

Engineer-to-Engineer Note EE-373

Technical notes on using Analog Devices products and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Tuning Dynamic Branch Prediction on ADSP-BF70x Blackfin+TM

Processors

Contributed by Manali Vispute Rev 1 – July 8, 2015

Copyright 2015, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’
products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their
respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction

The fast execution rate of ADSP-BF70x

Blackfin+TM processors is in a large part due to its

ten-stage instruction pipeline. The flipside of

having such a deep pipeline is that branch

instructions require that the pipeline be flushed,

and the new instruction fetched from the branch

target address must traverse the entire pipeline

before it can be executed. This results in undesired

latency in the execution of such branch

instructions.

Branches can be accelerated if the processor

correctly predicts the target of an upcoming

branch instruction and automatically begins

fetching instructions from that branch target’s

address. This is referred to as branch prediction,

which can be static or dynamic in nature. Static

branch prediction depends on information

gathered before the execution of programs, while

dynamic branch prediction depends on such

information gathered during run-time.

Branch Predictor Overview

The ADSP-BF70x processors have a dynamic

branch predictor (BP) unit. Once enabled, it can

significantly reduce the latency associated with

branches in a program. When the BP is disabled,

the ADSP-BF70x processors rely only on static

prediction to accelerate the branches and keep the

instruction pipeline’s utilization high.

The ADSP-BF70x processors also feature a

Performance Monitor Unit (PMU) that monitors

the processor’s internal resources. It can count a

set of processor events during program execution.

In this EE-note, the PMU is used to monitor the

performance of the BP. For a detailed description

of the BP and PMU, please refer to the ADSP-

BF70x Blackfin+ Processor Programming

Reference[1].

The BP contains a 16-kbit RAM, where learned

predictions are stored. This RAM can only be

accessed once per cycle, so heuristics control

whether the RAM is accessed in order to learn

new information about a branch or to predict the

target of a branch. These heuristics can be

influenced by settings in the BP_CFG register.

Different programs have different characteristics,

and the best heuristic for your program may not

be the default setting; therefore, it may be possible

to improve performance by exploring alternate

settings.

In ADSP-BF70x processors, the sequencer

controls the program flow by providing the

address of the next instruction to be executed. The

BP runs ahead of the sequencer and predicts the

target address of branch instructions in a program.

This prediction is dynamic, based on the location

and direction of branches previously executed by

the processor. In this manner, the BP predicts the

flow of control in a program and keeps the

instruction pipeline’s utilization high.

During each instruction fetch cycle, the fetch unit

fetches one line (64 bits) of instruction data, and

the BP is capable of predicting two branches

within each line. The BP table in the 16-kbit RAM

can be viewed as two-way set associative, where

http://www.analog.com/processors

Tuning Dynamic Branch Prediction on ADSP-BF70x Blackfin+ Processors (EE-373) Page 2 of 7

Set0 is associated with the first branch learned in

a line, and Set1 is associated with the next branch

learned in the same line. Each set stores the type,

source address, and target address of the static

branches learned by the BP. For conditional

branches, an additional four-value prediction code

is also stored. The prediction code indicates the

direction the branch is likely to take based on

execution history. For the new branches learned,

the predictor overwrites one of the two sets using

a Least Recently Used (LRU) policy. In this

policy, the LRU bit is used to point to the oldest

branch table entry that was accessed for each line.

This entry will be overwritten when a new branch

is to be learned.

The BP performs two kinds of accesses to the BP

table:

 fetch accesses - reads table entries for

determining possible branch hits

 management accesses – adds/updates table

entries

While a fetch access is performed every time an

instruction is fetched from memory, a

management access is performed only in those

cycles where instruction fetches are not made.

Thus, the BP gives precedence to branch

prediction over adding or updating entries in the

BP table.

The sequencer issues four types of

requests/accesses to the BP table, as shown in

Table 1:

Access Name Access Description

Learn Creates new entry in the BP Table

Update Updates the prediction value in a table entry

Instruction Mispredict Occurs when the type of a prediction does not match the type expected by

the sequencer. Prevents further predictions from that entry.

Address Mispredict Occurs when the target address of a prediction does not match the address

expected by the sequencer. Updates the target address of the table entry.

Table 1. BP Table Accesses

The sequencer provides the data for these requests

at two different points in the instruction pipeline;

thus, the BP needs to buffer the data coming from

the sequencer so that it can be written to the BP

table in a single access. Also, the strategy of

performing management accesses in between

instruction fetches calls for the buffering of data

before it can be entered into the BP table. This is

done using two data store buffers, Store Buffer 0

and Store Buffer 1, which are used to store

requests from the sequencer before they are

written to the BP table.

The store buffers can be in any of three states:

 idle

 waiting for additional sequencer data

 full

When a store buffer gets all the data from the

sequencer, it goes from the waiting state to the full

state. Once full, the store buffer moves its contents

to the table control buffer of the BP table and goes

back to the idle state. The table control buffer then

waits for a non-fetch cycle to write its contents to

the BP table. In order to ensure that this wait is not

indefinite, the number of sequential instruction

fetch cycles are counted, and if they exceed a

Tuning Dynamic Branch Prediction on ADSP-BF70x Blackfin+ Processors (EE-373) Page 3 of 7

certain threshold, the sequencer is requested to

hold off an instruction fetch for one cycle. The

number of sequential fetches counted are stored in

the STMOUTCNTR field of the BP_STAT register,

while the threshold can be set using the

STMOUTVAL field of the BP_CFG register.

The store buffers interact in two ways. The first is

the order in which the store buffer requests are

sent to the table control buffer for execution, and

the second is the order in which the sequencer

requests are loaded to the buffers. The order in

which requests are sent to the table control buffer

is straightforward, as the most recently loaded or

newest store buffer request is sent to the table

control buffer first. If a request has already been

asserted (but not accepted) by the table control

buffer, the request will be de-asserted and the

newer request will be asserted. Once the new

request is asserted by the table control buffer, the

old request may be reasserted. This policy ensures

that branches close to the current PC are loaded

into the table as quickly as possible, increasing the

probability of branches being predicted in tight

loops.

On the other hand, the loading of store buffers

with the sequencer requests is controlled by

several policies. The first policy is that Store

Buffer 0 will always be loaded first after reset.

The second is that when a store buffer is in the full

state, the other buffer is chosen by the sequencer

to write to. In the case where none of the requests

have been executed to the table before a new

request is received, the contents of the oldest store

buffer will be overwritten. The third policy is that

store buffers which have their data accepted by the

table control buffer will be loaded next.

Default BP Configuration

Dynamic branch prediction in ADSP-BF70x

processors is enabled by default in the SYSCFG

register. Once enabled, the BP starts executing

immediately. However, it requires 132 core clock

initialization cycles before it can start improving

the latency of branches. During this initialization

period, all the table entries are written with 0s, one

row at a time. All other types of accesses to the

table are blocked, so no predictions, learning, or

updates will be performed by the BP during this

time.

The predictor can be configured using the BP_CFG

register, which contains the enable bits for

dynamic prediction of each type of branch

supported by the BP. When enabled, the BP will

learn new branches of this type and add them to

the table. The STMOUTVAL field of the BP_CFG

register can be used to set the threshold on the

number of sequential instruction fetches.

The reset value of the BP_CFG register enables

prediction for all types of branches except for the

JUMP Condition Code (JUMPCC) branch, and

the STMOUTVAL field is set to 22. However, the

C run-time code featured in the CrossCore®

Embedded Studio 2.0.0 development tools

automatically reconfigures the BP_CFG register to

enable all branch prediction and the Skip Update

LRU Mode. Additionally, the buffer timeout is

reduced to 0, and the BP table is flushed.


While this configuration yields good

performance for most applications, it

may not be optimal in all cases. See the

Code Example section for assistance

determining the best configuration for

your application.

Guidelines for BP Tuning

If cycle count reduction in a program is desired,

then tuning the BP may help. The following

guidelines are recommended.

First, the store timeout can be set to a value lower

than the reset default to avoid buffer overwrites

before the sequencer request can be executed to

the BP table. Experiment with different values in

the STMOUTVAL field of the BP_CFG register to

determine the best configuration for the program.

Second, either the Skip Update or Skip Update

LRU Mode can be enabled to reduce the number

Tuning Dynamic Branch Prediction on ADSP-BF70x Blackfin+ Processors (EE-373) Page 4 of 7

of stalls incurred due to table updates. These

modes can be enabled using the SKUPD and

SKUPDLRU bits of the BP_CFG register,

respectively. The Skip Update Mode causes

updates to be skipped when the prediction code

for a branch is either strongly taken or strongly not

taken. The Skip Update LRU Mode also causes

updates to be skipped if the prediction code for a

branch is either strongly taken or strongly not

taken and the predicted branch is not the oldest in

the table for a specific instruction line. This keeps

the recently accessed branches in the table for a

longer period of time, thus increasing the

frequency of predictions near the program counter

(PC).

Finally, it is good programming practice to reset

the BP if self-modifying code is used. This will

clear invalid branch entries associated with

previous execution from the affected memory

space from the BP table and result in correct

operation. For a detailed description of the

procedure for clearing the BP table, see the ADSP-

BF70x Blackfin+ Processor Programming

Reference.

Code Example

The associated ZIP file[3] contains example code

providing insight into how the BP settings affect

the performance of the program and how it can be

tuned to improve the performance. The example

was implemented using the CrossCore®

Embedded Studio 2.0.0 (CCES 2.0.0)

development tools and the ADSP-BF707 EZ-

Board™ evaluation platform[2].

In this example, the BP performance is evaluated

by counting the number of processor cycles

required to execute a loop. The BP events that

occur while the loop is executing are monitored

using the PMU. These events are learn requests

from the sequencer and branches learned by the

BP table.

The code calls the BP_Test() function four times.

Each call to this function sets the BP_CFG register

to some value and flushes the BP table. Once the

BP table is cleared, all branches have to be learned

anew. During each run of the BP_Test() function,

the stringlength() function is called twice.

As the name suggests, the stringlength() function

determines the length of a string passed to it. In

this case, the string is 3299 characters long. The

function consists of a tight three-instruction loop,

as follows:

 _looptop:

11a00ad8: R0=B[P0++](Z);

11a00ada: CC=R0==0x0;

11a00adc: IF!CC JUMP -0x4(BP);

The loop has a conditional jump branch, where the

BP modifier is used to initialize the dynamic

branch predictor.

The clock() function in the example code is used

to count the number of processor cycles required

to execute the loop. In order to ensure that the loop

does not execute during the BP table initialization

period, the csync() function is called before

calling the stringlength() function. The csync()

function ensures resolution of all pending core

operations and flushing of the core store buffer

before proceeding to the next instruction.

Since the string passed to the stringlength loop is

3299 characters long (including the terminating 0),

the loop should execute in slightly more than 9894

cycles, provided that the conditional jump at the

end of the loop is correctly predicted. However, it

is observed that the stringlength loop executes in

anywhere from 9935 to 23,127 cycles, depending

on the BP_CFG register settings, as depicted in

Figure 1.

Tuning Dynamic Branch Prediction on ADSP-BF70x Blackfin+ Processors (EE-373) Page 5 of 7

Figure 1. Console Output from Example Program

In this example, the PMU is used to monitor two

BP events - branch learn requests from the

sequencer (pf_lrn_brcc_total) and branch learn

requests written to the BP table (pf_brcc_lrn). For

a detailed description of the PMU events, please

refer to the ADSP-BF70x Blackfin+ Processor

Programming Reference.

At first, the BP_CFG register is the reset value

0x16760000. The STMOUTVAL is set to 22, and

prediction for all branches except for conditional

jump is enabled. Both runs of the stringlength()

function take 23,127 cycles. The only differences

are the number of learn requests from the

sequencer and the number of branches learned by

the BP. During the first run of the stringlength()

function, the PMU counts the number of

conditional branch learn requests from both the

stringlength() and printf() functions. There are

3358 requests from the sequencer to learn a

conditional branch, but none are actually learned

by the BP due to the fact that prediction for

conditional jumps is disabled. During the second

call to the stringlength() function, the PMU only

counts the conditional branch learn requests from

the stringlength() function; hence, the number of

learn requests is 3299 and, again, no conditional

branches are learned by the BP. Since the number

of cycles taken to execute the loop is much more

than expected, the BP must be tuned.

Because there are conditional jumps in the

example code, the first step in tuning the BP is to

enable the prediction of the conditional jump

branches. As such, the BP_CFG register is set to

0x16770000. The first call to the stringlength()

function again takes 23,127 cycles, even when the

prediction of conditional jump branches is

enabled. It is observed that there are 3306 learn

requests from the sequencer, but the branches are

Tuning Dynamic Branch Prediction on ADSP-BF70x Blackfin+ Processors (EE-373) Page 6 of 7

not learned until very late in the execution.

However, during the second call to the

stringlength() function, the number of cycles

goes down to 9935, and the number of learn

requests and branches learned is 0. This indicates

that branches are already learned and present in

the BP table.

The inability of the BP to learn branches is

explained by the fact that the stringlength() loop

iterates (loops back) every seven cycles. The

ADSP-BF707 fetch unit issues a series of 10

consecutive fetches, which is restarted by a new

loopback on every 8th cycle. These continuous

fetches starve the predictor of the cycles required

to create or update a branch entry. As a result, the

table control buffer gets overwritten before it can

write its contents to the BP table, and the predictor

fails to learn the branch despite executing the loop

several times.

To avoid buffer overwrites, the store timeout

value must be reduced. In the second step, the

STMOUTVAL is reduced to 0, which reduces the

number of processor cycles to 9948 and 9936,

respectively. Programmers should experiment

with different values of STMOUTVAL to arrive at

the best configuration.

The last step in tuning the BP is to enable the Skip

Update LRU mode by setting the SKUPDLRU bit

of the BP_CFG register. This mode reduces the

number of stalls due to table update. The number

of processor cycles required is 9947 and 9935,

respectively. Likewise, the Skip Update Mode can

also be enabled to further reduce the number of

stalls, but the Skip Update LRU Mode is preferred

because it yields better LRU handling, which

increases the frequency of predictions near the

program counter (PC).

As a result of the BP optimization steps taken

(summarized in Table 2), the best setting for the

BP_CFG register in the example code is

0x00778000. In CCES 2.0.0, the start-up code sets

the default configuration of BP to 0x00778001. It

sets the store timeout to 0, enables the Skip

Update LRU Mode, and flushes the BP table.

Table 2. Performance Measurements during BP Tuning

Conclusion

This EE-Note discussed how to tune the ADSP-

BF70x Blackfin+ processor’s dynamic branch

predictor and provides example code for

programmers to gain insight into the effects of BP

settings on the application’s performance.

While the default BP configuration established by

the CCES 2.0.0 run-time code results in good

performance for most applications, there is no

universal best setting. In many cases, better

performance can be achieved by manipulating the

BP configuration settings through empirical

testing of the embedded application code.

BP Optimization Steps
Cycles

Branch Learn

Requests
Branch Learns

1st Run 2nd Run 1st Run 2nd Run 1st Run 2nd Run

1. Enable Conditional Jump Branch

Prediction
23127 9935 3306 0 7 0

2. Reduce Store Timeout to 0 9948 9936 10 0 8 0

3. Enable Skip Update LRU Mode 9947 9935 10 0 8 0

Tuning Dynamic Branch Prediction on ADSP-BF70x Blackfin+ Processors (EE-373) Page 7 of 7

References

[1] ADSP-BF70x Blackfin+ Processor Programming Reference. Rev 0.2, May, 2014. Analog Devices, Inc.

[2] ADSP-BF707 EZ-KIT Lite Evaluation System Manual. Rev 1.0, May, 2014. Analog Devices, Inc.

[3] Associated ZIP File (EE373v01.zip) for Tuning Dynamic Branch Prediction on ADSP-BF70x Blackfin+ Processors (EE-

373). July 2015. Analog Devices, Inc.

Document History

Revision Description

Rev 1 – July 8, 2015

by Manali Vispute

Initial Release

	Introduction
	Branch Predictor Overview
	Default BP Configuration
	Guidelines for BP Tuning
	Code Example
	Conclusion
	References
	Document History

