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Introduction 

The fast execution rate of ADSP-BF70x 

Blackfin+TM processors is in a large part due to its 

ten-stage instruction pipeline. The flipside of 

having such a deep pipeline is that branch 

instructions require that the pipeline be flushed, 

and the new instruction fetched from the branch 

target address must traverse the entire pipeline 

before it can be executed. This results in undesired 

latency in the execution of such branch 

instructions. 

Branches can be accelerated if the processor 

correctly predicts the target of an upcoming 

branch instruction and automatically begins 

fetching instructions from that branch target’s 

address. This is referred to as branch prediction, 

which can be static or dynamic in nature. Static 

branch prediction depends on information 

gathered before the execution of programs, while 

dynamic branch prediction depends on such 

information gathered during run-time. 

Branch Predictor Overview 

The ADSP-BF70x processors have a dynamic 

branch predictor (BP) unit. Once enabled, it can 

significantly reduce the latency associated with 

branches in a program. When the BP is disabled, 

the ADSP-BF70x processors rely only on static 

prediction to accelerate the branches and keep the 

instruction pipeline’s utilization high. 

The ADSP-BF70x processors also feature a 

Performance Monitor Unit (PMU) that monitors 

the processor’s internal resources. It can count a 

set of processor events during program execution. 

In this EE-note, the PMU is used to monitor the 

performance of the BP. For a detailed description 

of the BP and PMU, please refer to the ADSP-

BF70x Blackfin+ Processor Programming 

Reference[1]. 

The BP contains a 16-kbit RAM, where learned 

predictions are stored. This RAM can only be 

accessed once per cycle, so heuristics control 

whether the RAM is accessed in order to learn 

new information about a branch or to predict the 

target of a branch. These heuristics can be 

influenced by settings in the BP_CFG register.  

Different programs have different characteristics, 

and the best heuristic for your program may not 

be the default setting; therefore, it may be possible 

to improve performance by exploring alternate 

settings. 

In ADSP-BF70x processors, the sequencer 

controls the program flow by providing the 

address of the next instruction to be executed. The 

BP runs ahead of the sequencer and predicts the 

target address of branch instructions in a program. 

This prediction is dynamic, based on the location 

and direction of branches previously executed by 

the processor. In this manner, the BP predicts the 

flow of control in a program and keeps the 

instruction pipeline’s utilization high. 

During each instruction fetch cycle, the fetch unit 

fetches one line (64 bits) of instruction data, and 

the BP is capable of predicting two branches 

within each line. The BP table in the 16-kbit RAM 

can be viewed as two-way set associative, where 
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Set0 is associated with the first branch learned in 

a line, and Set1 is associated with the next branch 

learned in the same line. Each set stores the type, 

source address, and target address of the static 

branches learned by the BP. For conditional 

branches, an additional four-value prediction code 

is also stored. The prediction code indicates the 

direction the branch is likely to take based on 

execution history. For the new branches learned, 

the predictor overwrites one of the two sets using 

a Least Recently Used (LRU) policy. In this 

policy, the LRU bit is used to point to the oldest 

branch table entry that was accessed for each line. 

This entry will be overwritten when a new branch 

is to be learned. 

The BP performs two kinds of accesses to the BP 

table: 

 fetch accesses - reads table entries for 

determining possible branch hits 

 management accesses – adds/updates table 

entries 

While a fetch access is performed every time an 

instruction is fetched from memory, a 

management access is performed only in those 

cycles where instruction fetches are not made. 

Thus, the BP gives precedence to branch 

prediction over adding or updating entries in the 

BP table. 

The sequencer issues four types of 

requests/accesses to the BP table, as shown in 

Table 1:

 

Access Name Access Description 

Learn Creates new entry in the BP Table 

Update Updates the prediction value in a table entry 

Instruction Mispredict Occurs when the type of a prediction does not match the type expected by 

the sequencer. Prevents further predictions from that entry. 

Address Mispredict Occurs when the target address of a prediction does not match the address 

expected by the sequencer. Updates the target address of the table entry. 

Table 1. BP Table Accesses 

The sequencer provides the data for these requests 

at two different points in the instruction pipeline; 

thus, the BP needs to buffer the data coming from 

the sequencer so that it can be written to the BP 

table in a single access. Also, the strategy of 

performing management accesses in between 

instruction fetches calls for the buffering of data 

before it can be entered into the BP table. This is 

done using two data store buffers, Store Buffer 0 

and Store Buffer 1, which are used to store 

requests from the sequencer before they are 

written to the BP table.  

The store buffers can be in any of three states: 

 idle 

 waiting for additional sequencer data 

 full 

When a store buffer gets all the data from the 

sequencer, it goes from the waiting state to the full 

state. Once full, the store buffer moves its contents 

to the table control buffer of the BP table and goes 

back to the idle state. The table control buffer then 

waits for a non-fetch cycle to write its contents to 

the BP table. In order to ensure that this wait is not 

indefinite, the number of sequential instruction 

fetch cycles are counted, and if they exceed a 
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certain threshold, the sequencer is requested to 

hold off an instruction fetch for one cycle. The 

number of sequential fetches counted are stored in 

the STMOUTCNTR field of the BP_STAT register, 

while the threshold can be set using the 

STMOUTVAL field of the BP_CFG register. 

The store buffers interact in two ways. The first is 

the order in which the store buffer requests are 

sent to the table control buffer for execution, and 

the second is the order in which the sequencer 

requests are loaded to the buffers. The order in 

which requests are sent to the table control buffer 

is straightforward, as the most recently loaded or 

newest store buffer request is sent to the table 

control buffer first. If a request has already been 

asserted (but not accepted) by the table control 

buffer, the request will be de-asserted and the 

newer request will be asserted. Once the new 

request is asserted by the table control buffer, the 

old request may be reasserted. This policy ensures 

that branches close to the current PC are loaded 

into the table as quickly as possible, increasing the 

probability of branches being predicted in tight 

loops. 

On the other hand, the loading of store buffers 

with the sequencer requests is controlled by 

several policies. The first policy is that Store 

Buffer 0 will always be loaded first after reset. 

The second is that when a store buffer is in the full 

state, the other buffer is chosen by the sequencer 

to write to. In the case where none of the requests 

have been executed to the table before a new 

request is received, the contents of the oldest store 

buffer will be overwritten. The third policy is that 

store buffers which have their data accepted by the 

table control buffer will be loaded next. 

Default BP Configuration 

Dynamic branch prediction in ADSP-BF70x 

processors is enabled by default in the SYSCFG 

register. Once enabled, the BP starts executing 

immediately. However, it requires 132 core clock 

initialization cycles before it can start improving 

the latency of branches. During this initialization 

period, all the table entries are written with 0s, one 

row at a time. All other types of accesses to the 

table are blocked, so no predictions, learning, or 

updates will be performed by the BP during this 

time. 

The predictor can be configured using the BP_CFG 

register, which contains the enable bits for 

dynamic prediction of each type of branch 

supported by the BP. When enabled, the BP will 

learn new branches of this type and add them to 

the table. The STMOUTVAL field of the BP_CFG 

register can be used to set the threshold on the 

number of sequential instruction fetches. 

The reset value of the BP_CFG register enables 

prediction for all types of branches except for the 

JUMP Condition Code (JUMPCC) branch, and 

the STMOUTVAL field is set to 22. However, the 

C run-time code featured in the CrossCore® 

Embedded Studio 2.0.0 development tools 

automatically reconfigures the BP_CFG register to 

enable all branch prediction and the Skip Update 

LRU Mode. Additionally, the buffer timeout is 

reduced to 0, and the BP table is flushed. 


While this configuration yields good 

performance for most applications, it 

may not be optimal in all cases. See the 

Code Example section for assistance 

determining the best configuration for 

your application. 

Guidelines for BP Tuning 

If cycle count reduction in a program is desired, 

then tuning the BP may help. The following 

guidelines are recommended. 

First, the store timeout can be set to a value lower 

than the reset default to avoid buffer overwrites 

before the sequencer request can be executed to 

the BP table. Experiment with different values in 

the STMOUTVAL field of the BP_CFG register to 

determine the best configuration for the program. 

Second, either the Skip Update or Skip Update 

LRU Mode can be enabled to reduce the number 
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of stalls incurred due to table updates. These 

modes can be enabled using the SKUPD and 

SKUPDLRU bits of the BP_CFG register, 

respectively. The Skip Update Mode causes 

updates to be skipped when the prediction code 

for a branch is either strongly taken or strongly not 

taken. The Skip Update LRU Mode also causes 

updates to be skipped if the prediction code for a 

branch is either strongly taken or strongly not 

taken and the predicted branch is not the oldest in 

the table for a specific instruction line. This keeps 

the recently accessed branches in the table for a 

longer period of time, thus increasing the 

frequency of predictions near the program counter 

(PC). 

Finally, it is good programming practice to reset 

the BP if self-modifying code is used. This will 

clear invalid branch entries associated with 

previous execution from the affected memory 

space from the BP table and result in correct 

operation. For a detailed description of the 

procedure for clearing the BP table, see the ADSP-

BF70x Blackfin+ Processor Programming 

Reference. 

Code Example 

The associated ZIP file[3] contains example code 

providing insight into how the BP settings affect 

the performance of the program and how it can be 

tuned to improve the performance. The example 

was implemented using the CrossCore® 

Embedded Studio 2.0.0 (CCES 2.0.0) 

development tools and the ADSP-BF707 EZ-

Board™ evaluation platform[2]. 

In this example, the BP performance is evaluated 

by counting the number of processor cycles 

required to execute a loop. The BP events that 

occur while the loop is executing are monitored 

using the PMU. These events are learn requests 

from the sequencer and branches learned by the 

BP table. 

The code calls the BP_Test() function four times. 

Each call to this function sets the BP_CFG register 

to some value and flushes the BP table. Once the 

BP table is cleared, all branches have to be learned 

anew. During each run of the BP_Test() function, 

the stringlength() function is called twice. 

As the name suggests, the stringlength() function 

determines the length of a string passed to it. In 

this case, the string is 3299 characters long. The 

function consists of a tight three-instruction loop, 

as follows: 

   _looptop: 

11a00ad8:   R0=B[P0++](Z); 

11a00ada:   CC=R0==0x0; 

11a00adc:   IF!CC JUMP -0x4(BP); 

The loop has a conditional jump branch, where the 

BP modifier is used to initialize the dynamic 

branch predictor. 

The clock() function in the example code is used 

to count the number of processor cycles required 

to execute the loop. In order to ensure that the loop 

does not execute during the BP table initialization 

period, the csync() function is called before 

calling the stringlength() function. The csync() 

function ensures resolution of all pending core 

operations and flushing of the core store buffer 

before proceeding to the next instruction. 

Since the string passed to the stringlength loop is 

3299 characters long (including the terminating 0), 

the loop should execute in slightly more than 9894 

cycles, provided that the conditional jump at the 

end of the loop is correctly predicted. However, it 

is observed that the stringlength loop executes in 

anywhere from 9935 to 23,127 cycles, depending 

on the BP_CFG register settings, as depicted in 

Figure 1.
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Figure 1. Console Output from Example Program 

In this example, the PMU is used to monitor two 

BP events - branch learn requests from the 

sequencer (pf_lrn_brcc_total) and branch learn 

requests written to the BP table (pf_brcc_lrn). For 

a detailed description of the PMU events, please 

refer to the ADSP-BF70x Blackfin+ Processor 

Programming Reference. 

At first, the BP_CFG register is the reset value 

0x16760000. The STMOUTVAL is set to 22, and 

prediction for all branches except for conditional 

jump is enabled. Both runs of the stringlength() 

function take 23,127 cycles. The only differences 

are the number of learn requests from the 

sequencer and the number of branches learned by 

the BP. During the first run of the stringlength() 

function, the PMU counts the number of 

conditional branch learn requests from both the 

stringlength() and printf() functions. There are 

3358 requests from the sequencer to learn a 

conditional branch, but none are actually learned 

by the BP due to the fact that prediction for 

conditional jumps is disabled. During the second 

call to the stringlength() function, the PMU only 

counts the conditional branch learn requests from 

the stringlength() function; hence, the number of 

learn requests is 3299 and, again, no conditional 

branches are learned by the BP. Since the number 

of cycles taken to execute the loop is much more 

than expected, the BP must be tuned. 

Because there are conditional jumps in the 

example code, the first step in tuning the BP is to 

enable the prediction of the conditional jump 

branches. As such, the BP_CFG register is set to 

0x16770000. The first call to the stringlength() 

function again takes 23,127 cycles, even when the 

prediction of conditional jump branches is 

enabled. It is observed that there are 3306 learn 

requests from the sequencer, but the branches are 
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not learned until very late in the execution. 

However, during the second call to the 

stringlength() function, the number of cycles 

goes down to 9935, and the number of learn 

requests and branches learned is 0. This indicates 

that branches are already learned and present in 

the BP table.  

The inability of the BP to learn branches is 

explained by the fact that the stringlength() loop 

iterates (loops back) every seven cycles. The 

ADSP-BF707 fetch unit issues a series of 10 

consecutive fetches, which is restarted by a new 

loopback on every 8th cycle. These continuous 

fetches starve the predictor of the cycles required 

to create or update a branch entry. As a result, the 

table control buffer gets overwritten before it can 

write its contents to the BP table, and the predictor 

fails to learn the branch despite executing the loop 

several times. 

To avoid buffer overwrites, the store timeout 

value must be reduced. In the second step, the 

STMOUTVAL is reduced to 0, which reduces the 

number of processor cycles to 9948 and 9936, 

respectively. Programmers should experiment 

with different values of STMOUTVAL to arrive at 

the best configuration. 

The last step in tuning the BP is to enable the Skip 

Update LRU mode by setting the SKUPDLRU bit 

of the BP_CFG register. This mode reduces the 

number of stalls due to table update. The number 

of processor cycles required is 9947 and 9935, 

respectively. Likewise, the Skip Update Mode can 

also be enabled to further reduce the number of 

stalls, but the Skip Update LRU Mode is preferred 

because it yields better LRU handling, which 

increases the frequency of predictions near the 

program counter (PC). 

As a result of the BP optimization steps taken 

(summarized in Table 2), the best setting for the 

BP_CFG register in the example code is 

0x00778000. In CCES 2.0.0, the start-up code sets 

the default configuration of BP to 0x00778001. It 

sets the store timeout to 0, enables the Skip 

Update LRU Mode, and flushes the BP table.

Table 2. Performance Measurements during BP Tuning

Conclusion 

This EE-Note discussed how to tune the ADSP-

BF70x Blackfin+ processor’s dynamic branch 

predictor and provides example code for 

programmers to gain insight into the effects of BP 

settings on the application’s performance. 

While the default BP configuration established by 

the CCES 2.0.0 run-time code results in good 

performance for most applications, there is no 

universal best setting. In many cases, better 

performance can be achieved by manipulating the 

BP configuration settings through empirical 

testing of the embedded application code.

  

BP Optimization Steps 
Cycles 

Branch Learn 

Requests 
Branch Learns 

1st Run 2nd Run 1st Run 2nd Run 1st Run 2nd Run 

1. Enable Conditional Jump Branch 

Prediction 
23127 9935 3306 0 7 0 

2. Reduce Store Timeout to 0 9948 9936 10 0 8 0 

3. Enable Skip Update LRU Mode 9947 9935 10 0 8 0 
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