bit, 10-43
interrupt request lines, peripheral, 6-2
interrupts, 6-1 to 6-43

CAN, 31-24
clearing requests, 6-41
configuring and servicing, 19-2
control of system, 6-6
core timer, 11-3
default mapping, 6-7
definition, 6-6
determining source, 6-12
DMA channels, 6-13
DMA_ERROR, 7-37
DMA error, 7-88
DMA overflow, 7-50
DMA queue completion, 7-70
enabling, 6-11
general-purpose, 6-6, 6-7
general-purpose timers, 10-6, 10-7,

10-16, 10-30
generated by peripheral, 6-22
handshake MDMA, 7-49
initialization, 6-22
inputs and outputs, 6-10
mapping, 6-11
mask function, 6-14

ADSP-BF54x Blackfin Processor Hardware Reference H-39

Index

interrupts (continued)
multiple sources, 6-24
peripheral, 6-6, 6-10, 6-10 to 6-22
peripheral IDs, 6-15
peripheral interrupt events, 6-15
prioritization, 6-11
processing, 6-22
programming examples, 6-40 to 6-43
reset, 17-10
routing overview, 6-3, 6-4, 6-5
RTC, 14-16
shared, 6-11
software, 6-10
SPI, 22-26, 22-52
SPORT error, 24-41
SPORT RX, 24-41, 24-65
SPORT TX, 24-41, 24-62
to wake core from idle, 6-13
UART, 25-15
use in managing a descriptor queue, 7-67

interrupt service routine, determining
source of interrupt, 6-12

interrupt status registers
(DMAx_IRQ_STATUS), 7-84, 7-85
(MDMA_yy_IRQ_STATUS), 7-84,

7-85
INT_MODE (interrupt mode) bit, 8-25
invalid cache line (definition), 3-80
I/O interface to peripheral serial device,

24-4
I/O memory space, 1-9
IORDY_EN (IORDY enable) bit, 21-49
IPRIO (Interrupt Priority register), 3-40
IRCLK bit, 24-57, 24-59
IrDA

receiver, 25-14
transmitter, 25-13

IrDA mode, 25-50
IREN bit, 25-50

IRFS bit, 24-34, 24-57, 24-60
IRPOL bit, 25-14
IRQ_ENA bit, 10-43, 10-51, 10-53
isochronous transfer enable (ISO_R) bit,

26-123
isochronous transfer enable (ISO_T) bit,

26-117
isochronous update enable

(ISO_UPDATE) bit, 26-99
ISO_R (isochronous transfer enable) bit,

26-123
ISO_T (isochronous transfer enable) bit,

26-117
ISO_UPDATE (isochronous update

enable) bit, 26-99
ISR and multiple interrupt sources, 6-24
ITCLK bit, 24-51, 24-53
ITEST_COMMAND (Instruction Test

Command register), 3-24
ITEST_DATAx (Instruction Test Data

registers), 3-25
ITEST register

ITEST_COMMAND, 3-23
ITEST_DATA0, 3-23
ITEST_DATA1, 3-23

ITEST registers, 3-23
ITFS bit, 24-21, 24-34, 24-51, 24-54
ITHR[15:0] field, 7-118
ITU interlaced/progressive (ITU_TYPE)

bit, 15-81
ITU output with internal blanking

(BLANKGEN) bit, 15-81
ITU_TYPE (ITU interlaced/progressive)

bit, 15-81

J
JTAG, B-1, B-3, B-4

Index

H-40 ADSP-BF54x Blackfin Processor Hardware Reference

K
keypad

enable/disable, 30-4
input matrix programmability, 30-4
interface, 30-3
interface overview, 30-1
KPAD_CTL register, 30-4
KPAD_PRESCALE register, 30-9
operation, 30-2
programming examples, 30-20
programming model, 30-9
registers

interrupt generation when X-Key
pressed, 30-17

KPAD_CTL, 30-10, A-36
KPAD_MSEL, 30-10, A-36
KPAD_PRESCALE, 30-10, A-36
KPAD_ROWCOL, 30-10, A-36
KPAD_SOFTEVAL, 30-10, A-36
KPAD_STAT, 30-10, A-36

state diagram, 30-8
keypad control (KPAD_CTL) register,

30-10, A-36
keypad enable (KPAD_EN) bit, 30-10
keypad interrupt status (KPAD_IRQ) bit,

30-18
keypad multiplier select (KPAD_MSEL)

register, 30-10, 30-15, A-36
keypad row-column (KPAD_ROWCOL)

register, 30-10, 30-15, A-36
keypad software evaluate

(KPAD_SOFTEVAL) register, 30-20
key prescale (KPAD_PRESCALE) register,

30-10, 30-13, A-36
key prescale value

(KPAD_PRESCALE_VAL) bits,
30-13

key press current status
(KPAD_PRESSED) bit, 30-18

key software evaluate
(KPAD_SOFTEVAL) register, 30-10,
A-36

KPAD_COL (columns value pressed) bits,
30-15

KPAD_COLEN (column enable width)
bits, 30-10

KPAD_CTL (keypad control) register,
30-10, A-36

KPAD_EN (keypad enable) bit, 30-10
KPAD_IRQ (keypad interrupt status) bit,

30-18
KPAD_IRQMODE (multikey press

interrupt enable) bits, 30-10
KPAD_MROWCOL (multiple

row/column keypress) bits, 30-18
KPAD_MSEL (keypad multiplier select)

register, 30-10, 30-15, A-36
KPAD_PRESCALE (key prescale) register,

30-10, 30-13, A-36
KPAD_PRESCALE_VAL (key prescale

value) bits, 30-13
KPAD_PRESSED (key press current

status) bit, 30-18
KPAD_ROWCOL (keypad row-column)

register, 30-10, 30-15, A-36
KPAD_ROWEN (row enable width) bits,

30-10
KPAD_ROW (rows value pressed) bits,

30-15
KPAD_SOFTEVAL_E (software

programmable force evaluate) bit,
30-20

KPAD_SOFTEVAL (keypad software
evaluate) register, 30-20

KPAD_SOFTEVAL (key software
evaluate) register, 30-10, A-36

KPAD_STAT (keypad status) register,
30-10, 30-18, A-36

ADSP-BF54x Blackfin Processor Hardware Reference H-41

Index

L
L1 data memory, 1-6
L1 Data Memory Architecture, 3-32
L1 Data SRAM, 3-30
L1 instruction memory, 1-6

subbanks, 3-11
L1 Instruction Memory Bank Architecture,

3-14
L1 instruction memory Configuration, 3-9
L1 memory. See Level 1 (L1) memory;

Level 1 (L1) Data Memory; Level 1
(L1) Instruction Memory

L1 or L2 memory, DMA access stalls, 2-13
L1 scratchpad RAM, 1-6
L2 bus, 2-5
L2DMAPRIO, 17-106
L2 memory

access bus arbitration, 2-13
access latency and throughput, 2-13
arbitration, 2-11
interface, 2-11
interface control logic clock rate, 2-11

L2 port
access priority, 2-12
access request, arbitration priority, 2-12

LARFS bit, 24-38, 24-57, 24-60
large descriptor mode, DMA, 7-22
large model mode, DMA, 7-83
large packet split (INCOMPTX_R) bit,

26-123
large packet split (INCOMPTX_RH) bit,

26-123
large packet split (INCOMPTX_T) bit,

26-117
late frame sync, 24-19, 24-38
Latency

DMA data transfer, 2-13
L2 memory access, 2-13

latency
DMA, 7-32

LATFS bit, 24-38, 24-51, 24-55
least recently used algorithm (LRU),

definition, 3-80
Level 1 (L1) Data Memory, 3-27

configuration, 3-7
sub-banks, 3-30

Level 1 (L1) Instruction Memory, 3-8
architecture, 3-13
configuration, 3-13
DAG reference exception, 3-11
dual-port capability, 3-11
instruction cache, 3-13
sub-bank organization, 3-8

Level 1 (L1) memory
See also Level 1 (L1) Data Memory; Level

1 (L1) Instruction Memory
address alignment, 3-11
architecture, 3-5
definition, 3-80
L1 Data SRAM, 3-7
L1 Instruction SRAM, 3-6
scratchpad data SRAM, 3-7

Level 2 (L2) memory, 3-47
latency, 3-48, 3-49
latency with cache off, 3-49
latency with cache on, 3-48
off-chip, 3-50

lines per frame) bits, 28-38
lines per frame (LPF) bit, 28-38
line terminations, SPORT, 24-10
Line Track Overflow Error

(LTERR_OVR) bit, 21-49, 21-55,
21-56

line track overflow (LTERR_OVR) bit,
15-80

Line Track Underflow Error
(LTERR_UNDR) bit, 21-49, 21-55,
21-56

line track underflow (LTERR_UNDR) bit,
15-80

Index

H-42 ADSP-BF54x Blackfin Processor Hardware Reference

little endian byte order, 23-49
little endian (definition), 3-80
load, speculative execution, 3-74
loader file, 17-23
load error indicator (DATAERROR_R)

bit, 26-123
loader utility, 17-23
load operation, 3-70
load ordering, 3-72
LOCKCNT[15:0] field, 18-27
Lock Mechanism 0, 29-18
Lock Mechanism 1, 29-18
Lock Mechanism Select (LMECH) bit,

29-18
Logical Channel for Physical Channel x

(LCHANPCx) field, 29-58
long response enable (CMD_L_RSP) bit,

27-58
LOOPBACK (loopback mode enable) bit,

25-32
loopback mode, UART, 25-32
LOSTARB bit, 23-36, 23-38
Lower PBS02 Half Page (PBS02L, Bits 63–

0), 17-118
LOW_EVEN (lower limit for even bytes

(luma) bits, 15-98
LOW_ODD (lower limit for odd bytes

(chroma) bits, 15-98
low-speed device indicator (LSDEV) bit,

26-134, 26-136
low-speed EOF 1 (LS_EOF1) bits, 26-140
LRFS bit, 24-34, 24-35, 24-57, 24-60
LRU Priority Reset, 3-9
LRUPRIORST, 3-9
LSBF bit, 22-45
LSB first (LSBF) bit, 22-45
LSBF (LSB first) bit, 22-45
LSDEV (low-speed device indicator) bit,

26-134, 26-136
LS_EOF1 (low-speed EOF 1) bits, 26-140

LT_ERR_OVR bit, 30-11, 30-18, 30-20
LTERR_OVR (line track overflow) bit,

15-80
LTERR_OVR (Line Track Overflow

Error) bit, 21-49, 21-55, 21-56
LTERR_UNDR (line track underflow) bit,

15-80
LTERR_UNDR (Line Track Underflow

Error) bit, 21-49, 21-55, 21-56
LTFS bit, 24-21, 24-34, 24-35, 24-51,

24-55
luma FIFO error (YFIFO_ERR) bit, 15-80
Luma FIFO Overflow Error

(YFIFO_ERR) bit, 21-49, 21-55,
21-56

M
MAA bit, 31-47
MAC

pins, 30-6
MADDR[6:0] field, 23-35
mailboxes, CAN, 31-5
mailbox interrupts, CAN, 31-24
mapping

default interrupt, 6-15
peripheral to DMA, 6-14, 6-15

MASK_BUSYIRQ (mask not busy IRQ)
bit, 20-22

mask not busy IRQ (MASK_BUSYIRQ)
bit, 20-22

MASK_RDRDY (mask read data ready)
bit, 20-22

mask read data ready (MASK_RDRDY)
bit, 20-22

MASK_WBEDGE (mask write buffer edge
detect) bit, 20-22

MASK_WBOVF (mask write buffer
overflow) bit, 20-22

MASK_WRDONE (mask write done) bit,
20-22

ADSP-BF54x Blackfin Processor Hardware Reference H-43

Index

mask write buffer edge detect
(MASK_WBEDGE) bit, 20-22

mask write buffer overflow
(MASK_WBOVF) bit, 20-22

mask write done (MASK_WRDONE) bit,
20-22

Master mode initialization, 29-112
master (MSTR) bit, 22-45
MAXCIE (max Count Interrupt Enable,

13-28
MAXCIE (max count interrupt enable) bit,

13-28
MAXCII (max count interrupt identifier)

bit, 13-28
max count interrupt enable (MAXCIE) bit,

13-28
max count interrupt identifier (MAXCII)

bit, 13-28
maximal count (CNT_MAX) register,

13-25, 13-32
Maximum Delay Register Updated

interrupt enable, 29-45
Maximum Delay Register Updated

(MDRU) interrupt event, 29-32
maximum individual packet size

(MaxPktSize), 26-31, 26-32, 26-33,
26-34, 26-35, 26-36

Maximum Position Register Updated
interrupt enable, 29-44

Maximum Position Register Updated
(MPRU) interrupt event, 29-32

MAX_PACKET_SIZE_R (USB max Rx
data in frame) bits, 26-122

MAX_PACKET_SIZE_T (USB max Tx
data in frame) bits, 26-112

MaxPktSize (maximum individual packet
size), 26-31, 26-32, 26-33, 26-34,
26-35, 26-36

MBCLK, 29-3
MBDI bit, 7-50, 7-113

MBIMn bit, 31-79, 31-80
MBPTR[4:0] field, 31-46
MBRIFn bit, 31-81, 31-82
MBRIRQ bit, 31-48
MBTIFn bit, 31-80, 31-81
MBTIRQ bit, 31-48
MCCRM[1:0] field, 24-71
MCDRXPE bit, 24-71
MCDTXPE bit, 24-71
MCMEN bit, 24-19, 24-71
MCOMP bit, 23-44, 23-46
MCOMPM bit, 23-43
MCx bit, 31-69
MDIR bit, 23-32, 23-34
MDMA controllers, 7-13
MDMA_ROUND_ROBIN_COUNT[4:

0] field, 7-58, 7-120
MDMA_ROUND_ROBIN_PERIOD

field, 7-57, 7-58, 7-120
MDMA_TFRCNT (MDMA transfer

count) bits, 21-61
MDMA_XFER_ON (multi-word DMA

transfer in progress) bit, 21-51, 21-52,
21-53, 21-54, 21-58, 21-59, 21-60,
21-61, 21-62, 21-63, 21-64, 21-65,
21-66, 21-67, 21-68

MDMA_yy_CONFIG (DMA
configuration registers), 7-79

MDMA_yy_CURR_ADDR (current
address registers), 7-90

MDMA_yy_CURR_DESC_PTR (current
descriptor pointer registers), 7-108

MDMA_yy_CURR_X_COUNT (current
inner loop count registers), 7-94, 7-95

MDMA_yy_CURR_Y_COUNT (current
outer loop count registers), 7-101

MDMA_yy_IRQ_STATUS (interrupt
status registers), 7-84, 7-85

MDMA_yy_NEXT_DESC_PTR (next
descriptor pointer registers), 7-106

Index

H-44 ADSP-BF54x Blackfin Processor Hardware Reference

MDMA_yy_PERIPHERAL_MAP
(peripheral map registers), 7-77

MDMA_yy_START_ADDR (start
address registers), 7-88

MDMA_yy_X_COUNT (inner loop
count registers), 7-92

MDMA_yy_X_MODIFY (inner loop
address increment registers), 7-97

MDMA_yy_Y_COUNT (outer loop
count registers), 7-99

MDMA_yy_Y_MODIFY (outer loop
address increment registers), 7-103

MDn bit, 31-70
MDRUEN, 29-45
Meaning of CM Allocate Status, 29-151
Meaning of Transmission Status, 29-141
measurement report, general-purpose

timers, 10-27, 10-28, 10-29
Media Oriented System Transport, 29-1
Media Transceiver module, 29-1
Memory

access, latency and throughput, 2-13
external, 2-2
interface, 2-11

memory
See also cache; Level 1 (L1) memory;

Level 1 (L1) Data Memory; Level 1
(L1) Instruction Memory; Level 2
(L2) memory

architecture, 1-5
asynchronous interface, 19-8
asynchronous region, 5-2
configurations, 1-5
external, 3-50
how instructions are stored, 3-70
internal, 1-6
internal bank, G-12
I/O space, 1-9
L1 data, 1-6, 3-27
L1 Data SRAM, 3-30

memory (continued)
L1 instruction, 1-6
L1 scratchpad, 1-6
Level 2 (L2), 3-47
management, 3-51
moving data between SPORT and,

24-40
on-chip, 1-6
Page Descriptor Table, 3-54
protection and properties, 3-51
structure, 1-5
terminology, 3-79
transaction model, 3-69

Memory Architecture, 3-2
memory architecture, 3-2
memory conflict, DMA, 7-59
memory DMA, 7-13

bandwidth, 7-53
buffers, 7-14
channels, 7-13
descriptor structures, 7-72
handshake operation, 7-16
timing, 7-54
transfer operation, starting, 7-14
transfer performance, 2-23
transfers, 7-3, 7-9
word size, 7-14

Memory Management Unit (MMU), 3-51
Memory Map, 3-4
memory map, external (figure), 5-3
memory-mapped registers, See MMRs
memory-mapped registers (MMRs), 3-78,

3-79
memory page, 3-53

attributes, 3-53
MEN bit, 23-32, 23-34
MERR bit, 23-44, 23-46
MERRM bit, 23-43
MFD[3:0] field, 24-23, 24-71
MFLOW field, 29-69

ADSP-BF54x Blackfin Processor Hardware Reference H-45

Index

MFS, 29-3
MH2LEN, 29-45
MII

pins, 30-6
MINCIE (min count interrupt enable) bit,

13-28
MINCII (min count interrupt identifier)

bit, 13-28
min count interrupt enable (MINCIE) bit,

13-28
min count interrupt identifier (MINCII)

bit, 13-28
minimal count (CNT_MIN) register,

13-25, 13-32
minutes[5:0] field, 14-21, 14-23
minutes event flag bit, 14-22
minutes interrupt enable bit, 14-21
MISO pin, 22-5, 22-6, 22-17, 22-19,

22-20, 22-22, 22-30
ML2HEN, 29-45
-law companding, 24-26, 24-31
MLF, 29-3
MLF analog pin, 29-2
MMCLK, 29-3
MMR

offset, 29-4
MMR Port, 2-4
MMRs, 1-9

address range, A-3
width, A-3

MODE (DMA mode 0/1 selection) bit,
26-145

mode fault error, 22-24, 22-26
mode fault error (MODF) bit, 22-48
modes

broadcast, 22-12, 22-19, 22-20
multichannel, 24-17
serial port, 24-12
SPI master, 22-20, 22-26
SPI slave, 22-20, 22-29

modes (continued)
UART DMA, 25-24
UART non-DMA, 25-22

MODF bit, 22-24, 22-48
MODF (mode fault error) bit, 22-48
modified (definition), 3-80
MOSI pin, 22-5, 22-6, 22-17, 22-19,

22-20, 22-22, 22-30
MOST®, 29-1
MOST® NetInterface, 29-1
moving data, serial port, 24-40
MPIVDD, 29-4
M (PLL multiplier select) bits, 26-142
MPROG bit, 23-36, 23-39
MPRUEN, 29-44
MRB bit, 31-47
MRTS (manual request to send) bit, 25-32
MRX, 29-2, 29-3
MRX input pin, 29-20
MRXONB High to Low interrupt enable,

29-45
MRXONB High to Low (MH2L)

interrupt event, 29-34
MRXONB Low to High interrupt enable,

29-45
MRXONB Low to High (ML2H)

interrupt event, 29-34
MSEL[5:0] field, 18-3, 18-4, 18-26
MSTR bit, 22-21, 22-45
MSTR (master) bit, 22-45
MTX, 29-3
MTXON, 29-3
multichannel frame, 24-22
multichannel frame delay field, 24-23
multichannel mode, 24-17

enable/disable, 24-19
frame syncs, 24-20
SPORT, 24-20

multichannel operation, SPORT, 24-17 to
24-27

Index

H-46 ADSP-BF54x Blackfin Processor Hardware Reference

multi-DMA transfer done interrupt mask
(MULTI_DONE_MASK) bit, 21-55

multi-DMA transfer done interrupt status
(MULTI_DONE_INT) bit, 21-57

MULTI_DONE_INT (multi-DMA
transfer done interrupt status) bit,
21-57

MULTI_DONE_MASK (multi-DMA
transfer done interrupt mask) bit,
21-55

multikey press interrupt enable
(KPAD_IRQMODE) bits, 30-10

multiple interrupt sources, 6-24
multiple row/column keypress

(KPAD_MROWCOL) bits, 30-18
multiple slave SPI systems, 22-12
multiplexed with GPIO, 29-2
multiply row by 4 (BV_MULT4) bit,

28-44
multiply row by 4 (GU_MULT4) bit,

28-43
multiply row by 4 (RY_MULT4) bit,

28-42
MULTI_START (start multi-DMA Op)

bit, 21-49
MULTI_TERM_INT (device terminate

multi-DMA transfer interrupt status)
bit, 21-57

MULTI_TERM_MASK (device terminate
multi-DMA transfer interrupt mask)
bit, 21-55

multi-word DMA transfer in progress
(MDMA_XFER_ON) bit, 21-51,
21-52, 21-53, 21-54, 21-58, 21-59,
21-60, 21-61, 21-62, 21-63, 21-64,
21-65, 21-66, 21-67, 21-68

multi-word DMA transfer in progress
(MULTI_XFER_ON) bit, 21-51

MULTI_XFER_ON (multi-word DMA
transfer in progress) bit, 21-51

MUXy (port x bit y) bits, 9-47
MVIP-90, 24-27
MWE (SDIO interrupt moving window

enable) bit, 27-72
MXEGND, 29-4
MXI, 29-3
MXO, 29-3
MXVR, 29-1
MXVR_AADDR, 29-55
MXVR_AADDR (MXVR alternate

address) register, 29-55
MXVR allocation table

(MXVR_ALLOC_x) registers, 29-56
MXVR Allocation Table Registers, 29-55
MXVR_ALLOC_x, 29-55
MXVR_ALLOC_x (MXVR allocation

table) registers, 29-56
MXVR alternate address

(MXVR_AADDR) register, 29-55
MXVR Alternate Address Register, 29-55
MXVR_AP_CTL, 29-75
MXVR_AP_CTL (MXVR asynchronous

packet control) register, 29-75
MXVR_AP_CTL register, 29-75
MXVR_APRB_CURR_ADDR (MXVR

asynchronous packet receive buffer
current address) register, 29-78

MXVR_APRB_CURR_ADDR register,
29-78

MXVR_APRB_START_ADDR (MXVR
asynchronous packet receive buffer
start address) register, 29-78

MXVR_APRB_START_ADDR register,
29-77

MXVR_APTB_CURR_ADDR (MXVR
asynchronous packet transmit buffer
current address) register, 29-80

MXVR_APTB_CURR_ADDR register,
29-79

ADSP-BF54x Blackfin Processor Hardware Reference H-47

Index

MXVR_APTB_START_ADDR (MXVR
asynchronous packet transmit buffer
start address) register, 29-79

MXVR_APTB_START_ADDR registers,
29-79

MXVR asynchronous packet control
(MXVR_AP_CTL) register, 29-75

MXVR Asynchronous Packet Control
Register, 29-75

MXVR asynchronous packet receive buffer
current address
(MXVR_APRB_CURR_ADDR)
register, 29-78

MXVR Asynchronous Packet Receive
Buffer Current Address Register,
29-78

MXVR asynchronous packet receive buffer
start address
(MXVR_APRB_START_ADDR)
register, 29-78

MXVR Asynchronous Packet Receive
Buffer Start Address Register, 29-77

MXVR asynchronous packet transmit
buffer current address
(MXVR_APTB_CURR_ADDR)
register, 29-80

MXVR Asynchronous Packet Transmit
Buffer Current Address Register,
29-79

MXVR asynchronous packet transmit
buffer start address
(MXVR_APTB_START_ADDR)
register, 29-79

MXVR Asynchronous Packet Transmit
Buffer Start Address Register, 29-79

MXVR Bit Clock, 29-3
MXVR_BLOCK_CNT, 29-94
MXVR_BLOCK_CNT (MXVR block

counter) register, 29-94

MXVR block counter
(MXVR_BLOCK_CNT) register,
29-94

MXVR Block Counter Register, 29-94
MXVR_CM_CTL (MXVR control

message control) register, 29-81
MXVR_CM_CTL register, 29-80
MXVR_CMRB_CURR_ADDR, 29-83
MXVR_CMRB_CURR_ADDR (MXVR

control message receive buffer current
address) register, 29-84

MXVR_CMRB_START_ADDR, 29-82
MXVR_CMRB_START_ADDR (MXVR

control message receive buffer start
address) register, 29-83

MXVR_CMTB_CURR_ADDR, 29-85
MXVR_CMTB_CURR_ADDR (MXVR

control message transmit buffer
current address) register, 29-85

MXVR_CMTB_START_ADDR, 29-84
MXVR_CMTB_START_ADDR (MXVR

control message transmit buffer start
address) register, 29-85

MXVR_CONFIG, 29-13
MXVR_CONFIG (MXVR configuration)

register, 29-13
MXVR configuration (MXVR_CONFIG)

register, 29-13
MXVR Configuration Register, 29-13
MXVR control message control

(MXVR_CM_CTL) register, 29-81
MXVR Control Message Control Register,

29-80
MXVR control message receive buffer

current address
(MXVR_CMRB_CURR_ADDR)
register, 29-84

MXVR Control Message Receive Buffer
Current Address Register, 29-83

Index

H-48 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR control message receive buffer start
address
(MXVR_CMRB_START_ADDR)
register, 29-83

MXVR Control Message Receive Buffer
Start Address Register, 29-82

MXVR Control Message Transmit Buffer
(CMTB), 29-138

MXVR control message transmit buffer
current address
(MXVR_CMTB_CURR_ADDR)
register, 29-85

MXVR Control Message Transmit Buffer
Current Address Register, 29-85

MXVR control message transmit buffer
start address
(MXVR_CMTB_START_ADDR)
register, 29-85

MXVR Control Message Transmit Buffer
Start Address Register, 29-84

MXVR Crystal Input, 29-3
MXVR Crystal Output, 29-3
MXVR_DELAY, 29-50
MXVR_DELAY (MXVR node frame

delay) register, 29-50
MXVR DMA Channel x Current Address

Registers, 29-71
MXVR DMA Channel x Current Transfer

Count Registers, 29-74
MXVR DMA Channel x Start Address

Registers, 29-69
MXVR DMA Channel x Transfer Count

Registers, 29-72
MXVR_DMAx_CONFIG (MXVR

DMAx data configuration) registers,
29-68

MXVR DMAx Configuration Registers,
29-59

MXVR_DMAx_COUNT, 29-72
MXVR_DMAx_CURR_ADDR, 29-71

MXVR_DMAx_CURR_ADDR (MXVR
sync data DMAx current address)
registers, 29-72

MXVR_DMAx_CURR_COUNT, 29-74
MXVR_DMAx_CURR_COUNT

(MXVR sync data DMAx current
loop count) registers, 29-74

MXVR_DMAx_START_ADDR, 29-69,
29-71

MXVR_DMAx_START_ADDR (MXVR
sync data DMAx start address)
registers, 29-69, 29-71

MXVR Enable (MXVREN) bit, 29-13
MXVR_FRAME_CNT_x (MXVR frame

counter) registers, 29-90
MXVR_FRAME_CNT_x register, 29-90
MXVR frame counter

(MXVR_FRAME_CNT_x) registers,
29-90

MXVR Frame Counter Registers, 29-90
MXVR Frame Sync, 29-3
MXVR_GADDR, 29-54
MXVR_GADDR (MXVR group address)

register, 29-54
MXVR group address (MXVR_GADDR)

register, 29-54
MXVR Group Address Register, 29-54
MXVR_INT_EN_0, 29-43
MXVR_INT_EN_0 (MXVR interrupt

enable) register 0, 29-44
MXVR_INT_EN_1, 29-46
MXVR_INT_EN_1 (MXVR interrupt

enable) register 1, 29-47
MXVR interrupt enable

(MXVR_INT_EN_0) register 0,
29-44

MXVR interrupt enable
(MXVR_INT_EN_1) register 1,
29-47

MXVR Interrupt Enable Register 0, 29-43

ADSP-BF54x Blackfin Processor Hardware Reference H-49

Index

MXVR Interrupt Enable Register 1, 29-46
MXVR interrupt status

(MXVR_INT_STAT_0) register 0,
29-30

MXVR interrupt status
(MXVR_INT_STAT_1) register 1,
29-40

MXVR Interrupt Status Register 0, 29-29
MXVR Interrupt Status Register_1, 29-40
MXVR_INT_STAT_0, 29-29
MXVR_INT_STAT_0 (MXVR interrupt

status) register 0, 29-30
MXVR_INT_STAT_1, 29-40
MXVR_INT_STAT_1 (MXVR interrupt

status) register 1, 29-40
MXVR_LADDR, 29-53
MXVR_LADDR (MXVR logical address)

register, 29-53
MXVR logical address (MXVR_LADDR)

register, 29-53
MXVR Logical Address Register, 29-53
MXVR Master Clock, 29-3
MXVR Master Mode/Slave Mode Select

(MMSM) bit, 29-14
MXVR_MAX_DELAY, 29-52
MXVR_MAX_DELAY (MXVR

maximum node frame delay) register,
29-52

MXVR maximum node frame delay
(MXVR_MAX_DELAY) register,
29-52

MXVR Maximum Node Frame Delay
Register, 29-52

MXVR maximum node position
(MXVR_MAX_POSITION) register,
29-49

MXVR Maximum Node Position Register,
29-49

MXVR_MAX_POSITION, 29-49

MXVR_MAX_POSITION (MXVR
maximum node position) register,
29-49

MXVR Memory Map, 29-4, A-24
MXVR MMR address offsets, 29-4
MXVR node frame delay

(MXVR_DELAY) register, 29-50
MXVR Node Frame Delay Register, 29-50
MXVR node position

(MXVR_POSITION) register, 29-48
MXVR Node Position Register, 29-48
MXVR Parity select (PARITY) bit, 29-17
MXVR_PAT_DATA_x (MXVR pattern

data) registers, 29-88
MXVR_PAT_EN_x (MXVR pattern

enable) registers, 29-89
MXVR_PAT_EN_x registers, 29-88
MXVR pattern data

(MXVR_PAT_DATA_x) registers,
29-88

MXVR Pattern Data Registers, 29-87
MXVR pattern enable

(MXVR_PAT_EN_x) registers,
29-89

MXVR Pattern Enable Register, 29-88
MXVR Pattern Matching, 29-87
MXVR PHY Receiver Receiving Light,

29-3
MXVR_PLL_CTL_0 register,

Initialization, 29-112
MXVR_POSITION, 29-48
MXVR_POSITION (MXVR node

position) register, 29-48
MXVR Power Supply Pins, 29-3
MXVR Power-Up PHY Transmitter, 29-3
MXVR Power-Up PHY Transmitter

(MTXON) bit, 29-16
MXVR Receive Data, 29-3
MXVR Register

Phase Lock Loop Control, A-35

Index

H-50 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR registers
list of, 29-4

MXVR remote read buffer current address
(MXVR_RRDB_CURR_ADDR)
register, 29-87

MXVR Remote Read Buffer Current
Address Register, 29-86

MXVR remote read buffer start address
(MXVR_RRDB_START_ADDR)
register, 29-86

MXVR Remote Read Buffer Start Address
Register, 29-86

MXVR_ROUTING_0 (MXVR routing 0)
register, 29-91

MXVR routing 0 (MXVR_ROUTING_0)
register, 29-91

MXVR Routing Registers, 29-91
MXVR_ROUTING_x register,

Initialization, 29-113
MXVR_ROUTING_x registers, 29-91
MXVR_RRDB_CURR_ADDR, 29-86
MXVR_RRDB_CURR_ADDR (MXVR

remote read buffer current address)
register, 29-87

MXVR_RRDB_START_ADDR, 29-86
MXVR_RRDB_START_ADDR (MXVR

remote read buffer start address)
register, 29-86

MXVR Signal Pins, 29-3
MXVR signal pins, 29-2
MXVR_STATE_0, 29-19
MXVR State Registers, 29-19
MXVR_STATE_x state registers, 29-19
MXVR sync data DMAx current address

(MXVR_DMAx_CURR_ADDR)
registers, 29-72

MXVR sync data DMAx current loop
count
(MXVR_DMAx_CURR_COUNT)
registers, 29-74

MXVR sync data DMAx start address
(MXVR_DMAx_START_ADDR)
registers, 29-69, 29-71

MXVR synchronous logical channel
assignment
(MXVR_SYNC_LCHAN_x)
registers, 29-58

MXVR Synchronous Logical Channel
Assignment Registers, 29-57

MXVR_SYNC_LCHAN_x, 29-57
MXVR_SYNC_LCHAN_x (MXVR

synchronous logical channel
assignment) registers, 29-58

MXVR Transmit Data, 29-3
MXVR Transmit Data Pin Enable

(MTXEN) bit, 29-16

N
NA2IEN, 29-44
NAK bit, 23-28
NAK_TIMEOUT_H (EP halted after a

NAK) bit, 26-113, 26-117
NAND address (NFC_ADDR) register,

20-18, 20-26, A-90
NAND command (NFC_CMD) register,

20-18, 20-27, A-90
NAND control (NFC_CTL) register,

20-18, 20-19, A-90
NAND data read (NFC_DATA_RD)

register, 20-18, 20-28, A-90
NAND data width (NWIDTH) bit, 20-19
NAND data write (NFC_DATA_WR)

register, 20-18, 20-28, A-90
NAND ECC count (NFC_COUNT)

register, 20-18, 20-24, A-90
NAND ECC reset (NFC_RST) register,

20-18, 20-24, A-90

ADSP-BF54x Blackfin Processor Hardware Reference H-51

Index

NAND flash controller
additional operations, 20-10
NFC accesses, 20-6
NFC error detection, 20-11
NFC external interface, 20-4
NFC interface block diagram, 20-4
overview, 20-1
page read, 20-9
page write, 20-8

NAND interrupt mask (NFC_IRQMASK)
register, 20-18, 20-22, A-90

NAND interrupt status (NFC_IRQSTAT)
register, 20-18, 20-21, A-90

NAND page control (NFC_PGCTL)
register, 20-18, 20-25, A-90

NAND read data (NFC_READ) register,
20-18, 20-26, A-90

NAND status (NFC_STAT) register,
20-18, 20-20, A-90

NBUSYIRQ (not busy IRQ) bit, 20-21
NBUSY (not busy) bit, 20-20
NDPH bit, 7-28
NDPL bit, 7-28
NDSIZE[3:0] field, 7-23, 7-80, 7-83

legal values, 7-39
NetServices Layer 1, 29-1
Network Active (NACT) bit, 29-20
Network Active to Inactive interrupt

enable, 29-44
Network Active to Inactive (NA2I)

interrupt event, 29-31
Network Activity Detection, 29-109
Network Activity (NACT) bit, 29-31
Network Inactive to Active interrupt

enable, 29-44
Network Inactive to Active (NI2A)

interrupt event, 29-31
Network Initialization, 29-120
Network Lock, 29-117
network slave, 29-14

network timing master, 29-14
next descriptor pointer registers

(DMAx_NEXT_DESC_PTR), 7-106
(MDMA_yy_NEXT_DESC_PTR),

7-106
NFC

features, 20-2
NFC_ADDR (NAND address) register,

20-18, 20-26, A-90
NFC_CMD (NAND command) register,

20-18, 20-27, A-90
NFC_COUNT (NAND ECC count)

register, 20-18, 20-24, A-90
NFC_CTL (NAND control) register,

20-18, 20-19, A-90
NFC_DATA_RD (NAND data read)

register, 20-18, 20-28, A-90
NFC_DATA_WR (NAND data write)

register, 20-18, 20-28, A-90
NFC_ECC0 (NAND ECC) register 0,

20-18, 20-23, A-90
NFC_ECC1 (NAND ECC) register 1,

20-18, 20-23, A-90
NFC_ECC1 (NAND ECC) register 2,

20-23
NFC_ECC2 (NAND ECC) register 2,

20-18, A-90
NFC_ECC3 (NAND ECC) register 3,

20-18, 20-23, A-90
NFC_ECCx (NAND ECC) registers,

20-18, 20-23, A-90
NFC_IRQMASK (NAND interrupt mask)

register, 20-18, 20-22, A-90
NFC_IRQSTAT (NAND interrupt status)

register, 20-18, 20-21, A-90
NFC_PGCTL (NAND page control)

register, 20-18, 20-25, A-90
NFC_READ (NAND read data) register,

20-18, 20-26, A-90

Index

H-52 ADSP-BF54x Blackfin Processor Hardware Reference

NFC_RST (NAND ECC reset) register,
20-18, 20-24, A-90

NFC_STAT (NAND status) register,
20-18, 20-20, A-90

NI2AEN, 29-44
Node Initialization, 29-111
nominal bit rate, CAN, 31-12
nominal bit time, CAN, 31-11
NOPREBOOT, 16-58, 16-59
Normal Control Message Receive Enable

(NCMRXEN) bit, 29-16
Normal Control Message Transmission,

29-142
Normal Control Message Transmit Buffer

Entry Field Offsets, 29-143
normal frame sync mode, 24-38
normal timing, serial port, 24-38
not busy IRQ (NBUSYIRQ) bit, 20-21
no TxPktRdy for IN token

(OVERRUN_R) bit, 26-123
no TxPktRdy for IN token

(UNDERRUN_T) bit, 26-117
number of bytes to transfer

(DATA_LENGTH) bits, 27-61
NWIDTH (NAND data width) bit, 20-19

O
OE (overrun error) bit, 25-35
offsets, DMA descriptor elements, 7-23
OI bit, 7-113
OIE bit, 7-113
onboard regulation, bypassing, 18-18
on-chip memory, 1-6
on-chip switching regulator controller,

18-16
one/two DMA channel modes

(DMACFG) bit, 15-82
open drain drivers, 22-1
open drain outputs, 22-20
open page, G-1

operating modes, 18-7
active, 1-31, 18-9
deep sleep, 1-32, 18-10
full on, 1-31, 18-8
hibernate state, 1-33, 18-11
sleep, 1-32, 18-9
transition, 18-11, 18-12

operating mode (XFR_TYPE) bits, 15-81
OPSSn bit, 31-73
optical Phy, 29-1
optimization, of DMA performance, 7-50
ordering

loads and stores, 3-72
weak and strong, 3-72

oscilloscope probes, 19-18
OTP_ALTERNATE_HWAIT, 17-111
OTP_EBIU_AMBCTL, 17-115
OTP_EBIU_AMG, 17-114
OTP_EBIU_DEVCFG, 17-114
OTP_EBIU_DEVSEQ, 17-114
OTP_EBIU_FCTL, 17-115
OTP_EBIU_MODE, 17-114
OTP_INVALID, 17-111
OTP_LOAD_PBS00H, 17-111
OTP_LOAD_PBS01H, 17-111
OTP_LOAD_PBS01L, 17-111
OTP_LOAD_PBS02H, 17-111
OTP_LOAD_PBS02L, 17-111
OTP_LOAD_PBS03H, 17-111
OTP_LOAD_PBS03L, 17-111
OTP memory

BFROM_OTP_COMMAND, 4-14
bfrom_OtpCommand (), 4-8
BFROM_OTP_READ, 4-17
bfrom_OtpRead(), 4-8
BFROM_OTP_WRITE, 4-18
bfrom_OtpWrite(), 4-8
error correction, 4-6
map, 4-2
overview, 4-1

ADSP-BF54x Blackfin Processor Hardware Reference H-53

Index

OTP_NFC_CTL, 17-116
OTP_PLL_CTL, 17-113
OTP_PLL_DIV, 17-112
OTP_RESETOUT_HWAIT, 17-111
OTP_SET_PLL, 17-111
OTP_SET_VR, 17-111
OTP_SPI_BAUD, 17-112
OTP_SPI_FASTREAD, 17-112
OTP_START_PAGE, 17-116
OTP_TWI_CLKDIV, 17-112
OTP_TWI_PRESCALE, 17-112
OTP_TWI_TYPE, 17-111
OTP_VR_CTL, 17-113
OUT_DIS bit, 10-43, 10-51
outer loop address increment registers

(DMAx_Y_MODIFY), 7-103
(MDMA_yy_Y_MODIFY), 7-103

outer loop count registers
(DMAx_Y_COUNT), 7-99
(MDMA_yy_Y_COUNT), 7-99

OUT_FORM (output data format) bit,
28-37

output data format (OUT_FORM) bit,
28-37

output delay bit, 18-26
output pad disable, timer, 10-15
output pad disable bit, 10-43
outputs, programmable pins, 19-17
overflow interrupt, DMA, 7-50
overlay A enable (OVR_A_EN) bit, 28-37
overlay A horizontal end (A_HEND) bits,

28-39
overlay A horizontal start (A_HSTART)

bits, 28-39
overlay A transparency (A_TRANSP) bits,

28-41
overlay A vertical end (A_VEND) bits,

28-40
overlay A vertical start (A_VSTART) bits,

28-40

overlay B enable (OVR_B_EN) bit, 28-37
overlay B horizontal end (B_HEND) bits,

28-39
overlay B horizontal start (B_HSTART)

bits, 28-39
overlay B transparency (B_TRANSP) bits,

28-41
overlay B vertical end (B_VEND) bits,

28-40
overlay B vertical start (B_VSTART) bits,

28-40
overlay data format (OVR_FORM) bit,

28-37
overlay FIFO status (OVR_STAT) bits,

28-37
overlay interrupt enable (OVR_INT_EN)

bit, 28-41
overlay interrupt status

(OVR_INT_STAT) bit, 28-41
OVERRUN_R (no TxPktRdy for IN

token) bit, 26-123
OVR_A_EN (overlay A enable) bit, 28-37
OVR_B_EN (overlay B enable) bit, 28-37
OVR_FORM (overlay data format) bit,

28-37
OVR_INT_EN (overlay interrupt enable)

bit, 28-41
OVR_INT_STAT (overlay interrupt

status) bit, 28-41
OVR_STAT (overlay FIFO status) bits,

28-37

P
PAB

clocking, 18-1
errors generated by SPORT, 24-41

PAB, Peripheral Access Bus, 2-4, 2-5, 2-15
PACKEN (pack/unpack enable) bit, 15-82
packet transaction status

(STATUSPKT_H) bit, 26-113

Index

H-54 ADSP-BF54x Blackfin Processor Hardware Reference

packing, serial port, 24-26
pack/unpack enable (PACKEN) bit, 15-82
page 0x14, 17-114
page read pending (PG_RD_STAT) bit,

20-20
page read start (PG_RD_START) bit,

20-25
page write done (WR_DONE) bit, 20-21
page write pending (PG_WR_STAT) bit,

20-20
page write start (PG_WR_START) bit,

20-25
parity calculation result0 (ECC0) bits,

20-23
parity calculation result1 (ECC1) bits,

20-23
parity calculation result2 (ECC2) bits,

20-23
parity calculation result3 (ECC3) bits,

20-23
Parity Error interrupt enable, 29-45
Parity Error (PERR) interrupt event, 29-33
Pattern 0 Registers (PR0), 29-87
Pattern 1 Registers (PR1), 29-87
PBS00H, Bits 63–32(Upper PBS00 Half

Page), 17-114
PBS01H, Bits 15–0(Upper PBS01 Half

Page), 17-117
PBS01H, Bits 63–16(Upper PBS01 Half

Page), 17-116
PBS02L, Bits 63–0(Lower PBS02 Half

Page), 17-118
PD_SDDAT3 (SDH_DATA3 pull-down

enable) bit, 27-72
PDWN bit, 18-26
pend enable (CMD_PEND_E) bit, 27-58
PEN (parity enable) bit, 25-29
PE (parity error) bit, 25-35, 25-36

Performance
DAB, DCB, and DEB, 2-22
DAB bus, 2-22
DCB bus, 2-22
DEB bus, 2-24

performance
DMA, 7-52
memory DMA, 7-53
memory DMA transfers, 2-23
optimization, DMA, 7-50

PERIOD_CNT bit, 10-13, 10-22, 10-27,
10-43, 10-51

Period count bit, 10-43
period value[15:0] field, 11-6
period value[31:16] field, 11-6
Peripheral

DMA, 2-18
Peripheral Access Bus (PAB), 2-4, 2-5, 2-15
peripheral DMA, 7-10
peripheral DMA channels, 7-51
peripheral DMA start address registers,

7-88
peripheral DMA transfers, 7-2
peripheral error interrupts, 7-87
Peripheral ID (SDH_PIDx) bit, 27-73
peripheral interrupt request lines, 6-2
peripheral interrupts, 6-6, 6-10, 6-10 to

6-22
peripheral map registers

(DMAx_PERIPHERAL_MAP), 7-77
(MDMA_yy_PERIPHERAL_MAP),

7-77
peripherals, 1-2

and buses, 1-3
configuring for an IVG priority, 6-25
default mapping to DMA, 7-10
and DMA controller, 7-39
DMA support, 1-3
interrupt events, 6-15
interrupt generated by, 6-22

ADSP-BF54x Blackfin Processor Hardware Reference H-55

Index

peripherals (continued)
interrupt IDs, 6-15
interrupts, clearing, 6-41
level-sensitivity of interrupts, 6-42
list of, 1-2
mapping to DMA, 6-14, 6-15
remapping DMA assignment, 7-11
switching from DMA to non-DMA,

7-88
used to wake from idle, 6-13

PERREN, 29-45
PFx pin, 22-10
PG_RD_START (page read start) bit,

20-25
PG_RD_STAT (page read pending) bit,

20-20
PG_SIZE (page size) bit, 20-19
PG_WR_START (page write start) bit,

20-25
PG_WR_STAT (page write pending) bit,

20-20
Phy Receiver, 29-110
Phy Transmitter, 29-16
PHYWE bit, 18-28
pin assignment (PINTx_ASSIGN)

registers, 9-63
pin interrupt edge clear

(PINTx_EDGE_CLEAR) registers,
9-59

pin interrupt edge set
(PINTx_EDGE_SET) registers, 9-58

pin interrupt invert clear
(PINTx_INVERT_CLEAR)
registers, 9-62

pin interrupt invert set
(PINTx_INVERT_SET) registers,
9-61

pin interrupt latch (PINTx_LATCH)
registers, 9-57

pin interrupt mask clear
(PINTx_MASK_CLEAR) registers,
9-55

pin interrupt mask set
(PINTx_MASK_SET) registers, 9-54,
29-95, 29-101, 29-104

pin interrupt pin state
(PINTx_PINSTATE) registers, 9-60

pin interrupt request (PINTx_REQUEST)
registers, 9-56

pin interrupt x (PIQx) bits, 9-54, 9-55,
9-56, 9-57, 9-58, 9-59, 9-60, 9-61,
9-62, 29-95, 29-101, 29-104

pins, 19-1
unused, 19-17

pin terminations, SPORT, 24-10
PINTx_ASSIGN (pin assignment)

registers, 9-63
PINTx_EDGE_CLEAR (pin interrupt

edge clear) registers, 9-59
PINTx_EDGE_SET (pin interrupt edge

set) registers, 9-58
PINTx_INVERT_CLEAR (pin interrupt

invert clear) registers, 9-62
PINTx_INVERT_SET (pin interrupt

invert set) registers, 9-61
PINTx_LATCH (pin interrupt latch)

registers, 9-57
PINTx_MASK_CLEAR (pin interrupt

mask clear) registers, 9-55
PINTx_MASK_SET (pin interrupt mask

set) registers, 9-54, 29-95, 29-101,
29-104

PINTx_PINSTATE (pin interrupt pin
state) registers, 9-60

PINTx_REQUEST (pin interrupt request)
registers, 9-56

PIO_CSTATE (PIO mode state machine
current state) bits, 21-59

Index

H-56 ADSP-BF54x Blackfin Processor Hardware Reference

PIO-DMA enable (PIO_USE_DMA) bit,
21-49

PIO_DONE_INT (PIO transfer done
interrupt status) bit, 21-57

PIO_DONE_MASK (PIO transfer done
interrupt mask) bit, 21-55

PIO mode state machine current state
(PIO_CSTATE) bits, 21-59

PIO_START (start PIO/Reg Op) bit,
21-49

PIO_TFRCNT (PIO transfer count) bits,
21-61

PIO transfer done interrupt mask
(PIO_DONE_MASK) bit, 21-55

PIO transfer done interrupt status
(PIO_DONE_INT) bit, 21-57

PIO transfer in progress (PIO_XFER_ON)
bit, 21-51, 21-52, 21-53, 21-54,
21-58, 21-59, 21-60, 21-61, 21-62,
21-63, 21-64, 21-65, 21-66, 21-67,
21-68

PIO_USE_DMA (PIO-DMA enable) bit,
21-49

PIO_XFER_ON (PIO transfer in progress)
bit, 21-51, 21-52, 21-53, 21-54,
21-58, 21-59, 21-60, 21-61, 21-62,
21-63, 21-64, 21-65, 21-66, 21-67,
21-68

pipeline
interlocked, 3-71

pipeline, lengths of, 7-62
pipelining

DMA requests, 7-47
PIQx (pin interrupt x) bits, 9-54, 9-55,

9-56, 9-57, 9-58, 9-59, 9-60, 9-61,
9-62, 29-95, 29-101, 29-104

PIXC_AHEND (PIXC overlay A
horizontal end) register, 28-35, 28-39,
A-66

PIXC_AHSTART (PIXC overlay A
horizontal start) register, 28-35,
28-39, A-66

PIXC_ATRANSP (PIXC overlay A
transparency) register, 28-35, 28-41,
A-66

PIXC_AVEND (PIXC overlay A vertical
end) register, 28-35, 28-40, A-66

PIXC_AVSTART (PIXC overlay A vertical
start) register, 28-35, 28-40, A-66

PIXC_BHEND (PIXC overlay B
horizontal end) register, 28-35, 28-39,
A-67

PIXC_BHSTART (PIXC overlay B
horizontal start) register, 28-35,
28-39, A-67

PIXC_BTRANSP (PIXC overlay B
transparency) register, 28-36, 28-41,
A-67

PIXC_BVCON (PIXC B/V conversion
coefficients) register, 28-36, 28-44,
A-67

PIXC B/V conversion coefficients
(PIXC_BVCON) register, 28-36,
28-44, A-67

PIXC_BVEND (PIXC overlay B vertical
end) register, 28-36, 28-40, A-67

PIXC_BVSTART (PIXC overlay B vertical
start) register, 28-36, 28-40, A-67

PIXC_CCBIAS (PIXC color conversion
bias) register, 28-36, 28-45, A-67

PIXC color conversion bias
(PIXC_CCBIAS) register, 28-36,
28-45, A-67

PIXC control (PIXC_CTL) register, 28-35,
28-37, A-66

PIXC_CTL (PIXC control) register, 28-35,
28-37, A-66

PIXC_EN (pixel compositor enable) bit,
28-37

ADSP-BF54x Blackfin Processor Hardware Reference H-57

Index

PIXC_GUCON (PIXC G/U conversion
coefficients) register, 28-36, 28-43,
A-67

PIXC G/U conversion coefficients
(PIXC_GUCON) register, 28-36,
28-43, A-67

PIXC interrupt status
(PIXC_INTRSTAT) register, 28-36,
28-41, A-67

PIXC_INTRSTAT (PIXC interrupt
status) register, 28-36, 28-41, A-67

PIXC lines per frame (PIXC_LPF) register,
28-35, 28-38, A-66

PIXC_LPF (PIXC lines per frame) register,
28-35, 28-38, A-66

PIXC overlay A horizontal end
(PIXC_AHEND) register, 28-35,
28-39, A-66

PIXC overlay A horizontal start
(PIXC_AHSTART) register, 28-35,
28-39, A-66

PIXC overlay A transparency
(PIXC_ATRANSP) register, 28-35,
28-41, A-66

PIXC overlay A vertical end
(PIXC_AVEND) register, 28-35,
28-40, A-66

PIXC overlay A vertical start
(PIXC_AVSTART) register, 28-35,
28-40, A-66

PIXC overlay B horizontal end
(PIXC_BHEND) register, 28-35,
28-39, A-67

PIXC overlay B horizontal start
(PIXC_BHSTART) register, 28-35,
28-39, A-67

PIXC overlay B transparency
(PIXC_BTRANSP) register, 28-36,
28-41, A-67

PIXC overlay B vertical end
(PIXC_BVEND) register, 28-36,
28-40, A-67

PIXC overlay B vertical start
(PIXC_BVSTART) register, 28-36,
28-40, A-67

PIXC pixels per line (PIXC_PPL) register,
28-35, 28-38, A-66

PIXC_PPL (PIXC pixels per line) register,
28-35, 28-38, A-66

PIXC_RYCON (PIXC R/Y conversion
coefficients) register, 28-36, 28-42,
A-67

PIXC R/Y conversion coefficients
(PIXC_RYCON) register, 28-36,
28-42, A-67

PIXC_TC (PIXC transparent color)
register, 28-36, 28-46, A-67

PIXC transparent color (PIXC_TC)
register, 28-36, 28-46, A-67

pixel compositor enable (PIXC_EN) bit,
28-37

pixels per line value (PPL) bits, 28-38
PJx pin, 22-10
PLL, 18-1

active mode, 18-9
applying power to the PLL, 18-13
block diagram, 18-3
BYPASS bit, 18-9
bypassing onboard regulation, 18-18
CCLK derivation, 18-3
changing clock ratio, 18-6
clock dividers, 18-3
clocking to SDRAM, 18-10
clock multiplier ratios, 18-3
configuration, 18-3
control bits, 18-11
design, 18-2
disabled, 18-13
divide frequency, 18-3

Index

H-58 ADSP-BF54x Blackfin Processor Hardware Reference

PLL (continued)
DMA access, 18-8, 18-9
dynamic power management controller

(DPMC), 18-7
enabled, 18-13
enabled but bypassed, 18-9
maximum performance mode, 18-8
multiplier select (MSEL) field, 18-3
operating modes, operational

characteristics, 18-7
operating mode transitions, 18-13,

18-14
PDWN bit, 18-11
PLL_LOCKED bit, 18-14
PLL_OFF bit, 18-13
PLL status (table), 18-7
power domains, 18-16
powering down core, 18-20
power savings by operating mode (table),

18-8
relocking after changes, 18-14
removing power to the PLL, 18-13
RTC interrupt, 18-10, 18-15
SCLK derivation, 18-1, 18-3
sleep mode, 18-9, 18-15
STOPCK bit, 18-11
voltage control, 18-7, 18-19

PLLCLKOE (PLL clock output enable) bit,
26-142

PLL clock output enable (PLLCLKOE) bit,
26-142

PLL control register (PLL_CTL), 18-25,
18-26

PLL_CTL (PLL control register), 18-4,
18-25, 18-26

PLL divide register (PLL_DIV), 18-26
PLL_DIV (PLL divide register), 18-5,

18-25, 18-26
PLL_LOCKCNT (PLL lock count

register), 18-25, 18-27

PLL lock count register
(PLL_LOCKCNT), 18-27

PLL_LOCKED bit, 18-27
PLL multiplier select (M) bits, 26-142
PLL_OFF bit, 18-26
PLL stable indicator (PLL_STABLE) bit,

26-142
PLL_STABLE (PLL stable indicator) bit,

26-142
PLL Start-Up Sequence, 29-114
PLL_STAT (PLL status register), 18-25,

18-27
PLL status register (PLL_STAT), 18-27
PMAP[3:0] field, 7-10, 7-54, 7-77
POLC bits, 15-81
polling DMA registers, 7-61
POLS bits, 15-81
Port access priority, 2-12
Port access request, arbitration priority,

2-12
port connection, SPORT, 24-8
port data clear (PORTx_CLEAR) registers,

9-52
port data (PORTx) registers, 9-51
port data set (PORTx_SET) registers, 9-52
PORT_DIR bit, 13-32
port direction clear

(PORTx_DIR_CLEAR) registers,
9-49

port direction set (PORTx_DIR_SET)
registers, 9-49

port F
and general-purpose timers, 10-4
and SPI, 22-4

port function enable (PORTx_FER)
registers, 9-46, 29-106, 29-108

port input enable (PORTx_INEN)
registers, 9-50

port pins, 22-47
port pins, test access, B-2

ADSP-BF54x Blackfin Processor Hardware Reference H-59

Index

ports, 1-14
port x bit y (Pxy) bits, 9-46, 9-49, 9-50,

9-51, 9-52, 29-106, 29-108
PORTx_CLEAR (port data clear) registers,

9-52
PORTx_DIR_CLEAR (port direction

clear) registers, 9-49
PORTx_DIR_SET (port direction set)

registers, 9-49
PORTx_FER (port function enable)

registers, 9-46, 29-106, 29-108
PORTx_INEN (port input enable)

registers, 9-50
port x multiplexer control (PORTx_MUX)

registers, 9-47
PORTx_MUX (port x multiplexer control)

registers, 9-47
port x mux y (MUXy) bits, 9-47
PORTx (port data) registers, 9-51
PORTx_SET (port data set) registers, 9-52
POSITION field, 29-48
Position Register Updated interrupt enable,

29-44
Position Register Updated (PRU) interrupt

event, 29-31
power dissipation, 18-16
power domains, 18-16
powering down core, 18-20
power management, 1-31, 18-1
power on bits, 27-55
power save enable (PWR_SV_E) bit, 27-56
power supply management, 18-16
PPI

GP output, 13-3, 13-5, 13-6, 13-9,
13-10

PPI_STATUS (PPI status register), 15-98,
15-99, 21-49, 21-55, 21-56

PPI status register (PPI_STATUS), 15-98,
15-99, 21-49, 21-55, 21-56

PPL (pixel per line value) bits, 28-38

P Port, 2-4
interface, 2-8

preamble error detected (ERR_DET) bit,
15-80

preamble error not corrected
(ERR_NCOR) bit, 15-80

preboot, controlled by OTP programming,
17-4

preboot routine, 17-11
precharge command, G-18
PREFETCH instruction, 3-6, 3-41
PREN bit, 14-23
prescale[6:0] field, 23-27
prescaler, RTC, 14-2
prescaler enable register (RTC_PREN),

14-23
priorities

peripheral DMA operations, 7-56
prioritization

DMA, 7-54 to 7-60
interrupts, 6-11

Priority
L2 port access, 2-12
Sys L2 port access, 2-12

private instructions, B-4
probes, oscilloscope, 19-18
processor block diagram, 1-4
Processor Bus Hierarchy, 2-3
processor bus hierarchy, 2-3
Processor Core and L1 Memory Block

Diagram, 2-7
programmable outputs, 19-17
programming model

cache memory, 3-5
propagation segment, CAN, 31-11
PROTOCOL_R (Rx protocol type) bits,

26-131
PROTOCOL_T (Tx protocol type) bits,

26-129
PRUEN, 29-44

Index

H-60 ADSP-BF54x Blackfin Processor Hardware Reference

PS bit, 7-113
PSSE bit, 22-21, 22-45
PSSE (slave select enable) bit, 22-45
public instructions, B-4
public JTAG scan instructions, B-6
pull-up enable (PUP_SDDAT) bit, 27-72
PULSE_HI bit, 10-16, 10-18, 10-43,

10-51
PULSE_HI toggle mode, 10-18
pulse width count and capture mode, See

WDTH_CAP mode
pulse width modulation mode, See

PWM_OUT mode
PUP_SDDAT3 (SDH_DATA3 pull-up

enable) bit, 27-72
PUP_SDDAT (pull-up enable) bit, 27-72
PWM_CLK clock, 10-22
PWM_OUT mode, 10-13 to 10-24, 10-47

control bit and register usage, 10-51
error prevention, 10-48
externally clocked, 10-22
PULSE_HI toggle mode, 10-18
stopping the timer, 10-23

PWM_OUT PULSE_HI toggle mode bit,
10-43

PWR_ON (power on) bits, 27-55
PWR_SV_E (power save enable) bit, 27-56
Pxy (port x bit y) bits, 9-46, 9-49, 9-50,

9-51, 9-52, 29-106, 29-108

Q
query semaphore, 19-4
quick boot, 17-43

R
RBC bit, 7-46, 7-113
RBSY bit, 22-48
RBSY flag, 22-25

RBSY (receive error) bit, 22-48
RCKFE bit, 24-35, 24-57, 24-60
RCVDATA16[15:0] field, 23-51
RCVDATA8[7:0] field, 23-50
RCVFLUSH bit, 23-39, 23-40
RCVINTLEN bit, 23-39
RCVSERV bit, 23-44, 23-45
RCVSERVM bit, 23-43
RCVSTAT[1:0] field, 23-41, 23-42
RD_DLY (read strobe delay) bits, 20-19
RD_RDY (read data ready) bit, 20-21
RDTYPE[1:0] field, 24-30, 24-57, 24-59
read data ready (RD_RDY) bit, 20-21
read strobe delay (RD_DLY) bits, 20-19
read wait request enable (RWR) bit, 27-73
READY (DMA ready) bit, 8-27
READY_PAUSE (select ready to pause)

bits, 21-68
real-time clock, See RTC
REC bit, 31-46
receive buffer[7:0] field, 25-40
receive data[15:0] field, 24-66
receive data[31:16] field, 24-66
receive data available (RX_DAT_RDY) bit,

27-63
receive data available

(RX_DAT_RDY_MASK) bit, 27-68
receive data buffer[15:0] field, 22-49
received byte count in EP0 FIFO

(EP0_RX_COUNT) bits, 26-128
receive error (RBSY) bit, 22-48
receive FIFO, SPORT, 24-64
receive FIFO empty (RX_DAT_ZERO)

bit, 27-63
receive FIFO empty

(RX_FIFO_ZERO_MASK) bit,
27-68

receive FIFO full (RX_FIFO_FULL) bit,
27-63

ADSP-BF54x Blackfin Processor Hardware Reference H-61

Index

receive FIFO full
(RX_FIFO_FULL_MASK) bit,
27-68

receive FIFO overrun error
(RX_OVERRUN) bit, 27-64

receive FIFO overrun error
(RX_OVERRUN_MASK) bit, 27-67

receive FIFO watermark
(RX_FIFO_STAT) bit, 27-64

receive FIFO watermark
(RX_FIFO_STAT_MASK) bit,
27-67

receive message lost interrupt, CAN, 31-26
Receive Synchronous Boundary (RSB)

field, 29-26
Receiving Control Message (CMRX) bit,

29-24
reception error, SPI, 22-25
register-based DMA, 7-17
Registers

MXVR_AADDR, A-25
MXVR_ALLOC_0, A-25
MXVR_ALLOC_1, A-25
MXVR_ALLOC_10, A-26
MXVR_ALLOC_11, A-26
MXVR_ALLOC_12, A-26
MXVR_ALLOC_13, A-26
MXVR_ALLOC_14, A-26
MXVR_ALLOC_2, A-25
MXVR_ALLOC_3, A-25
MXVR_ALLOC_4, A-25
MXVR_ALLOC_5, A-26
MXVR_ALLOC_7, A-26
MXVR_ALLOC_8, A-26
MXVR_ALLOC_9, A-26
MXVR_AP_CTL, A-32
MXVR_APRB_CURR_ADDR, A-32
MXVR_APRB_START_ADDR, A-32
MXVR_APTB_CURR_ADDR, A-32
MXVR_APTB_START_ADDR, A-32

Registers (continued)
MXVR_CM_CTL, A-32
MXVR_CMRB_CURR_ADDR, A-32
MXVR_CMRB_START_ADDR, A-32
MXVR_CMTB_CURR_ADDR, A-33
MXVR_CMTB_START_ADDR, A-33
MXVR_CONFIG, A-24
MXVR_DELAY, A-25
MXVR_DMA0_CONFIG, A-27
MXVR_DMA0_COUNT, A-28
MXVR_DMA0_CURR_ADDR, A-28
MXVR_DMA0_CURR_COUNT,

A-28
MXVR_DMA0_START_ADDR, A-27
MXVR_DMA1_CONFIG, A-28
MXVR_DMA1_COUNT, A-28
MXVR_DMA1_CURR_ADDR, A-28
MXVR_DMA1_CURR_COUNT,

A-28
MXVR_DMA1_START_ADDR, A-28
MXVR_DMA2_CONFIG, A-28
MXVR_DMA2_COUNT, A-29
MXVR_DMA2_CURR_ADDR, A-29
MXVR_DMA2_CURR_COUNT,

A-29
MXVR_DMA2_START_ADDR, A-29
MXVR_DMA3_CONFIG, A-29, A-30,

A-31
MXVR_DMA3_COUNT, A-29, A-30,

A-31
MXVR_DMA3_CURR_ADDR, A-29,

A-30, A-31, A-32
MXVR_DMA3_CURR_COUNT,

A-29, A-30, A-31, A-32
MXVR_DMA3_START_ADDR, A-29,

A-30, A-31
MXVR_FRAME_CNT_0, A-33
MXVR_FRAME_CNT_1, A-33
MXVR_GADDR, A-25
MXVR_INT_EN_0, A-24

Index

H-62 ADSP-BF54x Blackfin Processor Hardware Reference

Registers (continued)
MXVR_INT_EN_1, A-24
MXVR_INT_STAT_0, A-24
MXVR_INT_STAT_1, A-24
MXVR_LADDR, A-25
MXVR_MAX_DELAY, A-25
MXVR_MAX_POSITION, A-24
MXVR_PAT_DATA_0, A-33
MXVR_PAT_DATA_1, A-33
MXVR_PAT_EN_0, A-33
MXVR_PAT_EN_1, A-33
MXVR_PLL_CTL, A-24, A-35
MXVR_POSITION, A-24
MXVR_ROUTING_0, A-34
MXVR_ROUTING_1, A-34
MXVR_ROUTING_10, A-35
MXVR_ROUTING_11, A-35
MXVR_ROUTING_12, A-35
MXVR_ROUTING_13, A-35
MXVR_ROUTING_2, A-34
MXVR_ROUTING_3, A-34
MXVR_ROUTING_4, A-34
MXVR_ROUTING_5, A-34
MXVR_ROUTING_6, A-34
MXVR_ROUTING_7, A-34
MXVR_ROUTING_8, A-34
MXVR_ROUTING_9, A-34
MXVR_RRDB_CURR_ADDR, A-33
MXVR_RRDB_START_ADDR, A-33
MXVR_STATE_0, A-24
MXVR_STATE_1, A-24
MXVR_SYNC_LCHAN_0, A-27
MXVR_SYNC_LCHAN_1, A-27
MXVR_SYNC_LCHAN_2, A-27
MXVR_SYNC_LCHAN_3, A-27
MXVR_SYNC_LCHAN_4, A-27
MXVR_SYNC_LCHAN_5, A-27
MXVR_SYNC_LCHAN_6, A-27
MXVR_SYNC_LCHAN_7, A-27

registers
See also registers by name
ATAPI, 21-46, A-39
rotary counter, 13-24, A-91
system, A-3

RegistersMXVR_ALLOC_6, A-26
REG_RXBUFFER (device receive buffer)

bits, 21-54
REG_TXBUFFER (device transmit buffer)

bits, 21-53
regulator controller, switching, 18-16
remote frames, CAN, 31-22
Remote GetSource Control Message

Transmission, 29-155
Remote GetSource Control Message

Transmit Buffer Entry Field Offsets,
29-156

Remote Get Source In Progress (RGSIP)
bit, 29-24

Remote GetSource Reception, 29-162
Remote Get Source system control

message, 29-24
Remote Read and Remote Write

Reception, 29-159
Remote Read Buffer, 29-16
Remote Read Buffer Field Offsets, 29-160
Remote Read Control Message

Transmission, 29-144
Remote Read Control Message Transmit

Buffer Entry Field Offsets, 29-145
Remote Read In Progress (RRDIP) bit,

29-25
Remote Write Complete interrupt enable,

29-46
Remote Write control message, 29-16
Remote Write Control Message Complete

(RWRC) interrupt event, 29-38
Remote Write Control Message

Transmission, 29-146

ADSP-BF54x Blackfin Processor Hardware Reference H-63

Index

Remote Write Control Message Transmit
Buffer Entry Field Offsets, 29-147

Remote Write In Progress (RWRIP) bit,
29-25

Remote Write Receive Enable
(RWRRXEN) bit, 29-16

REP bit, 7-8, 7-47, 7-113
replacement policy, 3-37

definition, 3-80
REQPKT (request an IN transaction) bit,

26-113
REQPKT_RH (request an IN transaction)

bit, 26-123
request and IN transaction

(STALL_RECEIVED_RH) bit,
26-123

request and IN transaction
(STALL_RECEIVED_TH) bit,
26-117

request an IN transaction
(REQPKKT_RH) bit, 26-123

request an IN transaction (REQPKT) bit,
26-113

request an IN transaction (RXSTALL_TH)
bit, 26-117

request data control command, DMA, 7-42
request data urgent control command,

DMA, 7-42
resampling mode (UDS_MOD) bit, 28-37
reset

effect on memory configuration, 3-29
reset, effect on SPI, 22-20
Reset Asynchronous Packet Arbitration

(RESETAP) bit, 29-76
RESET_DOUBLE, 16-40, 17-104
RESET_DOUBLE bit, 16-40
reset endpoint data toggle

(CLEAR_DATATOGGLE_R) bit,
26-123

reset endpoint data toggle
(CLEAR_DATATOGGLE_T) bit,
26-117

RESET_OR_BABLE_BE (reset or bable
IRQ enable) bit, 26-110

RESET_OR_BABLE_B (reset or bable
indicator) bit, 26-109

reset or bable indicator
(RESET_OR_BABLE_B) bit, 26-109

reset or bable IRQ enable
(RESET_OR_BABLE_BE) bit,
26-110

RESET pin, 17-6
resets

core and system, 8-30, 17-145, 17-146
core double-fault, 17-6
core-only software, 17-6
hardware, 17-5, 17-8
interrupts, 17-10
software, 17-7
system software, 17-5
watchdog timer, 17-5, 17-7

RESET_SOFTWARE, 16-40, 17-104
RESET_SOFTWARE bit, 16-40
RESET (USB reset) bit, 26-99
reset vector, 17-1
RESET_WDOG, 16-40, 17-104
RESET_WDOG bit, 12-5, 16-40, 16-44
Resource Allocate Control Message

Transmission, 29-148
Resource Allocate Control Message

Transmit Buffer Entry Field Offsets,
29-149

Resource Allocate In Progress (ALIP) bit,
29-25

Resource Allocate Reception, 29-161
Resource De-Allocate Control Message

Transmission, 29-152

Index

H-64 ADSP-BF54x Blackfin Processor Hardware Reference

Resource De-Allocate Control Message
Transmit Buffer Entry Field Offsets,
29-153

Resource De-Allocate In Progress (DALIP)
bit, 29-24

Resource De-Allocate Reception, 29-162
resource sharing, with semaphores, 19-3
RESP_CMD (command index of last

received response) bits, 27-59
restart control command, DMA, 7-40
restart or finish control command, receive,

7-44
restart or finish control command,

transmit, 7-44
restrictions

DMA control commands, 7-43
DMA work unit, 7-32

RESUME_BE (resume signalling IRQ
enable) bit, 26-110

RESUME_B (resume signalling indicator)
bit, 26-109

resume mode flag (RESUME_MODE) bit,
26-99

RESUME_MODE (resume mode flag) bit,
26-99

resume signalling indicator (RESUME_B)
bit, 26-109

resume signalling IRQ enable
(RESUME_BE) bit, 26-110

re-synchronization, CAN, 31-12
RETI register, 17-10
RFCS (receive FIFO count status) bit,

25-37
RFHn bit, 31-78, 31-79
RFIT (receive FIFO IRQ threshold) bit,

25-32
RFRT (receive FIFO RTS threshold) bit,

25-32
RFS pins, 24-20, 24-33
RFSR bit, 24-33, 24-34, 24-57, 24-60

RFSx signal, 24-6
RGB_FMT_EN (formatting enable) bit,

15-82
RLSBIT bit, 24-57, 24-59
RMLIF bit, 31-26, 31-50
RMLIM bit, 31-26, 31-49
RMLIS bit, 31-26, 31-49
RMLn bit, 31-72
RMPn bit, 31-71
rotary counter registers, 13-24, A-91
round robin operation, MDMA, 7-57
route Rx IRQ to INTx (RX_INTx_R) bits,

26-104
route Tx IRQ to INTx (TX_INTx_R) bits,

26-104
route USB/VBUS IRQ to INTx

(USB_INTx_R) bits, 26-104
routing of interrupts, 6-3, 6-4, 6-5
ROVF bit, 24-65, 24-67
row enable width (KPAD_ROWEN) bits,

30-10
rows value pressed (KPAD_ROW) bits,

30-15
RPOLC bit, 25-50, 25-51
RRFST bit, 24-58, 24-61
RSCLKx pins, 24-32
RSCLKx signal, 24-6
RSFSE bit, 24-13, 24-58, 24-61
RSPEN bit, 24-11, 24-56, 24-57, 24-59
RSTART bit, 23-32, 23-33
RTC, 1-29, 14-1 to 14-28

alarm clock features, 14-2
alarm feature, 14-27
clock rate, 14-5
clock requirements, 14-3
code examples, 14-24
counters, 14-2
digital watch features, 14-1
disabling prescaler, 14-5
enabling prescaler, 14-4, 14-24

ADSP-BF54x Blackfin Processor Hardware Reference H-65

Index

RTC (continued)
interfaces, 14-3
interrupt structure, 14-16
prescaler, 14-2
programming model, 14-6
registers, table, 14-20
state transitions, 14-17
stopwatch, 14-2, 14-25
synchronization, 14-6
test mode, 14-5

RTC alarm register (RTC_ALARM),
14-23

RTC_ALARM (RTC alarm register),
14-20, 14-23

RTC_ICTL (RTC interrupt control
register), 14-20, 14-21

RTC interrupt control register
(RTC_ICTL), 14-21

RTC interrupt status register
(RTC_ISTAT), 14-22

RTC_ISTAT (RTC interrupt status
register), 14-20, 14-22

RTC_PREN bit, 14-5
RTC_PREN (prescaler enable register),

14-4, 14-20, 14-23
RTC_STAT (RTC status register), 14-20,

14-21
RTC status register (RTC_STAT), 14-21
RTC stopwatch count register

(RTC_SWCNT), 14-22
RTC_SWCNT (RTC stopwatch count

register), 14-20, 14-22
RTR bit, 31-54
RUVF bit, 24-65, 24-67
RWRCEN, 29-46
RWR (Read wait request enable) bit, 27-73
RX_ACT (data receive active) bit, 27-64
RX_ACT_MASK (data receive active) bit,

27-67

RX_COUNT (USB Rx byte count) bits,
26-129

Rx data buffer status (RXS) bit, 22-48
RX_DAT_RDY_MASK (receive data

available) bit, 27-68
RX_DAT_RDY (receive data available) bit,

27-63
RX_DAT_ZERO (receive FIFO empty)

bit, 27-63
RXECNT[7:0] field, 31-84
RX_FIFO_FULL_MASK (receive FIFO

full) bit, 27-68
RX_FIFO_FULL (receive FIFO full) bit,

27-63
RX_FIFO_STAT_MASK (receive FIFO

watermark) bit, 27-67
RX_FIFO_STAT (receive FIFO

watermark) bit, 27-64
RX_FIFO_ZERO_MASK (receive FIFO

empty) bit, 27-68
RX hold register, 24-65
RX_INTx_R (route Rx IRQ to INTx) bits,

26-104
RXNE bit, 24-67
RX_OVERRUN_MASK (receive FIFO

overrun error) bit, 27-67
RX_OVERRUN (receive FIFO overrun

error) bit, 27-64
Rx packet serviced

(SERVICED_RXPKTRDY) bit,
26-113

RxPktRdy autoclear enable
(AUTOCLEAR_R) bit, 26-123

RXPKTRDY (data packet receive
indicator) bit, 26-113

RXPKTRDY_R (data packet in FIFO
indicator) bit, 26-123

RX_POLL_INTERVAL (USB Rx poll
interval) bits, 26-132

Index

H-66 ADSP-BF54x Blackfin Processor Hardware Reference

Rx protocol type (PROTOCOL_R) bits,
26-131

RXREQ signal, 25-9
RXS bit, 22-31, 22-48
RXSE bit, 24-58, 24-60
RXS (Rx data buffer status) bit, 22-48
RXSTALL_TH (request an IN transaction)

bit, 26-117
RX_UNDERRUN_STAT (clear receive

FIFO underrun error) bit, 27-65
RY_MULT4 (multiply row by 4) bit,

28-42
RY_TRANS (transparent color - R/Y) bits,

28-46

S
SA0 bit, 31-85
SADDR[6:0] field, 23-30
SAM bit, 31-48
SAMPLE/PRELOAD instruction, B-7
sampling, CAN, 31-12
sampling edge, SPORT, 24-35
SBL2UEN, 29-44
SB (set break) bit, 25-29
SBU2LEN, 29-44
SBUEN, 29-45
scale value[7:0] field, 11-7
scaling, of core timer, 11-7
scan paths, B-5
SCD_MSK (card detect interrupt enable)

bit, 27-70
SCK signal, 22-5, 22-17, 22-19, 22-22
SCL clock divider (TWI_CLKDIV)

register, 23-26
SCLK, 18-4

derivation, 18-1
disabling, 18-20
status by operating mode (table), 18-8

SCLOVR bit, 23-32
SCL pin, 23-5

SCLSEN bit, 23-36
SCOMP bit, 23-44, 23-47
SCOMPM bit, 23-43
scratch[7:0] field, 25-49
scratchpad memory, and booting, 17-24
scratchpad SRAM, 3-7
SCTS (sticky CTS) bit, 25-37
SD4E (SDIO 4-bit enable) bit, 27-72
SDAOVR bit, 23-32, 23-33
SDA pin, 23-5
SDASEN bit, 23-36, 23-37
SD_CARD_DET (card detect interrupt)

bit, 27-70
SD_CMD_OD (SDH command open

drain) bit, 27-55
SDH_ARGUMENT (SDH argument)

bits, 27-57
SDH argument (SDH_ARGUMENT)

bits, 27-57
SDH_ARGUMENT (SDH argument)

register, 27-52, 27-57, A-37
SDH argument (SDH_ARGUMENT)

register, 27-52, 27-57, A-37
SDH_CFG (SDH configuration) register,

27-54, 27-71, A-39
SDH_CLK_CTL (SDH clock control)

register, 27-52, 27-55, A-37
SDH_CLK enable (CLK_E) bit, 27-56
SDH clock control (SDH_CLK_CTL)

register, 27-52, 27-55, A-37
SDH clocks enable (CLKS_EN) bit, 27-72
SDH command open drain

(SD_CMD_OD) bit, 27-55
SDH_COMMAND (SDH command)

register, 27-52, 27-57, A-37
SDH command (SDH_COMMAND)

register, 27-52, 27-57, A-37
SDH configuration (SDH_CFG) register,

27-54, 27-71, A-39

ADSP-BF54x Blackfin Processor Hardware Reference H-67

Index

SDH_DATA3 pull-down enable
(PD_SDDAT3) bit, 27-72

SDH_DATA3 pull-up enable
(PUP_SDDAT3) bit, 27-72

SDH_DATA_CNT (SDH data counter)
register, 27-53, 27-62, A-38

SDH data control (SDH_DATA_CTL)
register, 27-53, 27-61, A-38

SDH data counter (SDH_DATA_CNT)
register, 27-53, 27-62, A-38

SDH_DATA_CTL (SDH data control)
register, 27-53, 27-61, A-38

SDH data FIFO bits, 27-69
SDH data FIFO (SDH_FIFOx) registers,

27-53, A-38
SDH data length (SDH_DATA_LGTH)

register, 27-53, 27-61, A-38
SDH_DATA_LGTH (SDH data length

register, 27-53, 27-61, A-38
SDH data (SDH_FIFOX) register, 27-69
SDH_DATA_TIMER (SDH data timer)

register, 27-53, 27-60, A-38
SDH data timer (SDH_DATA_TIMER)

register, 27-53, 27-60, A-38
SDH_E_MASK (SDH exception mask)

register, 27-53, 27-70, A-38
SDH_E_STATUS (SDH exception status)

register, 27-53, 27-69, A-38
SDH exception mask (SDH_E_MASK)

register, 27-53, 27-70, A-38
SDH exception status (SDH_E_STATUS)

register, 27-53, 27-69, A-38
(SDH_FIFO_CNT (SDH FIFO counter)

register, 27-68
SDH_FIFO_CNT (SDH FIFO counter)

register, 27-53, A-38
SDH FIFO counter (SDH_FIFO_CNT)

register, 27-53, 27-68, A-38
SDH_FIFOx (SDH data FIFO) registers,

27-53, A-38

SDH_FIFOX (SDH data) register, 27-69
SDH identification (SDH_PIDX)

registers, 27-73
SDH identification (SDH_PIDx) registers,

27-54, A-39
SDH interrupt mask (SDH_MASKx)

registers, 27-53, 27-66, A-38
SDH_MASKx (SDH interrupt mask)

registers, 27-53, 27-66, A-38
SDH_PIDx (Peripheral ID) bit, 27-73
SDH_PIDX (SDH identification)

registers, 27-73
SDH_PIDx (SDH identification) registers,

27-54, A-39
SDH power control (SDH_PWR_CTL)

register, 27-52, 27-55, A-37
SDH_PWR_CTL (SDH power control)

register, 27-52, 27-55, A-37
SDH_RD_WAIT_EN (SDH read wait

enable) register, 27-54, 27-72, A-39
SDH read wait enable

(SDH_RD_WAIT_EN) register,
27-54, 27-72, A-39

SDH reset (SD_RST) bit, 27-72
SDH_RESP_CMD (SDH response

command) register, 27-52, 27-58,
A-37

SDH response bits, 27-59
SDH response command

(SDH_RESP_CMD) register, 27-52,
27-58, A-37

SDH response (SDH_RESPONSEX)
register, 27-59

SDH response (SDH_RESPONSEx)
registers, 27-52, A-37

SDH_RESPONSEX (SDH response)
register, 27-59

SDH_RESPONSEx (SDH response)
registers, 27-52, A-37

Index

H-68 ADSP-BF54x Blackfin Processor Hardware Reference

SDH status clear (SDH_STATUS_CLR)
register, 27-53, 27-65, A-38

SDH_STATUS_CLR (SDH status clear)
register, 27-53, 27-65, A-38

SDH_STATUS (SDH status) register,
27-53, 27-63, A-38

SDH status (SDH_STATUS) register,
27-53, 27-63, A-38

SDIO 4-bit enable (SD4E) bit, 27-72
SDIO_INT_DET (SDIO interrupt detect)

bit, 27-70
SDIO interrupt detect (SDIO_INT_DET)

bit, 27-70
SDIO interrupt enable (SDIO_MSK) bit,

27-70
SDIO interrupt moving window enable

(MWE) bit, 27-72
SDIO_MSK (SDIO interrupt enable) bit,

27-70
SDIR bit, 23-31
SDRAM

banks, 3-50
bank size, 5-2
memory banks, 5-3
memory space, 5-2
sizes supported, 3-50

SD_RST (SDH reset) bit, 27-72
seconds (1 Hz) event flag bit, 14-22
seconds (1Hz) interrupt enable bit, 14-21
seconds[5:0] field, 14-21, 14-23
secure digital host

description of operation, 27-5
SDH clock configuration, 27-8
SDH interface configuration, 27-9
SDH registers, 27-52, A-37

SDH_CLK_CTL, A-37
SDH_PWR_CTL, A-37

select cycle time - TDVS time
(TCYC_TDVS) bits, 21-67

select data valid setup time (TDVS) bits,
21-67

select DIOR/DIOW pulsewidth
(TEOC_REG) bits, 21-63

select DIOR negated pulsewidth (TKR)
bits, 21-65

select DIOW data hold (TH) bits, 21-66
select DIOW negated pulsewidth (TKW)

bits, 21-65
SELECTED_ENDPOINT (USB

endpoint index) bits, 26-103, 26-111
select end of cycle for DMA (TEOC) bits,

21-66
select envelope time (TENV) bits, 21-66
select interlock time (TMLI) bits, 21-67
select minimum delay required for output

(TZAH) bits, 21-68
select ready to pause (READY_PAUSE)

bits, 21-68
select setup and hold times for TACK

(TACK) bits, 21-66
select time from STROBE edge to negation

of DMARQ or assertion of STOP
(TSS) bits, 21-67

semaphores, 19-3
example code, 19-4
query, 19-4

SEN bit, 23-28, 23-29
send setup token (SETUPPKT) bit, 26-113
send STALL handshake (SENDSTALL)

bit, 26-113
send STALL handshake

(STALL_SEND_R) bit, 26-123
send STALL handshake

(STALL_SEND_T) bit, 26-117
SENDSTALL (send STALL handshake)

bit, 26-113
send zero (SZ) bit, 22-45
SER bit, 31-85

ADSP-BF54x Blackfin Processor Hardware Reference H-69

Index

serial clock divide modulus[15:0] field,
24-68

serial clock frequency, 22-22
serial communications, 25-6
serial data transfer, 24-4
serial scan paths, B-5
SERR bit, 23-44, 23-47
SERRM bit, 23-43
SERVICED_RXPKTRDY (Rx packet

serviced) bit, 26-113
SERVICED_SETUPEND (setup end

serviced) bit, 26-113
session end/disconnect indicator

(DISCON_B) bit, 26-109
session end/disconnect IRQ enable

(DISCON_BE) bit, 26-110
session indicator (SESSION) bit, 26-134,

26-136
SESSION_REQ_BE (session request IRQ

enable) bit, 26-110
SESSION_REQ_B (session request

indicator) bit, 26-109
session request indicator

(SESSION_REQ_B) bit, 26-109
session request IRQ enable

(SESSION_REQ_BE) bit, 26-110
SESSION (session indicator) bit, 26-134,

26-136
set associative (definition), 3-81
set (definition), 3-80
setup end serviced

(SERVICED_SETUPEND) bit,
26-113

SETUPEND (setup end) bit, 26-113
setup end (SETUPEND) bit, 26-113
SETUPPKT (send setup token) bit, 26-113
shared interrupts, 6-11
shorten startup counter chain

(TM_SHORT_CHAIN) bit, 26-142

SIC_IAR0 (system interrupt assignment
register 0), 6-26, 8-25, 8-27, 8-29

SIC_IAR10 (system interrupt assignment
register 10), 6-31

SIC_IAR11 (system interrupt assignment
register 11), 6-31

SIC_IAR1 (system interrupt assignment
register 1), 6-26

SIC_IAR2 (system interrupt assignment
register 2), 6-27

SIC_IAR3 (system interrupt assignment
register 3), 6-27

SIC_IAR4 (system interrupt assignment
register 4), 6-28

SIC_IAR5 (system interrupt assignment
register 5), 6-28

SIC_IAR6 (system interrupt assignment
register 6), 6-29

SIC_IAR7 (system interrupt assignment
register 7), 6-29

SIC_IAR8 (system interrupt assignment
register 8), 6-30

SIC_IAR9 (system interrupt assignment
register 9), 6-30

SIC_IMASK0 (system interrupt mask
register), 6-32

SIC_IMASK1 (system interrupt mask
register), 6-33

SIC_IMASK2 (system interrupt mask
register), 6-34

SIC_IMASK (system interrupt mask
register), 6-11

SIC_ISR0 (system interrupt status register),
6-35

SIC_ISR1 (system interrupt status register),
6-36

SIC_ISR2 (system interrupt status register),
6-37

SIC_ISR (system interrupt status register),
6-12

Index

H-70 ADSP-BF54x Blackfin Processor Hardware Reference

SIC_IWR0 (system interrupt wakeup
register), 6-38

SIC_IWR1 (system interrupt wakeup
register), 6-39

SIC_IWR2 (system interrupt wakeup
register), 6-40

SIC_IWR (system interrupt wakeup-enable
register), 6-13

signal integrity, 19-14
SIGN_EXT (sign extension/zero-filled) bit,

15-82
Single cast Transmission Status Encodings,

29-141
single pulse generation, timer, 10-15
single shot transmission, CAN, 31-15
SINIT bit, 23-44, 23-47
SINITM bit, 23-43
SIZE bit, 22-21, 22-45
size of accesses, timer registers, 10-37
size of words (SIZE) bit, 22-45
SIZE (size of words) bit, 22-45
SJW[1:0] field, 31-12, 31-48
SKIP_EN (skip enable) bit, 15-82
SKIP_EO (skip even/odd) bit, 15-82
Slave Mode, 29-14
Slave mode initialization, 29-112
slaves

EBIU, 5-7
slave select, SPI, 22-46
slave select enable (FLSx) bits, 22-46
slave select enable (PSSE) bit, 22-45
slave SPI device, 22-6
sleep mode, 1-32, 18-9

CAN, 31-39
SLEN[4:0] field, 24-52, 24-54, 24-58,

24-60
restrictions, 24-30
word length formula, 24-30

small descriptor mode, DMA, 7-22
small model mode, DMA, 7-82

SMODE_B (switch charge pump mode)
bits, 26-142

SMR bit, 31-45
SOF_BE (start of frame IRQ enable) bit,

26-110
SOF_B (start of frame indicator) bit,

26-109
soft connect enable (SOFTC_CONN) bit,

26-99
SOFT_CONN (soft connect enable) bit,

26-99
SOFT_RST (soft reset) bit, 21-49
software interrupts, 6-10
software management of DMA, 7-60
software programmable force evaluate

(KPAD_SOFTEVAL_E) bit, 30-20
software reset, 17-7, 17-103
software reset, and CAN, 31-13
software reset register (SWRST), 16-40,

17-104
software reset (SRS) bit, 31-45
software watchdog timer, 1-30, 12-1
source channels, memory DMA, 7-13
SOVF bit, 23-44, 23-46
SOVFM bit, 23-43
SPE bit, 22-21, 22-45
SPE (SPI enable) bit, 22-45
SPI, 1-20, 22-1 to 22-58

beginning and ending transfers, 22-31
bit mapping to port pins, 22-10
block diagram, 22-3
clock phase, 22-17, 22-18, 22-22
clock polarity, 22-17, 22-22
clock signal, 22-3, 22-22
code examples, 22-49
data corruption, avoiding, 22-19
data interrupt, 22-25
data transfer, 22-20
detecting transfer complete, 22-23
and DMA, 22-14

ADSP-BF54x Blackfin Processor Hardware Reference H-71

Index

SPI (continued)
DMA initialization, 22-53
DMA transfers, 22-53
effect of reset, 22-20
error interrupt, 22-25
error signals, 22-23 to 22-25
general operation, 22-26 to 22-30
initialization, 22-50
internal interfaces, 22-14
interrupt outputs, 22-25
interrupts, 22-52
master mode, 22-20, 22-26
master mode DMA operation, 22-33
mode fault error, 22-24
multiple slave systems, 22-12
port F, 22-4
reception error, 22-25
registers, table, 22-43
SCK signal, 22-5
slave boot mode, 17-73
slave device, 22-6
slave mode, 22-20, 22-29
slave mode DMA operation, 22-35
slave select enable setup, 22-2, 22-9
slave-select function, 22-46
slave transfer preparation, 22-30
SPI_FLG mapping to port pins, 22-47
starting DMA transfer, 22-56
starting transfer, 22-51
stopping, 22-53
stopping DMA transfers, 22-56
switching between transmit and receive,

22-32
timing, 22-8
transfer formats, 22-17 to 22-18
transfer initiate command, 22-27
transfer modes, 22-28
transfer protocol, 22-18, 22-19
transmission error, 22-25
transmission/reception errors, 22-23

SPI (continued)
transmit collision error, 22-25
using DMA, 22-14
word length, 22-21

SPI baud rate registers (SPI_BAUD),
22-22, 22-43

SPI baud rate (SPIx_BAUD) registers,
22-44

SPI_BAUD (SPI baud rate registers),
22-22, 22-43

SPI_BAUD values, 22-23
SPI control register (SPI_CTL), 22-21,

22-43, 22-45
SPI control (SPIx_CTL) registers, 22-45
SPI_CTL (SPI control register), 22-5,

22-21, 22-43, 22-45
SPI enable (SPE) bit, 22-45
SPIF bit, 22-13, 22-31, 22-48
SPI finished (SPIF) bit, 22-48
SPI flag register (SPI_FLG), 22-10, 22-43,

22-46
SPI flag (SPIx_FLG) registers, 22-46
SPI_FLG bit, 22-10
SPI_FLG (SPI flag register), 22-10, 22-12,

22-43, 22-46
SPIF (SPI finished) bit, 22-48
SPI_RDBR shadow[15:0] field, 22-49
SPI RDBR shadow register

(SPI_SHADOW), 22-16, 22-43,
22-49

SPI RDBR shadow (SPIx_SHADOW)
registers, 22-49

SPI_RDBR (SPI receive data buffer
register), 22-16, 22-43, 22-49

SPI receive data buffer register
(SPI_RDBR), 22-16, 22-43, 22-49

SPI receive data buffer (SPIx_RDBR)
registers, 22-49

SPI_SHADOW (SPI RDBR shadow
register), 22-16, 22-43, 22-49

Index

H-72 ADSP-BF54x Blackfin Processor Hardware Reference

SPI slave select, 22-46
SPISS signal, 22-7, 22-12, 22-17
SPI_STAT (SPI status register), 22-23,

22-43, 22-48
SPI status register (SPI_STAT), 22-23,

22-43, 22-48
SPI status (SPIx_STAT) registers, 22-48
SPI_TDBR (SPI transmit data buffer

register), 22-15, 22-43, 22-48
SPI transmit data buffer register

(SPI_TDBR), 22-15, 22-43, 22-48
SPI transmit data buffer (SPIx_TDBR)

registers, 22-48
SPIx_BAUD (SPI baud rate) registers,

22-44
SPIx_CTL (SPI control) registers, 22-45
SPIx_FLG (SPI flag) registers, 22-46
SPIx_RDBR (SPI receive data buffer)

registers, 22-49
SPIx_SHADOW (SPI RDBR shadow)

registers, 22-49
SPIx_STAT (SPI status) registers, 22-48
SPIx_TDBR data buffer status (TXS) bit,

22-48
SPIx_TDBR (SPI transmit data buffer)

registers, 22-48
SPLT_EVEN_ODD, 15-82
SPORT, 1-19, 24-1 to 24-82

active low vs. active high frame syncs,
24-35

channels, 24-17
clock, 24-32
clock frequency, 24-28, 24-68
clock rate, 24-2
clock rate restrictions, 24-29
clock recovery control, 24-27
companding, 24-31
configuration, 24-12
data formats, 24-30
data word formats, 24-61

SPORT (continued)
disabling, 24-12, 24-32
DMA data packing, 24-26
enable/disable, 24-11
enabling multichannel mode, 24-19
framed serial transfers, 24-34
framed vs. unframed, 24-33
frame sync, 24-34, 24-38
frame sync frequencies, 24-28
framing signals, 24-33
general operation, 24-11
H.100 standard protocol, 24-27
initialization code, 24-59
internal memory access, 24-40
internal vs. external frame syncs, 24-34
late frame sync, 24-19
modes, 24-12
moving data to memory, 24-40
multichannel frame, 24-22
multichannel operation, 24-17 to 24-27
multichannel transfer timing, 24-18
multiplexed pins, 24-4
PAB error, 24-41
packing data, multichannel DMA, 24-26
pins, 24-4
port connection, 24-8
port G, 24-4
receive and transmit functions, 24-4
receive clock signal, 24-32
receive FIFO, 24-64
receive word length, 24-65
register writes, 24-50
RX hold register, 24-65
sampling edge, 24-35
selecting bit order, 24-30
serial data communication protocols,

24-1
shortened active pulses, 24-12, 24-32
signals, 24-5

ADSP-BF54x Blackfin Processor Hardware Reference H-73

Index

SPORT (continued)
single clock for both receive and

transmit, 24-32
single word transfers, 24-40
stereo serial connection, 24-10
stereo serial frame sync modes, 24-19
stereo serial operation, 24-13
support for standard protocols, 24-27
termination, 24-10
timing, 24-42
transmit clock signal, 24-32
transmitter FIFO, 24-61
transmit word length, 24-62
TX hold register, 24-62
TX interrupt, 24-62
unframed data flow, 24-33
unpacking data, multichannel DMA,

24-26
window offset, 24-24
word length, 24-30

SPORT current channel
(SPORTx_CHNL) registers, 24-49,
24-71

SPORT error interrupt, 24-41
SPORT multichannel configuration

(SPORTx_MCMC1) register 1,
24-49

SPORT multichannel configuration
(SPORTx_MCMC2) register 2,
24-49

SPORT multichannel receive select
(SPORTx_MRCSn) registers, 24-49,
24-72

SPORT multichannel transmit select
registers (SPORTx_MTCSn), 24-25

SPORT multichannel transmit select
(SPORTx_MTCSn) registers, 24-49,
24-74

SPORT receive configuration 1
(SPORTx_RCR1) registers, 24-48,
24-56

SPORT receive configuration 2
(SPORTx_RCR2) registers, 24-48,
24-56

SPORT receive data (SPORTx_RX)
registers, 24-48, 24-64, 24-65

SPORT receive frame sync divider
(SPORTx_RFSDIV) registers, 24-48,
24-69

SPORT receive serial clock divider
(SPORTx_RCLKDIV) registers,
24-48, 24-68

SPORT RX interrupt, 24-41, 24-65
SPORT status (SPORTx_STAT) registers,

24-48, 24-66
SPORT transmit configuration 1

(SPORTx_TCR1) registers, 24-48,
24-51

SPORT transmit configuration 2
(SPORTx_TCR2) registers, 24-48,
24-51

SPORT transmit data (SPORTx_TX)
registers, 24-48, 24-61, 24-63

SPORT transmit frame sync divider
(SPORTx_TFSDIV) registers, 24-48,
24-69

SPORT transmit serial clock divider
(SPORTx_TCLKDIV) registers,
24-48, 24-68

SPORT TX interrupt, 24-41
SPORTx_CHNL (SPORT current

channel) registers, 24-49, 24-71
SPORTx_MCMC1 (SPORT

multichannel configuration) register
1, 24-49

SPORTx_MCMC2 (SPORT
multichannel configuration) register
2, 24-49

Index

H-74 ADSP-BF54x Blackfin Processor Hardware Reference

SPORTx_MRCSn (SPORT multichannel
receive select) registers, 24-49, 24-72

SPORTx_MTCSn (SPORT multichannel
transmit select) registers, 24-49, 24-74

SPORTx multichannel configuration
registers (SPORTx_MCMCn), 24-70

SPORTx multichannel receive select
registers (SPORTx_MRCSn), 24-25,
24-26

SPORTx multichannel transmit select
registers (SPORTx_MTCSn), 24-25

SPORTx_RCLKDIV (SPORT receive
serial clock divider) registers, 24-48,
24-68

SPORTx_RCR1 (SPORT receive
configuration 1) registers, 24-48,
24-56

SPORTx_RCR2 (SPORT receive
configuration 2) registers, 24-48,
24-56

SPORTx_RCR2 (SPORTx receive
configuration register), 24-58

SPORTx receive configuration 2 registers
(SPORTx_RCR2), 24-58

SPORTx receive data registers
(SPORTx_RX), 24-21

SPORTx_RFSDIV (SPORT receive frame
sync divider) registers, 24-48, 24-69

SPORTx_RX (SPORT receive data)
registers, 24-48, 24-64, 24-65

SPORTx_STAT (SPORT status) registers,
24-48, 24-66

SPORTx_TCLKDIV (SPORT transmit
serial clock divider) registers, 24-48,
24-68

SPORTx_TCR1 (SPORT transmit
configuration 1) registers, 24-48,
24-51

SPORTx_TCR2 (SPORT transmit
configuration 2) registers, 24-48,
24-51

SPORTx_TFSDIV (SPORT transmit
frame sync divider) registers, 24-48,
24-69

SPORTx transmit data registers
(SPORTx_TX), 24-21, 24-40

SPORTx_TX (SPORT transmit data)
registers, 24-48, 24-61, 24-63

SRAM
interface, 19-8
L1 data, 3-30
L1 Data Memory, 3-7
L1 instruction access, 3-11
L1 Instruction Memory, 3-6
scratchpad, 3-7

SRS bit, 31-45
SRS (software reset) bit, 31-45
SSEL[3:0] field, 18-5, 18-26
STALL handshake received

(STALL_RECEIVED) bit, 26-113
STALL handshake sent (STALL_SENT)

bit, 26-113
STALL handshake sent

(STALL_SENT_R) bit, 26-123
STALL handshake sent

(STALL_SENT_T) bit, 26-117
STALL_RECEIVED_RH (request and IN

transaction) bit, 26-123
STALL_RECEIVED (STALL handshake

received) bit, 26-113
STALL_RECEIVED_TH (request and IN

transaction) bit, 26-117
Stalls

DMA access to L1 or L2 memory, 2-13
stalls

pipeline, 3-71
STALL_SEND_R (send STALL

handshake) bit, 26-123

ADSP-BF54x Blackfin Processor Hardware Reference H-75

Index

STALL_SEND_T (send STALL
handshake) bit, 26-117

STALL_SENT_R (STALL handshake
sent) bit, 26-123

STALL_SENT (STALL handshake sent)
bit, 26-113

STALL_SENT_T (STALL handshake
sent) bit, 26-117

start address registers
(DMAx_START_ADDR), 7-88
(MDMA_yy_START_ADDR), 7-88

Start Asynchronous Packet Transmission
(STARTAP) bit, 29-75

START_BIT_ERR_MASK (start bit error)
bit, 27-67

start bit error (START_BIT_ERR) bit,
27-64

start bit error (START_BIT_ERR_MASK)
bit, 27-67

START_BIT_ERR (start bit error) bit,
27-64

START_BIT_ERR_STAT (clear start bit
error) bit, 27-65

Start Control Message Transmission
(STARTCM) bit, 29-80

start of frame indicator (SOF_B) bit,
26-109

start of frame IRQ enable (SOF_B) bit,
26-110

Start Pattern select (STARTPATx) field,
29-67

state transitions, RTC, 14-17
Status Change Interrupt, 29-30, 29-31
status (CNT_STATUS) register, 13-28
STATUSPKT_H (packet transaction

status) bit, 26-113
STB (stop bits) bit, 25-29
STDVAL bit, 23-28, 23-29
stereo serial data, 24-2

stereo serial device, SPORT connection,
24-10

stereo serial frame sync modes, 24-19
stereo serial operation, SPORT, 24-13
STI. See Enable Interrupts (STI)
STOP bit, 23-34
STOPCK bit, 18-26
Stop Mode, 29-62, 29-72
stop mode, DMA, 7-18, 7-82
Stop Pattern select (STOPPATx) field,

29-67
stopping DMA transfers, 7-36
stopwatch count[15:0] field, 14-22
stopwatch function, RTC, 14-2
store operation, 3-70
store ordering, 3-72
STP (stick parity) bit, 25-29
strong ordering requirement, 3-78
subbanks

L1 instruction memory, 3-11
SUBSPLT_ODD (sub-split odd samples)

bit, 15-82
Super Block Locked State (SBLOCK) bit,

29-31
Super Block Locked to Unlocked interrupt

enable, 29-44
Super Block Locked to Unlocked (SBL2U)

interrupt event, 29-31
Super Block Lock (SBLOCK) bit, 29-20
Super Block Unlocked to Locked interrupt

enable, 29-44
Super Block Unlocked to Locked (SBU2L)

interrupt event, 29-31
supervisor mode, 17-10
SUSPEND_BE (suspend signalling IRQ

enable) bit, 26-110
SUSPEND_B (suspend signalling

indicator) bit, 26-109
suspend mode, CAN, 31-39

Index

H-76 ADSP-BF54x Blackfin Processor Hardware Reference

suspend mode enable
(SUSPEND_MODE) bit, 26-99

suspend mode output enable
(ENABLE_SUSPENDM) bit, 26-99

SUSPEND_MODE (suspend mode
enable) bit, 26-99

suspend signalling indicator
(SUSPEND_B) bit, 26-109

suspend signalling IRQ enable
(SUSPEND_BE) bit, 26-110

SWAPEN (swap enable) bit, 15-82
switch charge pump mode (SMODE_B)

bits, 26-142
switching frequency values, 18-18
switching regulator controller, 18-16
SWRESET, 16-58, 16-59, 17-106
SWRST, software reset register, 17-103
SWRST (software reset register), 16-40,

17-104
SYNC, 3-74
SYNC bit, 7-33, 7-35, 7-72, 7-80, 7-83,

25-25
synchronization

interrupt-based methods, 7-61
of descriptor queue, 7-67
of DMA, 7-60 to 7-70

synchronized transition, DMA, 7-35
Synchronous Boundary (MSB) field, 29-18
Synchronous Boundary Updated interrupt

enable, 29-45
Synchronous Boundary Updated (SBU)

interrupt event, 29-33
Synchronous Data Delay (SDELAY) bit,

29-14
Synchronous Data Interrupt, 29-41
Synchronous Data Reception, 29-125
Synchronous Data Routing, Muting, and

Transmission, 29-121
Synchronous Packet Autobuffer Modes,

29-63

Synchronous Packet-Fixed Count Mode,
29-70, 29-73, 29-74

Synchronous Packet-Start/Stop Mode,
29-64, 29-70, 29-73, 29-75

Synchronous Packet-Variable Count
Mode, 29-63, 29-64, 29-70, 29-73,
29-74

Synchronous Receive FIFO Number of
Bytes (SRXNUMB) field, 29-27

Synchronous Receive FIFO Number of
Bytes (STXNUMB) field, 29-27

synchronous serial data transfer, 24-4
synchronous serial ports, See SPORT
SYSCR (System Reset Configuration

Register), 17-106
SYSCR (system reset configuration

register), 16-58, 16-59, 16-65, 16-67,
17-105

System
DMA access request, 2-11
L2 bus, 2-5
overview, 2-8

system clock (SCLK), 18-1
managing, 19-2

system design, 19-1 to 19-19
high frequency considerations, 19-5
recommendations and suggestions,

19-15
recommended reading, 19-19

system interrupt assignment register 0
(SIC_IAR0), 6-26, 8-25, 8-27, 8-29

system interrupt assignment register 10
(SIC_IAR10), 6-31

system interrupt assignment register 1
(SIC_IAR1), 6-26, 6-31

system interrupt assignment register 2
(SIC_IAR2), 6-27

system interrupt assignment register 3
(SIC_IAR3), 6-27

ADSP-BF54x Blackfin Processor Hardware Reference H-77

Index

system interrupt assignment register 4
(SIC_IAR4), 6-28

system interrupt assignment register 5
(SIC_IAR5), 6-28

system interrupt assignment register 6
(SIC_IAR6), 6-29

system interrupt assignment register 7
(SIC_IAR7), 6-29

system interrupt assignment register 8
(SIC_IAR8), 6-30

system interrupt assignment register 9
(SIC_IAR9), 6-30

system interrupt controller (SIC), 6-2, 6-6
registers, 6-24

system interrupt mask register
(SIC_IMASK), 6-11

system interrupt mask register
(SIC_IMASK0), 6-32

system interrupt mask register
(SIC_IMASK1), 6-33

system interrupt mask register
(SIC_IMASK2), 6-34

system interrupt processing, 6-22
system interrupts, 6-6
system interrupt status register (SIC_ISR),

6-12
system interrupt status register (SIC_ISR0),

6-35
system interrupt status register (SIC_ISR1),

6-36
system interrupt status register (SIC_ISR2),

6-37
system interrupt wakeup-enable register

(SIC_IWR), 6-13
system interrupt wakeup register

(SIC_IWR0), 6-38
system interrupt wakeup register

(SIC_IWR1), 6-39
system interrupt wakeup register

(SIC_IWR2), 6-40

system peripheral clock, See SCLK
system peripherals, 1-2
SYSTEM_RESET, 16-40, 17-104
SYSTEM_RESET[2:0] field, 16-40, 16-44
System Reset Configuration Register

(SYSCR), 17-106
system reset configuration register

(SYSCR), 16-58, 16-59, 16-65,
16-67, 17-105

system software reset, 17-5
SZ bit, 22-30, 22-45
SZ (send zero) bit, 22-45

T
T1_REG (time from address valid to

DIOR/DIOW) bits, 21-64
T2_REG (end of cycle time for register

access transfers) bits, 21-63
T2_REG_PIO (DIOR/DIOW

pulsewidth) bits, 21-64
T4_REG (DIOW data hold) bits, 21-64
TACIx pins, 10-5, 10-33
TACK (select setup and hold times for

TACK) bits, 21-66
TACLKx pins, 10-5
tag (definition), 3-81
TAn bit, 31-77
TAP registers

boundary-scan, B-8
bypass, B-7
instruction, B-2, B-4

TAP (test access port), B-2
controller, B-2

target address, 17-31
TARGET_EP_NO_R (target EPx

number) bits, 26-131
TARGET_EP_NO_T (target EPx

number) bits, 26-129
target EPx number

(TARGET_EP_NO_R) bits, 26-131

Index

H-78 ADSP-BF54x Blackfin Processor Hardware Reference

target EPx number
(TARGET_EP_NO_T) bits, 26-129

TAUTORLD bit, 11-3, 11-5
TC_EN (transparent color enable) bit,

28-37
TCKFE bit, 24-35, 24-51, 24-55
TCNTL (core timer control register), 11-3,

11-5
TCOUNT (core timer count register),

11-3, 11-5
TCYC_TDVS (select cycle time - TDVS

time) bits, 21-67
TDA bit, 31-23, 31-78
TD (DIOR/DIOW asserted pulsewidth)

bits, 21-65
TDM interfaces, 24-3
TDPTR[4:0] field, 31-78
TDR bit, 31-23, 31-78
TDTYPE[1:0] field, 24-30, 24-51, 24-53
TDVS (select data valid setup time) bits,

21-67
technical support, lxxxiii
TEMT bit, 25-8, 25-35, 25-36
TENV (select envelope time) bits, 21-66
TEOC_REG_PIO (end of cycle time for

PIO access transfers) bits, 21-64
TEOC_REG (select DIOR/DIOW

pulsewidth) bits, 21-63
TEOC (select end of cycle for DMA) bits,

21-66
termination, DMA, 7-36
terminations, SPORT pin/line, 24-10
test access port (TAP), B-2

controller, B-2
test clock (TCK), B-7
test features, B-1 to B-8
testing circuit boards, B-1, B-6
test-logic-reset state, B-3
test point access, 19-18
TESTSET instruction, 19-3

TFI (transmission finished indicator) bit,
25-35, 25-37

TFRCNT_RST (transmission count reset)
bit, 21-49

TFS pins, 24-33, 24-40
TFSR bit, 24-33, 24-34, 24-51, 24-54
TFS signal, 24-21
TFSx signal, 24-6
THRE bit, 25-16, 25-36
THRE flag, 25-7, 25-23
THRE (transmit hold register empty) bit,

25-35
throughput

achieved by interlocked pipeline, 3-71
achieved by SRAM, 3-5
DMA, 7-51
from DMA system, 7-50
SPORT, 24-8

Throughput for L2 memory access, 2-13
TH (select DIOW data hold) bits, 21-66
TIMDIS0 bit, 10-39
TIMDIS10 bit, 10-39
TIMDIS1 bit, 10-39
TIMDIS2 bit, 10-39
TIMDIS3 bit, 10-39
TIMDIS4 bit, 10-39
TIMDIS5 bit, 10-39
TIMDIS6 bit, 10-39
TIMDIS7 bit, 10-39
TIMDIS8 bit, 10-39
TIMDIS9 bit, 10-39
TIMDISx bit, 10-39
time-division-multiplexed (TDM) mode,

24-17
See also SPORT, multichannel operation

time from address valid to DIOR/DIOW
(T1_REG) bits, 21-64

time from address valid to DIOR/DIOW
(TM) bits, 21-65

TIMEN0 bit, 10-38

ADSP-BF54x Blackfin Processor Hardware Reference H-79

Index

TIMEN10 bit, 10-38
TIMEN1 bit, 10-38
TIMEN2 bit, 10-38
TIMEN3 bit, 10-38
TIMEN4 bit, 10-38
TIMEN5 bit, 10-38
TIMEN6 bit, 10-38
TIMEN7 bit, 10-38
TIMEN8 bit, 10-38
TIMEN9 bit, 10-38
TIMENx bit, 10-38
timeout error (ERROR_H) bit, 26-113
timeout error indicator (ERROR_RH) bit,

26-123
timeout error indicator (ERROR_TH) bit,

26-117
TIMEOUT (host timeout) bit, 8-27
Timer 0 counter overflow bit, 10-41
Timer 0 disable bit, 10-39
Timer 0 enable bit, 10-38
Timer 0 interrupt bit, 10-41
Timer 0 slave enable status bit, 10-41
Timer 10 counter overflow bit, 10-42
Timer 10 disable bit, 10-39
Timer 10 enable bit, 10-38
Timer 10 interrupt bit, 10-42
Timer 10 slave enable status bit, 10-42
Timer 1 counter overflow bit, 10-41
Timer 1 disable bit, 10-39
Timer 1 enable bit, 10-38
Timer 1 interrupt bit, 10-41
Timer 1 slave enable status bit, 10-41
Timer 2 counter overflow bit, 10-41
Timer 2 disable bit, 10-39
Timer 2 enable bit, 10-38
Timer 2 interrupt bit, 10-41
Timer 2 slave enable status bit, 10-41
Timer 3 counter overflow bit, 10-41
Timer 3 disable bit, 10-39
Timer 3 enable bit, 10-38

Timer 3 interrupt bit, 10-41
Timer 3 slave enable status bit, 10-41
Timer 4 counter overflow bit, 10-41
Timer 4 disable bit, 10-39
Timer 4 enable bit, 10-38
Timer 4 interrupt bit, 10-41
Timer 4 slave enable status bit, 10-41
Timer 5 counter overflow bit, 10-41
Timer 5 disable bit, 10-39
Timer 5 enable bit, 10-38
Timer 5 interrupt bit, 10-41
Timer 5 slave enable status bit, 10-41
Timer 6 counter overflow bit, 10-41
Timer 6 disable bit, 10-39
Timer 6 enable bit, 10-38
Timer 6 interrupt bit, 10-41
Timer 6 slave enable status bit, 10-41
Timer 7 counter overflow bit, 10-41
Timer 7 disable bit, 10-39
Timer 7 enable bit, 10-38
Timer 7 interrupt bit, 10-41
Timer 7 slave enable status bit, 10-41
Timer 8 counter overflow bit, 10-42
Timer 8 disable bit, 10-39
Timer 8 enable bit, 10-38
Timer 8 interrupt bit, 10-42
Timer 8 slave enable status bit, 10-42
Timer 9 counter overflow bit, 10-42
Timer 9 disable bit, 10-39
Timer 9 enable bit, 10-38
Timer 9 interrupt bit, 10-42
Timer 9 slave enable status bit, 10-42
timer clock select bit, 10-43
timer configuration registers

(TIMERx_CONFIG), 10-42, 10-43
timer counter[15:0] field, 10-45
timer counter[31:16] field, 10-45
timer counter registers

(TIMERx_COUNTER), 10-44,
10-45

Index

H-80 ADSP-BF54x Blackfin Processor Hardware Reference

TIMER_DISABLE0 (timer disable
register), 10-39

TIMER_DISABLE1 (timer disable
register), 10-39

TIMER_DISABLE bit, 10-51
timer disable register (TIMER_DISABLE),

10-39
timer disable register

(TIMER_DISABLE0), 10-39
timer disable register

(TIMER_DISABLE1), 10-39
TIMER_DISABLE (timer disable register),

10-39
TIMER_ENABLE0 (timer enable

register), 10-38
TIMER_ENABLE1 (timer enable

register), 10-38
TIMER_ENABLE bit, 10-51
timer enable register (TIMER_ENABLE),

10-38
timer enable register

(TIMER_ENABLE0), 10-38
timer enable register

(TIMER_ENABLE1), 10-38
TIMER_ENABLE (timer enable register),

10-38
timer input select bit, 10-43
Timer mode field, 10-43
timer period[15:0] field, 10-49
timer period[31:16] field, 10-49
timer period registers

(TIMERx_PERIOD), 10-47, 10-49
timers, 1-21, 10-1 to 10-62

core, 11-1 to 11-8
EXT_CLK mode, 10-34 to 10-35
watchdog, 1-30, 12-1 to 12-11
WDTH_CAP mode, 25-22

TIMER_STATUS0 (timer status register),
10-41

TIMER_STATUS1 (timer status register),
10-42

timer status register (TIMER_STATUS),
10-40

timer status register (TIMER_STATUS0),
10-41

timer status register (TIMER_STATUS1),
10-42

TIMER_STATUS (timer status register),
10-40

timer width[15:0] field, 10-50
timer width[31:16] field, 10-50
timer width registers (TIMERx_WIDTH),

10-47, 10-50
TIMERx_CONFIG (timer configuration

registers), 10-42, 10-43
TIMERx_COUNTER (timer counter

registers), 10-6, 10-44, 10-45
TIMERx_PERIOD (timer period

registers), 10-47, 10-49
TIMERx_WIDTH (timer width registers),

10-47, 10-50
time stamps, CAN, 31-21
TIMIL0 bit, 10-41
TIMIL10 bit, 10-42
TIMIL1 bit, 10-41
TIMIL2 bit, 10-41
TIMIL3 bit, 10-41
TIMIL4 bit, 10-41
TIMIL5 bit, 10-41
TIMIL6 bit, 10-41
TIMIL7 bit, 10-41
TIMIL8 bit, 10-42
TIMIL9 bit, 10-42
TIMILx bits, 10-6
timing

memory DMA, 7-54
multichannel transfer, 24-18
SPI, 22-8

timing examples, for SPORTs, 24-42

ADSP-BF54x Blackfin Processor Hardware Reference H-81

Index

timing parameters, CAN, 31-12
TIMOD[1:0] field, 22-21, 22-26, 22-28,

22-45
TIMODx (transfer initiation mode) bits,

22-45
TIN_SEL bit, 10-33, 10-43, 10-51
TINT bit, 11-3, 11-5
TKR (select DIOR negated pulsewidth)

bits, 21-65
TKW (select DIOW negated pulsewidth)

bits, 21-65
TLSBIT bit, 24-51, 24-54
TMLI (select interlock time) bits, 21-67
TMODE[1:0] field, 10-13, 10-43, 10-51
TM_PLL_VCO (boost PLL amplitude)

bit, 26-142
TMPWR bit, 11-3, 11-5
TMRCLK input, 10-5
TMREN bit, 11-3, 11-5
TMR pin, 10-52
TMRx pins, 10-4, 10-17, 10-33
TM_SELC (increase PLL charge pump

current) bit, 26-142
TM_SHORT_CHAIN (shorten startup

counter chain) bit, 26-142
TM (time from address valid to

DIOR/DIOW) bits, 21-65
TOGGLE_HI bit, 10-43, 10-52
TOGGLE_HI mode, 10-18
tools, development, 1-36
TOVF bit, 24-63, 24-67
TOVF_ERR0 bit, 10-41
TOVF_ERR10 bit, 10-42
TOVF_ERR1 bit, 10-41
TOVF_ERR2 bit, 10-41
TOVF_ERR3 bit, 10-41
TOVF_ERR4 bit, 10-41
TOVF_ERR5 bit, 10-41
TOVF_ERR6 bit, 10-41
TOVF_ERR7 bit, 10-41

TOVF_ERR8 bit, 10-42
TOVF_ERR9 bit, 10-42
TOVF_ERRx bits, 10-6, 10-10, 10-17,

10-42, 10-53
TPERIOD (core timer period register),

11-6
TPOLC bit, 25-50, 25-51
traffic control, DMA, 7-54 to 7-60
Traffic control/optimization, DMA, 2-13
transfer count (ECCCNT) bits, 20-24
transfer direction (XFER_DIR) bit, 21-49
transfer initiate command, 22-27
transfer initiation from SPI master, 22-28
transfer initiation mode (TIMODx) bits,

22-45
Transfer latency

DMA data, 2-13
transfer length (XFER_LENGTH) bits,

21-58
transfer rate

memory DMA channels, 7-51
peripheral DMA channels, 7-51

transfer size (TxferSize), 26-31, 26-34
transitions

continuous DMA, 7-32
DMA work unit, 7-32
operating mode, 18-11, 18-12
synchronized DMA, 7-32

transmission count reset (TFRCNT_RST)
bit, 21-49

transmission error, SPI, 22-25
transmission error (TXE) bit, 22-48
transmit clock, serial (TSCLKx) pins,

24-32
transmit collision error, SPI, 22-25
transmit collision error (TXCOL) bit,

22-48
transmit data[15:0] field, 24-63
transmit data[31:16] field, 24-63

Index

H-82 ADSP-BF54x Blackfin Processor Hardware Reference

transmit data available (TX_DAT_RDY)
bit, 27-63

transmit data available
(TX_DAT_RDY_MASK) bit, 27-68

transmit data buffer[15:0] field, 22-48
transmit FIFO empty (TX_FIFO_ZERO)

bit, 27-63
transmit FIFO empty

(TX_FIFO_ZERO_MASK) bit,
27-68

transmit FIFO full (TX_FIFO_FULL) bit,
27-63

transmit FIFO full
(TX_FIFO_FULL_MASK) bit,
27-68

transmit FIFO underrun error
(TX_UNDERRUN_MASK) bit,
27-67

transmit FIFO watermark
(TX_FIFO_STAT) bit, 27-64

transmit FIFO watermark
(TX_FIFO_STAT_MASK) bit,
27-67

Transmit FOT, 29-16
transmit hold[7:0] field, 25-39, 25-40
transmit underrun (TX_UNDERRUN)

bit, 27-64
transparent color - B/V (BV_TRANS) bits,

28-46
transparent color enable (TC_EN) bit,

28-37
transparent color - G/U (GU_TRANS)

bits, 28-46
transparent color - R/Y (RY_TRANS) bits,

28-46
TRFST bit, 24-52, 24-56
triggering DMA transfers, 7-71
TRM bit, 31-46
TRRn bit, 31-75
TRSn bit, 31-74

TRUN0 bits, 10-41
TRUN10 bits, 10-42
TRUN1 bits, 10-41
TRUN2 bits, 10-41
TRUN3 bits, 10-41
TRUN4 bits, 10-41
TRUN5 bits, 10-41
TRUN6 bits, 10-41
TRUN7 bits, 10-41
TRUN8 bits, 10-42
TRUN9 bits, 10-42
TRUNx bits, 10-23, 10-40, 10-52
TSCALE (core timer scale register), 11-7
TSCLKx signal, 24-6
TSEG1[3:0] field, 31-11, 31-48
TSEG2[2:0] field, 31-11, 31-48
TSFSE bit, 24-13, 24-52, 24-56
TSPEN bit, 24-11, 24-51, 24-52, 24-53
TSS (select time from STROBE edge to

negation of DMARQ or assertion of
STOP) bits, 21-67

TSV[15:0] field, 31-58
tuning of DPHY clocks (CNOS) bits,

26-141
TUVF bit, 24-40, 24-63, 24-66, 24-67
TWI, 1-15, 23-1 to 23-63

block diagram, 23-3
bus arbitration, 23-8
clock generation, 23-7
electrical specifications, 23-63
fast mode, 23-10
features, 23-2
general call address, 23-10
general setup, 23-13
I2C compatibility, 1-15
master boot mode, 17-77
master mode clock setup, 23-14
master mode receive, 23-16
master mode transmit, 23-15
peripheral interface, 23-5

ADSP-BF54x Blackfin Processor Hardware Reference H-83

Index

TWI (continued)
pins, 23-5
registers, list of, 23-25, A-13, A-14
slave boot mode, 17-79
slave mode operation, 23-13
start and stop conditions, 23-9
synchronization, 23-7
transfer protocol, 23-6

TWI_CLKDIV (SCL clock divider)
register, 23-26

TWI_CONTROL (TWI control) register,
23-27

TWI_FIFO_CTL (TWI FIFO control)
register, 23-39

TWI FIFO receive data double byte
(TWI_RCV_DATA16 register,
23-51

TWI FIFO receive data single byte
(TWI_RCV_DATA8 register, 23-50

TWI_FIFO_STAT (TWI FIFO status
register), 23-41

TWI_FIFO_STAT (TWI FIFO status)
register, 23-41

TWI FIFO status register
(TWI_FIFO_STAT), 23-41

TWI FIFO transmit data double byte
(TWI_XMT_DATA16) register,
23-49

TWI FIFO transmit data single byte
(TWI_XMT_DATA8 register, 23-48

TWI interrupt mask (TWI_INT_MASK)
register, 23-43

TWI interrupt status register
(TWI_INT_STAT), 23-44

TWI_INT_MASK (TWI interrupt mask)
register, 23-43

TWI_INT_STAT (TWI interrupt status
register), 23-44

TWI_INT_STAT (TWI interrupt status)
register, 23-44

TWI_MASTER_ADDR (TWI master
mode address) register, 23-35

TWI master mode status register
(TWI_MASTER_STAT), 23-35

TWI master mode status
(TWI_MASTER_STAT) register,
23-35

TWI_MASTER_STAT (TWI master
mode status register), 23-35

TWI_MASTER_STAT (TWI master
mode status) register, 23-35

TWI_RCV_DATA16 (TWI FIFO receive
data double byte) register, 23-51

TWI_RCV_DATA8 (TWI FIFO receive
data single byte) register, 23-50

TWI_SLAVE_ADDR (TWI slave mode
address) register, 23-30

TWI_SLAVE_CTL (TWI slave mode
control) register, 23-27

TWI slave mode control
(TWI_SLAVE_CTL) register, 23-27

TWI slave mode status
(TWI_SLAVE_STAT) register,
23-30

TWI_SLAVE_STAT (TWI slave mode
status) register, 23-30

TWI_XMT_DATA16 (TWI FIFO
transmit data double byte) register,
23-49

TWI_XMT_DATA8 (TWI FIFO transmit
data single byte) register, 23-48

two-dimensional DMA, 7-19
two-wire interface, See TWI
TX_ACT_MASK (data transmit active)

bit, 27-67
TX_ACT (transmit active) bit, 27-64
TXCOL bit, 22-48
TXCOL flag, 22-25
TXCOL (transmit collision error) bit,

22-48

Index

H-84 ADSP-BF54x Blackfin Processor Hardware Reference

TX_COUNT (USB Tx byte count) bits,
26-133

TX_DAT_RDY_MASK (transmit data
available) bit, 27-68

TX_DAT_RDY (transmit data available)
bit, 27-63

TXE bit, 22-25, 22-48
TXECNT[7:0] field, 31-84
TXE (transmission error) bit, 22-48
TXF bit, 24-63, 24-66, 24-67
TxferSize (transfer size), 26-31, 26-34
TX_FIFO_FULL_MASK (transmit FIFO

full) bit, 27-68
TX_FIFO_FULL (transmit FIFO full) bit,

27-63
TX_FIFO_STAT_MASK (transmit FIFO

watermark) bit, 27-67
TX_FIFO_STAT (transmit FIFO

watermark) bit, 27-64
TX_FIFO_ZERO_MASK (transmit FIFO

empty) bit, 27-68
TX_FIFO_ZERO (transmit FIFO empty)

bit, 27-63
TX hold register, 24-62
TXHRE bit, 24-67
TX_INTx_R (route Tx IRQ to INTx) bits,

26-104
TxPktRdy autoset enable (AUTOSET_T)

bit, 26-117
TXPKTRDY (data packet in FIFO

indicator) bit, 26-113
TXPKTRDY_T (data packet in FIFO

indicator) bit, 26-117
TX_POLL_INTERVAL (USB Tx poll

interval) bits, 26-130
Tx protocol type (PROTOCOL_T) bits,

26-129
TXREQ signal, 25-7
TXS bit, 22-31, 22-48
TXSE bit, 24-52, 24-56

TXS (SPIx_TDBR data buffer status) bit,
22-48

TX_UNDERRUN_MASK (transmit
FIFO underrun error) bit, 27-67

TX_UNDERRUN_STAT (clear transmit
FIFO underrun error) bit, 27-65

TX_UNDERRUN (transmit FIFO
underrun error) bit, 27-64

TZAH (select minimum delay required for
output) bits, 21-68

U
UART, 25-1 to 25-60

autobaud detection, 10-33, 25-20, 25-54
baud rate, 25-8
baud rate examples, 25-19
bit rate detection, 10-5
bit rate examples, 25-19
bitstream, 25-6
block diagram, 25-3, 25-11
booting, 25-20
character transmission, 25-55
clock, 25-18
code examples, 25-51
data words, 25-6
divisor reset, 25-49
DMA channels, 25-24
DMA mode, 25-24
errors during reception, 25-9
external interfaces, 25-3
features, 25-2
glitch filtering, 25-14
initialization, 25-51
internal interfaces, 25-5
interrupt channels, 25-41
interrupt conditions, 25-44
interrupts, 25-15
IrDA mode, 25-2
IrDA receiver, 25-14
IrDA receiver pulse detection, 25-15

ADSP-BF54x Blackfin Processor Hardware Reference H-85

Index

UART (continued)
IrDA transmit pulse, 25-13
IrDA transmitter, 25-13
and ISRs, 25-23
loopback mode, 25-32
mixing modes, 25-26
non-DMA interrupt operation, 25-57
non-DMA mode, 25-22
receive operation, 25-8
receive sampling window, 25-14
registers, table, 25-27
signals, 25-4
standard, 25-1
string transmission, 25-56
switching from DMA to non-DMA,

25-26
switching from non-DMA to DMA,

25-26
and system DMA, 25-41
transmission, 25-7
transmission SYNC bit use, 25-58

UART divisor latch high byte
(UARTx_DLH) registers, 25-46

UART divisor latch low byte
(UARTx_DLL) registers, 25-46

UART global control (UARTx_GCTL)
registers, 25-50

UART interrupt enable clear
(UARTx_IER_CLEAR) registers,
25-41

UART interrupt enable registers
(UARTx_IER), 25-43

UART interrupt enable set
(UARTx_IER_SET) registers, 25-41

UART interrupt enable (UARTx_IER)
registers, 25-40

UART line control registers
(UARTx_LCR), 25-29

UART line control (UARTx_LCR)
registers, 25-29

UART line status registers (UARTx_LSR),
25-34

UART line status (UARTx_LSR) registers,
25-34

UART modem control (UARTx_MCR)
registers, 25-32

UART modem status (UARTx_MSR)
registers, 25-37

UART receive buffer registers
(UARTx_RBR), 25-8

UART receive buffer (UARTx_RBR)
registers, 25-40

UART scratch registers (UARTx_SCR),
25-49

UART scratch (UARTx_SCR) registers,
25-49

UART transmit holding (UARTx_THR)
registers, 25-39

UARTx_DLH (UART divisor latch high
byte registers), 25-27

UARTx_DLH (UART divisor latch high
byte) registers, 25-46

UARTx_DLL, 25-27
UARTx_DLL (UART divisor latch low

byte registers), 25-27
UARTx_DLL (UART divisor latch low

byte) registers, 25-46
UARTx_GCTL (UART global control

registers), 25-27
UARTx_GCTL (UART global control)

registers, 25-50
UARTx_IER_CLEAR (UART interrupt

enable clear) registers, 25-41
UARTx_IER_SET (UART interrupt

enable set) registers, 25-41
UARTx_IER (UART interrupt enable

registers), 25-43
UARTx_IER (UART interrupt enable)

registers, 25-40

Index

H-86 ADSP-BF54x Blackfin Processor Hardware Reference

UARTx_IIR (UART interrupt
identification registers), 25-28

UARTx_LCR (UART line control
registers), 25-27, 25-29

UARTx_LCR (UART line control)
registers, 25-29

UARTx_LSR (UART line status registers),
25-27, 25-34

UARTx_LSR (UART line status) registers,
25-34

UARTx_MCR (UART modem control
registers), 25-27

UARTx_MCR (UART modem control)
registers, 25-32

UARTx_MSR (UART modem status)
registers, 25-37

UARTx_RBR (UART receive buffer
registers), 25-8, 25-28

UARTx_RBR (UART receive buffer)
registers, 25-40

UARTx_SCR (UART scratch registers),
25-28, 25-49

UARTx_SCR (UART scratch) registers,
25-49

UARTx_THR (UART transmit holding
registers), 25-7, 25-28

UARTx_THR (UART transmit holding)
registers, 25-39

UCCNF[3:0] field, 31-28, 31-83
UCCNT[15:0] field, 31-84
UCCT bit, 31-83
UCE bit, 31-83
UCEIF bit, 31-26, 31-50
UCEIM bit, 31-26, 31-49
UCEIS bit, 31-26, 31-49
UCEN bit, 25-8, 25-18, 25-50, 25-51
UCIE (up count interrupt enable) bit,

13-28
UCII (up count interrupt identifier) bit,

13-28

UCRC[15:0] field, 31-84
UCRC bit, 31-83
UDMAIN_CSTATE (ultra DMA-In

mode state machine current state) bits,
21-59

UDMAIN_DONE_INT (ultra-DMA in
transfer done interrupt status) bit,
21-57

UDMAIN_DONE_MASK (ultra-DMA
in transfer done interrupt mask) bit,
21-55

UDMAIN_FIFO_THRS (ultra DMA-IN
FIFO threshold) bits, 21-49

UDMA_IN_FL (ultra DMA input FIFO
level) bit, 21-51, 21-52, 21-53, 21-54,
21-58, 21-59, 21-60, 21-61, 21-62,
21-63, 21-64, 21-67, 21-68

UDMAIN_TERM_INT (device terminate
ultra-DMA-in transfer interrupt
status) bit, 21-57

UDMAIN_TERM_MASK (device
terminate ultra-DMA-in transfer
interrupt mask) bit, 21-55

UDMAIN_TFRCNT (UDMA in transfer
count) bits, 21-62

UDMAOUT_CSTATE (ATAPI IORDY
line status) bits, 21-59

UDMAOUT_DONE_INT (ultra-DMA
out transfer done interrupt status) bit,
21-57

UDMAOUT_DONE_MASK
(ultra-DMA out transfer done
interrupt mask) bit, 21-55

UDMAOUT_TERM_INT (device
terminate ultra-DMA-out transfer
interrupt status) bit, 21-57

UDMAOUT_TERM_MASK (device
terminate ultra-DMA-out transfer
interrupt mask) bit, 21-55

ADSP-BF54x Blackfin Processor Hardware Reference H-87

Index

UDMAOUT_TFRCNT (UDMA out
transfer count) bits, 21-63

UDMA_XFER_ON (ultra DMA transfer
in progress) bit, 21-51, 21-52, 21-53,
21-54, 21-58, 21-59, 21-60, 21-61,
21-62, 21-63, 21-64, 21-65, 21-66,
21-67, 21-68

UDS_MOD (resampling mode) bit, 28-37
UIAIF bit, 31-27, 31-50
UIAIM bit, 31-27, 31-49
UIAIS bit, 31-27, 31-49
ultra DMA-IN FIFO threshold

(UDMAIN_FIFO_THRS) bits,
21-49

ultra DMA-In mode state machine current
state (UDMAIN_CSTATE) bits,
21-59

ultra DMA input FIFO level
(UDMA_IN_FL) bit, 21-51, 21-52,
21-53, 21-54, 21-58, 21-59, 21-60,
21-61, 21-62, 21-63, 21-64, 21-67,
21-68

ultra DMA input FIFO level
(ULTRA_IN_FL) bits, 21-51

ultra-DMA in transfer done interrupt mask
(UDMAIN_DONE_MASK) bit,
21-55

ultra-DMA in transfer done interrupt status
(UDMAIN_DONE_INT) bit, 21-57

ultra-DMA out transfer done interrupt
mask
(UDMAOUT_DONE_MASK) bit,
21-55

ultra-DMA out transfer done interrupt
status (UDMAOUT_DONE_INT)
bit, 21-57

ultra DMA transfer in progress
(UDMA_XFER_ON) bit, 21-51,
21-52, 21-53, 21-54, 21-58, 21-59,
21-60, 21-61, 21-62, 21-63, 21-64,
21-65, 21-66, 21-67, 21-68

ultra DMA transfer in progress
(ULTRA_XFER_ON) bit, 21-51

ULTRA_IN_FL (ultra DMA input FIFO
level) bits, 21-51

ULTRA_START (start ultra-DMA Op)
bit, 21-49

ULTRA_XFER_ON (ultra DMA transfer
in progress) bit, 21-51

UNDERRUN_T (no TxPktRdy for IN
token) bit, 26-117

unframed/framed, serial data, 24-33
universal asynchronous

receiver/transmitter, See UART
universal counter, CAN, 31-28
universal counter exceeded interrupt, CAN,

31-26
unused pins, 19-17
Upper PBS00 Half Page (PBS00H, Bits

63–32), 17-114
Upper PBS01 Half Page (PBS01H, Bits

15–0), 17-117
Upper PBS01 Half Page (PBS01H, Bits

63–16), 17-116
urgent DMA transfers, 7-54
USB_APHY_CNTRL2 (USB APHY

control 2) register, 26-141
USB APHY control 2

(USB_APHY_CNTRL2) register,
26-141

USB common interrupts enable
(USB_INTRUSBE) register, 26-110

USB common interrupts
(USB_INTRUSB) register, 26-109

USB control/status EP0 (USB_CSR0)
register, 26-113

Index

H-88 ADSP-BF54x Blackfin Processor Hardware Reference

USB_COUNT0 (USB received byte count
in EP0 FIFO) register, 26-128

USB_CSR0 (USB control/status EP0)
register, 26-113

USB DMA endpoint x interrupt
(DMAx_INT) bits, 26-144

USB_DMA_INTERRUPT (USB DMA
interrupt) register, 26-144

USB DMA interrupt
(USB_DMA_INTERRUPT) register,
26-144

USB DMAx address high
(USB_DMAxADDRHIGH) register,
26-147

USB DMAx address low
(USB_DMAxADDRLOW) register,
26-146

USB_DMAxADDRHIGH (USB DMAx
address high) register, 26-147

USB_DMAxADDRLOW (USB DMAx
address low) register, 26-146

USB_DMAxCONTROL (USB DMAx
control) registers, 26-145

USB DMAx control
(USB_DMAxCONTROL) registers,
26-145

USB_DMAxCOUNTHIGH (USB
DMAx count high) register, 26-148

USB DMAx count high
(USB_DMAxCOUNTHIGH)
register, 26-148

USB_DMAxCOUNTLOW (USB DMAx
count low) register, 26-147

USB DMAx count low
(USB_DMAxCOUNTLOW)
register, 26-147

USB enable (GLOBAL_ENA) bit, 26-98
USB endpoint index

(SELECTED_ENDPOINT) bits,
26-103, 26-111

USB_EP_NI0_RXCOUNT register, A-46
USB_EP_NI0_RXCSR register, A-46
USB_EP_NI0_RXINTERVAL register,

A-46
USB_EP_NI0_RXMAXP register, A-46
USB_EP_NI0_RXTYPE register, A-46
USB_EP_NI0_TXCOUNT register, A-47
USB_EP_NI0_TXCSR register, A-46
USB_EP_NI0_TXINTERVAL register,

A-46
USB_EP_NI0_TXMAXP register, A-46
USB_EP_NI0_TXTYPE register, A-46
USB_EP_NI1_RXCOUNT register, A-47
USB_EP_NI1_RXCSR register, A-47
USB_EP_NI1_RXINTERVAL register,

A-47
USB_EP_NI1_RXMAXP register, A-47
USB_EP_NI1_RXTYPE register, A-47
USB_EP_NI1_TXCOUNT register, A-48
USB_EP_NI1_TXCSR register, A-47
USB_EP_NI1_TXINTERVAL register,

A-47
USB_EP_NI1_TXMAXP register, A-47
USB_EP_NI1_TXTYPE register, A-47
USB_EP_NI2_RXCOUNT register, A-48
USB_EP_NI2_RXCSR register, A-48
USB_EP_NI2_RXINTERVAL register,

A-48
USB_EP_NI2_RXMAXP register, A-48
USB_EP_NI2_RXTYPE register, A-48
USB_EP_NI2_TXCOUNT register, A-49
USB_EP_NI2_TXCSR register, A-48
USB_EP_NI2_TXINTERVAL register,

A-48
USB_EP_NI2_TXMAXP register, A-48
USB_EP_NI2_TXTYPE register, A-48
USB_EP_NI3_RXCOUNT register, A-49
USB_EP_NI3_RXCSR register, A-49
USB_EP_NI3_RXINTERVAL register,

A-49

ADSP-BF54x Blackfin Processor Hardware Reference H-89

Index

USB_EP_NI3_RXMAXP register, A-49
USB_EP_NI3_RXTYPE register, A-49
USB_EP_NI3_TXCOUNT register, A-50
USB_EP_NI3_TXCSR register, A-49
USB_EP_NI3_TXINTERVAL register,

A-49
USB_EP_NI3_TXMAXP register, A-49
USB_EP_NI3_TXTYPE register, A-49
USB_EP_NI4_RXCOUNT register, A-50
USB_EP_NI4_RXCSR register, A-50
USB_EP_NI4_RXINTERVAL register,

A-50
USB_EP_NI4_RXMAXP register, A-50
USB_EP_NI4_RXTYPE register, A-50
USB_EP_NI4_TXCOUNT register, A-51
USB_EP_NI4_TXCSR register, A-50
USB_EP_NI4_TXINTERVAL register,

A-50
USB_EP_NI4_TXMAXP register, A-50
USB_EP_NI4_TXTYPE register, A-50
USB_EP_NI5_RXCOUNT register, A-51
USB_EP_NI5_RXCSR register, A-51
USB_EP_NI5_RXINTERVAL register,

A-51
USB_EP_NI5_RXMAXP register, A-51
USB_EP_NI5_RXTYPE register, A-51
USB_EP_NI5_TXCOUNT register, A-52
USB_EP_NI5_TXCSR register, A-51
USB_EP_NI5_TXINTERVAL register,

A-51
USB_EP_NI5_TXMAXP register, A-51
USB_EP_NI5_TXTYPE register, A-51
USB_EP_NI6_RXCOUNT register, A-52
USB_EP_NI6_RXCSR register, A-52
USB_EP_NI6_RXINTERVAL register,

A-52
USB_EP_NI6_RXMAXP register, A-52
USB_EP_NI6_RXTYPE register, A-52
USB_EP_NI6_TXCOUNT register, A-53
USB_EP_NI6_TXCSR register, A-52

USB_EP_NI6_TXINTERVAL register,
A-52

USB_EP_NI6_TXMAXP register, A-52
USB_EP_NI6_TXTYPE register, A-52
USB_EP_NI7_RXCOUNT register, A-53
USB_EP_NI7_RXCSR register, A-53
USB_EP_NI7_RXINTERVAL register,

A-53
USB_EP_NI7_RXMAXP register, A-53
USB_EP_NI7_RXTYPE register, A-53
USB_EP_NI7_TXCOUNT register, A-53
USB_EP_NI7_TXCSR register, A-53
USB_EP_NI7_TXINTERVAL register,

A-53
USB_EP_NI7_TXMAXP register, A-53
USB_EP_NI7_TXTYPE register, A-53
USB_FADDR (USB function address)

register, 26-102
USB frame number (FRAME_NUMBER)

bits, 26-111
USB frame number (USB_FRAME)

register, 26-111
USB_FRAME (USB frame number)

register, 26-111
USB_FS_EOF1 (USB full-speed EOF 1)

register, 26-140
USB full-speed EOF 1 (USB_FS_EOF1)

register, 26-140
USB function address (USB_FADDR)

register, 26-102
USB global control

(USB_GLOBAL_CTL) register,
26-98

USB_GLOBAL_CTL (USB global
control) register, 26-98

USB global interrupt (USB_GLOBINTR)
register, 26-104

USB_GLOBINTR (USB global interrupt)
register, 26-104

Index

H-90 ADSP-BF54x Blackfin Processor Hardware Reference

USB hibernate signal (CSR_HBR) bit,
26-141

USB high-speed EOF 1 (USB_HS_EOF1)
register, 26-139

USB_HS_EOF1 (USB high-speed EOF 1)
register, 26-139

USB_INDEX (USB index) register,
26-103, 26-111

USB index (USB_INDEX) register,
26-103, 26-111

USB_INTRRXE (USB receive interrupt
enable) register, 26-108

USB_INTRRX (USB receive interrupt)
register, 26-106

USB_INTRTXE (USB transmit interrupt
enable) register, 26-107

USB_INTRTX (USB transmit interrupt)
register, 26-105

USB_INTRUSBE (USB common
interrupts enable) register, 26-110

USB_INTRUSB (USB common
interrupts) register, 26-109

USB_INTx_R (route USB/VBUS IRQ to
INTx) bits, 26-104

USB_LINKINFO (USB link info) register,
26-138

USB link info (USB_LINKINFO) register,
26-138

USB low-speed EOF 1 (USB_LS_EOF1)
register, 26-140

USB_LS_EOF1 (USB low-speed EOF 1)
register, 26-140

USB max Rx data in frame
(MAX_PACKET_SIZE_R) bits,
26-122

USB max Tx data in frame
(MAX_PACKET_SIZE_T) bits,
26-112

USB_NAKLIMIT0 (USB NAK limit 0)
register, 26-130

USB NAK limit 0 (USB_NAKLIMIT0)
register, 26-130

USB or non-USB part (USBPARTB1V)
bit, 26-141

USB OTG
DMA master channels, 26-90
features, 26-2
host negotiation /configuration, 26-82
interface pins, 26-55
OTG session request, 26-80
peripheral mode operation, 26-13
transferring packets using DMA, 26-92

USB_OTG_DEV_CTL (USB OTG
device control) register, 26-134,
26-136

USB OTG device control
(USB_OTG_DEV_CTL) register,
26-134, 26-136

USB_OTG_VBUS_MASK (USB OTG
VBUS mask) register, 26-138

USB OTG VBUS mask
(USB_OTG_VBUS_MASK) register,
26-138

USBPARTB1V (USB part or non-USB
part) bit, 26-141

USB peripheral device address
(FUNCTION_ADDRESS) bits,
26-102

USB PLL OSC control
(USB_PLLOSC_CTRL) register,
26-142

USB_PLLOSC_CTRL (USB PLL OSC
control) register, 26-142

USB power management (USB_POWER)
register, 26-99

USB_POWER (USB power management)
register, 26-99

USB pu/pd restore control (CSR_RSTD)
bit, 26-141

ADSP-BF54x Blackfin Processor Hardware Reference H-91

Index

USB received byte count in EP0 FIFO
(USB_COUNT0) register, 26-128

USB receive interrupt enable
(USB_INTRRXE) register, 26-108

USB receive interrupt (USB_INTRRX)
register, 26-106

USB reset (RESET) bit, 26-99
USB Rx byte count (RX_COUNT) bits,

26-129
USB Rx byte count (USB_RXCOUNT)

register, 26-129
USB Rx control/status EPx (USB_RXCSR)

register, 26-123
USB_RXCOUNT (USB Rx byte count)

register, 26-129
USB_RXCSR (USB Rx control/status EPx)

register, 26-123
USB Rx endpoint x interrupt enable

(EPx_RX_E) bits, 26-108
USB Rx endpoint x interrupt (EPx_RX)

bits, 26-106
USB_RXINTERVAL (USB Rx interval)

register, 26-132
USB Rx interval (USB_RXINTERVAL)

register, 26-132
USB_RX_MAX_PACKET (USB Rx max

packet) register, 26-122
USB Rx max packet

(USB_RX_MAX_PACKET) register,
26-122

USB Rx poll interval
(RX_POLL_INTERVAL) bits,
26-132

USB_RXTYPE (USB Rx type) register,
26-131

USB Rx type (USB_RXTYPE) register,
26-131

USB_SRP_CLKDIV (USB SRP clock
divider) register, 26-143

USB SRP clock divider
(USB_SRP_CLKDIV) register,
26-143

USB transmit interrupt enable
(USB_INTRTXE) register, 26-107

USB transmit interrupt (USB_INTRTX)
register, 26-105

USB Tx byte count (TX_COUNT) bits,
26-133

USB Tx byte count (USB_TXCOUNT)
register, 26-133

USB Tx control/status EPx (USB_TXCSR)
register, 26-117

USB_TXCOUNT (USB Tx byte count)
register, 26-133

USB_TXCSR (USB Tx control/status EPx)
register, 26-117

USB Tx endpoint x interrupt enable
(EPx_TX_E) bits, 26-107

USB Tx endpoint x interrupt (EPx_TX)
bits, 26-105

USB_TXINTERVAL (USB Tx interval)
register, 26-130

USB Tx interval (USB_TXINTERVAL)
register, 26-130

USB_TX_MAX_PACKET (USB Tx max
packet) register, 26-112

USB Tx max packet
(USB_TX_MAX_PACKET) register,
26-112

USB Tx poll interval
(TX_POLL_INTERVAL) bits,
26-130

USB_TXTYPE (USB Tx type) register,
26-129

USB Tx type (USB_TXTYPE) register,
26-129

USB VBUS pulse length (USB_VPLEN)
register, 26-139

Index

H-92 ADSP-BF54x Blackfin Processor Hardware Reference

USB_VPLEN (USB VBUS pulse length)
register, 26-139

user mode, 17-10
UTE bit, 7-49, 7-113
UTHE[15:0] field, 7-117

V
Valid bit

clearing, 3-41
figure, 3-26
function, 3-16
in cache-line replacement, 3-18
in instruction cache invalidation, 3-22

valid (definition), 3-81
VBUS1–0 (VBUS level indicator) bit,

26-134, 26-136
VBUS_ERROR_BE (VBus threshold IRQ

enable) bit, 26-110
VBUS_ERROR_B (VBus threshold

indicator) bit, 26-109
VBUS level indicator (VBUS1–0) bit,

26-134, 26-136
VBUS pulse length (VPLEN) bits, 26-139
VBus threshold indicator

(VBUS_ERROR_B) bit, 26-109
VBus threshold IRQ enable

(VBUS_ERROR_BE) bit, 26-110
VCO, multiplication factors, 18-4
victim (definition), 3-81
VLEV[3:0] field, 18-19, 18-28
voltage, 18-16

changing, 18-19
control, 18-7
dynamic control, 18-16

voltage controlled oscillator (VCO), 18-3
voltage level values, 18-19
voltage regulator, 1-33
voltage regulator control register

(VR_CTL), 18-17, 18-28
VPLEN (VBUS pulse length) bits, 26-139

VR_CTL (voltage regulator control
register), 18-17, 18-25, 18-28, 31-40

W
wait for connect (WTCON) bits, 26-138
wait for response (CMD_RSP) bit, 27-58
wait from IDPULLUP (WTID) bits,

26-138
WAKE bit, 18-28
wakeup function, 6-14
wakeup interrupt, CAN, 31-27
Wakeup Preamble Detected interrupt

enable, 29-45
Wake-Up Preamble Received (WUP)

interrupt event, 29-34
Wake-Up (WAKEUP) bit, 29-18
watchdog control register (WDOG_CTL),

12-8, 12-9
watchdog count[15:0] field, 12-6
watchdog count[31:16] field, 12-6
watchdog count register (WDOG_CNT),

12-6
watchdog mode, CAN, 31-20
watchdog status[15:0] field, 12-7
watchdog status[31:16] field, 12-7
watchdog status register (WDOG_STAT),

12-7
watchdog timer, 1-30, 12-1 to 12-11

block diagram, 12-3
disabling, 12-5
and emulation mode, 12-2
features, 12-1
registers, 12-6
and reset, 12-5
reset, 17-5, 17-7
starting, 12-4
zero value, 12-5

watermark level (WM_LVL) bits, 28-37
waveform generation, pulse width

modulation, 10-16

ADSP-BF54x Blackfin Processor Hardware Reference H-93

Index

Way
1-Way associative (direct-mapped), 3-79
definition, 3-81
L1 instruction memory as 4-Way

set-associative, 3-6
priority in cache-line replacement, 3-19

WBA bit, 31-45
WB_EDGE (write buffer edge detect) bit,

20-20, 20-21
WB_FULL (write buffer full) bit, 20-20
WB_OVF (write buffer overflow) bit,

20-21
WDEN[7:0] field, 12-8
WDEV[1:0] field, 12-4, 12-8
WDOG_CNT (watchdog count register),

12-4, 12-6
WDOG_CTL (watchdog control register),

12-8, 12-9
WDOG_STAT (watchdog status register),

12-4, 12-7
WDRESET, 16-58, 16-59, 17-106
WDSIZE[1:0] field, 7-80, 7-84
WDTH_CAP mode, 10-25, 10-47

control bit and register usage, 10-51
WLS[1:0] field, 25-29
WM_LVL (watermark level) bits, 28-37
WNR bit, 7-80, 7-84, 8-6
WOFF[9:0] field, 24-24, 24-69
WOM bit, 22-20, 22-45
WOM (write open drain master) bit, 22-45
word length

SPI, 22-21
SPORT, 24-30
SPORT receive data, 24-65
SPORT transmit data, 24-62

work unit
completion, 7-30
DMA, 7-21
interrupt timing, 7-33
restrictions, 7-32

work unit (continued)
transitions, 7-32

WR bit, 31-46
WR_DLY (write strobe delay) bits, 20-19
WR_DONE (page write done) bit, 20-21
write, 3-81
write back (definition), 3-81
write buffer depth, 3-40
write buffer edge detect (WB_EDGE) bit,

20-20, 20-21
write buffer full (WB_FULL) bit, 20-20
write buffer overflow (WB_OVF) bit,

20-21
write complete interrupt enable bit, 14-21
write open drain master (WOM) bit, 22-45
write pending status bit, 14-22, 14-23
write strobe delay (WR_DLY) bits, 20-19
WSIZE[3:0] field, 24-23, 24-69
WT bit, 31-46
WTCON (wait for connect) bits, 26-138
WTID (wait from IDPULLUP) bits,

26-138
WUIF bit, 31-27, 31-50
WUIM bit, 31-27, 31-49
WUIS bit, 31-27, 31-49
WUPEN, 29-45
WURESET, 16-58, 16-59, 17-106

X
X_COUNT[15:0] field, 7-93
XFER_DIR (transfer direction) bit, 21-49
XFER_LENGTH (transfer length) bits,

21-58
XFR_TYPE (operating mode) bits, 15-81
X_MODIFY[15:0] field, 7-97
XMTDATA16[15:0] field, 23-49
XMTDATA8[7:0] field, 23-48
XMTFLUSH bit, 23-39, 23-40
XMTINTLEN bit, 23-39, 23-40
XMTSERV bit, 23-44, 23-46

Index

H-94 ADSP-BF54x Blackfin Processor Hardware Reference

XMTSERVM bit, 23-43
XMTSTAT[1:0] field, 23-41, 23-42
XOFF (transmitter off) bit, 25-32

Y
Y_COUNT[15:0] field, 7-99
YFIFO_ERR (luma FIFO error) bit, 15-80

YFIFO_ERR (Luma FIFO Overflow
Error) bit, 21-49, 21-55, 21-56

Y_MODIFY[15:0] field, 7-104

Z
ZMZC (CZM zeroes counter enable) bit,

13-27
µ-law companding, 24-26, 24-31

	ADSP-BF54x Blackfin Processor Hardware Reference, Revision 1.2
	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	What’s New in This Manual
	Technical Support
	Supported Processors
	Product Information
	Analog Devices Web Site
	EngineerZone

	Notation Conventions
	Register Diagram Conventions

	1 Introduction
	Peripherals
	Memory Architecture
	Internal Memory
	External Memory
	NAND Flash Controller (NFC)

	I/O Memory Space
	One-Time-Programmable (OTP) Memory

	DMA Support
	Host DMA Interface

	External Bus Interface Unit
	DDR SDRAM Controller
	Asynchronous Controller

	Ports
	General-Purpose I/O (GPIO)

	Two-Wire Interface
	Controller Area Network
	Enhanced Parallel Peripheral Interface (EPPI)
	SPORT Controllers
	Serial Peripheral Interface (SPI) Port
	Timers
	UART Ports
	USB On-The-Go, Dual-Role Device Controller
	ATA/ATAPI–6 Interface
	Keypad Interface
	Secure Digital (SD)/SDIO Controller
	Rotary Counter Interface
	Security
	Media Transceiver Mac Layer (MXVR)
	Real-Time Clock
	Watchdog Timer
	Clock Signals
	Dynamic Power Management
	Full On Mode (Maximum Performance)
	Active Mode (Moderate Dynamic Power Savings)
	Sleep Mode (High Dynamic Power Savings)
	Deep Sleep Mode (Maximum Dynamic Power Savings)
	Hibernate State (Maximum Power Savings)

	Voltage Regulation
	Boot Modes
	Instruction Set Description
	Development Tools

	2 Chip Bus Hierarchy
	Overview
	Internal Interfaces
	Internal Clocks
	Core Bus Overview

	System Overview
	P Port Interface
	D Port Interface
	On-Chip L2 Interface

	Peripheral Access Bus (PAB)
	PAB Performance
	PAB Agents (Masters, Slaves)

	DMA-Related Buses
	Peripheral DMA
	DAB Bus Agents (Masters)
	DAB Arbitration
	DCB Arbitration
	DEB Arbitration
	DAB, DCB, and DEB Performance

	External Access Bus (EAB)
	EAB/DEB Arbitration
	EAB/DEB Performance

	3 Memory
	Memory Architecture
	Internal Memory
	Overview of L1 Instruction SRAM
	Overview of L1 Instruction ROM
	Overview of L1 Data SRAM

	Overview of Scratchpad Data SRAM
	Overview of On-Chip L2
	L1 Instruction Memory
	Instruction Memory Control Register (IMEM_CONTROL)
	L1 Instruction SRAM

	L1 Instruction Cache
	Cache Lines
	Cache Hits and Misses
	Cache-Line Fills
	Line-Fill Buffer
	Cache-Line Replacement

	Instruction Cache Management
	Instruction Cache Locking by Line
	Instruction Cache Locking by Way
	Instruction Cache Invalidation

	Instruction Test Registers
	ITEST_COMMAND Register
	ITEST_DATA1 Register
	ITEST_DATA0 Register

	L1 Data Memory
	Data Memory Control Register (DMEM_CONTROL)
	L1 Data SRAM
	L1 Data Cache
	Example of Mapping Cacheable Address Space into Data Banks
	Data Cache Access
	Cache Write Method
	Write Buffers
	Interrupt Priority Register (IPRIO) and Write Buffer Depth
	Data Cache Control Instructions
	Data Cache Invalidation

	Data Test Registers
	Data Test Command Register (DTEST_COMMAND)
	Data Test Data 1 Register (DTEST_DATA1)
	Data Test Data 0 Register (DTEST_DATA0)

	On-Chip Level 2 (L2) Memory
	On-Chip L2 Bank Access
	Latency

	One Time Programmable Memory
	External Memory
	Memory Protection and Properties
	Memory Management Unit
	Memory Pages
	Memory Page Attributes

	Page Descriptor Table
	CPLB Management
	MMU Application
	Examples of Protected Memory Regions
	ICPLB Data Registers (ICPLB_DATAx)
	DCPLB Data Registers (DCPLB_DATAx)
	DCPLB Address Registers (DCPLB_ADDRx)
	ICPLB Address Registers (ICPLB_ADDRx)
	CPLB Status Registers
	DCPLB Status Register (DCPLB_STATUS)
	ICPLB Status Register (ICPLB_STATUS)

	CPLB Fault Address Registers
	DCPLB Fault Address Register (DCPLB_FAULT_ADDR)
	ICPLB Fault Address Register (ICPLB_FAULT_ADDR)

	Memory Transaction Model
	Load/Store Operation
	Interlocked Pipeline
	Ordering of Loads and Stores
	Synchronizing Instructions
	Speculative Load Execution
	Conditional Load Behavior

	Working With Memory
	Alignment
	Cache Coherency
	Atomic Operations
	Memory-Mapped Registers
	Core MMR Programming Code Example

	Terminology

	4 One-Time Programmable Memory
	OTP Memory Overview
	OTP Memory Map
	Error Correction
	Error Correction Policy

	OTP Access
	OTP Timing Parameters
	OTP Timing Calculations for SCLK = 100 MHz
	OTP Timing Calculations for SCLK = 50 MHz
	OTP Timing Calculations for SCLK = 40 MHz
	OTP_TIMING Register

	Callable ROM Functions for OTP ACCESS
	Initializing OTP
	bfrom_OtpCommand

	Programming and Reading OTP
	bfrom_OtpRead
	bfrom_OtpWrite
	Error Codes

	Write Protecting OTP Memory
	Accessing Private OTP Memory

	OTP Programming Examples
	Enable Access to Private OTP
	Enable Access to Private OTP and Enable JTAG Emulation in Secure Mode
	Read Public OTP Memory and Print to Console
	OTP Write to Single Page Using Two Half Page Accesses
	Lock Page Without Writing Any Data

	5 External Bus Interface Unit
	General Overview
	Block Diagram
	On-Chip System Interfaces
	Error Detection
	System Arbitration
	Address Resolution
	Reorder Unit
	DDR Queue Manager

	DDR Arbitration
	DDR SDRAM Controller
	Features
	DDR SDRAM Controller
	Mobile DDR SDRAM Controller
	Partial Array Self-refresh
	Memory Driver Strength
	Temperature Compensated self-refresh

	Unsupported Mobile DDR SDRAM Controller Features
	Deep Power Down
	Clock Stop Mode
	Clock Frequency During Operation

	DDR SDRAM Memory Interface
	DDR SDRAM Programming Model
	Recommended Programming Sequence

	DDR Registers
	Memory Control Register 0 (EBIU_DDRCTL0)
	Memory Control Register 1 (EBIU_DDRCTL1)
	Memory Control Register 2 (EBIU_DDRCTL2)
	Memory Control Register 3 (EBIU_DDRCTL3), Regular DDR Devices
	Memory Control Register 3 (EBIU_DDRCTL3), Mobile DDR Devices
	Queue Configuration Register (EBIU_DDRQUE)
	Reset Control Register (EBIU_RSTCTL)
	Error Master Register (EBIU_ERRMST)
	Error Address Register (EBIU_ERRADD)

	Mode of Operation - DDR
	Data Flow for 16-bit DDR SDRAMs

	Definition of Standard DDR Terms
	DDR SDRAM System Organization
	DDR SDRAM Configurations Supported
	DDR Timing Parameter Definitions
	DDR Metrics Control Registers
	DDR Metrics Counter Enable (EBIU_DDRMCEN) Register
	DDR Metrics Counter Clear (EBIU_DDRMCCL) Register
	DDR READ Access Count (EBIU_DDRBRCx) Registers
	DDR WRITE Access Count (EBIU_DDRBWCx) Registers
	DDR Page ACTIVATE Count (EBIU_DDRACCT) Register
	DDR TURN AROUND Count (EBIU_DDRTACT) Register
	DDR AUTO-REFRESH Count (EBIU_DDRARCT) Register
	DDR Grant Count (EBIU_DDRGCx) Registers
	More Grant Counter Options
	DDR Grant Count Control

	Asynchronous Memory Interface
	Asynchronous Memory Address Decode
	Asynchronous Memory Arbitration
	Asynchronous Memory Interface Control Registers
	Asynchronous Memory Global Control Register (EBIU_AMGCTL)
	Asynchronous Memory Bank Control Registers (EBIU_AMBCTL0, EBIU_AMBCTL1)
	Avoiding Bus Contention
	ARDY Input Control

	Memory Bank Select Control Register (EBIU_MBSCTL)
	Flash Memory Bank Control Registers (EBIU_FCTL, EBIU_MODE)
	Booting From Page Mode or Synchronous Flash
	Access Mode Selection
	Memory Mode Control (EBIU_MODE) Register
	Asynchronous Flash Mode
	Flash Memory Bank Control (EBIU_FCTL) Register
	Asynchronous Page Mode
	Synchronous Burst Mode

	EBIU Arbitration Status Register (EBIU_ARBSTAT)

	Programmable Timing Characteristics
	Asynchronous Accesses by Core Instructions
	Asynchronous Reads
	Asynchronous Writes
	Asynchronous Writes Followed by Reads

	Adding Additional Wait States
	Asynchronous Flash Mode Writes and Reads
	Asynchronous Page Mode Reads
	Synchronous Burst Mode Read

	Bus Request and Grant

	6 System Interrupts
	Overview
	Features

	Interfaces
	Description of Operation
	Events and Sequencing
	System Peripheral Interrupts

	Programming Model
	System Interrupt Initialization
	System Interrupt Processing Summary

	System Interrupt Controller Registers
	System Interrupt Assignment (SIC_IARx) Registers
	System Interrupt Mask (SIC_IMASKx) Registers
	System Interrupt Status (SIC_ISRx) Registers
	System Interrupt Wakeup (SIC_IWRx) Registers

	Programming Examples
	Clearing Interrupt Requests

	7 Direct Memory Access
	Overview and Features
	DMA Controller Overview
	External Interfaces
	Internal Interfaces
	Peripheral DMA
	Memory DMA
	Handshaked Memory DMA Mode

	Modes of Operation
	Register-Based DMA Operation
	Stop Mode
	Autobuffer Mode

	Two-Dimensional DMA Operation
	Examples of Two-Dimensional DMA

	Descriptor-Based DMA Operation
	Descriptor List Mode
	Descriptor Array Mode
	Variable Descriptor Size
	Mixing Flow Modes

	Functional Description
	DMA Operation Flow
	DMA Startup
	DMA Refresh
	Work Unit Transitions
	DMA Transmit and MDMA Source
	DMA Receive

	Stopping DMA Transfers

	DMA Errors (Aborts)
	DMA Control Commands
	Restrictions
	Transmit Restart or Finish
	Receive Restart or Finish

	Handshaked Memory DMA Operation
	Pipelining DMA Requests
	HMDMA Interrupts

	DMA Performance
	DMA Throughput
	Memory DMA Timing Details
	Static Channel Prioritization
	Temporary DMA Urgency
	Memory DMA Priority and Scheduling
	Traffic Control

	Programming Model
	Synchronization of Software and DMA
	Single-Buffer DMA Transfers
	Continuous Transfers Using Autobuffering
	Descriptor Structures
	Descriptor Queue Management
	Descriptor Queue Using Interrupts on Every Descriptor
	Descriptor Queue Using Minimal Interrupts

	Software-Triggered Descriptor Fetches

	DMA Registers
	DMA Channel Registers
	Peripheral Map (DMAx_PERIPHERAL_MAP and MDMA_yy_PERIPHERAL_MAP) Registers
	DMA Configuration (DMAx_CONFIG and MDMA_yy_CONFIG) Registers
	Interrupt Status (DMAx_IRQ_STATUS and MDMA_yy_IRQ_STATUS) Registers
	Start Address (DMAx_START_ADDR and MDMA_yy_START_ADDR) Registers
	Current Address (DMAx_CURR_ADDR and MDMA_yy_CURR_ADDR) Registers
	Inner Loop Count (DMAx_X_COUNT and MDMA_yy_X_COUNT) Registers
	Current Inner Loop Count (DMAx_CURR_X_COUNT and MDMA_yy_CURR_X_COUNT) Registers
	Inner Loop Address Increment (DMAx_X_MODIFY and MDMA_yy_X_MODIFY) Registers
	Outer Loop Count (DMAx_Y_COUNT and MDMA_yy_Y_COUNT) Registers
	Current Outer Loop Count (DMAx_CURR_Y_COUNT and MDMA_yy_CURR_Y_COUNT) Registers
	Outer Loop Address Increment (DMAx_Y_MODIFY and MDMA_yy_Y_MODIFY) Registers
	Next Descriptor Pointer (DMAx_NEXT_DESC_PTR and MDMA_yy_NEXT_DESC_PTR) Registers
	Current Descriptor Pointer (DMAx_CURR_DESC_PTR and MDMA_yy_CURR_DESC_PTR) Registers

	Handshake MDMA (HMDMA) Registers
	Handshake MDMA Control (HMDMAx_CONTROL) Registers
	Handshake MDMA Initial Block Count (HMDMAx_BCINIT) Registers
	Handshake MDMA Current Block Count (HMDMAx_BCOUNT) Registers
	Handshake MDMA Current Edge Count (HMDMAx_ECOUNT) Registers
	Handshake MDMA Initial Edge Count (HMDMAx_ECINIT) Registers
	Handshake MDMA Edge Count Urgent (HMDMAx_ECURGENT) Registers
	Handshake MDMA Edge Count Overflow Interrupt (HMDMAx_ECOVERFLOW) Registers

	DMA Traffic Control Registers
	DMA Traffic Control Counter Period (DMACx_TCPER) Registers
	DMA Traffic Control Counter (DMACx_TCCNT) Registers
	DMA Controller 1 Peripheral Multiplexer (DMAC1_PERIMUX) Register

	Programming Examples
	Register-Based 2D Memory DMA
	Initializing Descriptors in Memory
	Software-Triggered Descriptor Fetch Example
	Handshake Memory DMA Example

	8 Host DMA Port
	Overview
	Features

	Interface Overview
	Description of Operation
	Architecture
	Functional Description
	HOSTDP Configuration
	HOSTDP Transactions
	Host Read Status
	Host Read Data and Host Write Data Operations

	HOSTDP Modes of Operation
	Acknowledge Mode
	Interrupt Mode

	DMA STOP Mode and AUTOBUFFER Mode
	Bus Widths and Endian Order
	Access Control
	Improving HOSTDP DMA Bus Bandwidth
	Control Commands Between the External Host and HOSTDP

	Programming Model
	ADSP-BF54x processor Slave
	Host Processor

	Host DMA Port Registers
	Host DMA Port Control (HOST_CONTROL) Register
	Host DMA Port Status (HOST_STATUS) Register
	HOSTDP Timeout (HOST_TIMEOUT) Register

	Programming Examples

	9 General-Purpose Ports
	Overview
	Features

	Module Overview
	External Interfaces
	Internal Interfaces

	Pin Multiplexing Scheme
	Port A
	Port B
	Port C
	Port D
	Port E
	Port F
	Port G
	Port H
	Port I
	Port J
	Port Multiplexing Control

	GPIO Functionality
	Input Mode
	Output Mode
	Open-Drain Mode

	Pin Interrupts
	Programming Model
	Port Registers
	Port Multiplexing Registers
	Port x Function Enable (PORTx_FER) Registers
	Port Multiplexer Control (PORTx_MUX) Registers

	GPIO Registers
	Port x GPIO Direction Set (PORTx_DIR_SET/CLEAR) Registers
	Port x GPIO Input Enable (PORTx_INEN) Registers
	Port x GPIO Data (PORTx/ PORTx_SET/PORTx_CLEAR) Registers

	Pin Interrupt Registers
	Pin Interrupt Mask (PINTx_MASK_SET/ PINTx_MASK_CLEAR) Register Pairs
	Interrupt Request and Latch (PINTx_REQUEST/ PINTx_LATCH) Registers
	Interrupt Edge (PINTx_EDGE_SET/ PINTx_EDGE_CLEAR) Register Pairs
	Pin Interrupt Pin State (PINTx_PINSTATE) Register
	Pin Interrupt Invert Set (PINTx_INVERT_SET/ PINTx_INVERT_CLEAR) Registers
	Pin Interrupt Assignment (PINTx_ASSIGN) Registers

	Programming Examples

	10 General-Purpose Timers
	Overview and Features
	Features

	Interface Overview
	External Interface
	Internal Interface

	Description of Operation
	Interrupt Processing
	Illegal States

	Modes of Operation
	Pulse Width Modulation (PWM_OUT) Mode
	Output Pad Disable
	Single Pulse Generation
	Pulse-Width Modulation Waveform Generation
	PULSE_HI Toggle Mode
	Externally-Clocked PWM_OUT
	Stopping the Timer in PWM_OUT Mode

	Pulse-Width Count and Capture (WDTH_CAP) Mode
	Autobaud Mode
	Capturing Timings from the GP Counter Module

	External Event (EXT_CLK) Mode

	Programming Model
	Timer Registers
	Timer Enable (TIMER_ENABLEx) Registers
	Timer Disable (TIMER_DISABLEx) Registers
	Timer Status (TIMER_STATUSx) Registers
	Timer Configuration (TIMERx_CONFIG) Registers
	Timer Counter (TIMERx_COUNTER) Registers
	TIMERx_PERIOD and TIMERx_WIDTH Registers
	Summary

	Programming Examples

	11 Core Timer
	Overview and Features
	Timer Overview
	External Interfaces
	Internal Interfaces

	Description of Operation
	Interrupt Processing

	Core Timer Registers
	Core Timer Control (TCNTL) Register
	Core Timer Count (TCOUNT) Register
	Core Timer Period (TPERIOD) Register
	Core Timer Scale (TSCALE) Register

	Programming Examples

	12 Watchdog Timer
	Overview and Features
	Interface Overview
	External Interface
	Internal Interface

	Description of Operation
	Watchdog Timer Registers
	Watchdog Count (WDOG_CNT) Register
	Watchdog Status (WDOG_STAT) Register
	Watchdog Control (WDOG_CTL) Register

	Programming Examples

	13 Rotary Counter
	Overview
	Features

	Interface Overview
	Description of Operation
	Quadrature Encoder Mode
	Binary Encoder Mode
	Rotary Counter Mode
	Direction Counter Mode
	Timed Direction Mode

	Functional Description
	Input Noise Filtering (Debouncing)
	Zero Marker (Pushbutton) Operation
	Boundary Comparison Modes
	Rotary Encoder Events: Control and Signaling
	Illegal Gray/Binary Code Events (Two-Step Detection)
	Up/Down Count Events
	Zero Count Events
	Overflow Events
	Boundary Match Events
	Zero Marker Events

	Capturing Timing Information (Using the General-Purpose Timer)
	Capturing Time Interval Between Successive Counter Events
	Capturing Counter Interval and CNT_COUNTER Read Timing

	Counter Commands

	Programming Mode
	Rotary Counter Registers
	Configuration (CNT_CONFIG) Register
	Boundary Register Mode

	Interrupt Mask (CNT_IMASK) Register
	Status (CNT_STATUS) Register
	Command (CNT_COMMAND) Register
	Debounce Prescale (CNT_DEBOUNCE) Register
	Counter (CNT_COUNTER) Register
	Boundary (CNT_MIN and CNT_MAX) Registers

	Programming Examples

	14 Real-Time Clock
	Overview
	Interface Overview
	Description of Operation
	RTC Clock Requirements
	Prescaler Enable

	RTC Programming Model
	Register Writes
	Write Latency
	Register Reads
	Deep Sleep
	Event Flags
	Setting Time of Day
	Using the Stopwatch
	Interrupts
	State Transitions Summary

	RTC Registers
	RTC Status (RTC_STAT) Register
	RTC Interrupt Control (RTC_ICTL) Register
	RTC Interrupt Status (RTC_ISTAT) Register
	RTC Stopwatch Count (RTC_SWCNT) Register
	RTC Alarm (RTC_ALARM) Register
	RTC Prescaler Enable (RTC_PREN) Register

	Programming Examples
	Enable RTC Prescaler
	RTC Stopwatch For Exiting Deep Sleep Mode
	RTC Alarm to Come Out of Hibernate State

	15 Enhanced Parallel Peripheral Interface
	Overview
	Interface Overview
	Description of Operation
	EPPI Reset
	Clock Gating
	Frame Sync Polarity & Sampling Edge
	Interrupts

	Functional Description
	ITU-R 656 Modes
	ITU-R 656 Background
	ITU-R 656 Input Modes
	Entire Field
	Active Video
	Vertical Blanking Interval (VBI) only

	ITU-R 656 Output in GP Transmit Modes
	Frame Synchronization in ITU-R 656 Modes
	General-Purpose EPPI Modes
	GP 0 FS Mode
	Frame Synchronization in GP 0 FS External Trigger Mode
	Frame Synchronization in GP 0 FS Internal Trigger Mode

	GP 1 FS Mode
	GP 2 FS Mode
	DEN functionality in GP 2 FS Transmit Mode

	GP 3 FS Mode

	EPPI Data Path Options
	EPPI Data Lengths
	EPPI DMA Channels
	Data Packing For Receive Modes
	Data Unpacking For Transmit Modes
	Sign-Extension and Zero-Filling
	Split Receive Modes
	Split Transmit Modes
	RGB Data Formats
	Programmed Clipping and Thresholding of Data Values
	Data Transfer Examples
	8-Bit Receive Mode
	10/12/14-Bit Receive Modes
	16-Bit Receive Mode
	18-Bit Receive Mode
	24-Bit Receive Mode
	8-Bit Split Receive Mode
	10/12/14/16-Bit Split Receive Mode with SPLT_16 = 0
	16-Bit Split Receive Mode with SPLT_16 = 1
	8-Bit Transmit Mode
	10/12/14-Bit Transmit Modes
	16-Bit Transmit Mode
	18-Bit Transmit Mode
	24-Bit Transmit Mode
	8-Bit Split Transmit Mode
	10/12/14/16-Bit Split Transmit Mode with SPLT_16 = 0
	16-Bit Split Transmit Mode with SPLT_16 = 1

	Programming Model
	DMA Operation
	Elevating EPPI Urgent Requests at DDR Controller Interface
	System Configuration

	EPPI Registers
	EPPI Status (EPPIx_STATUS) Register
	EPPIx Control (EPPIx_CONTROL) Register
	Windowing Registers
	EPPI Lines per Frame Register (EPPIx_FRAME)
	EPPI Samples per Line Register (EPPIx_LINE)
	EPPI Vertical Delay Register (EPPIx_VDELAY)
	EPPI Vertical Transfer Count Register (EPPIx_VCOUNT)
	EPPI Horizontal Delay Register (EPPIx_HDELAY)
	EPPI Horizontal Transfer Count Register (EPPIx_HCOUNT)

	EPPI Clock Divide Register (EPPIx_CLKDIV)
	Frame Sync/ Blanking Generation Registers
	EPPI FS1 Width Register/EPPI Horizontal Blanking Samples per Line Register (EPPIx_FS1W_HBL)
	EPPI FS2 Width Register/EPPI Lines of Vertical Blanking Register (EPPIx_FS2W_LVB)
	EPPI FS1 Period Register/EPPI Active Video Samples per Line Register (EPPIx_FS1P_AVPL)
	EPPI FS2 Period Register/EPPI Lines of Active Video per Frame Register (EPPIx_FS2P_LAVF)

	EPPI Clipping Register (EPPIx_CLIP)

	16 Security
	Overview
	Features
	Description of Operation
	Secure State Machine
	Open Mode
	Secure Entry Mode
	Secure Mode
	SecureMode Control

	Security Features
	Digital Signature Authentication
	Digital Signature Authentication Performance Measurement

	Protection Features
	Operating in Secure Mode
	Entering Secure Mode
	Exiting Secure Mode

	Reset Handling in Secure Mode
	Hardware Reset
	Clearing Private Data

	Public Key Requirements
	Storing Public Cipher Key in Public OTP

	Cryptographic Ciphers
	Keys
	Debug Functionality
	Programming Examples

	Programming Model
	Secure Entry Service Routine (SESR) API
	Starting Authentication
	Memory Configuration
	Message Placement
	Digital Signature
	Message Size Constraints
	Memory Usage
	Memory Protection

	Secure Function and Secure Entry Service Routine Arguments
	Secure Function Arguments
	Secure Entry Service Routine Arguments
	usFlags
	uslRQMask
	ulMessageSize
	ulSFEntryPoint
	ulMessagePtr
	Secure Message Execution
	Return Codes
	Advanced Encryption Standard (AES) API
	ADI_AES_DATA Data Type
	ADI_AES_KEYEXPANSION Data Type
	ADI_AES_CIPHER Data Type
	bfrom_AesInit() ROM Routine
	bfrom_AesKeyexp() ROM Routine
	bfrom_AesInvKeyexp() ROM Routine
	bfrom_AesCipher() ROM Routine
	bfrom_AesInvCipher() ROM Routine

	SECURE HASH ALGORITHM (SHA-1) API
	ADI_SHA1 Data Type
	bfrom_Sha1Init ROM Routine
	bfrom_Sha1Hash ROM Routine

	ARC4 API
	ADI_ARC4_KEY Data Type
	ADI_ARC4_DATA Data Type
	bfrom_Arc4Init ROM Routine
	bfrom_Arc4Cipher ROM Routine

	Security Registers
	Secured System Switches (SECURE_SYSSWT) Register
	Secure Control (SECURE_CONTROL) Register
	Secure Status (SECURE_STATUS) Register

	17 System Reset and Booting
	Overview
	Reset and Power-up
	Hardware Reset
	Software Resets
	Reset Vector
	Servicing Reset Interrupts

	Preboot
	Factory Page Settings (FPS)
	Preboot Page Settings (PBS)
	Alternative PBS Pages
	Programming PBS Pages
	Recovering From Misprogrammed PBS Pages
	Customizing Power Management
	Customizing Booting Options
	Customizing the Asynchronous Port
	Customizing the Synchronous Port

	Basic Booting Process
	Block Headers
	Block Code
	DMA Code Field
	Block Flags Field
	Header Checksum Field
	Header Sign Field

	Target Address
	Byte Count
	Argument

	Boot Host Wait (HWAIT) Feedback Strobe
	Using HWAIT as Reset Indicator

	Boot Termination
	Single Block Boot Streams
	Direct Code Execution

	Advanced Boot Techniques
	Initialization Code
	Quick Boot
	Indirect Booting
	Callback Routines
	Error Handler
	CRC Checksum Calculation
	Load Functions
	Calling the Boot Kernel at Runtime
	Debugging the Boot Process

	Boot Management
	Booting a Different Application
	Multi-DXE Boot Streams
	Determining Boot Stream Start Addresses
	Initialization Hook Routine

	Specific Boot Modes
	No Boot Mode
	Flash Boot Modes
	SDRAM Boot Mode
	FIFO Boot Mode
	SPI Master Boot Modes
	SPI Device Detection Routine

	SPI Slave Boot Mode
	TWI Master Boot Mode
	TWI Slave Boot Mode
	UART Slave Mode Boot
	OTP Boot Mode
	Host DMA Boot Modes
	NAND Flash Boot Mode
	Supported Devices
	NAND Flash Page Structure
	Auto Detection
	Boot Stream Processing
	Software Configurable NAND Flash Boot Modes
	Sequential Block Mode
	Block Skip Mode
	Multiple Image Mode

	Reset and Booting Registers
	Software Reset (SWRST) Register
	System Reset Configuration (SYSCR) Register
	Boot Code Revision Control (BK_REVISION)
	Boot Code Date Code (BK_DATECODE)
	Zero Word (BK_ZEROS)
	Ones Word (BK_ONES)

	OTP Memory Pages for Booting
	Lower PBS00 Half Page
	Upper PBS00 Half Page
	Lower PBS01 Half Page
	Upper PBS01 Half Page
	Lower PBS02 Half Page
	Upper PBS02 Half Page
	Reserved Half Pages

	Data Structures
	ADI_BOOT_HEADER
	ADI_BOOT_BUFFER
	ADI_BOOT_DATA
	dFlags Word

	ADI_BOOT_NAND
	ADI_BOOT_NAND_DEVICE
	ADI_BOOT_NAND_BUFFER
	ADI_BOOT_NAND_ACCESS
	ADI_BOOT_NAND_ADDRESS
	ADI_BOOT_NAND_ECC

	Callable ROM Functions for Booting
	BFROM_FINALINIT
	BFROM_PDMA
	BFROM_MDMA
	BFROM_MEMBOOT
	BFROM_TWIBOOT
	BFROM_SPIBOOT
	BFROM_OTPBOOT
	BFROM_NANDBOOT
	BFROM_BOOTKERNEL
	BFROM_CRC32
	BFROM_CRC32POLY
	BFROM_CRC32CALLBACK
	BFROM_CRC32INITCODE

	Programming Examples
	System Reset
	Exiting Reset to User Mode
	Exiting Reset to Supervisor Mode
	Initcode (SDRAM Controller Setup)
	Initcode (Power Management Control)
	Initcode (NAND Flash Boot Mode Configuration)
	Quickboot With Restore From SDRAM
	XOR Checksum
	Direct Code Execution
	Managing PBS Pages in OTP Memory

	18 Dynamic Power Management
	Phase-Locked Loop and Clock Control
	PLL Overview
	PLL Clock Multiplier Ratios
	Core Clock/System Clock Ratio Control

	Dynamic Power Management Controller
	Operating Modes
	Dynamic Power Management Controller States
	Full On Mode
	Active Mode
	Sleep Mode
	Deep Sleep Mode
	Hibernate State

	Operating Mode Transitions
	Programming Operating Mode Transitions

	Dynamic Supply Voltage Control
	Power Supply Management
	Controlling the Voltage Regulator
	Changing Voltage
	Powering Down the Core (Hibernate State)
	Recovery From Hibernate State

	PLL and VR Registers
	PLL Divide (PLL_DIV) Register
	PLL Control (PLL_CTL) Register
	PLL Status (PLL_STAT) Register
	PLL Lock Count (PLL_LOCKCNT) Register
	Voltage Regulator Control (VR_CTL) Register

	System Control ROM Function
	Programming Model
	Access System Control ROM Function in C/C++
	Access System Control ROM Function in Assembly

	Programming Examples
	Full On Mode to Active Mode and Back
	Transition to Sleep Mode or Deep Sleep Mode
	Setting Wakeups and Entering Hibernate State
	Perform a System Reset or Soft-Reset
	Change VCO, Core Clock, and System Clock Frequency
	Changing Voltage Levels

	19 System Design
	Pin Descriptions
	Managing Clocks
	Managing Core and System Clocks

	Configuring and Servicing Interrupts
	Semaphores
	Example Code for Query Semaphore

	Data Delays, Latencies, and Throughput
	Bus Priorities
	System-Level Hardware Design
	External Memory Design Issues
	DDR Memory
	Memory Bus Pin Muxing and Flow Control
	Example Asynchronous Memory Interfaces
	Avoiding Bus Contention
	BURST FLASH
	NAND FLASH

	USB Controller
	ATAPI Bus
	Voltage Regulator
	Signal Integrity
	Decoupling Capacitors and Ground Planes
	5 Volt Tolerance
	Resetting the Processor
	Recommendations for Unused Pins
	Programmable Outputs and Pin Multiplexing
	Test Point Access
	Oscilloscope Probes

	Recommended Reading

	20 NAND Flash Controller
	Overview
	Interface Overview
	Description of Operation
	Internal Bus Interfaces
	Bus Access Types
	Access Timing
	Pin Sharing

	Functional Description
	Page Write
	Page Read
	Additional Operations
	Write Protection
	Chip Enable Don’t Care
	NFC Error Detection
	Error Analysis
	Large Page Size Support

	NFC SmartMedia Support

	Programming Model
	NFC Registers
	NFC Control Register (NFC_CTL)
	NFC Status Register (NFC_STAT)
	NFC Interrupt Status Register (NFC_IRQSTAT)
	NFC Interrupt Mask Register (NFC_IRQMASK)
	NFC ECC Registers (NFC_ECCx)
	NFC Count Register (NFC_COUNT)
	NFC Reset Register (NFC_RST)
	NFC Page Control Register (NFC_PGCTL)
	NFC Read Data Register (NFC_READ)
	NFC Address Register (NFC_ADDR)
	NFC Command Register (NFC_CMD)
	NFC Data Write Register (NFC_DATA_WR)
	NFC Data Read Register (NFC_DATA_RD)

	NFC Programming Examples

	21 ATAPI Interface
	Interface Overview
	Description of Operation
	Host PIO/Register Transfers
	PIO Data-Out Transfers (Device Write)
	PIO Data-In Transfers (Device Read)

	Host Multiword DMA Transfers
	Host Pausing the Multi-DMA Transfer
	Host Terminating the Multi DMA Transfer
	Device Pausing the Multi-DMA Transfer
	Device Terminating the Multi-DMA Transfer

	Host Ultra DMA Command Protocol Transfers
	Host Pausing the Ultra DMA Data-In Transfer
	Host Terminating the Ultra DMA Data-In Transfer
	Device Pausing the Ultra DMA Data-In Transfer
	Device Terminating the Ultra DMA Data-In Transfer
	Host Pausing Ultra DMA Data-Out Transfer
	Host Terminating Ultra DMA Data-Out Transfer
	Device Pausing the Ultra DMA Data-Out Transfer
	Device Terminating the Ultra DMA Data-Out Transfer

	Functional Description
	Power-on and Hardware Reset Protocol
	Device Selection Protocol
	Programmed I/O (PIO)
	Host Multi DMA Block Implementation
	Host Ultra DMA Block Implementation
	Initiating an Ultra DMA Data-In Burst
	Data-In Transfer
	Device pausing an Ultra DMA Data-In Burst
	Host pausing an Ultra DMA Data-In Burst
	Ultra DMA Timing
	Ultra DMA-Out Timing

	Programming Model
	ATAPI Device Configuration and Setup
	PIO Data-out Transfers Pseudo-code
	Host Multiword DMA Transfers Pseudo-code
	Host Ultra DMA Command Protocol Transfers Pseudo-code

	ATAPI Registers
	ATAPI Control and Status Registers
	ATAPI Control (ATAPI_CONTROL) Register
	ATAPI Status (ATAPI_STATUS) Register
	ATAPI Device Address (ATAPI_DEV_ADDR) Register
	ATAPI Device Transmit Buffer (ATAPI_DEV_TXBUF) Register
	ATAPI Device Receive Buffer (ATAPI_DEV_RXBUF) Register
	ATAPI Interrupt Mask (ATAPI_INT_MASK) Register
	ATAPI Interrupt Status (ATAPI_INT_STATUS) Register
	ATAPI Transfer Length (ATAPI_XFER_LEN) Register
	ATAPI Line Status (ATAPI_LINE_STATUS) Register
	ATAPI State Machine Status (ATAPI_SM_STATE) Register
	ATAPI Host Terminate (ATAPI_TERMINATE) Register
	ATAPI PIO Transfer Count (ATAPI_PIO_TFRCNT) Register
	ATAPI Multiword DMA Transfer Count (ATAPI_MULTI_TFRCNT) Register
	ATAPI Ultra DMA Transfer Count (ATAPI_ULTRA_IN_TFRCNT) Register
	ATAPI Ultra DMA OUT Transfer Count (ATAPI_ULTRA_OUT_TFRCNT) Register
	ATAPI Register Transfer Timing 0 (ATAPI_REG_TIM_0) Register
	ATAPI Programmed I/O Timing 0 (ATAPI_PIO_TIM_0) Register
	ATAPI Programmed I/O Timing 1 (ATAPI_PIO_TIM_1) Register
	ATAPI Multi DMA Timing 0 (ATAPI_MULTI_TIM_0) Register
	ATAPI Multi DMA Timing 1 (ATAPI_MULTI_TIM_1) Register
	ATAPI Multi DMA Timing 2 (ATAPI_MULTI_TIM_2) Register
	ATAPI Ultra DMA Timing 0 (ATAPI_ULTRA_TIM_0) Register
	ATAPI Ultra DMA Timing 1 (ATAPI_ULTRA_TIM_1) Register
	ATAPI Ultra DMA Timing 2 (ATAPI_ULTRA_TIM_2) Register
	ATAPI Ultra DMA Timing 3 (ATAPI_ULTRA_TIM_3) Register

	ATAPI Device I/O Registers
	Command Register (R/W)
	Device Control Register (WO)
	Features Register (WO)
	Sector Count Register (R/W)
	Status Register (RO)
	Alternate Status Register (RO)
	Error Register (RO)

	ATAPI Standards Reference
	Summary of IDE/ATA Standards
	ATAPI Timing Summary
	IDE/ATA Transfer Modes and Protocols
	Programmed (I/O) PIO Modes
	Direct Memory Access (DMA) Modes
	Ultra Direct Memory Access (DMA) Modes

	ATAPI Device Selection

	22 SPI-Compatible Port Controllers
	Overview
	Interface Overview
	External Interface
	Serial Peripheral Interface Clock Signal (SPIxSCK)
	Master Out Slave In (MOSI)
	Master In Slave Out (MISO)
	Serial Peripheral Interface Slave Select Input Signal
	Serial Peripheral Interface Slave Select Enable Output Signals
	Slave Select Inputs
	Use of FLS Bits in SPI_FLG for Multiple Slave SPI Systems

	Internal Interfaces
	DMA Functionality

	SPI Transmit Data Buffer
	SPI Receive Data Buffer

	Description of Operation
	SPI Transfer Protocols
	SPI General Operation
	SPI Control
	Clock Signals
	SPI Baud Rate
	Error Signals and Flags
	Mode Fault Error (MODF)
	Transmission Error (TXE)
	Reception Error (RBSY)
	Transmit Collision Error (TXCOL)

	Interrupt Output

	Functional Description
	Master Mode Operation
	Transfer Initiation From Master (Transfer Modes)
	Slave Mode Operation
	Slave Ready for a Transfer

	Programming Model
	Beginning and Ending an SPI Transfer
	Master Mode DMA Operation
	Slave Mode DMA Operation

	SPI Registers
	SPI Baud Rate (SPIx_BAUD) Register
	SPI Control (SPIx_CTL) Register
	SPI Flag (SPIx_FLG) Register
	SPI Status (SPIx_STAT) Register
	SPI Transmit Data Buffer (SPIx_TDBR) Register
	SPI Receive Data Buffer (SPIx_RDBR) Register
	SPI RDBR Shadow (SPIx_SHADOW) Register

	Programming Examples
	Core Generated Transfer
	Initialization Sequence
	Starting a Transfer
	Post Transfer and Next Transfer
	Stopping

	DMA Transfer
	DMA Initialization Sequence
	SPI Initialization Sequence
	Starting a Transfer
	Stopping a Transfer

	23 Two-Wire Interface Controllers
	Overview
	Interface Overview
	External Interface
	Serial Clock signal (SCL1–0)
	Serial data signal (SDA1–0)
	TWI Pins

	Internal Interfaces

	Description of Operation
	TWI Transfer Protocols
	Clock Generation and Synchronization
	Bus Arbitration
	Start and Stop Conditions
	General Call Support
	Fast Mode

	TWI General Operation
	TWI Control
	Clock Signal

	Functional Description
	General Setup
	Slave Mode
	Master Mode Clock Setup
	Master Mode Transmit
	Master Mode Receive
	Clock Stretching
	Clock Stretching During FIFO Underflow
	Clock Stretching during FIFO Overflow
	Clock Stretching During Repeated Start Condition

	Programming Model
	TWI Registers
	SCLx Clock Divider (TWIx_CLKDIV) Register
	TWI Control (TWIx_CONTROL) Register
	TWI Slave Mode Control (TWIx_SLAVE_CTL) Register
	TWI Slave Mode Address (TWIx_SLAVE_ADDR) Register
	TWI Slave Mode Status (TWIx_SLAVE_STAT) Register
	TWI Master Mode Control (TWIx_MASTER_CTL) Register
	TWI Master Mode Address (TWIx_MASTER_ADDR) Register
	TWI Master Mode Status (TWIx_MASTER_STAT) Register
	TWI FIFO Control (TWIx_FIFO_CTL) Register
	TWI FIFO Status (TWIx_FIFO_STAT) Register
	TWI FIFO Status

	TWI Interrupt Mask (TWIx_INT_MASK) Register
	TWI Interrupt Status (TWIx_INT_STAT) Register
	TWI FIFO Transmit Data Single Byte (TWIx_XMT_DATA8) Register
	TWI FIFO Transmit Data Double Byte (TWIx_XMT_DATA16) Register
	TWI FIFO Receive Data Single Byte (TWIx_RCV_DATA8) Register
	TWI FIFO Receive Data Double Byte (TWIx_RCV_DATA16) Register

	Programming Examples
	Master Mode Setup
	Slave Mode Setup

	Electrical Specifications

	24 SPORT Controllers
	Overview
	Features

	Interface Overview
	SPORT Pin/Line Terminations

	Description of Operation
	SPORT Operation
	SPORT Disable
	Setting SPORT Modes
	Stereo Serial Operation
	Multichannel Operation
	Multichannel Enable
	Frame Syncs in Multichannel Mode
	Multichannel Frame
	Multichannel Frame Delay
	Window Size
	Window Offset
	Other Multichannel Fields in SPORTx_MCMC2
	Channel Selection Register
	Multichannel DMA Data Packing

	Support for H.100 Standard Protocol
	2X Clock Recovery Control

	Functional Description
	Clock and Frame Sync Frequencies
	Maximum Clock Rate Restrictions

	Word Length
	Bit Order
	Data Type
	Companding
	Clock Signal Options
	Frame Sync Options
	Framed Versus Unframed
	Internal Versus External Frame Syncs
	Active Low Versus Active High Frame Syncs
	Sampling Edge for Data and Frame Syncs
	Early Versus Late Frame Syncs (Normal Versus Alternate Timing)
	Data Independent Transmit Frame Sync

	Moving Data Between SPORTs and Memory
	SPORT RX, TX, and Error Interrupts
	PAB Errors
	Timing Examples

	SPORT Registers
	Register Writes and Effective Latency
	Transmit Configuration (SPORTx_TCR1 and SPORTx_TCR2) Registers
	SPORTx_RCR1 and SPORTx_RCR2 Registers
	Data Word Formats
	Transmit Data (SPORTx_TX) Register
	Receive Data (SPORTx_RX) Register
	SPORT Status (SPORTx_STAT) Register
	Serial Clock Divider (SPORTx_TCLKDIV and SPORTx_RCLKDIV) Registers
	Frame Sync Divider (SPORTx_TFSDIV and SPORTx_RFSDIV) Registers
	Multichannel Configuration (SPORTx_MCMCn) Registers
	Current Channel (SPORTx_CHNL) Register
	Multichannel Selection Receive (SPORTx_MRCSn) Registers
	Multichannel Selection Transmit (SPORTx_MTCSn) Registers

	Programming Examples
	SPORT Initialization Sequence
	DMA Initialization Sequence
	Interrupt Servicing
	Starting a Transfer

	25 UART Port Controllers
	Overview
	Features

	Interface Overview
	External Interface
	Internal Interface

	Description of Operation
	UART Transfer Protocol
	UART Transmit Operation
	UART Receive Operation
	Hardware Flow Control
	IrDA Transmit Operation
	IrDA Receive Operation
	Interrupt Processing
	Bit Rate Generation
	Autobaud Detection

	Programming Model
	Non-DMA Mode
	DMA Mode
	Mixing Modes

	UART Registers
	Line Control (UARTx_LCR) Registers
	Modem Control (UARTx_MCR) Registers
	Line Status (UARTx_LSR) Registers
	Modem Status (UARTx_MSR) Registers
	Transmit Hold (UARTx_THR) Registers
	Receive Buffer (UARTx_RBR) Registers
	Interrupt Enable (UARTx_IER_SET and UARTx_IER_CLEAR) Registers
	Clock Divisor Latch (UARTx_DLL and UARTx_DLH) Registers
	UART Scratch (UARTx_SCR) Registers
	Global Control (UARTx_GCTL) Registers

	Programming Examples

	26 USB OTG Controller
	Overview
	Features

	Interface Overview
	FIFO Configuration
	Interrupts
	Resets

	Description of Operation
	Peripheral Mode Operation
	Endpoint Setup
	IN Transactions as a Peripheral
	OUT Transactions as a Peripheral
	Peripheral Transfer Workflows
	Control Transactions as a Peripheral
	Write Requests
	Read Requests
	Zero Data Requests
	ENDPOINT 0 States
	Endpoint 0 Service Routine as Peripheral
	Peripheral Mode, Bulk IN, Transfer Size Known
	Peripheral Mode, Bulk IN, Transfer Size Unknown
	Peripheral Mode, ISO IN, Small MaxPktSize
	Peripheral Mode, ISO IN, Large MaxPktSize
	Peripheral Mode, Bulk OUT, Transfer Size Known
	Peripheral Mode, Bulk OUT, Transfer Size Unknown
	Peripheral Mode, ISO OUT, Small MaxPktSize
	Peripheral Mode, ISO OUT, Large MaxPktSize

	Peripheral Mode Suspend
	Start-of-frame (SOF) Packets
	Soft Connect/Soft Disconnect
	Error Handling As a Peripheral
	Stalls Issued to Control Transfers
	Zero Length OUT Data Packets in Control Transfers

	Host Mode Operation
	Endpoint Setup and Data Transfer
	Control Transaction as a Host
	Setup Phase as a Host
	IN Data Phase as a Host
	OUT Data as a Host (Control)
	IN Status Phase as a Host (Following SETUP Phase or OUT Data Phase)
	OUT Status Phase as a Host (following IN Data Phase)
	Host IN Transactions
	Host OUT Transactions
	Transaction Scheduling
	Babble
	VBUS Events
	Actions as an “A” Device
	Actions as a “B” Device

	Host Mode Reset
	Host Mode Suspend

	Functional Description
	On-Chip Bus Interfaces
	Interface Pins
	Power and Clocking
	UTMI Interface

	Programming Model
	Peripheral Mode Flow Charts
	Host Mode Flow Charts
	DMA Mode Flow Charts
	OTG Session Request
	Starting a Session
	Detecting Activity

	Host Negotiation/Configuration
	Software Clock Control
	Wakeup from Hibernate State
	Wakeup Without Re-Enumeration
	Data Transfer
	Loading/Unloading Packets from Endpoints
	DMA Master Channels
	DMA Bus Cycles
	Transferring Packets Using DMA
	Individual Packet: RX Endpoint
	Individual Packet: TX Endpoint
	Multiple Packets: RX Endpoint
	Multiple Packets: TX Endpoints

	USB OTG Registers
	USB Global Control (USB_GLOBAL_CTL) Register
	USB Power Management (USB_POWER) Register
	USB Function Address (USB_FADDR) Register
	USB Test Mode (USB_TESTMODE) Register
	USB Global Interrupt (USB_GLOBINTR) Register
	USB Transmit Interrupt (USB_INTRTX) Register
	USB Receive Interrupt (USB_INTRRX) Register
	USB Transmit Interrupt Enable (USB_INTRTXE) Register
	USB Receive Interrupt Enable (USB_INTRRXE) Register
	USB Common Interrupts (USB_INTRUSB) Register
	USB Common Interrupt Enable (USB_INTRUSBE) Register
	USB Frame Number (USB_FRAME) Register
	USB Index (USB_INDEX) Register
	USB TX Max Packet (USB_TX_MAX_PACKET) Register
	USB Control/Status EP0 (USB_CSR0) Register
	USB TX Control/Status EPx (USB_TXCSR) Register
	USB RX Max Packet (USB_RX_MAX_PACKET) Register
	USB RX Control/Status (USB_RXCSR) Register
	USB Count 0 (USB_COUNT0) Register
	USB RX Byte Count EPx (USB_RXCOUNT) Register
	USB TX Type (USB_TXTYPE) Register
	USB NAK Limit 0 (USB_NAKLIMIT0) Register
	USB TX Interval (USB_TXINTERVAL) Register
	USB RX Type (USB_RXTYPE) Register
	USB RX Interval (USB_RXINTERVAL) Register
	USB TX Byte Count EPx (USB_TXCOUNT) Register
	USB Endpoint FIFO (USB_EPx_FIFO) Registers
	USB OTG Device Control (USB_OTG_DEV_CTL) Register
	USB OTG VBUS Interrupt (USB_OTG_VBUS_IRQ) Register
	USB OTG VBUS Mask (USB_OTG_VBUS_MASK) Register
	USB Link Info (USB_LINKINFO) Register
	USB VBUS Pulse Length (USB_VPLEN) Register
	USB High-Speed EOF 1 (USB_HS_EOF1) Register
	USB Full-Speed EOF 1 (USB_FS_EOF1) Register
	USB Low-Speed EOF 1 (USB_LS_EOF1) Register
	USB APHY Control 2 (USB_APHY_CNTRL2) Register
	USB PLL OSC Control (USB_PLLOSC_CTRL) Register
	USB SRP Clock Divider (USB_SRP_CLKDIV) Register
	USB DMA Interrupt (USB_DMA_INTERRUPT) Register
	USB DMAx Control (USB_DMA_CONTROL) Registers
	USB DMAx Address Low (USB_DMAxADDRLOW) Registers
	USB DMAx Address High (USB_DMAxADDRHIGH) Registers
	USB DMAx Count Low (USB_DMAxCOUNTLOW) Registers
	USB DMAx Count High (USB_DMAxCOUNTHIGH) Registers

	References
	Glossary of USB Terms

	27 Secure Digital Host
	Overview
	Interface Overview
	Description of Operation
	Functional Description
	SDH Clock Configuration
	SDH Interface Configuration
	Card Detection
	SDH Power Saving Configuration
	SDH Commands and Responses
	IDLE State
	PEND State
	SEND State
	WAIT State
	RECEIVE State
	SDH Command Path CRC

	SDH Data
	SDH Data Transmit Path
	SDH Data Receive Path
	SDH Data Path CRC
	SDH Data FIFO
	SDIO Interrupt and Read Wait Support

	Programming Model
	Card Identification
	SD Card Identification Procedure
	MMC Identification Procedure

	Single Block Write Operations
	Using Core
	Using DMA

	Single Block Read Operations
	Using Core
	Using DMA

	Multiple Block Write Operations
	Using Core
	Using DMA

	Multiple Block Read Operations
	Using Core
	Using DMA

	SDH Registers
	SDH Power Control Register (SDH_PWR_CTL)
	SDH Clock Control Register (SDH_CLK_CTL)
	SDH Argument Register (SDH_ARGUMENT)
	SDH Command Register (SDH_COMMAND)
	SDH Response Command Register (SDH_RESP_CMD)
	SDH Response Registers (SDH_RESPONSEx)
	SDH Data Timer Register (SDH_DATA_TIMER)
	SDH Data Length Register (SDH_DATA_LGTH)
	SDH Data Control Register (SDH_DATA_CTL)
	SDH Data Counter Register (SDH_DATA_CNT)
	SDH Status Register (SDH_STATUS)
	SDH Status Clear Register (SDH_STATUS_CLR)
	SDH Interrupt Mask Registers (SDH_MASKx)
	SDH FIFO Counter Register (SDH_FIFO_CNT)
	SDH Data FIFO Register (SDH_FIFO)
	SDH Exception Status Register (SDH_E_STATUS)
	SDH Exception Mask Register (SDH_E_MASK)
	SDH Configuration Register (SDH_CFG)
	SDH Read Wait Enable Register (SDH_RD_WAIT_EN)
	SDH Identification Registers (SDH_PIDx)

	Programming Examples

	28 Pixel Compositor
	Overview
	Features

	Interface Overview
	Description of Operation
	General Description
	Data Buffer Formats
	Operation in YUV 4:2:2 Format
	Operation in RGB888 Format

	DMA Channels

	Functional Description
	Data Overlay
	Transparency Control
	Transparent Color
	Color Space Conversion
	Case 1 - Image and Overlay in the Same Format
	Case 2 - Image and Overlay in Different Formats
	Case 3 - Color Space Conversion Only

	Color Space Conversion Matrix Equations
	Color Space Converter Output Thresholds
	YUV Conversion Modes
	Upsampling
	Downsampling

	PIXC Actions
	Recommendations

	Special Usage Cases
	Example 1 - Currently Defined Mode
	Example 1 - Special Usage of This Mode
	Example 2 - Currently Defined Mode
	Example 2 - Special Usage of This Mode
	Example 3 - Currently Defined Mode
	Example 3 - Special Usage of This Mode
	Example 4 - Currently Defined Mode
	Example 4 - Special Usage of This Mode

	Programming Model
	PIXC Registers
	PIXC Control (PIXC_CTL) Register
	PIXC Pixels Per Line (PIXC_PPL) Register
	PIXC Lines Per Frame (PIXC_LPF) Register
	PIXC Horizontal Start (PIXC_xHSTART) Registers
	PIXC Horizontal End (PIXC_xHEND) Registers
	PIXC Vertical Start (PIXC_xVSTART) Registers
	PIXC Vertical End (PIXC_xVEND) Registers
	PIXC Transparency Value (PIXC_xTRANSP) Registers
	PIXC Interrupt Status (PIXC_INTRSTAT) Register
	PIXC R/Y Conversion Coefficient (PIXC_RYCON) Register
	PIXC G/U Conversion Coefficient (PIXC_GUCON) Register
	PIXC B/V Conversion Coefficient (PIXC_BVCON) Register
	PIXC Color Conversion Bias (PIXC_CCBIAS) Register
	PIXC Transparency Color Value (PIXC_TC) Register

	29 Media Transceiver Module (MXVR)
	Overview
	Interface Signals
	MXVR Memory Map
	MXVR Registers
	MXVR Configuration (MXVR_CONFIG) Register
	MXVR State (MXVR_STATE_0, MXVR_STATE_1) Registers
	MXVR Interrupt Status Register 0 (MXVR_INT_STAT_0)
	MXVR Interrupt Status_1 (MXVR_INT_STAT_1) Register
	MXVR Interrupt Enable 0 (MXVR_INT_EN_0) Register
	MXVR Interrupt Enable 1 (MXVR_INT_EN_1) Register
	MXVR Node Position (MXVR_POSITION) Register
	MXVR Maximum Node Position (MXVR_MAX_POSITION) Register
	MXVR Node Frame Delay (MXVR_DELAY) Register
	MXVR Maximum Node Frame Delay (MXVR_MAX_DELAY) Register
	MXVR Logical Address (MXVR_LADDR) Register
	MXVR Group Address (MXVR_GADDR) Register
	MXVR Alternate Address (MXVR_AADDR) Register
	MXVR Allocation Table (MXVR_ALLOC_0 – MXVR_ALLOC_14) Registers
	MXVR Synchronous Logical Channel Assignment (MXVR_SYNC_LCHAN_0 – MXVR_SYNC_LCHAN_7) Registers
	MXVR DMAx Configuration (MXVR_DMA0_CONFIG – MXVR_DMA7_CONFIG) Registers
	MXVR DMA Channel x Start Address (MXVR_DMA0_START_ADDR – MXVR_DMA7_START_ADDR) Registers
	MXVR DMA Channel x Current Address (MXVR_DMA0_CURR_ADDR – MXVR_DMA7_CURR_ADDR) Registers
	MXVR DMA Channel x Transfer Count (MXVR_DMA0_COUNT – MXVR_DMA7_COUNT) Registers
	MXVR DMA Channel x Current Transfer Count (MXVR_DMA0_CURR_COUNT – MXVR_DMA7_CURR_COUNT) Registers
	MXVR Asynchronous Packet Control (MXVR_AP_CTL) Register
	MXVR Asynchronous Packet Receive Buffer Start Address (MXVR_APRB_START_ADDR) Register
	MXVR Asynchronous Packet Receive Buffer Current Address (MXVR_APRB_CURR_ADDR) Register
	MXVR Asynchronous Packet Transmit Buffer Start Address (MXVR_APTB_START_ADDR) Register
	MXVR Asynchronous Packet Transmit Buffer Current Address (MXVR_APTB_CURR_ADDR) Register
	MXVR Control Message Control (MXVR_CM_CTL) Register
	MXVR Control Message Receive Buffer Start Address (MXVR_CMRB_START_ADDR) Register
	MXVR Control Message Receive Buffer Current Address (MXVR_CMRB_CURR_ADDR) Register
	MXVR Control Message Transmit Buffer Start Address (MXVR_CMTB_START_ADDR) Register
	MXVR Control Message Transmit Buffer Current Address (MXVR_CMTB_CURR_ADDR) Register
	MXVR Remote Read Buffer Start Address (MXVR_RRDB_START_ADDR) Register
	MXVR Remote Read Buffer Current Address (MXVR_RRDB_CURR_ADDR) Register
	MXVR Pattern Registers
	MXVR Pattern Data (MXVR_PAT_DATA_0, MXVR_PAT_DATA_1) Registers
	MXVR Pattern Enable (MXVR_PAT_EN_0, MXVR_PAT_EN_1) Registers
	MXVR Frame Counter (MXVR_FRAME_CNT_0, MXVR_FRAME_CNT_1) Registers
	MXVR Routing (MXVR_ROUTING_0 – MXVR_ROUTING_14) Registers
	MXVR Block Counter (MXVR_BLOCK_CNT) Register
	MXVR Clock Control (MXVR_CLK_CTL) Register
	MXVR Clock/Data Recovery PLL Control (MXVR_CDRPLL_CTL) Register
	MXVR Frequency Multiply PLL Control (MXVR_FMPLL_CTL) Register
	MXVR Pin Control (MXVR_PIN_CTL) Register
	MXVR System Clock Counter (MXVR_SCLK_CNT) Register

	General Operation
	Network Services Software
	Network Activity Detection
	Node Initialization
	Initialization of Processor Pin Multiplexing
	Master Mode Initialization of MXVR_CONFIG Register
	Slave Mode Initialization of MXVR_CONFIG Register
	Initialization of the MXVR_CLK_CTL Register
	Initialization of the MXVR_ROUTING_x Registers
	Initialization of the Buffer Start Address Registers

	Start Up of the MXVR PLLs
	Master Mode Initialization and Start Up of MXVR FMPLL and CDRPLL
	Slave Mode Initialization and Start Up of MXVR CDRPLL

	Enabling MXVR Output Clocks
	Network Lock
	Network Lock for a Master Node
	Network Lock For a Slave Node

	Network Initialization
	Synchronous Data Routing and Muting
	Synchronous Data Transmission
	Synchronous Data Reception
	Asynchronous Packet Transmission
	Asynchronous Packet Reception
	Control Message Transmission
	Normal Control Message Transmission
	Remote Read Control Message Transmission
	Remote Write Control Message Transmission
	Resource Allocate Control Message Transmission
	Resource De-Allocate Control Message Transmission
	Remote GetSource Control Message Transmission
	Control Message Reception
	Normal Control Message Reception
	Remote Read and Remote Write Reception
	Resource Allocate Reception
	Resource De-Allocate Reception
	Remote GetSource Reception

	MXVR Low Power Operation
	Full On Mode
	Active Mode
	Sleep Mode
	Deep Sleep Mode
	Hibernate State
	Power Gating the ADSP-BF54x processor

	30 Keypad Interface
	Interface Overview
	Description of Operation
	Keypad Operation
	Keypad Enable/Disable
	Input Keypad Matrix Programmability

	Waking Up on Keypad Press
	Sensitivity of Keypad Interface
	Limited Multiple Key Resolution
	Keypad Interrupt Modes
	Implementing Press-Hold Feature

	Functional Description
	State Diagram

	Programming Model
	Keypad Registers
	Keypad Control (KPAD_CTL) Register
	Keypad Prescale (KPAD_PRESCALE) Register
	Keypad Multiplier Select (KPAD_MSEL) Register
	Keypad Row-Column (KPAD_ROWCOL) Register
	Keypad Status (KPAD_STAT) Register
	Keypad Software Evaluate (KPAD_SOFTEVAL) Register

	Programming Examples

	31 CAN Module
	Overview
	Interface Overview
	CAN Mailbox Area
	CAN Mailbox Control
	CAN Protocol Basics

	CAN Operation
	Bit Timing
	Transmit Operation
	Retransmission
	Single Shot Transmission
	Auto-Transmission

	Receive Operation
	Data Acceptance Filter
	Watchdog Mode

	Time Stamps
	Remote Frame Handling
	Temporarily Disabling Mailboxes

	Functional Operation
	CAN Interrupts
	Mailbox Interrupts
	Global CAN Interrupt

	Event Counter
	CAN Warnings and Errors
	Programmable Warning Limits
	CAN Error Handling
	Error Frames
	Error Levels

	Debug and Test Modes
	Low Power Features
	CAN Built-In Suspend Mode
	CAN Built-In Sleep Mode
	CAN Wakeup From Hibernate State

	Soft Reset

	CAN Registers
	Global CAN Registers
	Master Control (CANx_CONTROL) Registers
	Global CAN Status (CANx_STATUS) Registers
	CAN Debug (CANx_DEBUG) Registers
	CAN Clock (CANx_CLOCK) Registers
	CAN Timing (CANx_TIMING) Registers
	CAN Interrupt (CANx_INTR) Registers
	Global CAN Interrupt Mask (CANx_GIM) Registers
	Global CAN Interrupt Status (CANx_GIS) Registers
	Global CAN Interrupt Flag (CANx_GIF) Registers

	Mailbox/Mask Registers
	Acceptance Mask (CANx_AMxx) Registers
	Mailbox Word 7 (CANx_MBxx_ID1) Registers
	Mailbox Word 6 (CANx_MBxx_ID0) Registers
	Mailbox Word 5 (CANx_MBxx_TIMESTAMP) Registers
	Mailbox Word 4 (CANx_MBxx_LENGTH) Registers
	Mailbox Word 3–0 (CANx_MBxx_DATA3–0) Registers

	Mailbox Control Registers
	Mailbox Configuration (CANx_MCx) Registers
	Mailbox Direction (CANx_MDx) Registers
	Receive Message Pending (CANx_RMPx) Registers
	Receive Message Lost (CANx_RMLx) Registers
	Overwrite Protection/Single Shot Transmission (CANx_OPSSx) Register
	Transmission Request Set (CANx_TRSx) Registers
	Transmission Request Reset (CANx_TRRx) Registers
	Abort Acknowledge (CANx_AAx) Registers
	Transmission Acknowledge (CANx_TAx) Registers
	Temporary Mailbox Disable (CANx_MBTD) Register
	Remote Frame Handling (CANx_RFHx) Registers
	Mailbox Interrupt Mask (CANx_MBIMx) Registers
	Mailbox Transmit Interrupt Flag (CANx_MBTIFx) Registers
	Mailbox Receive Interrupt Flag (CANx_MBRIFx) Registers

	Universal Counter Registers
	Universal Counter Configuration Mode (CANx_UCCNF) Register
	Universal Counter (CANx_UCCNT) Register
	Universal Counter Reload/Capture (CANx_UCRC) Register

	Error Registers
	Error Counter (CANx_CEC) Register
	Error Status (CANx_ESR) Register
	Error Counter Warning Level (CANx_EWR) Register

	Programming Examples
	CAN Setup Code
	Initializing and Enabling CAN Mailboxes
	Initiating CAN Transfers and Processing Interrupts

	A System MMR Assignments
	Dynamic Power Management Registers
	System Reset and Interrupt Control Registers
	Watchdog Timer Registers
	Real-Time Clock Registers
	UART0 Controller Registers
	UART1 Controller Registers
	UART2 Controller Registers
	UART3 Controller Registers
	SPI0 Controller Registers
	SPI1 Controller Registers
	SPI2 Controller Registers
	TWI0 Registers
	TWI1 Registers
	SPORT0 Controller Registers
	SPORT1 Controller Registers
	SPORT2 Controller Registers
	SPORT3 Controller Registers
	MXVR Registers
	Keypad Registers
	SDH Registers
	ATAPI Registers
	USB OTG Registers
	External Bus Interface Unit Registers
	DMA/Memory DMA Control Registers
	EPPI0 Registers
	EPPI1 Registers
	EPPI2 Registers
	Host DMA Registers
	PIXC Registers
	Ports Registers
	Timer Registers
	CANx Registers
	Handshake MDMA Control Registers
	NAND Flash Controller Registers
	Core Timer Registers
	Rotary Counter Registers
	Security Registers
	Processor-Specific Memory Registers

	B Test Features
	JTAG Standard
	Boundary-Scan Architecture
	Instruction Register
	Public Instructions
	EXTEST – Binary Code 00000
	SAMPLE/PRELOAD – Binary Code 10000
	BYPASS – Binary Code 11111
	IDCODE – Binary Code 00010

	Boundary-Scan Register

	G Glossary
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

