

Engineer-to-Engineer Note EE-368

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

ADSP-BF70x Blackfin+ Processors Cryptographic Algorithm Validation

Contributed by G. Yi Rev 1 – December 11, 2014

Copyright 2014, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of
their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction

The ADSP-BF70x Blackfin+ Processors series

(hereafter referred to as ADSP-BF707) has

successfully passed the Cryptographic Algorithm

Validation Program (CAVP) for select

cryptographic functions. This EE-Note provides

an overview of the validation process and how

passing the CAVP helps toward full FIPS 140-

2‎
[1]

 conformance.

Most functions are fully performed by the

ADSP-BF707 on-chip cryptographic hardware

accelerator. Two of the functions use a

combination of software running on the

processor core and the accelerator engine. For

this hybrid approach, the code is provided with

this EE-Note in the associated .ZIP file.

Cryptographic Module Validation

Program (CMVP) Overview

In order for a security module to be accepted for

use by a federal agency in the United States of

America and Canada, they must be validated

conforming to FIPS 140-2. This validation

program was created jointly between the

National Institute of Standards and Technology

(NIST) and Communications Security

Establishment Canada (CSEC). It is used to

validate the security modules to FIPS 140-2,

which defines different levels of qualitative

security.

The Cryptographic Algorithm Validation

Program (CAVP) is a prerequisite for CMVP. It

validates that the implemented cryptographic

functions are functionally correct. ADSP-BF707

processors have successfully passed CAVP

validation for select cryptographic functions.

Therefore, a user or developer can easily proceed

with module validation through CMVP of their

system or device using ADSP-BF707 processors.

ADSP-BF707 Cryptographic

Processing Functionality

ADSP-BF707 processors contain several

cryptographic processing units that help offload

the computations that would otherwise be

performed on the processors core. These are the

Security Packet Engine (PKTE), the True

Random Number Generator (TRNG), and the

Public Key Accelerator (PKA).

The Security Packet Engine contains a collection

of cryptographic functions which include

symmetric ciphers, hash functions, keyed-hash

message authentication code (HMAC) functions

and a pseudo-random number generator. It also

supports different programming models with

different levels of intervention from the host

processor. For complete details on the PKTE,

please refer to the ADSP-BF70x Blackfin+

Processor Hardware Reference‎
[2]

.

The functions that have been successfully tested

and validated in the CAVP (Table 1) are all

supported by the PKTE.

ADSP-BF70x Blackfin+ Processors Cryptographic Algorithm Validation (EE-368) Page 2 of 5

Cryptographic Function Validation

Number

TDES (also known as 3DES) using 1, 2 or 3 different 56-bit keys and also in ECB and CBC modes 1771

AES -128bit, -192bit and -256bit in ECB, CBC and ICM modes 3026

SHA-1, SHA-224 and SHA-256 2528

HMAC based on SHA-1, SHA-224 and SHA-256 1912

Deterministic Random Number Generator defined by the X9.31‎[3] standard and based on the AES-128 cipher 1309

Table 1. Validated Cryptographic Functions on ADSP-BF707 Blackfin+ Processors

Hybrid Processing

For the TDES, AES and SHA functions, the user

can just program in the necessary parameters and

the PKTE can process the data autonomously.

For the other functions, HMAC and RNG, the

PKTE needs intervention and intermediate

processing from the Blackfin+ core. This is

known as hybrid processing.

This section describes the algorithms and how

they were implemented on the ADSP-BF707

processor to go through CAVP validation. For

full details on programming the PKTE, please

refer to the hardware reference‎
[2]

.

Random Number Generator (RNG)

A Random Number Generator defined by X9.31,

based on the AES-128 cipher is available in the

PKTE. A user can normally configure it and let

it run and obtain random numbers. The

implementation though prevents it from passing

one of the tests from the CAVP. The date/time

value is incremented autonomously in step with

the system clock and not with the algorithm.

Also,‎ due‎ to‎ buffer‎ size‎ constraints,‎ it’s‎ not‎

possible to obtain the 10,000
th

 value for the

Monte Carlo test.

As such, the RNG was implemented as a

combination of software running ADSP-BF707

Blackfin+ core and using the PKTE. This

allowed the successful testing for the RNG.

X9.31 RNG Algorithm Description

The RNG algorithm, as defined by the X9.31‎
[3]

standard is:

Let e x K(Y) represent the AES encryption of Y

using key K. Also, let the following be the three

inputs used by the RNG function:

 K, a 128-bit AES key

 V, a 128-bit seed value

 DT, a 128-bit date/time vector which is

updated on each iteration

First, an intermediate value, I, is calculated by

encrypting the date/time (DT) value with key K.

I = e x K(DT)

This intermediate value, I, is then XOR’ed with

the seed value, V, and encrypted using key, K.

The result is the random number output value.

R = e x K(I  V)

To prepare for the next output, the seed value, V,

is‎ updated‎ by‎ XOR’ing the current output, R,

with the previously calculated intermediate

value, I, and then encrypted with key, K.

V = e x K(R  I)

As mentioned before, the date/time value, DT is

also updated for the next iteration.

http://csrc.nist.gov/groups/STM/cavp/documents/des/tripledesval.html
http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.htm
http://csrc.nist.gov/groups/STM/cavp/documents/mac/hmacval.html
http://csrc.nist.gov/groups/STM/cavp/documents/rng/rngval.html

ADSP-BF70x Blackfin+ Processors Cryptographic Algorithm Validation (EE-368) Page 3 of 5

X9.31 RNG Implementation on ADSP-BF707
Processors

The RNG algorithm described above can be

implemented as a combination of software

running on the processor core and using the

PKTE. The BF70xPrngSim project contained in

the associated .ZIP file shows how this is

accomplished.

The PKTE is set up to run three times to perform

the encryptions. Besides configuring the PKTE,

the processor core also calculates the XOR of the

random value output and the intermediate value,

I. Finally, the DT value is also updated for the

next iteration. This is basically incrementing a

128-bit value by one.

Hash-Based Message Authentication Code

(HMAC)

The HMAC algorithm is specified in the FIPS

198-1 publication‎
[4]

. The MAC function helps to

verify the integrity and authentication of the

input data simultaneously.

HMAC Algorithm Description

The HMAC algorithm is described next. The

HMAC can be calculated with any cryptographic

hash function. On ADSP-BF707 processors,

HMAC can be performed using SHA-1, SHA-

224 or SHA-256. The following are parameters

used in the calculation of an HMAC output.

 K, input key

 K0, key used in HMAC calculation

 B, block size in bytes

 ipad, inner pad value of the byte 0x36

repeated B times

 opad, outer pad value of the byte 0x5c

repeated B times

 L, size of the output hash digest in bytes

The formula below is used for calculating the

HMAC result.

HMAC(K, input) = H((K0 opad) || H((K0
ipad) || input))

The first step is obtaining K0. If the length of the

input key, K is the same length as the input data,

B, then K0 = K. If the length of the input key K, is

greater than B, calculate the hash of K, H(K)of

length L.‎ ‎ Append‎ bytes‎ of‎ 0’s‎ to‎ the‎ output‎ so‎

that the length is equal to B. The same is done if

an input key is less than B; bytes of zeros are

appended until the size matches B.

The next step is to XOR K0 with a string of

0x36’s‎of‎length‎B bytes. The input data is then
appended to this result and the hash applied to it.

H((K0 ipad) || input)

This hash digest is then appended to a separately

calculated‎ output‎ of‎ the‎ XOR’ing‎ of‎ K0 and

opad. Finally, the output of this is also hashed,

producing the final HMAC result.

HMAC Implementation on ADSP-BF707 Processors

On ADSP-BF707 processors, HMAC is

accomplished via a hybrid approach of software

running on the processor core and the hardware

accelerator, the PKTE. The core handles the

padding,‎ the‎XOR’ing‎ and‎ the‎ setting‎ up‎ of‎ the‎

PKTE to run the chosen hash function used for

the HMAC. The PKTE is mainly used to

calculate the hash digest.

The PKTE can be used in two ways to calculate

the HMAC result. One way is shown in

Figure 1. The PKTE can be used to calculate

hash digests up to five times potentially,

depending on the length of the input key.

The hash function can be broken up into pieces.

For example, in the formula, K0 is‎XOR’ed‎with‎

ipad and then the input is appended. This result

is fed into a hash function. With the PKTE, this

can be broken up into multiple hash operations

because the PKTE can perform the calculation in

multiple steps, not needing all the input at once.

As such, in the aforementioned formula, K0

XOR’ed‎ with‎ ipad and be calculated with one

operation of the PKTE and then continued with

another PKTE operation with the input data.

With this methodology, the final hash can also be

separated into two hash functions.

ADSP-BF70x Blackfin+ Processors Cryptographic Algorithm Validation (EE-368) Page 4 of 5

Figure 1. HMAC Calculation Block Diagram (Method 1)

Another way of performing the HMAC

calculation, which is the method used in the

CAVP, is to have the PKTE perform three hash

operations (assuming K0 was already obtained).

As shown in Figure 2, the inner hash and outer

pad‎values‎XOR’ed‎with‎K0 can be hashed using

the PKTE using two operations, and then the

outputs, along with the input data can be fed into

a third hash operation as a continuation of a

previously started hash operation. The PKTE

can be loaded with previously calculated inner

and outer digest values and finish the HMAC

calculation.

Figure 2. HMAC Calculation Block Diagram (Method 2)

Hash
(PKTE)

digest in

data
start byte count

digest out

Hash
(PKTE)

digest in

data
start byte count

digest out

Hash
(PKTE)

digest in

data
start byte count

Input Data

digest out

Hash
(PKTE)

digest in

data
start byte count

digest out

0

0

0x40

0x40

HMAC result

XOR

XOR

opad

(0x5c)

ipad
(0x36)

Key K0

Hash
(PKTE)

digest in

data
start byte count

digest out

Hash
(PKTE)

digest in

data
start byte count

digest out

Hash
(PKTE)

opad

data
start byte count

Input Data

digest out

0

0

0x40

HMAC result

XOR

XOR

opad

(0x5c)

ipad

(0x36)

Key K0

ipad

ADSP-BF70x Blackfin+ Processors Cryptographic Algorithm Validation (EE-368) Page 5 of 5

Associated .ZIP File

This EE-Note is accompanied by a .ZIP file

containing two CrossCore® Embedded Studio

(CCES) projects. One is the implementation of

the RNG algorithm (BF70xPrngSim), and the

other one is the implementation of the HMAC

function (BF70xHMAC), both described in the

earlier sections.

Developed using CCES release 1.1.0, each of

these two projects reads in an input file

containing the test data, and outputs a single

result file.

Conclusion

The Cryptographic Algorithm Validation

Program (CAVP) is a pre-requisite test program

to the Cryptographic Module Validation Program

(CMVP) for FIPS 140-2 conformance.

To assist customers, the CAVP validation has

already been performed and validated for select

cryptographic functions. As previously

discussed, most functions can be directly

performed by the ADSP-BF707 PKTE hardware

accelerator engine. The others are implemented

as a combination of software running on the

Blackfin+ processor core and the PKTE

hardware accelerator, as illustrated in this EE-

Note and the accompanying code provided in the

associated .ZIP file.

References

[1] Federal Information Processing Standards Publication 140-2 (http://csrc.nist.gov/publications/fips/fips140-

2/fips1402.pdf). May 25, 2001. National Institute of Standards and Technology.

[2] ADSP-BF70x Blackfin+ Hardware Reference. Rev 0.2. May 2014. Analog Devices, Inc.

[3] Digital Signatures Using Reversible Public Key Cryptography for the Financial Services Industry (rDSA). Rev X9.31-

1998, September 9, 1998. American National Standards Institute.

[4] The Keyed-Hash Message Authentication Code (HMAC). Rev FIPS PUB 198-1, July 2008. National Institute of Standards

and Technology.

Readings

[5] Frequently Asked Questions for the Cryptographic Module Validation Program

(http://csrc.nist.gov/groups/STM/cmvp/documents/CMVPFAQ.pdf). June 5th, 2014. National Institute of Standards and

Technology.

Document History

Revision Description

Rev 1 – December 11, 2014
by G. Yi

Initial Release

http://csrc.nist.gov/groups/STM/cmvp/documents/CMVPFAQ.pdf

	Introduction
	Cryptographic Module Validation Program (CMVP) Overview
	ADSP-BF707 Cryptographic Processing Functionality
	Hybrid Processing
	Random Number Generator (RNG)
	X9.31 RNG Algorithm Description
	X9.31 RNG Implementation on ADSP-BF707 Processors

	Hash-Based Message Authentication Code (HMAC)
	HMAC Algorithm Description
	HMAC Implementation on ADSP-BF707 Processors

	Associated .ZIP File
	Conclusion
	References
	Readings
	Document History

