

Engineer-to-Engineer Note EE-366

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Secure Booting Guide for Blackfin+® and SHARC+® Processors

Contributed by G. Yi and S. Molloy Rev 2 – October 19, 2016

Copyright 2016, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’
products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their
respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction

The ADSP-BF70x Blackfin+® and ADSP-SC58x/ADSP-2158x SHARC+® processors feature a security

solution for protecting IP and data. A secure operation environment is also provided for code execution, and

an entire system infrastructure is available, composed of a number of functional blocks, including

cryptographic hardware accelerators, a system protection unit (SPU), a system memory protection unit

(SMPU), a one-time programmable memory (OTP), secure debug, and secure booting.

This EE-note provides details and example code associated with secure booting. Using this guide, one can

successfully understand the different aspects of secure booting and learn how to set up the processor and

application for secure boot. This document contains relevant information for creating a secure application

and deploying it on a secure processor. Several examples are referred to throughout this document that

demonstrate the different features discussed.

This document describes:

 secure boot stream creation in the CROSSCORE® Embedded Studio (CCES) development tools,

 usage of the CCES signtool host utility to generate keys and create digital signatures,

 the processor ROM APIs to access OTP memory for key storage, and

 the processor ROM APIs for booting the device.

Terminology

The following is a list of some commonly used terms in this EE-Note:

• ECDSA - Elliptical Curve Digital Signature Algorithm

• BLp - Boot Loader plaintext, Plaintext Format

• BLx - Boot Loader without key, Keyless Format

• BLw - Boot Loader wrapped, Wrapped Format

• SBLS - Secure Boot Loader Stream

• SBH - Secure Boot Header

• SBCR - Secure Boot Confidentiality Root

• AES - Advanced Encryption Standard

Further explanation will be provided in the sections that follow.

http://www.analog.com/processors

Secure Booting Guide for Blackfin+® and SHARC+® Processors (EE-366) Page 2 of 22

Secure Boot and Protection Types

The secure boot process provides a means of integrating security into the processor boot sequence. A chain

of trust is established within the system by ensuring the integrity and authenticity of the boot image.

Confidentiality protection is also supported.

Secure boot increases protection against malicious, unsecured accesses to critical and confidential processor

resources. The boot stream application code and data must be digitally signed in order to build up a chain

of trust in the system. This allows the processor to distinguish between authentic and trusted code from non-

authentic and untrusted code.

Secure boot also provides confidentiality protection. The digitally signed boot image may be optionally

encrypted as well. When loading an encrypted image, the boot kernel will decrypt while loading, then

authenticate, before any application code is executed.

 Secure boot is an optional processor feature enabled via the Lock API. Once

enabled, it cannot be disabled, and it is disabled by default. When enabled,

developers are not dependent upon Analog Devices to provision the devices, sign

code, or provide security certificates. The required tools for signing and

encrypting the boot images are provided with the processor’s development tools.

Integrity and Authenticity Protection

Integrity/authenticity protection is based on the ECDSA algorithm using the secure hash SHA-2 224-bit

algorithm along with 224-bit curves. The hash algorithm ensures that only unmodified messages can be

verified. Even a change to a single bit will produce a different hash digest, resulting in failure.

ECDSA is a public key cryptosystem consisting of two keys, a key pair, one being a private key and the

other a public key. The public key is stored in the processor’s OTP memory so that the secure boot process

can verify the authenticity of the signed boot image. Since the public key and private key are correlated to

each other, only parties in possession of the private key are able to sign the images.

Confidentiality Protection

Confidentiality protection uses the Advanced Encryption Standard (AES) algorithm, supporting wrapped

and unwrapped variants. The wrapped variant utilizes a 128-bit Key Encryption Key (KEK) stored on the

processor to decrypt the 128-bit AES decryption key embedded in the secure header. The unwrapped variant

stores the AES description key on the processor and utilizes it to decrypt the entire image.

Confidentiality protection allows code, data or other intellectual property to be stored on an external device

securely prior to booting. Theft of the data will be useless without knowledge of the cipher key(s); therefore,

the privacy of the key stored on the device (whether AES or KEK) is paramount to the security of the system.

 Disclosure of this key compromises security of the entire system.

Secure Booting Guide for Blackfin+® and SHARC+® Processors (EE-366) Page 3 of 22

Anti-Cloning Protection

Anti-Cloning protection is based on the confidentiality protection. If each processor uses a unique private

key for the confidentiality protection, then cloning between these devices can be prevented, as the boot

image will be incompatible with devices using a different private key for the decryption.

Anti-Rollback Protection

The secure boot process supports anti-rollback protection via a 32-bit counter in the OTP memory. A value

of 0x00000000 in the OTP results in anti-rollback being disabled by default. If anti-rollback protection is

required, then the user may set the Rollback ID when signing the boot image. Upon successful authentication

of the boot image, the secure boot software will then update the counter in OTP memory if the Rollback ID

in the boot image is greater than the value currently stored in the OTP counter.

The Rollback ID stored in the secure boot image header is integrity protected, thus preventing altering of

the Rollback ID.

 Because the Rollback ID is implemented in OTP memory, there are a number

of restrictions regarding its use. It is therefore recommended that only the

OTP Program ROM API be used to set the counter.

Secure Boot Image Types

Several different secure boot image types are supported.

Plaintext Format (BLp)

This format provides integrity and authenticity protection of the boot image. ECDSA using 224-bit curves

is used to provide this protection. The boot image is digitally signed using a private key. In order to

authenticate the image, the corresponding public key is used by the boot kernel and must be pre-programmed

into the OTP public_key field using the OTP Program API.

SBH Boot Loader Stream

Wrapped Format (BLw)

This format provides the highest level of protection; integrity, authenticity, confidentiality, and anti-cloning

protection. The image contains an ECDSA wrapped image encryption key (denoted by [K]) within the

secure header. The image data is encrypted with the wrapped key, preventing cloning. An additional key is

required to unwrap the wrapped key in the header. This key must be pre-programmed into the OTP

pvt_128key field using the OTP Program API.

SBH [K] Encrypted Boot Loader Stream

Secure Booting Guide for Blackfin+® and SHARC+® Processors (EE-366) Page 4 of 22

Keyless Format (BLx)

This format is similar to the BLw format, except the image does not contain the key at all. This format

provides anti-cloning protection only if the secure key is unique per device. The decryption key for the data

must be pre-programmed into the OTP pvt_128key field using the OTP Program API.

SBH Encrypted Boot Loader Stream

Secure Boot Image Format

Secure Boot images provide authenticity and integrity protection during the boot process. A secure boot

image is comprised of a secure boot header and an optionally encrypted loader stream.

Signed images consist of the following sections to comprise a complete secure boot image:

• Secure Boot Header

• Image Attributes

• Image Section

Figure 1 shows that the image attributes are encapsulated within the secure boot header. The image attributes

are actually integrity protected along with the image section. The image section contains a standard Boot

Loader Stream with the caveat that some block types are not allowed, as described in Unsupported Boot

Stream Blocks section.

Figure 1. Secure Boot Image

Secure Booting Guide for Blackfin+® and SHARC+® Processors (EE-366) Page 5 of 22

Secure Boot Header

Table 1 shows the Secure Boot Header format.

Bytes Name Description

Values

Keyless

Format

(BLx)

Wrapped

Format

(BLw)

Plaintext

Format

(BLp)

3:0 Type Format and version

of the image.

Upper 24 bits is

the image format

and lower 8 bits is

the image version

0x424c7801 0x424c7701 0x424c7001

67:4 Signature The ECDSA signature

of the image

Two 256-bit numbers

91:68 Key Confidentiality

(only applicable

for certain

formats)

Reserved 192-bit AES-

WRAP data

holding a

128-bit AES

key

Reserved

107:92 IV Initialization

Vector (only

applicable for

certain formats)

Reserved 16-byte IV generated during

signing process

111:108 Length The length of the

image section in

bytes

Maximum supported byte count 0x10000000

bytes

175:112 Attributes Image Attributes Support for up to 8 image attributes

179:176 Reserved Reserved Reserved

Table 1. Secure Boot Header Format

Developing a Secure Boot System Overview

The following are the key steps in developing a system that uses secure booting:

1. Generate the keys.

2. Develop the application and generate the boot stream file.

3. Convert the loader stream file to a secure boot stream file.

4. Program the boot stream into the storage device.

5. Program the keys into OTP memory.

6. Lock the device to enable security.

The following sections explain each of these steps and how they are accomplished, both manually and when

using the accompanying examples.

Secure Booting Guide for Blackfin+® and SHARC+® Processors (EE-366) Page 6 of 22

Keys

A minimum set of keys are required to have a secure system. The keys required for secure booting depend

on the security features chosen. Refer to the various image types available for details regarding which keys

are required for each image type.

Public/Private Key Pairs for Digital Signatures

Secure booting relies on digital signatures to ensure that the boot stream hasn’t been modified and to ensure

that it is, in fact, from the trusted developer. The developer must first generate a key pair consisting of a

public and private key. The private key is used to sign and create the digital signature for the boot stream.

It is used on the host computer and should be kept secret. The public key is programmed into the OTP

memory and is used by the boot kernel during secure boot to verify the digital signature.

Signtool for Key Generation

The CCES development tools provide a host utility, signtool, to help generate keys and create digital

signatures.

Key Generation for Signing

Boot stream files are signed using the private key from a 224-bit ECDSA key pair, stored in DER format.

The signtool utility's genkeypair command can be used to create such a key pair, as shown in Listing 1.

signtool genkeypair --algo ecdsa224 --outfile keychain.der

Listing 1. Generating a Key Pair

Table 2 describes the switches available for the genkeypair command.

Switch Description

-algo ecdsa224 Selects the algorithm used to create the keypair. For Analog Devices

processors, ecdsa224 is required

-outfile file.der Directs signtool to create the keypair in the file file.der

Table 2. Switches for genkeypair Command in signtool Utility

 Once the key pair is created, keep it secret, as the private key therein is

essential for authenticity.

Extracting the Public Key

When the key pair is generated, the output file contains both the public key and the private key. The public

key will be needed so that it can be programmed into the OTP memory for the boot kernel to use during

secure boot; therefore the public key needs to be extracted from the key pair.

Use the getkey command in the signtool utility to extract the public key so that it can be stored in the

processor’s OTP memory, where it can be used during secure boot.

Secure Booting Guide for Blackfin+® and SHARC+® Processors (EE-366) Page 7 of 22

The relevant switches associated with the getkey command are listed in Table 3.

Switch Description

-type BLKey|BLKeyC Determine the output format for the public key.

-key keyfile.der Specify the file containing the keypair, from

which to extract the public key.

-outfile pubkey Specify the name of the file to which the public

key should be written.

Table 3. Switches for getkey Command in signtool Utility

The key can be extracted to binary form or to a text file that can be used as a C header. Listing 2 is an

example of extracting the public key in binary form.

signtool getkey --type BLKey --key keychain.der --outfile pubkey.bin

Listing 2. Extracting the Public Key from the Key Pair into a Binary File

AES-128 Confidentiality Key and Key Encryption Key (KEK)

If confidentiality is required, the boot stream can also be encrypted using the AES-128 cipher in CBC mode.

A single key is used to both encrypt and decrypt the message. The signtool utility will use the specified

key on the host computer to encrypt the boot stream, and the boot kernel will use the same key, which will

have been programmed into the OTP memory, to decrypt the boot stream as part of the secure boot process.

The alternative means is to wrap this key to send it along with the boot loader stream in the header. In order

to guarantee its security, it needs to be wrapped using another key, the KEK. This will be the one stored in

the OTP memory and used to unwrap the confidentiality key.

Confidentiality Key and KEK Generation

The AES-128 confidentiality key and the KEK are both 128-bit strings. The signtool utility does not

specifically generate any keys for AES-128. A user can use any means to generate sufficiently random 128-

bit strings to use as an AES-128 key.

Ensure that these keys are kept secret.

Secure Debug Key

The secure debug key is another 128-bit key that allows a user to gain access to the part, specifically to the

secure resources when the part is locked (security enabled). Otherwise, the debugger will only have access

to non-secure resources such as non-secure portions of memory. It is stored in the OTP memory to be used

as a reference to compare against when the debugger attempts access.

Secure Booting Guide for Blackfin+® and SHARC+® Processors (EE-366) Page 8 of 22

Secure Debug Key Generation

Like the AES-128 key, no specific provision is made. A sufficiently random number is recommended for

this 128-bit key.

Generating a Secure Boot Stream

A boot stream packages the application so that the boot kernel can load the application into memory.

Securing the boot stream to prevent malicious attacks requires additional steps, as discussed in the following

sections.

Creating a Boot Stream

Once a CCES project is created via the New CROSSCORE Project Wizard, the project's output file (build

artifact) type defaults to “Executable” (.DXE file), which allows for development and debugging of the

application code in a simulator or on a hardware target. Once satisfied with the application’s operation, the

next step is to convert this executable into a bootable image to either be programmed to source memory or

provided by another external host. To generate a loader boot stream (.LDR file), the build artifact type must

be changed in the Project Properties, as follows:

1. Right-click the project name in the Project Explorer view, and select Properties.

2. In the Properties window that opens, choose C/C++ BuildSettings.

3. In the Settings dialog box that appears, click the Build Artifact tab.

4. In the Build Artifact page, choose Loader File from the drop-down list for Artifact Type

(the Artifact name should be ${ProjName}, and the Artifact extension should be ldr).

5. (Optional) In Output prefix, enter a string to prepend to the output file name.

6. Click OK to save the project settings and close the dialog box.

Full details regarding the creation of a boot loader stream can be found in the CCES Loader and Utilities

Manual[2].

 The output format of the loader utility MUST be binary in order to be

compatible with the signtool utility.

Unsupported Boot Stream Blocks

In order to ensure the security of the processor, the following block types are not supported in a secure boot

image. Should the boot kernel come across once of these block types, the boot process will terminate.

• Init Block

Initialization blocks require a call to user application code prior to the authentication of the boot image

and are therefore not supported. If customizations or optimizations are necessary to improve the loading

time performance, it's recommended to implement a second stage loader. The first application will

contain only the custom code, and then it will in turn issue calls to the Boot Routine to boot using the

desired device.

• Callback Block

Callback blocks require a call to a user-defined address prior to the authentication of the boot image and

are therefore not supported.

Secure Booting Guide for Blackfin+® and SHARC+® Processors (EE-366) Page 9 of 22

 Secure boot streams use double buffer Page Mode to optimize the boot process.

This allows for decrypt and hash operations to be performed on received data

while new data is being fetched from the boot source. This host in the slave boot

mode must ensure, after additional data is sent after the boot stream, that the

temp buffer is filled completely. The size of the secure boot stream minus the

size of the secure boot header must be a multiple of the size of the temp buffer,

which by default is 1024 bytes.

Signing the Boot Image

The generation of the secure boot stream is simply a conversion applied to the typical boot stream. It

involves the use of the private key to create a digital signature which is stored in a secure header, which will

now be part of the secure boot stream. This is done for all three secure boot types, BLp, BLw, and BLx.

Encrypting the Boot Image

If the BLw or BLx format is chosen, the boot stream will also be encrypted using the 128-bit confidentiality

key, along with signing the boot image. If BLw is chosen, the confidentiality key used will be wrapped with

the KEK and stored in the secure header of the boot stream as well.

Signtool for Generating Secure Boot Stream

The CCES signtool host utility is also used for signing/encrypting the boot stream image and converting

it into a secure boot stream image. When signtool is used with the sign command, various switches are

used to specify the keys, as summarized in Table 4.

Switch Description

-type BLp|BLw|BLx Indicates which Secure Boot format is used

-prikey file.der Identifies the file containing the ECDSA-224 key pair for signing (BLp, BLx,

and BLw)

-enckey encfile.key Identifies the 16-character file containing the AES-128 key string to be used

for encrypting the file's content (required for BLx, optional for BLw. If omitted,

signtool generates a random key for encryption)

-wrapkey wrapfile.key Identifies the 16-character file containing the AES-128 key string to be used

for wrapping the encryption key (BLw, must be used with –enckey switch)

-infile bootstream.bin Specifies the binary file containing the boot stream to be signed/encrypted

-outfile secure.bin Specifies the name of the file to create, containing the signed/encrypted version

of bootstream.bin.

Table 4. Switches for sign Command in signtool Utility

Listing 3 is an example command line using the signtool utility to sign a boot loader stream, boot.bin,

using the private key stored in the key pair file keychain.der.

signtool sign --type BLp --prikey keychain.der --infile boot.bin --outfile secboot.bin

Listing 3. Signing a Boot Stream for Integrity and Authenticity Protection

The final secboot.bin output file is both integrity and authenticity protected. The original boot loader

stream is still in plaintext format, meaning it’s visible. If confidentiality protection is also desired, signtool

can be invoked for both keyless (BLx in Listing 4) or wrapped (BLw in Listing 5) formats.

Secure Booting Guide for Blackfin+® and SHARC+® Processors (EE-366) Page 10 of 22

signtool sign --type BLx --pricey keychain.der --enckey aes.bin --infile boot.bin --outfile
secboot.bin

Listing 4. Signing/Encrypting a Boot Stream for Integrity, Authenticity, and Confidentiality Protection (Keyless)

signtool sign --type BLw --pricey keychain.der --enckey aes.bin -wrapkey wkey.bin --infile
boot.bin --outfile secboot.bin

Listing 5. Signing/Encrypting a Boot Stream for Integrity, Authenticity, and Confidentiality Protection (Wrapped)

As discussed in Secure Boot Image Types, the only difference between these two methods of adding

confidentiality protection is whether the cipher key is sent along with the secure boot stream (BLw) or not

(BLx).

Secure Boot Image Attributes

When the secure boot stream is generated, secure boot image attributes that form part of the secure boot

header can also be specified. These attributes are used to provide additional information regarding the

content of the secure boot image.

All image attributes are integrity protected using the same algorithm as the image section; therefore, when

the image authentication process completes, and the image is successfully authenticated, the image

attributes are known to be trusted.

Attributes are specified as type value pairs, where both the type and value are 32-bit entities. The boot code

supports the image attributes summarized in Table 5.

ID Name Description Values

0x00000000 Unused Unused attribute Value must be 0x00000000

0x00000001 Version Version of the

attribute format

Value must be 0x00000000

0x00000002 Rollback ID Current value of the

rollback counter

0x00000000 – 0xFFFFFFFF

Refer to Anti-Rollback Protection

0x80000000 Secure Scrub Optionally scrub stack

and workspace areas

after loading image

0x1 Do not scrub the stack and

workspace used for secure boot.

Other The stack and workspace will

be scrubbed after booting

Table 5. Secure Boot Image Attributes

Programming the Secure Boot Stream into a Storage Device

Once the secure boot stream is generated, it can be stored in an external flash memory device or any other

storage device that the processor can boot from. The CCES Command Line Device Programmer (CLDP)

utility can be used to program memory on a target board. For full details, refer to the Loader and Utilities

Manual.

The CLDP requires the use of a driver that runs on the processor core to access the flash memory. If the part

is locked, CLDP will need to gain access to the locked part to load the driver. This is done the same way as

Secure Booting Guide for Blackfin+® and SHARC+® Processors (EE-366) Page 11 of 22

gaining access for debugging. The matching secure debug key must be passed in. Further details are

provided in the Secure Debug Access section.

With CLDP being able to gain access to a locked system, the user is able to continue debugging and program

new secure images into the flash device.

Programming Keys into OTP Memory

All keys used by the boot kernel for authentication and decryption must be programmed into the OTP

memory. Programming the OTP memory in general can be accomplished in one of two ways:

1. Use the same CLDP used for programming flash memory (see the Loader and Utilities Manual).

2. Run an application on the processor that calls the OTP read/write API functions stored in the ROM.

It is recommended that all OTP access is done through the OTP API functions provided in the ROM. To

use the API, include the cdefBF70x_rom.h header file (for ADSP-BF70x-based projects) or the

cdefSC58x_rom.h header file (for ADSP-SC58x/ADSP-2158x-based projects) in the source code.

API for OTP Programming

Listing 6 shows an example for one of the functions that can be used to program the data manually.

bool res = adi_rom_otp_pgm_data(data, offset, size);

Listing 6. Example Use of OTP Programming API to Program a Certain Location

However, to avoid potential mistakes with manual programming, the recommended API to use is shown in

Listing 7.

bool res = adi_rom_otp_pgm(data);

Listing 7. Use of the adi_rom_otp_pgm() ROM Function

Using this verified API, the details of key location and programming multiple locations for double

redundancy are fully hidden.

In the code example in Listing 8, the OTP data structure, otp_data, contains the element public_key0,

which is loaded with the address of the key data buffer, key, and then programmed into the OTP memory

via the adi_rom_otp_pgm() function. Here, even though sixteen 32-bit words are written, only 14 are

needed for ECDSA 224 bit (used in secure booting).

This same API can be used to program other keys at the same time. In order to do so, prepare uint32_t

type buffers for the Secure Debug Key and the AES-128 Private Key, and load the addresses of these buffers

into the OTP data structure elements secure_emu_key and pvt_128key1, respectively. Once the OTP data

structure is finalized, adi_rom_otp_pgm() can be called as in the code example of Listing 8.

Secure Booting Guide for Blackfin+® and SHARC+® Processors (EE-366) Page 12 of 22

/* program_public_key (example of programming the public key, used for authentication */

bool program_public_key() {

 uint32_t key[ROM_OTP_SZ_public_key0] = {

 0xdebb924f, 0x430af76a,

 0xd9e8dac8, 0x4631cbf5,

 0xce2b4164, 0xeb9605f6,

 0xd9cc6fa3, 0xc6f273a3,

 0x4c138c37,0x05192834,

 0x8762ee55,0x907b5072,

 0x749d7487,0xff53f1c3,0 ,0 };

 otp_data data = {0};

 data.public_key0 = &key;

 if(!adi_rom_otp_pgm(&data)) {

 return false;

 }

 return true;

}

Listing 8. Example Code to Program the Public Key into OTP

Listing 9 shows the struct type definition that the adi_rom_otp_pgm() API uses. Refer to the ROM header

file for the exact definition.

typedef struct {

 uint32_t (*huk)[8];

 uint32_t (*dtcp_ecc_key)[40];

 uint32_t (*dtcp_const_key)[19];

 uint32_t (*dtcp_dev_key)[32];

 uint32_t (*pvt_128key1)[4];

 uint32_t (*pvt_128key2)[4];

 uint32_t (*pvt_128key3)[4];

 uint32_t (*pvt_128key4)[4];

 uint32_t (*pvt_192key1)[6];

 uint32_t (*pvt_192key2)[6];

 uint32_t (*public_key0)[16];

 uint32_t (*public_key1)[16];

 uint32_t (*ek)[8];

 uint32_t (*secure_emu_key)[4];

 uint32_t bootModeDisable;

 uint32_t (*boot_info)[16];

 uint32_t (*gp0)[16];

 uint32_t antiroll_nv_cntr;

 uint32_t stageID;

 uint32_t (*preboot_ddr_cfg)[11];

} otp_data;

Listing 9. C Structure Representing the Elements Stored in OTP Memory

Secure Booting Guide for Blackfin+® and SHARC+® Processors (EE-366) Page 13 of 22

All non-zero data in the array provided are programmed into OTP memory. Programming is done according

to the OTP controller requirements, and only double redundant mode is supported. For each 32-bit data

element, four locations will be programmed, as required by the OTP controller.

False is returned if an error code is observed in the OTPC_STAT or OTPC_PMC_STAT registers, or if the

OTPC_PMC_STAT indicates that the controller is not in the idle state. If an error occurs, please refer to those

registers for more detailed information.

All programming is performed in accordance to the requirements in the OTP Controller (OTPC)

documentation, and all recommended values are used. For more information, refer to the OTPC

documentation.

Corresponding API to ROM functions exist, allowing the user to read contents in OTP memory, as shown

in Listing 10.

bool res = adi_rom_otp_get(otpcmd_info, data);

Listing 10. Use of the adi_rom_otp_get_data() ROM Function

The data specified by the otpcmd_info parameter (one of several commands enumerated in OTPCMD) is

fetched from OTP memory and placed at the location specified by data. This API uses the

adi_rom_otp_get_data API.

The OTPCMD enumeration contains entries for each field defined in OTP memory. For the complete list, refer

to the OTP header file.

Locking the Part

In order to lock a processor and enable security, a particular location in OTP must be written to. This should

be done using the ROM API function adi_rom_lock API, as shown in Listing 11.

bool res = adi_rom_lock();

Listing 11. OTP API to Lock the Part and Enable Security

Calling this function locks the device, making it secure. Once locked, the OTPC_SECU_STATE register

indicates that the part is locked, and access is limited to the OTP memory. Other security features are also

enabled. For more information, refer to the security documentation regarding a locked device.

At this point, only secure boot streams are allowed, which will be verified through cryptographic means.

Normal (non-secure) boot streams will automatically be rejected. In the event that either verification fails

on a secure boot stream or a non-secure boot stream is used, the boot kernel will set the fault signal pin

active, set the core to idle, and not complete the booting process.

Secure Booting Guide for Blackfin+® and SHARC+® Processors (EE-366) Page 14 of 22

Accompanying Examples

This EE-Note is accompanied by example projects in various directories in the Associated ZIP file[6] to

demonstrate the different stages of developing a secure boot system, as discussed above. Each directory,

except for keygen, has separate sub-directories for the project configuration (either for ADSP-BF70x or for

ADSP-SC589), while sharing a common source code base.

keygen Directory

The keygen directory does not contain any source code. It uses post-build commands to execute the

signtool utility to generate keys and sign/encrypt boot streams.

Using keygen Example Project for Generating Keys

The keygen project provides an example of creating all the required keys for authentication and encryption.

Randomly generated keys can be used, as ca custom keys.

 Python scripting is required for the keygen project to generate

all of the required collateral. Update the path to the python

executable in the Makefile. ActivePython can be downloaded

from http://www.activestate.com/activepython/downloads[3].

ActivePython 2.7 was used to develop and test these examples.

The keygen project is a simple CCES makefile project. By building the project, the makefile will generate

all required keys and associated header files using the signtool utility, as well as some short Python scripts.

All other projects will utilize the keys and header files generated by keygen located in its project directory.

 Build the keygen project only once, and do not delete the

generated keys! The clean function is disabled to protect the

keys because, if the keys are programmed into OTP memory,

the newly generated keys will replace the old ones, which will

be unrecoverable.

keygen: Random Keys

In the Makefile, the genRandKey.py script is used to create random 128-bit keys for the encryption,

emulation, and wrapper keys; and the bin2inc.py script is then used to create a C array in a header file so

that the key can be easily programmed into OTP memory. The Makefile is invoked as in Listing 12.

make random_key.bin random_key.h

Listing 12. Using Keygen Project to Generate a Random Key

keygen: Authentication Key

The signtool utility is used to generate a key pair and to extract the authentication key into

secure_boot_public_key.h. This header file is used to program the authentication key directly to OTP

memory.

http://www.activestate.com/activepython/downloads%5b3

Secure Booting Guide for Blackfin+® and SHARC+® Processors (EE-366) Page 15 of 22

keygen: Custom Keys

If custom keys are used instead of generating them in the keygen project, place the keys in the keygen

folder with the correct names. The filenames can be found at the top of the Makefile:

• wrapper_key.bin

• auth_key.bin (key pair)

• encrypt_key.bin (confidentiality key)

• jtag_key.bin (secure debug key)

After placing whatever custom keys are being used in the directory, simply build the project. Any missing

keys will be generated, and all other collateral will be generated based on the provided keys.

Program_OTP Directory

This directory provides examples to setup OTP for the various secure boot image types based on keys

generated by keygen.

Using the Program_OTP Example Project

The Program_OTP example provides a CCES executable project whose application programs the relevant

keys from the keygen project. Refer to the keygen example project for more information on how keys are

generated.

 The keygen project must be built first to provide all the required keys

and header files used in the Program_OTP project. All keys used by

this project are generated by keygen, and located in keygen’s project

folder.

As described previously in this EE-note, the project provides three different functions to program the AES-

128 authentication key, the encryption key generated using genRandKey.py, and the emulation key for

debug. The application also contains an additional function that locks the part using the OTP API.

 Comment out the call to the lock_part(), if enabling security is not

yet desired.

In addition to functions to program each individual key, three setup functions are provided: setupBLp,

setupBlw, and setupBLx. These functions will program all the required keys from the keygen project into

the appropriate OTP fields for the associated image type.

 Do not run all three setup functions. Choose the one depending on

which secure boot image type is used and comment out the others.

It's recommended to use this example to program all the keys for the desired image type.

Secure Booting Guide for Blackfin+® and SHARC+® Processors (EE-366) Page 16 of 22

LedBlink Directory

This directory contains a standard application signed for all image types using the generated keys. The

application should be programmed into the SPI2 flash memory on the evaluation platform being used.

Using the LedBlink Signing Example Project

The project is a standard CCES project containing the desired application. There source code of this project

itself is trivial in that it simply blinks LEDs on the evaluation board. The project is used to show how the

normal non-secure boot stream can be converted into a secure boot stream file.

The LedBlink project utilizes the keygen makefile features to sign the resulting boot stream in all of the

available image types by invoking the signtool utility via a post-build step. The Build Steps tab is found

in the C/C++ BuildSettings window of the Properties dialog found under the ProjectProperties

menu option.

The post-build setting refers to the makefile in the keygen project. It provides the location of the keys and

specifies which image types to build. The image types are specified at the end of the command , such as

${ProjName}.blwldr. This directs the makefile to build a BLw image type using the keys it generated.

Listing 13 is an example of the makefile command line.

Make -f "${workspace_loc:/keygen/Makefile}" KEYDIR="${workspace_loc:/ keygen}" ${ProjName}.blpldr
${ProjName}.blxldr ${ProjName}.blwldr

Listing 13. Post-Build Command in Keygen Project to Create Secure Boot Streams

By default, this project will build all three types of secure boot streams. It will produce the

LedBlink.blpldr, LedBlink.blxldr, and LedBlink.blxldr boot stream output files. These boot streams

can then be programmed into the flash memory using the CLDP utility, as mentioned previously.

SecureBoot_OpenPart Directory

This is an example project that can securely boot a loader stream from SPI2 flash memory using keys

generated by keygen without writing any OTP memory.

Using SecureBoot_OpenPart Project

Assuming that the secure boot stream has already been programmed into the SPI2 flash memory, this

application will:

1. configure the SPI peripheral,

2. configure the boot parameter for secure booting, and

3. securely boot the secure boot stream in the SPI2 flash.

Since the part has not been locked (security is not enabled), the boot kernel will not boot the secure boot

stream upon reset. But, when the boot API is used and configured for secure booting, the secure boot stream

will be verified and booted, and the LEDs will start blinking.

Finally, the project reads the keys from the files generated from the keygen project. There is no need to

program the keys into OTP memory to use this project.

Secure Booting Guide for Blackfin+® and SHARC+® Processors (EE-366) Page 17 of 22

Secure Boot on an Open Part

This section provides more details on how to set up secure booting on an open, non-locked part for

development and testing.

The ROM code provides a mechanism to boot a secure boot stream on an open part without writing any

keys into the OTP memory. This can be very useful in validating the generated key and application stream

before writing to OTP memory. As such, the SecureBoot_OpenPart simulation code does not rely on the

Program_OTP project. The keys used are read in from the files generated by the keygen project.

Secure booting is accomplished by loading an application into memory using the emulator, which utilizes

the ROM API function adi_rom_Boot in conjunction with a hook function configuring the kernel for secure

boot and initiating the boot process.

Configuring the Kernel

In order to configure the kernel, a hook function is used during the initial boot sequence to alter the internal

configurations at the appropriate time. For more information on the hook function provision in the ROM

API, refer to the booting chapter in the HRM.

When the hook function is called, a structure is passed to the function, allowing access to the kernel’s

configurations. There are three data of interest: bootType, keyType, and pKey:

 bootType – defines the type of boot. By setting this to ADI_ROM_SECURE_BOOT, the kernel will

proceed assuming a secure boot. In a normal boot process, this is set when the part is locked.

 keyType – setting this to ADI_ROM_CUSTOM_SECURITY essentially disables reading keys from OTP

memory. This allows the keys to be explicitly set in the application.

 pKey – defines the key to be used for authentication.

Booting Using the ROM API

The ROM API provides the ability to initiate a boot sequence at any point during execution. As the API is

called at runtime, it can provide an additional level of flexibility that is not provided by the default boot

options associated with the defined boot modes.

In this case, the most important customization is the ability to pass a custom hook function. Called

strategically during the boot process, customization of many kernel operations is possible. The hook

function is called with a parameter indicating the point within the boot process at which the call is being

made.

To configure the kernel for secure boot, the hook function must perform the configuration after default

initialization is completed.

Application Example

Listing 14 provides an application that can be loaded and executed using the emulator. The application’s

main function calls the ROM API initializing SPI Master boot mode with BCODE = 0. The

ConfigureForSecureBoot function illustrates the key kernel configurations.

Secure Booting Guide for Blackfin+® and SHARC+® Processors (EE-366) Page 18 of 22

/**

 * ConfigureForSecureBoot

 * @param pBootConfig boot configuration structure

 * @param cause the reasong the hook was called

 * @brief The hook function is called twice by the ROM after configuration and after initialization

 * Here we will setup the boot Kernel to do a secure boot.

 **/

int32_t ConfigureForSecureBoot(ADI_ROM_BOOT_CONFIG * pBootConfig, ROM_HOOK_CALL_CAUSE cause)

{

 if (cause == ROM_HOOK_CALL_INIT_COMPLETE) {

 /* This section is only executed after the boot mode’s init function has been run */

 pBootConfig->pSource+=16; /* kernel anomally workaround for 0.0 silicon only */

 /* 1. Set the boot type to secure */

 pBootConfig->bootType=ADI_ROM_SECURE_BOOT;

 /* 2. Set they key type to custom (this disables reading the key from OTP) */

 pBootConfig->keyType = ADI_ROM_CUSTOM_SECURITY;

 /* 3. load the key to be used, this key is normally read from OTP */

 uint8_t * pKey = (uint8_t *)&pBootConfig->publicKey;

 for(uint8_t i=0; i<56; i++) {

 pKey[i] = publickey[i];

 }

 }

 else {

 /* This section is called after the config routine is finished */

 setupMemoryMappedSPI(pBootConfig);

 /* change dBootCommand to use SPI XIP mode */

 pBootConfig->dBootCommand &= (!BITM_ROM_BCMD_DEVICE);

 pBootConfig->dBootCommand |= ENUM_ROM_BCMD_DEVICE_SPIXIP;

 }

 return 0;

}

Listing 14. Example Code to Set Up for Secure Boot Using the ROM API

Understanding the SecureBoot_OpenPart Example Project

The SecureBoot_OpenPart project illustrates secure boot on an open part. By utilizing various ROM APIs,

it is possible to perform limited testing of the secure boot without locking the part and without writing any

keys into OTP memory.

By utilizing the boot routine in conjunction with a hook function, it is possible to exercise the secure boot

process without having written any data into OTP memory. This is accomplished by creating an application

that uses the boot routine API to boot the processes, and a hook routine alters the internal configurations of

the boot process to shift the boot ROM's context to a secure one.

Secure Booting Guide for Blackfin+® and SHARC+® Processors (EE-366) Page 19 of 22

The example provided utilizes SPI Master boot mode. The generated secure loader file must be programmed

into the base of the SPI flash memory.

ConfigureForSecureBoot Hook Function

The ConfigureForSecureBoot hook function illustrates how to configure the ROM for secure boot and

provides different functions to utilize the different secure boot types. There are two basic operations,

changing the boot and key type and loading the keys into memory.

To modify the boot type and the key type, the associated fields are modified in the pBootConfig structure.

This structure contains all the settings extracted by the ROM from various sources, such as OTP settings,

security status, RCU registers, etc. The bootType can be modified to ADI_ROM_SECURE, and the keyType

can be modified to ADI_ROM_CUSTOM_SECURITY. This causes the ROM to operate in a secure mode and

disables reading any key from OTP memory.

Three functions are provided as helper functions to the configuration hook function. Each function will use

the keys generated by the keygen project to configure the processor for the associated secure boot image

type, and only one can be used at a time (uncomment the desired image type), which must match the type

loaded into the SPI flash memory.

There are other code snippets provided for anomalies, which also must be included for correct operation.

Boot Routine

The main application code simply calls the boot routine providing the ConfigureForSecureBoot function

as a hook routine. The LedBlink application will validate that it has been loaded by blinking LEDs.

Secure Debug Access

The Test Access Port Controller (TAPC) provides a means of restricting access to the processor’s secure

resources. Secure access via the debug port is protected via a 128-bit security key that must match a key

that has been pre-loaded into OTP memory by the user for access.

In order to gain access to a locked processor, the TAPC must allow access to the part, which will only occur

if it is provided with a matching key to the data loaded into its TAPC_SDBGKEYn registers.

The key is set in OTP memory using the OTP program API to program the secure_emu_key field in the

OTP memory. This key is read and loaded by the boot kernel in the following sequence:

1. Bits 31:0 of the key in OTP are stored to TAPC_SDBGKEY0[31:0]

2. Bits 63:32 of the key in OTP are stored to TAPC_SDBGKEY1[31:0]

3. Bits 95:64 of the key in OTP are stored to TAPC_SDBGKEY2[31:0]

4. Bits 127:96 of the key in OTP are stored to TAPC_SDBGKEY3[31:0]

The boot kernel will then set the TAPC_SDBGKEY_CTL.VALID bit to enable comparisons of the keys for

allowing debug access.

Secure Booting Guide for Blackfin+® and SHARC+® Processors (EE-366) Page 20 of 22

 The TAPC registers are accessible by the application. If the processor is

locked and the application booted from flash clears the VALID bit in

TAPC_SDBGKEY_CTL register, key comparisons will be disabled. As such,

debug access will be permanently disabled.

Once the boot kernel has loaded the user key, a secure debug key can be provided to the TAPC via JTAG.

This is done by providing the secure debug in either the ADSP-BF70[x]-resets.xml file in the

System\ArchDef directory of the CCES installation path or in a custom board XML file.

In the XML file, the secure debug key is passed in by setting the userkey[x] registers, as shown in

Listing 15. More information can be found in the CCES-ReleaseNotes-1.1.0.pdf, located in the \Docs

sub-directory in the CCES installation.

<register name=”userkey0” reset-value=”0x00001111” core=”Common” />

<register name=”userkey1” reset-value=”0x22223333” core=”Common” />

<register name=”userkey2” reset-value=”0x44445555” core=”Common” />

<register name=”userkey3” reset-value=”0x66667777” core=”Common” />

Listing 15. Providing Secure Debug Key for Entry into Locked Part

A key failure indication can be detected via the TAPC_USERKEY_STAT register. The boot code does not check

the key status, nor does it enable any associated interrupts to signal key failure. The boot code will continue

to boot upon a key failure in a secure manner. The key failure status will remain intact so that the application

loaded can check for a failed challenge on the debug port.

The boot code can be configured to bypass the loading of the key during the boot sequence by setting the

value of the secure_emu_key in the OTP memory to all ones. In this scenario, the only means to gain access

to the secure resources via the debug port is to load an alternate key via the application. The application will

need to write a key into the TAPC_USERKEYn registers. The alternative key should reside in a secure region

of memory at all times unless it is being sent remotely, in which case it should be transmitted over a secure

connection.

Errors and Failures

Any error encountered while processing a secure boot image will result in the ROM jumping to the error

handler. This includes decryption failures, authentication failures, and configuration errors. A failure to

match the secure_emu_key, however, will not result in a failure; rather, booting will continue as normal.

Boot ROM API

The adi_rom_Boot boot routine provides access to boot an application at run-time through a supported

peripheral and provides the ability to further customize each boot mode’s process. It can be used for any

kind of second-stage boot for supported boot modes, providing options to boot from any device and any

channel, whereas booting directly limits the choice to the default devices and channels. Often, any auto-

configuration or detection of the device can also be disabled. For full details regarding the adi_rom_Boot

API, refer to the Boot ROM chapter in the processor’s hardware reference manual.

Secure Booting Guide for Blackfin+® and SHARC+® Processors (EE-366) Page 21 of 22

Using Secure Debug Key with CCES

When the Secure Debug Key is programmed into the OTP memory and the part is locked, the part is secure

with security features enabled. In order to gain access with the host debugger, a key must be passed in to be

compared against the Secure Debug Key stored in OTP memory. If the keys match, then access is granted,

otherwise access is denied.

A key can be passed in from the debugger via a custom board support XML file or in the relevant evaluation

platform XML file (ADSP-BF70x-resets.xml or ADSP-SC589-registers.xml) found in the

\System\ArchDef sub-directory in the CCES install path. The benefit of using a custom board support

XML is the ability to use different keys for different boards. A different custom board support XML file

would be created for every board and for every CCES debug session.

Key Format

When a key is created using keygen, a 16-byte array is provided in jtag_key.h. For example, consider the

key defined as shown in Listing 16.

const static uint8_t jtag_key[] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,

 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff};

Listing 16. Example Key

With the above key, the XML must contain the register settings as shown in Listing 17 to pass in the correct

key to gain entry into the secure system.

<register name="userkey0" core="Common" reset-value="0x33221100" />

<register name="userkey1" core="Common" reset-value="0x77665544" />

<register name="userkey2" core="Common" reset-value="0xbbaa9988" />

<register name="userkey3" core="Common" reset-value="0xffeeddcc" />

Listing 17. XML Modifications Required after Key Is Known

Conclusion

Secure Boot allows the user to safeguard their sensitive IP and data stored on an external storage device.

The system uses cryptographic functions to decrypt and verify the boot stream prior to loading it as a useable

format into the processor.

This EE-Note reviewed all the steps and requirements necessary to set up a Secure Boot system, as well as

explained the accompanied examples that set up the secure system.

Secure Booting Guide for Blackfin+® and SHARC+® Processors (EE-366) Page 22 of 22

References

[1] ADSP-BF70x Blackfin+ Processor Hardware Reference. Rev 1.0, October 2016. Analog Devices, Inc.

[2] CrossCore Embedded Studio 2.4 Loader and Utilities Manual. Rev 1.8, September 2016. Analog Devices, Inc.

[3] ActivePython (http://www.activestate.com/activepython). 2.7, ActiveState.

[4] ADSP-SC58x SHARC+ Processor Hardware Reference Manual. Rev 0.3, April 2016. Analog Devices, Inc.

[5] Tips and Tricks Using the ADSP-SC58x/ADSP-2158x Processor Boot ROM (EE-384). Rev 1, September 2015. Analog

Devices, Inc.

Document History

Revision Description

Rev 1 – November 26th, 2014

by G. Yi and S. Molloy

Initial Release

Rev 2 – October 13th, 2016 by G. Yi Added support for ADSP-SC58x/ADSP-2158x SHARC+ processors.

Corrected byte offsets in Table 1.

http://www.activestate.com/activepython

